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Abstract 

We report a series of ‘donor-free’ dyes, featuring moieties of oligo(4,4-dihexyl-4H-

cyclopenta[1,2-b:5,4-b’]dithiophene) (CPDT) functionalized with cyanoacrylic end groups for 

mesoscopic titania solar cells based on I-/I3
- or Co(II)/Co(III) redox couple and spiro-OMeTAD 

hole transporter. These were compared with similar cells using an oligo(3-hexylthiophene) dye 

(5T) which we have reported before. Extending the CPDT moiety of the dye molecules from one 

to three (denoted as CPDT-1, CPDT-2 and CPDT-3) widens the photoresponse overlap with the 

solar spectrum, increases the molar absorption coefficient up to 75000 M-1cm-1 and improves the 

short-circuit current (JSC), open-circuit voltage (VOC) and power conversion efficiency (PCE) for 

all types of DSSCs. Among these sensitisers, CPDT-3 shows the highest PCE of 6.7%, 7.3% and 

3.9% with I-/I3
-, Co(II)/Co(III) redox couple and spiro-OMeTAD hole transporter, respectively, 

compared with 7.6%, 9.0% and 4.0% for 5T. Benefiting from the high absorption of CPDT-3, we 

demonstrate 900 nm-thick mesoporous TiO2 film with remarkable JSC of 10.9 mA cm-2 in solid-

state DSCs. 
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Introduction 

Over past two decades dye-sensitised solar cells (DSSC) have attracted enormous attention for 

particular applications.1 DSSCs offer light-weight, coloured, flexible photovoltaic devices, free 

from toxic and scarce elements with record certified efficiency of 11.4%2 and uncertified 

efficiency of 14.3%3 under standard reporting conditions. One of the key components in a DSSC 

is the sensitiser, which controls light harvesting and charge separation. In recent years, metal-free 

organic dyes have been intensively studied due to their high absorption, flexible molecular 

tailoring and potentially low-cost synthesis, although the latter is mostly not true for high-

efficiency dyes. Most organic dyes follow the same design strategy combining a donor head group, 

conjugated spacer and acceptor group which binds to the TiO2; so-called D-π-A dyes.4 Only in a 

very restricted number of cases, different structures have been reported.5 In our work, Abate6 et al 

reported the first example of a “donor-free” dye, 5T, which enhanced the performance of solid-

state DSSCs compared with the D-π-A equivalent, MK2. Encouraged by this finding and from 

the facile synthesis of donor free dye molecules, we and others have also demonstrated high 

efficiency liquid electrolyte solar cells prepared with donor-free oligothiophene dyes.7-8   

In these previous studies however, oligothiopehe dyes showed limited light harvesting with λmax 

typically around 450 nm. In this study, we have therefore designed new donor-free dyes prepared 

with 4H-cyclopenta[2,1-b:3,4-b’]dithiophene (CPDT) moieties to enhance the light absorption 

compared to donor free dyes prepared with oligothiophenes segments. CPDT units have been used 

for constructing the π-conjugated skeleton of organic sensitisers in many cases because of their 

co-planarity and strong electron donating capability.9  Compared to two thiophene units as π-

bridge, the fused CPDT π-group both red-shifts the visible light absorption maximum of the 

sensitiser and increases its molar extinction coefficient. 10-12 In addition, the easy introduction of 
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long alkyl chains on the bridging carbon atoms of CPDT can efficiently decrease the 

intermolecular interactions, which typically retards the electron recombination and thus improves 

VOC.13-15 Based on this idea, in this study a series of ‘donor-free’ sensitisers oligo(4,4-dihexyl-4H-

cyclopenta[1,2-b:5,4-b’]dithiophene) functionalized with cyanoacrylic end groups (CPDT-1, 

CPDT-2 and CPDT-3) were designed and synthesised easily using cross-coupling. Their optical 

and electronic properties were characterised through spectroscopic, electrochemical and 

computational techniques, showing versatile colour-tuning, and outstanding absorption 

coefficients up to 75000 M-1cm-1. They were used as effective sensitisers for mesoscopic titania 

solar cells with I-/I3
- or Co(II)/(III) redox couple and spiro-OMeTAD hole transporter. The solar 

cells were further studied by charge extraction experiments, intensity-modulated photovoltage 

spectroscopy (IMVS) and intensity-modulated photocurrent spectroscopy (IMPS). The 

performance of devices with the CPDT dyes were compared to the oligothiophene-based dyes to 

shed light on the working mechanisms of different π-groups used to prepared donor-free dyes. 

