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 1 

ABSTRACT 2 

• Background and Aims The Arabidopsis thaliana (arabidopsis) root is a key experimental 3 

system in developmental biology. Despite its importance, we are still lacking an objective 4 

and broadly applicable approach for identification of number and position of 5 

developmental domains or zones along the longitudinal axis of the root apex or 6 

boundaries between them, which is essential for understanding the mechanisms 7 

underlying cell proliferation, elongation, and differentiation dynamics during root 8 

development. 9 

• Methods We used a statistics approach, multiple structural change algorithm (MSC), for 10 

estimating the number and position of developmental transitions in the growing portion of 11 

the root apex. Once the positions of the transitions between domains and zones are 12 

determined, linear models are used to estimate the critical size of dividing cells (LcritD) 13 

and other parameters. 14 

• Key Results MSC approach enabled identification of three discrete regions in the 15 

growing part of the root that correspond to the proliferation domain (PD), the transition 16 

domain (TD), and the elongation zone (EZ). Simultaneous application of MSC approach 17 

and G2-to-M transition (CycB1;1DB:GFP) and endoreduplication (pCCS52A1:GUS) 18 

molecular markers confirmed the presence and position of the TD. We also found that 19 

MADS-box gene XAANTAL1(XAL1) is required for the wild type (wt) PD increase in 20 

length during the first two weeks of growth. Contrary to wt, in the xal1 loss-of-function 21 

mutant this increase and acceleration of root growth were not detected. We also found 22 
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alterations in LcritD in xal1 compared to wt which was associated with longer cell cycle 1 

duration in the mutant. 2 

• Conclusions The MSC approach is a useful, objective, and versatile tool for identification 3 

of the PD, TD, and EZ and boundaries between them in the root apices and can be used 4 

for phenotyping of different genetic backgrounds, experimental treatments or 5 

developmental changes within a genotype. The tool is publicly available at 6 

www.ibiologia.com.mx/MSC_analysis. 7 

Key words: Arabidopsis thaliana, cell differentiation, cell proliferation, proliferation domain, 8 

transition domain, elongation zone, root apical meristem, longitudinal zonation pattern, critical 9 

size of dividing cells, XAANTAL1, multiple structural change model, breakpoints. 10 
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INTRODUCTION 1 

Plant growth and development are regulated by the combined activity of two processes that are 2 

closely linked: cell division and cell elongation. Fully elongated cells undergo terminal 3 

differentiation. Reliable and quantitative characterization of both processes in organs is thus 4 

essential for understanding their role during development. The Arabidopsis thaliana (arabidopsis) 5 

root is an important model system for molecular genetics and cellular studies of plant 6 

development, including understanding cell cycle regulation and the balance of proliferation and 7 

differentiation in complex organs. The root is an excellent model system, among other 8 

characteristics, for its relatively simple longitudinal organization and the possibility of observing 9 

different developmental stages in the same root along its longitudinal axis. Another advantage of 10 

the root is that it has few cell types organized concentrically around the vascular tissues, 11 

composed of xylem, phloem, vascular parenchyma and pericycle. Outside of the vascular tissues 12 

there are concentric rings of cells of endodermis, cortex and epidermis covered at the very tip by 13 

the lateral root cap and columella cells. The growing part of the root consists of two zones: the 14 

root apical meristem (RAM) and the elongation zone (EZ) (Fig. 1A). 15 

 The RAM includes the proliferation domain (PD) where cells have a high probability of 16 

dividing and the transition domain (TD) (Baluška et al., 1996). The most distal portion of the PD 17 

contains the quiescent centre (QC), a stem cell niche, surrounded by the initial (stem) cells 18 

(Clowes 1956; Dolan et al. 1993; Sabatini et al. 2003). In the TD domain cells can still divide but 19 

at a low probability and continue elongating at the same low rate as in the PD. Hence, cells in this 20 

domain are slightly longer than cells in the PD (Fig. 1B) (Ivanov and Dubrovsky 2013). The EZ 21 

is the zone where cells of different tissues simultaneously start rapid elongation at rates much 22 

higher than those in the RAM. The EZ is followed by the differentiation zone (DZ), where 23 

elongated cells reach their final length and differentiation state. The rootward border of the DZ 24 
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corresponds to the position at which cell elongation ceases (van der Weele et al. 2003; Ivanov 1 

and Dubrovsky 2013). Therefore, identification of the boundary between the EZ and DZ is 2 

straightforward and is based on either cell length profile data or appearance of first root hair 3 

bulges, which is a hallmark of termination of elongation (Dolan et al. 1993; Ma et al. 2003; 4 

Dolan and Davies 2004). Despite the importance of being able to fully characterize the apical-5 

basal patterning of the root tip, no consensus on the domains and zones in the arabidopsis root 6 

apex has been attained (Ivanov and Dubrovsky 2013). Here, we applied a statistical algorithm for 7 

determining the number of zones and domains in the growing part of the root and the limits 8 

between neighbouring zones and domains. Our results support the existence of three discrete 9 

regions in the growing part of the arabidopsis root: the PD, the TD and the EZ. 10 

 A rigorous qualitative and quantitative description of these zones and domains, and 11 

identification of their boundaries are essential for understanding the effects of different genetic, 12 

chemical and physical alterations of cell proliferation, growth, and differentiation during root 13 

growth and development. Comparisons between different experimental conditions require 14 

approaches that enable accurate evaluations of the size and number of cells within the RAM or its 15 

PD. This is generally done in the cortex cell layer (Casamitjana-Martínez et al. 2003; Dello Ioio 16 

et al. 2007; Tsukagoshi et al. 2010; Zhou et al. 2011; Garay-Arroyo et al. 2013). However, the 17 

lack of objective criteria and subjectivity in identifying the boundaries between root growth zones 18 

and domains indicate the need for development of new approaches. 19 

 Several previous papers have approached this problem. For example, Scheres and 20 

collaborators (Casamitjana-Martínez et al. 2003), determine the boundary between the RAM and 21 

the EZ (RAM/EZ boundary) as the point where cells begin to increase significantly their lengths. 22 

The onset of rapid cell elongation and absence of cell division in the EZ are taken as the only 23 

criteria to distinguish between these two regions. Although useful for rough qualitative 24 
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evaluations, without measuring cell lengths, the identification of the point where rapid elongation 1 

starts may vary among researches. A relatively more objective way of determining this boundary 2 

implies finding the position at which cell length in a file is more than twice than that of the 3 

previous cell (González-García et al. 2011). The latter method may yield biased results: before 4 

rapid elongation starts, a longer cell can be followed by a shorter cell in the TD, indicating that 5 

this criterion is not always sufficient for an objective establishment of the RAM/EZ boundary. 6 

