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Abstract

Max-stable processes are widely used to model spatial extremes. These processes exhibit
asymptotic dependence meaning that the large values of the process can occur simultaneously
over space. Recently, inverted max-stable processes have been proposed as an important new
class for spatial extremes which are in the domain of attraction of a spatially independent
max-stable process but instead they cover the broad class of asymptotic independence. To
study the extreme values of such processes we use the conditioned approach to multivariate
extremes that characterises the limiting distribution of appropriately normalised random
vectors given that at least one of their components is large. The current statistical methods
for the conditioned approach are based on a canonical parametric family of location and
scale norming functions. We study broad classes of inverted max-stable processes containing
processes linked to the widely studied max-stable models of Brown-Resnick and extremal-t,
and identify conditions for the normalisations to either belong to the canonical family or
not. Despite such differences at an asymptotic level, we show that at practical levels, the
canonical model can approximate well the true conditional distributions.

Key-words: Asymptotic independence; Brown–Resnick process; conditional extremes; extremal-
t process; Hüsler–Reiss copula; inverted max-stable distribution; spatial extremes
AMS subject classifications: Primary: 60GXX, Secondary: 60G70

1 Introduction

Extreme environmental events, such as hurricanes, heatwaves, flooding and droughts, can cause
havoc to the people affected and typically result in large financial losses. The impact of this type
of event is often exacerbated by the event being severe over a large spatial region. The statistical
modelling of spatial extremes is a rapidly evolving area [6] and is crucial to understanding,
visualizing and predicting the extremes of stochastic processes. The approach that is currently
most used for modelling spatial extreme values assumes the environmental process is a max-
stable process [8]. The most widely used max-stable processes are the Brown-Resnick [2, 18, 15],
and extremal-t [26, 27] processes. These include the Smith process [34] and extremal Gaussian
process [33] as special cases.

Max-stable processes are the only non-trivial limits of point-wise normalised maxima of
independent and identically distributed realisations of stochastic processes. When max-stable
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processes are observed at a finite number of locations their joint distribution is a multivari-
ate extreme value distribution, which is underpinned by the assumption of the original vari-
ables satisfying the dependence structure conditions of multivariate regular variation [30]. Max-
stable processes have marginal generalised extreme value distributions [3] and a complex non-
negative dependence structure which has a restricted form. To understand this restriction, let
{XM (s), s ∈ R2} be a spatial max-stable process with continuous marginal distribution func-
tions Fs and corresponding inverse denoted by F←s . Then, if for any s1, s2 ∈ R2 where XM (s1)
and XM (s2) are not independent, it follows that the dependence coefficient

χ = lim
p→1

Pr
{
XM (s2) > F←s2 (p) | XM (s1) > F←s1 (p)

}
,

is positive. This property is termed asymptotic dependence, and it implies that the largest
marginal values at different locations can occur simultaneously. Furthermore, if we denote the
joint distribution function of {XM (s1), XM (s2)} by Fs1,s2 then

Fs1,s2{F←s1 (p), F←s2 (p)} = pθ(s1,s2)

for all 0 < p ≤ 1 where 1 ≤ θ(s1, s2) ≤ 2, so for max-stable processes this implies that the spatial
dependence properties, measured by θ are independent of the severity of the event, measured
by p [6].

Wadsworth and Tawn [38] introduced the class of inverted max-stable processes and these are
used in Davison et al. [5] and Thibaud et al. [37]. Any inverted max-stable process {X(s), s ∈ R2}
with unit exponential margins, i.e., for all s ∈ R2 and x > 0, Pr(X(s) < x) = 1− exp(−x), can
be represented by

X(s) = 1/XF (s) s ∈ R2,

where {XF (s), s ∈ R2} is a max-stable process with unit Fréchet margins, i.e., for all s ∈ R2

and x > 0, Pr(XF (s) < x) = exp(−1/x). Thus, for all s1, s2 ∈ R2, the dependence structure
between large X(s1) and X(s2) is equivalent to the dependence structure between small XF (s1)
and XF (s2) and hence differs from the max-stable form. As all max-stable processes are non-
negatively associated, so are all inverted max-stable processes. Furthermore, for all s1, s2 ∈ R2,
with s1 6= s2, for x > 0

Pr {X(s1) > x,X(s2) > x} = exp{−x/η(s1, s2)} = {Pr(X > x)}1/η(s1,s2),

where η := η(s1, s2) ∈ [1/2, 1) is the coefficient of tail dependence [23]. It follows that in general
margins the inverted max-stable distribution is

Fs1,s2{F←s1 (p), F←s2 (p)} = 1− 2(1− p) + (1− p)1/η ∼ p2−(1−p)−1+1/η
as p ↑ 1,

so unlike for the max-stable distribution the spatial dependence, measured by 2− (1−p)−1+1/η,
is not independent of the severity p. In fact, all non-perfectly dependent inverted max-stable
processes are in the domain of attraction of spatially independent max-stable processes, meaning
that their point-wise normalised maxima are independent, i.e., for all s1, s2 ∈ R2, with s1 6= s2,

lim
n→∞

Pr

(
max
i=1,...,n

Xi(s1)− lnn < x1, max
i=1,...,n

Xi(s2)− lnn < x2

)
=

2∏
i=1

exp{− exp(−xi)}, (1)

for any x1, x2 ∈ R, where {Xi(s), s ∈ R2}, for i = 1, . . . , n denotes a sequence of independent
and identically distributed inverted max-stable processes with unit exponential margins.
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To reveal the extremal dependence structure for asymptotically independent random vari-
ables, alternative asymptotic properties have been be studied. Ledford and Tawn [22, 23],
Resnick [31] and Wadsworth and Tawn [39] explore how the joint survivor decays as both
arguments tend to the upper end point. A weakness with this approach is that it fails to de-
scribe the behaviour of the X(s2) values that occur with the largest values of X(s1). Instead
a conditioned approach is required which looks at a more subtle normalisation for X(s2) that
focuses on the region of the joint distribution which is most likely when conditioning on variable
X(s1) being large. This is the approach we take in this paper.