 

Experimental Section 

Synthetic procedure 

Materials. All reagents were purchased from either Sigma-Aldrich or Alfa-Aesar and were used 

as received without further purification. 4H-cyclopenta[2,1-b:3,4-b’]dithiophene was bought from 

Shanghai Qinghang  Chemical Co. Ltd China. Synthesis of CPDT1, CPDT2, CPDT3 and 

precursors is described in the electronic supplementary information. 

Methods 

Instrumentation used for 1H NMR, mass spectrometry, elemental analysis, electrochemistry and 

UV-Vis spectroscopy is as described in our earlier work. 7 
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Electrochemical characterisation. Voltammetry measurements were carried out in anhydrous 

CH2Cl2 using 0.3 M [TBA][PF6] electrolyte in a three-electrode system. The solution was purged 

with N2 prior to measurement. The working electrode was a Pt disk. The reference electrode was 

Ag/AgCl and the counter electrode was a Pt rod. Cyclic voltammetry (CV) studies were carried 

out at scan rates of 0.1, 0.2, 0.4, 0.6, 0.8 and 1V/s. Square wave voltammetry (SWV) measurements 

used a scan rate of 40 mV/s with a step potential of 4 mV, amplitude of 25 mV and frequency of 

15 Hz. Potentials are quoted against NHE for which ferrocene/ferrocenium was observed at 0.63 

V. 

Optical characterisation. All samples were measured in a 1 cm cell at room temperature with 

dichloromethane as a solvent. Concentration of 2×10-5 M was used for UV/Visible. A Beer-

Lambert plot showed a linear response confirming no aggregation at this concentration. A 

concentration of 5×10-6 M was used for photoluminescence. 

Computational details. The molecular structures were optimised in vacuum, using a starting 

geometry entered into Avogadro.16 Then the structure was optimised in CH2Cl2, starting from the 

optimised structure from vacuum. Calculations were carried out with Gaussian 0917 using the 

hybrid B3LYP functional)18 and the 6-31G(d) basis set.  Time-dependent DFT calculations (TD-

DFT) were carried out using Gaussian 09 with a CH2Cl2 polarisable-continuum model (PCM)19 

using the CAM-B3LYP functional. The 20 lowest singlet electronic transitions were calculated 

and processed with the GaussSum software package. 20 

Solar cell fabrication. The liquid solar cells were made according to literature, [6] and full details 

are available in the ESI. Cells using I-/I3
- electrolyte were based on 12 µm mesoporous layer + 6 

µm scattering layer TiO2 and the electrolyte 1M BMII, 0.05M GuNCS, 0.03M I2, 0.05M LiI and 

0.25M tBP in acetonitrile (4.25ml) and valeronitrile (0.75ml). Cells using Co electrolyte were 
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based on 6 µm of mesoporous layer + 4 µm scattering layer TiO2 and the electrolyte 0.25M 

[Co(bpy)3(B(CN)4)2], 0.06M [(Co(bpy)3(B(CN)4)3), 0.1M LiTFSI and 0.5M tBP. The solid-state 

solar cells used a compact layer of TiO2, 0.9 µm mesoporous TiO2 and spiro-MeOTAD doped with 

14 Li-TFSI, 112 mM TBP and 2.1 mM FK209. Finally, 80nm of gold was thermally evaporated 

on top of the device under high vacuum. The J-V measurements of I-/I3
- cells at 100 mWcm-2 used 

a light mask to fix the illuminated active area to 0.126 cm2. J-V measurements of Co2+/Co3+ cells 

and solid-state cells used a non-reflective metal mask of 0.16 cm2. IPCE spectra were recorded 

under a constant white light bias of approximately 5mWcm-2 and excitation beam from a 300W 

Xenon lamp focused through a monochromator and chopped at approximately 2 Hz. IMPS, IMVS 

and charge extraction measurements were performed using a 625 nm LED driver at different light 

intensities and a Metrohm PGSTAT302N Autolab. 

