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Abstract

One consequence of rising spring temperatures is that the optimum timing of key life-history events may advance.

Where this is the case, a population’s fate may depend on the degree to which it is able to track a change in the

optimum timing either via plasticity or via adaptation. Estimating the effect that temperature change will have on

optimum timing using standard approaches is logistically challenging, with the result that very few estimates of this

important parameter exist. Here we adopt an alternative statistical method that substitutes space for time to estimate

the temperature sensitivity of the optimum timing of 22 plant species based on >200 000 spatiotemporal phenological

observations from across the United Kingdom. We find that first leafing and flowering dates are sensitive to forcing

(spring) temperatures, with optimum timing advancing by an average of 3 days °C�1 and plastic responses to forcing

between �3 and �8 days °C�1. Chilling (autumn/winter) temperatures and photoperiod tend to be important cues

for species with early and late phenology, respectively. For most species, we find that plasticity is adaptive, and for

seven species, plasticity is sufficient to track geographic variation in the optimum phenology. For four species, we

find that plasticity is significantly steeper than the optimum slope that we estimate between forcing temperature and

phenology, and we examine possible explanations for this countergradient pattern, including local adaptation.
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Introduction

Shifts in phenology are among the most widely

reported ecological responses to changing climate

across different ecosystems and taxa (Walther et al.,

2002; Parmesan & Yohe, 2003; Settele et al., 2014). For

temperate plants, the timing of spring events, such as

leafing and flowering, has been especially well

recorded by both professional and citizen scientists.

Analysis of the resultant longitudinal data sets reveals

that spring phenology has advanced in many species

over the past few decades, coincident with rising tem-

peratures (Fitter & Fitter, 2002; Amano et al., 2010;

Thackeray et al., 2016). Some of the advancement in

phenology will be due to microevolutionary change

(Franks et al., 2014), but plastic responses to tempera-

ture probably dominate (Nicotra et al., 2010).

Temperate plants often exhibit pronounced tempera-

ture-mediated plasticity in their spring phenology, as

documented via longitudinal studies of individuals

(Vitasse et al., 2010; www.trackatree.org.uk), geographic

transplants (Kramer, 1995) and experimental

approaches (Franks et al., 2014). Such plastic phenologi-

cal responses are often assumed to be adaptive, allow-

ing plants to track spatial and temporal variation in the

onset of benign environmental conditions. Conse-

quently, observed advances in spring phenology sug-

gest that optimal phenologies have advanced as the

climate has warmed. However, little information is

available as to whether observed phenologies are

advancing at the same rate as optimal phenologies, and

what the demographic consequences of any shortfall are

(see Wilczek et al., 2014 for an exception). Measuring

how optimal phenologies change per unit change in

temperature, termed the environmental sensitivity of

selection (B) (Chevin et al., 2010), is logistically challeng-

ing. It requires that the phenology-fitness surface be esti-

mated in several different environments, followed by

characterization of the temperature dependence of the

timing of the fitness peak (Chevin et al., 2015). As a

result, outside of the laboratory there have been very

few estimates of this key parameter (Michel et al., 2014).

Usually B is used to map a temporal change in tem-

perature to a temporal change in the optimum. How-

ever, temperatures also vary in space and we can map
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spatial changes in the temperature cue to spatial

changes in the optimal phenology. In a simple model

where temperature varies clinally (with latitude for

example), and phenotypic optima depend linearly on

temperature, spatial differences in the observed phenol-

ogy quickly equilibrate to spatial differences in the opti-

mal phenology if there is no spatial variation in

population density and dispersal is symmetric (Felsen-

stein, 1977; Slatkin, 1978). Under these conditions, the

spatial relationship between phenology and the driving

temperature variable could be used as an estimator of

B. However, when spatial changes in temperature also

have a stochastic component, then this estimator is

biased towards zero. Hadfield (2016) recently demon-

strated that an unbiased estimator of B can be obtained

from the ratio of the rate at which phenology changes

with latitude to the rate at which the temperature cue

changes with latitude. In a recent study of the nesting

phenology of four passerine birds, Phillimore et al.

(2016) extended the approach of Phillimore et al. (2010)

– for separating the contributions of plasticity and local

adaptation from spatiotemporal phenological data – to

estimate B. An advantage of this spatial approach for

estimating B is that there already exists an abundance

of amenable data for a range of taxa. However, the the-

ory and statistics required to estimate B from spatial

observations in the absence of direct measures of fitness

rests on several assumptions (for a full discussion, see

Table 1).

Regression-based estimation of B from observational

data relies on the correct phenological cue(s) having

been identified (Chevin & Lande, 2015). In most tem-

perate plants, the primary drivers of spring phenology

are temperature and photoperiod (Rathcke & Lacey,

1985; Polgar & Primack, 2011), although the relative

importance of these cues will vary among species

(Laube et al., 2014) and is a source of debate (Chuine

et al., 2010; K€orner & Basler, 2010). Temperatures at

different times of the year can have opposing effects,

with the forcing effect of warm springs usually

advancing phenology, while warm conditions in

autumn/winter may delay phenology via effects on

dormancy induction, breaking dormancy and stimulat-

ing growth (Murray et al., 1989; Polgar & Primack,

2011; Laube et al., 2014; Roberts et al., 2015). Experi-

mental studies reveal that photoperiod plays a key role

in some species (Caffarra & Donnelly, 2011), although

the precise nature of any interactions between pho-

toperiod and the response to forcing and/or chilling

temperatures is not known for most species (Polgar &

Primack, 2011; Vitasse & Basler, 2013). While longitu-

dinal data from a single site are not informative about

the role that photoperiod plays, spatial replication of

longitudinal data across latitudes may be (Phillimore

et al., 2013), and such data are often collected by citi-

zen science schemes.

