
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Valid inequalities for a single constrained 0-1 MIP set intersected
with a conflict graph

Citation for published version:
Agra, A, Doostmohammadi, M & De Souza, CC 2016, 'Valid inequalities for a single constrained 0-1 MIP set
intersected with a conflict graph' Discrete Optimization, vol. 21, pp. 42-70. DOI:
10.1016/j.disopt.2016.05.005

Digital Object Identifier (DOI):
10.1016/j.disopt.2016.05.005

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Discrete Optimization

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/83952495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.disopt.2016.05.005
https://www.research.ed.ac.uk/portal/en/publications/valid-inequalities-for-a-single-constrained-01-mip-set-intersected-with-a-conflict-graph(04023a6f-1bd1-4630-b932-a317fc71f24a).html
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Abstract

In this paper a mixed integer set resulting from the intersection of a single constrained mixed 0-1 set with the
vertex packing set is investigated. This set arises as a subproblem of more general mixed integer problems
such as inventory routing and facility location problems. Families of strong valid inequalities that take into
account the structure of the simple mixed integer set and that of the vertex packing set simultaneously
are introduced. In particular, the well-known mixed integer rounding inequality is generalized to the case
where incompatibilities between binary variables are present. Exact and heuristic algorithms are designed
to solve the separation problems associated to the proposed valid inequalities. Preliminary computational
experiments show that these inequalities can be useful to reduce the integrality gaps and to solve integer
programming problems.

Keywords: mixed integer programming; valid inequality; separation; vertex packing set; conflict graph;
independent set;

1. Introduction

It is well-known that the use of strong valid inequalities as cuts can be very effective in solving mixed
integer problems. One classical approach to generate these valid inequalities is to study the polyhedral
structure of simple sets which occur as relaxations of the feasible sets of those general problems. Two such
successful examples are the use of Mixed Integer Rounding (MIR) inequalities, derived from a basic mixed
integer set [14, 19], and the use of valid inequalities for conflict graphs, resulting from logical relations
between binary variables, for solving mixed integer programs [5].

The goal of this paper is to investigate the polyhedral structure of a mixed integer set that results from
the intersection of two well-known sets: a simple mixed integer set and the vertex packing set associated
with a conflict graph.

Let X be the set of points (s, x) ∈ R× Z
n satisfying

s+ c
∑

i∈N1

xi ≥ d, (1)

xi + xj ≤ 1, {i, j} ∈ E, (2)

xi ∈ {0, 1}, i ∈ N, (3)

s ≥ 0, (4)

where N = {1, . . . , n} is the index set of binary variables, and E is the set of pairs of indices of incompatible
nodes, N1 ⊆ N , and c > 0, d > 0. The graph G = (N,E) is known as the conflict graph of pairwise conflicts
between binary variables (see [1, 5]).

Email addresses: aagra@ua.pt (Agostinho Agra), mahdi.doostmohammadi@tecnico.ulisboa.pt (Mahdi
Doostmohammadi), cid@ic.unicamp.br (Cid C. de Souza)
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Let N0 = N \N1. Although the general results and the validity of the inequalities presented in the paper
hold for the case where N0 is empty, some facet-defining conditions need to be adjusted. Therefore, to ease
the reading of the paper, N0 is assumed to be nonempty. When c > d, the inequality s + c

∑
i∈N1

xi ≥ d
can be replaced by the stronger inequality s+ d

∑
i∈N1

xi ≥ d. Thus, henceforward, it is also assumed that
c ≤ d.

Set X is the intersection of two sets: X = XV P

⋂
XSMI , where XV P is the vertex packing set defined by

(2)–(3), that results by considering the conflict graph G = (N,E), and XSMI is a simple mixed integer set
defined by {(s, x) ∈ R×B

|N1|| satisfying (1) and (4)}. The convex hulls of X,XV P , and XSMI , are denoted
by P, PV P , and PSMI , respectively.

The set XSMI has been intensively used as a relaxation of several mixed integer sets, see [19] for examples.
It is well-known that in order to describe PSMI , when |N1| ≥ ⌈

d
c
⌉, it suffices to add to the defining inequalities

(1), (4), xi ≥ 0, and xi ≤ 1, i ∈ N1, the following MIR inequality

s+ r
∑

i∈N1

xi ≥ r
⌈d
c

⌉
, (5)

where r = d− c(⌈d
c
⌉ − 1).

On the contrary, a complete description of PV P is not known and since optimizing a linear function over
XV P is a NP-hard problem, there is not much hope in finding such a description. Nevertheless, families of
valid inequalities are known, see [9, 10, 16, 17]. The derivation of inequalities for integer programs based on
conflict graphs have also been considered in the past (see [5] for further details).

Although the two sets XSMI and XV P have been intensively considered in the past, to the best of our
knowledge, set X has only been considered in a preliminary version of this paper [4]. The most related mixed
integer sets considered before are the mixed vertex packing set studied by Atamtürk et al. [6] and the flow
set with partial order studied by Atamtürk and Zang [7].

Cuts from valid inequalities for XSMI and XV P are commonly used by researchers using MIP solvers, by
identifying these sets as relaxations of the original feasible set. This work aims at deriving new inequalities
that can be used when those structures are present simultaneously. Such structures can be found in various
mixed integer problems, such as inventory routing, production planning, facility locations, network design,
etc. The practical examples that motivated this research stemmed from maritime Inventory Routing Prob-
lems (IRPs), see [2, 3]. Constraint (1) results from the relaxation of inventory constraints, where s is the
stock level at a given location, d is the aggregated demand at that location during a set of periods, c is the
vehicle capacity (when several vehicles are considered one may assume this capacity to be constant for all
vehicles, otherwise one can take c as the maximum of these capacities) and xi represents an arc traveled by a
vehicle. N1 is the index set of arcs entering to that particular node. Constraints (2) represent incompatible
arcs, that is, arcs that cannot belong to the same route, for instance, due to time constraints. The two
sets XSMI (e.g. in [2]) and XV P (e.g. in [3]) were considered as relaxations of the set of feasible solutions
previously in such problems. However they have never been considered simultaneously.

From the theoretical point of view, valid inequalities for XV P and valid inequalities for XSMI are valid
for X. As, in general, P is strictly included in PV P

⋂
PSMI , there are fractional solutions that cannot be

cut off by valid inequalities derived either for PV P or PSMI . Hence, in this paper, the focus is on valid
inequalities derived for P that take into account properties from the two sets simultaneously. In particular,
valid inequalities are proposed that extend the well-known MIR inequalities to the case where incompatibility
constraints are imposed on pairs of binary variables. This leads to new inequalities, some of them resembling
MIR inequalities, that incorporate variables in N0 that do not appear in the set XSMI . Notice however that,
similar to what happens to PV P , the complete linear description of P remains unknown.

The outline of this paper is as follows. In Section 2, basic properties of P are discussed and related
with PSMI and PV P . Furthermore, conditions for the MIR inequality, the defining inequality s ≥ 0, and
other known inequalities for XV P to define facets of P are established. In Section 3, several families of valid
inequalities for X are derived and, in particular, a new family of inequalities, called conflict MIR inequalities,
is introduced that strengthens the well-known MIR inequalities for set X by incorporating conflicts between
the variables into the inequality. In addition, conditions for some of those inequalities to be facet-defining
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are provided. In Section 4, exact and heuristic procedures are discussed to solve the separation problems
associated to those valid inequalities. In Section 5, computational experiments on randomly generated
instances of a single node fixed-charge set with conflicts on arcs are reported. Finally, in Section 6, the main
conclusions and future lines of research are presented.

2. Basic polyhedral results

In this section some basic results on set X are provided.

Proposition 2.1. Polyhedron P is full-dimensional.

Proof. It suffices to consider the following n+ 2 affinely independent points belonging to X :

(i) for all j ∈ N1, xj = 1;xi = 0, i ∈ N \ {j}; s = d− c;

(ii) for all j ∈ N0, xj = 1;xi = 0, i ∈ N \ {j}; s = d;

(iii) xi = 0, ∀i ∈ N ; s = d;

(iv) xi = 0, ∀i ∈ N ; s = 2d.

Proposition 2.2. Polyhedron P is unbounded, with one extreme ray v = (1,0), where 0 is the null vector
of dimension n.

Proof. The characteristic cone of polyhedron P is the following.

char.cone(P ) =
{
(s, x) | s+ c

∑

i∈N1

xi ≥ 0, xi + xj ≤ 0, {i, j} ∈ E, s ≥ 0, xi = 0, i ∈ N
}

=
{
(s, x) | s ≥ 0, xi = 0, i ∈ N

}
.

Hence, P has an extreme ray (1,0).

Proposition 2.3. Inequality (1) defines a facet of P .

Proof. It suffices to consider the first n+ 1 points given in the proof of Proposition 2.1.

It is easy to check that the projection of X onto the space of x variables, Projx(X), coincides with XV P ,
which is stated in the following proposition.

Proposition 2.4. Projx(X) = XV P .

The following result establishes a relation between facet-defining inequalities for PV P and some facet-
defining inequalities for P.

Proposition 2.5. Every facet-defining inequality
∑

i∈N αixi ≥ δ, for PV P is a facet-defining inequality for
P. Conversely, every facet-defining inequality

∑
i∈N αixi + βs ≥ δ, for P with β = 0, is a facet-defining

inequality of PV P .

Proof. Assume
∑

i∈N αixi ≥ δ is valid for XV P , and defines a facet of PV P . Since X includes all the
constraints defining XV P , and

∑
i∈N αixi ≥ δ is valid for XV P , then it is also valid for X. As (1,0) is a ray

of P, then each facet-defining inequality of PV P defines also a facet of P.
Next, assume

∑
i∈N αixi + βs ≥ δ defines a facet of P with β = 0. As Projx(X) = XV P , and since∑

i∈N αixi + βs ≥ δ is valid for X with β = 0, then it is also valid for XV P . Suppose
∑

i∈N αixi ≥ δ does
not define a facet of PV P . This assumption implies that all the points in PV P satisfying

∑
i∈N αixi = δ also

satisfy the inequality πx ≥ π0 as equation. Then, all the points in the corresponding facet of P would also
satisfy πx = π0, which is a contradiction.
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As a consequence of Proposition 2.5, one can conclude that the interesting inequalities (those that combine
the structure of the vertex packing set with the simple mixed integer set) must include the continuous variable.

The following notation is used throughout this paper. Consider graph G = (N,E). For j ∈ N , N(j) ={
i ∈ N | {i, j} ∈ E

}
is set of vertices in N which are in conflict with node j, N1(j) =

{
i ∈ N1 | {i, j} ∈ E

}
,

and N0(j) =
{
i ∈ N0 | {i, j} ∈ E

}
. In addition, for S ⊆ N , N1(S) =

⋃
j∈S N1(j), Ñ1(S) =

⋂
j∈S N1(j),

and N0(S) =
⋃

j∈S N0(j). Notice that if S is a singleton then Ñ1(S) = N1(S). Moreover, G[S] denotes the
subgraph induced by set S and α(G[S]) represents the independence number of the corresponding graph.
For C ⊆ N and b ∈ Z+, I(C) denotes the set of all independent sets of G[C] which includes the empty set,
and Ib(C) denotes the set of all independent sets of G[C] with cardinality equal to b.

A class of well-known clique inequalities (see [16, 17]) for set XV P is given next.

