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Inferring time-derivatives including cell growth rates
using Gaussian processes

Peter S. Swain∗† Keiran Stevenson∗ Allen Leary‡

Luis F. Montano-Gutierrez∗ Ivan B. N. Clark∗ Jackie Vogel‡

Teuta Pilizota∗

Often the time-derivative of a measured variable is of as much interest as the
variable itself. For a growing population of biological cells, for example, the
population’s growth rate is typically more important than its size. Here we
introduce a non-parametric method to infer first and second time-derivatives
as a function of time from time-series data. Our approach is based on Gaussian
processes and applies to a wide range of data. In tests, the method is at least
as accurate as others, but has several advantages: it estimates errors both
in the inference and in any summary statistics, such as lag times, and allows
interpolation with the corresponding error estimation. As illustrations, we
infer growth rates of microbial cells, the rate of assembly of an amyloid fibril,
and both the speed and acceleration of two separating spindle pole bodies.
Our algorithm should thus be broadly applicable.

Introduction

Estimating the time-derivatives of a signal is a common task in science. A well-known
example is the growth rate of a population of cells, which is defined as the time-derivative
of the logarithm of the population size [1] and is used extensively in both the life sciences
and biotechnology.

A common approach to estimate such derivatives is to fit a mathematical equation
that, say, describes cellular growth and so determine the maximum growth rate from the
best-fit value of a parameter in the equation [2]. Such parametric approaches rely, however,
on the mathematical model being a suitable description of the underlying biological or
physical process, and, at least for cellular growth, it is common to find examples where
the standard models are not appropriate [3].

The alternative is to use a non-parameteric method and so estimate time-derivatives
directly from the data. Examples include taking numerical derivatives [4] or using local
polynomial or spline estimators [5]. Although these approaches do not require knowledge
of the underlying process, it can be difficult to determine the error in their estimation [5]
and to incorporate experimental replicates, which with wide access to high throughput
technologies, are now the norm.

∗: SynthSys – Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh,
Mayfield Road, Edinburgh EH9 3BF, U.K.; ‡: Department of Biology, McGill University, Montreal,
Quebec, Canada H3G 0B1; †: Corresponding author (peter.swain@ed.ac.uk)
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Here we develop a methodology that uses Gaussian processes to infer both the first and
second time-derivatives from time-series data. One advantage of using Gaussian processes
over parametric approaches is that we can fit a wider variety of data. Rather than assum-
ing that a particular function characterises the data (a particular mathematical equation),
we instead make assumptions about the family of functions that can describe the data.
An infinite number of functions exist in this family, and the family can capture many
more temporal trends in the data than any one equation. The advantages over existing
non-parametric methods are that we can straightforwardly and systematically combine
data from replicate experiments (by simply pooling all datasets) and predict errors both
in the estimations of derivatives and in any summary statistics. A potential disadvantage
because we use Gaussian processes is that we must assume that the measurement noise
has a normal or log-normal distribution (as do many other methods), but we can relax
this assumption if there are multiple experimental replicates.

To illustrate how our approach predicts errors and can combine information from
experimental replicates, we first focus on inferring growth rate from measurements of the
optical density of a growing population of biological cells. Plate readers, which are now
wide-spread, make such data easy to obtain, typically with hundreds of measurements
and often at least 3-10 replicates. We will also, though, show other examples: estimating
the rate of in vitro assembly of an amyloid fibril and inferring the speed and acceleration
of two separating spindle pole bodies in a single yeast cell.

Results

An overview of Gaussian processes

A Gaussian process is a collection of random variables for which any subset has a joint
Gaussian distribution [6]. This joint distribution is characterised by its mean and its
covariance.

To use a Gaussian process for inference on time-series, we assume that the data can be
described by an underlying, or latent, function, and we wish to infer this latent function
given the observed data. For each time point of interest, we add a random variable to
the Gaussian process. With n time points, there are therefore n corresponding random
variables in the Gaussian process. The latent function is given by the values taken by
these random variables (Fig. 1A). Without losing any generality, we set the mean of each
random variable to be zero [6].

