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Abstract
Deep reinforcement learning dialogue systems are attractive be-
cause they can jointly learn their feature representations and
policies without manual feature engineering. But its application
is challenging due to slow learning. We propose a two-stage
method for accelerating the induction of single or multi-domain
dialogue policies. While the first stage reduces the amount of
weight updates over time, the second stage uses very limited
minibatches (of as much as two learning experiences) sampled
from experience replay memories. The former frequently up-
dates the weights of the neural nets at early stages of training,
and decreases the amount of updates as training progresses by
performing updates during exploration and by skipping updates
during exploitation. The learning process is thus accelerated
through less weight updates in both stages. An empirical eval-
uation in three domains (restaurants, hotels and tv guide) con-
firms that the proposed method trains policies 5 times faster than
a baseline without the proposed method. Our findings are useful
for training larger-scale neural-based spoken dialogue systems.
Index Terms: spoken dialogue systems, deep reinforcement
learning, multi-domain dialogue management

1. Introduction
Deep Reinforcement Learning (DRL) agents aim to jointly
learn their feature representations (or ‘environment state’) and
interaction policies by using multi-layer neural networks. They
are suitable for high-dimensional spaces with hundreds or thou-
sands of dimensions, and update their weights (or strengths of
connection between neurons) from numerical rewards. This
form of learning has led to higher levels of automation than pre-
vious attempts by avoiding manual feature engineering. DRL
agents have already shown huge promise for training intelligent
systems—with particularly impressive results in agents using
visual inputs to control the speed of a car [1], to play Atari
games [2], and to play the game of Go [3], among others.

DRL has not gone unnoticed by the dialogue systems com-
munity. Example DRL-based dialogue systems include the fol-
lowing. [4] proposed to apply DRL for mapping speech recog-
nition results to dialogue actions—bypassing the natural lan-
guage understanding component. [5, 6] train a DRL agent us-
ing a feed-forward neural network for mapping game situa-
tions to strategic dialogue actions in the game of ‘Settlers of
Catan’. [7] train an actor-critic agent with a combined super-
vised/reinforcement learning method using a feed-forward neu-
ral network in the restaurant domain. [8] train a hybrid learning
agent using a recurrent neural network that predicts the values
of a DRL policy in the phone-call domain. [9] train an agent us-
ing a long-short term memory network for a Quiz game, where
such a recurrent neural net is also used for belief tracking. Other
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Figure 1: A 3D viewpoint of dialogue systems training

neural-based dialogue agents have been applied to text predic-
tion using the sequence-to-sequence learning approach [10, 11],
to response generation using a long-short term memory network
for chat bot dialogues[12], and to reasoning with inference for
text-based question answering [13, 14, 15].

A drawback of DRL lies in its computational requirements,
which is not surprising because recent neural nets have mil-
lions or billions of weights to update to induce stable behaviour.
This computational expense can increase as more domains are
taken into account due to the increased inputs (states) and out-
puts (actions). The research question addressed in this paper
is How to train deep reinforcement learning dialogue agents
faster and without performance degradation? Assume training
a system withX number of dialogues, Y dialogue quality score
(the higher the better), and Z training time (the shorter the bet-
ter). Figure 1 helps to illustrate the contribution of this paper,
which aims to train deep reinforcement learning dialogue sys-
tems faster—without sacrificing the quality of learnt policies.
We aim to train dialogue agents of the type {X , Y , Z′ < Z}.

Previous work tackling faster learning of DRL-based agents
have used distributed neural nets [16, 17], prioritised experience
replay by sampling from important previous experiences [18],
fast reward propagation [19], and distributed policies to train
specialised agents (one per task or domain) [20, 21, 22]. We
propose a method that can be used on top of previous methods,
which applies a reduced amount of weight updates in two ways.
First, it gradually reduces the amount of weight updates over
time, assuming that weights in the long run do not require to
be frequently updated as in early stages of training. Second,
it uses more limited minibatches of learning experiences than
usual systems. Although both ways can be applied indepen-
dently, they both contribute faster learning than either or none of
them. The remainder of the paper describes our method in fur-
ther detail and empirically validates its usefulness. Even though
the proposed method is applied here to multiple domains, it can
also speedup training of single-domain conversational agents.
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2. Background
This paper treats neural-based dialogue agents in multiple do-
mains as a network of Deep Reinforcement Learners as pro-
posed in [20], for example by using a network of Deep Q-
networks (DQN). A DQN agent aims to find an optimal policy
by maximising its cumulative discounted reward defined as

