

University of Huddersfield Repository

Bevan, Adam and Jaiswal, Jay

Rail steel metallurgy: why different elements are important and latest 'mixes'

Original Citation

Bevan, Adam and Jaiswal, Jay (2017) Rail steel metallurgy: why different elements are important and latest 'mixes'. In: PWI London Technical Seminar: Rails: On Our Mettle, 24th May 2017, London, UK. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/32057/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Rail Steel Metallurgy: Why Different Elements are Important and Latest 'Mixes'

PWI London Technical Seminar: Rails – On Our Mettle Jay Jaiswal & Adam Bevan

Inspiring tomorrow's professionals

- Brief history of rails
- Past and present rail microstructures
- Rail steel grade selection for maximum benefit
 - Rail damage mechanisms
 - Route segmentation and damage susceptibility
 - Rail selection and attributes
 - Economic impact of optimised selection
- Discussion and recommendations

Complexity of Design and Material Selection

Rail is the hub of the track infrastructure with varying duty conditions which place significant demands on correct material selection

Brief History of Rails – Life Before Steel

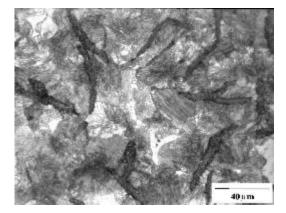
- Early Railways and Wagonways (flange on wheel)
 - 600BC Ruts in Stone Greece/Malta
 - 1540's Wooden rails Central Europe
 - 1603 Wollaton, Nottingham
 - 1767 Cast iron plates on wood rail Coalbrookdale
- Cast Iron "Fish bellied" Edge Rails Late 1780's
 - Short length (<6ft), brittle, many joints, uneven
- Tramway (flange on rail)
 - 1787 "L" shaped Plates Sheffield
- Trevithick's locomotive in 1804 broke the cast iron rails
- Wrought iron rails 1808 Tindale Fell, Brampton, Cumberland
- Up to 30ft, soft, delaminated

Brief History of Rails – Introducing Steel

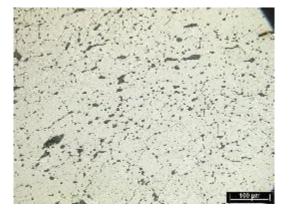
Henry Bessemer

Robert Forester Mushet

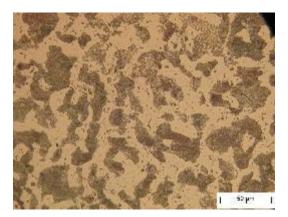
Wilson Cammell & Co, Dronfield - ~1860s



First Rail Rolled at Workington on 9th Oct 1883

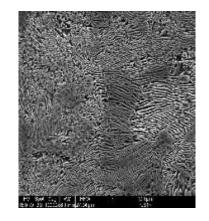

- 1857 The first of Mushet's steel rails was delivered to Derby Midland Station
 - Heavily trafficked part of the line where the iron rails had to be renewed every six months, and occasionally every three
 - "Six years later, in 1863, the rail seemed as perfect as ever, although some 700 trains had passed over it daily. Life span achieved 16 years

