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Abstract 

Biofilms are a common constituent of the subsurface and are known to influence contaminant 

transport; however only a few studies to date have addressed microbial controls on nanoparticle 

mobility in porous media. The impact of a 3-day Pantoea agglomerans biofilm on the mobility 

of zinc oxide (ZnO) nanoparticles was studied in column experiments containing sand and 

glass beads at near-neutral pH and constant ionic strength. Bare ZnO nanoparticles (bZnO-

NPs) and ZnO nanoparticles capped with tri-aminopropyltriethoxysilane (cZnO-NPs) were 

used in the experiments. Breakthrough curves demonstrate that the biofilm particularly slowed 

nanoparticle migration of bZnO-NPs in glass bead columns and cZnO-NPs in sand columns. 

With the exception of bZnO-NPs in sand columns, biofilm-coated porous media retained more 

nanoparticles than controls without biofilm. The biofilm may bear an impact on the surface 

charge of the porous media, nullifying porous media-specific effects. Although viable cell 

counts (VCCs) decreased after the introduction of electrolyte and before nanoparticle transport 

experiments, SEM and CLSM imaging of porous media samples taken from columns after 

nanoparticle transport experiments, as well as total organic carbon (TOC) measurements reveal 

that biofilm was present in the columns throughout the experiments. Hence, it can be concluded 
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that even a thin amount of biofilm can hinder nanoparticle migration in small-scale porous 

media experiments. Moreover, nanoparticle mobility is dependent on the binding capacity of 

biofilms, rather than the type of porous media. 

1. Introduction 

The widespread production of nanoparticles by various industries and the associated 

concern that inadvertent release to the environment might impact ecosystem functioning has 

led to increase in research efforts to understand nanoparticle transport in porous media 

(Chowdhury et al., 2011; He et al., 2009). Zinc oxide (ZnO) nanoparticles are of particular 

concern as they are widely used in sunscreens and other personal care products (Newman et 

al., 2009). Nanoparticles may be introduced into the subsurface via precipitation, landfill waste, 

wastewater, or through the use of nanoparticle-bearing sludges in agriculture (Gajjar et al., 

2009). Thus, nanoparticles migrate directly or indirectly into the biosphere, including into 

groundwater supplies, where the long-term effects of exposure have not yet been established 

(Dybowska et al., 2011; Li et al., 2011a).  

Studies to date have shown that the transport of nanoparticles in porous media depends on 

a variety of factors, including the presence of capping agents (Petosa et al., 2012), ionic strength 

(Chowdhury et al, 2011), dissolved organic carbon (Ben-Moshe et al., 2010) and surface 

chemistry of the porous media (Kurlanda-Witek et al., 2014); however, the large surface area 

of porous media grains serves as an ideal environment for formation of microbial biofilms 

under favourable conditions (Kapellos et al., 2007). Biofilms consist of structured communities 

of one or more strains of microorganisms, bound together by gel-like extracellular polymeric 

substances (EPS), secreted by the microorganisms (Ross and Bickerton, 2002). They are 

frequent in the subsurface, where enhanced growth between porous media grains can lead to 

clogging of aquifer materials (Seifert and Engesgaard, 2012; Thullner et al., 2004; Yang et al., 

2013). The abundance of microbial activity suggests that microbe-nanoparticle reactions are 
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likely to be fundamental in nanoparticle transport, and may even have applications in the 

treatment of nanoparticle-bearing wastewaters (Morrow et al., 2010).  

Despite this knowledge, relatively few studies have investigated the impact of biofilms on 

nanoparticle transport. Consequently, our knowledge of the behaviour of nanoparticles under 

natural conditions found in the subsurface is limited. In a study on fullerene (C60) nanoparticle 

transport in sand coated with an Escherichia coli (E. coli) biofilm, Tong et al. (2010) found 

that biofilm promoted higher nanoparticle deposition. Tripathi et al. (2012) demonstrated 

similar findings in transport experiments conducted with sulphate and carboxyl-modified latex 

nanoparticles and carboxyl-modified CdSe/ZnS quantum dots in sand columns with a 

Pseudomonas aeruginosa biofilm, as shown by larger attachment efficiencies and lower 

breakthrough curves. Jiang et al. (2013) stated that an E. coli biofilm growing on quartz sand 

retained ZnO nanoparticles irrespective of particle size and surface chemistry of the quartz 

sand grains. However, Lerner et al. (2012) found that a Pseudomonas aeruginosa biofilm had 

little influence on the transport and retention of iron nanoparticles in glass bead columns, and 

conversely, the modelled single collector contact efficiencies of nanoparticles were higher in 

sterile columns. The general status of these studies is that biofilm increases the affinity of 

nanoparticles to porous media, however there are exceptions, brought on by differences in ionic 

strength of the electrolyte, and by stabilisation of nanoparticles with polymers, which may 

promote steric repulsion between biofilm-coated porous media and nanoparticles (Xiao and 

Wiesner, 2013). However the effect of varying surface chemistry of the porous media on 

biofilm influenced nanoparticle mobility has not been studied.  As shown in our previous study, 

the mineralogical composition and hence surface chemistry of the porous media causes 

fundamental differences in the transport behaviour of nanoparticles (Kurlanda-Witek et al., 

2014). 
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 The aim of this study was to develop a mechanistic understanding of the impact of biofilms 

on the transport on ZnO nanoparticles in saturated porous media, comparing glass beads with 

quartz sand, chosen because they have different surface charge characteristics under the 

simulated, near-neutral pH and low ionic strength conditions of the subsurface environment. 

We hypothesized that the presence of a biofilm could homogenize the surface chemistry of the 

porous media and hence nullify porous media specific effects. The important role of net-surface 

charge was investigated by also comparing bare and capped ZnO nanoparticles (bZnO-NPs 

and cZnO-NPs, respectively), the latter of which were capped with KH550 (tri-

aminopropyltriethoxysilane). 

 

2. Materials and methods 

2.1 Porous media preparation and column packing 

Two types of porous media were used for nanoparticle transport experiments; glass beads 

(0.5 mm in diameter), and quartz sand sieved to a diameter between 120 µm and 350 µm. They 

were chosen because despite similar chemical composition, they had different zeta potentials 

when measured under the conditions of the column experiments (5mM NaCl, pH ~8, Table 1). 