 

Results and Discussion 

Synthesis 

The synthetic route of the oligo-CPDT series is shown in Scheme 1. Two hexyl chains were first 

introduced on the CPDT unit to attenuate the interfacial recombination, followed by palladium 

catalysed Stille coupling reactions and then Knoevenagel condensation to give CPDT-1, CPDT-2 

and CPDT-3. CPDT-1 was obtained as an isomeric mixture with ratio 77:23 between trans- and 

cis- cyanoacrylic acid, as confirmed by 1H NMR (Figure S1) and further separation was not 

possible by conventional purification techniques. This isomerization of the cyanoacrylic acid 

acceptor group has also been reported by Zietz, et al 21 using a simple D-π-A type dye where the 

donor triarylamine was connected with the cyanoacrylic acid acceptor via a double bond π-bridge. 
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However, no isomerization was observed for larger molecules, and in our case, CPDT-2 and 

CPDT-3 were found to be pure-trans by 1H NMR (Figure S2 and Figure S3). 

 

Scheme 1. Synthesis of CPDT series and their structures 

 

Optical properties 

Optical properties of the CPDT series were studied in dichloromethane solution (Figure 1) with 

data summarized in Table 1. A Beer-Lambert plot showed a linear response confirming no 

aggregation at this concentration. The addition of each CPDT unit led to an expected red shift in 

the UV-vis spectrum and an increase in the extinction coefficient, as shown in Figure 1. This is 

the result of the extra conjugation and electron delocalisation within the CPDT backbone, which 

reduces the molecular HOMO-LUMO gap. Although these oligo-CPDT dyes were engineered 
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with hexyl chains in order to reduce the tendency towards aggregation, the difference between the 

absorption spectra in solution and on film revealed that the aggregation cannot be suppressed fully 

with hexyl chains. The maximum absorption peaks of CPDT-2, CPDT-3 and 5T in dye-bath 

solution (0.2mM in 3:7 mixture of chloroform and ethanol) and on 0.9 μm film are also shown in 

Table 1 and the spectra are shown in Supporting Information (Figure S4 and Figure S5). In the 

case of 5T, a bathochromic shift was observed when the dye was bound to TiO2, indicating the 

formation of J-aggregation. On the contrary, hypsochromic shifts were seen in the case of CPDT-

2 and CPDT-3, indicating the formation of H-aggregation.22 

 

Figure 1. UV-vis absorption spectra of CPDT-1~3 in DCM with calculated electronic transitions 

represented as vertical lines. 
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Table 1. Photophysical and electrochemical properties of the CPDT series and 5T for comparison.   

[a] Absorption maximum of 10-5 M of dye molecules in dichloromethane. [b] Absorption 

maximum of 0.2 mM dye molecules in 3:7 mixture of chloroform and ethanol. [c] Absorption 

maximum of dye molecules on 0.9 μm-thick TiO2 film. [d] Potential was measured in DCM with 

0.3 M [TBA][PF6] as electrolyte and calibrated with ferrocene/ferrocenium (Fc/Fc+) as an internal 

reference and converted to NHE by addition of 0.63 V. 

 

Electrochemical properties and DFT calculations 

The redox potentials for CPDT-1~3 were obtained by cyclic voltammetry (CV) and 

square-wave voltammetry (SWV) (Figure 2) and are summarised in Table 1. Upon 

increasing CPDT core length, a clear trend in the oxidation potentials can be observed. The 

oxidation peaks gradually shifted to less positive potentials and the electrochemical gap 

between the first oxidation and first reduction potentials was reduced. The first oxidation 

process for CPDT-1 (Figure S6) is irreversible on the electrochemical time scale (0.1s to 

1s). On the other hand, the first oxidation processes for CPDT-2 and CPDT-3 (Figure S7 

and Figure S8) are reversible, although the first two oxidation processes are too close to be 

studied separately by cyclic voltammetry. For the reduction processes, a slight shift to less 

negative potential can be observed upon adding CPDT units. The shift is much smaller than 

Dye 
λmax

a / nm (Ɛ, 104M-1 

cm-1) 
λmax

b  / nm λmax
c  / nm 

Eox
d vs 

NHE / V 

Ered
d vs NHE / 

V 

5T 478 (3.9) 430 446 1.08 -1.29 

CPDT-1 456 (4.9) - - 1.46 -1.54 

CPDT-2 546 (5.4) 494 482 0.89 -1.48 

CPDT-3 585 (7.4) 530 511 0.71 -1.44 
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in the oxidation as the reduction processes is mainly controlled by the cyanoacrylic moiety, 

which is only marginally affected by the length of the chain.  

 

Figure 2. SWV of CPDT series recorded in DCM solution containing 0.3 M [TBA][BF4] and 

referenced internally to ferrocene. Arrows indicate the direction of scan. 

