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ABSTRACT

This thesis is concerned with the study of the excitation of surface plasmons
on laterally non-uniform structures, and with two practical applications of surface
plasmons involving such structures — microscopy and spatial light modulation. The
previous literature on surface plasmons is reviewed and discussed, and the theory of
optical excitation of plasmons on uniform surfaces is presented. This section
includes detailed original derivations of important known results as well as some
new results. The generalization of this analysis to the case of focussed incident
light is presented, and the results discussed. A new theoretical model is then
advanced for the approximate analysis of finite beam interaction with non-uniform

plasmon supporting structures.

Experimental results from a new type of microscopy using surface plasmons
are presented. Images of periodic oxide structures on silver films have been
obtained by both scanned and broad beam techniques; these demonstrate lateral
resolution of about 20 um combined with vertical sensitivity on the order of an
angstrom. The use of surface plasmons for spatial light modulation is proposed, and
the potential for this technique in relation to previously reported devices is
discussed. Liquid crystal devices have been constructed; these are described, and
measurements of their performance are presented. These devices demonstrate
resolution comparable with conventional liquid crystal spatial light modulators, along
with speeds improved by about one order of magnitude. Other configurations are
proposed for future development. The thesis concludes with a discussion of the
merits and restrictions of the use of surface plasmons in these two application

areas, and recommendations for future work.
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CHAPTER 1

INTRODUCTION AND BACKGROUND



Surface plasmons are electromagnetic waves of transverse magnetic (TM)
polarization, which propagate along interfaces between conducting and
non—conducting media. They are associated with longitudinal oscillations of the free
electrons at the conducting surface. The existence of these waves was first indicated
by the so-called Wood's anomalies: at about the turn of the century, R.W. Wood
observed that the reflectance of metallic gratings showed strong minima at certain
angles of incidence [1.1]. He had in effect produced a grating coupler for
plasmons - the radiative and surface wave fields were coupled when the spatial
frequency of the grating equalled the difference between the parallel component of

the incident wavevector and the (higher) surface wave propagation vector.
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Figure 1.1 Instantaneous electric field pattern for a surface plasmon at a
metal/dielectric interface. The free space wavelength is 633 nm, plotted area is
1pm x 1pm, and density of the director lines is proportional to field
amplitude.

Electromagnetic surface waves were given a theoretical basis by Sommerfeld
[1.2] and Zenneck [1.3], as solutions of Maxwell's equations at planar boundaries.
The name 'Zenneck wave' has been given to a certain type of radio—frequency
surface wave, while surface waves at visible and infra-red wavelengths are usually
called plasmons. A theoretical treatment of surface plasmons in terms of the
complex dielectric constant was reported in 1962 by Ritchie and Eldridge [1.4]; this
has since become the standard form of analysis. For a non-radiative plasmon, the
field is evanescent in the direction of the surface normal, on both sides of the

surface. Consequently, power flows only along the surface, and not into the bulk



media. The extent of the field, and consequently the fraction of field energy, is
much less in the conductor than in the dielectric; this results in a propagation
length for surface plasmons that is substantially greater than the absorption length
for plane waves incident on the conducting surface. Figure 1.1 illustrates the
distribution of the electric field amplitude and direction, for a 633 nm wavelength

plasmon at a silver/air interface.

Interest in surface plasmons increased considerably after the reporting by Otto
of a method of optical excitation by prism coupling [1.5]. In Otto's method, the
exciting beam is reflected at the base of a prism, at an angle of incidence greater
than the critical angle for total internal reflection, and the evanescent field at the
point of reflection extends across an air gap to a metallic surface. Coupling to the
surface waves occurs when the phase matching condition Br=npkosin0 is satisfied,
where @, is the surface plasmon propagation vector, k =w/c, and n, and ¢ are the
prism refractive index and incident angle from the surface normal respectively. A
modified configuration was introduced by Kretschmann [1.6], in which the
evanescent field extends through a metal film in contact with the prism base, and
excites surface waves on the far side of the metal. Both configurations are

illustrated in figure 1.2,
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Figure 1.2 Two methods of generating surface plasmons using prism couplers:
a) Otto configuration; b) Kretschmann configuration

The prism coupling method is a form of resonant excitation; when the
coupling is optimized, the field intensity obtained at the plasmon-supporting surface

can be 100 times higher than that of the incident beam. Optical excitation of



plasmons is thus often called surface plasmon resonance, or SPR. Figure 1.3 shows
an example of the field intensity profile for plasmon excitation on a silver film in
the Kretschmann configuration, illustrating the intensity enhancement. When the
surface wave is generated, energy is absorbed due to collision losses in the metal.
This results in attenuation of the reflected beam in the prism. For this reason,
prism—coupled SPR measurements are also called attenuated total reflection, or

ATR, measurements.
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Figure 1.3 Field intensity profile in a silver film in the Kretschmann
configuration, where 6, is the surface plasmon coupling angle, showing the
intensity enhancement at resonance.

If the reflectivity is measured as a function of angle of incidence in one of
the geometries described above, using a wide collimated beam, a dip is seen at the
angle corresponding to phase-matching. The width of this dip is related to the
propagation length of the plasmons, the depth is determined by the relationship
between the absorption rate and the coupling strength, and the position of the
minimum is determined by the dispersion relation for the plasmons and the
phase-matching condition given above. These relations will be derived in chapter
two. Figure 1.4 shows a series of examples of SPR curves for films of different
metals and thicknesses. The practical interest in SPR results from the very high

sensitivity of this angular response to conditions at the plasmon-supporting surface.



The deposition of organic monolayers on a metal film, for instance, can be easily

detected by measuring the shift in the SPR response. This makes the use of

surface plasmons for sensing an attractive possibility, and it is consequently in this

area that most of the practical work on surface plasmons has been done.
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Calculated plasmon resonance curves (reflection coefficient wvs.

incident angle) for the Kretschmann configuration at 633 nm wavelength, with

film thicknesses as indicated of: a) silver; b) gold; c) copper; d) aluminium.

A number of substantial reviews have been published on surface plasmons, for
example by Ritchie [1.7], Abelés [1.8] and Raether [1.9]. The latter of these is

often cited in the literature; it is quite comprehensive,

and includes a very

extensive bibliography. However, it suffers from a drawback that is shared to some

extent by most of the literature on this topic: the basic theoretical analysis is



presented in a sketchy, confusing and sometimes misleading fashion, and many
important results are not derived. For this reason, 1 have presented in chapter two
a detailed analysis of the basic theory, starting essentially from first principles, in

order to provide a clear basis for the new theoretical results.

The investigation of organic structures using surface plasmons was reported in
1977 [1.10]. This has led to the specific application of immunosensing [1.11],
where the SPR response is used to test for the presence of specific organic species
in solution, using surface coatings that bond to these specific molecules. Other
applications of surface plasmons that have been investigated include gas detection
[1.12], measurement of refractive index and absorption of thin dielectric films
deposited on the metal surface [1.13], and measurement of the optical constants of

the metal films themselves [1.14].

While a great deal of theoretical and experimental work on SPR has been
published, the majority of it deals with laterally uniform structures, with the
exception of some work on scattering from rough surfaces [1.15}. The main goal
of the work described in this thesis was initially to investigate the interaction of
focussed and unfocussed beams with surface plasmons on laterally non-uniform
structures, and in particular, to develop a microscopy technique based on this
principle. A principal part of this task was to develop a theoretical model which
would allow prediction of the resolution attainable with such a technique, and
analysis of the interaction of sensitivity ('vertical' resolution) with lateral resolution

and surface structure.

Microscopy using evanescent fields to obtain sub—wavelength resolution has
been investigated for some time, and is generally called near-field optical
microscopy [1.16],[1.17]. Figure 1.5 illustrates a typical configuration. A glass slide
is covered on one face by a 20 nm aluminium film in which there is a small
(typically 50 nm) pinhole. A HeNe laser beam is coupled into the slide, and a
conventional microscope objective focussed on the pinhole captures the scattered
light as shown. The sample is scanned laterally just below the slide, so that it
interacts with the evanescent field extending from the pinhole. The variation of the
scattered signal as a function of sample position is then used to create a scanned
image. Lateral resolution is in theory limited only by the pinhole diameter -
however, the signal drops rapidly as this size is decreased, so that signal-to—noise
ratio will be the practical limiting factor. In addition, the metal film must be thick

enough to be highly reflecting, and a pinhole smaller than the film thickness will



produce minimal field in the region of the sample (i.e. beyond the metal surface).

Scanned images have, however, demonstrated resolution better than 20 nm [1.16].
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Figure 1.5 A scanning near—field optical microscope, in which the object is
probed using the evanescent field extending from a sub-wavelength aperture in
a conducting film (from [1.16]).

More recently, a super-resolving probe microscope using surface plasmons has
been proposed by Wessel [1.18]. In this instrument, the probe would be a metal
ellipsoid of sub—wavelength dimensions, mounted on a transparent base. Light
focussed onto the base would create strong fields around the particle due to
resonant oscillations of its surface electrons. The interaction of these fields with a
sample in proximity with the particle would modify the light scattered from it, and
this -signal could be used to create a scanned image. The efficiency of coupling
into the plasmon modes would be very low, however, since the incident field shape
would be poorly matched to these modes. Reasonable contrast would therefore be
difficult to achieve. To compensate, Wessel proposes using this method to measure
highly non-linear phenomena, such as Raman scattering. Other than these
near—field techniques, the type of microscopy most similar to that described in this
thesis is perhaps acoustic microscopy, in which the generation of surface waves can

play an important role in generating contrast [1.19].

In this thesis, I will describe a method of imaging features on planar

structures, where surface plasmons can be generated with high efficiency using the



prism coupling methods described above. This method is of interest as a new form
of microscopy because it has a different contrast mechanism from that in
conventional optical microscopy, and will therefore give new information. There is
no suggestion that surface plasmon microscopy will offer improvements in lateral
resolution over conventional methods; in fact, the lateral resolution will tend to
somewhat worse, as we shall see. However, the high sensitivity of the measurement
indicates that substantial improvements in vertical resolution should be possible, thus
allowing the detection of features which do not otherwise produce contrast. This
should be possible with low optical power, and without vacuum or sophisticated
instrumentation. The initial experimental results reported in chapter four have been
published [1.20], and shortly afterward, similar results were reported by B.
Rothenhausler and co-workers [1.21]. Otherwise, I know of no other work being
done or having been done on this type of microscopy. The use of SPR for spatial
light modulation, which developed from the work on microscopy, is treated

separately in chapter five.



CHAPTER 2

PLASMONS ON UNIFORM SURFACES



2.1 Introduction

Plasmons on uniform surfaces have been extensively studied, and many of the
important theoretical results are well known. The derivations of these results,
however, are in most cases not reported, and those that have been published are
generally sketchy and difficult to follow, particularly where approximations have
been made. For this reason, this chapter will include derivations of important

known results relevant to this project, as well as some new analysis.

Surface plasmons are a type of guided electromagnetic wave; therefore the
starting point for our analysis is given by Maxwell's equations. These we can write

in their general form as :

VD = pg (2.1.1)

VB =0 (2.1.2)

WxE + 9B = 0 (2.1.3)
ot

vH - 3D = J; (2.1.4)
ot

Here E and H are the electric and magnetic field vectors, and D and B the
electric displacement and the magnetic induction, respectively. The quantities p; and
Js are respectively the free charge density and the current density due to free

charges.

Let us now introduce the definitions D=¢E and B=pH, where € and p are the
permittivity (e=1+x,) and permeability respectively. In addition, we will restrict
ourselves to fields having a sinusoidal variation in time. To write this time
dependence in exponential notation, we must choose a sign convention: we will set
the time factor to be e-¥Xt, so that a forward-going wave will have the form

ei(kz-0t), We can now rewrite the latter two of Maxwell's equations as:
WE - jupH = 0 (2.1.5)

WH + jweE

g (2.1.6)

The current is related to the electric field according to J; = oE, o being the
conductivity. In the linear regime, the conductivity will be a constant, but it need

not necessarily be real, as we will see later. Then (2.1.6) becomes:

VxH + (jwe-0)E = 0 (2.1.7)

10



It is now useful to introduce the complex permittivity, whch is defined as:
e®=e +jolw=1+x, + jolo (2.1.8)

This simplifies the analysis by allowing the conductivity and permittivity of a
material to be replaced by a single (complex) parameter. It will prove to be
convenient in later analysis if we take as our single parameter the relative complex

permittivity, or dielectric constant, which we will label ¢, and define as follows:

€ = gle, (2.1.9)
where €, is the permittivity of free space. (Note the difference in symbols: ¢ for
absolute and e for relative permittivity). We will also restrict ourselves to
non—ferromagnetic materials, where the permeability is approximately that of free
space (p,). Thus the relative complex permittivity e is the single parameter we

will use to characterize materials in the analysis that follows. That being the case,

the latter two of Maxwell's equations can be written in the form:

VxE - jop H =0 (2.1.10)
VxH + jwee E =0 (2.1.11)
Combining these gives:

VxVxH . _
}-5)?0. + ](g)ﬂ,oH =0 (2.1 .12)

Since V-H=0, we can substitute VxUxH=-V2H. Then:
VZH + wlee p H = 0 2.1.13)

This can be simplified using the equation for the speed of light ¢2 = 1/(e u ),

and by defining the free space wave vector, k:

k, = wc (2.1.14)
Equation (2.1.13) can then be written as:
VZH + ¢k ,2H = 0 (2.1.15)
This is one form of the electromagnetic wave equation for homogeneous media.

We will be concerned with structures consisting of one or more parallel planar
interfaces. We can use these interfaces as a reference by which to define our
coordinate axes and our principal polarizations. Any arbitrary field can be

considered as a linear superposition of two fields having the two orthogonal

principal polarizations. These we define as follows:

i) transverse electric (TE): E is parallel to the interface planes

1



ii) transverse magnetic (TM): H is parallel to the interface planes
Then we define our three axial directions:

i) & is normal to the interface planes

iil) § is in the direction of the field vector parallel to the interfaces (E for TE
mode, H for TM mode)

iii) 2 is parallel to the interfaces and perpendicular to §

Here, %, and 2 are unit vectors along the x,y and z axes.

2.2 Surface Waves on a Single Interface

We can define a surface wave as one that propagates along a surface or
interface, without radiating energy into the two bulk media. The confinement of
such a wave to the interface implies that the field intensity should approach zero
as one moves away from the interface on either side. Our goal is to look for

solutions to Maxwell's equations which satisfy these criteria.

Figure 2.1 Geometry for single interface structure.

The figure above shows the coordinate system for a structure consisting of two
homogeneous half-spaces which meet at the x=0 plane. The two media are
characterized by complex relative permittivities ¢, and e, as shown. We will

consider the two principal polarizations in turn.

First let us consider TM polarization. The H vector will be in the § direction,
and the E vector will lie in the %-2 plane. The vector equations (2.1.10) and

(2.1.11) now yield three scalar equations:

12



Ex - 2B - jup H=0 (2.2.1)
oz ox

—joee E, (2.2.2)

[

jwee By (2.2.3)

R

Plane waves are solutions to the wave equation, and in TM polarization have
the form:

H = H_exp[j(yx + 62)] (2.2.4)

(In general, we will omit the time dependence for the sake of brevity.) Such a

wave will satisfy (2.1.15), when:
v2+B2 = ek, 2 (2.2.5)

We will look for a surface wave field solution which has this form in both media:

Hy,explity,x + £,2)] x>0
[ (2.2.6)

Hoexplity,x + B,2)]  x<0

The relationships between the various parameters are determined using the two
boundary conditions, which arise directly from Maxwell's equations: the parallel
components of E and H must be continuous at the interface. The latter condition
is satisfied in (2.2.5) if we set H,,=H,, (henceforth H ), and B,=@, (henceforth
B). To satisfy the former condition we first obtain an expression for E,, using
(2.2.2). This yields:

E,==-i oJH (2.2.7)
wee, Ox

E, = YHo exp[ jlyx+62)] (2.2.8)
0)680

with ¢y and ¢ having the appropriate subscripts in the upper and lower media.

Continuity of E, now gives us the result:

Y =72 2.2.9)
€, €,

Expressions for v, and vy, are obtained from (2.2.5), giving:

(e,k,2 - B2)} (e,k,2 - B2)?