Past and Present Rail Microstructures

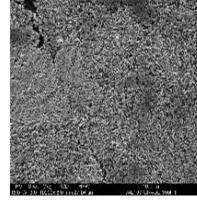


1767 Cast Iron ~ 3%C; 200HB

1808 Wrought Iron 0.05%C; 174HB



1857 Bessemer Steel ~ 0.25%C; 182HB



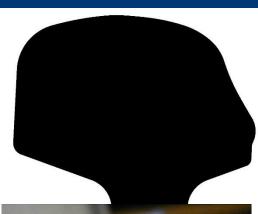
1970 Grade A (R260) ~ 0.8%C, 280HB

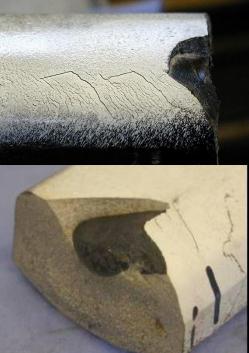
1950 BS11 Normal (R220); ~0.55%C, 230HB

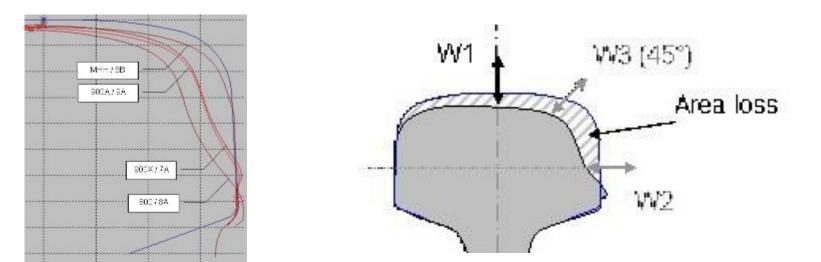
Current HE Grades (R400HT) ~0.9%C; >400HB

1985 MHT (R350HT) 0.8%C, 350HB

Drivers for Developments in Rail Metallurgy



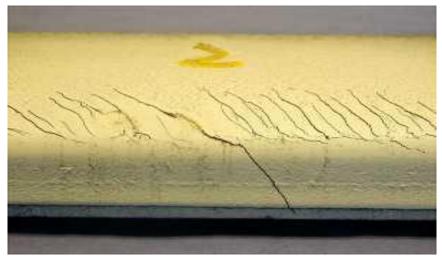




- Reduce rail breaks and defects
 - Improved steel cleanness
 - Increased section and stiffness
- Reduce rail joints
 - Increased hot rolled length
 - Improved welding technologies
- Reduce wear, RCF and plastic deformation
 - Increase carbon and alloy content
 - Heat treatment to refine microstructure and increase hardness

Rail Degradation Mechanisms: Wear

University of


Institute of Railway Research

- Rail Wear remains a significant key cost driver in European Railways
 - Only 20-30% of rail section weight is available for consumption through wear – therefore need to MAXIMISE the life of the ≈20% of rail weight
 - Increase in rail life requires a reduction in rate of wear
 - Increasing traffic density makes reduction in wear rate even more desirable to increase track availability

Rail Degradation Mechanisms: RCF

- Rolling Contact Fatigue:
 - A key cost driver in most railways
 - Increased grinding costs
 - Increased inspection costs
 - Premature rail replacement well before wear limit is reached

Rail Degradation Mechanisms: Squats

- Squat Defects growing cause of increased track maintenance
 - No universal consensus on cause
 - Can rail metallurgy contribute towards eliminating Squats?
 - Can a softer grade promote wear of initial cracks & better rail wheel contact?

Rail Degradation Mechanisms: Plastic Deformation

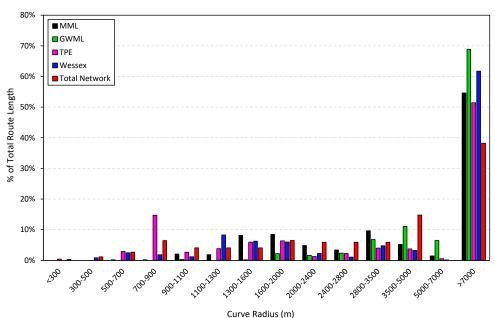
- Plastic Deformation a further cause of premature rail replacement
 - Highly canted track higher forces on low rail
 - Increased freight traffic resulting in high forces on low rail