Q∗(s, a; θ) = max
π

E[rt+γrt+1+γ
2rt+1+...|st = s, at = a, πθ],

where function Q∗ represents the maximum sum of rewards rt
discounted by factor γ at each time step. In the Q function
above θ represents the parameters (weights) of the neural net,
which are updated after each decision (selected action). Fur-
thermore, training a DRL agent requires a dataset of experi-
encesD = {e1, ...eN} (also called ‘experience replay memory’
[23, 24]) collected during online learning, where every experi-
ence is described as a tuple et = (st, at, rt, st+1). Inducing the
Q function consists in applying Q-learning updates over mini-
batches of experience MB = {(s, a, r, s′) ∼ U(D)} drawn
uniformly at random from the full dataset D. A Q-learning up-
date at iteration i is thus defined according to the loss function

Li(θi) = EMB

[
(r + γmax

a′
Q(s′, a′; θi)−Q(s, a; θi))

2

]
,

where θi are the parameters of the neural net at iteration i, and
θi are the target parameters of the neural net at iteration i. The
latter are held fixed between individual updates. This process is
implemented in the learning algorithm Deep Q-Learning with
Experience Replay described in [25].

Instead of training a single DQN agent, we train a Network
of DQN agents (referred to as NDQN), where every DQN in
the network represents a specialised skill to converse in a par-
ticular subdialogue—see Figure 2. The network of agents en-
able DQNs to be executed without a fixed structure in order to
support flexible and unstructured dialogues. In contrast to Hier-
archical DQNs [21] that follow a strict sequence of agents, our
network of DQN agents aims to allow more flexible transitions
between all DQN agents except for self-transitions. The latter
uses a stack-based approach as in [26]. While user responses
can motivate transitions to another domain in the network, com-
pleting a subdialogue within a domain motivates a transition to
the previous domain to resume the interaction. [20] and [22]
describe algorithms to train and execute NDQN agents.

An optimal policy in an NDQN performs action selection
according to

π∗θ(d)(s) = arg max
a∈A(d)

Q∗(d)(s, a; θ(d)), (1)

where function F selects domain or skill d ∈ D according to

dt+1 = argmax
d′∈D

F (d′|dt, st+1), (2)

and evidence st+1 takes into account all features that describe
the most recent environment space exhibited in domain d at time
t. While the domain transition function is essentially a classi-
fier (Equation 2) and used for high-level transitions in the in-
teraction, Equation 1 is used for low-level transitions within a
domain (subdialogue) in the network and is subject to reinforce-
ment learning. NDQN assumes that the domain transition func-
tion F can be deterministic or probabilistic (the latter estimated
for example in a supervised learning manner). Although in this
paper function F is a prior requirement for NDQN-Learning, it
can also be learnt in parallel with the dialogue policies π∗

θ(d)
.

Figure 2: Illustration of a Network of DQN dialogue agents
(NDQN). The dashed arrows connecting domains denote tran-
sitions between domains to avoid rigid structures in the inter-
action. Section 4 describes these elements in further detail.

3. Proposed Algorithm
The learning procedure above assumes that the parameters of
the neural network of each domain θ(d) are updated at every
time step—after each action is chosen and executed. In other
words, the backward step in gradient descent [27, 28] is applied
every time the agent makes a decision. Our proposed algorithm
is driven by the question Can we apply selective weight updates
to achieve faster learning without sacrificing the quality of poli-
cies? Our experiments below suggest or indicate a positive an-
swer to this question.

Action-selection strategies in reinforcement learning are
used to encourage high degrees of exploration at early stages of
training and high degrees of exploitation at later stages of train-
ing [29, 30]. We apply the same idea to updating the weights
in the neural nets of our learning agents for training them faster
than traditional training schemes. This means that the parame-
ters θ(d) will be updated almost always at early stages of train-
ing, and the amount of updates will gradually decrease as train-
ing progresses. This strategy can be interpreted as a learning
agent only performing weight updates when it is uncertain about
its decisions—assuming that the uncertainty is decreased in the
long run. Algorithm 1 describes and formalises this idea.

