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Abstract

Motivation: Isoform quantification is an important goal of RNA-seq experiments, yet it remains problematic
for genes with low expression or several isoforms. These difficulties may in principle be ameliorated by
exploiting correlated experimental designs, such as time series or dosage response experiments. Time
series RNA-seq experiments, in particular, are becoming increasingly popular, yet there are no methods
that explicitly leverage the experimental design to improve isoform quantification.
Results: Here we present DICEseq, the first isoform quantification method tailored to correlated RNA-
seq experiments. DICEseq explicitly models the correlations between different RNA-seq experiments to
aid the quantification of isoforms across experiments. Numerical experiments on simulated data sets
show that DICEseq yields more accurate results than state-of-the-art methods, an advantage that can
become considerable at low coverage levels. On real data sets, our results show that DICEseq provides
substantially more reproducible and robust quantifications, increasing the correlation of estimates from
replicate data sets by up to 10% on genes with low or moderate expression levels (bottom third of all
genes). Furthermore, DICEseq permits to quantify the trade-off between temporal sampling of RNA and
depth of sequencing, frequently an important choice when planning experiments. Our results have strong
implications for the design of RNA-seq experiments, and offer a novel tool for improved analysis of such
data sets.
Availability: Python code is freely available at http://diceseq.sf.net.
Contact: G.Sanguinetti@ed.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
In most eukaryotes, alternative splicing is an important post-transcriptional
mechanism of regulation of gene expression, and largely increases the
diversity of the proteome (Graveley, 2001). For example, over 90%
of human genes have multiple isoforms (Wang et al., 2008). Several
lines of evidence indicate that alternative splicing plays a vital role in
regulating biological processes (Blencowe, 2006), and its failure often
causes serious diseases (Scotti and Swanson, 2016). The study of splicing
has been revolutionised by the advent of high-throughput transcriptome
sequencing (RNA-seq) techniques which enable unbiased sampling of the
transcriptome and have greatly contributed to uncover novel biological

functions for alternative splicing (Wang et al., 2009). More recently, RNA-
seq technologies have been combined with biotin labelling treatment to
provide kinetic measurements of RNA transcription and splicing with high
temporal resolution (Windhager et al., 2012; Barrass et al., 2015; Eser
et al., 2016), providing invaluable mechanistic insights in the dynamics of
splicing.

At the current stage of the technology, sequenced reads in RNA-seq
experiments are much shorter than almost all eukaryotic transcripts. Thus,
most reads from an RNA-seq experiment cannot be unambiguously aligned
to a specific isoform. While in some cases a high level of coverage may
obviate the problems, in many cases the number of reads that map to a
single isoform is too low; when many isoforms are present, there may
be no unambiguously assigned reads. To address this problem, several
probabilistic methods were proposed to quantify the isoform proportion,

© The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



2 Y.Huang and G.Sanguinetti

for example IsoEM (Nicolae et al., 2011), Cufflinks (Trapnell et al., 2010),
MISO (Katz et al., 2010), and BitSeq (Glaus et al., 2012). All of these
methods introduce latent variables to model the identity of a read, i.e.
which isoform it came from, and then reconstruct isoform proportions by
maximum likelihood or by computing a posterior distribution from the
observed read distribution.

Most of these computational methods can quantify the isoform
proportions accurately in many cases (Kanitz et al., 2015), however for
all methods isoform quantification at low coverages remains challenging.
A natural approach in these cases is to exploit additional information, for
example exploiting correlations across different experiments arising out
of structured experimental designs such as time series or dosage response
experiments. Time series RNA-seq designs, in particular, are becoming
increasingly popular as an effective tool to investigate the dynamics of
gene expression in a range of systems (Bar-Joseph et al., 2012; Tuomela
et al., 2012; Zhang et al., 2014; Honkela et al., 2015). To our knowledge,
no methods have been proposed that can exploit structured experimental
designs in order to improve isoform estimation. This methodological gap
also negatively affects the ability to design effectively experiments: for
example, it is difficult to understand whether resources should be invested
in gathering more time points, or in sequencing at a deeper level on a more
limited number of samples.

