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Across the animal kingdom the duration of copulation varies
enormously from a few seconds to several days. Functional
explanations for this variation are largely embedded within
sperm competition theory in which males modulate the
duration of copula in order to optimize their fitness. However,
copulation is the union of two protagonists which are likely
to have separate and often conflicting reproductive interests,
yet few experimental designs specifically assess the effect
of male–female interactions on the duration of copulation.
This can result in inexact assertions over which sex controls
copulatory behaviour. Here we analyse the repeatability
of copulatory behaviour in the seed beetle Callosobruchus
maculatus to determine which sex exerts primary influence
over copulation duration. In C. maculatus, copulation follows
two distinct phases: an initial quiescent phase followed by a
period of vigorous female kicking behaviour that culminates
in the termination of copulation. When males or females
copulated with several novel mates, copulatory behaviour was
not significantly repeatable. By contrast, when males or females
mated repeatedly with the same mate, copula duration was
repeatable. These data suggest copulatory behaviour in C.
maculatus to be largely the product of male–female interactions
rather than the consistent, sex-specific modulation of copula
duration of one protagonist in response to the phenotypic
variation presented by the other protagonist.

1. Introduction
The duration of copulation varies enormously from a few seconds
in the yellow fever mosquito (Aedes aegypti) [1] to over 10 days
in the southern green stink bug (Nezava viridula) [2]. Functional
explanations for this variation are largely embedded within
sperm competition theory [3], such that males modulate the
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duration of copula in order to optimize fitness via sperm pre-emption and anti-sperm pre-emption
mechanisms [4]. However, females also have a vested interest in the duration of copulation. For example,
they may bias paternity in favour of particular males by varying the duration of copula in response
to cues delivered by males during copulation [5,6], or they might vary the period of time spent in
copula in order to optimize time allocated to other activities such as foraging, egg laying, avoiding
predation and/or avoiding injury [7–9]. Thus, there are good reasons to expect females to exert some
control over the duration of copulation, which may well be in conflict with the fitness optima of the male
protagonist [10].

Sexual conflict over mating and copulation is well documented in the bruchid beetle Callosobruchus
maculatus. Males have spines on their genitalia that puncture the female reproductive tract during
copulation. The level of damage inflicted on females is positively related to the duration of
copulation [9,11] and negatively related to female fitness ([9,11–13], although see [14]). Copulation in
C. maculatus is characterized by two phases. In phase I, the male and female remain relatively sedentary
following genital coupling, while in phase II the female vigorously kicks at her mate with her hind
legs [15]. Ablation of the female’s hind legs prevents females from directly kicking their mates and this
results in an extended copulation duration and subsequently greater levels of genital damage [16]. This
had led to the suggestion that females kick at their mates in order to reduce the duration of copulation
and thus the level of harm sustained [16].

Why males prolong copula and by extension inflict greater genital damage on their mates’ remains
unclear. Rönn & Hotzy [13] found no evidence that the spines function as an anchor to prevent the
dislodgement of copulating males by rivals, while Edvardsson & Canal [16] found no evidence that
extended copulation benefited males via its effects on female re-mating propensity or male success in
sperm competition (see also [11]). Hotzy et al. [17] reported that males with longer spines had enhanced
success in sperm competition. However, they also found no evidence that spine length correlated with
copulation duration, thus the relationship between spine length, copulation duration and extent of
genital damage remains to be fully resolved.

That there are reproductive conflicts between the sexes in this and other species [10,18] has led a
number of authors to seek which sex controls copulation duration [19–25]. However, teasing apart
male and female influences over the duration of copulation is difficult. For example, pairings with
large females often elicit longer copulations [26,27] which is usually interpreted as males strategically
investing more ejaculate to large, fecund females (i.e. cryptic male choice) [27]. However, in comparison
to small females, larger females tend to live longer [14], lay more eggs [24] and have larger sperm storage
organs [28] thus, it may well be in their best interests to receive more sperm via an extended duration
of copulation. One approach to circumvent these problems of interpretation is to partition variation in
copulation duration between males and females that are derived from different strains (or geographical
locations). In a series of intra- and inter-strain mating’s involving Drosophila mojavensis, Krebs [26] was
able to show that both male and female population origin affected the duration of copulation, with
male population origin explaining five times more of the variation in copulation duration than female
population origin. However, while this approach clearly partitions variation in copulation duration to
male and female population origin, it does not tell us which sex exerts primary influence over copula
duration within a population.