= (2.2.10)
€,

€4

13



Manipulation of this equation gives us an expression for the propagation vector f:

B _ [ €,¢ 3
= [?:_;%2] (2.2.11)

In order for equation (2.2.6) to describe a non-radiative surface wave, the
field amplitudes must drop to zero for large positive or negative values of x. This
means that the imaginary components of vy, and v, must be positive and negative
respectively. In order for this to be true, f/k, must be greater than both e, and
€,. However, (2.2.11) indicates that g/k, will be less than both values if both are
positive, and will be imaginary if both are negative. The condition for existence of
a non-radiative wave propagating along the surface, therefore, is that one of the
media must have a negative dielectric constant; in addition, the magnitude of this
constant must be greater than that of the positive e of the other medium. Taking

medium 1 to have a positive ¢, we can write this condition as:

€, < -, (2.2.12)

Let us now consider TE polarization. In this case, E will be in the y

direction and H in the x-z plane. Then equations (2.1.10) and (2.1.11) can be

written as:

My - H; + juee E=0 (2.2.13)
oz ox

SE = jouH, (2.2.14)
ox

OE = —jwp H, (2.2.15)
oz

These will give a wave equation for E in the same form as (2.1.15), and so we

can take for the form of E:

E jexp[j(y,x + 6z)] x>0
E = [ (2.2.16)
E jexp[j(y,x + Bz)] x<0

Here we have included the condition of continuity of E. To satisfy the continuity
of H, we use (2.2.14), from which we see that H, is proportional to yE. So we

can write:

v, =, (2.2.17)

From (2.2.5) we can see that equation (2.2.17) cannot be satisfied unless €,=¢€,,

which would mean the interface would not exist physically. Therefore we can

14



conclude that electromagnetic surface waves can only exist in TM mode, on the

surface of a material having a negative dielectric constant.

2.3 Waves in_Plasmas

The waves we are concerned with propagate on the surfaces of metals. At low
frequencies, metals do not have negative dielectric constants, but at high
frequencies, they can behave as plasmas, which do have negative dielectric

constants; thus the name surface plasmon. We shall now consider why this is so.

For our purposes we will consider a plasma to be a dilute gas of ionized
particles, having an equal concentration of positive and negative charges. Let us
call this concentration N, the number of charges, in units of the electron charge
‘e', per unit volume. Let us first examine the properties of bulk oscillations of

these charges.

—t(2)
= 4= = =+ =+ =4 = 4 = 4=
= = = = + = F =+ = 4 = -
= = = = + -+ =4 = = 4~
- = = = + -+ =+ = 4 = 4=
= 4= F = = + = = = = 4=
= 4= F = =+ =4 =4 = 4 = 4=

¥
N

‘Figure 2.2 Oscillations of free electrons in a plasma. The function £(z) gives
the displacement of electrons from their equilibrium position as a function of
that position (z).

As the masses of the positively charged ions are several orders of magnitude
greater than the electron mass, motion of the ions will be negligible compared to
that of the electrons. We will neglect both thermal motion and collisions. Let us
consider an oscillation in the z direction, as indicated in figure 2.2. The relative
displacement of the electrons as a function of position is given by £(z). If we
approximate our distribution of discrete electrons as a continuum, then the local

charge density, p, will be given by:

p = eN,dt/oz (2.3.1)

15



We can relate this to the electric field using the first of Maxwell's equations
(2.1.1); since our system is uniform in the x and y directions, the divergence has

only the z component, so we write:
edE/oz = p = eNdt/0z (2.3.2)

We can also relate the field strength to the electron acceleration in a

straightforward way:
—-eE, = m,32¢/dt? (2.3.3)

Here, m, is the electron mass. In this microscopic theory, we are treating the
metal as a collection of point charges in a vacuum, so the permittivity ¢ will be

that of free space. We now combine (2.3.2) and (2.3.3) to get:

e2N, 3¢ _ _ 3 9%

e, 02 | Oz a7 @34)
The solution to this equation is a temporally periodic oscillation, of the form
E=¢ (z)exp(—jwpt), where the frequency , is given by:
2
wp2 = ENe (2.3.5)

mee,

This is called the plasma frequency. Equation (2.3.4) gives no restriction on the
form of {(z); the dispersion relation is just the line W=wp, SO the group velocity is
zero, and no information or power can be transported by bulk plasma waves. The
value of W, depends only on the charge density. If we think of a metal as a
plasma of free electrons in a fixed matrix of positive ions, we can calculate its
plasma frequency accordingly; for most metals the value of w, will be in the near

P
ultra—violet.

In order to determine the complex permittivity of a plasma, we need to
calculate the conductivity. Again, we will consider the regime where collisions do
not play an important role. The acceleration of the electrons will then be
proportional to the field amplitude, according to (2.33), and the current density J
will be proportional to the velocity of the electrons:

J = —eN,dt/ot (2.3.6)
The conductivity is defined by o=J/E, so we get:

—eN (-jwt)
o= — (2.3.7)
-m, (-w2)/e

This we can simplify, using (2.3.5), to:



o= jeowp"’/w (2.3.8)

We can see, therefore, that in the absence of collisions, the current and field are
x/2 out of phase, so that the high frequency conductivity of a plasma is imaginary.
Combining (2.3.8) with (2.1.8) and (2.1.9), we can obtain the complex dielectric

constant of a plasma:
e =1- wp2/w2 (2.3.9)

We can see from (2.3.9) that for frequencies below the plasma frequency, the
dielectric constant is a negative real. This is what we require for a material that

will support a surface wave.
Collisions play an increasingly important role in the conductivity of metals as

the frequency is reduced; in the low-frequency ohmic regime the conductivity is

real, and the dielectric constant is consequently imaginary.

2.4 The Surface Plasmon

We have now seen that non-radiative surface waves can exist, with TM
polarization, at the surface of a material having a negative dielectric constant, and
that plasmas satisfy this requirement for frequencies below but near the plasma
frequency as given by (2.3.5). As metals have plasma frequencies typically in the
near ultra-violet, they will behave as plasmas at optical frequencies. In this work,
as in most of the published literature on surface plasma waves, we are concerned
with waves at the interfaces between metals and dielectric materials, excited at
visible or near-visible wavelengths. The quanta of these waves are known as
surface plasmons. Labelling the dielectric constants of the metal and dielectric as

€m and ey respectively, we can rewrite (2.2.11) as:

= €m¢ 3
B= Kk, [Tmm:%d (2.4.1)

For the dielectric, the index of refraction ny will be given by:
ng = eg? (2.4.2)

If e, is given by (2.3.9) then we can write (2.4.1) as:

2 -y 23
B = ngk, [Q;"T_gnz] (2.4.3)
e

We have now obtained an explicit dispersion relation for surface plasmons, which is
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shown in the figure below.

> B

Figure 2.3 Dispersion relation for surface plasmons. The straight line gives
the dispersion relation for light, in the dielectric, propagating in the z
direction.

Since the plasmon propagation vector is always greater than that of light in
the dielectric, the plasmon does not radiate into the bulk, and equivalently cannot
be generated by light incident on the surface, since it is not possible to phase

match along the interface.

In practice, collisions do play some role in the conductivity of metals at
visible wavelengths, so o does have a small real part, and consequently the
complex permittivity has a small imaginary part. It is this characteristic that makes
the propagation of plasmons lossy, which means that @ is complex. Let us write

the metal dielectric constant as:

m

€m = —€ + je, (2.4.4)

where e, and ¢, are both positive reals. Assuming that ¢,{e, we can obtain

r X
approximate expressions for the real and imaginary parts of (2.4.1):

€ €4 3 €x € € 32
£, [ ] ‘i [ ] (2.4.5)
0 € €

T €4 2¢,? r ~ €d

r

Here the real part gives the spatial frequency of the plasmon in the direction of
propagation, while the imaginary part is a decay coefficient, indicating the

absorption of energy due to collision losses in the metal.

18



2.5 Surface Waves on a Layer of Finite Thickness

In order to generate surface plasmons optically using the ATR method, one of
the two media must be of finite thickness, so that a third medium (the coupling
prism) can be introduced. We therefore need to determine how the propagation
vector B differs in a three—phase structure from that determined previously
(equation 2.4.5).

x=d

x=0

12
N

Figure 2.4 Plane boundaries separaie medium 2, of finite thickness d, from

semi-infinite media 1 and 3.

We begin the solution by assuming that the fields in each of the three media
have the form given by (2.2.4) and (2.2.5). Because medium 2 has finite thickness,
its field does not have to go to zero for large x. Therefore it can have field
components with both positive and negative v values. We can thus write the total
field as:

A explj(Bz + v,%)] x<0
H = B exp[j(Bz + y,x)] + C exp[j(fz —y,(x—d))] 0<x<d (2.5.1)
D explj(fz + v,(x—d))] x>d

Continuity of H at the two boundaries gives us:

A = B + C exp(jy,d) (2.5.2)
B exp(jy,d) + C =D (2.5.3)
We know from (2.2.7) that ¢E, is proportional to SH/Ox. Therefore, continuity of

E, gives us the following conditions:

B2- 22 B - C explivyd)) (2.5.4)
2

€4
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13—D = 12 B expliy,d) - C) 2.5.5)
3 2

Let us also introduce the quantities:

q = exp(jy,d) (2.5.6)
J = v,€,07,¢, (2.5.7)
K = yye,/y,€, (2.5.8)

We can now write our four boundary conditions as:

-A+B+qC =0 (2.5.9)
gB+C-D=0 (2.5.10)
JA-B+qC=0 (2.5.11)
—qB + C + KD =0 (2.5.12)

The solution of this set of homogeneous linear equations can be found by setting

the determinant of the associated matrix equal to zero. Thus:

-1 1 q 0
q 1 -1
1 q 0 = 0 (2.5.13)
-q 1 K
The solution to the equation can then be written as:
q2(J+1)(K-1) - (J-1)(K+1) = 0 (2.5.14)
_ J-1 K+
q2 = [_J-H }[_K-l ] (2.5.15)
Using our definitions for q, J and K, we can expand this equation to give:
. Yi€2 T V26, Y€z * 726,
exp(1272d) = (2.5.16)
Yi€2 T Y26, Ya€2 * V265

As the <+ values are all functions of B according to (2.2.5), (2.5.16) is a
transcendental equation for (3. We shall now be concerned with looking for its

solutions.

Because surface plasmons are studied using reflectivity measurements, it is
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useful to consider the relationship between the modal solution for the double-
interface system, as given above, and the reflection equations for the same system.
This we do by noting that the two factors on the right side of (2.5.16) have the
same form as the Fresnel reflection coefficients for plane waves obliquely incident
on boundaries between two half spaces. These can be written as [2.1] :
Yi€; T Yj€i
Iy = —_— (2.5.17)
Yi€; * vj€i
Here we use the labelling convention that r;; is the amplitude reflection coefficient
for a wave incident in medium i on the border with medium j (if both media are
semi-infinite). To rewrite (2.5.16) in terms of r values, we must consider the signs
of the < values. In the I equations, these would all be taken as positive for
waves incident in the +X% direction (up). The signs in (2.5.16) are for decay  away
from the boundaries, so vy, and <y, are positive and v, is negative. This means

we can rewrite (2.5.16) as:

exp(j2y,d) = (r,,ry,)" (2.5.18)

For a very thick middle layer, q2 will be approximately equal to zero, and
therefore the two solutions to (2.5.16) will be given by vy,e, = y,e, and y,e, =
—y,€,, These are just the single boundary solutions, as in (2.2.9), for each of the
two boundaries, noting that <, will have opposite signs in the two cases. If we
begin to decrease the thickness d, the two solutions will be perturbed from their
single interface values. We shall look for an approximate expression for this

perturbation, in cases where it is small. We shall also assume that e¢, and ¢, are

1
substantially different so that the two solutions are well removed from one another.
Let us consider the solution at the 1-2 boundary, which we will call g, and label

as A its deviation from the d=« solution 8., so:

Bo = B + AB where (B/ky)2 = €,€,/(e,te,) (2.5.19)

The approximation we will make is that in the vicinity of the 1-2 solution, the

function r,, is rapidly varying, whereas r,, and q are much more slowly varying;

23
therefore we can take the values of the latter two to be the same at B, as they

are at (.. Then we write:

Iy 7' = 1,4(Be) 9%(Bw) (2.5.20)

Assuming the perturbation of 8 is small, we can use the approximation §,2 = B2

+ 2B.AB. Then since y2 = ek 2 - §2, we can write:
¥,2 = €,kg2 = € €,/(e,%e,) ko2 - 26,8 (2.5.21)
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€,2/(e,+e,) k2 — 2B.A8 (2.5.22)

((e,/€,) = 28818y ) Bo? (2.5.23)

7.2

7.2
In evaluating the 4 expressions, care must be taken in choosing the signs of the
roots. We are using the convention that v, is negative imaginary, and both terms

in the brackets in (2.5.23) are negative. Taking the negative root, and using AB4S.

we get:
¥ = = (e4/€,)18, = (e,/€,)1A8 (2.5.24)
Similarly:

v, = (€,0€,)8B, + (e,/€,)3A8 (2.5.25)

In (2.5.24) and (2.5.25) the correct signs are indicated outside the roots. Inserting

these expressions in the reflection coefficient gives:

(e,6,)30 + €,(e,/€,)108 = (e,€,)3B, = €,(e,/€,)3A8
r, 7= (2.5.26)
(e,ez)fﬁm + e,(e,/ez)iAB + (e,ez)iﬂw + ez(ezle,)fAB

Again using AB¢B,, we obtain:

AR e,(e,/ez)’l‘ - ez(e2/e1)5

r,,”' = (2.5.27)
26, (e,€,)?
-1 _ 4B €,2 - ¢e.,2
l"z 1 = TB—; —-IWL (2.5.28)
r,,”' = - 4B (e,-¢,) k02/26m3 (2.5.29)

Using (2.5.20) and (2.5.29), we can now write an expression for the perturbation:

2k
AB = - °[

€€,

€,€

1

2 )3/2

P 62] r,, €xp(j2y,d) (2.5.30)
As we are mainly interested in the Kretschmann configuration, we will take the
middle medium as the metallic one, so that ¢, is given by (2.4.4). For the
purposes of the perturbation analysis, the imaginary part can be neglected, so that
€,=—¢,. The lower medium will be the dielectric e,=¢4=n42. We can also
approximate v, (as given by 2.2.5) as jsek, This gives:

2k, €q€r 13/2
a8 = [ ] exp(-2/ek d) 1, ,(Bx) (2.5.31)

€rteg €r€a

All the quantities in this expression are real except r which in the Kretschmann

32
configuration is the reflection coefficient at the prism/metal boundary for an infinite
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metal thickness. If 5, is real, which it necessarily will be in a coupling prism,
then the magnitude of r,,, as given by (2.5.17), is unity, and consequently r, is
only a phase factor. The real part of (2.5.31) gives the increase in the real part
of B, which will correspond to an increased coupling angle for optical excitation.
The imaginary part gives the loss due to radiation into medium 3 (the coupling
prism). This result is given without derivation in the original publication by
Kretschmann [2.2]; it is also found in the frequently referenced review paper by
Raether [2.3], but again it is not derived, and in fact contains an error in the

argument of the exponent (possibly typographical).

2.6 Optical Coupling Characteristics_for the Kretschmann Configuration

0 2
N

€

Figure 2.5 A plane wave, propagating at an angle 6 to the surface normal,

is incident on the boundary between media 3 and 2.

In the experiments conducted in this work, and in most of those reported in
the literature, plasmons are generated using light incident in a coupling prism on a
metallic layer of finite thickness (the Kretschmann configuration), as described in
chapter 1. The plasmon properties are determined by measuring the reflectivity at
the prism base as a function of incident angle. This is depicted in figure 2.5; a
plane wave in medium 3 (the prism) is incident on the metal film at an angle ¢
to the surface normal. If this incident angle is greater than the critical angle for
total internal reflection (sin6_=n,/n,), there will be no power propagated into
medium 1; consequently, any power not absorbed by the metal will be reflected

back into the prism, at an equal angle to the normal (Snell's law). The magnitude
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of the propagation vector of both the incident and reflected waves is npko, where
n, is the refractive index of the prism ( easnpz), and the parallel component of

this wavevector is given by B=npkosin0.

Using the labelling conventions defined previously in this chapter, we can

write the amplitude reflectivity of a three phase structure as [2.1] :

2
21 4 (2.6.1)

where the single interface reflection coefficients r;; are as defined in (2.5.17). This
equation will allow us to plot exactly the form of the reflectivity for any specific
combination of physical parameters. It does not, however, give us much insight on
the physics involved. What we will seek is an approximate equation in the vicinity
of resonance which will explicitly give the form of the coupling curve, and the

dependence of this form on the parameters of the system.