For a bivariate random variable (X,Y ) with unit exponential margins and general depen-
dence structure, the conditioned extremes limit theory of Heffernan and Tawn [13] and Heffernan
and Resnick [12] is equivalent to the assumption that there exist location and scaling norming
functions a : R+ 7→ R and b : R+ 7→ R+, such that, for any x > 0 and z ∈ R,

lim
u→∞

Pr {X − u > x, {Y − a(X)}/b(X) < z | X > u} = exp(−x)G(z), (2)

where G is a non-degenerate distribution function. To ensure a, b and G are uniquely defined the
condition limz→∞G(z) = 1 is required, so G places no mass at +∞ but some mass is allowed
at −∞.

The key development in this paper is deriving the forms of a, b and G in representation (2)
for the broad class of inverted max-stable processes. For positively dependent random variables,
Heffernan and Tawn [13] found that, for all the standard copula models studied by Joe [17] and
Nelsen [25], the norming functions a(x) and b(x), fell into the simple canonical parametric family

a(x) = αx and b(x) = xβ, (3)

where α ∈ [0, 1] and β ∈ (−∞, 1) with Keef et al. [19] identifying additional joint constraints.
The case α = 1 and β = 0 corresponds to χ > 0, whereas any other combination of α and β
gives χ = 0. The statistical use of the canonical family (3) has been subject of criticism since
the functions a and b seem to be ‘proof by example’ rather than a general result [35]. Heffernan
and Resnick [12] note that under assumption (2) and in unit exponential marginals,

lim
t→∞

b(t+ x)/b(t) = ψ1(x) and lim
t→∞
{a(t+ x)− a(t)} /b(t) = ψ2(x),

for any x ∈ R, where ψ1 and ψ2 are real functions. For the canonical family (3), it readily follows
that (ψ1, ψ2) = (1, 0) if β > 0 and (ψ1, ψ2) = (1, αx) if β = 0 and this condition is also satisfied
by a range of regularly varying functions. Until our paper no examples have been published that
satisfy these broader conditions than the canonical form (3). We will show that the inverted
max-stable process, with the Brown-Resnick model requires this more general normalisation
but that with extremal-t model does not. This is practically important as these two dependence
structures are the most widely used.

For simplicity we focus on bivariate characterisations of the inverted max-stable process,
with all joint distributions following inverted bivariate extreme value distributions. For the
rest of the paper we denote by (X,Y ) a bivariate random variable with inverted bivariate
extreme value distribution with unit exponential margins. We find classes of this family where
the normalisation required to achieve property (2) either falls in the canonical family (3) or is
in the more general form, with the class determined by the behaviour of the spectral measure
of the underlying max-stable process near its lower end point.

The statistical conditioned model of Heffernan and Tawn [13] assumes that the limiting
relationship (2) holds exactly for all values X > u for a suitably high threshold u with the
functions a and b in canonical form (3). This model has been found to fit well in various appli-
cations [29, 20, 14, 9, 28]. Our identification of the existence of the new classes that do not fall
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in canonical family (3) questions the validity of the generic use of the canonical family for sta-
tistical modelling. Therefore, we compare the new models with the current statistical approach
of Heffernan and Tawn [13] and show, through simulation, that at practical levels the canonical
family gives good approximations to the conditional distribution of the inverted max-stable
model with Brown-Resnick dependence and highlight examples where a good approximation
does not hold.

A key question is why have we made the restriction of unit exponential margins on the
inverted max-stable process. In the style of copula methods [25] we assume identical margins.
In Section 2.2 we discuss the implications of the marginal choice, how our results tie in with
others who use different marginals, and in particular show how once the limit relationship has
been derived for unit exponential margins alternative limit results follow immediately for other
non-identically distributed marginal choices.

The paper is structured as follows. In Section 2 we present the classes of max-stable and
inverted max-stable distributions and explore the implications of deriving results on general
margins. In Section 3 we present the conditional representation of the class of inverted max-
stable distributions with spectral densities of the associated max-stable process being regularly
varying and Γ-varying spectral densities at their lower end-point. In Section 4 we discuss the
spatial extension of our results. Our derivations and proofs are included in the Appendix.

2 Bivariate inverted max-stable distributions

2.1 Max-stable and inverted max-stable distributions

Max-stable distributions arise naturally as the only non-degenerate limit distributions of appro-
priately normalised component-wise maxima of random vectors. In unit Fréchet margins, and
for x, y > 0, a bivariate max-stable distribution function is defined by

F (x, y) = exp {−V (x, y)} = exp

[
−
∫ 1

0
max {w/x, (1− w)/y} dH(w)

]
, (4)

where V is termed the exponent measure and H is an arbitrary finite measure on [0, 1],
known as the spectral measure, with total mass 2, satisfying the marginal moment constraint∫ 1
0 w dH(w) = 1. Coles and Tawn [4] showed that if F has a density, then H(w) has spectral

density h(w) on the interior (0, 1) and can have mass H({k}), k = 0, 1, on each of {0} and {1},
given by

h(w) = − ∂2V

∂x∂y
(w, 1− w) 0 < w < 1,

H({0}) = −y2 lim
x→0

∂V

∂y
(x, y), and H({1}) = −x2 lim

y→0

∂V

∂x
(x, y).

As the class of bivariate max-stable distributions does not admit a finite dimensional param-
eterisation, a natural method for modelling the spectral measure H of expression (4) relies
on constructing parametric sub-classes of models that are flexible enough to approximate any
member from the class [4, 1]. Two such sub-models are the Brown-Resnick and the extremal-t
max-stable distributions which have exponent measures, for x, y > 0,

V (x, y) =
1

x
Φ

{
λ

2
+

1

λ
ln

(
y

x

)}
+

1

y
Φ

{
λ

2
+

1

λ
ln

(
x

y

)}
, (5)

V (x, y) =
1

x
Tν+1

[
(y/x)1/ν − ρ

{(1− ρ2)/(ν + 1)}1/2

]
+

1

y
Tν+1

[
(x/y)1/ν − ρ

{(1− ρ2)/(ν + 1)}1/2

]
, (6)
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respectively, where λ > 0, ρ ∈ (−1, 1), ν > 0, Φ is the cumulative distribution function of the
standard normal distribution and Tν+1 is the distribution function of the standard-t distribution
with ν + 1 degrees of freedom. These are the exponent measures of the pairwise distributions
for the Brown-Resnick and extremal-t max-stable models respectively. The parameters λ, ρ and
ν control the strength of dependence. In particular, increasing values of ρ and and decreasing
values of λ and ν imply stronger dependence between X and Y .

