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In this paper, we proposed a link density clustering method for overlapping commu-

nity detection based on density peaks. We firstly use an extended cosine link distance
metric to reflect the relationship of links. Then we introduce a clustering algorithm with

fast search for solving the link clustering problem by density peaks with box plot strategy

to determine the cluster centres automatically. Finally, we acquire both the link commu-
nities and the node communities. Our algorithm is compared with other representative

algorithms through substantial experiments on real-world networks. The experimental

results show that our algorithm consistently outperforms other algorithms in terms of
modularity and coverage.

Keywords: Link community; overlapping community detection; link distance metric; box
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1. Introduction

Overlapping community detection has become a widely discussed topic in the

field of complex networks1. With the continuous development of research on com-

plex networks, much work has focused on network growth2 and general statisti-

cal mechanics3, examples of which include community structure in national co-

authorship networks and the evolution of interdisciplinary research in Slovenia’s
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scientific collaboration network4, the growth and structure of Slovenias scientific

collaboration network5. Overlapping community detection aims to identify those

communities composed of densely connected nodes inside and sparsely connected

nodes outside. It has been widely applied in many problems1−5.

The algorithms for overlapping community detection can be roughly classified

as node-based and link-based ones. Traditional overlapping community algorithms

are mostly node-based6−16. As a representative of node-based algorithms, the CPM

(Clique Percolation Method) was proposed by Palla et al6. However, the CPM al-

gorithm identifies the cliques with restricted structure. Farkas et al. extended CPM

into weighted networks7. Greedy Clique Expansion (GCE) was proposed by Lee et

al. (2010)8, and it expanded unique cliques as seeds through greedily optimizing a

local fitness function and uses a clean step to merge similar communities identified8.

Fuzzy c-means clustering algorithm9 was employed by Zhang et al. to detect over-

lapping communities, and this algorithm combines a novel generalized modularity

function based on Q function10, spectral mapping and fuzzy c-means clustering for

identifying fuzzy membership functions11 in the overlapping community structure.

Combining non-negative matrix factorization technique, a popular modular function

and a proper feature matrix from diffusion kernel, an algorithm was put forward by

Zhang et al. (2007) for detecting fuzzy overlapping community structure11. In ad-

dition, COPRA12 and SLPA13 algorithms were proposed based on the idea of label

propagation. Most recently, an ant colony based overlapping community detection

algorithm was presented by Zhou et al. (2015)14.

Up till now, some research has focused on link community due to the u-

nique advantages of links instead of node communities for overlapping community

detection17,18. Distinct from the traditional community definition, link communities

can be viewed as groups of links. As a representative link-based algorithm, the link

clustering (LC) algorithm was proposed by Ahn et al17. The LC algorithm uses

partition density to determine the best communities among the clustering results.

It makes the communities identified smaller than the ground-truth. Cazabet et al.18

put forward an algorithm for detecting both static and temporal communities based

on links.

Traditional clustering algorithms have been applied to overlapping community

detection17,19,20,21. Hierarchical clustering algorithm19 is a typical example used in

the LC algorithm. Based on the idea of DBScan20, LinkScan algorithm is proposed

by Sungsu Lim et al21. The clustering algorithm by fast search and find of density

peaks (FSC) was proposed by Alex Rodriguez et al.22, and it has its own advantage

for identifying the cluster centres whose densities are higher than their neighbours

and whose distances form points with higher densities are also relatively large.

However, hierarchical clustering algorithm sometimes finds a local optimal solution.

And DBScan algorithm tends to identify dense clusters.

Considering the above issues, we propose to introduce the FSC algorithm for

solving the overlapping community detection problem. While the cluster centres of
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the FSC algorithm are often determined intuitively, in this research we employ the

box plot model to automatically select the cluster centres. Based on the concept

of link communities, we put forward a link density clustering algorithm (LDC) for

overlapping community detection. Different from the related previous work based

on nodes14,15,16, our algorithm is link based. We present a few key contributions as

follows:

(1) We propose an extended cosine link distance metric to evaluate the strength

of link relations. This extended link distance metric considers the relationship of

links with common neighbours.