Theorem 2.1. An inequality
∑

i∈K xi ≤ 1, where K ⊆ N , is a facet of PV P if and only if K is a maximal
clique in the conflict graph G.

Theorem 2.1 and Proposition 2.5 ensure that inequality
∑

i∈K xi ≤ 1, where K ⊆ N is a maximal clique
in G, defines a facet of P . In particular, they give conditions for trivial inequalities to define facets of P,
see (ii) and (iii) in the following proposition. A single node (case (ii)) defines a maximum clique if it has
no neighbors, and a pair of adjacent nodes (case (iii)) defines a maximum clique if they do not have any
common neighbor.

Proposition 2.6. (i) xi ≥ 0, i ∈ N is facet-defining for P .
(ii) xi ≤ 1, i ∈ N defines a facet of P if and only if N(i) = ∅.
(iii) xi + xj ≤ 1 defines a facet of P if and only if N(i) ∩N(j) = ∅.

Next, sufficient conditions for inequalities s ≥ 0 and MIR to be facet-defining for P are established.
Furthermore, the idea of constructing an auxiliary graph presented in [13], to prove that the rank inequalities
define facets, is implemented to achieve the following result.

Define the graph G′
a = (N ′, E′), a ∈ Z+, having N ′ as node set and whose edges are defined as follows:

two nodes i and j are adjacent in G′
a if and only if there exists an independent set I ∈ Ia(N ′) such that

i ∈ I, j 6∈ I, and (I \ {i}) ∪ {j} ∈ Ia(N ′).

Proposition 2.7. Inequality s ≥ 0 defines a facet of P if the following conditions hold.

(i) α
(
G
[
N1

])
≥

⌈
d
c

⌉
+ 1.

(ii) G′
⌈ d

c
⌉
with N ′ = N1 is connected.

(iii) α
(
G
[
N1 \N1(j)

])
≥

⌈
d
c

⌉
, ∀j ∈ N0.

Proof. Define K = P ∩ {(s, x) | s = 0} and show that inequality s ≥ 0 is facet-defining by showing that
whenever the inequality γs +

∑
i∈N βixi ≥ γ0, is valid for P and satisfies the condition γs +

∑
i∈N βixi =

γ0, ∀(s, x) ∈ K, then γs+
∑

i∈N βixi and s are identical linear forms up to positive multiple.

For each j ∈ N0, condition (iii) ensures that there exists Tj ⊆ N1 \ N1(j) such that |Tj| = ⌈
d
c
⌉. Hence,

for each j ∈ N0, consider the following points belonging to K.

(P1) s = 0;xi = 1, i ∈ Tj;xi = 0, i ∈ N \ Tj;

(P2) s = 0;xi = 1, i ∈ Tj;xi = 0, i ∈ N \ (Tj ∪ {j});xj = 1.

Points (P1) and (P2) imply βj = 0, ∀j ∈ N0. Now take i, j ∈ N1 and assume that they are adjacent in
graph G′

⌈ d
c
⌉
. From the definition of G′

⌈ d
c
⌉
, there exists an independent set I such that I ⊆ N1, i ∈ I, j 6∈

I, I ′ = (I \ {i}) ∪ {j} is an independent set and |I| = |I ′| = ⌈d
c
⌉. Consider the points s = 0;xt = 1, t ∈

I;xt = 0, t ∈ N \ I and s = 0;xt = 1, t ∈ I ′;xt = 0, t ∈ N \ I ′ in X that belong to K. Substituting these two
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points in (8) and subtracting the resultant equations gives βi = βj . It now follows from the connectivity of
graph G′

⌈ d
c
⌉
(condition (ii)) that βi = β, ∀i ∈ N1.

Finally, from (i), there exists T ⊆ N1, |T | = ⌈
d
c
⌉+ 1 such that the point (P3) s = 0, xi = 1, i ∈ T, xi =

0, i ∈ N \T belongs to K. Now, considering the point (P4) s = 0, xi = 1, i ∈ T \ {ℓ}, xi = 0, i ∈ (N \T )∪{ℓ}
also in K, it follows that β = 0 and therefore γ0 = 0.

The facet-defining conditions for the MIR inequality are established and presented as follows.

Proposition 2.8. The MIR inequality (5) defines a facet of P if the following conditions hold.

(i) α
(
G
[
N1

])
≥

⌈
d
c

⌉
.

(ii) G′
⌊ d

c
⌋
= (N1, E

′) is connected.

(iii) α
(
G
[
N1 \N1(j)

])
≥

⌊
d
c

⌋
, ∀j ∈ N0.

Proof. Consider the equation

s+ r
∑

i∈N1

xi = r
⌈d
c

⌉
. (6)

Define K = P ∩{(s, x) | (s, x) satisfies (6)}. One can prove that inequality (5) is facet-defining by showing
that whenever the inequality γs+

∑
i∈N βixi ≥ γ0 is valid for P and satisfies the condition

γs+
∑

i∈N

βixi = γ0, ∀(s, x) ∈ K, (7)

then equality (7) is a multiple of (6).
For each j ∈ N0, condition (iii) ensures that there exists a set Tj ∈ I⌊ d

c
⌋(N1 \ N1(j)), such that the

following feasible points belong to K.

(P1) s = r;xi = 1, i ∈ Tj ;xi = 0, i ∈ N \ Tj;

(P2) s = r;xi = 1, i ∈ Tj ;xj = 1;xi = 0, i ∈ N \ (Tj ∪ {j}).

By substituting the points of type (P1) and (P2) in equation (7) and subtracting the resultant equations
it follows that βj = 0, ∀j ∈ N0. Thus, equality (7) can be rewritten as

γs+
∑

i∈N1

βixi = γ0. (8)

Now take i, j ∈ N1 and assume that they are adjacent in graph G′
⌊ d

c
⌋
. From the definition of G′

⌊ d
c
⌋
, there

exists an independent set I such that I ⊆ N1, i ∈ I, j 6∈ I, I ′ = (I \ {i}) ∪ {j} is an independent set and
|I| = |I ′| = ⌊d

c
⌋. Consider the points s = r;xi = 1, i ∈ I;xi = 0, i ∈ N \ I and s = r;xi = 1, i ∈ I ′;xi = 0, i ∈

N \ I ′ in X that belong to K. Substituting the two points in (8) and subtracting the resulting equations
gives βi = βj . It now follows from the connectivity of graph G′

⌊ d
c
⌋
that βi = β, ∀i ∈ N1.

Condition (i) ensures the existence of the points of the following form, which are in K,

∀ T ∈ I⌈ d
c
⌉(N1), s = 0;xi = 1, i ∈ T ;xi = 0, i ∈ N \ T.

Replacing these points in equation (8), it follows that β⌈d
c
⌉ = γ0. Now, using points of type (P1) gives

γr + β⌊d
c
⌋ = γ0. These two equalities imply β = γr and γ0 = γr⌈d

c
⌉ and so (7) is a multiple of (6).

Conditions (i) and (iii) of Proposition 2.8 are necessary conditions for (6) to define a facet. The following
example shows that condition (ii) is not a necessary condition.
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Example 2.1. Consider the set X with d = 20, c = 9, N = {1, . . . , 8}, N1 = {1, . . . , 6}, and the conflict
graph depicted in Figure 1. It can be seen that the MIR inequality (5), s+2

∑
j∈N1

xj ≥ 6, defines a facet of
P. In addition to the points of type (P1) and (P2) the following (s, x) points e6,7, e5,7, e5,6, e1,2, e1,3, e2,3, are
tight, where eij is the vector with 1 in positions i and j, and zero elsewhere. Using these points, graph G′

⌊ d
c
⌋

depicted in Figure 2 is obtained. Although this graph is not connected, following the proof of Proposition 2.8,
such points are enough to enforce βi = β, i ∈ N1 in equation (8).

123

4

5 6 7

8

Figure 1: Conflict graph corresponding to Example 2.1.

1

2

3

4

5

6

Figure 2: Graph G′
⌊ d
c
⌋
corresponding to Example 2.1.

The following proposition shows that if α(G[N1]) ≤ ⌊
d
c
⌋, then all non-trivial facet-defining inequalities

for P are those from the vertex packing polytope.

Proposition 2.9. Let α(G[N1]) ≤ ⌊
d
c
⌋. If inequality

∑

i∈N

αixi + βs ≥ γ, (9)

with β 6= 0, defines a facet of P , then inequality (9) is a multiple of inequality (1).

Proof. First, note that since (1,0) is an extreme ray, then β ≥ 0. As β 6= 0, assume that β > 0. Then every
point of X satisfying inequality (9) as equation also satisfies s+ c

∑
i∈N1

xi = d. Otherwise, if there exists a

point (s∗, x∗) ∈ X such that s∗ + c
∑

i∈N1
x∗
i > d and

∑
i∈N αix

∗
i + βs∗ = γ, then condition α(G[N1]) ≤ ⌊

d
c
⌋

implies s∗ > 0. Thus, the feasible point (s∗ − ǫ, x∗) ∈ X with 0 < ǫ ≤ s∗ +
∑

i∈N1
x∗
i − d violates inequality

(9), which is a contradiction.

Henceforward, assume α(G[N1]) ≥ ⌈
d
c
⌉.

2.1. Application to single node fixed-charge set with conflicts on arcs

Set X discussed in this paper can occur as a relaxation of several more complex feasible sets of general
mixed integer programs. Here a set Y is introduced that can be seen as an intermediate set between those
general mixed integer sets and the set X . This set is a variant of the single node fixed-charge set where
incompatibilities between arcs are considered, and it is defined as follows.

Y =
{
(s, y, x) ∈ R× R

|N1| × B
|N | | s+

∑

i∈N1

yi ≥ d, yi ≤ cxi, i ∈ N1,

xi + xj ≤ 1, {i, j} ∈ E, s ≥ 0, yi ≥ 0, i ∈ N1

}
,

where N1 ⊂ N, and E is the edge set.
Set X is a restriction of Y by setting yi = cxi, ∀i ∈ N1. Obviously, valid inequalities for XV P are valid

for Y . Furthermore, the following proposition establishes the relation between valid inequalities for X and
Y .
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Proposition 2.10. Any valid inequality γs+
∑

i∈N βixi ≥ γ0 for X is also valid for Y .

Proof. Suppose not. That is, there exists (s∗, y∗, x∗) ∈ Y such that γs∗ +
∑

i∈N βix
∗
i < γ0. Then the

inequality is also violated by (s∗, y′, x∗) ∈ Y where y′i = cx∗
i . Thus (s∗, x∗) ∈ X and inequality γs +∑

i∈N βixi ≥ γ0 is violated by this point, which is a contradiction.

The computational tests discussed in Section 5 are conducted for set Y.

3. Valid inequalities

This section presents new families of valid inequalities for X . These inequalities will be grouped into
three large families: the lifted s ≥ 0 inequalities, the residual inequalities and the conflict MIR inequalities.

3.1. Lifted s ≥ 0 inequalities

To derive the first family of inequalities, notice that if xj = 1 for some j ∈ N, then xi = 0, ∀i ∈ N1(j).
Hence, it follows

s ≥ ljxj , (lift 0)

is valid for X, where lj = (d− α (G[N1 \N1(j)]) c)
+
and (x)+ = max{0, x}. This inequality can be regarded

as the lifting of inequality s ≥ 0 when this inequality does not define a facet. Inequality (lift 0) can be
extended in two directions. One is to extend the right-hand side of the inequality for each clique. The
other direction is to consider a subset of N1 in the left-hand side. The following proposition gives the valid
inequality for the general case.