In this article, we present a new methodology, DICEseq (Dynamic
Isoform spliCing Estimator via sequencing data) to jointly estimate
the dynamics of isoform proportions from RNA-seq experiments with
structured experimental designs. DICEseq is a Bayesian method based
on a mixture model whose mixing proportions represent isoform ratios, as
in (Katz et al., 2010; Glaus et al., 2012); however, DICEseq incorporates
the correlations induced by the structured design by coupling the isoform
proportions in different samples through a latent Gaussian process (GP).
By doing so, DICEseq effectively transfers information between samples,
borrowing strength which can aid to identify the isoform proportions.
Our results show that DICEseq consistently improves in accuracy and
reproducibility over the state of the art. This improvement can be very
significant for a large fraction of genes: on one real data set, the correlation
between estimates from replicate data sets increased by over 10% across
one third of the genes as a result of taking temporal information into
account. Furthermore, simulation studies indicate that DICEseq can be
an important tool in experimental design, enabling an effective trade-off
of resources between sequencing depth and sample numbers. DICEseq
therefore offers an effective way to maximise information extraction from
complex high-throughput data sets.

2 Methods

2.1 Mixture modelling of RNA-seq data

We briefly review here the mixture modelling framework for isoform
identification (MISO), as described in (Katz et al., 2010). We will describe
the model on a per gene basis; the output of an RNA-seq experiment is
thereforeN readsR1:N aligned to a gene withC isoforms. Each readRn

has its identity In ∈ {1, . . . , C}, i.e. which specific isoform it originated
from, but, unless the read is aligned to isoform specific region, e.g., a
junction, we will not know its identity. The proportion of each specific
isoform within the pool of total mRNA is defined by the vector Ψ, whose
entries must be positive and sum to 1. We can then define the likelihood
of isoform proportions Ψ as mixture model as follows

P (R1:N |Ψ) =
N∏

n=1

C∑
In=1

P (Rn|In)P (In|Ψ). (1)

The conditional distribution of In|Ψ is assumed to be Multinomial,
(In|Ψ) ∼ Multinomial(Ψ ∗ w) where w is a weight vector adjusting
the isoform proportion by the effective length of each isoform. The term
P (Rn|In) encodes the probability of observing a certain read coming
from a specific isoform In. This term automatically adjusts for the different
informativeness of different reads: for example, junction reads will
generally have a reduced number of possible isoforms (in extreme cases,
only one), and as such will carry considerably more information through a
reduced-entropy term P (Rn|In). In this way, while the approach uses all
sequenced reads for inference, the architectural information of the various
transcript is still retained and automatically used. The model is completed
by specifying a prior distribution over the isoform proportion vector Ψ,
which in (Katz et al., 2010) was chosen to be a Dirichlet on Ψ. Extending
the MISO model to time series RNA-seq experiments involves a choice on
how to model temporal correlations between the values of Ψ at different
time points; we will use a flexible non-parametric prior in the form of a
Gaussian process for this.

2.2 Gaussian processes

Gaussian processes (GPs) are a generalisation of the multivariate normal
distribution to infinite-dimensional random functions. The key property
of a GP is that all of its finite dimensional marginals are multivariate
normals; in other words, evaluating a random function drawn from a GP
at a finite set of points yields a normally distributed random vector. A GP
over a suitable input space T is uniquely specified by a mean function
m : T → R and a covariance function k : T × T → R, which models
how correlations between function outputs depend on the inputs. In this
paper, we will identify the input space T with the time axis, and use as a
covariance function the squared exponential (or RBF) covariance

k(t1, t2) = θ1exp(−
1

2θ2
(t1 − t2)2). (2)

The covariance function depends on two hyper-parameters, the prior
variance θ1 and the (squared) correlation lengthscale θ2.

The fundamental property of GPs relates the abstract function space
view of GPs reported above with the explicit parametric form of their
finite dimensional marginals. Let f denote a random function sampled
from a GP, (t1, . . . , tN ) denote a set of input (time) points and f =

(f(t1), . . . , f(tN )) the vector obtained by evaluating the function f over
the input points. Then, we have that

f ∼ GP(m, k)↔ f ∼ N (m,K) (3)

where m and K are obtained by evaluating the mean and covariance
functions over the set of points (t1, . . . , tN ) (and pairs thereof). The
fundamental property (3) is key to the success of GPs as a practical tool
for Bayesian inference: given observations of the function values y, it is
in principle straightforward to obtain posterior predictions of the function
values everywhere by applying Bayes’ theorem

p(f(tnew|y)) ∝
∫
dfp(f , f(tnew))p(y|f) (4)

