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Abstract: In the context of smart grid transformation of existing electricity networks, optimal power 
flow (OPF) and security-constrained OPF (SCOPF) studies remain to be very important for power system 
planning, operation and market analysis. OPF study involves finding the (global) optimum solution to a 
set of nonlinear algebraic equations, subjected to a set of equality and inequality constraints. When the 
system is heavily stressed, particularly following a severe contingency, the conventional OPF methods 
may fail due to the problem or solution infeasibility, or inability to select proper initial values. The soft 
constraint handling approach and repetitive constraint relaxation in finding the causes of infeasibility 
could be either tedious, or may not be practical for the large-scale problems. This paper presents an 
alternative approach, based on use of meta-heuristic method, to pinpoint the main reasons for the failure 
of solution algorithms in nonlinear optimization, in general, and OPF problem, in particular. The 
presented approach is illustrated on commonly used IEEE 14-bus and 30-bus test networks.  
Keywords: Conventional and meta-heuristic optimization, constraint relaxation, nonlinear optimization, 
optimal power flow, problem and solution infeasibility, security-constrained optimal power flow. 

NOMENCLATURE 
Variables: 
푥, 푢 State and control variables 
푃 ,푄  Real and reactive power output of generator 푖 
푃 ,푄  Real and reactive power demand of load at bus 푖 
푉 , 휃  Voltage magnitude and phase angle at bus	푖 
푐 Contingency index, zero for base case 
퐶 Set of credible contingencies 
Functions: 
푓 Objective function 
푔, ℎ Equality and inequality constraint functions 
퐹  Total fuel cost 
푃  Total active power loss 
퐹  Penalized objective function 
ɸ ,ɸ  Penalty functions for equality and inequality 

constraints 
Constants: 
푎 , 푏 , 	푐  Fuel cost coefficients of generating unit 푖 
푁 ,푁 ,푁  Number of buses, generators and branches 
퐺  Conductance of a line connecting buses	푖	and	푗 
푝  Penalty for violating bus voltage constraints 
푝  Penalty for violating active power generation limit 
푝  Penalty for violating reactive power generation 

limit 
푝  Penalty for violating branch MVA constraints 
푁  Number of particles or populations 
푁  Maximum number of iterations or generations 
푐 , 푐  Acceleration coefficients for PSO 
푤 ,푤  Initial and final inertia weight for PSO 
퐾푝 Penalty parameter for conventional algorithms 

1. INTRODUCTION 
Planning and operation of modern electricity networks is 
becoming an increasingly complex task, as network designers 
have to analyse the networks for a number of relevant 
technical and non-technical operating conditions during the 

design stage, while network operators should operate their 
networks for higher loading conditions and closer to their 
security limits, in order to meet the requirements of the 
deregulated markets. In the context of anticipated smart grid 
transformation of existing networks, it is very important to 
develop and implement intelligent, computationally efficient 
and flexible optimal power flow (OPF) and security 
constrained OPF (SCOPF) methods for assessing network 
performance in terms of their optimal design and operation. 

Since its introduction, the research work in OPF studies has 
been carried out in two directions: one, from the solution 
algorithm viewpoint many computationally efficient 
numerical algorithms are developed, and two, from problem 
formulation viewpoint OPF has evolved to include many 
objective functions with corresponding constraints. 
Nevertheless, irrespective of the problem formulation and 
solution algorithm, OPF/SCOPF study involves finding the 
solution to a set of nonlinear algebraic equations subjected to 
a set of equality and inequality bound and functional 
constraints. 

