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ABSTRACT

This dissertation is an investigation of the wave impedance properties 
of several different geometries of harbour entrance. The work is concerned with 
small-amplitude water waves and falls into three parts:

Firstly, an analytical theory based on the method of matched
asymptotic expansions was developed to study: (a) the scattering of waves at the 
outlet of a semi—infinite channel, (b) the diffraction of waves by a gap in a
breakwater of finite thickness and (c) the transmission of waves through a channel 
whose length is of the order of the wavelength. In all of these, the incident
waves were assumed to be long relative to the gap width. Energy transmission
coefficients have been derived and plotted for each of the above headings. For 
problems (b) and (c) these were found to agree with classical solutions in the 
limiting cases of zero breakwater thickness. In the case of (a), verification was 
furnished by comparison with well-known phenomena in acoustics. Generally, the 
results indicate that appreciable reductions in wave penetration could be achieved 
by such configurations.

Secondly, a numerical model based on a hybrid element method was 
constructed for the solution of the Helmholtz equation. The formulation entailed 
coupling a finite element discretisation in an interior region where the solution is 
sought, to an infinite element discretisation in an unbounded exterior domain. The 
mapped quadratic infinite element was implemented for the latter as it has been 
shown to be the most accurate tool for representing the outward decay of the 
scattered wave. The model was then used to solve diffraction problems for which 
analytical solutions exist and excellent agreement was found.

Thirdly, the numerical model was used to evaluate various entrance
configurations comprising channels, quarter-wavelength resonators and arrangements
of resonator chambers analogous to acoustic low-pass filters. Two harbour 
geometries have been considered, the first of which is semi—infinite while the 
second is a finite-size model of rectangular planform. In the case of entrance
channels, the trend of behaviour was observed to agree with results from the
analytical work. Resonators and filters were found to be very effective devices to 
protect harbours from excessive motion.
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NOMENCLATURE

A wave amplitude.
Al incident wave amplitude.
2 a channel length.
2 b gap width.

even Mathieu function of the first kind.
Cem modified Mathieu function of the first kind.
e base of natural logarithm.
e end correction.

fj load vector.
FeYm modified Mathieu function of the second kind.
g acceleration due to gravity.
h water depth.
Hn Hankel function of the first kind and nth order.
i unit of imaginary numbers.
Jn Bessel function of the first kind and nth order.
k wave number.

kij element in stiffness matrix.

*opt optimum length of resonator.
n normal vector.
Nj shape function.
T energy transmission coefficient.
V test function.
(x.y) Cartesian coordinates.
Yn Bessel function of the second kind and nth order.
7 Euler constant (0.5772...)
V surface elevation.
d{ angle of incidence.
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NOMENCLATURE (continued)

B (6 l -  r )
X wavelength.
(M ) local coordinates.
r pi (3.14159...)
a angular frequency.

reduced potential.
$> velocity potential.
n domain in the x—y plane.
an boundary of n.

r radial distance from source except where otherwise defined.
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CHAPTER ONE 
Introduction

In certain favoured points on the world's coastlines, nature has 
provided harbours waiting only to be used, such as New York Bay, which one 
explorer described as "a very agreeable location" for sheltering a ship. Such 
inlets, bays and estuaries may require improvement by dredging and of course 
must be supplied with port structures, but basically they remain as nature made 
them and their existence accounts for many of the world's great cities. Because 
such natural harbours are not always at hand where port facilities are needed, 
engineers must create artificial harbours. The basic structure involved in the 
creation of these is the breakwater which performs the function of providing calm 
water inshore. Locations for artificial harbours are of course chosen with an eye 
to the existing potential of the coast; an indentation however slight is favoured. 
Yet it has often been found justifiable on economic or strategic grounds to 
construct a complete harbour on a relatively unsheltered coastline by enclosing an 
area with breakwaters built from the shore, with openings of minimum width for 
entry and exit of ships.

The cost of construction of a new harbour, or maintenance of an 
existing one, is often dominated by the expense of wave protection structures. 
The lengths of these should therefore be minimised within the limitations imposed 
by the wave agitation criteria, which naturally leads to the requirement of more 
efficient harbour entrance configurations. In fulfilling such design constraints 
however, an engineer is faced with a dilemma: the harbour entrance must be 
wide enough to allow safe access to shipping and, at the same time, small 
enough to limit the penetration of wave motion. The width is therefore often a 
compromise between the navigational requirements and the degree of protection 
desirable in a harbour. The navigational requirements are related to parameters 
such as the size of the design vessel, the density of traffic, the water depth and 
the height, direction and frequency of winds, waves and currents. Wave action in 
navigation channels and harbour basins is always undesirable both to navigation 
and to moored ships and the degree to which this may be considered tolerable 
depends upon the height and period of the waves and the hydrodynamic 
characteristics of the vessels. On the other hand, current action may also include 
such benefits as flushing of sediments and pollutants.

Accordingly, the disturbance level in the harbour must be minimised, 
or at least kept below an upper limit in certain specified regions, in order to 
maintain a reasonable level of usability. In that respect, it is virtually impossible



2

to prevent long-period waves from entering a harbour. The only method to 
minimise their effects is to shape the partially enclosed basin so that standing 
waves cannot form. However, shorter—period waves (those in the wind generated 
spectrum) may be strongly attenuated in one of the following ways: (a) restricting 
possibilities for input of wave energy by the proper design of the entrance, (b) 
energy absorption before waves reach berthing areas and (c) other special means 
like pneumatic breakwaters. This thesis is concerned exclusively with (a) and shall 
be outlined later in this chapter. The dissipation of energy in a harbour may be 
accomplished by promoting the breaking of waves either by constructing mild 
slopes along the inner boundaries or by making use of natural beaches. Pneumatic 
breakwaters also rely on the breaking of waves, but by opposing currents. The 
installation generates this current by releasing air bubbles near the bed which 
subsequently drag water to the surface as they rise. The flow divides at the 
surface, with part being directed against incoming waves. It is more effective 
against short-period waves where the motion is confined to the surface region. 
The volumes of air required to run breakwaters effective against waves of 
longer period are however colossal and hence no economic solution appears to be 
at hand.

The excitation of ships is another aspect that must be assessed in the 
light of our design guidelines. A ship that is assumed rigid, has motions which
are usually considered to occur in the six degrees of freedom known as surge, 
sway, heave, roll, pitch and yaw. None of the motions occur singly; (e.g. heaving 
cannot take place independently of pitching because of the fore and aft assymetry 
of the typical hull form). The motions excited in the ship result from the wave 
disturbance, the hydrodynamic inertia coefficients and the ship's orientation 
relative to the direction of wave propagation. Excessive movements would 
adversely affect cargo handling for all types of ships and therefore, it is the 
designer's task to try, as far as possible, to eliminate the penetration of the
'harmful' incoming wave frequencies.

It is worthwhile noting that if the port basin is large enough, wave
generation within it can be significant. As a consequence of reflections from 
boundaries, the build up of wave motion in an enclosure may be more rapid than 
in an equal area of open sea. The energy generated in a reasonably sized
enclosed body of water should therefore be added to that entering the mouth and 
a conservative judgement made of the addition of these two effects. In large 
harbours, such locally generated wind waves may require the construction of 
additional internal wave protection structures for certain operations.
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1.1 Outline of the thesis

The work commences in chapter two by reviewing the main analytical 
theories that have been developed for solving diffraction problems in
hydrodynamics. Such methods have been widely used by engineers in the design 
of harbours and accordingly, a large section of the U.S. Shore Protection 
Manual(1984), often referred to as "the bible of the coastal engineer", is 
dedicated to their results. However, as these are mostly based on analytical 
formulations, it is our intention here to put forward and qualify any shortcomings 
or limitations that might have been imposed by the analyses.

In chapter three, we undertake an analytical investigation into the 
transmission of water waves through channels under the assumption, X>2b, where 
X is the incident wavelength and 2b is the harbour gap width. The method of 
matched asymptotic expansions is utilised to solve what amounts to singular 
perturbation problems in which there are typically two disparate length scales such 
as the gap width and the wavelength or the boundary layer thickness and the 
chord in the flow over an aerofoil. In this context, the method is based on the 
premise that in the immediate vicinity of the gap, the wave motion resembles 
streaming flow while far away, the aperture appears as a wave source. 
Consequently, near-field and far-field solutions are independently sought and then 
matched in the intermediate regions to determine unknown constants. The first 
problem studied is the scattering of waves at the outlet of a semi-infinite 
channel. In this respect two geometries have been looked at, the first being a 
flanged channel and the second an unflanged one. Our aim here is to effectively 
demonstrate the process of reflection at an open end which has many practical 
applications. The next two problems tackled are respectively the diffraction of 
waves by a gap in a breakwater of finite thickness and the transmission of waves 
through a channel whose length is of the same order as the wavelength. It is 
hoped that this study would then provide a comprehensive account of the 
behaviour of entrance channels in the limiting case where the wavelength is long 
relative to 2 b.

To extend the coverage of the work, a numerical model is developed 
in chapter four to solve the Helmholtz equation. A hybrid form of the finite 
element method is utilised for this purpose which entails coupling a finite element 
discretisation in an interior region to infinite elements in an exterior one. The 
latter simulate the decay of the outward scattered wave so as to satisfy the 
radiation condition at infinity. The implementation is on a general-purpose finite 
element package, FINEL, which is extensively modified for our requirements. In 
order to verify the model, a few simple problems are then tackled.
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With a powerful tool now at our disposal, we proceed in chapter five 
to study the impedance properties of several harbour entrance configurations. 
Among these are channels, quarter-wavelength resonators and filter arrangements. 
Only semi—infinite harbour geometries are considerd here to avoid the complexity 
of internal reflections. Throughout, emphasis is placed on the physical explanation 
of important phenomena. Our intention here is to provide the practicing engineer 
with sufficient data so that the design of efficient entrances can be rationalised.

In chapter six, the resonance characteristics of a finite-size harbour 
are examined to make our work more applicable to real problems. We focus on 
two entrance configurations of a channel and a resonator with the aim of 
minimising the adverse effects that occur as a result of resonance.

The conclusions arrived at in all the previous chapters are then 
summarised in chapter seven. Recommendations for the future extension of the 
work are also given.

1.2 Assumptions and formulations

The following assumptions are made in the development of our 
diffraction theories:

(1) Water is an ideal fluid, i.e ., inviscid and incompressible.
(2) Waves are of small amplitude and can be described by linear wave 

theory.
(3) Flow is irrotational and conforms to a potential function which satisfies 

the Laplace equation.
(4) The water depth is uniform.

A summary of the equations governing the fluid motion is given here. 
A more detailed account may be found in Wehausen and Laitone(1960). Under 
the above assumptions, the velocity field may be expressed in terms of a potential 
function $(x,y,z,t) by q = -V4>, where (x,y,z) are Cartesian coordinates with z 
measured vertically upwards, z=0 coinciding with the undisturbed free surface. It 
is assumed that $  is periodic in time, with an imposed angular frequency cr. 
Further, since all solid boundaries are supposed vertical and the undisturbed fluid 
depth h is constant, both the vertical and time dependence of the fluid motion 
can be anticipated and subsequent calculations simplified by setting:

<f> -  Re r g_ co sh  k(z-fh) 
L icr co sh  kh y>(x, y)

- i(T te ]

The wavenumber k is given by the dispersion relation



cr2 -  gk tanh (kh)
The vertical displacement of the free surface from its equilibrium position is:

r -itrt *1iK x .y .t )  “ Re [ p (x ,y )  e J

where <p{x,y) is a reduced potential satisfying the Helmholtz equation:
(V 2 + k 2) ip -  0

at all points (x,y) corresponding to the fluid domain.
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CHAPTER TWO
A  review of classical diffraction theories

2.1 Survey

The diffraction of linear monochromatic water waves by breakwaters 
has been the subject of numerous theoretical and experimental investigations. The 
phenomenon is analogous to the diffraction of light, sound and electromagnetic 
waves, and theories for breakwater diffraction have, in the most, been adapted 
from the theory of these phenomena. In general, two diffraction problems are 
encountered: (a) The bending of waves around the end of a semi-infinite 
impermeable breakwater; and (b) their passage through a gap in a harbour wall. 
As well as providing a brief literature review of work in this field, we shall, in 
this chapter, describe in detail the main theories that have been developed for 
the solution of (a) and (b) and which have gained acceptance in engineering 
practice. The last section is dedicated to an area which has not been previously 
explored in the context of water waves. The interference effects in a harbour are 
examined in relation to the distinction between Fresnel and Fraunhofer diffraction, 
and the existence of amplitude maxima and minima along the centre line from 
the gap is investigated.

The rigorous mathematical approach to diffraction was initiated by 
Sommerfeld(1896) who derived a solution for light waves interrupted by a 
semi-infinite screen. The screen was assumed to be lying in a plane parallel to 
that of the polarised light. The acoustic equivalent of this problem was later 
taken up by Lamb(1932), who utilised a system of parabolic coordinates to solve 
the governing Helmholtz equation. This accomodated the application of the 
boundary conditions and the resulting solution is generally recognised to be one of 
the strong points of his well known book, 'Hydrodynamics'. After proving that a 
correspondence existed between the propagation of water and light waves, Penney 
and Price(l944,1952) devoted their efforts to this same problem. They utilised 
Sommerfeld's solution to model the diffraction of water waves by semi-infinite 
breakwaters and presented results that were directly applicable to the design of 
harbours. Putnam and Arthur(1948) later undertook experimental tests which 
verified this theoretical solution. Penney and Price also presented a solution for 
the diffraction by a gap, which was based on the superposition of the solutions 
for two semi-infinite breakwaters. This gave a reasonable representation of the 
wave field, providing the width of the opening was large enough (greater than 
about two wavelengths). An experimental verification was carried out by Blue and
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Johnson(1949), who found that the superposition approximation was accurate for 
gap widths as small as 1.4 wavelengths.

A totally independent approach to the aperture problem was formulated 
by Lacombe(1952). He derived a method which was based on a generalisation of 
Huyghens' principle, under certain restrictive assumptions. An alternative theory 
was also developed by Morse and Rubenstein(1938) in studying the diffraction of 
sound and electromagnetic waves by ribbons and slits. They utlilised an elliptic 
system of coordinates to solve the Helmholtz equation, which resulted in an exact 
solution, expressed in terms of the Mathieu functions, that was valid for any gap 
width. It was not practical, however, to apply this analysis to gap widths greater 
than about one wavelength as the convergence of the series for the Mathieu 
functions becomes quite slow. The solution was later adopted and modified by 
Carr and Stelzriede(1952) for the case of water waves. They presented theoretical 
and experimental results, pertaining to the energy distribution in a harbour, whose 
agreement was reasonably close. It should be noted that this exact solution could 
just as well be applied to the diffraction of waves by a detached breakwater, 
where the boundary conditions in the problem are similarly accomodated. The 
length of the breakwater, however, comes under the same restriction as the width 
of the harbour gap, for finite computations.

When the aperture is small in relation to the wavelength (less than 
about 0.2 wavelengths), the asymptotic solution developed by Rayleigh(1897), and
later by Lamb(1932), may be used. This is based on the premise that the
streamlines of the motion of the water waves through the gap are like those of 
the flow of a liquid through the same aperture. The analysis procedure therefore 
comprised dividing the solution domain into near-field and far-field flows. 
Solutions to each of these problems were obtained separately and then matched to 
determine unknown constants. A  diffraction coefficient was then derived which was 
a function of the radial distance from the centre of the opening.

More recently, Memos(1980) presented a useful work in which he 
reviewed all of the above diffraction theories from an engineering application
aspect. He also discussed the range of validity of each of them with regard to 
the gap width, and plotted curves to illustrate this point. One criticism that arises 
with regards to these graphs, however, is that the validity of Lamb's(l 932) 
solution is taken as extending to a maximum gap width of about 0 . 8  wavelengths. 
This is obviously erroneous as the asymptotic theory on which the analysis is
based, would no longer be valid under such circumstances. Memos(1980) also 
proposed a formulation for the case when the two breakwater arms, forming the 
gap, are inclined to one another. To this end, he combined two independent 
solutions, as was done by Penney and Price(1952), which imposed some limitations
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on the applicability of the results.
Sobey and Johnson(1986) returned to the analytical solution of Morse 

and Rubenstein(1938) to investigate the diffraction of water waves by narrow gaps. 
They concentrated on the wave field near the gap where available details are
generally approximate and most sparse. In their work, diffraction diagrams are
presented for several combinations of gap widths and angles of incidence, and
comparisons are made with the superposition approximation. Results are also 
presented for island breakwater configurations.

The use of analytical results in breakwater design is made convenient 
when summarised in a diagram with curves of equal values of diffraction 
coefficients in a coordinate system for which the origin is at the tip of a single 
breakwater or at the centre of an aperture. (The diffraction coefficient in this
instance is defined as the ratio of diffracted wave height to the incident wave 
height). A comprehensive selection of such maps, covering many gap width to 
wavelength ratios, is given in the Shore Protection Manual(1984).

2.2 Semi-infinite breakwater

As with all linear diffraction problems in hydrodynamics, the governing 
differential equation is that due to Helmholtz:

V2p + k 2̂  -  0 (2 .1 )

In order to solve this, subject to the boundary conditions in the problem, a 
transformation from cartesian to parabolic coordinates, given by,

k (x  + iy )  -  a  + i ’?) 2 ( 2 . 2 )

must be made. Figure 2.1 shows contours of equal £ and tj in relation to the x 
and y axes as well as the semi—infinite breakwater which is taken to be occupying 
the positive x-axis (tj=0 ).

Figure 2.1 Definition sketch
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As the primary waves are represented by, 
<p =  e i k y

two solutions of the following form are sought: 
' F ( x ,y )  e ik y

'P
. G (x ,y )  e " ik y

( 2 .3 )

( 2 .4 a )

(2 .4 b )

These correspond to the diffracted fields of the plane incident and plane reflected 
waves which are linearly superimposed to obtain the general solution. Substituting 
each of these expressions in turn in the governing equation, and transforming 
coordinates to the ($ ,77) reference frame, the following two equations for F and 
G ensue:

which are satisfied by, 
-  f ( s ) ,  

G (£ ,t7) -  g ( s ) ,

and yield,

F ( S ,tj)

S -  ( £ + r j )  

S “  ( $ - 77)

$+77
A + B J e “ i s ~ ds

0

Z - v
G($ , 77) -  C + D J e " i s  ds 

0

( 2 . 6 )

( 2 .7 )

( 2 . 8 a)

( 2 . 8 b)

A,B,C and D being unknown constants to be determined by imposing the 
following boundary conditions:

(1) When x is large and negative, while y=0, (£=0, 77=00), <p must reduce to 
expression (2.3).

(2) When y=0 and x^O, (77=0 ), &p/dy = 0.
Thus, the final solution becomes,

. /  $+77 $ -7 7

p  -  [ eiky J e “ l s 2 ds + e“ iky J e - i ^ d s  ] ( 2 .9 )
- 0 0 - 0 0
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where,
t+rj -  ±yk(r+y) ( 2 . 10 )
$-7] “  ± y k (r -y ) ( 2 . 11 )

The signs of ($+ 77) and ( £ - 77) are given according to figure 2.2.

