Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

Edinburgh Research Explorer

The Mondrian Data Engine

Citation for published version:

Drumond, M, Daglis, A, Mirzadeh, NS, Ustiugov, D, Picorel, J, Falsafi, B, Grot, B & Pnevmatikatos, DN
2017, The Mondrian Data Engine. in ISCA '17 Proceedings of the 44th Annual International Symposium on
Computer Architecture. ACM, pp. 639-651 , 44th International Symposium on Computer Architecture
(ISCA), Toronto, Canada, 24/06/17. DOI: 10.1145/3079856.3080233

Digital Object Identifier (DOI):
10.1145/3079856.3080233

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
ISCA '17 Proceedings of the 44th Annual International Symposium on Computer Architecture

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/83952633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3079856.3080233
https://www.research.ed.ac.uk/portal/en/publications/the-mondrian-data-engine(ef6f95a1-8ab3-46ce-8ffd-b0e616f42279).html

The Mondrian Data Engine

Mario Drumond Alexandros Daglis
Javier Picorel
EcoCloud, EPFL

Babak Falsafi Boris Grot!
"'University of Edinburgh 2FORTH-ICS & ECE-TUC

Nooshin Mirzadeh Dmitrii Ustiugov
Dionisios Pnevmatikatos’

firstname.lastname @epfl.ch,boris.grot@ed.ac.uk,pnevmati @ics.forth.gr

ABSTRACT

The increasing demand for extracting value out of ever-growing
data poses an ongoing challenge to system designers, a task only
made trickier by the end of Dennard scaling. As the performance
density of traditional CPU-centric architectures stagnates, advancing
compute capabilities necessitates novel architectural approaches.
Near-memory processing (NMP) architectures are reemerging as
promising candidates to improve computing efficiency through tight
coupling of logic and memory. NMP architectures are especially
fitting for data analytics, as they provide immense bandwidth to
memory-resident data and dramatically reduce data movement, the
main source of energy consumption.

Modern data analytics operators are optimized for CPU execu-
tion and hence rely on large caches and employ random memory
accesses. In the context of NMP, such random accesses result in
wasteful DRAM row buffer activations that account for a significant
fraction of the total memory access energy. In addition, utilizing
NMP’s ample bandwidth with fine-grained random accesses requires
complex hardware that cannot be accommodated under NMP’s tight
area and power constraints. Our thesis is that efficient NMP calls for
an algorithm-hardware co-design that favors algorithms with sequen-
tial accesses to enable simple hardware that accesses memory in
streams. We introduce an instance of such a co-designed NMP archi-
tecture for data analytics, the Mondrian Data Engine. Compared to a
CPU-centric and a baseline NMP system, the Mondrian Data Engine
improves the performance of basic data analytics operators by up to
49x and 5x, and efficiency by up to 28 x and 5 X, respectively.

CCS CONCEPTS

* Computer systems organization — Processors and memory
architectures; Single instruction, multiple data; * Information sys-
tems — Main memory engines; * Hardware — Die and wafer stack-
ing;

KEYWORDS

Near-memory processing, sequential memory access, algorithm-
hardware co-design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4892-8/17/06. .. $15.00
https://doi.org/10.1145/3079856.3080233

ACM Reference format:

Mario Drumond ~ Alexandros Daglis Nooshin Mirzadeh Dmitrii Ustiu-
gov Javier Picorel Babak Falsafi Boris Grot! Dionisios Pnevmatikatos>
EcoCloud, EPFL 'University of Edinburgh 2FORTH-ICS & ECE-TUC .
2017. The Mondrian Data Engine. In Proceedings of ISCA 17, Toronto, ON,
Canada, June 24-28, 2017, 13 pages.
https://doi.org/10.1145/3079856.3080233

1 INTRODUCTION

Large-scale IT services are increasingly migrating from storage to
memory because of intense data access demands [7, 17, 51]. Online
services such as search and social connectivity require managing
massive amounts of data while maintaining a low request tail latency.
Similarly, analytic engines for business intelligence are increasingly
memory resident to minimize query response time. The net result is
that memory is taking center stage in server design as datacenter op-
erators maximize memory capacity integrated per server to increase
throughput per total cost of ownership [42, 53].

The slowdown in Dennard scaling has further pushed server
designers toward efficient memory access [18, 30, 49]. A large
spectrum of data services has moderate computational require-
ments [20, 36, 43] but large energy footprints primarily due to data
movement [16]: the energy cost of fetching a word of data from
off-chip DRAM is up to 6400 higher than operating on it [29]. To
alleviate the cost of memory access, several memory vendors are
now stacking several layers of DRAM on top of a thin layer of logic,
enabling near-memory processing (NMP) [35, 46, 63]. The com-
bination of ample internal bandwidth and a dramatic reduction in
data movement makes NMP architectures an inherently better fit for
in-memory data analytics than traditional CPU-centric architectures,
triggering a recent NMP research wave [2, 3, 22, 23, 56, 57].

While improving over CPU-centric systems with NMP is trivial,
designing an efficient NMP system for data analytics in terms of
performance per watt is not as straightforward [19]. Efficiency impli-
cations stem from the optimization of data analytics algorithms for
CPU platforms, making heavy use of random memory accesses and
relying on the cache hierarchy for high performance. In contrast, the
strength of NMP architectures is the immense memory bandwidth
they offer through tight integration of logic and memory. While
DRAM is designed for random memory accesses, such accesses
are significantly costlier than sequential ones in terms of energy,
stemming from DRAM row activations [65].

In addition to their energy premium, random memory accesses
can also become a major performance obstacle. The logic layer of
NMP devices can only host simple hardware, being severely area-
and power-limited. Unfortunately, generating enough memory-level
parallelism to saturate NMP’s ample bandwidth using fine-grained

2 This work was done while the author was at EPFL.

https://doi.org/10.1145/3079856.3080233
https://doi.org/10.1145/3079856.3080233

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

accesses requires non-trivial hardware resources. Random memory

accesses result in underutilized bandwidth, leaving a significant

performance headroom.

In this work, we show that achieving NMP efficiency requires an
algorithm-hardware co-design to maximize the amount of sequential
memory accesses and provide hardware capable of transforming
these accesses into bandwidth utilization under NMP’s tight area
and power constraints. We take three steps in this direction: First,
we identify that the algorithms for common data analytics operators
that are preferred for CPU execution are not equally fitting for NMP.
NMP favors algorithms that maximize sequential accesses, trading
off algorithmic complexity for DRAM-friendly and predictable ac-
cess patterns. Second, we observe that most data analytics operators
feature a major data partitioning phase, where data is shuffled across
memory partitions to improve locality in the following probe phase.
Partitioning unavoidably results in random memory accesses, regard-
less of the choice of algorithm. However, we show that minimal
hardware support that exploits a common characteristic in the data
layout of analytics workloads can safely reorder memory accesses,
thus complementing the algorithm’s contribution in turning random
accesses to sequential. Finally, we design simple hardware that can
operate on data streams at the memory’s peak bandwidth, while
respecting the energy and power constraints of the NMP logic layer.

Building on our observations, we propose the Mondrian Data
Engine, an NMP architecture that reduces power consumption by
changing energy-hungry random memory access patterns to sequen-
tial DRAM-friendly ones and boosts performance through wide com-
putation units performing data analytics operations on data streams
at full memory bandwidth. We make the following contributions:

e Analyze common data analytics operators, demonstrating preva-
lence of fine-grain random memory accesses. In the context of
NMP, these induce significant performance and energy overheads,
preventing high utilization of the available DRAM bandwidth.

e Argue that NMP-friendly algorithms fundamentally differ from
conventional CPU-centric ones, optimizing for sequential memory
accesses rather than cache locality.

o Identify object permutability as a common attribute in the parti-
tioning phase of key analytics operators, meaning that the location
and access order of objects in memory can be safely rearranged to
improve the efficiency of memory access patterns. We exploit per-
mutability to coalesce random accesses that would go to disjoint
locations in the original computation into a sequential stream.

e Show that NMP efficiency can be significantly improved through
an algorithm-hardware co-design that trades off additional com-
putations and memory accesses for increased memory access con-
tiguity and uses simple hardware to operate on memory streams.
Our Mondrian Data Engine improves the performance of basic
data analytics operators by up to 49 x and 5, and efficiency by
up to 28x and 5x as compared to a CPU-centric and a baseline
NMP system, respectively.

The paper is organized as follows: §2 provides an overview of data

operators and their main phases. We briefly argue for NMP architec-

tures as a good fit for data analytics and analyze their main inefficien-
cies in §3, which we then address in §4. We present the Mondrian

Data Engine in §5, our methodology in §6, and evaluation in §7.

Finally, we discuss related work in §8 and conclude in §9.

M. Drumond et al.

Basic operator Spark operator]

Scan Filter, Union, LookupKey,
Map, FlatMap, MapValues
Group by GroupByKey, Cogroup, ReduceByKey,
Reduce, CountByKey, AggregateByKey
Join Join
Sort SortByKey

Table 1: Characterization of Spark operators.

2 IN-MEMORY DATA OPERATORS

Large-scale IT services often rely on deep software stacks for manip-
ulating and analyzing large data volumes. To enable both iterative
and interactive data querying, the data management backend of such
services increasingly runs directly in memory to avoid the bandwidth
and latency bottleneck of disk I/0 [12, 32, 45, 62]. While at higher
levels data is queried in a specialized language (e.g., SQL), the soft-
ware stack eventually converts the queries into data transformations.
Much as in conventional database management systems, these trans-
formations rely on a set of physical data operators at their core to
plow through data [60]. Table 1 contains a broad set of common data
transformations in Spark [21] and the basic data operators needed to
implement them in memory: Scan, Group by, Join, and Sort.

Contemporary analytics software is typically column-oriented
[1, 12, 21, 40, 50, 71], storing datasets as collections of individual
columns, each containing a key and an attribute of a particular type.
A dataset is distributed across memory modules where the operators
can run in parallel. The simplest form of transformation is a Scan
operator where each dataset subset is sequentially scanned for a
particular key. More complex transformations require comparing
keys among one or more subsets of the dataset.