Rail Degradation Mechanisms: Corrugation

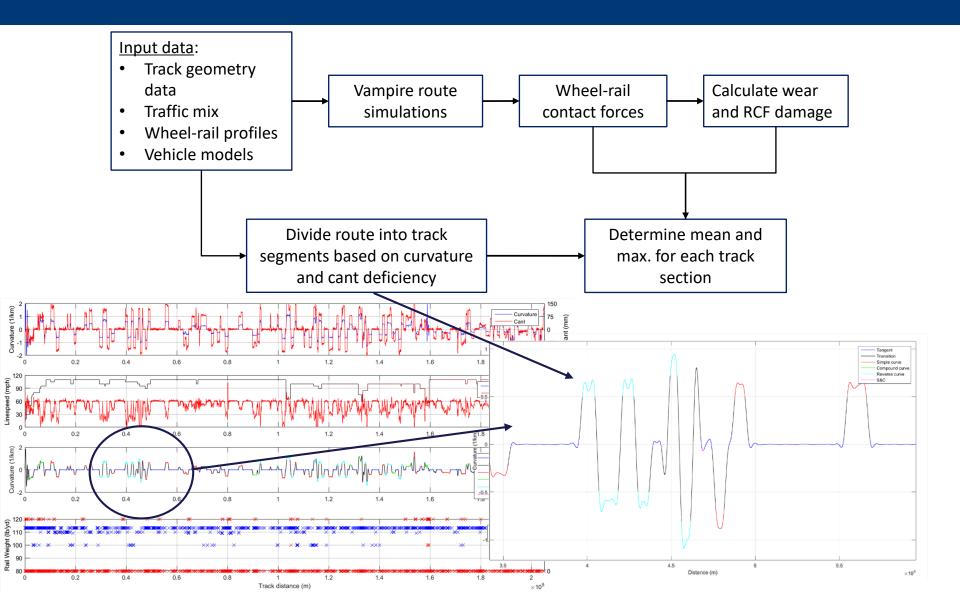
- Corrugation a further rail degradation mechanism & a cost driver
 - Increased dynamic forces leading to degradation of rail & support
 - Increased noise & vibration
 - Increased maintenance costs from remedial grinding
- Harder grades are considered to be more resistant to corrugation development & growth

Rail Damage Susceptibility

- Rate of rail degradation (and life) is not uniform throughout any railway network
 - Governed by a combination of *track*, *traffic* and *operating characteristics* in addition to the *metallurgical* attributes of the steel
- A network is made up of individual segments with varying track characteristics, degradation rates and expected life
- Selection of rail steel grade to maximise life needs to combine knowledge of the metallurgical attributes of the available rail steels with the conditions of wheel-rail and vehicle-track interfaces

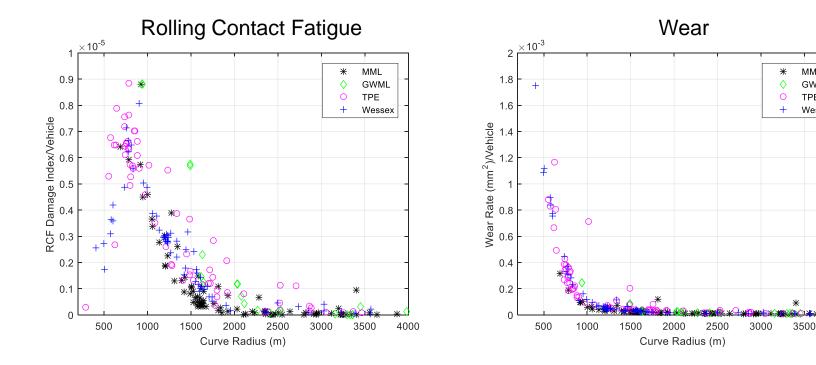


Route Segmentation


- Routes segmented into sub-assets based on curve radius
- Susceptibility to the known degradation mechanisms determined for each segment
- Additional simulation cases undertaken using generic model running over a range of curve radii and cant deficiencies

