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The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has

encouraged re-appraisal of cropping systems that deploy legumes. It has been argued

that legume-derived N can maintain productivity as an alternative to the application

of mineral fertilizer, although few studies have systematically evaluated the effect of

optimizing the balance between legumes and non N-fixing crops to optimize production.

In addition, the shortage, or even absence in some regions, of measurements of BNF in

crops and forages severely limits the ability to design and evaluate new legume–based

agroecosystems. To provide an indication of the magnitude of BNF in European

agriculture, a soil-surface N-balance approach was applied to historical data from 8

experimental cropping systems that compared legume and non-legume crop types (e.g.,

grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for

different legume types ranged from 32 to 115 kg ha−1 annually. Output in terms of total

biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce

dry matter more efficiently than legumes, whereas output of N was greater from legumes.

When examined over the crop sequence, the contribution of BNF to the N-balance

increased to reach a maximum when the legume fraction was around 0.5 (legume crops

were present in half the years). BNF was lower when the legume fraction increased to

0.6–0.8, not because of any feature of the legume, but because the cropping systems

in this range were dominated by mixtures of legume and non-legume forages to which

inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed

to grain crops in this range maintained high outputs of biomass and N. In conclusion,

BNF through grain and forage legumes has the potential to generate major benefit in

terms of reducing or dispensing with the need for mineral N without loss of total output.
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INTRODUCTION

Many legumes (plants of the family Fabaceae) form a symbiotic
association with types of bacteria that are collectively termed
“rhizobia” (Sprent and Sprent, 1990). The rhizobia fix inert
atmospheric nitrogen (N) into biologically useful forms within
legume root nodules in a process called “biological N fixation”
(BNF; Sprent, 2009). This symbiotic association is the largest
natural source of the N cycled to sustain natural systems
(Vitousek et al., 2002). In addition, BNF by grain and forage
legumes plays an important role enriching the pools of soil N for
non-N-fixing crops grown after the legumes as part of a strategic
cropping sequence or rotation (Bullock, 1992).

Since the discovery of the Haber-Bosch process and the
production of anthropogenically produced inorganic N plant
fertilizer (Erisman et al., 2008), the ecological and economic
dependency of farmed systems on legumes has diminished
greatly. For example, the area of European farmland cropped
with legumes declined from 11.3 million ha in 1961, to about 3.4
million ha in 2005 (Rochon et al., 2004). This reflects the general
preference of farmers for inorganic N-fertilizer which enables the
cultivation of non-legume crops commanding higher values in
the marketplace and hence greater profit.

Despite the reduction in legume cropping, Europe still
relies heavily on legumes for animal feed in the form of
imports, especially of soybean (Glycine max L. Merr.). European
agriculture consumes 25% of the world soybean crop, mainly
to sustain livestock production (Steinfeld et al., 2006; UNEP
and WHRC, 2007). This trade in soybean encourages tropical
deforestation (Simon and Garagorry, 2005; Nepstad et al.,
2006). Moreover, the inefficient use of N causes eutrophication
and acidification of water, and is responsible for most of
the greenhouse gas emissions from farming (Houghton, 1996;
Vitousek et al., 1997; EEA, 2007; Sutton et al., 2011).

These environmental concerns, in conjunction with political
pressures and market forces that include fuel- and food-
insecurity, has made the “sustainable intensification” of cropping
systems a main aim of government policy makers (Foresight,
2011). Embodied within this aim is a reappraisal of legume-
supported cropping systems, particularly to exploit BNF
(Drinkwater et al., 1998), with the aim to mitigate the inefficient
use of N and energy in current cropping systems (Hansen, 2000;
Hanson et al., 2007). Increasing the proportion of legume crops in
a rotation will reduce the use of inorganic fertilizer, increase the
proportion of renewable resources of N in global nutrient cycles
(Foley et al., 2011; Seufert et al., 2012) and may also decrease the
quantity of reactive N lost from the ecosystem.

