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Abstract—We consider geographically distributed sensor plat-
forms with limited field of views (FoVs) networked together in
order to cover a larger surveillance region. Each sensor has a
partially overlapping FoV with its neighbours, and, collects both
target originated and spurious measurements. We are interested
in estimating the locations of the sensors in a network coordinate
system using only these measurements. The parameter likelihood
of the problem, however, does not scale with the number of
sensors as its evaluation requires joint multi-sensor filtering. We
propose an approximate likelihood which provides scalability by
building upon local single sensor filtering, and, is capable of han-
dling partially overlapping coverage for a pair of sensors. Such
scalable approximations for fully overlapping sensor coverages
have been recently introduced in a cooperative self-calibration
framework in which they are used with pairwise Markov random
fields as edge potentials. We use the proposed likelihoods within
this framework for distributed self-localisation of sensors in the
partially overlapping FoVs case. We provide explicit formulae
for the likelihoods and a Monte Carlo algorithm which consists
of consecutive likelihood updates and belief propagation steps
for estimation –all performed as distributed message passings
across the network. We demonstrate the estimation accuracy
achieved through simulations with multiple objects and complex
measurement models.

I. INTRODUCTION

In a wide area surveillance scenario, we consider networked

sensor platforms with moderate resources for sensing, compu-

tation, communication and energy. Self-calibration is a highly

desired capability for such fusion networks, as imperfect

knowledge of these parameters could induce systematic errors

and undermine the benefits of networked sensing [1]. It might

not be feasible to measure all calibration parameters directly,

however. For example, locating sensors in GPS denying envi-

ronments as in underwater sensing is a challenging task [2],

which, in principle, can be done using measurements from

non-cooperative objects in the surveillance region.

From this viewpoint, calibration can be treated as parameter

estimation in state space models [3] with a particular structure

in which likelihoods of the sensor measurements depend on

these parameters. In fusion networks, intricate models are

used in order to capture a variety of sources of measurement

uncertainties including unknown number of manoeuvering

targets appearing and disappearing over time, sensor data in-

volving false alarms, missed detections, noise and association

uncertainties [4], [5]. Because parameter estimation in this

setting involves (multi-object) state estimation via Bayesian

recursive filtering, computational complexity becomes an im-

portant aspect of any potential solution strategy proposed. In

fusion networks, complexity issues are exacerbated by the

presence of more than one sensors [6], and scalability with

the number of sensors must be addressed, in this context.

One remarkable approach to efficient inference in networks

of sensors has been to decompose network wide problems into

problems between pairs of sensors using the pairwise Markov

random fields (MRFs) framework [7]. These models together

with message passing algorithms over them have been used

for consistently combining pairwise results in applications

including target tracking [8]. In our problem setting, however,

these pairwise terms still has combinatorial complexity due to

the multi-sensor filtering involved. In order to circumvent this

issue, node-wise separable likelihoods have been proposed,

which are approximations that build upon local filtering den-

sities [9], [10].

In [9], a separable structure referred to as dual-term node-

wise separable likelihoods has been introduced for sensor self-

calibration and demonstrated in a self-localisation scenario.

The estimation scheme is built upon local RFS filtering and

message passing operations for likelihood –or, pairwise edge

potential– update, and, belief propagation (BP) iterations (see,

e.g., [7]) over the resulting MRF for finding parameter

marginals. This algorithm is capable of self-localisation while

handling the intracicies of a surveillance scenario as described

above. The explicit expressions in [9] for computing these like-

lihoods are valid, however, for the case when all the sensors

collect measurements from the same multi-object scene.

In this work, we consider the case in which sensors have

partially overlapping FoVs. We provide explicit formulae for

evaluating dual-term separable parameter likelihoods for this

case. We then use them with pairwise MRFs and message

passing algorithms over them, similar to [9]. The resulting

network wide (approximate) model features scalability with

the number of sensors as opposed to estimation using exact

likelihoods. We use this model for distributed self-localisation

of sensors with partially overlapping FoVs.

The structure of the article is as follows: In Section II we

give the problem statement. We discuss the combinatorially

complex exact solution in Section III. Then, in Section IV,



an overview of the approximation framework is introduced.

We present the proposed separable likelihoods in Section V.

Details of a Monte Carlo algorithm on this model is given in

Section VI, which is demonstrated for sensor self-localisation

in Section VII. Finally, we conclude in Section VIII.

II. PROBLEM STATEMENT

Let us consider a graph representation G = (V , E) of the net-

work specified by a list of sensor platforms V = {1, ..., N} and

bidirectional communication links between pairs of sensors

E = {(i, j)|i and j share a communication link}. The neigh-

bours of node i in G is given by ne(i) , {j|(i, j) ∈ E}. We

assume that G is connected and might contain cycles.

