
Fungal diversity during fermentation correlates with thiol concentrations in wine 

Sarah J. Knight1*, Steffen Klaere2, Peter Morrison-Whittle1 and Matthew R. Goddard1,3 

1School of Biological Sciences, 2Department of Statistics,  

University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand; 

3The School of Life Sciences, The University of Lincoln, Lincoln, LN6 7DL, United Kingdom 

Authorship declaration: We declare that all authors have contributed significantly and that all 

authors agree with the manuscript. 

*Corresponding author:

Sarah Knight 
School of Biological Sciences 
University of Auckland 
Private Bag 92019 
Auckland Mail Centre 
Auckland 1142 
New Zealand 
Ph: +64 9 923 1238 
Email: s.knight@auckland.ac.nz 

Acknowledgements: We thank Amisfield, Ata Rangi, Churton, Coal Pit, Constellation, Delegats, 

Domain Road, Frey Vineyard, Huia, Misha’s Vineyard, Mt Difficulty, Mt Riley, Neudorf, Palliser, 

Pernod Ricard, Rippon, Seifried, Seresin, Te Kairanga, Te Whare Ra, Tohu, Trinity Hill, Villa Maria 

and Vita Brevis for access to their land and providing samples. This work was funded by a University 

of Auckland doctoral scholarship to S Knight and grants to MG from the New Zealand Ministry of 

Business, Innovation and Employment, New Zealand Winegrowers and Plant and Food Research.  

Disclosure statement: The authors declare no conflicts of interest 

Short running title (50 characters): Fungal diversity correlates with wine thiol levels 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/83951609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:s.knight@auckland.ac.nz


Abstract 

Background and Aims: Agricultural products deriving from the same genotypic clone often have 

different physical and sensorial properties that influences their overall quality and value. Microbes 

may play key roles throughout the production of many crops, affecting plant and fruit health and 

modifying plant materials to produce socially and economically important commodities. Following 

this idea, we investigated whether fungal diversity both prior to and during fermentation was 

correlated with the concentration of three volatile thiols important to Sauvignon blanc aroma and 

flavour.  

Methods and Results: We used molecular and metagenomics approaches to quantify yeast 

populations and GC-MS to quantify thiols and analysed these using random forest statistical 

approaches. The species of Saccharomyces yeasts present at the end of fermentation significantly 

correlated with the concentration of 4MMP, while a number of other fungal species present in the 

must, that are known to be associated with vine and fruit health, also correlated with thiol 

concentrations.  

Conclusions: These data highlight the relationship between the presence of S. uvarum and the 

production of 4MMP, while some members of the fungal community correlate with thiol 

concentrations generally. Thus, components of the fungal community may potentially affect the 

accumulation of odourless precursors in grape via pathogenic effects during fruit ripening, but 

further research is required to confirm these speculations.  

Significance of the study: This recapitulates the need for a better understanding of the interactions 

between microbial populations and agricultural products, and has implications for the management 

of fungal diversity and disease in these systems. 
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INTRODUCTION 

Microbes play key roles in the production of quality agricultural goods, affecting plant and fruit 

health and converting plant materials into socially and economically important commodities 

(Whipps 2001, Fleet 2006, Peiffer et al. 2013, Philippot et al. 2013). During the processing of plant 

materials such as grapes for winemaking, different species and strains of yeast are known to 

produce different concentrations of volatile compounds that contribute different sensorial 

properties to the final products (Howell et al. 2004, Viana et al. 2008, Anfang et al. 2009, Zott et al. 

2011). In wine, many of these yeast-derived aromas and flavours produced during fermentation 

result from the conversion of odourless precursors in the grape must (Darriet et al. 1995, Tominaga 

et al. 1998a, Swiegers and Pretorius 2005, Dubourdieu et al. 2006). Pathogenic fungi present on 

vines and grapes may also potentially alter concentrations of odourless precursors in the grapes of 

infected vines and bunches (Thibon et al. 2009, Thibon et al. 2011, Barata et al. 2012) and thus may 

potentially affect the final flavour and aroma of a wine. Volatile thiols are one class of compounds 

produced from aroma-less precursors by microbes, and these tend to positively contribute to wine 

styles (refs). Here we investigate the relationship between volatile thiol concentrations in wine and 

fungal species (including yeast) diversity in grape juice and during fermentation to reveal the effects 

of microbial species diversity on one sensory aspect of wine. 