The impact of the rapid disappearance of legumes from
European agriculture remains poorly understood. Agronomic
experiments using legumes have neither been coordinated across
climatic regions nor analyzed in a consistent manner to quantify
the main flows of N in and out of crops and forages. Moreover, in
some comparisons, e.g., of organic systems that include legumes
against conventional systems that typically do not contain
legumes, the productivity of the systems with legumes is generally
lower (Seufert et al., 2012). Therefore, there are questions
about the ability of legume-based systems to produce output

of biomass and N at rates comparable to those of non-legume
systems. Accordingly the promotion of legumes in high intensity
cropping systems has been difficult to justify. To address this,
a comparative “soil-surface N-balance” analysis (Parris, 1998;
OECD, 2001), was carried out using data from legume and
non-legume supported crop systems at experimental sites that
spanned a wide range of cropping systems and pedoclimatic
regions across Europe. “Legume inclusion” was defined as the
presence of a legume when considering a single cropping-
year or the proportion of such years when considering crop
sequences, termed “legume fraction.” This approach facilitated a
comparative analysis of low-input legume based approaches and
conventional approaches. The main questions that are addressed
for both single crops and cropping sequences were the degree
to which BNF by legumes compensates for the application of
mineral N, whether or not legume based rotations contribute
to lower surpluses of N, and whether primary production and
output as biomass and N are reduced by the inclusion of
legumes.

MATERIALS AND METHODS

Data Sources
Eight case studies of legume based cropping systems originally
undertaken as independent trials by the authors were selected.
These varied substantially in terms of region, farm system,
and experimental design (Table 1). The studies included simple
designs of short duration (3 years) to test the benefit of legumes
on the yields of following crops, to long-term experiments
that monitored the performance of complex legume-based
rotations. The systems included arable only, pasture only
(grazed, silaged), and mixed systems producing a wide range
of legume and non-legume grain, silage and forage products.
A number of cropping practices were also included in the
systems, namely monocultures, mixtures, intercrops, undersown
crops, catch crops and green manures. Together, the eight
studies included 29 different main-crops, 59 different main-
crop/sub-crop combinations (a sub-crop being defined as an
undersown crop or one of the components of an intercrop) and
25 different crop sequences (Table 1).

N Balance Calculations
A soil-surface N-balance analysis was performed in which
N inputs and outputs were measured or estimated to allow
calculation of N surplus (N input − N output) and N use
efficiency (NUE, N output / N input; OECD, 2001, 2008) for
each crop combination for each year of a crop sequence—
defined here as a “crop-year.” The input and output data were
measured or estimated at the scale of the experimental plot,
independently for each plot replicate (where these were present).
An N balance for the crop sequence was calculated for each
experimental plot by summing the annual balances across the
sequence. This sum was then divided by the length in years of
the crop-sequence to produce an annual average crop sequence
N balance, thereby accounting for the variation in the duration
of the crop sequences.
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N Inputs

N Application as inorganic or organic fertilizer
All experiments reported the application rates for inorganic N
(kg N ha−1). Organic manure was added to a number of plots
and in various forms: solid or slurry, cattle, pig or poultry. The
manure application rate (kg ha−1) was corrected for dry weight
where necessary and multiplied by the total N concentration of
the manure to give the N-in (kg N ha−1). Where manure N
concentration was not measured, generic values were taken from
the UK Department for Environment, Food and Rural Affairs
(DEFRA) Fertilizer Manual RB209 (DEFRA, 2010).

Seed N
The N derived from sown seed was estimated by multiplying
sowing rates (kg ha−1) with seed N content (kg N kg−1) either
reported by the studies or obtained from the literature. When
sowing rates were reported as the number of seeds (m−2), values
were converted to kg ha−1 on the basis of thousand seed weight
values obtained from the literature.

Biological Nitrogen Fixation (BNF)
The method of Korsaeth and Eltun (2000) allowed BNF to be
estimated in the absence of direct measurement using factors
and relations obtained from the literature (Equation 1). This
approach was considered sufficiently general that it could be
applied to the full range of cropping systems and legume types
for the available data.

