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Abstract—In a previous theoretical paper submitted to
EWTEC, the authors showed that the wave energy converter
(WEC) wave field can be accurately and analytically represented
by cylindrical linear waves with the appropriate coefficients. In
that paper, the coefficients were found computationally using the
boundary-element method software, WAMIT. For the present
paper, experiments were conducted in the newly refurbished
University of Edinburgh Curved Wave Tank to determine the
same cylindrical coefficients for progressive waves. The experi-
ments employed two body geometries, an attenuator consisting
of a horizontal pitching cylinder, and a terminator made up
of a bottom-hinged flap. An array of 59 wave gauges was
arranged in a circle-spoke pattern, where the circle of wave
gauges was necessary for deriving the cylindrical coefficients,
and the spokes, which extended radially further afield, were used
for validation. Both the scattered and the radiated waves of the
bodies were examined at three frequencies. High-order harmonics
were present in a number of the wave fields, and tank reflections
were problematic. Despite this, the linear analytical wave field,
whose coefficients were found experimentally, agrees well with
the experimentally measured linear wave field at points other
than those used to derive the coefficients. The results serve to
validate linear wave theory as it relates to the wave field and
reinforce the concept that these waves can be used to compute
WEC performance and wave farm interactions and impacts.

I. INTRODUCTION

To design a wave energy converter (WEC), scientists and

engineers need to have comprehensive understanding of the

wave field and how it is modified by a WEC. To effectively

absorb power, a WEC needs to radiate waves that cancel the

diffracted wave field. The wave absorption, scattering, and

radiation of the WEC are the means of multi-body interactions

in a wave farm, and modification of the wave field will have

environmental impacts.

For heaving and surging point absorbers, Wypych et al. [1]

showed that circular-cylindrical radiated waves destructively

interfere with the outwardly propagating portion of the inci-

dent wave, canceling it out and absorbing energy. McNatt et

al. [2] use the cylindrical wave fields of floating bodies with

a method developed by Kagemoto and Yue [3] to efficiently

compute hydrodynamic interactions between multiple bodies

in a large wave farm. Several studies have used phase-averaged

models (e.g. [4]) or phase-resolving models (e.g. [5]) to

examine the effects of a wave farm on the environment.

However, as suggested by Babarit [6], more work needs to

be done on how to effectively represent the wave field of a

floating body in a phase-averaged wave model.

In cylindrical form, a wave field is described as the su-

perposition of various orders of progressive and evanescent

cylindrical wave modes that are modified by complex coeffi-

cients. The challenge is to determine the amplitude and phase

of the coefficients. In a 2013 EWTEC paper, McNatt et al. [7]

(also published here [8]) described a method for computing

the cylindrical coefficients by making “measurements” of the

wave field around a body over a circular-cylindrical control

surface that extends from the bottom to the free-surface.

They then demonstrated the method computationally with

the linear boundary-element software, WAMIT, and found

excellent agreement of the cylindrical wave field with ones

computed entirely by WAMIT. The method is generic and it

was suggested therein that it could be applied experimentally.

Here, wave tank experiments are described, which attempted

to experimentally apply the method of finding the cylindrical

coefficients described in McNatt et al. [8]. The experiments

were conducted in the University of Edinburgh Curved Tank.

An array of 59 wave gauges was arranged in a “circle-spoke”

pattern, where the circle of wave gauges was necessary for

deriving the cylindrical coefficients, and the spokes, which

extended radially further afield, were used for validation. Two

simple body geometries, each with a single degree-of-freedom

(DOF) were considered: a “Flap” (or terminator), and an

“Attenuator”. Tests were conducted with each body in forced

harmonic motion to measure the radiated wave. The wave field

was also measured in the absence of the body to find the

incident wave field, and with each body held fixed to find the

diffracted wave field. The difference of these two produced

the scattered wave field.