 

The energy level schemes for the Kohn-Sham orbitals of CPDT series, including selected 

Kohn-Sham orbitals and the HOMO-LUMO energy gap are shown in Figure 3. In all cases, 

the HOMO is mainly located on the CPDT core chain and the LUMO is located on the 

cyanoacrylic moiety, indicating good charge separation and appropriate charge 

directionality. The calculated HOMO and LUMO energy levels followed the same trend as 

that measured using electrochemistry.  
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Figure 3. Molecular orbital distribution of HOMO (bottom) and LUMO (top) for CPDT series 

with their energy gap in DCM. 

 

TD-DFT calculations were used to compare the theoretical and experimental electronic 

transitions through absorption spectroscopy. The calculations matched well with the 

experimental as shown in Figure 1. The lowest energy transitions of these dyes are 

dominated by HOMOLUMO character. The maximum absorption band of CPDT-3 also 

has some contributions from HOMO-1LUMO character. (Table S1) In addition, the 

calculations agree qualitatively well with experimental in molar extinction coefficient, 

whereby the oscillator strength (f) increased with the increasing CPDT chain length. 

 

Photovoltaic performance of DSSCs 
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Due to the yellow colour of CPDT-1 which doesn’t cover most of the solar spectrum, only 

CPDT-2 and CPDT-3 were further studied in devices, using 5T as comparison. They were 

examined in both liquid (I-/I3
- electrolyte or [Co(bpy)3]

2+/3+ electrolyte) and solid-state DSSCs, for 

which the details of cell fabrication and data measurements are reported in the Experimental 

section. Three different thicknesses of TiO2 were employed for these studies; 18 µm (12 µm 

mesoporous layer + 6 µm scattering layer) for I-/I3
- based cells, 10 µm (6 µm of mesoporous layer 

+ 4 µm scattering layer) for [Co(bpy)3]
2+/3+ based cells and 0.9 µm of mesoporous layer for spiro-

based solid-state cells. Device performance parameters are shown in Table 2 with the 

corresponding J-V curves under light and dark condition reported in Supporting Information 

(Figure S9~S11). Upon addition of CPDT units, we can see an increase in JSC and VOC, which 

leads to an improvement of power conversion efficiency (PCE) moving from CPDT-2 to CPDT-

3. Comparing with the DSSCs prepared with I-/I3
- electrolyte, the DSSCs with 

[Co(bpy)3]
2+/3+ electrolyte showed a lower JSC because of less dye adsorption from a thinner 

TiO2 film. However, the VOC of [Co(bpy)3]
2+/3+ electrolyte based cells increased 

significantly, resulting in higher overall efficiencies. This increase of VOC moving from I-

/I3
- to [Co(bpy)3]

2+/3+ electrolyte has been frequently observed23 due to a lower loss-in-

potential of the redox process. 
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Table 2. Photovoltaic parameters of solar cells using different redox couples and spiro-OMeTAD 

hole transporter under simulated AM 1.5G, 100mW cm-2 intensity illumination conditions. 

Dye Electrolyte 
JSC / mA 

 cm-2 
VOC / V FF / %  / % 

5T I[a] 17.2 0.62 72 7.6 

CPDT-2 I[a] 11.2 0.53 67 4.0 

CPDT-3 I[a] 18.0 0.57 66 6.7 

5T Co-bpy[b] 15.3 0.79 75 9.0 

CPDT-2 Co-bpy[b] 9.7 0.67 76 4.9 

CPDT-3 Co-bpy[b] 13.8 0.71 75 7.3 

5T Spiro[c] 6.5 0.85 67 4.0 

CPDT-2 Spiro[c] 7.8 0.72 59 3.5 

CPDT-3 Spiro[c] 10.9 0.73 47 3.9 

 

[a] 1M BMII, 0.05M GuNCS, 0.03M I2, 0.05M LiI and 0.25M tBP in acetonitrile (4.25ml) and 

valeronitrile (0.75ml). [b] 0.25M [Co(bpy)3(B(CN)4)2], 0.06M [(Co(bpy)3(B(CN)4)3), 0.1M 

LiTFSI and 0.5M tBP in acetonitrile. [c] 0.07 M spiro-OMeTAD, 0.112 M tBP, 0.014 M LiTFSI 

and 0.002 M FK209 in chlorobenzene. 