( { ♦ T))>0 (£♦“!)) >0
(£-t) ) < 0  (g - 17) > 0

x

(g♦*n) >0 ] (5*i))<0
(g--n) < 0  ! (g-t|)<o

Figure 2.2 Signs of the integration limits

The Fresnel integrals in expression (2.9) may be evaluated from widely available 
tables on this topic, such as those in Abramowitz and Stegun(1965). Alternatively, 
the Cornu spiral could be calibrated so that the magnitudes of vectors drawn on 
it would correspond directly to these integrals.

2.3 Superposition approximation for the gap problem

that the phenomenon at the gap can be divided into two independent processes: 
the diffraction of the waves by (a) the left-hand and (b) the right-hand 
breakwater. The solution for the resultant wave in the aperture case is therefore 
the sum of the fields in two single breakwater problems. Obviously the boundary 
conditions at the solid walls are not satisfied, because the method does not take 
into account the interaction effect between the two structures. The induced error, 
however, decreases with increasing gap width.
The solution derived afore for the semi—infinite breakwater may be restated here 
in the notation used by Penney and Price(1952) as,

This method of solution adopted by Penney and Price(1952) assumes

p ( x ,y )  -  e*ky f(<r) + e “ *ky f ( tr ') (2 . 12)

<r

-00

4 (r + y )
X
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where the signs of <r and o '  are given by figure 2 .2 .
; y

III

I

n

X

Figure 2.3 Definition sketch

eiky+e-iky

- f2- g 2

V  92
- f 1 + 9l

j waves

e 'k y  
- f ,  +g, 

- f 2 + g2

eiky+e-iky

-  f2 + g2
(1 )

f l + 9i
- f 2 ♦ g2

Figure 2.4 Wave field in the gap problem 

The relation,
f(o-) + f ( - tr )  -  1 ( 2 .1 3 )

which can be easily verified, makes possible a decomposition of the wave field of 
equation (2.12), according to the position of the point (x,y). Hence, after making 
use of this relation and defining the following quantities:

f, -  e iky f(-<r)
g , -  e - lk y  f ( - a ' )

the wave field in each of the regions shown in figure 2.3 becomes:
I: y> -  e ik y + e " lk y -  f ,  -  g ,
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I I :  p  -  f ,  + g t
I I I :  <p -  e ik y  -  f ,  + g .

For the case of a gap formed by a pair of semi-infinite breakwaters, we may 
superpose two such solutions to obtain the scheme of values for <p(x,y) shown in 
figure 2.4. It should be noted that the subscripts, 1 and 2, refer to the two 
arms. The distances, r , and r 2, needed for evaluating a  and a ',  are measured 
from the ends of barriers 1 and 2  respectively.

2.4 Lacombe's method

Lacombe(1952) presented a practical approximate solution for evaluating 
the amplitude of a swell diffracted at any incidence by a gap in a harbour wall. 
He applied Green's theorem to a closed contour, 1, formed by the portion X'A 
of the breakwater, the gap AB, the portion BX and then a line to infinity 
represented schematically in figure 2.5.

figure 2.5 Definition sketch 
The following assumptions were made:

(1) The functions <p and d<p/dn equal zero along the inner faces of the 
breakwaters.

(2) Between A and B, <p has the value that it would have had in the 
absence of the breakwaters.

(3) Green's theorem can be applied despite the discontinuities in <p and 
dtp/9n along the contour.
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It may be easily seen that the first of the above assumptions does not allow for 
the effect of the relative position of the two branches of the breakwater. Thus 
any geometry of the problem leads to the same result provided the width of the 
opening is kept constant.
Applying Green's theorem to the present situation we get,

( 2 .1 4 )

where H 0 is the Hankel function of the first kind and zeroth order. Equation
(2.14) may be interpreted in the following way: The reduced potential at a point, 
p, enclosed within the contour 1 is due to the distribution of wave sources, 
H 0(kr), and wave doublets, 0H o(kr)/3n, on that boundary. 8^>/0n and <p represent 
the densities of the sources and doublets respectively on 1.
Using the asymptotic expansion of the Hankel function for large arguments, the 
following expression for the potential is finally derived:

*’P “  \  7 ?  (X /r )*  ( c o s0 + c o sa ) e x p ( - i ( k l s i n a + k r - r / 4 ) ) d l
AB (2 .1 5 )

Another restriction that has been imposed is that r=r(l) is greater than 2 or 3 
wavelengths.

2.5 Exact solution

Although this solution is generally credited to Morse and 
Rubenstein(1938), the basis of their method is largely due to Schwarzschild(1902). 
The procedure involves the following transformation to elliptic coordinates,

(x  + iy )  -  b co sh (£  + ir;) ( 2 .1 6 )

so as to facilitate the application of the boundary conditions.

Figure 2.6 Definition sketch
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Figure 2.6 shows contours of equal $ and rj where it is important to note that 
the two breakwater arms are represented by 17=0 and rpx, and the gap by £=0 . 
b, here, is the half-width of the aperture.
The governing Helmholtz equation then becomes,

+ 2 k ’ (c o s h 2 | -  cos2r,) <p -  0 ( 2 .1 7 )

where,

Separation of variables in the usual manner,
p t t . v )  -  F « )  G(1,)

results in the following two ordinary differential equations for F and G,

S  + (a  -  2 k ’ c o s 2 tj) F -  0 ( 2 .1 8 )

g p  -  (a  -  2 k ’ co sh 2 £ ) G -  0 ( 2 .1 9 )

where a is the separation constant. Equations (2.18) and (2.19) are respectively 
called the Mathieu and Modified Mathieu equations. Their solutions, expressed in 
terms of infinite series of Mathieu functions, are quite standard and may be 
found in such works as McLachlan(1947).
After imposing the boundary conditions in the problem, which are simply:

(1 ) dip/dy = 0 , at the two breakwaters (77=0 and rpx).
(2) Continuity of potential across the gap, i.e. <p due to the plane incident, 

plane reflected and scattered waves on the seaward side, should be equal to <p 
due to the scattered wave inside the harbour.
The final result for the scattered potential inside the harbour becomes:

00 r 2“  L  I —  c o s 72n ex P (“ ^72n) Me2 n (S ) c e 2 n W  c e 2 n (0 )  + n -0  L P2n
2i

P2n+1 cos72n+l exP (-i7 2 n + l) Me2n+1<0 ce 2 n + l(’l) c e 2 n + l(0> ]

where,

Ym -  a r c o ta n FeYm(0 )Cem( 0 )

( 2 . 20 )
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and,
Mem -  Cem + iFeYm

cem are even periodic Mathieu functions of the first kind, while Cem and FeYm 
are modified Mathieu functions of the first and second kinds, respectively. pm are 
known constants that are related to the potential of the incident wave.
The complexity of equation (2.20) suggests the use of its asymptotic form at 
points where the radius of curvature of the wave crest in plan is greater than 
about three wavelengths. This was done by Carr and Stelzriede(1952) in deriving 
an 'intensity factor' which gave an indication of the energy transmission into a 
harbour.

2.6 Interference effects inside a harbour

The existence of amplitude maxima and minima on the centre line
through an aperture is well-known in optics but has received little attention in 
the case of water waves. It may however present a navigational hazard to ships 
and as such, needs to be closely studied. With this purpose in mind, the
superposition approximation of Penney and Price has been utilised to derive the 
variation of amplitude along the centre line of a semi-infinite harbour at each of 
the following two gap widths:

2b/X= 2.0 and 4.0.
With the narrower opening (figure 2.8), we notice that the variation is quite
gradual which implies that such effects would not be of any practical consequence 
to vessels, especially the larger ones. With the wider gap (figure 2.9) however, 
the variation is more severe as the numbers of maxima and minima increase. 
This suggests that vessels might then experience manoeuvring difficulties when 
entering the harbour. In both cases, the amplitude eventually decays monotonically 
to zero. In attempting to provide a brief physical interpretation of this behaviour, 
we may resort to Fresnel's theory of half-period zones (Longhurst(1973)). For
points at large distances from the entrance inside the harbour, there is no phase 
opposition between the contributions from the secondary wave sources in the gap. 
Closer to the entrance, on the centreline, there is a succession of maxima and 
minima corresponding to odd and even numbers of Fresnel wave source strips in 
anti phase on the entrance. These half—period strips increase with the width of 
the gap which results in interference patterns with more maxima and minima of 
amplitude for the wider openings as has been demonstrated by the results. In the 
case of a spectrum of different frequencies, the amplitude variations would be the
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square root of those in regular waves as the superposition is by intensities 
(amplitude squared) in the random case.

Out of theoretical interest, the distinction between Fresnel and 
Fraunhofer diffraction patterns is now briefly examined. The two types of 
diffraction can only be differentiated when considering the variation of amplitude 
along various sections perpendicular to the centre line of a harbour and 
accordingly, two have been chosen which are 0.2X and 1.3X away from a gap 
whose width is 2.0X. These two sections would respectively characterise the effects 
of Fresnel or near-field diffraction and Fraunhofer or far-field diffraction. The 
corresponding plots shown in figure 2.7 illustrate clearly that the far-field pattern 
is governed by a linear variation of the phase of contributions from elements 
across the aperture as is observed in the optical analogy.
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CHAPTER THREE
An analytical study of the transmission o f waves through channels

3.1 Scope of the work

It has long been noted by competent observers (e.g. Bruun(1973)) that 
significant reductions in wave transmission take place when channels are provided 
for navigational purposes at harbour entrances. Four different configurations for 
such channels are considered in this chapter with the aim of investigating 
analytically their impedance properties. The first two problems studied (figures 
3.1a and 3.1b) are concerned with the propagation of small amplitude water 
waves along a semi-infinite channel, and their consequent scattering at the mouth 
into an unconfined basin. In this respect, two geometries have been considered: 
one when the channel is provided with an infinite flange at its outlet and the 
other when it is unflanged. In both cases the separation of the channel walls, 2b, 
is taken to be small in relation to the wavelength. The next problem examined is 
the diffraction of waves by an opening in a breakwater of finite thickness (figure 
3.1c). Here, both the gap width, 2b, and the thickness of the arms, 2a, are 
assumed small relative to the wavelength. The last problem considered is perhaps 
the most interesting from a practical point of view and concerns the transmission 
of waves through a long channel (figure 3.1 d). No maximum restrictions are 
imposed on the length of the channel but its width, 2 b, is again assumed small 
relative to the wavelength.

Viewed as perturbation problems for e-*0 (e=kb, k being the 
wavenumber), all of the above involve two disparate length scales, b, and k- 1 , so 
displaying the hallmark of singular perturbation problems. Accordingly, we 
anticipate the need for two complementary solutions, termed the inner and outer, 
appropriate to the length scales b and k- 1  respectively. The method of matched 
asymptotic expansions is particularly suitable for two-dimensional diffraction 
problems and as such, shall be used in this context. The basic idea underlying 
the method is the representation of the solution by more than one expansion, 
each of which is valid in part of the domain, and neighbouring expansions 
overlap so that they can be matched. The method involves loss of boundary 
conditions as an outer expansion cannot be expected to satisfy conditions that are 
imposed in the inner region; conversely, the inner will not in general satisfy 
distant conditions. The possibility of matching, which is the crucial feature of the 
method, rests on the existence of an overlap domain where both the inner and 
outer expansions are valid. The presence of this realm of joint applicability
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implies that the inner expansion of the outer solution should, to appropriate 
orders, agree with the outer expansion of the inner solution. This general 
matching principle can be given various specific formulations.

3.2 Previous work

The method of matched asymptotic expansions has been widely used in 
the general problem of wave transmission through apertures. Rayleigh(1897)
pioneered the technique when studying the diffraction of plane sound waves by a 
small gap in a thin barrier. He used the idea that, in the neighbourhood of the 
aperture, the flow is purely local without far—field influence apart from the 
over-all scale of velocities. The field equation then changes in the inner region 
from the wave equation to Laplace's equation. This inner solution then matches 
an outer solution which looks just like an acoustic source situated at the position 
of the infinitesimal aperture. Although he did not use the formal language or 
apparatus of 'matched asymptotic expansions', Rayleigh was already thinking in
such terms last century. The same problem was later taken up by Lamb(1932) 
who derived an energy transmission coefficient (to be defined later) and found
that as the gap width is made smaller, the proportion of energy that penetrates 
through increases significantly. This has obvious implications for the design of 
entrances to harbours that are subjected to the action of long waves. An
alternative configuration of a gap formed by two inclined barriers was analysed by 
Memos(1980) using similar theory. In the limiting case of the two barriers being 
aligned, his solution reduces to that of Lamb. A more general geometry where 
the gap was not confined to being in-line with one of the barriers was studied 
by Smallman(1986). Liu(1975) developed an asymptotic theory to investigate the 
interaction of water waves with two parallel breakwaters as a first step towards 
studying the harbour inlet problem. A transmission coefficient was derived which 
was found to be insensitive to the incident wave angle and the separation between 
the barriers. There has also been a considerable amount of work devoted to the 
equivalent case of the submerged horizontal aperture. The initial advance by 
Tuck(1971) in this field, in which he examined the transmission of waves through 
a narrow horizontal slit in a thin vertical wall was extended to include the effects 
of a small finite thickness of the barrier by Guiney et a l(l972). Later, Liu and 
Wu(1986) looked at the case where the thickness of the barrier was of the same 
order as the wavelength.

Although the perturbation parameter has to be small in all of the 
above problems, there is no clearly defined limit at which the asymptotic theory 
fails. A  comparison was therefore made for the purpose of guidance, between
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Rayleigh's(l897) solution and that obtained by Morse and Rubenstein(1938), which 
is exact for all gap widths. The latter solves the Helmholtz equation in elliptic 
coordinates, resulting in an energy transmission coefficient that is expressed as a 
series of Mathieu functions. A  similar coefficient was determined for the former 
solution by Lamb(1932), and the variation of these with the dimensionless gap 
width is plotted in figure 3.2. The exact solution is presented for an angle of 
incidence of 90* i.e. normal incidence. Lamb's solution, on the other hand, is 
independent of the angle of incidence as the matching theory utilised is of a low 
order. From this graph it is apparent that the asymptotic theory must not be 
extended beyond a gap width of 0.2 wavelengths for this particular case. This 
result throws some light on the limit for other configurations.

A comprehensive account of the mathematical theory of matched 
asymptotic expansions is found in the work of Van Dyke(1964) where a simplified 
but effective matching principle is proposed. This has been slightly modified by 
Fraenkel(1969) where the necessity of grouping together logarithmic with algebraic 
terms is implied. Applications to a wide variety of problems in fluid mechanics, 
especially in the field of viscous flow, are also presented by Van Dyke(1964). A 
similar exposition is given by Nayfeh(1981) who discusses the method in relation 
to boundary layer problems.

3.3 Scattering at the outlet of a semi-infinite channel

As mentioned before, two cases corresponding to the channel being 
flanged and unflanged at its end shall be treated here. In both cases, the analysis 
procedure involves seeking outer and inner solutions at length scales of 0 (k- 1 ) 
and O(b) respectively, which are consequently matched to determine unknown 
constants.

3.3.1 Flanged channel : mathematical analysis 

O uter solu tion

Two outer regions, located far away from the origin, in the basin and 
the channel, emerge when viewing this problem at the larger length scale. In the 
'basin outer region' the channel walls are effectively collapsed and therefore the 
flow there appears to be due to a simple oscillatory source placed at the channel 
mouth. The potential of a source of unit strength, situated at the origin and 
emitting waves in an unconfined two-dimensional plane is given by:
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\  H0(k r) ( 3 .1 )

where H 0(kr) is the Hankel function of the first kind and zeroth order. In the 
present context, the source is required to radiate in a restricted region given by 
the upper half of the x—y plane, whence we have to multiply ^ by a factor of
2. A further factor is introduced when bringing the unknown strength of the 
source, taken as Q, into the formulation. In the 'channel outer region' the 
propagation is one-dimensional and accordingly, the flow may be represented by 
the superposition of a plane incident wave of unit amplitude and a plane 
reflected wave of as yet unknown amplitude, |R |.  Thus, the complete 
specification of the outer solutions is given as:

r e ik x  + R e -ik x

H0(k r)

channel ( 3 .2 a )

b a s in  (3 .2 b )

The inner expansions of (3.2a) and (3.2b) may now be obtained by taking the 
limits as kx-»0 and kr-*0. Making use of the following asymptotic expansions,

e ik x  ts l  + ik x  , a s kx-*0 ( 3 .3 )

H0 (k r ) « 1 + ( lo g  + 7 )  » a s  kr->0 ( 3 .4 )

where, y  = 0.5772, is the Euler constant, the inner expansions of the outer 
solutions become:

<p «

■ (1+R) + ( l - R ) ik x

I 1  [ 1 + T ~  d o g  ^  + 7 ) +  I 1  lo g  r ]

channel ( 3 .5 a )  

b a s in  (3 .5 b )

In n er  solution

It is required here to examine the flow in the neighbourhood of the 
channel outlet at the smaller length scale. Under this condition, the governing 
Helmholtz equation reduces to Laplace's equation and consequently the flow may 
be approximated to a streaming motion. The problem therefore becomes one of 
solving a conformal transformation of the Schwarz-Christoffel type. With reference 
to figure 3.3, the z-plane is mapped to the upper half of the plane by the 
following transformation:
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z - i r  [ + l0« [ ( N - i y / i  + i ] ] <3-6>

which is given by Newman et al(1984) in their work on the added mass and 
damping of rectangular bodies close to the free surface, where similar geometries 
were encountered. Under this transformation, a simple streaming source placed at 
the origin of the plane would give the required flow in the z—plane. The inner 
solution then takes the form,

<p -  m lo g  | r | + n ( 3 .7 )

where m and n are unknown constants. The outer expansions of the inner 
solution are obtained by approaching the vicinities of the two outer regions.
Looking at the conformal map of figure 3.3, this is seen to be achieved by 
taking the limits as i Ti-jO where the channel outer region is approached and 

where the basin outer region is approached. Now, from equation (3.6) we 
can derive the following approximations,

as | r i-»0 , z - » ^ | l  + l o g j j y ] ,  | H ^  e TX/ 2k

and,
V 21)3 , la b XI*as is i-*», z  -  —  is  , m  3 H

which upon substitution in equation (3.7), the outer expansions of the inner 
solution become:

x + m log  ^ + n : channel (3 .8 a )
<p

b asin (3 .8 b )

M atch ing

The matching principle first used by Rayleigh(1897) and later
formalised by Van Dyke(1964) states that the inner expansions of the outer 
solution shall be equivalent to the outer expansions of the inner solution. In using 
this principle, equations (3.5a) and (3.5b) are equated to equations (3.8a) and 
(3.8b) respectively. Coefficients of x as well as of log r are grouped together and 
separated from the constant terms. This results in four simultaneous equations for 
the four unknown constants in our problem:
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„ 2  1 + R -  m log  — + n ( 3 .9 )

(3 .1 0 )

T -  [ 1 + I T  [ lo g  1  + y  ] ] " m lo g  2 b + n ( 3 .1 1 )

( 3 .1 2 )

After some algebraic manipulation, the above equations yield for Q and R,

Q being the quantity of interest as far as the transmission into the harbour is 
concerned while R gives an indication of the amplitude of the wave that is
reflected at the open end. Following Lamb *s(l932) lead, an energy transmission 
coefficient, T, may now be defined as the ratio of the energy flux of the
scattered waves, in the harbour, to that of the primary waves in the channel. As 
the energy flux across a specific section of the wavefront is the product of the
length of this section and the square of the wave amplitude there, T becomes,

where r is the radius of a semi-circle centered on the origin, and extending into 
the harbour, and \<p\ is the constant amplitude along its circumference. The 
distance, r, has to be large in relation to the wavelength so that the circular 
wavefronts may be approximated to plane ones, thus validating our definition of 
the energy flux. Substituting for ip (the potential in the basin outer region), from 
equation (3.2b), we obtain,