Results are shown for the measured wave field, the cylindri-

cal wave field where the coefficients were produced from the

experimental measurements, and for a cylindrical wave field

where the coefficients were found in WAMIT. In many cases

the cylindrical wave field produced from measurements is a

good representation of the complete measured wave field, and
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is almost always better than that produced by the WAMIT

model. However, there were two issues: 1) the waves were

not completely linear, and to varying degrees, higher-order

harmonics were present; and 2) reflections of the radiated

and scattered waves off the tank walls and paddles degraded

the match and most likely caused errors in the cylindrical

coefficients, which may have been significant in some cases.

Overall though, results were very good, and serve to validate

the cylindrical wave representation of the wave field of floating

bodies.

II. THEORY

The theory given here briefly describes the cylindrical wave

field coefficients, how they are used to create an analytical

wave field and how they were estimated experimentally. Linear

wave theory is assumed. The fluid is incompressible, inviscid

and irrotational. Wave amplitudes and body motions are small

perturbations about a mean value and are harmonic with time.

The fluid velocity is the gradient of a velocity potential:

V (x, t) = Re
{

∇φ (x) eiωt
}

, where φ (x) depends only on

spatial coordinates, x; i =
√
−1; ω is the circular frequency

and t is time. The governing equation of the boundary-

value problem (BVP) is Laplace’s equation: ∇2φ = 0. The

boundaries are the linearized free surface, a flat bottom,

the impenetrable boundaries of any bodies present, and in

some cases a radiation condition. The full linear wave-body

boundary value problem shall not be given here, and can be

found for example in Newman [9]. More information on the

cylindrical solution and the theory given here can be found in

McNatt et al. [8].

The wave elevation, η (x), is a complex amplitude as

function of space and is independent of time. It is related to

the velocity potential by η = − iω
g φ|z=0. The wave field of a

body (or multiple bodies) in waves is given as

η = ηI + ηS +

Q
∑

i=1

ζiη
R
i (1)

where, ηI is the incident wave elevation, ηS is the scattered

wave elevation, ζi is the complex amplitude of the ith mode of

motion, ηRi is the unit amplitude elevation of the ith mode of

motion and Q is the total number of degrees of freedom. So-

lutions to the BVP solved in cylindrical coordinates, {r, θ, z}
for the scattered and radiated wave elevation are of the form:

ηS,R (r, θ) =
∞
∑

m=−∞

amH(2)
m (kr) eimθ (2)

+
∞
∑

l=1

∞
∑

m=−∞

alm cos (klh)Km (klr) e
imθ

where the first set of terms, amH
(2)
m (kr) eimθ represents

cylindrical waves that propagate away from the origin. am
is the mth complex cylindrical coefficient; H

(2)
m (kr) is

the mth order Hankel function of the second kind; k is

the progressive wave number. The second set of terms,

alm cos (klh)Km (klr), represent the evanescent wave modes.

alm is the lmth complex evanescent cylindrical coefficient; kl
is the lth evanescent wave number; h is the water depth; and

Km (klr) is the mth modified Bessel function of the second

kind.

Equation 2 is a full analytical description of the scattered

or radiated wave elevation. The coefficients am and alm
are generally not given by off-the-shelf software. McNatt et

al. [8] described a method for finding these coefficients by

taking “measurements” of the velocity potential over a circular

cylindrical control surface that circumscribes the body. In that

method, the control surface needed to extend from the bottom

to the free surface in order to isolate the evanescent modes.

In software, making such measurements is straightforward.

However, experimentally it would be difficult to accurately

measure a sufficient number of points in the vertical direction.