The UK Phenology Network (UKPN) citizen science

scheme was set up in 1998 and now comprises millions

of phenology observations in space and time. In this

study, we apply a recently developed statistical frame-

work (Hadfield, 2016; Phillimore et al., 2016) to the

spring phenology (first leafing and first flowering) of 22

plant species that have been monitored by the UKPN

(Table S1). Our main aims are to estimate (i) the tem-

perature sensitivity of the phenological optimum (B)

and (ii) the degree to which phenological plasticity is

adaptive and tracks geographic variation in the optimal

phenotype. As warmer spring conditions may herald

an advance in favourable conditions for growth, we

predict that B with respect to forcing will be negative.

Theory predicts that the plastic slope will be in the

same direction as B but will be shallower unless the

environment of development and selection are the

same (Tufto, 2015). Our analysis relies on us having

identified the correct phenological cues, and a sec-

ondary aim of our study was to identify the sensitivity

of species to forcing, chilling and photoperiod.

Materials and methods

Spatiotemporal data

We used phenological records of first flowering and leafing

collected by citizen scientists from the UK Phenology Network

(UKPN; www.naturescalendar.org.uk) over the period 1998–

2014 (see Table S1 for details). We selected species with >3500
records and excluded taxa for which there were known issues

associated with data collection. This meant that we excluded

species with common cultivars (e.g. snowdrop and primrose)

or those that may be easily confused with other species. We

selected first leafing events in preference to first budburst

because we have found the first leaf phenophase to be more

straightforward to observe, and preliminary analyses revealed

that this measure was less subject to among recorder variance.

We focused on spring events because the role of temperature

as a cue is better understood for spring than autumn events

(Gallinat et al., 2015). Prior to analysis, we visually inspected

histograms and removed extreme outliers for each species. In

order to minimize measurement errors introduced by novice

recorders (Dickinson et al., 2010), for each species we excluded

all data collected by participants who only contributed records

for a single year. The number of filtered observations ranged

between 2805 for sessile oak and 22 177 for lesser celandine

(Table S1).

Each phenological observation was assigned to the

5 9 5 km grid cell (hereafter 5-km grid cell) in which it was

reported, and matched to daily air temperature data interpo-

lated between recording stations on the same grid for the

appropriate year (Perry & Hollis, 2005; Perry et al., 2009);

www.metoffice.gov.uk/climatechange/science/monitoring/
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Table 1 Discussion of the validity of key theoretical (i–vi) and statistical (vii–ix) assumptions in estimating B and b from

spatiotemporal data

Assumption Comments

i. The temperature cue that

determines plasticity has been

correctly identified.

While the temperature sensitivity of plant phenology is often modelled using growing

degree-day models (e.g. Chuine, 2000), here we adopt a reaction norm approach due to its

amenability to linear statistical modelling and to facilitate comparisons with theoretical

models of quantitative trait evolution (e.g. Chevin et al., 2010; Hadfield, 2016). Where

growing degree-day and linear reaction norm approaches have been applied to the same

data sets, they have been shown to provide similar insights into phenological cues and

responses (Phillimore et al., 2013; Roberts et al., 2015). We use a sliding-window approach to

identify the window(s) during which mean temperature best predicts phenology. It is

possible that the window of thermal sensitivity varies geographically and our phototemp

model allows for a latitudinal cline in the window of forcing temperature sensitivity.

ii. The temperature cue(s) that

determines plasticity (b) also

determines the optimum (B).

Where the environment of selection (i.e. that which determines the optimum) and

development (the cue) are the same, our estimate of B will correspond to the optimal slope

of phenology on temperature. If the correlation between the two environments is <1, our
estimate of B will correspond to the optimal phenological response to the environment of

development, which is shallower than the optimal phenological response to the

environment of selection (Tufto, 2015). To test whether the environment of selection is the

same as the environment of development would require information on the fitness of

individuals in different environments (e.g. Chevin et al., 2015).

iii. The selected temperature

variable(s) is/are the sole

determinant of the optimum.

While temperature may have a direct effect on the optimum for a species, it is quite likely

that some of its effect is indirect, via the phenology of interacting species (e.g. forest tree and

understorey species competing for light in spring, or flowers competing to attract

pollinators). If the identity of interacting species varies clinally, then this may cause Blat or

Blon (see methods) to overestimate or underestimate B. Similarly, other environmental variables

that vary geographically and affect phenology, such as precipitation, may cause our estimates of

Blat or Blon to over- or underestimate B. Where chilling plays a role in addition to forcing, our

ability to separate the effects of chilling and forcing on B depends on how correlated the two

temperature variables are. In practice, we find that chilling and forcing temperatures are

highly correlated in space (Table S4). This means that our estimate of B based only on

forcing temperatures will be biased in the direction of any relationship between chilling

temperatures and optimum timing that exists.

iv. Population density is

constant in space.

