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Abstract—Quanta Image Sensor devices offer single-

photon sensitivity, coupled with high frame rates 

(>100kfps), making them ideal for the tracking of high-

speed objects in low light conditions. However, motion 

artefacts emerge as bit-planes are aggregated in time to 

increase bit depth (and image detail). This work explores 

a scheme for object tracking, based on a sequence of 

binary output fields, followed by a reconstruction of the 

object, through summing transformed versions of the bit-

planes. 

I. INTRODUCTION 

Quanta Image Sensors (QIS), and photon counting 

sensors in general, are enjoying considerable research 

interest, thanks to ongoing developments in enabling 

solid-state technologies [1]. Deep-sub-electron read noise 

(DSERN) CMOS image sensor pixels have been devised 

[2], in addition to Single Photon Avalanched Diode 

(SPAD) image sensors attaining DSERN [3,4]. On the 

application side, algorithms have been proposed for low-

light object classification and tracking based on streams of 

photon counts [5], as well as image reconstruction from 

low photon count QIS data [6]. 

The basic output of a (single-bit) QIS is a binary bit-

plane, each constituent photodetector giving a value of 0 

(for no photon detected) or 1 (at least one photon 

detected), with negligible read noise. These binary states 

(“jots” in QIS terminology) are then summed in space 

and/or time to form a spatio-temporally oversampled 

greyscale image frame. The flexibility in aggregating jots 

represents a distinct advantage in QIS imagers. For 

example, it has been recently shown that through signal-

only aggregation, the effective sensitivity of a SPAD QIS 

device can be increased significantly in single molecule 

localisation microscopy [7].  

Another potential application of QIS is in high-speed 

vision cameras. Indeed, it has been previously proposed 

that output bit-planes (which, taken individually, may 

present limited detail) could be shifted prior to summation 

so as to avoid motion blur [8]. The present paper gives the 

first demonstration of this idea, using image sequences 

taken by a SPAD implementation of QIS.  

Existing schemes for removing motion blur typically 

rely on estimating the point spread function of the 

distortion, either using a sequence of (blurred) images [9] 

or using an additional sensor (an inertial sensor or a 

secondary image sensor [10]). De-convolution is then 

applied to the blurred images in post-processing. An 

alternative approach used in digital image stabilisation is 

to take a sequence of sub-exposures, then select, re-align 

and combine the sharpest exposures. This is 

complemented by the use of gyroscope-based optical 

image stabilisation in many cameras [11]. 

The key attributes of the approach in this paper is that 

it is capable of removing motion blur from the whole field 

of view as well as tracking individual moving objects. 

Furthermore, it requires no secondary sensors (the scheme 

is wholly image processing-based), and uses a camera with 

back-to-back exposures, all of which are used to form the 

final image sequence (important for low-light conditions).  

II. ALGORITHM 

We demonstrate the algorithm using data captured by 

a 320×240, 10kfps SPAD camera [12] of a 5000rpm fan 

moving at 2m/s on a rail (Fig. 1.). An example raw bit-

plane is shown in Fig. 2. The amount of detail that may be 

seen on individual bit-planes is limited, especially if the 

spatial resolution is relatively low, as is the case here. Due 

to the high speed of the fan, carrying out standard 

aggregation in time to produce video-rate image frames 

leads to significant motion blur, making the fan 

unrecognisable (Fig. 3.). The steps in the tracking-

reconstruction algorithm are outlined in Fig. 4. A kernel 

(or “cubicle”) of size (Nx,Ny,Nt), designed to be small 

enough to capture spatial and temporal variations in the 

image scene, is used to compose aggregated “test” frames 

(Fig. 5.). Assuming uniform light intensity across a 

cubicle, and following on from the analysis of [13], the 

value of each resulting pixel will be a binomial count with 

Figure 1. Experimental setup for imaging fan undergoing both linear 

and rotational motion.   



 

 

a certain success probability Px,y,t. Thus confidence 

bounds can be attached to each pixel, as to the “true” 

underlying photon flux, and “difference frames” 

generated, mapping statistically significant changes in 

pixel values in between consecutive “test” frames (Fig. 6.). 

We can thus detect moving objects, and under the 

assumption that these may be modelled as planar objects 

in 3D space, we estimate the transformation between 

“difference frames” to quantify the motion (as indicated in 

Fig. 6.; the estimated trajectory of the fan is shown in Fig. 

7.). Note that whilst we have assumed a rigid 

transformation in this example (which can account for 

linear motion and rotation), we could have chosen a 

similarity transformation (also including scaling, i.e. the 

object moving closer to/further away from the camera) or 

a projective transformation (if there is a change in 

perspective). 

