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Abstract  

Reports of aberrant distribution for some nuclear envelope proteins in cells expressing a few 

Emery-Dreifuss muscular dystrophy mutations raised the possibility that such protein 

redistribution could underlie pathology and/or be diagnostic. However, this disorder is linked 

to 8 different genes encoding nuclear envelope proteins, raising the question of whether a 

particular protein is most relevant. Therefore, myoblast/fibroblast cultures from biopsy and 

tissue sections from a panel of nine Emery-Dreifuss muscular dystrophy patients (4 male, 5 

female) including those carrying emerin and FHL1 (X-linked) and several lamin A 

(autosomal dominant) mutations were stained for the proteins linked to the disorder. As 

tissue-specific nuclear envelope proteins have been postulated to mediate the tissue-specific 

pathologies of different nuclear envelopathies, patient samples were also stained for several 

muscle-specific nuclear membrane proteins. Although linked proteins nesprin 1 and SUN2 

and muscle-specific proteins NET5/Samp1 and Tmem214 yielded aberrant distributions in 

individual patient cells, none exhibited defects through the larger patient panel. Muscle-

specific Tmem38A normally appeared in both the nuclear envelope and sarcoplasmic 

reticulum, but most patient samples exhibited a moderate redistribution favouring the 

sarcoplasmic reticulum. The absence of striking uniform defects in nuclear envelope protein 

distribution indicates that such staining will be unavailing for general diagnostics, though it 

remains possible that specific mutations exhibiting protein distribution defects might reflect a 

particular clinical variant. These findings further argue that multiple pathways can lead to the 

generally similar pathologies of this disorder while at the same time the different cellular 

phenotypes observed possibly may help explain the considerable clinical variation of EDMD. 

Highlights:  

Altered distribution of EDMD-linked proteins is not a general characteristic of EDMD 

Tissue-specific proteins exhibit altered distributions in some EDMD patients 
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Variation in redistributed proteins in EDMD may underlie its clinical variability 

Keywords: Emery-Dreifuss muscular dystrophy; nuclear envelope; muscle biopsy; nuclear 

envelope transmembrane protein 

Abbreviations: EDMD, Emery-Dreifuss muscular dystrophy; NET, nuclear envelope 

transmembrane protein 
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INTRODUCTION 

Emery-Dreifuss muscular dystrophy (EDMD) typically presents in early childhood with slow 

progression, though adult onset also occurs [1, 2]. Three defining features of this disorder 

include early contractures of the elbows and Achilles’ tendons in the absence of major 

muscular defects, progressive wasting of the lower leg and upper arm muscles and cardiac 

conduction defect [3]. All these features are variable in clinical presentation: while typical 

patients remain ambulatory, severe cases require wheelchairs. Likewise, cardiac defects do 

not always present, but complete heart block can occur in the most severe cases. Conduction 

defects can also present in the absence of prior muscular involvement [2] and female carriers 

of the X-linked form can develop cardiac problems [4]. Even within the same family, the 

same mutation can yield highly variable clinical presentation among family members [5-7]. 

With this clinical variability it was not surprising to find that EDMD is also genetically 

variable. Mutations in 8 nuclear envelope proteins account for ~47% of patients. The vast 

majority of mutations are X-linked in EMD (encoding emerin) [8] and autosomal dominant in 

LMNA (encoding lamin A and C) [9] though more rare autosomal recessive LMNA mutations 

also occur [10]. Lamin A is a nuclear intermediate filament protein that lines the inner surface 

of the nuclear envelope while emerin is a nuclear envelope transmembrane protein (NET). 

Roughly 3% of patients are linked to mutations in 5 other NETs: TMEM43, SYNE1, SYNE2, 

SUN1 and SUN2 [11-13]. The remaining 3% of known mutations are linked to FHL1 

(encoding Four and a half LIM domain 1) [14]. FHL1 has many splice variants that have 

multiple cellular localisations including muscle z-bands and the nucleus, but FHL1B targets 

also to the nuclear envelope [15]. FHL1 is also linked to other myopathies such as X-linked 

myopathy with postural muscle atrophy (XMPMA) [16] and deletion in mice yields to muscle 

hypertrophy [17]. The strong nuclear envelope links for nearly half of all cases raises the 

possibility of a common pathway at the nuclear envelope affected in EDMD. 
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The principal mechanisms proposed to explain how nuclear envelope disruption can yield 

pathology are genome misregulation, mechanical instability and failure of stem cell 

maintenance — all potentially leading to impaired differentiation [18-22]. However, it is 

unclear how mutations in these widely expressed proteins can cause this muscle-specific 

disorder. One proposed model is that muscle-specific partners that function in complexes with 

these widely expressed nuclear envelope proteins might mediate the muscle-specific 

pathologies. Several candidates were identified by proteomics of muscle nuclear envelopes 

[23]. WFS1, Tmem214 and Tmem38A/TRIC-A were identified only in muscle out of several 

tissues separately analysed by proteomics for nuclear envelopes [24]. NET5/Samp1 was 

found in nuclear envelopes from other tissues, but has a muscle-specific splice variant [25]. 