(2) We introduce the clustering algorithm by fast search and find of density

peaks (FSC)22 into the link community detection and then use the box plot strat-

egy to obtain cluster centres automatically. The algorithm avoids the process of

determining the community detection results by tuning parameters and evaluating

the metrics used. Through the extended cosine link distance metric, FSC algorithm

can be applied to effectively solve the problem of overlapping community detection.

(3) Experiments on real world networks demonstrate the good performance of

our LDC algorithm.

In the rest of this paper, some related algorithms are discussed in Section 2. Our

link density clustering algorithm is presented in Section 3. Experiments on complex

networks are discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Related Algorithms

In this section, the CPM algorithm (Clique Percolation Method)6, the LC algorith-

m (Link Clustering algorithm)17 and the iLCD algorithm (intrinsic Longitudinal

Community Detection algorithm)18 are presented for comparison with our proposed

LDC algorithm. The box plot model is also introduced for automatically selecting

the centres of the FSC algorithm.

2.1. The CPM, LC and iLCD Algorithms

The CPM algorithm (Clique Percolation Method) was proposed by Palla et al. for

uncovering the existence of overlapping community structure6. The CPM algorithm

is based on the assumption that a community is a series of adjacent k-cliques and

thus called a k-clique community. The two k-cliques are adjacent if they have k-1

common nodes. Given the clique size k, the CPM algorithm searches all k-cliques

in the network. The CPM algorithm detects the k-clique communities among the

k-cliques identified based on the concept of the k-clique community. The software

CFinder is designed based on the CPM algorithm23.

The Link Clustering algorithm (LC) was proposed by Ahn et al. for revealing the

inherent advantage of link community17. The LC algorithm firstly calculates the link

similarity matrix according to the adjacency matrix and then uses the hierarchical

clustering algorithm19 on the link similarity matrix. Then the link communities are
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identified with the highest partition density value. The R package linkcomm was

published by Alex et al.24 based on the LC algorithm17.

The iLCD algorithm was proposed by Remy Cazabet et al. for overlapping com-

munity detection on both static and dynamic networks18. It is based on the as-

sumption that communities are defined locally18. The iLCD algorithm is composed

of three steps: updating existing communities, creating a new community, and merg-

ing similar communities. In the updating step, a node is added into a community if

the mean number of its second neighbours is larger than the estimation of the mean

number of its robust second neighbours. In the creation step, if a new edge is added

to the network and a minimal community is formed, this minimal community will be

created as a new community. The minimal community used in the iLCD algorithm

is a clique of three or four nodes. A merging process is performed to merge the two

communities when the ratio of nodes in common is higher than the threshold. The

threshold set in the iLCD algorithm is (0.2, 0.3) or (0.7, 0.9). The source code of

the iLCD algorithm is available at Ref.25.

2.2. The FSC Algorithm

The clustering algorithm by fast search and find of density peaks (FSC) was pro-

posed by Rodriguez and Laio (2014)22. It is a fast search clustering algorithm22,

and it avoids the process of tuning parameters and the calculation of the evalua-

tion metrics. The FSC algorithm can find the clusters that have higher density in

clusters and lower density among the nodes between clusters.

The detailed steps of the FSC algorithm are shown in Algorithm 1 FSC table.

Through identifying the local density and distance between points, the FSC

algorithm can find those cluster centres are surrounded by neighbours with local

density. Furthermore, the neighbours have a relatively large distance with all those

points with a higher local density.

2.3. The Box Plot Model

The box plot model has been widely used in descriptive statistics and exploratory

data analysis for depicting groups of numerical data through their quartiles. As

shown in Fig.1, the box plot model is non-parametric and it shows the maximum

value, 75th percentile, 50th percentile, 25th percentile and the minimum value of

the statistical distribution. In addition, IQR (interquartile range) is equal to the

difference between the 75th percentile and the 25th percentile. In this research we

use the box plot model for automatically choosing the centers of link communities

in our FSC algorithm with an aim to obtain better results.