Violation of this assumption is anticipated to lead to underestimation of B (Garc�ıa-Ramos &

Kirkpatrick, 1997). Atlas data reveal little present-day geographic heterogeneity across

Britain in the abundance of larch, rowan, silver birch, field maple (although this species is

absent from the north of Britain) and alder. However, horse chestnut, beech, pedunculate

oak and ash all appear about twice as frequently in plots in the south of Britain than they do

further north, whereas sycamore has elevated abundance at mid-latitudes

(San-Miguel-Ayanz et al., 2016). If spatial heterogeneity in abundance leads to a severe

underestimation of B across species, we would expect to find a negative correlation between

our estimates of |B| and the absolute change in abundance with latitude or longitude, which

we do not (appendix S2).

v. Migration is symmetric

among populations.

At the range limits, migration will be from a single direction and migration load is expected

to perturb such populations from the optimum (Hadfield, 2016). To assess whether this

impacts on our estimation of B, we plot the residuals and 150-km grid cell best linear

unbiased predictors (BLUPs) as a function of latitude and longitude, and visually inspected

whether there was a tendency for values to depart from 0 at the latitudinal and longitudinal

extremes. We observed such deviations in BLUPs at one or both latitudinal extremes for

wood anemone, lesser celandine, sycamore, hazel and rowan, and for these species, Blat may

be biased towards 0. Most species showed such departures in BLUPs over longitudes,

implying that Blon will tend to be biased towards 0.

vi. Populations are at

migration–selection

equilibrium.

Violation of this assumption would cause Blat and Blon to be biased away from B towards b.

Introduced species, such as horse chestnut, larch and sycamore, will violate this

assumption. We do not know whether the other remaining species obey this assumption,

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd, doi: 10.1111/gcb.13624
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ukcp09/). To calculate the day length (time from sunrise to

sunset) in minutes for each day, sunrise and sunset equations

(Meeus, 1991) were applied to the centroid of each 5-km grid

cell. Each 5-km grid was assigned to a 25-km grid cell and

150-km grid cell, with the latter treated as an arbitrary defini-

tion of a population in analyses, as in earlier studies using a

similar approach (Phillimore et al., 2010, 2016).

Statistical analyses

We fitted a series of linear mixed models in ASReml-R (Butler

et al., 2009; Gilmore et al., 2009) that were designed to identify

the environmental cues that best explain the spatiotemporal

variation in phenology of each species. All models (parame-

ters summarized in Table 2) treat the ordinal date of the

phenological observation as a response variable and include

150-km grid cell, year, 25 km:year and a residual term as

random effects. Our motivation for including the 25 km:year

term was to account for pseudoreplication of interpolated

temperatures within a 5-km grid cell and year.

Our null model included only the intercept as a fixed effect.

We also considered geographic and temporal cline models in

order to (i) identify broad spatial and temporal trends and (ii)

act as an additional baseline against which the performance of

cue-based models can be compared. Our simple clinal model

included year (as a continuous variable), latitude and longi-

tude as fixed effects (geo1). A more complex clinal model also

included the interaction between latitude and longitude, as

well as quadratic terms of latitude and longitude (geo2).

All subsequent models include environmental cues (Fig. 1).

The first was consistent with a photoperiod threshold trigger-

ing phenology (photo). The ordinal date at which the specified

minutes of daylight (we considered values between 486 and

980 minutes at intervals of 4 minutes) was first reached in

each 5-km grid cell was used as an offset in the model, making

the response the time lag (between a specified photoperiod

being reached and the date of the phenological event. The only

fixed effect in this model was the intercept.

For models that incorporated an effect of temperature, we

followed Phillimore et al. (2010, 2016) and fitted both phenol-

ogy and temperature as a bivariate response. This approach

allowed us to separately model the relationship between phe-

nology and temperature over space (across locations) and time

(across years). The temperature response in the temp model

was the mean temperature during a predefined sliding win-

dow. The start and end dates for the sliding windows were

the same for all locations, and we tested different window

durations by varying the start date (from ordinal days �59 to

100 in 2-day intervals) and duration (from 4 to 120 days in

2-day intervals). Each time window was constrained, so it did

not extend beyond ordinal day 150 (30th May). The end of the

time window was included as an offset for the phenology

response and this generated a model to that tested whether

temperature within a time window predicts the lag time until

the phenological response is observed.

To model the combined effects of temperature and photope-

riod (phototemp), we allowed sliding windows of thermal

sensitivity to be initiated once a specified day length (using

the same range of values as the photo model) had been

reached. This date then became the start of the local time win-

dow, and we considered the same range of window durations

as in the temp model.

The final model included two sliding windows during

which mean temperatures predict phenological response

(doubletemp), with both temperature variables and the pheno-

logical lag (between the end of the second time window and

the phenological event) fitted in a trivariate response. The time

window immediately preceding the event (the forcing

Table 1 (continued)

Assumption Comments

but note that short-lived species (e.g. garlic mustard) will have had more generations over

which to adapt.

vii. The temporal slope of

phenology regressed on

temperature is attributable to

mean population plasticity.

Based on average Central England Temperatures for February–May (Parker et al., 1992),

there has been little directional trend in UK spring temperatures over the period 1998–2014
(slope = �0.06 � 0.03). For long-lived species, such as the focal tree and shrub species, the

contribution of microevolution to the temporal slope is likely to be negligible. For these

species, our assumption that this slope is attributable to plasticity is also supported by

similar estimates being obtained for individual trees (Vitasse et al., 2010). Several of the focal

species are short-lived perennials (herbs, grasses), and for these species, we cannot discount

the possibility that microevolution contributes to the temporal slope and biases our estimate

of b towards B.

viii. Populations share the same

plastic response.