Given a max-stable distribution with exponent measure V as in equation (4), the bivari-
ate random variable (X,Y ) follows the inverted max-stable distribution with unit exponential
margins if, for x, y > 0, its joint survivor function is,

Pr (X > x, Y > y) = exp {−V (1/x, 1/y)} . (7)

As
Pr (X > x, Y > x) = exp(−x/η) = {Pr(X > x)}1/η, η = 1/V (1, 1) ∈ [1/2, 1],

the inverted max-stable distributions are either perfectly dependent when V (1, 1) = 1 or asymp-
totically independent when V (1, 1) > 1. Specifically η is the coefficient of tail dependence [23].
This property explains the independence in limit (1) if η < 1.

2.2 Conditional representation with different marginal distributions

We study the conditional extremal dependence for the inverted max-stable distribution through
the limiting representation (2) for unit exponential margins. Here we compare this approach to
that used by others and show how our results can simply be extended to arbitrary non-identically
distributed marginals.

Conditioned limit theory (2) has been studied with the margins (X,Y ) taken as identically
distributed Gumbel variables [13], which is asymptotically equivalent to unit exponential mar-
gins but mathematically less clean, whereas Eastoe and Tawn [9] take identically distributed
generalised Pareto distributions. In contrast Heffernan and Resnick [12] work with X in the
domain of attraction of the generalised extreme value distribution, but do not impose any con-
straint on Y , and find that it is not always possible to achieve an affine normalisation as in
limit (2) after marginal transformation to identical margins. Kulik and Soulier [21] consider
(X,Y ) with margins that have regularly varying tails, with location function a(x) = 0.

Next we show how once the limit relationship has been derived for unit exponential margins
alternative limit results follow immediately for other marginal choices, and vice versa. The
key difference is that if a non-trivial location and scale affine transformation is required in
exponential marginals, then the class of affine transformations is not sufficient for regularly
varying marginal distributions. In particular only in the case where b(·) = 1 in exponential
margins does the affine norming of Kulik and Soulier [21] hold for margins that have regularly
varying tails.

Let (X,Y ) be a bivariate random variable with common unit exponential margins and
assume that limit (2) holds. Here we consider what this representation then implies for the
extremal conditioned distribution of YH2 | XH1 , where the bivariate random variable (XH1 , YH2)
has continuous marginal distribution functions H1 and H2 respectively and has identical copula
to (X,Y ). For i = 1, 2, let Ki(y) = − ln{1 − Hi(y)} for y ∈ R and denote its inverse by
K←i (y) = H←i {1−exp(−y)} for y > 0. Then (XH1 , YH2) = {K←1 (X),K←2 (Y )} have the required
joint distribution and from limit (2) there exist functions a : R+ 7→ R and b : R+ 7→ R+ such
that for all z ∈ R

lim
u→∞

Pr (YH2 < K←2 [a{K1(XH1)}+ b{K1(XH1)}z] | XH1 > u) = G(z) (8)
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for non-degenerate G(z). Therefore, if we can find a location-scale normalisation when working
with identical unit exponential margins then limit (8) shows that these results directly pro-
vide the appropriate conditioned limit for non-identically distributed marginals. Furthermore,
limit (8) shows that in general margins a location-scale normalisation is not always possible
even when it can be achieved with unit exponential margins. Of course the converse is true, but
as we will see in Section 3 for the class of inverted max-stable distributions limit (2) holds with
unit exponential margins, so limit (8) is useful to give the conditioned limits in other marginals.

To help understand the implications of limit (8) it is helpful to focus on specific forms for
on H1 and H2. Kulik and Soulier [21] work with regularly varying tails. Focusing on the specific
case of Pareto margins with Hi(y) = 1 − y−αi for αi > 0, y > 1 and i = 1, 2, limit (8) then
becomes

lim
u→∞

Pr
{
YH2 < exp ([a{α1 ln(XH1)}+ b{α1 ln(XH1)}z] /α2)

∣∣∣XH1 > u
}

= G(z)

so a location-scale normalisation in these margins can only be achieved with b(y) ≡ 1 and then
only a scaling is required. Thus studying limit (2) with regularly varying tails only requires
a scaling but critically cannot cover any cases where the b scaling function when using unit
exponential margins differs from b(y) ≡ 1. As we will see in Section 3, for the class of inverted
max-stable distributions with unit exponential margins we have many classes where b(y) 6= 1.
Therefore, to reveal the full structure of the conditioned extremal behaviour of inverted max-
stable distributions revealed by limit (2), it is essential to work in marginal variables which
are tail equivalent to the unit exponential. Hence for the remainder of the paper we work
exclusively with unit exponential margins acknowledging that these results apply directly with
different margins using limit (8).

3 Conditional representations

3.1 Conditional distribution preliminaries

A range of results are available to study the conditional limit (2). In particular, Heffernan
and Resnick [12], Resnick and Zeber [32] and Wadsworth et al. [40] show that under various
conditions, all of the following limits are identical to G(z) in limit (2):

lim
u→∞

Pr

{
Y − a(u)

b(u)
< z
∣∣X > u

}
= lim

u→∞
Pr

{
Y − a(X)

b(X)
< z
∣∣X > u

}
= lim

u→∞
Pr

{
Y − a(u)

b(u)
< z
∣∣X = u

}
.

(9)

These conditions hold for all inverted max-stable distributions if the associated spectral measure
of the max-stable process places no point mass on the interval (0, 1), i.e., when (X,Y ) have a
joint density. So we can use any of these limits to derive the forms of a, b and G. Motivated
by statistical considerations, we find that the last expression is most simple to use. However,
this is the most restrictive in general as it requires the assumption of a joint density. As all
the parametric max-stable models have joint densities so do the associated inverted max-stable
distributions. The requirement for a joint density is not restrictive here. For using this third
limit form it is helpful to note that the conditional survivor function is

Pr (Y > y | X = x) = −V1 (1, x/y) exp {x− xV (1, x/y)} y > 0, (10)

where V1(x, y) = ∂V (x, y)/∂x.
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3.2 Known representations

Heffernan and Tawn [13] explored the conditional representation (2) for the class of inverted
max-stable distributions subject to the assumption that H places no mass at 0, i.e., H({0}) = 0,
and that the spectral density satisfies h(w) ∼ swt as w → 0 with s > 0 and t > −1. They found
that the normalisation (3) required to give a non-degenerate limiting conditional law has α = 0,
β = (t+ 1)/(t+ 2) and the limit is of Weibull type, i.e.,

lim
u→∞

Pr
(
Y < Xβz | X > u

)
= 1− exp

{
− szt+2

(t+ 1)(t+ 2)

}
, for z > 0. (11)

Examples of inverted max-stable models satisfying (11) include those with logistic and Dirichlet
dependence structure [4].