How each random variable in the Gaussian process depends on the other random
variables both at earlier and later times, i.e. how the variables covary, determines the
shape of the latent function. For example, if each random variable does not covary with
any other (the covariance matrix of the Gaussian process is the identity matrix), then the
latent function will randomly jump back and forth around zero. If each random variable
covaries equally with every other random variable (all the entries of the covariance matrix
are one), then the functions sampled will be straight horizontal lines starting at the value
of the random variable associated with the first time point. More pertinently, if the
covariance for each random variable is positive for those random variables close in time
and tending to zero for random variables far away in time, then the functions generated
vary, but do so smoothly.

To proceed, we therefore must chose the type of covariance function for the Gaussian
process and in doing so we necessarily make some assumptions about the latent functions
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Figure 1. An overview of inference with Gaussian processes. A) A graphical model of a
Gaussian process [6]. Squares denote known variables (times, ti, and data points, yi); circles
denote unknown variables (the underlying, latent function, fi). We associate a variable in the
Gaussian process to each time point and the value of this variable gives the value of the latent
function. Each observed data point, yi, depends only on the corresponding latent variable, fi.
Each f variable, however, depends on all the other f variables (they covary). B) Four examples
of latent functions with a squared exponential covariance function. The functions are strictly
only defined at the time points of the observations (shown with black semi-circles on the x-axis)
but are drawn with a continuous line for clarity. C) Four examples of latent functions after
conditioning on the data (data are shown as blue dots). Although each individual function is
smooth, there is more variation between functions where the data is more spread. Averaging
many latent functions gives the best-fit. The hyperparameters of the covariance matrix are the
same as those in B.

that underlie the data. We will often use a squared exponential covariance, which imposes
little restriction on the shape of the latent function other than to assume that it is smooth
(infinitely differentiable) (Fig. 1B). The Matern covariance function (paramaterised with
ν = 5/2) relaxes this smoothness assumption and imposes that the latent function is only
twice differentiable [6]. Another alternative is the neural network covariance, which tends
to generate sigmoid-shaped latent functions [6]. We emphasise that choosing a covariance
function to describe the latent function puts much less restriction on its shape than the
more traditional choice of selecting a particular mathematical equation to model the latent
function.

Each covariance function is parameterised in its own way, and we must find the ap-
propriate values of these parameters given the data. More correctly, the parameters are
called hyperparameters (Methods), and determining the hyperparameters is the compu-
tationally intensive part of the inference.

Once the hyperparameters are optimised, we can sample from the Gaussian process
to generate a latent function that is consistent with our data (Fig. 1C). The mean latent
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function, which we could find from averaging many samples but can also calculate directly,
gives the ‘best-fit’, and the variance of the latent function provides an estimation of the
error in the inference.

Following on from earlier work [7], we adapt this standard inference procedure to also
allow the inference of the first two time-derivatives of the latent function because these
time-derivatives are, in many applications, of more interest than the latent function itself.
Errors in inference of the latent function are automatically carried through to the errors
in inferring time-derivatives.

Verification of the algorithm

To verify our algorithm’s inference of first and second time-derivatives, we followed the
tests of De Brabanter et al. [8]. Gaussian measurement noise was added to the same
analytic functions chosen by De Brabanter et al. for which time-derivatives can be found
exactly, and the mean absolute difference between the inferred derivative and the exact
derivative was used to score the inference (see [8] for details – the end points are not
included). We show the distribution of scores for 100 different datasets each with a
different sample of the measurement noise (Fig. 2).

For these tests, our method outperforms established alternatives. For illustration, we
show results for both the squared exponential covariance function and the neural network
covariance function. Independent of the choice, the method performs at least as well as
alternatives (Fig. 2).