Both water and porous media were autoclaved and the porous media were dried under UV light 

in order to maintain sterility. Prior to autoclaving, sand and glass beads were washed three 

times in 6% hydrogen peroxide (H2O2) to remove any organic material, and then soaked in 

10% nitric acid (HNO3) overnight to remove any metals. The porous media were then washed 

in deionized water and made alkaline with 1 M sodium hydroxide (NaOH) to pH 7. All tubing 

and column parts used in the experiments were autoclaved and dried under UV light prior to 

use. Columns (12 cm working length and 1 cm diameter; Diba Omnifit) were packed with 

autoclaved 5 mM sodium chloride (NaCl) electrolyte and porous media. The columns were 
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packed in a Bio-Air microbiological safety cabinet (Aura B4 model) using the wet packing 

technique (Deshpande and Shonnard, 1999).  

2.2 Preparation of nanoparticle solutions 

bZnO-NP solution was purchased from Sigma Aldrich (100 ml of 50 w/t % solution in pure 

water, 30 nm average nanoparticle diameter). The stock solution was dispersed using an 

ultrasonic bath for 30 minutes. One ml of stock solution was diluted in deionized water to a 

concentration of 12.5 mg/ml and sonicated as above for 10 minutes. One ml of this solution 

was dispersed in 5 mM NaCl solution, made with autoclaved, deionized water to make up 1 l, 

and sonicated for a further 10 minutes. cZnO-NPs (20 nm average nanoparticle diameter), 

coated with 1 wt % KH550, a silane coupling agent, were purchased in powder form from US 

Research Nanomaterials Inc. Stock solutions were made by dissolving 0.5 g of nanoparticle 

powder in 1 l of 5 mM NaCl solution, and sonicated for 1 hour. A solution at a concentration 

of 12.5 mg/ml was made up with 5mM NaCl, then sonicated for a further 30 minutes. Both 

bZnO-NP and cZnO-NP solutions were analysed for average size of nanoparticles and zeta 

potential using dynamic light scattering (DLS) on a Zetasizer Nano ZS (Malvern Instruments 

Ltd.). Zeta potentials of crushed glass beads, crushed sand, Pantoea agglomerans culture, as 

well as a P. agglomerans biofilm grown on crushed beads and crushed sand, in 5 mM NaCl, 

pH = 8.0, were also established. Porous media was crushed to a powder using a mortar and 

pestle. Two ml of P. agglomerans culture was added to 5 g of crushed beads and 5 g of crushed 

sand one day prior to zeta potential measurements, and stirred on a rotary shaker at 30ºC 

overnight, to enable biofilm growth on the porous media grains. The supernatant, containing 

nutrient media, was decanted, and 2 ml of 5 mM NaCl was added to the samples. All sample 

suspensions were vortexed prior to measurement. Zeta potential measurements were measured 

in three runs of ten cycles each. Additionally, nanoparticle sizes were calculated from the Brus 
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equation, based on the UV-Visible absorbance spectra of nanoparticles in suspension (Brus, 

1984) (see section 2 in Supporting Information, SI). 

2.3 Column transport experiments 

All experiments were performed in duplicate. The electrolyte was adjusted to pH 8 using 

0.01 M NaOH, to prevent dissolution of zinc oxide nanoparticles (Jiang et al., 2012; Petosa et 

al., 2012). Several pore volumes of 5mM NaCl electrolyte were pumped into the columns using 

a peristaltic pump (Masterflex) at a flow rate of 0.46 ml/min (approximately 9 m/d). For biofilm 

columns, Nutrient Broth media (NM, 13 g/l) (No. 3, Fluka) was pumped into columns at a flow 

rate of 0.46 ml/min. After several pore volumes had been eluted, the columns were inoculated 

with 1ml of Pantoea agglomerans, an aerobic Gram negative bacteria commonly found in soil 

and water environments, that does not produce large amounts of EPS (Kapetas, 2012). Pantoea 

agglomerans was grown in liquid cultures (13 g/l NM in 100 ml) for a period of 24 hours. The 

aim was to cover the porous media grains with a thin layer of biofilm, without facilitating 

physical bioclogging, and thus the creation of preferential flow paths. The columns were left 

for 24 h to allow attachment of the bacteria onto the porous media. Afterwards, NM was 

pumped into the columns continuously at a flow rate of 0.5 ml/min for a period of 3 days. 

Outflow and viable cell counts were measured daily. Approximately 12 h before nanoparticle 

solutions were pumped into the columns, 5 mM NaCl electrolyte was pumped into the columns 

at a flow rate of 0.46 ml/min in order to flush out all traces of NM, which could enhance 

nanoparticle aggregation due to salt content and the presence of organic material (Ben-Moshe 

et al., 2010). Viable cell counts in the effluent were also determined after 12 h of addition of 

electrolyte and before nanoparticle transport experiments in order to verify that bacteria were 

still present in the columns after the addition of electrolyte. Sterile control column experiments 

were carried out by pumping several pore volumes of electrolyte before pumping in 

nanoparticle solution. For both control and biofilm columns, 3 pore volumes of nanoparticle 
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solution were pumped into the column at a constant flow rate, followed by 5 pore volumes of 

electrolyte. Nanoparticle concentration in the samples was measured as dissolved Zn using 

ICP-OES. Concentrated HNO3 was added to measured samples to a concentration of 2% (Yang 

et al., 2013). Acidified samples were analyzed using a Perkin Elmer Optima 5300 DV ICP-

OES, with analytical uncertainties determined using a certified multi-element standard 

(CertiPUR ICP multi-element (M6) standard for ICP-MS, Merck). Nanoparticle input solutions 

were collected before entering the columns, throughout the duration of the nanoparticle 

transport experiments (at the beginning of pore volumes 1, 2 and 3). Concentrations measured 

in column outflow were normalized to averaged values in the input solution in order to calculate 

the breakthrough curves (C/C0). 

After the transport experiments, columns were dismantled and the porous media mass was 

divided into 5 sections. 2.5 ml of 2% HNO3 was added to 0.5 g of glass beads or sand from 

each column section and stirred overnight to detach ZnO from the beads. In a previous study, 

mass balance calculations demonstrated that the majority of nanoparticles remained attached 

to the porous media grains (Kurlanda-Witek et al., 2014). Extractions were performed in 

duplicate. After 24 h, the acidified samples were centrifuged at 24149 × g, for 20 min, at 4°C, 

and filtered through 0.22 µm filters for ICP-OES analysis (Yang et al., 2013). The remaining 

porous media samples from biofilm columns were used for Total Organic Carbon (TOC) 

determination as a proxy for biofilm biomass distribution (see section 3 in SI).  

