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Abstract. The connection between the macroscopic description of
collective chaos and the underlying microscopic dynamics is thor-
oughly analysed in mean-field models of one-dimensional oscillators. We
investigate to what extent infinitesimal perturbations of the micro-
scopic configurations can provide information also on the stability of
the corresponding macroscopic phase. In ensembles of identical one-
dimensional dynamical units, it is possible to represent the microscopic
configurations so as to make transparent their connection with the
macroscopic world. As a result, we find evidence of an intermediate,
mesoscopic, range of distances, over which the instability is neither con-
trolled by the microscopic equations nor by the macroscopic ones. We
examine a whole series of indicators, ranging from the usual microscopic
Lyapunov exponents, to the collective ones, including finite-amplitude
exponents. A system of pulse-coupled oscillators is also briefly reviewed
as an example of non-identical phase oscillators where collective chaos
spontaneously emerges.

1 Introduction

Collective chaos (CC), i.e., irregular behavior on macroscopic scales, is known to
emerge in a large class of dynamical systems. It was first observed in an ensemble
of mean-field coupled logistic maps [1] and then confirmed in Stuart-Landau oscilla-
tors [2,3]. This latter setup is particularly relevant, as the dynamics of the single units
is described by the normal form of the Hopf bifurcation and thus naturally applies to
a wide variety of physical contexts. This regime is, however, not limited to mean-field
models: it has been observed in sparsely connected networks, where as few as 60 con-
nections per oscillator suffice to sustain global fluctuations [4]. CC has been observed
also in spatially extended systems with long range coupling whenever the decay rate of
the coupling strength is sufficiently slow [5]. In this context the large-scale dynamics
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manifests itself as hydrodynamic (long-wavelength) modes whose amplitudes do not
scale to zero upon increasing the system size.
Altogether, CC has raised the attention of many researchers because of a puz-

zling feature: the emergence of large-scale correlations in an environment of chaotic
(and thus supposedly uncorrelated) units. Formally speaking, CC can be under-
stood as the outcome of the application of a nonlinear operator (Perron-Frobenius or
Liouville, depending whether the time variable is either discrete or continuous) to a
probability density in phase space. Normally, such operators are linear, but the mean-
field feedback makes them nonlinear and this paves the way to a possibly chaotic
dynamics over macroscopic scales. Practically, it is however still unclear under which
conditions CC arises and, more importantly, how microscopic and macroscopic dy-
namics are connected to one another. In mean-field models, the identical oscillators
respond to the same self-consistent signal. In the case of logistic (non-invertible) maps,
the single units behave chaotically and separate exponentially from one another while
keeping some correlations due to the common value of the forcing signal. In the case
of Stuart-Landau oscillators, the single dynamical systems are periodic, but can and
actually behave chaotically under the action of the mean field, so that the resulting
scenario is qualitatively similar.
By moving further along the sequence of dynamical systems, one could ask whether

CC can emerge in mean-field coupled identical phase-oscillators. On the one hand, it
looks plausible to expect a positive answer, since the corresponding Liouville operator
is nonlinear very much as for the previous setups. On other hand, one-dimensional
phase oscillators never behave chaotically under the action of an “external” modu-
lation. Actually, they are expected to synchronize with the input so that no irreg-
ularity can be maintained. In fact, we are not aware of any CC being generated
by such models. The only seemingly contradictory evidence is that of pulse cou-
pled theta neurons, where a chaotic collective dynamics indeed emerges. However,
this occurs in the presence of delay, which makes the neuron dynamics no-longer
one-dimensional [6].
If disorder is introduced in the form of a distribution of the connection strengths,

the single units are no longer subject to the same mean-field and the above argument
does not apply. In fact collective chaos can arise. Most of the studies of this type of
models focused on balanced states, where the sum of positive and negative feedbacks
average to zero (a prominent example is Ref. [7]). In this case, the model structure is

significantly different, since the sum of all feedbacks must be scaled by a factor
√
N

rather than by the usual N (N is the number of oscillators) to keep the feedback
strength finite in the thermodynamic limit. Given the substantially different action
of the feedback, we do not discuss this type of models any further in the paper. Dis-
order can be also due to the diversity among the single units still under the action
of a common mean field. The above argument about the impossibility to sustain an
irregular dynamics in one-dimensional phase-oscillators has to be revisited. In fact,
even though all oscillators tend to “synchronize” because of a negative conditional
Lyapunov exponent (conditioned to a given feedback signal), each of them synchro-
nizes in a different way, leading, for instance to different effective frequencies. There-
fore, it is not obvious a priori whether an irregular dynamics can be maintained.
The Kuramoto model [8] is the best known example of such a type of setup. How-
ever, no chaotic collective dynamics emerges therein. CC has been instead found in a
model of leaky-integrate-and-fire neurons [9]. One might argue that this is due to the
presence of delay as in reference [6]. However, the phenomenology is remarkably dif-
ferent in the neural model, since the microscopic Lyapunov exponents are all negative
(with the exception of the first exponent, that is exactly equal to zero). This type of
behavior goes under the name of stable chaos [10]. In finite systems it is confined to
exponentially long but finite times. Finally, CC has been observed also in a model of
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pulse coupled phase oscillators, with no delay and without any discontinuity in the
evolution equation [11].
In this paper, we thoroughly analyse the emergence of CC in mean-field mod-

els of one-dimensional oscillators. In the context of identical units we introduce
a new way of representing the microscopic configurations which allows for a nat-
ural comparison between the microscopic and macroscopic world. In particular, one
can test to what extent macroscopically small perturbations can be assimilated to
microscopically small ones and thereby understand whether the macroscopic linear
stability analysis is contained in the microscopic analysis. In Section 2, we first intro-
duce the new approach, based on a reordering of the microscopic variables, and then
investigate a simple mean-field model, where all typical indicators of instability can
be and actually are implemented. In Section 3 we briefly revisit a model of pulse
coupled phase-oscillators to investigate the robustness of CC in a context where the
microscopic dynamics cannot be chaotic in itself: in particular we test the robustness
against variations in the amount of disorder and in the shape of the phase response
curve. Finally in Section 4 we discuss the consistency among the various approaches,
summarize the current understanding, and propose new lines of research for further
progress.