Several of these are candidates for mechanical functions due to implied connections to the 

cytoskeleton: NET5/Samp1, WFS1 and Tmem214 localise to the mitotic spindle [23, 26] and 

NET5/Samp1 knockdown dissociates centrosomes from the NE [26]. As the centrosome 

organises microtubule networks and cell polarity, disrupting its association with the nuclear 

envelope could result in contractile defects in myofibres. Tmem214 additionally tracked with 

microtubules on the nuclear surface [23] and thus could influence nuclear rotation and 

migration to the edges of the myofibres. WFS1 also has a separate function shared by 

Tmem38A/TRIC-A in genome organisation and regulation of gene expression during 

myogenesis and knockout of these two muscle NETs together with a third with the same 

function completely blocked myotube differentiation [27]. Tmem38A/TRIC-A separately 

contributes to the regulation of calcium ion transport [28-31] and thus could affect either 

muscle contraction or signaling at the nuclear envelope. That some of these muscle-specific 

NETs had overlap in their functions further supports the possibility of their working in a 

common pathway towards EDMD pathophysiology. 
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We postulated that if a central mechanism at the NE underlies EDMD pathology through 

disruption of a functional complex then components of that complex might redistribute away 

from the NE. Early studies reported that emerin depends on lamin A for its localisation to the 

nuclear envelope [22, 32] and that lamin EDMD mutation L530P and mutation R377H from a 

family with dilated cardiomyopathy combined with specific quadricep muscle myopathy 

similarly yield a notable loss of emerin at the nuclear envelope in tissue culture cells [33, 34]. 

Emerin also redistributed away from the NE in fibroblasts from a patient with an EDMD 

mutation in nesprin, another NET. The single nesprin 2β (SYNE2) T89M mutation resulted in 

redistribution of emerin to the cytoplasm while this same mutation combined with a nesprin 

1α (SYNE1) V572L mutation resulted in redistribution of emerin to the polar cap [13]. The 

nesprin double mutation yielded a slightly different redistribution of emerin to the plasma 

membrane in actual muscle sections [13]. Correspondingly, nesprin redistributed away from 

the NE in fibroblasts from a patient with an emerin EDMD g.631delTCTAC mutation that 

results in loss of exon 6 [13]. Interestingly, in one of these studies two cardiomyopathy lamin 

A mutants studied (L85R and N195K) had variable emerin mislocalisation phenotypes while 

a lipodystrophy mutation (R482W) exhibited no altered localisation [34], suggesting that NET 

mislocalisation might be a specific feature of nuclear envelope linked muscle disorders. 

No study has systematically tested for the mislocalisation of the wider range of EDMD-linked 

proteins in a panel of patients covering the genetic spectrum of EDMD. Here we stained a 

wide panel of EDMD muscle biopsy sections and cultured myoblast/fibroblast cultures from 

biopsies with a panel of antibodies to the EDMD-linked proteins. To investigate potential 

muscle-specific NET involvement in mechanisms to generate the pathology of the disorder, 

we also stained these samples with antibodies against the muscle-specific NETs 

NET5/Samp1, WFS1, Tmem214 and Tmem38A. We find that neither emerin nor lamin A nor 

any of the other NETs are uniformly altered in all patient samples. However, nesprin 1, 
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SUN2, and several muscle-specific NETs exhibited unusual distribution patterns in a subset of 

samples. These findings indicate that there are likely to be multiple pathways leading to 

EDMD pathology and suggest the possible involvement also of these muscle-specific NETs in 

the disorder.  
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Material and methods 

Patient materials and ethics 

Primary human myoblast/fibroblast cultures (Table 1) and muscle biopsies for sectioning 

(Table 2) were obtained from either the Centre for Inherited Neuromuscular Disease (CIND) 

in Oswestry through C.S., the MRC Centre for Neuromuscular Disorders Biobank (CNDB) in 

London, or the Muscle Tissue Culture Collection (MTCC) at the Friedrich-Baur-Institute 

(Department of Neurology, Ludwig-Maximilians-University, Munich, Germany). All control 

and patient materials were obtained with informed consent of the donor at the CIND, the 

CNDB or the MTCC. Ethical approval for this particular study was obtained from the West of 

Scotland Research Ethics Service (WoSRES) with REC reference 15/WS/0069 and IRAS 

project ID 177946. 

Cell maintenance 

Primary human myoblast/fibroblast cultures obtained from patient biopsy were maintained in 

skeletal muscle cell growth medium (PromoCell C-23060). Cells were kept from reaching 

confluency to avoid differentiation. For myoblast differentiation into myotubes, the primary 

human myoblasts in the cultures were differentiated using a matched differentiation medium 

(PromoCell C-23061). C2C12 cells were maintained in DMEM with 20% Fetal calf serum 

and antibiotics. All cells were maintained at 37oC in a 5% CO2 incubator. 

Antibodies for immunostaining 

Antibodies were obtained from multiple sources and used at several different dilutions (Table 

3). Tmem38A and NET5/Samp1 were affinity purified against the protein fragment/peptide 

used in their generation. The antibody baits were dialysed out of their storage buffer into PBS 

and coupled to Affi-Gel matrix. Antibodies were bound to the column from serum, eluted 

with 200 mM Glycine pH 2.3 and the buffer was immediately exchanged using spin 
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concentrators to PBS containing 25% glycerol. All secondary antibodies were donkey 

minimal cross-reactivity Alexafluor-conjugated from Invitrogen except for those used for 

Western blot, which were also donkey minimal cross-reactivity IRDye®-conjugated from 

LiCOR. 

