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Abstract—State-of-the-art Ground Moving Target Indicator
(GMTI) schemes include the Displaced Phase Center Antenna
(DPCA) and Along Track Interferometry (ATI) which are com-
monly used image-based dual-channel techniques for moving
target detection. In the present paper, we provide a different
perspective for solving GMTI tasks by generalising the ground
moving targets imaging as an parameter estimation and optimisa-
tion problem. A sparsity based ground target imaging approach
is described to improve the image quality for moving targets
and estimate their states. By exploiting the fact that moving
targets are highly sparse in the observed scene and feasible
velocity space, the proposed method constructs a velocity map
for the illuminated region, and combines this map with a sparsity
based optimisation algorithm to realise the image formation. The
performance of the presented method is demonstrated through
GOTCHA airborne SAR data set.

Index Terms—SAR, GMTI, sparsity, compressed sensing, ve-
locity map

I. INTRODUCTION

One of the basic principles of SAR is to assume a stationary
scene. Therefore moving targets will induce displacement
and blurring in the image. Ground Moving Target Indicator
(GMTI) aims to detect the moving targets in the SAR image
and estimate their velocities which are of great value for the
battlefield awareness and information gathering. The entire
SAR/GMTI systems often consist of several signal process-
ing steps such as pre-processing, range compression, clutter
cancellation, target detection, geo-location, motion parameters
estimation and SAR image formation [1][2][3].

Displaced Phase Center Antenna (DPCA), Along Track
Interferometry (ATI) and Space-time Adaptive Processing
(STAP) are the multi-channel methods which have been widely
used in the SAR community. DPCA and ATI [4][5] attempt to
expose the moving targets from the SAR images of different
channels with magnitudes and interference phases respectively.
However the target radial velocities can be derived from the
ATI results directly and DPCA is not capable of doing that.
STAP [6] is well known to be computationally expensive,
and it is hampered by the false alarm rates especially in
non-homogeneous urban environments. Also in 2012, Prunte
proposed to indicate moving targets based on multi-channel
SAR using compressed sensing [7]. The proposed method is
utilising the sparsities pixel-wise in the image domain.

In this paper, we present a model to link up certain parts
of the processing chain in multi-channel SAR/GMTI and

represent them as a generalised optimisation problem. By
introducing the sparsities in the proposed model, i.e. the
number of moving targets is reasonably small compared to
the size of the observed scene, ground moving targets can be
mapped and their motion parameters can be estimated. We
hope this novel model can provide an alternative perspective
for viewing SAR/GMTI problems.

The remainder of this paper is organized as follows. Section
two describes the signal model in a typical dual-channel SAR
system. In section three, the sparsity based moving target
imaging model is presented. We first discuss the channel
balancing techniques to co-register different channels. Then
we present the mechanism of traditional SAR imaging and
clutter cancellation algorithms, and finally introduce the s-
parse regularized optimisation model to realise simultaneous
SAR/GMTI. In section four, the real airborne SAR data is
utilised to demonstrate the performances of the proposed
model. Conclusions and future work are presented in section
five.

II. SIGNAL MODELING

The proposed framework is presently demonstrated through
a typical dual-channel SAR system in this paper, but it can
be generalised to the scenarios with more than two channels.
The geometry with a moving target in the observed scene is
shown in Fig. 1. The phase centres of the fore-antenna and aft-
antenna are spatially separated by a distance d on the flight
path of the platform. The Cartesian velocity components of the
moving target are denoted as (v(x), v(y), v(z)) which can be
converted to (v(az), v(r)) in the azimuth and radial directions.
Let the azimuth time of the transmitted pulses be τn where
n = {1, 2, ..., N} is the pulse number. Then r(τn) is the
position of the target at τn, r(t)i (τn) and r

(o)
i (τn) represent

the distances from the moving target to the i − th antenna
and the distance from the scene origin to the corresponding
antenna position. Also the platform velocity within a short
sub-aperture is approximated by a constant vp, and fPRF is
the pulse repetition frequency (PRF).

