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ABSTRACT 

Lin28a inhibits the biogenesis of let-7 miRNAs by triggering the polyuridylation and 

degradation of their precursors by terminal uridylyltransferases TUT4/7 and 3’-5’ 

exoribonuclease Dis3l2, respectively. Previously, we showed that Lin28a also 

controls the production of neuro-specific miRNA-9 via a polyuridylation-independent 

mechanism. Here we reveal that the sequences and structural characteristics of pre-let-

7 and pre-miRNA-9 are eliciting two distinct modes of binding to Lin28a. We present 

evidence that Dis3l2 controls miRNA-9 production. Finally, we show that the 

constitutive expression of untagged Lin28a during neuronal differentiation in vitro 

positively and negatively affects numerous other miRNAs. Our findings shed light on 

the role of Lin28a in differentiating cells and on the ways in which one RNA-binding 

protein can perform multiple roles in the regulation of RNA processing. 
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INTRODUCTION 

Cell lineage abnormal 28a (Lin28a) is one of the best-studied proteins with respect to 

its role in the regulation of miRNA biogenesis. Lin28a is very well conserved across 

many species, and it was first described in C. elegans, in which mutations of the 

protein cause defects in developmental timing and accelerate the differentiation of 

several types of cells (Moss et al. 1997). It contains two highly conserved RNA-

binding motifs forming cold-shock (CSD) and tandem zinc-finger (ZnF) domains, 

with 79–90% homology at the amino acid level across vertebrates  (Ouchi et al. 2014). 

These domains are present in a number of RNA-binding proteins (such as YBX2, 

FRGY2 or NCp7) however Lin28 proteins are the only metazoan proteins to have 

both (Balzer and Moss 2007). Expression profiling in metazoans showed that Lin28a 

is abundantly expressed in the early stages of embryonic development, during which 

it inhibits the biogenesis of miRNAs from the let-7 family. Lin28a expression is 

gradually restricted with lineage progression, which allows de-repression of let-7 

production in more developed and differentiated cells (Seggerson et al. 2002; Moss 

and Tang 2003; Darr and Benvenisty 2009; Van Wynsberghe et al. 2011). The main 

mechanism by which Lin28a inhibits let-7 biogenesis is based on its interaction with 

the conserved terminal loop (CTL) (Michlewski et al. 2008) of pre-let-7 (Wulczyn et 

al. 2007; Newman et al. 2008; Rybak et al. 2008). This event creates a platform for 

terminal uridylyltransferase 4 (TUT4) and other members from the TUT family, 

which catalyze the addition of a poly(U) tail to pre-let-7 (Hagan et al. 2009; Thornton 

et al. 2012). Poly-uridylation ultimately results in pre-let-7 destabilization and a 

decrease of mature let-7 (Hagan et al. 2009; Heo et al. 2009). The degradation of 

poly(U) pre-let-7 is performed in the cytoplasm independently of the RNA exosome 

by 3’-5’ Dis3l2 exoribonuclease from the RNase II/RNB family (Chang et al. 2013; 
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Ustianenko et al. 2013), which has a preference for unstructured and poly-U-rich 

RNAs (Chang et al. 2013; Malecki et al. 2013; Munoz-Tello et al. 2015; Viegas et al. 

2015). Moreover, polyuridylation of pre-let-7 precludes Dicer from generating mature 

let-7 (Heo et al. 2009). Other mechanisms for the control of let-7a that operate at the 

level of DGCR8/Drosha processing have also been suggested (Piskounova et al. 2008). 

Additionally, close homologue Lin28b also controls let-7 levels in vivo (Shyh-Chang 

and Daley 2013; Golden et al. 2015). 

 

Recently, we have shown that during the early stages of neuronal differentiation, 

Lin28a controls the levels of neuro-specific miRNA-9 by destabilization of its 

precursor (Nowak et al. 2014). miRNA-9 is an ancient miRNA whose origin extends 

back to the transition toward triploblasts (Wheeler et al. 2009). In higher vertebrates, 

miRNA-9 has been directly linked with neuronal development. A genome-wide 

profiling of miRNA classified miRNA-9 as a brain-enriched miRNA (Lagos-Quintana 

et al. 2002; Krichevsky et al. 2003; Landgraf et al. 2007). Furthermore, its expression 

profiling suggests that miRNA-9 is dynamically regulated throughout neuronal 

differentiation (Miska et al. 2004; Sempere et al. 2004). Expression of miRNA-9 is 

switched on during mid-embryogenesis after the development of the neuronal scaffold 

and is associated with active neurogenic areas (Darnell et al. 2006; Walker and 

Harland 2008; Coolen et al. 2012). miRNA-9 is generally excluded from brain regions 

containing undifferentiated neuronal progenitors and from areas with late 

differentiation onset, such as the midbrain-hindbrain region and the retina (Leucht et 

al. 2008; La Torre et al. 2013). Moreover, REST and CREB regulate the transcription 

of miRNA-9 primary transcripts (Laneve et al. 2010). Previously we demonstrated 

that Lin28a binds to the CTL of pre-miRNA-9 and decreases the cellular levels of 
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miRNA-9 during retinoic acid-mediated neuronal differentiation of mouse 

teratocarcinoma P19 cells. We also showed that the Lin28a-mediated destabilization 

of pre-miRNA-9 is poly(U)-independent. Furthermore, constitutive expression of 

GFP-tagged Lin28a reduced the levels of let-7a but not miRNA-9, whereas untagged 

Lin28a inhibited both miRNA-9 and let-7a, leading to impaired neuronal 

differentiation. These results suggested that there are at least two distinct mechanisms 

by which Lin28a triggers pre-miRNA degradation and that both depend on the RNA 

substrate. Finally, because miRNA-9 regulation takes place in the first days of 

neuronal differentiation, it is unknown if there are other Lin28a-regulated miRNAs 

with discrete spatio-temporal expression during cellular differentiation.  

 

Here, we present molecular and biophysical evidence that Lin28a uses two distinct 

modes of binding to pre-let-7a and pre-miRNA-9, which could explain its alternative 

mechanisms of action. We reveal that 3’-5’exoribonuclease Dis3l2 contributes to the 

regulation of miRNA-9 levels. Using small RNAseq analysis of P19 cells with 

constitutive expression of Lin28a, we show that Lin28a controls production of many 

more miRNAs than previously recognized. We identified several miRNAs that are 

upregulated by Lin28a overexpression. Importantly, our high-throughput results 

confirm the limited function of GFP-tagged Lin28a and show that untagged Lin28a 

inhibits the production of a number of brain-specific miRNAs, including miRNA-9. 

Our results provide evidence that Lin28a has both positive and negative roles in the 

regulation of miRNA production and uses distinct mechanisms of binding to RNA. 

 

MATERIALS AND METHODS 
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Stable cell line generation 

P19 cell lines with stable Lin28a-GFP or GFP-only expression were gifts from Dr. 

