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Abstract: 

 The Western Antarctic Peninsula (WAP) displays high but variable productivity 

and is also undergoing rapid change. Long-term studies of phytoplankton communities 

and primary production have suggested transient limitation by the micronutrient iron (Fe), 

but to date no data have been available to test this hypothesis. Here, we present the first 

spatially extensive, multi-year measurements of dissolved and particulate trace metals in 

surface waters to investigate the key sources and sinks of Fe in the central WAP shelf. 

Surface samples of dissolved and particulate metals were collected throughout the 700 x 

200 km grid of the Palmer Long-Term Ecological Research program in three consecutive 

austral summers (2010-2012). 

 Iron concentrations varied widely. Both dissolved and particulate Fe were high in 

coastal waters (up to 8 nmol kg
-1

 and 42 nmol kg
-1

, respectively). In contrast, very low Fe 

concentrations (< 0.1 nmol kg
-1

) were widespread in mid- to outer-shelf surface waters, 

especially in the northern half of the sampling grid, suggesting possible Fe limitation of 

primary production on the shelf. Sea ice and dust inputs of Fe were minor, although their 

relative importance increased with distance from shore due to the larger near-shore 

sources. Sedimentary inputs were inferred from manganese distributions; these were 

more significant in the northern portion of the grid, and showed interannual variation in 

intensity. Overall, the interannual distribution of Fe was most closely correlated to that of 

meteoric water (glacial melt and precipitation). Although the Fe concentrations and 

relative contributions of dissolved and particulate Fe attributed to meltwater were 

variable throughout the sampling region, increasing glacial meltwater flux can be 

expected to increase the delivery of Fe to surface waters of the coastal WAP in the future.  
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1. Introduction 

The Western Antarctic Peninsula (WAP) is a highly productive, seasonally ice-

covered region of the Southern Ocean (Ducklow et al., 2013; Huang et al., 2012; Vernet 

et al., 2008). During the second half of the twentieth century, the WAP experienced the 

most dramatic atmospheric winter warming of any region in the southern hemisphere 

(Bromwich et al., 2012; Hansen et al., 1999). This warming has more recently been 

compensated (and in places exceeded) by a cooling associated with natural fluctuations in 

atmospheric circulation (Turner et al. 2016), though there is an expectation that the 

climatic warming signal will reassert itself at some point in future. Concurrent with the 

trend of atmospheric warming, the upper-level ocean is also warming (Meredith and King 

2005), and duration of seasonal sea ice cover has decreased markedly (Stammerjohn et al., 

2012, 2008). Incursions of warm, nutrient-rich Circumpolar Deep Water (CDW) onto the 

shelf have increased (Martinson and McKee, 2012; Schmidtko et al., 2014), and this 

deep-ocean warming was determined to be responsible for the retreat of the majority of 

WAP glaciers (Cook et al., 2016). Ecological responses to these changes have already 

been observed in phytoplankton dynamics (Montes-Hugo et al., 2009; Moreau et al., 

2015) as well as in higher trophic levels (Atkinson et al., 2004; Saba et al., 2014; 

Steinberg et al., 2015).  

In contrast, there has been little investigation of the effects of climate variability 

and change on the distribution and bioavailability of nutrients, especially the potentially 

limiting micronutrient iron (Fe). Offshore Antarctic Circumpolar Current (ACC) waters 

are Fe-limited across much of the Southern Ocean (Boyd et al., 2007; Martin et al., 1990), 

and mixing with deeper, Fe-replete waters is an important mechanism of Fe supply to 

surface ACC communities (Holm-Hansen et al., 2005; Tagliabue et al., 2014). The WAP 

is a key source region of such high-Fe water, and Fe-stimulated primary production has 

been observed up to 2500 km downstream of the northern WAP in the Scotia Sea (De 

Jong et al., 2012; Hatta et al., 2013; Klunder et al., 2014). A potential Fe supply 

mechanism to the WAP shelf euphotic zone is the upwelling of relatively Fe-enriched 

modified CDW (mCDW), which may acquire Fe as it mixes with shelf water masses and 

contacts shelf sediments, both on the open WAP shelf (Annett et al., 2015; Bown et al., 

2016) and in cavities under ice shelves (Planquette et al., 2013). Sea ice melt (Lannuzel et 
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al., 2011, 2010), atmospheric dust (Gao et al., 2013; Winton et al., 2015), terrestrial 

runoff (of precipitation or glacial meltwater) and glacial processes (Annett et al., 2015; 

Bown et al., 2016) can also be sources of Fe. Glacial sources include sediment delivery 

from icebergs (Duprat et al., 2016; Lin et al., 2011; Raiswell et al., 2008), direct melting 

of glacial ice (Gerringa et al., 2012), subglacial meltwater flow (Wadham et al., 2013), 

and entrainment of glacial Fe into seawater within ice shelf cavities (Gerringa et al., 

2012; Planquette et al., 2013, Sherrell et al., 2015). 

Although the multiple potential continental input sources suggest high-Fe 

conditions nearshore, WAP surface waters may not be uniformly replete in Fe as a result 

of spatially variable inputs and abiotic or biological sinks. Indeed, heterogeneous Fe 

limitation has been hypothesized previously to explain the distribution of primary 

production in shelf waters (Garibotti et al., 2003; Huang et al., 2012; Smith et al., 2008). 

Despite extensive oceanographic survey data from the Palmer Long-Term Ecological 

Research (Pal-LTER) program (Ducklow et al., 2013; Ross et al., 1996), until recently no 

trace metal measurements were available from the central WAP shelf with which to 

assess Fe limitation. The only records from this region are recent time-series studies in 

Ryder Bay (northern Marguerite Bay), which have established high total dissolvable Fe, 

significant glacial inputs, deep-water Fe sources, and biological depletion of available Fe 

(Annett et al., 2015; Bown et al., 2016; Weston et al., 2013). South and west of the WAP, 

studies in the Pine Island region and Amundsen Sea Polynya have found significant Fe 

fluxes associated with glacial melting and processes beneath ice shelves (Gerringa et al., 

2012; Planquette et al., 2013; Sherrell et al., 2015) and highlighted vertical advection and 

sea ice inputs in the Bellingshausen Sea (De Jong et al., 2015). Most studies of Fe in the 

WAP shelf region have focused on Fe distributions near the northern tip of the peninsula 

and in smaller regions where circulation and bathymetry result in natural Fe fertilization 

(Scotia and Weddell seas; e.g. Ardelan et al., 2010; De Jong et al., 2012; Dulaiova et al., 

2009; Hatta et al., 2013; Hewes et al., 2008; Klunder et al., 2014; Measures et al., 2013; 

Sañudo-Wilhelmy et al., 2002). 

Here we present three consecutive years (2010-2012) of mid-summer surface Fe 

concentrations, both dissolved and particulate, from the WAP-wide annual sampling of 

the Pal-LTER grid. To investigate the candidate Fe sources to the shelf ecosystem, 
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concentrations of particulate aluminum (Al) and titanium (Ti), along with dissolved and 

particulate manganese (Mn) are also discussed. Like Fe, Al and Ti are both lithogenically 

derived, but they are not subject to the same biological control. Manganese, like Fe, is 

released by reductive dissolution from sediments (Froelich et al., 1979; Pakhomova et al., 

2007) but is much more soluble than Fe and typically has a longer residence time (Noble 

et al., 2012). 

In the context of ongoing climate change, this study had two goals: (1) 

characterize the major processes controlling distribution of these elements in WAP 

surface water, and (2) evaluate the potential impacts of changing supply mechanisms on 

Fe availability to phytoplankton. A full assessment of the potential for Fe limitation of 

primary productivity on the WAP shelf and biological uptake of trace metals in this 

region will be presented elsewhere. The lack of a strong shelf-break front allows CDW 

incursion and off-shelf transport (Martinson et al., 2008; Moffat et al., 2009), linking 

WAP shelf processes with offshore and downstream open ocean waters (Jiang et al., 

2013b; Zhou et al., 2013). To properly quantify modern and future productivity on the 

WAP shelf and in this sector of the Southern Ocean, it is clear that an improved 

understanding of the role of Fe supply and limitation is needed. 
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2. Methods: 

2.1 Study area and oceanographic context 

The ongoing Palmer Long Term Ecological Research (Pal-LTER) grid covers a 

~700 × 200 km area of the WAP shelf. Sampling lines are arranged perpendicular to the 

peninsula at 100 km intervals, from the -100 line in the south (Charcot Island) to the 600 

line in the north, at the inshore end of which is Palmer Research Station on Anvers Island 

(Fig. 1). The WAP shelf is broad (~200 km), with complex bathymetry and an average 

depth of ~450 m. There are several deep enclosed depressions within the Pal-LTER grid: 

northwest of Alexander Island, northeast of Adelaide Island, and Palmer Deep south of 

Anvers Island, which has a bottom depth of ~1400 m (Fig. 1). Additionally, several deep 

glacially-scoured canyons dissect the shelf; Marguerite Trough in particular is a relatively 

continuous canyon from the shelf break to George VI ice shelf in southern Marguerite 

Bay, reaching a maximum depth of 1600 m near Alexander Island (Bolmer et al., 2004). 