When we estimate the temporal slope separately for each 150-km grid cell, we find little

evidence for intraspecific geographic variation in mean population plasticity (Fig. S3). Mean

population plasticity has also been found to vary little between sites for a sample of

European trees (Vitasse et al., 2009b).

ix. Observations are random

samples from a population.

UKPN observations are of population first dates, which means that the individuals we are

sampling have more negative intercepts than the population they are drawn from. First

dates are also sensitive to sampling effort and species abundance; if either covaries with

spring temperatures over time and/or space, this can bias any of our slope estimates up or

down (appendix A in Phillimore et al., 2012).

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd, doi: 10.1111/gcb.13624
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window) was identical to the best performing temp model for

each species. We then explored mean temperatures over a pre-

forcing time window during the autumn/winter preceding

the phenological event. For simplicity, this window is referred

to as the chilling window, although the timing of this window

could reflect temperatures that impact on phenology through

a mechanism other than chilling, such as dormancy induction

(Heide, 2003). We varied start dates (from ordinal day �120

up to the beginning of the forcing window in 2-day intervals)

and durations (from 4 to 120 days in 2-day intervals) in all

combinations.

We used Akaike information criteria (AIC) and AIC weights

(Burnham & Anderson, 2004) to compare among the best

models of each class (see Table 2 for the parameters included

in the AIC calculation for each model). We explain the calcula-

tion of model likelihood in Appendix S1. The sliding-window

method involves multiple testing which will inflate type I

errors (Bailey & Van De Pol, 2016), although the very high

autocorrelation in daily temperatures will serve to reduce the

severity of this problem (M. Morrissey pers comm).

We obtained an estimate of the variance–covariance
between response variables for each random effect (r):

vPr v0Pr;Tr
vPr;Tr VTr

� �

vPr is the variance in phenology, vPr,Tr is a vector of covariance

(s) between phenology and the temperature cue(s) and VTr is

a matrix of (co)variances between the temperature cue(s). In

the bivariate model, vPr,Tr and VTr are scalars.

The slope estimate(s) of the phenological lag on the temper-

ature cue(s) was obtained as V�1
Tr vPr;Tr for each random term

(Phillimore et al., 2012). When year was the random effect, we

obtained a temporal slope (i.e. the change in phenology in

response to year-to-year variation in temperature), and when

150-km grid is the random effect, we obtained a detrended

spatial slope (i.e. the change in phenology in response to non-

clinal spatial variation in temperature).

We assumed that temporal slopes are primarily due to the

mean population-level temperature-mediated phenological

plasticity (b) (for discussion of the validity of assumptions

required by the theory and statistical models, see Table 1). Fol-

lowing the approach of Phillimore et al. (2016), we estimated

the temperature sensitivity of selection over latitude and lon-

gitude, which we refer to as Blat and Blon. Assuming that the

temperatures in the selected thermal window cue phenology,

populations are at migration–selection equilibrium and that

population density is constant in space, B can be estimated by

dividing the slope of phenological lag on latitude (or longi-

tude) by the slope of temperature on latitude (or longitude)

(Hadfield, 2016). We expect that Blat = Blon and any significant

difference between these slopes is potentially indicative of an

unmeasured confounding variable or nonconstancy of B in

space. Assuming that plasticity is constant among popula-

tions, we can use B–b to estimate the contribution made by

Table 2 Parameters included in mixed-effect models and in the calculation of AICs

Model

Mixed-model terms

Response(s) Fixed effects Random effects

Additional parameters

used to generate the

model offset

K used in AIC

based on

conditional

likelihood*

null Phenology Intercept 150-km grid cell, year,

25 km:year, residual

5

geo1 Phenology Intercept, Year,

latitude, longitude

150-km grid cell, year,

25 km:year, residual

8

geo2 Phenology Intercept, Year,

latitude, longitude,

latitude:longitude,

latitude2, longitude2

150-km grid cell, year,

25 km:year, residual

11

photo Phenological lag Intercept 150-km grid cell, year,

25 km:year, residual

Photoperiod threshold 6

temp Phenological lag,

temperature

Intercepts, latitude, longitude 150-km grid cell, year,

25 km:year, residual

Temperature window

start and end dates

13

phototemp Phenological lag,

temperature

Intercepts, latitude, longitude 150-km grid cell, year,

25 km:year, residual

Temperature window

start and end dates

13

doubletemp Phenological lag,

chilling

temperature,

forcing

temperature

Intercepts, latitude, longitude 150-km grid cell, year,

25 km:year, residual

Chilling and forcing

temperature window

start and end dates

23

*For the conditional likelihood, each fixed term contributed one parameter and each random term contributed two parameters (Phil-

limore et al., 2016).

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd, doi: 10.1111/gcb.13624
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clinal local adaptation. When |B-b| < |B|, then plasticity par-

tially tracks the optimum and can be said to be adaptive, and

B = b indicates perfect adaptive plasticity.