Eric Moss (Rutgers School of Biomedical and Health Sciences, formerly The 

University of Medicine and Dentistry, New Jersey, USA) The University of 

Medicine and Dentistry, New Jersey) (Balzer et al. 2010). Both lines were 

maintained under standard culture conditions. A P19 cell line expressing untagged 

Lin28a was developed using the Flp-in system (Life Technologies), according to the 

manufacturer’s instructions and as previously described (Nowak et al. 2014).  

 

Cell culture and neuronal differentiation conditions 

Mouse teratocarcinoma P19 cells and HeLa cells were grown in standard DMEM 

medium (Life Technologies) supplemented with 10% FBS (Life Technologies). All-

trans retinoic acid (RA) (Sigma) was used to induce neuronal differentiation. In short, 

~12×106 cells were plated on a non-adhesive dish in DMEM supplemented with 5% 

serum and with 1 µM RA. This induced the formation of embryonic bodies. After 4 

days, the embryonic bodies were seeded in 10% FBS DMEM on an adhesive dish. 

Differentiation was followed up to 9 days post-induction. Plasmids encoding 

truncated Lin28a constructs were based on the pCG-T7-Lin28a construct previously 

described (Michlewski and Caceres 2010) and were prepared using inverted PCR. 

Plasmids were transfected into HeLa cells using Lipofectamine 2000 reagent, as 

previously described (Choudhury et al. 2014).  

 

Immunofluorescence  

Lin28a was visualized in P19 cells using primary monoclonal rabbit polyclonal anti-

Lin28a (A177) (Cell Signaling Technology). Prior to microscopy, cells were plated on 
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cover slips coated with 2 mL of 10 µg/mL PDL (Sigma-Aldrich P4707). At 24 h after 

plating, the cells were washed with PBS and fixed with 4% formaldehyde (Sigma-

Aldrich 37% w/v in H2O 252549-500) for 10 minutes at RT.  Next, the cells were 

permeabilized for 10 min at RT by adding 0.2% Triton-X (Sigma-Aldrich T9284-100). 

Subsequently, the cells were blocked for 15 min at RT with goat serum and incubated 

for 1 h at RT with primary antibody at a 1/1000 dilution in goat serum and for 1 h at 

RT with Alexa Fluor goat anti-rabbit 568 secondary antibody (Molecular Probes A-

11036) at a dilution of 1/1000 in goat serum. In the last step, cells were counterstained 

with Hoechst dye (1/20000) for 15 min at RT and mounted on slides using 15 µL of 

mounting medium (Molecular Probes Prolong Gold AntiFade P36930). Each of the 

above steps was separated by 3 washes with PBS for 5 min at RT. Mounted cells were 

visualized using a Zeiss Axio Imager Z1 fluorescent microscope. 

 

miRNA qRT-PCR analysis 

miRNA qRT-PCR analysis was performed using the miScript qRT-PCR kit (Qiagen) 

on total RNA isolated with TRIzol reagent (Life Technologies), and each sample was 

run in duplicate. To assess the levels of the corresponding microRNAs, values were 

normalized to miRNA-16. For each measurement, three independent experiments 

were performed. 

 

Small RNA sequencing 

Total cell RNA was extracted with TRIzol reagent and was subjected to quality 

control (QC) for SOLEXA sequencing (BGI Genomics). After a positive QC result, 

RNA was run on a PAGE gel, and species below 30 nt were extracted and ligated to 

SOLEXA adaptors at the 5’ and 3’ ends. Small RNA molecules were amplified for 17 
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cycles using PCR primers against SOLEXA adaptors, and fragments of approximately 

90 bp (small RNA + adaptor) were gel-purified and used directly for cluster 

generation and sequencing analysis using an Illumina Genome Analyzer. The image 

files generated by the sequencer were then processed to produce digital-quality data. 

The raw data were processed to generate clean reads by masking the adaptor 

sequences and removing contaminated reads (rRNA, tRNA, mRNA). Clean reads 

were mapped with zero-matches allowance onto a reference mouse genome using 

BGI-designed SOAPaligner software to locate each read on the genome sequence (Li 

et al. 2008). Subsequent annotation was performed using information in miRBase.  

 

Western blot analysis 

Total protein samples (100 µg per lane) were run on 4-12% NuPAGE SDS-PAGE 

electrophoresis with MOPS running buffer (Life Technologies) and were transferred 

onto a nitrocellulose membrane. The membrane was blocked overnight at 4°C with 

1:10 Western Blocking Reagent (Roche) in TBS buffer with 0.1% Tween-20 - TBST. 

The next day, the membrane was incubated for 1 h at RT with primary antibody 

solution in 1:20 Western Blocking Reagent diluted in TBST: rabbit polyclonal anti-

Lin28a (A177) (1:1000, Cell Signaling Technology), rabbit polyclonal anti-Dis3l2 

(1:1000, a kind gift from Andrzej Dziembowski), rabbit polyclonal anti-Exosc3 

(1:2000, Abcam), and mouse-monoclonal anti–β-tubulin (1:10,000, Sigma) and rabbit 

polyclonal anti-DHX9 (1:1000, Abcam). After washing in TBST, the blots were 

incubated with the appropriate secondary antibodies conjugated to horseradish 

peroxidase and were detected with SuperSignal West Pico detection reagent (Thermo 

Scientific). The membranes were stripped using ReBlot Plus Strong Antibody 

Stripping Solution (Chemicon) equilibrated in water, blocked in 1:10 western 
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blocking solution in TBST and re-probed, as described above. 

 

EMSA 

Electrophoretic mobility shift assays (EMSA) were performed with internally labeled 

pre-miRNA transcript and proteins produced in E. coli. Gel-purified probes (50×103 

c.p.m. (counts per minute), ~20 pmol) were incubated in 15-µl reaction mixtures 

containing the indicated amounts of proteins in Roeder D buffer (100 mM KCl, 20% 

(v/v) glycerol, 0.2 mM EDTA, 100 mM Tris at pH=8.0, 0.5 mM DTT, 0.2 mM 

PMSF) supplemented with 0.5 mM ATP, 20 mM creatine phosphate, and 3.2 mM 

MgCl2. Reactions were incubated at 4°C for 1 h followed by electrophoresis on a 6% 

(w/v) non-denaturing gel. The signal was registered with radiographic film or was 

exposed to a phosphoimaging screen and scanned on a FLA-5100 scanner (Fujifilm). 

 

RNA pull-down  

RNA pull-down was performed as previously described (Choudhury et al. 2014). In 

brief, total protein extracts from P19 or HeLa cells were incubated with in vitro-

transcribed RNAs chemically coupled to agarose beads. The incubation was followed 

by a series of washes with buffer G (20 mM Tris pH 7.5, 135 mM NaCl, 1.5 mM 

MgCl2, 10% (v/v) glycerol, 1 mM EDTA, 1 mM DTT and 0.2 mM PMSF). After the 

final wash, the proteins associated with the beads were analyzed by SDS–PAGE, 

followed by western blotting. 