These canyons act as conduits for incursions of CDW at depth with eddies also playing a 

role (Martinson et al., 2008; Martinson and McKee, 2012; Moffat et al., 2009). The 

proximity of the ACC to the shelf break along the WAP leads to CDW intruding onto the 

continental shelf in a less modified form than in other Antarctic regions (Klinck, 1998; 

Meredith et al., 2008), though it is significantly modified by mixing as it transits up the 

canyons, by cross-canyon ridges and overflow-driven mixing events (Venables et al., 

2016) 

At depth, most WAP shelf water is mCDW, which is relatively warm and saline 

with high nutrient concentrations (Martinson et al., 2008; Moffat et al., 2009). Above this 

is a very cold layer formed by deep winter mixing, termed Winter Water (WW). During 

winter this extends to the surface, but during summer only a remnant is present as a cold 

layer at 50-150 m depth. Freshening from melting sea ice, precipitation, and glacial 

meltwater, and warming from solar insolation combine to form Antarctic Surface Water 

(AASW) above the WW. Surface currents near the shelf break are dominated by eastward 

movement of the ACC and recirculation inshore of the ACC (Hofmann and Klinck, 1998). 

There is also a southwestward flowing Antarctic Peninsula Coastal Current that is at least 

partially driven by buoyancy forcing from coastal freshwater inputs (Moffat et al., 2008; 
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Savidge and Amft, 2009), which will likely be affected by accelerating glacial retreat 

rates (Cook et al., 2016) driven by increasing deep ocean heat content. 

 

2.2 Sample collection and analysis 

Samples were collected during the annual Pal-LTER cruises (January) in three 

successive austral summers (2010-2012) aboard the ARSV Laurence M. Gould. Surface 

water was collected for trace metal analysis using a non-contaminating towfish deployed 

from a laterally-extended knuckle crane off the starboard side of the ship, avoiding 

contamination from the ship’s hull. Seawater was pumped through an acid-cleaned 

polyethylene tube (3/8 inch I.D.) using a deck-mounted air-powered double diaphragm 

pump (Teflon and polypropylene wetted surfaces; Husky model 307, Graco, Inc., 

Minneapolis, MN, USA). The seaward length of the tube was mated to a 1/2 inch 

diameter polyester rope, and the paired tube and rope were passed over a plastic-coated 

sheave suspended from the end of the crane, and attached to a plastic vane with a plastic-

coated bronze depressor weight hung 1 m beneath. While towing at speeds up to 11 knots, 

seawater was collected at ~2 m depth, and pumped into a HEPA-filtered clean lab built 

within the ship’s main science lab, where it was filtered in-line at 0.2 µm through acid-

cleaned capsule filters (Acropak 200, Pall®). The only surfaces in contact with seawater 

in this system were acid-cleaned Teflon, polypropylene, polyethylene, and 

polyethersulfone. Filtered seawater samples were collected in acid-cleaned low-density 

polyethylene bottles (Nalgene) and were acidified at sea to pH ~2.0 using ultraclean HCl 

(Fisher Optima HCl, concentration in seawater 0.012 M) in order to prevent adsorptive 

loss of metals to container walls and to prevent biological growth.  

Meteoric meltwaters from a meltwater stream ~400 m from Palmer Station 

(Anvers Island) were sampled on 2 February 2015. This small stream is fed by glacial 

melt but may also have included some proportion of recent snow melt and/or rain, and 

was flowing over a short area of exposed rock and sediment near the base of the glacier at 

the time of sampling, before ultimately discharging into Arthur Harbor near Palmer 

Station. Acid-cleaned, all-polypropylene syringes and 0.45 µm Acrodisk ® filters were 

rinsed with meltwater, and then 60 mL of filtrate was collected into acid-cleaned low-
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density polyethylene bottles following a single bottle rinse. Meltwater was acidified as 

for seawater. 

Seawater and meltwater samples were analyzed at Rutgers University for 

dissolved Fe and Mn (in addition to Zn, Cu and Ni; to be reported elsewhere) using an 

automated flow injection ICP-MS method developed in the Sherrell laboratory at Rutgers 

University (Lagerström et al., 2013). Briefly, the automated device loaded a 9 mL aliquot 

of seawater, which was buffered inline to pH 7.0 with 3 mL of acetic acid/ammonium 

hydroxide buffer, onto a column packed with Nobias PA1 chelating resin (Hitachi High-

Technologies). The column was rinsed in buffered Milli-Q water and eluted with 1.5 M 

nitric acid directly into the nebulizer of an Element-1 sector field ICP-MS (Thermo-

Finnigan, Bremen, Germany). All acids used for sample analysis were Optima ® grade 

(Fisher). The eluate, a 200-fold concentrate of the sample with greatly reduced major ion 

concentrations, was analyzed in medium resolution and temporal peak integration was 

performed using custom software coded in MATLAB (MathWorks, Newton MA). 

Quantification for Fe was carried out using isotope dilution (
57

Fe spike) and for Mn by 

matrix-matched external standards in seawater, the latter pre-concentrated through the 

chelating column at the beginning and end of each analytical session, and corrected for 

instrumental sensitivity drift. 

Analytical duplicates were measured every sixth sample and typically displayed 

1–3 % deviation about the mean. The long-term precision over many analytical runs over 

a period of months, as demonstrated by repeated analysis of a large-volume in-house 

seawater standard from the Ross Sea (analyzed 5–6 times during each analytical session), 

was 3 % for Fe and Mn (RSD; see Table 3 in Lagerström et al., 2013). Accuracy was 

verified by repeated analysis of reference seawater materials (SAFe S and D2, 

GEOTRACES S and D), which showed agreement within one standard deviation of the 

consensus values for almost all reference seawaters (Table 1). 

Methods for the collection and analysis of a suite of major and trace particulate 

metals including Al, Ti, Fe, and Mn followed Planquette and Sherrell (2012). Briefly, 

particles were filtered from 1.5 to 8.5 L of towfish-collected whole seawater onto acid-

cleaned 0.45 µm pore size filters (47 mm, Supor; Pall®) within the shipboard clean lab. 

Filters were stored in acid-cleaned PetriSlides ® (Millipore) and immediately frozen for 
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storage and shipping. At Rutgers, filters were subjected to complete acid digestion in a 

solution of 8.0 M HNO3 and 2.9 M HF for 4 hours on a hotplate at ~110 ºC. Elemental 

composition was quantified by ICP-MS analysis against multi-element external standards, 

correcting for blank signals from acids, PTFE vials, and filters. 

 In some samples, low particle concentrations resulted in low absolute particulate 

metal abundances relative to the blank (≤ twice the mean unused filter blank value). In 

cases where particulate Fe:Al and Fe:Ti ratios deviated from consistency with the 

dominant sample range and with trends described by samples from adjacent stations, 

uncertainty associated with correction for the significant filter blank was deemed to be 

the cause. For these samples (19% of samples for Fe, 15% for Al, and 12% for Ti) the 

values were excluded from statistical analysis, although blank-corrected concentrations 

are displayed on figures as open symbols to show when and where these very low values 

occurred. 

 

2.3 Supporting data 

 Salinity and temperature were recorded at each sampling location from the 

continuous underway monitoring system on the ARSV Laurence M. Gould to match the 

trace metal sampling resolution, and are available through the Pal-LTER DataZoo 

(http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets). Seawater oxygen isotope 

data (δ
18

O of H2O) have been presented in Meredith et al. (2013, 2016), following the 

sample collection and analysis described therein. From δ
18

O and salinity we have 

calculated proportions of meteoric water (glacial melt plus precipitation) and sea ice melt 

relative to the mean properties of WW (winter mixed layer “WML” in Meredith et al. 

(2013), following their equation 2). All δ
18

O-derived freshwater fractions are presented 

here with respect to the mean WW for the Pal-LTER grid.  