2 Identical oscillators

In this section we revisit the problem of how microscopic and macroscopic dynamics
are related to one another. The direct simulation of large but finite ensembles suffices
to characterize the behavior of a given system in the thermodynamic limit. Therefore,
it is legitimate to ask whether the standard Lyapunov exponents which allow, for
instance, determining the fractal dimension of the microscopic attractor, are of any
usefulness for the characterization of the collective behavior, as well.
In the literature one finds different claims. On the one hand, it has been found

that in some model, the most relevant exponents which control the stability of the
collective motion can be singled out within the microscopic Lyapunov spectra [12].
In other cases, it has been found that the macroscopic stability is controlled by the
evolution of finite perturbations [13].
The microscopic configuration of a system composed of N single dynamical

units is fully identified by the N -dimensional vector U(t) = {U1(t), U2(t), . . . , Ui(t),
. . . , UN (t)}, where Uj is a scalar variable which takes values in a given interval. The
corresponding evolution rule is (if time is discrete)

Uj(t+ 1) = F (Uj(t), Z), (1)

where we assume that all elements are identical and that the coupling is contained in
the mean field Z, a function of all the single variables (typically an average).
On the other hand, on the macroscopic level the object of study is the probability

density ρ(U, t) to find a single variable in the interval [U,U + dU) at time t. Its
evolution equation is the nonlinear Perron-Frobenius operator,

ρ(U, t+ 1) =
∑

i

ρ(F−1i (U,Z, t), t)
|F ′i |

(2)

where i labels the possibly multiple preimages of U . The nonlinearity of the rule is
contained in the (yet unspecified) dependence of Z on ρ.
The two descriptions are manifestly different from one another, starting from the

phase-space dimension, which is finite (N) dimensional in the former case, while it is
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Fig. 1. Microscopic representation of the cumulative distribution function for an ensemble
of 10,000 uncoupled logistic maps (a = 1.86).

infinite dimensional in the latter one. In order to carry on a quantitative comparison
of the two representations it is at least necessary to identify an observable that is
sufficiently meaningful and informative in both setups. We find that the probabil-
ity density is an appropriate variable, since it can be suitably defined also in the
microscopic representation. For this to be seen, it is sufficient to reorder the vari-
ables from the minimum to the maximum one, to obtain V, where Vj(t) = Un(j)(t)
and n(j) denotes the label of the jth smallest variable at time t. Given that the
single maps are indistinguishable, this representation is microscopically equivalent to
the standard one. Moreover, j/N , if plotted versus Vj can be interpreted as a cumu-
lative distribution function,

P(U, t) =
∫ U

Vmin

dV ρ(V, t) (3)

of the macroscopic probability ρ(V, t).
This is shown in Figure 1, where j/N is plotted versus Vj(t) for an ensemble of

uncoupled logistic maps, Uj(t+ 1) = 1− aU2j (t). Over the scales that can be resolved
by the human eye, such a curve is indistinguishable from a typical snapshot obtained
by integrating the Perron-Frobenius operator. In order to uncover the microscopic
character of j/N , it would be necessary to increase the resolution. Anyway, the re-
ordering of the local variable allows performing a microscopic analysis of an observable
(the density) that is intrinsically macroscopic1. In fact, since the vectorV can be used
as a kernel density estimator, the distance between microscopic configurations can be
turned into a distance between cumulative distribution functions.
It is instructive to understand how the map operates, once the ordered represen-

tation is adopted. In Figure 2a a configuration composed of 7 variables is reported
as a sequence of properly ordered dots along the horizontal axis. The iterate of each
variable is determined by the height of the function (see the corresponding vertical
dashed lines). Because of the shape of the map, the ordering of the points on the
left of the maximum (1–4) is preserved, while the order of the following ones (5–7) is
inverted. The complexity of the dynamics comes from the fact that the two sequences
intertwine, so that, for instance, the image of the 7th point has to be relabelled as the
new 2nd one. In so far as one is interested in performing a linear stability analysis,

1 Here the one-dimensional character of the dynamical units is crucial. The same idea
cannot be straightforwardly implemented in two-dimensional oscillators.
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Fig. 2. Interpretation of the logistic map evolution in terms of ordered variables. The initial
ordering (1–7) is transformed into (1,7,2,6,3,5,4) in one iterate (a). Panel (b) contains the
image of the 6th variable while it moves in between the 5th and 7th one while leaving all
the other variables unchanged. The two kinks correspond to the points where the images of
the 3rd and the 2nd point are crossed.