 

In vitro processing assays 

Pre-miRNA substrates were prepared as previously described (Nowak et al. 2014). In 

brief, transcripts were prepared by in vitro transcription with [alpha-32P]-UTP. Gel-
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purified substrates (20×103 c.p.m. (counts per minute), ~20 pmol) were incubated in 

30 µl reaction mixtures containing Roeder D buffer, 0.5 mM ATP, 20 mM creatine 

phosphate, and 3.2 mM MgCl2. 5 µl were aliquoted for a control and 1 µg of Dis3l2 (a 

kind gift from Andrzej Dziebmowski and Krystian Stodus (Lubas et al. 2013)) 

recombinant proteins was added to the remaining reaction mixture. Then the reactions 

were incubated at 37°C. The reactions were stopped after 5, 10, 20 and 40 min 

followed by aliquoting 5 µl and quenching on ice with 5 µl of 2x (Urea Dye – UED), 

and followed by 8% (w/v) denaturing gel electrophoresis. Reactions with various 

amounts of Dis3l2 were performed for 10 min. The signal was registered with a 

radiographic film or by exposure to a phosphoimaging screen and scanning on a FLA-

5100 scanner (Fujifilm). 

 

RNA interference  

Pools of siRNAs were obtained from Dharmacon in the format of four independent 

siRNAs targeting different regions of the mRNA coding for the protein of interest. 

Four micrograms of siRNAs were delivered in two transfection events separated by 

48 h using nucleofection technology (AMAXA), according to the manufacturer’s 

instructions.  

 

Footprinting assays 

Pre-miRNA-9 and pre-let-7a-1 substrates were synthesized by T7 in vitro 

transcription and were 5’ labeled with PKA, as described above. A formamide ladder 

was generated by incubating 2 µl of substrate (100×103 c.p.m.) with 9 µl of F buffer 

(0.5 mM MgCl2 in 99.5% formamide (Molekula Deutschland Limited)) at 100°C for 

10 min. The reaction was stopped by adding 9 µl of 2x (Urea Dye – UED) and was 
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placed on ice. The T1 ladder was generated by incubating 2 µl of substrate (100×103 

c.p.m.) with 2 µl of T1 2x buffer (20 mM sodium citrate, 7 M urea). One microliter of 

T1 at 1U/µl was added and incubated at 55°C for 15 min. The reaction was stopped 

by adding 15 µl of 2xUED and placing on ice. Probes were added for cleaving the 

substrate RNA Pb(II) at 0.2, 0.3, and 0.4 mM, ribonuclease T1 at 0.5 U/µl, 0.25 U/µl, 

0.125 U/µl and ribonuclease V1 at 0.00075 U/µl, 0.000375 U/µl, and 0.00019 U/µl. 

Each reaction was prepared with 1 µl of RNA (50×103 c.p.m.) and 7 µl of 1x structure 

buffer (12 mM Tris-HCl at pH=7.5, 48 mM NaCl, 1.2 mM MgCl2). Samples were 

unfolded at 90°C for 1 min and left at RT for 5 min to refold. Two microliters of 

probes were incubated with 8 µl of substrate solution at RT or 37°C for 10 min. 

Reactions were run in the presence and absence of the recombinant Lin28a protein. 

For cleavage optimization, 200 ng/µl of Lin28a protein was used. In the final 

experiments with fixed probe concentrations, Lin28a was used in a gradient of 50, 

100 and 200 ng/µl. Reactions were stopped by adding 10 µl of 2xUED and placing on 

ice. Samples were resolved on 10% polyacrylamide gel. The signal was registered 

with a radiographic film or via exposure to a phosphoimaging screen and then 

scanned on a FLA-5100 scanner (Fujifilm). 

 

Biolayer interferometry 

BLI experiments were performed in 10 mM Tris pH 8.5, 150 mM NaCl, 1 mM DTT, 

0.5 mg/ml BSA, and 0.1% Tween on an Octet Red 96 instrument (ForteBio, Inc. 

Menlo Park, CA) operating at 30°C. Streptavidin-coated biosensors bound to 

biotinylated pre-miRNA-9 or pre-let-7a-1 RNAs (0.125 ng/ml solutions) were 

exposed to different concentrations of Lin28a (with concentration series at 6.4 – 0.2 

µM for both pre-let-7a-1 and pre-miRNA-9, repeated with a concentration series of 
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0.4 – 0.0125 µM for pre-miRNA-9 and 1.6 – 0.05 µM for pre-let-7a-1). Dissociation 

constants for wild type and mutant binding were determined by plotting the increase 

in the Response Unit at equilibrium as a function of the protein concentration and 

fitting using nonlinear regression and in-house software. 

 

Preparation of recombinant Lin28a 

Full-length Lin28a (AF521099) were cloned into pETM-11 vector (EMBL-

Heidelberg, Protein Expression Facility), introducing TEV protease-cleavable HisTag 

N-terminal to the insert. The HisTag fusion protein was purified from the soluble 

fraction by nickel-affinity chromatography (Qiagen), after TEV cleavage another 

nickel-affinity chromatography step was introduced to remove the cleaved His-tag, 

followed by gel filtration. The final protein was concentrated to 100µM and stored in 

10 mM Tris pH 8.5, 150 mM NaCl and 1 mM DTT.  
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RESULTS 

 

Lin28a uses different modes of binding to pre-miRNA-9 and pre-let-7. 

Undifferentiated cells do not produce let-7 or miRNA-9 due to posttranscriptional and 

transcriptional control, respectively (Nowak et al. 2014). Lin28a binds to pre-let-7 and 

triggers uridylation-dependent degradation (Heo et al. 2009; Chang et al. 2013; 

Ustianenko et al. 2013). In the course of neuronal differentiation gradual reduction of 

Lin28a expression allows de-repression of let-7 biogenesis in more developed and 

differentiated cells (Seggerson et al. 2002; Moss and Tang 2003; Darr and Benvenisty 

2009; Van Wynsberghe et al. 2011). Pri-miRNA-9 starts being produced at day 3 of 

differentiation but mature miRNA-9 only starts to accumulate from day 4. Previously 

we showed that Lin28a triggers uridylation-independent degradation of pre-miRNA-9 

and regulates miRNA-9 levels in early stages of differentiation, or when misexpressed 

(Nowak et al. 2014). Furthermore, we have shown that prolonged expression of 

Lin28a results in defective retinoic acid-driven neuronal differentiation. 

 

To determine the differences between pre-miRNA-9/Lin28a and pre-let-7a/Lin28a 

complexes, we performed RNA structure probing with lead ions and T1 and V1 

ribonucleases. With pre-let-7a-1, there was a significant Lin28a footprint around the 

well-known AGGG and GGAG Lin28a-binding motifs, which are located in the 

conserved terminal loop (Figure 1A,C). These regions have been previously shown by 

structural studies to interact, respectively, with the cold-shock (CSD) and zinc-finger 

(ZnF) domains of Lin28a (Lightfoot et al. 2011; Nam et al. 2011; Desjardins et al. 

2012; Loughlin et al. 2012). Binding of recombinant Lin28a resulted in increased 

cleavage by V1 ribonuclease with decreased activity of Pb(II) cleavage in the central 
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region of the terminal loop, which suggests structural rearrangements of the pre-let-

7a-1 structure (Figure 1A,C). For pre-miRNA-9, the most significant Lin28a footprint 

was identified within the GU-rich region of its conserved terminal loop but not the 

GGAG motif (Figure 1B,D). Similarly to pre-let-7a-1, association of Lin28a resulted 

in increased activity of V1 ribonuclease, which suggests higher order structural 

rearrangements.  