If the observation noise model p(y|f) is Gaussian, then the integral in
(4) is analytically computable. Notice that equation (4) provides a way of
predicting the latent function at all time points, not just the observation
points. In the following, we describe an algorithm to approximate the
computation of (4) for multinomial observations. For a thorough review
of GPs and their use in modern machine learning, we refer the reader to
the excellent book (Rasmussen and Williams, 2006).
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2.3 Posterior of splicing dynamics with GP prior

Given a set of RNA-seq readsR = [R
(1)
1:N1

, ..., R
(T )
1:NT

] for T time points
that are aligned to a gene with C isoforms, the posterior of the splicing
dynamics for the isoform proportionsΨ = [Ψ

(1)
1:C , ...,Ψ

(T )
1:C ] is as follows,

P (Ψ|Θ,R) ∝ P (Θ)P (Ψ|Θ)×
T∏

t=1

P (R
(t)
1:Nt
|Ψ(t))

∝ P (Θ)P (Ψ|Θ)×
T∏

t=1

Nt∏
n=1

C∑
I
(t)
n =1

P (R
(t)
n |I

(t)
n )P (I

(t)
n |Ψ(t))

(5)

where Ψ is assumed as a Softmax function of latent variable Y , i.e.,
ψc = eyc/

∑C
i=1 e

yi , and yC = 0 to make the correspondence. Also

Yc = [y
(1)
c , ..., y

(T )
c ] follows a Gaussian process with its isoform specific

hyperparameters θc and meanmc. By introducing the GP prior here, the
joint analysis of time series RNA-seq data becomes possible, as shown in
a cartoon in Figure 1.

We assume in the following that the prior GP has zero mean, but
this can be adjusted in a straightforward way to a more informative
prior. Hyperparameters can also be sampled, however this leads to a
much more complex inference problem since latent function values and
hyperparameters are strongly correlated. We therefore fix θc,1 = 3.0, so
that the 95% prior confidence intervals of ψ at an independent time point
goes from 0.03 to 0.97, and set the second hyperparameter θ2 empirically
to account for approximately 20-40% of the duration of the experiment.
A sensitivity analysis to θ2 is provided in Supplementary Table S1 and
Supplementary Figure S3. Inference of θ2 can also be achieved by a
straightforward extension of Algorithm 1 (see Supplementary Algorithm
S1). However, this comes with a large additional computational cost, and
in our experiments does not lead to improvements in accuracy; this is
probably due to the fact that the typical RNA-seq time series is too short
to carry enough information about the value of hyperparameters.

Having defined the posterior of the splicing dynamics, we introduce a
Metropolis-Hasting sampler in Algorithm 1, which is a Markov chain
Monte Carlo (MCMC) method, to infer the posterior of the splicing
dynamics.

Algorithm 1 Metropolis-Hastings sampler for posterior of latent Y
Require: T,R,Θ, λ
Initialize: Y (0)

Calculate: Ψ(0) = Softmax(Y (0));K = GPcov(Θ, T )

for i = 0 to H do
Sample: µ ∼ U(0, 1)

Sample: Y ∗ ∼ Qy(Y ∗|Y (i), λK)

Calculate: Ψ∗ = Softmax(Y ∗)

if µ < min
{ P (Ψ∗|R)×Qy(Y (i)|Y ∗, λK)

P (Ψ(i)|R)×Qy(Y ∗|Y (i), λK)
, 1

}
then

Y (i+1) ← Y ∗; Ψ(i+1) ← Ψ∗

else
Y (i+1) ← Y (i); Ψ(i+1) ← Ψ(i)

end if
end for

Here, the proposal distribution Qy for Yc is a multivariate Gaussian
distribution, whose mean is the last accepted Y (i)

c , and the covariance
matrix is defined by the fixed hyper-parameters θc and the times T , but
adjusted to the data itself, including the empirical variance of y, the
number of isoforms, and number of time points, to ensure the 30-50%
acceptance ratio. Namely, K̂c = λKc;λ = (5σ2

y)/(CTθc,1), and the

proposal distribution isN (Y
(i)
c , K̂c). Notice that, in contrast to the MISO

Fig. 1. A cartoon comparison between separate and joint analysis of time-series RNA-
seq experiments. In the example gene, there are two isoforms with one alternative exon
(the white one), and many paired-end reads are aligned to the genome for isoform
quantification. The "separate analysis" estimates the isoform proportions for three time
points independently, but the "joint analysis" estimate them together with a joint Gaussian
process prior.

algorithm Katz et al. (2010), our sampler directly collapses the read identity
variables, leading to considerable speedups when the number of isoforms
is not too high.