Western blotting 

Protein samples were separated by SDS-PAGE, transferred onto nitrocellulose membranes 

(Odyssey 926-31092) and blocked 30 min in Western blot blocking buffer: 5% milk powder 

and 0.05% Tween-20 in TBS (25 mM Tris-Base, 137 mM NaCl, 2.7 mM KCl). Membranes 

were incubated with primary antibodies in Western blot blocking buffer overnight at 4oC. Six 

washes in TBS-0.05% Tween-20 were then followed by incubation with the secondary 

antibodies for 60 min at room temperature. After another 6 washes in TBS-0.05% Tween-20 

antibody signals were detected on a Li-Cor Odyssey Quantitative Fluorescence Imager. 

Immunofluorescence  

Adherent cells grown on uncoated coverslips were washed in PBS prior to fixation with -20oC 

100% methanol and immediately stored at -20oC. Methanol fixation was used because it 

improved epitope accessibility for the antibodies and should precipitate membrane proteins at 

location rather than wash them away. Prior to staining cells were incubated 10 min in TBS-

0.1% Tween-20. Coverslips were blocked in 1X immunofluorescence blocking buffer (1% 

Horse Serum, 1% Fetal Calf Serum, 0.1% Bovine Serum Albumin in PBS pH 7.2) for 20 min 

at RT and incubated with primary antibodies. Following 3 washes in TBS-0.1% Tween-20, 

coverslips were incubated with secondary antibodies and 4 µg/ml 4,6-diamidino-2 

phenylindole, dihydrochloride (DAPI). Coverslips were extensively washed in PBS or TBS-

0.1% Tween-20 over 30 min and mounted with VectaShield (Vector Labs).  

Muscle biopsies were mounted on cork in OCT mounting medium (ThermoFisher Scientific 

LAMB/OCT) and frozen in isopentane cooled in liquid nitrogen. 10 µm sections were cut 
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using a Leica CM1900 cryostat and collected on SuperFrost Plus (VWR) slides, placed 

immediately on dry ice and stored at -80oC. Sections were brought to RT before staining. 

Using a PAP hydrophobic marker pen (Daido Sangyo), a working area was drawn around 

each section and the sections washed in immunofluorescence blocking buffer for 30 min. 

Sections were incubated in primary antibodies overnight at 4oC in a humidified chamber and 

then washed 3x 5 min using TBS-0.1% Tween-20. Secondary antibodies were applied for 1 h, 

then removed gently by blotting with tissue paper and DAPI applied for 10-15 min. Sections 

were then washed 3x 10 min in TBS-0.1% Tween-20 and 1x 10 min in TBS. Excess liquid 

was blotted off carefully using tissue paper, a drop of Vectashield added and a coverslip 

applied.   

Microscopy and analysis 

Images were acquired on a Nikon TE-2000 widefield microscope using a 1.45 NA 100x 

objective, Sedat quad filter set, PIFOC z-axis focus drive (Physik Instruments) and a 

CoolSnapHQ High Speed Monochrome CCD camera (Photometrics) run by Metamorph 

image acquisition software. Widefield images are mostly shown, but for Figure 5 

deconvolved images are shown.  For these z-stacks acquired at intervals of 0.2 µm from the 1 

µm above to 1 µm below the imaged nucleus were deconvolved using AutoQuant X3. 
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Results 

Distribution of EDMD-linked proteins in cultured patient muscle cells 

Several earlier reports presented data showing that emerin, nesprins and lamin A/C staining, 

normally concentrated at the nuclear envelope, was aberrant variously in lamin A knockout 

cells and cells expressing certain EDMD lamin A, emerin and nesprin mutations [13, 22, 32, 

34]. However, typically only a single patient mutation was tested and only lamin A/C and a 

few NETs were tested for any given sample, though EDMD has now been linked to 8 

different nuclear envelope proteins. To determine if any particular one of these proteins is 

recurrently defective in its intracellular distribution we stained a panel of 3 control and 8 

EDMD patient myoblast/fibroblast cultures (Table 1) for emerin, lamin A/C, nesprin 1, 

nesprin 2, SUN1, SUN2, and FHL1. Although images are likely to contain a mixture of 

myoblasts and fibroblasts, we expect that the majority of cells are likely to be myoblasts as 

staining cultures for 4 of the patients with desmin antibodies revealed 78%, 56%, 100% and 

78% of DAPI-stained nuclei in desmin positive cells respectively for patients P1, P5, P6 and 

P7. All stainings were done in parallel and all images were taken with the same exposure 

times and microscope software settings. 

This panel included patients with lamin A/C-, emerin-, and FHL1-linked disorder. 

Surprisingly, emerin, despite previous reports of its aberrant distribution, exhibited strong 

nuclear envelope staining with a crisp rim of fluorescence at the nuclear perimeter (nuclear 

rim) in all patient cells indistinguishable from the control cells (Fig. 1). Patient P3 was a 

female with a heterozygous truncation mutation in the X chromosomal gene encoding emerin. 