 

3. Results 

3.1 Oceanographic conditions and meltwater input 

Surface waters showed different sea surface temperature (SST) and salinity (SSS) 

ranges in each of the three sampling years (Fig. 2). In the first two years sampled, inshore 

SST was slightly warmer compared with offshore in the northern portion of the grid. In 
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contrast, coastal waters were slightly cooler in 2012 compared with the rest of the shelf. 

Water was warmest along the 200-line in 2011, leading to 2011 being the warmest year 

on average for our sampling sites (1.18 ± 0.70 ºC, versus 0.55 ± 0.49 and 0.047 ± 0.89 ºC 

for 2010 and 2012, respectively), corresponding to the year of earliest sea ice retreat. 

Minimum SST was measured along the 200-line in 2012, the same line where the 

survey’s warmest water was observed the year before. Salinity followed a consistent 

trend of lower values inshore, partly reflecting the higher coastal contribution of sea ice 

melt in the years sampled (Fig. 3). However, salinity is also influenced by meteoric water 

(glacial melt and precipitation), which was also greatest nearshore. Oxygen isotope ratios 

in surface seawater show that meteoric water fraction in coastal waters (<50 km from the 

coast) was higher in 2011 than in 2012 (Fig. 3). In 2011, when coastal SST was warmer, 

the average meteoric water fraction was 1.20 %, compared with 0.77 % in 2012. 

Sea ice seasons here are referred to by the LTER cruise that followed (i.e. 2010 

ice year covers Feb 2009 – Feb 2010, the winter preceding the January 2010 sampling 

campaign). All three years showed shorter duration of sea ice cover relative to the 1978-

2013 mean (Meredith et al., 2016), with 2011 having the shortest duration of cover (144 

d), due primarily to the earlier ice retreat (~40 days earlier than 2010 or 2012). Sea ice 

cover reached an average maximum spatial extent in the first two years of the study, and 

greater extent in 2012 (Meredith et al., 2016). Oxygen isotope data (Meredith et al., 2013, 

2016) indicate a southward propagation of sea ice in both 2011 and 2012 (Fig. 3; no data 

available for 2010); more freezing occurred in the northern section of the grid and more 

melting in the southern region. The greatest seasonal SSS range was observed in 2011, 

when southward propagation was greatest. There was slightly reduced southward 

movement in 2012, but consistent with the greater maximum ice extent, the contribution 

of sea ice melt water to surface waters was greater in 2012 (0.67 ± 0.77 %) than in 2011 

(0.27 ± 0.71 %).  

 

3.2 Trace metal distributions: Iron 

Overall, surface dissolved Fe (dFe) concentrations varied over a large range (0.02 

– 7.82 nmol kg
-1

; mean 0.37 ± 0.82 nmol kg
-1

, median 0.15 nmol kg
-1

, n=231). High 

concentrations were observed in coastal samples, with the strongest enrichment near the 
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southern edge of Marguerite Bay in 2011 where the maximum dFe of 7.82 nmol kg
-1

 was 

observed (Fig. 4; Supplementary Fig. S1). Higher dFe relative to other years was present 

throughout this line (+100), while dFe enrichment on other sampling lines was restricted 

to coastal stations. Most sampling lines showed coastal enrichment in all years, although 

this was most pronounced in 2011. 

Beyond the shelf break, in contrast, dFe was very low (0.19 ± 0.27 nmol kg
-1

, 

n=71, samples seaward of the 500 m isobath) in all three sampling years. In some years, 

low concentrations were present in surface waters over the shelf, as close as ~25 km from 

the coast (Fig. 4). Overall, dFe was <0.20 nmol kg
-1

 in 57% of stations sampled, and 

<0.10 nmol kg
-1

 in 35%. 

Distributions of particulate Fe (pFe) also showed a very large range, from <0.20 

nmol kg
-1

 to >40 nmol kg
-1

 (overall average 2.3 ± 4.5 nmol kg
-1

, median 0.78 nmol kg
-1

, 

n=177), with low values near and beyond the shelf break and the highest concentrations 

inshore (Fig. 4). These are the first Fe data for the central WAP shelf south of Adelaide 

Island (67.34ºS), and they show that the WAP shelf is characterized by large regions with 

very low surface dFe and pFe concentrations. As an example, pFe averaged 0.68 ± 0.93 

nmol kg
-1

 (n = 113) in samples collected near the shelf break (within 75 km of the 500m 

isobath). However, this value excludes additional samples where very low pFe led to 

sample signals being comparable to filter blanks (see Methods), thus the true average is 

even lower. 

The trend of coastal dFe enrichment was also seen in pFe, with a maximum 

observed in 2011, although for pFe the highest concentration was located in northern 

(200 line), not southern (+100 line) Marguerite Bay, and was thus displaced from the dFe 

maximum (Fig. 4). Particulate Fe was also high in this location in 2012, as well as 

inshore on the adjacent 300 sampling line. Additionally, in all years, moderate pFe 

enrichments were observed in surface waters of Palmer Deep (coastal 600 line) and in 

coastal stations of the southernmost sampling lines (000 and -100 lines). 

 

3.3 Trace metal distributions: Manganese 

Although Mn and Fe have several common sources and sinks, the dMn 

distribution in WAP surface waters (Fig. 5) was different from that of dFe in several 
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respects. While both elements decreased in concentration with distance from the coastline 

this decline was more gradual for dMn than for dFe. The very high dFe values in southern 

Marguerite Bay 2011 are not reflected in dMn concentrations, though dMn enrichments 

above Palmer Deep persisted analogously to dFe in all three years (Fig. 5). In addition, 

2012 data showed average dMn (1.22 ± 0.70 nmol kg
-1

) ~2-fold higher than in other years 

(0.69 ± 0.43 and 0.67 ± 0.48 nmol kg
-1

, 2010 and 2011, respectively; Fig. 5), whereas the 

average dFe in 2012 (0.15 ± 0.14 nmol kg
-1

) was approximately half that of the earlier 

seasons (0.26 ± 0.19 and 0.31 ± 0.33 nmol kg
-1

 in 2010 and 2011, excluding very high 

values > 2 nmol kg
-1

; Fig. 4). In contrast, pMn distributions were very similar to those of 

pFe with strong enrichment in northern Marguerite Bay in 2011 and Adelaide Island in 

2012, relatively high values near Palmer Deep and central Marguerite Bay, and low 

values throughout most of the region in 2012. 

 

3.4 Trace metal distributions: Particulate Al and Ti 

The lithogenically-sourced metals Al and Ti were also measured in suspended 

particles. Particulate Al ranged from 0.07 - 135 nmol kg
-1

, with consistently low values 

measured in samples near and beyond the shelf break (Fig. 6). The range of pTi was 0.02 

– 4.16 nmol kg
-1

 (not shown). For both, concentrations were highest in the same years 

and locations as for pFe: Marguerite Bay in 2011, Adelaide Island in 2012, and to a lesser 

extent Palmer Deep and inshore on the southern sampling lines in all years. As for pFe, 

low concentrations were most widespread over the shelf in 2012 relative to the other 

sampling years.  

Ratios of Fe:Al and Fe:Ti displayed across-shelf gradients but distinct spatial 

distributions with variable and often non-monotonic trends with distance from shore, with 

Fe:Al being more variable. Comparing inter-annual means, Fe:Al was lower on average 

in 2010 with the highest ratios measured in 2012. The cross-shelf gradients in Fe:Al were 

not spatially consistent, with both minima and maxima observed in mid-shelf surface 

waters (Fig. 6). In contrast, Fe:Ti ratios showed a more consistent trend from higher 

inshore values to lower off-shelf values, with most samples having a ratio <10 mol:mol. 

Ratios >10 mol:mol were found only on the inshore portion of the 200-line in 2012 (Fig. 

6). Overall Al:Ti ratios were below average upper crustal values (34.8 mol:mol, 
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McLennan, 2001), and distributions of Al:Ti were similar to the trends in Fe:Ti, with 

increasing values found inshore and higher values near Marguerite Bay in 2011 and 2012 

(Fig. 6). In some instances the distributions of Al:Ti and Fe:Ti differed markedly. For 

example, on the 500 sampling line in 2012, Al:Ti ratios were low relative to surrounding 

samples, whereas Fe:Ti ratios were high. 