This algorithm initialises a set of replay memoriesD(d) and
random weights θ̂(d)=θ(d) for all domains. The outer loop iter-
ates over a set of dialogues, the middle loop iterates over the
domains raised in the interaction, and the most inner loop iter-
ates over the actions per domain. Note that the most inner loop
terminates when a domain is over or when there is a change of
domain. While the middle loop terminates when a dialogue is
completed, the outer loop usually terminates after a fixed num-
ber of dialogues (or until convergence is observed). Notice also
that line 7 of this algorithm refers to an action chosen as ‘ex-
ploratory’ or ‘optimal’. The former is used in line 10 as a se-
lector to perform the weight update, i.e. updates to the weights
occur only for exploratory actions. Note also that the memories
D(d) are updated accordingly—in case of exploratory actions.
The size of minibatch for faster learning is reported in Section 5.



Algorithm 1 NDQN-Learning with Less Weight Updates

1: Initialise set of Deep Q-Networks with replay memories D(d), action-value
functions Q(d) with random weights θ(d), target action-value functions
Q̂(d) with weights θ̂(d) = θ(d), and exploration rate ε(d) per domain d

2: repeat
3: Set initial domain d, predefined or defined by argmaxd∈D F (d)

4: Set initial environment state s ∈ S(d)

5: repeat
6: repeat

7: a =

{
choose exploratory action a ∈ A(d) with probability ε(d)

argmaxaQ
∗(d)(s, a; θ(d)) otherwise

8: Execute action a and observe reward r and next state s′

9: Set next domain d′ according to argmaxd′∈D F (d′|d, s′)
10: if a is an exploratory action and |A(d)(s)| > 1 then
11: Append transition (s, a, r, s′) toD(d)

12: Sample random minibatch (sj , aj , rj , s
′
j) fromD(d)

13: yj =

{
rj if final step
rj + γmax

a∈A(d) Q̂
(d)(s′, a′; θ̂(d)), otherwise

14: Set errj =
(
yj −Q(d)(s′, a′; θ(d))

)2

15: Gradient descent step on errj with respect to θ(d)

16: end if
17: Decay ε(d)

18: Set Q̂(d) = Q(d)

19: Set s = s′

20: until s is a terminal state or d 6= d′

21: Set d = d′

22: until s is a goal state
23: until convergence

4. Multi-Domain Dialogue System
The proposed computational framework for training multi-
domain neural-based dialogue agents is a substantial extension
from the publicly available software tools SimpleDS [4] and
ConvnetJS [31]. It can be executed in training or test mode
using simulations or speech-based interactions (via a mobile
App1). Our dialogue system runs under a client-server archi-
tecture, where the learning agents—one per domain—act as the
clients and the dialogue system as the server. They commu-
nicate by exchanging messages, where the clients inform the
server the action to execute, and the server informs the clients
the state and rewards observed. The elements for training multi-
domain DRL-based dialogue systems are as follows.

The state spaces include word-based features depending on
the vocabulary of each learning agent. They include 273 unique
words and 200 predefined synonyms to deal with unseen words
during training. An agent in a particular domain has relevant
features for its own domain and it is agnostic of features in
other domains. While words derived from system responses
are treated as binary variables (i.e. word present or absent), the
words derived from user responses can be seen as continuous
variables by taking ASR confidence scores into account. Our
state representations used delexicalised word-based representa-
tions and excluded words from information presentation—for
increased scalability, as described in [20].

The action spaces include dialogue acts for the targeted
domains—currently 97 unique actions in total. Example di-
alogue act types, dialogue acts without slot-values, are as
follows: Salutation(), Request(), AskFor(), Apology(), Exp-
Confirm(), ImpConfirm(), Retrieve(), Provide(), among oth-
ers. The set of slots and domain value sizes include the
following: meta={|domain|=3}; restaurants={|food type|=10,
|area|=4, |price|=3}; hotels={|city|=20, |day|=31, |month|=12,
|nights|=14}; tv guide={|genre|=12, |day|=9, |time|=24}.

1https://youtu.be/B5fZfZ-xaKM

Rather than learning with whole action sets, our framework sup-
ports learning from valid actions—selected in a two stage pro-
cess. Firstly, actions are selected from the most likely actions,
Pr(a|s) > 0.0001, derived from Naive Bayes classifiers (due
to scalability purposes) trained from demonstration dialogues.
See example demonstration dialogue in Appendix of [20]. Sec-
ondly, the most likely actions in he previous stage are extended
with legitimate requests, apologies and confirmations.