Though unusual for a female carrying an emerin mutation to have a muscle phenotype, the 

affected father also carried the emerin mutation. Patient P3 expressed full-length emerin in a 

subset of cells, excluding uneven X-inactivation, and, together with the father's earlier 

presentation than his affected uncles, this possibly indicates an additional unknown mutation 
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[35]. Here this subset of emerin-positive cells exhibited a moderately weaker staining 

compared to that in other patients. While some emerin accumulation in the ER appeared in 

patients P2 and P5, it was not more than for control C2, and this control had more ER 

accumulation than other EDMD patient cells. Thus, any minor differences in emerin 

distribution were within the same breadth of such differences exhibited by the control group.  

No visible differences were observed for lamin A/C staining between the patient and control 

cells and even within each set, unlike emerin where both some control and some patient cells 

exhibited minimal ER accumulation (Fig. 1). The image selected for control C3 was chosen 

because the cell was smaller and had more nucleoplasmic lamin staining, likely due to being 

at an earlier cell cycle stage. Cells shortly after mitosis characteristically have larger 

nucleoplasmic lamin pools because the lamins remaining from the previous cell cycle have 

not fully reassembled and this pool dissappears as nuclear volume increases. None of the 

larger or smaller cells from the patients had more nucleoplasmic lamin accumulation than this 

control, further underscoring the fact that any minor visible differences can be discounted.  

For the other NETs and FHL1 there was greater variation amongst samples, but in nearly all 

cases a similar range of variation was observed for the controls (Fig. 1). For example, in 

multiple controls nesprin 1 staining was variable in intensity at the nuclear membrane 

compared from cell to cell in the same field (Fig. 1A). Also some control cells exhibited 

spotty intranuclear staining while others did not, with similar variation observed also in the 

patient cells (Fig. 1B). Analysis of this intranuclear staining in z-series indicated that it 

reflects invaginations of the nuclear membrae (Fig. 2A). Roughly half of the control cells also 

exhibited some punctate staining in the nucleoplasm (Fig. 1A), most likely due to 

invaginations, but possibly also soluble splice variants (the antibody used, MANES1E(8C3), 

was generated to full-length nesprin1-α). Within the patient population similar variation was 

observed in overall intensity, relative rim intensity and punctate areas. However, patients P3 
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and P4 exhibited minor staining in the ER that was not observed for either the controls or the 

other patients. Although this is a different specific mutation, the P3 staining is consistent with 

the previous report of nesprin mislocalisation with emerin EDMD mutation g.631delTCTAC 

resulting in loss of exon 6 [13]. This is a new observation for the P4 LMNA p.R545C 

mutation, but notably other lamin and the FHL1 mutant myoblast/fibroblast cultures did not 

exhibit similar ER accumulations; thus, this difference is not a general characteristic of 

EDMD. SUN2 also exhibited some ER accumulation in myoblast/fibroblast cultures from two 

patients, but these were different patients with lamin mutations (LMNA p.T528K and LMNA 

p.E358K) and some ER accumulation was also observed in the control myoblast/fibroblast 

cultures. In general SUN2 and FHL1 exhibited the most variable staining patterns, but as 

variability was also observed in the controls this may reflect effects of the cell cycle or 

differentiation state. 

This latter issue of differentiation state is likely the reason for the poor staining of nesprin 2, 

which is stained well by this antibody in differentiated myofibers [36]. Notably, the one 

patient with clear rim staining, P6 (LMNA p.T528K), had the appearance of multiple nuclei 

lined up in a myotube while the weak rim staining for P7 (LMNA p.E358K) appears to reflect 

a senescent cell by its extremely large nucleus and spread cytoplasm. Therefore we also 

stained for nesprin 2 after induction of differentiation in reduced serum differentiation 

medium (Fig. 2). Not all patient cells differentiated efficiently into fused myotubes, perhaps 

due to myoblast passage number in culture or different amounts of contaminating fibroblasts. 

Nonetheless, a distinct rim-staining pattern could be observed in both the C1 control and all 

EDMD patient cells tested. 

Distribution of muscle-specific NETs in cultured EDMD patient myotubes 

As the EDMD-linked NETs are all widely expressed and known to have many binding 

partners, we considered that their failure to exhibit aberrant distribution patterns uniformly 
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through the set of patient samples might reflect redundancy in the partners to retain them at 

the nuclear membrane. As mutations in widely expressed nuclear envelope proteins cause a 

much wider range of tissue-specific disorders including also lipodystrophy, dermopathy, 

neuropathies and bone disorders, it has been proposed that tissue-specific binding partners 

might mediate the tissue-specific pathologies [37]. Therefore, we postulated that muscle-

specific partners might contribute to the pathology of the disorder, have fewer binding sites 

and be more likely to be disrupted in their distribution in patients.  