i.e., if only infinitesimal perturbations are introduced, the label used to identify each
variable is totally irrelevant: the same Lyapunov exponents are obtained as they are
dynamical invariants. The story is different if, however, finite perturbations are con-
sidered, since the iterates of the two configurations can be characterized by a different
ordering. Imagine, for instance that the configuration in Figure 2a is perturbed by
shifting V6. By definition, V6 is bound to take values between V5 and V7. Within this
range, its iterate can take either values larger than the image of V3 or smaller than
the image of V2: whenever this happens a relabelling has to be performed. As a result,
the actual “true” iterate of V6 follows the curve reported in panel (b).
The order exchanges induce two kinks, which can be interpreted as a sort of

nonlinear effect, reminiscent of what happens in several models displaying stable
chaos [10]: the crucial difference is that here an order exchange does not amplify an
otherwise small perturbation, but it rather contributes to squeeze it.
In order to compare generic microscopic configurations, it is convenient to intro-

duce the Euclidean distance

δ =

√
1

N

∑

j

(Vj −Wj)2 , (4)

where both Vj and Wj are properly ordered.
From now on, for a while, we assume that the maps evolve independently (no

coupling is present). We proceed by evolving a set of N randomly chosen initial
conditions until they are distributed according to the invariant measure. LetV denote
a typical configuration once the transient has died out, and perturb it by a tiny amount
(very small, but large enough to be accounted for in double-accuracy calculations),
to thereby generate the configuration W. We then evolve the two configurations,
reordering them (separately) wherever necessary and measure the Euclidean distance,
which is thereby averaged over a set of many different initial conditions to get rid of
statistical fluctuations. The results for a set of logistic maps are plotted in Figure 3.
In the upper panel we report the evolution of the logarithm of the average distance
δ for four different ensembles of orbits (N = 103, 104, 105, and 106). There, we see
that an initial exponential increase, consistent with the chaotic properties of the map,
is followed by a saturation due to the fact that the maximal distance is finite. We
can also see that the growth rate starts to slow down at progressively shorter times,
when N is increased. A clearer picture is obtained by looking at the “instantaneous”
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Fig. 3. (a) Time evolution of the average distance between densities as determined from
equation (4), for N = 103 (black), 104 (red), 105 (green), and 106 (blue). Averages are
performed over 10000 realizations. In panel (b), the evolution of the rate S (see Eq. (5)) is
plotted. Finally in the remaining panels (c–e), S is plotted versus δ for different scaling of
the distance.

growth rate of δ, i.e., at the logarithmic derivative

S = ln δ(t+ 1)− ln δ(t). (5)

The time dependence of S can be appreciated in Figure 3b. All curves start from the
same plateau (leaving aside the first few iterates which are needed for the perturbation
orientation to settle). This plateau is nothing but the Lyapunov exponent of the single
map. Interestingly and unexpectedly we see also a second plateau at later times, whose
length progressively increases with N , and whose height is about half of the standard
Lyapunov exponent. Such a plateau is eventually followed by a convergence to zero
that occurs in the same way in all cases, i.e. independently of N .
A more appropriate representation is obtained by plotting the growth rate S ver-

sus the current value of δ. This is done in panels (c–e) after rescaling the distance
in different ways. In panel c, no rescaling at all is implemented: there we appreciate
that the drops in the growth rate occur at progressively smaller distances, when N
is increased. Its scaling behavior can be understood in the two following panels. In
panel (d) we see that the first drop occurs when the distance is about 1/N. It is
natural to expect the drop to occur when a large enough number of order exchanges
have occurred, which damp the standard exponential growth through the saturation
outlined in Figure 2. It is also reasonable to assume that order exchanges occur when
the separation between the two trajectories is of the same order as the separation
between consecutive variables, i.e., 1/N . A simple calculation shows that assuming
(Vi −Wi) is on the order O(1/N) implies that δ itself is of the same order. In panel (e)
we finally see that the second drop, which leads to the final saturation, occurs when
δ ≈ 1/√N . The collapse of the final part of the curve means that the (asymptotic)
maximal distance is of order 1/

√
N i.e., it just due to statistical fluctuations. Remark-

ably, the range of distances between the two drops is characterized by a constant rate
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Fig. 4. Time evolution of the distance between two microscopic configurations: (i) chosen at
equilibrium and differing by 10−13 in each component (lower set of curves, same as in Fig. 3a);
(ii) one at equilibrium, while the other one confined to the initial interval [−0.3.− 0.1]. The
different curves correspond to different ensembles: 103, 104, 105, 106, from top to bottom.
The two exponential behaviours correspond to the largest microscopic Lyapunov exponent
(λ = 0.564, dashed lines), and the largest macroscopic one (λ = −0.188, solid curve).

and its extension grows upon increasing N : this suggests that the microscopic and
macroscopic worlds are separated by an intermediate mesoscopic regime.
In this setup, we started with two configurations that are microscopically different

and monitored their distance until it becomes maximal. From a macroscopic point
of view, the two configurations are, however, indistinguishable from the very begin-
ning as they both correspond to an “equilibrium” state. It is interesting to test this
approach while starting from macroscopically different configurations. More precisely,
we choose the configuration V still as an equilibrium one, while W is generated as
a random sequence of independent values restricted to the interval [−0.3,−0.1]. The
results after averaging over 10,000 realizations for different ensemble sizes are plotted
in Figure 4 (see the circles) and compared to the previous setup (dashed curves).
There we see that for any ensemble-size the curves obtained with the two setups

eventually converge to the same value as they should since the final state corresponds
to two randomly picked microscopic realizations of the same macrostate. The con-
vergence is obviously from above in this latter setup. More interestingly, the initial
decrease is common to all sizes, suggesting the method is capturing a true collective
property. We indeed claim that the initial slope, around −0.188, corresponds to the
largest (least negative) eigenvalue of the Perron-Frobenius operator.2