The state transition functions are based on numerical vec-
tors representing the last system and user responses. Taking
a wider dialogue context into account is also possible but not
explored here. The system responses are straightforward, 0 if
absent and 1 if present (hit-or-miss). The user responses cor-
respond to the confidence level [0..1] of noisy user responses.
While system responses are generated from templates, user re-
sponses are generated from semi-random behaviour. Trainable
language generation from raw text is left as future work [32, 33].

The domain transition function specifies the next domain
or task in focus. It is currently defined deterministically, and it
is also implemented as a Support Vector Machine (SVM) clas-
sifier trained from example dialogues [20]. The design of this
classifier follows that of a two-deep fully connected neural net
with 80 nodes in each hidden layer, with tanh activation, and an
SVM output layer, using Hinge Loss. While the input layer ac-
cepts domain-independent words-as-features vectors represent-
ing the unique global vocabulary shared amongst all domains in
a hit-or-miss approach, the output layer has classes represent-
ing system domains. We refer to meta domain as subdialogues
containing domain-general system and user responses.

The reward function assigns partial rewards according to
R(s, a, s′) = GR +DR −DL. GR is a contribution to slot-
filling in the range [-1..1]—it deducts the number of repetitions
from the number of slot fillings and confirmations in the cur-
rent utterance, and divides by the number of slots to confirm
in the current domain. DR is a data-like probability of hav-
ing observed action a in state s, obtained from the Naive Bayes
classifiers mentioned above to allow statistical inference over
actions given states (Pr(a|s)). Finally,DL is a dialogue length
score (steps×-0.1 in our case) to encourage efficient dialogues.

The model architectures use 4-layer feed-forward multi-
layer neural net (one per domain), trained with stochastic gra-
dient descent, where nodes in the input layers depend on the
vocabulary of each agent. The use of convolutional neural nets
or other types of neural nets is left as future work. They include
2 hidden layers with 100 nodes per layer, and Rectified Linear
Units (RELUs) [34]. Other hyperparameters for each network
include experience replay size=10000, burning steps=1000, dis-
count factor=0.7, minimum epsilon=0.001, batch size={32, 2},
and learning steps=30000. The latter means that the minimum
epsilon value is reached by 30000 steps.

Our simulated dialogues are driven by user goals (slot-
values per domain), randomly initialised before each dialogue.
First, each dialogue was restricted to two domains. Second,
while system actions are chosen by the dialogue policies, sys-
tem responses are generated from templates (verbalisations ob-
served in demonstration dialogues). Third, while user actions
are sampled from observed interactions in the demonstration
dialogues, user responses are generated from stochastic tem-
plates with 10% of mumbling. The verbalisation of a user
action is randomly selected from observed examples. Fourth,
while random ASR confidence scores are used for training, ac-
tual confidence scores are used for testing. Our system retrieves
live information from http://www.bookatable.co.uk,
www.reservetravel.com, and www.tvguide.co.uk.

https://youtu.be/B5fZfZ-xaKM
http://www.bookatable.co.uk
www.reservetravel.com
www.tvguide.co.uk


(a) All Updates (MB=32) (b) All Updates (MB=2) (c) Less Updates (MB=32) (d) Less Updates (MB=2)

Figure 3: Example learning curves of DRL agents with all or less weight updates and with typical or limited minibatch of experience
(MB). Notice that training with less weight updates only requires sub-linear growth resulting in faster learning—see dashed black lines.

5. Experimental Results
We compared NDQN-Learning [20] against our proposed al-
gorithm (see Section 3) using a multi-domain dialogue system.
Our agents use the same data, resources and hyperparameters
for training. The only difference between them is the learn-
ing algorithm (i.e NDQN-Learning with all or less weight up-
dates) and size of minibatch of experience. The following met-
rics were used to measure system performance: avg. reward,
learning time2, avg. task success, and avg. dialogue length (i.e.
avg. system actions per dialogue).