However, when the system is heavily stressed, particularly 
following a severe contingency, the conventional numerical 
methods for solving OPF problem may either fail to converge 
due to the infeasibility of the problem, or diverge due to the 
inability of finding the proper initial values. The distinction 
between the problem infeasibility and solution infeasibility; 
and non-convergence and divergence of a numerical 
algorithm can be defined as below.   
Divergence: A numerical algorithm is considered to diverge 
when the solution trajectory is not reaching any final point, 
even after a significant number of iterations. When an 
algorithm diverges, it cannot output any real or physically 
feasible solution. Sometimes, divergence is also referred to as 
a “blow-up” of a solution algorithm. 
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Non-Convergence: A numerical algorithm is considered to 
non-converge when the numerical calculation of underlying 
matrices (e.g. Jacobians and Hessians) has failed, that is, the 
matrices are very close to singular. In this case, the algorithm 
just halts the iteration process, as it cannot progress further.  
Infeasible OPF problem: An OPF problem is infeasible or 
overdetermined when there is no solution satisfying all the 
constraints, which typically happen during the contingency 
analysis.  
Infeasible OPF solution: An OPF solution is feasible if and 
only if all the (bound, as well as functional) constraints are 
satisfied at that solution. Accordingly, a solution is infeasible 
if one or more constraints are not satisfied at that solution. 
All the mathematically infeasible solutions are physically 
infeasible, but the reverse is not true. A mathematically 
feasible solution is physically infeasible if the solution cannot 
be realized as the practical system operating condition. 

It is very important to develop techniques to identify the 
causes of infeasibility and provide recommendations for 
returning the system into a feasible region. Though there are 
many mathematical formulations and algorithms developed 
to improve the computational efficiency, there is still no 
standard or commonly accepted methodology to identify the 
causes of infeasibilities in nonlinear optimization problems, 
in general, and OPF problem, in particular. The traditional 
soft constraint handling and repetitive constraint relaxation 
approach in finding the causes of infeasibility may be either 
tedious, or not practical for large-scale problems.  

The problem of infeasibility in the power flow and OPF 
problem is previously addressed by some researchers. 
Overbye (1994 & 1995) proposed a methodology, based on 
Newton-Raphson method, to quantify the degree of 
insolvability of the power flow problem and determine the 
controls to return to solvability. Singh and Srivastava (1995) 
extended the same concept to OPF infeasibility and, based on 
eigenvalue analysis of the power flow Jacobian, proposed a 
methodology to determine proper control actions to return the 
system operation into the feasible region. Almeida and 
Galiana (1996) developed a parametric continuation 
algorithm to identify the critical OPF cases. Takashi et al. 
(2006) have applied the concept of phantom generators with 
high fuel cost coefficients to identify and solve the infeasible 
OPF problems. Recently, Molzahn et al. (2013) developed 
two sufficient conditions to analytically prove an insolvable 
power flow case as insolvable.  

In this context, this paper, based on a meta-heuristic 
algorithm: particle swarm optimization (PSO), provides an 
alternative approach to identify the causes of infeasibility in 
OPF problem cases. The practical aspects of the presented 
approach are illustrated using IEEE 14 and 30-bus test 
networks as an example. 

2. TEST NETWORKS USED FOR ANALYSIS 
Two test networks (Christie, 2000) are used to illustrate the 
presented approach. The first is IEEE 14-bus network, Fig.1. 
It has five generators supplying total demand of 259 MW and 
81.3MVAr. The second is IEEE 30-bus network, Fig.2. It has 
six generators supplying total demand of 283.4 MW and 
126.2 MVAr. Generator capability limits and fuel cost 

coefficients are given in Table 1, while the minimum and 
maximum bus voltages are set to 0.95pu and 1.1 pu, branch 
MVA capacities are taken from Rajathy (2011) and 
Zimmerman et al. (2011). 

