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ABSTRACT

The infinite-range p-state clock spin-glass model is studied.

The model is investigated at first within replica-symmetric theory. No 

discontinuous phase transitions are found, contrary to what happens to other 

known models with absence of reflection symmetry in the spin variable. The 

Almeida-Thouless instability of the replica-symmetric solution in zero magnetic 

field, is shown to occur at 0( e2) , except for p = 3 , in which case this instability 

appears at 0(c) ( e = (Tg -  T )/T g) .

Spin-glass ordering in conventional models normally reflects, on average, the 

rotational symmetry of the hamiltonian. It is demonstrated that the four-state 

clock model is exceptional, in that the average spin-glass order is essentially 

collinear (two-fold symmetric), despite the four-fold symmetry of the 

hamiltonian. Fluctuation effects are predicted due to replica-symmetry breaking, 

but these are shown to be relatively small.

The effects of a magnetic field in the p-state clock spin glass are 

investigated. It is shown that the p = 3 case is peculiar in the sense that the 

critical line associated to the transverse spin-glass freezing changes under 

reflection of the magnetic field (h — h) . The case p = 4 is similar to p = 2 , 

and an Almeida-Thouless line is followed. It is demonstrated that all p > 5 clock 

glasses present the conventional XY-like Gabay-Toulouse line.

The role of a four-fold anisotropy field on the XY spin glass is analysed. It is 

proven that the normal four-fold symmetric spin-glass phase occurs except in the 

limit of infinite anisotropy.

The Parisi replica-symmetry-breaking scheme is applied to the 

infinite-range p-state clock spin glass. It is shown that all values of p present the 

conventional Parisi solution, except the case p = 3 , for which a step function is
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the stable solution. The absence of reflection symmetry in the spin variable is 

qualitatively irrelevant for all other oddnstate clock spin glasses.
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ABBREVIATIONS AND NOTATION

EA : Edwards and Anderson (1975)

SK : Sherrington and Kirkpatrick (1975)

TAP : Thouless, Anderson and Palmer (1977)

AT : de Almeida and Thouless (1978)

GT : Gabay and Toulouse (1981)

RS : Replica Symmetry (Sherrington and Kirkpatrick 1975)

FC : Field Cooled

ZFC : Zero-Field Cooled

tra : trace over a single replica a

Tra : trace over all replicas (o = l,...,n)

( ) T '• thermal average with respect to the original hamiltonian H

( ) : thermal average with respect to the replicated hamiltonian Heff

[ ]av : average over the disorder

£ : summation over all sites i and j 
ij

/
£ : summation over all sites i and j with i ^ j 
i j
£ : summation over distinct pairs of sites

( ij)

£ : summation over distinct nearest-neighbour pairs of sites
< i j >

£ : summation over all replicas a. and p 
<*3
£ : summation over all replicas a  and /3 with a p 
a(3

£ : summation over distinct pairs of replicas
( af3)



• 
11 

CHAPTER 1: INTRODUCTION AND SURVEY 

Spin glasses continue to be of much active interest with new features ar.d 

applications discovered regularly. Despite the complexity of such systems, much 

progress has been attained in the latest years, from both theoretical and 

experimental points of view. 

Most of the theory has been constructed from the investigation of the 

simplest model, the Ising spin glass. For the short-range-interaction case 

(Edwards and Anderson 1975), although it is agreed that the lower critical 

dimension lies somewhere in between 2 and 3 (Bray and Moore 1984, 1985, 1986, 

McMillan 1984a, 1984b, 1985a, Bhatt and Young 1985, Ogielski and 

Morgenstern 1985, Singh and Chakravarty 1986), the nature of the 

low-temperature phase remains controversial (Fisher and Huse 1986, Bray and 

Moore 1986, Villain 1986). The mean-field theory, as realized In the 

infinite-range-interaction model of Sherrington and Kirkpatrick (1975), is now 

fairly well understood. The ~pin-glass phase is characterized by an infinite number 

of order parameters (Parisi 1979, 1980a, 1980b, 1980c, 1980d, 1980e, 1983), 

related to the existence of many free-energy minima which are separated by 

infinite-height barriers (Mackenzie and Young 1982). These minima, usually 

called pure states, are constrained to an ultrametric structure (Mezard 

et aL 1984a, 1984 b ). 

Whether mean-field theory provides a good qualitative picture of the 

low-temperature phase in real spin glasses, is a point of much debate at the 

present moment (Fisher and Huse 1986, Bray and Moore 1986, Villain 1986). 

However, it turns out that infinite-range spin-glass models, besides providing a 

mean-field treatment to real spin glasses, are closely related to other subjects like 

complex optimization problems and biological systems (brain models). Therefore, 
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the concepts developed for spin glasses are currently penetrating other areas of 

research. This gives an stimulating support for further development of its 

mean-field theory.

One is usually tempted to generalize Ising models in order to give more 

freedom to the spin variable. Although the Sherrington-Kirkpatrick model is now 

considered as well understood, generalizations of it bring new features and 

challenges to the spin-glass theory. In particular, systems in which the spin 

variable does not present symmetry under reflection, like the Potts spin glass, 

exhibit a quite curious behaviour (Erzan and Lage 1983, Elderfield and 

Sherrington 1983a, 1983b, 1983c, Goldbart and Elderfield 1985, Gross et al 1985).

In this thesis we study the infinite-range p-state clock spin glass, for which 

the spin variables axe represented as unit vectors restricted to p equally 

angularly spaced orientations in a plane. Such a system contains the 

Sherrington-Kirkpatrick model as the particular case p = 2 , while interpolates 

between two very distinct spin glasses, that is, p = 3 (3-state Potts) 

and p = oo (XY) . The spin variable presents (does not present) symmetry 

under reflection for every even (odd) value of p.