Accurate measurements with wave gauges of the wave eleva-

tion can reliably be made, but knowing the wave field only

at z = 0, it is not possible to isolate the progressive coef-

ficients, am from the evanescent coefficients, alm. However,

evanescent waves decay very quickly with radial distance. If

one extends the radius of the circle of measurement points to

a sufficient distant from the body, one may assume that the

evanescent wave amplitudes are negligible, and that the wave

elevation is given as:

ηS,R (r, θ) ≃
∞
∑

m=−∞

amH(2)
m (kr) eimθ (3)

If one knows the wave elevation over a circle of radius, r0,

where r0 is sufficiently large enough to neglect evanescent

wave modes, the mth cylindrical coefficient can be found

using a Fourier transform as:

am =
1

2π

1

H
(2)
m (kr0)

∫ 2π

0

η (r = r0, θ) e
−imθdθ (4)

III. EXPERIMENTAL DESIGN

The experiments were designed to measure the wave el-

evation, so as to derive the cylindrical coefficients and test

the analytical representation of the wave field. Critical to this

analysis is the design of a wave gauge array. Furthermore,

the scattered and radiated coefficients need to be derived

separately, and so multiple experimental setups were devised

to do this. For variety, the analysis was performed on two

different WEC-like geometries: a “flap” (also known as a

“terminator”) and an “attenuator” for three wave frequencies:

0.8, 1, and 1.25 Hz.

A. Wave Tank

The experiments were conducted in The University of Ed-

inburgh Curved Wave Tank. The tank was refurbished in May-

June 2014, shortly before the experiments were conducted

in October-November, 2014. Prior to the refurbishment, the

performance of the tank was analyzed in Gyongy et al. [10]
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Fig. 1. The figures show the experimental test setup including a) the location of wave gauges in the wave tank, and b) the wave gauges with their coordinate
system and labels.

in order to validate a computational model of the tank. The

tank (see Figure 1-a) has a curved array of force-feedback

absorbing wave makers subtending an arc of 96 degrees at a

radius of 9 m. Opposite the wave makers is a 12 m length of

“beaches” made up of porous material, and along one side is

a glass wall of length 4.4 m. The wave makers are capable of

generating waves over a frequency range of 0.5-1.5 Hz. The

water depth at which the tests were performed was 1.16 m.

B. Wave Measurements

The wave gauge array consisted of a circle of 24 wave

gauges, and 5 spokes of 8 wave gauges each. Measurements

from the circle of gauges are used to find the cylindrical

coefficients via Equation 4, and measurements along the

spokes are used to validate the analytical wave field given

by Equation 3. The array is shown in Figure 1 in a schematic

of the curved tank as well as close up with its coordinates

and labels. The center of the circle was taken to be the origin

of the wave gauge array. The directional coordinate, θ, was

defined so that θ = 0 corresponded to the β = 0 incident

wave direction of the tank, which was also parallel to the

tank’s glass wall. Positive θ is counter-clockwise.

The circle of wave gauges was positioned at a radius of

0.8m, and were numbered c0−c23 over even increments in θ
of π/12 radians. The spokes extended radially along constant

θ. They were numbered s1−s5, and along each spoke were 8
wave gauges, numbered for example: s1−1, s1−2, . . . going

radially outward. The s1 spoke was located at θ = π, s2 at

θ = 5
4π, s3 at θ = 3

2π, s4 at θ = 7
4π, and s5 at θ = 0. The

spacing between gauges along the spokes was 0.2m, and the

first gauge was located at r = 0.6m. Five of the wave gauges

were part of both the circle and the spokes; these were in the

2 position of the spokes (e.g. s1 − 2). The total number of

wave gauges employed was 59.

The gauges were resistive wave gauges. They were made up

of two 3mm diameter stainless steel round bars with a working

length of 0.3 m and a separation distance of 20 mm. The

wave gauges were wired to one of 3 older model Wave Gauge

8 measurement boxes by Edinburgh Designs. Only 3 wave

gauge boxes were available, each box had only 8 measurement

channels, and one box had two broken channels, which meant

that only 22 wave gauge channels were active for any given

run. Consequently, each test was performed 3 times in order

to capture all of the wave gauge information.

Calibration is a very important aspect of using wave gauges.

Calibrating 59 wave gauges could be arduous, however, a

novel calibration system was devised which allowed all the

active wave gauges to be calibrated simultaneously. The entire

wave gauge rig was supported by two beams that spanned the

tank from the wave maker side to the beach side (see Figure

2). Each end of each beam was supported by a car scissor

jack, next to which was a ruler. The entire rig could be raised

and lowered by a known amount by adjusting these scissor

jacks, which would in turn raise or lower the wave gauges in

the tank. It was estimated that the rig could be set to a vertical

accuracy of less than 0.5mm.

