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Summary

1. There are wide reports of advances in the timing of spring migration of birds over time

and in relation to rising temperatures, though phenological responses vary substantially

within and among species. An understanding of the ecological, life-history and geographic

variables that predict this intra- and interspecific variation can guide our projections of how

populations and species are likely to respond to future climate change.

2. Here, we conduct phylogenetic meta-analyses addressing slope estimates of the timing of

avian spring migration regressed on (i) year and (ii) temperature, representing a total of 413

species across five continents. We take into account slope estimation error and examine phy-

logenetic, ecological and geographic predictors of intra- and interspecific variation.

3. We confirm earlier findings that on average birds have significantly advanced their spring

migration time by 2�1 days per decade and 1�2 days °C�1. We find that over time and in

response to warmer spring conditions, short-distance migrants have advanced spring migra-

tory phenology by more than long-distance migrants. We also find that larger bodied species

show greater advance over time compared to smaller bodied species. Our results did not

reveal any evidence that interspecific variation in migration response is predictable on the

basis of species’ habitat or diet.

4. We detected a substantial phylogenetic signal in migration time in response to both year

and temperature, suggesting that some of the shifts in migratory phenological response to cli-

mate are predictable on the basis of phylogeny. However, we estimate high levels of species

and spatial variance relative to phylogenetic variance, which is consistent with plasticity in

response to climate evolving fairly rapidly and being more influenced by adaptation to

current local climate than by common descent.

5. On average, avian spring migration times have advanced over time and as spring has

become warmer. While we are able to identify predictors that explain some of the true

among-species variation in response, substantial intra- and interspecific variation in migratory

response remains to be explained.

Key-words: arrival date, bird migration timing, climate change, migratory phenology, plas-

ticity

Introduction

Changes in the timing of seasonal events are one of the

most conspicuous biotic impacts of global climate change

(Walther et al. 2002; Parmesan & Yohe 2003; Root et al.

2003). Rising global temperatures have generally resulted

in an earlier onset of spring in extra-tropical regions

(Thackeray et al. 2016), including earlier flowering and

leafing of plants (Fitter & Fitter 2002), emergence of

insects (Roy & Sparks 2000), and breeding of amphibians

and birds (Crick et al. 1997; Li, Cohen & Rohr 2013). As

a result of high levels of interest from professionals and

citizen scientist ornithologists, temporal shifts in the tim-

ing of spring avian migration due to climate change have*Correspondence author. E-mail: usuitakuji@gmail.com
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been especially extensively recorded over time and space

(BirdLife International & National Audubon Society

2015). These studies reveal a general trend of advance-

ment in spring arrival and passages dates towards the pre-

sent and with increasing temperatures (Lehikoinen,

Sparks & Zalakevicius 2004; Lehikoinen et al. 2010).

However, there is considerable variation in the slope

around the average, with different species or even popula-

tions of the same species exhibiting both earlier and later

timings of spring migration over time and with respect to

temperature change (Miller-Rushing, Primack & Stymeist

2008; Hurlbert & Liang 2012). Such variation in pheno-

logical response has potentially severe consequences on

mean population fitness if migratory birds arrive at breed-

ing grounds too early or late relative to peak resource

availability, resulting in mismatch of trophic interactions

(Both et al. 2009; Thackeray et al. 2010) or stronger com-

petition for finding optimal breeding sites or high-quality

mates (Alatalo, Lundberg & Glynn 1986; Smith & Moore

2005). Indeed, there is some evidence that migrant bird

species are declining by more than residents (Both et al.

2006; Møller, Rubolini & Lehikoinen 2008), with mistim-

ing of breeding among the potential explanations.

What factors might cause populations and species to

vary in their phenological response? Comparative analyses

can be used to reveal the factors that explain trait varia-

tion among (Harvey & Pagel 1991) or within (Stone, Nee

& Felsenstein 2011) species. Previous comparative studies

addressing avian migratory responses have found that

short-distance migrants are more responsive to spring

temperatures than long-distance migrants (e.g. Butler

2003; Lehikoinen, Sparks & Zalakevicius 2004; Rubolini

et al. 2007). This pattern may be explained if conditions

in the non-breeding and passage ranges of short-distance

migrants are more predictive of conditions on the breed-

ing grounds than is the case for long-distance migrants.