The objects in the surveillance region S ⊂ R
2 at time k

are represented by a set Xk , {x1k, ..., x
Mk

k } where Mk is the

number of objects at k and each element xmk of the set is a

state vector xmk ∈ X of object m. Typically, x ∈ X consists

of position xl and velocity xv fields, i.e., x = [xl, xv]. In this

work, we consider a RFS model [11]: Xk is a realisation of a

RFS Xk which takes values in the space of all finite sets of X
denoted by F(X ). The variable Xk+1 is given by a Markov

shift conditioned on Xk, and, involves a thinning process for

disappearing objects (with probability 1 − PS(x
m
k )) together

with a Markov transition for the objects persisting to appear

(with probability PS(x
m
k )) characterised by the conditional

density πk(.|xmk ). A second RFS process known as the birth

process with density bk(.) models newly appearing objects. As

a result,

Xk+1 = Π̃k+1 ∪Bk, (1)

where Bk ∼ bk(.), and, Π̃k+1 is the thinned process obtained

by selecting elements of Πk+1 = {xmk+1 ∼ πk(.|x
m
k )}m=1:Mk

with probability Ps(x
m
k ).

In our multi-sensor setting, each sensor j ∈ V is associated

with its own likelihood function which is explicitly condi-

tioned on the sensor location1. The likelihood for sensor j
is denoted by lj(zk,j |xk; θj) where zk,j is the measurement

induced by xk and θj is the sensor location.

The FoV of sensor j is denoted by Sj : An object x ∈ Xk

induces a measurent at sensor j with zero probability if

xl 6∈ Sj , and, with probability PD,j(x
l) > 0, otherwise. Let

us denote the set of object originated measurements by Z̃j
k.

Sensor j also collects spurious measurements Cj due to

the surroundings (or, false alarms) which are modelled as a

Poisson realisation denoted by Cj ∼ Pois(.;λC,j , sC,j(z))
where λC,j is the average number of (Poisson distributed)

clutter points and sC,j(z) is their spatial density2. Therefore,

at time k, sensor j receives the set of measurements given by

Zj
k = Z̃j

k ∪ Ck,j .

This measurement process leads to a random finite set

Z
j
k which has the conditional density pj(Z

j
k|Xk) given in

1Note that, sensor likelihoods can be selected to depend on any calibration
parameter that relates a given object state in a desired reference frame to
sensor readings including sensor orientations and other scaling parameters.

2Note that, it is possible to use a non-stationary Poisson process model for
the clutter. Here, we omit dependency to time for brevity.

terms of the probability of detection profile PD,j(x), false

alarm parameters λC,j and sC,j(z), and, uncertainties in object

originated measurements lj(z
j |x) [11, Eq.(12.186)].

Inference in this model when θ , (θ1, ..., θN ) is known

involves estimating Xk based on the measurement histories

{Zj
1:k}j∈V , and is solved by Bayesian recursive filtering [11].

When θ is unknown, its estimation involves finding the so

called marginal parameter likelihood of the state space model

described above [12], [13]. This likelihood relates the measure-

ment histories {Zj
1:k}j∈V to the network wide unknowns θ

– which are sensor locations in this work– and is denoted

by l
(

Z1
1:k, ..., Z

N
1:k|θ

)

. We consider a random θ and use this

likelihood to update a prior distribution. In other words, we

consider the posterior density

p(θ|Z1
1:t, ..., Z

N
1:t) ∝ p0(θ) l

(

Z1
1:t, ..., Z

N
1:t|θ

)

, (2)

and, would like to find the minimum mean squared error

(MMSE) estimate of θ based on this posterior.

In practice, it is reasonable to assume that θj takes values

from a bounded set B ⊂ R
2 (as localisation in a plane is

considered) and consequently that θ is bounded. Henceforth,

we consider a uniform prior p0(θ) over BN .

III. THE EXACT MARGINAL LIKELIHOOD OF THE STATE

SPACE MODEL AND A POISSON RFS APPROXIMATION

The parameter likelihood in (2) decomposes using the chain

rule of probabilities [14, Sec.IV] as

l
(

Z1
1:t, ..., Z

N
1:t|θ

)

=
t
∏

k=1

p
(

Z1
k , ..., Z

N
k |Z1

1:k−1, ..., Z
N
1:k−1, θ

)

.

(3)

The multiplicative form admits the interpretation that the fac-

tors in the right hand side (RHS) are independent contributions

of the sets of measurements collected at k. These contri-

butions relate the current measurement sets to the previous

measurement histories through the object state variables. Let

us consider explicit expressions for these terms.

For the RFS state space model described in Section II,

p
(

Z1
k , ..., Z

N
k |Z1

1:k−1, ..., Z
N
1:k−1, θ

)

=

∫

X





∏

j∈V

pj(Z
j
k|Xk, θ)



 p(Xk|Z
1
1:k−1, . . . , Z

N
1:k−1, θ)δXk

(4)

where the prediction density in (4) is found by Bayesian

filtering recursions:

p(Xk|Z
1
1:k−1, . . . , Z

N
1:k−1, θ) =

∫

X

Π̃k(Xk|Xk−1)

×p(Xk|Z
1
1:k−1, . . . , Z

N
1:k−1, θ)δXk−1, (5)

p(Xk|Z
1
1:k, . . . , Z

N
1:k, θ) ∝





∏

j∈V

pj(Z
j
k|Xk, θ)





×p(Xk|Z
1
1:k−1, . . . , Z

N
1:k−1, θ), (6)

and integration over a set variable integrand is defined as [11]



∫

S

f(X)δX =
∞
∑

m=0

1

m!