A five point calibration over a range of ±40mm was used

for each gauge, and the gauges were found to be very linear.

The wave gauges were calibrated at least everyday, or multiple

times per day if the active wave gauges were switched.

A calibrated wave gauge measures wave elevation as a

function of time. The wave signal was periodic, but not

necessarily sinusoidal (i.e. linear). For the theory, the complex

linear amplitude is needed. To extract the amplitude, an FFT

309C1-4-



Fig. 2. The picture shows the experimental setup in the wave tank. One
can see the two cross-beams which support the wave gauges and model from
overhead. The scissor jacks which were used to calibrate the wave gauges are
indicated. The model is the attenuator at an orientation of 45◦.

was performed on the time domain signal of each wave gauge,

after a point in time when the waves appeared to have reached

a steady state. Then the amplitude and phase of the lowest

order signal, which always conformed to the frequency of

interest was used for the complex linear amplitude. Care was

taken to ensure that an integer number of periods were present

in the measurement window so as to produce a frequency

domain signal with very little leakage.

C. Physical Models

Two different types of WEC models were used in the

analysis: a “flap” and an “attenuator” [11]. Each only had a

single degree of freedom. The flap was hinged at the bottom

and can be thought of as a terminator because its across-

wave dimension was significantly larger that its along-wave

dimension. The attenuator was a horizontal cylinder with

spherical ends that pitched about its midpoint, which was

located at the still water level. The single degree of freedom

was maintained through hinges that were fixed to a frame

mounted on beams that were suspended above the water.

Figures 3-a) and -b) show a diagram of the flap and attenuator

and indicate each ones mode of motion. Figure 2 shows the

attenuator in its setup.

Figures 4-a) and -b) show the dimensions of the flap and

attenuator. The flap had a width of 0.6m, a height of 0.5m,

a thickness of 0.08 m, and a draft of 0.4 m. The corners

and edges were rounded slightly to reduced viscous effects.

The attenuator had an overall length of 0.8m, and a diameter

of 0.16 m. The ends where hemispherical, and it was half

Fig. 3. The diagram shows the bodies indicating specifically the location of
the hinge and the mode of motion.

Fig. 4. Shown are drawings of each geometry model assembly indicating
dimensions in meters.

submerged in still water. The models were constructed of a

high-performance foam called Divinycell around an internal

aluminium frame.

The physical setup also allowed the body orientation to

be changed relative to the wave gauge coordinate system

to achieve different incident wave directions. Two body ori-

entations were considered: 0◦ and 45◦(incident direction of

−45◦), where the orientation is a rotation of the body in the

θ coordinate. See Figures 1-b and 2.

The models were not true WECs as they did not intention-

ally absorb wave power - there was no power-take-off (PTO)

mechanism. This approach was taken, because a PTO was not

necessary to the analysis, and the lack of one reduced the

complexity of the physical model design.

D. Run Conditions

Three frequencies were considered for the tests: 0.8, 1, and

1.25 Hz. Plane waves were used as the incident waves, and for

some conditions the body was rotated to change the incident

wave angle. At each frequency, three tests were performed:

incident, diffracted, and radiated. Each test was repeated at

least twice, then the mean of the linear amplitude and mean

of the linear phase was taken as the final result.

1) Incident, ηI : For this, a plane wave at each frequency

was measured with no body present, it is represented by the

wave elevation: ηI .

2) Diffracted, ηI + ηS: For these tests, the models were

fixed in their mean position and subjected to incident waves.

The diffracted wave field is the sum of the incident and the

scattered wave fields: ηI +ηS , and so the scattered wave field

was then found by subtracting the incident from the diffracted.
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Fig. 5. The picture shows the radiated wave setup for the flap. Indicated are
the motor (one sees the steel wheel used as inertia) and the linkage to the
body, which was designed to be long compared to the amplitude of motions.
As shown the setup is not in its running position, but is raised out of the
water.