 

3.5 Trace metals in meteoric melt water 

  Concentrations of dissolved Fe and Mn determined from a meltwater stream are 

presented in Table 2, giving an indication of endmember concentrations of these metals 

from meteoric sources, which were much higher than the concentrations found in 

seawater.   
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4. Discussion 

Despite the hypothesized role of the WAP shelf as a source region of Fe to the 

greater Southern Ocean (De Jong et al., 2012), no previous studies have investigated Fe 

concentrations throughout the WAP shelf; the majority of measurements are from the 

northern tip of the peninsula and the arc of subantarctic islands from the South Shetland 

Islands to South Georgia. Here we present the first investigation of the large-scale 

horizontal and temporal distribution of trace metals in WAP shelf surface waters, and 

consider spatial trends and interannual variability to investigate the main sources and 

sinks controlling surface metal distributions throughout the Pal-LTER grid.  

 

4.1 Potential Fe sources to the WAP shelf 

While atmospheric dust is commonly considered the dominant Fe source to the 

global ocean (Jickells, 2005), the iron flux from atmospheric dust is very low over the 

Southern Ocean as a whole (Gao et al., 2001; Tagliabue et al., 2009; Wagener et al., 

2008), although in the WAP region there is potential for some local inputs adjacent to 

areas of exposed rock and glacial flour. In the absence of measured dust fluxes, daily dust 

deposition was estimated at 0.005 – 0.01 mg m
-2

 for our sampling grid (Wagener et al., 

2008). To obtain a maximum possible dust Fe contribution we used average crustal Fe 

content and a high Fe solubility estimate of 10% (following De Jong et al., 2015), which 

equates to annual dFe accumulations of 5 - 10 pmol kg
-1

 dFe, and 44 – 87 pmol kg
-1

 pFe 

if fully retained in the summer mixed layer (average mixed layer depth 24 m in 2012, 

Eveleth et al., 2016). Even following the extreme assumption of zero uptake or 

scavenging loss of dust-derived dFe, dust deposition of this magnitude could only 

account for at most half of the observed pFe in offshore samples with very low pFe of 

~200 pmol kg
-1

. Thus,  atmospheric input is unlikely to contribute significantly to trace 

metal supply to the WAP, consistent with other studies from the wider WAP, Southern 

Ocean, and high latitudes in general (De Jong et al., 2015; Duce et al., 1991; Gao et al., 

2001; Tagliabue et al., 2017).  

Thus, additional Fe must be supplied to the WAP shelf from terrestrial and marine 

sources. For the purposes of this discussion, we will differentiate terrestrial from marine 

sources of Fe. Terrestrial sources include subglacial meltwater, glacial melt delivered 
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directly to the ocean or via meltwater streams over exposed rock, and terrestrial 

precipitation, which may acquire additional Fe as it flows to the coast. Marine Fe sources 

include sea ice, resuspension of shelf sediment, and diffusive fluxes from reductive or 

non-reductive sedimentary Fe dissolution. Inputs from resuspension processes within 

cavities beneath ice shelves are considered terrestrial here, as the lithogenic material 

present is derived from land, and sedimentary redox processes fueled by organic matter 

fluxes beneath these ice shelves are expected to be much less active than in fully marine 

sediments underlying more productive, open waters. 

To investigate the relative significance of terrestrial vs. marine Fe sources, we 

investigated patterns of interannual Fe variation and instances of pronounced Fe 

enrichment, since instances of low Fe concentration could indicate either comparatively 

low Fe input or biological uptake and vertical export. We focus the analysis on 2011, 

which displayed the greatest spatial variability in both dFe and pFe, and on 2012 which 

had similar spatial coverage. We consider primarily the southernmost sampling line near 

Charcot Island (-100 line), the southern Marguerite Bay line (+100 line) where the 

highest dFe was observed (7.8 nmol kg
-1

; +100 line; Fig. 4), Northern Marguerite Bay 

(200 line) with the highest pFe values (42 nmol kg
-1

), and Palmer Deep (inshore 600 line) 

where moderate dFe enrichment was present in all sampling seasons. 

 
4.1.1: Sea ice 

Iron concentrations, both dissolved and particulate, showed little correlation with 

contributions of sea ice melt water to surface waters (Fig. 7d, g, j). On an annual and 

regional level, sea ice extent and sea ice melt fraction in the Pal-LTER grid was greater in 

2012 than in 2011 (Meredith et al., 2016; Fig. 3), whereas average dFe was lowest in 

2012 (Fig. 4). In 2012, low dFe implies low Fe supply (or alternatively, high biological 

uptake, which is not supported by the biological data - see Section 4.3.4), which argues 

against a significant sea ice Fe source.  

The nearshore Fe enrichment on the -100 sampling line in 2011 can be 

distinguished from inputs at more northern samples by the minimum in salinity (Fig. 7a, 

b). While this southern sampling line was likely to be most strongly influenced by sea ice 

in 2011 given its southward propagation in this year (Meredith et al. 2016), the 
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correlation between Fe (both dissolved and particulate) and sea ice contributions was 

weaker than for meteoric inputs (Fig. 7c, d). Along the +100 sampling line dFe and pFe 

showed strong correlations with the water column/mixed layer proportions of both sea ice 

and meteoric water (Fig. 7g, h), but here too the relationship was statistically stronger 

with meteoric inputs than with sea ice inputs. To produce the observed distributions of 

surface seawater dFe, pure sea ice melt would have to contain ~400 nmol kg
-1

 dFe. 

Although sea ice is enriched in dFe relative to sea water (as well as total dissolvable Fe 

and pFe), measured dFe concentrations in sea ice cores are much lower (0.2 – 109 nM; 

e.g.: Lannuzel et al., 2014, 2007; Schallenberg and Lannuzel, 2016; Van Der Merwe et al., 

2011). As such, sea ice is unlikely to be the dominant driver of the high dFe 

concentrations. 

The Palmer Deep area (inshore 600-line) was also a location of elevated dFe and 

pFe in all years (Fig. 4), with the greatest enrichment seen in 2011. In this region, Fe 

concentrations and meteoric fractions were concurrently greatest in 2011, whereas sea ice 

melt was higher in 2012 (Fig. 3). This suggests that meteoric/glacial processes were also 

more important than sea ice melt for supplying Fe in this northern region, further 

indicating that sea ice was not a primary driver of Fe distributions.  

Typical dFe enrichment in sea ice relative to underlying water (~10-fold; 

Lannuzel et al., 2014a, 2014b, 2007; Schallenberg and Lannuzel, 2016) and the sea ice 

melt fraction in surface waters (0.46 ± 0.77%, max = 2.8 %) suggest that average sea ice 

dFe contributed only ~5 % of measured seawater dFe in WAP surface waters. In the 

offshore portion of the Pal-LTER grid, in contrast, sea ice has the potential to be a 

significant Fe input, as the ambient concentrations were much lower (~70 pmol kg
-1

). For 

example, at the offshore end of the -100 line, an increase in sea ice melt fraction from 

0 % to 2 % with negligible change in meteoric content was accompanied by a 60 pmol 

kg
-1

 increase in dFe (2011). This equates to ~3 nmol kg
-1

 dFe for pure sea ice melt (and 

7.5 nmol kg
-1

 pFe), consistent with published values of sea ice Fe concentrations 

(Lannuzel et al., 2011, 2010, 2007; van der Merwe et al., 2011), accounting for almost 

50% of seawater dFe at this location. In addition, movement of Fe-rich fast ice from 

inshore regions to open ocean waters (Lannuzel et al., 2014; Van Der Merwe et al., 2011) 
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may serve as a significant Fe source to potentially Fe-limited surface waters of the 

adjacent ACC. 

Our analysis points to an overall minor role for sea ice Fe inputs along the WAP 

shelf. However, we used a combination of 
18

O and salinity to trace sea ice meltwater, 

which produces a distribution for sea ice melt that may differ from the distribution of a 

brine-mediated Fe source, since dFe released with sea ice brine drainage may enter the 

water column prior to and in a different location than pFe associated with the main pulse 

of low-salinity melt water (Lannuzel et al., 2013; van der Merwe et al., 2011). Variable 

exchange of seawater with high-salinity brine, and/or increased porosity prior to complete 

ice melt could further decouple the inputs of brine (and dissolved metals) from bulk 

meltwater, temporally, spatially, or both. More measurements of Fe in sea ice, brine, and 

underlying waters prior to and during melting are needed to better assess the magnitude 

and distribution of sea ice Fe sources to surface waters.  