2.4 Determination of viable cell counts 

Viable cell counts were conducted in order to observe biofilm viability throughout the 

duration of the experiment. Cell counts of inoculated columns were determined by plating 

serial dilutions of effluent. One ml of effluent was diluted between 10-1 and 10-6 times using 

sterile, deionized water. Each dilution was gently mixed using a vortex (Vortex Genie, 

Scientific Industries). Ten µl of each dilution was pipetted and spread onto plates with Nutrient 
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Agar (Fluka) and incubated in an oven for 24 hours, after which colonies were counted (Brock 

and Madigan, 1991). 

2.5 Confocal laser scanning microscopy (CLSM) and scanning electron microscopy 

(SEM) 

Confocal laser scanning microscopy (CLSM) was used to observe the extent of biofilm 

growth on porous media after termination of experiments. Biofilm samples grown on sand were 

washed with phosphate buffered saline (PBS) and stained with 4',6-diamidino-2-phenylindole 

(DAPI) stain at a concentration of 300 µg/ml, made from 10 mg/ml stock solution (Biotium), 

using PBS as diluent. Samples were fixed onto glass slides using SlowFade Gold Antifade 

Reagent (Invitrogen), and air-dried. Glass beads were too big to mount on glass slides, therefore 

0.5 g of beads were vortexed with PBS and stained with DAPI stain, and a drop was placed on 

a glass slide and left to air-dry. Once dried, the samples were covered with glass cover slips 

and fixed with nail varnish. Samples were viewed using a Leica SP5 Confocal Laser 

Microscope. Stacks of images were processed to 3D images using ImageJ software. Scanning 

electron microscopy (SEM) images were taken of porous media from the top and bottom 

sections of each column. Porous media was transferred with a spatula onto 1 cm diameter SEM 

stubs, and gold sputtered using a BAL-TEC SCD 050 Sputter Coater. Samples were viewed 

with a Philips XL30CP scanning electron microscope in secondary electron imaging mode. 

Surfaces of porous media were visualized using a Nikon SMZ800 stereo microscope with 

attached Nikon Coolpix 995 digital camera. 
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3. Results 

3.1  Nanoparticle size range and zeta potentials of nanoparticles and porous media 

Measurements by DLS of bZnO-NPs in suspension determined an average diameter of 72 

nm, while cZnO-NPs were an average 45.1 nm in diameter. Because DLS is a particle size 

measurement tool based on scattering light by particles in suspension, the results are skewed 

in favour of larger, aggregated nanoparticles (Quevedo and Tufenkji, 2012), implying that the 

majority of nanoparticles were likely to be smaller than the size measured. The UV-Vis spectra 

of nanoparticle suspensions was interpreted using the Brus equation (Brus, 1984) as an 

alternative to DLS to estimate nanoparticle sizes, yielding sizes of 6.6 nm and 14.6 nm (± 2 

nm) for bZnO-NPs and cZnO-NPs, respectively (see section 2 in Supporting Information).  

Table 1 presents results for zeta potentials of porous media, nanoparticles and 

bacteria used in the experiments. Mean zeta potentials for nanoparticle suspensions were 

+21 ± 2.74 mV and +1.45 ± 1.6 mV for bZnO-NPs and cZnO-NPs, respectively. Positive zeta 

potentials for bZnO-NPs were also reported by Ben-Moshe et al. (2010), Petosa et al. (2012), 

and Zhou and Keller (2010). Capping ZnO nanoparticles with polymers can change the zeta 

potential to negative values at neutral pH (Kanel and Al-Abed, 2011; Petosa et al., 2012); 

however, KH550 has a circumneutral surface charge at near neutral pH, due to the 

presence of both negatively charged silanol groups and positively charged amino 

groups (Metwalli et al., 2006). Zeta potential results for cZnO-NPs in 5mM NaCl varied 

between -4.9 mV and +14.78 mV. Chen et al. (2001) found that the zeta potential of 

quartz sand modified with aminosilane was equal to approximately 0 mV. Glass beads 

(-35.2 ± 5.89 mV) and sand (-53.9 ± 4.03 mV) were negatively charged in 5 mM NaCl 

and pH=8, which was expected, as the points of zero charge (PZC) for glass and sand 

are approximately pH=2 for both materials (Kosmulski, 2009). P. agglomerans culture 

was also negatively charged, as bacterial cell walls are negatively charged at most 
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environmental pHs, which leads to their affinity to metals (Kapetas et al., 2012). The 

addition of biofilm increases the net negative zeta potential for glass beads to a value 

close to that of quartz sand but largely leaves that of quartz sand unaffected; hence 

the presence of biofilm leads to identical zeta potentials.  The different effect on zeta 

potential may be due to the sparse cover of biofilm on sand. This was also found by Lerner et 

al. (2012) on glass beads. In fact, the uneven biofilm growth on glass beads have led Lerner et 

al. to believe that the zeta potential is incorrect. 

3.2 Viable cell counts (VCC) 

The number of viable cells in column effluent was evaluated as an estimate of biofilm 

viability. The limitation of this method is that the amount of viable cells in the effluent may 

not provide information on the actual stability of the biofilm, or what proportion of the biofilm 

may actively uptake nanoparticles. VCCs were calculated from the four experiments in which 

biofilm growth took place (each experiment was performed in duplicate). It was anticipated 

that there could be differences in the amount of viable cells between glass bead and sand 

columns, with respect to greater surface area of sand grains. Figure 1 shows the average number 

of VCCs from four experiments (with duplicates): columns from bZnO-NP experiments 

packed with sand and glass beads, and columns from cZnO-NP experiments packed with sand 

and glass beads. The VCCs were carried out daily prior to nanoparticle transport, and were 

additionally carried out on Day 4, directly before the nanoparticle transport experiments. VCCs 

increased over a period of three days of biofilm growth, to an average of 9.6×104 cells/ml. After 

approximately 12 hours of 5 mM NaCl electrolyte solution flowing through the columns, cell 

counts dropped to an average of 2.6×104 cells/ml, signifying that the electrolyte either killed 

cells or stripped biofilm from the collector grains. This was the case in all of the experiments, 

except for experiment 2 of the sand columns (cZnO-NP transport experiment) (Figure 1). VCC 

values are twice as high in sand columns, compared to glass bead columns (p= 0.08).  
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3.3 Breakthrough curves 

Figure 2 shows breakthrough curves for bare (2a and 2b) and capped (2c and 2d) 

nanoparticles, each comparing controls with biofilm coated porous media. Outflow samples 

were collected at 1-minute intervals with the intention of measuring the breakthrough curve 

using UV-Visible absorption spectroscopy. However, these measurements yielded erratic 

results, possibly due to aggregation of the nanoparticles after collection. Consequently, samples 

were analysed using ICP-OES. Hence, samples from duplicate experiments were batched 

together to yield sufficient volume, so that the breakthrough curves presented in Figure 2a are 

a moving average of the results. 