That is, the difference of the complex linear amplitudes was

taken between the diffracted and the incident wave fields to

get the scattered wave field. The diffracted wave field was

computed for two body orientations: 0◦ and 45◦. For both

the incident and diffracted wave conditions, the start of the

measurements was triggered by a signal from the wave makers,

which ensured a phase coherence between the incident and

diffracted wave measurements as well as between repeated

tests.

3) Radiated, ζηR: The radiated wave field was created

by forcing a harmonic motion on the body in its degree of

freedom in the absence of incident waves. The radiated wave

field is described by ζηR, where ηR is the unit amplitude wave

field and ζ is the complex motion amplitude. The harmonic

forcing was produced by driving the motion with a linkage

connected to a cam, which was connected to a motor. To

produce a sinusoidal motion in angle, the linkage was designed

to be long with respect to the lever arm on the body and the

radius of the cam. Figure 5 shows the radiated wave setup for

the terminator.

The motor was run open loop to simplify the setup. A large

steel plate was used as an inertial mass to help maintain a

harmonic motion. However, it was difficult to tune the motion

exactly to the frequency of interest, and the motion drifted

slightly in amplitude and frequency. In the radiated wave field

tests, the drive frequency was off by a maximum of 2% of the

desired frequency, which would result in approximately a 4%

error in wavelength.

The motion of the body, ζ, was measured with a waterproof

contactless sensor that was connected at the hinge location.

The total radiated wave, ζηR, was measured by the wave

gauges. There was no mechanism for triggering the measure-

ments, and so measurements made by repeat tests were aligned

in phase, by normalizing the wave phase to the phase of the

body position.

E. Experimental Data Repository

All the experimental data from these tests, including

raw data, setup descriptions, pictures and videos, and

Matlab scripts is available for free online: github.com/

Fig. 6. The figure shows the real and imaginary parts of the linear amplitude,
which indicates the phase alignment, of spoke s1 for Flap in the radiated wave
setup at 1 Hz. The full result is shown in Figure 8.

camalamadingdong/cyl wfe. The authors hope that the data

can be useful to other scientists and engineers.

IV. RESULTS AND DISCUSSION

Results are shown in Figures 8-10 for a selection of condi-

tions: the flap radiated wave field at 1 Hz, the flap oriented at

0◦ scattered wave field at 0.8 Hz, and the attenuator oriented at

45◦ scattered wave field at 1.25 Hz. The results were selected

to show some of the best and worst matches as well as cover

all frequencies.

The plots show three lines:

Measured:

Magnitude of the linear wave amplitudes from tank

measurements

Cylindrical:

Magnitude of the wave amplitudes predicted by

Equation 3, where the cylindrical coefficients were

computed from the measurements via Equation 4

WAMIT:

Magnitude of the wave amplitudes predicted by

Equation 3, where the cylindrical coefficients were

computed with WAMIT, see [8]

The top plots show the points around the circle of wave

gauges, where the abscissa is angular position. Plots along

the left-hand side show the spokes of wave gauges. For the

scattered results, the magnitude of the incident wave,
∣

∣ηI
∣

∣, is

given, which was taken as the mean of the magnitudes of all

wave gauges. For the radiated wave results, the magnitude of

the angle of motion, |ζ|, is give.

Also shown in each figure are the magnitudes of the cylin-

drical coefficients, |am|, as a function of m, and the magnitude

of the Kochin function, |F (θ)|, of the radiated or scattered

wave. The Kochin function describes the far-field wave field

by: ηS,Rf = F (θ) (kr)
−1/2

e−ikr, and is related to the cylin-

drical coefficients by: F (θ) =
√

2
π e

iπ
4

∑

eim
π

2 ameimθ.