Antibodies were obtained for Tmem38A, NET5/Samp1, WFS1 and Tmem214 and tested for 

their specificity. C2C12 cells were transduced with lentiviruses encoding GFP fusions to these 

NETs, fixed, and stained with the NET antibodies. In all cases the GFP-signal co-localised 

with the NET antibody signal (Fig. 3A). Notably, for NET5/Samp1 the endogenous rim 

staining was sufficiently stronger than the GFP-fusion that an even more pronounced rim was 

observed in the antibody stained sample than for the GFP signal. This is particularly apparent 

because some of the overexpressed exogenous GFP-fusion protein accumulated in the ER, 

most likely due to saturation of binding sites at the nuclear envelope. The antibodies were also 

tested by Western blot from lysates generated from additional cells from the same 

transfections (Fig. 3B). In all cases the band recognised by GFP antibodies for the muscle 

NET-GFP fusion was also recognised by the muscle NET antibody. Hence, all antibodies 

recognise the target NET. Because the antibodies were to be used to stain human cells, they 

were also tested on a lysate from a human control muscle biopsy (Fig. 3C). This yielded 

strong staining principally for just one band for the Tmem38A, NET5/Samp1 and WFS1 

antibodies, indicating that they should each specifically recognise their target protein for the 

immunofluorescence images in subsequent figures. The Tmem214 antibody was much less 

clean than the other NET antibodies and so it should be understood that nuclear envelope 



15	
	

redistributions could reflect additional proteins that it recognises as well as the Tmem214 

protein. 

Tmem38A and WFS1 are induced during muscle differentiation [27] and a muscle-specific 

isoform of NET5/Samp1 has been reported [25]. Therefore patient myoblast/fibroblast 

cultures were induced to differentiate the myoblasts into myotubes for staining. These cells 

were co-stained with myosin (FAST) (Fig. 4) as a marker for differentiation to distinguish 

cells that may have poorly differentiated due to the EDMD mutation and contaminating 

fibroblasts (Fig. 4). The necessity of performing this analysis in differentiated cells was 

highlighted in all cases by the lack of rim staining in cells lacking the red myosin (FAST) 

signal. A clear rim with some punctate areas inside the nucleus was observed in the C3 

control for the Tmem38A antibody. Similar staining was observed for P5 but a significant 

loss of rim staining and strong increase in the punctate areas was visually clear for the other 

lamin and emerin mutations (Fig. 4, upper left panels).  

NET5/Samp1 exhibited clear nuclear rim staining in all differentiated cells for both the 

control and EDMD patient myotubes; however, a visible relative increase in ER staining was 

observed for the P5 and P3 patient samples (Fig. 4, upper right panels). For Tmem214 a weak 

rim could be discerned in all samples except for EDMD patient sample P4 while no WFS1 

rim could be discerned in EDMD patient sample P5 though much stronger ER staining was 

observed for patients P6 and P4. Thus, none of the muscle-specific NETs yielded a uniform 

redistribution phenotype in all patient samples; however, each yielded different aberrant 

distribution patterns in cells from distinct subsets of patients. 

Distribution of muscle-specific NETs in EDMD patient skeletal muscle sections 

There are many different aspects of cultured cell growth that could potentially contribute to 

protein redistribution through stress effects. Some of these are difficult to control for such as 

pH changes and nutrient availability due to differences in growth rates between different 
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patient cultures. Others, such as differing passage numbers from patient myoblasts/fibroblasts 

and thus progress towards senescence, are often unknown. Therefore, we sought to confirm 

these results in skeletal muscle biopsies from EDMD patients. As muscle sections contain 

other cell types, these were co-stained for dystrophin to delineate the plasma membrane of 

muscle cells and some images were chosen specifically to show that some NETs clearly only 

stain in the muscle nuclei and not the nuclei of these other cell types in muscle sections (Fig. 

5). For example, in Figure 5A both controls and all but patient P10 have nuclei outside fibres 

that are negative for Tmem38A. In Figure 5B it is interesting that patient P8 has a nucleus 

outside the fibre that is negative for WFS1 while patient P11 has one outside that is positive. 

All images were taken at the same microscope settings and later levels were adjusted. For 

Tmem38A the controls C4 and C5 exhibited crisp nuclear rim staining with weaker 

distribution through the sarcoplasmic reticulum (Fig. 5, left top two panels). Crisp nuclear rim 

staining could be observed in all patient sections (Fig. 5, left lower panels); however, the 

relative intensity of nuclear rim to sarcoplasmic reticulum staining was notably diminished 

compared to the controls. Unlike differences in the cultured cells that were patient-mutation 

specific, this difference was observed generally.  

For Tmem214 a nuclear rim stain could be observed in all samples, both control and patient; 

however, this time differences in the relative and absolute intensities varied between patient 

samples so that no generalised difference could be observed. Notably, the nuclear rim staining 

for this NET was much more crisp and clear than in the cultured myotubes. In patients P6 and 

P9 a nucleus for a cell in the space between the myofibers as delineated by dystrophin 

staining, possibly a capillary nucleus (Fig. 5, red), had a much stronger nuclear rim staining 

than the nuclei in the muscle fibers in contrast with Tmem38A staining where nuclei outside 

the muscle fibers were completely negative.  
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NET5/Samp1 stained the control nuclei very strongly against a weak background in the 

sarcoplasmic reticulum and this was the same for most patients. Moreover, some staining 

could be observed at the plasma membrane co-localised with the dystrophin membrane 

marker in the controls and most patients, but this was not present in patients P6 and P7. 