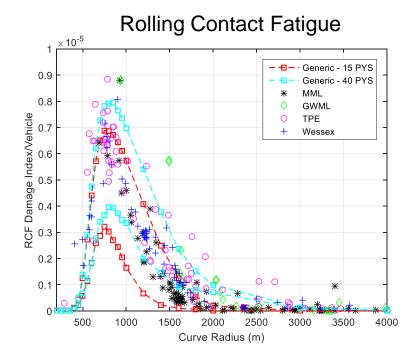
Modelling Methodology

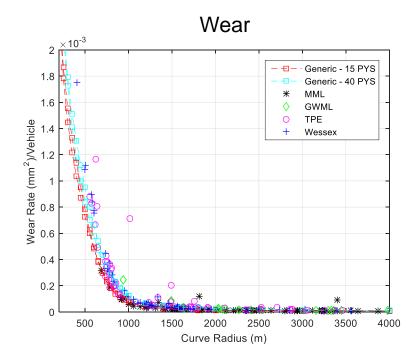
Damage Susceptibility Map


MML

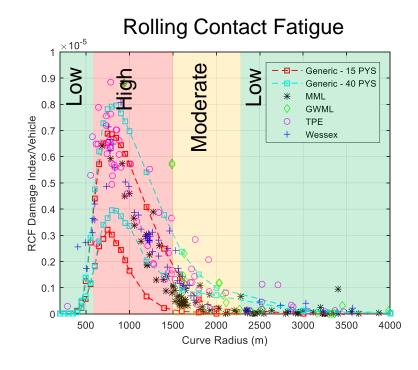
TPE

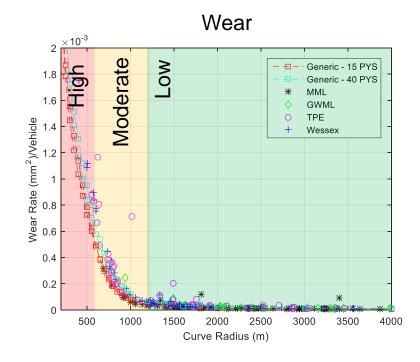
GWML


Wessex


4000

Damage Susceptibility Map



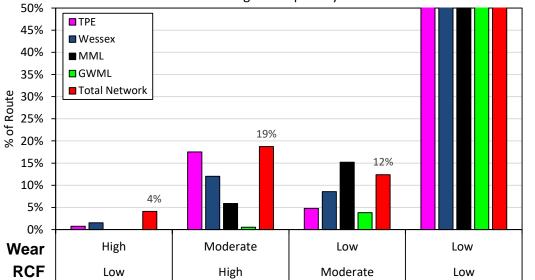


Damage Susceptibility Criteria

University of HUDDERSFIELD Institute of Railway Research

Damage Susceptibility Criteria

University of HUDDERSFIELD Institute of Railway Research


Curve Radius (m)	Damage Susceptib	ility	Rail Degradation Mechanisms			
	RCF	Wear				
< 600	Low	High	High rail – side wear Low rail – plastic deformation			
600 – 1500	High	Moderate	High rail – RCF and side wear			
1500 – 2500	Moderate	Low	High rail – RCF			
> 2500	Low	Low	Vertical wear, squats and corrugation			