Estimating cellular growth rates

We now consider the inference of microbial growth rates (strictly, we infer the specific
growth rate: the time derivative of the logarithm of the population size). The population
size as a function of time is commonly fit to a parametric equation [2], although these
equations are restrictive and describe only a particular type of growth [3]. Therefore to
provide a further test of our algorithm, we considered a linear sum of two growth equations
– the Gompertz [9] and Richards [10] models – to generate a growth curve that cannot in
principle be fit by either, but where an exact expression for the first derivative can still
be found. We compare our results with smoothing splines, an established non-parametric
alternative [3].

For these data sets and this magnitude of measurement noise, both methods perform
equally well, but the inference using Gaussian processes becomes more robust as the
number of data points increase (Fig. 3). We note that we have artificially favoured the
smoothing spline because the smoothing parameter for the spline is set with the variance
used to generate the synthetic measurement noise. The Gaussian process methodology,
in contrast, infers this variance. Despite the advantage of the spline-based inference, its
median error is approximately 45% higher when n = 1000.

Turning to experimental measurements, we fit optical densities, which are proportional
to the number of cells if properly calibrated [11, 12], and show that we can infer growth
rates for two cases that cannot be easily described by parametric approaches [3]. The
first exhibits a diauxic shift with two distinct phases of growth and the second shows
an exceptionally long lag (Fig. 4). We infer the growth rate and the estimated errors in
our inference as a function of time using all experimental replicates. Data from replicate
measurements are pooled together, and the algorithm applied as for a single replicate.
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Figure 2. The inference method can perform better than alternatives. A) Inference of the
first derivative. A box plot of error scores (related to the mean absolute difference between
the inferred and exact derivative) for inference of the first derivative. We use either a squared
exponential covariance function or a neural network covariance function for the Gaussian pro-
cess (GP) and compare with local polynomial regression (with p = 3) and a quintic penalised
smoothing spline (data for both from [8]). Top left shows one sample data set (in red with 500
data points), the true underlying function (in green), and the inferred latent function using a
neural network covariance function – the best fit (in blue); top right shows the corresponding
first derivative (with here an error score of 0.64): exact (in green) and inferred (in blue). Equiv-
alent plots for the alternative inference methods are given by De Brabanter et al. [8]. Errors (in
light blue) are standard deviations. B) Inference of the second derivative. A box plot of scores
for inference of the second derivative. The two alternatives are local polynomial regression (with
p = 5) and a septic penalised smoothing spline (data for both from [8]). Top right shows one
sample data set (in red with 1500 data points), the underlying function (in green), and the
inferred latent function using a neural network covariance function (in blue); top left shows the
corresponding second derivative (with here an error score of 26.2): exact (in green) and inferred
(in blue).

Having the inferred growth rate over time can make identifying different stages of the
growth curve substantially easier than making this identification from the optical density
data alone. For example, the local minimum in the growth rate of Fig. 4A is expected
to indicate a shift from cells using glucose to using galactose. Inferring a time-dependent
growth rate should increase the robustness of high throughput automated studies, which
usually focus on identifying exponential growth [13, 14].

Often summary statistics are used to describe a growth curve, such as the maximum
growth rate and the lag time [2], and we can estimate such statistics and their associated
errors. From our inference, we can sample latent functions that are consistent with the
data. Each sample provides an example of a latent function that ‘fits’ the data. To
estimate errors in statistics, we generate say 100 samples of the latent function and its
time-derivatives (Fig. 4A inset). For each sample, we calculate the statistic for that
sample, such as the maximum growth rate. We therefore obtain a probability distribution
for the statistic and report the mean and standard deviation of this distribution as the
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Figure 3. Inference of growth rates with Gaussian processes becomes more robust with
increasing numbers of data points. A) We show the inferred growth rate (the best-fit with
a squared exponential Gaussian process in blue with errors in light blue and from a cubic
smoothing spline in purple) and the exact growth rate (in green) for synthetic data sets with
either 10, 100, or 1000 time points (insets, with the underlying growth curve in green). Even
though we favour smoothing splines by setting the smoothing parameter to be proportional to the
exact variance of the measurement noise (whereas the Gaussian process infers this parameter),
both methods perform similarly. B) A box plot of errors scores for inference of the growth rate
from 100 data sets with randomly generated log-normal measurement noise. For the Gaussian
process, the distribution of error scores tightens with increasing number of data points.

best-fit value and the estimated error (0.16 ± 0.002 hr−1 for the maximum growth rate for
the data in Fig. 4A). A similar approach applies for any statistic that can be calculated
from a single growth curve (Methods).