In addition to clinal local adaptation, nonclinal local adapta-

tion can be estimated as the difference between the detrended

spatial slope and b (Phillimore et al., 2010, 2016). When |B-b| >
0, migration is expected to reduce the efficiency of adaptation

to track B across temperatures that vary stochastically across

grid cells (Hadfield, 2016). Therefore, we predict that the

detrended spatial slope will lie between B and b.

To get credible intervals for slopes and slope differences,

we selected the lowest AIC model for each species and re-

estimated the parameters in a Bayesian setting using

MCMCglmm (Hadfield, 2010). For species where the pheno-

logical response was best explained by the temp or phototemp

models, we ran MCMCglmm (Hadfield, 2010) using forcing

windows from the best performing model. For species where

phenology was best predicted by the doubletemp model, we

tested the correlation of mean temperatures across the two

time windows over time and space and found that tempera-

tures in the two time windows were highly correlated over

space but not time (correlation over space ranges from 0.57 to

0.99, Table S4). We interpret these models as being effective at

identifying the time windows during which temperature is

most important as a phenological cue, and the plastic response

to these cues. However, multicolinearity precludes interpreta-

tion of forcing and chilling slopes estimated across spatially

varying temperatures. Therefore, for these species we focused

solely on parameter estimates for the forcing window and re-

estimated parameters from the best performing temp or pho-

totemp model.

We ran models for 60 000 iterations, discarding the first

10 000 as burn-in. We sampled every 10th iteration to get pos-

terior sample sizes of 5000 for each species and visually

inspected traces of the posterior distributions of focal parame-

ters to check for model convergence. We used priors for the

(b) (c) (d)

(a)

P

Fig. 1 A schematic depicting latitudinal variation in cues arising from models that include (a, d) photoperiod and (b–d) average tem-

perature in a sliding window. Parameters that we optimize via iterative searches are in blue. Lag* indicates models where the lag dura-

tion (which can be positive or negative) is a linear response to spatial and temporal variation in the mean temperature during the time

window.

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd, doi: 10.1111/gcb.13624
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(co)variance components which were drawn from the inverse

Wishart distribution with V = I and m = 0.002.

Phenological observations and derived temperature vari-

ables for the best cues are available from https://doi.org/10.

7488/ds/1688.

Results

Spatiotemporal trends

We find that the phenology of first leafing and flower-

ing dates varies spatially among 150 km 9 150 km

(hereafter 150 km) grid cells for all focal species

(Fig. 2). Species differ substantially in their spatial phe-

nological variance, with levels highest in lesser celan-

dine, wood anemone and meadow foxtail, and lowest

in field maple and beech. Variance among years is of

similar magnitude to the variance among 150-km grid

cells, and tends to be higher for species with earlier

phenology such as lesser celandine, hawthorn and

blackthorn. For all species, residual variance of first

dates within a single 25 km 9 25 km grid cell and year

is considerably larger than other variance components.

All species show significant latitudinal and/or longi-

tudinal trends in phenology. With the exception of field

maple and garlic mustard, a model where the effects of

latitude and longitude interact and are subject to quad-

ratic relationships (geo2, Table 2) outperforms a model

that considers only linear effects and no interaction

(geo1). For most species, phenology is delayed as lati-

tude increases (Fig. S1), although the magnitude of this

gradient varies, being steepest in bluebell and pedun-

culate oak and shallow in hawthorn, horse chestnut

and beech. For elder, sycamore, rowan, garlic mustard

and field maple, the latitudinal slope is reversed and

phenology advances as latitude increases. Longitudinal

trends vary among species, with some species being

most advanced in the west and others in the east. Sev-

eral species show longitudinal clines that change sign

as one goes north; in most cases, phenology is earliest

in the east in the south, and west in the north. Direc-

tional temporal shifts in phenology are nonsignificant

for all species, consistent with the weak temporal tem-

perature trend over the focal time period.

Cues

We use AIC to compare the ability of four types of cue-

based model to predict spatiotemporal variation in phe-

nology (Fig. 1, Table 2). While all focal species are
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sensitive to spring forcing (Fig. 3), they vary in whether

they are sensitive to chilling or photoperiod and in the

parameters defining the sliding windows. The single

sliding-window temp model is preferred for meadow

foxtail, with the more complex doubletemp model per-

forming best for thirteen species, most of which are typ-

ified by early phenology. For eight predominantly late

spring species, the phototemp model performs best.

For all species, the spring forcing windows precede

and overlap with spatiotemporal variation in the event

itself. Forcing windows are earlier for species with ear-

lier phenology; however, there are no clear trends in

the length of forcing window according to best model

type or timing of phenological event (Fig. 4, Fig. S2).

For species with phenology best predicted by the pho-

totemp model, forcing windows start and end later in

the north (Fig. 4). The time delay in when the photope-

riod threshold is met at 50°N as compared with 56°N
ranged from 3 to 11 days. The latitudinal trend in the

photoperiod initiation of the sliding-window start date

becomes shallower approaching the equinox. For

species with phenology best predicted by the dou-

bletemp model, the preforcing or chilling temperature

sensitivity window is generally towards the end of the

year preceding the phenological event (Fig. 4).