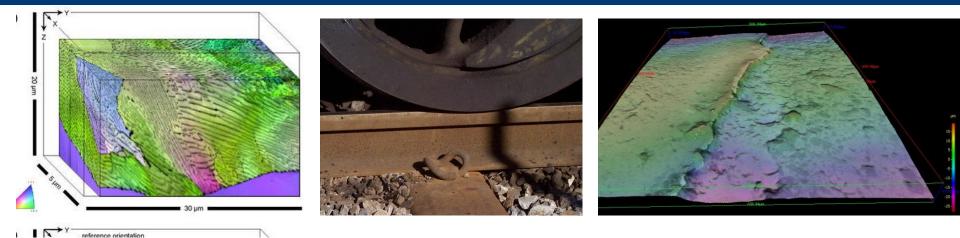
Damage Susceptibility Criteria

University of HUDDERSFIELD Institute of Railway Research

			Damage Susceptibility							
	Curve Radius (m)	< <mark>6</mark> 00	600 - 1500	1500 - 2500	> 2500					
RouteRCFWearTPENo. segmentRoute milesWessexNo. segmentRoute milesMMLNo. segmentRoute milesGWMLNo. segmentRoutesNo. segmentTotalNo. segmentTotalNo. segment	RCF	Low	High	Moderate	Low					
	Wear	High	Moderate	Low	Low					
	No. segments	3	38	15	74					
175	Route miles	0.5	11.7	3.2	25.0					
Magaay	No. segments	5	32	18	87					
Wessex	Route miles	1.1	8.9	6.3	39.9					
мала	No. segments		20	43	111					
	Route miles	0.0	7.5	19.4	69.3					
CIMINAL	No. segments	0	4	10	147					
GWML	Route miles	0.0	0.6	4.3	95.8					
Routes	No. segments	8	94	86	419					
Total	Total Route miles	1.6	28.7	33.2						
Total	No. segments*	152	1031	862 50						
Network	Track miles	740	3376	2230 45	5% + TPE					

Available Rail Steels

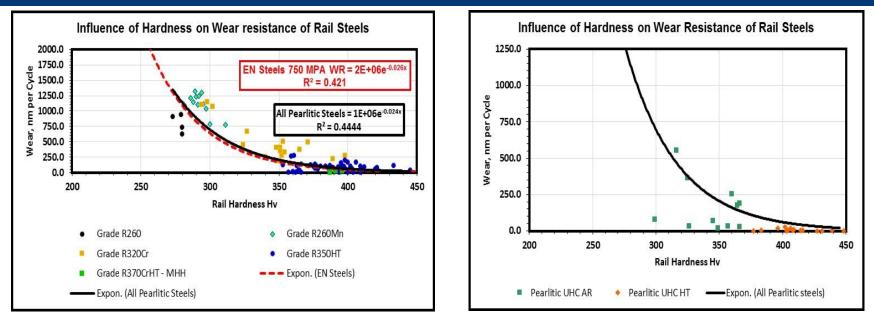
Steel Grade Category	Steel Grade	Composition (Liquid), % by mass							TS, min.	Elong ation, min, %	Hardness Range (HBW)	
Suregory		С	Si	Mn	P max	S, Max	Cr, max	V, max	N, max	Мра		
"Soft"	R200	0.40- 0.60	0.15- 0.58	0.70- 1.20	0.035	0.035	0.15	0.03	0.009	680	14	200 to 240
3011	R220	0.50- 0.60	0.20- 0.60	1.00- 1.25	0.025	0.025	0.15	0.03	0.009	770	12	220 to 260
Standard	R260	0.62- 0.80	0.15- 0.58	0.70- 1.20	0.025	0.025	0.15	0.03	0.009	880	10	260 to 300
Standard	R260Mn	0.55- 0.75	0.15- 0.60	1.30- 1.70	0.025	0.025	0.15	0.03	0.009	880	10	260 to 300
Intermediate Non Heat Treated	R320Cr	0.60- 0.80	0.50- 1.10	0.80- 1.20	0.02	0.025	0.80 - 1.20	0.03	0.009	1080	9	320 to 360
Hard	R350HT	0.72- 0.80	0.15- 0.58	0.70- 1.20	0.02	0.025	0.15	0.03	0.009	1175	9	350 to 390
Heat Treated	R350LHT	0.72- 0.80	0.15- 0.58	0.70- 1.20	0.02	0.025	0.3	0.03	0.009	1175	9	350 to 390
Hardest Heat Treated	R370CrHT	0.70- 0.82	0.40- 1.00	0.70- 1.10	0.02	0.02	0.40 - 0.60	0.03	0.009	1280	9	370 to 410
	R400HT	0.90- 1.05	0.20- 0.60	1.00- 1.30	0.02	0.02	0.30	0.03	0.009	1280	9	400 to 440
			New Stee	el Grades	not yet	with EN S	pecifica	ations				
Tata Steel As-Rolled Hypereutectoid Steel	HP335	0.87- 0.97	0.75- 1.00	0.75 – 1.00	≤0.02	0.008 _ 0.025	≤ 0.10	0.09 - 0.13	≤ 0.006	1150	7	335 minimum
Tata Steel As- Rolled Carbide-	B320 Contains 0.10-0.20% Mo	0.15- 0.25	1.00- 1.50	1.40- 1.70	-	-	0.30 - 0.70	0.10 - 0.20	-	1100 - 1200	14 - 17	320 to 340
Free Bainitic Steel	B360 Contains 0.10-0.20% Mo	0.25- 0.35	1.00- 1.50	1.40- 1.70	-	-	0.30 - 0.70	< 0.03	-	1200 - 1300	13 - 16	360 to 390
Voestalpine Heat Treated Bainitic Steel	DOBAIN	0.76- 0.84	0.20- 0.35	0.80- 0.90	-	-	0.40 - 0.55	-	-	1400	9	>430