The next step is to apply the inverse of this 

transformation to the original sequence of bit-planes, and 

carry out aggregation in time, which recovers the shape of 

the moving object (Fig. 7.). Based on the object outline, 

and its estimated motion, we carry out an additional sum 

of the bit-planes, untransformed but with the object 

masked out, so as to obtain the background. We can then 

combine the enhanced image of the object and that of the 

background, to compose high bit-depth images, at the 

native resolution of the camera, with no apparent motion 

artefacts (Fig. 8.). 

The scheme can be readily extended to the case of 

multiple moving objects in the field of view. Fig. 9. shows 

an example bit-plane capturing a 1:43 scale toy car 

(moving with the rail) and a rotating fan. The illumination 

of the scene was adjusted to 10lux to simulate reasonably 

dark conditions, with the camera set to take back-to-back 

rolling shutter exposures to obtain a suitable signal level. 

As in the previous example, aggregating bit-planes so as 

to get a video-rate image sequence leads to substantial 

motion blur (Fig. 10.). Following the same algorithm as 

before and computing difference frames enables the 

motion of both the car and the fan blade to be established 

(Fig. 11). Carrying out sums in the respective frames of 

reference recovers the two objects, which are then 

combined with the re-constructed background for an 

effectively blur-free image sequence (Fig. 12.). 

Figure 2. Single raw bit-plane of fan (exposure=2µs)                                Figure 3. Sum of N=256 bit-planes (still frame from video 

rate image sequence) 

Figure 4. Block diagram indicating the steps in the tracking-reconstruction algorithm. The input is a sequence of bit-

planes Ii capturing a high-speed object. The algorithm tracks the motion of this object (as defined by Ti) and outputs a 

higher bit-depth image sequence Gi.   



 

 

We have also considered the case of global motion in 

the captured scene, for instance due to camera shake, and 

applied a similar approach as above for compensating for 

this motion. More specifically, the procedure is as follows. 

A sequence of “test” frames are created by aggregating bit-

planes in time. The transformations that align these frames 

are computed (we used Matlab’s imregtform function, 

and assumed a rigid transformation for this preliminary 

analysis). We then interpolate between the transformations 

associated with consecutive “test” frames to estimate the 

required alignment at the bit-plane level. Transforming the 

bit-planes accordingly, and aggregating for a second time, 

gives a motion-compensated image sequence. As an 

example, Fig 13. plots the extracted motion when the 

camera was intentionally shaken (by hand) in front of the 

test rig, whilst Fig 14. compares image frames before and 

after compensation. Image sharpness is seen to improve 

noticeably. 

III. CONCLUSIONS 

We have demonstrated methods for extracting and 

compensating for motion in a QIS camera. The methods 

lack the sophistication of tracking schemes with elaborate 

segmentation [14] or dynamic modelling (e.g. via a 

Kalman filter) [5], but nevertheless give an indication of 

the image quality improvement that can be achieved 

through appropriate processing of QIS bit-planes. Whilst 

currently implemented in post-processing software, an 

appropriate hardware implementation could potentially 

have real-time, low-light vision applications. In this 

context, an important benefit of composing images from a 

set of short sub-exposures is that rolling shutter can be used 

(giving high temporal aperture), whilst distortion effects 

are minimized. 
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Figure 6. Consecutive “difference” frames. A value of ‘1’ 

indicates “test frame” pixel values that have non-overlapping 

95% confidence intervals in consecutive frames.  

Figure 5. Consecutive “test” frames, created by aggregating bit-

planes using a kernel of size (Nx,Ny ,Nt)=(8,8,8) (overlapping in 

space but not time) 

Figure 8. Two (overlaid) frames from output image sequence (75ms 

apart), both generated using N=256 bit-planes. We note the superior 

sharpness compared with Fig. 3., but same bit-depth and resolution. 

Estimate 

Δx, Δy, Δφ 

Figure 7. Reconstructed fan blade and its estimated 

trajectory 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                       

 

 

 

 

 

 

Figure 9. Single raw bit-plane of fan and car 

(exposure=100µs) 
Figure 10. Sum of N=250 bit-planes (fan and car test). 

Interpolation has been applied over hot pixels. 

Figure 11. Detected motion in scene (left); recovery of fan blade (middle) and car (right) using N=250 bit-planes.  

Figure 12. Frame from output image sequence for fan and car test Figure 13. Extracted camera motion in camera shake test 

(indicated points are 25ms apart) 

Figure 14. Image frames from camera shake test, original (left) and with compensation (right). N=250 in both cases. 