2.1 Nonlinearly coupled Bernoulli maps

So far, we have considered an ensemble of uncoupled maps, where no CC is expected to
arise. Here, we introduce and discuss a simple model of nonlinearly coupled Bernoulli
maps (NCB)

θj(t+ 1) = F (θj , Z) = 2[θj(t) + ε(1− 2a2Z2) sin θj ], (6)

2 In the case of uncoupled maps, only macroscopic relaxational phenomena are to be
expected.



1798 The European Physical Journal Special Topics

0 π/2 π 3π/2 2π
θ

0

0.1

0.2

0.3

0.4

ρ

Fig. 5. Four snapshots of the probability density of the NCB model. The black, red, green,
and blue curves correspond to consecutive time units.
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Fig. 6. Rate S for the NCB model, versus the distance for three different scaling of δ.

where

Z =
1

N

∑
cos θj(t) (7)

and the variable θ is an angle. As a result, the typical discontinuity of the Bernoulli
maps is smoothed out, since θ is equivalent to θ + 2π. The NCB model is a bit ad hoc,
since the coupling is nonlinear and one might argue that the origin of the collective
dynamics is somehow artificial. However, the question is not to explain the origin
of collective behaviour but to characterize this regime. The NCB model has been
numerically studied for a = 2.2 and ε = −1.15. The presence of a collective dynamics
is testified by the fluctuations of the density that one can appreciate in Figure 5, where
the probability density is reconstructed by iterating an ensemble of N = 106 maps,
ordering all the variables and finally computing the “derivative” after partitioning
the θ axis in disjoint intervals containing 10,000 points each. The four curves refer
to four different consecutive times, sampled after a suitable transient has elapsed.
Macroscopic differences are transparent.
By following the same protocol adopted for the logistic maps, we have again

determined the instantaneous growth rate of the average distance δ between initially
close distributions. The results are plotted in Figure 6 for three different scaling
assumptions. The unscaled data are shown in panel (a). The mutual comparison
reveals that N = 103 is still affected by strong finite size corrections. Other than
that, a two-plateau structure is visible also in this case, although the lower one is not
perfectly flat and tends to develop a bump upon increasingN . In panel (b), we see that

the first drop scales again as 1/N , while the second drop does not decrease as 1/
√
N .

This is a consequence of the presence of a macroscopic dynamics. In fact, according to
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Fig. 7. (a) Temporal evolution of the average dc (dashed line) and ds (solid). Data are
obtained averaging at fixed times over 10,000 realizations. Black, red, green and blue lines
correspond to N = 103, 104, 105 and 106, respectively. (b) The logarithmic derivative of
the curves reported in panel (a). The horizontal segment marks the collective Lyapunov
exponent.

the rescaling adopted in panel (c) a collective motion manifests itself as δ-values that

grow when multiplied by
√
N . Actually, the range of values approximately above zero

quantifies the range of macroscopic deviations that is accessible in the microscopic
simulations. Part of the lower plateau should be associated with the mesoscopic region,
so that it is not clear how strong is the macroscopic instability. The study of larger
ensembles is necessary for a more quantitative assessment.
The logarithmic derivative S quantifies the exponential growth of finite distances

between nearby distributions. A similar quantity, the finite-amplitude Lyapunov
(FAE) exponent [14], has been introduced with reference to the difference between
scalar observables such as the order parameter which quantifies the strength of the
collective dynamics. In both cases, one deals with finite perturbations. The difference
is that the former approach deals with high-dimensional variables.
For the sake of completeness, we now discuss the outcome of the latter approach,

as well. This is done by considering two observables: Z = 〈cos θ〉 and Ξ = 〈sin θ〉. Z
is the order parameter entering the definition of the NCB model and its deviations
are denoted with dc. The deviation of Ξ is instead denoted with ds. The average
perturbation amplitude at different times and for different values of N is plotted
in Figure 7a. There, we see that both distances initially grow exponentially and
eventually saturate. The saturation value of dc is independent of N , while that of Ξ
reaches increasingly small values when N is increased. This tells us that only Z is able
to capture the collective dynamics. In fact, for symmetry reasons, Ξ = 0 (see, e.g.,
Fig. 5) so that the fluctuations displayed by the finite averages are purely statistical.
More detailed information can be extracted from the time-dependence of the FAE,

i.e., the logarithmic derivative

Γ = ln d(t+ 1)− ln d(t) , (8)

reported in Figure 7b. There we clearly see a different behavior for the stability of Z
and Ξ: ds grows from the very beginning at the maximum rate, while dc slows down
before recovering and growing with the same rate as ds. We justify the discrepancy in
the following terms: dc and ds represent two different ways of measuring the distance
between two configurations. The initially different growth rate exhibited by dc is
a purely linear effect due to the orientation of the overall vector: if the true norm
of a given vector grows exponentially, it may well be that some component grows
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Fig. 8. Lyapunov spectrum of the NCB model for N = 160 (black line), 320 (red), 640
(green), and 1280 (blue). The dashed line corresponds to the conditional Lyapunov exponent
of a single map subject to an externally given Z(t). In the inset the first (upper curve) and
second (lower curve) Lyapunov exponents are plotted versus the network size.

slower (or even faster) if they are (accidentally) negligible. Anyway, after an initial
transient, both variables exhibit the same (first) plateau, which coincides also with
the similar plateau observed in Figure 6, where it was determined by analysing the
full distribution. Furthermore, we can anticipate that the height of the plateau is also
consistent with the maximum microscopic Lyapunov exponent (see Fig. 8 and the
final section for an additional discussion). At later times, the growth rate of ds drops
to zero, showing that nonlinear effects are only responsible for a saturation, while
the rate of dc exhibits a second short but increasing plateau with approximately the
same height as the second plateau displayed in Figure 6. Finally, the height of this
second plateau is approximately close but a bit larger than the expected value of
the macroscopic exponent (see the next subsection).

