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Abstract

Combining a partially miscible three liquid system with interfacially trapped silica

colloids, we show that small droplets can exhibit dramatic growth phenomena driven

by physical e�ects alone. The mass dense droplets sprout tubes which grow vertically

upwards in a gravitational �eld and respond to the presence of other droplets in their

path. Two of the liquids in our system are water and toluene. By varying the third liquid

we are able to relate the growth behavior to the details of the underlying three �uid

phase diagram and the changes to the interfacial tension. Additionally, we introduce

a pendant drop in the path of our growing drop. We use this to con�rm that growth

is driven by the partitioning of solvents, that exchange of solvents between droplets is
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chemically selective and that the exchange behavior can itself generate further growth

phenomena.

Introduction

There is great current interest in making liquid droplets in a host solvent responsive and

functional.1 This includes having droplets follow a concentration gradient around a maze,2

respond to light3,4 or self-replicate.5 As part of this, particle-stabilized interfaces have been

harnessed as a model membrane which simultaneously stabilizes the interface between the

two liquids and allows transport across it.6 Here, the particles are on the colloidal scale;

they become trapped at a liquid-liquid interface if they exhibit partial wettability with

both liquids.7 The trapping tends to be extremely strong, however, there remain meso-

scale interstices which readily permit di�usion between the two phases. Aqueous droplets

stabilized by silica nanoparticles have been used to support in vitro gene expression of

enhanced green �uorescent protein and to improve the activity of a range of enzymes.8

The growth and division of particle-stabilized droplets has been demonstrated, driven by the

synthesis of methanol within an aqueous droplet. The methanol leads to the rupture of the

membrane and the formation of a new particle-stabilized interface.9 The complex behavior of

droplets observed under these conditions is also indicative of the range of phenomena which

could occur in the most demanding industrial uses of emulsions.

Life-like growth in liquid-liquid systems can also be observed in �chemical gardens� where

the interfacial layer is synthesized in situ.10 Chemical gardens are the intriguing life-like

tendrils which grow when a seed crystal of a metal salt is immersed in an aqueous solution

of sodium silicate (or other source of anions).11�13 The metal ions enter solution and react,

forming a semipermeable colloidal membrane around the seed crystal. Tendril growth is

then driven by the osmotic pressure associated with water crossing the membrane.14 Recent

research has modeled the growth modes of the tendrils and how interacting tendrils compete
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for resources.15 Chemical garden-like phenomena do not always involve an interface which is

synthesized in situ: ice brinicles are brine-rich tubes growing beneath sea ice which typically

have interfaces stabilized by lipids produced by phytoplankton.16 Their growth direction is

downwards, driven by the mass density of the brine solution.

We recently reported the millimeter-scale sprouting of particle-stabilized water droplets

injected into a bath of toluene and ethanol.17 Vertical sprouting was found to be due to the

ethanol in the immediate vicinity of the injected drop preferentially partitioning into the

sessile water droplet. The ethanol then rises up to the top of the droplet due to its buoyancy

(relative to water), locally reducing the interfacial tension at the top of the droplet, which

then directs the sprouting. New particles from the bath are adsorbed onto the freshly exposed

liquid-liquid interface. The stability of the growing drop at all times was assumed to be

dependent on the balance between gravity and interfacial tension. Noticeable sprouting was

observed only at certain intermediate concentrations of ethanol and silica particles. After

prolonged growth the drop eventually buckles under its own weight due to the internal phase

being more dense than the surrounding solvent. This system di�ers very signi�cantly from

almost all of those described above in that it relies solely on physical partitioning and not

on chemical synthesis within the droplet or at its interface.

In the phenomena reported here and for several other important droplet instabilities,

any elasticity that the interface may exhibit can have a controlling in�uence. For example,

we discovered the sprouting droplets by combining the well-known Marangoni instability18

(see also19,20) with interfaces made elastic by a layer of adsorbed particles.17 The interfacial

particles suppress the dancing of a pendant drop, but on longer time scales a 50µ` droplet

grows a centimeter in ten minutes. An alternative case is Ostwald ripening: a population of

droplets of di�erent sizes tend to coarsen as the dispersed phase moves from smaller to larger

droplets. Here elastic interfaces can be used to suppress the movement of the dispersed phase

hence preventing droplets from changing size.21,22 By contrast, an interfacial layer of particles

is unable to suppress compositional ripening (exchange between droplets driven by di�erent
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chemical contents).23 The experiments we report here, in which we use two droplets with

di�erent contents, are a stylized study of compositional ripening. Being able to understand

and control the ripening behavior of these systems would be valuable for the production of

stable emulsions encapsulating varied chemical contents (so-called compound emulsions).