 

Isolated CSD of Lin28a can bind to pre-miRNA-9 but not to pre-let-7. 

To establish if pre-miRNA-9 interaction with Lin28a is indeed different compared to 

that observed in the case of pre-let-7a-1, we performed pull-down assays in HeLa cell 

extracts with various overexpressed, truncated forms of Lin28a (Figure 2). Both pre-

miRNA-9 and pre-let-7a-1 pulled down nearly full-length 1-209 and N and C termini 

truncated 24-190 Lin28a (Figure 2A,B). Notably, pre-miRNA-9 pulled down CSD-

containing peptide constructs 1-123 and 24-123 much more efficiently than pre-let-

7a-1 (Figure 2C). In particular, pre-let-7a-1 did not pull down the CSD-containing 

peptide 24-123 at all whereas binding of this peptide to pre-miRNA-9 was detected at 

approximately 72% of the signal from the loading control (Figure 2C). This is in line 

with previous observations showing significantly weaker interaction of CDS with pre-

let-7g when compared with the full-length Lin28a (Desjardins et al. 2012). At the 

same time, pre-let-7a-1 was able to pull down truncated Lin28a with ZnF domain 

(123-209) twice as efficiently as pre-miRNA-9 (Figure 2C) and more efficiently than 

the full-length Lin28a. Surprisingly, Desjardins et al. showed similar affinity of 

isolated ZnF domain and full-length Lin28a to pre-let-7g (Desjardins et al. 2012). 

This could be due to different accessibility of Lin28a-binding motifs in the terminal 

loops of pre-let-7a-1, pre-let-7g and pre-miRNA-9. Two other constructs (1-74, 156-
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209) showed some degree of differential binding affinity between pre-miRNA-9 and 

pre-let-7a-1. These results strongly suggest that pre-miRNA-9 and pre-let-7a-1 bind 

Lin28a using different domains. 

 

GGAG motif is not responsible for Lin28a binding to pre-miRNA-9. 

To compare the binding affinity of Lin28a for pre-miRNA-9 and pre-let-7a-1 and to 

investigate the role played by the ZnF and Cold Shock domains in RNA recognition 

in more detail we designed an assay orthogonal to the pull downs described above. 

We disrupted the ZnF-RNA interactions by mutating the ZnF target RNA sequence 

(GGAG to UUUU) in the terminal loops of pre-miRNA-9 and pre-let-7a-1 (Figure 

3A,B) and used BioLayer Interferometry (BLI) to probe changes in RNA binding 

(Figure 3C,D). We immobilized biotinylated pre-miRNA-9 and pre-let-7a-1 on 

streptavidin BLI sensors and assessed their interaction with recombinant Lin28a. 

Lin28a co-purifies with non-specific nucleic acid; therefore, our assays were 

effectively competition experiments rather than two-way component experiments. 

This showed that Lin28a binds both pre-miRNA-9 and pre-let-7a-1 with a kd in the 

high nanomolar range (~300 nM and ~400 nM, respectively) (Figure 3C,D). Previous 

reports of Lin28a dissociation constants with fragments from pre-let-7 substrates were 

in the range of 0.15nM to 15µM (Piskounova et al. 2008; Lightfoot et al. 2011; Nam 

et al. 2011; Desjardins et al. 2012). The differences most likely arise from presence or 

absence of RNA competitors in the binding buffers and different RNA substrates 

tested. Our experiments showed that mutation of the canonical ZnF binding site 

GGAG to UUUU led to a significant decrease in Lin28a binding to pre-let-7a-1 of 

more than tenfold (mutant kd is >>6 µM, Figure 3D), but not in Lin28a binding to pre-

miRNA-9 (kd is still ~300 nM, Figure 3C). Importantly, GGAG/UUUU mutation did 
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not abrogate inhibitory activity of Lin28a on pre-miRNA-9 in HeLa cells 

(Supplementary Figure 1). Altogether, these results confirm that Lin28a recognizes 

the two RNAs in a different manner, with the CSD playing a more prominent role in 

the recognition of pre-miRNA-9 and the ZnF being essential in the recognition of pre-

let-7a.  

 

EMSA with recombinant Lin28a validates BLI assays. 

In order to validate BLI assays we used EMSA with radiolabeled pre-miRNA probes 

and increasing amounts of recombinant Lin28a (Figure 4). Both pre-miRNA-9 and 

pre-miRNA-9 mt were shifted by the Lin28a forming monomeric and multimeric 

complexes (Figure 4A). In line with our BLI experiments only wild-type pre-let-7a-1 

but not pre-let-7a-1 mt was efficiently shifted by the Lin28a (Figure 4B). The 

stepwise multimerization of Lin28a has been shown before and its believed to be 

important for inhibition of Dicer cleavage (Desjardins et al. 2014). Importantly, pre-

miRNA-16, which was shown by many groups not to bind Lin28a does not shift 

Lin28a efficiently (Figure 4C).  

 

Dis3l2 is involved in regulating levels of miRNA-9 during neuronal 

differentiation of P19 cells 

To determine whether RNA degradation enzymes can cooperate with Lin28a in the 

destabilization of pre-miR-9 during neuronal differentiation, we performed RNAi 

against Dis3l2 and Exosc3 (Figure 5A). Exosc3 is an essential, non-catalytic 

component (Liu et al. 2006) of the RNA exosome (Mitchell et al. 1997), which plays 

a pivotal role in the binding and presentation of RNA for degradation. Dis3l2 and 

Exosc3 were depleted by approximately 70% and 50%, respectively. Surprisingly, 
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Dis3l2 knockdown also resulted in downregulation of Exosc3. The miRNA levels 

were analyzed in P19 cells treated by siRNAs and subsequently differentiated until 

day 4 and were compared to reciprocal, mock-treated cells. At this stage both pri-

miRNA-9 and pri-let-7 are transcribed but Lin28a suppresses their processing. As 

previously reported, Dis3l2 knockdown had no significant effect on mature let-7 

(Chang et al. 2013) (Figure 5B). This is mainly due to pre-let-7a poly(U) tail, which 

inhibits Dicer processing (Heo et al. 2009). The same Dis3l2 knockdown resulted in a 

subtle but reproducible increase in miRNA-9 levels (Figure 5B). It is important to 

note that expression of miRNA-9 only starts at day 3 of P19 cell neuronal 

differentiation (Nowak et al. 2014), hence the observed small changes in miRNA-9 

expression. Additionally, due to Dicer inability to process uridylated pre-let-7a it was 

stabilized 20-fold in Dis3l2 knockdown (Figure 5C). Conversely, levels of pre-

miRNA-9 were unaffected by Dis3l2 depletion. Unconstrained Dicer processing of 

the stabilized pre-miRNA-9 could explain the lack of stabilization of pre-miR-9 upon 

Dis3l2 knockdown. The Exosc3 knockdown had no effect on the levels of either 

mature miRNA-9 or let-7 (Figure 5B) but resulted in 3-fold upregulation of pre-let-7 

(Figure 5C). These results suggest that Dis3l2, but not the RNA exosome, plays a role 

in the downregulation of miRNA-9 levels. 