We will approximate r above by assuming, as we did in section 2.5, that q2
and r,, are both very slowly varying compared to r,,, and so approximate them

as constants. Let us also introduce the notation r; = zi{“ij’ where:

Zi T OYi T &Y (2.6.2)
nii S Ej'yi + fi‘Yj (2.6.3)
We can now rewrite (2.6.1) as:

*
2
r = n,, +z,,r., g r
2 32
n,, +z,,r5,4

(2.6.4)

Here we have used the fact that because the magnitude of r

*
32 °

. . -t =
32 IS unity, r,

r

It is n,, that goes to zero when f = B, so we will write n,, as an
expansion about f,. But first we must introduce some new notation. We have seen
that in the finite layer solution there are two decay mechanisms, absorbtion loss
due to collisions in the metal, and radiation loss into the prism. These are given,
respectively, by the imaginary parts of B, and AB. We will label these two
quantities I'; and T, respectively, while the real parts of 8, AB and B, we will

call B, AB, and B,. So we can write:
Bo ® B + AB = By + j(I; + T (2.6.5)

Bo B Bur *+ iT; (2.6.6)
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AB = AB, + T, (2.6.7)

For plane wave reflection, all amplitudes will be uniform in the Z direction, so 8

will be real. We will write it as an expansion about f,:
B=6a)r+p=ﬁoo+p—jri (2.6.8)
Let us now evaluate n,,. We begin by finding expressions for vy, and +v,. Here

we will use the approximation that both p and TI'; are small compared to B, so
that:

B2 & Bu? + 2B, (p - jI}) (2.6.9)

Then we can write:

= _ &€ — 2Bu(p=ily) 3
Y1 = Ko [ €, il ] (2.6.10)

We combine the first two terms in the brackets, and approximate the square root,

again using p<{B, and I<B, :

- € _ i Bo €, te
Y, = kg (—fu—*l;ﬁ [ 1 (p=ily) K,? —1—2612 ] (2.6.11)
And similarly:

= — € _ . Bo €,%e
Y2 = o Fet [ 1= (el g5 —;72] (2.6.12)

The minus sign appears in 4, because in the reflection coefficient we have to take

the same sign for both + values, and ¢, is negative. We can now write an

2
expression for n,, :

€€, ko . Bo  (e,%e;)(e,2-¢,2)
n,, =- —— (pjly) (2.6.13)
(fl+62)% ky? €,2 €,2
n,, =G (p - jiy (2.6.14)
where
€,2 — €,2
G=- — (2.6.15)
(e, €,)?
For z,, we can neglect the p and T terms, giving:
2¢,¢, k,
zZ,, = - — (2.6.16)
(€,+e,)?
_ €.e, 132, 2k
z,, = [61; ;2] 6 (2.6.17)
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This we can further approximate as:

= - [_¢q¢ 32 2kn
25 = - [ 'e,] o (2.6.18)

From this expression, and using (2.5.31), we obtain:
zy, 92 15, = -G (46 + jI}) (2.6.19)
Z,, Q2 T, = =G (48, - jIy) (2.6.20)
We can now rewrite the reflectivity equation (2.6.1) as:

p — il — AB, + jIy

r = Ty, (2.6.21)
p = jri - Aﬁr - jrr

Since p = B = By, and B, + AB, = B,, we can rewrite this as:
(B-B)-i -1
(B-6) - i +T))

r

52 (2.6.22)

We have now obtained a wuseful approximate equation for the reflectivity in
the vicinity of maximum coupling, from which the amplitude and phase behaviour
are directly expressed in terms of the incident parallel wavevector 8 and the two
loss terms I'; and T',. As most experiments measure the intensity of the reflected
beam as a function of angle, we need to obtain the intensity reflection coefficient
R

r*r. As the magnitude of r,, is one, we get:

(B -B)2 + (I} -T2
R = (2.6.23)
(B - B2 + (I + T2

4TT,
R=1- (2.6.24)
(B -B)2 + (I; + T2

The second term in (2.6.24) gives the dip in reflectivity due to surface plasmon
coupling, and indicates that its shape is Lorentzian. This is an approximation, as
we have seen, which will be most accurate when the resonance is sharp, i.e. when
the loss terms I, and I, are small. As the losses increase, the shape of the
reflectivity dip will become more and more a symmetrical. We can rewrite the
reflectivity in terms of the angle of incidence 6, using B=npk osind, and defining
the resonance angle 6, as the incident angle giving phase matching with the surface

plasmon (ﬁ,=npk05iﬂ9r)- Then we get:

4 T; Iy
R=1- — (2.6.25)
n;ku(sino - sin6 )2 + (I} + )2
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Although the reflected amplitude is probably the most important function for
most practical applications, it is also useful to know the behaviour of the other
fields, particularly the evanescent field in the dielectric medium, which we shall
henceforth call the plasmon field. We will now show how these functions can be
obtained. Let us begin by considering the structure of figure 2.4; this time we will
add an extra component to the fields, to represent the incident wave. The fields

are now given by:
A expli(Bz + v,%)] x<0

H = B exp[j(Bz + v,X)] + C expli(Bz — v,(x~d))] 0<x<d  (2.6.26)
D exp[j(Bz + v,(x—d))] + E exp[j(fz — y,(x-d))] x>d

Using the boundary conditions as in section 2.4, we obtain a matrix equation: °

-1 1 q O0 0 [ A ] 0
q 1 -1 A B 0
4q 1 K =K D 0
E
L

From this equation we can obtain relations between any two of the field amplitudes
by elimination; for instance, we can solve for D/E, which is equal to the
reflectivity r, and obtain an expression exactly equivalent to (2.6.1). We are
interested in the plasmon field amplitude as a function of incident amplitude, so
we solve for A/E. First, we add and subtract lines 2 and 4 of (2.6.27), giving

equations for B and C:

K-l K#H

_ KH_ K-
B = —ED -TqE (2.6.29)
Line 3 gives us JA=B—qC; inserting (2.6.28) and (2.6.29) gives:
A = { [(K+1) + q%(K-1)]D - [(K-1) + q%(K+1)]JE } /2q] (2.6.30)

If the coupling is not too strong, then q2 will be very small and we can neglect
the q2 terms in (2.6.30). Making the substitutions r=D/E and r,,=(K-1)/(K+l), we
obtain: '

A_K-1 (r _
E= 5T [Ez 1] (2.6.31)
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Near f=B,, J=l. In addition, we can manipulate our definition of r,, to obtain:
K-1 = 2r /(141 ,) (2.6.32)

From (2.6.22) we can obtain an expression for (r/r;, — 1). Inserting this, along
with (2.6.32) and J=1, into (2.6.31) gives:

r;.q! j2r,

Al (2.6.33)
E 1+ r32 (B-B[) - j(ri+rr)

This gives us the form of the rise in amplitude of the plasmon field at resonance,
corresponding to the drop in reflected amplitude. It is also interesting to consider

the intensity; we simply take the magnitude squared of (2.6.33) to obtain:

2 q-? 4r.2

r

= (2.6.34)
| 1+ r,, | (8-B)2 + (rpry)?

E

IA

This equation indicates the field intensity enhancement that can be obtained at the

surface of the metal using resonant optical excitation.

2.7 _Sensitivity to_Surface Parameters

As we have seen, the SPR curve takes the form of a sharp dip in the
angular reflectivity response, the shape and position of which depend on the optical
properties of the metal film and the dielectric material in contact with it. The
sensitivity of the SPR curve to these parameters can be calculated for specific cases
using the analysis presented in previous sections; however, it is useful to consider
whether there are any general reasons why SPR should be a particularly useful
sensing method. There are such reasons, and they can be relatively simply stated.
The plasmon mode is a type of guided wave, and as such has many properties in
common with guided modes in dielectric planar structures, which can also be
excited using prism couplers. An important difference, however, is that the plasmon
mode is guided by a single interface, and that most of the field energy is in what
can be considered the cladding of the waveguide. This means the field is accessible
for sensing purposes, much more than in most dielectric waveguides. The
propagation characteristics of the plasmon are thus strongly influenced by the

optical properties of this cladding region.

The prism coupled SPR measurement results in a strong enhancement of the
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field intensity, and as this enhanced field is evanescent, it can be confined to a
layer of thickness considerably less than a wavelength. Intensity gain could be
obtained with a Fabry-Perot type resonant structure, but the confinement of the
field would be less; consequently, a greater volume would have to be perturbed in
some way in order to get a measurable change in response. The use of dielectric
waveguides as sensors has been investigated in this research group [2.4], with
promising results. Because these guides have very low propagation losses, the
intensity enhancement can be much greater than with SPR, and the angular width
of the (phase) response can be made almost arbitrarily small by reducing the
coupling strength. The extent of the evanescent field in the cladding can also be
less than a wavelength, although more than half the field energy will be in the
core and the buffer region between the core and the coupling prism, and thus
unavailable for sensing. In the silver film SPR measurement (at 633 nm), more
than 99% of the guided field energy is in the accessible dielectric region. The
practical limitation on obtaining sharp resonances and intense fields with the
dielectric structure is this: the required lateral extent of both the coherence of the
incident beam and the uniformity of the structure, to excite low-loss modes,
increases with the modal propagation distance. As the guiding characteristics are
highly dependent on structural properties, this places stringent requirements on the
manufacturing precision for the guides. The plasmon structure is easier to construct;
it consists of a single evaporated layer, of a thickness to which the guiding
characteristics are not highly sensitive. Finally, SPR is inherently an amplitude
modulating technique, which is often more convenient for experimental purposes

than the phase modulation obtained with these other two methods.

If we examine equation (2.6.24), we see that the reflection coefficient will

only fall to zero at phase-matching (=0, if we satisfy:

r, =T, 2.7.1)

r 1

When this is true, the rates of energy dissipation by the propagating plasmon due
to intrinsic damping and reradiation are equal. I have found it useful to consider
the one-dimensional analogy of a transmission line coupled at its termination to a
damped resonator. In this case, the incident energy is completely absorbed if the
coupling strength is such as to double the loss rate of the oscillator (or halve its
Q). This means that, as above, the contributions to energy dissipation of absorption
and reradiation are equal. Thus we can think of (2.7.1) as an impedance matching
condition. It is this condition that is usually used to determine the metal film

thickness for an SPR measurement. For silver, with HeNe laser light incident at
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633 nm, the thickness giving zero reflection at resonance is about 560 angstroms, a

figure often repeated in the literature.

We will now examine some examples of the influence of various parameters
on the SPR curve. In the course of this work, a computer program was written to
calculate the reflectivity of a multi-layered system. This was done on an IBM PC
using the Pascal language, and the calculations were performed using the method
described by Hansen [2.1] and Abelés [2.5]. This is a matrix method which is
commonly used, for instance, to design anti-reflection coatings. It assumes that the
media are homogeneous, linear and isotropic, and that the interfaces between them
are planar, parallel, and infinite in extent. The program is called OPTO; it
calculates amplitude, phase and power reflectivity, and plots field profiles, and was
used to generate many of the figures in this thesis, including all those in this

section.

42.5 Angle of Incidence (degrees) 43.5

Figure 2.6 SPR curves for an Ag film, with various thicknesses as indicated,
between a prism of index 1.52 and air. ( 2x/k, = 633 nm, ¢, = -16+j0.53 )

Figure 2.6 shows the SPR curves for several thicknesses of silver film in the
Kretschmann configuration. As the thickness is reduced, the coupling gets stronger,
and consequently the resonance broadens. At one particular thickness, as predicted
by the equations, the reflectivity minimum falls to zero. As the curves were
calculated without making the approximations needed to obtain (2.6.24), they are

not exactly symmetrical. Part of this asymmetry, however, is simply due to the fact
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that the curves are plotted as functions of angle, while our equations have been in

terms of B, which is proportional to siné.

Figure 2.7 shows the very high sensitivity of the SPR response to surface
properties, in particular to adlayers (thin layers of dielectric deposited on the Ag
surface). For a small perturbation, the best indication of sensitivity to some surface
parameter is the angular shift in the resonance caused, compared to the resonance
curve width. Even with high noise levels and simple instrumentation, it should be
possible to measure quite easily a resonance shift of one tenth of the width at
half-maximum. The curves shown indicate that such a shift would be produced by
about an angstrom adlayer thickness. With a more precise measurement, it should

be possible to improve this figure by at least an order of magnitude.

1.0 |
0A—
5A
104
(o]
42.5 Angle of Incidence (degrees) 43.5

Figure 2.7 SPR curves for a 550 A Ag film, with various thicknesses as
indicated of a dielectric coating of index 2.0. Other parameters as for figure 2.6.

The criterion of zero reflectivity is almost always used, in experimental work
reported in the literature, to choose the metal film thickness. This allows, of
course, the highest possible contrast in an intensity measurement, but it is not
obvious that this should also give the highest possible sensitivity. For a very small
perturbation of the system, the most sensitive detection method would be to have
light incident at the angle of highest slope on the resonance curve, so that a small
shift in resonance position gives the maximum signal change. Therefore 1 have

calculated the effect of coupling strength (metal thickness) on the slope of the
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resonance curve, and used this calculation to derive a new condition giving

maximum sensitivity.

For convenience we will determine the slope as a function of (8, rather than
angle. Then we can use (2.6.24) directly, and write:
8T (B-8)

oR/OB = (2.7.2)
(B - 6)2 + (I} + Y22

To determine when this slope is maximum, we take the second derivative and set

it equal to zero. This gives:

3R (B = B)? + (I + T2 - 4(8 - B,)?

— =81 T, =0 (2.7.3)
op2 (B - B)2 + (7 + )3

This equation is satisfied if:

(; + )2 =3(8 - B)?2 (2.7.4)

Let us label the slope R”; the maximum, which we will call R” , is obtained by
combining (2.7.2) and (2.7.4). This gives:

3 T,
Ry = —m8M — (2.7.5)
2(r; + I3

If we now take the derivative of this function with respect to I',, we will obtain
the relationship between I'; and I', that maximizes the slope.

aR/m 3 ./3 ri( l"i + Fr) - 3!“1 Fr
= =0 (2.7.6)
ar 2 (r; + )2

r

The optimum coupling to maximize sensitivity, therefore is obtained by satisfying

the criterion:
r, =Ty2 (2.7.7)

Expressions for I'; and I', are given by the imaginary parts of (2.4.5) and (2.5.31)
respectively. Since I', falls with thickness as e—d, the difference in the thicknesses
needed to satisfy each of the two criteria is not great; the increase in slope
obtained in going from the zero reflectivity to the maximum slope condition is on /
the order of 5 to 10%.

The table below lists optical constants for several metals, at the frequency of
the 633 nm HeNe line, obtained from reference [2.6]. Also listed are the
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thicknesses needed to satisfy the criteria of zero reflectivity and maximum slope,
given by d, and d, respectively. In practice, the optical constants of thin metal
films will vary somewhat in manufacture, due to grain size variations, impurities
introduced during evaporation, and possibly other effects; they are also temperature

dependent. Remembering that e, = -¢, + je,, we have:

r

Metal € €x d, d,
Ag 16.9 0.55 560 640
Au 11.0 1.35 505 610
Cu 11.9 0.99 540 640
Al 39.6 14.7 145 200

Table 2.1 Complex relative permittivities for various metals, at 2x/k, = 633

nm, and optimum thicknesses (in angstroms) for zero reflectivity (d,) and

maximum SPR slope (d,).

The validity of the d, values is indicated by figure 1.4. Figure 2.8 shows SPR
slope curves, also calculated using OPTO, for several thicknesses of each of the

four metals above.
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42 Angle of Incidence (degrees) 4“ 43.0 Angle of Incidence (degrees) 45.0
a) silver b) gold
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| I
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B 2004 ]
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1 o L
43.0 Angle of Incidence (degrees) 45.0 41.%: Angle of Incidence (degrees) 3.

c) copper d) aluminimium

Figure 2.8 Calculated SPR resonance slopes (dR/d@), in units of degrees-?,
for the metals described in table 2.1, with thicknesses as indicated. Other
parameters as in figure 2.6. Note the different vertical scale for silver.
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2.8 Phase Considerations

The approximation we have derived for the amplitude reflectivity gives us the
phase change on reflection as well as the amplitude. If we manipulate equation
(2.6.22) we can obtain the real and imaginary parts as follows:

B - )2 + (- T,2?)

Re{r/r,,} = (2.8.1)
(B - B)2 + (I} + 12

ar, (B - By)
Im{r/r,,} = (2.8.2)
(B -B)2 + (I +T1))2

Calling the phase change on reflection p, we obtain:

2, (B - B
¢ = tan! + 93, (2.8.3)
(B - B2 + (-T2

where ¢, is the phase change on reflection from an infinite metal thickness, i.e.:

ry, = exp(jp,,) (2.8.4)

We can see from the equations above that Im{r/r,,} will always cross through zero

at B=f,; Re{r/r,,}, however, will only be zero at this point if I';=T',, giving zero

reflectivity.
180
1
r&
\/ 5003
— 5504 =]
—5004
-180 I
42.5 Angle of Incidence (degrees) 43.5

Figure 2.9 Phase change on reflection from a silver film, with thicknesses as
indicated (values of parameters as in figure 2.4).