In the remainder of the paper, we apply the stop-and-hop
approximation which assumes that the targets and platform
have constant positions during the RF propagation of one
pulse unless otherwise stated. After the de-chirping process,
in which the platform motion has been compensated with
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Fig. 1. The geometry of a dual-channel SAR system with a moving target in
the observed scene.

reference to the scene origin, the channel 1 (fore-antenna) and
2 (aft-antenna) discrete received signals of a single moving
target located at r(τn) are:

Yi(fk, τn) = Aiσ(r(τn)) exp

(
−j4πfkui(τn)

c

)
(1)

where {fk|k = 1, 2, ...,K} denotes the range frequencies; Ai

is the nominal factor of the received signal for the i − th
channel which accounts for the beam pattern and energy loss;
σ(r(τn)) is the complex reflectivity of this moving target; c
represents the speed of light and ui(τn) denotes the differential
range r(t)i (τn)− r(o)i (τn).

We assume that the moving target has constant velocity
during the sub-aperture time, then the instantaneous spatial lo-
cation of the target r(τn) can be expressed as (x0+τnv

(x), y0+
τnv

(y), z0 + τnv
(z)) where (x0, y0, z0) stands for the initial

position of the target. The goal of SAR/GMTI is to estimate
the target states including the geolocation r(τn) and velocities
(v(x), v(y), v(z)) given the received signals Y1(fk, τn) and
Y2(fk, τn).

III. SPARSITY BASED MOVING TARGET IMAGING

Based on the dual-channel SAR system we describe the
proposed sparsity based moving target imaging approach and
its relationship with commonly used SAR/GMTI techniques.

A. Pre-processing and Channel Balancing

For subtractive GMTI methods such as ATI and DPCA, the
differences between channels are exploited to detect targets
and suppress the clutter. Thus it is crucial to equalise the
channel transfer functions in the pre-processing step. With

channel balancing techniques, we attempt to retrieve the same
responses for stationary targets between different channels.

Since the baseline d in the SAR system is along the platform
track, the received echo of the aft-antenna can be viewed as
the delayed received signal of the fore-antenna if the observed
region does not change over time. We can illustratively assume
that r(c)1 (τn) = r(c)2 (τn + ∆) where r(c)i (τn) denotes the
location of the i− th antenna at τn and ∆ = d/vp represents
the delay between two channels. Here τn + ∆ may not
correspond to an exact pulse time. Then the differential range
u2(τn + ∆) can be rewritten as

u2(τn + ∆)=r
(t)
2 (τn + ∆)− r(o)2 (τn + ∆)

=‖r(c)2 (τn + ∆)− r(τn + ∆)‖ − ‖r(c)2 (τn + ∆)‖
=‖r(c)1 (τn)− r(τn + ∆)‖ − ‖r(c)1 (τn)‖ (2)

If the targets are isotropic and their reflectivities keep the
same over time then we can derive from (1) that

Y1(fk, τn) = A1σ(r(τn))×

exp

(
−j4πfk(‖r(c)1 (τn)− r(τn)‖ − ‖r(c)1 (τn)‖)

c

)
(3)

Y2(fk, τn+∆) = A2σ(r(τn))×

exp

(
−j4πfk(‖r(c)1 (τn)−r(τn+∆)‖−‖r(c)1 (τn)‖)

c

)
(4)

where Y2(fk, τn +∆) is the time-shifted version of Y2(fk, τn)
which can be estimated by the multiplication in the frequency
domain with a ∆-induced phase shift term. We denote this as
Ỹ2(fk, τn) = Y2(fk, τn + ∆).

It can be seen that the velocity and position information of
the moving targets are fully described by the last exponential
terms in (3) and (4). We also need to balance the channels
to equalise A1 and A2 as done for example in [8]. In this
way, Y1(fk, τn) and Ỹ2(fk, τn) are supposed to be the same
for stationary targets. We will employ this channel balancing
technique to pre-process the SAR data in the remainder of the
paper.