To execute the comparison efficiently (i.e., maximize parallelism
and locality), modern database systems partition datasets based on
key ranges [68]. For instance, parallelizing a Join would require first
a range partitioning of a dataset based on the data items’ keys to
divide them among the memory modules, followed by an indepen-
dent Join operation on each subset. A similar data item distribution
is required for the Group by and Sort operators.

Table 2 compares and contrasts the algorithmic steps in the ba-
sic data operators. All operators can be broken down into two main
phases. Starting from data that is initially randomly distributed across
multiple memory partitions, the goal of the first phase, partitioning,
is to redistribute data so that memory access locality will be maxi-
mized in the upcoming operations. The partitioning phase involves
data distribution to new partitions, usually based on a hash value of
their key, which results in mostly random memory accesses across
memory partitions. Prior work on join operators showed that parti-
tioning accounts for roughly half of the total runtime [11, 38, 68],
and may completely dominate execution time (> 90%) in highly
optimized implementations [10].

The second phase, probe, leverages the data locality created in the
first phase, by probing data exclusively located in a single partition
and applying the desired operation. In some cases, such as in Join and
Group by, a second hash step may be applied before the actual data
probe, to facilitate data finding during the upcoming computations.
Even though all data accesses in the probe phase are localized in
the given data partition, the access pattern is often random. As a

The Mondrian Data Engine

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Partitioning Probe
Operators / Phases - _ — . _
Histogram build Data distribution Hash table build Operation
Scan - - - Scan keys
Join Hash keys with low order bits .. Hash keys & reorder Join by key
Group by Copy to partitions Group by key
Sort Hash keys with high order bits - Local sort
Table 2: Phases of basic data operators.
result, NMP architectures may struggle to fully utilize their available CPU

memory bandwidth. Generating high enough bandwidth demand
with random accesses requires tens of outstanding requests, more
than a conventional CPU typically supports. In contrast, sequential
accesses allow bandwidth utilization with simple hardware, which is
a critical target for the severely area- and power-constrained NMP
logic. Therefore, algorithms that favor sequential accesses may be
preferable to others that are optimized for locality and/or have a
better algorithmic complexity.

3 CHALLENGES IN DATA ANALYTICS

Performance constraints have made in-memory data analytics a com-
mon practice. While moving from disk-based to memory resident
data services highlights the central role of data, traditional CPU-
centric platforms for data analytics are still built around compute
rather than data. CPU-centric architectures are advocates of central-
ization, as they require transferring all data from the memory close
to the processor, the ingress point where all computations take place,
as shown in Fig. la. Data lies across several memory partitions, but
such distribution has little effect: the data transfer cost from the
memory close to the CPU may be somewhat sensitive to the location
of the accessed memory partition (e.g. NUMA effects), but is high in
any case. CPUs rely on high locality and reuse in their cache hierar-
chy for efficient operation, amortizing the exorbitant cost of moving
data from memory over multiple fast and cheap cache accesses. Un-
fortunately, this requirement makes CPUs and large-scale analytics
ill-matched, as the latter exhibit either no temporal reuse or reuse at
intervals beyond the reach of practical on-chip caches [20, 64].
Near-Memory Processing (NMP) is an alternative architectural
approach to data analytics, being data-centric instead of compute-
centric. Fig. 1b illustrates the main concept of such architectures.
Instead of moving data from memory to compute, compute elements
are physically placed closer to the target data, near the memory, and
the CPU offloads computation to these NMP units, which then inde-
pendently access memory to perform the requested task. As in the
case of CPU-centric architectures, data is distributed across multiple
physical memory partitions; but, unlike CPUs, the accessed memory
partition affects each NMP compute element’s memory access effi-
ciency: accessing a local memory partition is significantly faster and
more efficient than a remote one. Hence, simply pushing compute
closer to the memory does not entirely solve the data movement bot-
tleneck, as many operators rely on scatter/gather operations that may
require accessing one or more remote partitions. Therefore, in the
partitioning phase of data operators, data is shuffled across the mem-
ory partitions (black arrows in Fig. 1b) to maximize memory access
locality [48, 57]. After partitioning, the NMP compute units enjoy
low-latency/high-bandwidth access to their local memory partition,
avoiding wasteful data movement across the memory network.

Cache
Hierarchy
-]
]
\‘I>H

Memory
[~
[>H
[=h
=
Ely
@_’-
Sy

g E,/

e // \\\ \9{?)@
// lll \\\ \\(:? "
R
| @ []
‘5 r w w w w
£ (o]
Data Data Data Data

(b) NMP architecture. ''C" represents an NMP core.

Figure 1: Data access on two different architectures. Black ar-
rows indicate expensive data movements.

Overall, the data-centric nature of data analytics makes NMP
architectures a great fit for data analytics. However, NMP is rather
an enabler than a solution. The memory access patterns (§3.1) and
the NMP logic’s ability to utilize the available memory bandwidth
under tight area and power constraints (§3.2) are critical to an NMP
system’s efficiency.

3.1 Memory access patterns

DRAM-based memory has its idiosyncrasies regarding access
patterns, which determine its efficiency. In general, maximizing
DRAM’s efficiency and effective bandwidth requires sequential ac-
cesses instead of random.

DRAM is organized as an array of rows, and a DRAM access
comprises two actions: a row activation and the transfer of the re-
quested data on the I/O bus. A row activation involves copying the
entire DRAM row containing the requested data to a row buffer,
regardless of the memory access request’s size. The row buffer can
then serve requests coming from the upper level of the memory
hierarchy (typically cache-block-sized). For DDR3, the row acti-
vation energy is 3x higher than the energy of transferring a cache
block from/to the row buffer [47]. Because of this energy breakdown,
energy efficiency requires amortization of the row activation cost,

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

by leveraging row buffer locality (i.e., accessing all or most of the
opened DRAM row’s data).

While the memory access energy breakdown is different for die-
stacked memory technologies, the trend remains similar [4]. Tak-
ing Micron’s HMC as an example, the effective row buffer size is
32x smaller than DDR3 (256B vs. 8 x1KB). It also supports trans-
fers smaller than a typical 64B cache block (8 or 16B), as NMP
compute units may directly access the memory without an intermedi-
ate cache hierarchy. Furthermore, the transfer distance in die-stacked
memory is in the order of pum, as compared to mm in the case of
DDR3. We use CACTI-3DD [14] to estimate the row activation
energy overhead in HMC. While in the case a whole row is accessed
it only accounts for 14% of the access’ energy, it quickly climbs
to 80% when only accessing 8B of data, a common occurrence for
applications that are dominated by random memory accesses. HMC
is a conservative example, as this energy gap is sensitive to the row
buffer size, which is even larger in other die-stacked memory devices
(2KB in HBM [35] and 4KB in Wide I/O 2 [34]).

As NMP inherently reduces the energy spent on data movement,
the memory access pattern (random vs. sequential) becomes a con-
siderable factor of the memory subsystem’s overall efficiency, as row
activations account for a major fraction of DRAM’s dynamic energy.
It is therefore important for data services running on NMP systems
to replace fine-grained random accesses with bulk sequential ones.

3.2 Memory-level parallelism

NMP architectures expose immense memory bandwidth to the logic
layer. However, the hardware resources that can be placed on the
logic layer are tightly area- and power-constrained. Utilizing the
available memory bandwidth requires the logic layer to generate
enough memory-level parallelism (MLP). Doing so with fine-grained
random accesses is challenging, as it requires hardware with a large
instruction window and the capability of keeping many concurrent
outstanding memory accesses alive at all times. Using streams of
sequential accesses instead significantly relaxes the hardware re-
quirements, by enabling utilization of the memory bandwidth with a
small number of parallel outstanding memory access sequences.
To illustrate, a single HMC memory partition (vault) offers a
peak memory bandwidth of 8GB/s, while the area and power budget
of the vault’s underlying logic layer is just 4.4mm? and 312mW,
respectively [23, 33, 57]. These limitations preclude the usage of
aggressive out-of-order cores as NMP units, which represent the
best candidates for achieving high numbers of outstanding random
memory accesses. To put numbers into perspective, an ARM Cortex-
AS57 core with an ROB of 128 entries would—very optimistically—
be able to keep about 20 outstanding memory accesses, assuming
one 8-byte memory access every 6 instructions and enough MSHRs
to support that many misses. With a memory latency of 30ns, even in
the ideal case where that MLP is maintained at all times, the memory
bandwidth utilization would approach 5.3GB/s. While not a far cry
from the peak of 8GB/s, the power of such an ARM Cortex-A57 at
1.8GHz and 20nm is rated at 1.5W, surpassing the NMP power cap
by several factors. While prefetchers can help push the bandwidth
utilization higher, if the application is dominated by random memory
accesses, the prefetched data will rarely be useful or even detrimental
to the cache’s hit ratio [20]. Our experiments (§7) confirm these

M. Drumond et al.

limitations, showing that even for operators as simple as Scan, the
above bandwidth utilization calculation is too optimistic. Overall,
conventional MIMD cores cannot sustain a high enough number of
parallel fine-grained accesses to utilize the memory’s full bandwidth
under the tight constraints of an NMP architecture.

4 EFFICIENT MEMORY ACCESS

Addressing the two efficiency challenges in near-memory analytics
presented in §3 requires the synergy of algorithms and hardware. We
now discuss the required modifications in data analytics software
(§4.1) and the NMP hardware characteristics necessary to utilize the
available bandwidth under tight power and area constraints (§4.2).

4.1 Sequential accesses and row buffer locality

Memory access patterns are a direct consequence of the data struc-
tures and algorithms used at the application level. Modern software
is optimized for execution on CPU-centric architectures, favoring
cache-aware data accesses to minimize expensive memory access
and maximize locality. These algorithms should be revisited in the
face of near-memory processing, where efficiency is derived not by
caching, but rather by proximity to memory. For NMP architectures,
efficient algorithms are those that access memory sequentially, thus
allowing simple hardware to exploit rich internal DRAM bandwidth.

4.1.1 Choice of algorithm. Going back to the basic operators
(Table 2), each operation’s probe phase can be completed by dit-
ferent algorithms. To illustrate, Join algorithms generally fall into
two categories: sort- and hash-based. The former target efficiency
through sequential memory accesses, albeit at a higher algorithmic
complexity; the latter optimize for fast lookups and high cache local-
ity. While the gradual increase of SIMD width in mainstream CPUs
may eventually tip the balance in favor of sort-based join algorithms
[38], hash-based joins are still preferred for CPU execution [8].