Table 1.  Generator limits and fuel cost coefficients 

IEEE-14 Bus network 
Bus 
No 

Pg 
Max 

Pg 
Min 

Qg 
Max 

Qg 
Min a b c 

1 250 10 10 0 0.00375 2.00 0 
2 140 20 50 -40 0.0175 1.75 0 
3 100 15 40 0 0.0625 1.00 0 
6 120 10 24 -6 0.00834 3.25 0 
8 45 10 24 -6 0.025 3.00 0 

IEEE-30 Bus network 
Bus 
No 

Pg 
Max 

Pg 
Min 

Qg 
Max 

Qg 
Min a b c 

1 200 50 10 0 0.00375 2.00 0 
2 80 20 50 -40 0.0175 1.75 0 
5 50 15 40 -40 0.0625 1.00 0 
8 35 10 40 -10 0.0083 3.25 0 
11 30 10 24 -6 0.0250 3.00 0 
13 40 12 24 -6 0.0250 3.00 0 

 
Fig.1. IEEE 14-bus test network 

 
Fig.2. IEEE 30-bus network 

3. PROBLEM FORMULATION 
The objective of an OPF problem is to find the optimal 
settings of electrical control variables (generator outputs, bus 
voltages, tap settings, etc.), in order to minimize one or more 
objective functions separately or simultaneously, while 
satisfying related equality and inequality constraints.  



     

The OPF/SCOPF problem can be formulated as: 
Minimize: 푓 (푥 ,푢 ) (1) 
Subject to: 푔 (푥 ,푢 ) = 0 (2) 
 ℎ (푥 ,푢 ) ≤ 0, 푐 ∈ 퐶 = {0,1, 2, …푁 } (3) 
Different OPF problem formulations can include various 
objective functions, f0, in order to meet various techno-
economic and other (e.g. environmental) requirements. This 
paper optimizes separately two most frequently objective 
functions: fuel costs, (4), and active power losses, (5). 
 퐹 = ∑ [푎 푃 + 푏 푃 + 푐 ]	$/ℎ (4) 

푃 =
1
2

퐺(푖, 푗) 푉 + 푉 − 2푉 푉 푐표푠 휃 − 휃 	푀푊 (5) 

Equality constraints, (2), are represented by the power flow 
balance, (6)-(7). Inequality constraints, (3), represent 
equipment operating limits: generator real and reactive power 
limits, (8)-(9), transformer tap setting limits, (10) and branch 
thermal rating limits, (11), as well as bus voltage limits, (12).  

푃 − 푃 − 푉 푉 퐺 푐표푠 휃 − 휃 + 퐵 푠푖푛 휃 − 휃 = 0 (6) 

푄 − 푄 − 푉 푉 퐺 푠푖푛 휃 − 휃 + 퐵 푐표푠 휃 − 휃 = 0 (7) 

푃 ≤ 푃 ≤ 푃 , 푖 = 1, 2, …푁퐺 (8) 
푄 ≤ 푄 ≤ 푄 , 푖 = 1, 2, …푁퐺	 (9) 
푇 ≤ 푇 ≤ 푇 , 푖 = 1, 2, …푁푇 (10) 
푆 ≤ 푆 , 푖 = 1, 2, …푁퐿 (11) 
푉 ≤ 푉 ≤ 푉 , 푖 = 1, 2, …푁퐵 (12) 

4. CONVENTIONAL AND META-HEURISTIC OPF 
METHODS 

Due to computational efficiency and strong theoretical 
background, network planners/operators typically rely on the 
use of conventional methods: Newton-Raphson, Quadratic 
Programming (QP), Interior Point Algorithm (IPA), etc. 
However, conventional methods are sensitive to the selection 
of initial values, might suffer from convergence problems and 
require the objective function to be differentiable. On the 
other hand, meta-heuristic methods are insensitive to initial 
values and do not require the calculation of the gradient. 

When the network is heavily stressed with severe multiple 
contingencies, the new operating point will shift significantly 
from the (normal) pre-contingency operating point. In this 
situation, conventional OPF methods may fail to provide a 
solution due to the two main reasons: a) it is impossible to 
assume the proper initial conditions, as the system is far away 
from the previously known operating points, and b) the 
problem may become over-constrained, or the underlying 
matrices cannot be solved numerically. In both cases, the 
OPF problem becomes infeasible and algorithm may fail to 
converge. Nevertheless, the network operator should be able 
to identify the critical bus/line constraint violations, in order 
to devise further control actions (e.g. load shedding or 
demand side management) and maintain network integrity. 