Chapter 2 is an introduction to spin glasses. We do no attempt to give a 

detailed review on the subject, but rather put emphasis on issues to be explored 

throughout the thesis. We refer the interested reader to severed reviews available 

(Binder and Young 1986, van Hemmen and Morgenstern 1983, 1986, Mezard 

et al 1987, Sherrington 1988, Chowdhury and Mookerjee 1984, Moore 1984, 

Fischer 1983, 1985). We discuss the Sherrington-Kirkpatrick model and some of 

its generalizations; the Parisi replica-symmetry-breaking scheme is presented. We 

show the relations of infinite-range spin glasses to complex optimization problems 

and neural systems. We discuss briefly the short-range spin glasses.
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We introduce the p-state clock spin glass in Chapter 3; its relations to 

well-known models are explored. We apply the replica method to such a system 

and develop free-energy expansions. Finally, we investigate the replica-symmetric 

solution and its stability in the spin-glass phase.

Chapter 4 deals with the nature of the low-temperature phase of the 4-state 

clock spin glass. Within the replica-symmetric approximation we find two distinct 

solutions corresponding to the same free energy. By means of a mapping to two 

identical Ising models, we argue that the spin-glass phase is highly anisotropic, 

that is, collinear. We introduce a higher-order test function able to distinguish 

between isotropy and collinearity; fluctuations from perfect collinearity Eire 

predicted due to replica-symmetry breaking. Finally, we perform a Monte Carlo 

simulation to support our assertion of anisotropic spin-glass order and show that 

the fluctuations from perfect collinearity are rather small. Most of the results in 

this chapter axe also described in Nobre et al. (1989).

In Chapter 5 we investigate the effects of a magnetic field in the p-state 

clock spin glass. We show that the p = 3 case is peculiax in the sense that the 

critical line associated to the transverse spin-glass freezing changes under 

reflection of the magnetic field (h -+-h) . The case p = 4 is similar to p = 2 , 

and despite the four-fold symmetry of the spin variable, a magnetic field induces 

the order to two-fold symmetric. Finally, we show that all p > 5 clock glasses are 

XY like. The results of this chapter are also presented in Nobre and 

Sherrington (1989).

In Chapter 6 we analyse the role of a four-fold anisotropy field on the XY 

spin glass. We show that the normal four-fold symmetric spin-glass phase occurs 

except in the limit of infinite anisotropy. This is also discussed in Nobre 

et al (1989).
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In Chapter 7 we apply the Parisi replica-symmetry-breaking scheme to the 

infinite-range p-state clock spin glass. We show that all values of p present the 

conventional Parisi solution, except the case p = 3 , for which a step function is 

the stable solution. The absence of reflection symmetry in the spin variable is 

qualitatively irrelevant for all other odd-state clock spin glasses. Most of the 

results in this chapter are also described in Nobre and Sherrington (1986).

Finally, in Chapter 8 we conclude.
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CHAPTER 2: AN INTRODUCTION TO SPIN GLASSES

2.1. Spin-glass systems

The name "spin glass" stands for disordered magnetic systems in which the 

interactions between the magnetic moments axe random in sign. This terminology 

was first introduced by Coles (Anderson 1973, Coles 1973) to denote a class of 

dilute magnetic alloys of a non-magnetic host (noble metal) and a magnetic 

impurity (transition metal). The impurities, at low concentrations (typically 

1 -+10% ), are "quenched", that is, the alloy is taken abruptly from high to low 

temperatures, such that the impurity atoms cannot rearrange themselves to its 

lowest energy state and the disorder is frozen. This is to be contrasted with 

"annealing", where the cooling process is slow, allowing the system to relax to its 

minimum energy state. Annealed systems are less interesting from the theoretical 

point of view, since they can be related to non-random systems (Thorpe and 

Beeman 1976). Examples of the "classical", or "canonical", spin glasses are 

(the host is underlined) AuFe , AuMn , CuMn and AgMn .

In these systems, the magnetic moments of the impurities, which are 

distributed randomly in the host, interact with each other by polarizing the 

conduction electrons around them. This leads to an indirect exchange interaction, 

the so called RKKY interaction (Ruderman and Kittel 1954, Kasuya 1956, 

Yosida 1957), which oscillates with the distance between the magnetic moments 

at two given sites i and j , Rij ,

cos(2kFRij +  (f> o)
Jij — Jo

(kFRij) 3
(2.1.1)
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In (2.1.1), Jo and 4><$ are constants and k is the Fermi wave vector of the host 

metal. As can be seen in Figure 2.1 , depending on the separation Rjj , the 

coupling between two given spins can be either ferromagnetic (Jij > 0) or 

antiferromagnetic (Jij < 0). Since the distances between the impurities are 

random, some of the interactions of a given spin with the others will be positive, 

favouring parallel alignment, some negative, favouring antiparallel alignment, 

that is, there will be "competition" among the interactions. Both disorder and 

competition between couplings are believed to be the main requirements for 

spin-glass behaviour. They lead to a low-temperature phase in which the 

magnetic moments freeze in random directions as shown in Figure 2.2.

It is important to mention that even for the canonical spin glasses discussed 

above (Morgownik and Mydosh 1983a, 1983b), an effective magnetic hamiltonian 

is not known precisely; however, it is clear that the competition between 

ferromagnetic and antiferromagnetic bonds should be considered in any theoretical 

approach attempt.

A second class of well-studied systems axe the insulating spin glasses such as 

EuxSri-xS , Eui-xGdxS and Fei-xMgxCl2 , for which the magnetic interactions 

are strictly short ranged. The most studied of these systems is EuxSri_xS 

(Maletta and Felsch 1979, Maletta 1982). In this system, the Eu and Sr ions sit on 

the sites of an fee lattice with a fraction x of these sites being occupied at random 

by the Eu ions. Although this time, the magnetic interactions which occur 

between the Eu ions are short ranged, there is a competition between 

ferromagnetic nearest-neighbour couplings and antiferromagnetic next-nearest 

neighbour couplings; interactions between more distant neighbours are negligibly 

small. Spin-glass behaviour has been observed for 0.13 < x < 0.5 (Maletta and 

Felsch 1979).
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It should be noted that spin-glass characteristics have also been observed 

experimentally in several other systems including non-magnetic systems, like 

dilute ferroelectrics and molecular crystals (for reviews see Binder and 

Young 1986, van Hemmen and Morgenstern 1983, 1986, Fischer 1985, Chowdhury 

and Mookerjee 1984).

2.2. Basic experimental properties

In order to classify a given material possessing the requirements mentioned 

in the previous section (disorder and competing exchange), as a "good" spin glass, 

usually three basic experimental properties are investigated:

(a) a.c. susceptibility;

(b) magnetic specific heat;

(c) low-temperature magnetization versus field.