For each gene, the initial MCMC chain contains 1000 iterations. Then
the Geweke diagnostic Z score (Geweke, 1991) is applied to check the
convergence of Y , using the first 10% and the last 50% iteration of the
sampled chain. If |Z| > 2, then 100 more iterations will be added until
the criterion is passed.

2.4 Reads probability and bias correction

DICEseq supports both single-end and paired-end reads. Here we describe
the situation of paired-end reads; for single-end reads, just change the
fragment length into read length. Given a read (pair) Rn mapping to an
isoform c, the reads probabilityP (Rn|In = c) could be defined by taking
information of the fragment length lf , the alignment quality mapq, and
the reads position p, as follow,

P (Rn|In) = P (lf |In)P (p|In, lf )P (Rn|mapq) (6)

Here, we apply a Gaussian distribution to model the distribution of
fragment length. The parameters (mean and variance) could be either set
by user or learnt from the data itself. In some species, most reads can be
very well mapped to a single position of the genome, and we could simply
use uniquely mapped reads. However, in some other species, such as yeast,
which contains many paralogs, there are higher chances to align a read to
multiple positions. In the latter case for keeping multiply aligned reads, the
mapq score will be taken into account, asP (Rn|mapq) = 1−10−MAPQ/10,
and we take the score of the better aligned mate for reads pair.

The reads position could be assumed to come from a uniform
distribution, or could explicitly model sequence and position biases. In
both cases, we could describe the probability as follows,

P (p|In = c, lf ) =
bc(p)∑lk−lf+1

j=1 bc(j)
(7)
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where bc(p) is relative weight of a position p. For uniform distribution,
bc(p) ≡ 1, so that P (p|In, lf ) = 1/(lk − lf + 1). For the bias
distribution, we employed the bias correction model that was proposed
by Roberts et al (Roberts et al., 2011) to correct the position and sequence
bias.

Briefly, Roberts et al’s model of position bias tries to estimate which
fractional position is preferred for sequencing. Thus, 20 bins from the
beginning to the end of the isoform were used to count aligned reads,
and isoforms are also divided into 5 groups based on their length. The
sequence bias correction model tries to estimate the occurrence of a read
with a surrounding sequence of each end from -8 to +12 nucleotides. A
variable length Markov models were used to reduce the combinations of
the 21 nucleotides, resulting in 774 parameters, as in (Roberts et al., 2011).
In DICEseq, we estimate these parameters empirically from the genes with
only one isoform.

Empirically, we observed that correcting for biases did not significantly
alter the results of our analyses, see Supplementary Table S2.

2.5 Gene annotation, input datasets and processing

Simulated reads in fastq format were generated from Spanki v0.5.0
(Sturgill et al., 2013). It is based on the human gene annotation and
genome sequences which were downloaded from GENCODE with release
22. In addition to exclusively keeping protein coding genes, we further
removed those genes that only have one isoform (for these the problem
is trivial) or overlap with others. Note that overlapping genes can also be
accommodated by considering an extended isoform identification problem,
whereby the identity of the read also includes the gene it belongs;
this however requires a modification of the annotation file and was not
considered for the purposes of illustrating our algorithm. Consequently,
90,759 isoforms from 11,426 genes were included for simulation. We
randomly generated isoform ratios for each gene at 8 time points, with an
assumption of either Gaussian process or first-order dynamics. Then the
randomly generated isoform ratios were multiplied with the fixed library
reads-per-kilobase (RPK, ranging from 50 to 1,600), to further define the
number of isoform specific reads for the Spanki simulator.

4tU-seq data sets are available from the Gene Expression Omnibus
(GEO; accession number GSE70378). The yeast gene annotation and
genome sequences were downloaded from Ensembl with version R64-1-1,
and all 309 intron-containing genes were included for analysis.