In contrast, long-distance migrants overwintering further

away from the breeding grounds may rely on circannual,

endogenous mechanisms to time their migration rather

than external cues (Gwinner 1996). However, although a

difference in response according to migration distance has

been widely reported, the pattern has been far from uni-

versal (Jonz�en et al. 2006; Zalakevicius et al. 2006).

Other ecological traits that have recently been suggested

to predict phenological response to climate change include

species’ habitat and diet type. In particular, the timing of

leaf out in temperate forests has advanced substantially in

response to rising spring temperatures, which in turn

impacts on the timing of the peak availability of some

herbivorous invertebrates (Visser & Both 2005). Forest

habitats may be more highly seasonal in phytophageous

invertebrate availability than other habitats such as

marsh/reeds: In the former, invertebrate availability is

restricted to before the production of secondary plant

compounds (Feeny 1970; Southwood et al. 2004), whereas

in the latter, reed continues to grow during the spring and

summer, and hence invertebrate availability may be less

seasonally peaked (Halupka, Dyrcz & Boroweic 2008). It

follows therefore that migrants that feed these highly sea-

sonal resources to offspring may experience strong selec-

tion to track environmental changes (Visser et al. 1998;

Both et al. 2010). Similarly, if species that are specialists

in terms of diet, habitat or climatic niche experience

stronger selection on migration timing then they may have

steeper phenological responses (Both et al. 2010). Run-

ning counter to this prediction, however, previous com-

parative studies have found that generalist species are

more responsive than specialists to climate change

(V�egv�ari et al. 2010; Moussus et al. 2011; Hurlbert &

Liang 2012). Additionally, body size is expected to be

negatively correlated with the magnitude of advance in

spring migratory phenology, as migration in larger birds

is hypothesized to be more time-canalized due to longer

moulting times and slower migration speeds (Hedenstr€om

2006, 2008).

The timing of migration is expected to affect fitness,

and a change in phenology over time may be due to either

a response to selection or phenotypic plasticity. However,

few studies present compelling evidence for microevolu-

tion of phenology in response to recent climate change

[see Franks, Sim & Weis (2007) for a plant flowering time

example], and most recent changes in migratory phenol-

ogy are thought to be attributable to phenotypic plasticity

(reviewed in Charmantier & Gienapp 2014). However, it

is quite possible that microevolution in the form of local

adaptation contributes to among-species and population

variation in the plastic response to spring temperatures.

We predict that, even in the absence of among-site or

among-species variation in the plastic response to temper-

ature, geographic variation in the rate of temperature

increase will generate geographical variation in the aver-

age phenological response. Consistent with this prediction,

there is evidence that the magnitude of change in migra-

tory phenology varies latitudinally and is steepest for high

latitude areas that have experienced the greatest tempera-

ture increases (Sparks & Braslavsk�a 2001; Parmesan 2006;

but see Rubolini et al. 2007). More generally, studies con-

ducted in the northern hemisphere have reported differ-

ences in slope of migratory response between continents,

reflecting regional differences in climatic change (Bitterlin

& Van Buskirk 2014).

Previous comparative studies addressing avian migra-

tory phenology have been restricted to the northern hemi-

sphere (e.g. Rubolini et al. 2007; V�egv�ari et al. 2010;

Bitterlin & Van Buskirk 2014), although there has been a

recent increase in studies of southern hemisphere species

(reviewed in Chambers, Beaumont & Hudson 2014).

Beyond simply correcting for phylogenetic non-indepen-

dence (Felsenstein 1985), most phylogenetic comparative

studies now estimate phylogenetic signal, i.e., the extent

to which close relatives share similar traits (Freckleton,

Harvey & Pagel 2002; Blomberg, Garland & Ives 2003).

This can be useful as a predictive tool, as a strong phylo-

genetic signal implies that we might predict the

© 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society., Journal of
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phenological responses of species not included in the

study based on the responses of their close relatives. Of

the avian studies that have incorporated phylogeny, two

report the phylogenetic signal to be low (V�egv�ari et al.

2010; Bitterlin & Van Buskirk 2014), while one reports

the signal to be high (Rubolini et al. 2007). However,

these studies ignore measurement error in slope estimates,

meaning that the residual variance in the slopes is likely

to be inflated and the phylogenetic signal underestimated.