2.2 Lyapunov exponents

The microscopic Lyapunov exponents can be computed by linearizing the equa-
tions (6), (7). The results are plotted in Figure 8 under the usual scaling Ansatz,
i.e., by ordering the Lyapunov exponents from the largest to the smallest one and
plotting them versus the intensive variable ν = (i− 1/2)/N 3.
The shape of the spectrum varies with the system size. In the absence of collective

dynamics it was found that the asymptotic Lyapunov spectrum is perfectly flat with
two “singularities” at its extrema [16]. The value of the plateau coincides with the
conditional single-map Lyapunov exponent, obtained by treating the mean field Z(t)
as an external modulation. On the other hand, the deviations observed for ν close
to 0 and 1 are the consequence of an extreme sensitivity to the coupling [15–17].
Furthermore, finite-size deviations can be of order 1/(lnN). The scenario reported in
Figure 8 does not look very different. The dashed line corresponds to the conditional
single-map Lyapunov exponent: the Lyapunov spectrum seems to slowly converge
towards this value (the deviations are not incompatible with a 1/(lnN) conver-
gence). Nevertheless, there is a difference: a finite gap between the first and the second
Lyapunov exponent. This is clearly visible in the inset of Figure 8, where the first
two exponents are plotted versus the system size: while the first one increases with

3 The 1/2 term is included to minimize finite-size effects [15].
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Fig. 9. Collective Lyapunov spectrum for the NCB model.

N , the second exponent decreases, indicating that the finite gap persists in the ther-
modynamic limit. It is not clear whether the same occurs also close to the minimum
exponent (i.e., for ν ≈ 1). If we now go back to the first plateau found while studying
finite perturbations (see Figs. 6 and 7), one can notice that their height, approxi-
mately equal to 0.76, is substantially smaller than the maximum Lyapunov exponent
(≈ 0.93). In the final section we give possible explanations for this difference. Finally,
notice that the whole spectrum is composed of positive exponents, this meaning that
the dimension of the microscopic attractor coincides with the phase-space dimension
(this pathology is due to the non invertible nature of the single maps).
Besides microscopic Lyapunov exponents, one can compute the macroscopic ones

from the linearization of the Perron-Frobenius equation. The advantage of the NCB
model is the smoothness of the invariant measure (see the snapshot reported in Fig. 5),
accompanied by the angular character of the local variables. Therefore, it is conve-
nient to expand the evolution equation in Fourier modes, since a few of them suffice
to provide an accurate description. Let us start formally expanding the probability
density ρ(θ, t),

ρ(θ, t) =
∑

k

ψk(t)e
ikθ.

The corresponding Perron-Frobenius equation can be written as

ψk(t+ 1) =
∑

m

R(k,m)ψm(t), (9)

where

R(k,m) ≡ 1
2π

∫ 2π

0

dθei(mU−kF (θ,Z)), (10)

while

Z =

∫
cos θρ(θ, t)dθ. (11)

More specifically,
R(k,m) = Jm−2k[2kε(1− 2a2Z2)], (12)

where Jα denotes the Bessel function of order α. In the present case, Z = ψ1 and all
ψk are real. As a result, the Perron-Frobenius operator reads

ψk(t+ 1) = 2kε sin(ψ1(t))
∑

m

Jm−2kψm(t) . (13)
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Fig. 10. Return map of the order parameter Z as obtained by simulating an ensemble of
106 maps.

Upon iterating the above equations together with their linearizations, one can easily
compute the Lyapunov spectrum: the first 10 exponents are plotted in Figure 9. From
the figure we infer that the collective motion is low-dimensional: only the first mode is
positive and the expansion is compensated by the second exponent (λ1 + λ2 < 0). In
fact the dimension, as determined from the Kaplan-Yorke formula, is 1 + λ1/|λ2| =
1.63. Evidence of the low-dimensional dynamics can be seen in Figure 10, where we
plot the return map of the order parameter Z. Statistical fluctuations are hardly
visible.
The Lyapunov spectrum is discrete; upon increasing the number of Fourier modes,

additional negative exponents add up, which correspond to increasingly stable, high-
frequency, modes. In practice, the scenario is reminiscent of the continuum-limit in
spatially extended chaos. This is not, however, always the case. Coupled logistic maps
appear to be characterized by an infinite dimensional collective dynamics: this has
been conjectured by adding noise to the microscopic dynamics (in order to smooth out
the singularities of the density) and thereby decreasing the noise amplitude [12,18].
As a result, it has been found that the dimension increases logarithmically upon
decreasing the noise amplitude.