Recently, a geometric approach for identification of the point at which cell elongation starts was 7 

proposed that yields similar results to those obtained arbitrarily (French et al. 2012). This and 8 

other studies (Dello Ioio et al. 2007; Moubayidin et al. 2010; Tsukagoshi et al. 2010) do not 9 

specify  how to identify the border between the PD and the TD of the RAM (the PD/TD 10 

boundary). Changes in cell proliferation precede the transition to rapid cell elongation: the 11 

mitotic index (percentage of dividing cells) decreases drastically (Ivanov and Dubrovsky 2013) 12 

and endoreduplication starts (Hayashi et al. 2013). For that reason, the PD/TD boundary is 13 

associated with changes in cell proliferation, whereas the RAM/EZ boundary defines the point 14 

where drastic shift to rapid elongation occurs. 15 

 The position of the PD/TD boundary is particularly difficult to establish because it 16 

fluctuates in time within a cell file and, additionally, is frequently different among different files 17 

of cells of the same or different types (Baluška and Mancuso 2013; Ivanov and Dubrovsky 2013). 18 

Because of this, the PD/TD boundary can only be approximated with certain error that should be 19 

estimated (Ivanov and Dubrovsky 2013). The position of this boundary can be determined as the 20 

point where average cell length along the RAM has slightly increased, or where the distances 21 

between nuclei in neighbouring cells along a cell file become greater than the diameter of the 22 

nuclei (Rost and Baum 1988; Dubrovsky et al. 1998a, 1998b; Garay-Arroyo et al. 2013). It is also 23 

possible to locate the beginning of the TD as the position where the mitotic index sharply 24 
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decreases for the tissue under consideration (Ivanov and Dubrovsky 2013). Nonetheless, the latter 1 

approach is difficult to implement and it is not valid for all species. All such criteria can lead to 2 

variable and subjectively defined boundaries and/or require considerable experience from the 3 

researcher in order to guarantee reproducible and reliable data. Because of the importance of each 4 

of the root developmental domains and/or zones in the cell proliferation/differentiation balance 5 

(Dello Ioio et al. 2007; Moubayidin et al. 2010; Tsukagoshi et al. 2010), establishing the PD/TD 6 

and RAM/EZ boundaries is essential for a complete phenotypical description of the root. This 7 

requires a quantitative approach, which enables the unambiguous identification of the different 8 

development stages along the root longitudinal axis. 9 

 Here, to identify the location of the PD/TD and RAM/EZ boundaries we applied a 10 

multiple structural change algorithm (MSC) to cell length profile data collected on fixed root 11 

preparations. Because the position of the EZ/DZ boundary corresponds to the location where root 12 

hair formation starts, this location can be used as a qualitative criterion for determination the 13 

shootward border of the EZ. For this reason the EZ/DZ boundary can be easily established, and is 14 

not considered in this study. We show here that using the polygonal models obtained from a 15 

MSC algorithm it is possible to estimate: (a) the lengths of the PD, the TD and the EZ; (b) the 16 

distances from the QC at which the different developmental transitions start; (c) the critical sizes 17 

of dividing and transitioning to the EZ cells; (d) the derivative of cell length as a function of 18 

position or gradient in cell length (Silk et al. 1986). We also show that the MSC yields similar 19 

results to those obtained with molecular markers that have been used to determine the PD/TD 20 

boundary, as well as those obtained by arbitrary estimations made by researchers experienced in 21 

root developmental biology.  22 

 XAANTAL1 (XAL1) or AGL12 is a member of the MADS-box family of genes that encode 23 

transcription factors important for regulating plant and animal development. This gene 24 
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participates in the regulation of cell proliferation in the arabidopsis RAM (Tapia-López et al. 1 

2008). Loss-of-function alleles have shorter roots and lower root growth rates than wt explained 2 

by a shorter RAM, lower rates of cell production, and a longer cell cycle duration than wt roots 3 

(Tapia-López et al. 2008). We used the proposed MSC approach to analyse arabidopsis wt and 4 

loss-of-function allele xal1-2 (hereafter xal1) roots. We found that XAL1 is necessary for the 5 

increase of the length of the PD during the first days after seed germination and its loss of 6 

function altered the critical size of dividing cells. This example illustrates that MSC approach is 7 

useful for root phenotyping at the cellular level, for comparing of different experimental 8 

conditions or genotypes and can be applied to better understand the changes in cell growth rates, 9 

the distribution of cell divisions, changes in the critical size of dividing cells and longitudinal 10 

zonation pattern. 11 

 12 

MATERIALS AND METHODS 13 

Plant materials and growth conditions 14 

Arabidopsis wild type, xal1-2, CycB1;1DB:GFP and pCCS52A1:GUS are in Col-0 ecotype. C24 15 

and Col-0 were obtained from the Arabidopsis Biological Resource Center at the Ohio State 16 

University. Seeds carrying pCCS52A1:GUS were kindly donated by E. Kondorosi, and 17 

CycB1;1DB:GFP was constructed by P. Doerner (Ubeda-Tomás et al. 2009). All lines were 18 

homozygous; seeds were surface sterilized and 2 days after vernalisation sown on medium 19 

containing 0.2X MS salts, 1% sucrose and 1% agar (except for CycB1;1:GFP seeds; see below). 20 

Petri dishes were maintained in vertical position. Plants were grown under long-day (16 h light/8 21 

h dark) conditions in growth chambers at 22-24 °C. Seeds of CycB1;1DB:GFP line were plated on 22 

agar media N103 and N3003 that contained 0.3% sucrose supplemented with 1 (N103) or 30 23 

(N3003) mM of total nitrogen (final concentrations of other components of  the media were: 24 
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CaCl2 [3 mM], MgSO4 [1.5 mM], KH2PO4 [1.5 mM], 1 x MS microelements, MES [5 mM], 1 

sucrose, 3 g/l, pH 5.6). After 2 to 7 days of vernalisation, plates were transferred to growth 2 

chambers and grew at constant light in vertically maintained Petri dishes. Root growth 3 

increments were recorded daily by marking root tip position over the surface of the dish and 4 

increments were measured using ImageJ (http://rsb.info.nih.gov/ij). 5 

 6 

Microscopy 7 

In seedlings of 7 or 9 days after sowing (DAS) roots were cleared using Herr´s solution (Herr 8 

1971), that contains: lactic acid (85%), chloral hydrate, phenol, clove oil, and xylene (2:2:2:2:1, 9 

by weight). Excised roots were transferred to Herr’s solution for at least 24 h at room temperature 10 

and subsequently mounted in the same solution and visualized using Olympus BX60 microscope 11 

equipped with Nomarski optics and photographed. 12 

 pCCS52A1:GUS seedlings were subjected to GUS reaction in the dark for 1 h at 37 °C 13 

and GUS staining solutions were prepared as described by Malamy and Benfey (1997). To 14 

restrict the diffusion of GUS blue precipitate, 2 mM of K3Fe(CN)6 and K4Fe(CN)6 were added in 15 

the solution at the beginning. After GUS staining, seedlings were immersed in Herr’s clearing 16 

solution and stored in the dark at room temperature during 72 h and visualised as described 17 

above. 18 

 For simultaneous observation of the nuclei and GFP fluorescence (CycB1;1DB:GFP), 7 19 