If all three measurements present the behaviour described below, then the system 

may be considered as a conventional spin glass and further study may be followed.

Spin-glass behaviour was first observed by Canella and Mydosh (1972); they 

found a fairly sharp "cusp" in the low^ield a.c. susceptibility of AuFe at a well 

defined temperature, Tg , suggesting that the system undergoes a phase 

transition. In fact, the cusp is very sensitively field dependent and gets flattened 

even at fields as low as 50 G ; however, the curves get sharper and sharper as h is 

reduced, and the extrapolation to zero field is consistent with such a peak (see 

Figure 2.3).

A rather curious aspect of the a.c. susceptibility is its dependence on the 

frequency u , in which the measurements are performed. The temperature Tg 

decreases with u; (see Figure 2.4) and then, one could argue that in the limit
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u = 0 (d.c. measurement), Tg -+ 0 and the "phase transition" is simply a

non-equilibrium manifestation.

In contrast to the susceptibility behaviour, the magnetic contribution to the 

specific heat Cm exhibits no anomaly at Tg but a broad maximum well above Tg 

(Zimmermann and Hoare 1960, Wenger and Keeson 1975, 1976, Martin 1978, 

1979). In addition to that, neutron diffraction experiments indicate the absence of 

long-range magnetic order below Tg (Arrot 1965).

The third basic property of a canonical spin glass concerns the magnetization 

in a field. There are two ways of producing a low-temperature magnetization in a 

field:

(i) Field Cooled (FC) Magnetization: a magnetic field is applied to the 

sample at high temperatures and the magnetization is tracked as the system is 

cooled.

(ii) Zero-Field Cooled (ZFC) Magnetization: the sample is cooled in zero 

magnetic field to a very low temperature (T < Tg), then a field is applied and the 

magnetization is followed as the temperature increases.

For a ferromagnet, these two procedures do provide identical results for the 

magnetization at fixed values of the magnetic field and temperature. For a 

spin-glass system however, they yield very different results which are shown in 

Figure 2.5 . Below Tg , the two curves bifurcate (Tholence and Tournier 1974, 

Nagata et ai 1979), the FC one forming a plateau, whereas the ZFC curve jumps 

to a definite value x  = M/h equivalent to the a.c. susceptibility. The FC curve 

is weakly time dependent and is generally accepted as representing the 

equilibrium magnetization; it is a completely reversible curve. On the other side, 

the ZFC curve is time dependent and evolves slowly (over many decades) towards 

the FC curve. It is an irreversible curve since, if at point A one reduces the
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temperature, the system goes to point B instead of following the ZFC curve; by

raising the temperature at B, the system will first go to A before joining the ZFC

curve. Along the FC curve the name "thermoremanent magnetization" is

currently used for the magnetization, whereas in the ZFC case the term

"isothermal remanent magnetization" is employed.

Although the properties described above are enough to characterize

experimentally a spin-glass system, they are not very conclusive about the

occurrence of a true static phase transition at the temperature Tg . Perhaps the

best experimental evidence in favour of a phase transition for spin glasses, comes

from measurements of the non-linear susceptibility xni , by approaching Tg from 
+

above (T -> Tg ) , where the dynamical effects are weak. For a small magnetic 

field h , the magnetization may be expanded in power series,

^ = X o ( T ) - h 2 xnl(T) +  0 ( h 4) , (T >  Tg) (2.2.1)

where x0(T) zero-field susceptibility. The quantity \ ni(^ ) *s more

sensitive to spin-glass order than Xo(T) , presenting a spectacular increase on 

approaching Tg , quite comparable to the growth of Xo(^) ordinary magnets. 

Monod and Bouchiat (1982), by investigating the field-cooled magnetization 

of AgMn , concluded that the resulting non-linear susceptibility was consistent 

with a critical divergence at Tg ,

In i
T - T , t - t ; ( 2.2.2 )

where 7 is a critical exponent associated with a static phase transition to a 

spin-glass state. Although some controversy exists on the observed values of 7
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(Barbara et ai 1981, 1982, Omari et al 1983, Bouchiat 1986), it is accepted that 

real spin glasses do present a true phase transition at the temperature Tg .

2.3. The Edwards-Anderson model

As an attempt to describe the spin-glass properties discussed above, 

Edwards and Anderson (1975) proposed a theoretical model , the EA model, in 

which one works with a well-defined lattice, and the site randomness as seen in 

Figure 2.2 , is replaced by a bond randomness. The Edwards-Anderson model 

consists of a set of N classical vector spins Si distributed on a regular lattice, 

interacting via the hamiltonian,

H = -  S Jij S i . Sj , (2.3.1)
<ij >

where the sum (ij) is over nearest-neighbour pairs of spins, and the exchange 

constants Jij axe randomly chosen according to a fixed probability 

distribution P(Jij). Two of the most commonly used probability distributions axe 

the gaussian (Edwards and Anderson 1975, Sherrington and Southern 1975).

P(Jij) = ( 1/ 2 jtJ2)^ exp [-(Jij -  Jo)'2/ ' ! ! 2 ] (2.3.2a)

and the " ± J " (Toulouse 1977),

P(Jij) = p<S( Jij -  J) (1 - p)<S( Jij + J) (■2.3.2b)
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Both distributions mentioned above lead to a random mixture of positive and 

negative bonds, presenting the two basic ingredients for a spin glass, that is, 

disorder and "frustration".

The concept of frustration was introduced by Toulouse (1977), and in order 

to explain this, let us restrict ourselves to an Ising spin hamiltonian (Si = ± 1) 

with ± J bonds. Consider the smallest closed loop of bonds on a lattice, i.e. a 

plaquette, which for the two-dimensional square lattice is a square. If one 

attempts to minimize the energy of a single plaquette, then the number of 

minimum energy spin configurations depends strongly on the signs of the 

exchange couplings. For the case in Figure 2.6(a), all bonds are "satisfied", there 

are two minimum energy configurations and the plaquette is said to be frustrated. 