Here we examine the repeatability of copulation duration in order to identify which, if any, sex
has a predominant role in determining the length of copulation in the bruchid beetle C. maculatus.
The logic follows that if males primarily determine the duration of copulation they will modulate
their behaviour according to the phenotype of the female. Thus, when the same female phenotype
is presented to different males, copulation duration of the female should be repeatable (have a high
intra-class correlation coefficient [29]). Should females exert primary control over copulation then
the opposite holds; different females presented with the same male phenotype should have similar
(repeatable) copulatory characteristics. By contrast, should copulation duration be driven by a male–
female interaction, the repeatability of copulation duration when males and females are presented with
different mates will be low.

2. Material and methods
The C. maculatus used here were originally from Niamey, Niger and at the time of the experiments
had been in laboratory culture for approximately 50 generations. Stock cultures were maintained on
black-eyed beans (Vigna unguiculata) at 27°C, approximately 35% relative humidity and a 16 L : 8 D
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photoperiod. All beetles used in the experiments described below were initially virgin and between 24
and 48 h from eclosion at their first copulation. All matings and behavioural observations took place at
27°C. Under laboratory conditions about 80% of females remate within 48 h of an initial copulation so
long as an adequate oviposition resource is available [30]. Female remating is also influenced by male
mating status: virgin males induce longer inter-mating refractory periods in females than do non-virgin
males [31].

To determine the effect of the male, the female and male–female interactions on the duration of
copulation, three treatments were established: females mated repeatedly to different males, males
mated repeatedly to different females, and males/females mated repeatedly to the same partner. In
all treatments, focal individuals were mated four times with copulations separated by a 48 h interval,
during which females laid eggs on 25 black-eyed beans. In all treatments, the mating history of the focal
individual’s mate was controlled such that the focal individual’s 2nd, 3rd and 4th mates had previously
mated once, twice and thrice, respectively. Copulation was observed under individual 50 ml Perspex
pots and recorded as: (i) time from genital coupling until the female kicks at the male, and (ii) time
from the onset of female kicking to genital disengagement [32]. To assess the effect of male and female
size on copulation duration, male and female elytra lengths were measured under an Olympus SZH
stereomicroscope linked to an image analysis workstation.

The effects of male and female identity on copula duration were assessed in a single classification
ANOVA in which male (or female) identity were entered as a random independent variable and the
duration of copula (and its phases) entered as the dependent variable. Intra-class correlations coefficients
and their 95% confidence intervals (CIs) were calculated using the ICC package in R [33]. The duration of
two of the measures of copulatory behaviour (time from genital coupling to the onset of female kicking
and total duration of copula) increased with mating order (see Results and [34]). Thus, in these cases,
repeatability was calculated from values normalized around the mean for each mating order, within each
treatment (treatment being either copulating with the same mate or copulating with different mates).

3. Results
The duration of the start-to-kick phase of copulation increased with mating order irrespective of whether
females were mated repeatedly to the same male or different males (two-way ANOVA: treatment
(same or different male) F1,141 = 0.24, p = 0.62; mating order F3,141 = 44.9, p < 0.0001; figure 1a). Thus,
subsequent analyses of repeatability were carried out on normalized values. When females mated to the
same male on four separate occasions the duration of the start-to-kick phase was repeatable (F19,55 = 2.72,
p = 0.002, intra-class correlation coefficient = 0.31, 95% CI 0.58–0.09). However, when females were mated
to different males or males mated to different females, the duration of the start-to-kick phase was not
significantly repeatable (F19,54 = 1.53, p = 0.11, intra-class correlation coefficient = 0.13, 95% CI 0.40−0.03
and F19,54 = 0.81, p = 0.69, intra-class correlation coefficient = 0.06, 95% CI 0.19−0.19, respectively).
The duration of the start-to-kick phase was not related to male size, female size or the interaction
between male and female size in both the same-mate and different-mate treatments (p > 0.13 in
all cases).