DAS seedlings were fixed in 4% formaldehyde in PBS solution supplemented with 0.05 µg/ml of 20 

DAPI (final concentrations) overnight at 4 °C. Preliminary experiments showed that this 21 

procedure did not quench fluorescence activity of GFP. Then, material was washed in PBS four 22 

times, 10 min each, mounted and analysed. Roots were mounted in a drop of PBS, covered by a 23 

coverslip and observed under inverted laser scanning confocal Leica TCS NT microscope with a 24 



10 
 

63X HCX PL APO water immersion Leica objective. After the optical median section of the 1 

apical root portion was found, the intensity of the signal was set up with the use of look-up tables 2 

which are the component of the Leica software. DAPI and GFP channels were setup separately 3 

and colour intensity was always set to a standard for each individual root at low speed of 4 

scanning. These same setting in colour intensity and offset were used for more proximal root 5 

portions. Final scanning of each root portion was done sequentially, first for GFP and then for 6 

DAPI and average of four scans was saved as TIF file. To improve contrast between DAPI and 7 

GFP channel, images of GFP fluorescence were pseudo-coloured in magenta. Images of two 8 

channels of each root portion were merged and then the whole root tip image was assembled in 9 

Adobe Photoshop 5.5. from four to eight originally saved files.  10 

 11 

Quantitative analysis 12 

We have implemented a semi-automated procedure to systematically and accurately measure cell 13 

lengths. The algorithm was constructed based on Java SRE and ImageJ 1.4 libraries. This 14 

development works properly for multi-platform environments such as Windows, Linux or Mac 15 

OS. This software (executable file: Cell_Length_V2.0.jar) and its user manual 16 

(Cell_Length_V2.0.pdf) are available at 17 

http://www.ibt.unam.mx/labimage/proyectos/arabidopsis. 18 

For Nomarski micrographs, cell length profiles were obtained by measuring a straight line from 19 

one end to the other with ImageJ or Cell_Length_V2.0.jar software along a cortex file from the 20 

QC to the first cortex cell adjacent to an epidermal cell that had started to form a root hair bulge 21 

(Fig. 1A). For confocal images the data on meristem length, number of cell in the meristem, the 22 

fraction of GFP expressing cells, and root thickness were collected from assembled images. Root 23 

thickness was measured at the level corresponding to the PD/TD boundary for cortex determined 24 
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by experienced biologists which implies a subjective method abbreviated here as the ExpBiol 1 

method. The PD/TD boundary determined by an ExpBiol method was defined for epidermis and 2 

cortex arbitrarily based on relative changes in cell lengths or internuclear distances along the root, 3 

similar to other studies (Rost and Baum 1988; Dubrovsky 1997; Dubrovsky et al. 1998a, b; 4 

Tapia-López et al. 2008; Garay-Arroyo et al. 2013).  5 

 All statistical analyses were performed using R (the R Foundation of Statistical 6 

Computing, version 2.15.1). Multiple structural change (MSC) analyses, including estimation of 7 

the optimal number of breakpoints by Bayesian Information Criterion (BIC) and estimation of 8 

breakpoint positions with their 95% confidence intervals (CI) for all cell length profiles, were 9 

performed using the breakpoints function of the R strucchange package (Zeileis et al. 2002, 10 

2003). breakpoints function estimates multiple breakpoints simultaneously implementing the 11 

algorithm which obtains global minimizers of the sum of squared residuals (Bai and Perron2003). 12 

Examples of MSC analyses using the breakpoints function are provided [Supplementary 13 

Information, Text S1]. The distribution function for the 95% CI for the breakpoints is given in 14 

Bai (1997). For comparison of the results obtained with ExpBiol and MSC analyses, Intraclass 15 

Correlation Coefficient (ICC) was estimated (the model: two-way; the type: absolute agreement; 16 

the unit of analysis: average-measures) (McGraw and Wong 1996; Hallgren 2012). The ICC 17 

value and its 95% CI were calculated using the R irr package (Matthias et al. 2012). We also 18 

developed a publically available web site www.ibiologia.com.mx/MSC_analysis where the MSC 19 

algorithm can be performed. 20 

 21 

 22 

 23 

 24 
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RESULTS 1 

Previously, van der Weele and collaborators (2003) concluded that the root has a velocity profile 2 

with linear phases —RAM, EZ and Differentiation zone— separated by abrupt transitions. Based 3 

on this conclusion, we propose that cell length profiles, where the cell length (L) is a function of 4 

the cell position with respect to the QC (i), can be fitted by a polygonal model, also known as 5 

piecewise, segmented, broken-line regressions, multi-phase regressions or multiple structural 6 

change (MSC) models (Bai and Perron 2003; Muggeo 2003). In these models the points where 7 

the behaviour or response of the dependent variable, as a function of the independent one, change 8 

abruptly are commonly called breakpoints, change-points, transition points or switch-points 9 

(Muggeo 2003). In the cell length profiles, the breakpoints correspond to the boundary between 10 

adjacent developmental zones (Fig. 1A, B). 11 

 There is no consensus about the existence of the TD in roots. Thus, the analysis of the 12 

longitudinal zonation pattern of the arabidopsis root apex consists of two main problems: 13 

establishing the number of domains and zones, and determination of the position of the 14 

breakpoints between them. Here, we show that a MSC approach can be productively used for 15 

solving these problems and objectively establishing the longitudinal patterning in the arabidopsis 16 

growing root portion. 17 

 18 

The growing part of the root consists of three discrete regions 19 

The problem of single and multiple structural changes in linear models has been studied mainly 20 

in statistics, econometrics and medicine (Auger and Lawrence 1989; Bai and Perron 1998, 2003; 21 

Kim et al. 2000; Muggeo 2003). We know that the growing part of the arabidopsis root has at 22 

least one transition or breakpoint that corresponds to the RAM/EZ boundary. Some authors 23 

propose also the existence of a TD formed by a group of cells elongating at the same rate as the 24 
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PD cells but with a very low probability of division. In contrast, other authors consider that such 1 

domain does not exist. If the TD actually exists, then a polygonal model with two breakpoints can 2 

be obtained from cell length profiles of single cell files; and such breakpoints would correspond 3 

to PD/TD and RAM/EZ boundaries.  4 

 There are several procedures to estimate the number of breakpoints in MSC models (Yao 5 

1988; Liu et al. 1997; Bai and Perron 1998, 2003; Kim et al. 2000, 2009). Comparing different 6 

methods for selecting the number of breakpoints, Bai and Perron (2003) concluded that the 7 