 

To determine whether Dis3l2 interacts with pre-miRNA-9 in an poly(U)-independent 

manner, we performed RNA pull-down assays in extracts derived from 

undifferentiated P19 cells (Figure 5D). To see if the interaction was specific, we used 

pre-let-7a-1 as a control because it was previously reported to require a poly(U) tail 

for efficient Dis3l2 binding (Chang et al. 2013). Our chemical coupling method of 

RNA to agarose beads via 3’ ribose protects the RNA from 3’ uridylation. As 
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described before, (Nowak et al. 2014) both pre-miRNA-9 and pre-let-7a-1 interacted 

with Lin28a (Figure 5D). However, only pre-miRNA-9 pulled-down Dis3l2 in a 

uridylation-independent manner. This is surprising as Dis3l2 was shown to bind 3’ 

ends of RNAs with preference towards multiple U residues (Faehnle et al. 2014). 

Furthermore, pre-let-7a_(U)15, pre-miRNA-9_(U)15 and pre-miRNA-9 mt but not 

pre-let-7a-1 mt pulled-down Dis3l2 with similar efficiency (Figure 5E). We also 

noted that pre-miRNA-9 mt shows increased binding to Dis3l2 (Figure 5E) compared 

to pre-miRNA-9 (Figure 5D). This could be due to the fact that the pre-miRNA-9 mt 

has additional U residues in the terminal loop, which might have created a Dis3l2 

binding site. Altogether, these results indicate that complexes between Lin28a, Dis3l2 

and pre-miRNAs can be formed even in the absence of a poly(U) tail and that the 

complexes formed by pre-miRNA-9 and pre-let-7a are different. 

 

Dis3l2 destabilizes pre-miRNA-9 in vitro. 

Previously, we showed that pre-miRNA-9 is destabilized at the early stages of P19 

cell neuronal differentiation (Nowak et al. 2014). To determine whether Dis3l2 is 

directly responsible for the role in pre-miRNA-9 degradation, we performed in vitro 

cleavage assays using recombinant Dis3l2 (Lubas et al. 2013). For pre-miRNA-9 and 

pre-miRNA-9 mt addition of recombinant Dis3l2 resulted in robust time and 

concentration-dependent RNA degradation (Figure 6A,C). Dis3l2 did not affect the 

control pre-miRNA-16 in similar conditions (Figure 6A-D). At the same time, the 

artificial pre-miRNA-9_(U)15 and pre-let-7a-1_(U)15 were fully degraded after 5 

minutes of incubation, confirming that Dis3l2 prefers U-tailed substrates (Figure 6A, 

B). Importantly, Dis3l2 activity on the pre-let-7a-1 and pre-let-7a-1 mt substrates was 

markedly lower, as compared to pre-miRNA-9 (Figure 6B). For example, after 10 
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minutes of incubation we recovered less than 10% of pre-miRNA-9 substrate and 

more than 40% of pre-let-7a-1 substrate (Figure 6A,B). Furthermore, Dis3l2 titration 

revealed that pre-miRNA-9_(U)15 is degraded more efficiently than pre-let-7a-

1_(U)15 (Figure 6C,D). Altogether, these results demonstrate that pre-miRNA-9 RNA 

is a good substrate for Dis3l2. Surprisingly, addition of recombinant Lin28a slowed 

down Dis3l2-mediated degradation of pre-miRNA-9 and pre-let-7a-1 (Supplementary 

Figure 2). This might be a consequence of lack of eukaryotic-specific protein 

modifications or absence of additional, yet uncharacterized cofactors. Thus, it remains 

to be established how Dis3l2 cooperates with cofactors, such as Lin28a, whose 

depletion leads to pre-miRNA-9 stabilization (Nowak et al. 2014). In summary, these 

results show that Dis3l2 could be directly involved in the degradation of pre-miRNA-

9.  

 

Constitutive expression of untagged Lin28a deregulates the levels of many 

miRNAs during neuronal differentiation of P19 cells 

Our previous findings demonstrated that prolonged expression of Lin28a impairs 

neuronal differentiation and miRNA-9 biogenesis (Nowak et al. 2014). Here, to 

determine which additional miRNAs are missexpressed upon constitutive Lin28a 

expression, we performed small RNA sequencing in samples derived from 

undifferentiated (day 0 – d0) and differentiated (day 9 – d9) control P19 cells and 

cells that constitutively express GFP-tagged (at the C-terminus) or untagged Lin28a 

(Figure 7), as previously described (Nowak et al. 2014). We compared the expression 

level changes of mature miRNAs, represented by the d9/d0 ratio, in P19 Lin28a and 

P19 Lin28a GFP cells to the changes in the reciprocal untargeted P19 FRT and P19 

GFP control cell lines. We observed that the constitutive expression of untagged 
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Lin28a but not of GFP-tagged Lin28a had a profound impact on the levels of many 

mature miRNAs during P19 cell neuronal differentiation, including miRNA-9 (Figure 

7A,B). Interestingly, other brain-enriched miRNAs, such as miRNA-124 and miRNA-

138, were also negatively affected by Lin28a expression (Supplementary Figure 3). 

Due to its impaired function, the effects of the constitutive expression of GFP-tagged 

Lin28a were much more modest and extended to fewer miRNAs (Figure 7A), 

including let-7a (Figure 7B).  

 

To further analyze our data, we selected miRNAs that were regulated more than 2-

fold by the constitutive expression of untagged Lin28a but were not affected (less 

than a 2-fold change) by GFP-tagged Lin28a (Figure 7A and Supplementary Figure 3). 

Apart from the 54 miRNAs that were downregulated by 2- to 6-fold, we observed 110 

miRNAs that were upregulated from 2- to 95-fold by the constitutive expression of 

Lin28a but not GFP-Lin28a (Supplementary Figure 3). This implies that Lin28a can 

negatively and positively impact the production of many miRNAs. Importantly, 

miRNA-9 was one of the most downregulated miRNAs by untagged Lin28a, which 

corroborates our previous findings (Nowak et al. 2014). To validate the small 

RNAseq results, we measured the levels of selected miRNAs by qRT-PCR. The levels 

of miRNA-9 were significantly suppressed by constitutive Lin28a expression only 

(Figure 7B), whereas let-7a expression was suppressed by both untagged and GFP-

tagged Lin28a (Figure 7B). Our previous data showed that the differences between 

untagged and GFP-tagged Lin28a do not arise from different protein levels (Nowak et 

al. 2014). Now we extend this to show that both untagged and GFP-tagged Lin28a 

(Figure 7C) have identical cytoplasmic localization (Figure 7D). This is in line with 

previous studies, which showed predominantly cytoplasmic localization of Lin28a 
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(Moss and Tang 2003; Balzer and Moss 2007; Balzer et al. 2010). This reinforces the 

notion that the presence of the GFP tag interferes with Lin28a function on some 

miRNA precursors, such as miRNA-9, but not on others, such as let-7a. Lin28a 

crystal structure shows the C-terminus extending towards CSD (Nam et al. 2011). 