Circadian RNA-seq and microarray data sets on mouse liver were
downloaded from GEO: GSE54652. The gene annotation and genome
sequences were downloaded from GENCODE with release M6. Based
on the annotation, we included 55,440 isoforms from 10,553 multiple-
isoform, non-overlap, protein-coding genes. Processed microarray data
(Zhang et al., 2014), which are based on Affymetrix MoGene 1.0 ST,
were employed for validation of the isoform estimate from RNA-seq. The
microarray probe ids were mapped to GENCODE ids by Ensembl BioMart,
leaving 30534 isoforms from 9755 genes for study.

All above RNA-seq data sets were downloaded in fastq format, and first
aligned to corresponding Genome sequences above via HISAT 0.1.6-beta
(Kim et al., 2015), in paired-end mode with default setting.

3 Results

3.1 Methods comparison using simulated reads

In order to assess the performance of DICEseq, we compared it with three
commonly used methods in their latest version: IsoEM v1.1.4 (Nicolae
et al., 2011), MISO v0.5.3 (Katz et al., 2010), and Cufflinks v2.2.1
(Trapnell et al., 2010). We also report results for a variant of DICEseq
which ignores temporal correlations (DICE-sepa). Notice that DICE-sepa
is essentially the same as MISO as a model, only differing in the estimation

Fig. 2. Comparison of accuracy between methods using simulated reads. (a) Mean absolute
error between estimated isoform proportion and the truth. (b) 95% confidence interval of
the estimates. (c) Influence of the number of isoforms on the estimates when RPK=200. (d)
Influence of the number of isoforms on the estimates when RPK=800. The simulation is
based on GP dynamics assumption for (a-d). (e) Boxplot of absolute error between estimated
isoform proportion and the truth. (f) Boxplot of 95% confidence interval of the estimates.
The round dot is the mean. The simulation is based on first-order dynamics assumption for
(e-f).

procedure and prior (collapsed M-H sampler and softmax of a Gaussian).
Simulated reads for 11,426 human protein coding genes, accounting for a
total of 90,759 distinct isoforms, were generated by Spanki v0.5.0 (Sturgill
et al., 2013) with coverage from RPK of 50 to 1600 for 8 time points.
We initially induced a temporal correlation between isoform proportions
at different time points by enforcing the assumption of Gaussian process
dynamics. All methods used paired-end reads, with the exception of MISO,
which provided better performance in these experiments using single-
end reads (see Supplementary Figure S2 and Table S3). We focus here
on comparing the accuracy of the various methods; for a comparison of
computational performance see Supplementary Figure S1.

We first studied the accuracy of each method at different coverage
levels. We report average accuracy by computing the mean absolute error
(MAE) between inferred isoform ratios and the truth from all the 90,759
isoforms of the 11,426 genes and 8 time points. Figure 2A shows that all
methods return accurate estimates, and that the errors generally decrease
with the increase of coverages. As expected, DICEseq is able to exploit
effectively the temporal information, providing a significantly lower mean
absolute error than the other methods, an advantage which is particularly
marked at lower coverage. In a real RNA-seq time series experiment,
many genes are likely to have relatively low coverage in at least one time
point (see section 3.3 and 3.4 for our real data experiments), therefore the
improved performance of DICEseq is likely to be important in quantifying
isoforms for a substantial fraction of genes.
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A second, often very important, metric is the confidence intervals
associated with the predictions. These can be useful when deciding e.g.
which genes to include in downstream analyses as in (Barrass et al., 2015).
We examined the average size of the confidence intervals for the three
Bayesian methods DICEseq, MISO and Cufflinks as we vary the simulated
coverage levels. As expected, confidence intervals shrink as we increase
coverage for all three methods, however DICEseq clearly is able to provide
more confident predictions at all coverage levels (Figure 2B). DICEseq
is particularly strong at lower coverage; this is important, as often the
confidence of an estimate is used to select genes which are further analysed
(Barrass et al., 2015).

Thirdly, we investigate the influence of isoform number on the
quality of the estimate at a specified coverage level. By selecting the
genes with a specific number of isoform, Figure 2C (RPK=200) and 2D
(RPK=800) both show that the rank correlation (Spearman’s correlation)
coefficient between the estimated isoform proportions and the truth
generally decreases as the number of isoform increases. This is expected,
because the presence of more isoforms reduces the number of uniquely
assignable reads. Once again, we see that including temporal information
can yield signficantly improved estimates, with DICEseq yielding an
improvement in rank correlation of more than five percentage points for
genes with many isoforms (>8).