Spontaneous ferments of grape juice to wine are completed by a succession of indigenous yeasts 

that naturally occur on grapes which are transferred to the grape must (Pretorius 2000, Xufre et al. 

2006). During the early stages of a spontaneous ferment, a diversity of yeast species is observed 



with Saccharomyces species being very rare (Pretorius 2000, Xufre et al. 2006, Goddard 2008). As 

the ferment progresses, Saccharomyces species outcompete other microbes by engineering the 

ecosystem through the preferential fermentation of sugars to create a toxic hot anaerobic alcoholic 

environment (Goddard 2008). Through this fermentative process, Saccharomyces species also 

produce a wide range of metabolites that have a positive influence on wine sensory attributes 

including volatile thiols (Lambrechts and Pretorius 2000, Swiegers et al. 2006, Swiegers et al. 2009). 

Typically wine fermentation is performed by S. cerevisiae, although the presence of S. uvarum has 

also been widely reported (Torriani et al. 1999, Naumov et al. 2000, Demuyter et al. 2004, 

Masneuf-Pomarède et al. 2010, Zhang et al. 2010). Studies show these two species of 

Saccharomyces produce different levels of volatile compounds during wine fermentation (Murat et 

al. 2001, Masneuf et al. 2002, Dubourdieu et al. 2006, Masneuf-Pomarède et al. 2010). Other 

species of the Saccharomyces sensu stricto species complex are rarely reported associated with 

vineyards and wine ferments (Naumova et al. 2005, Sicard and Legras 2011). 

Non-Saccharomyces species present in the early stages of fermentation have also been shown to 

contribute desirable sensory properties and complexity to the wine (Romano et al. 2003, Clemente-

Jimenez et al. 2005, Ciani et al. 2006, Hernández-Orte et al. 2008, Anfang et al. 2009, Comitini et al. 

2011, Gobbi et al. 2013), although negative effects have also been reported  (Comitini et al. 2011). 

Much work has been done to evaluate the contribution of particular non-Saccharomyces yeasts to 

wine composition, often using co-inoculation trials with S. cerevisiae, and different species have 

been shown to contribute different attributes (Ciani and Maccarelli 1998, Romano et al. 2003a, 

Clemente-Jimenez et al. 2005, Hernández-Orte et al. 2008, Ciani et al. 2010, Comitini et al. 2011). 

While non-Saccharomyces yeasts appear to play a role in the final flavour and aroma of a wine, 



Saccharomyces species are required to complete the ferment with different species and strains 

interacting to produce unique flavour and aroma profiles in the finished wine (Howell et al. 2006, 

Anfang et al. 2009, Sadoudi et al. 2012). Both fungal communities and S. cerevisiae populations 

have been shown to vary with geographic region (Bokulich et al. 2014, Taylor et al. 2014, Knight and 

Goddard 2015) affording the potential for microbes to contribute to regionally distinct wine 

phenotypes (Knight et al. 2015, Bokulich et al. 2016).  

Sauvignon blanc is a major contributor to the New Zealand (NZ) wine industry comprising 86% of 

wine exports (New Zealand Winegrowers 2016). The volatile thiols 4-mercapto-4-methylpentan-2-

one (4MMP), 3-mercapto-hexan-1-ol (3MH) and 3-mercapto-hexan-1-ol acetate (3MHA) are 

important in Sauvignon blanc aroma and flavour and are typically described as having box tree, 

passion fruit, black current bud, broom, grapefruit and guava characteristics (Dubourdieu et al. 