3.3 Regular variation at lower tail of spectral measure

We derive the conditional representation (2) for the class of inverted max-stable distributions
covering more general spectral measures than those studied in Section 3.2, deriving the normal-
ising functions, a(x) and b(x), and the limit distribution G. Here we assume that the spectral
measure H places all its mass in the sub-region, [w`, wu] say, of [0, 1], can have mass at w` and
has a spectral density that is regularly varying at w`, i.e.,

h(w) ∼ L(w − w`)(w − w`)t as w ↓ w` ∈ [0, 1/2), (12)

t > −1 and L(w) slowly varying at 0, i.e., L(wx)/L(w)→ 1, as w → 0, for all x > 0. This new
formulation has three key differences from Section 3.2: restricted domain, mass on the lower
boundary, and more general slowly varying functions than simply L tending to a constant at
the lower boundary.

We have allowed for mass on the lower boundary motivated by the properties of the extremal-
t distribution (6), for which the spectral measure places mass at {0}. We explore the assumption
of possible mass on the lower end point w` of H, but no point mass at any other w ∈ (w`, wu).
The results in the rest of the paper even hold if there is mass at some countable set of points
in (w`, wu), with modified proofs, but we avoid this unnecessary generalisation.

Having mass at w` with w` > 0, implies that (X,Y ) do not have a joint density everywhere, as
there is a singular component on the boundary of the sample space of (X,Y ). If this boundary is
avoided then the derivation of property (10) is still valid, and so calculations are straightforward.
In what follows we derive results for the cases where H({w`}) = 0 and H({w`}) > 0 separately.

Lemma 1. Let w`, wu, be the lower and upper end points, respectively, of the spectral measure
H of an inverted max-stable distribution (7), i.e.,

w` = inf {0 ≤ w < 1/2 : H(w) ≥ 0} , wu = sup {1/2 < w ≤ 1 : H(w) ≤ 2} ,

and assume that, apart from the points w` and wu, for which H(w`), H(wu) ≥ 0, the spectral
measure is absolutely continuous with respect to the Lebesgue measure. Then, if y/(x+ y) ↓ w`,
for y = y(x) a function of x, as x→∞,

V1 (1, x/y)→ w`H({w`})− 1. (13)

In Lemma 1 the case of perfect positive dependence between X and Y , i.e., w` = wu = 1/2,
is excluded since there can be no possible normalisation such that G in expression (2) is non-
degenerate. Proposition 1 gives the asymptotic form of the log-conditional survivor function of
Y | X = x, for large x.
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Proposition 1. Under the conditions of Lemma 1 and for h(w) as in expression (12), for y/(x+
y) ↓ w` ∈ [0, 1/2) for y = y(x) a function of x, as x→∞, we obtain that ln Pr (Y > y | X = x)
is asymptotically equivalent to
(i) for H({w`}) = 0,

−xL
(

y

x+ y
− w`

)(
y

x+ y
− w`

)t+2 /
{(1− w`)(t+ 1)(t+ 2)}, (14)

(ii) for H({w`}) > 0,

ln {1− w`H({w`})} − (x+ y)

(
y

x+ y
− w`

)
H({w`}). (15)

As there is no contribution from the spectral density in expression (15), a general form for
the normalisation can be obtained directly. General forms of the normalising functions a(x) and
b(x) cannot be obtained from representation (14) without additional assumptions so it is helpful
to consider a condition on the slowly varying function L at 0. Heffernan and Tawn [13] results
were based on the case of L having a finite right limit at 0, Corollary 1 extends this.

Corollary 1. Under the conditions of Proposition 1, limit (2) holds as follows

(i) for H({w`}) = 0, then a(x) = {w`/(1 − w`)}x and b(x) = x(t+1)/(t+2)L
{
x−1/(t+2)

}−1/(t+2)

for x > 0 and assuming that

lim
w→0+

L{wL(w)−τ}
L(w)

= 1, (16)

for all τ ∈ (0, 1), then

G(z) = 1− exp

{
−(1− w`)3+2tzt+2

(t+ 1)(t+ 2)

}
for z > 0.

(ii) For H({w`}) > 0, then a(x) = {w`/(1− w`)}x and b(x) = 1 for x > 0, then

G(z) = 1− {1− w`H({w`})} exp {−(1− w`)H({w`})z} for z > 0,

and G(z) = 0, for z < 0, so G({0}) = w`H({w`}).

Condition (16) is satisfied by a range of slowly varying functions, including those studied
in Section 3.1 as well as by functions that approach ∞ when the argument tends to zero.
Examples for L(w), with limw→0+ L(w) = ∞, satisfying condition (16) include lnκ (− lnw),
κ ∈ N0, exp {(− lnw)ν}, ν ∈ (0, 1/2) and exp {− lnw/ ln (− lnw)}, where lnk is the iterated
logarithm function defined recursively by lnk x = lnκ−1 lnx, ln0 x = x and ln1 x = lnx.

Remark 1. For limw→0+ L(w) = s > 0, all cases of norming functions (i)-(ii) in Corollary 1
reduce, after absorbing s into the limiting law, to the parametric class of Heffernan–Tawn,
i.e., a(x) + b(x)z = αx + xβz, where α = w`/(1 − w`) ∈ [0, 1) for w` ∈ [0, 1/2) and β =
(t + 1)/(t + 2) ∈ [0, 1) for t ≥ −1. This is the first example to be known with both α and β a
function of parameters.