The R2 value for both the Cylindrical (R2
C) and

the WAMIT (R2
W ) data is given, where: R2 = 1 −
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Body Wave Orient (deg) Freq (Hz) R
2

C
R

2

W

Flap

Radiated -
0.8 0.78 0.68
1 0.95 0.80

1.25 0.90 0.78

Scattered

0
0.8 0.93 0.91
1 0.97 0.89

1.25 0.91 0.80

45
0.8 0.86 0.80
1 0.92 0.84

1.25 0.91 0.84

Attenuator

Radiated -
0.8 0.60 0.61
1 0.75 0.79

1.25 0.86 0.86

Scattered

0
0.8 0.68 0.64
1 0.76 0.70

1.25 0.75 0.74

45
0.8 0.68 0.56
1 0.82 0.57

1.25 0.35 0.18

TABLE I
THE R

2 VALUES FOR THE CYLINDRICAL FIT TO THE DATA (R2

C
) AND FOR

THE WAMIT FIT TO THE DATA (R2

W
) FOR EACH CONDITION.

∑

(yi − fi)
2
/
∑

(yi − ȳ)
2
, and yi is the measured data point,

fi is the Cylindrical or WAMIT point, and ȳ is the mean of the

measurements. The R2 value indicates how well a model fits a

given set of data relative the variance of the data, where a value

closer to 1 indicates a better fit. R2 was computed using only

the data points along the spokes; the points over the circle are

neglected, because this is where the Cylindrical values were

fitted to the measurements originally. The R2 values for all

cases are summarized in Table I.

Although the plots only show the magnitude of the wave

amplitudes, the R2 also takes into account the phase differ-

ence. Equation 3, of course, models both the amplitude and

the phase. When results are plotted as Re {η} (or Im {η})

which shows the phase of the wave, the match between the

Measurements and the Cylindrical model is more striking, as

can be seen in Figure 6, which shows the Flap radiated wave

at 1 Hz along spoke s1.

Figure 8 shows the results from the Flap radiating at 1

Hz. Around the circle of gauges, the Cylindrical results and

the Measured results are virtually indistinguishable. In a way,

this should not be surprising as the Cylindrical results are

fitted around this circle with a Fourier transform. However,

they do not necessarily match everywhere as the Cylindrical

results are produced with 11 cylindrical (Fourier) coefficients

(a truncation value of M = 5), which may not be sufficient

to reproduce the circle Measurements exactly. However, in

this case, the Flap produces a very nice clean “Pitch” type

radiated wave - a wave that has one phase on the front of the

body and the opposite phase in the back. This type of wave is

dominated by the |m| = 1 cylindrical coefficients. In Figure

8, the m = ±1, am, coefficients are dominant, while the other

am coefficients are nearly 0. Comparison of the Cylindrical to

the Measured out along the spokes is also very good, and here

is where the judgment of the Cylindrical should be made - that

is, the Cylindrical was devised from measurements around the

circle, and comparison along the spokes shows the goodness-

Fig. 7. Figure shows plots of the full run-time time series, amplitude spectra,
and close-up of the time series for wave gauge c12 (also s1-2) for both the
diffracted and radiated wave field of the Flap at 1 Hz.

of-fit of Equation 3, where the coefficients are computed with

Equation 4. There is some disagreement at the far ends of the

spokes, but generally the trend of the Cylindrical matches the

Measured well.

Comparison of the WAMIT modeled results shows that

WAMIT over estimates the magnitude of the measured linear

radiated wave. However, WAMIT does accurately predict the

“Pitch” wave behavior, and it shows the correct trends in

magnitude and phase. One explanation for WAMIT’s over-

estimate is that the measurements shown in the plots are of

the linear amplitudes, and in almost all cases, higher order

harmonics were present, which WAMIT does not model. That

is, for a given motion, WAMIT models the wave that is

generated as completely linear, whereas in physical reality,

some of the wave energy is in higher-order harmonics and the

measurements given here only show the linear portion.