Here we conduct a phylogenetic meta-analysis of avian

migratory phenology on a global-scale, with the aim of

identifying key predictors of global variation in slope of

(i) the temporal phenological trend and (ii) the phenologi-

cal response to temperature, while controlling for aspects

of study methodology. Specifically, on the basis of previ-

ous evidence and theory outlined above, we hypothesize

steeper slopes for migrants that (i) are short-distance

migrants, (ii) rely on forest breeding and passage habitats

and (iii) have an invertebrate-dominated diet. We also

hypothesize that (iv) greater species’ generalism in terms

of habitat and diet will give rise to shallower slopes, (v)

body size will correlate negatively with phenological

trends, such that the smallest species advance by most,

and (vi) the magnitude of the slopes will increase with lat-

itude. Finally, we hypothesize that (vii) phenological

responses will be phylogenetically conserved.

Materials and methods

data selection and criteria

We conducted a systematic literature search in order to locate rel-

evant studies, by following the PRISMA (Preferred Reporting

Items for Systematic reviews and Meta-analyses) statement

(http://www.prisma-statement.org). We searched for studies by

using key words ‘avian’ or ‘bird’ with ‘migration phenology’,

‘arrival date’ or ‘timing of migration’ on ISI Web of Science and

Scopus. To each combination of the search string, we added

regional terms including ‘Southern hemisphere’, ‘Africa’, ‘Asia’,

‘South America’, ‘Antarctic’ or ‘Australia’, with the aim of

increasing the representation of species from these regions given

a predominance of migration studies from North American and

European localities. Additionally, searches were carried out on

Google Scholar to locate missing publications and ‘grey-literature’

(e.g. unpublished material and dissertations). All searches were

carried out between January and October 2015.

We extracted data from studies reporting changes in spring

migratory phenology over time or with respect to temperature.

Specifically, we extracted data from studies reporting either the

slope and standard error from a simple linear regression of a

measure of spring migration timing against year (days year�1) or

temperature (days °C�1). Where studies did not report the stan-

dard error but reported the slope, sample size and P-value of the

linear regression analysis, we calculated an upper estimate of the

standard error by (i) calculating the t-value (where P was

reported as <0�05 or <0�01 we used 0�05 or 0�01 respectively) and

(ii) dividing the slope by the t-value. Where studies did not report

the above, we contacted authors for data sets, from which slopes

and standard errors were extracted using linear regression. In a

few cases, upon contact, authors supplied us with additional data

sets. For papers where the requisite data were presented in graph-

ical format, we extracted data points using WebPlotDigitizer v3.9

(Rohatgi 2015; http://arohatgi.info/WebPlotDigitizer) and re-ana-

lysed the data using linear regression. Finally, we included

reports that presented annual bird arrival dates to the breeding

or passage grounds but did not estimate a trend over time, by

calculating this using linear regression.

We included studies that reported changes in first arrival dates

(FADs) or mean/median arrival dates (MADs) to the breeding or

passage grounds. For temperature response slopes, we included

changes in spring migratory phenology with respect to tempera-

ture changes at breeding, passage or non-breeding sites. Where a

study had considered temperature across multiple time periods

for a population, we included only the highest R2 correlate for

each temperature location. All studies used in the meta-analysis

are provided in the Data Sources section. The full data set can be

accessed from the Dryad Digital Repository: http://dx.doi.org/10.

5061/dryad.mb4nd. In general, the slope estimates we obtained

from the literature assume that the migration time within a year

is known without error. We anticipate that ignoring such error

will not bias slope estimates based on mean/median but will lead

to underestimation of the standard error associated with a slope.

However, ignoring this source of uncertainty may bias slopes esti-

mated from first dates if either abundance or recorder effort has

changed over time and/or with temperature.

location and species traits

We collected data on geographic and species’ ecological and life-

history traits that have been suggested to influence the strength

of phenological response of birds to climate change (see Introduc-

tion). For each study, we defined geographic factors by the lati-

tude, longitude, country and continent of the study site. In cases

where data were collected on a regional scale, we calculated the

mid-point coordinates for the study site.