Remark 2. When limw→0+ L(w) = ∞ and subject to condition (16), the additional factor
L{x−1/(t+2)}−1/(t+2) enters in the scaling function and reduces the rate of increase of b(x) to
∞, as x→∞.
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Another interesting case which is satisfied by many max-stable models that appear in the
literature, is when w` = 0 and H({w`}) > 0 in case (ii) of Corollary 1. In this case, a(x) = 0
and b(x) = 1 for all x > 0 and the random variables X and Y , conditionally on X > u,
are near independent in the terminology of Ledford and Tawn [23], with exact independence
occurring when the limit distribution is unit exponential, i.e., when H({w`}) = 1. Two such
max-stable models come from the extremal-t [26] and Gaussian-Gaussian [38] processes, for
which the exponent measures of their bivariate distributions are given by expressions (6) and

V (x, y) =
1

2

(
1

x
+

1

y

)
+

1

2

∫
R2

{
φ2 (u)2

x2
− 2ρ(h)

φ2 (u)φ2 (h− u)

xy
+
φ2 (h− u)2

y2

}1/2

du,(17)

respectively, h ∈ R2
+, ρ(h) ∈ [−1, 1] is a valid correlation function and φ2 is the density of the

standard bivariate normal distribution with correlation ρ(h). The corresponding mass on the
lower end point w` = 0 of models (6) and (17) is

H({0}) = Tν+1

[
−ρ
(
ν + 1

1− ρ2

)1/2
]

and H({0}) =
1− ρ(h)

2
,

respectively. Table 1 gives a collection of other max-stable models, including the Schlather
distribution (6), placing positive mass on {0}.

Table 1: The mass of the spectral measure on {0} of bivariate exponent measures, from top to
bottom, of mixed, asymmetric and asymmetric mixed logistic [36], Schlather [33] and Marshall
and Olkin [24] distributions. The final column shows the parameter space, Θ, of the model.

V (x, y) H({0}) Θ(
1
x + 1

y

)
− θ

x+y 1− θ θ ∈ (0, 1)

1−θ
x + 1−φ

y +
{

(θ/x)1/α + (φ/y)1/α
}α

1− φ 0 ≤ θ, φ, α ≤ 1

1
x + 1

y −
1
xy

(
1
x + 1

y

)−2 (
θ+φ
x + 2φ+θ

y

)
1− φ− θ θ, θ + 3φ > 0 and θ + φ, θ + 2φ ≤ 1

1
2

(
1
x + 1

y

)[
1 +

{
1− 2(1+ρ)xy

(x+y)2

}1/2
]

(1− ρ) /2 ρ ∈ (−1, 1)

α
(

1
x + 1

y

)
+ (1− α) max {1/x, 1/y} α 0 ≤ α ≤ 1

3.4 Inverted Brown-Resnick model

In this section we focus on the limiting conditional representation of the inverted Brown Resnick
model (5). This model has the same bivariate copula as the Hüsler–Reiss distribution [16] and
the Smith model [34]. The spectral measure of the Brown-Resnick max-stable distribution places
no mass on any 0 ≤ w ≤ 1, and the spectral density satisfies

h(w) ∼ exp(−λ2/8)

λ (2π)1/2
w−3/2 exp

{
− (lnw)2 /(2λ2)

}
as w → 0. (18)

This corresponds to a different form than expression (12) or its more general forms of the slowly
varying function L. In particular, the spectral density is Γ-varying (see Section 3.5) at 0 with
auxiliary function

f(w) = −λ2w/ lnw.

As Proposition 2 shows, this example leads to a different form for the normalising functions
a(x) and b(x) than the ones considered by Heffernan and Tawn [13].
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Proposition 2. Assume that (X,Y ) follows the inverted max-stable distribution (7) with ex-
ponent measure (5). Limit (2) holds with, for x > 0 and z ∈ R,

a(x) = x exp

{
−λ (2 lnx)1/2 +

λ ln lnx

(2 lnx)1/2
+
λ2

2

}
, b(x) = a(x)/(lnx)1/2, (19)

and

G(z) = 1− exp

{
− λ

(8π)1/2
exp

(√
2z/λ

)}
. (20)

Remark 3. Limit distribution (20) is of reverted Gumbel type, which is different from the limits
in Corollary 1. The rate of convergence to the limit is order ln lnu/(lnu)1/2.
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Figure 1: Plots of a(x)/x and ln b(x)/ lnx, x > F−1X (0.95), where a(x) and b(x) are given by
expression (19), for different values of λ ranging from 0.01 (bottom curves) to 20 (top curves).
The inverse of the unit exponential distribution function is F←X (p) = − ln(1− p), for p ∈ (0, 1).
The values of p1, p2 and p3 are 0.95, 1− 10−7 and 1− 10−13, respectively.

A natural question that arises from this counter-example relates to how well can the condi-
tioned dependence model of Heffernan and Tawn [13] with canonical family (3) approximate the
conditional distribution of Y | X > u, for large u, when the random vector (X,Y ) follows the
inverted max-stable distribution with Brown-Resnick dependence structure and unit exponen-
tial margins. To facilitate comparisons between the two models, Figure 1 shows the graphs of
a(x)/x and ln b(x)/ lnx where a(x) and b(x) are given by expression (19), for several values of
the dependence parameter λ and a range of x values above the 0.95 unit exponential quantile.
Both plots show that a(x)/x and ln b(x)/ lnx are approximately constant for large x so that the
canonical class of norming functions is likely to approximate well a(x) and b(x) by αx and xβ,
respectively. Subsequently, we simulated data from the inverted max-stable distribution with
Brown-Resnick dependence and fitted the conditioned dependence model using: i) the canonical
family (3) and ii) the model implied by the norming functions (19), treating the functions (19)
as a parametric model for the growth of Y given large X. Our comparisons are based on the dif-
ferences between the conditional quantile estimates of Y | X = x from the two models. For both

10
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Figure 2: Conditional exceedances above the 0.935 unit exponential quantile from a simulated
sample of size 103 from the inverted max-stable distribution with Brown-Resnick dependence
and exponential margins for λ = 1.3 (top) and λ = 0.3 (bottom). The black lines correspond
to averaged estimates from 100 simulations of the 0.025, 0.5 and 0.975 conditional quantiles
of Y | X = x, x > F−1X (0.935), using the Heffernan–Tawn model (3) (left) and the model
constructed by the theoretical functions in expression (19) (right). Grey lines correspond to the
theoretical 0.025, 0.5 and 0.975 conditional quantiles.