∫

Sm

f({x1, · · · , xm})dx1 · · · dxm.

(7)

Using this likelihood, a joint multi-sensor multi-object

tracking problem is solved for given values of θ selected either

by an iterative ML approach such as expectation maximisa-

tion [15] or a Bayesian MCMC sampling scheme [12]. The

computational cost in both cases is dominated by filtering, and,

as a result, scalability with the number of sensors needs to be

addressed.

Evaluation of (4) in this general form is not tractable unless

further simplifications are introduced. One useful simplifica-

tion that leads to the probability hypothesis density (PHD)

filter [16] is obtained by finding the projection of the posterior

distributions onto the space of Poisson RFS distributions at

every iteration [17], and, propagating this projection instead

of the full posterior. Equivalently, the output of the filter

is Poisson parameters (λk(θ), sk(x; θ)) which also solve the

variational problem

(λk(θ), sk(x; θ)) =

arg min
(λ,s)

D(Pois(Xk;λ, s, θ)||p(Xk|Z
1
1:k, . . . , Z

N
1:k, θ)), (8)

where D above is the Kullback-Liebler divergence [18] be-

tween the Poisson model and the updated posterior.

Let us introduce fk(Xk; θ) , Pois(Xk;λk(θ), sk(x; θ)).
Substituting fk in (5) in accordance with the RFS Markov

shift in Section II and a Poisson birth process bk(.) =
Pois(.;λbk, s

b
k(x)) also results with a Poisson predictive den-

sity in (4):

p(Xk|Z
1
1:k−1, . . . , Z

N
1:k−1, θ)

= Pois(Xk;λk|k−1(θ), sk|k−1(x; θ)) (9)

λk|k−1(θ) = λk−1

∫

Ps(x)sk−1(x)dx + λbk (10)

sk|k−1(x; θ) ∝ λk−1

∫

π(x|x′)Ps(x
′)sk−1(x

′)dx′

+λbks
b
k(x) (11)

Because of the multi-sensor update (6) involved in (8),

however, this strategy (i.e., multi-sensor PHD filtering) also

has combinatorial complexity with the number of sensors [19].

The separable likelihoods introduced later in Section IV-B

circumvents this problem by building upon single sensor PHD

filtering which has favorable complexity properties such as

scaling linearly with the number of measurements.

IV. A DYNAMIC PAIRWISE MRF MODEL WITH SEPARABLE

LIKELIHOOD EDGE POTENTIALS

In this section, we outline an approximation to the parameter

posterior in (2) further details of which can be found in [9].

A. Pairwise MRFs

Let us make a modelling assumption that θ with the density

given in (2) is Markov with respect to the communication

graph G = (V , E) introduced in Section II: Node i ∈ V is

associated with the variable θi and the edges of the graph

is specified by the availability of communication links. The

Markov property is defined as that for sets of nodes A
and B, if A and B are separated on G by another set of

nodes C, then, the random variables associated with A, i.e.,

θA = {θi|i ∈ A}, and θB are conditionally independent given

θC . Let us denote such conditional independence relations by

θA ⊥⊥ θB|θC [20]. All such relations admitted by G factorise

(2) to positive functions (or, potential functions) over the

cliques of G (connected subsets of V) [20]. We select G to have

cliques of only singleton and pairs of nodes, i.e., a pairwise

graph. For the case (2) decomposes as

p̃(θ|Z1
1:k, ..., Z

N
1:k) ∝

∏

i∈V

ψi(θi)
∏

(i,j)∈E

ψk
ij(θi, θj), (12)

ψi(θi) = p0,i(θi),

ψk
ij(θi, θj) = l(Zi

1:k, Z
j
1:k|θi, θj),

where the node potential functions ψis are arbitrary priors for

θi (e.g., uniform distributions over B) and the edge potentials

ψk
ijs are predictive parameter likelihoods for the pairs (i, j)s

based on sensor histories up to time k. These edge potentials

have the time-recursive structure in (3), i.e.,

ψk
ij(θi, θj)=

k−1
∏

t=0

p(Zi
t+1, Z

j
t+1|Z

i
1:t, Z

j
1:t, θi, θj)

= ψk−1
ij (θi, θj)p(Z

i
k, Z

j
k|Z

i
1:k−1, Z

j
1:k−1, θi, θj),(13)

and render a dynamical MRF.

MMSE estimation on the MRF model in (12) can be carried

out as an iterative message passing algorithm, i.e., nodes of G
send messages to their neighbours and combine the incoming

messages with the local information in consecutive steps.

The MMSE estimate of θ is a concatenation of the MMSE

estimates of θis with their marginal distributions. The marginal

densities of (12) can be computed using Belief Propagation

(BP) [21] in which nodes maintain distributions over their local

variables (or, “belief”s) and update them based on messages

from their neighbours using

mji(θi) =

∫

ψk
ij(θi, θj)ψj(θj)

∏

i′∈ne(j)\i

mi′j(θj) dθj ,(14)

p̃i(θi) = kiψi(θi)
∏

j∈ne(i)

mji(θi), (15)

for all i ∈ V , where kis are scale factors.