2006, Swiegers et al. 2009, Coetzee and du Toit 2012). These compounds are highly potent with low 

sensory detection thresholds and are made by yeast during fermentation from odourless 

precursors in the grape must (Darriet et al. 1995, Tominaga et al. 1998a, Dubourdieu et al. 2006, 

Coetzee and du Toit 2012). 

Here we spontaneously ferment commercially derived Vitis vinifera var. Sauvignon blanc grape juice 

sourced from different geographic regions in NZ and correlate the resulting thiol concentrations 

with fungal diversity in these juices and ferments. Fungi present at the start and Saccharomyces 

species present at the end of fermentation were quantified as well as the final concentration of 

3MH, 3MHA and 4MMP.  



MATERIALS AND METHODS 

Sample collection and fermentation 

Sauvignon blanc juice was collected from 37 vineyards across NZ, comprising six vineyards from 

each of Hawke’s Bay, Martinborough, Nelson, the Awatere Valley, Central Otago and the Wairau 

Valley (an extra sample derived from the Wairau) and samples were taken from the tank after 

pressing (see Supplementary Figure S1 for locations). These samples were couriered on ice to the 

University of Auckland. A 50 mL sample of each juice was centrifuged at 3000 rpm for 5 minutes to 

pellet microbes. The supernatant was discarded and the cells frozen at -20 °C for further 

community sequencing analyses detailed below. Spontaneous ferments of each juice were 

performed at 15 °C in 10 L volumes. Sauvignon blanc is typically fermented at lower temperatures 

in NZ and thus 15 °C was chosen to reflect industry practices. As spontaneous ferments progress, 

the yeast community becomes dominated by Saccharomyces species, most commonly reported as 

S. cerevisiae and S. uvarum (Torriani et al. 1999, Naumov et al. 2000, Demuyter et al. 2004,

Masneuf-Pomarède et al. 2010, Zhang et al. 2010). However, data shows the formation of the thiols 

3MH and 3MHA occur early in the ferment (Harsch et al. 2013). Thus after 21 days, 50 mL samples 

were taken to characterise the Saccharomyces populations and thiol concentrations of the wine. 

These sampled were again centrifuged at 3000 rpm for 5 minutes and frozen at -20 °C for later 

chemical analyses. 

Fungal community analysis of the juice 

The fungal community composition in the initial juice samples was quantified using Roche 454 next 

generation sequencing technology (Margulies et al. 2005). Total DNA was extracted from the juice 

samples using the Zymo Research Soil Microbe DNA MiniPrepTM kit. A 600 bp fragment of the 



D1/D2 26S ribosomal RNA locus, known to provide good signal for fungal community differentiation 

(Taylor et al. 2014), was amplified using the fungal specific primers NL1 and NL4 (Kurtzman and 

Robnett 2003). Distinct multiplex identifiers were added to the primers to bioinformatically 

distinguish between samples. AmpureXP beads were used to clean the PCR products and remove 

primer dimers with the final quality confirmed using Agilent DNA1000 chips. The samples were 

multiplexed and uni-directionally sequenced using a Roche 454 GS Junior sequencer at the 

University of Auckland. 

Post-processing of DNA sequencing data was performed using Mothur version 1.30 (Schloss et al. 

2009). Low quality and erroneous sequences were removed starting with primers, low quality reads 

and reads smaller than 200 bp. Subsequently homopolymer errors as identified using the PyroNoise 

algorithm (Quince et al. 2009) and finally PCR chimeras identified using the UCHIME algorithm 

(Edgar et al. 2011) were removed. Individual sample identifiers were assigned to the remaining 

reads and the data was merged for further analyses. To further account for potential error in the 

dataset, unique sequences were compared to a fungal reference database and those not assigned 

to Fungi were removed. The remaining sequences were clustered into groups or operational 

taxonomic units (OTUs) sharing more than 98 % identity. Multiple species of Ascomycota and 

Basidiomycota (Fungi) have empirically been shown to differ by less than 2 % at the 26S rDNA gene 

(Kurtzman and Robnett 2003, Romanelli et al. 2010) thus these groups are considered to 

approximate species. To taxonomically identify each OTU, the ‘classify.seqs’ command in Mothur 

was used. This script selects a representative sequence for each OTU (i.e. a sequence that had a 

minimum distance to other sequences in the same cluster). These sequences were compared to a 



fungal taxonomic database and classified to all levels including and above genus level. Consensus 

sequences with less than a 70 % match at any taxonomic level were listed as unclassified. 