models, similar to Heffernan and Tawn [13], we used for the limiting law G in expression (2) the
false working assumption of a normal distribution with mean and variance parameters. We con-
sidered two values for the dependence parameter, i.e., λ = 1.3 (weak dependence) and λ = 0.3
(strong dependence). For each λ, 102 samples of size 103 were generated from the inverted max-
stable distribution with Brown-Resnick dependence and the 0.025, 0.5 and 0.975 conditional
quantile estimates of Y | X = x, for x > F−1X (0.935), were computed from the two model fits,
i.e., model (3) and the model defined by expression (19). The conditional quantile estimates are
of the form â(x) + b̂(x)ẑp, where â(x), b̂(x) are maximum likelihood estimates and ẑp is the p-th

empirical quantile of Ẑ = {Y − â(x)}/b̂(x), for large x. Figure 2 shows the averaged estimates of
the conditional quantiles along with the theoretical conditional quantiles. Both models estimate
the true conditional quantiles well and their behaviour is almost indistinguishable. This shows
that the canonical model is flexible enough to approximate the conditional distribution of the
inverted max-stable distribution with Brown-Resnick dependence.

3.5 Γ-variation at lower tail of spectral density

Having identified a new form for the tail of the spectral density for the Brown-Resnick max-
stable model, we consider in this section the log-conditional survivor function of Y | X = x,
under the assumption

h(w) ∼ g(w − w`), as w ↓ w`, (21)

where g(w) is a Γf -varying function at 0 [7]. A function h is Γ-varying at 0 with auxiliary
function f , short-hand h ∈ Γf (0+), if for all w ∈ R, lims→0+ h {s+ wf(s)} /h(s) = exp(w).

11



Similar to Section 3.3, we consider the assumption of possible mass at the lower end point w`.
Our findings are based on the assumptions of a differentiable spectral density h and Lemma 2.

Lemma 2. Let g : R+ 7→ R+ ∈ Γf (0+) and U(w) ∈ Rν(0+), ν ∈ R. Assume further that there
exists an ε > 0 such that U and g are C∞(0, ε) functions with

lim
w→0+

g′(w)

g(w)2

∫ w

0
g(s) ds (22)

existing. Then
(i) U(w)g(w) ∈ Γf (0+).
(ii) Define f(w) = g(w)/g′(w), w > 0. Then, f is an auxiliary function for g.
(iii) For f(w) as in (ii),(∫ w

0
U(s)g(s)ds

)/
{U(w)f(w)g(w)} = 1− (Uf)′(w)

U(w)
+
{(Uf)′f}′ (w)

U(w)
− · · · (23)

= 1 + o(1), as w → 0+. (24)

Proposition 3 gives the asymptotic form of the log-conditional survivor function.

Proposition 3. Under the conditions of Lemma 1 and for h(w) as in expression (21), for y/(x+
y) ↓ w` ∈ [0, 1/2) for y = y(x) function of x, as x → ∞, we obtain that ln Pr (Y > y | X = x)
is asymptotically equivalent to
(i) for H({w`}) = 0,

− (x+ y) f2
(

y

x+ y
− w`

)
h

(
y

x+ y

)
, (25)

(ii) for H({w`}) > 0,

ln {1− w`H({w`})} − (x+ y)

(
y

x+ y
− w`

)
H({w`}). (26)

As an example, we explore a new class of spectral densities that are more flexible than the
spectral density (18) of the inverted max-stable distribution with Brown-Resnick dependence.
Specifically, consider for γ > 0, δ ∈ R and κ > 0, the Γf (0+)-varying function

h(w) ∼ wδ exp
(
−κw−γ

)
as w → 0+, (27)

with auxiliary function
f(w) = (κγ)−1w1+γ . (28)

Proposition 4 gives the normalising functions and limiting conditional distribution for this
example.

Proposition 4. Assume that (X,Y ) follows the inverted max-stable distribution (7) with spec-
tral measure H with w` = 0 and H({0}) = 0, and spectral density h that satisfies expression (27).
Limit (2) holds with, for x > 0 and z ∈ R

a(x) = xκ1/γ (lnx)−1/γ
[
1 + γ−2 {δ + 2(1 + γ)} ln lnx

lnx

]
, b(x) = x (lnx)−1−1/γ , (29)

and
G(z) = 1− exp

[
−
{
κ(δ+2)/γ/γ2

}
exp

(
γκ−1/γz

)]
. (30)
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Figure 3: Plots of a(x)/x for different values of the parameters γ (top left), κ (top right)
and δ (bottom left) and ln b(x)/ lnx (bottom right), x > F−1X (0.95). The inverse of the unit
exponential distribution function is F←X (p) = − ln(1−p), for p ∈ (0, 1). The values of p1, p2 and
p3 are 0.95, 1− 10−7 and 1− 10−13, respectively.

Remark 4. Similarly with the inverted max-stable with Brown-Resnick dependence, the limiting
conditional distribution (30) is of reverted Gumbel type and the norming functions (29) do not
belong to the Heffernan-Tawn parametric family. The rate of convergence to the limit is order
ln lnu/ lnu.

Figure 3 shows the graphs of functions a(x)/x and ln b(x)/ lnx, for several values of the
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parameters γ, δ, κ, and large x. Large values of γ correspond to strong dependence between X
and Y so that a(x)/x is nearly constant and equal to 1 for large x. Small values of γ correspond
to independence with sharp decrease of a(x)/x to 0 as x increases. Intermediate values of γ
correspond to mild-moderate dependence of X and Y with a(x)/x having a turning point and
decaying as x increases. Parameters κ and δ, seem to have similar effect with larger values
corresponding to increasing dependence. Last, ln b(x)/ lnx is approximately constant with large
x. Comparing with the canonical family (3), the degree of approximation of a(x) and b(x) by
αx and xβ is not especially good for a(x). To our knowledge, there is no current parametric
model for the max-stable process with spectral density satisfying expression (27).