Mate sequence had no effect on the duration of the kick-to-end phase of copulation (two-way
ANOVA: treatment (same or different male) F1,141 = 0.08, p = 0.77; mating order F3,141 = 0.8, p = 0.49),
thus intra-class correlation coefficients were calculated on the actual (i.e. non-normalized) data. When
females mated to the same male on four separate occasions the duration of the kick-to-end phase of
copulation was repeatable (F19,55 = 2.97, p = 0.001, intra-class correlation coefficient = 0.34, 95% CI 0.61–
0.12). However, when females were mated to different males or males mated to different females,
the duration of the kick-to-end phase was not significantly repeatable (F19,54 = 0.89, p = 0.60, intra-
class correlation coefficient = 0.03, 95% CI 0.22−0.18 and F19,54 = 1.61, p = 0.09, intra-class correlation
coefficient = 0.14, 95% CI 0.41−0.06, respectively). The duration of the kick-to-end phase was not related
to male size, female size or their interaction in both the same-mate and different-mate treatments (p > 0.34
in all cases).

A similar pattern emerges from the analysis of total copulation duration. As with the duration
of the first phase of copulation, total copulation duration increased with successive matings (two-
way ANOVA: treatment (same or different male) F1,141 = 0.39, p = 0.53; mating order F3,141 = 32.8,
p < 0.0001; figure 1b). Analyses of the normalized copulation duration values revealed the total duration
of copulation to be repeatable when females mated to the same male on four separate occasions
(F19,55 = 4.32, p < 0.0001, intra-class correlation coefficient = 0.47, 95% CI 0.70–0.24). However, when
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Figure 1. Mean (±s.e.) duration (seconds) of (a) genital coupling to the onset of female kicking and (b) total copulation, in relation to
both mating sequence and treatment (i.e. whether copulation was with the same or different mates).

females were mated to different males the intra-class correlation coefficient was marginally non-
significant (F19,54 = 1.77, p = 0.052, intra-class correlation coefficient = 0.17, 95% CI 0.45−0.03) and when
males mated to different females the intra-class correlation was non-significant (F19,54 = 0.52, p = 0.94,
intra-class correlation coefficient = −0.15, 95% CI 0.05−0.25). Total copulation duration was not related
to male size, female size or their interaction in both the same-mate and different-mate treatments (p > 0.14
in all cases).

4. Discussion
Here we have shown copulation duration in the seed beetle C. maculatus to be largely the product of a
male–female interaction. Neither males nor females were consistent in their copulatory behaviour when
paired with different mates at each copulation. This lack of repeatability could arise from males and
females adjusting their behaviours in response to cues derived from dynamic internal states and external
stimuli such that each copulatory event represents a unique set of circumstances to both interacting
parties. For a male, salient external stimuli might include female status (virgin or not), female fecundity
(size), the likelihood of finding another mate or the likelihood of facing sperm competition [4,27], while
females might vary the duration of copulation in response to male quality [5,6] and/or time constraints
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associated with other activities, such as finding suitable oviposition sites. Some of these external stimuli
could be conveyed via the hydrocarbon profiles of both males and females as these are known to vary
ontogenetically and in response to social cues [35]. They have also been shown to affect the duration
of copula in Drosophila melanogaster [36]. However, apart from male and female quality, external factors
were held constant across the same-mate/different-mate treatments, plus there was no evidence that
absolute or relative mate size affected the duration of copula. Thus, had males strategically invested
more ejaculate in larger females, we would have expected to observe consistently longer copulations
when males were paired with large females. Low levels of copulation duration repeatability have been
previously reported for the Queensland fruit fly (Bactrocera tryoni) when males copulated with different
mates (r < 0.1; [23,37]).