Over a cycle-free G, BP node beliefs (i.e., p̃is) in (15) con-

verges to the marginals of (12) in a finite number of steps [21].

When G contains cycles, BP message and update equations are

still well defined. The fixed points of the loopy algorithm exist

provided that some conditions are satisfied (see, for example

[20] and the references therein) and are approximations of

the marginals seeked. Loopy BP has been very successful in

distributed estimation in sensor network applications [7], [8].

We provide similar benefits in our problem setting by using

the MRF model introduced above.



B. Dual term node-wise separable edge potentials

The MRF model in (12) and (13) decompose the global

parameter estimation task into subtasks involving pairs of

sensors. The pairwise likelihood in (13), however, still suffers

from the combinatorial complexity steming from multi-sensor

filtering discussed in Section III – when (3)–(6) is considered

for a pair of sensors. We give a brief outline of separable

likelihoods [9] which circumvent this issue by building upon

terms output by local filtering with RFS densities.

Let us consider approximating the edge potentials (13) with

a product of the form

ψ̃k
ij(θi, θj) = lkij(θi, θj)l

k
ji(θi, θj) (16)

where lkij and lkji can be computed using separate single

sensor filters with the histories Zj
1:k and Zi

1:k, respectively

– as opposed to joint filtering of these histories necessary

to compute (13). We do so by replacing the update term

in (13) with

q(Zi
k, Z

j
k|Z

i
1:k−1, Z

j
1:k−1, θi,j) ≈

p(Zi
k, Z

j
k|Z

i
1:k−1, Z

j
1:k−1, θi,j), (17)

q(Zi
k, Z

j
k|Z

i
1:k−1, Z

j
1:k−1, θi,j) ,

p(Zi
k|Z

j
1:k−1, θi,j)p(Z

j
k|Z

i
1:k−1, θi,j), (18)

which is also a conditional probability density over (Zi
k, Z

j
k).

This approximation is useful in our problem setting in

that its factors depend on single sensor histories and hence

can be evaluated using local filtering, only. Moreover, the

computations involved can be performed in a message pass-

ing fashion [9]. The approximation quality in terms of the

Kullback-Leibler (KL) divergence [18] between the centralised

update term on the RHS of (17) with respect to its approxi-

mation in the left hand side (LHS) is upper bounded by the

difference between the total local state prediction entropies

and the entropies of the joint prediction and its most uncertain

single sensor update [9, Corollary4.2], i.e.,

D(p||q) ≤ H(Xk|Z
i
1:k−1, θi,j) +H(Xk|Z

j
1:k−1, θi,j)

−H(Xk|Z
i
1:k−1,Z

j
1:k−1, θi,j)

−max{H(Xk|Z
i
k,Z

i
1:k−1,Z

j
1:k−1, θi,j),

H(Xk|Z
j
k,Z

i
1:k−1,Z

j
1:k−1, θi,j)}. (19)

where H denotes the Shannon Entropy [18].

Note that the first two terms in the RHS of (19) measure the

uncertainty in the object state predictions made locally. It can

also be shown that these terms are independent from the distri-

bution of θi,j (i.e., sensor location distributions). Overall, this

bound measures the amount of uncertainty reduced when state

predictions and estimations are based on joint sensor histories

instead of single sensor histories. A smaller difference suggests

a better quality of approximation which should be expected

as the local prediction densities become more concentrated

around a single point in the state space.

A typical example in which tracking filters provide a

fair accuracy in predicting and estimating object locations is

range-bearing sensing. An alternative example in which these

conditions cannot be guaranteed to be satisfied is bearing-

only sensing: The local filtering distributions typically have

probability masses spread around the line-of-sights whereas

use of joint sensor histories would lead to accurate state

prediction and estimation. This yields relatively high values on

the RHS of (19) and centralised schemes should be preferred

for this modality [22].

The use of the node-wise separable term in (18) to update

the dynamic MRF edge potentials given by (13) leads to the

following recursive formulae:

ψ̃k
ij(θi, θj) = ψ̃k−1

ij (θi, θj)q(Z
i
k, Z

j
k|Z

i
1:k−1, Z

j
1:k−1, θi,j),

=

k−1
∏

t=0

p(Zi
t |Z

j
1:t−1, θi,j)p(Z

j
t |Z

i
1:t−1, θi,j),

= lkij(θi, θj)l
k
ji(θi, θj), (20)

where the node-wise terms in (16) are the products of individ-

ual node-wise separable update factors over time defined in a

recursive fashion:

lkij(θi, θj) , lk−1
ij (θi, θj)p(Z

i
k|Z

j
1:k−1, θi,j), (21)

lkji(θi, θj) , lk−1
ji (θi, θj)p(Z

j
k|Z

i
1:k−1, θi,j). (22)

Let us consider explicit expressions for the update term

above when the RFS state space model described in Section II

is used. We first introduce some notation: Let us denote by

[Xk]j the set Xk with its elements shifted to a coordinate

frame centered at sensor j. Because the measurements of

sensor j is collected in this frame, the argument of the pos-

terior density obtained from local filtering, i.e., pj(Xk|Z1:k),
is actually in this coordinate system, which can explicitly be

shown as pj([Xk]j |Z
j
1:k).