 

The CPDT dyes show inferior performance to 5T in DSCs with liquid electrolytes or spiro-

OMeTAD, mainly due to lower Voc. In cells using I-/I3
- electrolyte, 5T showed a higher VOC 

and FF than CPDT-3. In cells using [Co(bpy)3]
2+/3+ electrolyte, 5T showed both a higher JSC 

and a higher VOC than CPDT-3, leading to a remarkable efficiency of 9%. The high 

efficiency of 5T we achieved in this study corroborates with the good results we previously 

reported for I-/I3
- electrolyte7 and questions the perceived necessity of a bulky donor group in 

sensitisers designed for Co-electrolyte based cells. 23 Although 5T shows inferior photon 
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harvesting capacity, the trade-off between light absorption length of sensitized TiO2 film and 

charge diffusion length affords 5T a higher Jsc in DSSCs with 6+4 TiO2 film in conjunction with 

cobalt complex redox couple. However, when the thickness of TiO2 film reduces to 900 nm 

used in solid-state cells to facilitate spiro-OMeTAD infiltration and improve charge collection, 

the advantage of CPDT-2 and CPDT-3 with outstanding absorption coefficient affords higher Jsc 

(7.8 mA cm-2 and 10.9 mA cm-2) than 5T (6.5 mA cm-2). The extremely high JSC of CPDT-

3 on a TiO2 film as thin as 0.9 um was not observed before with any other organic dye and 

is 30% higher than we found for Y123 (Figure S11), which has the record PCE in solid-

state dye cells. However, the open-circuit voltage and fill factor of CPDT-2 (0.73V, 0.59) 

and CPDT-3 (0.72V, 0.47) could not compete with 5T (0.85V, 0.67).  

Figure 4 exhibits the incident photon-to-current conversion efficiency (IPCE) spectra 

recorded on cells using [Co(bpy)3]
2+/3+ electrolyte and solid-state cells. The JSC data integrated 

from the IPCE spectra over all wavelengths against the solar spectrum are in good 

agreement with the experimental values. For cells using [Co(bpy)3]
2+/3+ electrolyte, although 

CPDT-3 shows a broader IPCE spectrum to 800 nm, 5T has higher IPCE of ~65% from 

400 nm to 600 nm than CPDT-3 (50%), thus resulting in a higher JSC. For solid-state cells, 

CPDT-3 shows a broader and higher IPCE spectrum, which explains the exceptional Jsc we 

measure. 
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Figure 4. IPCE spectra for cells using [Co(bpy)3]
2+/3+ electrolyte (upper) and spiro-OMeTAD 

(lower) 
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IMVS, IMPS and charge extraction 

Overall, it was found that the VOC of these dyes always follows the same trend no matter 

which electrolyte was used, namely 5T > CPDT-3 > CPDT-2.  The open-circuit voltage is 

determined by the difference between the quasi-Fermi level of TiO2 under illumination and 

the redox couple or HTM. This can be affected by 1) A shift of conduction band edge of 

TiO2 caused by either dye attachment or additives like bis(trifluoromethane)sulfonimide 

lithium (Li-TFSI) and 4-tert-butylpyridine (tBP) 24; 2) The number of electron trap states in 

the TiO2 conduction band; 3) The charge recombination rate. In order to understand the 

predominant mechanism controlling the trend in Voc, charge extraction (CE), intensity 

modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage 

spectroscopy (IMPS) measurements were performed on the solid-state cells and 

[Co(bpy)3]
2+/3+ electrolyte.  

For solid-state cells, charge extraction measurements were first employed to find out the 

relationship between charge density and voltage. As shown in Figure 5 (upper), all the dyes 

have nearly identical charge density as a function of voltage. The charge extraction data 

were fitted to a mono-exponential, which enables comparison of the recombination 

lifetimes measured from IMVS at the same charge density, as reported in Figure 5 (lower). 