3 Oscillator diversity

CC can emerge also in mean-field models of one-dimensional invertible dynamical
systems, under the condition that the oscillators are different from one another [9,11].
The simplest such setup consists of an ensemble of pulse-coupled phase oscillators,

φ̇i = ωi − g

N
R(φi)

∑

j

δ(t− tj) , (14)

where φi ∈ [0, 1] is a phase variable and g the coupling strength. In the absence of
coupling, the phase of each oscillator advances according to a (quenched) random bare
frequency ωi. When the coupling is switched on, a δ-like pulse is sent whenever an
oscillator reaches the threshold φi = 1 and received by all other oscillators (a global
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Fig. 11. Different choices of the piecewise linear phase-response curve (PRC). The PRC is
symmetric between positive and negative response. The length of the second piece determines
the smoothness with δ between 0.0002 and 0.16.

all-to-all coupling is assumed). Finally, the effect of the pulse is gauged by the phase
response curve (PRC) R(φ).
A complete definition of the model requires introducing the distribution of bare

frequencies and the PRC. By following reference [11], we assume a uniform distribu-
tion within a finite interval Δ = ωmax − ωmin centred in ω̄ = 1.4 and a piecewise linear
PRC. Rather than giving a not-so-transparent mathematical definition, we illustrate
the shape of the PRC in Figure 11. The width δ of the central segment will be used
as control parameter to test the role of the PRC shape.
Due to the negative sign in front of the coupling term, wherever R(φ) is larger

(smaller) than zero the coupling has an inhibitory (excitatory) effect, decreasing
(increasing) the phase of the receiving neuron. Since preliminary simulations have
shown that a change of the average spiking rate does not affect the quality of the
overall phenomenology, we have chosen to work with zero-average PRCs. However,
this is not a necessary requisite.
The presence of CC can be detected by using various indicators. Given the close

relationship with neural models, the activity is an appropriate observable to start
with. It is defined as

Ẏ = −γY + 1
N

∑

j

δ(t− tj) ,

where γ = 5 defines the time scale of the coarse-graining. For small coupling, the
diversity among the oscillators prevails and they fire independently: as a result,
the activity is constant (except for statistical fluctuations). Above some threshold,
the activity exhibits macroscopic fluctuations. In Figure 12 we plot the standard de-
viation σy of Y versus the coupling strength for various choices of δ (panel a) and of
the width Δ of the probability distribution of the bare frequencies (panel b). All data
refer to the same system size (N = 4000); for some points, we have verified that no
substantial changes are found when N is increased, so that the overall scenario can
be taken as representative of the thermodynamic limit.
In Figure 12a we see that the parameter region where CC is observed tends to

decrease when the steepness of the intermediate branch is decreased. However, the
phenomenon is not monotonous (see the three smallest δ values). Interestingly, in
panel (b) we see that upon decreasing the disorder, CC extends to progressively
smaller coupling strengths. These results show that collective dynamics is a general
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Fig. 12. Standard deviation σY of the activity versus the coupling strength g for fixed
frequency disorder Δ = 1.2 and different choices of the PRC (a) and fixed PRC (δ = 0.1)
but different width of the disorder (b). All simulations refer to a network of N = 4000
oscillators and other parameter are as in [11].
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Fig. 13. Power spectra of network activity Y for g = 1.0 obtained from two different network
sizes (N = 4000 black, and N = 64000 green). The spectra are obtained by transforming
time series of 819.175 time units, sampled every 0.025 units and averaged over 50 different
realisations.

robust regime and suggest the possibility to develop a perturbative theory in the limit
of weak-disorder and small coupling.
A finite standard deviation reveals the presence of a macroscopic dynamics, but

it does not tell us how irregular it is. In Figure 13 we report the power spectrum of
the activity for different network sizes. We see that it is broad band and substantially
independent of the system size (the width of the major peaks does shrink when N
is increased). A fractal dimension analysis carried out in [11] has shown that the
macroscopic dynamics is high- and possibly infinite-dimensional.
A crucial difference between this regime and that one discussed in the previous

section is the microscopic stability of the oscillator dynamics under the action of
the mean field Y . This stability can be appreciated by looking at the structure of a
snapshot of the distribution of the phases in the CC regime.
In Figure 14a we see that in suitable ranges of the bare frequencies the phases are

aligned along seemingly one-dimensional curves. This is a clear indication of a mutual
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Fig. 14. (a) Snapshot of the oscillator phases for N = 64000, g = 1.0, δ = 0.1 and Δ = 1.2;
(b) projection onto the φ axis to determine the effective probability density.

synchronization that is confirmed by the structured distribution of phases displayed
in panel (b) of the same figure. Furthermore, synchronization suggests the stability of
oscillator dynamics. A careful analysis of the conditional Lyapunov exponent shows
that it is always strictly negative including those frequency regions where the phases
are scattered over the [0, 1] interval [11]. At the same time, the microscopic Lyapunov
exponents reveal a more structured scenario: the maximum exponent λ1 is negative
for a strictly discontinuous PRC (δ = 0), but it grows with δ, becoming, at some
point, positive (for δ = 0.1 it is already so4). Furthermore we have found that λ1 is
affected by strong finite size corrections. Therefore, it is not easy to extract useful
information from a stability analysis of the type discussed in the previous section. An
additional difficulty is given by the presence of sample-to-sample fluctuations that
are still nonnegligible in a network of N = 4000 oscillators. Here, we have limited
ourselves to explore the behavior of small finite perturbations. Given any two close
configurations {φi} and {ψi}, we have monitored