Q -
2 (3 .1 3 )

R -  1 i (3 .1 4 )

( 3 .1 5 )

which may be simplified further by making use of the following asymptotic
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expansion:

H0(k r) « ^ [ ^ p ]  e “ * (k r+T/ 4) f a s kr-*» (3 .1 6 )

Substituting this in turn, we get the final expression for the energy transmission 
coefficient as:

T 1

kb [ [ I  lo g re
5kb

(3 .1 7 )

This result has been checked by ensuring it satisfies the following energy 
conservation relationship:

T + iR l2 -  1

3.3.2 Unflanged channel : mathematical analysis 

O uter solution

The steps involved here are as in the previous case, where we look at 
the solution far away from the origin. Indeed, the mathematical formulation is 
identical except for one minor difference. As the channel is unflanged, the flow 
in the basin outer region appears to be due to an oscillatory source situated at 
the channel mouth and emitting waves in the whole x—y plane as opposed to a 
confined part of it. Thus, the outer solutions are given by:

e ik x  + R e-ik x

■ H0(k r )

channel (3 .1 8 a )

b a s in  (3 .1 8 b )

Taking the limits as kx->0 and kr-»0, and making use of the asymptotic expansions 
(3.3) and (3.4), the inner expansions of the outer solutions become:

(1+R) + ( l - R ) ik x
a s

channel (3 .1 9 a )
V>

: basin (3.19b)
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In n er solu tion

Again, it is required to examine the streaming flow situation at the 
mouth of the channel in a manner analogous to that used by Newman(1974) and 
Liu(1975). We have for the conformal transformation,

3̂ r 3 z  — — ex p (-m (p  + i^-) + n) -  m(<p + i^ ) + n + 1 J (3 .2 0 )

where z = x + iy, as before, and \f> is the stream function. The outer
approximation of (3.20) is obtained by taking the limits as (mip -  n) > 1 , where 
the channel outer region is approached, and (mp -  n) {  1 , where the basin 
outer region is approached. Thus we get,

-  : channel bm m (3 .2 1 a )
tp «  •

. -  — 1 o g (^ —) + — : b a s in  m o v b m (3 .2 1 b )

M atch ing

Equations (3.19a) and (3.19b) are to be matched with equations (3.21a)
and (3.21b). Four simultaneous equations ensue,

( 1  + R) -  i - ± - 2m (3 .2 2 )

a  - R ) i k - - i ; (3 .2 3 )

Qi [ l  + ( lo g  *  + y ) ]  -  -  I  lo g  l  + 2 (3 .2 4 )

Q_ _  i
2 x m

from which we get the following results:

(3 .2 5 )

Q -  _ 2 *
[ i  [* -  *  + 1o* r a l  + r a ;  < 2  + kb> 1

(3 .2 6 )(3 . 2 6 )
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kb [ \ [ i . 7 + log * g + ^  (2 + kb> ]
(3 .2 7 )

The energy transmission coefficient is defined as,

T 2 xr
"  3 b " \<p\2

where r is now the radius of a circle (as opposed to a semi-circle), centred on 
the origin. Substituting for <p from equation (3.18b) and making use of the 
asymptotic expansion, given by (3.16), for H 0(kr) as kr-*», T becomes:

T T2
( 2  + kb ) 2 + kb

3 ~ [ ’
(3 .2 8 )

This again has been checked in the energy conservation relationship.

3.3.3 Results

The variation of the above-derived energy transmission coefficients with 
the dimensionless separation of the channel walls has been plotted in figure 3.4 
to illustrate the physical ideas behind the mathematics. In keeping with our 
approximate guideline on the limit of the asymptotic theory, the range for 2 b/X 
has been taken as extending from 0.0 to a maximum value of 0.2. An interesting 
feature that is immediately apparent from this graph is the noticeably higher 
energy penetration into the harbour when the channel is flanged as compared to 
when it is unflanged. To give a numerical example, when 2b/X = 0.10, the 
difference between the transmission coefficients, corresponding to the two different 
cases, is about 55%. In attempting to explain this finding, we shall have recourse 
to an acoustical analogy. Morse and Ingard(1968) studied the radiation of sound 
waves from a plane circular piston, of radius a, set in a plane baffle of infinite 
extent. This resembled the radiation from a cone loudspeaker which made the 
problem of practical interest. Their investigations in that respect revealed the 
following:
"Long—wavelength sound spreads out uniformly in all directions from the piston, 
with an intensity four times that due to a simple source of strength Ta2u 0. If the 
wall were not present and the piston were the open end of a pipe, this end 
would act like a simple source of strength xa 2u 0 for long wavelengths, so that



29

the wall, or baffle plate, produces a fourfold increase in intensity. The sound 
reflected from the baffle reinforces the sound radiated outward, thereby doubling 
the amplitude of the wave, and thus quadrupling the intensity, which depends on 
the square of the amplitude. Of course, to have the baffle give this considerable 
increase in amplitude, it must be considerably larger than the wavelength of the 
sound radiated, so that it will act as though it were infinite in extent."
This is consistent with our result which may now be seen to have a bearing on 
the design of harbour entrances. According to this finding, entrance channels 
should protrude into harbours in the manner illustrated by figure 3.5 if the 
energy transmission is to be minimised. This configuration corresponds to the 
channel being flanged at its inlet and unflanged at the outlet, which would also 
promote radiation damping when the harbour is in resonance, thus leading to a 
reduction in wave agitation. This is because as far as the radiation damping is 
concerned, the roles of the inlet and outlet of the channel are reversed as energy 
'leaks* out of the harbour thereby reducing amplitudes. The optimum geometry of 
figure 3.5 is, however, based on a crude deduction, as the above derivation is 
valid only for semi—infinite channels, which do not exist in reality. Furthermore, 
this study is incomplete in the sense that we focused only on the outlet problem. 
A complementary study of the inlet for both flanged and unflanged channels, as 
carried out by Liu(1975) for the latter case, is desirable in order to extend our 
conclusions regarding such configurations. Nevertheless, the preceding analysis is 
useful at a preliminary design stage.

waves

t

zzzzzzzzzn K2

Figure 3.5 Optimum geometry for entrance channels

A second feature emerging from the graph, that is quite striking, is 
the low energy penetration into the harbour for small values of 2 b/X (typically, 
less than about 0.10). The energy transmission coefficients for both channels are 
seen to diminish to zero as the separation between the walls is made 
infinitesimal, which suggests a high amount of reflection at the open ends. This
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again is consistent with theories in acoustics, where for example, in calculating 
the specific acoustic impedance at an open end of a tube, Morse(1948) deduced 
the following:
"At low frequencies the resistive term is quite small, so that very little energy is 
lost from the open end. Open tubes having cross-sectional perimeter much 
smaller than the sound wavelength are therefore nearly as good hoarders of 
energy as are closed tubes, for only a small percentage of the stored energy can 
be radiated away in any cycle."
The resistive term mentioned above is a purely frictional reaction. In the 
hydrodynamic case, the process of reflection at an open end can play a major 
role in the propagation of tides through channels. For example, the geometry of 
the inlet of the Mediterranean basin (from the straits of Gibraltar to the coast of 
France) resembles a slowly diverging channel with many sudden widenings in 
section at which significant backward reflections could occur. The cumulative 
effect could contribute to the low tidal amplitudes found in that basin. As noted 
by Defant(1960), the Meditterranean is relatively deep and therefore, the 
reduction of the tide by comparison with the Atlantic could not solely be a 
consequence of dissipative forces.

3.4 Diffraction by a gap in a thick breakwater

The diffraction of water waves by a gap in a breakwater of finite 
thickness is examined here under the assumptions, kb<l and ka<l (where a and b 
are as defined in figure 3.1c). In the limit 2a-»0, the problem reduces to that 
treated by Rayleigh(1897) and Lamb(1932). As with the previous problem, the 
method of matched asymptotic expansions is employed in the ensuing analysis.

3.4.1 Mathematical analysis 

O uter so lu tion

We seek in the outer problem expressions for the reduced potential of 
the flow far away from the gap, on both sides of the breakwater. Under these 
conditions, the gap appears infinitesimal and may therefore be replaced by a pair 
of simple oscillatory sources, each of which radiates in a confined half-plane. If 
Q 1 and Q 2 are the strengths of these sources on the seaward and leeward sides 
of the breakwater respectively, and assuming normally incident plane waves, we 
have for the outer flow field:
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r i Q i 1e ik x  + e - ik x  + _ _  H0 (k r)

Q2i—  H0 (k r)

seaw ard s id e

leew ard s id e

(3 .2 9 a )

(3 .2 9 b )

Making use of the asymptotic expansions given by (3.3) and (3.4) for e1̂ * as 
kx-»0 , and H 0(kr) as kr->0 , we obtain the inner approximations of the outer 
solutions as:

2 + T -  b + V- (log T- * 7)] 

. * 1  [1 + 2i (log £  + 7)]

seaw ard s id e  (3 .3 0 a )

leew ard s id e  (3 .3 0 b )

In n er  solu tion

The flow in the neighbourhood of the gap is approximated to a 
streaming motion when the predominant length scale is of the order of the gap 
width, and hence it is required here to solve a conformal transformation of the 
Schwarz-Christoffel type. With reference to figure 3.6, the z—plane is mapped to 
the upper half of the t—plane by the following transformation:

dz . (I*2 - S 2)1/2 (f2 _ 1)1/2
dF " i a ----------------------- ( 3 .3 1 )

where,

a b
lE ( s )  -  s ' 2 K (s) ( 3 .3 2 )

s' 2 — 1 - s2 ( 3 .3 3 )

and s is a root of:
a K (s 1 )s*  2 -  2 k ( s ' ) -f 2 E (s ' )
b " 2 ( K ( s ) s ,ij -  2 E ( s ) ) k o .o * )

The functions K(s) and E(s) are complete elliptic integrals of the first and second 
kinds respectively. Equations (3.31) to (3.34) were first derived by Davy(1944) in 
relation to a problem concerning the magnetic field between two rectangular 
electrodes, and have since been included in the dictionary of conformal 
representations by Kober(1957). A simple streaming source situated at the origin 
of the plane would give the required flow in the z—plane. The inner solution is
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then given by,
<p -  m lo g  | Tf + n (3 .3 5 )

where m and n are unknown constants relating to the strength of the source. The 
outer expansions of (3.35) are obtained by letting where we approach the
vicinity of D (the seaward side outer region), and i f  i-*», where we come close 
to A (the leeward side outer region). Now, from equation (3.31), we can deduce 
the following,

as | s |-»0 , z  -> —, |s  | ——

and,

a s z  -» i a f ,  | f |  —a

which upon substitution in equation (3.35) we obtain the outer expansions of the 
inner solution:

ip «
m lo g a s + n seaw ard s id e  (3 .3 6 a )

leew ard s id e  (3 .3 6 b )

M atch ing

In utilising the matching principle as before, we equate expressions 
(3.30a) and (3.30b) with (3.36a) and (3.36b) respectively. This yields four 
simultaneous equations for the four unknown constants.

Qi' Qi k2 + — -  —  ( lo g  2  + T) " m lo g  a s  + n ( 3 .3 7 )

Q,------ m (3 .3 8 )

Q2I Q2
~ 2 ~ -  —  ( lo g  2  + 7 )  “  -m lo g  a  + n ( 3 .3 9 )

Q2-  ------ m ( 3 .4 0 )

On solving these equations, we get for the source strengths,
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Q, -  -  Q2 -  - 2 / [ i  -  I  ( l o g  2 ! £ l £  + 2y ) ] (3 .4 1 )

and therefore, the potential far into the lee is given by (3.29b) as:

¥> -  1 H „ (k r ) / [ i  -  i  ( l o g  + 2-y)] (3.42)

An energy transmission coefficient may now be defined in a slightly different 
fashion, as the ratio of the energy flux of the scattered waves inside the harbour, 
to that of a section of the primary waves equal in length to the width of the 
gap. This serves as a comparison between the actual energy transmitted and
what would be predicted by geometrical optics at normal incidence, and is given
b y,

T -  2 5  \<p\2 ( 3 .4 3 )

where, as before, r is the radius of a semi-circle centred on the origin and 
protruding into the harbour, and <p is derived from expression (3.42) by taking 
the limit as kr-*». Making use of the asymptotic expansion (3.16) for H 0(kr) as 
kr-*», and after some algebraic manipulation, T becomes:

T -  x V k b f x 2 + ( lo g  — j * + 2 7 ) 2 ] (3 .4 4 )

3.4.2 Results

A useful check on our theory was carried out by letting the thickness 
of the breakwater diminish to zero to see whether the above expression for T 
reduced to that derived by Lamb(1932) for the equivalent problem of a small gap 
in a zero—thickness barrier. Lamb's result is given as:

T0 -  x 2 / k b [ i 2 + 4 ( lo g  + 7 ) 2] (3 .4 5 )

This indeed was found to be the case as when 2a-*0, s-»l and of->b/2, and 
therefore T-»T0. The procedure- for calculating T involved initially plotting a 
graph of a/b against s, and then, knowing the particular value of s corresponding 
to a certain required a/b ratio, a  was evaluated and hence T. The elliptic 
integrals which are part of the formulation were computed using the relevant
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subroutines from the NAG library.
In figure 3.7, the variation of T /T 0 with the dimensionless gap width 

is plotted for three values of breakwater thickness to gap width ratios 
corresponding to, a/b = 0.3, 0.5 and 1.0. This, in effect, is a measure of the 
added impedance of the harbour gap due to the finite thickness of the 
breakwater. From this graph, we may immediately deduce that there is a 
considerable advantage to be gained, in terms of decreasing the wave penetration 
into a harbour, by incorporating what amounts to short entrance channels in the 
overall design of harbours. As an example, consider the case when the gap width 
and breakwater thickness are equal, i.e. a/b = 1. From the appropriate curve of 
figure 3.7, we see that there is about a 60% reduction in the energy transmission 
as compared with the case when the breakwater is of infinitesimal thickness. This 
reduction is seen to be constant over a range of gap widths extending from 2 b/X 
= 0.05 to 0.20. Similarly, for the two other cases plotted (a/b = 0.3 and 0.5), 
there is a lower but nevertheless noticeable reduction.

The usual approach followed in explaining the physical mechanisms 
involved in the above impedance process centres around the idea of a finite mass 
or constriction at the entrance which, in being excited by incoming waves 
communicates the vibrations to the interior of the harbour. The fluid in the 
constriction has a total mass of pSle , where S is the cross-sectional area and le 
is the effective length of the channel. An effective length is used because it turns
out that some fluid beyond the ends of the constriction moves along with the
fluid in the constriction, and this must be included to obtain the effective mass. 
If X > lg, as it is in the present context, the fluid in the constriction moves as a 
unit with an acceleration dependent upon the difference in elevation across the 
two ends. An additional effort is required to accelerate this mass if the length of 
the channel is increased and hence the energy transmission is further impaired.

An alternative explanation, which is thought to be original, is now 
given by having recourse to an electrical analogy. A  gap in a breakwater may be 
seen to be equivalent to an electrical inductance as far as its impedance
properties are concerned. In the circuit of figure 3.8, a magnetic field is induced
in the coil, producing a back electro—motive force (e.m .f.) that opposes the flow 
of current. One way of increasing the inductance of this coil, and hence the 
impedance of the circuit, may be achieved by increasing its length. In the 
hydrodynamic case, the backward scattered wave is responsible for the impedance 
of the gap. The introduction of an entrance channel to a harbour provides not 
one but two ends at which reflection occurs. The result is an increase in the 
total impedance, as has been demonstrated in the preceding analysis. Lengthening 
this channel is equivalent therefore to augmenting the dimensions of the coil. In
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both cases the impedance process is non-dissipative. The wave scattering approach 
adopted here, is, in the opinion of this author, better suited to dealing with this 
type of problem than the 'plug of fluid' idea which misses the phenomenon of 
reflection at the end of the channel where it debouches into the harbour.

Figure 3.8 Electrical analogy to the problem 

3.5 Transmission through a long channel

The transmission of small amplitude water waves through a channel, 
flanged at both ends, of length, 2 a, and width, 2 b, is examined under the 
assumptions, kb ^ 1, and ka = 0 (1 ). At the larger length scale, k“ 1, three outer 
regions emerge, located far away from the channel ends on the seaward and 
harbour sides, as well as in the middle of the channel. At the smaller length 
scale, b, two inner regions emerge, located within the vicinities of the channel 
ends. Inner and outer solutions are sought in the usual way for these near-field 
and far—field problems and their expansions are subsequently matched in overlap 
domains in accordance with the schematic illustration of figure 3.9.

3.5.1 Mathematical analysis

O uter solu tion

In the 'sea' and 'harbour' outer regions, the scattered waves emanating 
from the channel ends appear as due to simple oscillatory sources placed at the 
origins of the x -y  and x'—y' axes (defined in figure 3.1d). The associated flow 
fields are thus given accordingly, with plane incident and reflected waves 
superimposed on the seaward side. In the 'channel' outer region, the flow field 
comprises two plane waves travelling in opposite directions. If Q , and Q 2 are 
the strengths of the two sources, radiating in the sea and harbour outer regions
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respectively, and if |A | and |B | are the amplitudes of the two waves in the
channel outer region, we have for the outer solutions,

Q, i<p(s e a )  -  e + e - ik x  + H0 (k r) ( 3 . 46a)

Q2i^ (h arb ou r) -  - j -  H0 ( k r ' ) (3 .4 6 b )

^ (c h a n n e l)  — Ae*k* + Be- *^* ( 3 .4 6 c )

where r'=y(x ' 2 + y*2). In deriving the inner expansions of these equations, we 
have to take the limits as the two inner regions are approached. For the sea 
outer solution, we let kx-*0 and kr-*0 , so that the inner region at the seaward 
end is approached, while for the harbour outer solution, we let kr'^O, so that the 
harbour end inner region is approached. Two inner expansions are needed for the 
channel outer solution as we have to approach the two inner regions at either 
end of the channel, and hence we first let kx-*0 and then kx'-»0. Making use of 
the usual asymptotic small argument expansions for e1̂ * and H 0(kr) and utilising 
the following relation,

x  -  — ( x ' + 2 a) ( 3 .4 7 )

the inner expansions of the outer solutions become:

Q i* r 2 1  kr i <p(s e a )  « 2  + - j -  [ l  + —  ( lo g  j -  + 7 ) ] (3 .4 8 a )

^ 2  ̂ r 2 1  ki*' n ^ (h arb ou r) « - j -  ^1 + —  ( lo g  + 7 )J (3 .4 8 b )

^ (ch a n n e l : ->sea) * A + B + ik (A -B )x ( 3 .4 8 c )

^ (ch a n n e l : -^harbour) *
Ae“2 ik a  + g e 2 ik a  4. ^ e 2 ik a  _ Be”^ ^ a ) ik x ' (3 .4 8 d )

Equations (3.48c) and (3.48d) correspond to the seaward end and harbour end 
inner expansions respectively.