Bayesian Information Criterion (BIC) (Yao 1988) works well when there is at least one 8 

breakpoint, and Kim et al. (2009) also indicate that BIC performs well in picking up small 9 

changes. This method adjusts the sum of squared residuals for models with different numbers of 10 

breakpoints, and the model with the lowest BIC value is accepted as the most parsimonious. To 11 

establish the number of regions in the growing part of the root, we analysed arabidopsis Col-0 wt 12 

and xal1 roots at two different ages, 7 and 9 DAS, without specifying the number of expected 13 

breakpoints. From cleared roots we obtained the cell length profile of a cortex cell file, from the 14 

QC to the first cortex cell adjacent to an epidermal cell that formed a root hair bulge (Fig. 1A). 15 

For each cell length profile we estimated MSC models with different number of breakpoints and 16 

their positions.  17 

 We found that for 58% of Col-0 cell length profiles analysed (23 out of 40 cell files) the 18 

most parsimonious model was of two breakpoints (Fig. 2A, B). In these cell length profiles the 19 

most shootward breakpoint corresponded to the RAM/EZ boundary and the rootward breakpoint 20 

corresponded to the PD/TD boundary. In 42% of cell length profiles analysed in Col-0 (17 out of 21 

40 cell files), the most parsimonious model was of that of one breakpoint. This breakpoint 22 

corresponded to the RAM/EZ boundary (Fig. 2C, D). We found also that for these roots the 23 

second most parsimonious model was that with two breakpoints. When this model was applied, 24 
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the same the RAM/EZ boundary was found and additionally the PD/TD boundary was identified 1 

within the RAM. 2 

 Similar modelling was performed for the xal1 mutant. Out of 40 cell length profiles 3 

analysed, the most parsimonious model was of one, two, and three breakpoints in 30, 62, and 8% 4 

of the profiles ([Supplementary Information, Fig. S1]. The small number of the profiles with 5 

three breakpoints can represent an artefact as a consequence of greater variability in cell lengths. 6 

To verify the versatility of the approach, we compared Col-0 wt with a different wt accession, 7 

C24. We found that 17, 8, and 75% of cases (n =12 cortical cell length profiles) showed one, two 8 

and three breakpoints ([Supplementary Information, Table S 1]. 9 

 Overall, our data support the existence of two developmental transitions in the growing 10 

part of the root. One of these transitions, the shootward, corresponds to the RAM/EZ boundary 11 

(Fig. 1A). In the next section, we will show that the second, rootward, transition corresponds to 12 

the PD/TD boundary (Fig. 1B).  13 

 14 

The MSC modelling approach identifies the PD/TD boundary 15 

Because the different domains and root growth zones are characterized by distinct and specific 16 

developmental processes, the distribution of unambiguous molecular markers for those processes 17 

could also be used to define the longitudinal zonation of the root (Ivanov and Dubrovsky 2013). 18 

The distribution of molecular markers for G2-to-M transition, CycB1;1DB:GUS or 19 

CycB1;1DB:GFP, have been used as markers for the PD of the RAM (Colón-Carmona et al. 1999; 20 

Hauser and Bauer 2000; Aida et al. 2004; Ticconi et al. 2004; Li et al. 2005; Cruz-Ramírez et al. 21 

2012). 22 

 Cell length profiles were obtained from CycB1;1DB:GFP roots grown on media with low 23 

(1 mM) and high (30 mM) concentration of total nitrogen. These cell length profiles were 24 
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collected from assembled root images obtained under a confocal laser scanning microscope at a 1 

high magnification and for this reason did not include EZ cells. CycB1;1DB:GFP reporter detects 2 

cells in late G2 and early M phases of the cell cycle (Colon-Carmona et al., 1999). Therefore, cell 3 

length profile was obtained for a root portion where GFP-positive cells were detected 4 

(presumptive PD) and shootward of this zone for a portion of at least half of presumptive TD. 5 

Thus, if a breakpoint is detected, this should correspond to the PD/TD boundary. Roots grown on 6 

the media with high and low nitrogen content differed significantly in their growth rate and 7 

morphology and on medium with low nitrogen grew 2.5-fold faster than under high nitrogen 8 

(Table 1). This observation suggested that the PD would be of different length in seedlings grown 9 

under these contrast conditions. Indeed, the PD length determined by MSC approach was greater 10 

at low nitrogen medium (Fig. 3).  11 

 The distribution of GFP-positive cells within the meristem was random (Fig. 3A, B). In 12 

most cases, those meristematic cells that were in mitosis were GFP-positive. The cells that were 13 

not in mitosis, but were weakly GFP-labelled were cells in G2 as can be deduced from their size 14 

(these cells were approximately twice as long as recently divided cells). The breakpoint values 15 

estimated by the MSC approach corresponded to the last PD cells. Cells that expressed 16 

CycB1;1DB:GFP at the moment of fixation were in most cases located rootward to the 17 

breakpoints estimated by the MSC approach (Fig. 3C-F), i.e. within the PD domain. The 18 

CycB1;1DB:GFP expression was found in a shootward position with respect to the breakpoint 19 

only in 6% of cell files analysed (5 out of 80). These data indicate that the probability of cell 20 

division (GFP-positive cells) after the breakpoint estimated was low, although rapid cell 21 

elongation had not yet started in the measured cell files. Our data indicate that the PD/TD 22 

breakpoint estimated by MSC approach coincided well with the CycB1;1DB:GFP expression 23 

pattern. 24 
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 As mentioned above, changes in cell proliferation are associated with the PD/TD 1 

boundary before rapid elongation starts, and particularly, before the changes in elongation rates 2 

can be detected, cells enter to the endoreduplicaction cycle (Hayashi et al. 2013). Thus, we 3 

proposed that the TD can be also defined as the region where cells start endoreduplication but 4 

have not yet started rapid elongation. Therefore, a molecular marker for endoreduplication, could 5 

also be used to establish the PD/TD boundary. The CELL CYCLE SWITCH52A1 (CCS52A1) 6 

gene, an isoform of the substrate specific activator of the anaphase promoting 7 

complex/cyclosome (APC/C), promotes the onset of endoreduplication and its expression 8 

correlates with the transition from proliferation to endoreduplication (Vanstraelen et al. 2009). 9 

The pCCS52A1:GUS reporter gene (Vanstraelen et al. 2009) can be used as a molecular marker 10 

of the PD/TD boundary as it is expressed only in the TD and the EZ (Vanstraelen et al. 2009; 11 

Takahashi et al. 2013). 12 

 To test if the breakpoint inside the RAM estimated by the MSC approach corresponds 13 

with the transition from proliferative state to endoreduplication, we obtained the cortex cell 14 

length profile of ten roots of the pCCS52A1:GUS reporter line. Using the MSC approach, we 15 

determined the breakpoint positions for these roots and estimated 95% CI of the position of the 16 

last PD cell of each cell file analysed. This position was close to the rootward (distal) border of 17 

the GUS expressing region (seven out of ten cell files, or 70%) (Fig. 4A-G). In 30% of the 18 

analysed cell files, the last PD cell, estimated by MSC approach was clearly in a more rootward 19 

position than the GUS expressing region (Fig. 4H-J). Therefore, the PD/TD boundary estimated 20 

by MSC coincided with the onset of pCCS52A1:GUS expression in the majority of cases. 21 