At the population-level, we classified bird migration distances

as either short- or long-distance migrants, on the basis of state-

ments made by authors of the studies. Due to intraspecific differ-

ences in species’ migration distances, we only assigned migration

distances to migrants when this was reported in papers for the

population under study. Where studies referred to a population

as medium-distance migrants, these were reclassified as short-dis-

tance migrants if their breeding and non-breeding grounds were

within the same continent. Species-level data on habitat was

obtained from BirdLife International (2015). We constructed a

binary classification of species as having ‘forest’ or ‘other’ habi-

tat, depending on whether species used forest habitats as a suit-

able breeding or passage habitat or not. Habitat generalism was

quantified as the number of different suitable breeding and pas-

sage habitats (at the highest level in the IUCN Habitats classifica-

tion scheme; www.iucnredlist.org/technical-documents/classifica

tion-schemes/habitats-classification-scheme-ver3) used by a spe-

cies. Habitat types comprised forest, shrubland, grassland, wet-

land, marine, savanna, desert, rock, cave, and artificial aquatic

and terrestrial habitats. Data on species’ diet were obtained from

Wilman et al. (2014), with diet categories comprising inverte-

brates, fish, reptiles and amphibians, mammals and birds, general

or unknown vertebrates, fruits, seeds, nectar and pollen, other

plant materials or carrion. We classified species as ‘invertebrate-

dominated’ where invertebrates comprised a majority (≥50%) of

the diet, with the remainder classified as ‘other’. Additionally, we
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scored diet generalism for each species by counting the number

of food types that built up a substantial (≥20%) component of a

species’ diet. We also obtained data on the mean body mass (g)

for each species, as reported in Dunning (1992) and Wilman

et al. (2014).

statist ical analysis

We examined signs of publication bias (the preferential publica-

tion of statistically significant results) in the data set indirectly by

visualization of funnel plots. If there is no bias, plotting slope

estimates against a measure of precision (inverse of the standard

error) should show a symmetrical and inverted funnel, with smal-

ler studies showing larger variance (Egger et al. 1997). Where

present, publication bias can generate unreliable meta-analytical

results (Sterne & Egger 2001).

For analysis of slopes and standard errors, we adopted a mixed

effects phylogenetic meta-analytic approach, in which effects of

multiple fixed and random effects can be specified in a single

model (Hadfield & Nakagawa 2010; Nakagawa & Santos 2012).

Analyses were implemented in a Bayesian setting using the pack-

age MCMCglmm (Hadfield 2010) in R (R Development Core

Team 2014). We sampled 100 sample trees from a pseudo-poster-

ior distribution of species-level bird phylogenies (Jetz et al. 2012)

from BirdTree.org (www.birdtree.org). Trees were based on the

Hackett et al. (2008) backbone. We fitted phylogeny, species,

study and location as random effects (eqn 1).

yi ¼ lþ bxi þ ai þ si þ ti þ li þ si : li þ ei þmi eqn 1

The Gaussian trait, y (estimate of the slope of phenology

regressed on year or temperature), of species i is given by the

grand mean (l) plus the influence of fixed effects (bxi), and ran-

dom effects due to phylogeny (ai), species (si), study (ti), location

(li), each species by location combination (si : li), residual (ei) and

measurement error (mi). All random effects were assumed to fol-

low normal distributions and their variances were estimated (with

the exception for mi for which variance was fixed at 1). As arrival

data from studies included in this meta-analysis originated from

various sources (citizen scientist observations; ornithological club

reports; observatory observations; standardized capture and ring-

ing at observatories; non-standardized field studies; and standard-

ized field studies), we allowed for heterogeneity in residual

variance across these data types to control for variance in the

quality of data in all our models. Therefore, the residual variance

for each data type reveals how much the slope estimates depart

from the average slope obtained for population i. We calculated

the per cent variance for each random effect component by divid-

ing estimates of each variance component by total variance (cal-

culated as the sum of phylogeny, species, study, location, species

by location and the mean of the residual variance terms).

Fitting phylogeny as a random effect accounts for non-inde-

pendence among species due to shared history under the Brown-

ian motion model of trait evolution. We assume that different

metrics (e.g., FAD and MAD) share the same phylogenetic sig-

nal. Measurement error variance, defined as the squared standard

error of the slope estimate for migration regressed on year or

temperature, ensured that more reliable estimates were given

more weight in the model. By repeating the analyses across 100

trees, the combined posterior distribution for fixed and random

effects capture both model and phylogenetic uncertainty (Pagel &

Lutzoni 2002). We estimated the phylogenetic heritability (H2),

which is mathematically equivalent to calculating pedigree-based

heritability in quantitative genetics (Hadfield & Nakagawa 2010),

as:

H2 ¼ r2
a=ðr2

a þ r2
s Þ eqn 2

where r2
a is phylogenetic variance and r2

s is species variance. For

each type of slope estimate (year and temperature), we con-

structed three main types of models: (i) a null model – with the

objective of estimating the global mean advance in migration tim-

ing, (ii) a basic model – with the objective of estimating sources

(e.g. spatial, species, phylogenetic) of variance in true migration

slopes around the global mean while controlling for aspects of

study methodology and (iii) an ecological model – with the objec-

tive of identifying ecological predictors of migration trends and

temperature sensitivity.