Finally, we investigate the robustness of DICEseq to model mismatch.
To do so, we generated time series data where the isoform proportions
vary according to a first-order dynamical system (rather than a Gaussian
process), a commonly used modelling hypothesis (Eser et al., 2016).
Figure 2E-F clearly shows that incorporating temporal information
yields a considerable improvement, even under model mismatch. This
improvement is particularly marked at low coverages. Notice that the mean
accuracy (represented by a dot in the box plots) is very similar to the one
obtained under the GP assumption (Figure 2A). Additional simulations
varying hyperparameters were also performed (see Supplementary file),
and Supplementary Table S1 again shows robustness to mis-specification
of the hyperparameters.

In summary, the results of these simulation studies show that DICEseq
can provide accurate reconstruction of isoform proportions, and can
successfully leverage temporal information to provide more accurate and
confident predictions at low coverage and for higher numbers of isoforms.

3.2 Design of time-series RNA-seq experiments

Incorporating temporal information in the analysis of time series
experiments is desirable in principle, because it provides experimentalists
with a further direction for experimental design. Intuitively, resources
can be invested in either improving the accuracy of each time point (by
sequencing deeper), or by collecting more time points. This is an important
trade-off, and it can only be achieved if the data is analysed jointly. To
address these questions, we compared DICEseq versus DICE-sepa as we
vary coverage levels and number of time points, by simulating reads as
in the previous section (under GP assumption). In Figure 3A, we clearly
see again that with the coverage increasing, all MAE decrease. In the joint
model, the MAE largely decreases when more time points (i.e., 8) are used,
especially for the case with low coverage.

These results highlight the importance of the analysis method for
experimental design: while with the non-temporal model DICE-sepa
increasing coverage is the only way to improve accuracy, methods that
incorporate temporal information can benefit both from an increase in
coverage and an increase in sampling frequency. Broadly speaking, we
see that a doubling of the sampling frequency is roughly equivalent to a
doubling of the sequencing depth, with the obvious advantage that a finer
temporal information is provided. Figure 3C and 3D show an example of
this trade-off: 4 time points and higher coverage of RPK = 200 give

Fig. 3. Comparison between experiment design on time points and coverages. (a) Mean
absolute error between estimated isoform proportion and the truth for different experiments.
"S" and "J" means DICEseq separate and joint mode, respectively, and the "noisy" means
the RPK=25 at the 5th point for all (a-d). All simulation here is based on GP dynamics
assumption. (b) 95% confidence interval of the estimates. (c) Boxplot of absolute error
between estimated isoform proportion and the truth for three example experiments. The
round dot is the mean. "T=4" and "T=8" means the 4 and 8 number of time points. The
"noisy" example was also conducted at RPK=100. (d) Boxplot of 95% confidence interval
of the estimates.

indistinguishable results for the joint model to 8 time points and lower
coverage of RPK = 100 (first two pairs in Figure 3C/D).

Another potential advantage of incorporating temporal information is
to improve robustness of the estimation against noise/ low coverage at some
time points. This aspect is particularly important as of course coverage
level for a particular gene is largely determined by the gene’s expression
level, therefore genes with a large dynamic range of expressions during the
time series will necessarily have some time points with low coverage. To
simulate this situation, we generated time series with very low coverage
(RPK = 25, termed “noisy") in the 5th time point. From the “noisy"
case in Figure 3, we could see that the joint model dramatically reduces
the variation compared to the separated model. Thus, incorporating time
information in the joint model leads to a more robust estimation, facilitating
isoform estimation for genes with dynamic expression levels and providing
a possibility to combine low coverage with high coverage time points for
time series libraries.

3.3 RNA splicing dynamics with 4tU-seq data

Recently, biotin labelling combined with RNA-seq has become an
important tool to study the kinetics of RNA transcription and splicing
with high temporal resolution (Windhager et al., 2012; Veloso et al.,
2014; Fuchs et al., 2014). These experiments naturally produce RNA-
seq data sets with high temporal resolution; furthermore, at very early
time points, labelled RNA may be of low abundance, resulting in high
uncertainty estimates. Here we use a recent data set with high temporal
resolution to probe the suitability of DICEseq as an analysis tool for biotin
labelled RNA-seq; the data was produced by our collaborators in the Beggs
and Granneman labs at the Wellcome Trust Centre for Cell Biology in
Edinburgh (Barrass et al., 2015). The data set consists of approximately
50M mapped reads; roughly 50% of genes have a coverage of RPK<120
in at least one time point.
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Fig. 4. Analysis of time series 4tU-seq data. (a) The Pearson’s correlation between two
replicates. (b) The number of genes whose 95% confidence interval < 0.3.