Adapting this method to the calculation of annual BNF, the N
fixed (Nfix) by each of the i legumes present within a stand over
each of the j harvests, which in the case of silage might include
several cuts in 1 year is:

Nfix =

∑
i

∑
j
Lij Nlegij Fj Rj (1)

where L is the above-ground biomass of the harvested legumes
(kg ha−1), Nleg is an assumed fraction for crop N composition, F
is proportion of legume N derived from air by BNF, and R is the
ratio of shoot to total plant biomass for each legume . In addition,
F is assumed to be sensitive to the amount of inorganic N in the
soil. The proportion of N present within a plant derived from
BNF is greatest in the absence of any inorganic N and declines
in a linear way with the increasing application of inorganic N,
i.e.,

Fj = Fmax − aj Ninorganic (2)

Here it is assumed that inorganic N (kg N ha−1) can be derived
from chemical fertilizer and the inorganic component in organic
fertilizers.

Outputs
Nitrogen output was estimated on the basis of the amount of N
removed from the system in crop biomass and livestock. Losses
of N to the atmosphere and through leaching were not available
in all cases and hence were not accounted for.

Harvest of crop
Depending on the experimental treatment, harvested material
was either removed from the plots or left to be incorporated
at a later stage. In most cases, a separate biomass measurement
was reported for each component of this output; otherwise, a
total biomass and relative proportion of each component was
reported from which output biomass was then calculated. The
amount of N removed from the plot at harvest was calculated
using the N fraction of each component. Where the N fraction
was not measured directly, estimates were taken from the
literature.

Livestock
Livestock were assumed to contribute to N losses by the
consumption and assimilation of N through grazing and the
subsequent removal of the animals from the plot or field. Where
it took place, grazing was by sheep and was reported in terms of
livestock unit grazing days (LUGD) from which N consumption
was calculated as follows:

Nconsumption = LUGD × WLUGD × C × Nforage (3)

Here LUGD is converted to a weight equivalent given a
livestock unit weight (WLUGD) of 650 kg (c.f. DEFRA, 2011),
and multiplied by a consumption rate (C) in sheep of 3%
body-mass per day and the fractional composition of N in the
forage crops (Nforage). To account for the return of N to the
field through excretion, it was assumed that 10% of consumed
N was assimilated and retained by the sheep (IPCC, 2006;
Table 10.22).

Productivity
The biomass (kg ha−1) of crop output, including grain, straw
and silage, was derived for each year of each crop sequence to
provide a measure of productivity. Biomass output efficiency
(BOE) was calculated as the biomass of crop output achieved for
each kilogram of N input.

Data Analysis
The influence of legume cropping on N balances was analyzed
in terms of N input (N-in), the contributions to this from
the application of fertilizer (N-fert) and from BNF (N-fix), N
output (N-out), N surplus (N-surp), the difference between N-in
and N-out, and N use efficiency (NUE; N-out / N-in; OECD,
2008). The analysis also considered productivity in terms of
the variables Biomass Output and Biomass Output Efficiency
(BO and BOE, respectively). Together these are referred to
as the “N balance variables.” The analysis was conducted in
2 parts, the first addressing the annual N balance variables
for crop-year and second the annual average crop-sequence N
balances.

Annual N Balance
The frequency distributions of the N balance variables across
datasets, plots and years were positively skewed and included
a number of zero values (with the exception of N-surp). A log
plus constant transformation of the N balance variables resulted
in a bimodal distribution, indicating that the experimental plots
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could be considered as falling into two populations. Firstly, those
for which N-in or N-out were zero or very small and secondly,
those with a positive N-in and N-out (Table 2). Thresholds
to discriminate between these populations were selected by
examination of their bimodal frequency distributions. Whether
a plot received an input or produced an output (i.e., positive
N-in or N-out) was largely determined by the chosen crop
management practices e.g., whether a legume was included,
fertilizer applied, or silage removed after cutting. Therefore, these
categorical states do not lend themselves to being considered as
random variables suitable for statistical analysis. However, the
proportion of observations falling into these categorical states has
been used to describe the crop management conditions under
which the experiments were carried out.