The data for Fig. 4B are considerably noisier than the data for Fig. 4A, and the spread
of data is larger at short times than at long times. The magnitude of the measurement
noise changes with time. More correctly, we typically assume that the measurement noise
can be described by a Gaussian distribution with zero mean and a constant standard
deviation. The magnitude of the measurement noise is this standard deviation, and the
standard deviation here, for the data of Fig. 4B, appears to be time-dependent (it is largest
at early times). To empirically estimate the relative scale of this change, we calculate
the variance across replicates at each time point. We assume that the magnitude of
the measurement noise is a time-independent constant multiplied by this time-dependent
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relative scale, and we fit that constant (Methods).
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Figure 4. Microbial growth rates can be inferred as a function of time. A) A growth curve
of Saccharomyces cerevisiae in a mixture of 0.4% glucose and 1% galactose showing a diauxic
shift (7 replicates, each with n = 115). The best-fit (mean) latent function is shown in dark
blue and the inferred growth rate is shown below. All error bars (light blue) are standard
deviations. The inset shows, as an example, 4 sample estimates of the growth rate as a function
of time (samples of the first derivative of the latent function – the corresponding samples of the
latent function itself are not shown). B) Growth of Escherichia coli in hyperosmotic conditions
with an unusually long lag and short growth period (2 replicates, each with n = 646) and the
inferred growth rate. The magnitude of the measurement noise is here allowed to vary with time
and empirically estimated across the replicates (Methods). Error bars (light blue) are standard
deviations.

Further applications

As additional examples, we first infer the rate of assembly of an amyloid fibril as a function
of time from in vitro data (Fig. 5A) [15]. Despite each replicate having high measurement
noise compared to the microbial data, the rate of fibril assembly can be inferred accurately
because of the many replicates. The second example is one where both the first and the
second derivative are useful: estimating the speed of separation of the spindle poles during
anaphase in a single cell of budding yeast (Fig. 5B). We demonstrate that we can infer
both time-derivatives and their errors from a single replicate. As expected, the size of the
estimated error increases for the first derivative relative to the error in the regression and
increases again for the second derivative. Changes in the speed of separation (extrema in
the second derivative) are used to characterise anaphase [16] into the fast, pause and slow
elongation phases [17]. We chose a Gaussian process with a neural network covariance
function for this data rather than the squared exponential covariance function used for
the others: a difference that is important here because we only have a single replicate
with few data points. The latent functions generated then tend to be flatter either side
of the increase in separation, which leads to smoother inferences of the acceleration.
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Figure 5. The algorithm has wide application. A) Inferring the in vitro rate of assembly of
an amyloid fibril. Fluorescence data reporting the formation of fibrils in bovine insulin (at a
concentration of 0.1 mg ml−1) by the binding of the dye Thioflavin T are shown (red dots) with
15 replicates (each with n = 91) [15]. The best-fit (top) and the inferred rate of fibril assembly
(bottom) are shown in dark blue. We empirically estimate the magnitude of the measurement
noise across the replicates. Errors (in light blue) are standard deviations. B) Inferring the speed
and acceleration of separation of the spindle poles in S. cerevisiae. The distance, s, between the
two spindles in a single cell is plotted in microns as a function of time (red dots with n = 57).
The best-fit and the inferred speed (middle) and acceleration (bottom) are shown in dark blue.
The triangles denote turning points in the acceleration and separate anaphase into stages with
fast and slow elongation separated by a pause [16]. Errors are standard deviations.