In n er  solu tion

As the wavelength is much greater than the channel width, the flow in 
each of the inner regions is approximated to streaming motion at the mouth of a
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flanged semi—infinite channel. The problem, which is now seen to be the same as 
the first one tackled, on the scattering of waves at the outlet of a similar 
channel, becomes one of solving a conformal transformation of the 
Schwarz-Christoffel type. This is given by equation (3.6) as,

*  -  £  [  -‘<f2-1>,/2 +  )  ]

where, z=x+iy, for the 'seaward end' inner region, and z=x'+iy' for the 'harbour 
end' inner region.
Two streaming sources, each situated in turn at the origin of the f-plane, would 
give the required flow in the z-plane. The inner solutions are thus obtained as,

^ j(sea) -  m1 lo g  | f |  + n 1 (3 .4 9 )

y?(harbour) -  m2 lo g  | f  | + n 2 (3 .5 0 )

where m 1 ,n l ,m 2 ,n 2 are unknown complex constants, relating to the strengths of 
the sources. Equations (3.49) and (3.50) have two outer expansions associated with 
them, that are derived by letting | f  | approach zero and infinity. From the map 
of figure 3.10, this is seen to be equivalent to approaching the vicinities of C 
and A respectively. After taking these limits, the outer expansions of the inner 
solutions become:

^ j(sea) «

p (h arb ou r) «

' m, lo g 2  mi x
e + " i + 5b" x : ch an n e 1 (3 .5 1 a )

- mi lo g xr
2 b : s e a (3 .5 1 b )

’ m2 lo g
m2x

“  + n2 + 2 b“  x ' : ch an n e 1 (3 .5 2 a )

xr1m2 lo g  ^  + n 2 : harbour (3 .5 2 b )

M atch ing

The matching process used here is a complicated one as there are 
three outer and two inner solutions. The overlap domains defined in figure 3.9 
provide a useful guide, however, and in following them we see that equations
(3.48a), (3.48b), (3.48c) and (3.48d) have to be matched with equations (3.51a),
(3.51b), (3.52a) and (3.52b) respectively. This results in eight simultaneous
equations for the eight unknown constants in our problem:
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Qi* r 2 i k l t 
2  + - y  [ l  + —  ( lo g  |  + 7 ) ]  -  lo g  + n. ( 3 .5 3 )

Q,
x---------m> ( 3 .5 4 )

A e"2 k̂a + B e 2 *ka -  m2 lo g  — + n 2 (3 .5 5 )

ixm 2
A e"2 ik a  -  B e 2 ik a  -  _  u2  kb (3 .5 6 )

2A + B — m, lo g  — + n, ( 3 .5 7 )

ixm 1

A B 2  kb (3 .5 8 )

T  b  + 1 T  ( l o g  2  + 7 ) ] “  m 2 l0 s  2 b + n 2 ( 3 .5 9 )

q 2----------rn2 (3 .6 0 )

After lengthy algebraic manipulation, these yield for the unknown wave 
amplitudes, A and B, in the channel and the strength of the source radiating into 
the harbour outer region, Q 2,

A ix (a-i/3) e4ika 2kb . ix 1 NiA “ kb(a2+(?2) l log xe + * " T (1 '  kb>J (3.61)
„ ix (a-i/3) Tt 2kb . ix M , 1B " kb(a2+g2) l log xe + y - 2“ (1 + kb>J (3.62)

2ix2 (a-i/3) e2ika lcb(â +̂ 7) (3.63)
where a  and /3 are given by:
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a  — ( lo g  + 7 ) 2 (co s4 k a  -  1)

+ x ( lo g  + 7 ) (1 -  s in 4 k a  (3 .6 4 )

- r  (1 - k > 2 cos4ka + ^  (1 + y >

0 ( lo g  +  7 ) 2 s in 4 k a

-  x ( lo g  ^  + 7 ) (1 -  i g )  cos4k a  (3 .6 5 )

- t - c* - y 2 sin4ka+* d°8 ^ + ? > a + y

3.5.2 Results

An energy transmission coefficient may now be defined in the usual
way, as,

T -  jg '  i p l 2 (3.66)

where \<p\ is the uniform far—field amplitude of the waves inside the harbour 
along a semi-circle of radius, r' (r'>X), centred on the x'—y' origin. Substituting 
for <p from equation (3.46b) and making use of the asymptotic expansion, (3.16) 
for H 0(kr) as kr-*», T becomes,

T (kb ) 3 ( a 2+ 02) ( 3 .6 7 )

where a  and 0  are as given by equations (3.64) and (3.65) above.
When the channel length is equal to an integral number of half—wavelengths, i.e. 
2a = n \/2 , n=0,1 ,2 ,3 ,..., equation (3.67) reduces to,

T ’ -  * s/k l > [ * 2 + * O o g  j j p  + y ) 2 ]  (3 .6 8 )

which bears a great resemblance to T 0, the equivalent expression derived by 
Lamb(1932) for the transmission of long waves through a gap in a thin barrier. 
A comparison between the two expressions for T' and T 0 in fact reveals that
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they are in total agreement except for a minor difference in the argument of the 
'log' term, which is 2kb/xe (=0.23kb) for T ', and kb/4 (=0.25kb) for T 0. 
Considering the complexity of analysis undertaken in the present work, this is 
seen to be an extraordinary result which substantiates, to some extent, our theory. 
The reason for T' and T 0 being so similar is because under the condition, 2a = 
nX/2 , n=0 , l , 2 , . . . ,  the change in phase of a wave travelling from one end of the 
channel to the other, and back again, is such that the problem becomes exactly 
equivalent to the case when the channel length is zero, as far as the energy 
transmission into the harbour is concerned.

The variation of T /T 0 with the dimensionless channel length, 2a/X, is 
plotted in figure 3.10 to assess the relative wave impedance afforded by the 
channel. Four curves are plotted corresponding to four different channel widths, 
given by, 2b/X= 0.05, 0.10, 0.15 and 0.20. The amplitudes of the waves in the 
channel, |A | and |B | ,  are similarly plotted in figures 3.11 and 3.12. These
graphs repeat periodically at every half-wavelength increment in 2 a, and 
therefore, a representative range for 2a/X, extending from 1.0 to 1.5, is covered.

The periodic dependence of T on 2a/X is an interesting finding from 
the point of view of optimising channel lengths in the design of harbour 
entrances. One would at first wrongly suspect that if the channel length was
increased indefinitely, the transmission into the harbour would eventually decrease 
to zero. However, since we have introduced an extra degree of freedom into the 
system, by allowing one-dimensional waves to exist in the channel, resonance, 
which is a repetitive process, now plays a major role as is clearly demonstrated 
by the graphs of figures 3.10, 3.11 and 3.12. This finding is confirmed by
analagous problems in acoustics, where for example, in studying the propagation 
of sound waves in horns, Morse(1948) found that the power radiated out from
the mouth was periodically dependent on the length.

The impedance properties of a long channel at the entrance to a
semi-infinite harbour may now be assessed in the light of our results. As the 
physics of this problem is governed by whether or not resonance occurs in the 
channel, we have to consider its 'performance' over a range of incoming
wavelengths. Generally, the occurrence of resonance leads not only to higher wave 
amplitudes in the channel, but also to higher energy transmission into the harbour 
due to the added radiation damping from both ends. From the graphs plotted, we 
notice that the severity of this resonance is rapidly diminished as the width of the 
channel is increased. As an example, for the case of the widest channel
considered (2b/X=0.20), the resonance peak is quite flat and the ratio T /T 0 does
not deviate by much from unity. Hence, there is no advantage to be gained by 
utilising such a channel over a simple gap in a thin breakwater, from the point
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of view of minimising the wave agitation in a harbour. For the case of the 
narrowest channel considered (2b/X=0.05), on the other hand, the resonance peak 
is quite sharp and the ratio T /T 0 varies from a maximum value of 4.0 to a 
minimum one of less than 0.5. This channel may therefore be used to impede 
the penetration of waves into the harbour over a wide range of wavelengths, at 
the expense, however, of severe amplification at resonance. For this same case, 
we see that the amplitude of the wave in the channel increases considerably at 
resonance so that |B | becomes four times the incident wave amplitude. Needless 
to say, this may pose a hazard to navigation.

In attempting to provide a physical explanation for the above 
processes, we may once again resort to an electrical analogy. Whereas with the 
previous problem, the short entrance channel was seen to be equivalent to an 
electrical inductance, the behaviour of the long channel in the present case bears 
a remarkable similarity to an L-C circuit. That is, it is equivalent to an 
inductance and capacitance connected in series, as shown by figure 3.13. The nett 
effect of such a circuit is to impede the flow of alternating current for a wide 
range of frequencies, while amplifying it considerably when the resonance criterion 
is satisfied. The storage of electrical charge in the capacitor is equivalent to the 
accumulation of fluid in the channel. Hence, in the hydrodynamic case, a 
combination of backward scattering and mass build-up leads to the reduced 
transmission of waves. On a purely theoretical plane, one could envisage a 
channel of variable length and width so that regardless of the wavelength, the 
harbour could always be 'tuned' to reflect the incoming waves back to the sea.

4

Harbour

figure 3.13 Electrical analogy to the problem

An interesting point that emerges from our graphs is that the values 
of 2 a/X at which resonance occurs in the channels differ slightly from those 
predicted by the simple theory of harmonics. This is attributable to the effects of 
the end corrections. A transition takes place in a small region near the channel
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ends from plane waves within the channel, to diverging cylindrical waves outside. 
The total effective length of the channel then becomes, 

lg = 2 a + 2 e
where e is the correction at each end. The relationship between e and the width 
of the channel may be derived by differentiating equation (3.67) with respect to 
the channel length and equating the resulting expression to zero. This is a 
condition of stationarity of the function T, which would then correspond to 
resonance. From the graph of figure 3.10, e is seen to decrease as the width of 
the channel is reduced. This agrees qualitatively with Rayleigh's(l 894) work on 
resonance in open-ended circular pipes, where the end correction was found to 
be proportional to the radius of the pipe.



Figure 3.1 Geometries of the problems 

tackled
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Fig. 3.4 VARIATION OF THE ENERGY TRANSMISSION COEFFICIENTS
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Fig. 3.7 V A R I A T I O N  OF THE R A T I O  OF E N E R G Y  T R A N S M I S S I O N  C O E F F I C I E N T S
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Figure 3.
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Fig. 3.12 VARIATION OF THE WAVE AMPLITUDE IN THE CHANNEL



CHAPTER FOUR  
The numerical model

4.1 An overview

The field of numerical modelling in fluid mechanics has witnessed a 
tremendous growth over the past fifteen years which, in large measure, has been 
allied to the growth of large computational systems. Solutions may now be 
realised to a wide variety of problems that had previously been deemed insoluble 
because of the limitations of existing mathematics. As computational systems 
continue to undergo significant transformations every four or five years, fuelled by 
a rapidly expanding technology and market, more sophisticated numerical models 
will become available. Increased emphasis on algorithm development will provide 
an improvement in software standards that may compensate for difficulties in 
augmenting hardware perfomance.

In the diffraction of linear water waves, we are concerned with the 
solution of the following boundary value problem:

( 4 .1 a )

(4 .1 b )

( 4 .1 c )

The governing equation, (4.1a), is the familiar Helmholtz formulation to be 
satisfied by the reduced potential, <p, in the solution domain, fi. The first of the 
two conditions, (4.1b), requires the normal velocity to be zero at the solid 
boundary, 80^ , thus implying total reflection of the wave. The second, (4.1c), is
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the Sommerfeld radiation condition which is imposed on the scattered wave
potential, if? = tp -  if? being the known potential of the incident plane wave,
and is applied at the infinite boundary, This latter condition simply states
that if? and its first derivative, with respect to the distance away from the 
scattering body, shall decay to zero at infinity in a 1 /yr fashion.

Three essentially different numerical schemes exist for solving the 
above equations: the method of boundary integral equations, the finite difference 
procedure and the finite element technique. Each has advantages . and 
disadvantages that must be assessed before making a choice. A comprehensive 
survey of these methods is provided by the work of Mei(1978).

The method of boundary integral equations, with a long history that
lies in potential theory (Kellog(1929), Lamb(1932)), has been the most popular 
approach for tackling diffraction problems in both two and three dimensions 
(Hwang and Tuck(1970), Lee(1971), Gilbert and Brampton(1985), Gerber(1986), 
Liu and Wu(1988)). It is based on a rigorous mathematical background whose
essence is the representation of the potential at a point in a domain by 
distributions of single and double sources along its boundaries viz. Green's 
theorem. Analytical solutions to integral equations exist for a few simple scattering 
shapes only. For more complex ones, the scattering surface is discretized so as to 
replace the integral equation by a finite but large system of algebraic equations 
for the average strengths of the sources over the surface elements. Although, in 
this formulation, the radiation condition is automatically satisfied, the associated 
singular functions make the method cumbersome to handle.

The finite difference method is an alternative approach that has gained 
great momentum in the solution of combined refraction-diffraction problems. Its 
simplicity and computational cost-effectiveness, especially in terms of matrix 
storage requirements, has made it popular among engineers. The major shortfall 
of the method, however, lies in its lack of flexibility, unless elaborate 
modifications are made, in handling irregular grids. Thus, for coastal engineering 
applications, it is more suited for the modelling of open coastlines, where the 
geometry is relatively simple, rather than harbour studies.

Lastly, we consider the finite element method which has been the 
subject of considerable research effort over the last three decades, and has 
evolved into a powerful tool for the solution of problems in engineering and 
science. Its true strength was revealed in its development by structural engineers 
using the early digital computers available in the 1950s, but, its first application 
in fluid mechanics to linear potential flow problems did not come until the late 
1960s. The finite element method is an attractive choice for solving partial 
differential equations because of its great flexibility in the mesh generation.
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Elements may be concentrated in areas where rapid changes are taking place, 
thus allowing wide variations of scale in the solution domain. This flexibility also 
leads to an accurate representation of irregular boundaries. Furthermore, for our 
particular problem, inhomogeneities such as variations in depth are easily dealt 
with. For these reasons, the method was chosen as the basis for the numerical 
model.

4.2 Previous work

The application of finite elements to the diffraction of water waves 
presents special difficulties as a consequence of the unbounded nature of such 
problems. Waves scattered by solid bodies have to be allowed to propagate to 
boundaries that are deemed to represent infinite conditions. As the computational 
domain cannot be infinite in extent, various hybrid element formulations have 
emerged for dealing with this requirement. These invariably involve the coupling 
of a finite element discretization in an interior region (the region of interest) to 
one of four methods, summarised below, that satisfy the infinite conditions in an 
exterior region. An interesting discussion and comparison of these techniques is 
provided by Zienkiewicz et al(1978).

(1) Boundary 'dampers' based on the radiation boundary condition being 
imposed on a finite boundary, Bty*.

+ ik  <ps  -  o , a t anc

This method has the merits of conceptual and computational simplicity but has 
the disadvantage that the domain which must be idealized using finite elements 
may be extensive.

(2) Boundary integrals based on source distributions and Green's identity. 
Berkhoff(1972,1975,1976) adopted this approach for solving the mild slope 
equation for various refraction-diffraction problems. The variational formulation he 
used, however, destroyed the symmetry of equations thereby leading to excessive 
computational time and storage requirements.

(3) Boundary solutions based on the Hankel function series solution for the 
scattered wave potential that is given by :

00

<ps  — I Hn (k r) ( ancos n0 + 0nsin nd ) n- 0

a n  and 0 n are constant coefficients which become part of the unknowns in the 
algebraic system of equations. The infinite series is truncated at a term, n=s,
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decided upon by numerical experiments, for finite computation, s generally 
depends on the wavelength and is gradually increased until the outcome is 
insensitive to it. Chen and Mei(1974) developed this method for solving the linear 
shallow water wave equation to study the oscillations in an offshore harbour. 
Houston(1978), using a similar formulation, studied the interaction of tsunamis 
with the Hawaiian islands and later, Houston(1981), generalized the model to 
intermediate depth theory i.e. for solving the mild slope equation. The model was 
further used by Tsay and Liu(1983) and Behrendt(1985).

(4) Infinite elements, based on the idea of simply extending the domain of a 
finite element so that it is unbounded. The first such element, introduced by 
Bettess(1977), was based on exponential decay shape functions and was successfully 
applied to solve a variety of refraction and diffraction problems by Bettess and 
Zienkiewicz(1977). Pos(l983,1985), using the same formulation in the exterior 
region, studied the diffraction of waves by breakwaters and channels. A drawback 
with using this particular infinite element, however, is that there exists a 
parameter, specified in the shape functions, that controls the severity of the decay 
and is to some extent arbitrary. More recently, another type of infinite element 
was introduced by Zienkiewicz et al(1983), the so called mapped infinite element 
which can model a 1/r type decay by virtue of a special mapping function. The 
\ ! j r  type decay, characteristic of the scattered wave, can also be modelled by a 
minor modification in the shape functions, thus leading to an accurate physical 
representation. It is not surprising therefore that, for wave problems, this was 
shown to be the most accurate approach to date by Zienkiewicz et al(1985). Yet 
another addition to the infinite element family has emerged recently by way of an 
acoustic application. This is the wave envelope element devised by Astley(1983). It 
is similar in all respects to the previous infinite elements except that instead of 
the usual Galerkin approximation for the weight function, the complex conjugate 
of the shape function is used, resulting in the elimination of the wave periodicity 
term that is built into the equations. An important advantage is therefore gained 
in that standard integration techniques can be used. Furthermore, as discussed by 
Bettess(1987), this element could indicate the way towards solving the short wave 
problem as the formulation is independent of the wavelength. However, the price 
to be paid is that the corresponding stiffness matrix becomes unsymmetrical. 
Nevertheless, the wave envelope element warrants further investigation. In the 
present work, the mapped infinite element is implemented.

4.3 Mathematical formulation

We shall omit here a description of the mathematical theory of finite
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elements as this is well covered in a number of standard textbooks on the subject 
(e.g. Zienkiewicz(1978), and Becker, Carey, and Oden(1981)). Instead, we shall 
confine ourselves to the variational formulation of equations (4.1) and the 
construction of the finite element approximation.

The weak formulation, obtained by employing the method of weighted 
residuals, may be written as,

|  v  (V2p + k2<p) dfl -  0 ( 4 . 2 )
n

where v = v(x,y) is a suitable weight function and dfi = dx dy. The use of 
Gauss' divergance theorem on equation (4.2) leads to a lower order of derivatives 
thus weakening the smoothness requirements on the solution and gives,

|  (VvV̂ j -  k2 vp) d f l - J v ^ j d s  + j v ^ d s  ( 4 . 3 )
n 90. 90A 00

The natural boundary condition, (4.1b), is satisfied simply by putting the first 
term of the right hand side of the above equation equal to zero. The total 
domain, 0 , is now divided into an interior region, f i j ,  and an exterior region,
O2 . In O2 , the total wave field, <p, is replaced by the sum of the incident wave 
field, p1, and the scattered wave field, to facilitate the application of the 
infinite elements.