In Figure 2.6(b) however, one of the bonds remains "unsatisfied"; there are eight 

possible ground-state configurations and the plaquette is frustrated. The basic 

difference between the two plaquettes in Figure 2.6 is contained in the frustration 

function:

$ = sign (Jij JjkJklJli) = -  1 , for a frustrated plaquette,

= +1  , otherwise. (2.3.3)

The existence of frustrated plaquettes leads to a characteristic feature of spin 

glasses, that is, for a given disorder realization {Jij} , there exist many ground 

states which are unrelated by any global symmetry of the system. The frustration 

concept discussed above can be generalized to more complicated lattices and to 

higher-dimensionality spins (see the review by Binder and Young 1986).
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The disorder average of a quantity A{ Jij} is then, given by

[ A{Jij} ]av = f  n [dJij P(Jij)] A{Jy} , (2.3.4)

where {Jij} denotes a particular realization of the disorder, usually called a 

sample.

It is important to note that for a real system the random variables {Jij} 

may fluctuate with time as a consequence of the diffusion of atoms through the 

lattice. For annealed systems the observation time is such that these random 

variables reach thermal equilibrium, and one computes the disorder average in a 
similar way to the statistical averages. As an example, the free energy per spin is 

given by

-  ^  N_' ln l Z<Jii> - (2.3.5a)

where

Z{Jij} = tr exp ( - /9H) , (2.3.5b)

is the partition function for a particular sample {Jij} • These systems are much 

easier to deal with (Thorpe and Beeman 1976), but are not very relevant for the 

spin-glass problem.

For quenched systems however, tue random variables are not in thermal 

equilibrium and averaging like in (2.3.5) is not correct, as will be discussed below. 

Following an argument due to Brout (1959), one should average only extensive 

variables. By dividing a large system into smaller subsystems with no interaction
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between them, he argued that the disorder average of a given extensive variable 

(normalized per degree of freedom) for the whole system is equal to the average of 

the values of such a quantity over the subsystems, in the limit when the number 

of subsystems becomes large. Quantities 0{Jij} possessing this property are 

called "self-averaging", in the sense that,

0{Jij} = [0{Jij}  lav , (N -» oo) . (2.3.6)

For finite N the Brout argument leads to fluctuations around the average 

value of the density of an extensive quantity; such fluctuations obey a gaussian
-i

probability distribution of width of order N 2 . For the free energy per spin, as an 

-xample,

P(f) « exp I -  N (f -  [f]av)2/ 2( Af)2 ) . (2.3.7)

Since

Z = exp (-  N/S) , (2.3.8)

by using the probability distribution (2.3.7), one gets for the average over the 

partition function (annealed systems),

fann = [f]av+)9'A{)2 . (2.3.9)

This shows that fann > [f]av , providing an overestimate for the free energy per 

spin of the quenched system. Therefore, the correct thing to do for quenched 

systems is to average over the free-energy density,



24

[{]av = - /3'' N-'[lnZ{Jij}]av • (2.3.10)

The average in (2.3.10) is not an easy task because the random variables 

occur inside a logarithm. Edwards and Anderson (1975) overcame this difficulty 

by making use of the replica trick (Kac 1968, Edwards 1970, 1971, Emery 1975),

[In Z { J i j } ]av 1 im 
n-+ 0

1 *
n [Zn{ Jjj}]av — 1 (2.3.11)

which is easily proved by the expansion,

Zn = exp(nlnZ) 2 1 |  nlnZ , for n -♦ 0 . (2.3.12)

In the equations above Zn is the product of n identical and independent replicas 

of the system,

Zn = n Z a = Tra ex p (-/3 S H a ) , a = l , . . , n  , (2.3.13)a  a

where Za is the partition function of the o-th replica and the trace is to be 

extended over all replicas. Although Zn is only defined for positive integer n , it 

is assumed that the limit n -» 0 can be taken. This is a point which caused a lot 

of debate concerning the reliability of the replica trick (van Hemmen and 

Palmer 1979). As will be seen in the forthcoming sections, the analytic 

continuation n -* 0 is highly non-trivial, but if done properly, leads to results 

that whenever possible to be checked against alternative methods, do indeed

agree.
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As a possible order parameter Edwards and Anderson (1975) suggested the 

long-time correlation function,

qEA
1 i m 
t-*oo

1 i m 
N-+oc

N

N-' £  [< Si(0).Si(t) ) T ]av
i = 1

(2.3.14)

where ( ) denotes a thermal average with respect to the hamiltonian and [ ]av 

stands for an average over the disorder. EA claimed the spin-glass phase to be 

associated with a "freezing" of the spins in random directions during long time 

scales, or in other words, the spin on each site remembers its orientation over long 

periods of time.

Another equally important quantity on spin glasses is the statistical 

mechanics order parameter,

q =
1 im 
h-+0

1 i m
N-*oo N-l

S ksOtIav (2.3.15)
i = 1

for which one has to introduce a small symmetry-breaking field h to ensure 

( Si ) ^ 0 . This could be a uniform field or a random field (in the case of Ising 

spins) and the limit h -» 0 should come after the thermodynamic limit has been 

taken (Young and Kirkpatrick 1982, Young and Jain 1983).

Some spin-glass systems like the Sherrington-Kirkpatrick model which will 

be discussed in the following section, present the property of non-ergodicity. This 

means that the system may get trapped in given states corresponding to a 

restricted region of phase space, in such a way that a time average is not 

equivalent to the statistical mechanics ensemble average. For non-ergodic spin 

glasses it is clear that
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q BA#q , (2.3.16)

and it is sometimes useful to define a parameter A which is a measure of 

breakdown of ergodicity (Sommers 1978),

A = qEA-q  • (2.3.17)

Such a quantity appears naturally in the dynamical approaches to spin glasses 

(Sompolinsky 1981, Sompolinsky and Zippelius 1981, 1982).

The Edwards-Anderson model of spin glass, although a theoretical problem 

simple to formulate, has proved to be extremely difficult to solve. In the next 

section we turn to its mean^ield treatment for the case of Ising spins.