In this Article we demonstrate the cause of droplet sprouting by exploring variations in

the behavior in response to a range of experimental conditions. We assess the sprouting

behavior for four di�erent solvents and then relate the results to the underlying three-�uid

phase diagrams. We next show how the sprouting droplets respond to a pendant droplet

in their path. This enables us to demonstrate that the advancing droplet requires a bath

of alcohol to continue to grow. Finally we reveal new phenomena that occur when the

sprouting droplet makes contact with the pendant droplet; this includes the building of a

colloidal bridge and controlled exchange of solutes.

Results and discussion

To begin, we observe that using methanol in the bath instead of ethanol (used previously17)

can also induce droplet sprouting (see Figure 1). The parameters which could change when

we change the solute include the rate of partitioning into the droplet, the �nal equilibrium

compositions, the interfacial tension between the two phases and the particle interactions.

All of these factors are also dependent on the volume fraction of alcohol used. Here we

typically use a 50µL droplet of deionized water in 5mL of bath solution containing toluene,

0.2 vol% fumed silica and various concentrations of the solutes. 1001 In a further series of

experiments we introduce an additional pendant droplet so as to further probe how the

sprouting droplet interacts with its environment.

1001For a particle-stabilized water droplet in a bath of toluene with methanol, the growing behavior continues
for several hours. Increasing numbers of particle-stabilized tubes sprout for the �rst hour. This ultimately
results in the formation of a large particle-stabilized neck. Subsequently there is �uid �ow leading to the
droplet arriving at the top of the sample.
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Figure 1: A series of frames showing the behavior of a water droplet in a bath of 0.2 vol%
fumed silica, 25 vol% methanol and toluene as a function of time.

The role of di�erent solutes on the growth behavior

Pure solutes

Sprouting droplet experiments17 can be illustrated using the equilibrium phase diagram of

the liquid components, e.g. Figure 2(a). The water droplet corresponds to the right hand

vertex of the triangle while the bath has a composition which is a speci�c location along

the left-hand edge. The growth emerges in the presence of particles as this system attempts

to reach thermodynamic equilibrium via partitioning of the solvents. We �nd that a sessile

water droplet in a bath of toluene, fumed silica particles and methanol also displays sprouting

behavior (see Figures 1 and 2(b)). This growth is, however, not as uniform as for a water

droplet in a toluene bath with ethanol. Initially, the water droplet expands and collapses in

a series of rapid movements which initially occur approximately every 10 s, but subsequently

more slowly. These di�erences are likely to stem from the underlying phase behavior: the

tie lines on the ternary phase diagram of toluene, water and methanol have a steep gradient

indicating that, at equilibrium, the majority of the methanol is in the water rich phase, see

Figure 2(b). This re�ects the much stronger a�nity methanol has for water in comparison

to toluene; hence, a large volume of methanol partitions into the water droplet quite rapidly.

In addition, the droplets in this system do not sprout a stable, smooth tube but rather

overspill with the liquid from the droplet streaming upwards; this stream slowly becomes

particle-stabilized. Using methanol as the solute rather than ethanol requires a larger volume

fraction of solute in the system before any sprouting behavior is observed (this may relate

to the interfacial tension, see below).

In contrast, a sessile water droplet in a bath of toluene, fumed silica particles and 1-
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Figure 2: Ternary phase diagram showing the regions of miscibility and immiscibility for
various three �uid systems; below each are frames showing the time dependent behavior of
a particle-stabilized water droplet. The red diamond marks the critical point and the line
represents a typical tie line. a: Toluene-Water-Ethanol. Images show a sprouting water
droplet in a bath of 15 vol% ethanol in toluene. b: Toluene-Water-Methanol. Images show
a sprouting water droplet in a bath of 25 vol% methanol in toluene. c: Toluene-Water-1-
Propanol. Images show a slightly expanding water droplet in a bath of 10 vol% 1-propanol
in toluene. d: Toluene-Water-Acetone. Images show a slightly expanding water droplet in a
bath of 25 vol% acetone in toluene.