Data from the low value populations as defined (see Table 2)
were excluded from further analysis. The N balance variables,
comprised of high value observations only, were then treated
as continuous variables and analyzed using linear mixed-effects
models, following a natural log + constant transformation, with
the exception of N-surp which was not transformed. In modeling
all N balance variables, site and plot variables were included
as random terms to account for consistent differences between
experiments and between the experimental plots within each
experiment. The hypothesis that there was no difference in the
N balance variables between legume and non-legume crops was
tested by a likelihood ratio test of competing models. For this
analysis, the large number of different combinations of legumes,
non-legumes, grain crops and forages was condensed into five
comparisons, each consisting of a legume and a non-legume: (1)
grain legume (e.g., faba bean) vs. grain non-legume (e.g., maize);
(2) legume and non-legume grain crops (e.g., pea and barley),
referred to as “grain mix” vs. grain non-legume (e.g., maize);
(3) legume and non-legume forage crops (e.g., grass and clover),
referred to as “forage mix” vs. forage non-legume (e.g., grass);
(4) grain legume and non-legume forage (e.g., faba bean and
rye) vs. grain and forage non-legume (e.g., oat and rye); and,
(5) grain and forage legume (e.g., barley and clover) vs. grain
and forage non-legume (e.g., barley and grass). Where different
types of crop or forage were indicated in the above list, they were
both grown at some point during the same year; no distinction

was made as to whether the crops were grown in sequence or as
intercrops.

Where appropriate, data were back transformed following
analysis and values reported in kg ha−1 to facilitate comparison
with other data sources.

Crop Sequence N Balance
To evaluate the role of legumes within a crop sequence, the
yearly average of each N balance variable was calculated for
each crop sequence of 4 or more years. In addition, the
proportion of years in which a legume crop was grown was
calculated, as was the proportion of grain, forage and grain/
forage combinations.

The relation between each crop sequence N balance variable
and the proportion of legume cropping in a crop sequence was
examined and the significance tested by fitting a generalized
additive model (GAM) to the data assuming Gaussian errors and
an identity link-function. Each N balance variable was modeled
independently as a smooth function of the proportion of years
of a crop sequence that included legumes. The significance of
the smooth term was then tested using Analysis of Deviance
to compare the model against a second model from which the
smooth term was excluded.

RESULTS

N Balance: Crops
Broad Comparison with and without Fertilizer
The crop-types are first arranged into three broad groupings
defined by whether they included legumes and/or received
mineral fertilizer (Figures 1A–F). The “legume” group (left hand
side of each figure), comprised legumes either alone or in
combination with another crop, and with a few exceptions did
not receive mineral fertilizer in the year in question. The “legume
mix+ fertilizer” group (center in each part of Figure 1) included
mixtures of legumes and non-legumes, for example where the
legume is undersown, and where the crop in that year received
mineral fertilizer. The “non-legume” group comprised single and
mixed crops such as cereal, potato and grass which generally
received mineral fertilizer.

TABLE 2 | The number of experimental plots (crops y−1), for which N balance variables were either low or high for set “value ranges” (kg N ha−1)*.

Value range (kg N ha−1) N fertilizer N fixed N input N output*,† Biomass output*

[0 and 2] [30 and 345] 0 ≥1 [0 and 25.5] >25.5 0 ≥1 0 ≥1

Grain legume 99 0 1 98 1 98 0 99 0 99

Grain mix 36 2 0 38 0 38 0 38 0 38

Grain non-legume 393 730 1123 0 389 734 22 1097 22 1101

Forage mix 352 180 141 376 138 379 83 434 184 348

Forage non-legume 44 102 124 22 36 110 0 146 0 146

Grain legume + forage 73 1 0 74 0 74 0 74 0 74

Grain + forage legume 86 152 203 30 66 167 0 232 0 237

The sum of the number of low and high experimental plots is not consistent across N balance variables in some cases due to missing observations.