In this paper two conventional algorithms, Interior Point 
Algorithm (IPA) from (Zimmerman et al., 2011), OPF solver 
from (Siemens PTI, 2011), and one meta-heuristic algorithm, 
PSO, are implemented to analyze the infeasible cases. 
Selection of feasible and infeasible cases is carried out via 

contingency analysis. The flow chart for implementation of 
PSO to OPF problem is shown in Fig. 3, where the fitness 
evaluation block involves calculation of full Newton Raphson 
power flow (NRPF) and then considered objective function. 

4.1 Constraint classification and handling 
From the mathematical point of view, constraints can be 
categorized into equality and inequality constraints. From the 
system operation viewpoint, constraints can be classified into 
soft and hard constraints. Additionally, bus voltage and 
branch thermal limits are considered as steady state 
operational security constraints in (Alsac and Stott, 1975) and 
the same notion is followed in this paper.  

As most of the optimization or search algorithms (except 
primal algorithms) in their original form can only be applied 
to unconstrained optimization problems, constrained 
optimization problems have to be transformed into an 
unconstrained problem. While the equality constraints are 
always modeled using Lagrangian multipliers, inequality 
constraints are modeled with penalty functions. In general, 
there are two types of penalty functions, exterior penalty 
functions, which penalize the infeasible solutions, and 
interior penalty functions, which penalize feasible solutions. 

Interior penalty functions work very well over soft and hard 
constraints, but if the problem is over-constrained with many 
hard constraints, interior penalty function approach may fail 
to find a solution. Exterior penalty functions are at least 
theoretically insensitive to hard and soft constraints. This is 
the main reason why both equality and inequality constraints 
are in meta-heuristic algorithms modeled with exterior 
penalty functions. In this paper, inequality constraints in 
conventional algorithms are modelled using both interior (log 
barrier) and exterior (linear and quadratic) penalty functions. 
The detailed description of constraint handling in the 
considered solvers is available in Siemens PTI (2011) and 
Zimmerman et al. (2011). For meta-heuristic algorithm, the 
constraints are modelled using static exterior penalty 
functions (13) -(15), (Smith, 2000 and Barbosa et al., 2015). 
퐹 (푥,푢) = 퐹(푥, 푢) + 푃 휙 푔(푥,푢) + 푃 휙 ℎ(푥,푢)  (13) 

휙 푔(푥,푢) = 0 		푖푓	푔(푥,푢) = 0
1 푖푓	푔(푥,푢) ≠ 0  (14) 

휙 ℎ(푥,푢) = 0 푖푓	ℎ(푥,푢) ≤ 0
1 표푡ℎ푒푟푤푖푠푒

 (15) 

Using (13), the original objective function is augmented with 
the two penalty functions: one for equality and another for 
inequality constraints, specified by the corresponding penalty 
multipliers. The penalty multipliers applied in this paper for 
various equality/inequality constraints are shown in Table 2.  

4.2 Methodology to identify critical constraints 
Meta-heuristic algorithms use the modified objective function 
value to guide the search process and, as the iterations 
progress, this guided stochastic search will lead to zero 
measure of violation (i.e. all constraints are fulfilled), 
resulting in convergence of solution of the original 
constrained optimization problem. However, if there is no 
solution satisfying all the constraints, meta-heuristic methods 
use the same objective value during the iterations to minimize 
the number of constraint violations, while simultaneously 
minimizing the objective function. This provides valuable 



     

information to identify critical constraints that make the 
problem infeasible, as illustrated in flow chart in Fig. 4. 