More bZnO-NP breakthrough was observed in control bead columns relative to sand 

control columns, where nanoparticles were close to detection limit. Introduction of biofilm 

resulted in identical breakthrough curves for bead and sand columns, being identical to those 

of control sand columns. This observation is consistent with the similar surface charge 

characteristics measured for biofilm coated beads and sands. However, as the breakthrough 

curves of bZnO-NP transport are the same in sand columns, it is difficult to determine the actual 

effects of biofilm on these nanoparticles.  

By contrast, significant differences were observed in the transport of cZnO-NPs between 

bead control and sand control columns (Figures 2c and 2d). In glass bead columns, the 

breakthrough curve of cZnO-NPs from columns with biofilm growth is similar in shape to the 

control columns (Figure 2c), which are in turn much lower than those in the sand control 

column.  The reason for this could be uneven distribution of biofilms on the surface of the glass 

beads, which is the nature of biofilm growth and not a feature of the collector grain (see section 

4.1). In the case of sand control columns, the breakthrough curves of cZnO-NPs reached a 

plateau, but the nanoparticle breakthroughs were eluted after the same pore volumes as for 

glass beads. A small tailing effect was also observed. By contrast, nanoparticles were not 
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detected in the biofilm colonised sand columns. In general, cZnO-NPs were more mobile than 

bZnO-NPs, particularly in sand (Figure 2d). 

3.4  Retention profiles 

Retention profiles determined by extracting nanoparticles from the columns after flow 

experiments are shown in Figure 3. For bZnO-NPs (Figures 3a and 3b), there was only a 

statistically significant difference in retention at the column inlets of glass bead columns 

(Figure 3a), where columns with and without biofilm retained an average of 67.6 ± 4.9 µg/g vs 

36.3 ± 8.5 µg/g nanoparticles (p = 0.02). Sand columns with and without biofilms retained 45 

± 4 µg/g vs. 97 ± 19.8 µg/g of nanoparticles (p = 0.23) (Figure 3b). For cZnO-NPs, nanoparticle 

retention was marginally higher in the biofilm columns of glass beads, except at the inlet, where 

retention was equal between biofilm and control columns (Figure 3c), whereas in sand 

columns, nanoparticle retention values were generally lower for biofilm-coated sand, yet higher 

at the inlet (Figure 3d). In general, retention profiles of cZnO-NPs were smaller than for bZnO-

NPs, signifying higher elution rates for the capped nanoparticles.  

3.5 Calculation of single collector contact efficiency and attachment efficiency 

Colloid filtration theory (CFT) (Yao et al., 1971) was used to quantitatively analyse the 

deposition behaviour of ZnO nanoparticles in both saturated sand and glass beads, with and 

without attached biofilm, based on nanoparticle breakthrough curves in column experiments. 

Attachment efficiencies were calculated for C/C0 values determined at approximately 1.5-

2 pore volumes of the experiments to evaluate maximum attachment efficiencies for the clean-

bed stage of ZnO nanoparticle attachment (Petosa et al., 2012). Hamaker constants for porous 

media, bacteria, and water were taken from Israelachvili (1992), whereas the Hamaker constant 

for ZnO nanoparticles was taken from Bergstrom (1997). The equations and parameters are 
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presented in section 4 of SI. The results of attachment efficiencies and single collector contact 

efficiencies for both bZnO-NPs and cZnO-NPs are presented in Tables 2 and 3, respectively. 

The presence of biofilm did not significantly change the single collector contact 

efficiencies for bZnO-NPs in either glass beads or sand. This is due to the fact that the only 

difference between the calculations for coated and uncoated porous media in the Tufenkji-

Elimelech equation is the change in Hamaker constant, which is very small (Lerner et al., 

2012). bZnO-NPs had considerably higher attachment efficiencies to glass beads than to sand, 

which is inconsistent with our breakthrough curves and retention profiles of transport 

experiments in glass beads and sand columns, as elution of nanoparticles, albeit limited, 

occurred in glass bead control columns (Figures 2a and 2c). Biofilm almost doubled the 

attachment efficiency of glass beads (2.53 ± 0.0018 for biofilm and 1.35 ± 0.027 for the 

control), whereas attachment efficiencies of sand were very similar with and without biofilm 

(0.71 ± 0.077 and 0.79 ± 0.006 for the biofilm and control column, respectively), which agrees 

with breakthrough curves in that biofilm inhibited nanoparticle transport in glass bead columns 

and not in sand columns. α exceeded unity, signifying that more particles aggregate on the 

collector than are able to strike the collector (Kurlanda-Witek et al., 2014). 

The overall attachment efficiencies for cZnO-NPs were lower than for bZnO-NPs and the 

results for the T-E correlation equation are in broad agreement with experimental data. 

Specifically, the attachment coefficient for the control sand columns was one order of 

magnitude lower than for control glass bead columns. This is correlated with breakthrough 

curves, where cZnO-NPs showed highest elution from control sand columns (Figure 2d). The 

addition of biofilm to sand columns greatly reduced nanoparticle elution, hence nanoparticle 

attachment to biofilms was higher (α = 0.22). Moreover, nanoparticle attachment to glass beads 

with and without biofilm was comparable, which was also reflected by the respective 

breakthrough curves for glass bead columns (Figure 2c). Single collector contact efficiencies 
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for cZnO-NPs were higher for sand columns, indicating a higher predicted retention of 

nanoparticles; however, the total differences in retention between glass bead and sand columns 

were not substantial. 

 

4.  Discussion 

4.1 Biofilm growth in columns 

A primary objective was to obtain optimum biofilm growth levels, sufficient to observe an 

impact on nanoparticle transport.  A longer period of biofilm growth could lead to clogging of 

the porous media, which would result in channelling of the fluid (Ozis et al., 2007). In the 

literature, biofilm growth in column experiments varies between 24 hours and 5 days (Lerner 

et al., 2012; Tripathi et al., 2012). For Pantoea agglomerans used in our experiments, 3 days 

may not have been sufficient for adequate growth, which is illustrated by almost all VCC 

measurements, carried out as an estimate of biofilm growth; however, SEM and CLSM 

imaging, as well as TOC, carried out at the end of the experiments, after over 18 hours of 

electrolyte flow and exposure to nanoparticles, demonstrated that biofilms still remained in the 

columns, even though a minimal number of viable cells was eluted from the columns (Figure 

1). Figures 4a and 4b show that colonies of cells were attached to the sand grains. Moreover, 

Figure 4a suggests that the biofilm became thin and patchy, retreating into grain crevices. Cells 

were not visible on the exposed surfaces of the sand grains in the studied samples. However, 

the CLSM images (Figures 5 and 6) show that cells were attached to the overall surface of the 

porous media grain, with some local differences in cell concentration, which is particularly 

evident in the CLSM image of a sand grain, as the whole grain was visualized in situ. This 

uneven growth was also observed by Lerner et al. (2012), in a study of a Pseudomonas 

aeruginosa biofilm grown on glass beads, and by Xiao and Wiesner (2013) in Gram positive 

and Gram negative bacteria biofilms on glass beads. TOC measurements (Figure S2) show a 
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significant error between sample duplicates, which further stresses local differences in biofilm 

growth in porous media. Hence, it is frequently observed that biofilms are troublesome to 

produce repeatedly, even in replicate experiments (Lewandowski et al., 2004). 