Thus, equation (4.3) becomes,

J (W V<p -  k2 vy>) dfi + J (VWps -  k2 vps ) dfi 
«1 fi2

+ J (WV^>i -  k2 vp*) dfi -  |  v  ^  ds 
fi0 9fi2 00

( 4 . 4 )

where,
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<Pi i k ( x  c o s 0 * + y s i n f l 1) e ( 4 . 5 )

Now as,

V v V  -  -  | - [ v  ^ ' ]  + §p [v  f ^ 1] -  V ( ? V  + k V >

and since, (V2  + k2 ) ^  = 0, we may use Green's theorem to obtain,

which may be substituted back into equation (4.4) to yield the final variational 
statement:

-  k2 v )̂s ) dfl

I v t£ 1<ls
anB

( 4 . 6 )

A piecewise Galerkin approximation is utilised in the following manner,

P (x,y) -  1  'Pi N j ( x , y )  , v  ( x , y )  -  N j ( x , y )  (4.7)
i - 1

where Nj are prescribed shape functions of polynomial form, <p\ are the nodal 
variables and n is the number of nodes in an element. In this work, a quadratic 
approximation for Nj has been used. The superscript, e, denotes variation over a 
typical element. The finite element discretization of the interior region, fij, is 
now easily derived, with reference to equations (4.6) and (4.7), and may be 
written as,

n e
1  k-ij <pi , j  -  1 ..........n

i - 1

0 6 6 6 6k j j  -  J (VNjVNj -  k2 NjNj)  dfi ( 4 . 8 )

[ ^ij ] being the element stiffness matrix which is assembled into the global 
matrix by standard techniques. Similarly, the discretization of the load vector 
becomes,
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fj “ - I NJ 3H*ds (4’9)

(Note that the incident wave potential, should not be confused with the nodal 
variable for the total potential, All of the above calculations are carried out 
on a standard reference element in the local coordinate system, ($ ,17). The 
associated transformation is the usual one, given by,

n n
X -  2  x i NiCS.*?) . y -  2  Y i  Nj , 77) ( 4 . 1 0 )

i - 1  i - 1

where (xj,yj) are the global coordinates of the nodes in the element.

4.4 Infinite elements

4.4.1 Theory

A detailed theoretical description of the mapped infinite element is 
presented in this section. The one-dimensional element is considered first to 
better illustrate the derivations involved, which are then extended to the 
two-dimensional counterpart.

Q

X0
-►
X3=00

e---------e---------e
-1 0 *1

Figure 4.3 1 -D  infinite element mapping

The element in figure 4.3 extends from point xj through x j to X3, which is at 
infinity. It is to be mapped onto the finite domain -1<  77 <1. A suitable mapping 
expression is:

X -  Nq ( t7)xo + N 2 ( tj) x 2 (4 .11 )
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where,

N0 (i»> " f - L  , N2 (i7> -  1 + r - L  ( 4 .1 2 )

At

i? -  1 , x  -  2  ̂ (x 2  -  xq) + x 2  -  x 3  -  oo

i? -  0 , x  -  x 2

T j-----1 ,  X -  ( xq + x2 ) / 2  -  X!

The last point, t] = -1 , is to correspond to the point x j, so that the coordinate
of this point is now defined to be midway between xq and x2 . Given this 
relationship, the mapping can be written in terms of any pair of quantities from 
the set: { x Q , x i , x 2 , a }  (where a = x2  -  xj = xj -  x q ) .  For example it can be 
written as:

x -  ( 2 x j “ x2 ) n 0  + x2 n 2

Having established a mapping between the infinite and finite domains, 
the next step is to see into what form polynomials in the finite, rj domain are 
transformed in the unbounded x plane. Consider a polynomial, P,

P -  Q!0 + a ir j  + a 2 ij2 + a^r]^  ( 4 .1 3 )

which is typical of those used in finite element methods. The 17 to x mapping 
already obtained is:

x  — ■=—- —  2 a 1 " V

and its inverse is:

V -  1
2a  ̂ 2a A A

(x  -  x 0 ) " r " " r ( 4 .1 4 )

where r = x -  x q . On substitution into the general polynomial, P, a new 
polynomial in inverse powers of r is obtained:

01 02 03P -  0O + —  + —  + —  + . . .  ( 4 .1 5 )
r r2 r3

where can be determined from the a 's  and a. If the polynomial is required to 
decay to zero at infinity, as in the present work, then (3q = 0. The point x q ,
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not defined until now, is seen to be the pole of the expansion of P.
The extension to two dimensions is straightforward, if the above 

mapping is used in the rj direction, and standard Lagrange functions used in the 
£ direction. The complete mapping in two dimensions would be:

x - NjCJ) [(2x!

N2(£) [ ( 2 x 2

N3(£) [ ( 2 x 3

y - Ni«) [ (2yi

n 2(£) [ (2y2

n 2«) [ (2y3

- x4)Nq + x4N2] +
a#

- *5>No + X5N2] +
^  A#

-  xg)No + xgN2 ]

A# O#
-  y 4 )No + y4N2 ] +

- ys)No + y5N2l +
A# A#

- y6>No + y6N2]

( 4 .1 6 )

where,
Na(0 - £«-l)/2, N2({) - l-£2, N3(£) - £(£+l)/2

and the node numbers are as defined in figure 4.4.

+- o-----*
1 2 3

Figure 4.4 2 —D infinite element mapping
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4.4.2 Introducing the wave component

The potential of the scattered wave in the exterior region behaves like 
Ho(kr) which is the simplest solution to the Helmholtz equation. For large kr, the 
zeroth-order Hankel function oscillates roughly like cos(kr) + i sin(kr) while 
decaying in magnitude as r- ^ .  As it stands, the element can model a decay of 
the form, 1/r, l/r^ , etc., generated by the mapping (4.16). However, in order to 
model the proper type decay and the periodicity of the wave, the shape
function has to be multiplied by the periodic component, exp(ikr), and the term, 
t^ 2 9 so that it becomes:

N(£,ij) - M(£ ,ij) rV2 exp(ikr) (4.17)

M (£,t7) being the original shape function and r is given from the inverse mapping 
relationship (4.14):

r A
(1 -  V) ( 4 .1 8 )

Substituting for r from (4.18), (4.17) becomes:

N(£,»7) -  M (£ ,tj) [ ] /  ex P [ ]

Although the absolute value of N(£ ,17) is unity at rj = -1 (the boundary with 
standard finite elements), the phase of N(£ , 77) may not be zero. If the shape 
functions are to be continuous between finite and the new infinite elements, the 
phase must be made zero. At rj = -1 , the value of N(£ , tj) is:

N(£,-l) - M<£,-1) [ j ]"1/2 exp[ ^  ]

To ensure continuity, a further factor is introduced so that the final expression 
for the shape function becomes:

n(S,tj) -  c m($,tj) [  ̂ exp[ 1 ]

_ r 2 I 1 / 2 r ikA i
C " l A J e x p l '  T  J
4.4.3 Integration procedure

In the 'worst' case, an integral of the following form will have to be
evaluated:
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+1
f ---------— -  P (^) ex p [ ^ lkAw ] dri ( 4 .2 0 )
J £1 - tj)2 ‘  V

where P(i7) is a polynomial of 17, the term P(77) includes all the effects
of the shape fimctions and the exponential term deals with the periodic 
behaviour. It is therefore necessary to integrate terms of the form:

+1

Letting u = B /(l-s ) , this becomes:
a>
1 1 [ 1 - !  r exp<iu> duB /2

Integrating (4.21) by parts gives,
n
1  n M ' ^ .  T r (k ,B /2 )

k- 0
( n - k ) ! k!

( 4 .2 1 )

( 4 .2 2 )

where,

T r (k ,B /2 )  

(k  -  0 )

(k  -  1 )

(k  > 1 )

00
-  J u”k ex p (iu ) du

B /2
-  i e x p ( iB /2 )

-  f ex p (iu ) du J uB /2

_ e x p ( i B / 2 ) / i k - j - l  ( j - 1 ) ! .
( B /2 ) j  ( k - 1 ) '

f exP<iu> duJ uB /2
The integral of the second term in the above equation is evaluated as a function 
in the NAG subroutine library. The procedure for deriving the resulting 
integration or Gaussian point abscissae and weights as given by Zienkiewicz et 
al(l 985) is summarised below.

(1) Choose n integration point abscissae, which are quite arbitrary, sj, i= l, 
to n, where n is generally one greater than the highest power of s appearing in 
the polynomial.
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(2) Form the matrix X,
2 n-1

S1 S1 . . . s 1

2 n-1
s2 s2 ... s2

2 'n-1
sn sn . .. sn

and since,
n

y " 1  <*i s ^ 1
i - 1

where cq are the unknown polynomial coefficients, it is clear that, 
a  -  X- 1 y

where y is the vector of values at the Gaussian points. Setting y =
1 ,0 ,0 , . . . ,0 ,1 ,1 , . . . . . . . , . . . , 0 ,0 ,1  corresponds to finding the polynomials which are
equal to unity at each integration point in turn, and zero at the others. The 
terms in each column of X” 1 then give the polynomial coefficients for each 
integration point in turn.

(3) For each Gaussian abscissae j, and for each term in the column of X-1 , 
i, the weight is found from:

W i -1n + 1

■2 J X*Ji - 1  - 1

i - 1

d  -  s )
exp [ ^ ] ds ( 4 .2 3 )

The integral is carried out using equation (4.22).
(4) The following equation is used in the computation of expression (4.20):
+1

1 ams
- F  - s ) ‘

m- 1 exp [ r ^ ] ds k - 1E E Wj aksj

The set of abscissae and weights, sj, Wj, for j=l to n are calculated at the 
beginning of each run of the infinite element program, and are sufficient to carry 
out the integrations in the infinite direction over the element domain. The 
above-mentioned work of Zienkiewicz et al(1985) contains listings of the 
subroutines required to carry out the calculation procedure, (1) — (4).

4.5 Implementation in FINEL

FINEL is an engineering analysis computer program utilising the finite
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element method to solve field problems. The program was initially conceived and 
written by Dennis Hitchings, in the Department of Aeronautics, Imperial College, 
London, and is currently installed on a CDC Cyber 960 mainframe computer. 
Although FINEL is primarily geared as a structural analysis package, it has a 
flexible base on which to develop new ideas and as such, was chosen for the 
present implementation.

The next section summarises some of the information given by 
Chatterton(1983) in the FINEL user and programmer manuals.

4.5.1 Structure of FINEL

FINEL is a highly structured program, the basis of which follows 
directly the steps involved in the finite element method itself. One of the reasons 
for the success of the F.E. method for computer implementation is that it can be 
broken down into a set of discrete, almost unrelated, steps such as mesh 
definition, assembly, solution and so on. This feature is used within FINEL to 
define a modular structure for the program. Each module defines a discrete 
aspect of the F.E. method. The program has a central executive section whose 
main purpose is to control the sequence in which the modules are executed, and 
hence to control the analysis that FINEL carries out. No modules communicate 
directly with each other, they all pass through the executive. The modular
structure is then carried down to one lower level within FINEL by the definition 
of a series of FINEL libraries. Again the idea of these libraries stems naturally 
from the finite element method itself. Within the F.E. analysis a continuum is 
divided into discrete regions, or elements. These elements can take different forms 
depending upon the actual problem being solved. Within FINEL the various types 
of elements available are gathered together within the FINEL element library. 
Similarly, the loadings that can be applied to the continuum vary according to
the problem being solved. These loading types are then contained within the 
FINEL load library. There are also a variety of other libraries within FINEL, but 
all of these have a similar structure and serve a similar purpose.

Any large arrays generated by a module are not returned to the 
FINEL executive. Instead, in order for them to be communicated to other 
modules they have to be written to the FINEL data base. This is a random
access mass storage file which allows the programmer free access to any data 
which has been generated by a run of FINEL. The FINEL data base is organised 
as a two level system containing thirty files, each of which consists of five 
hundred pages, where a page can be of any length. Each is organised such that 
any page of any file can be read from or written to directly. To simplify
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communication within FINEL, some Hies are dedicated to storing particular sets of 
data whilst other Hies are free for the programmer to use as he desires.

A FINEL analysis is conducted by calling a sequence of modules in 
turn. A typical run consists of the following execution flow:

1 . GRID - mesh g e n e r a t io n
2 . ASMB - m a tr ix  form a tio n
3 . BNCN - boundary c o n d it io n s
4 . CHOL - m a tr ix  f a c t o r i s a t io n
5 . LOAD - lo a d in g  s p e c i f i c a t i o n
6 . SLVE — e q u a tio n  s o lu t io n

The program starts in the FINEL executive. Control is then passed to the GRID 
module which generates the mesh. After mesh generation, control is passed back 
to the executive, which then passes control back to the next module, in this case 
ASMB. The execution continues in this way, with control being passed between 
the executive and the modules alternately, until the job is completed.

4.5.2 Module entries

A major problem encountered in the implementation was that FINEL 
did not accommodate the manipulation of complex numbers. The consequent 
alteration of the program (which is about 30,000 lines long) for this purpose, 
consisted of not only redefining all the relevant variables as being complex but 
also, more importantly, restructuring the way in which arrays are transferred from 
and onto the data base. The data base interface routine was changed so that 
upon the specification of a certain code number, two, instead of one, real 
numbers could be read and written at a time. This meant that complex numbers 
could be manipulated without explicitly declaring them as complex which was a 
great advantage as the handling of real arrays, generated for example in the 
GRID module, would not be affected in any way. Having done this, it was 
decided to keep the changes in the assembly module, ASMB, to a minimum as 
the associated coding is quite extensive. A strategy was therefore devised whereby 
the calculation of the single complex coefficient array entailed the seperate 
calculation and storage of two real matrices comprising the components of the 
complex array. A user—written module, OWN1, was then employed to retrieve 
these matrices and form, by simple addition, the complex matrix, which was 
stored in turn onto the data base by making use of the modified interface 
routine.

The next step was the factorisation of the complex matrix in the 
CHOL module. Within FINEL, the standard form of matrix factorisation for
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symmetric matrices is the Cholesky method, which involves decomposing the 
coefficient matrix A  as follows:

A  = LL'
where L is a lower triangular matrix and L' is its transpose. Again, here, the 
coding was changed so that the data base was accessed in accordance with the 
new criterion. Furthermore, apart from changing the algebra to handle complex 
numbers, the modifications mostly involved switching off the many flags that test 
whether the matrix is positive-definite or singular, rules which do not apply in 
the present context. Similar changes to the next two modules, LOAD and SLVE, 
completed this part of the implementation. The sequence of modules is then given 
schematically by figure 4.5.

| GRID 1

ASMB

0WN1

| CHOL

| LOAD

SLVE |

Figure 4.5 Sequence of execution of the modules

4.5.3 Library entries

Within this part of the work, user—written entries were added to three 
of the FINEL libraries: the element library, the load library and the region 
library. The highly flexible structure of FINEL and the provision of the many 
guidelines for its modification (Chatterton(1983)) greatly facilitated the linking of 
these new entries to the main body of the program. A brief description of the 
implementation is given below.

In the FINEL element library, three entries were added comprising the 
isoparametric forms of the six-noded triangle and eight-noded quadrilateral 
elements as well as the mapped infinite element, discussed previously. The first 
two elements were already available for the solution of mainly stress and strain 
problems but were completely re—written so as not only to set up the coefficient 
matrix corresponding to the Helmholtz equation but also to conform to the new
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scheme of handling complex numbers. The mapped infinite element was 
implemented as a six—noded element as the three nodes at infinity do not come 
into play in the formulation.

The first of the two entries added to the FINEL load library is the 
load vector given by expression (4.9) which is simply the ‘right hand side' of the 
above-derived variational statement, (4.6). This is imposed on the nodes at the 
boundary between finite and infinite elements at a local level and then assembled 
in the usual way to obtain the global vector. The second load entry was 
implemented to facilitate the change in nodal variable, from total potential <p to 
scattered potential yp, at the finite-infinite element interface. Theoretically, this 
change was effected in the manner illustrated by the following simple example:

"2 \  6 '
v24>2=o V 2<£1=o

1 2

j ,3
<f} 1= tp2+c

Figure 4.6 Definition sketch

The load vector resulting from the change in nodal variable across the boundary, 
0 Qg, is then given by the product of the following two matrices:

0 0 0 0 0 0 ' 0 ■
0 0 0 0 0 0 0
0 0 X X X X c
0 0 X X X X c
0 0 X X X X 0
0 0 X X X X 0

where the x's mark the entries in the global stiffness matrix due to element 
number 2. The solution vector then gives, simultaneously, ^  at nodes 1 and 2 
and tpL at nodes 3,4,5 and 6 . A similar approach was followed in the real 
problem whereby the element stiffness matrices were calculated and multiplied by 
a vector of the incident wave potential, at the finite—infinite element boundary
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to yield an extra correcting term for the overall load vector.
The single entry added to the FINEL region library is a quadrilateral 

with circular edges. It was implemented to allow the mapped infinite element to 
be used in a plane polar form for the discretization of the exterior region. 
Although the coding was based primarily on a similar entry in the library for the 
generation of one-dimensional circular elements, suitable modifications had to be 
made for coping with the extra dimension. A major disadvantage with the mesh 
generating facilities within FINEL is the lack of provision for the automatic 
generation of triangular elements. It was felt that the writing and installation of 
subroutines to achieve this goal would have been too much of a deviation from 
the main lines of this work. Therefore, to get round this, the node and element 
numbers had to be manually specified for all of the triangular elements, a 
method that proved to be very cumbersome when dealing with large grids.

4.6 Verification

As is common with all numerical models, the verification is an 
essential concluding stage in the process of development. Simple problems for 
which analytical solutions exist, provide a useful means by which these models 
could be tested and if the results turn out to be favourable, confidence is gained 
in their use for tackling hitherto untried problems. In the present context, three 
problems were solved: The diffraction of water waves by a circular cylinder, the 
resonant response of a fully open rectangular harbour and the diffraction of water 
waves by a gap in an infinite breakwater of zero thickness. In all of these, the 
plane waves were assumed to be normally incident so that, due to symmetry, only 
half of the solution domain was discretized. A minimum resolution of about four 
elements per wavelength, which works out at nine nodes in both the x and y 
directions, was maintained for reasonable accuracy. This is the standard resolution 
for not only finite element work but also finite differences as demonstrated by 
Dong and Al—Mashouk(1989). When dealing with relatively short waves this 
constraint has to be relaxed for obvious reasons.

4.6.1 Circular cylinder

The analytical solution to this problem was first obtained by 
Havelock(1940) for the case of plane sound waves impinging on obstacles of 
various cross-sections and later extended to water waves by MacCamy and 
Fuchs(1952). It is given by:
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J o '(k a )  ( 2)
<p “  J o ( k r > --------  H0 (k r )(2)H0 ’ (ka)

00 Jjn' ( k a) ( 2 )+ 2 J  i m (Jm(k r) -  —---------- Hm(k r ) )  co s  m0m-1 (2)Hm'(k a )

Where Hm(kr) is the Hankel function of the second kind and equals • V o - )  -  
iYm(kr). Figure 4.8 shows a comparison between this solution and that obtained 
by our numerical model. It may be seen that the two are in excellent agreement.

4.6.2 Fully open harbour

The resonant response of a fully open rectangular harbour, whose 
geometry is shown in figure 4.7b, was first tackled by Unluata and Mei(1973) 
using the method of matched asymptotic expansions. In figure 4.9 the 
amplification factor at the centre of the backwall is plotted, over a range of 
wavelengths, to compare the results from both the analytical solution and the 
numerical model. Again, the two are in excellent agreement except near the 
shorter wavelengths where the theory of matched asymptotic expansions fails.