In the case of NMP architectures, two characteristics motivate re-
visiting the algorithms known to perform best for CPUs: significantly
cheaper and faster memory access and a constrained logic capacity,
which limits the number of in-flight random memory accesses. These
features motivate the use of algorithms with simpler—sequential—
access patterns, even at the cost of higher algorithmic complexity
(i.e., more passes on the data). In the case of the Join operator,
sort-merge join is an alternative to hash join: while it has a higher
algorithmic complexity than hash join (O(nlogn) vs. O(n)), requiring
sorting both relations prior to merge-joining them, it allows execu-
tion of the operator using solely sequential memory accesses. The
same tradeoff applies to other data operators (e.g., Group by), as
well: replacing hash-based approaches with—algorithmically more
expensive—sort-based approaches, can significantly improve the
efficiency of the operator’s probe phase.

4.1.2 Data permutability. The access patterns of the operators’
probe phase are largely determined by the used algorithm. However,
that is not the case for the partitioning phase, which accounts for a
major fraction of the operators’ total runtime [10, 11, 38, 68]. Dur-
ing partitioning, each computation unit sequentially goes through its
local memory partition and determines each data element’s destina-
tion partition. As multiple partitions execute this data partitioning
in parallel, writes arrive at every destination partition interleaved,

The Mondrian Data Engine

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Row 0

Row 1[Ad] A5 A6| A7) a4 A5 A6 A7] Row 1!

Source partition BolB1lB2]B3 R0w2i
R oy v | ‘
Row 0 [B0 B1 [B2 B3]/ Bl [B[B5]Bo [B7] Row 3,
{Row 1[B4] B3] 56 7] T Destination pariition
”””” Source partition B Message arrival order

Figure 2: Partitioning phase: data shuffling across memory partitions.

resulting in random memory accesses. This random access pattern is
inherent to such data shuffling and is an unavoidable result of mem-
ory message interleaving in the memory network, hence it cannot
be controlled at the software/algorithmic level, as is the case for the
data operators’ probe phase.

Fig. 2 exemplifies a memory access pattern resulting from parti-
tioning. For simplicity, we only show two source partitions, A and B,
where all of their data has to end up in the same destination partition.
As both source partitions send data, the messages get interleaved in
the memory network, resulting in random writes at the destination:
no two consecutive writes hit in the same DRAM row. In reality,
multiple DRAM rows can be kept open at the same time, so even
interleaved accesses can hit in an open row buffer. However, the
probability of an access finding an open row quickly drops with the
system size, as more sources shuffle data concurrently. Finally, even
though memory controllers have to some extent the ability to reorder
incoming requests and prioritize accesses to open rows, the distance
of accesses to different locations within a row is typically too long
for this scheduling window [65, 66]; maximizing row buffer locality
requires more advanced techniques.

We observe that we can turn all random accesses during the
partitioning phase of data analytics operators into sequential ones
by exploiting a data structure property prevalent in data analytics
with minimal hardware support in the memory controller. Our key
insight is that the exact location of data objects within each memory
partition is not important, because data operators apply the same
computation on every data object in a memory region, much like an
unordered data bucket. Memory partitions in the partitioning phase
of data operators are commonly treated like hash table buckets. The
order of items in a hash table bucket is not important, as it is always
treated as a heap of data: finding something in a bucket requires
going through all of its contents. Therefore, data objects in a hash
table bucket—similarly, in a memory partition—are permutable: any
order in the bucket is acceptable, and does not affect the operator’s
correctness. In Fig. 2’s example, writing data objects sequentially
into memory as they arrive would not affect correctness, as long
as the software will only use that memory region as a sequence of
unordered data objects during the upcoming probe phase. Such an
approach avoids redundant row buffer activations by guaranteeing
that every row buffer is activated exactly once.

The data object permutability insight is broadly applicable to a
range of key data analytics operators. It holds for the partitioning
phase of the basic Join, Group by, and Sort operators (Table 2) and
also extends to more complex operators that build upon these three
(e.g., see Table 1 for Spark operators). It also applies to the data
partitioning and shuffling phase of MapReduce and any BSP-based

graph processing algorithm, or, more generally, to any operation that
involves coarse-grained data partitioning in buckets.

4.2 Streaming and SIMD

Revisiting the software-implemented algorithms to expose sequen-
tial accesses to hardware brings us half way to our goal of efficient
bandwidth utilization; the remaining half requires designing hard-
ware capable of leveraging these sequential accesses to execute data
operators at full memory bandwidth. While the exact hardware pa-
rameters such as the available memory bandwidth or power and area
limitations per compute unit differ across NMP architectures, the
main limitations and challenges remain the same. In all cases, a com-
pute unit for an NMP architecture has access to memory bandwidth
several times higher than a CPU core, with much stricter area and
power constraints. At the same time, NMP compute units should
be programmable to be capable of executing a broad range of data
analytics operators.

By relying on software to access memory sequentially, NMP units
can be programmable processing units capable of fully utilizing
their corresponding memory bandwidth by streaming data from
memory, thus requiring a small amount of hardware state to sustain
the necessary memory-level parallelism. However, computation has
to keep up with the data streams in order to sustain peak memory
bandwidth. As the vast majority of data analytics operators are data
parallel, we observe that a modest degree of SIMD capabilities is in
most cases sufficient to achieve that. SIMD extensions are already
commonplace, even in low-power processors that are usable as NMP
compute units (e.g., ARM Cortex-35 [6]).

S THE MONDRIAN DATA ENGINE

We now present the Mondrian Data Engine, a novel NMP archi-
tecture for data analytics built on top of our algorithm-hardware
co-design insights that efficiently utilizes the ample memory band-
width that is available due to memory proximity.

5.1 Architecture Overview

The Mondrian Data Engine architecture consists of a network of
NMP-capable devices. Fig. 3a shows the floorplan of such a network.
Each device has a number of memory partitions, and each memory
partition features a tightly coupled compute unit capable of oper-
ating on data independently. All the partitions are interconnected
via both on-chip interconnects and an inter-device network, allow-
ing all compute units to access any memory location in the NMP
network. The NMP network is also attached to a CPU, which has
a supervisory role: it does not actively participate in the evaluation

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

of the data operators, but initializes all components, launches and
orchestrates the execution, and collects the final results. Without
loss of generality, we assume a flat physical address space spanning
across conventional planar DRAM and the NMP-capable devices.
The address space covered by the NMP-capable devices is accessible
by the CPU, and can be managed as a unified address space, similar
to GPUs [31] and recent work on virtual memory support for NMP
systems [55]. NMP compute units can only access the aggregate
address space of the NMP-capable devices via physical addresses.
We design the Mondrian Data Engine’s compute units to execute
common data analytics operations at their local memory partition’s
peak effective bandwidth. We also apply minimal modifications to
the memory controllers to exploit the data permutability opportunity
inherent in data analytics. In the rest of this section, we discuss the
Mondrian Data Engine’s implementation and programming model.

5.2 Compute units

We use Micron’s HMC [46] as our basic building block, which fea-
tures a 3D stack of DRAM dies on top of a logic die, interconnected
using TSV technology. Each die is segmented into 32 autonomous
partitions. As shown in Fig. 3b, a vertical stack of the partitions
forms a vault, with each such vault controlled by a dedicated con-
troller residing on the logic die. Compared to conventional DRAM,
which is organized into multi-KB rows, the HMC features smaller
rows of 256B and a user-configurable access granularity of 8 to 256
bytes. To interface with the CPU, the HMC uses serial SerDes links
running a packet-based protocol. Each link operates independently
and can route memory requests crossing HMC boundaries. The ac-
tual DRAM control logic is distributed among the vault controllers.

Every HMC vault offers an effective peak memory bandwidth
of 8GB/s with an underlying logic layer of 4.4mm? and a peak
power budget of 312mW per vault. As our first-order analysis in
§3.2 already showed, using conventional MIMD cores to saturate
the bandwidth under that area and power envelope is very challeng-
ing. In contrast, the 8 GB/s bandwidth target can be easily met by
streaming, as long as the software exposes sequential accesses to
the hardware. We thus provision the logic layer with eight 384B
(1.5x the row buffer size) stream buffers, sized to mask the DRAM
access latency and avoid memory-access-related stalls. The stream
buffers are programmable and are used to keep a constant stream of
incoming data in the form of binding prefetches to feed the compute
units. The next challenge lies in processing the incoming memory
streams at a rate matching the memory bandwidth.

Going back to the basic data analytics operators, we identify that
the most challenging operation on data streams is sorting. Since
most algorithms that favor sequential accesses over random eventu-
ally require sorting data prior to the target operator’s probe phase,
providing hardware that can operate on data tuples at memory band-
width is critical to performance. We base the following analysis
on 8B/8B key/value tuples, as commonly done in data analytics
research [10, 11]. This assumption does not limit our hardware’s
capabilities; in fact, the smaller the tuples, the more challenging it is
for compute units to utilize the available bandwidth. We estimate that
we can sort incoming streams of 16B tuples at the available 8GB/s
per-vault memory bandwidth with an 8-tuple-wide SIMD unit; hence
we require an 128B (1024-bit) SIMD unit. We identify mergesort

M. Drumond et al.

_I_I-:-I--I_ _I_I-:-I--I_
SR b
RIS EE Bk B o BB EE Bk B o

SN Lot
5 |-4--F-4-- -4 I-4--F-4-- -4
L~ HNT L~ HNT
5 . N . N
o EESHESHE= ===
a C EERE
- + L - + |
R EE Bk B “b-4-t -4 -k
HESENESH HE LN
[t e i | i e |
(a) Floorplan.
Clziz[(_ 1024-bit
A35 SIMD

vault

Object Stream
buffer buffer
Vault Controller

logic layer tile

DON [neA-12jur

TSVs

%
Logic Layer

(b) HMC unit and logic tile.