D =

〈
∑

i

| cosφi − cosψi|
〉
,

where the external average is performed over different initial conditions. The results
for N = 4000 and N = 16000 are reported in Figure 15, where the first thing to notice
is the slower growth for N = 16000, which is indeed an evidence of the strong finite-
size effects, which make any further analysis (such as the identification of two possible
slopes) essentially undoable. The spikes, induced by the steep branch, represent an

4 The claim reported in reference [11] of a negative exponent for such parameter value is
to be considered wrong. It is the consequence of a numerical error. The submission of an
Erratum is on the way.
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Fig. 15. Time evaluation of the distance between the original and perturbed phases. Each
curve has been averaged over 100 different random perturbations for the same set of frequen-
cies {ωi}i. Each phase Φi has been perturbed at time t = 0 by adding a uniformly distributed
number U(−10−12, 10−12). The two lower curved (blue and red) belong to two different sets
of {ωi}i of size N = 16000 whereas the three upper (black, orange, cyan) belong to different
samples of size N = 4000.

additional obstacle for a more quantitative analysis: they suggest the need to average
over much more than 100 initial conditions.

4 Discussion and open problems

In this paper we have revisited the properties of the collective dynamics which emerges
in mean-field models of one-dimensional oscillators. So long as the oscillators are iden-
tical, the scalar variables, which fully characterize the instantaneous configuration of
the single oscillators, can be freely permuted without inducing any change in the
evolution. One such permutation is particularly suited to represent a configuration
of a set of N oscillators: it corresponds to ordering all the variables from the small-
est to the largest one at each time step. Its appeal comes from the fact that any
finite perturbation of the single variables can be interpreted as a perturbation of
the corresponding probability density and a distance between any two configurations
interpreted as a variation of the density itself. This interpretation would be impos-
sible if the label of each oscillator were left unchanged. While the change of labels
does not modify the tangent space dynamics (the Lyapunov exponents are dynami-
cal invariants) it does affect the evolution of finite perturbations: the reason is pre-
cisely the relabelling of the variables that may be different for the two configurations
that are to be compared. As illustrated in Figure 2, this change of labels manifests
itself as discontinuities in the first derivative of the actual evolution rule, which turns
out to be piecewise smooth. The typical length of a smooth interval scales as 1/N :
this suggests (and it is confirmed by our simulations) that as soon as a perturbation
amplitude becomes larger than 1/N , it does no longer evolve according to the rules
of tangent space dynamics. The same analysis shows that the presence of collective
dynamics can be inferred only by monitoring distances larger than 1/

√
N . A posteri-

ori, this is obvious, since distances must be larger than the (unavoidable) statistical
fluctuations which affect microscopic configurations. Additionally, we have detected
a “mesoscopic” range (distances which lie between 1/N and 1/

√
N), where neither

the microscopic nor the macroscopic rule applies. In the case of uncoupled logistic
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Fig. 16. Schematic view of a perturbation of a configuration (see the arrows) which can be
seen as a perturbation of a (coarse-grained) density.

maps, the mesoscopic phase is not a simple crossover, but a region characterized by
its own physical observables. The evidence for this phase in the NCB model is less
compelling: further studies are necessary to better understand how far down to small
scales can the macroscopic rules extend.
When comparing the various approaches (stability of the distribution, FAE,

microscopic Lyapunov exponents, collective Lyapunov exponents), the observables
that are expected to match each other do so, but some deviations have been found
which need to be better clarified. Here we suggest two possible motivations. First
of all, the early-time growth rate of small but finite perturbations may not coincide
with the maximum Lyapunov exponent because a possibly too-short transient does
not allow for a perfect alignment of the perturbations themselves. Moreover, the very
same growth rate has been determined by implementing a simple but not optimal
method. For the sake of simplicity, we have averaged the perturbation sizes of dif-
ferent realizations, all estimated at the same times. It would be more appropriate
to first detect the time when a given perturbation amplitude reaches a prescribed
threshold and thereby average the growth rate, as prescribed by the definition of the
FAE [14,15]. Preliminary tests made by applying this latter procedure to monitor
the distance between probability densities in the uncoupled case confirm the overall
picture, i.e., the existence of three regimes (micro-, meso-, and macro-scopic) and the
height of the plateaus.
A further direction that might be worth exploring is the possibility to go beyond

the computation of “just” the maximum finite-amplitude Lyapunov exponent. This
is not typically doable in a meaningful way because an ensemble of perturbed tra-
jectories does not fill a linear subspace. Therefore linear techniques (such as scalar
products) can only extract rough, qualitative, information. However, in the case of

CC in mean-field models, perturbations larger than 1/
√
N (but still small) fall in

the linear regime of the macroscopic evolution. Therefore, it might be possible to
introduce a (macroscopic) scalar product that is robust to the presence of statistical
fluctuations. The fact that with 106 maps, we are able to produce a quantitatively
accurate picture of the macroscopic attractor, whose fractal dimension depends on
the second (negative) collective Lyapunov exponent, encourages the exploration of
this route.
The dynamics of finite perturbations as it emerges from Figure 2b seems to rule

out the possibility that the linear stability of a collective variable is contained in
the linear stability of the microscopic equations: the macroscopic stability emerges
on scales of order 1/