The transformation from a sensor j centric description of

the surveillance region to a sensor i centric frame is found as

[Xk]i = [Xk]j + θj − θi

were the notation on the RHS is a shorthand for

{ x |xj ∈ [Xk]j ∧ x = xj + θj − θi}. Let us denote this

transformation (from sensor j’s frame to that of i) by

τ(X ; θj,i) , X + θj − θi. (23)

Using this notation, and the the conditional independence

of sensor measurements (Sec. II), i.e., Zi
k ⊥⊥ Z

j
1:k−1|Xk, θi,j ,

the update term in (21) can easily be found as

p(Zi
k|Z

j
1:k−1, θi,j) =

∫

p
(

Zi
k|τ([Xk]j , θj,i)

)

pj([Xk]j |Z
j
1:k−1)δ[Xk]j , (24)

where the set integral above is defined in (7).

Note that (24) is valid for arbitrary sensor FoVs as the

RFS likelihood captures Sis through the detection profiles

PD,i(x)s (Sec. II). When finding closed form expressions for



Fig. 1. Two sensors located at θi and θj with partially overlapping field of
views (FoVs): Sensor i (black square) and j (red square) collect measurements
from the objects inside their FoVs shown by Si and Sj , respectively.

the set integral in (24), however, attention should be paid

to the underlying assumptions. For example, when pj is a

Poisson density Pois(.;λk|k−1,j , sk|k−1,j) computed possibly

using the PHD filter [16], a simple form is found [9]:

p(Zi
k|Z

j
1:k−1, θi,j) =

exp
(

−λC,i − λk|k−1,j(θi,j)
∫
PD,i(x) sk|k−1,j(x; θi,j)dx

)

×

∏

z∈Zi
k

(

λC,isC,i(z) + λk|k−1,j(θi,j)×

∫

PD,i (x) li (z|x) sk|k−1,j(x; θi,j)dx

)

, (25)

where subscript i signifies that the quantity belongs to the

measurement model of node i and the dependence of the

quantities on θi,j is shown explicitly. This equation is valid,

however, when there are no objects observed by sensor i but

not by sensor j, i.e., the case of fully overlapping sensor

coverages. Next, we present explicit expressions for evaluating

(24) in the case of partially-overlapping FoVs Si and Sj .

V. DUAL-TERM LIKELIHOODS FOR SENSORS WITH

PARTIALLY OVERLAPPING FOVS

Let us consider Figure 1 and let Xk represent the set of

targets observed by either sensors i or j, modelled with a

Poisson point process Xk over Si ∪ Sj
3. We will need to

define target processes in the partitions of the sensor FoVs

Si/j , Si/Sj , Sj/i , Sj/Si and Si∩j , Si ∩ Sj in Figure 1,

which depend on θi and θj . In particular, let us define, X
i/j
k ,

X
j/i
k , and X i∩j

k respectively, i.e.,

X
i/j
k , Xk ∩ Si/j , X

j/i
k , Xk ∩ Sj/i, X

j∩i
k , Xk ∩ Sj∩i,

Doing so corresponds to marking the elements of Xk,

because Si/j , Sj/i and Si∩j are disjoint sets. Therefore, we

decompose Xk as a superposition of independent Poisson

processes (see, for example, [23, Chp.5]). Because sensor j
can estimate only Xj

k, Xk in (24) should be replaced with Xj
k:

p(Zi
k|Z

j
1:k−1, θi,j) =

∫

p(Zi
k|τ([X

j
k]j , θj,i))pj([X

j
k]j |Z

j
1:k−1)δ[X

j
k]j . (26)

3To be precise, Xk has a velocity component, so, Xk is a Poisson process
over (Si ∪ Sj)×R

2. We omit the Cartesian products in all definitions here,
for brevity.

Moreover, Xj
k = X

j/i
k ∪X i∩j

k and using the independence

of these processes, we find

pj(X
j
k|Z

j
1:k−1) = pj∩i(X

j∩i
k |Zj

1:k−1; θi,j)

× pj/i(X
j/i
k |Zj

1:k−1; θi,j). (27)

where the conditioning on θi,j is to highlight that Xj∩i
k and

X
j/i
k are defined given θi,j .