Figure 3: Mondrian Data Engine architecture.

as the fittest near-memory sort algorithm, as it spends most of the
time merging ordered streams of tuples, thus maximizing sequential
memory accesses. Mergesort sorts n tuples by performing logn se-
quential passes on the dataset (O(nlogn) algorithmic complexity). In
order to match the available bandwidth, and assuming a frequency
of 1GHz, we must process a tuple every 4 cycles; hence, with an
8-tuple-wide SIMD unit, we must process a group of 8 tuples every
32 cycles. We can trivially merge 8 streams of tuples into 4 sorted
streams in a data parallel manner under this time budget. We further
optimize mergesort with an initial bitonic sort pass, using the SIMD
algorithm used in [8], where we sort small groups of tuples that
are later merged (intra-stream sorting). This optimization reduces
the required number of passes on the dataset by four, which in our
system setup (512MB vault filled with 16B tuples) corresponds to a
~ 20% reduction in the total number of passes.

We choose the ARM Cortex-A35, a dual-issue, in-order core,
as our baseline NMP compute unit, dissipating 90mW at 1GHz in
28nm technology. The Cortex-A35 offers customizable features;
we estimate that a single core with 8KB caches and a 128bit-wide
SIMD unit has an area footprint of 0.65mm?, with less than 0.25mm?
attributed to the SIMD unit [27]. Given that data analytics do not
require the unnecessary complexity of floating-point SIMD, we can
extend the SIMD unit to 1024 bits for just 2x higher power than
the original 128-bit Neon, as illustrated by Qualcomm’s Hexagon
680 DSP [25]. This dramatic reduction in power is corroborated
by DianNao [15], which shows that fixed point ALUs are about
8% more efficient that floating point ALUs. Assuming similar area
and power scaling while increasing the SIMD width and replacing
floating point with fixed point precision, we estimate the modified
ARM Cortex-A35 to be 1.15mm? and dissipate at most 180mW,
staying well within our per-vault area and power budget.

The Mondrian Data Engine

// allocate permutable regions per vault
for (vault_id = 0; vault_id < vault_num: vault_id++)
perm_array = malloc_permutable(size, object_size ,
vault_list[vault_id]);
// enable memory permutability
shuffle_begin (perm_array);

shuffle_end (); //disable memory permutability

(a) Toggling permutability during partitioning phase.

// Configure prefetcher to prefetch up to 8 data streams
// Streams are allocated as follows:

//Stream 0: [start_addr, start_addr + stream_size)

// Stream 1: [start_addr + stream_size ,

/1 start_addr + 2xstream_size)

11

prefetch_in_str_buf(start_addr, stream_size, num_streams);

while (!all_stream_buffer_done ()) {
tuples = read_stream_heads (tuple_size);

//Perform some computation with the tuples [...]

// Advance stream heads — notify prefetcher
pop_input_stream (tuple_size);

store (modified_tuples , output_addresses);

(b) Stream buffer management.

Figure 4: Mondrian Data Engine sample pseudocode.

5.3 Exploiting data permutability

We leverage the permutability property of data during the partition-
ing phase of data analytics to convert random memory accesses to
sequential ones. Initially, when the CPU sets up an NMP execution,
a per-vault base physical address and size of the destination buffer
for the partitioning phase is sent to each vault controller by writing
to a set of special memory-mapped registers. Every received write re-
quest marked as permutable is sequentially written in the destination
buffer, thus maximizing row buffer locality. As the exact per-vault
destination buffer size is only known after the data operator’s his-
togram build step of the partitioning phase, the CPU only provides a
best-effort overprovisioned estimation.

A subtle but critical aspect of the implementation is that the
permutability feature holds on a per-object rather than a per-memory-
message basis: if a single object is broken into multiple memory
requests, these requests cannot be handled independently and treated
as permutable. A solution to this implication is to always send write
requests that contain the whole object. A vault controller only makes
inter-request and never intra-request memory location permutations.

In order to prevent data objects from straddling more than a single
memory message, we introduce special object buffers. During the ini-
tialization of the permutable memory regions, the software exposes
the used object sizes (and hence the granularity of permutability) to
the hardware. During the partitioning phase, the hardware drains the
object buffer to the vault router only when its contents match the
size of the specified object size, thus injecting an object-sized write
request in the network. In our implementation, we use a single 256B
object buffer per compute unit. The buffer size is determined by
the row buffer size and is compliant with the HMC protocol, which
allows messages up to 256B long to be exchanged between vault
controllers. The object buffer size does preclude using data objects

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

larger than 256B. However, beyond that size, the objects are big
enough to exploit row buffer locality without being permuted by the
destination vault controller.

5.4 Programming the Mondrian Data Engine

We provide two special functions to mark the code region of the
partitioning phase, which generates permutable data object stores
(Fig. 4a): shuffle_begin and shuffle_end. Shuffle_begin blocks execu-
tion until all participating vault controllers have been set up for the
upcoming batching phase and involves two steps. First, every NMP
unit computes the amount of data it is going to write to each remote
vault, and then writes it to a predefined location of the corresponding
remote vault. This information is collected during the histogram
build step of the operators’ partitioning phase (see Table 2), which is
necessary in the baseline CPU system as well. After this information
is exchanged, every NMP unit sums all these received values to com-
pute the total size of inbound data. At this point, an NMP unit may
identify that the incoming data will overflow the local destination
buffer, which was allocated in advance by the CPU. In such a case,
an exception may be raised for the CPU to handle, as the histogram
build of the partitioning phase should be retried with a second round
of partitioning in order to balance the resulting partitions’ sizes. We
focus on uniform data distributions where this behavior never arises
and defer support for skewed datasets to future work.

All the stores within shuffle_begin and shuffle_end falling in the
permutable memory region are treated by the receiving memory con-
trollers as permutable. The Mondrian Data Engine does not bound
the number of permutable_stores in flight during a partitioning phase,
and does not enforce any ordering among them. However, a syn-
chronization mechanism to identify the completion of all in-flight
stores before execution continues to its next phase (probe) is neces-
sary. The programmer marks this synchronization point in the code
with a shuffle_end. When an NMP compute unit reaches that point,
it suspends its execution until signaled to continue. We leverage
message-signaled interrupts (MSI) as our notification mechanism.
Every NMP accelerator has an interrupt vector with a width match-
ing the total number of vaults, each bit representing a vault. When
a vault controller finishes writing all expected data (as specified by
shuffle_begin), it sends an MSI to all NMP units. When an NMP
unit’s interrupt controller finds all bits of the interrupt vector set, it
wakes up its compute unit to resume execution. The same notifica-
tion mechanism is used to advance into the partitioning phase after
the completion of a shuffle_begin. While this all-to-all communica-
tion protocol can be expensive, it is only required at the beginning
and end of a long partitioning phase, hence we did not attempt to
optimize it.

Fig. 4b’s pseudocode illustrates the Mondrian Data Engine’s
stream buffer management. We provide a programming interface
that allows tying a data stream to a buffer and popping the head tuple
of the stream to operate on. While the application consumes the
stream buffers’ head entries, stream buffers continue getting filled
from memory, until the user-specified end of the stream is reached.

6 METHODOLOGY

System organization. We evaluate a collection of basic data ana-
lytics operators on three different architectures: CPU, NMP, and

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

.. HMC
- -
MRS N ISH SN SN SR
R B S B Ry R
ik chelele !

-F HMC tq|—r CPU r+ HMC H-
A dberebb - L C LS C) C i dadih-
oMo e S
: cijcfcyc '

Figure 5: Modeled CPU-centric architecture.

Mondrian Data Engine. As platform setups for data analytics are
memory driven, we use memory capacity as the normalization metric
across the evaluated systems. Going after a 32GB system, we deploy
four 8GB HMCs. Each modeled HMC features 16 512MB vaults
(instead of 32 256MB vaults of the real device, because of simulation
limitations), for a total capacity of 32GB in 64 vaults. Taking into
account that a typical CPU setup for data analytics allocates 2-8GB
of memory per core (Cloudera) [64], we populate our 32GB CPU
system with 16 cores. We assume a tiled chip, connected to four
passive HMC:s in a star topology (Fig. 5). In the NMP systems, the
HMCs are active and fully connected, as illustrated in Fig. 3a.

For the baseline NMP system we assume compute units that
resemble the CPU-centric architecture’s MIMD cores. We therefore
use the best OoO core we can fit under the per-vault power budget:
a 3-wide 1GHz core with a 48-entry ROB, similar to a Qualcomm
Krait400 [26]. Both the CPU and the NMP baseline systems feature
a next-line prefetcher, capable of issuing prefetches for up to three
next cache lines.

Simulation. We use Flexus [67], a full-system cycle-accurate
simulator, combined with DRAMSim?2 [58] to evaluate and compare
the three aforementioned systems. Table 3 summarizes the used
parameters.

Evaluated operators. We evaluate four basic operators, namely
Scan, Join, Group by, and Sort, which are representative of a broad
range of data operators (e.g., see relation to Spark operators in
Table 1). For the CPU, our operator implementations are adaptations
of the Join algorithm used in [10], based on the radix hash join
algorithm described by Kim et al. [38] (source code available [9]).
In contrast, the Mondrian Data Engine performs sort-merge join to
maximize row buffer locality. In all cases, we use 16-byte tuples
comprising an 8-byte integer key and an 8-byte integer payload,
representing an in-memory columnar database. We assume a uniform
distribution of keys in the input relations.

We describe the Join operator (R < S) in more detail, being the
most complicated of the four basic data operators. We assume that
keys in the R and S relations follow a foreign key relationship: every
tuple in § is guaranteed to find exactly one join match in R. The
algorithm consists of two main phases, as illustrated in Table 2: par-
titioning, where data is shuffled across partitions, and probe, where
the actual join is performed. The Mondrian Data Engine leverages
data permutability to improve the efficiency of the partitioning phase,

M. Drumond et al.

which involves two steps for both the small relation R and the large
relation S: (i) building a histogram, and (ii) distributing data to the
partitions. In the histogram step, all keys in the source memory par-
titions are hashed into NV buckets, to determine their location in their
destination partition, where N is the number of destination partitions.
The hash function uses a number of the key’s bits to determine each
tuple’s destination partition. In the code’s CPU version, we use the
keys’ 16 low order bits, optimizing for our modeled system’s private
cache size. For the NMP systems, we use six bits, matching the total
number of NMP vaults. In the second step of the partitioning phase,
tuples are copied to their corresponding locations in their destination
partitions, as determined in the histogram step.