In addition to the above random effects (eqn 1), the basic

models included the following fixed effects to control for aspects

of study methodology: the metric for monitoring spring migration

timing (FAD or MAD), location of migrants’ arrival (breeding

or passage ground), location of temperature data (breeding, pas-

sage or non-breeding ground) and the midyear decade in which

the study was conducted. Midyear decade was included in the

year response models to account for imbalance in data coming

from different periods and to control for any tendency in the

slope to steepen in decades that experienced greater directional

temperature change. The ecological models included, in addition

to the fixed terms included in the basic model, the continent of

the study site; an interaction between hemisphere and latitude of

the study site; migration distance category; invertebrate diet bin-

ary score; diet generalism; forest habitat binary score; habitat

generalism; and ln body mass. Preliminary analysis revealed a

strong correlation between location of migrants’ arrival and loca-

tion of temperature data, and between continental and latitudinal

effects, and thus we considered these predictors in separate mod-

els. We also included the source of data as a fixed effect, to allow

for a bias in slope estimates for first dates if recorder effort has

changed over time.

MCMCglmm models were run for 200 000 iterations on each

tree, discarding the first 150 000 iterations as burn-in, and sam-

pling every 500 iterations. For random effects, an inverse Wishart

prior with V = 1 and nu = 0�02 was specified (Gelman & Hill

2007). We viewed trace plots for fixed and random effects to

ensure appropriate sampling of the posterior distribution and

ensured that effective sample sizes for all parameters exceeded

1000. We deemed fixed effects to be statistically significant when

95% credible intervals (CIs) did not span zero.

Results

data set coverage and bias

Our final data set consisted of 2976 slope estimates, com-

prising 1816 year slopes and 1160 temperature slopes

obtained from 73 published studies. Observations spanned

a period of 265 years from 1749 to 2014, with most stud-

ies focusing on migration trends in the past 50 years.

Observation duration ranged from 5 to 72 years, with a

mean duration of 38�1 years. The data set included 413
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species representing 28 orders, with Passerines comprising

73�9% of the total data set (Table S1, Supporting Infor-

mation). Substantial geographic bias was evident, with

data from North America and Europe accounting for

52�8% and 28�3% of the overall data set, while the south-

ern hemisphere accounted for just 3�9% (Table S2). Nota-

bly, none of the southern hemisphere studies reported

temperature response slopes. Visual examination of funnel

plots suggested no evidence of publication bias in either

the year or the temperature slopes (Fig. 1).

correlates of year response

We found a highly significant trend for earlier spring

migration timing over time (Fig. 1a). Overall, the global

average advance in migration timing estimated by the null

model was �2�1 (95% CI: �2�9 to �1�4) days per decade.
In all models, this advance in migration timing was signif-

icantly steeper in MADs than for FADs (Fig. 2a;

Table S3). Furthermore, in all models, the advance in

migration timing varied among decades, being steepest in

the 1920s and 1990s (Table S3). Advance in migration

timing did not differ significantly between arrival at

breeding or passage grounds, or between different data

types.

The basic model revealed a significant phylogenetic sig-

nal, H2 = 0�672 (95% CI: 0�321 to 0�942). Phylogeny and

species contributed around 11�4% and 5�6% (i.e. 17�0%
among-species variance) of total variance in the slope,

respectively, with the lower CI close to zero for both com-

ponents. Intraspecific variance, captured by location and

species by location variance accounted only for around

5�3% and 3�8% (i.e. 9�1% within-species variance) of total

variance, respectively, with again the lower CI close to

zero for both components (Table S3). Among-study and

mean residual variance accounted for around 27�6% and

46�4% of total variance, respectively, and were significant

sources of variation (Table S3). The magnitudes of vari-

ance components were qualitatively similar for models

that included ecological and life-history correlates as fixed

effects.