To assess accuracy of our method, we compare the correlation between
two replicates for 309 intron-containing genes at 1.5, 2.5 and 5.0 minute.
Figure 4A shows that IsoEM, Cufflinks and MISO all result in a good
correlation between replicates, with Pearson’s correlation coefficient
varying between 0.83 and 0.85; DICEseq further improves with a Pearson’s
correlation coefficient of 0.896, outperforming by between 4 and 6
percentage points existing methods (all p-values<1e-5 under the Fisher r-
to-z transform test (Diedenhofen and Musch, 2015)). The improvement is
particularly marked if we consider the lowest expressed genes (see Table
1): on the lower third of the expression range, DICEseq still obtains a
Pearson correlation of 0.860, while the other methods achieve much lower
correlations, ranging from 0.657 (Cufflinks) to 0.775 (IsoEM). This is
remarkable since, as there are only three time points, the improvement
obtained by taking temporal information into account could be expected to
be limited. Notice in particular that, while IsoEM and particularly Cufflinks
sometimes give deterministic estimates in one replicate but not on the other
(red points on the boundaries of the square in Figure 4A), this problem does
not occur with DICEseq, presumably due to the stronger regularisation
enforced by the temporal correlations.

To further explore the usefulness of DICEseq, we consider
the confidence intervals reported by the various methods. Isoform
quantification methods are often used as an initial step in kinetic analyses
of individual transcripts; in order to reduce false positives, genes
with unreliable isoform estimates (as determined by thresholding on
the confidence intervals) are discarded. When quantifying isoforms in
isolation, some genes are then discarded just because one of the time
points have lower expression level. Therefore, we computed the number
of transcripts that pass a frequently used threshold (95%CI<0.3) for further
analysis (Barrass et al., 2015). Figure 4B illustrates the results, showing
that at all time points around 20% more genes are retained using a joint
analysis, compared to methods that analyse data points in isolation.

To summarise, our results on a real yeast kinetic data set confirm that
DICEseq yields significantly more reproducible and confident results than

Fig. 5. Analysis of circadian time series data. (a) The Pearson’s correlation between
the measurement of RNA-seq and microarray. (b) The proportion of genes whose 95%
confidence interval <0.3 in a certain number of time points (index on the external side of
the circle).

existing state-of-the-art methods, highlighting the value of incorporating
temporal information in the analysis of time series real data.

3.4 Circadian dynamics of alternative splicing

As a second real-data example, we turned to a recent data set investigating
circadian control of gene expression in mouse. Due to the day-night
oscillations, many biological processes, including gene expression,
show circadian rhythms. Recently, Zhang et al (Zhang et al., 2014)
systematically studied circadian gene expression on 12 mouse tissues using
high-temporal resolution microarrays and RNA-seq, and found that 43%
protein coding genes oscillate in at least on one of the 12 tissues; here we
focus on data from liver. The RNA-seq here has a comparably low time
resolution, as eight time points were collected over a period of 48 hours;
we expect therefore that the advantages of incorporating time information
may be less pronounced in this scenario. In total, there are between 67M
and 105M uniquely mapped reads in each experiment; on average of 8
time points, 50% of genes have all isoforms with RPK<70; 75% of genes
have all isoform with RPK<400.

To assess the performance of the various methods, we used the
microarray data set to validate the isoform estimates from RNA-seq.
Unfortunately, only about one hundred microarray probes map to a unique
annotated isoform (out of 30,534 annotated isoforms which map to at
least one microarray probe); in other words, most microarray probes map
to multiple isoforms within a gene. Thus, we used the estimated isoform
proportions, together with the total numbers of reads mapped to each gene,
to quantify the gene expression level (as FPKM), and then compared the
resulting estimate from RNA-seq with the microarray measurement with
Pearson’s correlation coefficient. In Figure 5A, we see that the estimates
obtained from RNA-seq using all methods have a high correlation with
the direct measurements from the microarrays. Still, DICEseq shows a
significantly improved correlation from 0.757 to 0.791 (p-value <1e-5,
Fisher r-to-z transform test); in particular, very low expressed isoforms
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(outliers in the left end of the plot) show a much better quantification with
DICEseq than with the other methods, probably due to the sharing of the
temporal information, which is also evidenced by the medium third genes
in Table 1.