Thus, we speculate that the GFP tag, which is placed at the C-terminus of Lin28a, can 

interfere with CSD binding. This also agrees with our biochemical observations about 

different structural arrangements of pre-miRNA-9/Lin28a and pre-let-7a/Lin28a 

complexes. 

 

Forced expression of Lin28a results in upregulation of many miRNAs. 

Surprisingly, levels of some miRNAs were elevated by constitutive expression of 

untagged Lin28a and remained relatively unchanged in the GFP-tagged Lin28a P19 

cell line (Figure 7 and Supplementary Figure 3). For validation we chose miRNA-182 

and miRNA-541 as they represented miRNAs upregulated by untagged Lin28a but 

not by GFP-tagged Lin28a. We validated the expression of miRNA-182 and miRNA-

541 by qRT-PCR and observed that their levels were indeed higher in the presence of 

constitutively expressed Lin28a (Figure 8A). Importantly, both pre-miRNA-182 and 

pre-miRNA-541 were able to pull-down Lin28a from day 0 P19 cell extracts with 

similar efficiency to pre-let-7a-1 (Figure 8B). Whereas pre-miRNA-16 did not pull 

down Lin28a. Furthermore, Lin28a efficiently shifted both pre-miRNA-182 and pre-

miRNA-541 in EMSA (Figure 8C). However, transient Lin28a depletion in 

undifferentiated P19 cells did not result in a significant change in the levels of mature 

miRNA-182 and miRNA-541 (Supplementary Figure 4). This suggests the existence 

of additional mechanism safeguarding their biogenesis in undifferentiated cells. 

Alternatively, the positive effects on miRNA levels could be indirect. The exact 
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mechanism(s) underlying the Lin28a-mediated upregulation of miRNAs have yet to 

be determined. 

 

Lin28a binding sites are enriched in primary transcripts of Lin28a-affected 

miRNAs. 

Finally, to determine if Lin28a binding motifs, previously revealed by CLIP analysis 

(Wilbert et al. 2012), are present in the primary transcripts of Lin28a-affected 

miRNAs (miRNAs regulated more than two-fold up or down by untagged Lin28a but 

not regulated by GFP-tagged Lin28a), we performed bioinformatics analysis on a 

500-nt sequence window surrounding the analyzed pre-miRNAs. We found that 

several Lin28a CLIP-motifs, including AAGAAA, GAGAAA and GGGAAC, were 

enriched in proximity to the miRNAs upregulated by Lin28a (Figure 9A). Whereas, 

other motifs, including AGGAGG, GCGGAG and GCGGAC were enriched in 

proximity to the miRNAs downregulated by Lin28a (Figure 9A). Intriguingly, 

precursors of both miRNA-182 and miRNA-541, which were upregulated by Lin28a 

have AGAA motifs within their stems (Supplementary Figure 4). Notably, different 

CLIP-motifs, including CAGGAG, were depleted from both up and downregulated 

miRNAs (Figure 9A). These findings indicate that Lin28a might exert different 

mechanisms depending on the sequences that it binds to (Nowak et al. 2014). To 

determine if the distribution of the Lin28a-CLIP motifs is significant, we randomized 

the 500-nt sequence windows surrounding the Lin28a-up and downregulated and all 

analyzed miRNAs (Figure 9A,B). Both sets of randomized pri-miRNA sequences 

showed no enrichment of Lin28a-CLIP motifs, which suggests that there is a selective 

pressure to keep Lin28a binding motifs in proximity to the miRNA loci and that the 

role of Lin28a or other protein(s) that use similar binding motifs, in miRNA 
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biogenesis could be more systemic and widespread. In summary, these results suggest 

that functional differences in Lin28a’s mode of action may depend on the nature of its 

molecular interactions with the miRNA progenitor transcripts.  
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DISCUSSION 

At least three independent, genome-wide studies have shown a broad range of Lin28a 

targets (Cho et al. 2012; Wilbert et al. 2012; Hafner et al. 2013). In the majority of 

cases, Lin28a was shown to interact with mRNA, whereas snoRNA and miRNA were 

minor targets (Hafner et al. 2013). However, these studies concentrated on RNA-

protein interactions either in undifferentiated embryonic stem cells or differentiated, 

well-established cell models, such as HEK293 (Cho et al. 2012; Wilbert et al. 2012). 

In our study, we showed that constitutively expressed Lin28a regulates production of 

many other miRNAs during the retinoic acid-driven neuronal differentiation of mouse 

P19 cells. More miRNAs were up-regulated than down-regulated, suggesting that 

Lin28a exerts a positive role in miRNA production. Importantly, it remains to be 

elucidated whether these results were achieved by direct or indirect mechanisms. This 

could be done for example with newly identified small molecule inhibitors of Lin28a 

(Lim et al. 2016; Roos et al. 2016) in cellular systems as well as using in vitro binding 

assays. That said, many pre-miRNAs affected by Lin28a, such as pre-miRNA-9, -34c 

or -181a, have already been shown to be good substrates for Lin28a binding (Towbin 

et al. 2013). Under physiological conditions, Lin28a is predominantly expressed at the 

early stages of cellular differentiation; therefore, for miRNAs to be affected by 

Lin28a they must be co-expressed at this stage. Both Lin28a and Lin28b are mis-

expressed in a number of tumor and cancer cells (Thornton and Gregory 2012; Zhou 

et al. 2013). It is now evident that Lin28a is an important oncogene in tumorigenesis 

(Tu et al. 2015) and an emerging maker of cancer stem cells (Ma et al. 2014). For 

example, prolonged expression of Lin28a in primitive mesenchymal kidney cells 

resulted in increased cell proliferation and Wilms’ tumor formation (Feng et al. 2012), 

which strongly suggests that Lin28a-mediated regulation of miRNA production can 
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transcend the niche of undifferentiated cells and affect other miRNAs that are 

important for proper developmental timing. Thus, studying the systems where Lin28a 

is overexpressed is of utmost importance to understand its various roles in cancer 

biology. Interestingly, Dis3l2, which plays important role in Lin28a/let-7a pathway, is 

frequently mutated in Wilms’ tumor and causes the Perlman syndrome of overgrowth 

(Astuti et al. 2012; Reis et al. 2013). 

 

In our previous work, we observed a substantial delay between the pri-miRNA-9 

expression and the production of mature miRNA-9 during the neuronal differentiation 

of P19 cells. We also showed that Lin28a plays a role in restricting miRNA-9 

production to later stages of neuronal differentiation (Nowak et al. 2014). The 

mechanism that triggers pre-miRNA-9 degradation, which, similar to pre-let-7a-1, is 

dependent on the conserved terminal loop but, unlike pre-let-7, is poly(U)-

independent. In the case of pre-let-7 Lin28a binding attracts TUT4 and TUT7, which 

catalyze the addition of a poly(U) tail to its 3’ end (Hagan et al. 2009; Thornton et al. 

2012) and subsequent degradation by Dis3l2 (Chang et al. 2013; Ustianenko et al. 