4.2 Mobility of bZnO-NPs in clean porous media 

Control columns with both glass beads and sand show that bZnO-NPs had limited mobility. 

Nanoparticle mobility in glass bead columns was slightly higher than in sand columns, which 

can be associated with larger and rounder grains (He et al., 2009). However, bZnO-NPs are 

known to generally possess low mobility (Petosa et al., 2012). Ben-Moshe et al. (2010) 

confirmed that ZnO nanoparticles showed the lowest mobility in a comparison with three other 

metal oxide nanoparticles. This is due to the fact that ZnO has a positive zeta potential (+21 

mV in our experiments) and binds to negatively charged glass bead or sand walls at near-neutral 

pH (zeta potentials of -35.17 mV and -53.94 mV in 5 mM NaCl, respectively). Figures 3a and 

3b demonstrate that a significant amount of nanoparticles was retained in the columns, 

particularly close to the column inlet. This occurrence was also observed by Jiang et al. (2012) 

in their study on ZnO nanoparticle transport in sand columns, despite the fact that the 

nanoparticles used in their study were negatively charged under all conditions, and so were 

predicted to be repelled by the negatively-charged sand grains. The opposite zeta potentials of 

nanoparticles and collector grains in our experiments resulted in strong attractive forces, and 

subsequently favourable conditions for attachment (Kuhnen et al., 2000). This may have led to 

nanoparticle aggregation on entering the column, by filling binding sites on porous media 

surfaces (Chowdhury et al., 2011; Jiang et al., 2012). It should be noted that, as the bZnO-NPs 

possessed positive zeta potentials, aggregation of nanoparticles in solution was unlikely. 
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4.3 Mobility of cZnO-NPs in clean porous media 

cZnO-NPs were generally more mobile than bZnO-NPs in negatively-charged porous 

media (Figures 2c and 2d vs. Figures 2a and 2b, respectively). KH550, used to coat the 

nanoparticles, changed the zeta potential of ZnO nanoparticles to a small positive or neutral 

value in 5 mM electrolyte. While this may infer instability of the suspension, as high absolute 

values of zeta potential cause nanoparticles to repel one another, breakthrough curves from our 

experiments suggest that the suspensions were stable, as nanoparticle instability would be 

demonstrated by a high tendency to aggregate (Sato et al., 2011). Moreover, solving the 

Brus equation for cZnO-NP size based on the UV-Visible absorbance spectrum 

implies that the actual nanoparticle size was 14.6 nm, as opposed to 45.1 nm, 

measured by DLS, which could be a measurement of aggregate size. The increased 

migration of cZnO-NPs in sand columns compared to glass bead columns was contrary 

to surface potential measurements, since sand grains had a more negative surface 

charge than glass beads; hence, the slightly positively-charged nanoparticles would 

be expected to bind more strongly to sand. It may be that the zeta potential for glass 

beads contains errors. Lerner et al. (2012) state that the zeta potential of crushed glass 

beads in 1 mM NaCl was -67.03 mV, which is nearly twice as negative as our result 

for crushed glass bead suspensions (-35.2 (± 5.89) mV in 5 mM NaCl). This could be 

attributed to surface charge heterogeneity of the glass beads. Nanoscale surface 

charge heterogeneity of collector grains is known to play a key role in the deposition 

of nanoparticles, and even minor changes in surface charge result in increased 

nanoparticle attachment (Torkzaban et al., 2010). The differences in migration between 

the two materials cannot be attributed to greater surface roughness for glass beads than for sand 

since surface roughness parameters in our experiments ruled out this phenomenon, as 
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roughness of sand grains was found to be higher than of glass beads, and both materials 

possessed low overall surface roughness parameters (Kurlanda-Witek et al., 2014). 

Furthermore, it is also possible that differences in nanoparticle surface charge caused 

quicker elution of cZnO-NPs through sand columns. More positively charged nanoparticles in 

the nanoparticle suspension saturated binding sites on sand columns, leaving the less positively 

charged nanoparticles to flow through the column. Deposited nanoparticles will neutralize the 

overall charge and eventually break through (Wang et al., 2012). 

4.4  Influence of biofilms on nanoparticle transport 

Coating porous media surfaces with biofilm will further impede nanoparticle transport due 

to increased negative charge imparted by biofilm. In this pH range, EPS becomes negatively 

charged due to deprotonation of phosphate and carboxyl groups (Tourney et al., 2009). Indeed, 

in our experiments, the zeta potential of Pantoea agglomerans in 5 mM NaCl was determined 

to be -20.6 mV. Lower mobility is clearly evident in bZnO-NP transport in glass bead columns 

and cZnO-NP transport in sand columns, where breakthrough curves were lower and retention 

profiles show that more nanoparticles accumulated in columns with biofilms. For cZnO-NPs, 

lower mobility in inoculated sand columns compared to that of glass bead columns may be 

explained by a higher amount of viable cells in the sand columns, as demonstrated in Figure 1, 

and hence a higher nanoparticle deposition rate. Lower breakthrough curves were also observed 

by Tong et al. (2010) with fullerene (C60) nanoparticle transport in sand columns with an E. 

coli biofilm, by Tripathi et al. (2012) with sulfonated polystyrene latex bead transport in sand 

columns, to which a Pseudomonas aeruginosa biofilm was introduced, by Li et al. (2013) with 

several nanoparticles in biofilm coated sand filters, as well as by Jiang et al. (2013) in ZnO 

nanoparticle transport in sand columns with an E. coli biofilm. All nanoparticles were 

negatively charged. This suggests that retention of nanoparticles by biofilms in porous media 

occurs regardless of bacterial strain or type of nanoparticle used; however, differences in the 
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breakthrough curves of bZnO-NPs in sand columns and cZnO-NPs in glass bead columns 

between transport experiments with and without biofilm are not particularly noticeable (Figure 