*Zero values reported for N- and Biomass-output variables reflect the fact that there was no removal of crop material from the system.
†
Output N values do not include N losses due to leaching or denitrification, as stated in the Materials and Methods.
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FIGURE 1 | Box and whisker plots showing the levels of: (A), N-fix; (B), N-fert; (C), N-in; (D), N-out; (E), N-surp (kg N ha−1); and, (F), Biomass output (kg ha−1)

for all crop combinations. The first block of crops on the left side of the x-axis consists of legumes that received no or very little fertilizer; the second block, legume and

non-legume mixtures that generally received fertilizer; and the third block, non-legumes.

In interpreting these data, only N-fert is based on
measured inputs during the year, whereas the contribution
from N-fix can only be accounted when biomass was
removed from the field during the year in question. All the
apparent BNF is accounted for in that 1 year if biomass

had been accumulating for two or more years before its
removal. This facet of the calculation is responsible for
some of the very high values (475–700 kg N ha−1 y−1)
of N input for grass-clover and grass-legume mixtures
(Figure 1).
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Specific Comparison of Different Crop-Types
As defined in Materials and Methods, the data allowed specific
comparisons between five types of crop and forage with and
without a legume (Table 3). Biomass production averaged in
these groupings ranged from 2.4 to 5.5 t ha−1 (back-transformed
means). In all but one of the comparisons, the non-legume
class produced significantly more biomass than the respective
legume class. Only “forage non-legume” produced less than its
comparator. Biomass across the five non-legume classes was on
average 1.29-fold that of the legume (based on back-transformed
values). In contrast, N-out differed in the opposite direction to
that of biomass itself, being greater in the legume than the non-
legume in four out of five comparisons (the exception being the
grain + forage in mixed rotations; last 3 rows of Table 3). In
terms of back-transformed means, the range of N-out was 55
to 115 kg ha−1. The greater N but smaller biomass values in the
legume component reflects the generally higher %N in legume
tissue compared to non-legume tissue.

Whether or not the majority was provided by N-fert or N-fix,
N-in was greater in the legume class in all five comparisons. In
the cases where N-fix was estimated in a non-legume crop, this
was due to BNF by legumes that were neither sown nor intended
to be in the plot (e.g., legume forages as volunteer weeds).
N-surp varied substantially within and between experiments and
experimental plots (see standard errors in Table 3), and for the
majority of crop types it cannot be established whether grain
crops, legume or non-legume, consistently produce either a
surplus or deficit of N.

The two “efficiencies” BOE and NUE, were generally
consistent with what might be expected from the other N-balance
variables. In all cases, the non-legume, with its generally higher
biomass output and lower N-in, achieved higher NUE and BOE.
However, the output of biomass and N by the legumes was
achieved in the absence, or reduced application of, fertilizer and
hence was highly efficient in terms of biomass per unit N applied
as fertilizer.

Unlike grain legumes which were grown alone, forage legumes
were only grown in combination with non-legumes, either grain
or forage. The combination of both legume and non-legume
species blurred the distinction between these crop types, such that
substantial amounts of N-fert were applied to legume-containing
forages and also BNF was estimated as positive in non-legume
crops due to “contamination” by legumes grown previously.
Among the three forage comparisons (Table 3) the vegetative
crops (third comparison) whether legume (e.g., clover and grass),
or non-legume (e.g., grass), gave the highest N-in, N-out and
biomass.

N Balance: Crop Sequence
The average annual rate of N-fix did not increase monotonically
with the proportion of legume crops but peaked at an
intermediate proportion of legume crops (Figure 2A). To test the
significance of this pattern, a generalized additive model (GAM)
was fitted to the data in which average BNF was modeled as a
smooth function of the proportion of years of a crop sequence
that included legumes, excluding the 100% legume sequences.