Figure 2.9 above shows examples of the phase response of a silver resonance,

for various film thicknesses, calculated using OPTO. The vertical offset is due to

Paa-

It is instructive to consider the derivative of (2.8.3); this will give us an
indication of the sensitivity of a phase-based measurement, and will also allow us
to calculate the Goos—Haenschen shift. If the system is undercoupled (I',<T;), so
that Re{r/r,,} remains positive, then the function (2.8.3) is reasonably well
behaved, in that the phase remains within the range (-x/2,x/2), and we can use
the usual form for the derivative of tan—'x, which is 1/(1+x2). Let us introduce

two new variables for convenience:

A=T;2 -T2 (2.8.5)
v =8 -6 (2.8.6)
Then we can obtain, for A>0 :

By ar, (A = »?)

—_= (2.8.7)
o (r2+A)2 + (2l )2

The maximum slope will be at the resonance angle »=0, where:

(ada.-)o = 2 /A (2.8.8)

This equation indicates that for exact matching (A=0), the slope of the phase
change at resonance goes to infinity. This is because the imaginary part changes
sign while the real part is zero. One might conclude that this offers a chance for
an experimental measurement of unlimited sensitivity; however, there are two
factors which limit this possibility. The first is that the high slope is associated
with a signal of vanishing amplitude, so in practice the sensitivity of the apparatus,
and the signal to noise ratio, will limit what can be achieved. Secondly, the high
slope will only occur over a very limited angular range, and so to achieve it one
would need a beam of equally narrow angular width. In practice, this would mean

both coherence of the beam and uniformity of the film over large lateral distances.

For the undercoupled case above, the phase shift reverses direction twice,
finally returning to its original value. For the overcoupled case where Refr/r,,}
goes below zero, the phase change is monotonic, with a 2x change over the whole
resonance. In figure 2.10 below, the same phase scale of —x to +x is used for all
plots, so that an artificial discontinuity appears in the overcoupled case. The three

cases plotted correspond to slightly undercoupled, well matched, and slightly
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overcoupled. Both the phase change and the real and imaginary parts of the
reflectivity r are shown. In the well matched case there is an abrupt phase change

of =«.

180 0.1

/ 552.7

550.78

548.78

— |

| |
-180 =0.1
42.91 Angle of Incidence (degrees) 42.93 42.91 Angls of Incidence (degrees) 42.93

(a) (b)

Figure 2.10 Detail of (a) phase change ¢ and (b) real and imaginary parts
of r, for silver thicknesses as indicated.

The Goos-Haenschen shift describes the apparent lateral displacement of a
beam of finite width, upon reflection from some structure. If we call the lateral

shift (along the surface) z,, then this is given by [2.7] :
z, = (agolao)l(npkocoso) (2.8.9)

The sign is opposite from that in the reference because of our different sign
convention for the exponential notation (see section 2.1). Since v=npk oSiné—B,, then
0v/30 = nykcosf, and using 3p/30 = (3p/Or)(3r/36), we get:

z, = 2IJ/A (2.8.10)
Using the approximation A = IN2-T,2 = 2I(T-T,), we get:
z, & 1/(IT,) (2.8.11)

(Note that as these expressions use (2.8.8), they are also only valid for A>0; the
corresponding equations for A<0 are similar but with the sign reversed so that they

also give a positive shift).
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2.9 Multi-Modal Systems

The Kretschmann configuration will, as we have seen in section 2.5, support
two guided modes; if one medium is a coupling prism, the only mode that can be
excited is the one on the low-index side of the metal, as the propagation vector
of the plasmon mode on the prism side will be too high. Thus for the purposes of
the prism coupled experiment, we are effectively dealing with a single mode
waveguide. More complex structures, however, can support multiple modes with
different characteristics; in particular, we can generate plasmon-like modes which
have much lower loss (and thus greater propagation lengths) than the basic surface
plasmon. These low-loss modes are of interest because of the potential increase in

sensitivity, due to the sharpness of their resonance curves.

There are two main categories of plasmon-like modes, which we shall consider
in turn. The first is produced by the coupling between modes on similar surfaces.
In our treatment of the finite layer problem in section 2.5, we assumed that the
indices on the two sides of the metal were sufficiently different to ensure that the
two surface modes acted quite independently. If we considered instead a
symmetrical system, such as a finite metal layer bounded on both sides by air,
then this would no longer be the case. The solution would now consist of two
guided modes both having an equal amount of field energy in the two dielectric
media, but with the phase on the two sides being equal in one mode and opposite
in the other. These modes are called symmetric and antisymmetric. One will have
a greater proportion of field energy in the metal, and thus will have both a higher
value of # and a shorter decay length. The low loss mode can have a propagation
distance many times greater than that of the single-interface plasmon, although that
of the high loss mode will be correspondingly reduced. For this reason they are
frequently referred to in the literature as long-range and short-range surface
plasmons [2.8],[2.9].

In order to excite these modes, we can introduce a coupling prism at some
distance from the metal film on one side, as depicted in figure 2.11(a). Figure
2.11(b) shows an example of the sort of resonance curve that results from this
configuration, with one sharp and one broad resonance, calculated using OPTO.
Figure 2.12 shows calculated field intensity profiles for the two modes. In the
higher loss mode, the intensity is zero at the center of the metal, indicating that

the fields on opposite sides are out of phase.
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Figure 2.11 (a) Configuration for optical excitation of long-range and
short-range surface plasmons; (b) angular resonance curve for a 450 angstrom
silver film in such a configuration, with an air gap of 0.85 microns.
(2x/k ;=633 nm)
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Figure 2.12 Field intensity profiles for the two resonances indicated in figure
2.11(b). The value plotted is the magnitude squared of H, normalized to an
incident amplitude of H=1. Position is measured relative to the prism base,
with dashed lines indicating boundaries between media.

The other method of obtaining plasmon-like modes with long propagation
distances is by having a structure like a dielectric waveguide, but with one or both
of the guiding boundaries being a metal surface. Thus we obtain a guided mode
where part of the field is not evanescent. The simplest way to produce these
modes is by placing a dielectric layer of sufficient thickness between the metal and
air in the Kretschmann configuration. Such a system is illustrated in figure 2.13(a),

the resulting resonance curve (calculated) is shown in figure 2.13(b), and the field
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profiles for two of the modes are shown in figure 2.14. The effective index (f/k )
of the plasmon mode is greater than the index of the dielectric layer, since almost
all of the field will be in this medium. Between the critical angle and the plasmon
resonance angle are seen a number of very sharp modes. These modes are
evanescent in the silver and air, but periodic within the dielectric. The thicker this
dielectric layer, the more such modes will be supported, just as in a conventional
slab waveguide which is bounded by lower index dielectric materials on both sides.
The propagation lengths of these modes can be orders of magnitude greater than
that of the simple plasmon mode.

)

metal film

dielectric layer

ng

n=

|
]
30 Angle of Incidence (degrees) 70

(a) (b)

Figure 2.13 (a) Configuration for plasmon-like modes in a dielectric slab
waveguide; (b) angular resonance curve for a 550 angstrom silver film in such
a configuration, with a 2 um dielectric layer of index 1.38. (2x/k,=633 nm)

S0

AU

=5000 Position (angstroms) 30000

Figure 2.14 Field intensity profiles for two of the modes indicated in figure
2.13(b) (position measured relative to the prism base).
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While both these mode types suggest possibilities for tremendous sensitivity due
to the very sharp angular response, there are several limitations. Firstly, as in the
case of the sharp phase response discussed in section 2.8, a narrow angular
resonance requires high uniformity of the beam and structure over a large lateral
extent; manufacturing and experimental considerations will thus place a limit on
what can be achieved in this way. Even without this requirement for lateral
uniformity, all these structures are more difficult to fabricate than the basic
Kretschmann stucture. Also, in this particular project, we are concerned with
measuring spatial variation, and thus we must consider the effect on lateral
resolution of long propagation distances. This topic will be discussed in detail in

chapter 4.

From the point of view of sensing in general, these special modes have an
additional drawback, which is that less of the field is in the region where sensing
occurs, and thus the modes are likely to be less affected by changes within this
region. In the slab waveguide modes, most of the field is within the dielectric
layer, as we have seen, while in the long-range surface plasmon about half the
field is in the air gap between the prism and silver. However, it may be that a
low-loss mode offers higher sensitivity despite this consideration, and indeed that
the most sensitive method might be a phase measurement using a dielectric

waveguide, which has effectively no absorption losses [2.4].

41



CHAPTER 3

PLASMONS ON NON-UNIFORM SURFACES
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3.1 SPR Measurements Using Focussed Beams

The SPR reflectivity equations we derived in section 2.6 are for plane waves,
which cannot in practice be individually obtained. However, any field within a
uniform medium can be described as a unique angular spectrum of plane waves.
We shall only be concerned with monochromatic fields, for which the angular
spectra will in general be complex functions of two parameters (the three angular

components of the wave vector being related by the wave equation).

Let us consider the incident beam shown in figure 2.5. In the prism (medium
3), plane waves will all have propagation vectors of magnitude npk o- If we restrict
ourselves to a two dimensional approximation, where both the system and the
waves are constant in the § direction, then the direction of the plane wave
propagation vectors can be described by a single parameter; this could be the angle
6, or equivalently the Z component (. Let us take as our phase reference the
point (z=0, x=d), and call the angular spectra of the incident and reflected beams

A;(6) and A (6) respectively. Then we can write:

A(-8) = r(0) Ay(6) (3.1.1)

where r(6) is the angular reflectivity function, given by (2.6.22) with B=npk ;sind.

We can now calculate the effect of measuring the SPR reflectivity curve with
a spatially confined beam, i.e. one with an angular spectrum of non-zero width.
We will start with a beam having a fixed angular spectrum about a direction 6,
which will be the angle of the axis of the beam to the surface normal. If we then
rotate the prism relative to the beam, we will vary 6. while keeping the relative
angular spectrum A;(6-6.) constant. If we measure the resonance curve by
collecting all the reflected power in a detector, we will obtain the power
reflectivity as a function of the axial incident angle 6. We will call this total
reflectivity R,(6_). Since power is proportional to the modulus squared of the

amplitude, we can write:

x/2
. [ R(8) A(6-6.) A*(6-0.) dé
(3.1.2)

R(6) = —73
0[ A[(6-6,) A*(6-0,) do

where R(#) is the modulus squared of the amplitude reflectivity function, and is
given by (2.6.25).
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Equation (3.1.2) tells us that the total power reflectivity is given by the
convolution of the plane wave reflectivity with the modulus squared of the incident
angular spectrum. The most important consequence is that the resonance curve is
broadened, which results in loss of sensitivity, and that this broadening increases
with increased angular width of the incident beam. This also gives a condition on
the extent of the illuminated area. The amplitude distribution at the metal surface
will be given by the Fourier transform of the incident angular spectrum; thus the
angular width increases as the size of the spot illuminated decreases. If we write
the spectrum in terms of (f-B.) rather than (6-6.), and label as a;(z) the
amplitude of the incident beam at the prism/metal interface, then

npk0
3(2) = exp(iB2) J AL(B-B,) expli(B-B)z] 4B (3.1.3)

The amplitude reflectivity function, as given by equation (2.6.22), also is associated
with a characteristic length; its Fourier transform is a decaying exponential of the
form exp[—(I';+I)z], as we shall show in section 3.3. Thus the total reflectivity
(3.1.2) is the convolution of the magnitude squared of two functions, which are
related to the illuminated area and the decay length 1/(I+I)) respectively. The
implication is that to keep the angular beam width low enough to avoid broadening
the resonance significantly, the illuminated area must be greater than the

characteristic plasmon decay length.

We can think of this requirement on illuminated area in terms of interaction
length. The basis of sensing measurements using guided waves lies in determining
the propagation vector of the guided mode with the maximum possible precision;
this precision is proportional to the length over which the exciting field and the
guided mode interact coherently. In the case of SPR, the maximum coherence
length of the plasmon mode is its decay length; this gives a maximum precision in
the measurement of  which is proportional to the resonance width. If both the
exciting beam and the structure are uniform over at least this lateral distance,

maximum sensitivity can be achieved.

We will now consider the resonance broadening effects on incident beams with
specific angular spectra. By assuming that the plane wave resonance is very sharp;

we can make the approximation:
sin6 - sing, = (8 - 6,) cosd O i (3.1.4)

If we define a as the angular half-width of the plane wave resonance, then we
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can write:

R(e) =1 - —22 - | (3.1.5)

X2 + g2
where x = 6 - 6, and the constant « is given by:

4arr,

2 = (3.1.6)
(npkocoser)2

We now introduce two new variables:

us=sé6 -6, (3.1.7)

y=6-6=x-u (3.1.8)

remembering that 6. and 6, are the axial incident angle of the beam and the
resonant coupling angle respectively. We will take as our first example a

rectangular incident angular spectrum of half-width b :

A b
Aly) = { 0 Iyl < (3.1.9)

0 lyl > v
Inserting (3.1.9) and (3.1.5) into (3.1.2) gives:

u+b o2

A - )
R,(u) = b = (3.1.10)
A0 I dx
-b
from which we obtain:
_ . _ @2 _;utb _u-b

Ryu) = 1 E[ tan-1=> - tan-122 | (3.1.11)
: . . finite begm . . .
The angular half-width of this resonance, which we will label u,, will be

the value of u for which the bracketed expression in (3.1.11) has half the value it

has at u=0. This we can write as:

tan-1‘in:—b - tan—1% ;b = tan-'(b/a) (3.1.12)

Introducing the normalized variables vy = b/a and v = u /a, we have:
tan~'(v+y) - tan~'(v—y) = tan-'(y) (3.1.13)

This is a transcendental equation for the normalized broadened resonance width v.
In the limits of very narrow and very wide incident beams, we can use Taylor

expansions to obtain the following approximations:
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v=1+ 423 where y{1 (3.1.14)

v=9«+1/2y where )1 (3.1.15)

These expressions agree with the expected result; for a very narrow incident
angular spectrum, the resonance width is only slightly greater than the plane wave
ideal, while for very broad incident angular spectra, the resonance is slightly

greater than the beam width. Another approximation,
u, = (a2 + b2)} or v = (y2 + 1)} (3.1.16)

was found empirically which fits (3.1.14) and (3.1.15) quite well, and can be used
over the entire range of 5. This function was found to fit the numerical solution
of (3.1.13) to a maximum error of 1.5%. Figure 3.1 gives a comparison of the

three approximations to the numerical solution of (3.1.13).

normalized resonance width (u/a)

1
(o}
0 normalized beam width (b/a) 3.0

Figure 3.1 Normalized resonance half-width, as a function of normalized
beam half-width, for a rectangular incident angular spectrum, using the
approximations: a) v =1 + y2; b) v=94 +1/2y; c) vZ = 42 + 1;

Exact numerical solution is also plotted, but is indistinguishable from (c).

We can relate the resonance broadening to the illuminated area in the
rectangular beam case using equation (3.1.3). If the angular half-width of the beam
is b, then using (3.1.4) we obtain a width in terms of B of (npkocoso)b. The
amplitude at the prism base will be the Fourier transform of a rectangular

function, which is a sinc function:

a;(z) = agexp(jB.z) sin(npkocose bz)/z (3.1.17)
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Let us characterize the illuminated area by a spot radius z, within which half the

incident power falls:

Z, <
sin2(By2) 4, - 1 | sin2(Bg2) . (3.1.18)
: z2 2 o z?

where B, = (npkocoso)b. The second definite integral can be found in tables [3.1]
to have a value of =B /2. By setting the first integral equal to xg8 /4, we can

obtain a numerical solution for z_, which is:

0!

z, = 0.85/f, (3.1.19)

To obtain a relation between z, and the angular width b, we will assume typical

values of n, = 1.52, k, = 2%/0.633 pym=1, and cosf = 0.7; then we get:
z, = 0.08/b pm/rad = 4.56/b pm/degree (3.1.20)

Combining (3.1.20) with (3.1.16) gives a relation between focussed spot size and

resonance width:
u, = (a2 + (4.56/z, deg/ym)? )} (3.1.21)

In figure 3.2, this is plotted for several values of the plane wave resonance width
a.

. resonance width u (degrees)

finte bem

° 1
o illuminated half-power radius (um) 40

Figure 3.2 Effective resonance half-width u,, as a function of focussed spot
radius z,, for a rectangular incident angular spectrum, plotted for several
values of plane wave half-width ¢ as indicated.
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Another important example is that of a Gaussian incident angular spectrum.