Finally, WFS1 exhibited weak staining at both the nuclear rim and sarcoplasmic reticulum in 

all fibres. Taking all images using the same settings the intensity of staining varied much 

more than for other muscle NETs, but this could reflect accessibility in the different sections 

as when the intensity of staining was equalised in the enlarged region boxes the character of 

staining was quite similar between patients. Thus in summary, Tmem38A generally appeared 

to have more accumulation in the sarcoplasmic reticulum in all the patients and both 

Tmem214 and NET5/Samp1 appeared to exhibit some differences from the controls in 

different subsets of patients. 

Discussion 

These results indicate that the previous finding of emerin redistributing away from the nuclear 

envelope with loss of lamin A or lamin A EDMD mutation L530P and mutation R377H from 

a family with dilated cardiomyopathy combined with specific quadricep muscle myopathy 

[22, 32-34] is not a general characteristic of AD-EDMD. Only a few patients had been tested 

for this before, but by comparing a wider panel of EDMD mutations it is now clear that the 

emerin redistribution effects are only characteristic of a subset of mutations. Notably, the use 

of 3 separate controls revealed that to some extent emerin redistribution can occur in cells 

even in the absence of EDMD mutations. Thus, the relevance of this redistribution to EDMD 

pathology is unclear even in the patients where it was observed. One recent study suggested a 

link between emerin cytoplasmic accumulation and pathology in that emerin-p.P183T 

assembles into oligomers that perhaps cannot pass through the peripheral channels of the 
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nuclear pore complexes [38]. Nonetheless, unlike this particular case, most reported emerin 

mutations result in a loss of protein. 

While the specific mutations analysed in this study and earlier studies differed, another aspect 

that may have contributed to redistribution phenotypes previously reported is the use of 

complete knockout or mutant over-expression and the use of rapidly dividing cancer cell 

lines. Two of the earlier studies focused on lamin knockout or loss [22, 32], but most lamin 

EDMD mutations are dominant, total lamin levels generally appear normal where tested, and 

the point mutations by prediction should not block targeting and integration into the lamin 

polymer. The lamin mutations analysed here included mutations in the N-terminus 

(p.N31del), the rod (exon 3, p.E358K), the Ig fold (p.R453W), the edge of the Ig fold 

(p.R545C) and the unstructured region after the Ig fold (p.T582K). These should all yield 

different effects on the protein. Lacking the rod domain, the N-terminal deletion should act 

like a null, though it might dominant-negatively interfere with head-to-tail assembly. The rod 

p.E358K mutation has been tested before, yielding conflicting results in assembly studies with 

one reporting no disruption of filaments and the other reporting deficient assembly in vitro, 

more soluble protein in the nucleoplasm and reduced mechanical stability [39, 40]. In contrast 

the Ig fold mutation is on the surface but with the backbone buried so that it should still 

enable the beta sheet, that it is a part of, to form, but push it out relative to the adjacent beta 

sheet. p.R545C is in a basic patch and so might change charged interactions and p.T582K is 

hard to predict as it is in an unstructured region.  

Other studies showing redistribution used mutant over-expression in tissue culture cells of the 

L530P and R377H mutations [33, 34], which may have influenced results. In these cases the 

cells used were mouse embryonic fibroblasts (MEFs), lymphoblastoid cell lines and standard 

cancer cell lines as opposed to the myoblast/fibroblast cultures, myotubes and patient muscle 

tissue sections used here. In the study where the emerin g.631delTCTAC mutation and 
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nesprin 2β T89M and 1α V572L/2β T89M combined mutations were found to respectively 

affect the localisation of the other protein [13] patient cells and muscle sections were used; 

however, muscle sections were presumably only available from the patient with the combined 

nesprin 1α V572L/2β T89M  mutations that exhibited a more striking phenotype in cultured 

cells than other individual mutations tested in their study. Nonetheless, in keeping with their 

results, we did find more intense relative nesprin 1 staining in the ER in the patient with an 

emerin mutation. However, for the EDMD-linked proteins we found that none exhibited a 

consistent redistribution phenotype throughout the wider collection of patient mutations 

analysed here. Moreover, by analysing a wider range of controls than most other studies, we 

observed considerable variation within the control population that was as strong or stronger 

than that observed for all NET stainings except for that of nesprin 1 and SUN2. 

It is noteworthy also that many of the reports using over-expressed mutant proteins in cancer 

cell lines or dermal fibroblasts in culture highlighted defects in nuclear morphology and 

blebbing. In contrast, here using patient myoblast/fibroblast cultures and myotubes at 

relatively early passage number and skeletal muscle sections we observed very little nuclear 

morphology defects or blebbing. This argues that aspects of 2-dimensional tissue culture, 

rapidly dividing cancer cell lines and senescence of dermal fibroblasts probably underlie these 

phenotypes. Such changes, particularly senescence, could also have influenced previous 

reports of aberrant distribution of EDMD-linked proteins. 

While we did not observe notable shared differences for any of the EDMD-linked proteins, 

we did observe many differences for the muscle-specific NETs in myotubes. In tissue culture 

these tended, like the nesprin 1 and SUN2 effects, to be observed only in distinct subsets of 

patient cells. The redistribution of Tmem38A to the sarcoplasmic reticulum was observed in 

all but one of the patient in vitro differentiated myotubes and was observed in all patient 

skeletal muscle tissue sections, though it was not sufficiently striking to be used effectively 
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diagnostically. Differences were also observed in both in vitro differentiated myotubes and 

muscle tissue sections for Tmem214 and NET5/Samp1, though as for nesprin 1 and SUN2 

these were only observed in subsets of patients.  