Discussion

To conclude, we have introduced a non-parametric method that uses Gaussian processes to
infer first and second derivatives from time-series data. In tests, our approach is at least as
accurate as others (Figs. 2 and 3), but has several advantages: it systematically estimates
errors, both for the regression and the inferred derivatives; it allows interpolation with the
corresponding error estimation (Gaussian processes were developed for interpolation [6]);
and it allows sampling of the latent function underlying the data and so can be used to
estimate errors in any statistic of that function by calculating the statistic for the samples.

For fitting growth curves, several alternatives exist [3, 18, 19, 20], which, although
mostly focusing on parametric approaches, do allow spline fitting [3] and polynomial
regression [18, 20]. Both approaches have been criticised, being sensitive to outliers and
potentially having systematic biases [5], and at least in the case of splines appear less
robust (Fig. 3). Further, our software performs inference using all replicates, can infer
second derivatives, and rigorously estimates errors. Where error estimation in summary
statistics has been addressed [3], bootstrapping of the data is used. This approach is
perhaps less suited for time-series data than our approach of sampling latent functions
because it leads to some randomly chosen data points being weighted more than others
when generating sample fits.

Of the three we considered, we find that the squared exponential function is generally
the best choice of covariance function when estimating time-derivatives because it typically
results in the inference of first- and second-derivatives with a smoothness that is consistent
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with a priori expectations of the nature of the underlying dynamics. Although the Matern
covariance is not as restrictive because it constrains the smoothness of the latent functions
less, it can lead to the inference of rough, fluctuating derivatives, particularly for the
second-derivative and if the magnitude of the measurement noise is high. For example,
using the Matern covariance gives poor results for the data in Fig. 2A (with median
error scores that are approximately 60% higher than those for the squared exponential
covariance), but performs slightly better (medians within 10%) for the less noisy data
in Fig. 3. Finally, the neural network covariance, although perhaps the least prone to
the inference of rough time-derivatives, can be more sensitive to prior information: the
hyperparameter controlling the flexibility of the latent function is optimised to its upper
bound more often than for the other covariance functions. All three covariance functions
are implemented in our code and can be tested for a new type of data.

Like any Bayesian method, prior information on bounds for the hyperparameters of
the covariance function can affect the inference, although these bounds can typically be
set so that the best-fit values are far from the bounds. In particular, how closely the latent
function follows the data depends both on its flexibility and on the size of the measurement
noise. An outlier can be followed if the flexibility is high or if the measurement noise is
low. When there is not sufficient data, the algorithm, rightly in our opinion, requires prior
information to make this choice. Alternative methods also require prior specification, such
as the degree of smoothness in fitting with either splines or a local polynomial method, like
LOESS. For a particular type of data, the bounds typically need to be set once allowing
high throughput analyses.

Measuring cellular growth rates is a daily task in many laboratories, but, if using a
non-parameteric approach, researchers often follow the method developed in the early
days of molecular biology: finding the gradient of a line fit to the portion of the growth
curve that appears most straight on a semi-log plot. Our methodology takes advantages
of advances in machine learning to allow inference not only of the maximum growth rate
but of the growth rate as a function of time. Time-dependent growth rates must capture
more of the underlying biology, such as the time of the diauxic shift in Fig. 4A, but they
have been little exploited. We believe that using more advanced inference techniques,
such as the one based on Gaussian processes that we present here, in combination with
developments in high throughput technologies will transform our understanding of cellular
growth and the factors that control it.

Methods

Using a Gaussian process to fit time-series data

In the following, we will denote a Gaussian distribution with mean µ and covariance
matrix Σ as N (µ,Σ) and use the notation of Rasmussen and Williams [6] as much as
possible.

Prior probability

For n data points yi at inputs xi (each xi is a time for a growth curve), we denote the
underlying latent function as f(x). We define a covariance matrix k(x, x′), which has an
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explicit (although here not written) dependence on hyperparameters θ, and obeys

Cov[f(x), f(x′)] = E
[(
f(x)− E[f(x)]

)(
f(x′)− E[f(x′)]

)]
= k(x, x′; θ), (1)

where the expectations are taken over distribution of latent functions (samples of f(x))
and θ denotes the covariance function’s hyperparameters.