2.4. The Sherrington-Kirkpatrick model

2.4.1. The Sherrington-Kirk pat rick solution

The infinite-range interaction model in which every spin of the system 

interacts with all the others via the same exchange is, for the ferromagnetic case, 

a problem for which mean-field theory is exact (Stanley 1971). The extension of 

such a model to the spin-glass case was proposed by Sherrington and 

Kirkpatrick (SK) (1975) as a possible mean-field treatment of the 

Edwards-Anderson model. The SK hamiltonian has the same form as the one for 

the EA model for Ising spins (Si = ± 1), namely

H = - S  Jij Si Si -  h E Si( i j) i (2.4.1)
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where h is an external magnetic field and the sum (ij) is now over all distinct 

pairs of spins. The Ji j ' s  are quenched random couplings distributed according to 

the probability

P(Jij) = (N/2Tj2)U xp[-N (Jij - J 0/N)2/2J2] , (2.4.2)

where the N dependence (N is the total number of spins of the system) is 

necessary to ensure a non-trivial thermodynamic limit. In the discussion which 

follows we take the ferromagnetic offset Jo to be zero, as a simplification.

To obtain the average free energy per spin, [f]av , one makes use of the 

replica method as discussed in the previous section. Details on the application of 

this method will be given explicitly in the following chapter for a more general 

problem, the p-state clock spin glass (which has the SK model as the particular 

case p = 2 ).

The average over the disorder is easily performed and in the 

infinite-range-interaction limit the problem is reduced to a single-site dependence 

(from now on, the site index will be dropped) (Sherrington and Kirkpatrick 1975, 

Kirkpatrick and Sherrington 1978). The free energy is obtained from a steepest 

descents integration which leads to the extremization of a free-energy 

functional g(qa^) J

/* =
1 im 
n-*0 im in  {g(q"5} (2.4.3)

with

!For the remainder of this thesis, the quenched average of the free energy per spin 
will be denoted simply by f , instead of [f]av as used up to now.
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g(qa/?) = - | ( W 2 + ^ L s ' (qa/}f  -  In Tr exp {Heff} , (2.4.4a)

Heff = ^ - S ' qa^ S Q S/3+/ffliSS" , (2.4.4b)
1 a3 a

/
where S denotes a sum over all a $ /3. One gets rid of the disorder but the 

<*13
price paid for that is the appearance of couplings between distinct replicas in the

adeffective hamiltonian Heff . There are n(n-l)/2  parameters q H which are 

determined by extremizing g(q H) ,

qa ^ = ( S a S/?) ; a * /?  , (2.4.5)

where ( ) denotes a thermal average with respect to Heff .

The main difficulty of this problem comes on choosing the appropriate
adparametrization for the parameters q in the limit n -► 0 . As long as n is a 

positive integer, Heff is invariant under permutations of the replica indices and so, 

what appears naturally as a first attempt is the replica-symmetric solution (RS) 

(Sherrington and Kirkpatrick 1975),

qa@ = q for all a $ (d . (2.4.6)

Such a solution leads to a phase transition from a paramagnetic (T > Tg , q = 0) 

to a spin-glass state (T < Tg , q ^ 0) at a critical temperature,

Tg = J (2.4.7)
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Curiously, one gets that f is a maximum with respect to q in both states 

and for T < Tg , the spin-glass solution (q $ 0) presents a higher free energy 

than the q = 0 solution, contrary to expectation (see Figure 2.7). The 

explanation for this comes from the fact that the number of parameters qa^ , 

n(n-l)/2  , becomes negative in the limit n -+ 0 . This is responsible for changing 

the minimum in equation (2.4.3) into a maximum condition. As will be discussed 

next, the replica-symmetric spin-glass solution is unstable below Tg , but the 

Paxisi solution (Parisi 1979), which is believed to be the correct one, presents an 

even higher free energy than the SK solution. The minimum condition in (2.4.3) 

only makes sense when seen as a local stability condition, that is, minimum with 

respect to each one of the q ^ parameters. This is done by requiring the stability 

matrix S ,with elements (de Almeida and Thouless 1978),

S(affl(7^  = — S V  > (2-4.8)
A l ^ q 7'5

to be positive definite, i.e. all its eigenvalues should be positive for stability.

Unfortunately, the SK solution leads to problems at low temperatures; the 

entropy becomes negative (Sherrington and Kirkpatrick 1975), which is not 

acceptable for an Ising system. During sometime this entropy "catastrophe" was 

attributed to the replica trick itself (van Hemmen and Palmer 1979). In order to 

avoid that, Thouless, Anderson and Palmer (TAP) (1977) proposed a new 

solution for the SK model without using the replica trick. For T > Tg , by means 

of a high-temperature expansion they found the same results as Sherrington and 

Kirkpatrick. For T < Tg , TAP used a diagrammatic expansion to derive the 

mean-field equations for the SK model, namely,
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| 05mi = tanh < /? £ Jij mj + /?hi -  p £ Jij (1 -  mf ) mi

i = . (2.4.9)

In equations (2.4.9) we have added a local magnetic field h i , and mi denotes 

the magnetization on site i . The first two terms inside the hyperbolic tangent are 

familiar from the mean-field theory of pure systems, while the last contribution is 

known as the Onsager reaction-field term (Onsager 1936, Brout and 

Thomas 1967). This comes essentially as a self-effect correction which subtracts 

the contribution of the spin at site i to the total mean field experienced by itself. 

In the corresponding theory for a ferromagnet, such a term is negligible, while for 

spin glasses with a probability distribution P(Jij) as in (2.4.2), this is of the 

same order of magnitude as the first two terms. Since the Jij's are elements of a 

random matrix, the solution of the set of equations (2.4.9) is not an easy task and 

TAP succeeded in finding solutions only near Tg and T = 0 . While near Tg their 

results are essentially those obtained by SK , near T = 0 they found very 

different behaviour and in particular, a positive value for the entropy.