B. SAR Imaging and Clutter Cancelation

Numerous algorithms have been proposed for SAR image
formation by investigating the trade-off between complexity
and image quality. For simplicity we will focus on matched
filter based techniques.

Let the discrete grid on which the image is formed
be Gml = (xm, yl, 0) and dmln = ‖r(c)1 (τn)−Gml‖ −
‖r(c)1 (τn)‖, where m = {1, 2, ...,M} and l = {1, 2, ..., L}.
Then the observed scene can be viewed as the collection of
the targets in this grid. Here the elevation is assumed to be
zero for the convenience of subsequent analysis. The formed



SAR images with the matched filter method are

X1(m, l)=

K∑
k=1

N∑
n=1

Y1(fk, τn) exp

(
j4πfkdmln

c

)
(5)

X2(m, l)=

K∑
k=1

N∑
n=1

Ỹ2(fk, τn) exp

(
j4πfkdmln

c

)
(6)

Typical clutter suppression methods such as DPCA and
ATI exploit the differences between (5) and (6) to reveal the
moving targets. Specifically, DPCA is achieved by subtracting
(6) from (5), and ATI is realised by multiplying (5) with the
conjugate of (6). For DPCA, we have that

X1(m, l)−X2(m, l)

=

K∑
k=1

N∑
n=1

Y1(fk,τn)exp

(
j4πfkdmln

c

)(
1−exp

(
−j4πfk(wmln)

c

))
(7)

where wmln =‖r(c)1 (τn)−rml(τn + ∆)‖−‖r(c)1 (τn)−rml(τn)‖.
At azimuth time τn, the position of the target which was
initially located at (xm, yl, 0) is denoted as rml(τn). wmln

can then be approximated by v
(r)
ml∆ where v(r)ml is the radial

velocity of this target. Also exp(−j4πfkwmln/c) can be
approximated with a constant if the target remains in the same
range resolution cell during the time interval ∆ [9]. Then
equation (7) can be rewritten as:

X1(m, l)−X2(m, l)≈X1(m, l)

(
1−exp

(
−
j4πf0(v

(r)
ml∆)

c

))
(8)

where f0 is denoted as the centre frequency of the transmitted
signal chirps. Similarly for ATI we have that

X1(m, l)×X∗2 (m, l) ≈ |X1(m, l)|2 exp

(
j4πf0(v

(r)
ml∆)

c

)
(9)

It can be seen that (8) and the phase of (9) are zero for
stationary targets (v(r)ml = 0). Particularly the DPCA results are
approximately the velocity-scaled reflectivities of the moving
targets. Hence, clutter suppression techniques such as DPCA
and ATI enable us to project out stationary targets. Also the
radial velocities {v(r)ml |m = 1, 2, ...,M ; l = 1, 2, ..., L} can be
estimated directly based on the phase of (9).

C. Sparse Regularized SAR/GMTI

There has been a number of SAR imaging algorithms
with super-resolution effects by utilising the image sparsity
[10][11]. The proposed approaches can mitigate the sidelobes
in SAR images and reconstruct the bright image elements. In
GMTI applications the whole observed scene is not sparse but
the moving targets are often sparse. In this way, if we can build
up the linear projection from the raw data to the moving targets
and its inverse projection, the techniques which are commonly
used in compressed sensing [12] can then be leveraged to form
the image of these sparse targets.

Let Xi = {Xi(m, l)} ∈ CM×L be the SAR image of
the i − th channel; Y1 = {Y1(fk, τn)} ∈ CK×N and
Ỹ2 = Ỹ2(fk, τn) ∈ CK×N be the received phase history of the
1st channel and the balanced phase history of the 2nd channel
respectively. Based on (1) we can write the signal model in
matrix-vector form as Y1 = ΦF (X1) where ΦF is the forward
projection operator.