Because sensor i cannot observe X
j/i
k (i.e., PD,i(x) = 0

outside the FoV of sensor i in (24)), this term has no bearing

on the likelihood p(Zi
k|[X

j
k]i). Therefore, p(Zi

k|[X
j
k]i) =

p(Zi
k|[X

j∩i
k ]i) and substituting (27) in (26) leads to

p(Zi
k|Z

j
1:k−1, θi,j) =

∫

p(Zi
k|[X

j∩i
k ]i)

× pj∩i

(

τ−1([Xj∩i
k ]i, θj,i)|Z

j
1:k−1

)

δ[Xj∩i
k ]i. (28)

Moreover, given pj(.|Z
j
1:k−1) = Pois(.;λk|k−1,j , sk|k−1,j),

the predictive density inside the set integral above can easily

be found using the independence relation in (27) as follows:

pj∩i(X
j∩i
k |Zj

1:k−1) = e−λk|k−1,j∩i

∏

x′∈Xj∩i
k

sk|k−1,j∩i(x)

λk|k−1,j∩i = λk|k−1,j

∫

ISj∩i (x)sk|k−1,j(x
′)dx′

sk|k−1,j∩i(x) =
ISj∩i(x)sk|k−1,j(x)

∫

ISj∩i (x
′)sk|k−1,j(x′)dx′

(29)

where ISj∩i is the indicator function for the set Sj∩i.

Second, we decompose the observation process at sensor i
into independent components. Note that Zi

k is already a

superposition of the measurements induced by X i
k and an

independent clutter processes, denoted by Z̃i
k and Ck,i in

Section II. As per the likelihood term inside the integral

in (28), we note that X i
k = Xj∩i

k ∪X
i/j
k , and, further mark the

components of Z̃i
k as those originated from X i∩j

k and those

from X
i/j
k , i.e.,

Zi
k = Z̃i∩j

k ∪ Z̃
i/j
k ∪Ck,i. (30)

Let us redefine the “spurious” measurements contained in

Zi
k as C̃k,i , Z̃

i/j
k ∪ Ck,i. The distribution from which Z̃

i/j
k

is generated from can be shown to have the density

p(Z̃
i/j
k ) =

∫

p(Z̃
i/j
k |X

i/j
k )pi/j(X

i/j
k |Zi

1:k)δX
i/j
k . (31)

The posterior density inside the set integral above is a Poisson

and given the local posterior of sensor i, i.e., Pois(.;λik, s
i
k),

can be found as follows:

pi/j(X
i/j
k |Zi

1:k) = Pois(X
i/j
k ;λ

i/j
k , s

i/j
k )

λ
i/j
k = λik

∫

Si/j

sik(x)dx

s
i/j
k (x) =

ISi/j
(x)sk,i(x)

∫

ISi/j
(x′)sk,i(x′)dx′

(32)

Using the expression above and the measurement model in



Section II, (31) can be found as a Poisson with the following

parameters

p(Z̃
i/j
k ) = Pois(.;λ

i/j
Z,k, s

i/j
Z,k),

λ
i/j
Z,k = λ

i/j
k

∫

PD,i(x)s
i/j
k (x)dx,

s
i/j
Z,k(z) =

λ
i/j
k

λ
i/j
Z,k

∫

li(z|x)PD,i(x)s
i/j
k (x)dx. (33)

As a result, the evaluation of (28) above has the same

Poisson form as in (25), with the difference that the quantities

related to the spurious measurements are replaced with those

modelling the superposition of Z̃
i/j
k and Ci, as opposed to

only Ci, and the quantities pertaining Xk|k−1 replaced with

ones modelling X i∩j
k|k−1:

p(Zi
k|Z

j
1:k−1, θi,j) =

exp

(

− λ
i/j
Z,k − λC,i − λk|k−1,j∩i(θi,j)

×
∫
PD,i(x) sk|k−1,j∩i(x; θi,j)dx

)

×
∏

z∈Zi
k

(

λ
i/j
Z,ks

i/j
Z,k(z) + λC,isC,i(z) + λk|k−1,j∩i(θi,j)

×

∫

PD,i (x) li (z|x) sk|k−1,j∩i(x; θi,j)dx

)

. (34)

The expression above can be estimated using Monte Carlo

methods with a negligible amount of computations added

to that for estimating (25) which is linear in the number

of measurements. The extra computations mainly involves

labelling of the particles as being in Si/j , Si∩j , or Sj/i

and finding weighted sums over those labels. This topic is

discussed in detail, in the next section.

VI. A MONTE CARLO SELF-LOCALISATION ALGORITHM

FOR SENSORS WITH PARTIALLY OVERLAPPING FOVS

In this section, we introduce a multi-sensor localisation

multi-target tracking algorithm using particle representations

and Monte Carlo computations [24]. For local filtering, we

use a Sequential MC realisation of the PHD filter [25]

using which node j finds a Poisson model for Xj
k−1 de-

noted by Pois(.; λ̂k−1,j , Ŝk−1,j(dx)). Here, Ŝk−1,j(dx) is

an empirical distribution encoded by the set of particles

{x
(m)
k−1,j , ζ

(m)
k−1,j}

M
m=1, i.e.,

Ŝk−1,j(dx) =

M
∑

m=1

ζ
(m)
k−1,jδx(m)

k−1,j

(dx), (35)

where δx is the Dirac measure concentrated at x.