Available Rail Steels – Attributes Huddersfield Institute of Railway Research

	Fracture Toughness [MPa m 1/2]		M ax. Fatigue crack growth rate, [m/Gc]		Fatigue strength	Residual stress	Hardness	Tensile Strength	Elongation
Steel Grade	Min. single value	Min. mean value	Delta K = 10, Delta K = 13, [MP am 1/2] [M pam 1/2]			[MPa]	[HBW]	[MPa]	[%]
R200	30	35	Not sp	ecified		<250	200-240	680	14
R220	30	35	17 55		5X106	<250	220-260	770	12
R260	26	29	17 55		Cycles for	<250	260-300	880	10
R260Mn	26	29	17	55	total	<250	260-300	880	10
R320Cr	24	26	Not sp	ecified	strain	<250	320-360	1080	9
R350HT	30	32	17 55		amplitude	<250	350-390	1175	9
R350LHT	26	29	17 55		of	<250	350-390	1175	9
R370CrHT	26	29	17	55	0.00135	<250	370-410	1280	9
R400HT	26	29	17	55		<250	400-440	1280	9
HP 335	27	31	<12	<34	Compliant	<250	335-380	1150	7
B320						<250	320-340	1100	14
B360	Data not available but believed to be compliant with current					<250	360-390	1200	13
DOBAIN380	specifications					<250	380-420	1250	10
DOBAIN430						<250	>430	1400	9

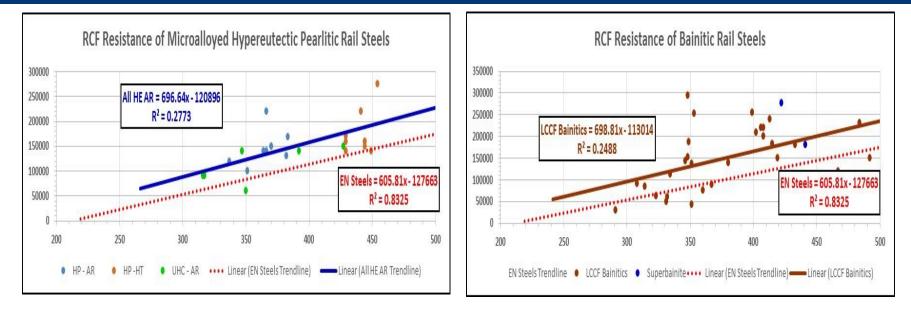
- Key properties specified in EN13674-1: 2011
- How are they related to in-service performance
- How should they be used for the selection of rail grades

Response of Rail Microstructures



- Virtually all rail steels in use today have a pearlitic microstructure comprising a lamellar of "soft ferrite" and "hard cementite"
- Pearlite is a 3-dimensional entity and the wheel encounters both the ferrite & cementite laths at a wide range of orientations
- How does this composite microstructure react to ratchetting?

Comparing Wear Resistance



- Hardness is a very good indication of resistance to wear for both as-rolled and heat treated grades in EN
- Ultra high carbon steels provide very good resistance to wear both as-rolled & heat treated conditions
- Optimised HP335 composition has wear resistance equivalent to much harder grades – What microstructural features impart this attribute?
- Can laboratory twin disc test results represent side wear?