We interpret Eq. 1 as giving the prior probability distribution of the latent functions
f(X), where were we use X to denote the inputs xi, such that[

f(x1), ..., f(xn)
]T
∼ N (0, K(X,X)) (2)

whereK(X,X) is the n×nmatrix with components k(xi, xj). With f denoting [f(x1), ..., f(xn)],
this prior probability can be written as

P (f |X, θ) ∼ N (0, K(X,X)) (3)

noting the dependence of k(x, x′; θ) on the hyperparameters θ.

Marginal likelihood

After choosing a covariance function, to use Gaussian processes in regression, we must
optimise the covariance function’s hyperparameters given the observed data. We will do so
by maximising the marginal likelihood, where the marginalisation is made by integrating
over all possible latent functions [6]. Once the parameters of the covariance function have
been determined, we can sample latent functions given the data. We consider the squared
exponential, Matern (with ν = 5/2), and neural network covariance functions.

To optimise the hyperparameters given the data, we therefore consider the likelihood
P (y|θ,X), which, more correctly, is a marginal likelihood

P (y|θ,X) =

∫
dfP (y, f |θ,X)

=

∫
dfP (y|f , X, θ)P (f |X, θ) (4)

where the marginalisation is over all choices of the latent function f evaluated at X.
If we assume that for all yi, yi = f(xi) + εi where each εi is an independent Gaussian

variable with zero mean and a standard deviation of σi = σ for simplicity, then

P (y|f , X, θ) ∼ N (f , σ2I) (5)

where I is the n× n identity matrix. Eqs. 3 and 5 imply that the marginal likelihood is
also Gaussian:

P (y|θ,X) ∼ N (0, K(X,X) + σ2I). (6)

We use a maximum-likelihood method to find the hyperparameters and maximise the
marginal likelihood (Eq. 6). We have two hyperparameters for the squared exponential
covariance function and the parameter, σ, which characterises the measurement noise.
We assume a bounded, uniform prior probability for each of these hyperparameters and
use the Broyden-Fletcher-Goldfarb-Shanno algorithm [4] to find their optimum values.
Although one optimisation run from random initial choices of the hyperparameters is
usually sufficient, choosing the best from multiple runs can prevent the algorithm finding
local maxima.
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Making predictions

Given the optimum choice of the hyperparameters, we would like to generate sample latent
functions at points X∗, which to include the possibility of interpolation need not be the
same as X, by sampling from P (f∗|X,y, θ,X∗). Using Eq. 6 and that the distribution of
the latent function evaluated at X∗ is also Gaussian, we can write the joint probability
of y and f∗ as [6]: (

y
f∗

)
= N

(
0,

[
K(X,X) + σ2I K(X,X∗)
KT (X,X∗) K(X∗, X∗)

])
(7)

where K(X,X∗) is the n× n∗ matrix with components k(xi, x
∗
j).

Conditioning Eq. 7 on the data y, standard results for Gaussian distributions [6] give
that the probability distribution P (f∗|X,y, θ,X∗) is also Gaussian with mean

E[f∗] = K(X∗, X)
[
K(X,X) + σ2I

]−1
y (8)

and covariance matrix

Cov[f∗] = K(X∗, X∗)−K(X∗, X)
[
K(X,X) + σ2I

]−1
KT (X∗, X). (9)

We use Eqs. 8 and 9 to sample f∗.

Inferring the first- and second time-derivatives

To determine the time-derivative of the data, we use that the derivative of a Gaussian
process is another Gaussian process [6]. We can therefore adapt standard techniques for
Gaussian process to allow time-derivatives to be sampled too.