The predictive Poisson model in (27) with its argument in

the coordinate frame of sensor i is found as in the prediction

stage of the SMC PHD filter [25]:

λ̂k|k−1,j(θi,j) = λk−1,j

∑

m

ζ
(m)
k−1,jPS(x

(m)
k−1,j + θj − θi),

Ŝk|k−1,j(dx; θi,j) =
∑

ζ
(m)
k|k−1,jδx(m)

k|k−1,j

(dx), (36)

x
(m)
k|k−1,j ∼ π(x|x

(m)
k−1,j + θj − θi),

ζ
(m)
k|k−1,j =

ζ
(m)
k−1,jPS(x

(m)
k−1,j + θj − θi)

∑

m′ ζ
(m′)
k−1,jPS(x

(m′)
k−1,j + θj − θi)

.

The predictive density in (28) for Xj∩i
k is then found using

(36) in (29):

λ̂k|k−1,j∩i = λ̂k|k−1,j

∑

m

ζ
(m)
k|k−1,jISj∩i(x

(m)
k|k−1,j)

Ŝk|k−1,j∩i(dx) =

∑

m′|x
(m′)

k|k−1,j
∈Sj∩i

ζ
(m′)
k|k−1,jδx(m′)

k|k−1,j

(dx)

∑

m ζ
(m)
k|k−1,jISj∩i (x

(m)
k|k−1,j)

The PHD filter local to node i provides a Poisson model for

X i
k simultaneously, consisting of λ̂k,i and a set of particles

{x
(m)
k,i , ζ

(m)
k,i }Mm=1. Using these quantities, the parameters of

the measurement process Z̃
i/j
k in (31),(given by (32)–(33))

are found as follows:

λ̂
i/j
k = λ̂ik

∑

m

ζ
(m)
k,i ISi/j

(x
(m)
k,i )

Ŝ
i/j
k|k(dx) =

∑

m′|x
(m′)
k,i ∈Si/j

ζ
(m′)
k,i δ

x
(m′)
k,i

(dx)

∑

m ζ
(m)
k,i ISi/j

(x
(m)
k,i )

λ̂
i/j
Z,k = λ̂

i/j
k|k

∑

m′|x
(m′)
k,i

∈Si/j

ζ
(m′)
k,i PD,i(x

(m′)
k,i )

ŝ
i/j
Z,k(z) =

λ̂
i/j
k|k

λ̂
i/j
Z,k

∑

m′|x
(m′)
k,i ∈Si/j

PD,i(x
(m′)
k,i )ζ

(m′)
k,i li(z|x

(m′)
k,i )(37)

Finally, the update term in (34) can be found by substituting

from the Monte Carlo estimates we have found so far to (34).

Let us denote this estimate by p̂(Zi
k|Z

j
1:k−1, θi,j).

We compute these estimates for L many θ
(l)
i,j points gener-

ated from pi(θi) and pj(θj). Therefore, at each time step k, the

update term p̂(Zi
k|Z

j
1:k−1, θ

(l)
i,j) is computed for all {θ

(l)
i,j}

L
l=1

and for all j ∈ ne(i) in order to update {l̂ki,j(θ
(l)
i , θ

(l)
j )}Ll=1.

At the last step of the time window k = t, the estimated

node wise terms are exchanged and the edge potentials

{ψ̂k
i,j(θ

(l)
i , θ

(l)
j )}Ll=1 are found by simply taking the element-

wise product of the node-wise separable terms (Eq.(16)).

Now, let us adopt the sampling approach detailed in [9,

Sec.VI] for carrying out LBP belief update and messaging

in (15) and (14), respectively. Given L equally weighted

samples from p̃i(θi), i.e.,

θ
(l)
i ∼ p̃i(θi), for l = 1, . . . , L, (38)

the edge potetials are evaluated as discussed above to obtain

ψt
ij(θ

(l)
i , θ

(l)
j ) for l = 1, . . . , L. (39)



Consider the BP message from node j to i in (14). Suppose

that independent identically distributed (i.i.d.) samples from

the (scaled) product of the jth local belief and the incoming

messages from all neighbours except i are given, i.e.,

θ̄
(l)
j ∼ p̃j(θj)

∏

i′∈ne(j)/i

mi′j(θj) for l = 1, ..., L. (40)

These samples are used with kernel approximations in order

to represent the message from node j to i (scaled to one), in

the NBP approach [26]. We use Gaussian kernels leading to

the approximation given by

m̂ji(θi) =

L
∑

l=1

ω
(l)
ji N (θi; θ

(l)
ji ,Λji), (41)

θ
(l)
ji = τ(τ−1(θ̄

(l)
j ; θ

(l)
j ); θ

(l)
i ),

ω
(l)
ji =

ψt
i,j(θ

(l)
i , θ

(l)
j )

∑L
l′=1 ψ

t
i,j(θ

(l′)
i , θ

(l′)
j )

,

where the kernel weights are the normalised edge potentials.

Λji is related to a bandwidth parameter that can be found using

Kernel Density Estimation (KDE) techniques. In particular, we

use the rule-of-thumb method in [27] and find

Λji =

(

4

(2d+ 1)L

)2/(d+4)

Ĉji,

Ĉji =
∑

l′

∑

l

ω
(l′)
ji ω

(l)
ji (θ

(l′)
ji − m̂ji)(θ

(l)
ji − m̂ji)

T ,

m̂ji =

L
∑

l=1

ω
(l)
ji θ

(l)
ji

where m̂ji and Ĉji are the empirical mean and covariance of

the samples, respectively, and d is the dimensionality of θjis.