In the Join operator’s probe phase, matching tuples of the R and
S relations are joined. This operation is fully localized within each
partition. In the case of CPU, the phase starts with building a hash
table and computing a prefix sum (similar to the first step of the
partitioning phase) for the elements of the smaller relation R. The
purpose of this second hashing is to group together keys of the
R relation that map to the same hash index, and store them in a
contiguous address range (further referred to as an index range).
Finally, for each tuple in S, the index range of R that corresponds
to the S tuple’s key hash is probed, and the matching R tuple in
the index range is joined with the probing § tuple. In the case of
the Mondrian Data Engine, the probe phase is implemented as a
sort-merge join. Thus, all data in the local vault is sorted and the two
relations are joined doing a final pass.

For the Group by operator, we altered the last step of the
join’s algorithm to perform six aggregation functions (avg, count,
min, max, sum, and sum squared), which are applied to all the
tuple groups. Our modeled Group by query results in an average
group size of four tuples. In the partitioning phase of the sort

‘ CPU baseline]
Cores ARM Cortex-A57; 64-bit, 2GHz, 00O, RMO
) 3-wide dispatch/retirement, 128-entry ROB
32KB 2-way L1d, 48KB 3-way L1i
L1 Caches 64-byte blocks, 2 ports, 32 MSHRs
2-cycle latency (tag+data)
LLC Shared block-interleaved NUCA, 4MB, non-inclusive
16-way, 1 bank/tile, 4-cycle hit latency
Coherence Directory-based MESI
} NMP baseline
Cores Qualcomm Krait400; 64-bit, IGHz, OoO
RMO, 3-wide dispatch/retire, 48-entry ROB
L1 Caches Same as CPU-centric
‘ Mondrian Data Engine l
Cores ARM Cortex-35; 64-bit, IGHz, in-order, RMO
) dual-issue. 1024-bit fixed-point SIMD unit
‘ Common]
DRAM 32GB: 8 layers x 16 vaults x 4 stacks
Organization
DRAM tcx = 1.6 ns, tras =224 18, tgep = 11.2 ns
Timing feas =11.2ns, twg = 14.4 ns, tgp = 11.2 ns
NOC 2D mesh, 16B links, 3 cycles/hop
Inter-HMC Fully connected for NMP, Star for CPU
Network SerDes links @ 10GHz: 160Gb/s per direction

Table 3: System parameters for simulation on Flexus.

The Mondrian Data Engine

operator, we use high order bits, as opposed to low order bits
used by the join, to obtain the partitions that contain the keys
strictly smaller or larger than the keys in any other partition. Then,
in the probe phase, all tuples within each partition are sorted
using quicksort, in the case of CPU, and mergesort, in the case
of Mondrian Data Engine. The last and simplest operator, scan,
does not have a data partitioning phase; each input data partition is
scanned in parallel, and each tuple is compared to the searched value.

Evaluated configurations. We evaluate a number of different
system configurations to break down the benefits of the algorithm-
hardware co-design the Mondrian Data Engine is based on. In
the partitioning phase, we separate the benefits of permutability
and deploying SIMD units by evaluating two configurations in
addition to the NMP baseline (NMP) and Mondrian: NMP-perm
and Mondrian-noperm. The former uses the NMP baseline’s
computation units but also leverages permutability, the latter uses
Mondrian’s SIMD units without leveraging permutability. In the
probe phase, we aim to illustrate that deploying an algorithm that
favors sequential accesses over random is not beneficial without the
proper hardware support to translate this favorable memory access
pattern into high effective bandwidth utilization and, conversely,
performance. We therefore deploy two versions of the Join and
Group-by operators on the NMP baseline: the hash-based version
(random memory accesses, also used by the CPU) and the sort-based
version (sequential memory accesses, also used by Mondrian). We
refer to these two versions as NMP-rand and NMP-seq, respectively.

Performance model. As the executed code differs across the
evaluated systems, we base our performance comparisons on the
runtime of each operator on the same datasets. We use the SMARTS
sampling methodology [70] to reduce the turnaround time of
cycle-accurate simulation, and measure the achieved IPC in each
case. We then use fast functional-only simulation to measure the
instruction count of each algorithm phase. Finally, we multiply the
IPC with the number of instructions to estimate the runtime of each
operator on each of the architectures.

Energy model. We develop a custom energy modeling framework
to take the energy consumption of all major system components into
account, combined with event counts from Flexus (cache accesses,
memory row activations, etc.) to estimate the total expended energy

l System Component [Power / Energy]

CPU Core
NMP Baseline Core

Mondrian Core

Power: 2.1W
Power: 312mW
Power: 180mW

Access Energy: 0.09nJ
Leakage Power: 110mW
Energy: 0.04pJ/bit/mm
Leakage Power: 30mW
Background Power: 980mW
Activation Energy: 0.65nj

LLC

NOC

HMC (per 8GB cube)
Access Energy: 2p j/bit
SerDes Idle: 1pj/bit, Busy: 3p jibit

Table 4: Power and energy of system components.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

for each experiment. Table 4 summarizes these power and energy
estimations. We assume a 28nm technology and estimate LLC power
using CACTI 6.5 [41]. We estimate core power based on the core’s
peak power and its utilization statistics. For the HMC, we scale the
energy data reported by Micron [33] and separate the row activation
from the access energy by modeling HMC on CACTI-3DD [14].
The HMC features the smallest row buffer size among commercial
stacked DRAM devices, resulting in a conservative activation/access
row buffer energy ratio. The energy benefits of reducing row buffer
activations would be even larger for devices with larger row buffers,
such as Wide I/O 2 [34] and HBM [35]. We also estimate HMC
background power and energy per operation based on Micron models
as implemented in DRAMSim?2 [58] and Micron data sheets [47].
Finally, we use previously published data for the NOC [24, 65] and
SerDes energy [22, 44].

7 EVALUATION

We now proceed to evaluate the four systems described in the
methodology section: CPU-centric, NMP-perm, NMP-rand, NMP-
seq, Mondrian-noperm, and Mondrian. We use the four common
data operators that are representative of data analytics services (Scan,
Sort, Group by, Join) to compare all of the above system configura-
tions in terms of performance (§7.1), energy and efficiency (§7.2).

7.1 Performance

We break down the data operators into their two main phases, namely
partitioning and probe. We first show the results for the two phases
separately and then combine them to deduce the overall performance
of each evaluated system. All performance results appear as speedups
over the CPU baseline.

Table 5 shows the speedup for the partitioning phase on NMP,
NMP-perm, Mondrian-noperm and Mondrian. The partitioning
phase for all operators is almost identical, so we only show the
results for the Join operator. The conventional partition algorithm
executed by CPU, NMP and Mondrian-noperm builds and maintains
a histogram of tuple keys to calculate the exact destination address
for each tuple. The histogram manipulation code suffers from heavy
data dependencies and results in low bandwidth utilization and, ulti-
mately, poor performance. NMP outperforms the CPU by 58 x due
to its high parallelism and proximity to memory, but falls short of its
full potential with an average per-core IPC of 0.98. Overall, NMP
utilizes only 1.0GB/s of memory bandwidth per vault.

Mondrian-noperm leverages its SIMD units to outperform NMP
by 2.4 %, but is still compute-bound. Due to the same data depen-
dency issues observed in NMP, Mondrian-noperm cannot use SIMD
instructions throughout the partition loop and manages to utilize
2.4GB/s of memory bandwidth on average.

NMP-perm and Mondrian exploit data permutability during parti-
tioning. NMP-perm achieves a speedup of 1.7 x over NMP mainly
due to the execution of simpler code. Permutability eschews the
need for destination address calculation and greatly reduces depen-
dencies in the code. However, even after leveraging permutability,
NMP-perm utilizes only 1.6GB/s memory bandwidth per vault.

Finally, Mondrian leverages both SIMD and permutability. It uses
SIMD instructions across the entire partition loop, enabling data-
parallel processing of 8 tuples, and shifts the performance bottleneck

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

M. Drumond et al.

100 ; 100 ;
. joNMP-rand dNMP-seq @Mondrian 1 oNMP oNMP-perm @Mondrian
L] ¥]
System Speedup over CPU § | g
NMP 58x) EPN
NMP-perm 98 % E S
Mondrian-noperm 142 x g] HI H '§ 1 HI
. Q. Q.
Mondrian 273x A |_| |_| A
1 |_| 1 |_|

Scan

Table 5: Partition speedup vs. CPU.

to the SerDes links’ bandwidth. The outcome is a bandwidth uti-
lization of 4.5GB/s per vault and speedups of 1.9%, 2.8 x and 273 x
over Mondrian-noperm, NMP-perm, and CPU, respectively.

Fig. 6 shows the probe phase performance results. In the case of
Scan, NMP-rand and NMP-seq are identical, as they execute the
same code, and achieve a performance improvement of 2.4 x over the
CPU due to memory proximity. However, NMP cannot fully utilize
the memory bandwidth, reaching a per-vault bandwidth utilization
of only 2.5GB/s, due to a combination of a narrow pipeline and code
with heavy data dependencies. Although the overall CPU perfor-
mance is lower than NMP, the per-CPU-core bandwidth utilization
is 4.3GB/s, thanks to the cores’ larger instruction window and higher
frequency. Mondrian overcomes NMP’s limitations by using wide
SIMD operations that allow entire tuples to be processed by a single
SIMD instruction, improving performance by 2.6x as compared to
the NMP baselines. Mondrian utilizes 6.7GB/s of per-vault memory
bandwidth, nearing the theoretical peak of 8GB/s.

Sort shows a similar trend as Scan, with two key changes. The
performance gap between NMP and CPU grows due to an increased
number of memory accesses. The gap between NMP and Mondrian
grows even further because of Sort’s higher computational require-
ments, which are better accommodated by Mondrian’s wide SIMD.
Both NMP-seq and NMP-rand execute mergesort.

For Group by and Join, we observe that NMP-rand outperforms
NMP-seq, even though NMP-seq’s IPC of 0.95 is significantly higher
than NMP-rand’s IPC of 0.24. While NMP-seq is faster due to its
sequential memory access patterns, it is not fast enough to compen-
sate for the added logn factor to algorithmic complexity. Mondrian’s
wide SIMD units absorb this algorithmic complexity bump, achiev-
ing speedups of 22 x over the CPU and 5x over the best NMP.