 

4.1.2 Glacial processes and precipitation  

Throughout the study area, Fe concentrations were strongly correlated with 

meteoric water inputs (Fig. 7e, h, k), suggesting that lithogenic particulate and dissolved 

Fe originate from glacial melt and/or precipitation. In 2011, the +100 sampling line in 

southern Marguerite Bay had the highest measured dFe concentrations of this study (8.2 

nmol kg
-1

). While sea ice would have to contain unreasonably high Fe concentrations to 

explain this enrichment, a meteoric meltwater endmember of ~300 nmol kg
-1

 would 

account for the observations, which is in very much in line with glacial meltwater Fe 

concentrations sampled near Palmer Station (Table 2).  

To investigate spatial variability in glacial contributions of Fe to WAP surface 

waters, we compared the relationship between dFe, pFe, and meteoric water for several 

sampling lines in 2011 (Table 3). Concentrations of both dFe and pFe estimated for a 

pure meteoric meltwater endmember varied by a factor of ~30 across the LTER sampling 

grid. Along the +100 line the correlation with meteoric water was very strong, and 

showed greater dFe additions per unit melt than in any other samples (3.02 nmol kg
-1

 

per % meteoric water for this transect, compared to 0.26 nmol kg
-1

 for the -100 line, 

Table 3 and Supplementary Information). In contrast to all other sampling lines, dFe on 
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the +100-line was enriched to higher absolute concentrations than pFe, implying higher 

dFe than pFe in the local meteoric endmember (Table 3). This may be attributable to 

small but variable proportions of Fe-rich subglacial water (Death et al., 2014), ice-shelf 

cavity processes, and/or meltwater and precipitation acquiring Fe as they flow over 

exposed areas of rock or sediment, all of which can be expected to vary spatially and 

temporally. Although these Fe-rich endmembers likely exemplify a small component of 

total meteoric water (McGillicuddy et al., 2015), small changes in such high-Fe waters 

can significantly affect metal delivery from glacial processes.  

Outflow from the George VI ice shelf at the southern end of Marguerite Bay veers 

westward (Jenkins and Jacobs, 2008; Potter et al., 1988) towards the inshore end of our 

+100 sampling line. Therefore, an ice-shelf derived signal on the +100 line is consistent 

with local circulation patterns. Few measurements of glacial dFe and pFe concentrations 

have been made in the WAP region, but a range of 24-157 nmol kg
-1

 total Fe from Talos 

Dome ice cores (East Antarctica, Spolaor et al., 2013) and 32 % solubility of pFe 

(Edwards et al., 2001) equates to dFe and pFe contributions of 0.18 – 1.2 and 0.39 – 2.6 

nmol kg
-1

, respectively, based on a 2.4 % meteoric water component (at the inshore end 

of the +100 line, Fig. 7i). These estimates are insufficient to explain the high dFe or pFe 

seen in the +100-line samples. However, meteoric water may also include subglacial 

water that has interacted with the bedrock and sediments beneath the glacier. Although 

poorly constrained, data suggest that subglacial dFe can be 2-3 orders of magnitude 

higher than in glacial meltwater (see reviews in Death et al., 2014; Wadham et al., 2013). 

If we assume that particulate Fe is enriched to a lesser extent (only 1 order of magnitude, 

to account for sinking) in subglacial water relative to glacial meltwater, and that 5 % of 

meteoric water is subglacial (following McGillicuddy et al., 2015), 2.4 % meteoric water 

in seawater could provide 5.2 – 340 nmol kg
-1

 dFe and 11.3 – 74 nmol kg
-1

 pFe, enough 

to supply the measured Fe in our +100 line samples (even at lower subglacial 

contributions), as well as explain the greater enrichment in dFe relative to pFe in this 

region.  

Alternatively, upwelling of CDW beneath George VI Ice Shelf, with additions of 

glacial meltwater, inputs of subglacial water, and possible sedimentary sources driven by 

dynamic processes near the grounding line may also explain the high dFe seen here. Such 
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a mechanism has been inferred for the Dotson Ice Shelf in the Amundsen Sea (Sherrell et 

al., 2015) and could entrain particulate and dissolved metals without necessarily requiring 

redox-mediated source processes. Meltwater fluxes are discharged from George VI Ice 

Shelf primarily into George VI Sound, which then mixes with southern Marguerite Bay 

waters (Jenkins and Jacobs, 2008). Marguerite Bay surface waters intrude into northern 

George VI Sound in the east, exiting to the west, with strong vertical mixing (upwelling 

and downwelling) in this region (Dorland and Zhou, 2008). Thus, subglacial water and 

processes occurring within the cavity may all contribute to the Fe enrichment on the +100 

line, analogously to processes likely occurring near Pine Island Glacier and the Dotson 

ice shelves in the Amundsen Sea (Gerringa et al., 2012; Sherrell et al., 2015). 

The low concentrations of dMn in 2011 in coastal samples on the -100 line (0.44 

± 0.12, n = 8; <100 km from the coast) and the entire +100 sampling line (0.67 ± 0.18 

nmol kg
-1

, n = 15; Fig. 5) further support minimal input from sediments along these 

sampling lines. Dissolved Mn:Fe was low in coastal (<100 km from shore) samples along 

the +100 line (0.41 ± 0.38 mol:mol) and the -100 line (1.0 ± 0.33 mol:mol; Fig. 8). 

Reductive processes in marine sediments favor the dissolution and release of Mn before 

Fe (Froelich et al., 1979). Combined with the longer residence time of dMn than dFe, the 

low dMn:dFe observed here indicates a non-reductive source from crustal material, which 

has a very low mean Mn:Fe content (0.017 mol:mol; Taylor and McLennan, 1995). The 

coincident low salinity supports significant meltwater (sea ice or glacial; Figs. 3, 7) 

influence at the surface, suggesting delivery of crustal material via meltwater processes.  

Overall, meteoric water was 40% lower on average in 2012 compared to 2011 

throughout the grid (Section 3.1). The outer portion of the shelf was low in dFe and 

meteoric water in both years. The most striking interannual difference, however, occurred 

in mid- and inner-shelf waters. Near the coastline (<30 km), meteoric contributions were 

1.37 ± 0.59 % in 2011 and 0.83 ± 0.51 % in 2012. The relatively small difference in 

meteoric input of 0.54 % and a difference in dFe of 0.55 nmol kg
-1

 (0.86 ± 1.0 nmol kg
-1

 

in 2011, excluding the 2 samples >4 nmol kg
-1

, versus 0.31 ± 0.21 nmol kg
-1

 in 2012) 

implies a meteoric dFe concentration of 102 nmol kg
-1

 (assuming no dFe loss to 

nearshore waters proximal to the source), which is in keeping with a source mechanism 
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involving dFe-enriching subglacial processes (Death et al., 2014; Wadham et al., 2013) as 

well as glacial meltwater streams (Table 2). 

However, we must also explore the possibility that a greater contribution of 

sedimentary Fe from upwelling or mixing in shallow waters produces the observed trends, 

independent of meteoric processes. As meteoric input and proximity to upwelled or 

resuspended sediment both tend to be greatest at the coast, the spatial patterns of Fe and 

Al do not allow differentiation between terrestrial and marine sediment sources of 

particulates. Thus, we next consider trends in Mn as a proxy for marine sedimentary 

processes.  

   

4.1.3 Marine sedimentary input 

 Low oxygen conditions in upper sediments underlying productive surface waters 

may drive the release of sedimentary Mn(II) along with Fe(II), as seen near the South 

Shetland Islands (Hatta et al., 2013). Because Fe (II) is subject to faster oxidation 

(Millero et al., 1987) and greater scavenging in the upper sediment column and overlying 

waters (Measures et al. 2013), dMn should be a good qualitative tracer for the presence of 

reductive dFe release. Hatta et al. (2013) found greater Mn:Fe release during summer 

conditions than for stronger winter current flow. Gradients in dMn across the WAP shelf 

were consistent with sedimentary fluxes being strongest at the coast, more intense in the 

northern portion of the grid in 2011, and highly variable between years.   

Although the dMn signal may also be supplied by meteoric water, this would 

require 105 nmol kg
-1

 (northern lines, 2012) to 124 nmol kg
-1

 (600-line, 2011) in 

endmember meteoric water to account for the observed dMn distribution. This is 3-4 

times higher than dMn measured in glacial melt streams at Palmer Station (Table 2), 

suggesting that most dMn must come from another source. However, the two meltwater 

samples reported here are most likely a mix of snow and glacial ice melt, and they were 

sampled near the snowline in a stream that flowed over exposed rock and sediment before 

reaching the coast. Therefore, these concentrations may not be representative of average 

meltwater metal content, since precipitation may alter metal concentrations relative to 

pure glacial melt additional metals may be acquired along the flow path, and high 

sediment load in meltwater may scavenge metals, altering concentrations before 
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meltwaters enter the sea. Recent data from King George Island give a wide range of 

dMn:dFe in iceberg melt (0.01-16 mol:mol; Kim et al., 2015). This range highlights the 

need for additional measurements to better constrain trace metal concentrations in 

Antarctic meltwaters. Marine sediments are a more likely source of Mn to coastal waters 

in this productive region, consistent with northern WAP studies (Hatta et al. 2013, 

Measures et al. 2013).  