This we will write as:
Ay(y) = A, exp(-y2/b?) (3.1.22)

The total reflectivity will now be given by:

x/2-6 o2
AO [1 - W] exp(-2(x-u)2/b2) dx
R,(u) = - (3.1.23)
A, | exp(-2y2/b2) dx
=%/ 4

In this case the half-power half-width u, of the resonance will be given by:

x/2-0, x/2-0,
exp(—2(x—u_)2/b2) _ 1 exp(-2x2/b2?)
X2 T 82 dx = 2 X2 + a2 dx (3.1.24)
~r —Ur

The illumination amplitude is obtained using (3.1.3), and will also be Gaussian:
a;(z) = aexp(-z23,2/4) (3.1.25)

with, again, B, = (npkocoso)b. Consequently, the half-power spot radius can be

obtained from:
ZO ©

[exp(-2,26,22) dz = 172 | exp(-z,26,22) dz (3.1.26)
0 0

This was also solved numerically to give:

z, = 0.675/8, (3.1.27)
Using the same assumptions as for (3.1.20), this gives:

z, = 0.064/b pm/rad = 3.66/b pm/degree (3.1.28)

Equation (3.1.23) cannot be solved explicitly, but a numerical solution was
performed. This was found to agree to within about 5% with the approximation

given by (3.1.16), which combined with (3.1.27) can be written as:
u, = (a? + (3.66/z, deg/pm)2 )} (3.1.29)

To quantify the resonance broadening effect, we will examine the half-power spot
radii for which the resonance width is double its plane wave value, i.e. u, = 2a.
We can obtain expressions for this value, which we will call p, directly from
(3.1.21) and (3.1.28):

p = 2.63/a (pm/deg) (rectangular incident spectrum) (3.1.30)
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p = 2.11/a (pm/deg) (Gaussian incident spectrum) (3.1.31)

These values give a rough indication of the lateral resolution that can be obtained
in an SPR measurement without too much loss of sensitivity. A table of examples

is given below.

a p (pm)

(degrees) rectangular Gaussian
0.1 26 21
0.2 13 10
0.5 5 4

Table 3.1 Half—power illuminated spot radii for which the effective resonance
half-width u, is twice the plane wave resonance half-width a, for several
values of a, and for both rectangular and Gaussian incident angular spectra.

3.2 _AC Circuit Analogy

z=0 z=]

zZ

Cc

] !
| i
] I
Z, I I
] |

AN — /rrn\—l
Figure 3.3 A transmission line of impedance Z; is coupled to an L-R-C
oscillator via a length ! of coupling line with imaginary impedance Z_.

In our analysis of surface plasmons, we have assumed the system is uniform
in time and in the § dimension, as is usual in the literature, and thus the problem
is two dimensional. It has proved very useful, in gaining physical insight to this
problem, to compare it with the one-dimensional, time-dependent analogy of an
electrical transmission line coupled to a damped oscillator, as depicted in figure
3.3. We can show that the equations governing the behaviour of such a circuit are
very similar in form to those derived in chapter 2, and consequently the transient
behaviour of the circuit can provide inspiration for treating the spatially

non-uniform surface plasmon problem.

To obtain evanescent coupling, we use a length I of transmission line having

an imaginary impedance Z_, and an imaginary wavevector k. The line in which
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the signal is incident has a real impedance Z; and a real wavevector k; Both the
line and the coupling line will support forward— and backward-going waves; if we

leave out the time factor exp(—jwt), we can write the voltages as:

v

A exp(jkz) + B exp(-jk;z) (3.2.1)

V,

c

C exp(jk.z) + D exp(-jk.z) 3.2.2)
and the currents as:

Z, = A exp(jkz) - B exp(-jk;z) 3.2.3)
Z 1. = C exp(jkz) - D exp(-jkz) (3.2.4)
Continuity of I and V at z=0 gives the conditions:

A+B=C+D (3.2.5)
Z(A - B) = Z(C - D) (3.2.6)
The boundary condition at Z=[ is:

V(Y1) = R = juL + jloC (3.2.7)
We now define two new quantities:

w, = 1/(LC)} (3.2.8)
q = exp(jkJl) (3.2.9)
Then we can write (3.2.7) as:

Cq2 + D

Cq2 - D

We are interested initially in two aspects of the circuit response: the resonant
frequency and damping rate for the undriven case, and the frequency response of
the reflectivity for the driven case. Let us first consider the undriven case, where
A=0. Equations (3.2.5) and (3.2.6) now give:

B=C+D (3.2.11)

B

Z/Z, (D - C) (3.2.12)
Which we can combine to give:

C_.ha-% =-_g (3.2.13)
D Z +Z,
where r). is the reflection coefficient at the Z=0 junction for an infinite coupling
length I. We have stated that Z_  is imaginary; we will call its magnitude p, so

that:
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Z =jp (3.2.14)
where p is real. We will also introduce a new variable », where:
v E W - W, (3.2.15)

and make our first approximation: that we are concerned with a small range of

frequencies, such that:

w2 - w,? = 20, (3.2.16)
We can now write (3.2.10) as:

p [:‘fi] = » + jR2L (3.2.17)
2L 1 + rq? o
For weak coupling, q2€1, so we can make the approximation:

v € (p/2L) [1 - 2r, q?] - jR/2L (3.2.18)

Equation (3.2.18) gives the devation of the oscillation frequency from that of an
undamped, uncoupled oscillator; using the notation of chapter 2, we will have three
terms to this deviation: a decay constant I'; due to internal losses, a decay constant
I, due to coupling losses, and a real frequency shift 5 due to coupling. These

three terms will be given by:

r; = R/2L (3.2.19)
I = (p/2L)q2Im{r } (3.2.20)
6 = (p/2L) [1 - 2q2Re{r; }] (3.2.21)
where:

w=a - jiy+T) (3.2.22)
W =, +8 (3.2.23)

The next step is to determine the reflection coefficient as a function of

driving frequency, which will be defined as:
r(w) = B(w)/A(w) (3.2.24)
From (3.2.5) and (3.2.6) we can obtain:

2C

Al + ZJZ) + Bl - ZJZ) (3.2.25)

2D

Al - ZJZ) + B( + ZJZ) (3.2.26)

Using B/A = r, we can combine (3.2.24) and (3.2.26) to get:
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c_1l-ns (3.2.27)

D r-r

By inserting (3.2.27) into the final boundary condition (3.2.10), we can obtain:

= » + jRAL (3.2.28)

0 T -1+ q%(l - )
it [

r=rn. - q%(1 - )
Because r), will have unit amplitude, rlc* = r).~'. Using this result, we can obtain

from (3.2.28) an expression for the reflectivity; after some quite involved algebra,

which we shall omit, we can obtain:

r _ lw-e)+ilh - ) (3.2.29)

Tie (@ = w) +j[; + 1Y)

This has the same form as the surface plasmon reflectivity function give'n by
equation (2.6.22). The power reflectivity will also have the analogous form:
4T; I,

R=1- (3.2.30)
(w = w)2 + (I, + )2

The condition for zero reflection is the same as in the plasmon case: I'; = T,.
It is also useful to derive, as we did in chapter 2, an expression for the
resonant amplitude as a function of driving frequency. This we will call ¢, so:

V(z=l1)

t= =

= Dq-'/A (3.2.31)

The derivation of t is similar to that described above for the reflectivity, and the

result is:

t = -n, [Zl + Z‘i i (3.2.32)
q Z (0 = ) + j(I5 + 1)

This, again, is has the same form as the surface plasmon equivalent, equation
(2.6.33).
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3.3 A Diffraction Theory for Surface Plasmon Microscopy

This section will present a theoretical model for the analysis of the interaction
of an incident beam of finite extent with surface plasmons on a non-uniform
surface, in the Kretschmann prism—coupled geometry. The basis of this analysis is
that we assume that both excitation and re-radiation can be considered
perturbations on the guided surface plasmon mode. By splitting the reflected wave
into two components, one due to direct reflection at the prism/metal interface and
the other due to re-radiation from the plasmon field, we will be able to derive
expressions for the interaction of arbitrary input beams with surfaces having
arbitrary lateral variation, within limitations that will be discussed later in this

chapter.

X
E D prism
C B metal
> Z
A dielectric

Figure 3.4 Kretschmann prism coupler geometry, indicating the labelling of
the various field components.

In the notation of (2.6.26), the amplitude coefficients of the incident, reflected
and plasmon fields are E, D and A respectively. This is illustrated in figure 3.4
above. We can rewrite the plane wave reflectivity (2.6.22) as:
= 1+ 2l (3.3.1)
pm B -6) il + 1Y

Here we have relabelled r,,, the reflectivity between prism and metal half-spaces,
as 1. We will consider re—radiation to be a distinct and separable contribution to
the reflected signal. An expression for the re-radiated amplitude can be obtained
using the analysis in section 2.5, where the incident amplitude is zero. We will call

the amplitude of this re-radiated signal D*. Using equations (2.5.9) to (2.5.12) we
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can derive an expression for D* as a function of the plasmon field amplitude A:

D*_ J1
x = K (3.3.2)

We have derived in section 2.6 expressions for the plasmon field amplitude in a
uniform system; we can rewrite (2.6.31) as:

A _ K-1 r

BT [F‘ 1 ] (3.3.3)

pm
Multiplying (3.3.2) and (3.3.3) gives an expression for the re-radiation amplitude of
the uniformly excited plasmon field:

Dt _ J-1 [r ]

E T 2q77 - (3.3.4)

Tpm
Assuming we are near resonance, equation (2.5.15) for q2 will be approximately

correct, so we can combine it with (3.3.4), giving:

Dt _ J+1
B = AR (r - er) (3.3.5)

This can be further simplified, since near resonance, J=1, giving:

+
Zo=r - oy (3.3.6)

Finally, using r=D/E, we can write:
D = Er,, + D* (3.3.7)

In this approximation we can consider the reflected signal to be composed of two
separate components: the first is the signal that would be reflected at the interface
between the prism and a metal half-space, and the second is the re-radiated signal
from the plasmon field. It is when these two components are equal and have

opposite phase that the reflectivity is zero.

We can generalize the approximation of (3.3.7) to the case of arbitrary
incident beams by integrating over the incident angular spectrum of plane waves.
We will no longer be able to quantify the reflected signal by a single amplitude
value; the amplitude will have to be written as a function of one parameter. We
therefore introduce a function D(z) which describes the amplitude envelope of the
reflected beam at the prism/metal boundary, where the spatial ‘carrier frequency' is
given by the center § of the incident angular spectrum (labelled B, in section 3.1);
the amplitude of the reflected beam at the prism/metal interface x=d is thus given
by D(z)exp(jB.z). In the limit where the incident field is a single plane wave, D(z)

S4



will have the constant value given by (3.3.1). The amplitude of the reflected beam
at any other point in the prism can be obtained from this function by performing
the appropriate diffraction integral. D(z) can be considered as the amplitude
distribution of a one-dimensional source, with the exp(jf.z) factor having the effect
of shifting the direction of output of this' source. Similarly, we will introduce two
other functions, E(z) and D¥(z), which give the amplitude ‘envelope' of the

incident beam, and the re-radiation component of the reflected beam, respectively.

We will write the incident angular spectrum as a function g(B) of the lateral
wavevector 3. The reflected amplitude D(z) is given by integrating (3.3.1) over the

angular spectrum:

«©

DE) . Tw E(p)j2r,exp(ifz)
i exp(iBo) = JE(ﬁ)eXP(JBZ)dB + dg (3.3.8)
P - _Lo(e-8) - ir,

where I, = T; + I',. Both of the integrated terms in (3.3.8) have the form of
Fourier transforms. The first, the transform of the incident B spectrum, gives the
incident amplitude at the prism base, E(z)exp(jSz). The second is a transform of
the product of two functions, and therefore can be written as the convolution of
the transforms of each. The first function is again E(B), and the second has a

transform given by:

j2rexp(jpz) 2rexp(jBz - Iz) 30

—_——d8 = [ (3.3.9)
3 (B-6) - jIy 0 z<0
If we rewrite (3.3.8) in the form of (3.3.7), we obtain:
D(z) = E(2)rpy + D*(z) (3.3.10)

then D*’(z)/r]Jm is the convolution of the incident amplitude E(z) with the decaying

exponential of the plasmon mode; we can write this as:

z

D¥(z)/rp, = 2Iexp(-jB.z) I exp[(iB,—T)(z—0)] E(o)exp(jB.o)da (3.3.11)

Q0

We have derived equation (3.3.11) from an approximate treatment of the
interaction of an arbitrary incident beam with a uniform plasmon-supporting
structure. The limits of integration indicate that in this approximation, the reflected

amplitude at some point z, is due only to the incident amplitude in the region
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z<z,; this implies that there is no plasmon field propagating in the -2 direction,
which is reasonable if the incident angular spectrum has only positive ( values.
Equation (3.3.11) will prove more useful in differential than integral form; this can
be obtained as follows:

z

D¥*(z)/tpy, = 2Iexp[-(T'+j(B.~B,)z] ] exp[-(jB,To]E(c)exp(jB.o)do (3.3.12)

3[D*(z)/rpy, )0z = [T *i(B.—B,)] D*(z)

+ 2T exp[-(T+i(B~B,)z] [ exp[~(iB,-T)o1E(0)exp(jB.0) (3.3.13)
o=z

dD*(z)/dz = [I, + j(B.~B,)ID*(z) + 2[‘rE(z)er (3.3.14)

This gives the local rate of change of the re-radiation amplitude, which is
proportional to the rate of change of the plasmon field amplitude; the three
contributing components are damping and re-radiation loss, phase mis—match, and

excitation by the incident beam.

Figure 3.5 Field intensity profile, in the plane of incidence, for the resonant
excitation of surface plasmons on a silver film by a focussed Gaussian beam
of 2° angular width. Plotted area is 55 pm (%) by 260 um (Z).

Equation (3.3.14) allows the calculation of the plasmon field created by a
focussed incident beam. This can also be obtained numerically, by calculating the

Fresnel transmission coefficients for plane waves incident on a multi-layered
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structure, and integrating over the a/nmum. Figure 3.5 gives an example
of a plasmon field profile calculifed in this way, showing the intensity rapidly

increasing in the region of excitation and then decaying in the direction of forward
propagation with the characteristic decay length 1/T,. This figure helps to illustrate
why the resolution of the plasmon measurement cannot be increased simply by
strongly focussing the incident light. The contribution the plasmon resonance makes
to the reflected signal arises from the re-radiation of the plasmon field as it
propagates forward, and this clearly can be over a region extending significantly

beyond the illuminated portion of the object.

Other than the assumptions and approximations made in obtaining the
reflection equations of section 2.6, the treatment presented above is rigorous for
arbitrary incident fields. The basis of the new model for non-uniform fields is to
postulate that equations (3.3.10) and (3.3.14) are also valid if the surface
parameters B, I'; and I, are themselves functions of z, so long as they are slowly
varying compared to the spatial 'carrier' frequency B, so that B, has a definable
local value. The basis of this postulate is the assumption that changes in the
surface do. not directly influence the ‘plasmon field amplitude, but only the rate of
excitation and re-radiation, both oi"‘:;l}e components of (3.3.14). Thus we can use
(3.3.10) and (3.3.14) to analyze the interaction of arbitrary incident beams with

arbitrarily varying surfaces.

There are two important limitations to this generalization. The first is that as
the model assumes a single forward propagating wave, reflections of the plasmon
field are not included. In practice, first reflections can be neglected, since they will
not be phase-matched with the forward-going wave and will re-radiate towards the
incident beam in the prism, rather than in the direction of the reflected beam.
Secondary, and higher even—order reflections, will alter the plasmon and reflected
fields; however, such waves will be of very low amplitude, except for those due to
highly reflecting multiple line features which are closer together than the plasmon
decay length.

The second limitation to equation (3.3.14) is that it does not include the loss
of energy from the plasmon field due to scattering into bulk radiation modes in
the dielectric medium, which will occur for features having spatial frequency
components greater than f-njk . We can add this contribution in a straightforward
way in the case of line features (section 3.4), but not so easily for periodic

structures (section 3.5).
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Neglecting multiple reflections and scattering losses for the moment, equations
(3.3.14) and (3.3.10) taken together comprise a general formulation for treating the
interaction of arbitrary incident beams with plasmons on surfaces having lateral
variations. This will allow the calculation of the expected reflection images, in
surface plasmon microscopy, from arbitrary objects, and prediction of the spatial
resolution attainable in various circumstances. It should also be wvalid for prism
coupled imaging using other types of guided modes, although for multimode
structures, mode coupling would have to be included in the model. In the case of
a non-lossy guide (I';=0), these equations are equivalent to those given by Ulrich
for a tapered coupler [3.2],[3.3], although his formulation was developed for a
quite different application: that of maximizing the coupling efficiency from a

truncated prism into a lossless slab waveguide.