NET5/Samp1 is particularly interesting because it also interacts with lamin B1 and SUN1 [41] 

and its mutation affects the distribution of SUN1, emerin and lamin A/C [42]. Samp1 also 

associates with TAN-lines that are important for nuclear migration [43]. This provides it with 

a function that could underlie the pathology of the disorder and a molecular network that 

parallels that of the nesprins [44, 45]. WFS1 and Tmem38A are also interesting because they 

are important for proper muscle gene expression and for muscle differentiation [27]. In fact, 

disruption of three muscle-specific NETs participating in this function together almost 

completely blocked myogenesis, though knockdown of each alone had little effect [27]. Thus, 

these NETs are prime candidates to mediate EDMD pathology because muscles appear to 

develop normally and then exhibit defects when they begin to be more heavily used i.e. gene 

expression defects that prevent the muscle from fully functioning make for a reasonable 

explanation of pathophysiology. Tmem38A could also influence Ca2+ regulation [28-31], 

especially considering its increase in the sarcoplasmic reticulum relative to that in the nuclear 

envelope in patients compared to controls. Though much still needs to be done to prove their 

participation in EDMD pathophysiology, the finding of stronger redistribution effects for 

these muscle-specific NETs across a panel of EDMD patient mutations than for that in the 

already linked proteins raises the strong possibility of their involvement as new players in 

EDMD. 

Conclusions 

Taken together this might suggest the hypothesis that the clinical variability of EDMD is also 

mirrored on a cellular level. Although we do not have sufficient clinical details to make a 

clear statement about this, it is interesting that patient P3 was reported to have a mild clinical 
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severity score (mild weakness and rigidity only) and cells from this patient exhibited no 

relative increase in cytoplasmic staining compared to that in the nuclear envelope for any 

antibody compared to controls except for nesprin 1 (Figs. 1, 2, 4). However, patients P1, P2, 

P4 and P5 were all graded as moderate severity (moderate weakness and atrophy, rigidity and 

contractures) and variously exhibited distribution defects with between 2 and 6 different 

antibody stainings. Thus more work will be needed to determine if a specific mutation and 

distribution defect could be diagnostic of severity or clinical progression. Several different 

proteins at the NE can be affected to varying degrees, yet many of them exhibit interactions 

that suggest their co-functioning in a larger network. In addition to WFS1 and Tmem38A co-

functioning in myogenic genome regulation and the NET5/Samp1 partners, redundancy of 

functions is observed for emerin and MAN1 and for SUN1 and SUN2 [46, 47]. That we show 

several different NETs can be affected to varying degrees in EDMD muscle further clarifies 

EDMD as a NE disorder and indicates that many different pathways to disrupt NE 

organisation yield a similar muscle phenotype.   
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Legends to Figures and Tables 

Fig. 1. Staining of control (A) and patient (B) myoblast/fibroblast cultures with antibodies to EDMD-

linked proteins. The patient and control descriptions are given in Table 1 and the antibodies used are 

described in Table 3. Most nuclear envelope proteins gave strong crisp nuclear rim staining in both 

control and patient groups. Though some EDMD-linked patient cells exhibited partial mislocalisation, 

no linked proteins exhibited uniform mislocalisations in the wide range of patient mutations 

investigated. The nesprin 2 antibodies do not stain well in the myoblast/fibroblast cultures; so these 

were retested on differentiated cells in Figure 2. Widefield images are shown. Scale bar, 10 µm. 

 

Fig. 2. Staining of myoblast/fibroblast cultures and differentiated myotubes with nesprin antibodies. 

A: To determine whether intranuclear spots staining with nesprin antibodies reflected invaginations of 

the nuclear envelope as opposed to possible degradation/cleavage products, z-series images of cells 

stained with nesprin 1 antibodies were taken every 0.2 µm. In the images shown the arrows and 

asterisk point to different intranuclear spots that can be traced through the different focal planes to 

invaginations from the nuclear membrane. B: Staining after induction of differentiation into myotubes 

for nesprin 2. Large multinucleated myotubes were not obtained from all patients; however, changes in 

morphology such as elongating of the cell body or much larger cells indicative of cell cycle 

withdrawal were generally evident and rim staining could be readily observed compared to the very 

poor rim staining in the myoblast/fibroblast cultures stained in Figure 1. Multiple images for each 

patient are shown to show the variability between cells. Widefield images are shown. Scale bar, 10 

µm. 

 

Fig. 3. Testing of antibodies for muscle NETs. C2C12 cells were transduced with GFP fusions to the 

NETs or GFP alone and these cells were divided into two populations. A: The first was used to check 

for co-localisation between the antibody and GFP signal for the expressed protein. The GFP signal and 
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NET and GFP antibody signals overlapped in all cases. The antibodies used in the antibody column 

match the GFP fusion proteins being expressed that are labeled on the left hand side. In the case of 

WFS1 as the GFP signal around the nuclear rim was weaker evidently than the endogenous protein 

staining with the antibody a box at the rim is enlarged so that the clear co-localisation can be seen. 