 These data support the conclusion that the MSC approach enabled estimation of the 22 

position of PD/TD boundary and this position coincided with the distribution of cells expressing 23 

the CycB1;1DB:GFP marker and with the onset of pCCS52A1:GUS expression. This PD/TD 24 
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transition occurred before rapid cell elongation started. Thus we conclude that there are two 1 

developmental transitions in the growing part of the root: PD/TD and RAM/EZ (Fig. 1A, B), the 2 

former related to changes in proliferation behaviour and the latter to the onset of rapid cell 3 

elongation. 4 

 5 

Determination of the PD/TD boundary by MSC approach coincides with a subjective 6 

determination by an experienced root developmental biologist  7 

In previous studies, the extension of the PD of the RAM was determined based on relative 8 

changes of cell length along a root meristem cell file. The PD/TD boundary has been determined 9 

at a point from the QC, where, in the shootward direction, cell length or inter-nuclear distance 10 

increases significantly and where a cell becomes longer than the average cell length within the 11 

PD (Dubrovsky 1997; Dubrovsky, et al. 1998a, b; Tapia-López et al. 2008; Garay-Arroyo et al. 12 

2013). Blind experiments of the determination of this boundary on the same roots by different 13 

biologists experienced in this technique (ExpBiol) give similar results, but students or biologists 14 

that are inexperienced in this analysis obtain contrasting results (VBI, PD, and JGD, unpublished 15 

observations). Therefore, the ExpBiol is subject to biases depending on the researcher that 16 

conducts the analysis. Hence, we were interested in comparing ExpBiol and the MSC approaches 17 

to establish the PD/TD boundary. 18 

 The PD/TD boundary was estimated on CycB1;1DB:GFP roots grown on media with low 19 

(1 mM) and high (30 mM) concentration of total nitrogen. Interestingly, the PD length (estimated 20 

by ExpBiol) in arabidopsis varied depending not only on the N availability, but also among roots 21 

grown under the same nutrient conditions. The minimum-maximum numbers of cells in a cell file 22 

within the PD (estimated by ExpBiol) in individual roots were 13-41 (epidermis), 24-48 (cortex) 23 

at low N, and 9-30 (epidermis), 10-29 (cortex) at high N. Considering this variation, we analysed 24 
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the agreement between the PD/TD boundary estimated for each root when using the ExpBiol 1 

method and the MSC approach.   2 

 In statistics, inter-rater reliability (IRR) indicates "the degree of agreement between two 3 

or more coders who made independent ratings about the features of a set of subjects" (Hallgren 4 

2012). To evaluate IRR for estimations of the number of PD cells obtained by the ExpBiol and 5 

MSC approaches, we calculated the intraclass correlation coefficient (ICC) (McGraw and Wong 6 

1996; Hallgren 2012). Higher ICC values indicate higher agreement. An ICC estimate of 1 7 

indicates a perfect agreement and a 0 estimate indicates only random agreement. The ICC 8 

estimated for all the CycB1;1DB:GFP cell files was significantly greater than zero, ICC = 0.9, F 9 

(79, 80) = 10.2, p = 2.44e-21, 95% CI [0.85, 0.94], and was at the excellent qualitative range 10 

proposed by Cicchetti (1994), confirming that ExpBiol method (which has been traditionally 11 

used) and MSC approach had a high degree of agreement as no statistical differences between the 12 

two approaches were detected (Table 2).  Importantly, as determined by MSC analysis, at high N 13 

medium the cortex PD length was approximately 80 % shorter than that in roots grown at low N 14 

medium. This indicate the versatility of the MSC approach. Given that different researchers may 15 

reach different results depending on their experience, the use of MSC is recommended as it can 16 

eliminate subjective estimates and provide reproducibility within and across laboratories, 17 

irrespective of the experience of the observer.  18 

 19 

The MSC approach can be used to estimate the critical size of dividing cells and the critical cell 20 

size for the initiation of rapid elongation 21 

Organisms, from bacteria to higher eukaryotes, coordinate cell growth and cell division through 22 

size-sensing checkpoint mechanisms, in order to maintain a constant cell size. Cells have to reach 23 

a certain critical size at which the cell-cycle transitions are triggered, such as G1-S or G2-mitosis 24 
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(Ivanov 1971; Dobrochaev and Ivanov 2001; Dolznig et al. 2004; Yang et al. 2006; Turner et al. 1 

2012; Robert et al. 2014). Therefore, along the PD it is expected that cells are equal or smaller 2 

than the critical size of dividing cells (LcritD). However, in the TD, the probability of cell division 3 

is very low (Ivanov and Dubrovsky 2013); therefore, cells which continue growing at the same 4 

relative growth rate as in the PD are longer than the LcritD (Hejnowicz 1959; Hejnowicz and 5 

Brodzki 1960; Ivanov and Maximov 1999; van der Weele et al. 2003). In the EZ, rapid cell 6 

elongation is taking place among other processes due to water uptake into the central vacuole 7 

(reviewed by Dolan and Davies, 2004). We addressed in this study if there is a critical cell length 8 

related to the onset of rapid elongation in the EZ, similar to the LcritD near the PD/TD boundary. 9 

We denote this cell length as the critical cell size for the initiation of rapid elongation (LcritE). 10 

 To estimate the maximum cell lengths that correspond to the PD and the TD, we used the 11 

MSC analysis of sorted cell lengths. We called this analysis the sorted MSC (sMSC). For this 12 

procedure, we sorted cell lengths of a root cell file in ascending size order (Fig. 5A, B). Thus, cell 13 

length is a function of the cell length rank in the sorted cell length set (Fig. 5B). We assumed that 14 

there are three subsets of sorted cell lengths that correspond to the PD, TD and EZ. Then, after 15 

estimation of the breakpoints that correspond to the ranks of the longest PD and TD cells (Fig. 16 

5B, C), we found the two linear equations that model the PD and TD cell length subsets after 17 

determining the breakpoints by MSC (Fig.5D). Finally, we used these two linear equations for 18 

the PD and TD to estimate the maximum cell length in the PD and TD or the LcritD and LcritE, 19 

respectively (Fig. 5D). In this way the MSC approach can be used to estimate the critical size of 20 

dividing cells and the critical size for the initiation of rapid elongation. These parameters were 21 

subsequently used for comparison of different genotypes.  22 

 23 

MSC analysis of arabidopsis wt and xal1 roots 24 
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We generated MSC models with two breakpoints for each cell length profile of wt and xal1 roots 1 

at 7 and 9 DAS. From these models we estimated: (a) the position of RAM/EZ and PD/TD 2 

boundaries by the MSC approach, (b) the linear equations for PD, TD and EZ, (c) the number of 3 

cells and length of each domain, (d) the derivative of cell length as a function of position (DLP), 4 

which corresponds to the slope of each linear equation, and (e) the LcritD and LcritE. Once the 5 