Figure 7 shows plots of the full run-time time series,

amplitude spectra, and close-up of the time series for wave

gauge c12 (also s1-2) for both the diffracted and radiated wave

field of the Flap at 1 Hz. Firstly, as mentioned, higher-order

component are present. For the diffracted case, the second

order component (the spike in the amplitude spectrum at 2

Hz) has an amplitude which is about about 9.1% of the

linear component, which is only 0.8% by energy. (Energy

is proportional to amplitude squared.) For the radiated case,

which is the case considered in Figure 8, the amplitude of the

609C1-4-



Fig. 8. The figure shows the results for the Flap radiated wave tests at 1 Hz.

second order harmonic is 32% of the primary, which means

that it has about 10% of the energy, a fairly significant value.

The plots at the bottom show a close up of the time-domain

signal, and one can see that the “2nd order” fit, which is the

sum of the sinusoidal signal at the primary frequency and one

at the second order frequency, does improve the fit to the data.

For the diffracted case, it improves it only marginally, while

for the radiated it makes a significant difference.

Although the second order portion is significant in the

radiated wave field, the cylindrical theory given herein only

applies to linear waves, and so the second order component

cannot be addressed. This partially explains the disagreement

between WAMIT and the Measured data. For example, at

that wave gauge (c12), WAMIT predicts an amplitude of 2.8

cm, while the linear measured amplitude is only 1.9 cm, a

difference of 50%.

Also here, it is important to note that the radiated wave

signal is not as clean as the diffracted signal - the amplitude

of the time-domain signal varies with time, the spectrum has

a bit of what looks like leakage around the frequency peaks,

and the close up of the time-domain signal show a fairly

nonlinear wave. These issues were not necessarily intrinsic

to the radiated wave with this body, but more likely due to the

experimental setup. As was mentioned in Section III-D, the

motor was driven open loop and it was difficult to maintain

its precision. If the experiments were to be repeated, it would

be a good idea to have feedback control on the motor. In the

amplitude spectrum, the spreading around the peaks is not
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Fig. 9. The figure shows the results for the Flap scattered wave tests at 0.8 Hz.

“leakage” as the result of signal processing, but a real result

due to a slight variation in the drive frequency of the motion

over time. Because of this spreading, the sum, rather than a

single peak, of all complex amplitudes with energy near each

peak was used to produce the linear amplitudes and phases.

Figure 9 shows results for the scattered wave of the Flap

oriented at 0◦ for a wave with 0.8Hz. The Cylindrical is not as

exact around the circle as it was for the radiated wave case, and

going out along the spokes, one sees some slight oscillations in

the measured data that are not present in the Fit or WAMIT.

These oscillations are standing waves due to reflections of

the scattered wave off of the wave tank walls and paddles.

The reflections are not of the incident wave, because the total

incident wave field, which includes reflections is subtracted

out when the difference is taken between the diffracted and

the incident waves.

Equation 3, which is used to represent the Cylindrical

and WAMIT wave field, only describes outwardly propa-

gating waves, that is, the Hankel function of the second

kind, H
(2)
m (kr), describes outwardly propagating wave en-

ergy. There is no mechanism to represent incidient wave

energy, such as reflections that would produce the oscillations

in magnitude that are standing waves. In cylidrical coordi-

nates, incident waves are described using a Bessel function

of the first kind, Jm (kr). An arbitrary incident wave is:

ηI =
∑

∞

m=−∞
aImJm (kr) eimθ. Like with the outgoing

radiated and scattered wave fields, the directionality of the

incident wave field is embedded in the cylindrical coefficients.
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Fig. 10. The figure shows the results for the Attenuator scattered wave tests at 1.25 Hz.

However, a complex function describing the direction of the

incident waves can be found: a (β) =
∑

∞

m=−∞
eim

π

2 aImeimβ ,

where β is the “plane wave direction”. See John [12], Section

5, although his expression for the directional function (5.23)

lacks the eim
π

2 coefficient, it is accounted for in next equation

by the use of θ − π
2 as the argument of his g () function.