Plasticity and adaptation

Our estimates of population mean plasticity with

respect to forcing temperature (b), obtained as the tem-

poral (among-year) slope of phenology on temperature

during the forcing window, are significantly negative

for all focal species (Fig. 5a, Tables S2–S4), with poste-

rior medians varying from �3 to �10 days °C�1. We

find little evidence of among 150-km grid cell variance

in plasticity (Fig. S3), except in lesser celandine, for

which plasticity is estimated to be shallower at the tem-

perature extremes. Our estimates of population mean

plasticity with respect to chilling temperature (bchill),

which we obtain as the temporal (among-year) slope of

phenology on temperature during the chilling window,

are close to 0 in most cases. We do, however, find a sig-

nificant positive bchill for larch, horse chestnut and ses-

sile oak (Table S4). The temporal chilling slopes are

shallower than the forcing slopes, ranging from �2 to

2 days °C�1.
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Spatial multicolinearity between forcing and chilling

temperatures precludes us from interpreting spatial

slopes obtained from the doubletemp model. Instead,

when interpreting drivers of spatial variation in phe-

nology, we consider only forcing temperatures

obtained from the best performing temp or phototemp

model. The temperature sensitivity of the optimum

across latitudes (Blat) and longitudes (Blon) is signifi-

cantly negative in most cases (Fig. S4a, b), with a med-

ian of ~�3 days °C�1. Sycamore, for which we estimate

a positive B across both spatial clines, is an exception.

In 16 of 22 cases, Blat and Blon are of the same sign

(Fig. S4a, b, Tables S2 and S3).

Four species, larch, sycamore, bluebell and garlic

mustard, show significant differences between B and b

that are qualitatively consistent whether B is estimated

as Blat or Blon (Fig. 5b, c). For each of these species, the

gradient of the optimum (B) is shallower than the plas-

tic slope b, consistent with countergradient local adap-

tation (i.e. temperature-mediated local adaptation

acting in the opposite direction to plasticity), or the

effect of a third variable on the optimum (Chevin &

Lande, 2015). For lesser celandine alone, B is more stee-

ply negative than b, consistent with cogradient local

adaptation (i.e. temperature-mediated local adaptation

acting in the same direction as plasticity), although the

credible interval for Blon – b includes zero.

For seven species, the two estimates of B – b do not

depart significantly from zero, consistent with temper-

ature-mediated plasticity tracking clinal variation in

the phenological optimum (Fig. 5b, c). In a further

three species (horse chestnut, pedunculate and sessile

oak), while there is a significant difference between B

– b over either latitude or longitude, the point esti-

mate does not depart greatly from 0, implying that

plasticity is adaptive and partially tracks the optimum

in these species. For the remaining seven species, B –
b estimates over latitudes and longitudes are inconsis-

tent. Across all 22 species, we find that the point esti-

mates of forcing plasticity are adaptive (defined as |B-
b| < |B|) for 12 and 16 species when B is estimated as

Blat and Blon, respectively. Plasticity is consistently

maladaptive for bluebell, garlic mustard, larch and

sycamore.

–100 –50 0 50 100 150 200
Time period, ordinal days

A S O N D J F M A M J J

Lesser celandine  (F)
Elder  (L)

Hawthorn  (L)
Blackthorn  (F)

Wood anemone  (F)
Horse chestnut  (L)

Larch  (L)
Sycamore  (L)

Rowan  (L)
Silver birch  (L)

Bluebell  (F)
Field maple  (L)

Alder  (L)
Garlic mustard  (F)
Cuckooflower  (F)

Beech  (L)
Sessile oak  (L)

Pedunculate oak  (L)
Ash  (L)

Meadow foxtail  (F)
Cocksfoot  (F)

Dogrose  (F)

Fig. 4 Time windows during which mean temperatures best predict the phenological events (median shown as filled circle) for each

species. Species are plotted in ascending order of mean phenology from bottom to top. Event type is reported in parentheses, where F =

flowering and L = leafing. Bars are coloured according to the lowest AIC model; orange = temp, red = phototemp and blue = dou-

bletemp (two windows). Time windows for the phototemp model covary with latitude; the bar depicts the time window at 50°N and

the arrow head the time window at 56°N.
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Our measure of nonclinal local adaptation, the

detrended spatial slope of phenology on temperature,

is in most cases negative and, consistent with

theoretical expectations (Hadfield, 2016), intermediate

between B and b (Fig. 5d, Fig. S4c). In fifteen cases, the

difference between the detrended slope and b was
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nonsignificant, meaning that we cannot reject the null

hypothesis that the detrended spatial slope of phenol-

ogy on forcing temperature is due to plasticity alone.

Discussion

The absolute difference between the temperature sensi-

tivity of the optimum B (across latitude and longitude)

and plasticity (b) reveals the contribution that genetic

adaptation must make for populations to track the opti-

mum (Chevin et al., 2010). For wood anemone, silver

birch, alder, cuckooflower, beech, ash and cocksfoot,

the difference between these slopes is small and non-

significant. Plasticity also closely tracks gradients of

thermal optima for the leafing of horse chestnut (a

non-native species), pedunculate and sessile oak, and

dogrose, although a small but significant slope differ-

ence exists across latitude or longitude for each of these.