A significant difference in the recombination lifetime can be seen, ordering 5T > CPDT-2 

> CPDT-3. This corresponds to the open-circuit voltage order of 5T > CPDT series we 

observed in devices. However, CPDT-3 shows a higher VOC than CPDT-2 although the 

recombination lifetime is shorter. We suggest this may be due to the longer molecular 

length of CPDT-3, resulting in a larger dipole moment (Table S2) and thus a negative shift 

of the TiO2 conduction band. It is clear that replacing the thiophene units of 5T with CPDT 
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units makes the recombination faster. CPDT-2 has the same number of alkyl chains as 5T 

and CPDT-3 has two more alkyl chains than 5T, so a simple relationship between alkyl 

chains and suppression of recombination can’t explain what we observe. 25 One possibility 

is that 5T has a more twisted π-conjugated architecture than the CPDT dyes. Recently, the 

Li group designed a series of sensitisers with adjustment of the twist conformation through 

minor structural modifications and studied the effect of conjugation between the 

chromophore and anchoring group on the behaviour of solar cells. They found that 

sensitisers with better conjugation suffered from a severe back electron transfer although 

they showed better absorption properties. 26 In our case, computational calculations 

revealed that the dihedral angles between the thiophene units in 5T are from 20° to 35°, 

while those between the CPDT units in CPDT-2 and CPDT-3 are from 0° to 8° (Figure 

S12). The better conjugation of the CPDT dyes could lead to a problem of back electron 

transfer to the dye. In the case of solid-state DSSCs, another possibility is that the low 

regeneration driving force for CPDT-2 and CPDT-3 makes regeneration less competitive 

with recombination. Indeed, CPDT-2 (0.89V vs. NHE) and CPDT-3 (0.71V vs. NHE) are 

much easier to oxidise than 5T (1.02V vs. NHE). （Figure 6） Especially for CPDT-3, the 

oxidation potential in solution is even slightly less positive than spiro-OMeTAD. 27 

Although energy levels may slightly change in the device, it is likely that an unfavourable 

energy offset can cause inefficient regeneration and hence a problem of charge 

recombination.28 This problem would be solved if an easier to oxidise hole-transport 

material can be used instead of spiro-OMeTAD, but so far, no such highly-performing 

HTM has been developed. 
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Figure 5 Charge extracted at a certain voltage for devices prepared with 5T and CPDT dyes using 

spiro-OMeTAD as hole transporter. Data are fitted to a monoexponential function. (upper) 

Recombination lifetime at open circuit conditions against charge density. (lower) 
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Figure 6 Energy level diagram of 5T, CPDT-2, CPDT-3 and spiro-OMeTAD (measured by 

electrochemistry). 

For cells based on [Co(bpy)3]
2+/3+ electrolyte, a qualitative image of the density of states 

(DOS) was extracted from the charge extraction experiment presented in Figure 7 (upper). 

Surprisingly, at the same open circuit voltage, CPDT-3 induces a significantly higher 

charge density in the device compared to the other dyes. This was not the case for the solid-

state cells, in which all the dyes reported very similar charge density as a function of voltage 

(see Figure 5 upper). Therefore, when CPDT-3 is used with [Co(bpy)3]
2+/3+ electrolyte a 

significant fraction of the photogenerated charge is accumulated in the device.  

Interestingly, the recombination lifetimes of the CPDT-3 devices are similar to the other 

dyes regardless of the fact that the charge density is more than one order of magnitude 

higher. (Figure 7 lower) This result was unexpected and points towards an unusual 
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influence of the different CPDT dyes on the characteristics of the TiO2 which has no 

immediate explanation from the information presently available and requires further 

detailed investigation. 
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Figure 7. Charge extracted at a certain voltage for devices prepared with 5T and CPDT dyes using 

[Co(bpy)3]
2+/3+ electrolyte. Data are fitted to a monoexponential function. (upper) Recombination 

lifetime at open circuit conditions against charge density. (lower) 

 

Conclusion 

A series of ‘donor-free’ dyes oligo(4,4-dihexyl-4H-cyclopenta[1,2-b:5,4-b’]dithiophene) 

(denoted as CPDT-1, CPDT-2 and CPDT-3) functionalized with cyanoacrylic end groups 

was prepared by a simple synthesis using cross-coupling. The CPDT-2 and CPDT-3 dyes 

were used as effective sensitisers for mesoscopic titania solar cells with I-/I3
- or 

[Co(bpy)3]
2+/3+ redox couple and spiro-OMeTAD hole transporter. The JSC, VOC and PCE 

increase upon addition of CPDT units in all types of DSSCs. As a result, CPDT-3 shows 

the highest efficiency among this series (6.7% for I-/I3
- based cells, 7.3% for [Co(bpy)3]

2+/3+ 

based cells and 3.9% for solid-state cells). In solid-state dye-sensitised solar cells, CPDT-

3 shows a remarkable JSC of 10.9 mA cm-2 with only 900 nm mesoporous TiO2 film due to 

the broad absorption over the solar spectrum and outstanding absorption coefficient of 

75000 M-1cm-1. However, the CPDT dyes suffer from a low VOC compared to the donor 

free oligo(3-hexylthiophene) dye (5T). By using charge extraction experiments, IMVS and 

IMPS, it was found that with spiro-OMeTAD the charge recombination across the TiO2-

dye-electrolyte interface is significantly higher in CPDT than 5T devices. We attributed 

this to the planar conformation of CPDT-3, which induces back electron transfer. 