4 Spatial extensions

Engelke et al. [10] have found considerable insights can be gained by studying max-stable
processes conditioned on the process being extreme at a fixed point, s∗ ∈ R2 say. For {X(s); s ∈
R2} an inverted max-stable processes with unit exponential margins a similar approach requires
the existence of location and scaling norming functions as : R+ 7→ R and bs : R+ 7→ R+, for all
s ∈ R2, such that, for any x > 0 and {zs ∈ R, s ∈ R2},

lim
u→∞

Pr

[
X(s∗)− u > x,

X(s)− as{X(s∗)}
bs{X(s∗)}

< zs, s ∈ R2\{s∗} | X(s∗) > u

]
= exp(−x)G(z),

(31)
where G is an infinite-dimensional joint distribution function that is non-degenerate in all uni-
variate margins and z = {zs, s ∈ R2\{s∗}}.

From our working in this paper we have derived the forms of (as, bs) and Gs, the marginal of
G, as these features are determined uniquely by the bivariate joint distributions of the inverted
max-stable process. Thus all that remains to fully characterize limit (31) is to derive the infinite-
dimensional dependence structure of G.

Here a complication arises as for most max-stable process models only the bivariate marginal
distributions are available in closed form [6]. Maybe future work can explore approaches that
Engelke et al. [10] have used to get around this issue for max-stable process. However, for the
moment we restrict ourselves to consider the trivariate distributions of two well-known max-
stable processes which have closed form margins in all dimensions, the Brown-Resnick process
[11, 15] and the extremal-t process [26]. In this case we find that the associated bivariate limit
Gs1,s2(z1, z2) = Gs1(z1)Gs2(z2), thus G factorises; corresponding to asymptotic conditional inde-
pendence in the terminology of Heffernan and Tawn [13]. It follows that the infinite-dimensional
G will also factorise. Thus in this case all the dependence structure of the inverted max-stable
processes is absorbed in the location-scale functions. Identifying which classes of max-stable
process possess this asymptotic conditional independence for G is an interesting line of future
research.
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5 Appendix

5.1 Proof of Lemma 1

For s/(s+ t) ∈ (w`, wu), the partial derivative of the exponent measure is equal to

∂V (s, t)

∂s
=

∂

∂s

[∫ wu

s
s+t

(w/s)dH(w) +

∫ s
s+t

w`

{(1− w)/t}dH(w)

]

=
∂

∂s

[∫
[ s
s+t

,wu)
(w/s)h(w)dw +

∫
(w`, s

s+t ]
{(1− w)/t}h(w)dw

]
− (wu/s

2)H({wu})

= −
∫

[ s
s+t

,wu)
(w/s2)h(w)dw − (wu/s

2)H({wu}),

where the last step follows from the Fundamental Theorem of Calculus. Under the assumption
of y/(x+ y) ↓ w`, as x→∞, it follows that

V1(1, x/y)→ −
∫ wu

w`

wh(w)dw − wuH({wu}), (32)

as x→∞. Using the moment constraint (4) we have that∫ wu

w`

wh(w)dw =

∫
(w`,wu)

wh(w)dw = 1− w`H({w`})− wuH({wu}),

which yields equation (13), after combining with equation (32).

5.2 Proof of Proposition 1

Working similarly to the proof of Lemma 1, we get, after combining equations (10) and (13),
that for c(x, y) = y/{x+ y}, d(x, y) = {x+ y}/{(1−w`)y−w`x}, the log-conditional survivor,
ln {Pr (Y > y | X = x)}, is equal to
(i) for H({w`}) = 0,

(x+ y)

∫ c(x,y)

w`

wL(w − w`)(w − w`)t dw − y
∫ c(x,y)

w`

L(w − w`)(w − w`)t dw

= (x+ y)

∫ ∞
d(x,y)

L(1/s)s−(t+3) ds+ {w`x− (1− w`)y}
∫ ∞
d(x,y)

L(1/s)s−(t+2) ds.

From the assumption c(x, y) → w` as x → ∞ we conclude that d(x, y) → ∞ for any w`,
as, we have, from Karamata’s theorem [30, pg. 17], that for t > −1, the last expression is
asymptotically equivalent to

(x+ y)

(t+ 2)
{d(x, y)}−(t+2) L{1/d(x, y)}+

{w`x− (1− w`)y}
(t+ 1)

{d(x, y)}−(t+1) L{1/d(x, y)},

as x→∞, which simplifies to expresion (14).
(ii) for H({w`}) > 0,

ln{1− w`H({w`})}+ x− xV (1, x/y)

= ln{1− w`H({w`})}+ x− x

[
1−

∫ c(x,y)

w`

w dH(w) + (y/x)

∫ c(x,y)

w`

(1− w`) dH(w)

]

∼ ln{1− w`H({w`})}+ {w`x− (1− w`)y}H({w`}), as x→∞. (33)
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5.3 Proof of Proposition 2

Let φ be the probability density function of the standard normal distribution. Assuming y →∞
as x → ∞ with y/x → 0, we have from expression (10), Lemma 1 and Mill’s ratio, that for
large x, the log-conditional survivor, ln Pr (Y > y | X = x), is approximately equal to

x− x

[
1−

φ
{
λ
2 + 1

λ ln(x/y)
}

λ
2 + 1

λ ln(x/y)

]
+ y

φ
{
λ
2 −

1
λ ln(x/y)

}
λ
2 −

1
λ ln(x/y)

= x
φ
{
λ
2 + 1

λ ln(x/y)
}

λ
2 + 1

λ ln(x/y)

[
1 +

y

x

φ
{
λ
2 −

1
λ ln(x/y)

}
φ
{
λ
2 + 1

λ ln(x/y)
} {λ2 + 1

λ ln(x/y)
}{

λ
2 −

1
λ ln(x/y)

}]

= x
φ
{
λ
2 + 1

λ ln(x/y)
}

λ
2 + 1

λ ln(x/y)

[
1 +

{
λ
2 + 1

λ ln(x/y)
}{

λ
2 −

1
λ ln(x/y)

}]
.
= −c (xy)1/2

φ
{
1
λ ln(y/x)

}{
1
λ ln(y/x)

}2 [1 +O
{

(lnx)−1
}]

, (34)

where c = λ exp
(
−λ2/8

)
. Now, let z ∈ R and y = a(x) + b(x)z, where a(x) and b(x) are given

by equations (19). We have, as x→∞,

(xy)1/2 = x exp

{
λ2/4− λ√

2
(lnx)1/2

}[
1 +O

{
ln lnx

(lnx)1/2

}]
, (35)

{
1

λ
ln(x/y)

}2

= 2 lnx
[
1 +O

{
(lnx)−1/2

}]
, (36)

φ

{
1

λ
ln(x/y)

}
= (2π)−1/2 exp

[
− lnx− λ2

8
+

λ√
2

(lnx)1/2 + ln lnx+

√
2z

λ

]
(37)

×
[
1 +O

{
(ln lnx)2

lnx

}]
.