2). An analogous situation was observed by Lerner et al. (2012) in columns with biofilm-coated 

and uncoated glass beads. Zerovalent iron nanoparticles capped with polyacrylic acid were 

used in the transport experiments, and NaCl electrolyte ionic strength was 1 mM. A higher 

retention rate of nanoparticles was observed in higher ionic strength electrolyte of 25 mM, an 

effect also demonstrated by Tong et al. (2010). This was explained by lower compression of 

the electrical double layer (EDL) of nanoparticles at low ionic strength, resulting in increased 

electrostatic repulsion between negatively charged polymer-coated nZVI and the negatively 

charged biofilm (Lerner et al., 2012). As the ionic strength remained constant in all of our 

experiments, another explanation for lack of biofilm impact on nanoparticle breakthroughs in 

some biofilm columns is that biofilm growth levels were higher in sand columns for cZnO-NP 

transport experiments, although all biofilms were grown under identical conditions. As was 

noted by Peulen and Wilkinson (2011), no two biofilms are the same. Some studies claim that 

short-term starvation of a biofilm increases cell attachment (Cunningham et al., 2007). 

Conversely, Walczak et al. (2012) found that cell mobility increased with an increase in pH 

and a decrease in ionic strength, as well as when the biofilm was additionally starved for 4-25 

hours. This could be the scenario observed in our experiments, as switching from NM to 

electrolyte resulted in an increase in pH (from 7 to 8) and a decrease in ionic strength (NM 

contains a high salt concentration). However, in experiments conducted by Walczak et al. 

(2012) the cell culture was injected into sand-packed columns for only 60 minutes, which could 

be insufficient for cell adhesion to sand grains. Yang et al. (2013) demonstrated that biofilms 

grown in sand columns, subjected to minimal nutrient medium and high levels of exposure to 

dissolved zinc for one week still maintained good cell viability. SEM  and CLSM images of 

biofilms from our experiments (Figures 4-6), which were taken after introduction of 
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nanoparticles, show that cells were still attached to sand grains, yet their mobility and/or 

viability could have been reduced. As demonstrated in cZnO-NP transport in sand, even a thin 

and patchy biofilm can impact nanoparticle transport (Figure 2d). TOC results also confirm 

that biomass was still present in the columns after termination of the experiments (Figure S2).  

In previous studies, most transport experiments in biofilm-coated porous media were 

conducted with negatively-charged nanoparticles, in order to observe nanoparticle transport 

under unfavourable attachment conditions, i.e. repulsive interactions between negatively 

charged nanoparticles and negatively charged bacteria (Jiang et al., 2013; Lerner et al., 2012; 

Tong et al., 2010; Tripathi et al., 2012; Xiao and Wiesner, 2013). Studies of capped 

nanoparticles have also been conducted on batch tests of bacteria in order to explain the 

mechanisms of nanoparticle attachment and accumulation in bacterial cells. Dror-Ehre et al. 

(2010) grew Pseudomonas aeruginosa biofilms in microtiter plates, subjecting them to very 

high doses (10-180 µg/ml) of citrate-capped silver nanoparticles. The bacteria developed 

survival strategies by pushing the silver nanoparticles to the periphery of the cells. Stojak et al. 

(2011) studied the interactions of different-sized gold nanoparticles capped with citrate, with a 

Legionella pneumophila biofilm. The concentration of nanoparticles in suspension was very 

low; 0.7 µg/l, and yet nanoparticle absorption and aggregation was visible both on the inside 

and outside of the cells. This was, however, influenced by the size of the nanoparticles, as 50 

nm nanoparticles were found not to interfere with biofilm morphology, compared to 4 and 18 

nm-sized nanoparticles (Stojak et al, 2011). Habimana et al. (2011) reported that the diffusion 

of anionic carboxylate-modified fluorescent polystyrene nanoparticles depends on the cell wall 

hydrophobicity of Lactococcus lactis biofilms, which was also found by Xiao and Wiesner 

(2013), where hydrophobic biofilms retained most nanoparticles. These findings indicate that, 

despite the negative zeta potentials of capped nanoparticles, they are still prone to aggregation 

and diffusion into biofilms. In natural conditions, the production of EPS in biofilms triggered 
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by nanoparticle presence promotes embedding of the nanoparticles in the EPS matrix, leading 

to aggregation (Benzerara et al., 2011). This is most likely a survival mechanism for biofilm 

bacteria (Joshi et al., 2012). The favourable interaction of nanoparticles to EPS was also 

demonstrated in experiments with silica and hematite nanoparticles (Ikuma et al., 2014), as 

well as in experiments with metal nanoparticles in natural freshwater biofilms, where 

nanoparticle stabilization occurred regardless of external factors, such as pH (Kroll et al., 

2014). It can be concluded that nanoparticles, irrespective of type and surface charge can bind 

to the extracellular matrix of biofilms, which was also observed in our experiments on a small 

scale, demonstrated by the enhanced binding of nanoparticles in biofilm columns at the column 

inlet.  

 

5.  Conclusions 

The transport and retention of bare and capped ZnO nanoparticles in biofilm-coated glass 

beads and sand, at near-neutral pH and groundwater salinity, was studied. The mobility of both 

bZnO-NPs and cZnO-NPs was generally low with and without biofilms, as conditions for 

attachment were favourable. The effects of further decreased nanoparticle mobility in 

biofilms grown on porous media were primarily dependent on the extent of biofilm growth and 

subsequent nanoparticle binding capacity by bacteria and EPS, rather than the type of porous 

media used. This has positive environmental implications, as biofilms could be used as a 

potential remediation strategy against the migration of nanoparticles in heterogeneous aquifers. 

Further work on the impact of biofilms on nanoparticle transport in porous media is necessary, 

particularly using naturally-occurring mixed-culture biofilms and heterogeneous porous media. 

 

 

Material Zeta potential (mV) in 5 mM NaCl 
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Bare ZnO nanoparticles +21 (±2.74) 

Capped ZnO nanoparticles +1.45 (±1.57) 

Crushed glass beads -35.2 (±5.89) 

Crushed sand -53.9 (±4.04) 

Pantoea agglomerans culture -20.6 (±2.38) 

Crushed glass beads + P. agglomerans -52.1 (±2.33) 

Crushed sand + P. agglomerans -49.5 (±3.62) 

Table 1. Zeta potentials and standard error for nanoparticles, porous media, and bacteria used in 

transport experiments. 