4.6.3 Gap in an infinite breakwater

This problem has concerned coastal engineers for many years prior to 
the introduction of computer models and accordingly, many analytical theories 
have been developed for its solution. For our purpose, we have chosen the 
solutions presented by Sobey and Johnson(1986), based on the Mathieu functions, 
as these are the most accurate. In their work, these authors also present some 
results from the superposition approximation of Penney and Price(1952). Figures 
4.10 and 4.11 show a comparison of the profiles in the lee of the breakwater for 
a variety of gap widths corresponding to both the analytical and numerical 
models. Comparisons of two-dimensional contour plots are also shown in figures 
4.12 and 4.13. The agreement is good except near the gap where the singularities 
at the tips of the breakwater, associated with the infinite velocities at the core of 
the irrotational vortices, force a localised error. This singularity has been 
simulated numerically by Bettess, Liang and Bettess(l 984) using a technique which 
was originated in the field of elasticity by Henshell and Shaw(1975). Their 
method was to deliberately move the mid-side node of the eight—noded 
isoparametric element to the quarter point, which induces a singularity at the
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closest corner, as the Jacobian matrix is no longer invertible at that point. This 
singularity is of the form:

» r-1/2

which is of precisely the kind needed at the tips of the breakwater. It should be 
noted that although this device enables the numerical technique to simulate the 
singularity found in the analytical solution, this singularity does not occur in the 
real flow where the high velocity gradients produce viscous forces that lead to 
separation and the formation of vortices.

Although this approach proved to be a successful one, as demonstrated 
by the work of Bettess, Liang and Bettess(1984) on the diffraction of water waves 
by semi-infinite breakwaters, it was decided not to follow it in the present work. 
This is because the increase in accuracy obtained, which is highly localised to the 
immediate vicinities of the tips of the breakwater, is not so great as to warrant 
such a modification.

In all of the above problems, the convergence of the numerical scheme was 
verified by varying the number of finite elements used in the discretisations and 
ensuring that the solutions remain unaltered. This of course is subject to the 
minimum resolution criterion discussed previously.
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Figure 4.7 Cylinder and harbour geometries
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Figure 4 .8  Wave diffraction, by a circular cylinder 

r=  1.0 , k = 1.0

Solid line : analytical solution 
Circles : numerical model



Fig. 4.9 R E S P O N S E  C U R V E  OF F U L L Y  O P E N  H A R B O U R
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(a) Analytical model

r/X

PROFILES ALONG INCIDENT HAVE DIRECTION

(b) Numerical model

Gap in an infinite breakwater.

Figure 4.10 Amplitude profiles
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(a) Analytical model

PROFILES ALONG BRERKHATER

(b) Numerical model

Figure 4.11 Amplitude profiles
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analytical

numerical

3X

Figure 4.12 Amplitude contours
(gap width = 2 wavelengths)
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analytical

numerical

Figure 4.13 Amplitude contours
(gap width = 1 wavelength)
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CHAPTER FIVE 
A  study of harbour entrances

The minimisation of energy transmission into a harbour is a matter of 
paramount importance to a coastal engineer and accordingly much effort has been 
spent on investigating ways of achieving this goal. A  common approach is to
place the outer protective breakwaters in an optimum directional layout in relation 
to the predominant direction of the incident waves. However, unless the entrance 
to the harbour is suitably designed, by incorporating appropriate resonators for 
example, energy will inevitably leak in leading to disturbances to shipping 
activities and in extreme cases to the breaking of mooring lines. It is our aim 
here to investigate the impedance properties of various harbour entrance 
configurations, comprising channels, resonators, and filter arrangements, using the 
numerical model developed in the previous chapter. Specifically, a semi-infinite
harbour geometry, i.e. one that is unbounded by a coast, has been examined.
This was chosen so that the effectiveness or otherwise of the various entrance 
configurations could be investigated without the added complication of internal 
reflections that arise when dealing with finite-size models. Where appropriate,
ideas on filtering techniques have been adopted from other branches of physics 
involving wave motion, such as acoustics and electricity, where analysis procedures 
and theories are generally more advanced than those in hydrodynamics.

5.1 Previous work

Research into the effects of channels at entrances to semi-infinite
harbours was presented and discussed in Chapter 3 within the confines of
analytical modelling. A more general exposition extending to alternative harbour 
geometries as well as the application of numerical modelling techniques is given 
here as a prelude to further work on this topic.

The effort in this field was initiated by Roy(1962) who developed a
simplified theory for tackling resonance problems and supported his results by
performing some basic experiments. Using a more refined model, Carrier, Shaw 
and Miyata(1971) studied the resonance characteristics of several narrow—mouthed 
rectangular basins connected to the open sea by short channels. An asymptotic 
theory was developed which was applicable as long as the width of the channel, 
and therefore, the harbour entrance was small compared to the incident
wavelength and to the characteristic dimensions of the harbour basin. Their 
analysis procedure, much like that of the method of matched asymptotic
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expansions, involved dividing the solution domain into three regions comprising the 
open sea, the entrance channel and the basin. The wave field in each of these 
regions was then separately derived and by utilising the requirements of continuity 
for both pressure and velocity across the interfaces, unknown constants were 
determined. Of particular interest, the wave field in the basin was derived by 
assuming it to be completely closed so that the eigenvalues of the normal modes 
of oscillation formed the basis for its solution. The final results indicated that at 
resonant frequencies the amplification was augmented as the length of the channel 
was increased while at non—resonant frequencies the channel served to diminish 
the response in the basin. This anomaly was termed the channel paradox in 
analogy with the harbour paradox put forward by Miles and Munk(1961). 
Furthermore, the critical wavenumbers at which resonance occured were found to 
decrease with increasing channel length. Similar investigations by Unluata and 
Mei(1973), who concentrated more on developing a working analytical model 
rather than the explicit study of entrance channels, yielded similar conclusions.
These findings shall be elaborated on later, in relation to our results.

More recently, P os(l983,1985) attempted to model numerically the 
propagation of water waves along a semi-infinite channel and their consequent 
scattering at the mouth into a semi-infinite basin as shown in figure 5.1. He 
employed a finite element model for this purpose similar to the one developed in 
the present work except that an exponential type decay infinite element was used 
for discretizing the exterior region. Unfortunately, it is the opinion of this author 
that Pos made a serious theoretical mistake in modelling the scattered wave inside 
the channel by the use of the infinite element as this assumes that the wave 
decays to zero at infinity in the manner specified by Sommerfeld(1896). The
physics of the problem, however, dictates that the wave field inside the channel 
shall be composed of a plane incident wave and another wave reflected at the 
open end which is necessarily plane as the walls of the channel are parallel and 
consequently no spreading can occur. This plane reflected wave does not fulfill 
the Sommerfeld radiation condition as it does not die out at infinity. Instead, it 
has a constant amplitude governed purely by the width of the channel which if 
small, could be determined by the theory of matched asymptotic expansions as
presented previously. If this is not the case on the other hand, an alternative
analytical approach such as the Wiener-Hopf technique (Noble(l958)) is needed. 
Therefore, the theoretical results pertaining to this work cannot be used to draw 
any sensible conclusions and furthermore, this problem is not amenable to solution 
by finite elements given the geometric constraints. Pos also modelled the same 
configuration experimentally, partly to corroborate the numerical results, and 
focused on the second order diffraction effects where he concluded that these add
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to the energy transmission predicted by linear theory.

waves

i

Figure 5.1 Geometry modelled by Pos(l983,1985)

An alternative design for harbour entrances may be realized in the 
light of the resonator whose behaviour was first investigated by Valembois(1953). 
His work involved the experimental and theoretical modelling of wave propagation 
in a channel in which resonators were placed along the path of the wave. He 
deduced that the resonator acts as a reflective structure, without obstructing 
passages, for a certain range of wave periods encompassing its natural frequency. 
He also recommended that the length of the resonator be X/4, where X is the 
wavelength of the incoming wave, for optimum perfomance. However, in following 
this recommendation, no regard is paid to the end effects which can play a 
major role in determining the efficiency of the resonator with respect to its 
length as demonstrated by later work.

A more thorough investigation was undertaken by 
Jam es(l968,1970,1971) who studied, again experimentally and theoretically, a 
variety of resonator arrangements in channels. Proper account was taken of the 
end effects which were found to depend on both the widths of the resonator and 
channel. Tests on batteries of three resonators indicated that a wider frequency 
band of the incident ocean wave spectrum would be reflected if the distance 
between the resonators is sufficiently large.

The work of both of the above researchers was confined to channels 
that were narrow in relation to the wavelength so that a simplified
one-dimensional propagation theory could be used. Although this was useful for 
demonstration purposes, the real problem of a semi-infinite ocean and a harbour 
on either side of the resonator was not solved until the work of Kubo, Aoki and 
Segura(1985) who developed a numerical model based on the method of boundary 
integral equations, for calculating the wave height distribution around a pair of 
breakwaters with arbitrary shape of the edge. Results were presented pertaining to
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the effects of resonators equipped in these breakwaters, on the wave penetration 
into a semi—infinite harbour. Only narrow resonators were examined for a variety 
of entrance gap widths where it was found that these were more effective for 
smaller gaps. Comparisons with experiments did not however fully verify the 
theoretical results for a reason supposed to be due to energy dissipation at the 
resonator mouth. A purely numerical difficulty was experienced with their model 
in that the solution was sensitive to the number of segments used in discretizing 
the domain. Another approach to the design of harbour entrances has been 
proposed recently by Liu(1987). In deriving a one-dimensional wave equation for 
water wave propagation in a long channel with corrugated boundaries, he found 
that under a certain condition, when the wavenumber of the boundary undulations 
is twice that of the incident wavenumber, significant wave reflections could occur. 
This was the Bragg reflection condition which was first defined in connection with 
the diffraction of X-rays by a crystal lattice. Liu stated that because the 
amplitude of the bank undulations is small compared to the incident wavelength, 
this approach would be an attractive alternative to the conventional 
quarter—wavelength harbour resonator. For the particular configuration he studied, 
this amplitude was 0.1 X, and the length of the undulation region, L, was 15 
times the mean channel width. A maximum reflection coefficient of 0.762 was 
obtained, which by all standards is quite impressive. However, with realistic 
channel widths, varying from 0.5X to 2.0X, L would have to be between 7 .5X 
and 30.OX to achieve similar results, as otherwise the efficiency would be 
dramatically reduced. Clearly, this renders the method impractical as enormous 
works would have to be carried out in constructing such channels.

5.2 Harbour entrances

Several harbour entrance geometries are herein examined in order to 
establish a comprehensive outlook on the problem in hand. Amongst the 
configurations studied are long parallel-walled channels, narrow and wide 
resonators and filters consisting of several resonator ’cells'. In all these cases, the 
analysis has been undertaken at each of four gap widths, which were thought to 
cover an adequate range. In their dimensionless forms these are given by:

2b/X = 0.5, 1.0, 1.5, and 2.0.
As well as providing detailed results for the case of normal incidence of the 
incoming waves ( 6l = 270*), an outline of results is also given for two further 
angles. These are,

6i = 210*, 240*

which correspond to angles of 30* and 60* respectively, from the direction of
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propagation to the positive x-axis. In practice, the refraction process tends to 
bend the waves so that they approach the coastline normally, to an extent which 
is dependent on the wavelength and the variation in the sea—bed contours.

Restrictions imposed by the insufficient memory capacity of the 
computer, as allocated to individual users, limited the extent of discretization of 
the domain to approximately six wavelengths inside the harbour and two 
wavelengths outside. The finite elements employed had mostly plane polar forms 
with the outer rings on each side of the breakwater being made up of the 
infinite elements to model the outward decay of the scattered waves. A minimum 
resolution of about four elements per wavelength was maintained except near the 
gap where this figure was increased to cope with the rapid variations in the 
solution. For problems involving normal incidence, only half the domain was 
discretised as advantage could be taken of symmetry. Typical meshes used for 
normal and oblique incidence are shown in figures 5.2a and 5.2b respectively.

Results for the ratio of diffracted to incident wave height (A/Aj) are 
presented for all the cases treated, in two different formats. Two-dimensional 
contours are plotted for the harbour region using the graphics package, UNIRAS, 
which has the advantage of colour representation. This makes the displays easy to 
visualise, enabling one immediately to identify areas of low or high energy 
intensities, which is essential in the design process. The variation of the amplitude 
profiles along two critical sections inside the harbour are also plotted. The first is 
along the incident wave direction, or the centre line from the gap in the cases of 
normal incidence. This is important to a harbour engineer for assessing not only 
wave penetration but also navigational hazards as this is usually the path followed 
by ships in entering the port. The second section is along the inner face of the 
breakwater. Particularly when smaller boats, which are more susceptible to 
excitation, are docked there it becomes important to know the wave conditions.

5.2.1 Channels

The impedance properties of two channels of different lengths have 
been investigated at each of the four gap widths mentioned previously. The 
diffracted wave fields inside the harbour for these cases are compared with those 
for a simple gap in a breakwater of infinitesimal thickness (i.e. no channel at the 
entrance). The configurations studied correspond to the following three lengths:

2 a/X = 0 .0 , 1 . 0  and 2 .0 .
Before analysing the general pattern of results obtained, it is worthwhile 
reiterating some of the physical insights gained thus far from our previous work, 
which have some bearing on the present problems.
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In the analytical investigations of chapter 3, we examined the energy 
transmission through a long channel whose width, 2 b/X, was assumed small in 
relation to the wavelength. It was found that when 2b/X was typically less than 
0 .1 , significant reflections occured at the open ends which served to diminish the 
amplitudes in the harbour. However this situation was reversed when the length 
of the channel was made approximately equal to an integral number of half 
wavelengths, as then an effectively one-dimensional resonant standing wave was 
set up, which amplified the response in the basin due to the added radiation 
damping of the oscillation from the inner end. As 2b/X was increased to the 
maximum value of 0.2, the energy transmission coefficient, T, was found to vary 
little from that for an equivalent opening in a zero-thickness barrier, T 0. This 
was the case however long the channel was made, because of the greatly reduced 
reflections at the two ends. Thus, for a channel whose length is comparable to 
the wavelength, we may deduce that when the separation between its walls is 
relatively small (2b/X < 0.2), the energy transmission charateristics are largely 
dominated by the processes of reflection at an open end. Although the asymptotic 
theory leading to this conclusion is not valid over the gap widths considered in 
the present work, it will nevertheless throw light on some of the physical 
principles.

In considering the results obtained from the present investigation, let 
us first examine the case of the smallest gap width, corresponding to 2 b/X = 0.5. 
We would anticipate by the above reasoning and sensible extrapolation, that there 
would not be any noticeable differences in the amplitudes inside the harbour for 
either of the two channels as compared with the case of the simple aperture. 
This indeed is found to be the case as the plots ̂ corresponding to the three 
lengths, 2a/X = 0.0, 1.0 and 2.0 are almost identical. Thus, from an 'added 
impedance' point of view, we have so far seen that it would not be beneficial to 
incorporate channels in the design of harbours unless their widths are relatively 
small. It was decided at this stage to increase 2a/X from 0.0 to 2.0 in steps of 
0 . 2  to check whether any unusual phenomena, which we might have missed by 
our coarse increment of 1.0, occured. However, none were detected so the results 
pertaining to these intermediate lengths are not included in the presentations.

The results corresponding to the three other gap widths, 2b/X = 1.0, +1.5 and 2.0 show a distinct departure from the above trend of behaviour. We 
notice that the amplitudes along the centre line become more pronounced as the 
length of the channel is increased while those along the breakwater are 
diminished. This is in contrast to the previous case where the effects of the 
channels were practically undetectable as far as the energy transmission into the 
harbour was concerned. This may be explained in the following manner: as the

*  Fig. 5-f/q-c
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waves become shorter relative to the opening, there is practically no reflected
wave. The incident wave radiates out from the open end with little subsequent
spreading, as though the channel was still guiding it. The wave, as it emerges
into the open, does not realise that it has left the channel and so sees no need 
as it were for sending back a reflected wave. The channel therefore exaggerates 
the beaming effect for the shorter waves, which makes the energy propagate in a 
predominantly forward direction and leads to the observed amplification of
intensities along the centre line. The amplitudes outside the region of the beam 
are consequently reduced as little radiates from its envelope. Clearly, spreading 
must inevitably occur after a few wavelengths, and this is seen in the results. The 
practical implications of this beaming of short waves by channels and the 
consequent redistribution of energy inside a harbour are twofold. Firstly, the
concentration of energy along the centreline from the mouth may pose a threat 
to ships traversing that route. However, as seen from the relevant graphs, the 
variations of amplitude along this path are generally quite gradual and in that 
sense, larger ships will be able to ride such 'bumps' without any adverse effects. 
Secondly, the low amplitudes outside the envelope of the beam provide an area 
of relative calm, especially along the inner face of the breakwater. This could 
then be utilised to provide shelter for smaller vessels whose motions are usually 
easily excited by waves of short period.

An interesting analogy may be drawn here between the physics of our 
problem and those ideas encountered in the development of early radar systems, 
which to some extent substantiate our findings. When a radar transmitter scans 
the sky, its radio signal can be compared to the light beam of a searchlight. 
Obviously if a radar beam is too wide, it will not locate objects very precisely 
and therefore much development work was aimed at narrowing it. Investigators 
concluded that the most logical approach to achieve this was to employ high
transmitter frequencies such as those in the microwave range. This is then
equivalent to using short waves which, as shown by our results, would propagate 
more as beams.

Wave conditions inside the channels are just as important to consider 
from the point of view of navigational hazards and therefore results are presented 
for the variation of amplitude along the axes of these, for all the cases studied. 
At the smallest gap width, 2b/X = 0.5, we notice a distinct, periodically repetitive 
pattern which suggests the existence of a longitudinal standing wave. The
amplitudes involved are however small because, as mentioned previously, there are 
no significant reflections at the open ends. As the separation between the channel 
walls is increased, the pattern becomes confused and physical interpretation is 
difficult as phase interactions with transverse standing waves create a complex
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wave field. It may nevertheless be said that the variation of amplitudes for the 
two cases, 2b/X = 1.0 and 2.0 are more severe than those for 2b/X = 0.5 and
1.5. This is because in the latter cases, a nodal line of elevation would exist all 
along the middle of the channel by virtue of the particular modes of oscillation 
that would exist, while in the two former cases, an antinodal line would be 
present.

Although the transverse standing wave, which is set up whenever the 
gap width is equal to an integral number of half-wavelengths, plays no role in 
either impeding or promoting the propagation of waves down the channel, it may 
perhaps present a problem to navigation. The large horizontal velocities associated 
with nodes of standing waves would cause the drifting of vessels. This obviously 
has to be counteracted, which makes for difficult manoeuvring. As this effect is 
more pronounced for longer waves, it would be inadvisable to make channels so 
wide as to permit long period transverse oscillations to exist. Furthermore, it 
would be helpful to make channels as deep as possible in order to limit the 
movements at such nodes. This is because the ratio of maximum horizontal to 
vertical particle displacements in a standing wave, obtained from standard linear 
theory, is coth(kh), where h is the mean water depth, which increases 
dramatically as kh approaches zero.

The results pertaining to the oblique incidence of the waves reveal a 
complex behaviour which follows, to a limited extent, the same trends observed 
with normal incidence. Under such conditions, the modes of propagation of the 
water waves in the channels would be analagous to those of sound waves in 
waveguides where the combination of transverse standing waves and advancing 
waves usually leads to extremely intricate mathematical formulations. We may, 
however, deduce the following: at the larger gap widths, as the channels are 
introduced, conditions become generally better along the inner face of the 
breakwater that lies in the direction of the incidence and worse along the other. 
Thus, the situation whereby the energy inside the harbour propagates mostly in 
the direction of the incident waves, as in the case of the zero-thickness 
breakwater, is reversed. Also, as the length of the channel is increased to 2.0X, 
the radiation out from the mouth is seen to become more symmetrical, as one 
would expect. At the smallest gap width considered, we notice that, as in the 
case of normal incidence, the channel has little effect.