3. Our LDC Algorithm

Our proposed LDC algorithm consists of two main steps. First, the extended cosine

link distance metric is used to evaluate the relationships of links and the distance
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Algorithm 1 FSC

Input: the link distance matrix;

Output: the link communities;

1: For each link i, the local density and the minimum distance are calculated

through the distance matrix and Formulas (1)-(3). The local density of link i is

defined as:

ρi =
∑
j

f(dij − dc). (1)

In Formula (1), ρi is equal to the number of points that are closer than dc to

point i. dc is the cutoff distance and function f is defined in Formula (2).

f(dij − dc) =

{
1 if dij < dc
0 otherwise

(2)

If we use δi to represent the minimum distance between point i and any other

points with higher densities, δi is defined in Formula (3):

δi = min
j:ρj>ρi

(dij). (3)

2: Choose the community centres where the local density and the minimum dis-

tance are both relatively higher than their neighbours. According to the centres,

the links are classified by their nearest neighbour with higher density values.

Finally, the link communities are identified.

matrix of links is calculated. Then, the FSC algorithm22 is used to identify the

dense groups of links according to the distance matrix of links.

3.1. The Extended Cosine Link Distance Metric

Before introducing the extended cosine link distance metric, the following symbols

are defined in Table 1 for the ease of description.

Table 1. A Summary of Symbols.

Symbol Description

G The given network
V The node set of G

E The link set of G

A The adjacency matrix of G
D Link distance matrix

m The number of links in G
n+(a) The neighbours of node a including node a itself

n The number of nodes in G
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Fig. 1. The Diagram of Box Plot Model.

To introduce our extended cosine link distance metric, we first give the original

cosine similarity measure in Formula (4). Formula (4) is defined to calculate the

distance between node i and node j.

LS(i, j) =
| n+(i)

⋂
n+(j) |

| n+(i)
⋃
n+(j) |

. (4)

The main idea of our extended cosine link distance metric is to employ the

link relationship as the distance of links. If two links are more dissimilar, then

the distance of the two links is lager. The link distance algorithm is based on the

idea of cosine similarity. For evaluating the relationship of links more precisely, the

neighbors of the nodes connected by the links are considered. For two given links

i and j, link i connects nodes a and b. Link j connects nodes c and d. If link i

connects link j, it means that they have one common node. If links i and j have one

neighbour node, it means that the nodes connected by the links have one common

neighbour node. The extended cosine link distance of link i and link j is defined in

Formula (5).

D(i, j) = 1− LS(i, j). (5)
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We use Formula (5) to calculate the distance between link i and link j, and in

this formula, LS(i, j) represents the similarity between link i and link j, as defined

below in Formula (6).

LS(i, j) =
f(a, c) + f(a, d) + f(b, c) + f(b, d)

g(a, c) + g(a, d) + g(b, c) + g(b, d)
. (6)

f(a, c) =| n+(a)
⋂
n+(c) | . (7)

g(a, c) =
√
| n+(a)× n+(c) |. (8)

In Formula (7), n+(a) represents the number of neighbours of node a including

node a itself. f(a, c) represents the number of common neighbours of nodes a and

c. In Formula(8), g(a, c) represents the product of neighbours of nodes a and c. The

numerator of Formula (6) calculates the number of common neighbours between the

nodes connected by links i and j ; while the denominator of Formula (6) calculates

the sum of the product of neighbours of the nodes connected by links i and j. The

extended cosine link distance metric thus accommodates the relationship of the

links having common neighbour nodes, which is a further extension to the Jaccard

similarity used in the LC algorithm as more topological information is incorporated

in this metric.

3.2. Link Density Clustering Algorithm

Our Link Density Clustering Algorithm (LDC) combines the extended cosine link

distance metric and the FSC algorithm22. LDC algorithm firstly uses the link dis-

tance algorithm to calculate the distance matrix. Then, the community centres

and the link communities are determined by the FSC algorithm. Finally, the link

communities are transformed into the node communities.