Fig. 7 trivially combines the operators’ partitioning and probe
phases to represent the complete execution. For NMP and NMP-
perm, we combine their corresponding partition phase with the
best performing probe algorithm, NMP-rand. Mondrian’s overall
speedup over the CPU and the best NMP baseline, composed of
NMP-perm+NMP-rand, peaks at 49 x and 5 X, respectively.

7.2 Energy and Efficiency

Fig. 8 shows the energy breakdown for CPU, NMP, NMP-perm, and
Mondrian across their main components. In the CPU case, DRAM
bandwidth is severely underutilized and core energy dominates.
However, we simulate a relatively small system due to practical con-
straints, and we expect commercial systems to have more DRAM

Operator
Figure 6: Probe speedup vs. CPU.

Group by Join Scan Sort Group by Join

Operator
Figure 7: Overall speedup vs. CPU.

oDRAMdyn
100%
80%
60%
40%
20%
0%

mDRAM static

SerDes+NOC

[0 cores

Figure 8: Energy breakdown.

per core (i.e., 8GB+ per core as opposed to the evaluated 2GB),
making the DRAM energy component more significant. [In NMP
and Mondrian, lower core power promotes other components as the
main sources of system energy. In the NMP architectures, execution
is dominated by the probe phase; therefore, the impact of the par-
titioning mechanism used is small and the energy profiles of NMP
and NMP-perm are near-identical. Mondrian’s energy breakdown
reflects its aggressive DRAM bandwidth utilization, where static-
dominated components of the energy utilization, namely SerDes and
DRAM static, are relatively smaller as compared to NMP.

Finally, Fig. 9 illustrates the overall efficiency improvement—in
terms of performance per watt—for each of the three systems over
the CPU baseline. While efficiency follows the performance trends,
the gains are smaller than the performance improvements, reflecting
Mondrian’s high utilization of system resources. Mondrian cores
draw higher dynamic power for higher performance and DRAM
bandwidth utilization. Overall, Mondrian improves efficiency by
28x over the CPU and by 5 x over the best NMP baseline.

8 RELATED WORK

Near Memory Processing. Several attempts to go down the promis-
ing NMP path have been made in the past. However, ambitious
projects such as FlexRAM [37], IRAM [54], DIVA [28], and Active
Pages [52] that introduced novel NMP architectures faced technol-
ogy as an ultimate showstopper. Integration of logic and memory
on the same die proved particularly challenging, damaging yields,
while thermal concerns severely limited the logic’s performance.

The Mondrian Data Engine

100
ONMP ONMP-perm

i il

Scan Sort Group by Join
Operator

BMondrian

rovement
/energy)

[y
o

Efficiency Imp
(performance

Figure 9: Efficiency improvement vs. CPU (log scale).

Hence, the NMP idea was limited to academic research, and eventu-
ally faded away. The interest in NMP has recently been rekindled
by advancements in die-stacking technology, which enables the
tight integration of logic and memory while still allowing separate
chip manufacturing. Commercial products such as AMD-Hynix’s
HBM [5, 35], Micron’s HMC [46], and Tezzaron’s DiRAM [63]
are already available, and even though these existing products are
currently used as memory bandwidth boosters, ongoing efforts are
focused on leveraging the logic layer that lies under the memory
dies for NMP.

Several recent proposals seek to make NMP practical and max-
imize its efficiency. Tesseract [2] is a specialized NMP architec-
ture for graph processing that employs graph-processing-specific
prefetching schemes to utilize the ample available memory band-
width, but does not optimize for memory access efficiency (i.e.,
row buffer locality). Ahn et al. [3] focus on facilitating program-
ming of NMP architectures through ISA extensions. Gao et al. [22]
propose an NMP architecture with an optimized communication
scheme across NMP compute units. It still relies on caches for
performance and proposes software-assisted coherence to alleviate
coherence overheads. In contrast, we advocate against the traditional
approach of relying on cache-optimized algorithms. Instead, we
propose adapting the algorithms and designing the NMP hardware
to extract performance from immense memory bandwidth through
streaming.

Pioneer work on near-memory data analytics has proposed an
HMC-based architecture for MapReduce-style applications [56, 57],
which share a lot of similarities with the data operators we inves-
tigated. However, their approach is limited to mapping the CPU
algorithm to a set of simple in-order cores, used as NMP compute
units on the HMC’s logic layer. As our algorithmic-hardware co-
design observations illustrate, such an approach leaves a significant
efficiency improvement headroom.

HRL [23] introduces a novel FPGA/CGRA hybrid as a compute
substrate to maximize efficiency within NMP’s tight area &
power budget. We show that reconfigurable logic is not necessary
for efficient bandwidth utilization in NMP; restructuring data
analytics algorithms to be streaming-friendly and amenable to wide,
data-parallel processing (SIMD) is enough to meet the goal of
utilizing the available bandwidth within the NMP constraints, while
maintaining a familiar programming model. We show that NMP fa-
vors algorithms that trade off algorithmic complexity for sequential
accesses, and can achieve high efficiency by maximizing memory

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

bandwidth utilization through streaming and wide computation units.

Dynamic address remapping. Impulse [13] introduces a software-
managed address translation layer in the memory controller, to
restructure data and improve memory bandwidth and effective cache
capacity. However, it does not change the internal DRAM data
placement and access pattern, hence it does not directly improve
DRAM access efficiency. Akin et al. [4] also identify that data
relocation in 3D memory architectures results in suboptimal memory
accesses, and introduces the reshape accelerator that dynamically
and transparently remaps physical addresses to DRAM addresses to
increase row buffer locality. In contrast, the Mondrian Data Engine
changes the physical addresses of data objects, by relying on the
end-to-end observation that in data analytics, operations often occur
on buckets of data rather than individual objects, hence a memory
bucket’s internal organization can be relaxed by the hardware using
hints coming from software, for efficiency benefits.

Partitioning acceleration. HARP [68] identifies partitioning as a
major runtime fraction of data analytics operators and introduces
a specialized partitioning accelerator to alleviate that overhead.
HAREP is synergistic with our optimization for partitioning, which
exploits memory permutability in data analytics to maximize row
buffer locality. HARP always preserves record order by design,
conservatively assuming that all tuple outputs are in an "interesting
order" [59]. Interesting orders are explicitly marked by the query
planner, and the Mondrian Date Engine’s design allows enabling the
permutability optimization on demand.

Data analytics acceleration. With data analytics taking center stage
in modern computing, there have been proposals for analytics accel-
erators from both the industry and academia, such as Oracle’s DAX
[61], Widx [39] and Q100 [69]. Unlike these accelerators, Mon-
drian’s compute units are specifically designed to fit under NMP’s
tight area and power constraints. On-chip accelerators, like Q100,
employ specialized pipelined units to maximize on-chip data reuse
and minimize expensive off-chip memory accesses. In contrast, Mon-
drian leverages its proximity to memory to achieve high performance
with simple general-purpose compute units.

9 CONCLUSION

The end of Dennard scaling has made the design of new architectures
a one-way road for increasing the performance and energy efficiency
of compute systems. At the same time, modern age data deluge is
further pushing this urge, as information extraction requires plowing
through unprecedented amounts of data. NMP architectures, which
have recently become technologically viable, provide a great fit
for energy-efficient data-centric computation, as they feature low-
power logic that can utilize tightly coupled high-bandwidth memory.
While NMP systems are architecturally different from CPU-centric
ones, they both execute similarly structured programs: ones that
involve lots of fine-grained random memory accesses. However,
such accesses are inefficient in NMP systems, as random accesses
result in an excess of expensive row buffer activations.

In this work, we showed that efficient NMP requires radically
different algorithms from the ones that are typically preferred for

ISCA 17, June 24-28, 2017, Toronto, ON, Canada

CPUs. Instead of relying on cache locality and data reuse, NMP’s
ample memory bandwidth favors memory streaming through se-
quential accesses. Adapting modern data analytics to the strengths of
NMP architectures requires algorithmic modifications to maximize
sequential memory accesses, and hardware support to operate on
data streams at memory bandwidth. We materialized our key ob-
servations by designing the Mondrian Data Engine, a novel NMP
architecture optimized for efficient data analytics. Compared to a
CPU-centric and a baseline NMP system, the Mondrian Data Engine
improves the performance of basic data analytics operators by up to
49x and 5x, and efficiency by up to 28 x and 5 X, respectively.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers and Arash Pourhabibi
for their precious comments and feedback. This work has been
partially funded by a Microsoft Research PhD scholarship and the
following projects: Nano-Tera YINS, CHIST-ERA DIVIDEND, and
Horizon 2020’s dRedBox and CE-EuroLab-4-HPC.

REFERENCES

[1]

[2

3

[4

[5

[6

[7

[8

[9

[10]

[11]

[12]

[13]

Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel
Madden. 2013. The Design and Implementation of Modern Column-Oriented
Database Systems. Foundations and Trends in Databases 5, 3 (2013), 197-280.
https://doi.org/10.1561/1900000024

Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2015. A scalable processing-in-memory accelerator for parallel graph process-
ing. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture (ISCA 2015). 105-117. https://doi.org/10.1145/2749469.2750386
Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled
instructions: a low-overhead, locality-aware processing-in-memory architecture.
In Proceedings of the 42nd Annual International Symposium on Computer Archi-
tecture (ISCA 2015). 336-348. https://doi.org/10.1145/2749469.2750385
Berkin Akin, Franz Franchetti, and James C. Hoe. 2015. Data reorganiza-
tion in memory using 3D-stacked DRAM. In Proceedings of the 42nd An-
nual International Symposium on Computer Architecture (ISCA 2015). 131-143.
https://doi.org/10.1145/2749469.2750397

AMD. 2016. High Bandwidth Memory, Reinventing Memory Technology.
(2016). Retrieved April 26, 2017 from http://www.amd.com/en-us/innovations/
software-technologies/hbm.

ARM. 2017. Cortex-A35 Processor. (2017). Retrieved April 26, 2017 from
https://www.arm.com/products/processors/cortex-a/cortex-a35-processor.php.
Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload analysis of a large-scale key-value store. In Proceedings of
the ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS 2012). 53-64.
https://doi.org/10.1145/2254756.2254766

Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Ozsu. 2013. Multi-
core, Main-memory Joins: Sort vs. Hash Revisited. Proceedings of the VLDB
Endowment 7, 1 (Sept. 2013), 85-96. https://doi.org/10.14778/2732219.2732227
Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M Tamer Ozsu. 2013.
Multicore hash joins source code. (2013). Retrieved April 26, 2017 from
https://www.systems.ethz.ch/node/334/.

Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Ozsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware. In
Proceedings of the 29th International Conference on Data Engineering, (ICDE
2013). 362-373. https://doi.org/10.1109/ICDE.2013.6544839

Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and evaluation
of main memory hash join algorithms for multi-core CPUs. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD
2011). 37-48. https://doi.org/10.1145/1989323.1989328

Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In Preceedings of the Second Biennial Conference
on Innovative Data Systems Research (CIDR 2005). 225-237. http://www.cidrdb.
org/cidr2005/papers/P19.pdf

John B. Carter, Wilson C. Hsieh, Leigh Stoller, Mark R. Swanson, Lixin Zhang,
Erik Brunvand, Al Davis, Chen-Chi Kuo, Ravindra Kuramkote, Michael A. Parker,
Lambert Schaelicke, and Terry Tateyama. 1999. Impulse: Building a Smarter
Memory Controller. In Proceedings of the 5th International Symposium on High-
Performance Computer Architecture (HPCA 1999). 70-79. https://doi.org/10.
1109/HPCA.1999.744334

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. Drumond et al.

Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B. Brockman,
and Norman P. Jouppi. 2012. CACTI-3DD: Architecture-level modeling for 3D
die-stacked DRAM main memory. In 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE 2012). 33-38. https://doi.org/10.1109/DATE.
2012.6176428

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: a small-footprint high-throughput acceler-
ator for ubiquitous machine-learning. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2014). 269-284. https://doi.org/10.1145/2541940.2541967
Bill Dally. 2015. Keynote: Challenges for Future Computing Systems. (2015).
Retrieved April 26, 2017 from https://www.cs.colostate.edu/~cs575d1/Sp2015/
Lectures/Dally2015.pdf.

Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74-80. https://doi.org/10.1145/2408776.2408794

Hewlett-Packard Enterprise. 2015. The Machine: A new kind of computer. (2015).
Retrieved April 26, 2017 from http://www.labs.hpe.com/research/themachine/.
Babak Falsafi, Mircea Stan, Kevin Skadron, Nuwan Jayasena, Yunji Chen, Jinhua
Tao, Ravi Nair, Jaime H. Moreno, Naveen Muralimanohar, Karthikeyan Sankar-
alingam, and Cristian Estan. 2016. Near-Memory Data Services. IEEE Micro 36,
1 (2016), 6-13. https://doi.org/10.1109/MM.2016.9

Michael Ferdman, Almutaz Adileh, Yusuf Onur Kogberber, Stavros Volos, Mo-
hammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anas-
tasia Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. In Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2012). 37-48. https://doi.org/10.1145/2150976.2150982
Apache Software Foundation. 2017. Apache Spark. (2017). Retrieved April 26,
2017 from http://spark.apache.org/.

Mingyu Gao, Grant Ayers, and Christos Kozyrakis. 2015. Practical Near-Data
Processing for In-Memory Analytics Frameworks. In Proceedings of the 2015
International Conference on Parallel Architecture and Compilation (PACT 2015).
113-124. https://doi.org/10.1109/PACT.2015.22

Mingyu Gao and Christos Kozyrakis. 2016. HRL: Efficient and flexible reconfig-
urable logic for near-data processing. In Proceedings of the 2016 International
Symposium on High Performance Computer Architecture (HPCA 2016). 126-137.
https://doi.org/10.1109/HPCA.2016.7446059

Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu. 2011. Kilo-NOC:
a heterogeneous network-on-chip architecture for scalability and service guaran-
tees. In Proceedings of the 38th Annual International Symposium on Computer
Architecture (ISCA 2011). 401-412. https://doi.org/10.1145/2000064.2000112
Linley Group. 2015. Hexagon 680 Adds Vector Extensions. Mobile Chip Report
(September 2015).

Linley Gwennap. 2013. Qualcomm Krait 400 hits 2.3 GHz. Microprocessor
report 27, 1 (January 2013), 1-6.

Linley Gwennap. 2015. Cortex-A35 Extends Low End. Microprocessor Report
29, 11 (November 2015), 1-10.

Mary W. Hall, Peter M. Kogge, Jefferey G. Koller, Pedro C. Diniz, Jacqueline
Chame, Jeff Draper, Jeff LaCoss, John J. Granacki, Jay B. Brockman, Apoorv
Srivastava, William C. Athas, Vincent W. Freeh, Jaewook Shin, and Joonseok
Park. 1999. Mapping Irregular Applications to DIVA, a PIM-based Data-Intensive
Architecture. In Proceedings of the ACM/IEEE Conference on Supercomputing,
(SC 1999). 57. https://doi.org/10.1145/331532.331589

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In Proceedings of the 43rd Annual International Symposium
on Computer Architecture (ISCA 2016). 243-254. https://doi.org/10.1109/ISCA.
2016.30

Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki.
2011. Toward Dark Silicon in Servers. IEEE Micro 31, 4 (2011), 6-15. https:
//doi.org/10.1109/MM.2011.77

Mark Harris. 2013. Unified memory in CUDA 6. (2013). Retrieved
April 26, 2017 from http://on-demand.gputechconf.com/supercomputing/2013/
presentation/SC3120- Unified-Memory-CUDA-6.0.pdf

IBM. 2017. IBM DB2. (2017). Retrieved April 26, 2017 from http://www.ibm.
com/analytics/us/en/technology/db2/.

Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new DRAM archi-
tecture increases density and performance. In VLSI Technology (VLSIT), 2012
Symposium on. IEEE, 87-88. https://doi.org/10.1109/VLSIT.2012.6242474
JEDEC. 2013. Wide I/0 2 Standard. (2013). Retrieved April 26, 2017 from
http://www.jedec.org/standards-documents/results/jesd229-2.

JEDEC. 2015. High Bandwidth Memory (HBM) DRAM. (2015). Retrieved
April 26, 2017 from https://www.jedec.org/standards-documents/docs/jesd235a.
Svilen Kanev, Juan Pablo Darago, Kim M. Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David M. Brooks. 2015. Pro-
filing a warehouse-scale computer. In Proceedings of the 42nd Annual Inter-
national Symposium on Computer Architecture (ISCA 2015). 158-169. https:

https://doi.org/10.1561/1900000024
https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1145/2749469.2750385
https://doi.org/10.1145/2749469.2750397
http://www.amd.com/en-us/innovations/software-technologies/hbm.
http://www.amd.com/en-us/innovations/software-technologies/hbm.
https://www.arm.com/products/processors/cortex-a/cortex-a35-processor.php.
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.14778/2732219.2732227
https://www.systems.ethz.ch/node/334/.
https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1145/1989323.1989328
http://www.cidrdb.org/cidr2005/papers/P19.pdf
http://www.cidrdb.org/cidr2005/papers/P19.pdf
https://doi.org/10.1109/HPCA.1999.744334
https://doi.org/10.1109/HPCA.1999.744334
https://doi.org/10.1109/DATE.2012.6176428
https://doi.org/10.1109/DATE.2012.6176428
https://doi.org/10.1145/2541940.2541967
https://www.cs.colostate.edu/~cs575dl/Sp2015/Lectures/Dally2015.pdf.
https://www.cs.colostate.edu/~cs575dl/Sp2015/Lectures/Dally2015.pdf.
https://doi.org/10.1145/2408776.2408794
http://www.labs.hpe.com/research/themachine/.
https://doi.org/10.1109/MM.2016.9
https://doi.org/10.1145/2150976.2150982
http://spark.apache.org/.
https://doi.org/10.1109/PACT.2015.22
https://doi.org/10.1109/HPCA.2016.7446059
https://doi.org/10.1145/2000064.2000112
https://doi.org/10.1145/331532.331589
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/MM.2011.77
https://doi.org/10.1109/MM.2011.77
http://on-demand.gputechconf.com/supercomputing/2013/presentation/SC3120-Unified-Memory-CUDA-6.0.pdf
http://on-demand.gputechconf.com/supercomputing/2013/presentation/SC3120-Unified-Memory-CUDA-6.0.pdf
http://www.ibm.com/analytics/us/en/technology/db2/.
http://www.ibm.com/analytics/us/en/technology/db2/.
https://doi.org/10.1109/VLSIT.2012.6242474
http://www.jedec.org/standards-documents/results/jesd229-2.
https://www.jedec.org/standards-documents/docs/jesd235a.
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2750392

The

(371

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Mondrian Data Engine

/ldoi.org/10.1145/2749469.2750392

Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen, Zhenzhou Ge, Vinh Vi
Lam, Josep Torrellas, and Pratap Pattnaik. 1999. FlexRAM: Toward an Advanced
Intelligent Memory System. In Proceedings of the IEEE International Conference
On Computer Design, VLSI in Computers and Processors, (ICCD 1999). 192-201.
https://doi.org/10.1109/ICCD.1999.808425

Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen,
Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. 2009.
Sort vs. Hash Revisited: Fast Join Implementation on Modern Multi-core CPUs.
Proceedings of the VLDB Endowment 2, 2 (Aug. 2009), 1378-1389. https:
//doi.org/10.14778/1687553.1687564

Yusuf Onur Kogberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin T. Lim,
and Parthasarathy Ranganathan. 2013. Meet the walkers: accelerating index
traversals for in-memory databases. In Proceedings of the 46th Annual Inter-
national Symposium on Microarchitecture (MICRO 2013). 468—479. https:
//doi.org/10.1145/2540708.2540748

Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. 2012. The Vertica Analytic Database: C-store 7
Years Later. Proceedings of the VLDB Endowment 5, 12 (Aug. 2012), 1790-1801.
https://doi.org/10.14778/2367502.2367518

Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi.
2011. CACTI-P: Architecture-level modeling for SRAM-based structures with
advanced leakage reduction techniques. In Proceedings of the 2011 International
Conference on Computer-Aided Design (ICCAD 2011). 694-701. https://doi.org/
10.1109/ICCAD.2011.6105405

Kevin T. Lim, Jichuan Chang, Trevor N. Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated memory
for expansion and sharing in blade servers. In Proceedings of the 36th Annual
International Symposium on Computer Architecture (ISCA 2009). 267-278. https:
/ldoi.org/10.1145/1555754.1555789

Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2002. Optimizing
Main-Memory Join on Modern Hardware. IEEE Trans. Knowl. Data Eng. 14, 4
(2002), 709-730. https://doi.org/10.1109/TKDE.2002.1019210

Mozhgan Mansuri, James E. Jaussi, Joseph T. Kennedy, Tzu-Chien Hsueh, Sudip
Shekhar, Ganesh Balamurugan, Frank O’Mahony, Clark Roberts, Randy Mooney,
and Bryan Casper. 2013. A Scalable 0.128-1 Tb/s, 0.8-2.6 pJ/bit, 64-Lane Parallel
1/0 in 32-nm CMOS. J. Solid-State Circuits 48, 12 (2013), 3229-3242. https:
//doi.org/10.1109/JSSC.2013.2279052

MEMSQL. 2017. MEMSQL.: The Fastest In-Memory Database. (2017). Retrieved
April 26, 2017 from http://www.memsql.com/.