In agreement with the inference of enhanced marine sediment influence on the 

Marguerite Bay/Adelaide Island samples, particulate Fe:Ti ratios were higher in 2011 

along the 200 line (and the 300 line, 8.7 to > 10 mol:mol) compared to the -100 line (7.1 

± 1.0 mol:mol; Fig. 6). The Fe:Al ratios were also slightly higher in the 200-300 line 

particulate samples (~0.3-0.35 mol:mol, versus 0.24 for the +/-100 lines), suggesting a 

source enriched in Fe relative to both crustal Al and Ti in the Marguerite Bay/Adelaide 

Island samples, consistent with increased influence of sediments in this region. An Fe 

source from an authigenic oxide-rich shelf sediment to deep waters could increase both 

Fe:Ti and Fe:Al ratios, and sediment work in Palmer Deep has measured residual 

(refractory) Fe:Ti of 6.4 mol:mol, versus Fe:Ti of 267-422 mol:mol in the oxide fraction 

(Kryc et al., 2003). Palmer Deep sediments also displayed high Fe:Al relative to crustal 

ratios, in both the exchangeable (0.54 – 1.6 mol:mol) and oxide (0.56 – 1.1 mol:mol) 

fractions (Kryc et al. 2003). The trend to higher inshore Al:Ti along the 200 line further 

suggests greater oxide proportions in particulate matter, with this fraction being enriched 

in Al relative to Ti (400 - 475 mol:mol) relative to residual and organic particulates (23 - 

29 mol:mol; Kryc et al. 2003). The eastern end of the 200 line surface transect lies above 

the northern edge of Marguerite Trough and ~20 km from a small island; the complex 

bathymetry and circulation may result in vertical mixing of resuspended sediment and 

pore water from shallow depths. A small proportion of this marine sediment-derived 

signal mixing to the surface would thus explain the modest differences in dMn, dMn:dFe, 

pFe:pAl and pFe:pTi between the 200 and more southerly sampling lines. 

 In 2011, dissolved Mn was highest along northern sampling lines, suggesting that 

sediment processes contributed to metal availability to a greater extent in the northern 

portion of the grid that year. Inshore (<100 km from the coast) dMn averaged 1.10 ± 0.52 

nmol kg
-1

 across the northern (300-600) lines, compared to 0.63 ± 0.37 nmol kg
-1

 for 
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lines -100 to 200. These averages consider only inshore samples where meteoric and 

shallow sediment fluxes were greatest, but the pattern is consistent even when all stations 

are included (Fig. 9a). The higher average inshore dMn:dFe for northern lines (5.9 ± 3.6 

mol:mol, versus 1.2 ± 1.2 mol:mol for southern lines; Fig. 9b) is also consistent with 

greater metal fluxes driven by sediment redox processes in the north. Given the greater 

number of ice-free days in the northern portion of the grid, allowing for higher seasonal 

primary productivity and export, we suggest that the pattern of higher dMn along the 

northern lines reflects the spatial delivery of organic matter to the sediments (greater in 

the north), driving greater oxygen consumption, shallower oxygen penetration, and 

greater efflux of reduced Mn during early diagenesis (Hatta et al. 2013). This process 

would also drive reductive dissolution of Fe, but the oxic water column might limit efflux 

of dFe through rapid reoxidation of Fe(II) and subsequent scavenging and precipitation 

near the sediment-water interface. 

These data further imply a much greater sedimentary input in 2012, when dMn 

was highest (Fig. 9d), and dMn:dFe was almost 3 times the 2011 value: 14.6 ± 10.5 

(n=35) versus 5.3 ± 3.7 (n=29). However, the high Mn in 2012 was not reflected in 

surface Fe concentrations, as low dFe conditions were widespread in this sampling year. 

We thus infer that different relative contributions of glacial (high-Fe) and sedimentary 

(high-Mn) fluxes were the likely drivers of the variable Mn:Fe ratios observed in 2011 

and 2012. Overall, inshore dFe and pFe were greatest in 2011, coinciding with the 

greatest meteoric water contributions to surface waters, but lower sea ice melt and dMn. 

The inverse was true for 2012: higher sea ice melt and dMn, lower meteoric component 

and low Fe (Fig. 3-5). Therefore, glacial processes appear to exert the greatest control on 

surface Fe concentrations throughout this region of the WAP. 

 

4.2 Shelf break signal 

We also identify an intriguing signature above the shelf break along the -100 

sampling line in 2011, based on surface dMn concentrations at ~100-150 km from shore 

(Fig. 11). Off-shelf samples were very low in dMn (mean = 54 ± 44 pmol kg
-1

, n=6), 

while those near shore (<100 km from the coast) averaged 440 ± 120 pmol kg
-1

 (see Fig. 

11). In samples above the shelf break (100-150 km from shore, 500 m isobath is at ~125 
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km), dMn was markedly higher than in offshore or coastal samples, at 680 ± 360 pmol 

kg
-1

.  

Higher dMn has also been observed at the southern boundary of the ACC in the 

Weddell Sea (Middag et al., 2011), attributed to hydrothermal sources. However, 

hydrothermal or other sources of dMn (photoreduction, atmospheric deposition, or 

meltwater) are unlikely to vary sufficiently over the scale of our transect and thus are 

insufficient to explain the shelf break enrichment in dMn. As a result, high dMn is best 

explained by vertical mixing of a sedimentary input. We note that this signal may be 

subject to significant lateral transport before being brought to the surface, so the 

sedimentary source need not be in the shelf break vicinity. Supporting this mechanism, 

the available CTD profiles show reduced vertical density gradients offshore, presenting a 

weaker barrier to vertical mixing than in mid-shelf or inner-shelf regions (not shown). 

The high Mn:Fe ratios observed above the shelf break also indicate a marine sediment 

source (Fig. 11c), in contrast to the lower Mn:Fe ratios nearer land indicative of meteoric 

inputs. Similar to the inshore sampling locations where high dMn concentrations 

suggested a marine sediment influence, dFe enrichment was also absent from the shelf-

break locations. 

Over the full sampling region, maximal Mn:Fe ratios correspond to the shelf 

break or canyon features (shown by the 500 m isobath) on most sampling lines (Fig. 8). 

At this distance from the coast and in areas of low or inconsistent sea ice contributions, 

these ratios may reflect turbulent vertical mixing associated with the shelf break, bringing 

dissolved and particulate matter from deeper waters to the surface. Given the depth of the 

shelf break (~500 m), this signal most likely reflects dissolved and particulate material 

from just below the mixed layer, rather than sediments from the underlying shelf break. 

Particulate matter may be concentrated by a strong pycnocline across the WAP shelf, 

allowing time for authigenic mineral formation, remineralisation into dissolved forms, 

and loss of the most dense particles, before it is advected into the frontal mixing zone and 

redistributed vertically. Such material would likely be present in subsurface layers 

throughout the region, and upon reduction in stratification induced by frontal mixing 

would be mixed to the surface at the shelf break. This interpretation can be tested in the 
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future by evaluating variations in particulate elemental ratios with depth near the shelf 

break compared to shelf regions where stratification is stronger. 

 

4.3 Iron sinks 

 A key observation of this study is the low concentration of dFe and pFe 

throughout most of the grid in 2012, and in substantial portions of outer shelf waters in 

other years. Although low dFe is an established characteristic of surface waters in the 

open ACC, our results demonstrate that very low dFe extends far onto the shelf: dFe was 

<0.1 nmol kg
-1

 in 9 samples within 75 km of the coast. In these same samples, pFe was 

also low (0.76 ± 0.88 nmol kg
-1

; n = 5). Overall, dFe concentrations in 2012 were only 

25 % of those in 2011 (0.15 ± 0.14 nmol kg
-1

, n = 101, 2012; versus 0.62 ± 1.20 nmol kg
-

1
, n = 100, 2011).  