Building on the work of Boyle [7], we let g(x) and h(x) be the first and second deriva-
tives with respect to x of the latent function f(x). If f(x) is a Gaussian process then so
are both g(x) and h(x). Writing ∂1 and ∂2 for the partial derivatives with respect to the
first and second arguments of a bivariate function, we have

Cgf (xi, xj) = ∂1k(xi, xj) ; Cfg(xi, xj) = ∂2k(xi, xj) ; Cgg(xi, xj) = ∂1∂2k(xi, xj)
(10)

and that
Chf (xi, xj) = ∂21k(xi, xj) ; Cfh(xi, xj) = ∂22k(xi, xj) (11)

as well as

Chg(xi, xj) = ∂21∂2k(xi, xj) ; Cgh(xi, xj) = ∂1∂
2
2k(xi, xj) ; Chh(xi, xj) = ∂21∂

2
2k(xi, xj)

(12)
following [21].

Consequently the joint probability distribution for y and f∗, g∗, and h∗ evaluated at
points X∗ is again Gaussian (cf. Eq. 7):

y
f∗

g∗

h∗

 = N

0,


K + σ2I K(X,X∗) ∂2K(X,X∗) ∂22K(X,X∗)
K(X∗, X) K∗ ∂2K

∗ ∂22K
∗

∂1K(X∗, X) ∂1K
∗ ∂1∂2K

∗ ∂1∂
2
2K
∗

∂21K(X∗, X) ∂21K
∗ ∂21∂2K

∗ ∂21∂
2
2K
∗


 (13)
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where we write K = K(X,X) and K∗ = K(X∗, X∗) for clarity.
The covariance function is by definition symmetric: k(xi, xj) = k(xj, xi) (Eq. 1).

Therefore ∂k1∂
`
2k(xi, xj) = ∂k2∂

`
1k(xj, xi) and so

∂k1∂
`
2K(X∗, X) = [∂`1∂

k
2K(X,X∗)]T (14)

for all positive integers k and `. Consequently, the covariance matrix in Eq. 13 is also
symmetric.

Conditioning on y now gives that the distribution P (f∗,g∗,h∗|X,y, θ,X∗) is Gaussian
with mean

E

 f∗

g∗

h∗

 =

 K(X∗, X)
∂1K(X∗, X)
∂21K(X∗, X)

[K + σ2I
]−1

y (15)

and covariance matrix

Cov

 f∗

g∗

h∗

 =

 K∗ [∂1K
∗]T [∂21K

∗]T

∂1K
∗ ∂1∂2K

∗ [∂21∂2K
∗]T

∂21K
∗ ∂21∂2K

∗ ∂21∂
2
2K
∗


−

 K(X∗, X)
∂1K(X∗, X)
∂21K(X∗, X)

[K + σ2I
]−1 KT (X∗, X)

[∂1K(X∗, X)]T

[∂21K(X∗, X)]T

 . (16)

Eq. 16 includes Eq. 9 and shows that

Cov[g∗] = ∂1∂2K
∗ − ∂1K(X∗, X)

[
K + σ2I

]−1
[∂1K(X∗, X)]T (17)

which gives the error in the estimate of the first derivative [7]. Similarly,

Cov[h∗] = ∂21∂
2
2K
∗ − ∂21K(X∗, X)

[
K + σ2I

]−1
[∂21K(X∗, X)]T (18)

is the error in estimating the second derivative.

Using an empirically estimated measurement noise

Although our derivation is given for a Gaussian process where the measurement errors
in the data are independent and identically distributed with a Gaussian distribution of
mean zero, the derivations are unchanged if the measurement noise has a different standard
deviation for each time point [6].

When the magnitude of the measurement noise appears to change with time, we first
empirically estimate the relative magnitude of the measurement noise by the variance
across all replicates at each time point. We then smooth this estimate over time (with
a Gaussian filter with a width of 10% of the total time of the experiment, but the exact
choice in not important) and replace the identity matrix, I, in Eqs. 6, 15, and 16 by a
diagonal matrix with the relative measurement noise on the diagonal in order to make
predictions.
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Estimating the growth characteristics

From the growth curve, we estimate the maximum growth rate as the maximum time-
derivative of the logarithm of the growth curve [2]:

growth rate = max
t
y′(t)

y(t)
(19)

where we denote the growth curve as y(t). The doubling time is ln(2) times the inverse
of the growth rate. We define the lag time as the intercept of the line parallel to the time
axis that passes through the initial OD, y(0), and the tangent to the logarithm of the
growth curve from the point on the growth curve with maximum growth rate (a standard
choice [2]). If this point of maximum growth rate is at t = t∗, then

lag time = t∗ − y(t∗)

y′(t∗)
ln
y(t∗)

y(0)
. (20)

For each characteristic, we can estimate measurement error through calculating the
characteristic for 100s of sampled latent growth curves.