Figure 3 shows learning curves of NDQN with all or less
weight updates, and with typical or limited minibatches of expe-
rience (MB=32, MB=2) from replay memory. Each plot reports
results of a single run, out of 10 runs, over 20K simulated multi-
domain dialogues. Our NDQN agents exhibited the following
training times: (a) the baseline DRL agent with typical and lim-
ited minibatches of experience required 9.73 hrs and 2.56 hrs,
respectively; and (b) the proposed algorithm with typical and
limitied minibatches of experience required 3.51 hrs and 1.76
hrs, respectively. This represents an overall speedup of 5.5.
Note also that while the growth of learning time of the DRL
baseline is linear, the growth of learning time of the proposed
algorithm is sub-linear—see black dotted lines. Faster training
is explained by less weight updates in the proposed algorithm,
which is improved by the limited minibatches of experience.

Although the currently generated dialogues using the
trained policies seem reasonable (see video in footnote above),
we integrated an additional baseline (KNN=K-Nearest Neigh-
bour [35], 4 neighbours), which aims to behave as the example
demonstration dialogues—see Appendix of [20]. We tested our
dialogue policies over 10 runs of 1K dialogues for each type of
behaviour and obtained the results shown in Table 1. We found
that the performance of DRL agents using small minibatches is
more stable than large minibatches—as judged by the average
dialogue lengths and their standard deviations. According to
pairwise comparisons and with focus on dialogue length, only
the difference between NDQN agents with all vs. less updates
(both using MB=32) is not significant (at p < 0.8026), the other
differences between pairs of NDQN agents are significant (at
p < 0.05)—according to Wilcoxon signed rank two-sided tests.
No significant differences were observed in task success.

The following is an example dialogue generated with poli-
cies derived from NDQN-Learning with less weight updates
and minibatch of 32. Square brackets denote system actions,
double quotes denote system or user responses, and words be-
ginning with an underscore encapsulate live web-based infor-

2Ran on Intel Core i7-6950X CPU @ 3.00GHz x 10; 32GB RAM.

Algorithm/Metric Task Dialogue Training
Success Length Time

KNN .932 15.33 NA
NDQNall

MB=32 .999±.001 14.19±.410 9.73 hrs
NDQNall

MB=2 .999±.001 13.76±.130 2.56 hrs
NDQN less

MB=32 .997±.001 14.40±.608 3.51 hrs
NDQN less

MB=2 .998±.001 13.86±.105 1.76 hrs
Table 1: Test results averaged over 10 runs of the KNN baseline
in contrast with NDQN with all/less weight updates and two
sizes of minibatches of experience (MB)

mation according to the user requests. Notice that the system
makes reasonable decisions even in the presence of mumblings.

SYS:[Salutation(greeting)]"Welcome to MultiDS!"
SYS:[Provide(intro)]"You may ask for information about restaurants,

hotels and tv guide."
SYS:[Request(hmihy)]"How can I help you?"
USR:"bla bla"
SYS:[Apology(domain)] "Sorry, can you repeat your request?"
USR:"i need a hotel room"
SYS:[ExpConfirm(domain=hotels)] "Did you ask about hotels."
USR:"yes please"
SYS:[Call(domain=hotels)] ""
SYS:[Request(city,day,month,nights)] "Where and when would you like a hotel,

and how many nights are you looking for?"
USR:"bla bla"
SYS:[Request(city,day,month)] "Where and when?"
USR:"on the 10th of february in paris"
SYS:[ImpConfirm(city=paris,day=10th,month=february)] "Okay, in paris on the

10th of february."
SYS:[Request(nights)] "How many nights do you want to stay?"
USR:"12 nights"
SYS:[ImpConfirm(nights=12)] "Okay, for 12 nights."
SYS:[Retrieve(info)] "Let me see."
SYS:[Provide(known)] "I found the following. _hotels."
SYS:[AskFor(more)] "Anything else?"
USR:"no thanks"
SYS:[Salutation(closing)] "You are welcome. Good bye!"

6. Concluding Remarks
This paper is about fast deep reinforcement learning for spo-
ken dialogue systems. It uses a Network of DQN agents (called
‘NDQN’), skips weight updates during exploitation of actions,
and makes use of small minibatches of learning experiences
from replay memories. Experimental results using simulations
report that the proposed method can train policies faster than
NDQN with all weight updates. Our experimental results pro-
vide evidence to suggest that faster learning can be achieved
with little or no degradation of quality of policies, and that small
minibatches lead to more consistent behaviour than larger ones.
Although our results in three domains report about 5 times faster
training, the speedup can increase as more domains are taken
into account. Our proposed algorithm also showed to be more
successful and efficient than a K-nearest neighbour baseline.
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