Therefore, the high extinction coefficient and the broad absorption spectra make the CPDT 

unit an extremely promising basis for the further design of highly efficient donor-free dyes, 

but further optimization is necessary to address the recombination, such as inducing some 
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twist in the conformation of the π-system. Very interestingly, we found that when CPDT-3 

is used with [Co(bpy)3]
2+/3+ electrolyte the recombination is rather low despite the fact that 

the charge density is more than one order of magnitude higher than in 5T or CPDT-2 based 

devices. This result was unexpected and demonstrates that donor-free dyes may show new 

mechanistic features compared with standard designs and may open up new opportunities 

to design low-cost dyes for highly-efficient solar cells. 
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Boschloo, G.; Hagfeldt, A., A Broadly Absorbing Perylene Dye for Solid-State Dye-Sensitized 

Solar Cells. J. Phys. Chem. C 2009, 113, 14595-14597. 

5. Hu, Y.; Robertson, N., Atypical Organic Dyes Used as Sensitizers for Efficient Dye-

Sensitized Solar Cells. Front. Optoelectron 2016, DOI: 10.1007/s12200-016-0568-5 

6. Abate, A.; Planells, M.; Hollman, D. J.; Stranks, S. D.; Petrozza, A.; Kandada, A. R. S.; 

Vaynzof, Y.; Pathak, S. K.; Robertson, N.; Snaith, H. J., An Organic "Donor-Free" Dye with 

Enhanced Open-Circuit Voltage in Solid-State Sensitized Solar Cells. Adv. Energy. Mater 2014, 

4, 1400116 

7. Hu, Y.; Ivatuni, A.; Planells, M.; Boldrini, C.; Biroli, A. O.; Robertson, N., 'Donor-Free' 

Oligo(3-Hexylthiophene) Dyes for Efficient Dye-Sensitised Solar Cells. J. Mater. Chem. A 2015. 

8. Demeter, D.; Roncali, J.; Jungsuttiwong, S.; Melchiorre, F.; Biagini, P.; Po, R., Linearly 

Π-Conjugated Oligothiophenes as Simple Metal-Free Sensitizers for Dye-Sensitized Solar Cells. 

J. Mater. Chem. C 2015, 3, 7756-7761. 

9. Chai, Q. P.; Li, W. Q.; Liu, J. C.; Geng, Z. Y.; Tian, H.; Zhu, W. H., Rational Molecular 

Engineering of Cyclopentadithiophene-Bridged D-a-Pi-a Sensitizers Combining High 

Photovoltaic Efficiency with Rapid Dye Adsorption. Sci. Rep-Uk 2015, 5. 

10. Li, R. Z.; Liu, J. Y.; Cai, N.; Zhang, M.; Wang, P., Synchronously Reduced Surface 

States, Charge Recombination, and Light Absorption Length for High-Performance Organic 

Dye-Sensitized Solar Cells. J. Phys. Chem. B 2010, 114, 4461-4464. 

11. Moon, S. J.; Yum, J. H.; Humphry-Baker, R.; Karlsson, K. M.; Hagberg, D. P.; 

Marinado, T.; Hagfeldt, A.; Sun, L. C.; Gratzel, M.; Nazeeruddin, M. K., Highly Efficient 

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/M023532/1


 24 

Organic Sensitizers for Solid-State Dye-Sensitized Solar Cells. J. Phys. Chem. C 2009, 113, 

16816-16820. 

12. Dualeh, A.; De Angelis, F.; Fantacci, S.; Moehl, T.; Yi, C. Y.; Kessler, F.; Baranoff, E.; 

Nazeeruddin, M. K.; Gratzel, M., Influence of Donor Groups of Organic D-Pi-a Dyes on Open-

Circuit Voltage in Solid-State Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116, 1572-

1578. 