Note that DPCA is essentially the linear projection from
Y1 − Ỹ2 to X1 − X2, thereby all stationary scatterers are
removed. Therefore a simple sparsity based GMTI could
exploit the following optimisation problem:

min
X
‖Y1 − Ỹ2 − ΦF (X)‖2F + λ‖X‖1

s.t. X ∈ CM×L
(10)

where ‖‖F represents the Frobenius norm, λ is a positive
tuning parameter, and X is the sparsified image of moving
targets and sparsity in X is encouraged through the inclusion
of the L1 norm penalty function. Note that this formulation
still takes no account of the velocity effect at this stage, and the
moving targets will be displaced and blurred in the resulting
X.

A more advanced sparsity based SAR/GMTI formulation
can also be derived that simultaneously takes into account
the sparsity of the moving targets and estimates their ve-
locities. Let V = (V(x),V(y), 0) denote the velocity maps
for a specific observed scene X (here X includes stationary
and moving targets) where V(x) = {v(x)ml } ∈ RM×L and
V(y) = {v(y)ml } ∈ RM×L are the velocity components of
Gml in x and y directions. The velocity map V can be
interpreted as granting each image element with specific ve-
locity components. With reference to the geometry Fig. 1, the
velocity map can be directly converted to the corresponding
azimuth velocity V(az) = {v(az)ml } ∈ RM×L and radial velocity
V(r) = {v(r)ml} ∈ RM×L.

In this model we make the reasonable assumption that there
is only one dominant velocity for each image element. This
assumption makes the reconstructions for a specific physical
position (m, l) to be 1-sparse along the V axis. Incorporating
the velocities into the signal model it can be shown that:

Y1(fk, τn)=

M∑
m=1

L∑
l=1

X(m, l) exp

(
−j4πfkd

′
1mln

c

)
(11)

Ỹ2(fk,τn)

=

M∑
m=1

L∑
l=1

X(m, l) exp

(
−j4πfkd

′
1mln

c

)
exp

(
−
j4πfkv

(r)
ml∆

c

)
(12)

where d′1mln=‖r(c)1 (τn)−Gml−(τnv
(x)
ml , τnv

(y)
ml , 0)‖−‖r(c)1 (τn)‖.

Given a velocity map V, we can denote the projection
operator from the physical space X to the phase history Y1 and
Ỹ2 as ΦV

F and Φ̃V
F respectively. The following model is hereby



introduced to simultaneously estimate the target’s states and
form the SAR images:

min
X,V
‖Y1−ΦV

F (X)‖2F +‖Ỹ2−Φ̃V
F (X)‖2F +λ‖V(x)‖0+λ‖V(y)‖0

s.t. X ∈ CM×L,V(x) ∈ RM×L,V(y) ∈ RM×L

supp(V(x)) = supp(V(y))
(13)

where λ is a positive tuning parameter. The resulting X
represents the reflectivities of the observed scene including
both stationary and moving targets. Practically solving (13) is
challenging and therefore in the next section we will explore
a solution based on a partial formulation of (13) that further
leverages the ATI technique.

IV. PROCESSING RESULTS OF THE GOTCHA DATA

The sparsity method is demonstrated through the AFRL
GOTCHA data set [13]. The described scope contains an X-
band SAR system with three phase centers and a number
of moving vehicles in an urban environment. The ground
truth data of one vehicle is provided. To be specific, the
transmitted chirp is centred at 9.6 GHz, the phase history
is collected over 71 seconds interval, and the PRF is 2.17
kHz. Furthermore, as presented in [13], the data was range-
gated from 5400 range samples to 384 sub bins to decrease the
required storage. The scenario can be found in Fig. 2. Based
on the ground truth data, the target trajectory is illustrated
by the red path. With reference to the streets and roads,
the target trajectory is displaced along the x direction for
about 20 meters. These displacements result from the elevation
variations of the observed terrain. In this section, we consider
the data from first two channels at the 46−th second snapshot
of the scenario with 200 pulses (about 0.1 second interval)
around.
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Fig. 2. The reconstructed SAR image in dB with partial data to show the
GMTI scenario. Here we assume a flat terrain and the accelerated version of
(5) is employed. The red path stands for the target trajectory based on the
ground truth data.