Fig.3. PSO to OPF Fig.4. Proposed approach 

5. RESULTS AND DISCUSSION 
The presented results are divided into two sections. First, a 
set of feasible OPF problem cases is selected and solved 
using both conventional and meta-heuristic algorithms. 
Afterwards, a set of infeasible OPF problem cases is selected, 
for which conventional algorithms fail to converge, but meta-
heuristic algorithms minimize the concerned objective 
function with reduced/minimized number of constraint 
violations. Selection of OPF cases is carried out via 
contingency analysis, where feasible cases are these for 
which conventional algorithms converge with zero constraint 
violations, while infeasible cases are these for which 
conventional algorithms fail to converge. In both cases, the 
OPF problem is solved for two objective functions: fuel cost 
minimization (denoted as “F”) and loss minimization (“L”), 
with one meta-heuristic and two conventional methods. 
Analysis settings: System loads are represented by constant 
power load model, unless stated otherwise (constant 
current/impedance load models are also tried when 
conventional methods failed to converge). Transformers are 
modeled with fixed tap ratios given in Christie, (2000), in 
order to compare results calculated with different OPF 
solvers. In case of conventional algorithms, unless otherwise 
stated, all the constraints are treated as hard constraints.  
Program settings: All programs are executed on a 64-bit 
Intel® Core i7-3770, 3.4 GHz desktop PC. Conventional 
OPF/SCOPF algorithms are implemented using 
MATPOWER and PSSE, while PSO algorithm is coded in 
MatLab (MathWorks), marked in figures as “IPA”, “PSSE” 
and “PSO”, respectively. 
Parameter settings: These are listed in Table 2 for PSO 
methods, together with applied constraint violation penalties. 
The population size and number of iterations are both 

selected to achieve 100% success rate and strictly enforce 
reactive power and slack bus active power limits. 

Table 2.  Parameter and penalty settings for PSO 
PSO settings Penalty settings 

Population size 20 Reactive power 1000 
Iterations 400 Slack active power 100 
Social and cognition coeff. 1.494 Branch MVA 500 
Inertia weight 0.729 Bus voltage 100 
5.1 Feasible OPF cases 
In this section, a set of feasible OPF cases is selected and 
solved with one meta-heuristic and two conventional 
algorithms. The optimal objective function values and list of 
constraint violations with the unconstrained power flow (i.e. 
NRPF solver without any controls activated) and with OPF 
are shown in Table 3 and Table 4, respectively. As the 
considered OPF cases are feasible, both conventional and 
meta-heuristic algorithms converge to almost the same 
objective values with zero constraint violations. 

Table 3.  Fuel cost and loss values with feasible cases 
IEEE 14 Bus 

Contingency Fuel Cost ($/hr) Loss (MW) 
IPA PSSE PSO IPA PSSE PSO 

L1-2 863.64 862.497 865.68 1.254 2.5407 1.2494 
L4-9 791.99 791.929 793.85 1.325 3.2339 1.5289 

IEEE 30 bus 
Contingency Fuel Cost ($/hr) Loss (MW) 