This model can be in some ways easier understood with reference to the AC
circuit analogy of section 3.2. The equations derived for reflectivity of the circuit
are equivalent to the SPR equations of chapter 2, with temporal frequency w taking
the place of the lateral spatial frequency B. We can consider the dimension of
time in the AC model to be analogous to the lateral dimension 2 in the
two—dimensional plasmon model. We can therefore compare an incident optical
beam of finite lateral extent to an AC input pulse of finite duration, and lateral
variations on the plasmon—supporting surface can be considered analogous to
temporal variation of the AC circuit parameters. This comparison will be

particularly useful in the treatment of line features.
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3.4 Line Features

By setting the derivative in (3.3.14) equal to zero, we obtain the equilibrium
value of D% which is that derived earlier for a uniform system. If we call this
value D}, then:

-21‘,,!.’.(z)rpm

Dt = (3.4.1)
rt + j(ﬁc-Br)

We can now rewrite (3.3.11) as:

dD¥(z)/dz = -[I, + j(B.-B)I(D*(z) — D?}) (3.4.2)
The solution to this equation is given by:

D*(z) = D} + Cexp[-(T', + (B2l (3.4.3)

where C is a complex constant, the value of which will be determined by boundary
conditions. Let us now consider the system of figure 3.6, where we have two
adjacent uniform surface regions, characterized by propagation vectors §,+j(T;,+I,,)
and B,+j(I;,+T,,) respectively. The solution within each of these regions will
have the form given by (3.4.2), assuming that the incident illumination A(z) is very
slowly varying. In region 1 the incident and plasmon field amplitudes will increase
slowly from zero with increasing 2, so here the value of C will be zero. In the
second medium, the initial amplitude of D* will be Dt in the first medium, times
the transmission coefficient for the plasmon field as it crosses the line boundary.
This takes into account the energy lost at the boundary due to scattering into bulk
modes in the dielectric. The value of C for medium two can be calculated from

this initial value for D*.

\ /!

B] 62

Figure 3.6 A beam of finite width, simultaneously incident on two uniform
regions with different SPR properties.
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Let us label the transmission coefficient for plasmons crossing the boundary as
tep: This will in general be a complex quantity giving the amplitude and phase
change of the plasmon field, and also of D, which is proportional to the plasmon
amplitude A. If we label D} in the first and second media as D}, and D},
respectively, then the complete solution for the re-radiated field after the boundary

will be:
D*(z>0) = DY, + (t D}, — D}, )exp[-(Ty + j(Bc—B,)z] (3.4.4)

All that remains is to calculate tg This we can do by making the approximation
that the transmission coefficient is the same in the prism coupled case as it would
be for a plasmon travelling on an interface between metal and dielectric
half-spaces. This problem has been considered in the literature, both for plasmons

at optical wavelengths and for radio—frequency Zenneck waves.

A method for calculating the behaviour of a surface plasmon at a line or strip
feature has been reported by T.A. Leskova [3.4]. She describes a complex integral
equation method for calculating the radiated field pattern, and the reflected and
transmitted surface wave amplitudes. In the case where the strip is wide enough
that the radiation field at the first boundary does re—couple into the surface mode
at the second boundary, an explicit equation is given for the strip transmission and
reflection coefficients. We are only interested in the transmission coefficient at a
single boundary, which Leskova gives as (variable labels adjusted to my
conventions):

72(72-71) i’+(62)
tsp (3.4.5)

62(62—61) i’-l'(B‘l)

To evaluate the function ¥,, Leskova gives a related function:

I}

Y2 T Y1
¥p) =1 - (3.4.6)
(ko2 - B2)! - 4,

which then has to be factored into two functions, ¥, and ¥_, which are analytic
and non-zero in the upper and lower half-planes, respectively, of the complex

variable 8. This can be done using Cauchy's theorem, as follows [3.5] :
Vo= WV (3.4.7)

In¥V = InV, + InV_ (3.4.8)
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In¥,(B) = 2:}. "'Z‘Ii(g) dz (3.4.9)
o j€e
o+ €

In¥_(p) = %j‘ —I-’lz‘l_l_(—;)—-dz (3.4.10)
—co-j €

Here ¢ is an infinitefsimal constant, included to indicate that the two integrations
are performed just below and above the real line respectively, and thus indicating
the sign that should be chosen for the square root in ¥(z), in the case where
Izl<lwcl. In ¥,, the imaginary part must be negative, because Leskova gives the
condition that the real part is always positive. By evaluating the complex integral
and taking the exponential of the result of (3.4.9), we obtain the values needed in
(3.4.5).

The problem of surface wave reflection at a single line discontinuity has also
been analyzed by Barlow and Brown [3.6], in the context of Zenneck waves. As in
Leskova's paper, they consider only the fields in the dielectric medium, the effects
of the ‘'lower' medium being taken account of by the appropriate boundary
conditions. Then they evaluate the transmitted, radiated and reflected field
components, obtaining explicit solutions using a Wiener—-Hopf method. If we
combine Barlow & Brown's equations 12.11 and A.3.82, we obtain the magnitude

squared of the amplitude transmission coefficient:

4B,7,?
Itspl2 = — (3.4.11)
B, (v +y,)?
Taking the square root of this expression, we obtain:
2y,
to = (8,/8,)12 (3.4.12)
Y1172

Figure 3.7 shows a comparison of ty, calculated using (3.4.12) with a numerical

solution of the Leskova method, as a function of the ratio B,/8,.
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Figure 3.7 Transmission coefficient t_, of a plasmon crossing a line boundary
between two surface regions having dis&erent values of B. The solid lines give
Re{t _}-1, calculated by the methods of Leskova (a) and Barlow and Brown
(b), while the dashed line gives Im{t.}, the results of the two calculations
being indistinguishable.

Figure 3.8 shows the reflected intensity distributions at the prism base, for a
series of angles of incidence of a broad Gaussian beam, for four specific
combinations of surface properties, all calculated using the method described above.
The most dramatic results are the fringes seen for example in 3.8(a), where the
incident beam is wholly absorbed in the first medium (giving a strong plasmon
field) but is significantly phase—mismatched in the second. These fringes have been
measured experimentally at a number of wavelengths by Rothenhausler [3.7], and
they agree in form with the predictions of the model described above. In figure
3.8(a), the plasmon vectors in the two regions are separated by four resonance
widths, which gives strong fringes at the boundary. In 3.8(b), this separation is
reduced to one resonance width, with a consequent reduction in the amplitude and
pitch of the fringes. In 3.8(c), the fringes are damped compared to 3.8(a) because
the second medium has a stronger re-radiation coefficient. Finally, 3.8(d) illustrates
the loss of res?’%liion of the feature when it is illuminated with more strongly
focussed light.
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Figure 3.8 Reflected intensity profiles for a Gaussian beam incident on a line
feature as illustrated in figure 3.6, plotted for various angles of incidence 6
with respect to the resonant coupling angles ¢, and 0, in the left and right
media respectively. Parameters for (a) are:

Bry = 1.07ky; B, = 1.03k,;

h, =Ty, =1, =T, = 0.0025k;

incident beam width = 1400/k ;5

plotted Z range = 1600/k ,;

Parameters for (b),(c) and (d) are as for (a) except for the following
alterations:

(b) B, = 1.04k,

(c) Iy, = 0.0075k,

(d) beam width = 200/k; plotted Z range = 260/k
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3.5 Periodic_Features

The theory presented in section 3.3 can be used to analyze the case of
periodic features, the simplest being sinusoidal variation of the plasmon propagation
vector (.. Let us consider the case of a small sinusoidal perturbation of B, of
amplitude M and spatial frequency p, about the incident center frequency f..
Then:

B = B, + Mcos(pz) (3.5.1)

We will define the equilibrium value of D% as that in the absence of the
perturbation, so that:

D} = 2N A@)r,,/T, (3.5.2)

We will also introduce a variable A=D*(z)-D?. Then the differential equation for
D* (3.4.2) can be written as:

dA(z)/dz = -TA(z) - jMcospz D*(z) (3.5.3)

If the perturbation is small, then we can make the approximation that D*(z)=D?
in the last term of (3.5.3), which gives:

dA(z)/dz = -T\A(z) - jMD? cospz (3.5.4)
Taking the derivative of (3.5.4) gives:
d2A(z)/dz? = T 2A(z) + jMI'D* cospz — jMpD? sinpz (3.5.5)

We can find a solution to this equation of the form:

ANz) = Pcos(pz+yp) (3.5.6)
This gives:
d2A(z)/dz? = -p2A(z) (3.5.7)

Inserting (3.5.7) into (3.5.5) gives:
(Ty2 + p2?)Pcos(pz+p) = —jDIM(Tcospz + pcospz) (3.5.8)

This gives us solutions for the amplitude and phase of the perturbation on the

reflected signal:

-jMD?}

P= —0o (3.5.9)
(rt2+P2)”2

tanp = —pIT, (3.5.10)

Figure 3.9 shows the variation of the reflected signal with the spatial frequency of

64



the perturbation, for four values of the perturbation amplitude M, calculated using
(3.3.10) and (3.3.11). As predicted by (3.5.9), the amplitude of the sinusoidal
variation on the reflected signal drops as p increases past ;. As the perturbation
amplitude increases, the approximation made in (3.5.4) becomes less valid, and the
signal variation becomes less sinusoidal, showing a strong non-linear response. In
figure 3.9(c), the low spatial-frequency response curves show a ringing effect
similar to that seen for the line features. It should be borne in mind that these
calculations do not include the effect of radiation into bulk modes in the dielectric,

which become significant for high spatial frequency features.

(c) (d)

Figure 3.9 Reflected intensity profiles for a broad Gaussian beam incident on
a film on which the plasmon coupling angle has a spatially periodic variation
about the incident angle. In each figure, this is plotted for the following set
of values of the spatial period of perturbation (in terms of 1/T): 5, 3.3, 2.2,
1.5, 1.0, 0.67, 0.44. The perturbation amplitudes are as follows:

(a) M=T'/2; (b) M=2l';; (c) M=6I";; (d) M=10T;
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CHAPTER 4

SURFACE PLASMON MICROSCOPY - EXPERIMENTAL RESULTS
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4.1 Resonance Curve Measurements

The first experimental task performed was the measurement of surface plasmon
resonance curves on uniform films, using previous literature as a guide, in order to
get experience of the relevant procedures. The metal chosen for the experiments
was silver, which is used in most SPR work due to its high conductivity at optical
frequencies (and consequently sharp resonance), its ease of deposition and its
relatively high chemical stability. Gold was also used for a few experiments. The
silver films were prepared by evaporation in the standard way, using pieces of pure
silver wire in a molybdenum evaporation dish through which a high current was
passed. The source to sample separation was about 20 cm, the effective source size
about 1 cm?, and the evaporation pressure typically between 2x10-7 and 10-6
torr.. Monitoring of the deposition rate and thickness was done using a quartz
oscillator, which was calibrated for each material deposited by measuring film
thicknesses on a talystep machine, which has a resolution of about 10 angstroms. A
deposition rate of about 10 angstroms/second was found to give good Ag films,
while allowing precise control over the thickness. Much slower depositions produced
films with poor conductivity, as evidenced by broad plasmon resonance curves. This
was probably due to excessive heating of the substrate, which resulted in oxidation
or other contamination of the silver as it was being deposited. Samples were given
at least 20 minutes to cool after deposition before being exposed to room pressure.
The films were deposited on glass microscope slides which were first cleaned with
acetone, then microsoap, then de-ionized water, with about three minutes in an

ultrasonic bath at each step.

Figure 4.1 shows the apparatus used for the original resonance curve
measurements. All measurements were made using a one milliwatt helium-neon
laser. The corresponding silver thickness for maximum contrast, as discussed in
chapter two, is 560 angstroms. The glass slides on which the films have been
deposited are attached to the coupling prism using a drop of index-matched oil.
The easiest way to see the resonmance is to look for strong scattering at the
silver/air surface. If the film were perfectly uniform, there would be no such
scattering, but the inevitable surface roughness causes some coupling between the
evanescent field and the radiation modes. At the plasmon resonance angle, the
scattering intensity increases due to the strong enhancement of the field intensity at
the silver surface. This appears as a red glow which is often visible even if the
drop in reflectivity is too small to be noticeable to the eye. The scattered light

was only used to locate the resonance, not for any quantitative measurements.
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Figure 4.1  Apparatus for plasmon resonance curve measurements, and for
scanned plasmon images. Components are:

1. HeNe laser (1 mw) 12. rotation control micrometer
2. polarizer 13. vertical translation micrometer
3. beam expander 14. support springs

4. lens 15. horizontal translation micrometer
5. focus adjustment 16. servo potentiometer

6. prism 17. vertically translating platform
7. rotating platform 18. horizontally translating cradle
8. mirror 19. lens

9. servo potentiometer 20. polarizer

10. drum for potentiometer belt 21. photodetector

11. rotation control linkage 22, slide with metal film

The resonance curves were measured by the following technique (where
numbers refer to those of figure 4.1): the beam from the laser (1) is TM
pblarized (2), expanded (3), and in some instances focussed (4), before entering
the coupling prism (6) onto which the sample (22) is attached. The platform (7)
on which the prism is mounted is rotated manually via a linear micrometer stage
(12), connected to the platform with a pinned rod arrangement (11). A mirror
parallel to the prism base (8) restores the beam to its original direction; the beam
is then focussed (19) onto a photodetector (21), through a polarizer (20) which
adjusts the intensity to suit the sensitivity range of the detector. The output of the
photodetector controls one axis of a chart recorder, while the other axis is
controlled by the voltage on a servo potentiometer (9), which is connected by a
belt to a drum (10) that rotates with the platform (7).
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The first curves were measured with an unexpanded, unfocussed beam of
about 1 mm diameter. Next, some slight focussing was added to reduce the spot
size. In general, this broadened the resonance curve somewhat, as can be seen in
figure 4.2. However, in some cases the resonance was narrower in the focussed
case. This could be simply due to non-uniformity of the film, so that the response
with a larger illuminated area was averaging a greater variation of SPR response.
This effect was usually obtained with poor quality films: it was discovered that
silver films left exposed to the air gave SPR readings that degenerated significantly
after 2-3 days, due to oxidation or reaction with atmospheric contaminants
(probably sulfur). Having produced SPR curves with some focussing (spot size about
100 microns), it was now possible to look for variation of this response with
position. Figure 4.3 shows two measurements made at one position on the sample,
to indicate repeatability, and a third reading at a different position, with a marked
change in response. These experiments indicated that a scanned surface plasmon
image would be possible; contrast was present, despite the fact that the films
appeared completely uniform in a conventional microscope, although the mechanism

for this contrast could not be determined.
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Figure 4.2 Measured SPR curves for Figure 4.3 Measured SPR curves as

a uniform 560 A Ag film, using: in fig. 4.2 b), where a) and b) are

a) an unfocussed beam measured at the same position, and

b) a beam of ~1 angular width c) at a second position.
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4.2 Scanned Plasmon Images

Figure 4.3 indicates that if the beam is incident at an angle where the slope
of the resonance curve is maximum, the reflected intensity will vary with lateral
position as the resonance curve changes in position and/or shape. By plotting this
varying intensity as a function of position, a single line scan is obtained, and by
plotting a series of parallel line scans measured along adjacent paths on the
sample, a two—dimensional image of the surface can be constructed. The apparatus
used was that of figure 4.1, with the horizontal translation micrometer (15)
controlling one axis of the chart recorder via a servo potentiometer (16) as shown.
After each line was plotted, the plotter pen and sample were both shifted by fixed

increments perpendicularly to their direction of motion in each scan line.

The first surface plasmon images made in this way were of nominally uniform
silver films; figure 4.4 is an example. The features obtained correspond to changes
in reflected intensity of as much as 40 to 50%. The scanned area is about
600x600 um, and features of about 50 um lateral extent can be clearly seen. The
mechanism responsible for these features could not be determined; it could be
surface corrosion or physical damage. The image did, however, indicate that a

surface plasmon scan could expose features not visible using a conventional

microscope.

Figure 4.4 Surface plasmon line image of a nominally uniform evaporated Ag
film. Scanned area is about 600x600 pm.
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4.3 Imaging of Known Features

The first known feature to be imaged was a line boundary between two
thicknesses of Ag film. This was made by direct contact masking. The line scan
image, figure 4.5, was made using the same method as for figure 4.4. Despite the
large step height of 500 angstroms, the line could not be detected with the
instrumentation used if the angle of incidence was significantly removed from the
plasmon resonance angle, but on the slope of the resonance it was very clearly

visible.