Algorithm 2 LDC

Input: the link set E of graph G ;

Output: overlapping communities of graph G ;

1: Construct the adjacency matrix A according to the link set E.

2: Based on the extended cosine link distance metric (see Section 3.1), calculate

the link distance matrix Dlink.

3: Use the FSC algorithm (see Section 2) with the link distance matrix Dlink.

4: Transform the link communities back to the node communities.

The LDC algorithm identifies the link centers and then detects the link commu-

nities according to the community centres. Firstly, we assign indexes to the links.
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Secondly, the extended cosine link distance metric is applied to the links (see Sec-

tion 3.1) and the link distance matrix is obtained. Thirdly, the FSC algorithm is

used on the link distance matrix (see Section 2.2) for identifying the link commu-

nities. Finally, the link communities are transformed back into node communities

according to their indexes.

The strategy of automatically choosing centres of the link communities in the

FSC algorithm is employed from the box plot model presented in Section 2.3. The

strategy is to identify the links with the value of ρ being higher than 75th percentile

and the value of δ being higher than the sum between 75th percentile and 1.5 times

of IQR. If less than two link centers are found by using the above strategy, the

strategy is then adjusted to identifying the links with δ being higher than 75th

percentile.

The time complexity of our extended cosine link similarity is O(m2 + n2) and

the corresponding space complexity is O(m2 +n2). The time complexity of the FSC

algorithm is O(m2) and the corresponding space complexity is O(m2). Hence, the

time complexity of our LDC algorithm is O(m2 + n2) and the space complexity of

LDC algorithm is O(m2 + n2).

An example for illustrating our LDC algorithm is shown in Fig.2. In this exam-

ple network, there are 12 nodes and 17 links. And it naturally forms two obvious

communities and the links after sorting with their indexes are shown in Fig.2 (a). In

the LDC algorithm, the link distance matrix is shown in Fig.2 (b). Combined with

the indexes of the links in Fig.2(a), the link set {1,2,3,4,5,6,7,8} forms an obvious

community and another link set {9,10,11,12,13,14,15,16,17} forms another natural

community. Our link distance matrix also shows the two blocks corresponding to

the two link communities in Fig.2 (b). The links in the same community are closer

than those outside. As shown in Fig.2 (c), the cluster centres chosen by LDC are e1,4
(link 3) and e9,13 (link 15), which are shown as two overlapping brown color points

in the top right corner. In Fig.2 (c), the red line represents the 75th percentile of ρ

and the green line represents the sum of the 75th percentile and 1.5 times IQR of

δ. The community cluster centre e1,4 (link 3) is colored white and the community

of cluster centre e9,13 (link 15) is colored green. The overlapping node of the two

communities is node 7 (in yellow).

4. Experiments

In this section, the performance of LDC is extensively tested on several real-world

networks. In all the experiments, the cutoff distance in our LDC algorithm we take

is the same as the original FSC algorithm and it sets up to the two percent of the

total distance matrix because of the FSC algorithm is robust to the choice of the

cutoff distance. We compared our algorithm with other three algorithms: CPM6,

LC17, and iLCD18.
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(a) Distance matrix

(b) Decision graph (c) Decision graph

Fig. 2. Results of LDC algorithm on the example Network

4.1. Data Source

The real-world networks tested by our LDC algorithm are classified as empirical

networks and unempirical networks. The empirical networks represent the real-

world networks with ground-truth. The empirical networks we used are the Karate

network26, the Dolphin network27, and the Politics network28. The empirical net-

works represent the real-world networks without ground-truth. The unempirical

network is the Power grid network29. The detailed parameters of these networks are

shown in Table 2.

Table 2. Real-world networks.