propanol did not display any sprouting behavior, see Figure 2(c). Instead the droplet sim-

ply expanded slightly in size. This behavior was observed for all the volume fractions of

1-propanol used, although there was a change in shape of the droplet from spherical to ellip-

soidal as the concentration was increased. In comparison to ethanol and methanol there will

be much less 1-propanol partitioning into the water droplet because it is much more evenly

divided between the two phases. We suggest that there is not enough alcohol partitioning
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into the droplet to cause the increase in volume required for tube sprouting behavior. 1002

The solute acetone, similar to 1-propanol, in a bath with toluene and fumed silica did not

cause any sprouting behavior in a sessile water droplet (see Figure 2(d)). Instead, the water

droplet expanded slightly in size and this is, again, likely to be due to insu�cient quantities

of solute partitioning into the droplet . Indeed, the tie lines for the ternary system of water,

toluene and acetone indicate that the majority of the acetone will be found in the toluene-rich

phase.24

Interfacial tension measurements

The pendant drop method was used to measure the interfacial tension between the equi-

librium compositions of the water-rich and toluene-rich phases given an initial binary con-

centration of the alcohols methanol, ethanol and 1-propanol in toluene.25 The interfacial

tension between water and toluene was found to be 35.2± 0.1mN/m which is within 5% of

the literature value at 20 ◦C.26 Increasing the volume fraction of any of the alcohols moves

the system closer to the critical point on the phase diagram, leading to a decrease in the

interfacial tension, see Figure 3.

Methanol, which decreases the interfacial tension least, has a much stronger a�nity for

the water-rich phase than the toluene-rich phase, meaning that the majority of the methanol

is found in the water-rich phase, see Figure 2(b). By contrast, 1-propanol, which decreases

the interfacial tension most, does not display such a strong preference; consequently, it is

more evenly split between the two phases, see Figure 2(c), which makes the phases more

similar at lower volume fractions. A high interfacial tension can mean that the particle-

laden interface is too rigid,27 hence, for methanol, sprouting was only observed at high

alcohol concentration. A low interfacial tension can mean that gravity controls the shape

of the droplet, hence the change in droplet shape for 1-propanol with increasing alcohol

1002In principle, the lack of sprouting behavior could be because this is a cross system: the slope of the tie
lines changes sign, Figure 2(c). However, the volume fractions of 1-propanol used in these experiments were
lower than the crossing point.
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Figure 3: A graph showing the interfacial tension values as measured using a pendant drop
tensiometer for equilibrium compositions containing di�erent alcohols compared to the initial
volume fraction of alcohol in a binary mixture with toluene. These values are found using
the conditions and constituents as for the growth behavior experiments

concentration.

Mixtures of alcohols

To observe how the growth phenomenon changes for subtle variations in interfacial tension

and partitioning behavior we have used mixtures of alcohols. The samples were characterized

by the volume fraction of alcohol in the bath and the e�ective carbon length (a 1:1 mixture of

ethanol and methanol would produce an e�ective carbon chain length of 1.5). The systems

were then grouped on a diagram according to the observed behavior and Figure 4 shows

seven di�erent regions.

Region 1 extends across all volume fractions of alcohol at high e�ective carbon chain

length and also down to intermediate e�ective chain length at low alcohol volume fractions

(see Figure 4). Here the droplet simply expands in a similar way to the pure 1-propanol

case. For these compositions there is not enough alcohol partitioning into the droplet and

the large range of interfacial tension values included indicates that a soft interface will not

8



10 12 14 16 18 20 22 24 26 28 30

1

2

3

7
65

4

3
2

1

4.4 mN/m6.4 mN/m11.9 mN/m

15.5 mN/m20.3 mN/m24.1 mN/m

8.6 mN/m10.8 mN/m17.0 mN/m

Expands Sprouts Tube
Grows and overspills upwards Gels
Grows and overspills downwards Elongates

E
ffe

ct
iv

e
 C

a
rb

o
n

 C
h

a
in

 L
e

n
g

th

Alcohol Content (%)

21.0 mN/m

3

4

5

6

1

2

7

Figure 4: A diagram showing the changes in water droplet behavior depending on the e�ective
carbon chain length and the initial alcohol content of the toluene phase. The solid lines are
indicative of possible boundaries between regions. The interfacial tension at speci�c points
is also given on the diagram. Example time series of droplet behavior in each numbered
region are included (note the variations in time scales).