√
N , well above the limit where the microscopic linearization

stops being valid, which is of order 1/N . However, one cannot dismiss the results con-
tained in reference [12], based on the structure of the microscopic covariant Lyapunov
vectors [19–21].
A covariant Lyapunov vector is the extension of the concept of an eigenvector of a

standard linear operator to the product of time-varying operators. A Lyapunov vector
is a collection of (infinitesimal) perturbations of the single variables and, as such, it can
be seen as perturbation of the corresponding density. This interpretation is qualita-
tively illustrated in Figure 16, where a microscopic configuration is represented by the
position of 8 variables (see the top squares), while a Lyapunov vector is depicted as a
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Fig. 17. Snapshot of two covariant Lyapunov vector corresponding to the largest (a) and
smallest (b) microscopic Lyapunov exponent for a the NCB model. The upper curve is
obtained for N = 20480, while the second corresponds to N = 10000. In both cases the
vector amplitude is scaled to an Euclidean norm N .

sequence of arrows which identify the shift of the corresponding variables. The result-
ing perturbed configuration is finally represented by the bottom sequence of squares.
The perturbation shown in Figure 16 can be interpreted as an enhancement of the

density in the central part of the interval. A necessary condition for a perturbation of
the microscopic variables to correspond to a meaningful perturbation of the density is
that the microscopic variations cooperate in regions of size larger than 1/

√
N to build

macroscopically observable variations. As shown in reference [20], high-dimensional
chaotic systems are typically characterized by localized Lyapunov vectors, i.e., by
perturbations which are typically localized in a non-extensive set of points. Accord-
ingly, they cannot be interpreted as macroscopic perturbations and, in particular,
they cannot correspond to macroscopic Lyapunov vectors. Extensivity is, therefore, a
requisite for a covariant vector to have a macroscopic interpretation. In fact, extensive
vectors have been found in some mean-field models [12], especially in an ensemble of
noisy logistic maps, where one could make a comparison with the Frobenius-Perron
operator. So it is legitimate to ask how it is possible that in some cases the saturation
induced by the reordering of the microscopic variables (see Fig. 2) does not affect

the evolution of small perturbations at least up to scales of order 1/
√
N . If nearby

variables are coherently perturbed, their mutual distance does not vary significantly:
in principle, such perturbations may lead to a few changes of order, so that the micro-
scopic linearized dynamics can extend to scales where it coincides with the behavior
of macroscopically perturbed probability densities. This is precisely the reason why
macroscopic and microscopic stability analyses give consistent results for the stability
of splay states. A splay state is an asynchronous regime where globally coupled oscil-
lators are evenly distributed over the set of possible phases and maintain their initial
ordering, so that no oscillator is ever “overtaken”. Differences are obviously found in
the corresponding spectra of eigenvalues, but they can be attributed to the finiteness
of microscopic ensembles: other than that, as shown in references [22,23], there is
an overall consistency. Whether the absence of variable reordering is a necessary and
sufficient condition for a microscopic exponent to percolate to macroscopic scales, is
a conjecture that need to be further explored.
We now return to the NCB model for some further tests. From Figures 8 and 9

it follows that the largest collective Lyapunov exponent Λmax ≈ 0.335 is located
within the spectrum of microscopic exponents, which ranges from λmax ≈ 0.93 down
to λmin = 0.335. Therefore, we do not expect the first covariant vector to exhibit any
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macroscopic structure. A typical snapshot of this vector is illustrated in Figure 17a,
plotting its local amplitude u versus the current value of the corresponding angular
variable (u is scaled so that the Euclidean norm of the vector is N). There we see
that many components are of order O(1): this is a clear signature of the extensivity.
Extensivity alone, is not however a sufficient condition for a vector to be macroscopi-
cally meaningful. If the sign of the various components are “randomly” distributed, as
in Figure 17a, no macroscopic variation of the corresponding density can emerge from
the application of this perturbation. It is nevertheless worth stressing that extensivity
is a rather anomalous property of covariant vectors in high dimensional systems; they
are typically localized [20]. This is, for instance, the case of the covariant vector that
corresponds to λmin, plotted in Figure 17b: there we see that most of the compo-
nents are exponentially small. This localized structure itself is, however, unexpected.
In fact Λmax is rather close to λmin and, on the basis of the observations reported
in reference [12], one might expect to find evidence of the macroscopic instability
in the structure of the usual microscopic Lyapunov exponents. This is an additional
evidence that the relationship between macroscopic and microscopic instabilities is
subtler than believed so far.
Finally, a comment on the onset of CC in ensembles of nonidentical oscillators.

The model explored in Section 3 is affected by too strong finite-size corrections to be
able to draw any quantitative conclusion. It would be desirable to identify a simple
setup, characterized by a faster convergence, where one can quantitatively monitor
the strength of the instability across a wide range of perturbation amplitudes.

APo and EU wish to acknowledge the Advanced Study Group activity at the Max Planck
Institute for the Physics of Complex Systems in Dresden “From Microscopic to Collective
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6. D. Pazó, E. Montbrió, Phys. Rev. Lett. 116, 238101 (2016).
7. H. Sompolinsky, A. Crisanti, H.J. Sommers, Phys. Rev. Lett. 61, 259 (1988).
8. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984)
9. S. Luccioli, A. Politi, Phys. Rev. Lett. 105, 158104 (2010)
10. A. Politi, A. Torcini, in Nonlinear Dynamics and Chaos: Advances and Perspectives,
Underst. Complex Syst. (Springer, Berlin, 2010), pp. 103–129

11. E. Ullner, A. Politi, Phys. Rev. X 6, 011015 (2016)
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