We further measured 95% confidence intervals (CI) of all the 55,440
isoforms at the 8 time points, and quantified the fraction of isoform
quantifications that pass the threshold 95%CI<0.3. In Figure 5B we see
that all Bayesian methods (Cufflinks, MISO and DICEseq) give confident
estimates for between 50 and 60 % of isoforms at all time points. Once
again, DICEseq estimates are more confident, thanks to the value of
temporal information sharing at low coverages, even though the advantage
is more modest in this data set.

To summarise, our results in this low-frequency RNA-seq time series
data set show that even in this case DICEseq produces quantitatively better
estimates of isoform ratios, even though the value of sharing temporal
information is more limited here due to the weaker correlations between
time points.

Table 1. Robust performance of DICEseq in lower or medium coverage. "All"
means all annotated genes; "1/3 low" and "1/3 mid" respectively mean lowest
and medium 1/3 genes in coverage. The scores are Pearson’s correlation
coefficients between two replicates (4tU-seq) or two techniques (circadian).

IsoEM Cufflinks MISO DICEseq
4tU-seq, all 0.851 0.830 0.848 0.896
4tU-seq, 1/3 low 0.775 0.657 0.757 0.860
circadian, all 0.712 0.700 0.757 0.791
circadian, 1/3 mid 0.336 0.296 0.408 0.513

4 Discussion
The advent of RNA-seq technologies has revolutionised the study of
mRNA splicing, and provided a powerful stimulus for the development of
computational biology methods (Katz et al., 2010; Trapnell et al., 2010;
Nicolae et al., 2011; Glaus et al., 2012). Recent years have seen a more
wide-spread use of RNA-seq technology for the analysis of dynamical
biological processes, resulting in a marked increase of biological studies
adopting RNA-seq within a time series experimental design. In this article,
we presented DICEseq, the first method to jointly estimate the dynamics
of the splicing isoform proportions from time series RNA-seq data. A
comparison of DICEseq to a selection of popular state-of-the-art methods
shows that DICEseq has excellent accuracy and good computational
performance; in particular, DICEseq can effectively pool information
across time points to improve isoform quantification at low coverages,
giving more accurate and confident predictions. Our analysis also points
to the importance of coverage versus temporal sampling trade-offs in
designing dynamic RNA-seq experiments; while our analysis focussed on
time series experiments, we expect similar considerations to hold for other
structured designs, such as dose response experiments. In this light, the use
of methods which can capture structural information, such as DICEseq,
may lead to a rethink of biological experimental designs for a broad class
of experiments. Our application to two diverse biological data sets shows
that DICEseq can be an effective tool on real biological investigations,
leading to improved performance and more reproducible results.

Methodologically, DICEseq builds on a fertile line of research using
GPs to model transcriptional dynamics. GPs have been used to study
the dynamical behaviour of gene expression in various contexts, from
transcriptional regulation (Lawrence et al., 2006) to identifying the time
intervals of differential expression with time series microarray data (Stegle
et al., 2010). More recently, Äijö et al used a latent GP with negative

binomial observation noise to study the profiles of gene expression during
Th17 cell differentiation with time course RNA-seq (Äijö et al., 2014). To
our knowledge, this is the first time GPs have been proposed within the
context of isoform estimation.

While we believe DICEseq offers a valuable new tool for the analysis
of dynamic RNA-seq data, it also opens several novel lines of investigation.
Firstly, the Gaussian process prior, which is based on a general regression,
could be extended to more general dynamic splicing modeling, e.g.,
a first-order linear dynamic system for RNA splicing kinetics, and an
oscillatory system for circadian or cell-cycle studies. All of these could
be incorporated in a straightforward way as parametric mean functions
in a GP framework, however it would also be of interest to explicitly
model the noise correlations they induce. DICEseq could be useful in
elucidating RNA processing from biotin labelled RNA-seq, as attempted
e.g. in de Pretis et al (de Pretis et al., 2015). More generally, DICEseq
could provide a flexible Bayesian framework for explaining RNA-seq data
from other observations, and aid studies attempting to link splicing with
other genetic and epigenetic factors.
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