 IPA PSSE PSO IPA PSSE PSO 
L1-2 840.868 840.285 840.914 3.847 4.061 3.847 

L4-12&T6-9 813.456 811.785 814.127 2.969 2.959 2.967 

Table 4.  List of constraint violations with feasible cases 
IEEE 14 Bus 

Contingency Without OPF With OPF 
MVA UV MVA UV OL Lines UV buses 

L1-2 3 0 0 0 NA NA 
L4-9 4 0 0 0 NA NA 

IEEE 30 Bus 

Contingency Without OPF With OPF 
MVA UV MVA UV OL Lines UV buses 

L1-2 3 0 0 0 NA NA 
L4-12&T6-9 3 0 0 0 NA NA 

5.2 Infeasible OPF cases 
For a given network topology and control space, the set of 
nonlinear equations may not have a solution satisfying all the 
imposed constraints. A set of such infeasible OPF problem 
cases (i.e. severe contingencies) is analyzed in this section. 
Based on the way inequality constraints are handled in 
conventional optimization algorithms, the analysis is divided 
into three sub-sections. In the case of PSO, constraints are 
always treated as soft, using exterior penalty functions.  
5.2.1 All security constraints as hard constraints: In this 
sub-section, the considered problem cases are solved by 
treating all the security constraints as hard constraints that 
have to be satisfied in each iteration of the conventional 
algorithm. The optimal objective function values and list of 
constraint violations with the unconstrained power flow 
(marked as “without OPF”) and OPF are shown in Tables 5 
and 6. As the considered OPF cases are infeasible, 
conventional algorithms either diverge or numerically fail to 
converge, even with various initial conditions and load 
models. As the iterations progress, PSO is able to minimize 



     

the number of constraint violations and still minimize the 
objective function. 

Table 5.  Fuel cost and loss values for infeasible cases 
IEEE 14 Bus 

Contingency Fuel Cost ($/hr) Loss (MW) 
IPA PSSE PSO IPA PSSE PSO 

T5-6 & L9-14 Xa X 798.604 X Yb 1.708 
L6-13 & L9-14 X X 812.999 X Y 5.720 

IEEE 30 Bus 

Contingency Fuel Cost ($/hr) Loss (MW) 
IPA PSSE PSO IPA PSSE PSO 

L1-2& T27-28 Xa X 847.338 X X 5.517 
L4-12&T27-28 X X 809.220 X X 4.781 

a unable to converge for various initial conditions and load models 
balgorithm diverges (blow up) 

Table 6.  List of constraint violations for infeasible cases 
(with PSO) 

IEEE 14 Bus 

Contingency Without OPF With OPF 
MVA UV MVA UV OL Lines UV buses 

T5-6 & L9-14 7 4 1 0 L13-14 NA 

L6-13 & L9-14 6 2 3 2 
L6-12 
L12-13 
L13-14 

13,14 

IEEE 30 Bus 

Contingency Without OPF With OPF 
MVA UV MVA UV OL Lines UV buses 

L1-2& T27-28 5 4 2 2 L24-25 
L25-27 29,30 

L4-12&T27-28 4 4 2 2 L24-25 
L25-27 29,30 
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Fig. 5. Constraint violations with PSO for IEEE 14-bus 
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Fig.6. Constraint violations with PSO for IEEE 30-bus 

From Table 5 and Table 6, the following conclusions can be 
drawn. 
- From an algorithmic perspective, the identified constraints 

cause convergence problems for conventional optimization 
algorithms. For example, the thermal line constraints on 
branches (L24-25, L25-27) and undervoltage constraints at 
Buses (29, 30), Table 6, are the root causes for the 
convergence problems. This information is provided by 
the PSO and can be used for selective constraint relaxation 
and/or selective application of soft penalties.  

- From control perspective, the identified lines/buses are the 
critical lines and buses where additional controls should be 
implemented (at operational stage), or planned (at 
planning stage), e.g. load shedding (or demand-side 
management), connection of reserve generation, shunt 
capacitors, FACTS devices, etc. to bring the system back 
to normal operating region. For example, buses 29 and 30 
are potential locations for shunt capacitor placement, or 
for load shedding for considered contingencies. 

5.2.2 All security constraints as soft constraints: With an 
aim to identify the critical constraints causing infeasibility, in 
this section all the security constraints are treated as soft 
constraints and modeled using linear and quadratic exterior 
penalty functions. In other words, the search space is widened 
by relaxing the constraints, so the conventional algorithms 
have a much higher degree of freedom during the search 
process. The list of resulting constraint violations at the 
optimum point with various penalty (Kp) values for IEEE 30 
bus network is shown in Table 7.  
Table 7.  List of constraint violations with PSSE solver for 