9



yield growth on its own.

Region 2 is at intermediate e�ective carbon chain length and intermediate alcohol con-

tent; here sprouting behavior is observed. There is signi�cant partitioning and intermediate

interfacial tension: the interface is not too rigid to allow growth and not so low that the

interface is too soft to support growth.17

Region 3 is at slightly higher alcohol content than region 2 but still at intermediate

e�ective carbon chain length. In this region, sprouting behavior is observed but now the

droplet appears to erupt with the tube overspilling down the side of the original droplet (see

Figure 4, image sequence 3). Evidently, the interface is failing to provide a rigid support

for growth or a barrier to the internal phase due to either the lower interfacial tension, the

change in wettability of the particles or both.

Region 4 is at high alcohol content and intermediate e�ective carbon chain length. The

droplets in this region were observed to expand, collapse, elongate and roll around the base

of the cuvette. This behavior is reminiscent of that of a sessile droplet with no interfa-

cial particles17 and follows from substantial partitioning of alcohol combined with a soft or

uncovered interface.

Region 5 is where the particle-particle interactions become important and the bath was

observed to become very viscous, even gel-like. This is at low e�ective carbon chain length

and low alcohol content (see Figure 4). Here, droplet growth is impeded by a surrounding

particle network.

Region 6 is characterized by higher alcohol content and low e�ective carbon chain length;

the behavior changes again with the droplet expanding, attempting to sprout a tube and

then collapsing repeatedly. This is indicative of a high rate of alcohol partitioning that is

still insu�cient to overcome an interface which is too rigid.

Region 7 initially shows droplet behavior like region 6 with rapid growth and collapsing

cycles; subsequently, an upward liquid stream is observed to burst from the droplet which

then becomes particle stabilized (see Figure 4, image sequence 7). This behavior is observed
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for systems with low e�ective carbon chain length and high alcohol content and has partly

been described in the pure methanol solute Section above. The large volume of alcohol

partitioning into the droplet in this region is su�cient to overcome the rigid interface.

Quantitatively, sprouting results when a large volume expansion (associated with a tie

line slope at least as steep as from ≈ pure toluene to 3:1 water:alcohol) is combined with an

interfacial tension in the range 9-18mN/m.

Mass transfer between two droplets

Behavior of a sprouting droplet in the vicinity of a pendant droplet

In this Section we look at how the mass transfer, using ethanol as the solute, can be altered

locally by introducing a pendant droplet of pure water into the path of a sprouting droplet.

Two di�erent outcomes are observed depending on when the pendant drop is created (see

Figure 5(a, b)). If the pendant drop is injected at approximately the same time as the

sessile one, Figure 5(a), the ethanol partitions into both droplets at about the same rate.

This leads to the formation of a layer depleted of ethanol along the water-oil interface in

the region surrounding the pendant drop. Due to the existence of this `halo' around the

pendant drop, the sessile water droplet continues its growth towards regions that are more

abundant in ethanol, i.e. it grows around the boundary of the pendant droplet, Figure 5(a).

Conversely, if the pendant drop is formed once the sessile one has started sprouting and is

approaching the needle, then it is appropriate to assume that ethanol from the bath has

only been depleted extremely close to the pendant drop, hence the sprouting droplet can

approach (see Figure 5(b)). This contrasting behavior underlines the fact that the growth is

driven by the partitioning of the ethanol.

When a pendant droplet is created as the sprouting droplet approaches, the two liquid-

liquid interfaces never actually meet (see Figure 5(b)). At a small separation distance

(≈2mm) a dark cone is observed to grow downwards from the pendant droplet. This struc-

ture makes contact between the two droplets. We assume that the formation of the cone
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(a) (b) (c)

Figure 5: a: The behavior of a pendant drop of water and a sessile drop of water created
simultaneously in a bath of 0.49 vol% fumed silica, 20 vol% ethanol and toluene. b: The
behavior of a pendant drop of water and a sessile drop of water where the pendant drop was
created after the sessile drop had started sprouting in a bath of 0.49 vol% fumed silica, 20
vol% ethanol and toluene. c: One minute later, the bridge pictured in b, detaches from the
pendant droplet. The scale bars are 1.5mm.