 The most likely explanation for the low dFe in 2012 is lower glacial input in this 

year, as outlined above. However, consideration of Fe distributions with respect to 

sources must be balanced by assessment of removal processes. In addition to rapid 

scavenging of sedimentary Fe, biological drawdown is also a significant control on dFe in 

WAP surface waters (Bown et al., 2016). For example, high biological activity coincides 

with the significant dFe enrichment observed inshore on the +100 line in 2011 (Fig. 4, 

supplementary material Fig. S2), and would likely have depleted dFe in this location 

given continued productivity following sampling. However, although chlorophyll 

concentrations were elevated inshore on the northern gridlines in 2012, biological uptake 

is unlikely to be the dominant driver of low dFe in 2012, as primary production and N 

drawdown (nitrate plus nitrite) in this region were similar in 2012 and 2011 

(supplementary material Fig. S2). Along the southern gridlines (200-line and southwards), 

chlorophyll, primary production, and N drawdown were all much lower in 2012 than in 

2011, consistent with later ice retreat in 2012. Overall, while biological drawdown will 

certainly affect surface distributions of dFe, the widespread low-dFe conditions in 2012 

are likely to predominantly reflect lower input from meteoric sources dominated by 

glacial processes. 

Our observations raise the possibility that the low dFe concentrations typically 

associated with offshore ACC waters can also limit phytoplankton productivity on the 
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WAP shelf in January. Although coastal processes can deliver substantial Fe, as seen here 

(and in Annett et al., 2015; Bown et al., 2016), this signal is attenuated quickly with 

distance offshore. It is apparent from Fig. 10 that dFe behaves differently from dMn with 

distance from the coast. Dissolved Mn follows a linear trend with distance, and suggests 

quasi-conservative mixing with low-Mn ACC water. In contrast, dFe is lost rapidly due to 

physical processes (and potentially biological uptake), but is stable at 110 ± 70 pmol kg
-1

 

at distances greater than 30 km from shore (from Fig.10b; the average is similar for the 

full dataset, excluding the extremely high dFe on the 200-line in 2011: 170 ± 140 pmol 

kg
-1

, n=183). This suggests that at low concentrations, dFe may be controlled primarily 

by biological processes including cellular uptake, remineralization, or stabilization by 

complexation with organic ligands. Little is known about ligand distribution or cycling on 

the WAP shelf though some data are available for the South Shetland Islands (Buck et al., 

2010; Jiang et al., 2013a) and Amundsen Sea (Thuróczy et al., 2012). A full treatment of 

biological metal uptake on the WAP will be considered in a separate publication.  

Throughout the Pal-LTER grid sampled here, pFe is greater than dFe in nearly all 

samples (Fig. 4). In areas of low and potentially limiting dFe concentrations, Fe from the 

particulate phase may provide an additional Fe source to phytoplankton communities, and 

recent evidence suggests glacial pFe may be a significant component of bioavailable Fe 

to the Southern Ocean (Raiswell et al., 2016). However, potential Fe limitation is further 

complicated by bioavailability; some fraction of particulate and colloidal Fe may be 

available to phytoplankton (Chen and Wang, 2001; Raiswell et al., 2016), and biological 

processes involving bacteria or grazers can modulate bioavailability (Shaked and Lis, 

2012), which differs even between dissolved species of Fe (Lis et al., 2014). 

Spatially heterogeneous Fe inputs as documented here, coupled with strong 

biological control where dFe is low would support the hypothesis of patchy Fe limitation 

in WAP shelf waters (Garibotti et al., 2003; Prézelin et al., 2004; Smith et al., 2008). 

However, throughout the WAP, phytoplankton distributions are also strongly influenced 

by variables such as mixed layer depth, light, stratification and bathymetry (Carvalho et 

al., 2016; Ducklow et al., 2013; Kavanaugh et al., 2015; Vernet et al., 2008). 

Consequently, we highlight the need for incubation experiments or tracer studies of Fe 
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stress to fully assess the degree and spatial pattern of phytoplankton Fe stress or 

limitation across the WAP shelf euphotic zone. 

 

4.4 Future changes in Fe supply 

Along the WAP, >80 % of glaciers have retreated since 1950 and rates of retreat 

are accelerating (Cook et al., 2016; Davies et al., 2014; Pritchard and Vaughan, 2007). 

The duration of winter sea ice cover has also decreased drastically (by 3.3 months 

between 1979 and 2011; Stammerjohn et al., 2012). Such processes are likely to have an 

impact on Fe dynamics on the central WAP shelf. Our results show a small role for sea 

ice Fe input, spatially and temporally variable sedimentary signals that are associated 

with minor or local Fe supplies, and a dominant Fe input from meteoric sources. 

 Only a fraction of sedimentary Fe is likely to be mixed upwards to the surface 

where our samples were collected. In contrast, meteoric meltwater is delivered higher in 

the water column, and surface runoff is supplied directly to the surface waters. Full 

water-column sampling may reveal a greater role for sedimentary Fe fluxes at depth, but 

the surface samples presented here imply relatively minor and spatially heterogeneous net 

dissolved Fe fluxes from reducing marine sediments. Additionally, sedimentary trace 

metal fluxes from non-reductive processes may not be reflected in dMn distributions. As 

such, the contribution of non-reductive processes to the total sedimentary Fe fluxes to 

surface waters remains uncertain, but future studies of full water-column trace metal 

distributions may help to quantify the importance of reductive and non-reductive 

sedimentary sources relative to the key meteoric Fe sources identified here. 

Unlike the other Fe supply mechanisms investigated here, melting sea ice can 

deliver Fe directly to offshore areas. Further, phytoplankton blooms often coincide with 

the retreating ice edge (Ducklow et al., 2013; Garibotti et al., 2005; Smith and Nelson, 

1985) supplying Fe when it is most likely to be required by phytoplankton. In contrast to 

other regions of the Antarctic, sea ice along the rapidly-warming WAP has been 

declining in recent decades, with earlier retreat and markedly later advance (Parkinson 

and Cavalieri, 2012; Stammerjohn et al., 2008). Although sea ice derived Fe plays a 

minor role in inshore waters in summer, any future reduction in sea ice cover could 

strongly impact Fe supply to Fe-poor, offshore waters where the relative contribution of 
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sea ice Fe to the total surface Fe inventory is much greater, especially earlier in the 

season.  

In addition to increased glacial meltwater and precipitation fluxes, changing 

glacial cover can affect the proportion of subglacial meltwater, as well as the extent of 

interaction of subglacial water or precipitation with underlying rock and sediment, 

allowing changing sediment load and mineral dissolution to affect dFe and pFe 

concentrations in meteoric waters. Increasing CDW incursions and on-shelf heat flux is 

increasing melt rates of ice shelves and marine-terminating glaciers and may increase Fe 

fluxes from subglacial cavities. On balance, it is reasonable to expect increasing meteoric 

and subglacial Fe supply with continued warming. However, we note that decreasing 

winter sea ice cover can result in deeper winter mixed layers that persist into summer 

(Venables et al., 2013), distributing meteoric-sourced Fe over a larger depth range. Thus, 

the net change in available Fe in the euphotic zone will depend on a combination of 

meteoric Fe concentrations, the balance of inputs from meteoric processes and marine 

sediment supply from below, any change in removal by scavenging in response to 

changes in particle load, the depth of winter mixing, and extent of summer stratification. 

The impact of any change in Fe supply will further depend on trends in the biological 

demand, the magnitude and even direction of which is uncertain (e.g. latitudinal 

variability with overall decline, Montes-Hugo et al., 2009; increasing, Moreau et al., 

2015), as well as the degree of Fe limitation throughout the shelf euphotic zone. All of 

these factors need to be considered in predictions of future ecological changes and in the 

design of future observational programs. 
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5. Data 

Trace metal data presented here will be made publicly available through the Biological 

and Chemical Oceanography Data Management Office (www.bco-dmo.org), and in the 

interim is available by request from the authors. 
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7. Tables 

Table 1: Results of multiple analyses of seawater trace metal reference materials. 

Solutions analyzed were SAFe (S and D2) and GEOTRACES (GS and GD), all results 

are presented in nmol kg
-1

. Values have been presented in Lagerstrom et al. 2013, as 

analyses of samples presented here spanned the same date range. Consensus values from 

the May 2013 data compilation (http://www.geotraces.org/science/intercalibration/322-

standards-and-reference-materials). 