Under the ecological models, we found no significant

latitudinal trends in year slopes (Fig. 3) or differences

among continents. We found that short-distance migrants

have advanced their migration timing by significantly

more than long-distance migrants, although long-distance
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Fig. 1. Funnel plots of slope estimates

plotted against the inverse of standard

errors (SE) obtained (a) over time (days

year�1) and (b) with respect to tempera-

ture (day °C�1). Vertical lines represent

the average effect size (solid) for the slope

of spring migration timing and the associ-

ated lower and upper 95% CIs (dashed),

as estimated using a mixed model meta-

analysis that included phylogeny, species,

study and location as random effects and

the grand mean as the sole fixed effect.
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migrants still showed a significant advance in most dec-

ades (Fig. 4a). Additionally, the magnitude of the nega-

tive slope was found to increase very slightly with species’

body size. From the ecological model including latitude,

we estimate that with an increase in body mass from 10

to 1000 g, the slope steepens by 0�04 days year�1. We

found no significant effect of habitat, diet or either index

of species’ generalism (Table S3).

correlates of temperature response

We found a highly significant trend for earlier spring

migration at higher temperatures under the null model

(Fig. 1b). Overall, the posterior median advance in migra-

tion timing was �1�2 (95% CI: �1�7 to �0�9) days °C�1.

While this appears substantially more negative than the

mean of the funnel plot, this can be attributed to random

effects relating to region and study. In all models, the

advance in migration timing was significantly steeper in

MADs compared to FADs (Fig. 2b). The slope of

response did not vary depending on whether temperatures

were representative of changes at breeding, passage or

non-breeding sites, whether arrival was to the breeding or

passage grounds, or across different data types

(Table S4).

We detected a significant phylogenetic signal in temper-

ature slopes (H2 = 0�468 [95% CI: 0�140 to 0�984]). In our

basic model, phylogeny and species accounted for around

13�0% and 14�6% (i.e. 27�6% among-species variance, as

estimated from our basic model; Table S4) of total vari-

ance in the slope of phenology on temperature, respec-

tively, with lower CI close to zero for species variance.

Intraspecific variance, captured by location and species by

location components accounted for 29�6% and 1�7% (i.e.

31�3% within-species variance) of total variance in the

slope, respectively, with lower CI for both components

close to zero. Among-study and mean residual variance

accounted for around 19�2% and 21�9% of total variance,

respectively, and were significant sources of variation

(Table S4). The magnitudes of variance components were

qualitatively similar across our ecological models with the

exception of location variance, which decreased when con-

tinent of the study location was included as a correlate,

and among-study variance, which, as a percentage of total

variance in the slope, decreased in all ecological models

(Table S4).

Under the ecological model, we found no significant lati-

tudinal trends in the temperature slope (Table S4). As with

the year response meta-analysis, short-distance migrants

showed significantly more negative responses as compared

with long-distance migrants, although long-distance

migrants still showed a significant response overall

(Fig. 4b). We found no significant effect of body size, habi-

tat, diet or either index of species’ generalism (Table S3).
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Fig. 2. Posterior median advances (and

associated 95% CIs) in spring migration

timing (a) over time (days year�1) and (b)

with respect to temperature (day °C�1) for

different metrics of monitoring migration

timing, as estimated under the basic

model. Estimates are for arrival to the

breeding ground as reported by standard-

ized field studies, with year response esti-

mates representing advances in the decade

1980. Note that although CIs of the FAD

and MAD slope estimates overlap each

other, the 95% CI for the difference in

slope between FADs and MADs as esti-

mated directly from the basic models

(plotted to the right of the grey vertical

line) does not overlap zero and is signifi-

cant.
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Discussion

We present the most phylogenetically and geographically

extensive meta-analysis to date on changes in avian spring

migratory phenology. Our results agree with previous

findings that in recent decades, the average avian spring

migration timing has advanced in response to climate

change (Parmesan & Yohe 2003; Root et al. 2003; Lehi-

koinen, Sparks & Zalakevicius 2004; Lehikoinen et al.

2010), with migrants arriving at their breeding grounds on

average 2 days per decade earlier. This estimate of migra-

tion phenology is in broad agreement with estimates

derived from previous meta-analyses with partially over-

lapping data sets (Lehikoinen, Sparks & Zalakevicius

2004; Gienapp, Leimu & Meril€a 2007; Rubolini et al.

2007; Bitterlin & Van Buskirk 2014). Our results also con-

firm that migration timing is temperature sensitive, with

migrants arriving around 1 day earlier 1 °C�1 rise in glo-

bal temperatures. Importantly, however, our results reveal

substantial heterogeneity in the true magnitude and sign

of phenological response to climate change across phy-

logeny, species and populations.