To preprocess the data, we first run the inverse operation
of the the range gating and replace the unknown range gates
with zero. The phase histories are reorganized into data

matrices Y1 ∈ C5400×200 and Y2 ∈ C5400×200. We then
apply the 2D channel balancing technique [8] to the first two
channels and the calibrated phase histories are Y1 and Ỹ2. To
decrease the computational complexity, here we approximately
crop the phased history in the 2D Fourier transform domain
with rectangular windows (49 points in range and 10 points
in azimuth directions) to focus on the known target. The
cropped phase histories are denoted as Y(t)

1 ∈ C5400×200 and

Ỹ
(t)

2 ∈ C5400×200. The formed image of Y(t)
1 with (5) can be

found in Fig. 3.
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Fig. 3. The corresponding SAR image of the cropped phase history. The
image is displayed in -70∼0 dB. No velocity is assumed in this image. The
target appears to be displaced and blurred.

It is well known that the radial velocities can be estimated
from the phase information using ATI. Therefore, to simplify
the problem, based on ATI, we still estimate the radial velocity
V(r) by cΘ/(4πf0∆) given that the phases of the ATI results
are Θ. Here the baseline d = 0.238m can be estimated in the
preprocessing [2] and the radial velocity is chosen to be the
mean value of nonzero V(r). Once we have V(r), it is straight
forward to map V(r) and V(az) to V based on the geometry,
and we denote this as V = Υ(V(az),V(r)). We now have the
following model:

min
X,V(az)

‖Y(t)
1 − Ỹ

(t)

2 − ΦV
F (X)‖2F + λ‖X‖1

s.t. X ∈ CM×L,V(az) ∈ RM×L,V = Υ(V(az),V(r))

supp(X) = supp(V(az))

(14)

As Y(t)
1 and Ỹ

(t)

2 are focusing on the target, the elements
in V(az) can be assigned to a single v(az) throughout the
image. Here a naive method to solve (14) is implemented.
We first compute (14) using five iteration FISTA algorithm
[14] (λ = 0.3 · 2‖ΦV

F
H

(Y(t)
1 − Ỹ

(t)

2 )‖∞) with different v(az)

independently. The objective value of (14) with each specific
v(az) is recorded. The optimal v(az) and X are chosen to
correspond with the minimised objective value. The objective
value against v(az) plot is shown in Fig. 4. The estimated X
gives the relocated and refocused image of the moving target
which is shown in Fig. 5.
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Fig. 5. The reconstructed image in dB of the moving target. Five iteration
FISTA is employed for the 46 − th second with 200 pulses. The red line
indicates the ground truth data.

TABLE I
COMPARISONS BETWEEN THE GROUND TRUTH AND ESTIMATIONS

Ground Truth Estimations

x (m) -220.1 -249

y (m) -127.9 -152

z (m) -3.2 0

range distance (m) 1.038e4 1.039e4

v(r) (m/s) -9.45 -9.77

v(az) (m/s) 9.64 10.95

overall v (m/s) 13.5 14.67

The estimation results are concluded in Table I. It can
been seen from Fig. 2 that the ground truth trajectory has
about 20 meters deviation in x direction due to the terrain
elevation. The estimated target position is also shifted towards
the negative x direction in the image, and the range distance
ground truth coincides with the estimation result. Note that
all the estimations are based on a very short sub-aperture, a
larger sub-aperture is likely to increase the accuracy as long
as the constant velocity assumptions still hold.

V. CONCLUSION

This paper presents a sparse regularized model for
multi-channel SAR/GMTI. Specifically we show how the

SAR/GMTI task can be generalised as an optimisation prob-
lem and how the sparsity can be used to help estimate the
estimate targets’ state and form SAR images. The experimental
results based on real GOTCHA GMTI data illustrate the
effectiveness of the proposed model. In practice, SAR/GMTI
is likely to encounter the problems such as the imperfections
in channel balancing, the ambiguities in velocity estimations
and the demand on computational power. These will be
investigated in the future work.
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