Implementation and GUI

The code for our algorithm is freely available and written in Python 3 using NumPy [22],
SciPy (Jones, Oliphant, Peterson, et al.), Matplotlib [23], and the Pandas data analysis
library (all available via the free Anaconda package) and is compatible with Microsoft’s
Excel. We give an example script and data set and have written a GUI that runs on
Windows, OS X, and Linux.

Code availability

The software and instructions for its use are at
http://swainlab.bio.ed.ac.uk/software/fitderiv

Generating synthetic data for Figure 3

To generate the synthetic data shown in Fig. 3, we use a weighted sum of a Gompertz
model (parameters: A = 1.1, µm = 0.6, and λ = 2.3; weight: 0.3) and a Richards model
(parameters: A = 1.5, µm = 0.3, λ = 4.3, and ν = 0.8; weight: 0.7) using the notation of
[2]. We added log-normal measurement noise with zero mean and a standard deviation of
σm = 0.03 and used the SciPy implementation of a cubic spline and its time-derivative,
setting the smoothing parameter to be nσ2

m where n is the number of data points.
The error score in Fig. 3 is the mean absolute deviation of the inferred growth rate

from the exact growth rate ignored 5% of the data points both at the beginning and end
of the time-series in order to avoid end-point effects potentially dominating the error [8].

Experimental methods

Data for Fig. 4A was gathered using Tecan Infinity M200 plate reader and a BY4741 strain
of S. cerevisiae growing in synthetic complete media supplemented with 0.4% glucose and
1% galactose at 30oC, following an established protocol [24]. OD was measured at an
absorbance wavelength of 595 nm every 11.4 minutes.
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Figure Covariance function Hyperparameter Lower bound Upper bound

1A squared exponential 0 10−5 105

1 10−3 102

2 10−5 102

neural network 0 10−1 105

1 103 103

2 10−6 102

1B squared exponential 0 10−5 105

1 10−3 104

2 10−5 102

neural network 0 10−1 105

1 101 102.5

2 10−6 102

2A & 2B squared exponential 0 10−5 105

1 10−6 102

2 10−5 102

3A squared exponential 0 10−5 105

1 10−6 102

2 10−5 100

3B neural network 0 10−1 105

1 10−4 10−1

2 10−6 102

Table 1. Ranges of hyperparameters used for the examples. For the squared exponential
covariance function, the hyperparameters determine the amplitude of the variation in the
latent function, its flexibility, and the magnitude of the measurement noise; for the neural
network covariance function, the hyperparameters determine the initial y-value of the
latent function, its flexibility, and the magnitude of the measurement noise.

Data for Fig. 4B was gathered using a Spectrostar Omega microplate reader and a
BW25113 strain of E. coli growing in MM9 (sodium-sodium instead of sodium-potassium)
media with 0.1% glucose and 1106 mOsm sucrose at 37oC. OD was measured at an
absorbance wavelength of 600 nm every 7.5 minutes.

Data for Fig. 5A is from [15].
Data for Fig. 5B was gathered using a custom spinning disk confocal microscope for

20mins in 20s time steps with 50ms exposure time per focal plane. Spindle pole bodies
were labelled with Spc42-Cerulean. An image stack of 30 z-planes with 300nm step size
was gathered for each time point to allow the position of the spindle poles to be fitted to
3-D Gaussian distributions and tracked in time. Imaging, fitting and tracking followed
an established protocol [16].

Data availability

Data generated in this work is available at http://dx.doi.org/10.7488/ds/1405.
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