Assuming that parameters estimated across space can

substitute for those that act over time, we project that

these populations will be able to track temperature-

mediated changes in the phenological optima, and that,

all else being equal, climate change should pose least

threat to such populations (Chevin et al., 2010). In more

than half of species, we find that plasticity is adaptive

and leads to populations tracking temperature-

mediated variation in the optimum more closely than

they would in the absence of plasticity (|B-b| < |B|).
For four species, we found consistent evidence that

|B-b| departs significantly from zero; that is, plasticity

does not track the temperature sensitivity of the opti-

mum. In each case, the plastic response was signifi-

cantly steeper and more negative than B, which is

consistent with countergradient variation in the opti-

mum timing (Conover & Schulz, 1995; Phillimore et al.,

2012). We expect the spring phenology of temperate

plants to be exposed to opposing selection pressures,

for later phenology to reduce frost damage and early

phenology to take advantage of the growing season

(Lenz et al., 2013). In colder locations, growing seasons

are expected to be shorter and this may result in the

optimum phenology being earlier than it would be

under equivalent spring temperatures at lower lati-

tudes or elevations. In other words, the intercept of the

temporal relationship between spring temperatures

and the optimum timing may vary in space and may

make it inappropriate to use our estimate of Blat as a

substitute for B. Evidence for countergradient variation

in spring phenology from common garden experiments

on plants is quite limited, although examples do exist

(Alberto et al., 2013; Kremer et al., 2014; Toftegaard

et al., 2015). Unexpectedly, we found countergradient

patterns for two non-native species, larch and syca-

more. For these species, we suggest that a more likely

explanation for the countergradient patterns is that

another variable may have played a confounding role

(Chevin & Lande, 2015). For instance, it is conceivable

that the lower amounts of chilling received by plants in

warmer regions biases our estimates of B downwards.

Unfortunately, the spatial correlation between forcing

and chilling temperatures means that we are unable to

separate Bchill and Bforce. The early flowering lesser

celandine is the only species for which we identify a

cogradient local adaptation pattern (although we only

find significant evidence for local adaptation over lati-

tude), meaning that local adaptation of phenology with

respect to temperature acts in the same direction as

plasticity.

For the remaining ten species, our estimate of the

temperature sensitivity of the optimum differs in mag-

nitude over latitude vs. longitude, which is inconsistent

with the underlying theory (Hadfield, 2016). This may

reflect the influence of a third variable, such as the fre-

quency of late frosts or precipitation, which covaries

with temperature and phenology differently over lati-

tude vs. longitude (see Table 1). We note that for sev-

eral species for which spatial slope estimates were not

consistent, such as hawthorn, blackthorn and rowan,

the timing of temperature sensitivity sliding windows

was estimated with a higher degree of uncertainty

(Fig. S2).

Our analyses revealed a broad trend in cue use; spe-

cies with earlier mean phenology are better predicted

by two temperature time windows, while photoperiod

is an important cue for species with later phenology.

Exposure to late frosts and the damage this incurs can

impair new growth and reproductive success (Inouye,

2000). Therefore, the positive phenological response to

winter temperatures during a chilling window identi-

fied for 11 of 13 species (for which the doubletemp

model performed best) may be an adaptation to reduce

the chances of initiating new growth during a warm

winter spell. A reliance on temperature rather than

photoperiod cues may also enable these early phenol-

ogy species to respond more quickly to warm forcing

temperatures early in the year (Polgar & Primack,

2011). Chilling requirements have been demonstrated

for numerous woody species (Laube et al., 2014) and

flowering annuals (Kim et al., 2009). Our finding that

early spring species are generally more sensitive to a

chilling window agrees with inferences drawn for an

overlapping set of species by an analysis of the famous

Marsham phenological time series (Roberts et al., 2015).

The precise timing of all forcing and chilling win-

dows varied among species. Forcing windows were

important in cuing the phenology of all focal species

and directly preceded the mean phenology. In compar-

ison, the timing of chilling windows varied more

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd, doi: 10.1111/gcb.13624
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among species. This may reflect different processes that

constitute a chilling signal in our analyses, such as

autumn dormancy induction or winter chilling accu-

mulation for dormancy release (H€anninen & Tanino,

2011; Polgar & Primack, 2011). Species that show a posi-

tive phenological response to temperature during a

chilling window (i.e. delay their phenology) may

advance their phenology by less than chilling insensi-

tive species if temperatures rise throughout the year

(Murray et al., 1989; Fu et al., 2015; Roberts et al., 2015).

For species with phenological events later in the

spring, photoperiod assumes a greater influence than

chilling as a predictor of a species’ spatiotemporal phe-

nological variation. This is in broad agreement with

findings from growth chamber experiments on tree cut-

tings (Basler & K€orner, 2012). We included photoperiod

as a threshold, but recent experimental and modelling

work on trees finds that photoperiod and chilling inter-

act, such that photoperiod assumes greater importance

when chilling requirements are not fully met (Caffarra

et al., 2011a,b; Laube et al., 2014). Our models do not

capture these more subtle effects. It may be possible to

extend our approach to incorporate such complexity,

although we caution that expanding the parameter

space would present a substantial computational chal-

lenge and multicolinearity of cues in space will remain

an obstacle.

Three of the species included here, pedunculate

oak, garlic mustard and cuckooflower, have been sub-

ject to earlier work in a simpler version of our frame-

work (Phillimore et al., 2012, 2013). Our estimates of

species’ plasticity are similar to those obtained in pre-

vious studies. However, in contrast to our finding that

garlic mustard shows countergradient local adapta-

tion, Phillimore et al. (2012) reported no evidence of

local adaptation and that plasticity could account for

the spatiotemporal covariation between temperature

and phenology. We attribute this discrepancy to the

earlier study relying on a measure of model fit that

took only the temporal relationship between tempera-

ture and phenology into account. This serves to high-

light the risks of relaying on a correlation-based

approach to identify local adaptation and B. We

advise particular caution when interpreting B for spe-

cies best predicted by the doubletemp model, as we

suspect that the spatial correlation between forcing

and chilling temperatures will have biased our esti-

mates towards zero. For these reasons, we recommend

that our findings be viewed as hypotheses requiring

validation via the classic approach of transplant

experiments.