As further quality control, any OTU that had less than five reads total, or were present in only one 

sample, were conservatively removed. The raw counts of reads assigned to each OTU were 

converted into proportions for each sample to standardise for the variation in reads per sample 

(McMurdie and Holmes 2014). The sequence data is available under accession number (to be 

advised). 

Saccharomyces species analysis at the end of ferment 

Yeast from the 21st day of spontaneous ferments were identified using culture based methods and 

molecular identification, but not metagenomics analyses as Saccharomyces species are expected to 

dominate the community at this time point (Goddard 2008). Samples were plated in serial dilutions 

on YPD agar (1 % yeast extract, 2 % peptone, 2 % glucose with 50 µg/ml chloramphenicol to retard 

bacterial growth) and incubated at 28°C for two days. Colonies observed on these plates were all 

round, smooth and cream in colour, typical of Saccharomcyes species. Thus 94 individual colonies 

from each sample were isolated for molecular identification. Genomic DNA was extracted with a 

1.25 mg/mL zymolyase solution dissolved in 1.2 M Sorbitol and 0.1 M KH2PO4 at pH 7.2 and treated 

with EMA to bind unwanted DNA fragments (Rueckert and Morgan 2007).  S. cerevisiae and S. 

uvarum are the most commonly reported Saccharomyces species from wine fermentation, while 

other members of the sensu stricto complex are more commonly associated with natural 

environments (Naumova et al. 2005, Sicard and Legras 2011). A multiplex PCR was performed with 

primers that can identify S. cerevisiae, S. uvarum and S. pastorianus (de Melo Pereira et al. 2010). 



Of the identified isolates, the proportion of S. uvarum in each sample was calculated. It is important 

to note that since only two Saccharomyces species were identified in the ferment samples, the 

inverse of the proportion of S. uvarum is the proportion of S. cerevisiae. 

Thiol analysis 

The day-21 wine samples (50 mL) were sent to Hill Laboratories Limited, Hamilton, NZ for chemical 

analysis. Quantitative analyses were performed for the volatile thiols 3-mercaptohexanol (3MH), 3-

mercaptohexyl acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP). Chemical 

compounds were extracted from the wine samples using Solid Phase Micro Extraction (SPME) and 

quantified in extracts using Gas Chromatography coupled with Mass Spectrometry (GCMS).  

Statistical analysis 

To investigate the relationship between the samples’ microbial community (the explanatory 

variables) and final thiol concentrations (the response variables) we used a combination of 

approaches. Thiol concentrations were log transformed to account for exponential behaviour of 

measurements. Regional variation of thiol potential was identified as a potential confounder (Lund 

et al. 2009, Benkwitz et al. 2012), and thus the origin of juices was included in models to account 

for this variation. Random forest analysis (Breiman 2001, Cutler et al. 2007) was employed to 

identify the covariates most important in explaining the variation in thiol concentrations. A random 

forest analysis generates bootstrapped regression trees based on the explanatory variables, and 

uses the averages of these trees to estimate the relative importance of each of the variables in 

explaining the response (Cutler et al. 2007). To assess the importance of a variable the average 

prediction error is used which assesses how useful a variable is to determine the value of the 



response. It is measured by the mean squared error and is computed using a permutation approach 

(Hastie et al. 2009). The importance of all explanatory variables was ranked and the top ranked 

variables were further investigated using conditional inference trees (Horthorn et al. 2006). For a 

partition to be generated in a conditional inference tree, a statistically significant difference is 

required, minimising bias and over-fitting (Horthorn et al. 2006). All analyses were performed in R 

version 3.2.1 using the packages ‘randomForest’ (Liaw and Wiener 2002) and ‘party’ (Horthorn et 

al. 2006). 