IEEE 30-bus network 
OPF Case: L1-2 and T27-28 

 
Linear Penalty 

function 
Quadratic penalty 

function 
퐾 → 10 100 1000 10 100 1000 

Bus Voltage 
Violations 10 4 6 25 5 5 

Branch MVA 
violations 3 2 3 2 2 2 

OPF Case: L4-12 and T27-28 

 
Linear Penalty 

function 
Quadratic penalty 

function 
퐾 → 10 100 1000 10 100 1000 

Bus Voltage 
Violations 12 6 5 25 5 6 

Branch MVA 
violations 3 2 2 2 2 2 

Following conclusions can be drawn from Tables 6 and 7: 
- the number of constraint violations at the optimum point 

with different exterior penalty functions and penalty 
values varies (with no specific order), which implies the 
criticality of penalty value selection in conventional 
algorithms. During the analysis, it is also found that the 
index of the violated constraints can change with multiple 
runs and initial conditions; 

- the resulting number of constraint violations by 
conventional algorithms, Table 7, is higher than the 
number in meta-heuristic algorithm, Table 6.  

5.2.3 Selective security constraints as soft constraints: In 
this section, selected security constraints which are identified 



     

by metaheuristic algorithm, Table 6, are only considered as 
soft constraints and modeled using linear and quadratic 
exterior penalty functions, as it is known that except these 
constraints all other constraints can be fulfilled at the 
expected optimal value. The optimal objective function 
values associated with considered problem cases for two test 
networks are shown in Table 8.  From the results in Tables 5 
and 8, the following observations can be made: 
- conventional algorithms are able to converge without any 

problem, either by relaxing, or by applying lower penalty 
values on the critical constraints that are identified by PSO; 

- conventional algorithms that are outperformed by PSO for 
feasible problem cases are now underperforming in 
minimizing the objective function for a given number and 
index of constraint violations. 

Table 8.  Fuel cost and loss values with applied selective 
relaxation and penalty values 

 IEEE 14 bus IEEE 30-bus 

Contingency  T5-6 & 
L9-14 

L6-13 & 
L9-14 

L1-2& 
T27-28 

L4-12 & 
T27-28 

Fuel cost ($/hr) 796.487 809.117 855.201 857.433 
Loss (MW) 2.332 4.972 5.999 4.8603 

6. CONCLUSIONS AND FUTURE WORK 
OPF/SCOPF studies remain to be the basic tools to assess 
and control the network performance during both planning 
and system operation stages. There will be situations when 
OPF problem may become infeasible and conventional 
algorithms in these cases might either diverge or fail to 
converge. Essentially, the mathematical indication of 
infeasibility is related to practical conditions important for 
the secure operation of the considered system and any further 
attempt to operate the network under these conditions might 
result in angle and/or voltage instability. This paper presents 
an alternative methodology, based on the use of a meta-
heuristic algorithm, to identify the causes of infeasibility, 
which then can aid conventional algorithms in applying 
selective constraint relaxation, or selective soft constraint 
handling.  

Conventional algorithms are computationally efficient and 
most of the time perform best for feasible problem cases, so it 
is advisable to use metaheuristic algorithms either 
independently or integrate them with conventional algorithms 
to solve the infeasible cases and propose suitable control 
measures (e.g. selective load shedding, demand side 
management, and reactive power injection) to prevent the 
system entering into the insecure region or bring the system 
back to secure operating region.  This will be discussed in the 
future work (Jagadeesh Gunda and Sasa Djokic, 2016).  

In order to avail the practical benefits of metaheuristic 
algorithms for power system planning and operations further 
research work need to be carried out mainly in two directions. 
One, reduction of computational time of the considered 
algorithm by availing the inherent task-level parallelism at 
objective function calculation stage and data-level parallelism 
at optimization stage. Second, development of domain 
independent constraint handling approaches for metaheuristic 
algorithm by problem and constraint transformation instead 
of common penalty approach. 
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