is driven by the di�usion of water from the pendant droplet, which is water only slightly

enriched with ethanol, to the growing droplet, which is signi�cantly enriched in ethanol. The

transfer process is a form of compositional ripening. The presence of water in the continuous

phase has destabilized the hydrophobic particles and caused them to aggregate. About a

minute after the formation of this colloidal cone, it detaches from the pendant droplet due to

being pulled down by its own weight (see Figure 5(c)). The cone retains its shape, con�rming

that it has self assembled from solid particles aggregated into close proximity.

Mass transfer between pairs of sprouting and pendant droplets

There is evidence from Figure 5(b) that water is transferred from a fresh pendant droplet to

a sessile droplet which grows close to its interface. To determine whether large scale solvent

transfer will happen in response to any composition di�erence, we have included sodium

bromate in the aqueous pendant droplet and ferroin indicator solution and sulphuric acid

in the sessile droplet with water,28,29 see Methods. As with Figure 5(b) above, the sessile

droplet is created earlier and so is enriched in ethanol compared to the pendant droplet.

If the reactants meet in signi�cant quantities a color change from red to blue should be
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observed. The two droplets were pushed into contact and held that way for a prolonged

period (see Figure 6). The red color of the sessile droplet is a strong and stable feature of

the system for at least half an hour. Color change does not occur until the two droplets

eventually coalesce (see Figure 6(e)).

(a)
initial

(b)
3.5 min

(c)
9 min

(d)
29 min

(e)
32 min

Figure 6: a-e: A sequence of frames showing pendant and sessile drops pushed into close
contact. The droplets contain the separate reactants (see text); the sessile droplet is created
earlier and so is enriched in ethanol compared to the pendant droplet. Water is transferred
from the pendant droplet to the sessile droplet, the reactants are not. A second sessile
droplet sits to one side and plays no signi�cant role in the experiment. e: After being
pushed into contact for a prolonged period the two droplets coalesce and the reaction takes
place, resulting in a transparent droplet. Across the sequence of frames there is a slight
increase in the volume of the pendant drop due to further mixture descending from the
reservoir above. The scale bar is 1.5mm.

In the frames shown in Figure 6(b-d) colloidal aggregation is evident from the cloudy

region surrounding the point of contact between the droplets. We associate this with water

moving through the oil phase and destabilizing the dispersed particles. Our results strongly

suggest that, while water does move between droplets, the small molecule reactants are

con�ned to one droplet or the other. Hence the higher concentration of ethanol in the

sessile droplet is the biggest driver of solvent transfer; by contrast, the other reactants have

negligible in�uence.

Conclusions

Particle-stabilized interfaces have previously been employed as a design motif in life-like

droplets. Here we have demonstrated how they can be used in droplets which sprout and

grow. The growth is driven by alcohol partitioning into the water droplet which causes an

increase in volume and tends to lower the interfacial tension near the top of the droplet. We
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have shown that in order for sprouting behavior to occur, a �ne balance between the volume

of alcohol partitioning into the droplet and the value of the interfacial tension between the

two phases is necessary. If the interfacial tension is too high and the volume of alcohol too

low then no growth behavior is observed. If the interfacial tension is too low and the volume

of alcohol too high then any attempt at growth results in collapse. Sprouting results when

a large volume expansion (associated with a tie line slope at least as steep as from ≈ pure

toluene to 3:1 water:alcohol) is combined with an interfacial tension in the range 9-18mN/m.

These features can be controlled via the choice of alcohol and liquid proportions. By placing

a pendant drop in the path of the sprouting droplet we have been able to con�rm both that

the sprouting drop needs an environment rich in alcohol to grow and that a fresh pendant

droplet will lose water via di�usion to the growing droplet. We have gone on to demonstrate

that the alcohol concentration is the dominating driver of di�usion from one droplet to

another, swamping any in�uence of other reactants. This e�ective selectivity means that we

have complete control based on the phase diagram and the elasticity of the interfaces.