 

Parameter Glass beads 
control 

Sand control Glass beads with 
biofilm 

Sand with 
biofilm 

α 1.35 ± 0.027 0.79 ± 0.006 2.53 ± 0.0018 0.71 ± 0.077 

η0 ×10-3 8.2 14.3 7.4 13.6 

Table 2. bZnO-NP attachment efficiencies with standard error and single collector contact 

efficiencies for glass beads and sand, with and without attached biofilm. 

 

Parameter Glass beads 
control 

Sand control Glass beads with 
biofilm 

Sand with 
biofilm 

α 0.78 ± 0.028 0.072 ± 0.0019 0.85 ± 0.035 0.22 ± 0.008 

η0×10-3 11.8 20.7 10.8 17.7 

Table 3. cZnO-NP attachment efficiencies with standard error and single collector contact efficiencies 

for glass beads and sand, with and without attached biofilm. 
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Figure 1. Average numbers of viable cells measured from outflow samples of duplicate sand and 

glass bead column experiments throughout the duration of biofilm growth. Transport experiments 

with either bZnO-NPs or cZnO-NPs were carried out after biofilm growth in porous media. Samples 

on Day 4 were taken after 12 hours of column flushing with electrolyte, directly before nanoparticle 

transport measurements. Error bars represent standard error between duplicate experiments. 
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Figure 2. Breakthrough curves of a) bare ZnO nanoparticles (bZnO-NPs) in glass bead columns,  

b) bZnO-NPs in sand columns, c) capped ZnO nanoparticles (cZnO-NPs) in glass bead columns, and 

d) cZnO-NPs in sand columns, with and without biofilm. For glass bead columns, mobility of bZnO-

NPs is lower in columns with biofilms; however bZnO-NP mobility is very low in sand columns with 

and without biofilms. Breakthrough curves in cZnO-NP columns packed with glass beads suggest that 

biofilms have no measurable impact on nanoparticle mobility, whereas biofilm growth impedes cZnO-

NP transport in sand. Error bars represent standard error between duplicate experiments. 
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Figure 3. Retention profiles of bZnO-NPs in a) glass bead columns, b) sand columns, and cZnO-NPs 

in c) glass bead columns and d) sand columns, with and without biofilm. With the exception of bZnO-

NP retention in sand columns, retention is greatest at the column inlets. Error bars represent standard 

error between duplicate samples. 
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Figure 4. SEM images of Pantoea agglomerans cells adhering to a sand grain from the column inlet 

after a nanoparticle transport experiment; a) 50 µm resolution, b) 10 µm resolution. Larger colonies 

are marked by white arrows. These images demonstrate that bacterial colonies survive several hours 

of proximity to 12.5 ppm ZnO nanoparticle solution, probably by retreating to crevices of sand grains. 

 

 

Figure 5. CLSM image of Pantoea agglomerans cells sloughed off of a glass bead 

from a column after a nanoparticle transport experiment. The image demonstrates that a 

biofilm was present on glass beads after transport experiments. 
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Figure 6. A three-dimensional CLSM image of  Pantoea agglomerans biofilm adhering to a sand 

grain from a column after a nanoparticle transport experiment. The image confirms that a biofilm is 

still present in porous media after being exposed to nanoparticles; however, DAPI staining does not 

differentiate between live and dead cells. The green, red and blue arrows mark the x, y and z axes, 

respectively. 
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Supporting Information 

Tracer tests, evaluation of the Brus equation, determination of total organic carbon, as well as 

equations and parameters for attachment coefficients are available in Supporting Information. 
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1. Tracer tests 

Porosity and fluid retention time were determined by conducting bromothymol blue 

breakthrough curves (Cunningham et al., 1991). Two pore volumes of bromothymol blue dye, 

a conservative tracer, were pumped into the column at the flow rate desired for the experiment. 

The dye was made using a modified version devised by du Plessis and van Staden (2000) by 

dissolving 25 mg of bromothymol blue dye (Acros Organics) in 2.5 ml of 4% NaOH, then 

adding 5 ml of ethanol and deionised water to make up 250 ml. Outflow samples were collected 

using a fraction collector (Teledyne ISCO Retriever 500) and measured using a 

spectrophotometer (CamSpec M501) at 550 nm wavelength. Results show that both types of 

porous media possess similar flow patterns (Figure S1). Porosity calculated from column mass 

and flow rates was approximately 35% for sand, and 40% for 0.5 mm glass beads. For 

conservative tracers, one pore volume is eluted at C/C0 = 0.5. Tracer tests demonstrate that one 

pore volume was eluted at approximately C/C0 = 0.7, which may be the result of flow 

maldistribution, resulting in channelling between the porous media grains (Thompson and 

Fogler, 1997). At the flow rate of 0.46 ml.min-1, the bromothymol blue reaches C/C0 =1 after 

an average of 13 minutes of tracer flow. 
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Figure S1. Bromothymol blue tracer tests show similar flow patterns for columns packed with 
glass beads and sand. 

 

2. Measuring nanoparticle size using the Brus equation 

Semiconductors, such as ZnO, possess a filled valence band, which is separated from the 

conduction band by a band gap. ZnO has a wide band gap (3.3 eV), and increasing nanoparticle 

size (i.e. aggregation), or doping nanoparticles with other metals, will result in an increase in 

band gap, or blue shift (Suwanboon et al., 2008). In an excited state, an electron in the valence 

band will be ejected onto the conduction gap, leaving an electron hole in the valence band 

(Murphy and Coffer, 2010). By measuring the UV-Visible absorbance of nanoparticle 

solutions, one can determine nanoparticle size. The highest wavelength of absorbance has to 

be determined in order to calculate the blue shift (∆E) (Mullaugh and Luther, 2010). The 

absorption of bZnO-NPs lies within the range of 360-380 nm (Ben-Moshe et al., 2010; Petosa 

et al., 2012; Rekha et al., 2010; Sarkar et al., 2011). The highest absorbance in our experiments 

was observed at 360 nm. For our instrument, and the concentration of nanoparticles used, the 

absorption peak of ZnO nanoparticles coated with KH550 was 375 nm. The energy of the band 

gap increase can be calculated from: 
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 ∆� = ��� − ���	
 = ℎ�
 − ���	
 (1) 

 

where ��� is the band gap energy of the ZnO nanoparticle,���	
 is the band gap energy for 

ZnO nanoparticles at room temperature (=3.3 eV (Berger, 1997; Sarkar et al., 2011)),  is the 

wavelength of the highest absorbance of the nanoparticle solution, ℎ is Planck’s constant, and 

� is the speed of light. ∆� is thus equal to 0.144 eV for bZnO-NPs, and 0.006 eV for cZnO-