Proposition 3.1. Let S ⊆ N be a clique in G and T ⊆ N1 \S. Then the following inequality is valid for X.

s+ c
∑

i∈T

xi ≥
∑

i∈S

(d− pic)
+xi, (lift 1)

where pi = α (G[N1 \ (N1(i) ∪ T )]) .

Proof. Let (s, x) ∈ X . Notice that since S is a clique then
∑

i∈S xi ≤ 1. If
∑

i∈S xi = 0 then inequality
(lift 1) is implied by nonnegativity of xi, i ∈ T and s.

Assume xi = 1 for some i ∈ S. This implies xj = 0, j ∈ N1(i). If (d − pic)
+ = 0, then the inequality

trivially holds. Hence, assume d− pic > 0. Then from (1) it follows

s+ c
∑

i∈N1

xi = s+ c
∑

i∈T

xi + c
∑

i∈N1(i)\T

xi + c
∑

i∈N1\(N1(i)∪T )

xi ≥ d,

which implies

s+ c
∑

i∈T

xi ≥ d− c
∑

i∈N1\(N1(i)∪T )

xi ≥ d− cpi = (d− cpi)
+xi =

∑

i∈S

(d− pic)
+xi.

Proposition 3.2. If the following conditions hold, then inequality (lift 1) defines a facet of P .

(i) For each i ∈ N1 \ (T ∪ S), α
(
G
[
N1 \ (T ∪ S ∪N1(i) ∪ {i})

])
≥

⌈
d
c

⌉
.

(ii) For each i ∈ N0 \ S, α
(
G
[
N1 \ (T ∪ S ∪N1(i))

])
≥

⌈
d
c

⌉
.

(iii) For each i ∈ T , there exists at least one j ∈ S with {i, j} 6∈ E, and pj < ⌊
d
c
⌋ such that

α
(
G
[
N1 \ (N1(j) ∪ T \ {i})

])
≥ pj + 1.
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Figure 3: Conflict graph considered in Example 3.1.

Proof. Without loss of generality assume that d− pic > 0, i ∈ S. Consider the equality

s+ c
∑

i∈T

xi =
∑

i∈S

(d− pic)xi, (10)

and let K = P ∩ {(s, x) | (s, x) satisfies (10)}. Now assume inequality γs +
∑

i∈N βixi ≥ γ0 is valid for X
and satisfies the condition

γs+
∑

i∈N

βixi = γ0, ∀(s, x) ∈ K. (11)

So one can show that equality (11) is a multiple of (10) by generating the following points belonging to
K. Conditions (i) and (ii) ensure the existence of the following points.

(P1) ∀ T ∈ I⌈ d
c
⌉(N1 \ (T ∪ S)), s = 0;xi = 1, i ∈ T ;xi = 0, i ∈ N \ T ;

(P2) ∀j ∈ N1 \ (T ∪ S), ∀ T ∈ I⌈ d
c
⌉(N1 \ (T ∪ S ∪ N1(j) ∪ {j})), s = 0;xi = 1, i ∈ T ;xj = 1;xi = 0, i ∈

N \ (T ∪ {j});

(P3) ∀j ∈ N0 \ S, ∀ T ∈ I⌈ d
c
⌉(N1 \ (T ∪ S ∪N1(j))), s = 0;xi = 1, i ∈ T ;xj = 1;xi = 0, i ∈ N \ (T ∪ {j}).

Points (P1), (P2) and (P3) imply βi = 0, i ∈ N1 \ (T ∪ S), βi = 0, i ∈ N0 \ S and γ0 = 0. For each j ∈ S,
from the definition of pj, there exits T ∈ Ipj

(N1 \ (T ∪N1(j))). Considering the point s = d−pjc;xi = 1, i ∈

T ;xj = 1;xi = 0, i ∈ N \ (T ∪{j}) and substituting it in equation (11) gives βi = −γ(d−pic), i ∈ S. Finally,
for each i ∈ T, and each j ∈ S such that condition (iii) is satisfied, consider the point s = d− (pj +1)c;xk =
1, k ∈ T ∈ Ipj

(N1 \ (T ∪N1(j)));xj = xi = 1;xk = 0, k ∈ N \ (T ∪{j, i}). Replacing these points in equation
(11) implies βi = γc, i ∈ T . Hence, (11) is a multiple of (10).

Facet-defining inequalities of type (lift 1) are illustrated in the following example.

Example 3.1. Let d = 20, c = 9, N = {1, . . . , 8}, N1 = {1, . . . , 5} and the conflict graph G shown in Figure 3.
One can check that the following inequalities

s+ 9x5 ≥ 11x6 + 11x7 + 11x8,

s ≥ 11x6 + 2x7 + 11x8,

define facets of P with S = {6, 7, 8}, T = {5}, and S = {6, 7, 8}, T = ∅, respectively.

Remark 3.1. Consider valid inequality (lift 1) by setting T = N1 \ Ñ1(S). Then, one can check that
pi = 0, ∀i ∈ S. Thus, the following inequality is valid for X.

s+ c
∑

i∈N1\Ñ1(S)

xi ≥ d
∑

i∈S

xi. (12)

8



For the particular case of d− pic = r, the following class of valid inequalities can be derived where S is
not restricted to be a clique.

Proposition 3.3. Let S ⊆ N0, and T ⊆ N1 such that

α
(
G
[
S
])
≤

⌈d
c

⌉
,

and

α
(
G
[
T \N1(S̄)

])
≤

⌈d
c

⌉
−
∣∣S̄
∣∣ , ∀S̄ ∈ I(S). (13)

Then the following inequality is valid for X.

s+ r
∑

i∈N1\T

xi ≥ r
∑

i∈S

xi. (lift 2)

Proof. If
∑

i∈S xi = 0, then validity of (lift 2) follows from nonnegativity of s and xi, i ∈ N1 \ T. Assume∑
i∈S xi ≥ 1. Let S̄ = {i ∈ S : xi = 1}. Thus

∑
i∈S xi =

∣∣S̄
∣∣ where S̄ is an independent set. Then

s+ r
∑

i∈N1\T

xi ≥ r
(⌈d

c

⌉
−
∑

i∈T

xi

)
= r

(⌈d
c

⌉
−

∑

i∈T\N1(S̄)

xi

)
≥ r

(⌈d
c

⌉
− α

(
G
[
T \N1(S̄)

]))

≥ r
(⌈d

c

⌉
−

⌈d
c

⌉
+
∣∣S̄
∣∣
)
= r

∑

i∈S

xi,

where the first inequality follows from the validity of the MIR inequality, the second inequality follows from
the definition of independent set, and the third inequality follows from (13).

Proposition 3.4. Consider sets S and T as defined in the statement of Proposition 3.3. Suppose

S =
{
S̄ ∈ I(S) | α

(
G
[
T \N1(S̄)

])
=

⌈d
c

⌉
−
∣∣S̄
∣∣
}
6= ∅,

and consider the following two graphs:
G′ = (N1 \ T,E

′), where {i, j} ∈ E′ if there exist S̄ ∈ S, T̄ ∈ I⌈ d
c
⌉−|S̄|(T \N1(S̄)), and an independent

set I ⊆ N1 \ (T ∪N1(S̄)∪N1(T̄ )) such that |I| ∈ {|S̄|− 1, |S̄|}, i ∈ I, j 6∈ I, and I ′ ∪ S̄ ∪ T̄ is an independent
set where I ′ = (I \ {i}) ∪ {j};

G′′ = (S,E′′), where {i, j} ∈ E′′ if there exist S̄ ∈ S, T̄ ∈ I⌈ d
c
⌉−|S̄|(T \ N1(S̄)), and an independent set

I ⊆ N1 \ (T ∪N1(S̄) ∪N1(T̄ )) such that |I| ∈ {|S̄| − 1, |S̄|}, i ∈ S̄, j 6∈ S̄, S̄′ = (S̄ \ {i}) ∪ {j} ∈ S and sets
S̄ ∪ T̄ ∪ I and S̄′ ∪ T̄ ∪ I are independent.

Then inequality (lift 2) defines a facet of P if the following conditions hold.

(i) For each i ∈ T, α
(
G
[
T \ (N1(i) ∪ {i})

])
≥

⌈
d
c

⌉
.

(ii) For each i ∈ N0 \ S, α
(
G
[
T \N1(i)

])
≥

⌈
d
c

⌉
.

(iii) For each S̄ ∈ S there exists T̄ ∈ I⌈ d
c
⌉−|S̄|(T \N1(S̄)) such that

α
(
G
[
N1 \ (T ∪N1(S̄) ∪N1(T̄ ))

])
≥

∣∣S̄
∣∣ .

(iv) Graph G′ = (N1 \ T,E′) is connected.

(v) Graph G′′ = (S,E′′) is connected.

9
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Figure 4: Conflict graph corresponding with Example 3.2.

The proof is left to the Appendix.

Example 3.2. Consider the data given in Example 3.1 and the conflict graph G shown in Figure 4. By
setting S = {6, 7, 8} and T = {1, 2, 3, 4}, one can check that the validity and the facet-defining conditions
established in Proposition 3.3 and Proposition 3.4 hold. Hence, the following inequality of type (lift 2) defines
a facet of P .

s+ 2x5 ≥ 2x6 + 2x7 + 2x8.

3.2. Residual inequalities

Next, a new family of valid inequalities is introduced where the residuum c− r = c⌈d
c
⌉ − d occurs as the

independent term.

Proposition 3.5. Let S ⊆ N0 such that α(G[S]) ≤ ⌈d
c
⌉ and

α
(
G
[
N1 \N1(S̄)

])
≤

⌈d
c

⌉
−
∣∣S̄
∣∣ , ∀S̄ ∈ I(S). (14)

Then the following inequality is valid for X.

s+ (c− r) ≥ c
∑

i∈S

xi. (residual 1)

The proof of Proposition 3.5 is omitted since a proof of a more general class will be given later. Next, it
is shown that, if Ñ1(S) 6= ∅, then (residual 1) does not define a facet. Let

F =
{
(s, x) ∈ X | s = c

∑

i∈S

xi − (c− r)
}
.

As −(c − r) < 0 and s ≥ 0 then
∑

i∈S xi > 0, ∀(s, x) ∈ F . This implies that if i ∈ Ñ1(S), then

xi = 0, ∀(s, x) ∈ F . Thus, (residual 1) does not define a facet when Ñ1(S) 6= ∅. In order to obtain a stronger

inequality, xi, i ∈ Ñ1(S) are lifted as follows. Consider R ⊆ Ñ1(S) such that R is a clique in G[Ñ1(S)].
Hence, it suffices to find coefficients li, i ∈ R such that inequality

s+ (c− r) ≥ c
∑

i∈S

xi +
∑

i∈R

lixi, (15)

remains valid for X . If xi = 0, ∀i ∈ R, then inequality (15) is trivially valid. So assume xj = 1, for some
j ∈ R. Notice that since R is a clique, then xj = 1 implies xi = 0, ∀i ∈ R \ {j}. Thus, in order for inequality

s+ (c− r) ≥ c
∑

i∈S

xi + lj , ∀(s, x) ∈ X |xj=1,

10
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Figure 5: Conflict graph corresponding with Example 3.3.

to be valid, lj must satisfy lj ≤ s+ (c− r)− c
∑

i∈S xi, ∀(s, x) ∈ X |xj=1. Since j ∈ Ñ1(S), so xj = 1 implies
xi = 0, ∀i ∈ S. Hence

lj ≤ s+ (c− r), ∀(s, x) ∈ X |xj=1 =⇒ lj ≤ min(s,x)∈X|xj=1
{s}+ (c− r).