Figure 4.5 Surface plasmon line scan image of Ag film, showing step
between film thicknesses of 600 and 1100 angstroms. Scanned area is about
500x500 pm.

The theoretical analysis indicates that the SPR effect is much more sensitive
to conditions at the metal surface than to the metal thickness. Therefore, the next
test samples were prepared by evaporating very thin oxide layers over Ag films,
using a fine wire mesh as a mask. With this method, care had to be taken to
ensure close and uniform contact between the mesh and the sample; otherwise, the
finite size of the source would cause blurring of the deposited pattern, due to the
umbra/penumbra effect (partial shadowing). Since the lack of flatness of the mesh
sets a minimum average separation between it and the sample, the edges of the
deposited pattern would have a minimum transition width of about one wire radius
(about 5 microns). This is consequently also a limit on the spatial resolution that

can be measured with these samples.

The oxide layers were impossible to detect with the unaided eye, but were

easily detected using SPR. Figure 4.6 shows single line scans across two samples.
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Sensitivity is clearly better than one angstrom, and spatial resolution is at least 20
microns. The lack of uniformity and poor edge definition could both result from
the manufacturing process; they are not necessarily indicative of limitations of the
imaging technique. Layers of 50 angstroms and less were deposited, and such thin
depositions could not be monitored precisely using the crystal monitor in the
vacuum chamber; measuring the shift in SPR response was in fact the most precise
way of determining the thickness. In all cases the resonance shifted substantially
compared to its width, so that the optical signal strength was a large fraction of
the incident beam intensity. The thinnest sample had a feature height of about two
atomic radii, and while clearly the limit of sensitivity of the imaging technique had
not been reached, it was not possible to produce substantially thinner features with
the method used, since they would not have been detected by the crystal monitor.

Figure 4.6 Surface plasmon line scans of WO, grids on uniform silver films,
with grid parameters:

a) 120 micron periodicity, 30¢3 angstrom thickness

b) 60 micron periodicity, 7¢3 angstrom thickness
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4.4 Full-frame Surface Plasmon Microscopy

When the incident beam used for the scanned measurements was not properly
focussed on the object, features could be seen (in particular the oxide grids) in
both the reflected and the scattered light. This indicated that the SPR effect could
be used to produce images of very weak features without scanning, by simply
illuminating the entire object or a desired portion with a uniform collimated
coherent beam, at the appropriate angle of incidence. This makes the
instrumentation even simpler, and presents the image directly to the viewer
optically as in a conventional microscope. It has the additional advantage of being
a real-time technique, so it could be used for observing temporally varying features

without any limitations due to scan rate.

Figure 4.8 shows an example of a full-frame plasmon image of a 25 angstrom
thick oxide grid. The instrumentation used is shown in figure 4.7; the print was
made by photographing the image screen (8). This is a practical demonstration of
a method which produces a high contrast image of a dielectric material less than
0.005 wavelengths thick, without any signal processing or electronics of any kind,
and with low optical power (1 mw). Unlike interference techniques, it is not
particularly sensitive to alignment, requiring only control of the incident angle and
beam divergence to about 0.1°. The analysis presented in chapter three indicates
that the images produced in this way are easier to interpret and analyze in general

than scanned plasmon images. 3

o H o A

| L \L 4

Figure 4.7 Apparatus for full-frame surface plasmon imaging. Components

are:
1) 1 mw HeNe polarized laser 5) sample slide
2) beam expander 6) mirror

3) rotating platform 7) lens

4) prism 8) image screen
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CHAPTER 5

SPATIAL LIGHT MODULATION
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5.1 Introduction

Spatial light modulators, or SLM's, are devices that generate a temporal and
spatial variation in the amplitude or phase of a light beam in response to some
input signal. The spatial variation is in one or two dimensions perpendicular to the
propagation direction of the beam, and may be a continuous image or an array of
discrete pixels. The input may be a serial electrical signal, or an optical signal; in
the latter case, the purpose of the device is typically to transfer the image from
an incoherent to a coherent beam, or between beams of different spectral
composition.

Spatial light modulators act as the input devices for optical signal processing
systems. These systems take advantage of the inherent parallelism of light, by
performing operations simultaneously on a two-dimensional set of data. This is an
area of research which is still at an early stage of development. A variety of
optical signal processing systems, both analog and digital, have been proposed and
investigated; all rely on some form of SLM as their input ports, although for static
demonstration a photographic transparency is usually sufficient. While a number of
types have been developed, all suffer from significant weaknesses; the lack of
adequate SLM's is currently one of the main impediments to the development of

optical processing systems of useful complexity and performance.

input SLM 1 read
B transform light
—_—> lens e

—_—

write
light

—_—] optically
1 addressed SLM

input SLM 2 output plane

correlations

Figure 5.1 A dual inline optical correlator.

One of the most important applications of SLM's is in real-time optical
pattern recognition. Figure 5.1 illustrates an example; such systems have application
potential in military and security surveillance, robotic assembly, and text
recognition. Another major application area is analog and digital optical computing,

including optical implementation of neural networks.
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The performance and utility of SLM's can be characterized by a number of
parameters. These are: speed, lateral resolution, phase uniformity, contrast,
grey—scale, effective area, linearity, storage (memory) ability, input sensitivity,
efficiency, and spectral response. In addition, the factors of cost, reliability and
lifetime will naturally be important. The relative importance of the performance
parameters is very much dependent on the specific application. In the case of
analog image processing, broadcast video provides a convenient benchmark for
speed, contrast and grey scale, as well as the information content (resolution x
active area). For optical computing, much higher speeds will be required. In digital
applications, grey—scale is unnecessary and bistable operation may be desirable. In
any coherent signal processing system, phase uniformity will be a critical parameter,
although this may depend more on the manufacturing process than on inherent
properties of the device. Input sensitivity is especially important for optically
addressed SLM's. Efficiency refers to the fraction of the optical power passed by
the device (in the unmodulated parts of the beam); this will become an

increasingly important parameter as systems become more complex.

5.2 Current SLM Technology

Most of the important types of SLM that have been reported are described in
a 1977 review paper by Casasent [5.1]. Since then several of them have been
substantially improved and a number of new variations have been reported, some
of which are described in a recent review by Collings [5.2]. However, no
important new technology has emerged, with the exception of the greatly increased
use of active semiconductor structures as part of the implementation of earlier

techniques. The major classes of SLM are described below.

Liquid Crystal SLM's

Devices using liquid crystals (LC's) make up the most important class of
SLM's. This includes the Hughes liquid crystal light valve (LCLV), which is
depicted in figure 5.2. A twisted nematic cell is employed, as in display devices, to
rotate the polarization of the 'read' beam as it passes through (once for
transmission and twice for reflection devices). The liquid crystals, which are highly
birefringent, are aligned with their high refractive index axes parallel to the cell
faces, but gradually rotating through 90" within this plane as they pass between the
two faces, which are coated with perpendicularly oriented aligning layers. This

alignment is altered by applying an electric field across the cell; the high index
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axes of the LC's tend to align in the direction of the field. A polarizer at the
front face sets the initial polarization and converts the rotation of the exiting beam
to an amplitude modulation. The difference between an SLM and a normal LC
display device is that in the SLM the applied field, and thus the resulting
modulation, is spatially controlled at a small lateral scale. In the LCLV depicted,
this is done by illuminating a CdS photoconducting (PC) layer with an input image,
and applying a bias voltage across the LC/mirror/PC sandwich. In parts of the
image with higher intensity, the increased conductivity will increase the fraction of
the bias wvoltage across the LC, thus reducing the polarization twist and the
resulting amplitude reduction. In this way, the image is transferred from the input
to the (usually coherent) write beam. The input may be from a conventional

display, or light focussed from a physical object.
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Figure 5.2 The Hughes liquid crystal light valve (LCLV).

The LCLV gives good grey-scale and reasonable contrast, operates at low bias
voltages (=~ 5V), and exhibits resolution of about 50 linepairs/mm [5.1]. Its main
weakness is speed, which is limited both by the mechanical response of the LC's,
and by charge storage time in the photoconductor. Typically these devices have rise
and fall times from 10 to 100 milliseconds. A number of elaborations on the basic
LCLV have been reported. Hughes have developed an SLM in which the twisted
nematic LC cell is switched by an optically activated MOS silicon structure [5.3].
At GEC, another Si/LC device has been developed in which a photodiode array
replaces the PC layer [5.4]. Other PC materials have been investigated for use in
SLM's, including amorphous silicon [5.5], and GaAs [5.6].

A number of electrically addressed LC SLM's have been reported. Hughes
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have produced a variation on the light valve in which a 256 x 256 CCD
(charge—coupled device) array provides a matrix of serially addressed analog
memory cells which switch corresponding portions of the liquid crystal [5.7]. At
STC, devices have been made with electrode array back—planes containing active
addressing circuitry [5.2]; in this case, ferroelectric liquid crystals are used, which
exhibit much faster switching than the conventional nematic cells. These
ferroelectric LC cells are orientationally bistable; therefore they have an inherent
memory capability, and are most suited for binary operation, which makes the

active addressing circuitry similar to that for semiconductor memory.

In the last few years, a number of authors have reported the use of LC
televisions as spatial light modulators [5.8],[5.9]. The primary motivation is that
because they are mass produced, LC TV's constitute a very inexpensive electrically
driven LC matrix. The optical quality is very poor, but this can be greatly
improved by replacing the low—quality polarizers and immersing the display screen
in index—matched oil between optically flat glass plates. They are usually used in

transmission mode, and are conveniently addressed by a standard video signal.

Pockel's Effect SLM's

These devices are similar to liquid crystal SLM's, except that the
polarization rotation of the ‘read’ beam is performed by a solid crystal exhibiting
the first order electrooptic (Pockel's) effect. In such crystals, when an electric field
E is applied in the direction of one of the crystal axes, the refractive indices n,

and n, along the other two axes shift linearly according to:
n, ,=n, tokE (5.2.1)

Light initially polarized at 45" to these two axes will have its polarization rotated
as it propagates through the crystal, and this polarization change is converted to an
amplitude modulation by a polarizer at the exit plane, as in the LC devices. To
obtain maximum modulation the polarization must be rotated through 90°, and as
the rotation is proportional to the product of the path length and the field E, it is
simply a function of the applied voltage and the Pockel's coefficient o. Therefore
we can define the half-wave voltage as that which produces a half wavelength
difference in optical path length between the two polarization components, and thus
a 90" rotation. One of the disadvantages of these devices is that the half-wave

voltages are usually in the kV range.
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Figure 5.3 Two Pockel's effect SLM's, using (a) DKDP and (b) BSO. From
[5.1].

A number of Pockel's effect SLM's have been reported [5.10],[5.11],[5.12].
Figure 5.3 illustrates two of these. The first uses a KDP crystal which is switched
using an amorphous selenium photoconductor. Write time is low (=30 pus), but the
image must be erased by reversing the bias potential and flooding with blue or UV
light [5.1]; therefore this is not really a real-time device. Resolution is 75
linepairs/mm. The device is operated at -50°C to reduce its half-wave voltage to
80V. The device in figure 5.3(b) uses a BSO (Bi,,SiO,,) crystal, which is both
electrooptic and photoconducting. In order to reduce the influence of the read
beam on the conductivity, its intensity must be low, and its wavelength must lie in
a weaker part of the spectral response of the photoconductive effect than that of
the write beam. A bias voltage of 2 kV is used. Spatial resolution is about 50
linepairs/mm for 50% modulation, although this varies with write intensity. Very
high contrast (5000:1) is possible at lower resolution, and phase flatness better than
N5 can be achieved.

Microchannel SLM's

These are actually Pockel's effect devices as well, but they use a microchannel

plate as an electron amplifier between the photoconductive layer and the
electrooptic crystal [5.13],[5.14]. Figure 5.4 shows a typical construction. The read
and write beams are isolated, so dual wavelength operation is not needed. Various
electrooptic materials have been used in these devices, including DKDP, BSO and
lithium niobate (LiNbO ;)» and various photoconductors can be used as well,
providing possible write wavelengths ranging from near IR to soft x-ray regions.

Microchannel SLM's are complex to construct, and require high voltage power

30



supplies, but they provide very high sensitivity to the write beam (2.2 nJ/cm?2).
They are also reasonably fast (40 frames/sec at full modulation), but the resolution
is poor (less than 10 linepairs/smm at 50% modulation). Research into these devices
seems to have decreased, as solid state techniques such as those referred to

previously are developed which also provide a high input sensitivity.
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Figure 5.4 Construction of a microchannel SLM (from [5.13])

Deformable SLM's

There are a variety of devices, exhibiting a variety of qualities, which

modulate incident light by the local mechanical deformation of a surface.
Thermoplastics are one category of these; they are deformed at high temperature
by a charge variation produced by shining the image onto an adjacent
photoconductive layer. This method can be used to generate a holographic matched
filter; resolution is high (2000 linepairs/mm) but writing is slow and complex.
SLM's have been developed which use a scanning electron beam in a vacuum tube
to write patterns on oil films; these devices have good speed and resolution, and
have been extensively used in projection television. Optically addressed deformable
oil film SLM's have also been reported [5.15]. Recently, another optically addressed
device using a deformable gel has been developed [5.16]. A number of SLM
techniques have been investigated which use the local deformation of a membrane
mirror to produce phase variation in the reflected beam. One recently reported
electrically addressed device has a reflecting membrane deposited over a silicon
VLSI structure, in which varying voltages on pixel electrodes deflect the membrane
into etched cavities [5.17]. Present manufacturing technology does not allow pixels
smaller than about 75 um.
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Magnetic SLM's
Electrically addressed magneto—optic SLM's can be manufactured by epitaxially

depositing a magnetic garnet film onto a non-magnetic garnet substrate [5.18]. This
film is then etched into an array of elements with associated drive lines, and the
magnetic polarity of the elements is controlled by row-addressed current switching.
This is intrinsically a binary technique, so it is well suited to digital processing
applications [5.19], but not very well to analog applications. The incident light
undergoes a polarization rotation due to the Faraday effect, the rotation direction
depending on the magnetic polarity. This system has some inherent storage ability,
reasonable speed, and elements can be as small as 10 pm.

Other SLM Types
A few types of SLM have been reported which do not fit into the categories

described above. One is the photodichroic SLM [5.20]. These devices use colour
center defects in alkali-halide host materials. The defects cause spectral absorbtion
bands; by illumination at some wavelength, electron transfer can produce variation
in the absorbtion at other wavelengths. Because the mechanism is on the lattice
scale, the resolution is very high (diffraction limited), but the sensitivity is very low
(150 mJ/cm?). Write and read bands vary depending on the material used; some
are written by visible light and read in the infrared, others written in UV and

read at visible wavelengths.

In addition to the Pockel's effect devices, there are also those that use the
second order electrooptic effect, in which the refractive index varies as the square
of the field. A recently reported device uses PLZT as the electrooptic layer
deposited on an active silicon substrate [5.21].

5.3 A Surface Plasmon Spatial Light Modulator

Experimental results on surface plasmon microscopy indicated that the
amplitude of a collimated coherent beam could be spatially modulated, with high
contrast and reasonable resolution, by small variations in the optical properties of a
metal/dielectric interface. It was suggested by Richard Syms [5.22] that this might
form the basis of an optical image convertor, and it was from this suggestion that
the work on surface plasmon SLM's began. The basic principle can be stated in
simple and general terms: plasmons are generated on some planar structure by

optical excitation, using prism or grating coupling, and the optical properties of the
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structure are spatially varied so as to vary the SPR response. The specific
configuration that was investigated was that of a Kretschmann geometry with a
metallic film bounded on one side by the coupling prism, and on the other by a
dielectric layer, the refractive index of which can be locally varied by an applied
electric field. The surface plasmon SLM is not just a new type of device to be
added to the present list; it introduces a new physical mechanism by which the
goal of spatial modulation of a light beam can be accomplished. For this reason,
many of the structures described in section 5.2, in particular the liquid crystal and
electrooptic devices, could be modified to operate by surface plasmon resonance.
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Figure 5.5  Possible configurations for liquid crystal SLM's operating by
surface plasmon resonance; a) electrically adressed, and b) optically adressed.
Components are as follows:

1) incident coherent ‘'read' beam 7) electrode matrix

2) reflected modulated beam 8) light blocking layer
3) coupling prism 9) photoconducting layer
4) silver film 10) glass slide

5) aligning layers 11) transparent electrode
6) nematic liquid crystal cell 12) incident ‘write’ beam

Figure 5.5 illustrates possible configurations for electrically and optically
addressed SPR liquid crystal SLM's. A nematic liquid crystal layer is aligned
parallel to a silver film, deposited on high index glass (not shown), by a thin
aligning layer. Surface plasmons are generated at this interface using a coupling
prism. As most of the plasmon field has its E vector normal to the surface, the
effective index of the LC layer is the ordinary index (normal to the long crystal
axis). If a bias potential is applied across the cell, the crystals will rotate towards
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the normal direction, increasing the index in that direction towards the higher
extraordinary index (parallel to the long axis). This will increase the SPR coupling
angle, causing modulation of the ouput. In the first configuration this is
accomplished by an array of electrodes on the back plate, while in the optically
addressed configuration, a bias potential is split between the LC cell and a
photoconducting layer, as in the Hughes light valve, so that an image in the
‘write’ beam is reproduced in the LC orientation pattern, and consequently in the
reflected intensity of the ‘read' beam.