Comparing RCF Resistance



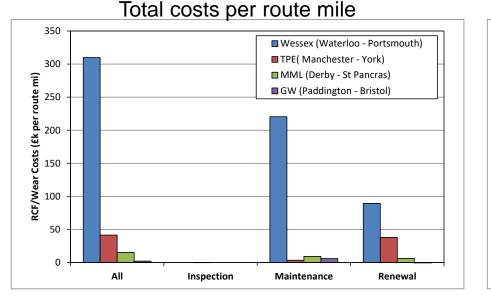
- Resistance to RCF also increases linearly with hardness for the full range of steels in EN 13674-1:2011
- Resistance to RCF of UHC steels optimally alloyed with Si, V, N (HP335) also increases linearly with hardness but is displaced to great resistance than other pearlitic steels within EN
- Hypothesis exists for this improved performance but more systematic investigation needed for validation

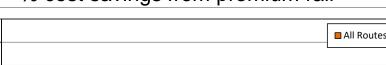
Comparing Resistance to Plastic Deformation

- 0.2% PS shows a linear dependence on hardness
- Is resistance to plastic deformation just governed by 0.2% PS?
- Samples of low rail of different grades need to be analysed to establish material flow patterns

Economic Modelling

UNIVERSITY OF LEEDS

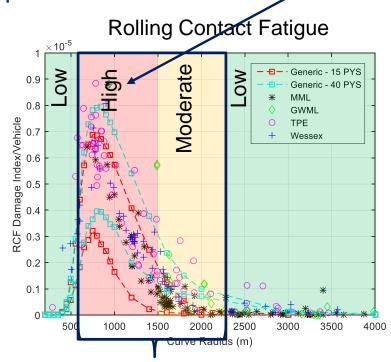

- Aims to quantify the costs and benefits from using new rail steel grades
- Workshop held with NR to help understand and quantify costs and benefits of using premium rail steel grades
 - Additional benefits not captured in current cost models (e.g. VTISM) identified (e.g. availability, reliability, safety, environmental)
- Initial VTISM modelling undertaken (on 4 selected routes) to identify potential costs savings from deployment of premium rail on entire routes
 - Further benefits may be obtained from optimum deployment of steel in correct locations
- Further work on-going to improve the cost benefit analysis in collaboration with NR


RCF and Wear Costs

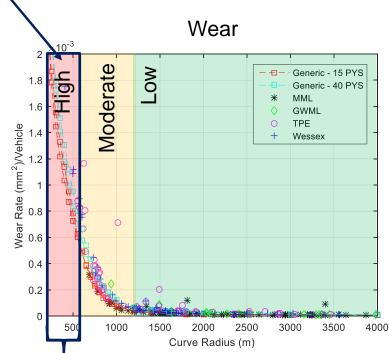
- RCF and wear damage rates reduced based on observations from previous HP335 trial sites
- Grinding interval for all track sections = 45MGT
 - Lower damage depth ≈ less metal removal required during grinding

100%

Discussion and Recommendations



- A number of GB routes segmented based on track characteristics
- Susceptibility of these segments to RCF and wear damage quantified to support selection of optimum rail steel grade to maximise life
- Experimental data for a range of steel grades have been compared to quantify resistance to key damage mechanisms
 - Further controlled testing and microstructural assessment of the full matrix of rail steels is on-going – a singularly **unique** database for the industry
- Research has helped to quantify the benefits of current NR strategy for rail steel grade selection


Application of Premium Rail Steels

To reduce whole life costs, *premium rail steels* should be *considered* for use in critical curves where <u>RCF</u> or <u>wear</u> causes the premature replacement of the rail

Used in moderate curves to preserve the ground rail profile and increase the *resistance to RCF*

Used in in tight radius curves with a *high wear rate*

Acknowledgements

- This research was financed under EPSRC grant EP/M023303/1 "Designing steel composition and microstructure to better resist degradation during wheel-rail contact"
- In collaboration with:
 - Rail Safety and Standards Board (RSSB)
 - Department of Transport
 - University of Cambridge
 - University of Leeds
 - Cranfield University