The explanation of why the SK solution went wrong was given by de 

Almeida and Thouless (AT) (1978). By looking at the eigenvalues of the stability 

matrix (2.4.8), AT showed that the apparently unharmful choice (2.4.6) is locally 

unstable for all temperatures below Tg . The nature of the instability indicates 

that the correct solution must break the permutation symmetry between distinct 

replicas, since the eigenvalue corresponding to replica-symmetry-breaking 

fluctuations becomes negative for T < Tg . This eigenvalue is inversely 

proportional to the spin-glass susceptibility (Pytte and Eudnick 1979, Bray and 

Moore 1979),
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Xso = N-' l  [«SiSj>T -  <Si>T <Sj>T)2] iv , (2.4.10)

which therefore, becomes negative, making the SK solution unphysical for 

all T < Tg . AT also showed, in the presence of an external magnetic field, the 

existence of a line in the h-T plane (see Figure 2.8) below which the 

replica-symmetric solution is unstable. On this line becomes infinite 

signaling a phase transition from paramagnet to spin glass, contrary to what 

happens for ferromagnets where the magnetic field destroys the transition.

Physically, this replica-symmetry breaking leads to strong irreversibility 

effects, which axe directly related to the fact that the TAP equations present a 

large number of solutions below the AT line. In fact, the number of solutions 

grows as (Bray and Moore 1980, De Dominicis et al. 1980, Tanaka and 

Edwards 1980),

[Ns(h,T)]av oc exp{No(h,T)} , (2.4.11)

where o(h,T) is non-zero below the AT line. Different solutions of the TAP 

equations correspond to distinct free-energy minima. This leads to a multi-valley 

structure for the free-energy surface as illustrated schematically in Figure 2.9 . 

The minima represent metastable states and the barrier heights between valleys 

must diverge in the thermodynamic limit, otherwise thermal fluctuations would 

induce mixing and consequently, destroy the metastable states (Bray and 

Moore 1981a). This picture is consistent with the infinite relaxation times found 

through dynamical approaches (Sompolinsky 1981, Sompolinsky and 

Zippelius 1981). Direct evidence for that was given by Monte Carlo simulations
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which lead to barrier heights between valleys diverging as N* (Mackenzie and 

Young 1982). The SK model presents then, for T < Tg , breakdown of ergodicity 

corresponding to a nonnzero value of the parameter A in equation (2.3.17).

Next, the Parisi replica-symmetry-breaking scheme will be introduced and 

its implications will be discussed.

2.4.2. The Parisi solution

As pointed out by de Almeida and Thouless (1978), the permutation 

symmetry between distinct replicas should be broken for a stable spin-glass 

solution. However, it is not obvious how to break such a symmetry in the 

limit n -» 0 . Several attempts were initially proposed (Blandin 1978, Bray and 

Moore 1978, Blandin et ai 1980) but all of them failed to resolve the instability. 

The most successful replica-symmetry-breaking scheme is due to Parisi (1979, 

1980a, 1980b, 1980c, 1980d, 1980e). His theory is stable (in fact, it is marginally 

stable as will be discussed by the end of this section), agrees well with numerical 

results and is believed to be the exact solution of the SK model.

The Parisi scheme is shown schematically in Figure 2.10 ; it is essentially a 

hierarchical construction of the n x n order-parameter matrix q H , generated 

from the replica-symmetric solution. One starts at the zeroth level with 

the n x n matrix (we will use the notation n = mo) parametrized such that all 

elements are equal to qo(mo) (qa a  is a constant which will be set to zero), or in 

other words, the SK solution. The first step consists in dividing this matrix into 

blocks mi x mi , changing the value of the elements in the diagonal blocks 

from qo(mo) to qi(mi) . Now, one takes each of the diagonal blocks and divide 

them into smaller m2 x m2 blocks, changing once again the elements of the
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diagonal sub-blocks from qj(mi) to q2(m2) . This procedure is repeated k times 

on each successive set of diagonals and one gets

n = mo > mi > m2 > ... > mk > 1 , (2.4.12)

with the corresponding order parameters qo(mo), qi(mi),...,qk(mk). The process is 

followed indefinitely, that is, k -» 00 , and then the analytic continuation n -» 0 is 

performed; equation (2.4.12) becomes

0 = mo < mi < m2 < ... < mk < 1 , (2.4.13)

and mi is replaced by a continuous variable x , 0 < x < 1 . The Parisi 

order-parameter function, q(x) , is obtained in the continuum limit,

t i S  = q(x) ; 0 < X  < 1 , (2.4.14)

that is, we have now an infinite number of order parameters.

The shape of the function q(x) can be obtained easily near Tg , for h = 0 , 

by expanding the free-energy functional, equations (2.4.4), in powers of q y ,

g(qa ^) =  -  n q
cn8  B'y 70

s
a3

(q a/?)4 + (2.4.15)
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where the Parisi approximation was taken (Parisi 1980a), in retaining the only 

quartic term which is responsible for breaking the replica symmetry (Bray and 

Moore 1978, Pytte and Rudnick 1979). Using Parisi's parametrization, one gets 

(Parisi 1980a),

- Hl?  i s  (qQ'/?)m= f 'd x q n(x) . (2.4.16)n^O n ap n  ' J 0 n. \ /

More complicated terms like the third-order contribution in (2.4.15) can also be 

evaluated. However, the algebra simplifies a lot if one makes use of the rules 

developed by Parisi (1980b), i.e. associating with a given matrix A , in the 

limit n -* 0 , a pair [a , a(x)] . The quantity a is a number defined as

a = Aa a  , (2.4.17)

which is set to zero for spin glasses, but will be allowed to be non-^ero as a more 

general situation. The function a(x) is defined on the interval [0,1] . In fact, with 

the matrices defined in this way, the addition and multiplication take a rather 

simple form. Let us consider as am example, three matrices A , B , C and 

associate with each of them a pair,

A -+ [ a , a(x)] ; B - [b ,b (x ) ]  ; C - [c ,c (x ) ]  . (2.4.18)
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For the addition one has trivially,

C = A + B , (2.4.19a)

c = a -j- b , (2.4.19b)

c(x) = a(x) + b(x) , (2.4.19c)

whereas the multiplication requires some algebra to show that (Parisi 1980b),

C = A B , (2.4.20a)

c = a b -  (ab) , (2.4.20b)

c(x) = (b -  (b)) a(x) -f (a -  (a)) b(x) + f  dy [a(x) -a(y)]
o

x[b(x)-b(y)] , (2.4.20c)

where

<e> = f 0 dxe(x) (2.4.21)

One also finds
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1 im 
n-» 0 i  tr( A) = a 2.4.22a)

l £  ( A a^)ra =  (a)m -  (a”) n->0 n a(3 v ' v ' ' '
(2.4.22b)

Equation (2.4.22b) is the generalization of (2.4.16) for the case of non-zero 

diagonal matrix elements.