Given these messages, let us consider sampling from the

updated marginal in (15). We use the weighted bootstrap (also

known as sampling/importance resampling) [28] with samples

generated from the (scaled) product of Gaussian densities

with mean and covariance found as the empirical mean and

covariance of the particle sets, respectively. In other words,

given m̂ji and Ĉji as above, we generate

θ
(l)
i ∼ f(θi), l = 1, · · · , L,

f(θi) ∝ N (θi; m̂i, Ĉi)
∏

j∈ne(i)

N (θi; m̂ji, Ĉji).

The particle weights for these samples to represent the

updated marginal is given by

ω
(l)
i = ω̂

(l)
i /

L
∑

l′=1

ω̂
(l′)
i

ω̂
(l)
i =

(

p0,i(θ
(l)
i )

∏

j∈ne(i)

m̂ji(θ
(l)
i )
)

/f(θ
(l)
i )

where p0,i is the prior density selected for θi (and, the node

potential in (12)). Thus, the local calibration marginal is

Algorithm 1 Pseudo-code for estimation of θ using separable

likelihoods within Belief Propagation.

1: For all j ∈ V and k = 1, . . . , t find Pois(.; λ̂j
k
, Ŝk,j(dx)) ⊲ Local

PHD filtering and multi-target estimation

2: For all j ∈ V sample θ
(l)
i ∼ p0,i(θi) for l = 1, . . . , L

3: for s = 1, ..., S do ⊲ S-steps of LBP

4: for all (i, j) ∈ E do ⊲ Evaluate edge potentials

5: For all l = 1, . . . , L and k = 1, . . . , t find p̂(Zi
k
|Zj

1:k−1, θ
(l)
i,j)

6: Find ψk
i,j(θ

(l)
i , θ

(l)
j ) in (13) using (20)

7: end for

8: For all (i, j) ∈ E find m̂ji(θi) in (41) ⊲ Find LBP messages

9: for all i ∈ V do ⊲ Update local marginals

10: Find the updated P̂i in (42) and sample θ
(l)
i ∼ p̃i(θi)

11: θ̂i ←
1
L

∑L
l=1 θ

(l)
i

12: end for

13: end for

estimated by

P̂i(dθi) =

L
∑

l=1

ω
(l)
i δ

θ
(l)
i

(dθi). (42)

As the final step of the bootstrap, {θ
(l)
i , ω

(l)
i }Ml=1 is resam-

pled (with replacement) leading to equally weighted particles

from p̃i(θi), i.e., {θ
(l)
i }Ll=1. We follow similar bootstrap steps

in order to generate the samples in (40).

After nodes iterate the BP computations described above

for S times, each node estimates its location by finding the

empirical mean of {θ
(l)
i }Ll=1. These steps are summarised in

Algorithm 1.
VII. EXAMPLE

We consider the example scenario depicted in Fig. 2 which

consists of a total of 20 manoeuvering objects in a surveillance

region. The trajectories are obtained using a linear constant

velocity motion model with additive process noise. The MRF

model is given by the undirected graph with blue edges. Neig-

bouring sensors share at least one object in the overlapping

part of their FoVs.

The sensors collect range-bearing angle measurements with

standard deviations σR = 5m and σφ = 1◦, respectively.

Objects in the FoV are detected with probability one, in this

example. The number of false alarms is Poisson distributed

with mean λC,i = 2 and spatial distribution is uniform in the

sensor FoVs. These measurements are filtered locally using

the adaptive birth SMC realisation of the PHD filter [25].

Sensor 1 is considered as the origin of the network co-

ordinate system. We use S = 8 iterations of a tree-weighted

message schedule within the Monte Carlo realisation of the BP

steps detailed in Section VI. We provide the estimation error

histogram obtained in 100 Monte Carlo simulations in Fig. 3

(for sensors 2–9). The bin width of the histogram is 10m.

A very high probability of estimates are in the 2% bound of

the minimum distance between any two nodes in the network
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Fig. 2. 9 sensor nodes networked through communication links (blue edges)
observing 20 objects. Black curves are the object trajectories with boxes
indicating the initial positions. Sensor FoVs are indicated by colored circles.

which is 1000m. The errorneous estimates are due to that the

problem has a multi-modal likelihood which can potentially

be handled by using better message schedules such as tree-

reweighted BP and sophisticated sampling schemes such as

stochastic tempering. Development of such sampling strategies

remains as future work.

VIII. CONCLUSION

We proposed a dual-term node-wise separable likelihood

for parameter estimation problems in multi-object multi-sensor

state space models. This likelihood can be used for cases

in which the sensors have partially overlapping FoVs and

provide scalability with the number of sensors when used with

MRFs, in a problem setting which otherwise has combinatorial

complexity.

We exploited message passing algorithms for inference over

the proposed graphical model. Doing that, we achieve an

efficient computational structure for parameter estimation in

state space models. We provided a detailed Monte Carlo

algorithm for distributed sensor localisation with complex

multi-object measurements. We demonstrate the efficacy our

approach in a simulated example.
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