The actual linear wave field including the outwardly prop-

agating radiated and scattered waves as well as the reflections

should be described as:

η =

∞
∑

m=−∞

(

(

aS,Rm + aS2
m

)

H(2)
m (kr) + aI2mJm (kr)

)

eimθ

(5)

where aS,Rm are the scattered radiated wave amplitudes as

before, aI2m are the incident wave amplitudes of the reflections

off of the tank walls, beaches, and paddles. The amplitudes aS2
m

are the amplitudes of the scattering of the incident reflected

waves. If one could find all of these coefficients, then the wave

field including standing waves could be reproduced.

With only a single circle around which to measure, the

outwardly propagating waves cannot be distinguished from the

incoming reflections. This is completely analogous to the two-

dimensional case where a single wave gauge cannot separate

incident and reflected waves, while two or more wave gauges

can. Similarly, if one had two concentric circles at radii r0
and r1, one could separate the outwardly propagating from

the incoming waves by solving a system of equations:
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(

aS,Rm + aS2
m

)

H(2)
m (kr0)+aI2mJm (kr0)

=
1

2π

∫ π

−π

η (r0, θ) e
−imθ (6)

(

aS,Rm + aS2
m

)

H(2)
m (kr1)+aI2mJm (kr1)

=
1

2π

∫ π

−π

η (r1, θ) e
−imθ (7)

For each m, the right-hand side is known, and one seeks

the pair of unknowns:
(

aS,Rm + aS2
m

)

and aI2m . However, the

radiated wave or the primary scattered wave (aS,Rm ) still cannot

be separated from the scattered waves due to reflections (aS2
m ).

The locations of the zeros of the Bessel function must also be

considered. To the authors’ knowledge, such a method has not

been proposed before.

The wave field that is measured around the circle includes

both the outwardly propagating and inwardly propagating

waves, and in the single circle method used herein, the

Cylindrical coefficients are fitted to a model which assumes

all wave energy is propagating outwardly. This means that if

there is significant reflected energy present around the circle,

the coefficients and resulting Cylindrical wave field will be

inaccurate. This can be seen in Figure 10, which shows the

scattered wave field of the Attenuator oriented at 45◦ in 1.25

Hz, and is the worst result from this study. There are significant

standing waves shown along s1 and s2, and s4 shows a line of

very high measurements that are not captured by the model.

It may be difficult to determine where the reflections are

coming from, why the Attenuator at 45◦, 1.25 Hz, was the

worst case, and why the spokes s1, s2, and s4 show such

disagreement. Reflections propagated in all directions, but

given the location of the standing waves, it may be that the

reflections were from the wave paddles. Although the paddles

were force feedback, they may not have been able to respond

to the small amplitude of the scattered waves (< 1 cm).

The inability to distinguish incoming from outgoing waves

is a flaw in the experimental design. Perhaps the two-circle

design should have been used to determine reflections. How-

ever, other research being done suggests that these reflections

would have very high m cylindrical values, which would be

difficult to capture accurately from the circle of wave gauges.

A better approach would be to minimize the reflected energy,

perhaps with absorbing wave paddles and floating beach in a

wave tank like FloWave [13].

Given the issues with higher-order harmonics and reflec-

tions, the results still show that a wave field represented by the

cylindrical solutions is good approximation of the wave field

produced by physical reality within the linear signal domain.

V. CONCLUSION

Experiments were conducted in The University of Edin-

burgh Curved Wave Tank to measure the cylindrical coef-

ficients of the scattered and radiated wave fields of two

different geometries of WECs at three different frequencies.

The resulting cylindrical analytical wave fields were then

compared to measurements at other points in the wave tank

and with a cylindrical wave field created numerically with

the BEM software WAMIT. The measured cylindrical wave

field generally agreed very well with the measured wave

field. The numerical wave field did not agree quite as well,

and one reason for this was that there was energy at higher

order components, which could not be modelled by WAMIT.

Additionally, reflections of the scattered and radiated waves

off of the wave tank paddles, walls, and beaches caused some

inaccuracies in the derivation of the cylindrical coefficients,

which proved to be more significant in some conditions than

in others. Ultimately, the experiments have served as validation

for the use of cylindrical wave fields for representing the

scattered and radiated waves of floating bodies.
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