The minimum value which s attains can be obtained by maximizing the number of binary variables in
N1 set to one.

lj = (c− r) +
[
d−

(
α
(
G
[
N1 \ (j ∪N1(j))

])
+ 1

)
c
]+

. (16)

Therefore, since R is a clique, inequality (15) is valid for X where li, i ∈ R, is defined by (16). Moreover,
if condition α(G[N1 \ (i ∪N1(i))]) ≥ ⌊

d
c
⌋ holds, then s = 0 implies li = c− r, i ∈ R.

Example 3.3. Consider the data given in Example 3.1 and the conflict graph G shown in Figure 5. Taking
S = {6, 7} implies that the inequality s+7 ≥ 9x6+9x7 of type (residual 1) is valid for X. Since Ñ1(S) = {2, 5}

is a clique, then let R = Ñ1(S). One can check that the following lifted inequality, with lifting coefficients
l2 = l5 = c− r = 7, defines a facet of P .

s+ 7 ≥ 7x2 + 7x5 + 9x6 + 9x7.

Now, inequality (residual 1) is generalized as follows.

Proposition 3.6. Let S ⊆ N0 with α(G[S]) ≤ ⌈d
c
⌉, and T ⊆ N1 such that

α
(
G
[
T \N1(S̄)

])
≤

⌈d
c

⌉
−
∣∣S̄
∣∣ , ∀S̄ ∈ I(S).

Then the following inequality is valid for X.

s+ c
∑

i∈N1\T

xi + (c− r) ≥ c
∑

i∈S

xi. (residual 2)

Proof. Consider (s, x) ∈ X . If
∑

i∈S xi = 0, then validity of (residual 2) is implied by the nonnegativity of
variables xi and s. Assume xi = 1, i ∈ S̄ ⊆ S and xi = 0, i ∈ S\S̄. From (1) it follows that s+c

∑
i∈N1\T

xi ≥

d− c
∑

i∈T xi. Thus

s+ c
∑

i∈N1\T

xi + (c− r) ≥ d− c
∑

i∈T

xi + (c− r) ≥ d− α
(
G
[
T \N1(S̄)

])
c+ (c− r)

≥ d− c
(⌈d

c

⌉
−

∣∣S̄
∣∣
)
+ (c− r) = c

⌊d
c

⌋
+ r − c

(⌈d
c

⌉
−
∣∣S̄
∣∣
)
+ (c− r) = c

∣∣S̄
∣∣ = c

∑

i∈S

xi.

11



Similarly to inequalities (residual 1), inequalities (residual 2) can be strengthened by lifting variables in

Ñ1(S). These variables are lifted by taking R ⊆ Ñ1(S) such that R is a clique. It suffices to find lifting
coefficients li, i ∈ R such that inequality s + (c− r) ≥ c

∑
i∈S xi − c

∑
i∈N1\T

xi +
∑

i∈R lixi, remains valid

for X . Following the same steps used to lift inequality (residual 1), the following general family of valid
inequalities can be derived.

Proposition 3.7. Consider the sets S ⊆ N0, T ⊆ N1, and R ⊆ Ñ1(S) such that α(G[S]) ≤ ⌈d
c
⌉,

α
(
G
[
T \N1(S̄)

])
≤

⌈d
c

⌉
−
∣∣S̄
∣∣ , ∀S̄ ∈ I(S),

and R is a clique. Then following inequality is valid for X.

s+ c
∑

i∈N1\T

xi + (c− r) ≥ c
∑

i∈S

xi +
∑

i∈R

lixi, (residual 3)

where

li = (c− r) +
[
d−

(
α
(
G
[
N1(S) \ (i ∪N1(i))

])
+ 1

)
c
]+

, i ∈ T.

If α(G[N1(S) \ (i ∪N1(i))]) ≥ ⌊
d
c
⌋, then li = c− r, i ∈ T .

3.3. Conflict MIR inequalities

Next, families of valid inequalities, called conflict MIR inequalities, are introduced that can be regarded
as an extension of MIR inequalities to the case where a conflict graph representing incompatibilities between
pairs of variables is present. To do so, initially consider the following weaker MIR inequality obtained from
a restriction of set X . For each T ⊂ N1, let s

′ = s+ c
∑

i∈N1\T
xi. Then the MIR inequality

s′ + r
∑

i∈T

xi ≥ r
⌈d
c

⌉
,

is valid for X . When this inequality does not define a facet (see Proposition 2.1), it could be lifted as follows.

Proposition 3.8. Consider S ⊆ N0 with α(G[S]) ≤ ⌊d
c
⌋ and T ⊆ N1 such that

α
(
G
[
T \N1(S̄)

])
≤

⌊d
c

⌋
−
∣∣S̄
∣∣ , ∀S̄ ∈ I(S). (17)

Then the following inequality is valid for X.

s+ c
∑

i∈N1\T

xi + r
∑

i∈T

xi ≥ r
⌈d
c

⌉
+ (c− r)

∑

i∈S

xi. (cMIR 1)

Proof. Let (s, x) ∈ X . If
∑

i∈S xi = 0, then the validity is implied by the MIR inequality (5) as follows.

s+ c
∑

i∈N1\T

xi + r
∑

i∈T

xi ≥ s+ r
∑

i∈N1\T

xi + r
∑

i∈T

xi ≥ r
⌈d
c

⌉
.

Assume
∑

i∈S xi ≥ 1. So
∑

i∈S xi =
∣∣S̄
∣∣ where S̄ ⊆ S is an independent set. Now let

∑
i∈T\N1(S̄) xi =

⌊d
c
⌋ −

∣∣S̄
∣∣− k where 0 ≤ k ≤ ⌊d

c
⌋ −

∣∣S̄
∣∣. As

∑

i∈N1

xi =
∑

i∈N1\T

xi +
∑

i∈T\N1(S̄)

xi =
∑

i∈N1\T

xi +
⌊d
c

⌋
−
∣∣S̄
∣∣ − k,

12



then, using inequality (1) gives

s+ c
∑

i∈N1

xi ≥ d⇐⇒ s+ c
∑

i∈N1\T

xi + c
∑

i∈T\N1(S̄)

xi ≥ d.

Thus

s+ c
∑

i∈N1\T

xi ≥ d− c
(⌊d

c

⌋
−
∣∣S̄
∣∣− k

)
≥

∣∣S̄
∣∣ c+ kc+ r

≥
∣∣S̄

∣∣ c+ (k + 1)r ≥ r
⌈d
c

⌉
+ (c− r)

∣∣S̄
∣∣ − r

(⌊d
c

⌋
−
∣∣S̄

∣∣− k
)
.

Hence

s+ c
∑

i∈N1\T

xi + r
(⌊d

c

⌋
−

∣∣S̄
∣∣− k

)
= s+ c

∑

i∈N1\T

xi + r
∑

i∈T\N1(S̄)

xi ≥ r
⌈d
c

⌉
+ (c− r)

∣∣S̄
∣∣ .

Definition 3.1. For S ⊆ N0 and T ⊆ N, ᾱ(G[T ∪ S]) denotes the independence number of the subgraph
induced by T ∪ S such that at least one node from set S appears in the corresponding independent set.

In the following proposition sufficient conditions for inequality (cMIR 1) to be facet-defining are presented.

Proposition 3.9. Consider S and T as defined in the statement of Proposition 3.8. Suppose

S1 =
{
S̄ ∈ I(S) | α

(
G
[
T \N1(S̄)

])
=

⌊d
c

⌋
−
∣∣S̄

∣∣
}
6= ∅,

and consider the following graph:
G′′ = (S,E′′), where {i, j} ∈ E′′ if there exists J ∈ S1 such that i ∈ J , j 6∈ J , and J ′ = (J\{i})∪{j} ∈ S1.
Then inequality (cMIR 1) is facet-defining for P if the following conditions hold.

(i) α
(
G
[
T
])
≥

⌈
d
c

⌉
.

(ii) For each i ∈ N1 \ T , ᾱ
(
G
[
(T ∪ S) \N(i))

])
≥

⌊
d
c

⌋
.

(iii) For each i ∈ N0 \ S, ᾱ
(
G
[
(T ∪ S) \N(i)

])
≥

⌊
d
c

⌋
.

(iv) Graph G′
⌊ d

c
⌋
= (T,E′) is connected.

(v) Graph G′′ = (S,E′′) is connected.

The proof is left to the Appendix.
When S ⊆ N0 is a clique, inequalities (cMIR 1) can be strengthened as follows.

Proposition 3.10. Let S be a clique in G[N0], and T ⊆ N1 such that

α
(
G
[
T \N1(i)

])
≤

⌊d
c

⌋
− pi, ∀i ∈ S,

where pi ∈
{
1, . . . , ⌊d

c
⌋
}
, i ∈ S. Then the following inequality is valid for X.

s+ c
∑

i∈N1\T

xi + r
∑

i∈T

xi ≥ r
⌈d
c

⌉
+
∑

i∈S

pi(c− r)xi. (cMIR 2)
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Proof. Let (s, x) ∈ X . Assume
∑

i∈S xi = 0. Then validity is implied by the MIR inequality (5) similarly to
the proof of the same case given in Proposition 3.8.

Let
∑

i∈S xi = 1. So assume xj = 1, for some j ∈ S. Then
∑

i∈T\N1(j)
xi = ⌊

d
c
⌋−kj where pj ≤ kj ≤ ⌊

d
c
⌋.

From (1), using
∑

i∈N1(j)
xi = 0 and

∑
i∈T\N1(j)

xi = ⌊
d
c
⌋ − kj , then

s+ c
∑

i∈N1\T

xi + c
∑

i∈T\N1(j)

xi + c
∑

i∈N1(j)

xi ≥ d⇔ s+ c
∑

i∈N1\T

xi + r
∑

i∈T\N1(j)

xi ≥ d− (c− r)
∑

i∈T\N1(j)

xi

≥ d− (c− r)
(⌊d

c

⌋
− kj

)
= r + c

⌊d
c

⌋
− (c− r)

(⌊d
c

⌋
− kj

)
= r

⌈d
c

⌉
+ (c− r)kj ≥ r

⌈d
c

⌉
+ (c− r)pj .

Inequalities (cMIR 2) can be lifted as follows.

Proposition 3.11. Let S ⊆ N0 define a clique in G, k ∈ N0 \ S such that S ∪ {k} does not define a clique,
and T ⊆ N1 such that

α
(
G
[
T \N1(i)

])
≤

⌊d
c

⌋
− pi, ∀i ∈ S ∪ k,

α
(
G
[
T \N1({k, j})

])
≤

⌊d
c

⌋
− pj − pk, ∀j ∈ S1,

where pi ∈
{
1, . . . , ⌊d

c
⌋
}
, i ∈ S ∪ {k}, 1 ≤ pj + pk ≤ ⌊

d
c
⌋, j ∈ S1 = {j ∈ S : {j, k} 6∈ E}. Then the following

inequality is valid.

s+ c
∑

i∈N1\T

xi + r
∑

i∈T

xi ≥ r
⌈d
c

⌉
+
∑

i∈S

pi(c− r)xi + pk(c− r)xk. (cMIR 3)

Proof. If xk = 0 or xk = 1 and
∑

i∈S xi = 0, then validity of (cMIR 3) follows from validity of (cMIR 2).
The proof of case xk = 1 and

∑
i∈S xi = 1 is similar to the proof of validity of (cMIR 2).