Micron. 2014. Hybrid Memory Cube Second Generation. (2014). Retrieved April
26, 2017 from http://investors.micron.com/releasedetail.cfm?ReleaseID=828028.
Micron. 2017. DDR3 SDRAM System-Power Calculator. (2017). Retrieved April
26, 2017 from https://www.micron.com/support/tools-and-utilities/power-calc.
Nooshin Mirzadeh, Yusuf Onur Kocberber, Babak Falsafi, and Boris Grot. 2015.
Sort vs. hash join revisited for near-memory execution. In Proceedings of the
5th Workshop on Architectures and Systems for Big Data (ASBD 2015). http:
/lacs.ict.ac.cn/asbd2015/papers/ASBD_2015_submission_3.pdf

Cavium Networks. 2014. Cavium Announces Availability of Thun-
derX: Industry’s First 48 Core Family of ARMv8 Workload Opti-
mized Processors for Next Generation Data Center & Cloud Infrastruc-
ture. (2014). Retrieved April 26, 2017 from http://www.cavium.com/
newsevents-Cavium- Announces- Availability-of- ThunderX.html.

Thomas Neumann, Tobias Miihlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (SIGMOD 2015). 677-689. https://doi.org/10.1145/2723372.2749436
Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Mem-
cache at Facebook. In Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2013). USENIX, 385-398. https:
/Iwww.usenix.org/conference/nsdil3/technical-sessions/presentation/nishtala
Mark Oskin, Frederic T. Chong, and Timothy Sherwood. 1998. Active Pages: A
Computation Model for Intelligent Memory. In Proceedings of the 25th Annual
International Symposium on Computer Architecture (ISCA 1998). 192-203. https:
//doi.org/10.1109/ISCA.1998.694774

John K. Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob
Leverich, David Mazieres, Subhasish Mitra, Aravind Narayanan, Diego Ongaro,
Guru M. Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, and
Ryan Stutsman. 2011. The case for RAMCloud. Commun. ACM 54,7 (2011),
121-130. https://doi.org/10.1145/1965724.1965751

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R.
Thomas, and K. Yelick. 1997. A case for intelligent RAM. IEEE Micro 17, 2
(Mar 1997), 34-44. https://doi.org/10.1109/40.592312

Javier Picorel, Djordje Jevdjic, and Babak Falsafi. 2016. Near-Memory Address
Translation. CoRR abs/1612.00445 (2016). http://arxiv.org/abs/1612.00445

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Seth H. Pugsley, Jeffrey Jestes, Rajeev Balasubramonian, Vijayalakshmi Srini-
vasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li. 2014. Comparing Imple-
mentations of Near-Data Computing with In-Memory MapReduce Workloads.
IEEE Micro 34, 4 (2014), 44-52. https://doi.org/10.1109/MM.2014.54

Seth H. Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vi-
jayalakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li. 2014.
NDC: Analyzing the impact of 3D-stacked memory+logic devices on MapRe-
duce workloads. In Proceedings of the 2014 International Symposium on Per-
formance Analysis of Systems and Software (ISPASS 2014). 190-200. https:
//doi.org/10.1109/ISPASS.2014.6844483

Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A
Cycle Accurate Memory System Simulator. Computer Architecture Letters 10, 1
(2011), 16-19. https://doi.org/10.1109/L-CA.2011.4

P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management Sys-
tem. In Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data (SIGMOD 1979). ACM, New York, NY, USA, 23-34.
https://doi.org/10.1145/582095.582099

Minglong Shao, Anastassia Ailamaki, and Babak Falsafi. 2005. DBmbench:
fast and accurate database workload representation on modern microarchitecture.
In Proceedings of the 2005 conference of the Centre for Advanced Studies on
Collaborative Research. 254-267. https://doi.org/10.1145/1105634.1105653

R. Sivaramakrishnan and S. Jairath. 2014. Next generation SPARC processor
cache hierarchy. In JEEE Hot Chips 26 Symposium (HCS), 2014. 1-28. https:
//doi.org/10.1109/HOTCHIPS.2014.7478828

Michael Stonebraker and Ariel Weisberg. 2013. The VoltDB Main Memory
DBMS. [EEE Data Eng. Bull. 36, 2 (2013), 21-27. http://sites.computer.org/
debull/A13june/VoltDB1.pdf

Tezzaron. 2017. DiRAM4 3D Memory. (2017). Retrieved April 26, 2017 from
http://www.tezzaron.com/products/diram4-3d-memory/.

Stavros Volos, Djordje Jevdjic, Babak Falsafi, and Boris Grot. 2017. Fat Caches
for Scale-Out Servers. IEEE Micro 37,2 (2017), 90-103.

Stavros Volos, Javier Picorel, Babak Falsafi, and Boris Grot. 2014. BuMP:
Bulk Memory Access Prediction and Streaming. In Proceedings of the 47th
Annual International Symposium on Microarchitecture (MICRO 2014). 545-557.
https://doi.org/10.1109/MICRO.2014.44

Thomas F. Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2008. Temporal streams in commercial server applications.
In 4th International Symposium on Workload Characterization (IISWC 2008).
99-108. https://doi.org/10.1109/IISWC.2008.4636095

Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastassia Ail-
amaki, Babak Falsafi, and James C. Hoe. 2006. SimFlex: Statistical Sam-
pling of Computer System Simulation. IEEE Micro 26, 4 (2006), 18-31.
https://doi.org/10.1109/MM.2006.79

Lisa Wu, Raymond J. Barker, Martha A. Kim, and Kenneth A. Ross. 2013. Navi-
gating big data with high-throughput, energy-efficient data partitioning. In Pro-
ceedings of the 40th Annual International Symposium on Computer Architecture
(ISCA 2013). 249-260. https://doi.org/10.1145/2485922.2485944

Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A.
Ross. 2014. Q100: the architecture and design of a database processing unit.
In Proceedings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2014). 255-268.
https://doi.org/10.1145/2541940.2541961

Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe.
2003. SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statis-
tical Sampling. In Proceedings of the 30th Annual International Symposium on
Computer Architecture (ISCA 2003). 84-95. https://doi.org/10.1109/ISCA.2003.
1206991

Marcin Zukowski, Mark van de Wiel, and Peter A. Boncz. 2012. Vectorwise: A
Vectorized Analytical DBMS. In Proceedings of the 28th International Conference
on Data Engineering (ICDE 2012). 1349-1350. https://doi.org/10.1109/ICDE.
2012.148

https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1109/ICCD.1999.808425
https://doi.org/10.14778/1687553.1687564
https://doi.org/10.14778/1687553.1687564
https://doi.org/10.1145/2540708.2540748
https://doi.org/10.1145/2540708.2540748
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1109/TKDE.2002.1019210
https://doi.org/10.1109/JSSC.2013.2279052
https://doi.org/10.1109/JSSC.2013.2279052
http://www.memsql.com/.
http://investors.micron.com/releasedetail.cfm?ReleaseID=828028.
https://www.micron.com/support/tools-and-utilities/power-calc.
http://acs.ict.ac.cn/asbd2015/papers/ASBD_2015_submission_3.pdf
http://acs.ict.ac.cn/asbd2015/papers/ASBD_2015_submission_3.pdf
http://www.cavium.com/newsevents-Cavium-Announces-Availability-of-ThunderX.html.
http://www.cavium.com/newsevents-Cavium-Announces-Availability-of-ThunderX.html.
https://doi.org/10.1145/2723372.2749436
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://doi.org/10.1109/ISCA.1998.694774
https://doi.org/10.1109/ISCA.1998.694774
https://doi.org/10.1145/1965724.1965751
https://doi.org/10.1109/40.592312
http://arxiv.org/abs/1612.00445
https://doi.org/10.1109/MM.2014.54
https://doi.org/10.1109/ISPASS.2014.6844483
https://doi.org/10.1109/ISPASS.2014.6844483
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/1105634.1105653
https://doi.org/10.1109/HOTCHIPS.2014.7478828
https://doi.org/10.1109/HOTCHIPS.2014.7478828
http://sites.computer.org/debull/A13june/VoltDB1.pdf
http://sites.computer.org/debull/A13june/VoltDB1.pdf
http://www.tezzaron.com/products/diram4-3d-memory/.
https://doi.org/10.1109/MICRO.2014.44
https://doi.org/10.1109/IISWC.2008.4636095
https://doi.org/10.1109/MM.2006.79
https://doi.org/10.1145/2485922.2485944
https://doi.org/10.1145/2541940.2541961
https://doi.org/10.1109/ISCA.2003.1206991
https://doi.org/10.1109/ISCA.2003.1206991
https://doi.org/10.1109/ICDE.2012.148
https://doi.org/10.1109/ICDE.2012.148

	Abstract
	1 Introduction
	2 In-Memory Data Operators
	3 Challenges in Data Analytics
	3.1 Memory access patterns
	3.2 Memory-level parallelism

	4 Efficient Memory Access
	4.1 Sequential accesses and row buffer locality
	4.2 Streaming and SIMD

	5 The Mondrian Data Engine
	5.1 Architecture Overview
	5.2 Compute units
	5.3 Exploiting data permutability
	5.4 Programming the Mondrian Data Engine

	6 Methodology
	7 Evaluation
	7.1 Performance
	7.2 Energy and Efficiency

	8 Related Work
	9 Conclusion
	References