Using the above rules in the functional (2.4.15), the free energy in (2.4.3) 

will be given by

#[q] = -  ? In2 + + ^ ^ - [ ( O T 2 - 1] (q2) dx ( xq3(x)

+ 3q(x)J^ dy q2(y) ) + ^ - < q 4) + .- (2.4.23)

where

<qn) = f '  dxqn(x) (2.4.24)
J  0

By extremizing equation (2.4.23) with respect to q(x) one gets the shape of 

the Parisi function in zero magnetic field, as shown in Figure 2.11(a). It is a 

monotonically increasing function for 0 < x < x , followed by a plateau 

for x < x < 1 . Both the breaking point x and the plateau height qm are of 

order e ( e =  (Tg -  T )/T g).

It turns out that Parisi's solution maximizes the free energy, contrary to 

what is required in (2.4.3); indeed, it gives a higher free energy than the SK 

solution shown in Figure 2.7 . This comes from the fact that the quadratic
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contribution for the free energy,
n 2

X (qa ”) , becomes negative in the limit na(3 o ,

as can be seen in equation (2.4.16). Such a change of sign is responsible for 

changing the minimum condition in equation (2.4.3) into a maximum, similarly to 

what happened for the SK solution discussed in the last section.

The stability analysis as described in the previous section, for the Parisi 

solution is, due to the complicated structure of the matrix qa^ , a highly 

non-trivial task. Eigenvalues in a restricted subspace were found by 

Thouless et al. (1980), and a complete diagonalization of the stability matrix was 

done by De Dominicis and Kondor (1983). No negative eigenvalues were found, 

that is, the Almeida-Thouless instability disappeared, but some isolated zero 

eigenvalues are present through the whole spin-glass phase. This leads to a 

marginal stability and in particular, to an infinite spin-glass susceptibility for all 

temperatures below Tg .

Although Parisi's ansatz is only marginally stable, it provides results which 

are in very good agreement with numerical simulations, and is believed to be the 

exact solution of the SK model. Its implications and physical interpretation will 

be presented next.
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2.4.3. Implications and physical interpretation of Parisi's solution

The existence of many solutions of the TAP equations leads to the valley 

structure for the free energy as discussed before. Since the barrier heights between 

valleys diverge in the limit N -» oo , each minimum corresponds to a different 

thermodynamic state in which an infinite system will remain forever if initially 

prepared in that state. Such states are usually called "ergodic components11 or 

"pure states".

A given pure state s , of the spin-glass phase, is characterized by the local 

magnetization

m ; (2.4.25)

at every site, where (  ) denotes an average over the microstates of s . One can 

define the overlap between two solutions s and s' as

ss‘ =  N-' ?  (S i)s (Si), (2.4.26)

which is a measure of the "distance" in phase space between states, approaching 

1 (0) if s and s' are "near" ("far") to one another. The probability that there 

are states with overlap equal to q is given by (Houghton et ai 1983, Parisi 1983),

P(q) = S Ps Ps , <5(q-qSS') 
s ,s ' av (2.4.27)

In the equation above P is the probability for the pure state s , withs
Boltzmann weight (De Dominicis and Young 1983),
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Pg = Z-1 exp (-0Fg ) , (2.4.28a)

where F is the free energy of state s and Z , the partition function, s

Z = S exp (-0F ) . (2.4.28b)
s

Since the Parisi function is monotonic, one can define its inverse, x(q) , 

which is related to P(q) by (Houghton et al. 1983, Parisi 1983),

a f = P ( q )  • (2-4.29)

The meaning of the above relation is that the Parisi function q(x) contains 

information about the distribution of phase-space distances. The probability 

distribution P(q) for the SK model in zero magnetic field, is shown in 

Figure 2.11(b). The delta function at qm corresponds to the plateau of the Parisi 

function, whereas for the region q(x) varying with x , one gets a structure 

for P(q) which indicates the existence of multiple states with non-^zero overlap 

between them. The replica-symmetric solution yields trivially, P(q) as a single 

delta function.

Another important point about (2.4.29) is that it allows one to 

compute P(q) , and consequently q(x) , by numerical simulations. This was done 

(Young 1983) and within the limitations due to the finite size of the samples, the 

structure predicted from the replica theory was confirmed.
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In the pure-state language, any statistical mechanics average should include 

contributions from each state s with a weight Pg . In particular,

(S ,)T = S P s <Si)s . (2.4.30)
S

Hence, the Edwards-Anderson order parameter, equation (2.3.14), which describes 

ordering in a single state, is given by

v  =  N "  ? S P  (Si)S ' 'ss
S P  q s M L s

ss (2.4.31)

whereas the statistical mechanics order parameter, equation (2.3.15), will be

q = N"1 S i P
S

(2.4.32)

involving interference between different solutions.

Both qgA and q can be obtained from the Parisi function q(x) . The 

parameter q from (2.4.32). is the first moment of the distribution P(q) ; using 

(2.4.29), one gets,

q =  J*dq ' q ' P(<?.') = f  dx q(x) (2.4.33)

One can also demonstrate that (De Dominicis and Young 1983),

qEA = q(x = 1) (2.4.34)

showing that q£A > q for q(x) non-constant, i.e. if many states exist below Tg .
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Another interesting consequence of Parisi's solution is related to the concept 

of ultrametricity (for a review see Rammal et al. 1986). If one takes three distinct 

pure states labelled respectively, 1, 2 and 3 , in principle, no restrictions on the 

distances between them in phase space, q12 , q23 and q31 should be expected. 

However, as shown by Mezard et ai (1984a, 1984b), they cannot be all different; 

either they are all equal or the two smaller ones are the same. This result becomes 

apparent if one considers the Parisi ansatz as a hierarchical structure (see 

Figure 2.12). Taking the end-points as the states, the overlap between two of 

them is found by tracing back along the branches of the tree until their nearest 

common ancestor is reached. The overlap becomes smaller the further back one 

needs to go. One can verify easily the ultrametric structure for any three 

arbitrarily chosen states.