Combining equations (34), (35), (36) and (37) we get

Pr {Y < a(x) + b(x)z | X = x} = 1− exp

[
− λ

(8π)1/2
exp

{√
2z/λ

}]
+O

{
ln lnx

(lnx)1/2

}
.

Last, direct application of statement (9) yields the result of Proposition 2.

5.4 Proof of Lemma 2

(i) First, for any auxiliary function f , we have that limt→0+ f(t)/t = 0 [see 7, Lemma 1.5.1].
Next, for U(w) = wνL(w), where L ∈ R0(0

+) and ν ∈ R,

lim
t→0+

U {t+ wf(t)} g({t+ wf(t)})
U(t)g(t)

= lim
t→0+

L [t {1 + wf(t)/t}]
L(t)

g {t+ wf(t)}
g(t)

{1 + wf(t)/t} ,

→ exp(w), w > 0.

(ii) Theorem 1.5.2 in de Haan [7] asserts that any function f0 that satisfies

f0(w) ∼
(∫ w

0
g(s)ds

)
/g(w) as w → 0+, (38)
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is an auxiliary function for g. Additionally, Theorem 1.5.4 in de Haan [7] states that if g ∈
Γf (0+), then, as w → 0+ ∫ w

0
{g(s)}2 ds ∼ 1

2
g(w)

∫ w

0
g(s) ds. (39)

Given that limit (22) exists it follows by l’Hôpital’s rule that

lim
w→0+

1

2
g(w)

∫ w

0
g(s) ds

/∫ w

0
{g(s)}2 ds = lim

w→0+

(
1

2
g(w)2 +

1

2
g′(w)

∫ w

0
g(s) ds

)/
g(w)2,

(40)
since the right hand side limit in (40) exists due to limit (22) existing. However, by property (39),
we have the left hand side limit in (40) is equal to 1 and so it follows from equality (40) that as
w → 0+, ∫ w

0
g(s) ds ∼ {g(w)}2/g′(w). (41)

Combining expressions (38) and (41) we obtain f0(w) ∼ f(w), as w → 0+, where f(w) =
g(w)/g′(w). Hence, for w > 0, the function f(w) is up to asymptotic equivalence equal to f0.

(iii) Define f(w) = g(w)/g′(w), w > 0. We have∫ w

0
U(s)g(s) ds =

∫ w

0
U(s)f(s)g′(s) ds

= U(w)f(w)g(w)−
∫ w

0
(Uf)′(s)f(s)g′(s) ds

= U(w)f(w)g(w)− (Uf)′(w)f(w)g′(w) +

∫ w

0

{
(Uf)′f

}′
(s)f(s)g′(s) ds,

which gives expression (23), after continuation of integration by parts and division by U(w)f(w)g(w).
Last, expression (24) follows from de Haan’s theorem (38) and case (i) of Lemma 2.

5.5 Proof of Proposition 3

We only consider case (i) and note that case (ii) is identical to Proposition 1. Define c(x, y) =
y/ (x+ y) and l(x, y) = c(x, y) − w`. For c(x, y) → w`, l(x, y) = c(x, y) − w` → 0, as x → ∞,
and with T as in expression (7), we have that ln Pr (Y > y | X = x) is equal to

(x+ y)

∫ l(x,y)

0
sg(s) ds+ {w`x− (1− w`)y}

∫ l(x,y)

0
g(s) ds. (42)

Using the asymptotic expansion (23), up to first order, we have that the two integrals in ex-
pression (42) are, as x→∞, asymptotically equivalent to∫ l(x,y)

0
sg(s) ds

.
= l(x, y)f {l(x, y)} g {l(x, y)}

[
1− f {l(x, y)} − l(x, y)f ′ {l(x, y)}

l(x, y)

]
, (43)

∫ l(x,y)

0
g(s) ds

.
= f {l(x, y)} g {l(x, y)}

[
1− f ′ {l(x, y)}

]
, (44)
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for U(s) = s ∈ R1(0
+) and U(s) = 1 ∈ R0(0

+), respectively. Combining expressions (42), (43)
and (44) we get that (42) is asymptotically equivalent to

f {l(x, y)} g {l(x, y)}
(
−{w`x− (1− w`)y}

[
f ′ {l(x, y)} − f {l(x, y)} − l(x, y)f ′ {l(x, y)}

l(x, y)

])
= f {l(x, y)} g {l(x, y)}

[
−{w`x− (1− w`)y}

(x+ y)f {l(x, y)}
w`x− (1− w`)y

]
= − (x+ y) f2

(
y

x+ y
− w`

)
h

(
y

x+ y

)
,

which completes the proof.

5.6 Proof of Proposition 4

Assuming y →∞ as x→∞ with y/x→ 0, we have from expressions (10), (25), (27), (28) and
Lemma 1, that for large x, the log-conditional survivor, ln Pr (Y > y | X = x), is approximately
equal to

− x

(κγ)2
(y/x)δ+2(1+γ) exp

{
−κ (y/x)−γ

}
. (45)

Now, let z ∈ R and y = a(x)+b(x)z, where a(x) and b(x) are given by equations (29). We have,
as x→∞,

(y/x)δ+2(1+γ) =

(
lnx

κ

)−{δ+2(1+γ)}/γ {
1 +O

(
ln lnx

lnx

)}
, (46)

exp
{
−κ (y/x)−γ

}
= x−1

(
lnx

κ

){δ+2(1+γ)}/γ
exp

(
γκ−1/γz

)[
1 +O

{(
ln lnx

lnx

)2
}]

. (47)

Combining equations (45), (46) and (47) we get

Pr {Y < a(x) + b(x)z | X = x} = 1− exp
[
−
{
κ(δ+2)/γ/γ2

}
exp

(
γκ−1/γz

)]
+O

(
ln lnx

lnx

)
.

Last, direct application of statement (9) yields the result of Proposition 4.
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