PD/TD and RAM/EZ boundaries were determined by the MSC approach, we compared the sizes 6 

of the RAM, PD and TD in wt and xal1 seedlings 7 and 9 DAS. We found that the number of 7 

cells and length of the wt PD and RAM increased from 7 to 9 DAS (Table 3). In contrast, no 8 

change was detected in the TD during this growth period in both genetic backgrounds (Table 3). 9 

Thus the RAM size increase in the wt was due to a larger population of proliferating cells in the 10 

PD at 9 DAS (Table 3). 11 

 Interestingly, in the xal1 mutant we did not detect changes in PD and RAM lengths and 12 

corresponding number of cells, from 7 to 9 DAS under our growth conditions (Table3). Because 13 

an accelerated root growth is related mainly to changes in the number of proliferating cells 14 

(Beemster and Baskin 1998), the almost constant growth of xal1 roots from 3 to 11 DAS (Fig. 15 

6A, B) suggested that xal1 PD hardly changes at least during the first ten days. Thus, XAL1 is 16 

necessary to maintain steady increase in the number of cells within the PD, and as a consequence, 17 

an accelerated root growth. 18 

 As xal1 root cells have a longer cell cycle than wt roots (Tapia-López et al. 2008), we 19 

asked if this difference is associated with a change in the LcritD. We estimated the mean wt cortex 20 

cells (LcritD) as M = 8.9 μm, 95% CI [8.5, 9.3], n = 40, and for xal1 cortex cells as M = 11.4 μm, 21 

[10.7, 12.0], n = 40. This suggests that the size sensing mechanism that controls the critical cell 22 

size for division is altered by the loss of function of XAL1 and, as a consequence, the cell cycle 23 

duration of xal1 roots is longer, because it takes more time to reach the LcritD (assuming the same 24 
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cell growth rate with respect to time). We also estimated the mean wt cortex cell critical size for 1 

the initiation of rapid elongation,  LcritE,  as M = 25 μm, [23, 28], n = 40, and for xal1 cortex cells 2 

as M = 38 μm, [32, 44], n = 40. This analysis showed that, the loss of function of XAL1 altered 3 

both critical sizes. In summary, the MSC analysis permitted to suggest that XAL1 may be 4 

involved in the regulatory mechanisms to control critical cell size. Alternatively, XAL1 5 

expression may depend on critical cell size.   6 

  7 

 8 

DISCUSSION 9 

We have applied MSC model to establish the longitudinal zonation pattern of arabidopsis roots. 10 

This approach is useful to estimate different parameters such as (a) the number of longitudinal 11 

domains and zones, (b) the number of cells and lengths of each domains and zones, (c) cell length 12 

changes with respect to cell position along the longitudinal root axis or the derivative of cell 13 

length as a function of position (DLP), and (d) the critical size of dividing cells (LcritD), and the 14 

critical size for the initiation of rapid elongation LcritE. Using the BIC to estimate the most 15 

parsimonious models for number of breakpoints, we have detected two breakpoints or transitions 16 

in cell length profiles of the growing part of the root for the majority of roots. One of these 17 

breakpoints corresponds to the RAM/EZ boundary and the other one defines the PD/TD 18 

boundary.  When one or three breakpoints were detected as the most parsimonious, this was 19 

mainly due to internal variability in cell length profiles in arabidopsis roots. Considering that (a) 20 

two breakpoint model was more common; (b) one breakpoint model was a particular case where 21 

the PD/TD boundary was not sharp enough; (c) CycB1;1DB:GFP was expressed mainly in the PD 22 

and (d) pCCS52A1:GUS was expressed mainly in the TD, we can conclude that three distinct 23 

domains or zones (the PD, the TD, and the EZ)  should be recognised in the arabidopsis root.  24 
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 Some authors consider that within individual cell files there is no TD before rapid 1 

elongation starts; it is viewed that the transition zone is just one point along the root where cells 2 

leave the RAM and enter the EZ (see: Dello Ioio et al. 2007; Moubayidin et al. 2010). These 3 

authors also consider that the onset of elongation "is different for each cell type, giving a jagged 4 

shape to the boundary between dividing and expanding cells" (Dello Ioio et al. 2007, p. 679). 5 

Root tissues stop dividing at different distances from the QC, but they all start rapid elongation at 6 

the same distance due to symplastic growth (reviewed in Ivanov and Dubrovsky 2013). Hence, 7 

before rapid elongation, the symplastic nature of plant tissues, yields a domain at which cells start 8 

endoreduplication, but do not start rapid elongation; this region then corresponds to the ‘TD’ 9 

(Baluška et al., 1996; Ivanov and Dubrovsky 2013). Indeed, experimental evidence has shown 10 

that in arabidopsis endoreduplication precedes rapid cell elongation (Hayashi et al. 2013). Thus, 11 

for a particular cell file within the arabidopsis root, the TD can also be defined as the region 12 

where cells endoreduplicate and continue elongating at the same rate as in the PD. It has also 13 

been shown that phospholipase Dζ2, involved in vesicle trafficking, is strongly expressed in the 14 

transition zone (Li and Xue, 2007; Mancuso et al. 2007). 15 

 The MSC analysis used here clearly shows that before the onset of rapid elongation, all 16 

cells within a file, irrespective of the tissue type, are distributed in two subsets separated by an 17 

identifiable transition: those in the PD and those in the TD. A clear difference between these two 18 

subsets and the difference between the RAM and EZ subsets provide additional evidence that the 19 

transition to elongation is not just one point along the root but comprises a domain of cells that 20 

have lost or are in the process of losing proliferation activity. 21 

 If we consider that the RAM does not include two domains (and the transition to the EZ is 22 

not considered to span several cells that constitute an identifiable domain of cells), the estimated 23 

RAM linear model should have a slope or DLP greater than zero. This would imply then that 24 
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along the RAM, the relative cell elongation rate is greater than the relative cell division rate, but 1 

cell length profiles do not show a cell length distribution that corresponds to this scenario (Fig. 2 

2). Within each domain, different relationships between relative elongation and cell division rates 3 

(Green 1976) or DLPs cause a change in the mean cell length. We have found that on average the 4 

PD DLP is equal to zero and the TD DLP is greater than zero (Table 3). This implies that in the 5 