2013), whereas binding of Lin28a to pre-miRNA-9 results in poly(U)-independent 

degradation (Nowak et al. 2014). Interestingly, both pre-miRNA-9 and pre-let-7a 

have the canonical Lin28a binding GGAG motif in their terminal loops. Our previous 

results showed that when the GGAG motif is present in a very small synthetic 

terminal loop it does not bind Lin28a (Choudhury et al. 2014). Hence, we propose 

that due to its structural architecture, pre-miRNA-9 predominantly interacts with 

Lin28a through its CSD domain, unlike in the case of pre-let-7, where both ZnF and 

CSD are involved in binding to the large terminal loop (Nam et al. 2011; Loughlin et 

al. 2012). Lin28 CSD binds with high affinity to single-stranded nucleic acids but 
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with limited sequence specificity (Mayr et al. 2012). In the terminal loops of pre-let-7 

it binds to GNGAY consensus sequence (Y, pyrimidine; N, any base) (Nam et al. 

2011). Surprisingly, the CSD of YBX2 protein binds well-defined AACA(A/U)C 

motif (Ray et al. 2013). Previously, it was shown that discrete structural and sequence 

differences in human pre-let-7a-2 (and its murine ortholog pre-let-7c-2) prevent 

Lin28a binding and bypass Lin28a-mediated inhibition (Triboulet et al. 2015). 

Furthermore, yeast three-hybrid analysis revealed that pre-let-7 transcripts bind using 

both CSD and ZnF but other pre-miRNAs, such as pre-miRNA-152 or pre-miRNA-

302d bind Lin28a using CSD predominantly (Balzer et al. 2010). Altogether, we 

speculate that differential binding of Lin28a could lead to distinct pre-miRNP 

complex formation.  

 

Pre-miRNA-9 characteristics allow efficient binding of both Lin28a and Dis3l2 in a 

poly(U)-independent manner (Figure 5D). Moreover, recombinant Dis2l3 was able to 

efficiently cleave pre-miRNA-9 in vitro (Figure 6A). However, synthetically 

polyuridylated pre-miRNA-9 is a better substrate for Dis3l2 (Figure 6A). This agrees 

with previous results that Dis3l2 prefers uridylated substrates but can degrade many 

other transcripts (Lubas et al. 2013; Malecki et al. 2013). Dis3l2 RNAi resulted in 

moderate but highly reproducible upregulation of miRNA-9 during early 

differentiation of P19 cells (Figure 5B) but did not influence steady state pre-miRNA-

9 levels (Figure 5C). We speculate that upon Dis3l2 knockdown pre-miRNA-9 could 

be stabilized and thus provide more substrate for Dicer cleavage, which would 

generate more mature miRNA-9. So far there are no reports of direct interaction 

between Lin28a and Dis3l2. Notably, Lin28a is well-known to recruit TUT4 to pre-

let-7, however, there is no evidence of physical interactions between Lin28a and 
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TUT4. Instead, it is suggested that Lin28a functions as a TUT4 processivity factor 

(Yeom et al. 2011). In the future it will be important to test if the same could be true 

for Dis3l2. A recent report has shown that Dis3l2 is involved in degradation of 

miRNAs, which are bound by highly complementary target RNAs (Haas et al. 2016). 

Further in-depth characterization of the pre-miRNA-9/protein complex is required to 

reveal the fine details of this interaction. 

 

Lin28a is important for neuronal differentiation (Rybak et al. 2008; Balzer et al. 2010). 

Here, we show that its prolonged expression in differentiating cells positively and 

negatively affects numerous miRNAs. Furthermore, we present evidence that small 

differences in RNA secondary structures, such as those seen between the stem loops 

of pre-let-7a and pre-miRNA-9, could determine the mode of RNA-binding protein 

interaction and RNP function. In summary, our results increase understanding 

regarding the ways in which RNA-protein interactions control RNA metabolism in 

cells and provide a framework for future analysis of physiologically important RNP 

complexes.  
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FIGURE LEGENDS 

Figure 1. Footprinting analysis of the Lin28a interaction with pre-let-7a-1 and pre-

miRNA-9. (A,B) Structure probing and footprint analysis of the pri-miRNA-9 and 

pre-let-7a-1 in complex with Lin28a. Cleavage patterns were obtained for 5’ 32P-

labeled transcripts incubated in the absence (Lanes 3 to 6) or in the presence of 

increasing amounts of recombinant Lin28a (Lanes 7 to 18) (100 ng, 200 ng, 500 nM), 

treated with ribonuclease T1 (lanes 7 to 10), Pb (II)-lead ions (lanes 11 to 14) and 

ribonuclease V1 (lanes 15 to 18). FL (lanes 1) and T1L (lanes 2) denote nucleotide 

residues subjected to partial digestion with formamide (every nucleotide) or 

ribonuclease T1 (G-specific cleavage). Electrophoresis was performed in a 12% 

polyacrylamide gel under denaturing conditions. The positions of the selected G 

residues are indicated. Nucleotides are numbered from the 5′ site of Drosha cleavage. 

(C,D) Proposed structures of free and Lin28a-bound pri-miRNAs. The sites and 

intensities of cleavage generated by structure probes are shown. The green 

nucleotides represent the nucleotides with the most significant Lin28a footprint. 

 

Figure 2. Lin28a binds to pre-miRNA-9 and pre-let-7a-1 using different domains. 

(A,B) Western blot analysis of pre-miRNA-9 and pre-let-7a-1 pull-downs with HeLa 

cell extracts overexpressing human Lin28a and its truncation mutants. Lanes with odd 

numbers represent 4% (100 µg) of the loading controls (I). Lanes with even numbers 

show the pull-down reactions (P). (C) Schematic representation of Lin28a truncations 

and relative binding efficiency, quantified as a percentage of the signal detected in the 

corresponding loading controls. The results are representative of at least three 

independent experiments (the value ranges from different experiments are shown in 

brackets). 
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Figure 3. The two RNA binding domains of Lin28a play a different role in the 

recognition of pre-let-7a and pre-miRNA-9. (A,B) Secondary structures of wild type 

and GGAG/UUUU pre-miRNA-9 and pre-let-7a-1 mutants (mt). Mutated residues are 

marked in red. (C,D) BLI data reporting on Lin28 binding to pre-miR-9 (wild type 

and mutant) and pre-let-7-a (wild type and mutant) at a protein concentration of 0.4 

µM and 0.8 µM, respectively (E,F) The value of BLI signal at equilibrium upon 

exposing the immobilized RNAs to different concentrations of Lin28a are plotted 

against protein concentrations. The binding isotherms are also displayed. BLI data 

show that Lin28a binding to the pre-miRNA-9 RNA is only marginally affected by 

the mutation of the ZnF-specific sequence, whereas mutating the ZnF recognition 

sequence leads to a very significant drop in affinity for the pre-let-7a RNAs. 