Dataset Nodes Links Average Degree Community Number (CN)

Karate26 34 78 4.59 2
Dolphin27 62 159 5.13 2

Politics28 105 441 8.4 3
Power grid29 4941 6954 2.9 -



April 25, 2016 20:55 WSPC/INSTRUCTION FILE ws-ijmpb

10

4.2. Evaluation Metrics

Evaluation metrics develop with the complex network research. There are many eval-

uation metrics proposed for evaluating overlapping communities, such as Extended

Modularity (EQ)30, Clustering Coverage (CC )21, Modularity Density31, Commu-

nity Numbers (CN )14, Normalized Mutual Information (NMI )32, and Partition

Density17. To evaluate the performance of the above algorithms on different types

of networks, the Extended Modularity (EQ)30, Clustering Coverage (CC )21 and

Community Numbers (CN )14 are adopted for all networks as three commonly used

metrics in the evaluation of overlapping community33. Meanwhile, an extended Nor-

malized Mutual Information (NMI ) is used for the empirical real-world networks

also as a commonly used metric33.

Extended Modularity (EQ) evaluation metric is an extension of modularity28

for overlapping community detection, and is proposed by Shen et al.30. EQ is widely

used for the evaluation of the overlapping community results. The calculation of EQ

is shown in Formula (9).

EQ =
1

2m

Cl∑
l=1

∑
i∈l,j∈l

1

O(i)O(j)
(A(i, j)− k(i)k(j)

2m
). (9)

In Formula (9), Ci is one of the node communities and the network is divided into

Cl communities. O(i) represents the number of communities that node i belongs

to. The meaning of other symbols is given in Table 1. If the link communities have

a high EQ value, it means that the community has a good modularity.

Lancichinetti et al.32 proposed an extension of Normalized Mutual Information

(NMI ), and it has become one of the most popular evaluation metrics for evaluating

overlapping communities. NMI has to be provided with the ground-truth, and the

range of NMI is from 0 to 1. The higher the value of NMI, the closer the result is

to the actual communities.

Clustering Coverage (CC )21 is used for evaluating nodes covered by algorithms,

and we use Formula (10) to calculate CC. In Formula (10), the number of nodes

detected by algorithms is denoted as n1 and the total number of nodes in network

is denoted as n. CC is the percentage of n1 divided by n. The higher the value of

CC , the more nodes the algorithm covers.

CC =
100× n1

n
. (10)

Community Numbers (CN )14 is used for measuring the difference between the

community numbers by different algorithms and the ground-truth community num-

bers in empirical networks. CN is also a reference evaluation metrics in unempirical

networks. The closer of CN is to the ground-truth, the better the result is.
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4.3. Experimental Results

4.3.1. Results on Empirical Real-World Networks

In Table 3, LDC obtained two communities with the best EQ value of 0.276, the

best NMI value of 0.556 and covered the whole nodes in the network. And there

are two clear blocks in Fig.3(a). Meanwhile, Fig. 3(b) shows the decision process of

choosing the clusters centres. The LC algorithm obtained the suboptimal result on

the EQ, NMI and CC values. However, the CN is far from the ground-truth given

in Table 2. The result identified by the CPM algorithm has higher EQ, NMI and

CC values than those obtained from the iLCD algorithm.

Table 3. Performance Comparison on Karate networka.

Algorithm EQ NMI CN CC(%)

LDC 0.276 0.556 2 100.00

LC 0.260 0.309 8 97.06

CPM 0.186 0.175 3 94.12
iLCD 0.141 0.192 12 73.53

a The data marked in bold are the best values among all algorithms.

(a) Distance matrix (b) Decision graph

Fig. 3. Results of LDC algorithm on Karate Network

In Table 4, LDC algorithm identified four communities with the best EQ value

of 0.379 and the best NMI value of 0.478 and covered all nodes in Dolphin Network.

The distance matrix and the decision graph of LDC algorithm are shown in Fig.4

(a) and (b). The EQ and NMI values obtained from the LDC algorithm are both

higher than those obtained from the CPM algorithm. LC generated 13 communities

with an EQ value of 0.261 and the NMI value of 0.146. And the EQ value of the

result obtained by LC is worse than other algorithms.



April 25, 2016 20:55 WSPC/INSTRUCTION FILE ws-ijmpb

12

Table 4. Performance Comparison on Dolphin Networkb.