PD there is a balance between relative cell elongation and division rates (Baskin, 2000), while in 6 

the TD relative elongation rates are greater than relative division rates. So, our results support the 7 

existence of two domains within the RAM. Thus, cell length profiles that include the RAM and 8 

the EZ must be modelled by two breakpoints MSC models. 9 

 The PD/TD boundary is difficult to recognize, partially because relative changes in cell 10 

lengths, which not always steadily increase in shootward direction, have to be evaluated. Using a 11 

molecular marker such as CycB1;1DB:GFP we found here, that most of GFP expressing cells 12 

were within the PD defined by the MSC approach. However, the fact that in 6% of cases GFP 13 

expressing cells were found in the TD, indicate two important aspects: (a) that some TD cells 14 

indeed are able to proliferate and (b) that an estimation error must be considered. This same 15 

conclusion can be drawn to explain why in some cases pGUS:CCS52A1 expression is detected 16 

shootward of the MSC-determined position of the PD/TD boundary (Fig. 4H-J).  Additionally, 17 

this discrepancy can be explained by the observation that in arabidopsis roots, the 18 

endoreduplication cycle can also start in the EZ and that its duration is greater than that of the cell 19 

cycle in the RAM (Hayashi et al., 2013).  20 

 It is important to point out that the cells at the TD have unique physiological properties 21 

such as alterations in their cell-wall structure and the onset of vacuolization that enables fast cell 22 

growth at the EZ (Verbelen et al. 2006; Baluška et al. 2010). It has also been described that cells 23 

in the TD are very sensitive to diverse external factors such as gravity, light, oxidative stress and 24 
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humidity (Verbelen et al. 2006). Thus, evaluating the extent to which such domain is altered 1 

under different genetic and environmental conditions, becomes very relevant. In this paper, we 2 

propose an approach to objectively establish the boundaries between the PD and the TD, and 3 

between the RAM and the EZ, as well as the sizes and number of cells comprising each domain. 4 

 Using MSC, we have found that the PD in wt roots increases after 7 DAS, and such 5 

growth is related to an increase in the number of proliferating cells and accelerated root growth, 6 

after 7 DAS. This observation is in accordance with many studies where similar criteria to 7 

determine the RAM/EZ boundary have been used, and which report meristem length increase 8 

after 5 days after germination (DAG) and later (Galinha et al. 2007; Ubeda-Tomás et al. 2009; 9 

González-García et al. 2011; Makkena and Lamb 2013). Moreover, a kinematic analysis of the 10 

arabidopsis root showed that accelerated root growth is mainly due to an increased cell 11 

production rate during the first 14 DAG, and a steady increase in meristem length during the first 12 

two weeks of growth after germination (Beemster and Baskin 1998). These results are similar to 13 

our observations of accelerated growth from 7 to 11 DAS (Fig. 6A, B), accompanied with an 14 

increase in the PD length. However, these results contrast with some previous studies that 15 

concluded that wt arabidopsis RAM reaches its maximum size 5 DAG (Dello Ioio et al. 2007; 16 

Achard et al. 2009; Moubayidin et al. 2010; Zhou et al. 2011), equivalent to our 7 DAS. This 17 

discrepancy about the age at which the RAM reaches its maximum size can be explained by the 18 

fact that this age is highly dependent on environmental conditions that vary among studies and by 19 

possible methodological differences in meristem length determination. In any case, these 20 

variations among laboratories highlight the need for a reliable approach to identify root growth 21 

zones along its longitudinal axis and their boundaries. In contrast, xal1 roots showed an almost 22 

constant root growth rate (Fig. 6A, B), possibly because the PD length hardly changes during, at 23 
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least, 7 to 10 DAS. This result suggests that XAL1 is involved in the regulation of the transition 1 

from the PD to the TD. 2 

 Interestingly, the LcritD is altered by the loss of function of XAL1, suggesting that the 3 

longer cell cycle duration estimated in xal1 roots (Tapia-López et al. 2008) is possibly related to 4 

alterations in the size sensing mechanisms that control the onset of cell division. Fully elongated 5 

cells of xal1 roots are shorter on average than wt ones (Tapia-López et al. 2008). Nonetheless, 6 

our results show that cells that enter the EZ are larger in xal1 roots than in wt. Then, cell 7 

elongation stops at shorter cell lengths in xal1 than in wt roots, although xal1 cells initiate rapid 8 

cell elongation at larger sizes. Our results suggest that the loss of function of XAL1 alter the two 9 

developmental transitions along the root (PD/TD and RAM/EZ), as well as cell critical sizes. 10 

Future studies will have to unravel how XAL1 is involved in the regulation of cell division rate, 11 

directly or indirectly, through the regulation of the mechanisms that control the LcritD. 12 

 In conclusion, the MSC approach for determination of the PD/TD boundary yields similar 13 

results to those based on specific molecular markers and those obtained by the ExpBiol 14 

subjective method. The MSC approach is an objective and versatile tool for determination of 15 

domains and zones and gives reliable results for roots with the RAM of different lengths. The use 16 

of molecular markers implies genetic crosses and frequently, mixture of different genetic 17 

backgrounds. To avoid this problem, the MSC approach permits a direct longitudinal zonation 18 

pattern characterisation. It can be used for different genetic backgrounds, treatments, or can be 19 

applied for analysis of developmental changes taking place with age. This approach potentially 20 

could also be applied to species other than arabidopsis to better characterize and understand the 21 

mechanisms underlying the homeostasis of the RAM in Angiosperms. 22 

 23 

SUPPLEMENTARY INFORMATION 24 
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Supplementary information is available online at www.aob.oxford-journals.org and consists of 1 

the following:   2 

Text S1: Instructions to analyse a cell length profile of arabidopsis root using the ‘strucchange’ 3 

package of R (two examples). 4 

Figure S1. Estimation of the number of breakpoints and their position by a MSC-BIC approach in 5 

xal1 9DAS seedling. 6 

Table S1. Quantitative analysis of Arabidopsis C24 wild-type (wt) roots 7 
 8 
 9 
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TABLE 1. Root growth and meristem characteristics in 7 days after sowing (DAS)seedlings of 1 
CycB1;1DB:GFP (BJ3) line grown in the media with low and high concentrations of total 2 
Nitrogen  3 

 Low Nitrogen High Nitrogen 

Mean (sd) (n) 95% CI Mean (sd) (n) 95% CI 

Root length (mm) 43.2 (6.9) (47) [41.2, 45.2] 20.7 (5.3) (44) [19.1, 22.3] 

Rate of root growth during last 24 h 

(µm h-1) 

400 (137) (47) [360, 440] 160 (66) (44) [140, 180] 

Root thickness (μm) 146 (11) (29) [142, 150] 123 (12) (36) [119, 127] 

Fraction of GFP 

positive cells per 

cell file (%) 

Epidermis 12.6 (7.5) (39) [10.2, 15.0] 12.1 (9.8) (57) [9.5, 14.7] 

Cortex 11.7 (7.7) (35) [9.1, 14.3] 13.9 (9.8) (43) [10.9, 16.9] 

      

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 
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TABLE 2. Agreement between determinations of the PD/TD boundary by ExpBiol method and by 1 

the MSC approach in roots of CycB1;1DB:GFP (BJ3) line (n=20). 2 

 Distance from the PD/TD boundary to QC (μm) Number of PD cells 

ExpBiol MSC ExpBiol MSC 

Mean (sd) 95% CI Mean (sd) 95% CI Mean (sd) 95% CI Mean (sd) 95% CI 

Epidermis low N 247 (37) [229, 264] 241 (47) [218, 263] 28 (10) [24, 33] 27 (9) [23, 31] 