 

Figure 4. Lin28a EMSA with pre-let-7a and pre-miRNA-9 confirms BLI results. (A) 

EMSA analysis with pre-miRNA-9 and pre-miRNA-9 mt. Lanes 1 represent the 

loading control. Lanes 2 to 4 show EMSA with increasing amount of Lin28a (50 ng, 

100 ng and 200 ng). (B) EMSA analysis with pre-let-7a-1 and pre-let-7a-1 mt. Lanes 

1 represent the loading control. Lanes 2 to 4 show EMSA with increasing amount of 

Lin28a (50 ng, 100 ng and 200 ng). (C) EMSA analysis with pre-miRNA-16. Lane 1 

represents the loading control. Lanes 2 to 4 show EMSA with increasing amount of 

Lin28a (50 ng, 100 ng and 200 ng). 

 

Figure 5. Dis3l2 affects miR-9 levels and binds pre-miR-9 in a poly(U)-independent  

manner. (A) Western blot analysis of protein extracts from mock-depleted P19 cells 

(Lane 1), Dis3l2-depleted P19 cells (Lane 2) and EXOSC3-depleted P19 cells (Lane 
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3). Lanes 4 through 8 show serial dilutions of total protein extracts from mock-

depleted P19 cells, providing an estimation of the linearity of the western blot assay 

and the limit of detection. Real-time qRT-PCR analysis of the mature (B) and pre (C) 

miRNA-9 and let-7a levels on day 4 of RA-induced neuronal differentiation. The 

results from the mock-depleted cells are shown as white bars; the results from Dis3l2-

depleted cells are shown as black bars; the results from EXPSC3-depleted cells are 

shown as gray bars. The values were normalized to miR-16 levels. The fold change 

was plotted relative to values derived from mock-depleted cells, which were set to 1. 

The mean and standard deviations (SD) of three independent biological replicates are 

shown. Statistical significance was calculated using a t-test (*) P≤0.05. (D) Western 

blot analysis of pre-miRNA pull-down with d0 P19 cell extracts for Dis3l2 and 

Lin28a. Lane 1 represents 4% (100 µg) of the loading control. Lane 2 shows the 

reaction with beads alone. Lanes 3 and 4 represent pre-miRNA-9 and pre-let-7a-1 

pull-downs, respectively. The results are representative of at least three independent 

experiments. (E) Western blot analysis of pre-miRNA pull-down with d0 P19 cell 

extracts for Dis3l2, Lin28a and DHX9. Lane 1 represents 4% (100 µg) of the loading 

control. Lane 2 shows the reaction with beads alone. Lanes 3, 4, 5 and 6 represent 

pre-let-7a-1 mt, pre-let-7a-1_(U)15, pre-miRNA-9 mt and pre-miRNA-9_(U)15 pull-

downs, respectively. The results are representative of at least three independent 

experiments. 

 

Figure 6. Dis3l2 destabilizes pre-miRNA-9 in vitro. Internally radiolabeled pre-

miRNA-9, pre-miRNA-9 mt, pre-miRNA-9_(U)15 and pre-miRNA-16 (A), pre-let-

7a-1, pre-let-7a-1 mt, pre-let-7a-1_(U)15 and pre-miRNA-16 (B) (3×103 c.p.m. 

(counts per minute), approximately 6 pmol) were incubated in the buffer only for 40 
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minutes (Lanes 1). Where indicated, 200 ng of recombinant Dis3l2 proteins was 

added to the reaction, which were run for 5, 10, 20 and 40 minutes. The products were 

analyzed on an 8% denaturing polyacrylamide gel. The results are representative of at 

least three independent experiments. The graphs represent quantification of 

substrate’s intensities. The values were plotted relative to the control reactions set to 

100. The mean and standard deviations (SD) of three independent experiments are 

shown. Internally radiolabeled pre-miRNA-9, pre-miRNA-9 mt, pre-miRNA-9_(U)15 

and pre-miRNA-16 (C), pre-let-7a-1, pre-let-7a-1 mt, pre-let-7a-1_(U)15 and pre-

miRNA-16 (D) (3×103 c.p.m. (counts per minute), approximately 6 pmol) were 

incubated for 10 minutes with increasing amount of Dis3l2 (0.2 ng, 2 ng, 20 ng, 200 

ng). The products were analyzed the same as described above. 

 

Figure 7. Constitutive expression of untagged Lin28a affects the levels of numerous 

miRNAs during RA-induced neuronal differentiation of P19 cells. (A) Scatterplots of 

the fold change between day 0 and day 9 of the neuronal differentiation of P19 cells 

with GFP-tagged Lin28a and GFP only (left graph) and of P19 cells with untagged 

Lin28a and the control cell line (right graph). miRNAs regulated more than two-fold 

up or down by untagged Lin28a but not regulated by GFP-tagged Lin28a are 

highlighted with red circles. (B) Real-time qRT-PCR analysis of mature miRNA-9 

and let-7a represented by fold change between d0 and d9. The values were 

normalized to miRNA-16 levels. The fold change was plotted relative to values 

derived from undifferentiated cells (d0), which were set to 1. The mean and standard 

deviations (SD) of three independent biological replicates are shown. Statistical 

significance was calculated using a t-test (*) P≤0.05. NS - statistically non-significant 

(C) Immunofluorescence staining of Hoechst (blue), Lin28a (green) in P19 cells 
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showing localization of both untagged and GFP-tagged Lin28a predominantly in the 

cytoplasm. Scale bar – 10µm. 

 

Figure 8. Constitutive expression of untagged Lin28a upregulates miRNA-541 and 

miRNA-182 during RA-induced neuronal differentiation of P19 cells. (A) Real-time 

qRT-PCR analysis of mature miRNA-541-5p and miRNA-182-5p represented by fold 

change between d0 and d9. The values were normalized to miRNA-16 levels. The 

fold change was plotted relative to values derived from undifferentiated cells (d0), 

which were set to 1. The mean and standard deviations (SD) of three independent 

biological replicates are shown. Statistical significance was calculated using a t-test 

(*) P≤0.05, (**) P≤0.005. (B) Western blot analysis of pre-miRNA pull-down with d0 

P19 cell extracts for Lin28a and DHX9. Lane 1 represents 4% (100 µg) of the loading 

control. Lane 2 shows the reaction with beads alone. Lanes 3, 4, 5 and 6 represent 

pre-miRNA-16, pre-let-7a-1, pre-miRNA-182 and pre-miRNA-541 pull-downs, 

respectively. (C) EMSA analysis with pre-miRNA-182 and pre-miRNA-541. Lanes 1 

represent the loading control. Lanes 2 to 5 and 7 to 10 show EMSA with recombinant 

Lin28a (0.5 ng, 5 ng, 50 ng and 100 ng).  

 

Figure 9. (A) Distribution of Lin28a CLIP motifs in loci of upregulated (left panel) 

and downregulated (right panel) miRNAs (miRNAs regulated more than two-fold up 

or down by untagged Lin28a but not regulated by GFP-tagged Lin28a) versus all pri-

miRNAs. rs – represents Spearman Rank-order Coefficient. (B,C) Correlation of 

Lin28a CLIP motifs count between (B) randomized sequence and selected (up and 

downregulated) pri-miRNAs; (C) randomized RNA sequence and all pri-miRNAs. 
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