To further investigate the effect of the Saccharomyces species driving the ferment, Pearson’s 

product-moment correlations were calculated between the proportions of S. uvarum as a total of 

all Saccharomyces isolates found in the day-21 wine samples and the thiol concentrations in these 

samples.  

RESULTS 

The 454-sequencing of the initial juice samples resulted in a total of 29 253 quality reads after 

processing. In 11 samples, the proportion of OTU002 was high (Supplementary Dataset S1). This 

OTU was identified as the genus Saccharomyces which should be rare prior to fermentation 

(Goddard 2008). A high proportion of Saccharomyces suggests fermentation had started in these 

samples, possibly due to large proportion of damaged berries (Mortimer and Polsinelli 1999) or 

variance in transit times to the laboratory. We do not have any juice composition data to determine 

whether the high proportion of Saccharomyces in these samples was due to damaged fruit or the 

start of fermentation, and thus we conservatively removed samples for which the Saccharomyces 

abundance exceeded 10 %, and this reduced the dataset to 26 samples. After removing OTUs that 



had less than five reads and were only present in one sample (as explained above), the number of 

quality reads for each sample ranged from 149 – 1372 and 88 OTUs were defined in total 

(Supplementary Dataset S2).  

At the end of fermentation, two species of Saccharomyces were identified: S. cerevisiae and S. 

uvarum. Isolates from some samples were unable to be identified due to PCR failure and were 

scored as unknown (Supplementary Dataset S1). Failed samples were randomly distributed among 

samples, and over 70 isolates from each sample were positively identified, and used to calculate 

the proportion of each species. S. cerevisiae and S. uvarum varied in proportion across the day-21 

samples: eight samples reported no S. uvarum, and one was entirely S. uvarum (see supplemental 

dataset 1).  

A wide range of concentrations were observed for all three volatile thiols quantified 

(Supplementary Dataset S1). One sample from Martinborough (MARLI) reported concentrations of 

both 3MH and 3MHA below the detection threshold of the analysis (10 ng/L), and 4MMP was very 

low at just 16 ng/L. As two of the three response variables were unable to be quantified, this 

sample was removed from further analyses, resuling in a total of 25 samples. Of these remaining 

samples, the highest concentrations of 3MH was 10,100 ng/L, 3MHA with 2,745 ng/L, and 4MMP 

with 291 ng/L (Supplementary Dataset S2). All thiols exhibited a skewed distribution with many 

smaller values and a long tail of few, larger values. We therefore used the log of these 

concentrations for analysis to avoid larger values biasing the analyses. 4MMP was unable to be 

quantified in four samples as it was below the 10 ng/L detection threshold of the analysis. For 

analytical purposes, the concentration for these samples was imputed as a random number 



between zero and ten (the detection limit of the assay). This approach permits the inclusion of 

these samples in analysis while preventing undue influence on the model. The final dataset can be 

seen in Supplementary Dataset S2. 

Yeast modulate the balance between 3MH and 3MHA through the production of an alcohol 

acetyltransferase that converts 3MH to 3MHA, and an esterase enzyme that reverses this reaction 

(Swiegers et al. 2006). These two volatile thiols thus exist in an equilibrium and should be 

correlated with one another as previously been reported by Masneuf-Pomarède et al. (2006). 

Pearson’s product-moment correlation coefficient shows 3MH and 3MHA as significantly positively 

correlated (r = 0.72, t34 = 6.10, P = 6.37x10-7). Since the concentration of these compounds is not 

independent, we analysed the molar sum of 3MH and 3MHA to investigate their total production as 

well as the ratio between the two to test if yeast species affects their equilibrium. 