The smooth term was significant [F(4.28, 290) = 38.7, P < 0.001]
indicating a peak in BNF of 50–100 kg ha−1 (Figure 2A).

Though the variation in the average rate of N application
between crop sequences was, to a large extent, independent of
legume cropping, there was a significant reduction in N-fert at
approximately 50% legume fraction [F(2.66, 291 = 8.83, P < 0.001;
Figure 2B]. The trade-off between N-fert and N-fix, the two
major sources of N, acts to minimize the sensitivity of total N-in
to the extent of legume cropping (Figure 2C), although N-in was
slightly elevated at intermediate levels of legume use [F(0.92, 293) =
10.30, P = 0.002]. The trend in N output (Figure 2D) is similar
to that of N-fix and N-in including a peak at intermediate levels
of legume cropping [F(1.99, 292) = 29.11, P < 0.001].

The trade-off between N-fix and N-fert is, in part, to be
expected as a consequence of the negative relationship between
N application and BNF assumed in the calculation of N-
fix (Equation 2). However, the increase in legume fraction is
also associated with a shift in cropping system. For example,
many sequences with a legume fraction above 0.6 were of a
similar mixed cropping system dominated by a grazed grass-
clover ley. This is a largely vegetative combination, producing
higher biomass and N output than other crops, but habitually
given N fertilizer even though legumes were present in most
years. The various compensations between N-fix and N-fert
resulted in a broadly similar biomass output over a wide
range of legume fractions (Figure 3), from around 25% legume
inclusion.

DISCUSSION

Comparative Performance of Legume and
Non-legume Crops
The main questions to be answered by this analysis are whether
BNF by legumes compensates for reduced input of mineral
fertilizer and whether having a legume in a crop sequence
reduces overall productivity. When analyzed by crop-year, the
two measured variables, biomass and N fertilizer, were not tightly
coupled i.e., large quantities of biomass were produced in the
absence of fertilizer. Legumes had compensated by providing
the N requirements in treatments that received no or reduced
fertilizer. In all five assessments by crop-type (Table 3), the
legume generated a higher N-in through a combination of
measured N-fert and estimated N-fix, than the non-legume
comparator.

The observation that a mixture of legumes and non-legumes
increases productivity is consistent with the observations of a
large European study that analyzed the productivity of grass
swards with differing proportions of clover (Suter et al., 2015).
They suggested that competition for N, N transfer, and niche
complementarity could explain the synergies associated with
such mixtures. In our study the effects of the legumes on
productivity (here measured as output) was more complex and
depended on how productivity was defined. Non-legumes, such
as maize and grass, produced about 1.3-fold the biomass of
legumes but about 0.75-fold the N in the output, consistent with
the generally higher %N of legumes. This general conclusion
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FIGURE 2 | The response of: (A), BNF; (B), N fertilizer input; (C), N input; and, (D), N output to the proportion of the experimental cropping sequences by year in

which legumes were cultivated (legume fraction). Solid lines are estimated smooth functions obtained from fitted GAMs with standard errors given by the shaded areas.

was modified in favor of the legume for the one comparison
that consisted of all-vegetative crops, namely the forage mix
(e.g., clover and grass) and the forage non-legume (e.g., grass),
where N-out and biomass were both higher in the grass-legume
mixture. The highest biomass and N-out among all comparisons
were produced by this vegetative forage (all others having
some “grain” component). The factor probably responsible for
the higher productivity of these forages was the absence of a
reduced photosynthetic capacity that normally occurs during
reproductive growth, as a result of the requirement of the grain
for N, which usually triggers leaf senescence. There might also
have been some niche complementarity between the vegetative
legume BNF and the non-legume using appliedN, resulting in the
forage mix having greater output than the comparator (Lüscher
et al., 2014).