Algorithm EQ NMI CN CC(%)

LDC 0.379 0.478 3 100.00

LC 0.261 0.146 13 67.74

CPM 0.361 0.318 4 74.19
iLCD 0.277 0.141 13 70.97

b The data marked in bold are the best values among all algorithm.

(a) Distance matrix (b) Decision graph

Fig. 4. Results of LDC algorithm on Dolphin Network

Table 5. Performance Comparison on Political Networkc.

Algorithm EQ NMI CN CC(%)

LDC 0.430 0.358 2 100.00
LC 0.176 0.102 32 88.57

CPM 0.437 0.247 4 99.05

iLCD 0.175 0.086 41 95.24

c The data marked in bold are the best values among all algorithms.

(a) Distance matrix (b) Decision graph

Fig. 5. Results of LDC algorithm on Political Network
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In Table 5, three communities with an EQ value of 0.430 and NMI value of 0.284

found by LDC have covered all nodes in Political Network. And the NMI value and

CC values obtained by LDC are better than CPM. And the EQ value of the result

obtained by LDC is slightly lower than CPM. The distance matrix and the decision

graph of LDC are shown in Fig.5 (a) and (b). Four communities identified by CPM

with an EQ value of 0.437 and NMI value of 0.247 covered 99.05% of all nodes in

the Political Network and were all better than both LC and iLCD. 41 communities

obtained by iLCD have an EQ value of 0.175, an NMI value of 0.086, and a CC

value of 95.24%. These values obtained by iLCD exceed the LC algorithm except

the CC value.

4.3.2. Results on the Unempirical Real-World Network

Table 6. Performance Comparison on Power Grid Networkd.

Algorithm EQ CN CC(%)

LDC 0.847 63 97.11
LC 0.199 375 26.86

CPM 0.158 297 19.25

iLCD 0.127 434 19.11

d The data marked in bold are the best values among all algorithms.

(a) Distance matrix (b) Decision graph

Fig. 6. Results of LDC algorithm on Power Network

In Table 6, 63 communities were found by LDC with the best EQ value of

0.847 and included 97.11% of all nodes in Power Grid network. The distance matrix

is shown in Fig. 6(a) and the decision process of choosing the cluster centres is

shown in Fig. 7(b). 375 communities found by LC with an EQ value of 0.199 and

with a coverage value of 26.86%, and these results are better than those obtained



April 25, 2016 20:55 WSPC/INSTRUCTION FILE ws-ijmpb

14

from CPM. 297 communities identified by CPM with an EQ value of 0.158 covered

19.25% of all nodes. 434 communities found by iLCD with an EQ value of 0.127

and a CC value of 19.11%, which are worse than all the other algorithms.

After the extensive experiments on both empirical and unempirical real-world

networks, we find that our LDC algorithm can identify communities with relative

higher EQ and NMI values. Meanwhile, it covers more nodes in the networks com-

pared with other three representative algorithms.

5. Conclusions and Future Work

In this paper, a link density clustering (LDC) algorithm for overlapping commu-

nity detection is presented. LDC first calculates the distance matrix through the

extended cosine link distance metric, which we propose to make a better use of the

topological information of the links. Then, the FSC clustering algorithm is used on

the distance matrix and clusters the links into link communities. Finally, the node

communities are detected according to the link communities. Experimental results

on two types of complex networks demonstrated the good performance of our LDC

algorithm in terms of both the EQ and CC evaluation metrics.

In our future work, we will explore both the further development of LDC and

the application potential of LDC in problems of various domains. In terms of further

algorithm development, we will focus on refining the process of choosing centre links

with an aim to improve the performance of LDC on synthetic networks. In addition,

we will also consider how to further reduce the computational complexity of LDC

so that it can be used for large-scale networks. In terms of real-world application-

s, we plan to investigate the potential of LDC when applied to more real-world

complex networks in various domains. This includes employing LDC to enhance

the performance of social network based recommender systems34,35, better analyse

sensor networks36−38, biological networks39,40, and in particular, better clustering

information networks41,42.
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