Widefield images shown. Scale bar, 10 µm. B: The second population was used to generate lysates to 

test by Western blot. The expected size for GFP-NET fusion bands is marked by asterisks and it can 

be observed that the same expressed protein fused to GFP is recognised by both the GFP and muscle 

NET antibodies. Histone H3 (lower panel) was used as a loading control. C: Because there is often 

species cross-reactivity and extra bands from degradation products of overexpressed proteins, the 

antibodies were also used to stain a lysate from a control human muscle biopsy. This indicated that the 

Tmem38A, NET5 and WFS1 antibodies are quite specific so that any protein redistribution observed 

in immunofluorescence experiments should be specific to the NET. Tmem214 stained additional lower 

molecular weight bands that might be degradation products, but could also indicate cross-reactivity 

with other proteins. Therefore, immunofluorescence experiments with this last antibody should be 

interpreted with caution. 

 

Fig. 4. Staining of muscle NETs in patient myoblast/fibroblast cultures where myoblasts were induced 

to differentiate into myotubes. Antibodies to the muscle NETs listed were used to stain the control and 

patient cells listed. The cells were co-stained with myosin (FAST), a later differentiation marker, to 

identify cells that had differentiated within the population. Several EDMD patient cells exhibited more 

ER signal for the NETs compared with the control cells. Widefield images are shown. Scale bar, 10 

µm. 

 

Fig. 5. Muscle NET antibody staining in patient skeletal muscle sections. C4 and C5 are controls. The 

patient mutations are listed in Table 2. All sections were stained with muscle NET antibodies in 

parallel, images were taken using identical settings	and later	 levels were adjusted. DNA staining for 

nuclei is shown in blue, the muscle NET in green, and Dystrophin staining is shown in red to delineate 
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the sarcolemmal nuclei of myofibers from those of nerves and the vasculature. Asterisks mark the 

nuclei that are enlarged in the lower right boxes. Note that the levels are adjusted so the intensities are 

similar and they can be compared for general characteristics. A: Tmem38A and Tmem214 antibodies. 

B: NET5/Samp1 and WFS1 antibodies. Tmem38A and NET5/Samp1 distribution and intensity were 

much more uniform across the samples than were Tmem214 and WFS1. Deconvolved images are 

shown. Scale bar, 10 µm. 

 

Table 1. Patient and control myoblast/fibroblast cultures used in this study 

 Type Gender Age at biopsy (years)  Source 

C1 Control Female 36 MTCC 

C2 Control Male 35 MTCC 

C3 Control Male 5  CNDB 

P1 FHL1 Male 51 MTCC 

P2 LMNA p.R453W Female 12 MTCC 

P3 EMD p.Y59* Female 17 MTCC 

P4 LMNA p.R545C Male 18 MTCC 

P5 Unknown Male In teens MTCC 

P6 LMNA p.T582K Male 2  CNDB 

P7 LMNA p.E358K Female 2  CNDB 

 

Table 2. Tissue sections used in this study 

 Type Gender Age at biopsy (years) Source 

C4 Control Female 14  CIND, 

Oswestry 

C5 Control Male 3 CNDB 
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P6 LMNA p.T582K Male 10 CNDB 

P7 LMNA p.E358K Female 2 CNDB 

P8 LMNA p.E31del Female 2 CNDB 

P9 LMNA de novo in 

exon 3 

Female 5 CNDB 

 

Table 3. Primary antibodies used in this study 

Antigen Host IF 

Dilution 

WB 

Dilutions 

Band 

Size 

Source 

Skeletal 

myosin 

(FAST) 

Mouse 1:50 N/A 200 kDa Sigma (M1570) clone My-32 

Lamin A/C Rabbit 1:50 1:1000 70 kDa Schirmer et al, 2001 (3262) 

Tmem38A Rabbit 1:50 1:200 30 kDa Millipore (06-1005) 

WFS1 Rabbit 1:50 1:200 100 kDa Proteintech (11558-1-AP) 

Tmem214 Rabbit 1:50 1:200 70 kDa Proteintech (20125-1-AP) 

NET5 Rabbit 1:20 1:100 70 kDa Millipore (06-1013) 

Dystrophin Mouse 1:50 N/A 271 kDa Glenn Morris (MANDYS1 (3B7)) 

Emerin Mouse 1:50 N/A 29 kDa Glenn Morris (MANEM1 (5D10)) 

Nesprin1 Mouse 1:50 N/A N/A Glenn Morris (MANNES1E (8C3)) 

Nesprin2 Mouse 1:50 N/A N/A Glenn Morris (MANNES2A (11A3)) 

Lamin A/C Mouse 1:50 N/A 70 kDa Glenn Morris (MANLAC1 (4A7)) 

SUN1 Rabbit 1:50 N/A N/A Atlas antibodies (HPA008346) 

SUN2 Rabbit 1:50 N/A N/A Millipore (06-1038) 

FHL1 Rabbit 1:50 N/A 32 kDa Aviva Systems Biology 

(ARP34378_T100) 
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GFP Rabbit N/A 1:200 25 kDa Generated in Schirmer Lab to whole 

protein 

GFP Mouse N/A 1:1000 25 kDa Clontech (632381) 

H3 Mouse N/A 1:200 17 kDa Abcam (10799) 
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