The following example presents facet-defining inequalities of types (cMIR 1), (cMIR 2), and (cMIR 3).

Example 3.4. Assume d = 20, c = 9, N = {1, . . . , 8}, N1 = {1, . . . , 5} and consider the conflict graph G
depicted in Figure 6. Then it can be checked that condition (17) is satisfied for S = {6, 7, 8} and T =
{2, 3, 4, 5}. So the following inequality of type (cMIR 1) is valid for X.

s+ 9x1 + 2x2 + 2x3 + 2x4 + 2x5 ≥ 6 + 7x6 + 7x7 + 7x8.

One can check that the previous inequality as well as the following inequalities of type (cMIR 1) define facets
of P .

s+ 2x1 + 2x2 + 2x3 + 2x4 + 9x5 ≥ 6 + 7x6 + 7x7 + 7x8,

s+ 2x1 + 2x2 + 2x3 + 2x4 + 2x5 ≥ 6 + 7x6 + 7x8.

The following inequalities of type (cMIR 2) are facet-defining for P .

s+ 9x1 + 2x2 + 2x3 + 2x4 + 9x5 ≥ 6 + 14x6 + 14x7,

s+ 2x1 + 2x2 + 9x3 + 2x4 + 9x5 ≥ 6 + 7x7 + 14x8,

s+ 9x1 + 2x2 + 2x3 + 2x4 + 2x5 ≥ 6 + 14x6 + 7x7,

s+ 2x1 + 2x2 + 9x3 + 2x4 + 2x5 ≥ 6 + 14x8.

The unique facet-defining inequality of type (cMIR 3) is obtained with S = {6, 7}, k = {8} and T = {2, 3, 4},
and is given by

s+ 9x1 + 2x2 + 2x3 + 2x4 + 9x5 ≥ 6 + 7x6 + 14x7 + 7x8.
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Figure 6: Conflict graph considered in Example 3.4.

The following proposition generalizes inequalities (cMIR 1).

Proposition 3.12. Let S ⊆ N0, T ⊆ N1 and let {T1, T2} defines a partition of T such that

α
(
G
[
S
])
≤

⌊d
c

⌋
+ p,

α
(
G
[
T1 \N1(S̄)

])
≤

⌊d
c

⌋
+ p−

∣∣S̄
∣∣ , ∀S̄ ∈ I(S), (18)

α
(
G
[
T2 \N1(S̄)

])
≤

(
p−

∣∣S̄
∣∣
)+

, ∀S̄ ∈ I(S). (19)

Then the following inequality is valid for X.

s+ c
∑

i∈N1\T

xi + r
∑

i∈T

xi ≥ r
⌈d
c

⌉
+ (c− r)

(∑

i∈S

xi − p+
∑

i∈T2

xi

)
. (cMIR 4)

Proof. Let (s, x) ∈ X . Let xi = 1, i ∈ S̄ ⊆ S, and xi = 0, i ∈ S \ S̄. If |S̄| < p, then

∑

i∈S

xi − p+
∑

i∈T2

xi = |S̄| − p+
∑

i∈T2

xi ≤ |S̄| − p+ α
(
G
[
T2 \N1(S̄)

])
≤ 0,

where the last inequality follows from (19). Hence, inequality (cMIR 4) is implied by the MIR inequality

s+ r
∑

i∈N1\T

xi + r
∑

i∈T

xi ≥ r
⌈d
c

⌉
.

Now, let |S̄| ≥ p. Then, from (19) it follows that xi = 0, i ∈ T2. The proof is now similar to the proof of
Proposition 3.8 for case

∑
i∈S xi ≥ 1.

Example 3.5. Let d = 14, c = 9, N = {1, . . . , 10}, N1 = {1, . . . , 6} and consider the conflict graph G shown
in Figure 7. Using the software PORTA (see [8]) the following description of P is obtained.
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Figure 7: Conflict graph corresponding with Example 3.5.

(I1) s+ 9x1 + 9x2 + 9x3 + 9x4 + 9x5 + 9x6 ≥ 14, (I25) s+ 9x1 + 5x2 + 9x3 + 9x4 + 9x5 + 5x6 ≥ 4x7 + 10,

(I2) x1 ≥ 0, (I26) s+ 9x1 + 9x2 + 5x3 + 9x4 + 5x5 + 5x6 ≥ 4x8 + 10,

(I3) x2 ≥ 0, (I27) s+ 9x1 + 5x2 + 9x3 + 9x4 + 5x5 + 9x6 ≥ 4x9 + 10,

(I4) x3 ≥ 0, (I28) s+ 9x1 + x2 + 9x3 + 9x4 + 5x5 + 5x6 ≥ 4x7 + 4x9 + 6,

(I5) x4 ≥ 0, (I29) s+ 9x1 + 5x2 + 5x3 + 9x4 + 5x5 + x6 ≥ 4x7 + 4x8 + 6,

(I6) x5 ≥ 0, (I30) s+ 9x1 + 5x2 + 5x3 + 9x4 + x5 + 5x6 ≥ 4x8 + 4x9 + 6, ,

(I7) x6 ≥ 0, (I31) s+ 9x1 + x2 + 5x3 + 9x4 + x5 + x6 ≥ 4x7 + 4x8 + 4x9 + 2,

(I8) x7 ≥ 0, (I32) s+ 5x1 ≥ 5x8,

(I9) x8 ≥ 0, (I33) s+ 5x2 ≥ 5x8,

(I10) x9 ≥ 0, (I34) s+ 5x3 + 5x4 ≥ 5x9,

(I11) x10 ≥ 0, (I35) s+ 5x3 + 5x6 ≥ 5x9,

(I12) s ≥ 0, (I36) s+ 5x1 + 5x4 ≥ 5x8 + 5x9,

(I13) x6 + x7 ≤ 1, (I37) s+ 5x1 + 5x4 ≥ 5x7 + 5x8,

(I14) x5 + x9 ≤ 1, (I38) s+ 5x1 + 5x3 + 5x4 ≥ 5x7 + 5x9,

(I15) x2 + x9 ≤ 1, (I39) s+ 9x1 + 4x3 + 9x4 ≥ 4x7 + 5x8 + 5x9,

(I16) x2 + x4 ≤ 1, (I40) s+ 9x1 + 4x3 + 9x4 ≥ 5x7 + 5x8 + 4x9,

(I17) x1 + x6 ≤ 1, (I41) s+ 9x1 + 5x3 + 9x4 ≥ 5x7 + 4x8 + 5x9,

(I18) x1 + x4 ≤ 1, (I42) s+ 5x1 + 5x3 + 5x4 ≥ 5x7 + 5x8 + 5x9,

(I19) x3 + x6 + x8 ≤ 1, (I43) s+ 4 + 9x1 + 9x4 ≥ 4x6 + 9x7 + 9x8,

(I20) x3 + x5 + x8 ≤ 1, (I44) s+ 4 + 9x1 + 9x4 ≥ 4x5 + 9x8 + 9x9,

(I21) x2 + x7 + x10 ≤ 1, (I45) s+ 4 + 9x1 + 9x3 + 9x4 ≥ 4x2 + 9x7 + 9x9,

(I22) x1 + x2 + x4 + x6 + x7 ≤ 2, (I46) s+ 5 ≥ 5x6 + 5x7 + 5x8,

(I23) x1 + x2 + x3 + x4 + x5 + x6 + x8 + x9 ≤ 3, (I47) s+ 5 ≥ 5x5 + 5x8 + 5x9,

(I24) s+ 5x1 + 5x2 + 5x3 + 5x4 + 5x5 + 5x6 ≥ 10, (I48) s+ 5 + 5x3 ≥ 5x2 + 5x7 + 5x9.

Inequalities (I1)–(I18) are trivial inequalities discussed in Proposition 2.3, Proposition 2.6 and Propo-
sition 2.7. Inequalities (I19)–(I23) stem from PV P . (I24) is the MIR inequality, (I25)–(I27) are of type
(cMIR 1), (I28)–(I31) are of type (cMIR 4), (I32)–(I38) are of type (lift 2), and (I43)–(I45) are of type
(residual 3). Note that inequalities (I39)–(I42) do not belong to any of the families of valid inequalities
derived in this paper.
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3.4. Valid inequalities for case d = c

Notice that all the inequalities discussed previously are valid when d ≥ c. Below a new class of valid
inequalities is introduced for X which defines facets only when d = c.

Proposition 3.13. Let S ⊆ N0, α(G[S]) = p, and define

T =
⋂

S̄∈Ip(S)

N1(S̄), T =
⋂

S̄∈Ip−1(S)

N1(S̄).

Let T ′ ⊆ T such that T ′ defines a clique. The following inequality is valid for X.

s+ c
∑

i∈N1\T

xi ≥ c
(∑

i∈S

xi − p+ 1
)
+ c

∑

i∈T ′

xi. (20)

Proof. To prove validity of (20), consider the following cases. Let (s, x) ∈ X .

Case I. Let p = 1. It implies that S is a clique, T = Ñ1(S) and T = T ′ = ∅. If
∑

i∈S xi = 0, then the
validity follows from nonnegativity of s and xi, i ∈ N1 \T . Assume

∑
i∈S xi = 1. Then inequality (1) implies

s+ c
∑

i∈N1

xi = s+ c
∑

i∈N1\T

xi + c
∑

i∈T

xi = s+ c
∑

i∈N1\T

xi + c
∑

i∈Ñ1(S)

xi

= s+ c
∑

i∈N1\T

xi ≥ c = c
∑

i∈S

xi.

Case II. Let p ≥ 2. If
∑

i∈S xi = 0 then validity of (20) is implied by nonnegativity of s, xi, i ∈ N1 \ T ,

and properties
∑

i∈T ′ xi ≤ 1 and 1 − p ≤ −1. Suppose
∑

i∈S xi =
∣∣S̄

∣∣ where S̄ is an independent set. If

1 ≤
∣∣S̄

∣∣ ≤ p− 2, then

∑

i∈S

xi − p+ 1 =
∣∣S̄

∣∣− p+ 1 ≤ p− 2− p+ 1 = −1,

which implies that c
(∑

i∈S xi − p+ 1
)
+ c

∑
i∈T ′ xi ≤ 0. Thus, the validity is implied by nonnegativity of s

and xi, i ∈ N1 \ T .
Now, let p−1 ≤

∣∣S̄
∣∣ ≤ p. Then, it results from the definition of T ′ that this condition implies

∑
i∈T ′ xi = 0.

So, for the case
∣∣S̄
∣∣ = p− 1, the validity follows from nonnegativity of s and xi, i ∈ N1 \ T . For

∣∣S̄
∣∣ = p, it

can be concluded that
∑

i∈T xi = 0. So inequality (1) implies

s+ c
∑

i∈N1

xi = s+ c
∑

i∈N1\T

xi + c
∑

i∈T

xi = s+ c
∑

i∈N1\T

xi ≥ c = c
(∑

i∈S

xi − p+ 1
)
.

Next, sufficient conditions for inequality (20) to define a facet of P are presented.