The effects of species diversity on the concentration of 4MMP 

Random forest analysis revealed 44 % of the observed variation in 4MMP concentration may be 

explained by region, proportion of S. uvarum in the day-21 samples, and the proportion of the 88 

OTUs identified in the juice. The proportion of S. uvarum at the end of ferment and the region the 

juice was sourced from stand out as the two most important variables explaining the concentration 

of 4MMP in the day-21 wine samples (Figure 1). Otu0011 and Otu0046 were ranked next with 

similar importance scores, and the importance of subsequent variables drops away (Figure 1). 

Taxonomic identification suggest that Otu0011 corresponds to the genus Alternaria and Otu0046 

corresponds to the genus Penicillium. Partial dependence plots indicate that 4MMP concentration 

is highest in the Wairau and Awatere Valleys, which are located in the Marlborough region, and in 



Martinborough (Figure 2). The relationship between the proportion of S. uvarum and the 

concentration of 4MMP is not linear but suggests that higher proportions of S. uvarum result in 

higher concentrations of 4MMP (Figure 2). Subsequent conditional inference tree analysis using 

these same four variables resulted in only two terminal nodes which were explained by the 

proportion of S. uvarum at the end of ferment (Figure 3). Ferments with a proportion of S. uvarum 

less than 11 % produced significantly lower concentrations of 4MMP compared to ferments with 

proportions higher than 11 %.  

The effects of species diversity on 3MH and 3MHA 

As the production of 3MH and 3MHA are linked, we first investigated whether any variables could 

explain the molar sum of 3MH and 3MHA. Random forest analysis returned a best model in which 

the predicted molar sum was negatively correlated with the observed molar sum: meaning we are 

unable to identify any significant effect on the molar sum of 3MH and 3MHA. 

Different species and strains of yeast may affect the equilibrium between 3MH and 3MHA during 

fermentation (Swiegers et al. 2005a, Coetzee and du Toit 2012). Therefore, we also tested the ratio 

between 3MH and 3MHA in the wine produced. A random forest analysis explained 7.6 % of the 

total variance, with geographic region reported as the most important factor (Figure 4). This was 

followed by the proportion of S. uvarum at the end of ferment, then Otu0008 and Otu0053. 

Taxonomic assignments suggest that Otu0008 corresponds to an unclassified genus of the 

Sclerotiniaceae family and Otu0053 corresponds to an unclassified species of the Didymellaceae 

family (Table 1). No significant splits were identified using conditional inference tree analysis. 



A closer look at Saccharomyces species diversity at the end of ferment 

Analyses above show that the proportion of S. uvarum at the end of fermentation correlates with 

thiol concentrations. We performed additional analyses with all 36 samples testing the effect of 

Saccharomyces species composition on thiol concentration. The proportion of S. uvarum is 

significantly positively correlated with the concentration of 4MMP (r = 0.607, t34 = 4.46, P = 8.55 x 

10-5). The molar sum of 3MH and 3MHA or the ratio between 3MH and 3MHA are not significantly

correlated with the proportion of S. uvarum at the end ferment (r = 0.285, t34 = 1.74, P = 0.092 and 

r = 0.24, t34 = 1.44, P = 0.16). 

DISCUSSION 

Microbes are vital for the production of quality agricultural commodities, affecting product quality 

throughout the development process (Whipps 2001, Fleet 2006, Peiffer et al. 2013, Philippot et al. 

2013). For wine we attempt to elucidate which fungal species modulate the production of three 

important volatile thiols in Sauvignon blanc. We show that different proportions of Saccharomyces 

species driving fermentation, and differences in the fungal community in the starting juice, 

significantly correlate with thiol concentrations in the wine, recapitulating the importance of 

microbes in the production of quality agricultural commodities. 