While spatial light modulation using surface plasmons has not been previously
reported, some work has been published on single—cell electrically controlled SPR
modulators. Pockel's effect devices have been proposed, in which the SPR response
for a prism/Ag/electrooptic crystal structure is modulated by an applied potential
across the crystal [5.23],[5.24]. One device has been constructed in which a
piezoelectric stack is used to vary the thickness of an air gap between a prism and
a silver layer (Otto configuration) [5.25]. This primarily varies the coupling
between the incident beam and the plasmon, and consequently the depth of the
resonant reflectivity dip. One could conceive of a spatial light modulator as simply
being an array of these individual modulators; however, most current or envisaged
SLM applications require spatial variation of the modulation on a very small scale,
preferably approaching diffraction limits. To effectively investigate the use of
plasmons for such applications requires an understanding of the physics involved in
the excitation of plasmons on non-uniform planar structures, and a theoretical
model by which the response of specific configurations can be predicted. This I
believe is now provided by the analysis described in chapter 3. The model
developed allows the prediction of the distortion of image features as a function of
size, orientation and intensity. In the case of pixellated SLM's, where the device is
divided into a matrix of individually addressed elements, the model can be used to
investigate the performance of the elements as a function of size, and the

cross—talk between them.

There are several potential advantages to using SPR for spatial light
modulation. Let us first consider sensitivity. In the liquid crystal and Pockel's effect
devices described in section 5.2, a half wavelength difference between the optical
path lengths of two polarization components is needed to achieve full modulation.
Therefore, if the refractive indices along two axes are altered by *én, the product

of the index change and physical path length L will be given by:
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(én/n)L = N4 (5.3.1)

We can calculate an equivalent parameter for SPR modulation. We have seen in
chapter 2 that the plasmon propagation vector § for a high conductivity metal film
is slightly greater than nk,, where n is the index of a uniform dielectric layer in
contact with the metal, and that the half-width of the resonance is given by T,.
To modulate the reflected beam by 50% will require shifting the resonance by its
half-width, so that:

sn/n = T/ (5.3.2)
sn = Ik, (5.3.3)

Since the field decays exponentially, the effect of index variations on the SPR
response will be greater close to the interface. Let us assume that if the index is
not uniform in the % direction, where x is the distance from the metal surface,
will be determined by an average index @, weighted according to the field

amplitude, i.e.:
(-]

= -yjn(x)e")”‘dx (5.3.4)
0

Let us now uniformly modulate a layer of thickness L adjacent to the metal, such
that:

a(x) = 22“ X II: (5.3.5)
Inserting this distribution in (5.3.4) gives:

m=n, + ¢1-e) (5.3.6)
To get 50% modulation we now need:

o1 = e(1-e7L) = I'/k, (5.3.7)

If the active layer is thin compared to the field decay length, i.e. L{l/y, then
e~Yls1—L. This gives us an index change — path length product of:

eL = Tk, (5.3.8)

For a well matched system, we have seen that I's2I;, where I is given by the

imaginary part of (2.4.5), so we get:
Tk, = e /e 2 (5.3.9)
We can also approximate v, for e, {¢,, as:

v & kyled (5.3.10)
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We can now obtain an expression for ¢L in terms of the material parameters:

e

X
el =

(5.3.11)
215,3/2

For Ag at 633 nm we can insert values of e, and ¢, from table 2.1, and obtain:
eL & N800 (5.3.12)

For the polarization rotation devices, the corresponding figure for 50% modulation
will be N8, so this indicates a potential improvement in sensitivity of two orders
of magnitude for SPR devices. As discussed in chapter 3, this enhanced sensitivity
is due to the resonantly amplified field intensity, and a similar improvement could
be obtained using a Fabry-Perot resonant cavity. In the plasmon case, however,

the active region can be considerably less than a wavelength thick.

Another advantage of the SPR SLM is that because the ‘read' light does not
propagate through the active layer, there is much less phase distortion. In the bulk
LC and Pockel's devices, all interfaces encountered by the read beam must be flat
and parallel compared to the wavelength if coherence is to be maintained. The
layers must also be homogeneous so that the optical path lengths have no random
variation. In the SPR device, the active layer does not need to be flat; only the
two surfaces of the silver need to be phase flat. If the active layer (e.g. the liquid
crystal) is not uniform and homogeneous, this will only affect the strength of the
signal, not the absolute phase. No liquid crystal SLM's yet reported have low
enough phase distortion to be of much use in coherent signal processing systems;

with an SPR device, this should be much easier to achieve.

In the specific case of liquid crystal SLM's, the surface plasmon technique
offers a considerable speed enhancement. Previous work in this research group has
demonstrated that switching times for nematic liquid crystal cells are much lower
near the surface regions than in the bulk of the cell [5.26]. This is because the
recovery of the cell when the bias is reduced is due to the surface aligning forces,
and the realigning force only extends gradually into the bulk as the crystals rotate,
with a speed limited by their viscosity. The results described in section 5.4 indicate

an order of magnitude increase in switching speed for the SPR devices.

Perhaps the most exciting advantage of SPR devices is that because they are
both highly sensitive and ideally suited to the use of very thin active layers, they
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may open up the possibility of using new types of materials and effects for
modulation that would not be practical with the bulk devices. One possibility is the
use of reversible electrochemical or photochemical phenomena, which would tend to
be too slow, due to diffusion times, in anything but very thin layers. Another
possibility is the wuse of optically active monolayers deposited by the
Langmuir—Blodgett technique.

5.4 Experimental Results

It was decided to use a liquid crystal structure to investigate and demonstrate
the use of SPR for spatial light modulation. This was primarily because the
facilities and experience relevant to LC fabrication were available in the research
group, due to ongoing work on LC display devices. The configuration constructed is
depicted in figure 5.6. While LC modulators using SPR have not been previously
reported, some work has been done at the University of Exeter where surface
plasmon excitation was used to investigate the orientational distribution in liquid
crystal cells as a function of applied voltage, from which surface binding forces
could be deduced [5.27]. Some of the devices described in this section were
constructed and tested by Martin Caldwell.

-+—glass plate
high index
glass plate™ | .
nematic LC
Ag film Mng aligning
layers
electrode
mylar
spacer

Figure 5.6 Schematic of SLM's constructed.

Nematic liquid crystals of the types K15, E7 and E47 were used, all supplied
by BDH Chemicals. These have high birefringence and a relatively low ordinary
index (=1.5). The glass slide on which the silver film is evaporated has to have an
index significantly higher than this ordinary index, so that the coupling angle will
not be too close to grazing in the unswitched state. Glass of index 1.805 was used
for these front plates and for the coupling prism. The completed cell was attached

to the prism using a drop of high index coupling fluid.
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The aligning layers used were MgF, deposited by evaporation at an angle of
about 60° to the normal direction. This is a well known technique for parallel
alignment [5.28]; essentially, the MgF, forms a series of parallel hills, due to
shadowing produced by the initial irregularities in the coating thickness. Total
thicknesses of about 200 angstroms are used; this appears to provide adequate
aligning force and uniformity, without taking up too much of the field energy that
would otherwise be in the active region. SPR measurements were used to calibrate
the thickness of the MgF, layers simply by measuring the resonance curve on
coated and uncoated parts of the Ag film, and comparing the angular shift with
that predicted by OPTO, using a refractive index for MgF, films of 1.38. Figure
5.7 shows an example of these two measured curves; addition of the MgF, causes

some resonance broadening due to increased surface roughness.

——(b)

(a)

Reflected Intensity (arbitrary units)

$ :
9.0 50.0

Figure 5.7 SPR resonance curves for portions of a Ag film (a) uncoated and
(b) coated with an MgF, aligning layer.

Once the glass plates have been cleaned (as in section 4.1) and coated with
their metal and aligning layers, they are glued together with epoxy using strips of
mylar as spacers. The mylar used was 6 ym or 7.5 pm thick. Gaps are left at
opposite ends of the cell through which the liquid crystal can be inserted by
capillary action, before the cell is completely sealed. All these steps were carried

out in a clean room of approximately class 1000. One problem encountered was
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that the high index matching fluid tended to slowly seep through the epoxy, and
then enter and corrupt the cell. Less corrosive fluids could not be obtained of
sufficiently high index, so this problem was reduced simply by using the minimum
possible amount of fluid and taking extra care in handling and applying it, to keep
it away from the epoxy bonds.

The first devices made had uniform back electrodes, in order to demonstrate
modulation without spatial variation. In general, it was found that the SPR curves
for the finished devices were poorer than those of the bare Ag films — they were
broader, shallower, and less smooth. This was probably due to lack of uniformity
in the LC surface alignment, which caused scattering losses. With more careful
control of the deposition and LC filling procedures, this problem was reduced, and
devices were manufactured with better than 99% extinction at resonance. Figure 5.8
shows the response of one of these devices, where the angle of incidence is set for
minimum reflectance at zero bias voltage; a contrast ratio of about 120:1 was
obtained. This device shows a voltage threshold for switching of about 5 V p-p,
which corresponds to a bias amplitude of 2.5 V. This is higher than those of
typical conventional LC cells (about 1 V); the cause of this difference is unknown.
The signal applied was a high frequency square wave (about 10 kHz) rather than
DC, since DC currents tend to reduce the lifetime of LC devices. Figure 5.9 shows
SPR curves for the same device, measured at several values of bias voltage. This
indicates that the main effect is not a shift in the resonance, but a reduction in its
depth. This is probably due to the complicated director profile taken up by the LC
cell in the applied field, but a detailed analysis of this point has not been carried

out.

0.8

Reflection Coefficient

: : :
0 5.0 10.0 15.0
bias voltage (volts peak-to-peak)

31

Figure 5.8 Reflected intensity for a surface plasmon LC light modulator, as a
function of bias voltage. The reflection coefficient at zero bias is 0.005.
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Reflection Coefficient

39.61 angle of incidence (degrees) 63.14

Figure 5.9 SPR curves for the device of figure 5.8, at several values of bias
potential as indicated.

The frequency response of one of the devices made is shown in figure 5.10;
this was obtained by amplitude modulating the square wave bias with a sinusoidal
signal, and measuring the modulation amplitude of the output light intensity as a
function of modulation frequency. The frequency for 50% reduction in response is
about 700 Hz, which is about ten times higher than for a typical nematic LC cell

used in a conventional mode.

Reflected Beam Modulation Intensity (arbitrary units)

; — :
1.0 2.0 3.0
jog ( modulation frequency )

Figure 5.10 Variation of reflectance modulation with bias modulation
frequency, for a fixed bias amplitude.
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In order to show spatial variation of the modulation, devices were made in
which the back plane electrodes were in a pattern of narrow lines, 4 um wide and
40 pm apart. It proved very difficult to obtain uniform alignment of the liquid
crystals in these devices, so that only patches would show a reasonable plasmon
resonance and respond to the bias voltage. Figure 5.11 shows a spatial profile of
the output intensity across two fingers in one of these patches, with the bias
potential on and off. The spatial variation of the field is clearly resolved. This
device exhibited on and off switching times of 0.5 ms and 2 ms respectively.

Reflected Intensity (arb. units)

T T T T
40 80 120. 160
Relative Position (microns)

Figure 5.11  Spatial variation of reflected intensity over a portion of a
plasmon SLM with digitated back electrodes, for bias on and off; in the ‘on'
line two digit electrodes are clearly resolved.
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CHAPTER 6

CONCLUSION
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The feasibility of using prism coupled surface plasmon measurements both for
microscopy and for spatial light modulation has been demonstrated, and a
theoretical model has been developed by which the excitation of surface plasmons
on non-uniform structures can be analyzed. From the results presented, a number
of conclusions can be drawn, and a number of recommendations made for future

work in this area.

The model presented in section 3.3 has proved very useful in allowing both
numerical and analytical prediction of the interaction of surface plasmons with
various types of features. Some experimental evidence exists for its wvalidity, as
discussed in section 3.4, but it is very limited. It would be of considerable value to
test the accuracy of the model in a precise and rigorous way over a wide range of
feature types and values of the relevant parameters. In particular, this would give a
better idea of the circumstances in which scattering into bulk modes in the
dielectric, which is not included in the model, causes significant error in the
results. Extension of the analysis to include this scattering would of course be of

value.

The analysis presented has all been based on a two-dimensional
approximation, the direction perpendicular to the plane of incidence being assumed
uniform in all respects. This means that the features analyzed have been
one-dimensional, when in most practical situations they will be two—dimensional. To
some extent this approximation is legitimate because the important dimension for
the interaction of plasmons with the structure is in their direction of propagation;
it seems reasonable to assume that interaction along the surface in the orthogonal
direction will be mainly determined by conventional diffraction considerations. That
is to say, because the resolution limit imposed by the plasmon propagation length
is about an order of magnitude greater than the wavelength, in a first order
approximation we can neglect conventional diffraction phenomena and assume that
the feature will only be distorted in the direction of propagation. However, rigorous
analysis of the point would be of considerable benefit.

The results of the theoretical model essentially confirm the initial prediction
that resolution would be limited by the surface plasmon decay length. They also
show the nature of the image distortions caused by this limitation, and how these
distortions depend on the amplitude (contrast) of the features. This also means that
one could now imagine developing image processing routines to remove or decrease

the image degradation, for instance by some form of deconvolution. In cases where
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there is some a priori knowledge of the nature of the objects being examined,
image restoring algorithms might prove highly effective. Another very attractive
possibility for improving the lateral resolution is to combine images of a structure
taken at several directions of plasmon propagation along the same surface, to take
advantage of the directional nature of the measurement. For any work that may be
attempted in developing image processing routines for surface plasmon microscopy,
the analysis presented indicates that plane wave images will be easier to analyze
and interpret than scanned images, and that a series of plane wave (actually
broad—beam) images is preferable to a complete set of resonance curves at each

scan position for this reason.

The potential application of surface plasmon microscopy will be primarily
limited by its structural requirements. This is essentially a method of looking at
variations of the optical properties of a planar interface between a metal and a
dielectric, where one of these materials must be of an appropriate thickness to
allow excitation by prism coupling. This means it is well suited to analysis of the
thin films themselves, and could be very useful for examining the structure of
other thin films which can be deposited on metals. The contrast mechanism is
different from other types of microscopy, which means that new information will
be obtained from any system examined. Also, the technique is non-destructive,
highly sensitive, and can produce images essentially instantaneously, which suggests

its use for dynamic examination of chemical and biological thin film processes.

The technique presented will be restricted to systems which include a metal
layer, and if this layer is not part of the object it must be part of the instrument,
and brought into very close proximity to the object. One could, for instance,
conceive of an instrument for examining the uniformity of silicon wafers, in which
a silver film on a microscope head is brought to within a half micron or less of
the Si surface and then the plasmon image obtained. However, the examination of
metal film surfaces is certainly of interest in itself; one possible immediate
application of surface plasmon microscopy is the investigation of oxidation and

anodization processes on aluminium films.

The use of surface plasmons for spatial light modulation is very promising.
Immediate improvements in sensitivity, speed and phase uniformity are indicated,
and exciting prospects exist for the use of entirely new active thin film techniques
to which the use of plasmons is ideally suited. The resolution limit imposed by the
decay length is acceptable even for silver, and could be improved considerably by
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use of a lossier metal, albeit with a corresponding reduction in sensitivity. The use
of grating rather than prism coupling in a plasmon SLM also warrants investigation,
this would lead to a planar geometry which could be more convenient for some
implementations. While only liquid crystal devices have been constructed to date,
implementations using active semiconductor structures are currently being considered.
If plasmons are generated with part of the field in a semiconductor in contact with
the metal, then flooding this junction region with carriers could alter the optical
properties of the semiconductor sufficiently to modulate the plasmon response. This
flooding could be controlled in an optically addressed configuration by photon
generation of carriers in another layer. Designs along these lines are currently

being investigated.
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