Our results highlight species’ migration distance as a

key correlate of variation in strength of phenological

response. Our finding of steeper temporal and tempera-

ture slopes for short- compared with long-distance

migrants confirms previous findings that the former may

be better able to evolve plastic responses that partially

track changes in climatic conditions at their breeding

grounds (e.g. Butler 2003; Lehikoinen, Sparks & Zalakevi-

cius 2004). We note that long-distance migrants are also

able to significantly adjust their migratory phenology in

response to climate change, suggesting that climatic vari-

ables used as cues to time migration at their non-breeding

grounds could covary with climatic conditions at the

breeding grounds (Gordo et al. 2005; Saino & Ambrosini

2008) and/or that migrants are able to adjust their migra-

tion speed in response to warmer conditions during pas-

sage (Marra et al. 2005). Life-history traits that are

correlated with body size, such as moulting and migratory

speed, have been shown to affect phenological response to

climate change including in the most recent meta-analysis

by Bitterlin & Van Buskirk (2014). We also find that body

size has a negative relationship with migration time, such
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Fig. 3. Predicted effects of latitude on

changes in mean/median arrival dates over

time in the Northern and Southern Hemi-

spheres. Grey circles represent temporal

slope estimates. Black lines represent the

latitudinal predictions in the Northern

and Southern Hemispheres, as estimated

under the ecological model with latitude

as a predictor. Estimates are for short-dis-

tance migrants; migrants that do not rely

on forest habitats during breeding and

passage; migrants with a predominantly

invertebrate diet; habitat and diet special-

ists; body size of 10 g; arrival data as

reported by standardized field studies; and

the decade 1980.
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that the largest bodied species are advancing most

strongly, although this finding is contrary to our expecta-

tion that larger birds may be more time constrained in

their response to climate change (Hedenstr€om 2006,

2008).

We do not detect differences in response between diet

type or habitat generalists and specialists. Although stud-

ies conducted in both North America and Europe have

revealed stronger responses for species that are more gen-

eralist in terms of diet and climatic niche (V�egv�ari et al.

2010; Hurlbert & Liang 2012), our results suggest that

generalism is at best a weak correlate of changes in migra-

tion phenology. We also do not find a significantly steeper

slope for forest inhabiting species or for species with an

invertebrate-dominated diet. We do not rule out the possi-

bility that habitat and diet may still have an effect on spe-

cies’ migration timing, however, and note that other

habitat or food types may show similarly peaked seasonal

availability. For example, in a study of American

migrants, Butler (2003) found that grassland species

advanced their spring migration timing the most, perhaps

due to earlier snow melt allowing earlier availability of

seeds for which most of these migrants rely on.

Although spatial variance in both responses was esti-

mated to be quite large, we find no latitudinal trend in

migration slopes, counter to claims of steeper temporal

slopes (Sparks & Braslavsk�a 2001; Parmesan 2006) and

greater temperature responsiveness with latitude (Both

et al. 2004; While & Uller 2014) in the northern hemi-

sphere. However, previous findings from a global meta-

analysis of various plant and animal species have esti-

mated latitude to account for less than 4% of variation in

response (Root et al. 2003; Parmesan 2007). As a percent-

age of total variance, among-location variance was lower
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Fig. 4. Posterior median advances (and associated 95% CIs) in mean/median arrival dates for different migration distance classes (a)

over time (day year�1) and (b) with temperature (days °C�1) at the mean latitude of the data set in the Northern Hemisphere (46�1°N),

as estimated under our ecological models. Unclassified migrants refer to migrants that were not assigned migration distances in the origi-

nal studies. Estimates are for migrants that do not rely on forest habitats during breeding and passage; migrants with a predominantly

invertebrate diet; habitat and diet specialists; body size of 10 g; arrival data as reported by standardized field studies; and the decade

1980 for year slope estimates. The difference in slope between short- and long-distance migrants as estimated directly from our ecological

models (plotted to the right of the grey vertical line) does not overlap zero and is significant.
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for the year response than the temperature response. We

suggest that among-location variance and among-study

variance may capture similar effects: The summed propor-

tion of location and study variance accounts for 36�7%
and 50�5% of total variance in year and temperature

slopes respectively. This combined spatial variance com-

ponent corresponds to 95% of true advances in migration

timing varying between �14�0 days per decade and

9�8 days per decade over time and �15�1 days °C�1 and

12�7 days °C�1 with temperature. We find this summed

variance to be a significant source of variation in all our

year and temperature slope analyses, suggesting that con-

siderable geographical heterogeneity exists for both tem-

poral shifts and temperature sensitivity in migratory

phenology. Some of this variation may be attributable to

a plastic response to geographical variation in environ-

mental or biotic drivers that we have overlooked (Gordo

et al. 2005; Saino & Ambrosini 2008), or due to genetic

differences among populations if they are locally adapted

in their plastic response to temperature (see also While &

Uller 2014).