N-Balance Approach
The N-balance approach has the advantage that it allows
systematic comparison of a wide range of disparate studies that
could otherwise not be pooled for analysis, but inconsistencies
can enter the analysis since no account is taken of internal
cycling of N. Potential carry-over effects between years, e.g.,
through uptake from N pools in soil, “catch” crops that
were purposely plowed and did not contribute directly to
output, and persistence of legumes as volunteer weeds can all
affect single-year estimates of N-balance variables. However,
the examination of the balance over the sequence should
negate, or at least reduce, these potential complications.

FIGURE 3 | The response of biomass production to the proportion of

the experimental cropping sequences by year in which legumes were

cultivated (legume fraction). Solid line is the estimated smooth function

obtained from fitted GAM with standard errors given by the shaded area.

When considered over the sequence, both N-out (Figure 2)
and to a lesser extent biomass (Figure 3) showed a broad
maximum at legume fraction between 0.3 and 0.7, within
which highest values were between 0.4 and 0.6. In contrast,
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the two components of N-in varied systematically and generally
in opposition in their contribution. Together these trends
confirm the previous conclusion based on crop-year that
BNF compensated for reduced mineral fertilizer in generating
biomass.

Between legume fractions of 0.6 and 0.8, the contribution of
N-fix decreased. Most sequences in this range were forages that
typically included legumes, either as intercrops or in relay, but
were also given fertilizer, even in years when the legumes were
present, such that N-fix was estimated as a smaller input than it
was from grain legumes. These sequences nevertheless, through
a combination of N-fert and N-fix, maintained high N-in, and
N-out and biomass. Therefore, the presence of legumes did not
cause any systematic reduction in total output when assessed over
the cropping sequence (Figure 3).

Opportunity for Increasing BNF and Other
Properties of Legumes in Multifunctional
Systems
The rates of output and N-fix were measured here in
experimental systems, and with rotations, that included those
designed for productivity in low-input or organic conditions.
Nevertheless, N-balance variables and yield were within the range
of values commonly found in high input cropping. For example,
the combined inputs of N by BNF and fertilizer, N-in, ranged
from 56 to 174 kg ha−1 for the legumes, while mean N-fix ranged
from 32 to 115 kg ha−1 (Table 3, back-transformed means). In
comparison, the typical mineral N input in conventional high
input cropping in Europe is around 100 kg ha−1 for a spring
cereal and 200 kg ha−1 for a winter cereal or oilseed (Fertiliser
Practice, 2014). The most direct comparator for high input
cereals is that of grain legume crops (the first comparison at the
top of Table 3). Here, N-in for the grain legume was 108 kg ha−1

and biomass output 2.4 t ha−1; while N-in for the non-legume
grain was 85 kg ha−1 and biomass output 4.3 t ha−1. Given
that grain yields for high-intensity cereals are typically 4–8 t
ha−1, the lower value being for spring crops, (Sylvester-Bradley
and Kindred, 2009) the non-legume grains in this study are
comparable with general yields, while the legume grains show the
typical higher N and lower biomass in yield.

Higher values of N-fix than those recorded here should
be feasible. While the agronomy underpinning the trials was
advanced by conventional standards, no particular attempt was
made to maximize the amount of N-fix. Indeed, the common
inclusion of N-fert in many of the sequences would have had
the opposite effect. Moreover, values ofN-fix estimated here were
for current varieties that have been bred largely for conventional
high-input cropping systems where there is generally much
residual N. The potential for improving BNF within existing
species and varieties of grain legume needs to be considered.
For example, faba bean has been shown to have a significantly
greater effect than other legumes on the yield of subsequent cereal
grain crops (Wani et al., 1991; Hauggaard-Nielsen et al., 2009,
2012). Therefore, legume breeding should aim for higher levels
of performance directed at low-input environments, cropping-
systems focused on energy as well as food and fodder production

(Porter et al., 2009; Jensen et al., 2012) and in both mixed
cropping or intercropping (Brooker et al., 2014).