Saccharomyces species are responsible for completing fermentation and different species and 

strains have been shown to produce different metabolites important to the final aroma and flavour 

of a wine (Masneuf et al. 2002, Howell et al. 2004, Dubourdieu et al. 2006). Here we provide further 

evidence that higher proportions of S. uvarum correlate with higher concentrations of 4MMP (ref?), 

and this is consistent with reports that S. uvarum produces higher concentrations of 4MMP 



compared to S. cerevisiae, and this difference may be attributed to variation in the IRC7 gene 

(Masneuf et al. 2002, Dubourdieu et al. 2006, Roncoroni et al. 2011). IRC7 is necessary for 4MMP 

production by yeast and while it is largely functional in S. uvarum, it is often not in S. cerevisiae due 

to a 38 base pair deletion; therefore the presence of a functional IRC7 gene may be responsible for 

higher levels of 4MMP observed when higher proportions of S. uvarum were recorded (Masneuf et 

al. 2002, Dubourdieu et al. 2006, Roncoroni et al. 2011). This and previous studies show S. uvarum 

is found throughout NZ (Zhang et al. 2010). New Zealand Sauvignon blanc is known for its fruity 

flavours and high thiol concentrations (Lund et al. 2009). Thus, perhaps the cooler climate 

combined with the cooler Sauvignon blanc ferment temperatures employed by the NZ wine 

industry provides S. uvarum with an opportunity to more greatly partake in fermentation and thus 

contribute to higher levels of 4MMP typical of NZ Sauvignon blanc. 

The relationship between the community of fungi in juice prior to fermentation and the thiol 

concentrations in wine is less clear. However, the random forest analyses do show positive 

correlations between some members of the fungal community and volatile thiol concentrations. 

While some apparently benign fungal species have been shown to interact with various S. cerevisiae 

strains during fermentation to effect aroma production (Ciani et al. 2006, Viana et al. 2008, Anfang 

et al. 2009, Comitini et al. 2011), the species of fungi identified in this analysis as potentially 

effecting thiol concentration in wine are largely associated with plant and fruit diseases. Alternaria 

species on grapes are typically associated with grape bunch rot  (Lorenzini and Zapparoli 2014) and 

the family Sclerotiniaceae contains a range of plant pathogens including Botrytis cinerea, which 

cause noble and bunch rot on grapes. Noble rot can affect the metabolism of the vine itself, altering 

the composition of the grape berries and thus affecting key aroma and flavour compounds in the 



wine (Thibon et al. 2009, Thibon et al. 2011, Blanco-Ulate et al. 2015). Indeed, infection of healthy 

grapes by B. cinerea resulted in wines with higher volatile thiol concentrations, particularly 3MH 

(Tominaga et al. 2006). Finally, the family Didymellaceae consists of a range of plant pathogens 

including many representatives of the genus Phoma, a known cause of leaf and stem spots 

(Aveskamp et al. 2008, Zhang et al. 2009). The data presented here suggest that pathogenic fungal 

species may be able to modulate the flavour and aroma of wine, here specifically thiol 

concentrations, possibly by their effects on vine and fruit health, and the resulting impact on must 

composition. This is not surprising as previous research has shown different types of grape rot and 

disease have different effects on the chemical composition and thus sensorial properties of the 

wine (Barata et al. 2012). The three volatile thiols examined in these analyses are converted by 

yeast from odourless precursors in the juice; therefore, if these fungal species affect the 

accumulation of precursors in the grape they could alter the potential for thiol production during 

fermentation. Alternatively, these vine and fruit pathogens may directly interact with fermenting 

yeasts to affect volatile composition in wine. The results presented in this study are by no means 

conclusive and simply highlight correlations between species abundance and the concentration of 

three volatile thiols; however, it raises many interesting questions regarding the role of fungal 

communities throughout the entirety of the grape growing processes and further research into 

these relationships could prove to be extremely relevant to industry and help inform vineyard 

management decisions. 