Proposition 3.14. Let S ⊆ N0 be an independent set. Inequality (20) is facet-defining for P if the following
conditions hold.

(i) For each i ∈ T \ T ′, there exists at least one S̄ ∈ Ip−1(S) such that i ∈ T \ (T ′ ∪N1(S̄)).

(ii) For each i ∈ T ′, there exists at least one S̄ ∈ Ip−2(S) such that i ∈ T ′ \N1(S̄).

(iii) For each i ∈ N0 \ S, there exists at least one S̄ ∈ I(S) where p − 1 ≤
∣∣S̄
∣∣ ≤ p such that i ∈

N0 \ (S ∪N0(S̄)).

The proof is left to the Appendix.
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Figure 8: Conflict graph considered in Example 3.6.

Example 3.6. Assume d = c = 15, N = {1, . . . , 9}, N1 = {1, . . . , 6}, and consider the conflict graph G given
in Figure 8. Then the following inequalities of type (20) are facet-defining for P .

s+ 15x1 + 15x4 ≥ 15(x7 + x8 − 1) + 15x6,

s+ 15x1 + 15x4 ≥ 15(x8 + x9 − 1) + 15x5,

s+ 15x1 + 15x3 + 15x4 ≥ 15(x7 + x9 − 1) + 15x2.

Observe that, as discussed in Section 2, inequality (20) under the foregoing conditions defines a facet of
P if c > d.

4. Separation

This section discusses the separation problems associated with the families of inequalities (lift 1), (cMIR 1),
(lift 2) and (residual 2), used in the computational tests reported in Section 5.

Consider a point (s∗, x∗) ∈ R+ × [0, 1]n. Then for each family, V , of valid inequalities the separation
problem is to find an inequality in V that is violated by the point (s∗, x∗) or show that there is no such
inequality. All the separation problems discussed here are NP-hard since they include the computation of
the independence number of a graph as a subproblem.

The separation problems are discussed in detail for inequalities (lift 1) and (cMIR 1), and also a brief
discussion on the separation of (lift 2) and (residual 2) is given at the end of this section.

First consider inequalities (lift 1). For a clique S ⊆ N and T ⊆ N1 \ S, these inequalities can be written
as follows.

∑

i∈S

(d− pic)
+xi ≤ s+ c

∑

i∈T

xi

⇐⇒
∑

i∈S

(d− pic)
+xi + c

∑

i∈N1\T

xi ≤ s+ c
∑

i∈N1

xi.

Hence, for a given solution (s∗, x∗), inequality (lift 1) is violated if and only if the maximum of the LHS,

max
S⊆N,T⊆N1\S

{∑

i∈S

(d− pic)
+x∗

i + c
∑

i∈N1\T

x∗
i | S is a clique

}
, (21)

is greater than the constant s∗ + c
∑

i∈N1
x∗
i . Recall that pi = α(G[N1 \ (N1(i) ∪ T )]) and, therefore, it

depends on the choice of set T.
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Exact separation of inequalities (lift 1)

In order to solve this separation problem exactly, define the binary variables yi, i ∈ N1 such that yi is 1
if i ∈ N1 \ T, and 0 otherwise, and the binary variables zi, i ∈ N indicating whether i ∈ S or not. For each
i ∈ N, also define the non-negative integer variables γi which are 0 if zi = 0 and are lower bounded by pi if
zi = 1. The maximization problem (21) can be solved by solving the following MIP problem.

max
∑

i∈N1

cx∗
i yi +

∑

i∈N

dx∗
i zi −

∑

i∈N

cx∗
i γi (22)

s.t. z defines a clique in N, (23)

γi ≥
∑

j∈I

yjzi, i ∈ N, I ∈ I(N1 \N1(i)), (24)

zi ≤ yi, i ∈ N1, (25)

yi ∈ {0, 1}, i ∈ N1, (26)

zi ∈ {0, 1}, i ∈ N, (27)

γi ∈ Z
+
0 , i ∈ N. (28)

Constraints (23) can be modeled in many different ways. For a discussion and comparison of formulations
for clique problems see [12]. Following [18], define the variables zij , {i, j} ∈ E indicating whether both nodes
i and j belong to the clique. Then constraints (23) can be modeled as follows:

zij ≤ zi, zij ≤ zj , {i, j} ∈ E,

zi + zj ≤ 1 + zij , {i, j} ∈ E,

zi + zj ≤ 1, {i, j} 6∈ E,

zij ∈ {0, 1}, {i, j} ∈ E,

zi ∈ {0, 1}, i ∈ N.

Constraints (24) ensure that γi must be greater than the cardinality of each independent set defined by
variables y, hence it must be greater than the maximum cardinality set. Clearly, in any optimal solution to
(22)–(28), constraint (24) will be satisfied as equation, that is, γi = pi. Since (24) are nonlinear, they can be
linearized by introducing new binary variables wij = yjzi. For each i ∈ N, constraints (24) can be replaced
by the following set of constraints.

γi ≥
∑

j∈I

wij , I ∈ I(N1 \N1(i)), (29)

wij ≤ zi, j ∈ N1, (30)

wij ≤ yj , j ∈ N1, (31)

wij ≥ zi + yj − 1, j ∈ N1, (32)

wij ∈ {0, 1}, j ∈ N1. (33)

Finally, constraints (25) impose that each element in S that also belongs to N1 must be in N1 \ T, that
implies S and T are disjoint.

As the set of inequalities (29) is large (increases exponentially with the number of nodes of G), then for
each i ∈ N , these inequalities can be added dynamically by determining the maximum independent set on
the graph G[N1(Wi)], where N1(Wi) = {j ∈ N1 \N1(i)| wij = 1}.
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Algorithm 1 Separation heuristic for inequalities (lift 1).

T ← {j ∈ N1 : x∗
j = 0}

for all i ∈ N \ T do
Compute an upper bound pi on α(G[N1 \(N1(i)∪T )]) using the sequential elimination algorithm given

in [11] for the complement of graph G
ci ← (d− pic)

+

end for
Sort the values of x∗

j , j ∈ N \ T in a decreasing order. Let j1, . . . , jr denote the indices of the resulting
order.
S ← ∅
for all j1, . . . , jr do

if S ∪ {j1} is a clique then
S ← S ∪ {j1}

end if
end for
if

∑
i∈S cix

∗
i > s∗ + c

∑
i∈T x∗

i then
Add inequality (lift 1) for the given S and T.

end if

Heuristic separation of inequalities (lift 1)

The exact separation procedure can hardly be used in practice. Here a heuristic procedure to separate
inequalities (lift 1) is proposed, which is given in Algorithm 1.

Next, the separation of inequality (cMIR 1) is examined. For S ⊆ N0 and T ⊆ N1, this inequality can
be written as follows.

r
⌈d
c

⌉
+ (c− r)

∑

i∈S

xi ≤ s+ c
∑

i∈N1\T

xi + r
∑

i∈T

xi

⇐⇒ (c− r)
∑

i∈S

xi − c
∑

i∈N1\T

xi − r
∑

i∈T

xi ≤ s− r
⌈d
c

⌉

⇐⇒ (c− r)
∑

i∈S

xi + (c− r)
∑

i∈T

xi ≤ s− r
⌈d
c

⌉
+ c

∑

i∈N1

xi

⇐⇒
∑

i∈S

xi +
∑

i∈T

xi ≤
s− r⌈d

c
⌉+ c

∑
i∈N1

xi

c− r
. (34)

Notice that condition (17) is equivalent to the following condition.

ᾱ
(
G
[
T ∪ S

])
≤

⌊d
c

⌋
. (35)

Consider a fractional solution (s∗, x∗) and the graph G where the weight of node i ∈ N is given by x∗
i .

To find the most violated inequality, one needs to maximize the LHS of inequality (34) by determining S
and T that satisfy condition (35):

max
S⊆N0,T⊆N1

{∑

i∈S

x∗
i +

∑

i∈T

x∗
i | ᾱ

(
G
[
T ∪ S

])
≤

⌊d
c

⌋}
.

Therefore, the separation problem is equivalent to find the maximum-weight subset of N such that the
maximum independence number of the subgraph induced by that subset is less than or equal to ⌊d

c
⌋, and

this independent set must include at least one node from set N0.
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Exact separation of inequalities (cMIR 1)

A possible approach to solve this separation problem exactly is to formulate it as a binary problem. To
achieve this goal, define the binary variables zi, i ∈ N, that indicate, for i ∈ N1, whether i ∈ T, and for
i ∈ N0, whether i ∈ S. Let C be the family of all subsets in N whose independence number is greater than
⌊d
c
⌋, that is C = {C ⊆ N | α(G[C]) > ⌊d

c
⌋}. Then the separation problem can be solved by solving the

following binary problem.

max
∑

i∈N

x∗
i zi (36)

s.t.
∑

j∈C

zj ≤ |C| − 1, ∀C ∈ C, (37)

∑

j∈N0

zj ≥ 1, (38)

zi ∈ {0, 1}, i ∈ N. (39)

Inequalities (37) increase exponentially with the size of the graph. Hence, these inequalities should be
included dynamically using a separation routine to find the maximum cardinality independent set.

Heuristic separation of inequalities (cMIR 1)

A heuristic procedure is now described to separate (cMIR 1). A greedy heuristic is proposed to form
set S ∪ T. First, the nodes are sorted accordingly to the value x∗

j × |δ(j)|, where δ(j) denotes the set of
arcs incident to node j. Then, following that order (starting from a node in N0) the nodes are selected if
the independence number of the resulting induced graph does not exceed ⌊d

c
⌋. In order to ensure that this

condition holds, a node j is selected if there are at most ⌊d
c
⌋ − 1 selected nodes that are not neighbors of j,

that is, if NC(j) ≤ ⌊
d
c
⌋ − 1, where NC(j) denotes the set of neighbors of j in C ⊆ N, in the complement of

graph G.
The separation algorithm is given in Algorithm 2.

Algorithm 2 Separation heuristic for inequalities (cMIR 1).

Lj ← x∗
j × |δ(j)|, j ∈ N.

Sort Lj in a decreasing order. Let j1, . . . , jn denote the indices of the resulting order.
C ← {j∗} where j∗ = min{i : ji ∈ N0}
for all i ∈ N |ji 6∈ C do

if |NC(ji)| ≤ ⌊
d
c
⌋ − 1 then

C ← C ∪ {ji}
end if

end for

S ← C ∩N0; T ← C ∩N1; RHS ←
s∗−r⌈ d

c
⌉+c

∑
i∈N1

x∗

i

c−r

if
∑

i∈S∪T x∗
i > RHS then

Add inequality (cMIR 1) for the given S and T.
end if

Separation of inequalities (lift 2) and (residual 2)

As a final remark, the separation of inequalities (lift 2) and (residual 2) is discussed. It is similar to the
separation of inequalities (cMIR 1). For each S ⊆ N0, and T ⊆ N1, inequalities (lift 2) can be rewritten as

r
∑

i∈S

xi ≤ s+ r
∑

i∈N1\T

xi ⇐⇒
∑

i∈S∪T

xi ≤
s

r
+

∑

i∈N1

xi.
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Figure 9: Conflict graph corresponding to the fractional solution given in Example 4.1.