Our finding of substantial phylogenetic signal in the year

and temperature slopes is in contrast to a recent informal

meta-analysis on changes in migratory phenology in the

northern hemisphere (Bitterlin & Van Buskirk 2014). Our

estimate of significant phylogenetic signal reveals that

there may be some phylogenetic constraints to the timing

of migration in response to climate, consistent with find-

ings in plants (Willis et al. 2008) and butterflies (Roy et al.

2015). However, high levels of species and spatial variance

estimates for the temperature response model are consis-

tent with a scenario where plasticity in response to climate

evolves rapidly and is more influenced by adaptation to

current local climate than by common descent (Rubolini

et al. 2007; V�egv�ari et al. 2010). For this reason, we sug-

gest that phylogenetic relationships are likely to be of little

value in predicting the migratory responses of populations

of further species.

Finally, as a variety of approaches exist for estimating

migration time response, it is desirable to control for these

differences and distinguish between true variation in phe-

nological response and artefacts caused by differences in

field methodology. Estimates of residual variance compo-

nents in both year and temperature slopes are large,

which suggests considerable heterogeneity in slope esti-

mates arises due to different data collection methods of

migrants’ arrival dates. We also find differences in

response between different metrics of spring migration

timing, consistent with the explanation that FADs are

subject to biases such as changes in sampling effort and

population size, making them less reliable than measures

of average arrival dates for estimating population pheno-

logical trends (Sparks, Roberts & Crick 2001; Try-

janowski & Sparks 2001; Rubolini, Saino & Møller 2010).

We suggest that steeper slopes for changes in MADs com-

pared with FADs may result from a decline in migrant

population sizes (Robbins et al. 1989; Sanderson et al.

2006) causing first dates to be delayed relative to MADs.

Additionally, we did not find significant differences in

migratory phenology to temperature changes at breeding

compared to non-breeding grounds. Unfortunately, stud-

ies that consider climatic data from non-breeding grounds

(e.g. from Central and South America) remain scarce rela-

tive to those of breeding grounds (comprising just 10�6%
of our temperature records).

Our estimate of an average migratory response to tem-

perature of �1�2 days °C�1 is shallower than estimates of

the response of lay dates to spring temperatures (Dunn &

Møller 2014; Phillimore et al. 2016; Thackeray et al.

2016). If spring temperatures continue to rise, this shallow

response of migration time to spring temperature may act

as a hard limit on the lay date response to breeding

ground temperatures, thus placing migrant species at a

disadvantage relative to resident species (Both & Visser

2001). Such demographic consequences have been

reported for a Dutch population of pied flycatchers,

where population declines have been most severe in areas

with an early food peak and for migrants that are least

flexible in their response to temperature increases (Both &

Visser 2001; Both et al. 2006). In addition, our finding

that long-distance migrants are less responsive to rising

temperatures than short-distance migrants present

grounds for concern. If spring temperatures on the breed-

ing ground continue to rise, advances in the timings of

plant and invertebrate phenology and optimum lay date

are also predicted (Gienapp et al. 2013; Vedder, Bouwhuis

& Sheldon 2013).

In this phylogenetic meta-analysis, we find that the

average migratory bird is returning to breeding grounds

significantly earlier than in the past and as temperatures

rise. Around this mean, we identify substantial variation

in the true response of different species and populations.

While we identify some ecological predictors of this varia-

tion, substantial intra- and interspecific variation in

migratory response remains to be explained. We note that

although our data set is extensive, it is by no means

exhaustive, with our meta-analyses predominantly

comprising English-language literature. By adopting

PRISMA procedures, however, we have crucially followed

a replicable process in determining which studies are to be

included in the meta-analysis, the importance of which

has been stressed in ecological and evolutionary meta-ana-

lyses (Nakagawa & Poulin 2012). We further note that

inclusion of spatial random effects in our models as well

as use of geographical terms in our search string mitigates

spatial bias in our data set. Thus, we have presented here,

to our knowledge, the most extensive, formal meta-

analyses of avian migration phenology to date.
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