That copulation duration is a product of a male–female interaction also makes sense from a functional
perspective as under a polyandrous mating strategy the two sexes are likely to have different fitness
optima associated with time spent in copula [6,10] and are thus likely to evolve traits that enable them to
shape the duration of copula towards their own sex-specific optima. Which sex wins this conflict appears
to depend on the value of winning and power (the relative contest costs of the two sexes [38]). Males
typically have higher values of winning [39] but power may be loaded in favour of the female (especially
in invertebrates where females are typically larger than males). Thus, we expect copulation duration to
be influenced by male and female traits. Despite this, a number of studies point to male or female control
over the duration of copulation. For example, Crickmore & Vosshall [40] show that copulation duration in
D. melanogaster is under the control of the male (see also [41]), which is primarily driven by the interplay
between GABAergic interneurons of the male abdominal ganglion and dopaminergic neurons of the
ventral nerve cord. By contrast, females appear to exert control over copulation duration in Drosophila
montana. In this species copulation appears to bear many similarities to that observed in C. maculatus
in that the initial stages of copulation appear harmonious while the latter stages are characterized
by vigorous kicking at the mounted male by the female. Males copulating with dead females (i.e. no
female kicking) engaged in copula that was substantially longer than those copulating with normal
females [42]. Similar experiments in the Queensland fruit fly (B. tryoni) also point to female control (or
at least influence) over copulation duration [23] as do the results of leg ablation experiments in female
C. maculatus [16].

The low repeatability of copulation duration would indicate low heritability [43]. Despite this,
several studies report heritable variation in the duration of copulation in insects [44–46] including
C. maculatus [12,20,47]. Low repeatability and significant heritable variation could result from
different studies using different populations (heritability is a population specific measure) or different
experimental approaches. For example, Savalli & Fox [20] and Brown et al. [47] estimated the
heritability of copulation duration based on matings between virgin adults, whereas here we estimated
repeatability when individuals were either virgin (1st mating) or non-virgin (subsequent matings).
Similar inconsistencies exist in the Drosophila literature: Gromko [44] found copulation duration to be
heritable in D. melanogaster while Taylor et al. [48] found no evidence for heritable variation in this
behaviour and suggested this was owing to the inherent phenotypic and genetic variability of the females
used to assay the copulation duration of focal males.

That copulation duration increases with copulatory sequence (see also [34]) suggests copulation
duration is negatively related to the size of the ejaculate transferred in this species. This is based
on the well-established observation that C. maculatus males transfer smaller ejaculates [49] and fewer
sperm [31] at each successive mating. Similar results can be inferred from the studies of Ofuya [50] and
Fox et al. [49] which show older males to both spend longer in copula and transfer smaller ejaculates than
younger males, and Vasudeva et al. [51] who found males exposed to thermal stress during development
transferred fewer sperm but spent longer in copula than males reared under optimal conditions. Taken
together, these studies indicate copulation duration to be negatively related to male quality in C.
maculatus and could account for the negative phenotypic and genotypic association between copulation
duration and longevity found in this species [47]. However, the relationship between copulation duration
and ejaculate size is clearly a complex one as Edvardson & Canal [16] and van Leishout et al. [52]
report ejaculate weight to increase with increasing copulation duration, while Savalli & Fox [20] and
Brown et al. [47] found no relationship. The upshot of these conflicting results is that caution should be
exercised when interpreting the adaptive value of extended copulation without detailed knowledge of
its relationship with sperm and ejaculate transfer.

Ethics. Ethical approval for this work was granted by the University of Lincoln, College of Science Ethics
Committee.
Data accessibility. Datasets associated with this study are available at http://dx.doi.org/10.5061/dryad.b0h4h [53].
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