 SAFe S   SAFe D2   

 Determined n Consensus Determined n Consensus 

Fe 0.080 ± 0.018 62 0.093 ± 0.008 0.919 ± 0.049 41 0.933 ± 0.023 

Mn 0.71 ± 0.04 54 0.79 ± 0.06 0.33 ± 0.03 36 0.35 ± 0.06 

 GS   GD   

 Determined n Consensus Determined n Consensus 

Fe 0.588 ± 0.031 40 0.546 ± 0.046 1.06 ± 0.04 23 1.00 ± 0.10 

Mn 1.30 ± 0.11 32 1.50 ± 0.11 0.20 ± 0.02 23 0.21 ± 0.03 

 

Table 2: Dissolved trace metal concentrations in glacial meltwater collected near Palmer 

Station (Anvers Island), in January 2015 (full details in Methods section). Replicate 

samples collected within minutes.  Units are nmol kg
-1

. 

Metal: Fe Mn 

Replicate1 325.1 23.01 

Replicate 2 353.9 36.56 

   

Mean 339.5 29.79 

Difference 

about 

mean 4.2% 22.7% 
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Table 3: Regressions of dFe and pFe versus % meteoric component (with respect to mean 

winter mixed layer) for 5 sampling lines in 2011, and extrapolated pure meteoric 

endmember concentrations. (*) values are from a regression forced by a single high 

concentration sample. (
@

) does not include the 200-line estimate. 

 

Line 

 

dFe 

  

pFe 

 

Inferred 

meteoric water 

 

Slope 

(pmol kg
-1

 

/%met) 

y-intercept 

(pmol kg
-1

) r
2
 

Slope 

(pmol kg
-1

 

/%met) 

y-intercept 

(pmol kg
-1

) r
2
 

dFe 

(nmol 

kg
-1

) 

pFe 

(nmol 

kg
-1

) 

-100 260 29 0.84 670 -19 0.96 26 67 

100 3020 380 0.99 1350 560 0.96 300 140 

200 450 72 0.73 20300* -8900* 0.72* 45 2020 

300 110 93 0.84 820 1050 0.56 11 83 

400 74 46 0.48 1820 -3700 0.47 7.4 180 

500 74 59 0.03 1680 -3400 0.14 7.3 164 

600 560 170 0.70 3700 320 0.79 56 370 

  

     

MEAN: 64 112
@

 

            SD: 105 58
@
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8. Figures and captions 

Figure 1: The study area above the shelf of the western Antarctic Peninsula. White dots 

show typical station locations on the Palmer-LTER grid and geographic features 

discussed in the text. Surface water samples for trace metals reported here were collected 

along the white lines while underway. Red dot shows the location of Palmer Research 

Station. Adjacent black circle shows the location of Palmer Deep, a depression with a 

maximum depth of ~1400 m, at the location of sampling station 600.040. Contour line is 

drawn along the 500m isobath. 

 

Figure 2: Temperature (top) and salinity (bottom) distributions in at sampling locations in 

surface waters, for all three study years. Sampling line numbers are labeled on bottom 

plots. 

  

Figure 3: Percent contributions of sea ice melt (top) and meteoric water (bottom; = glacial 

and precipitation) in 2011 and 2012. Values are calculated with respect to the mean 

winter mixed layer (WML). Data from Meredith et al. 2016. Top right panel redrawn 

from Meredith et al. 2013. Sampling line numbers are labeled on bottom plots. 

 

Figure 4: Dissolved (top) and particulate (bottom) Fe concentrations throughout the Pal-

LTER sampling grid, for years 2010-2012 (sampling in January). Note that the maximum 

concentrations in 2011 extend beyond the color bars to 7.8 nM (dFe) and 42 nM (pFe; 

values shown in Supplementary Material Fig. S1). Contour lines are drawn at 0.15 nM for 

dFe, and 0.2 nM for pFe.  White symbols show where pFe values were close to blank 

values (< mean plus 2 standard deviations of the filter blank). Sampling lines are labeled 

on bottom plots. Dotted line shows the location of the 500 m isobath along the shelf break 

and Marguerite Trough (smaller depressions on the shelf are not shown). 

 

Figure 5: Dissolved and particulate Mn concentrations for January 2010 – 2012. 

Sampling lines are labeled on bottom plots. Dotted line shows the location of the 500 m 

isobath along the shelf break and Marguerite Trough (smaller depressions on the shelf are 

not shown). 
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Figure 6: Distribution of predominantly lithogenic particulate metals and metal ratios. 

Particulate Al (top), particulate Fe:Al (second row), Fe:Ti (third row) and Al:Ti (bottom). 

Years 2010 to 2012 are shown left to right, sampling lines are labeled on top plots. Color 

scales for ratios are set to white at average upper crustal values (McLennan, 2001), 

denoted by white triangles. 

 

Figure 7: Iron and Mn concentrations versus salinity and meltwater for 2011. Dissolved 

Fe (a), particulate Fe (b) and dissolved Mn (c) versus salinity along all sampling lines. d, 

e and f: Dissolved Fe (dFe; left axis) and particulate Fe (pFe; right axis) versus sea ice (d) 

and meteoric water (e) contributions with respect to the winter mixed layer, and dissolved 

and particulate Mn (both on left axis) versus meteoric water (f) contributions, for the -100 

sampling line only. (g, h and i): As for (d, e, f), but for the +100 sampling line only. (j, k 

and l): As for (d, e, f), but for the 200 sampling line only. Least-squares regression lines 

are shown where they are statistically significant (p < 0.05). Open symbols in (e, f) were 

not included in the regression (see text). 

 

Figure 8: Spatial distribution of Mn:Fe ratios. Dissolved Mn:Fe (left) and particulate 

Mn:Fe (right) throughout the sampling grid in 2011, with 500 m isobaths contour in black. 

White triangles show average upper crustal values (from McLennan, 2001). 

 

Figure 9:  Spatial averages of Mn distributions. Top panels show average dMn (a) and 

dMn:dFe (b) for each sampling line, 2011. Bottom panels show dMn versus distance 

from nearest coast for 2011 (c) and 2012 (d). Error bars denote standard deviation, 

numbers on bars are the number of samples pooled per category. 

 

Figure 10: Dissolved Fe and Mn versus distance from the nearest coast for the northern 

grid region. Dissolved Mn (left) and dFe (right) for the 400-600 sampling lines in 2012 

Regressions for dMn (all points) and inshore dFe (<40 km from the nearest coast) are 

statistically significant (p < 0.05). 
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Figure 11: Mn and Fe distributions and elemental ratios in 2011 in relation to the shelf 

break. Dissolved and particulate Mn on the -100 line (a), dissolved and particulate Fe on 

the -100 line (b), and dissolved and particulate Mn:Fe on the -100 line (c). Shaded 

regions show the ~50 km region above the 500 m isobath. Distance is relative to nearest 

coastline. 
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Supplementary info: 

S1. Variability in coastal particulate Fe 

On the southernmost -100 sampling line in 2011 there were multiple coastal 

samples with similar contributions of ~1.75 % meteoric water, but varying pFe 

concentrations (Fig. 7e). This suggests that for these samples, either the pFe content of 

meteoric water is highly variable, pFe is variably non-conservative after input with 

meltwater, meteoric input is not a primary control on pFe, or all three. As these samples 

were collected nearest the shore, the non-linear relationship may be due to particles that 

sink rapidly near the coast, initially decoupling pFe from the meteoric component in a 

water parcel. As such, we have excluded these high pFe samples from the overall -100-

line regression (in Table 3), as they are likely influenced by variable concentrations of 

fast-sinking large particles. Samples further away from the coast would thus reflect 

smaller, persistent particulate phases with slower sinking speeds that can be transported 

more conservatively offshore, reflected in the strong linear relationship away from shore 

(Table 3). 
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Figure S1: Dissolved and particulate Fe concentrations throughout the sampling region in 

each study year. Distances are given relative to the shelf break (500 m isobath), with 

positive values indicating the inshore direction and negative values denoting off-shelf 

samples. 
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Figure S2: Comparison of proxies for biological Fe drawdown between 2011 (left) and 

2012 (right). Shown are chlorophyll (top), primary productivity (middle), and dissolved 

inorganic N (NO3
-
+NO2

-
). All values are from surface water (0-10 m) from both 

CTD/rosette and underway sample collection. Data available from the Pal-LTER 

DataZoo: (http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 

 

 

 

 

 

Highlights: Controls on dissolved and particulate iron distributions in surface waters of 

the Western Antarctic Peninsula shelf 

 

 

 spatially extensive, multi-year dFe and pFe distributions in WAP surface waters 

 concurrent distributions of dMn, pMn, pAl and pTi to identify key Fe sources 

 we document widespread low Fe conditions above the WAP shelf 

 Fe enrichment was correlated with elevated proportions of meteoric water 

 spatial and interannual variability in reductive sedimentary flux 
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