5.2.2 Resonators

The four resonator geometries shown in figures 5.3a-d have been 
investigated. These are numbered from 1 to 4 and range in classification from

♦  F/j. 5*3*1 - 5-3^
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narrow to wide resonators, according to the dimensions of their widths compared 
with the wavelength. Resonators 1 and 2 are grouped together as they fall under 
the 'narrow' category, while resonators 3 and 4 come under the 'wide' category. 
The particular geometry of resonator 4 was chosen to determine the consequences 
of the longitudinal oscillations, which can occur as its width is 0 .5X, on the 
overall perfomance. The effects of all of these on the penetration of waves into 
a harbour are assessed in relation to the case when they are not present, i.e. the 
problem of diffraction by an equivalent opening in a breakwater of vanishing 
thickness. Before discussing the many results obtained, we shall provide an
account of the physical mechanisms that lead to the impedance properties of such
resonators. In doing so, several important concepts concerning the general 
scattering of waves shall be presented and related in an effort to provide a
coherent theoretical account. In that respect, Morse and Ingard(1968) put forward 
the following explanation for such processes:

"When a wave encounters an obstacle, some of it is deflected from its 
original course. It is usual to define the difference between the actual wave and
the undisturbed one, which would be present if the obstacle was not there as the
scattered  wave. When a plane wave, for instance, strikes a body in its path, in
addition to the undisturbed plane wave there is a scattered wave, spreading out
from the obstacle in all directions, distorting and interfering with the plane wave. 
If the obstacle is very large compared with the wavelength, half of this scattered 
wave spreads out more or less uniformly in all directions from the scatterer, and 
the other half is concentrated behind the obstacle in such a manner as to
interfere destructively with the unchanged plane wave behind the obstacle, creating 
a sharp—edged 'shadow' there. This is the case of geometrical optics; in this case 
the half of the scattered wave spreading out uniformly is called the re flec ted  
wave, and the half responsible for the shadow is called the in te r fe r in g  wave. If 
the obstacle is very small compared with the wavelength, all the scattered wave is 
propagated out in all directions, and there exists no sharp-edged shadow. In the 
intermediate cases, where the obstacle is about the same size as the wavelength, 
a variety of curious interference phenomena can occur."

Although they do not specifically state this, it is clear that the above 
effects discussed by the two authors, are those of near-field behaviour. Far away 
from the scattering body, the influences of both the interfering and reflected 
waves will be gradually diminished as a shadow behind a relatively large obstacle 
will become progressively blurred. Also, the two waves which are to some extent 
directional in the near—field, i.e. higher intensities in certain, rather than other 
directions, lose their circumferential variation in the far-field. Therefore, the 
definition of the reflected wave as that which is spread out uniformly from a
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body is misleading. This might be the case in the far-field, but in that instance, 
one should not distinguish between components of the scattered wave, as it then 
appears as a single uniformly outgoing circular wave, regardless of the relative 
dimensions of the body. In the long wavelength limit, the interfering and reflected 
waves are rapidly attenuated so that the behaviour is more or less uniform in 
both the near and far Helds.

The interfering and incident waves, which propagate roughly in the 
same direction, must be 180* out of phase so as to cancel one another and 
produce, for example, the calm behind a relatively large cylinder in a water wave 
environment. The reflected wave, on the other hand, must be in phase with the 
incident wave in order to give rise to the approximate standing wave pattern just 
in front of the cylinder. In attempting to explain the physical factors that result 
in such effects, Lamb(1932) considered the origin of the scattered wave field to 
have two separate causes:

(1) The 'impenetrability' of the obstacle. Were the body not there, the
space it filled would be occupied by water moving up and down, generating 
outgoing waves on Huyghens' principle. The effect of its presence is to cancel 
out this radiation which may be visualised (in the first approximation) as the
superposition on the incident wave of a radiation equal and opposite (in phase) to 
that which the heaving water volume would have produced in its absence.

(2) The 'immovability' of the obstacle. Again, were there no body present,
the fluid in the space would be moving backwards and forwards. The second
component of the scattered wave may be visualised, as the pattern generated by 
the oscillation of the solid, in antiphase to the unobstructed incident motion.
In the special case of small kb where b is the cylinder radius, the first effect is 
that of a simple wave source and the second, that of a wave doublet. "It might 
appear, at first sight, that the former of these disturbing influences would be 
much less important than the second, but in its effect at a distance it becomes 
comparable, owing to the greater attenuation by a lateral motion of the waves 
proceeding from a double source." (Lamb(1925)). When the horizontal dimensions 
of the obstacle are equivalent to, or larger than the wavelength, the boundary 
must be represented by distributions of single and double sources in accordance 
with Green's theorem.

In relating the two components of the scattered field, discussed by 
Morse and Ingard, to the above causes, we may say that the reflected wave is 
that part of the doublet type radiation that propagates in a direction opposite to 
that of the incident wave (backward direction), while the interfering wave is that 
part which propagates mainly in the forward direction. As waves generated in this 
fashion have to eventually bend and meet, this would explain the diminution of
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the effects of the two waves in the far—field. Also, as the velocity potential 
suffers a change in phase of 180* across a doublet, the interfering wave must
consequently be out of phase by a similar amount with the reflected wave, which 
would explain its cancellation of the incident wave. The source type radiation,
associated with the impenetrability of an obstacle, gives rise to an independent 
uniform scattered wave which would be dominant in the far—field, in the 
short—wavelength limit and in both the near and far—fields in the long—wavelength 
limit, as the doublet is less efficient than the simple source for radiating at low 
frequencies.

To illustrate the above principles, and for ease of visualisation, 
consider the example of the scattering of waves by an infinitely long plane wall. 
In this case, the source effect is absent as the thickness of the wall does not 
enter into the problem and hence it can be treated as if it were infinitesimally 
thin and so the only motion is due to a distribution of doublets. These would
therefore radiate two equal waves which travel in opposite directions and
superimpose on the incident wave field. In front of the wall, the reflected wave 
reinforces the incident as the two are in phase, while behind the wall, the 
interfering wave annuls it. This is illustrated schematically in figure 5.4. At first, 
the foregoing arguments may appear to unnecessarily complicate the simple plane 
reflection process. However, when dealing with more complex scattering systems, 
such as harbour resonators, the concept of an interfering wave becomes more 
physical and the behaviour must be analysed in that manner in order to maintain 
a grasp on the interpretation.
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Figure 5.4 Scattering at a plane wall

The impedance characteristics of quarter—wavelength resonators at 
entrances to semi—infinite harbours are now examined with reference to the above 
principles. When such configurations are subjected to the action of linear water 
waves, the total wave field may be decomposed into two constituents, the first of
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which is the diffracted wave field, or that which would be present in the absence 
of the resonators. The second is the radiated wave field, otherwise known as the 
radiation damping, which arises from the action of the resonators alone. This 
decomposition is useful because a correspondence may now be seen between that 
part of the radiated wave which penetrates the harbour and the interfering wave, 
and also between that part which is returned seawards and the reflected wave. As 
the reflected and interfering waves are respectively in and out of phase with the 
incident wave, this situation would then lead to the observed diminished 
amplitudes inside the harbour and the increased amplitudes outside. It is, however 
as yet, not clear how these changes in phase come about, as we do not have 
here the doublet effect associated with a solid obstacle. Instead, the resonator 
itself creates the phase difference by virtue of the 'extra distance' which has to 
be travelled by a wave in entering the harbour. The interfering wave is known to 
be that part of the incident wave that enters the resonator, and on being 
amplified, propagates into the harbour. As the effective length of these resonators 
is X/4, this wave would have consequently suffered a path lag of X/2 as compared 
with those waves that enter the harbour directly. This is then equivalent to a 
phase difference of 180*. The same phase loss in the reflected wave is recovered 
as it retraces its path back out to sea. Therefore, whereas in the case of the 
obstacle, the doublet property gave rise to the phase differences, it is the phase 
differences that simulate a doublet type radiation in this case.

Having established a clear physical picture of the scattering process, we 
are now in a position to examine our results. The geometries corresponding to 
the four resonators investigated in this work were fixed except for their lengths 
which had to be determined subject to the condition of maximum induced 
amplification. This was obviously a necessary step as the efficiency of the 
resonators in impeding the energy of incoming waves is highly dependent on 
resonance occuring inside them. Therefore, the first stage in the analysis involved 
plotting curves for the variation of amplitude with resonator lengths for points at 
the centres of the backwalls (where antinodes would exist). The optimum lengths 
were then those that corresponded to the peaks of these curves. Examples for 
resonators 1 and 2 are shown in figures 5.5a-b, for each of the four gap widths 
considered. A table summarising the optimum lengths for each combination of 
resonator and gap width is also given (Table 5.1). The discrepancy that arises 
between the effective and optimum lengths (X/4 -  1 ^ )  is due to the end 
correction which plays a major role because of the imperfect reflections at an 
open end. A physical discussion of these effects is provided in chapter 3.

jitIn looking at the results corresponding to the smallest gap width, 
2b/\=0.5, it is immediately apparent that the resonators possess an impedance
*  F/g. 5-f5 * - c  j  Fig.
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quality that is quite remarkable, as with the wider ones (resonators 3 and 4), an 
almost 100% reduction in energy transmission is achieved. For the narrower
resonators (1 and 2), this figure is approximately 60%, which still implies
considerable improvements in wave conditions inside the harbour. Resonator 1, 
being the narrowest, tended to augment the amplitudes in the immediate vicinity 
of the gap due to the severe resonance (associated with narrow channels) that is 
set up, which results in high—intensity radiation damping 'leaking' into and
contaminating the harbour region. As the gap width is increased to 2b/X=1.0, we 
observe a departure from this trend of behaviour as areas of higher amplitudes 
emerge in the immediate lees of the breakwaters. This is especially apparent with 
the narrower resonators as then, an approximate doubling in the amplitudes
occurs along the breakwaters (as compared with the case when the resonators are 
not present). Along the centre line, however, the amplitudes are reduced by as 
much as 65%. Although for this case, resonators 3 and 4 are not as efficient at 
impeding the wave penetration, they are nevertheless more desirable to 
incorporate in the design of harbour entrances as they do not lead to augmented 
amplitudes either behind the breakwaters or near the gap as do resonators 1 and
2. Increasing the gap width further results in a progressive growth of the areas of 
higher amplitudes (or energy lobes) behind the breakwaters which in turn lead to 
reduced resonator efficiencies. Furthermore, in the case of 2b/X=1.5, we notice 
severe amplifications near the gap when the narrower resonators are employed 
which affect the surrounding areas to such an extent that even along the centre 
line, the full sheltering benefit of the resonators is gained only when ships are at 
least one wavelength into the harbour. When 2b/X=2.0, the energy lobes become 
quite significant in size and consequently the use of narrow resonators has then to 
be questioned.

We have so far established that when the gap width is of the order of 
the wavelength, typically between 0.5X and 1.0X, there is a considerable advantage 
to be gained by employing quarter—wavelength resonators. The perfomances of the 
wider ones were generally seen to be more acceptable as these did not lead to 
excessive amplifications near the entrance. As the gap width is increased to 
beyond 1.0X, however, there is a penalty to be paid in using narrow resonators 
as the reduced amplitudes in the centre of the harbour are counteracted by 
higher amplitudes behind the breakwaters. This would inevitably prevent any 
loading and unloading activities that might otherwise take place there.

In attempting to provide physical explanations for the above findings, 
we have to refer once more to our concepts in relation to the scattering process. 
We mentioned earlier that the total wave field inside the harbour was the 
superposition of the diffracted and interfering waves which are 180* out of phase.
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As the intensities of these are not necessarily equal, their phase interactions will 
not lead to complete mutual cancellations in all places. At points where the 
intensity of the interfering wave far exceeds that of the diffracted wave, such as 
near the mouths of the resonators, high amplitudes would ensue. This would then 
explain the excessive amplifications near the entrance of the harbour. In order to 
explain the existence of the energy lobes behind the breakwaters, however, we 
have to explore this physical approach further. The actions of the resonators in 
generating the interfering and reflected waves, which are acknowledged to be in 
antiphase, is equivalent to the radiation from two doublets placed at the 
extremities of the gap. Now, a doublet is equivalent to two simple and equal 
wave sources, which are a small distance apart but are pulsating 180* out of 
phase with each other. Although there would be no resultant mass flow across a 
spherical surface surrounding the dipole, there would be a resultant momentum 
flux. This would be similar to a force acting on the medium and can only be 
provided by the reaction from a solid surface. Thus, in the case of the narrow 
resonators where the present analogy is more appropriate, the radiation from the 
two doublets may be considered to arise from the vibrations of two small plates 
that are located in similar positions. When the gap width, 2b/X, is small, these 
would effectively act as one, with the result that the radiation would spread out 
uniformly, as shown by the rough sketch of figure 5.6a. As 2b/X is increased, the 
two resonators would tend to function independently and consequently, the waves 
radiated by the two plates, would be concentrated near the edges of the entrance, 
as shown by figure 5.6b. These would then penetrate into the sheltered regions 
behind the breakwaters, where the intensity of the diffracted wave is low, and 
give rise to the increased amplitudes there.

Figure 5.6 Radiation patterns from oscillating plates

In the case of the wider resonators, the interfering wave would not be of a high 
intensity as the associated resonance will not be marked because of poor
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reflection at the open end. This implies that the wave would be attenuated 
rapidly inside the harbour, thus making such resonators generally not as efficient 
as the narrower ones: a deduction which has been confirmed by our results. The 
reason for resonators 3 and 4 being more effective than their narrow counterparts 
for the smallest gap width considered is because the 'amount' of radiation 
damping is then larger and the intensity of the diffracted wave, which has to be 
annulled, is not as high.

Let us now turn our attention to the cases of oblique incidence. The 
results seem to display similar trends as before in that the narrower resonators 
are again seen to lead to worse conditions near the entrance and in the lees of 
the breakwaters, especially with the wider gaps. Two interesting points emerge 
however, which shall be looked at briefly. The first concerns the perfomance of 
resonator 4 which has been found to be the most efficient over all the gap 
widths considered, in contradiction with previous results. It is thought that the 
adverse longitudinal oscillations which would exist by virtue of the particular 
geometry of this resonator, would not have as strong an influence when the 
incoming waves are incident obliquely and therefore, a much improved efficiency 
is obtained. The second point arises in connection with the increased amplitudes 
that are observed in that part of the harbour which would otherwise be sheltered 
due to the angled incidence. As the two resonators at the entrance are 
disproportionately excited by the incident wave, it follows that the action of one 
resonator would surpass that of the other, to an extent that is dependent on the 
actual angle of incidence. Clearly, this asymmetry in the behaviour would be 
maximised in the limiting case of grazing incidence. With the smaller gaps, all 
four resonators are seen to be very effective.

5.2.3 Filters

When a series of resonators or of apertures are arranged as side 
branches to an acoustical conduit, the arrangements constitute acoustical filters, 
the former tending to suppress all frequencies above a certain pitch and the latter 
to remove all below a certain critical frequency. Such networks are illustrated in 
figure 5.7 and are termed low-pass and high—pass filters in accordance with their 
attenuation properties. Applications of these to acoustics are diverse and range 
from automobile exhaust silencers to sound-absorbing plenum chambers that are 
installed in ventilating systems.

The physical behaviour of the constituent resonators of a low-pass 
filter is now well understood, having been looked at previously, but it must be 
mentioned that for the high-pass counterpart, the filtering action of an orifice

* F/j. 5 - 4 0 -  K g .  5 - A 1
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does not result from the transmission of energy out of the pipe, but rather from 
the reflection of energy back toward the source.

J  I___I I ___I L

High-pass filter Low-pass filter

Figure 5.7 Acoustic filter networks

In the present context, the interactions of water waves with structures analagous 
to the low—pass filter have been investigated at each of three gap widths, given 
by:

2b/X = 1.0, 1.5 and 2.0
It was decided not to include smaller gaps here as the impedance of the single 
resonators proved to be more than adequate for such geometries. Within the first 
part of this study, the cumulative effects of two and three adjacent resonators are 
examined and assessed in relation to the cases of a single resonator and no
resonator at the entrance. In the second part, similar comparisons are made for a 
configuration of two non-adjacent resonators, separated by half a wavelength 
(0.5X). This latter part was undertaken because the particular filter we are trying 
to model comprises not only resonators, but short connecting channels as well, 
which add to the total impedance of the system. The electrical analogue of this 
setup is then a combination of inductors placed in series, with capacitors shunted 
across the line. Only the intermediate resonators (2 and 3) were employed as
these were found to be the most effective of the four. Their lengths correspond 
to the peaks of the resonance curves obtained earlier as listed in Table 5.1. The 
geometries of all the problems tackled are shown in figures 5.8a-b. Arrangements 
resembling high-pass filters were not studied as the costs that would be incurred 
in the construction of such works would be prohibitive. Also, it might be 
beneficial to allow certain long—wave movements to occur for the purposes of
'harbour flushing', which aids in circulating and replacing otherwise stagnant 
water.

£On inspecting the results, we notice that the use of three adjacent
cells of resonator 2 always leads to unacceptably high amplitudes in the
» Rcj- 5- 23 q -  R j-  5-2&C
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neighbourhood of the entrance, regardless of the gap width. In fact, improvements 
over other configurations are detectable only at distances of at least 3 \  into the 
harbour, which makes for an unsatisfactory overall perfomance. With two cells of 
the same resonator, we find that there is little advantage to be gained over the 
single-cell geometry, implying that such designs would not be cost-effective. By 
employing the slightly wider resonator 3, the trends become more encouraging. 
For the wider gaps, the three-cell configurations are found to be the most
efficient, surpassing in perfomance those of two cells and single cells. With
two-cell arrangements, however, excessive amplifications are observed in the
vicinity of the mouth, with amplitudes reaching values as high as 2.2A;, Aj being 
the amplitude of the incident wave. When the gap width is reduced to 2b/X=1.0, 
we notice that the efficiency of two consecutive cells exceeds that of three, but 
the former again leads to the usual augmented amplitudes which now extend into 
the lees of the breakwaters.

The results pertaining to batteries of two non-adjacent resonators
indicate that a quite remarkable impedance is afforded by such geometries. For 
the case of 2b/X=1.0, an almost 80% reduction in energy transmission is achieved 
when the elements of the filter are based on resonator 2. With resonator 3, the 
perfomance is equally impressive, with a reduction of approximately 50%. Even 
for the larger gaps, substantial improvements throughout the harbour are observed. 
The efficiencies of filters comprising cells of resonator 2 were generally seen to 
be better than those comprised of resonator 3 because of the smaller dimensions 
of the former in relation to the chosen separation between the elements. Also, 
the amplifications near the entrance were not as severe or strongly varying as had 
been encountered previously and in some cases, these were altogether absent. It is 
believed that if a larger number of resonators are utilised in this fashion and if 
the distance between them is increased (>0.5X), the wave penetration into the 
harbour would reduce drastically, with no adverse effects on navigation. However, 
due to financial and topographical constraints, realistic limits must be imposed so 
as to keep such designs practical.