It is important to acknowledge that it is possible the correlation of fungal community in the juice 

and the thiols obtained from wine samples resulted from the differential ripeness of grapes. Aroma 

compounds accumulate in grapes throughout the ripening process (González-Barreiro et al. 2015), 



and if fungal species diversity also changes during fruit ripening, the patterns observed in this 

analysis may reflect the ripeness of the grapes at harvest, rather than any effects imparted by the 

fungal community itself. Grape berries have been shown to harbour different fungal communities 

at different stages of their development with unripe berries reported to have a predominance of 

Rhodotorula, Cryptococcus and Candida species, along with the yeast-like fungus Aureobasidium 

pullulans, whereas ripe berries additionally harbour Hanseniaspora and Metschnikowia species 

(Fleet 2003). Statistical analyses suggest differences in the fungal communities is apparent between 

grapes at the start of berry ripening and those that are over ripe; however at stages potentially 

experienced around harvest, no consistent differences in fungal diversity has been detected 

(Martins et al. 2014). Since all the samples in this study were commercial juices collected at harvest 

it could be assumed that the fruit was at a similar stage of ripeness and thus the likelihood of this 

effect confounding our results is not large. 

CONCLUSIONS 

The results presented here provide further evidence towards the contribution of S. uvarum to 

4MMP production during fermentation, highlighting the importance of the fermenting population 

of yeast on the final aroma and flavour of wine. There are also indications that fungi in juice 

associated with vine and fruit disease may influence the aroma potential of a wine. As this is a 

correlative study focused on a limited number of volatile thiols, further investigation into the 

mechanisms of these affects is required; however, these findings do recapitulate the importance of 

an integrated approach to the study of agricultural phenotypes and quality characteristics and 

verifies our need for a better understanding of the interaction of microbial ecology in these 

systems. 
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Figure Legends 



Figure 1: Variable importance as a measure of the percent increase in mean square error when that 

variable is removed from the random forests analysis for 4MMP. The taxonomic identification of 

the OTUs are listed in Table 1. 

Figure 2: 4MMP partial dependence plots for the top four variables identified in the random forest 

analysis while holding the other variables constant. The tick marks on the x-axis of the graphs 

represent the deciles of the training data and thus reflect the spread of the data. The abbreviations 

for each region are as follows: HB, Hawke’s Bay; NEL, Nelson; CO, Central Otago; MART, 

Martinborough; WAI, Wairau Valley; AWA, Awatere Valley. The location of each of the regions is 

shown in Sup. Figure 1.  

Figure 3: Conditional inference tree explaining the concentration of 4MMP, performed using the 25 

wine samples in Dataset S2. Only three nodes were identified in this analysis, with the proportion of 

S. uvarum (Sacch) at the end of ferment being identified as the only explanatory variable that

significantly affects 4MMP concentration. The 18 wine samples with a proportion of S. uvarum at

the end of ferment less than 0.277 shown in the left box plot have significantly lower

concentrations of 4MMP compared to the 7 wine samples with a proportion of S. uvarum higher

than 0.277 shown in the right box plot (P = 0.002).

Figure 4: Variable importance as a measure of the percent increase in mean square error when that 

variable is removed from the random forests analysis for the ratio between 3MH and 3MHA. The 

taxonomic identification of the OTUs are listed in Table 1. 
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Table 1. The taxonomic identification of the OTUs identified and presented in the random 

forest analyses 

OTU code Genus identification 

Otu0001 Columnosphaeria 
Otu0003 Cladosporium 
Otu0007 Torulaspora 
Otu0008 Unclassified (Family: Sclerotiniaceae) 
Otu0009 Davidiella 
Otu0011 Alternaria 
Otu0013 Hanseniaspora 
Otu0046 Penicillium 
Otu0053 Unclassified (Family: Didymellaceae) 
Otu0057 Columnosphaeria 
Otu0078 Wickerhamomyces 
Otu0215 Unclassified (Phylum: Ascomycota) 
Otu0223 Unclassified (Kindom: Fungi) 
Otu0696 Unclassified (Phylum: Ascomycota) 
Otu0820 Unclassified (Phylum: Ascomycota) 
Otu1134 Unclassified (Order: Dothideales) 
Otu1135 Phaeodothis 
Otu1275 Unclassified (Phylum: Ascomycota) 
Otu2376 Malassezia 
Otu5425 Unclassified (Phylum: Ascomycota) 
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