So inequality (lift 2) resembles inequality (34). Hence, the separation problem amounts to maximize∑
i∈S∪T xi over a set which is very similar to (35).
Now, consider the case of inequalities (residual 2). For each S ⊆ N0, and T ⊆ N1, these inequalities can

be rewritten as

c
∑

i∈S

xi ≤ s+ c
∑

i∈N1\T

xi + (c− r)⇐⇒ c
∑

i∈S∪T

xi ≤ s+ c
∑

i∈N1

xi + (c− r).

Again, the separation problem becomes very similar to the one of inequalities (cMIR 1) and (lift 2).

Example 4.1. Consider set Y with N = {1, . . . , 6}, N1 = {1, . . . , 4}, d = 12, c = 5 and E = {{1, 2}, {2, 6}, {6, 3}}.
Also consider the problem of minimizing an objective function over set Y . For a given objective function,
the following fractional solution of the linear relaxation is obtained.

s = 2, y1 = 0, y2 = 2.5, y3 = 2.5, y4 = 5, y5 = 5, y6 = 2.5,

x1 = 0, x2 = 0.5, x3 = 0.5, x4 = 1, x5 = 1, x6 = 0.5.

The corresponding conflict graph is presented in figure 9, where the weight of node i ∈ N is given by the
value of xi in the fractional solution. In order to separate inequality (cMIR 1), as explained in Section 4, set
S = {6} and T = {2, 3, 4} where S ∪ T is the maximum-weight subset of N satisfying condition (35). This
gives 2.5 for the left-hand side of inequality (34), while the right-hand side is equal to 2, and so inequality
(cMIR 1) is violated for the proposed sets S and T .

5. Computational experiments

In Section 3 several families of valid inequalities have been introduced and sufficient conditions for defining
facets of P have been provided, showing that these inequalities are relevant from a theoretical point of view.
From a practical point of view, applying these inequalities to general mixed integer problems raises several
questions, namely, to find the most efficient inequalities, to find efficient separation algorithms, and to test
different relaxations of those problems since, for some problems as the ones discussed in [2], set X can
be obtained through different relaxations. Given all these difficulties, this paper aims at providing only
preliminary computational tests, using the intermediate set Y , to test, from a practical point of view, the
inclusion of such inequalities. Thus, the goals of the computational experiments are (a) to evaluate how
these inequalities approximate the convex hull of Y , and (b) to test whether these inequalities can improve
the performance of a commercial solver to solve IP instances.

All computations are performed using the optimization software Xpress-Optimizer Version 23.01.03 with
Xpress Mosel Version 3.4.0 [20], on a computer with processor Intel Core i7, 2.4 GHz and with 32 GB RAM.

Only inequalities (lift 1), (lift 2), (residual 2), and (cMIR 1), representing the three major families of
inequalities presented in Section 3 are tested. Section 5.1 reports the integrality gap reduction obtained with
the inclusion of these inequalities, while Section 5.2 reports the improvement obtained with the inclusion of
these inequalities as cuts to solve a set of instances to optimality using a commercial solver.
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5.1. Integrality gap reduction

In this section, the integrality gap reduction obtained with the addition of inequalities (lift 1), (lift 2),
(residual 2), and (cMIR 1) is tested.

A set of instances of the minimization problem over the single node fixed-charge set are generated as
follows. For each d ∈ {55, 80, 95, 110, 130} and each c ∈ {25, 35, 45} five instances are randomly generated.
The conflict graph G = (N,E) with |N | = 20 is randomly generated with density 25% and 50%. Elements
in N1 are randomly chosen from N with probability 1

2 . The coefficients of s in the objective function are
randomly generated in the interval [3, 5); the coefficients of yi, i ∈ N1, in the objective function are randomly
generated in the interval [0, 1); and the coefficients of xi are randomly generated in the interval [0, 20) if
i ∈ N1, and in the interval (−20, 0] otherwise.

For each pair (d, c) the following average values are computed:

• the average initial integrality gap denoted by IG;

• the average closed gap using known inequalities for XSMI (the MIR inequality) and for XV P (Clique
and Odd hole inequalities), denoted by MCO ;

• the average closed gap using the new inequalities (lift 1), (lift 2), (residual 2), (cMIR 1), denoted by
New;

• the average closed gap using MCO and the New cuts, denoted by All.

For MCO inequalities, the MIR inequality is included a priori while clique and odd hole inequalities are
introduced as cuts using the separation routines given in [15]. For the New inequalities, the exact separation
schemes discussed in Section 4 are implemented. Initial gaps are computed as OPT−LR

max{|OPT |,|LR|} × 100 where

OPT denotes the optimal value and LR indicates the linear relaxation value. Furthermore, closed gaps are
calculated as ILR−LR

OPT−LR
× 100 where ILR denotes the value of the linear relaxation after the inclusion of

the corresponding cuts. Moreover, the closed gap obtained by the MIR, clique, odd hole inequalities and
inequality (lift 1) is denoted by MCO+(lift 1), and also the similar notation is used for inequalities (lift 2),
(residual 2), and (cMIR 1). The computational results are reported in Tables 1-3.

Table 1: Average integrality gaps and closed gaps on 75 randomly generated instances with graph density 25%.

(d,c) IG MCO New All
(55,25) 47.91 81.62 71.72 87.54
(55,35) 39.35 82.71 59.32 94.12
(55,45) 24.28 95.55 54.74 97.32
(80,25) 75.34 91.54 91.62 96.52
(80,35) 38.64 94.88 87.82 97.21
(80,45) 27.61 81.56 48.42 95.52
(95,25) 89.86 90.02 92.47 95.46
(95,35) 48.98 78.89 74.88 94.54
(95,45) 34.99 96.71 79.56 98.91
(110,25) 107.01 93.09 96.12 96.88
(110,35) 62.45 85.83 92.33 95.82
(110,45) 38.85 82.70 60.80 89.58
(130,25) 113.15 95.33 98.63 100
(130,35) 102.94 90.85 95.08 99.61
(130,45) 48.06 80.71 80.34 87.97
Average 59.96 88.13 78.92 95.13
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Table 2: Average integrality gaps and closed gaps on 75 randomly generated instances with graph density 50%.

(d,c) IG MCO New All
(55,25) 105.46 87.64 90.55 97.75
(55,35) 73.04 85.81 64.74 98.77
(55,45) 69.53 83.67 58.70 94.67
(80,25) 142.43 87.75 89.49 100
(80,35) 99.79 92.19 94.57 99.72
(80,45) 69.21 73.64 44.18 88.95
(95,25) 138.44 78.86 89.86 99.22
(95,35) 116.20 87.78 96.20 99.45
(95,45) 92.91 80.25 68.45 94.65
(110,25) 103.73 86.26 76.84 99.91
(110,35) 141.95 88.16 94.45 99.92
(110,45) 113.13 90.31 94.21 99.52
(130,25) 93.10 90.90 59.45 94.90
(130,35) 175.50 79.25 85.93 99.31
(130,45) 132.18 89.02 93.49 98.72
Average 111.1 85.43 80.07 97.69

It can be seen from Tables 1-2 that the addition of the New cuts to the linear relaxation allowed to
improve the integrality gap closed by MCO inequalities of all tested instances. Moreover, those tables also
show that the improvement on the integrality gap obtained by adding the New cuts to the linear relaxation
of the instances with graph density 50% is slightly greater than the improvement obtained for the instances
with lower graph densities. Such behaviour is somehow expected since most inequalities introduced in the
paper are based on conditions stating that when a given set of variables is selected from N0, then the
maximum number of variables that can be selected from N1 times c is not enough to cover d, forcing s to be
positive. These conditions are satisfied when there are many edges between nodes in N0 and nodes in N1.
Additional tests on graphs with density of 10% were performed. Such tests, not reported here, showed that
for such small size instances MCO inequalities were able to reduce the integrality gap in 100% in almost
all the instances. These results seem to indicate that the inequalities introduced here should be applied to
subsets of more general sets where the conflict graph should not be too sparse.

Table 3 shows that inequality (lift 1) was ineffective, while (lift 2) was the most effective inequality for
10 pairs of (d, c), and inequality (cMIR 1) was the most effective one for the remaining pairs.

5.2. Inclusion of cuts to solve a set of instances

This section reports the results obtained to test the use of the proposed inequalities as cuts to solve a
new set of instances. The objective of this experiment is different from the one in the previous section. Here,
the purpose is to avoid exact separation, as it is too time consuming, and to tackle more difficult instances
(in the previous section all the instances were solved to optimality). To this end, the new set of instances
is generated in a very similar way to the one given in the previous section for a density of 50%, but with
two differences: the number of nodes considered is set to | N |= 400 and the coefficient of s is taken in the
interval (0, 1].

For each pair (d, c), three instances are generated. Each instance is solved by Xpress Optimizer twice.
First the instance is solved with the default options. Then the instance is solved with the addition of cuts at
the root node using the separation heuristics described in Section 4. An overall time limit of 1800 seconds
is assumed. The average results are reported in Table 4. Columns Time give the running time in seconds.
For almost all the pairs of (d, c) at least one instance could not be solved within the time limit. Columns
Nodes indicate the number of nodes generated during the branch-and-cut algorithm. Columns Gap indicate
the integrality gap at the end of the running time (it is zero if the instance is solved to optimality).
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Table 3: Average closed gaps by inequalities (lift 1), (lift 2), (residual 2), and (cMIR 1) which are taken individually on 75
randomly generated instances with graph density 50%.

(d,c) MCO MCO+ (lift 1) MCO+ (lift 2) MCO+ (residual 2) MCO+ (cMIR 1)
(55,25) 87.64 87.64 94.30 94.56 94.09
(55,35) 85.81 85.81 97.92 86.31 85.81
(55,45) 83.67 83.67 93.54 83.67 83.67
(80,25) 87.75 87.75 93.22 95.27 98.77
(80,35) 92.19 92.19 98.23 94.51 96.31
(80,45) 73.64 73.64 87.72 78.16 73.64
(95,25) 78.86 78.86 99.22 91.34 80.75
(95,35) 87.78 87.78 99.45 93.20 88.16
(95,45) 80.25 80.25 84.02 86.21 90.89
(110,25) 86.26 86.26 92.16 90.85 98.96
(110,35) 88.16 88.16 92.48 95.02 98.75
(110,45) 90.31 90.31 99.52 91.18 90.95
(130,25) 90.90 90.90 90.90 91.04 94.90
(130,35) 79.25 79.25 99.31 87.25 80.97
(130,45) 89.02 89.02 98.66 96.23 89.35
Average 85.43 85.43 94.71 90.32 89.73

It can be readily seen that both the running times and the average gap decreased substantially with the
inclusion of the proposed cuts. These results should be regarded as illustrative examples where the cuts
proposed in the paper can be useful to solve IP problems. Other sets of instances generated with other
parameters have been tested where no significant impact was observed, such as the instances using the
coefficient of s generated as in the previous section.

6. Conclusion

This paper investigated a mixed integer set that intersects a simple mixed integer set, defined for a single
constraint, with a vertex packing set, resulting from a conflict graph. It was shown that many new facet-
defining inequalities appear when the intersection of the two sets is considered. Such inequalities cannot be
obtained from original sets individually. In particular, the conflict MIR inequalities were proposed, which
extend the well-known MIR inequalities to the case where incompatibilities between binary variables are
considered. The new families were effective in solving and in reducing the integrality gap of a single node
fixed-charge set with arc incompatibilities,when the conflict graph is dense.