Figure 5.2 Finite element meshes
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Figure 5.B Resonator geometries

(Dimensions in units of wavelength)
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\Resonator 
X  no. 

Gap X .  
width X .

1 2 3 4

0.5 0.23 0.21 0.22 0.26

1.0 0.22 0.18 0.12 0.12

1.5 0.23 0.20 0.18 0.23

2.0 0.22 0.18 0.11 0.10

Table 5.1 Optimum resonator lengths

(Dimensions in units of wavelength)
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(a)

(b)

Figure 5.5 Amplification factors inside
resonators
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(a) Two cells

0.051 
0.10 
0.05 
0.10 
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[

[

(b) Three cells

(c) Two non-adjacent 
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Figure 5 .8 a  Filter geometries: Resonator 2

(Dimensions in units of w avelength)
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(a) Two cells

<L

(b) Three cells

(c) Two non-adjacent 
cells

Figure 5.8b Filter geom etries: Resonator 3

(Dimensions in units of w avelength)
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Figure 5 . 9  Amplitude profiles in channels
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CHAPTER SIX 
A model harbour

Our investigations of surface disturbances in harbours have so far been 
confined to models that are not bounded by coasts, where waves diffracting 
through the gap can propagate freely to infinity and diverge in the usual manner. 
This physical idealisation cannot be taken up when dealing with fully bounded
harbours as their behaviour is strongly influenced by internal reflections, which 
have hitherto been absent. These are undesirable as they can lead to a massive 
accumulation of energy, especially when the frequency of excitation is close to 
one of the natural frequencies of the enclosed body of water. Such reflections can 
nevertheless be minimised by employing gently sloping inner boundaries so as to 
promote the breaking of the shorter waves; with incidence of longer period, the 
embankments would effectively act as vertical barriers, resulting in very little
energy dissipation. Therefore, in order to extend the usefulness of our previous 
work and make it more applicable to real problems, the resonant oscillation 
characteristics of a finite-size harbour are examined in the following pages. In 
keeping with the general aim of this thesis, emphasis is placed on the design of 
efficient entrances which limit the adverse effects produced by the resonance
phenomenon. In this connection, two different configurations (shown in figures 
6.2a—b) have been studied: a channel and a resonator. The harbour geometry 
adopted is that proposed by Behrendt(1985), shown in figure 6.1, which is simple 
but fairly realistic.

Behrendt developed a finite element model based on linear shape 
functions for the combined diffraction—refraction problem, and modified it to 
include the effects of boundary absorption and bottom friction. This was then 
applied to calculating the response of the harbour for a single incident wave of 
period 9 seconds, whereupon it was deduced that such dissipative forces serve to 
substantially inhibit the build-up of high amplitudes. However, as the bottom 
friction was calculated for a very rough bed and for rather high waves, the 
damping was exaggerated in comparison with what one might find in nature. The 
same harbour was also utilised by Dong and Al-Mashouk(1989) to assess the
perfomance of a transient numerical wave model in relation to the steady-state 
representation developed in this work. The former was a hyperbolic formulation 
of the mild slope equation, similar in form to a system of shallow water wave 
equations. It was found that at resonance the transient model required an 
exceedingly long numerical run time to attain steady-state conditions and even 
then, entire convergence could not be achieved.



182

In the first part of the present study, we derive the response of the 
harbour for a discrete set of wavelengths, ranging from 100m to 10,000m. These 
correspond to periods of between 9.33 seconds and 13.74 minutes if the uniform 
depth is taken to be 15m, as was done by Behrendt. Such a range is quite 
comprehensive as it covers a wide spectrum, from the wind-generated gravity and 
infragravity waves to tsunamis. According to Wilson(1965), critical surging of ships 
tends to occur as a result of excitation at periods of 25 seconds to 2 minutes. 
This work would therefore also provide adequate data for the dynamic analyses of 
moored vessels. In following previous work, all solid boundaries are assumed to be 
fully reflecting and all energy losses are neglected other than radiation damping. 
Only cases of normal incidence have been considered and consequently, due to 
symmetry, half the domain was discretised as shown by the finite element mesh 
of figure 6.1.

Following Lee(1971), the response of a harbour is defined as the 
variation of the amplification factor with the wavenumber parameter, kB; k being 
the wavenumber and B is a characteristic planform dimension of the harbour 
which in our case is taken to be the width, B=390m. The amplification factor 
inside the harbour is defined as the water level variation caused by a wave of
amplitude, Aj, impressing on the entrance. This is a function of position and was
calculated for a point at the centre of the backwall (point A), as this was
thought to be a position of maximum agitation. The response curve, plotted in 
figure 6.3, displays several interesting features. Looking first at the low frequency 
end, we notice that the lowest mode of resonance leads to a severe amplification 
which reaches a value of A /A p9.0. This is known as the Helmholtz or pumping 
mode of oscillation which is characterised by a simultaneous rise OT fall of the 
water level in the basin, high velocities in the entrance and the absence of any 
nodes or antinodes. As the wave frequency increases, the behaviour is seen to 
become more irregular. At a wavelength of about 129m, a quite severe and sharp 
resonance peak, of amplitude A/Aj=12.0, is observed. The reason for the
occurence of this is due to the fact that at that particular frequency, the 
dimensions of the harbour basin are such that an integral number of half 
wavelengths exist both longitudinally and transversely. The phase interactions 
between the two standing waves lead to substantial reinforcements with obvious 
consequences. However, as the bandwidth of this resonance peak is very narrow, 
it may not be so important to moored ship response since the incident energy 
would also have to have a very sharp spectral peak at this frequency in order to 
excite such a mode of oscillation. On the other hand, a very broad bandwidth in 
the response curve indicates that energy almost anywhere within this frequency 
range can excite that form of motion. Such peaks are seen to occur in the graph
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of figure 6.3. As these are potentially easily realised, it is the responsibility of 
the harbour engineer to undertake the necessary steps at the design stage to 
eliminate them.

Although energy dissipation has been neglected in the present study, 
we may nevertheless make a few brief deductions regarding its effect by reference 
to the work of other researchers. According to Kotense et al(1988), bottom 
friction may be of considerable influence on the harbour response at resonance, 
both for laminar and turbulent flow regimes. Also, a small reduction of reflection 
coefficients, such as might occur in the case of rubble mound breakwaters, may 
result in a drastic decrease of the harbour response at resonance. Dissipation due 
to flow separation at the harbour entrance has been examined by Gerber(1986) 
and found to be more critical for the lower modes of oscillation which are 
characterised by large horizontal velocities. We may therefore expect our response 
curve of figure 6.3 to be a theoretical 'upper limit' of the actual behaviour.

6.1 Channel

The impedance characteristics of an entrance channel are assessed in 
this section to determine whether any improvements in wave conditions can be 
achieved by the utilisation of such structures. A length of 100m was chosen, 
which might seem somewhat exaggerated in absolute terms, but in comparison 
with the range of wavelengths considered, the channel would range widely in 
classification from being insignificantly short, at the low frequency end, to being 
appreciably long for the higher frequency waves. A harbour response curve has 
been derived as before for this new geometry and is plotted along with that of 
the previous case in figure 6.4. A  comparison between the two reveals that the 
effects of the channel are to a large extent governed by the relative width of the
gap.

With the shorter waves, the two curves are almost identical which 
implies that the channel serves no useful purpose. With reference to our work on 
semi—infinite harbours, we may attribute this to the very weak reflections which 
would then occur at the open ends. Obviously, if the waves were made very 
short, a beaming effect might start to dominate which would radically alter the 
wave field. However, in order for this to happen and be noticeable, wavelengths 
of the order of 40m or less would be required. Although these are outside our 
range, such short waves would correspond to periods of less than 5 seconds and 
as such would not be of any practical consequence as they are rapidly attenuated.

With the longer waves, we encounter what has been previously termed 
the channel paradox: at resonance, the amplification factors are seen to increase,
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while at non—resonant frequencies the response is diminished, as the channel is 
introduced. The former is especially apparent for the Helmholtz mode of 
oscillation where a near doubling of amplitudes occurs. In our analytical work on 
the transmission of long waves through short channels, it was deduced that 
significant impedance properties were afforded by such configurations, provided the 
harbour was of an unbounded nature. In the present context, the channel plays 
the dual role of impeding both the inflow and outflow of energy. At resonance, 
the radiation damping is critical in order to maintain finite amplitudes throughout 
the harbour. If this is impaired, by placing a channel at the mouth for example, 
very high amplitudes ensue. Although the penetration of waves is also impaired, 
this is more than offset by the diminution in re—radiation back through the 
entrance. On the other hand, if resonance does not occur, the radiation damping 
would be much reduced and the channel would then act to curtail the response. 
This is then in accordance with the observed trends.

To illustrate the above effects further, amplitude contours have been 
plotted for four wavelengths that were deemed representative of the behaviour.
These are X = 500.00m, 377.00m, 163.36m and 100.00m. The variations in only 
half the harbour have been displayed due to the symmetrical conditions. 
Considering first the longest wavelength, X=500.00m, which corresponds to a 
minimum on the response curve, we notice that the amplitudes everywhere are 
diminished as a result of the channel. For X=377.00m, the reverse trends are 
observed as this is a point of resonance, or a maximum, on the curve. The 
channel is then seen to augment the amplitudes by as much as 50% in some
areas. The plots for the two other wavelengths show that the two cases of the 
harbour having and not having an entrance channel, have indistinguishable 
patterns which demonstrates the afore—mentioned short—wavelength trends.

6.2 Resonator

With the objective of limiting the adverse amplifications that occur 
inside the basin at resonance, quarter—wavelength resonators placed at the harbour 
mouth are now investigated. When their lengths are fixed, these structures would 
be 'tuned' to reflect waves of single frequency and accordingly, it is important 
that these should correspond to troublesome modes of basin oscillation. Obviously, 
this type of resonator would be highly impractical for impeding long waves
because of the necessary length. We are therefore confined, in our present
problem, to studying the behaviour of the shorter waves. Six wavelengths were 
chosen for this purpose: X= 213.00m, 129.00m, 125.66m, 122.52m, 108.91m and 
100.00m. On inspecting the harbour response curve of figure 6.3, we see that all
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of these correspond to points of severe resonance which was the basis of our 
selection criterion. The width of the resonator was taken to be 30m, making it 
intermediate to wide in classification over the range of wavelengths considered. 
The complete geometry is shown in figure 6.2b.

The first step in the analysis involved determining the lengths (l0pt) of 
the resonators subject to the usual condition of maximum induced resonance 
inside them. For each wavelength, a graph was therefore plotted for the 
variation, with length, of the amplitude at the backwall of the harbour (point A). 
An example for the case of \=108.91m is shown in figure 6.5. The optimum 
lengths are then those that correspond to the minima of these curves, which were 
found to be as follows:

X=213.00m IqP̂ —47.00m
129.00m 26.00m
125.66m 22.60m
122.52m 24.50m
108.91m 17.42m
100.00m 16.00m

In deriving the above-mentioned graphs, an increment in length of 0.02X was 
used as this was thought to be adequate for practical purposes. If this is made 
smaller, the values of l0pt could be further refined, but there is no point in 
carrying this out as one must always allow for minimum tolerances during 
construction. A trend was detected in that if the length of the resonator was 
made less than the optimum, an augmented response resulted. This is believed to 
be due to the hindrance of the radiation damping by virtue of reverse phase 
interactions.

The original harbour response curve has been plotted again in figure
6.6, incorporating the points corresponding to the six wavelengths where the 
resonators have been employed. For a better comparison, amplitude contours have 
also been plotted for half the basin. The results demonstrate the quite remarkable 
efficiencies achieved with such resonators. Substantial overall reductions in 
amplitudes are observed for all the cases treated and furthermore, there are no 
adverse amplifications near the entrance. This latter effect was absent because of 
the relatively wide resonator geometry. The most severe case of resonance which 
occurs at X=129.00m, is seen to be greatly ameliorated by the resonator as the 
maximum amplitudes are lowered from A /A p l2 .0  to A/Aj<3.0. This represents a 
75% reduction which is also attained in the other cases considered. Part of the 
reason why the resonator was found to be so efficient is because of the relatively 
small gap width of the harbour. This is 78m which, even by comparison with the 
smallest wavelength, X=100m, is deemed to be small (with reference to previous
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work).

Figure 6.5 Variation of amplitude at point A with 
resonator length (X=l08.91m)

It is of practical interest to note that certain structures in harbours, 
like rectangular berths, might act as resonators if suitable conditions prevail. In
these adventitious circumstances their effects could be quite adverse, not only to 
navigation, but to cargo handling operations as well and accordingly, great care
must be excercised in their design. One example where this problem might be 
particularly acute is the harbour at Zeebrugge which is shown in figure 6.7
(diagram taken from the work of Van Damme(1982)). The two berths near the
entrance are amenable to excitation because of their shapes and unsheltered 
layout. Waves amplified by them would not be returned seawards immediately, but 
would be reflected back into the harbour by virtue of the outer breakwaters. This
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process might then lead to severe wave agitation in the vicinity of the mouth and 
might well have contributed to the capsizing of a cross channel ferry in that 
location. On the other hand, a form of protection by internal jetties might prove 
useful were analysis and model studies used to achieve a suitable configuration.

Figure 6.7 General layout of Zeebrugge harbour
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Fig. 6.3 RESPONSE CURVE FOR MODEL HARBOUR
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Fig. 6.4 HARBOUR RESPONSE CURVES
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Fig. 6.6 HARBOUR RESPONSE CURVE SHOWING EFFECTS OF RESONATORS
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Wavelength =  377.00 m

Fig. 6.10

Amplitude contours
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Fig. 6.11

Amplitude contours
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Fig. 6.13

Amplitude contours
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Fig . 6.15

Amplitude contours
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CHAPTER SEVEN 
Concluding remarks

7.1 General conclusions

The deductions arrived at in the three major previous chapters are 
summarised here for convenience. Chapters three, five and six deal with analytical 
investigations, the semi-infinite harbour and the model harbour respectively.

7.1.1 Analytical investigations

(1) Scattering at the outlet o f a semi-infinite channel

(a) The energy transmission coefficient is rapidly diminished as the 
separation between the channel walls is decreased. This is associated with the high 
amount of reflection at the open end.

(b) When the channel is terminated in an infinite flange, there is 
considerably higher energy transmission into the harbour as compared with the 
case when it is unflanged.

(2) Diffraction by a thick breakwater

(a) Short entrance channels or the small thickness of a breakwater 
can reduce the energy transmission into the harbour by a significant amount.

(b) The impedance of such configurations is directly proportional to 
the effective size of the gap which is given by the ratio, a/b, where 2a is the 
thickness of the breakwater and 2b is the gap width, provided (2a,2b)<0.2X.

(3) Transmission through a long channel

(a) The energy transmission coefficient and the amplitudes in the 
channel are periodically dependent on the channel length.

(b) The channel serves to impede the penetration of waves into the 
harbour over a wide range of wavelengths.

(c) When the length of the channel is roughly equal to an integral 
number of half-wavelengths, resonance will occur.

(d) Resonance in the channel leads not only to augmented 
amplitudes there, but also to increased energy transmission into the harbour.



204

(e) Resonant amplitudes are rapidly diminished as the width of the 
channel is increased.

7.1.2 Semi-infinite harbour

(1) Channels

(a) If the gap width is between 0 .5X and 1.0X, the channel will not 
have any effect on the wave field inside the harbour, regardless of its length. 
This is because of the greatly reduced reflections at the open ends.

(b) When the gap width is greater than one wavelength, the channel 
would have the effect of increasing the amplitudes in the centre of the harbour 
while diminishing them in the lee of the breakwaters. This is attributed to the 
beaming of the shorter waves by the wide entrance.

(c) Inside the channel, the transverse and longitudinal standing waves 
might present a problem to navigation.

(2) Resonators

(a) The impedance of quarter—wavelength resonators is a consequence 
of the 180* phase difference which exists between the incident wave passing down 
the gap and the 'delayed' wave which has been amplified in its passage through 
the resonator.

(b) The optimum lengths of narrow resonators are to a large extent 
independent of the harbour gap width.

(c) When the gap width is small, typically less than 0.5X, both 
narrow and wide resonators are very efficient at impeding the energy of incoming 
waves. With the wide resonators, an almost 100% reduction in energy transmission 
may be chieved.

(d) When the gap width is greater than one wavelength, the narrow 
resonators can lead to adverse amplifications near the entrance and to areas of 
higher amplitudes behind the breakwaters. Accordingly, the wider resonators should 
then be employed as these lead to overall improvements.

(e) If the resonators are made too wide, their efficiency will be 
reduced. Therefore, resonators of intermediate widths should generally be 
employed.

(f) With oblique incidence (angles from the normal greater than 
about 30*), the widest resonators are the most efficient for all gap widths.
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(3) Filters

(a) Arrangements comprising two and three adjacent cells of resonators 
should be avoided as these can cause unacceptably high amplitudes in the 
neighbourhood of the entrance for the wider gaps.

(b) Batteries consisting of two non-adjacent cells of resonators 
separated by 0 .5X lead to significant overall improvements in conditions inside the 
harbour. It is advisable to make the distance between the two cells as large as 
possible within, of course, practical limitations.

7.1.3 Model harbour

(1) Channel

(a) At incoming wave frequencies which are giving rise to resonance 
in the basin, the channel will serve to amplify the response in the harbour. This 
is particularly severe for the lower modes of oscillation.

(b) At non-resonant frequencies, the channel will diminish the
response.

(c) For the shorter waves, the channel will not have any noticeable 
effect on the wave field inside the harbour. This is because with wider gaps, the 
reflection at the open ends will be greatly reduced. If the waves are made very 
short, however, beaming will occur.

(2) Resonator

(a) Quarter-wavelength resonators may be advantageously used to 
limit the adverse effects of harbour resonance. Reductions in amplitude of up to 
80% can be achieved by proper design.

(b) If the lengths of such resonators are made less than the 
optimum, higher amplitudes might be induced in the harbour basin as a result of 
the impaired radiation damping.

7.2 Suggestions for further work

It would be beneficial if a thorough experimental investigation could be 
carried out to verify the wealth of results obtained in this work. The present 
author did attempt such a task, but it was felt that the particular wave basin 
available was not adequate enough. This is because the reflections on the seaward
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side of the breakwaters could not be prevented from being re—reflected off the 
generator paddle. Such behaviour severely distorts the conditions and accordingly 
leads to unrepresentative results. It would therefore be ideal to use a wave 
generator which is capable of absorbing the reflected wave.

In reality, ocean waves are wind generated and so they are not of 
simple sinusoidal form of constant height and direction of propagation. Wind 
generated waves in the ocean propagate in two dimensions and display a wide 
range of frequencies and amplitudes. It would be desirable to apply our work to 
a realistic wave spectrum to assess the perfomance of the various entrance 
configurations studied. This should be theoretically straightforward because of the 
linear nature of our problem.

7.3 Closure

The work described in this thesis provides a more rational basis for 
the design of harbour entrances in relation to the control of wave penetration at 
the mouth. It must, however, be noted that in a design context there will be 
restrictions of space and cost which impose limitations on the extent to which the 
optimum solutions discussed previously can be implemented.

The results from our mathematical models may be utilised to obtain a suitable 
configuration for a physical model, thus reducing the laborious task of varying the 
many geometrical parameters.
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