We are aware of two opportunities for assessing the

validity of our inferences. The first is the Marsham

record, which allows a comparison of estimates of

plasticity (or more accurately the temporal slope of

phenology on forcing temperature), for ten taxa at a

single site within the same region estimated over a

nonoverlapping time period (Table S1b in Roberts

et al., 2015). We identify similar forcing sliding win-

dows and estimate plasticity of the same sign and of

similar magnitude, but all our estimates are shallower,

with the average difference ~1.65 days °C�1. This dis-

crepancy may reflect a true difference in the phenolog-

ical response to temperatures during the two time

periods, but is more likely due to methodological

biases. For instance, enforcing a single sliding window

across the United Kingdom might underestimate the

true local responses to forcing temperatures or the

spatially interpolated temperature data that we use

may include more measurement error. Several tree

species have been subject to extensive transplant

experiments in the Pyrenees, providing an opportunity

to test the validity of our inferences regarding plastic-

ity and local adaptation. Vitasse et al.’s (2010) esti-

mates of the plasticity of leaf unfolding with respect to

spring temperatures ranged from ~�4.9 to �5.8 days

°C�1 in beech and �5.7 to �6.3 days °C�1 in sessile

oak, similar to our temporal slope estimate of �4.27

and �5.30 days °C�1 (Table S3), respectively. A com-

mon garden study of tree provenances from different

elevations revealed countergradient local adaptation of

flushing in beech, cogradient variation in ash and no

local adaptation in sessile oak (Vitasse et al., 2009a).

Our results for beech (a weak countergradient ten-

dency across latitudes) and sessile oak are in broad

agreement with this (Fig. 5). However, we find no evi-

dence of local adaptation in ash and weak/absent

countergradient variation in sessile oak (Fig. 5). While

differences between our inferences into local adapta-

tion and those arising from reciprocal transplant

experiments may reflect true biological differences in

the nature of adaptation to elevation vs. mesoscale

geographic clines, or differences between the United

Kingdom and Pyrenees, they underscore the need to

interpret our findings with caution.

In summary, we have shown how spatiotemporal

data can be used to infer the sensitivity of plant phenol-

ogy to forcing, chilling and photoperiod and estimate

the ability of plasticity to track temperature-mediated

shifts in the optimum timing. We find that for many

UK plant species, temperature-mediated phenological

plasticity is adaptive and will allow populations to par-

tially or completely track shifts in optimum timing aris-

ing from increases in spring temperatures. While the

statistical approach we present here relies on a large

number of assumptions, we propose that it can be a

useful tool for estimating parameters that are key to

projecting population responses to climate change.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Fig. S1 Latitudinal and longitudinal trends in phenology. Slope estimates obtained from the lowest AIC simple clinal model
(geo1 = green or geo2 = blue). Filled grid cells represent locations with records available. Species are plotted in ascending order of
mean phenology.
Fig. S2 Time windows that received substantial support (AICi - AICmin<2 for a model type), during which mean temperatures best
predict the phenological events (median phenology shown as filled circle) for each species. Windows corresponding to AICmin

appear as bold bars, with other windows that received substantial AIC support appearing as translucent bars. Species are plotted in
ascending order of mean phenology from bottom to top. Event type is reported in parentheses, where F = flowering and L = leafing.
Bars are coloured according to the AICmin model type: orange = temp, red = phototemp and blue = doubletemp. Time windows for
the phototemp model covary with latitude; the thick bar depicts the time window at 50°N and the thin bar the time window at
56°N.
Fig. S3 Temporal slopes across 150-km grid cells calculated for the forcing time window that was identified by the best temp or
phototemp model for each species (a–v). Only grid cells with at least 20 records and spanning a minimum of 10 years were
included.
Fig. S4 Posterior medians and 95% credible intervals for slopes of phenology on forcing temperature that correspond to the temper-
ature sensitivity of the optimum phenology across (a) latitude = Blat, (b) longitude = Blon and (c) the detrended spatial slope across
150-km grid cells.
Table S1 Species records selected for analyses from the UKPN data set.
Table S2 Parameters for the temp model estimated via MCMCglmm. Species listed in ascending order of mean phenology, * indi-
cates species for which temp is the best performing alternative to the doubletemp model, CI = credible interval.
Table S3 Parameters for the phototemp model estimated via MCMCglmm. Species listed in ascending order of mean phenology, *
indicates species for which phototemp is the best performing alternative to the doubletemp model, CI = credible interval.
Table S4 Parameters for the doubletemp model estimated via MCMCglmm for forcing window and chilling windows. Species
listed in ascending order of mean phenology, CIs = credible intervals. Note that Blat, Blon and slope differences are not reported due
to the issues of multicolinearity in the doubletemp model.
Appendix S1 Supporting methods.
Appendix S2 Assessing the impact of spatial variation in population heterogeneity on Blat and Blon.
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