NPs. Once ∆� is known, the Brus equation can be solved for 2R, where R is the radius of the 

nanoparticle: 

 

 ∆� = ��ℏ�
2�� � 1

��
+ 1

��
� − 1.8��

4����� , ℏ = ℎ
2�            (2) 

 

 R =
− ".#$%

&'()( + *+ ".#$%
&'()(,� + 4∆E '%ħ%

� + "
/0 + "

/1
,

2∆E  
          (3) 

 

m$ = 0.32	m� 

m6 = 0.27	m� (Wu et al., 2002) 

 

where m$ and m6 are the effective masses of the electron and hole, respectively, m� is the free 

electron mass, ε� is the vacuum permittivity, e is the electron charge, and ε is the dielectric 

constant for ZnO (= 8.5). The resulting calculated nanoparticle radii are 3.3 nm and 7.3 nm for 

bZnO-NPs and cZnO-NPs, respectively, which demonstrate that the nanoparticles measured 

using DLS are in an aggregated state. The nominal size of nanoparticles reported by the 

manufacturers are based on TEM (transmission electron microscopy), which tend to aggregate 

nanoparticles (Baveye and Laba, 2008; Ochbelagh et al., 2012). Moreover, an independent 
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calibration of ZnO nanoparticle sizes by Jacobsson and Edvinsson (2011) and Jacobsson 

(2009), is a functional solution to the Brus equation calibrated from X-ray diffraction (XRD) 

data, using Scherrer’s method (Scherrer, 1918): 

 E = 3.22 + 0.816
d + 294.0

d�  
(4) 

 

where d is the nanoparticle diameter. This solution generated results for nanoparticle radii 

similar to ours (3.03 nm for bZnO-NPs and 8.18 nm for cZnO-NPs). Our UV-Vis 

measurements coincide with measurements from independent studies of the same materials 

(Jacobsson, 2009; Jacobsson and Edvinsson 2011). This supports our conclusion that DLS 

measurements represent aggregated particles. 

3. Determination of total organic carbon (TOC) 

Total Organic Carbon (TOC) was used to measure biofilm distribution in the columns. 

After dismantling of columns, duplicate samples of biofilm grown on porous media were stored 

from five column sections. TOC was measured using a modified method of Alessi et al. (2011). 

100 mg of porous media sample was mixed with 20 ml of 0.5 M potassium sulphate (K2SO4) 

solution and sonicated in an ultrasonic bath for 30 minutes. The samples were then filtered 

through 0.45 µm filters (Advantec) and analysed using a Shimadzu TOC-V Analyser, with 

potassium hydrogen phthalate (C8H5KO4) as standard. Samples were extracted and analysed in 

duplicate, and controls were made using 100 mg of clean porous media. 

Due to time constraints, TOC distribution was only determined in sand columns as a proxy for 

biomass/biofilm distribution, and shows that there was a similar amount of biofilm in all 

inoculated columns (Figure S2). The area close to the column inlet possesses the highest 

amounts of biomass, which correlates with retention profiles of bZnO-NPs (Figure 2b) and 

cZnO-NPs (Figure 3b) in sand columns. 
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Figure S2. Total Organic Carbon of biofilm samples from sand columns after transport 
experiments with bZnO-NPs and cZnO-NPs. Most biofilm growth occurs at the column inlet. Error 

bars are standard errors of duplicate samples. 
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4. Parameters and equations for calculation of attachment efficiencies and single 

collector contact efficiencies 

 

The nanoparticle attachment efficiencies (α) were calculated from: 

 

 α = − 2d>
3?1 − fAη�L ln � C

C�
�          (5) 

 

where dc is the diameter of the porous medium grain, f is porosity of porous media, L is the 

length of the packed column, η0 is the single contact efficiency of the porous medium/ biofilm, 

and C/C0 is the normalised concentration of nanoparticles flowing out of the columns. The 

single collector contact efficiency (η0) of ZnO nanoparticles was calculated according to the 

Tufenkji-Elimelech (T-E) correlation equation (Tufenkji and Elimelech, 2004), which 

considers van der Waals forces, gravitational sedimentation, nanoparticle to grain size aspect 

ratio, porous medium porosity, fluid velocity and the Peclet number. 

 GH = 2?1 − IJA
2 − 3I + 3IJ − 2IK , I = ?1 − LA"/N          (6) 

 

 OP		 = 	 Q�
QR

          (7) 

 

 OS� = TQR
UV

, UV = WXY
3�ZQ�

          (8) 

 

O[\] = G"N�
WXY , G"N� = ^_G"" − _GNN`^_G�� − _GNN`        (9) 
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 Oa = G"N�
3�ZQ��T         (10) 

 

 Ob		 = 1
9

Q��^c� − cd`e
2ZT         (11) 

 

f� = 2.4GH
g
hOPi�.�#"OS�i�.j"JO[\]�.�J� + 0.55GHOP".KjJOa�."�J + 

+0.22OPi�.�&Ob".""O[\]�.�JN 

   (12) 
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Parameters used for calculation are displayed in Table S1 

 

Parameter Unit Value 

Average nanoparticle size-bZnO (dp) 

Average grain size-glass beads (dc) 

Average nanoparticle size-cZnO (dp) 

Average grain size-sand (dc) 

Porosity – glass beads (f) 

Porosity – sand (f) 

Fluid velocity (U) 

Fluid viscosity (µ) 

Temperature 

Particle density (σp) 

Fluid density (σf) 

Hamaker constant of ZnO (A11) 

Hamaker constant of glass beads (A22) 

Hamaker constant of sand (A22) 

Hamaker constant of bacteria (A22) 

Hamaker constant of water (A33) 

Hamaker constant with biofilm (A132) 

Hamaker constant without biofilm-glass     

beads (A132) 

Hamaker constant without biofilm-sand 

(A132) 

m 

m 

m 

m 

- 

- 

m.s-1 

Pa.s 

K 

kg.m-3 

kg.m-3 

J 

J 

J 

J 

J 

J 

J 

 

J 

7.2×10-8 

0.0005 

4.5×10-8 

0.000235 

0.4 

0.35 

0.0001 

0.001 

298 

1700 

1000 

9.2×10-20 

12.1×10-20 

6.5×10-20 

4.8×10-20 

3.7×10-20 

29.7×10-20 

1.7×10-20 

 

69.5×10-20 

Table S1. Parameters used for the Tufenkji-Elimelech correlation equation. 
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Figure S3. SEM image of ZnO nanoparticles on a sand grain from a column inlet (5 µm resolution). 
The nanoparticles adhering to the sand grain walls are visible as bright spots. 
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