Epidermis high N 199 (20) [190, 209] 204 (57) [178, 231] 18 (4) [16, 20] 18 (5) [16, 21] 

Cortex low N 245 (38) [227, 262] 270 (54) [245, 295] 33 (6) [30, 36] 36 (6) [33, 39] 

Cortex high N 195 (23) [185, 206] 211 (40) [192, 229] 22 (4) [20, 24] 23 (5) [21, 26] 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 
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TABLE 3. Quantitative analysis of Arabidopsis Col-0 wild-type (wt) and xal1 roots, evaluated at 7 1 

and 9 days after sowing (DAS) by MSC analysis, (n = 20). 2 

 wt xal1 

 7 DAS 9 DAS 7 DAS 9 DAS 

 Mean (sd) 95% CI Mean (sd) 95% CI Mean (sd) 95% CI Mean (sd) 95% CI 

Number PD cells 40 (7) [36, 43] 49 (6) [46, 52] 26 (6) [23, 28] 28 (7) [24, 31] 

Number RAM 

cells 

55 (5) [52, 57] 63(5) [60, 65] 36 (5) [34, 38] 39 (5) [36, 41] 

PD length (µm) 245 (53) [220, 270] 316 (53) [291, 340] 189 (63) [160, 218] 210 (63) [181, 240] 

TD length (µm) 215 (56) [188, 241] 216 (56) [189, 242] 216 (121) [160, 273] 206 (78) [170, 243] 

RAM length (µm) 460 (61) [431, 488] 531 (45) [510, 552] 405 (145) [337, 473] 417 (90) [375, 459] 

PD DLP (µm/ cell 

position) 

0.0 (0.1) [-0.04, 0.04] 0.0 (0.1) [0.0, 0.1] 0.1 (0.2) [0.0, 0.1] 0.1 (0.2) [0.0, 0.1] 

TD DLP (µm/ cell 

position) 

1.5 (1) [0.8, 2.1] 1.3 (1) [1.1, 1.6] 2.7 (3.1) [1.2, 4.1] 2.6 (2.2) [1.5, 3.6] 

EZ DLP (µm/cell 

position) 

13 (4) [11, 15] 11 (3) [10, 12] 13 (11) [8, 18] 15 (6) [12, 18] 

Rank of the LcritD 43 (4) [41,45] 50 (5) [48, 53] 29 (4) [27, 31] 30 (5) [28, 32] 

Rank of the LcritE 55 (5) [52, 57] 63 (5) [60, 65] 37 (4) [35, 39] 38 (5) [36, 41] 

 3 

 4 

 5 

 6 

 7 

 8 

 9 
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FIGURE LEGENDS 1 

Fig. 1. Anatomical topology of the arabidopsis root. (A) The Root apical meristem (RAM) and 2 

Elongation Zone (EZ) of a wild type arabidopsis Col-0 seedling root, 7 days after sowing; 3 

composed image from a cleared root preparation. (B) RAM of the same root shown in (A). The 4 

numbers represent the cell position with respect to the QC (zero position). The n position 5 

corresponds to the first cortex cell adjacent to an epidermal cell that started to form a root hair 6 

bulge. Scale bars = 100μm. 7 

 8 

Fig. 2. Estimation of the number of breakpoints and their position by a MSC-BIC approach in 9 

Col-0 wild type cortical cell length profiles. (A and C) MSC-BIC models with m breakpoints for 10 

representative cell length profiles shown on (B) and (D). The lowest value of BIC corresponds to 11 

the most parsimonious model for number of breakpoints within a cell file. (B and D) 12 

Representative cell length profiles of wt of 9 DAS seedlings. Vertical dashed lines represent the 13 

breakpoint position estimated by a MSC approach.  14 

 15 

Fig. 3. Distribution pattern of CycB1;1DB:GFP expression used as a molecular marker for the PD 16 

determination and comparison of the PD/TD border determinations by the ExpBiol and MSC 17 

approach.(A and B) Root tip longitudinal median sections made with aid of the laser scanning 18 

confocal microscopy. GFP and DAPI channels were merged and images taken at different level 19 

from the root tip were assembled; GFP signal is pseudo-coloured as magenta. (A) Roots grown 20 

on medium with 1mM of N. (B) Roots grown at medium with 30 mM of N. Yellow arrows 21 

indicate the PD/TD boundary for cortex and epidermis files determined by ExpBiol based on the 22 

changes in the cell lengths or the inter-nuclear distance; green arrows indicate the location within 23 

the PD where the cell expresses CycB1;1DB:GFP and is closest to the PD/TD boundary in an 24 



37 
 

epidermis (E) or cortex (C) files; white arrows indicate the PD/TD boundary determined by the 1 

MSC approach. Scale bar = 50 μm. (C-F) X-axis numbers indicate different cell files analysed (n 2 

= 10 roots, one file of cortex and one file of epidermis for each root). The position of the last PD 3 

cell determined by MSC approach (black dots) and the position of the cells closest to the PD/TD 4 

boundary which expresses GFP (asterisks) in epidermis and cortex files for the low and high 5 

nitrogen media are shown. Note that not each cell file had cells expressing CycB1;1DB:GFP at 6 

moment of fixation. For each condition cell files are arranged in an ascending order of the 7 

number of cells in the PD determined by MSC approach.   8 

 9 

Fig. 4. Determination of the PD/TD boundary in CCS52A1:GUS line using the MSC approach; 10 

GUS expression  marks the beginning of endoreduplication. (A-J) CCS52A1:GUS expression in 11 

wt roots (7 DAS) occurs in the TD and EZ. Yellow rectangles indicate the 95% CI of the position 12 

of the last PD cell estimated by the MSC approach. Scale bar = 50μm. 13 

 14 

Fig. 5. Estimation of the critical size of dividing and elongating cells by sMSC approach. (A) 15 

Cortex cell length profile of the growing part of a representative root of wt Col-0, nine days after 16 

sowing. (B) Sorted cell length profile in ascending order of the growing part of the same root 17 

shown in (A). Vertical dashed lines represent positions of breakpoints, estimated by the MSC 18 

approach, that correspond to the PD/ TD and the RAM/EZ boundaries of sorted cell lengths. (C) 19 

Sorted RAM cell length profile of the RAM of the root shown in (A) and (B). Vertical dashed 20 

line represents the breakpoint that delimitates the PD and TD cell length sets. (D) Linear models 21 

for PD and TD cell length sets. Black dot represents the estimated critical size of dividing cells 22 

(LcritD) and white triangle represents the critical size for the initiation of rapid elongation (LcritE) 23 

for the file of the cortex shown in (A). 24 
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 1 

Fig. 6. Growth of wt and xal1 roots. (A) Root growth dynamics in wt (white circles) and xal1 2 

(black dots) roots. (B) Root growth rates over time in wt (white circles) and xal1 (black dots). 3 

Error bars represent 95% CI, n = 20.  4 
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