Observe that identifying relevant sets X as substructure of general feasible sets is an open question that
depends on the problem at hand. Another research direction is the study of related mixed integer sets, such
as the intersection of XV P with the following multiple simple mixed integer sets

{
(s, x) ∈ R

r
+ × B

n : sk +
∑

i∈Nk

cixi ≥ dk, k ∈ {1, . . . , r}
}
,

arising when several 0-1 mixed integer constraints are considered simultaneously.
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Appendix

Proof of Proposition 3.4. Consider the equation

s+ r
∑

i∈N1\T

xi = r
∑

i∈S

xi, (A.1)

and let K = P ∩ {(s, x) | (s, x) satisfies (A.1)}. Now assume inequality γs+
∑

i∈N βixi ≥ γ0 is valid for X
and satisfies the condition

γs+
∑

i∈N

βixi = γ0, ∀(s, x) ∈ K. (A.2)

Next, it is shown that equality (A.2) is a multiple of (A.1). In order to achieve this goal, generate the
points belonging to K as follows.

Condition (i) implies α(G[T ]) ≥ ⌈d
c
⌉. So the following points exist and are in K.

(P1) ∀ T ∈ I⌈ d
c
⌉(T ), s = 0;xi = 1, i ∈ T ;xi = 0, i ∈ N \ T .

In addition, condition (i) shows that for each j ∈ T , there exist Tj ∈ I⌈ d
c
⌉(T ) such that j 6∈ N1(Tj). So

the following points are in K.

(P2) ∀j ∈ T, s = 0;xi = 1, i ∈ Tj;xj = 1;xi = 0, i ∈ N \ (Tj ∪ {j}).
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Condition (ii) ensures the existence of the following points.

(P3) ∀j ∈ N0 \ S, s = 0;xi = 1, i ∈ Tj ∈ I⌈ d
c
⌉(T );xj = 1;xi = 0, i ∈ N \ (Tj ∪ {j}).

Conditions (iii) ensures the existence of the following points.

(P4) ∀S̄ ∈ S, T ∈ I⌈ d
c
⌉−|S̄|(T \N1(S̄)), ∀ I ∈ I|S̄|−1(N1 \ (T ∪N1(S̄) ∪N1(T ))), s = r;xi = 1, i ∈ (S̄ ∪ T ∪

I);xi = 0, i ∈ N \ (S̄ ∪ T ∪ I);

(P5) ∀S̄ ∈ S, T ∈ I⌈ d
c
⌉−|S̄|(T \N1(S̄)), ∀ I ∈ I|S̄|(N1\(T∪N1(S̄)∪N1(T ))), s = 0;xi = 1, i ∈ (S̄∪T ∪I);xi =

0, i ∈ N \ (S̄ ∪ T ∪ I).

Substituting points (P1) and (P2) in equation (A.2) and subtracting the resultant equations imply βj =
0, j ∈ T . Similarly, using points (P1) and (P3) gives βj = 0, j ∈ N0 \ S. Then replacing any points of type
(P1) in equation (A.2) gives γ0 = 0. So equation (A.2) can be written as

γs+
∑

i∈N1\T

βixi +
∑

i∈S

βixi = 0. (A.3)

Let i, j ∈ N1 \ T and assume that they are adjacent in G′ = (N1 \ T,E′). So condition (iv) implies
that there exist S̄ ∈ S and exists an independent set I ⊆ N1 \ (T ∪ N1(S̄)) such that |I| =

∣∣S̄
∣∣, i ∈ I,

j 6∈ I, and I ′ = (I \ {i}) ∪ {j} is an independent set. Substituting points (P4) or (P5), depending on the
cardinality of the independent set, corresponding to sets I and I ′ in equation (A.3) and subtracting them
imply βi = βj , i, j ∈ N1 \T . It follows from connectivity of graph G′ = (N1 \ T,E′) that βi = β1, i ∈ N1 \T .

Similarly to the justification of the previous part, one can check, using condition (v), that βi = β2, i ∈ S.
Then replacing points (P4) or (P5) (depending on the cardinality of the independent set) in equation (A.3)
it follows that β2 = −β1. Finally, substituting points (P4) in equation (A.3) gives β1 = γr. �

Proof of Proposition 3.9. In order to prove that inequality (cMIR 1) defines a facet, consider the equation

s+ c
∑

i∈N1\T

xi + r
∑

i∈T

xi = r
⌈d
c

⌉
+ (c− r)

∑

i∈S

xi, (A.4)

and let K = P ∩ {(s, x) | (s, x) satisfies (A.4)}. Now assume inequality γs+
∑

i∈N βixi ≥ γ0 is valid for X
and satisfies the condition

γs+
∑

i∈N

βixi = γ0, ∀(s, x) ∈ K. (A.5)

One can justify that equality (A.5) is a multiple of (A.4) as follows. Consider the following points in K.

(P1) ∀ T1 ∈ I⌈ d
c
⌉(T ), s = 0;xi = 1, i ∈ T1;xi = 0, i ∈ N \ T1;

(P2) ∀ T2 ∈ I⌊ d
c
⌋(T ), s = r;xi = 1, i ∈ T2;xi = 0, i ∈ N \ T2;

(P3) ∀S̄ ∈ S1, ∀ T ∈ I⌊ d
c
⌋−|S̄|(T \N1(S̄)), s = c

∣∣S̄
∣∣+ r;xi = 1, i ∈ S̄;xi = 1, i ∈ T ;xi = 0, i ∈ N \ (S̄ ∪ T ).

Note that condition (ii) implies that for each k ∈ N1 \ T , there exist sets S̄ ∈ S1 and T ∈ I⌊ d
c
⌋−|S̄|(T \

N1(S̄)) such that k ∈ N1 \ (T ∪N1(T ∪ S̄)). So the following points are in K.

(P4) ∀k ∈ N1 \ T, s = c(
∣∣S̄

∣∣− 1) + r;xi = 1, i ∈ S̄;xi = 1, i ∈ T ;xk = 1;xi = 0, i ∈ N \ (S̄ ∪ T ∪ {j}).

In addition, it follows from condition (iii) that for each k ∈ N0 \ S, there exist sets S̄ ∈ S1 and
T ∈ I⌊ d

c
⌋−|S̄|(T \N1(S̄)) such that i ∈ N0 \ (S ∪N0(T ∪ S̄)). Thus, the following points belong to K.
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(P5) ∀k ∈ N0 \ S, s = c
∣∣S̄
∣∣+ r;xi = 1, i ∈ S̄;xi = 1, i ∈ T ;xk = 1;xi = 0, i ∈ N \ (S̄ ∪ T ∪ {j}).

Now, let i ∈ N0 \ S. Considering points of type (P3) and (P5), and substituting them in equation (A.5)
and subtracting the resultant equations, it follows that βi = 0, i ∈ N0 \ S. Thus, equality (A.5) can be
written as

γs+
∑

i∈N1\T

βixi +
∑

i∈T

βixi +
∑

i∈S

βixi = γ0. (A.6)

Consider i, j ∈ T and suppose i and j are adjacent in G′
⌊ d

c
⌋
= (T,E′). So there exists an independent

set I ⊆ T such that i ∈ I, j 6∈ I, |I| = ⌊d
c
⌋, and I ′ = (I \ {i}) ∪ {j} is independent. Using point (P2)

corresponding to sets I and I ′ and equation (A.6) it follows that βi = βj , i, j ∈ T . It can be concluded from
connectivity of G′

⌊ d
c
⌋
= (T,E′) that βi = β1, i ∈ T.

Next, take i, j ∈ S and assume that they are connected in G′′ = (S,E′′). Therefore, there exists an
independent set J such that J ⊆ S, α(G[T \ N1(J)]) = ⌊

d
c
⌋ − |J |, i ∈ J , j 6∈ J , J ′ = (J \ {i}) ∪ {j} is an

independent set, and α(G[T \N1(J
′)]) = ⌊d

c
⌋− |J |. Using points (P3) corresponding to J and J ′, and (A.6)

implies βi = βj , i, j ∈ S. It follows from connectivity of G′′ = (S,E′′) that βi = β2, i ∈ S.
Let i ∈ N1 \ T . Substituting points of type (P3) and (P4) in equation (A.6) and subtracting them gives

βi = γc, i ∈ N1 \ T .
It follows from replacing points (P1) and (P2) in equation (A.6) that γ0 = β1⌈

d
c
⌉ and γr + β1⌊

d
c
⌋ = γ0

which implies β1 = γr, γ0 = γr⌈d
c
⌉. Finally, substituting points (P3) in (A.6) gives β2 = −γ(c− r). �

Proof of Proposition 3.14. First, observe that since S is an independent set, then T = N1(S). Now consider
an equation

s+ c
∑

i∈N1\T

xi = c
∑

i∈S

xi + c
∑

i∈T ′

xi + c(1− p), (A.7)

and let K = P ∩ {(s, x) | (s, x) satisfies (A.7)}. Now assume inequality γs+
∑

i∈N βixi ≥ γ0 is valid for X
and satisfies the condition that

γs+
∑

i∈N

βixi = γ0, ∀(s, x) ∈ K. (A.8)

One can prove that equality (A.8) is a multiple of (A.7) by introducing the following points belonging to
K.

(P1) s = c;xi = 1, i ∈ S;xi = 0, i ∈ N \ S;

(P2) ∀j ∈ N1 \ T, s = 0;xj = 1;xi = 1, i ∈ S;xi = 0, i ∈ N \ (S ∪ {j});

(P3) ∀S̄ ∈ Ip−1(S), s = 0;xi = 1, i ∈ S̄;xi = 0, i ∈ N \ S̄;

(P4) ∀S̄ ∈ Ip−1(S), ∀j ∈ T \ T ′, s = 0;xi = 1, i ∈ S̄;xj = 1;xi = 0, i ∈ N \ (S̄ ∪ {j});

(P5) ∀S̄ ∈ Ip−2(S), ∀j ∈ T ′, s = 0;xi = 1, i ∈ S̄;xj = 1;xi = 0, i ∈ N \ (S̄ ∪ {j}).

Now let i ∈ T \ T ′. Then, using points of type (P3) and (P4) corresponding to set S̄ and equation (A.8)
gives βi = 0, i ∈ T \ T ′.

Let i ∈ N0 \ S. Condition (iii) implies that there exists at least one S̄ ∈ I(S) with |S̄| ∈ {p− 1, p} such
that i 6∈ N0(S̄). Therefore, depending on the cardinality of S̄, either of points (P1) and (P3) in addition
with setting xi = 1 belongs to K as well. Substituting this new point with points (P1) or (P3) in equation
(A.8) and subtracting the resultant equations imply βi = 0, i ∈ N0 \ S.
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Substituting points (P1) and (P2) in equation (A.8) and subtracting the resultant equations give βi =
γc, i ∈ N1 \ T . Additionally, replacing points (P1) and (P3) in equation (A.8) and subtracting the resultant
equations imply βi = −γc, i ∈ S.

Let i, j ∈ T ′. As a consequence of condition (ii), there exist S̄1, S̄2 ∈ Ip−2(S) such that i ∈ T ′ \N1(S̄1)
and j ∈ T ′ \ N1(S̄2). Replacing points (P5) corresponding to subsets S̄1 and S̄2 in equation (A.8) implies
βi = βj , i, j ∈ T ′ and so βi = β, i ∈ T ′. Next, substituting points (P1) in equation (A.8) gives γ0 = γc(1−p).
Finally, β = −γc can be obtained by replacing points (P5) in equation (A.8). �
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