13. Cui, Y.; Wu, Y. Z.; Lu, X. F.; Zhang, X.; Zhou, G.; Miapeh, F. B.; Zhu, W. H.; Wang, Z. 

S., Incorporating Benzotriazole Moiety to Construct D-a-Pi-a Organic Sensitizers for Solar Cells: 

Significant Enhancement of Open-Circuit Photovoltage with Long Alkyl Group. Chem. Mater 

2011, 23, 4394-4401. 

14. Koumura, N.; Wang, Z. S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K., Alkyl-

Functionalized Organic Dyes for Efficient Molecular Photovoltaics. J. Am. Chem. Soc 2006, 128, 

14256-14257. 

15. Mosconi, E.; Yum, J. H.; Kessler, F.; Garcia, C. J. G.; Zuccaccia, C.; Cinti, A.; 

Nazeeruddin, M. K.; Gratzel, M.; De Angelis, F., Cobalt Electrolyte/Dye Interactions in Dye-

Sensitized Solar Cells: A Combined Computational and Experimental Study. J. Am. Chem. Soc 

2012, 134, 19438-19453. 

16. Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. 

R., Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. 

Cheminformatics 2012, 4. 

17. Gaussian 09, R. A., M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. 

Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al, Gaussian, 

Inc., Wallingford CT, 2009. 

18. Becke, A. D., A New Mixing of Hartree-Fock and Local Density-Functional Theories. J. 

Chem. Phys 1993, 98, 1372-1377. 

19. Cossi, M.; Barone, V., Time-Dependent Density Functional Theory for Molecules in 

Liquid Solutions. J. Chem. Phys 2001, 115, 4708-4717. 

20. O'Boyle, N. M.; Tenderholt, A. L.; Langner, K. M., Cclib: A Library for Package-

Independent Computational Chemistry Algorithms. J. Comput. Chem 2008, 29, 839-845. 

21. Zietz, B.; Gabrielsson, E.; Johansson, V.; El-Zohry, A. M.; Sun, L. C.; Kloo, L., 

Photoisomerization of the Cyanoacrylic Acid Acceptor Group - a Potential Problem for Organic 

Dyes in Solar Cells. Phys. Chem. Chem. Phys 2014, 16, 2251-2255. 

22. Guo, M.; Diao, P.; Ren, Y. H.; Meng, F. S.; Tian, H.; Cai, S. M., Photoelectrochemical 

Studies of Nanocrystalline Tio2 Co-Sensitized by Novel Cyanine Dyes. Sol. Energ. Mat. Sol. C 

2005, 88, 23-35. 

23. Wu, K. L.; Hu, Y.; Chao, C. T.; Yang, Y. W.; Hsiao, T. Y.; Robertson, N.; Chi, Y., Dye 

Sensitized Solar Cells with Cobalt and Iodine-Based Electrolyte: The Role of Thiocyanate-Free 

Ruthenium Sensitizers. J. Mater. Chem. A 2014, 2, 19556-19565. 

24. Yang, J. B., et al., Influence of the Donor Size in D-Pi-a Organic Dyes for Dye-

Sensitized Solar Cells. J. Am. Chem. Soc 2014, 136, 5722-5730. 

25. Barnes, P. R. F.; Miettunen, K.; Li, X. E.; Anderson, A. Y.; Bessho, T.; Gratzel, M.; 

O'Regan, B. C., Interpretation of Optoelectronic Transient and Charge Extraction Measurements 

in Dye-Sensitized Solar Cells. Adv. Mater 2013, 25, 1881-1922. 

26. Nguyen, W. H.; Bailie, C. D.; Burschka, J.; Moehl, T.; Gratzel, M.; McGehee, M. D.; 

Sellinger, A., Molecular Engineering of Organic Dyes for Improved Recombination Lifetime in 

Solid-State Dye-Sensitized Solar Cells. Chem. Mater 2013, 25, 1519-1525. 



 25 

27. Chai, Z. F., et al., Similar or Totally Different: The Adjustment of the Twist 

Conformation through Minor Structural Modification, and Dramatically Improved Performance 

for Dye-Sensitized Solar Cell. Adv. Energy. Mater 2015, 5. 

28. Moia, D.; Cappel, U. B.; Leijtens, T.; Li, X.; Telford, A. M.; Snaith, H. J.; O’Regan, B. 

C.; Nelson, J.; Barnes, P. R., The Role of Hole Transport between Dyes in Solid-State Dye-

Sensitized Solar Cells. J. Phys. Chem. C 2015, 119, 18975-18985. 

 