The formation of the particle cone between droplets of di�erent composition (Fig. 5b) is

a previously unreported feature of compositional ripening. The control of such phenomena

is of crucial importance for complex delivery applications, for example, in the agrochemical

sector. Here it is necessary to create emulsions which are robust if the farmer chooses to mix

them with a second emulsion-based product. Understanding the instabilities of mixed-droplet

systems is a crucial step towards developing the stable emulsions required. Separately, the

sprouting growth mode we observe (Fig. 2a) is curiously life-like. It is fascinating that this

behavior is not limited by our reliance on physical e�ects. Growth is driven by partitioning

and the growing droplet is stabilized by building blocks (particles) which it acquires from

the surroundings. It seems to us that, because interfacial particles confer elastic properties

to the interface while allowing transport across it, they are an important design motif for

future studies of mechanics, growth and transport in many kinds of tubular structures.
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Experimental

Materials

The solvents toluene (Analytical Reagent grade, Fisher), methanol (Analytical Reagent

grade, Fisher), 1-propanol (anhydrous 99.7%, Sigma Aldrich), acetone (GPR RECTAPUR,

VWR), absolute ethanol (AnalaR NORMAPUR, VWR) and sulfuric acid (95-97%, Sigma-

Aldrich) were used as received. Distilled water was �ltered and deionized with a Milli-Q

system to a resistivity of 18.2 MΩ cm. Fumed silica particles (HDK H30), size ≈100 nm,

were a gift from Wacker-Chemie (Burghausen). Sodium bromate (99%, Sigma-Aldrich) and

ferroin indicator (0.025M, Fluka) were used as received.

Methods

Growth behavior

Firstly, the relevant mass of fumed silica particles was weighed out to give 0.2% particle

volume fraction. Next 10mL of toluene was added to the vial followed by the appropriate

volume of acetone, ethanol, methanol or 1-propanol to give the required volume fraction

of solute. This mixture was then dispersed using the ultrasonic probe (Sonics Vibracell

VCX500) for two minutes using a 30 s on, 30 s o� cycle at 20% amplitude. The square cuvette

on a Krüss EasyDrop tensiometer (model 65 FM40Mk2) was used to hold the bath liquid at

a volume of ≈5mL. Typically, a ≈50µL droplet of deionized water was then injected into

the bath directly after video recording was started in order to view the growth behavior at

room temperature. The behavior of the droplet was recorded over a period of approximately

ten minutes.

Interfacial tension

The method by Joos was followed in order to �nd the volume fraction of alcohol in a bi-

nary mixture with toluene for a tie line of a given equilibrium composition.25 The relevant
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equilibrium compositions for the binary mixtures used in the growth experiments were then

made up by combining toluene, alcohol and water. The mixtures were vortex mixed for 20

s in order to ensure the system is homogeneous. The density of both the water and toluene

phases was measured using a density meter (Anton Paar, DMA 4500). Each phase was mea-

sured three times and the mean density used as an input value for measuring the interfacial

tension. Interfacial tension measurements were made using the pendant drop method on the

tensiometer which includes software to analyze the drop shape. The largest possible pendant

drop of the denser water phase was injected into a bath of 5mL of the toluene phase by a

supported Hamilton syringe. The shape was measured every 30 s at room temperature over

a period of twenty minutes to check that the interfacial tension was stable. This experiment

was then repeated 2-3 times, with fresh liquids and the mean taken to be the interfacial

tension.

Mass transfer experiments

Small batch (10mL) samples were prepared by mixing 10-30 vol% ethanol and 0.1-0.6 vol%

H30 hydrophobic silica particles in toluene solvent. The resulting mixture was then ultrason-

icated as described in the Growth behavior Section above. The water droplets (5-40µL) were

then injected into the bath using a Hamilton syringe either manually or using the syringe

pump on the tensiometer. Videos of sprouting sessile drops and turbulent pendant drops

were recorded for 3000 frames at a rate of 6 fps and were subsequently analyzed qualitatively.

For the reactant transfer experiments, the bath liquid was prepared and dispersed as

above, with 20 vol% ethanol and 0.2 vol% H30 hydrophobic silica particles. The aqueous

phase used for the pendant droplet contained 0.3M of sodium bromate and the aqueous phase

used for the sessile droplet contained 0.3M sulfuric acid and 1.7mM of ferroin indicator. A

QImaging MicroPublisher 3.3 RTV color camera was used to record the videos of droplets

containing dye.
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