Legumes may have a range of benefits other than through
BNF and potential as a green manure. Some degree of persistence
by living legume plants to the next phase of the cropping-
sequence was found in a number of plots and while there may
be risks of such carry-over (Driscoll et al., 2014), the production
benefits from the legume forages and grains that persist into
subsequent crops need to be quantified and exploited. Below-
ground phenology will also be important. Faba bean presents
extensive tap roots capable of reaching deep into the soil profile,
improving soil structure and benefiting the rooting profile of
crops which follow them in the rotation (Rochester et al., 1998,
2001). In relation to this, the benefit of grain legumes to the
yield of the next crop is greater than the benefit brought by
carry-over of N in the soil. Some other factors are influencing
yield positively, implying a cascade effect to other soil- and
system-processes beyond enhanced soil N status (Danso and
Papastylianou, 1992; Ehrmann and Ritz, 2014). This pre-crop
benefit of grain legumes can lead to yield increases of up to
1.6 t ha−1 in subsequent cereals (Preissel et al., 2015). This is
consistent with our own findings which assessed the pre-crop
benefits of legumes at the rotational level, and which also suggest
higher non-legume yield potential may be achieved in years after
legumes. This reflects the higher N inputs achieved by legume
supported rotations.

However, in tackling problems such as reducing N losses
from agriculture, legumes should also have a role but as part of
broader systems of management. Greenhouse gas emissions, for
example, depend on the complex interaction of several different
biotic and abiotic variables (Snyder et al., 2014). While legume
supported crop systems may limit N and C losses (Drinkwater
et al., 1998, maize-soybean), management per se is a major factor
in achieving this (Rees et al., 2013), especially the use of cover
crops, both legume and non-legume grown to accumulate N in
the soil for potential incorporation by later crops and to reduce
GHG emissions (Thorup-Kristensen et al., 2003; Li et al., 2015).

A more critical appraisal of the traits targeted by legumes
breeders should consider these wider system benefits (Sinclair
and Valdez, 2012). Improvements are feasible e.g. soybean
demands manipulation by either agronomy or re-breeding to
render it as a net “contributor” of N, as opposed to a net “taker”
from the system (Alves et al., 2003; Perez de la Vega et al., 2011;
Baddeley et al., 2013). Moreover, the purpose of legumes inmixed
forage systems, both examined here and in the wider literature, is
not simply to contribute BNF or in-field benefits, but to bring
wider system benefits beyond the farm level e.g., as a forage with
particular characteristics or through a combination of outputs
that optimize biomass and N content (Danso and Papastylianou,
1992; Crews and Peoples, 2004; Foley et al., 2011).

CONCLUSIONS

The data assessed here were generated from very different
experimental designs adapted to a wide range of pedoclimatic and
socioeconomic conditions and presented a significant challenge
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to ensure they were harmonized to allow comparative analysis
of a range of conventional, low-input and organic approaches.
It is possible that a more marked efficiency benefit would have
been realized if intensive systems had also been considered in
the comparative analysis. Nevertheless, a model is suggested
which proposes that optimum efficiency is achieved with an
approximately equal balance of forage and grain legumes such
that the legume fraction, the proportion of rotation years in
which a legume is cropped, is around 0.4–0.6, with the legume
component often accommodated as an intercrop.

Mathematical modeling studies have indicated that legume
based crop rotations can deliver environmental and economic
benefits (Reckling et al., 2016). However, the optimal rate of
legume inclusion, such as the high inclusion levels reported
here, should be tested and refined empirically with respect to
the specific pedoclimatic and socio-economic contexts for those
regions in which they are cultivated. Such tests should assume
rotations which accommodate intelligent design principles which
include agronomic approaches that mimic those assessed here
for low-input, organic and often mixed cropping systems.
Additionally, major challenges will remain, such as ensuring that
losses though leaching and greenhouse gases are minimized.
It is also important that effective integrated pest management
strategies for legume supported systems are also developed.
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