In summary, the Sherrington-Kirkpatrick model of spin glass is now well 

understood. The spin-glass ordering is characterized by a function, that is, an 

infinite number of order parameters, which are related to the existence of many 

minima (free-energy valleys) below Tg . The system presents non-ergodic 

behaviour by remaining trapped in a given state for which it was initially 

prepared. The distances in phase space between different minima are restricted to 

an ultrametric space.

The occurrence of such features in more general infinite-range spin-glass 

models, or in short-range spin glasses, is something not completely understood, as 

will be discussed briefly in the next sections.
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2.5. Generalizations of the Shenington-Kirk pat rick model

Ising spins (Si = ± 1) are nice from the theoretical point of view, but they 

represent quite a crude approximation of nature. One is usually tempted to 

generalize Ising models in order to give more freedom to the spin variable, by 

allowing it, let us say, to be a continuous variable in a plane (XY variable) or in a 

sphere (Heisenberg variable), or even to be discrete but assuming more than two 

possible values.

As a generalization of the Sherrington-Kirkpatrick model, let us now take 

the hamiltonian,

H = -  £ Jij S i . S j - h . S S i  , (2.5.1)
( i j ) i

where £i are classical vectors with more than one cartesian component.

If the vectors Si are continuous in m dimensions, i.e. are allowed to point in 

any direction in an m-dimensional space, subject to the normalization condition,

S i = m , (2.5.2)

one gets the so called m-vector spin glass. As particular cases of the m-vectors, 

one has the following models:

m = 1 : Ising , 

m = 2 : XY , 

m = 3 : Heisenberg , 

m = oo : Spherical
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By taking Si as unit vectors pointing in each of the p-symmetric directions 

of a hypertetrahedron in (p-1) dimensions (from the centroid to each of its p 

vertices), the hamiltonian in (2.5.1) describes the Potts model (for a review 

see Wu 1982). The Potts hamiltonian is most commonly known in the form

H = (2.5.3)

where 8 denotes a Kronecker delta and ki = 0,l,...,p-l .Trivially, the SK model 

is recovered for p = 2 , by means of the identifications,

Si = cosxki ; kj = 2 (! + SiSj) ; ki = 0,1 . (2.5.4)

Another variation on (2.5.1) is the case where the Si are unit vectors 

restricted to p equally angularly spaced orientations in a plane. This is called the 

planar Potts or the clock model, which will be extensively studied throughout 

this thesis.

For systems described by (2.5.1), the order-parameters space becomes more 

complicated as one has now tensors in spin space,

R?„ = <S? S?> , (2.5.5a)

Q ^ = < S " s f r  ; a f / }  , (2.5.5b)

where /x,i/ refer to spin-cartesian components. The probability distribution for 

the overlaps between states can be generalized as,
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P { Q ^ }
L S ,S

p s p g/ (2.5.6)

where

QS S ‘
\w =  N-' ?  <S*>, ( S J , (2.5.7)

The statistical mechanics order parameter is the first moment of the 

distribution (2.5.6), or in other words,

S
s,s

p P / Q, s s ^
SS'
fiU (2.5.8)

In the next chapter we will discuss how to restrict the order-parameters space by 

imposing conditions on tensors (2.5.5), reducing the number of parameters.

For the m-vector case, in zero magnetic field, the Almeida-Thouless 

instability is observed for any finite m , but a curious behaviour is found in the 

limit m -» oo , where the replica-symmetric solution is stable (de Almeida 

et al. 1978). In this limit then, the spin-glass phase is characterized by a single 

thermodynamic state, related to the fact that the analogues of the TAP equations 

present a number of solutions (see equation (2.4.11)) with a 0 as m -* cc 

(Bray and Moore 1981b). The Parisi function in zero magnetic field, shows a 

similar behaviour to the Ising case (Figure 2.11(a)) for finite m , 

but x -+ 0 as m -* oo (Elderfield and Sherrington 1982, Gabay et al. 1982).

For h ^ 0 , the system is biased, and both the magnetization and the 

spin-glass parameters parallel to the field are always non-zero. There is, however, 

a transverse freezing signaled by the occurrence of perpendicular spin-glass
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parameters, which takes place in the h-T plane at the Gabay-Toulouse (GT) line 

(Gabay and Toulouse 1981). Below this line replica symmetry is unstable 

(Cragg et al 1982, Moore and Bray 1982), and the Parisi ansatz has to be used 

(Elderfield and Sherrington 1982, Gabay et al 1982).

The Potts spin glass on the other side, presents a quite curious behaviour 

(Erzan and Lage 1983, Elderfield and Sherrington 1983a, 1983b, 1983c, Goldbart 

and Elderfield 1985, Gross et al 1985). The Almeida-Thouless instability takes 

place at a lower order in perturbation theory when compared to the m-vectors, 

showing that replica symmetry is an even worse approximation in this case 

(Elderfield and Sherrington 1983a). By applying the Parisi ansatz in the 

conventional way, as described in section 2.4.2 , one is leaded to unphysical 

results, like a breaking point x > 1 , or a decreasing q(x) (implying a negative 

P(q)) (Goldbart and Elderfield 1985). Such effects are a direct consequence of the 

absence of reflection symmetry in the spin variable, that is, the hamiltonian is not 

invariant under the inversion Si -  Si -

The correct solution for the Potts spin glass was given by Gross et al (1985). 

They found two transitions as the temperature is lowered. Just below the upper 

critical temperature, Tgi , the Parisi function is two-valued, that is, a step 

function, whereas below Tg2 it presents a structure with nonnzero overlaps 

between states. The transitions axe continuous for p = 3,4 , but first order 

for p > 4 , with the plateau value jumping discontinuously to zero at Tgj .

Generalizations of the Sherrington-Kirkpatrick model, as the ones mentioned 

above, bring new features and challenges to the spin-glass theory. The planar 

Potts (or clock) model will be introduced in the next chapter.
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2.6. Relations to optimization problems and biological systems

Many problems in science and engineering today are formulated in such a 

way as to minimize a given function with respect to controllable parameters, 

subject to fixed constraints. In simple cases, the function in question may have a 

single or a few local minima, and the optimal solution is easy to select. 

Complications arise when one is faced with a large number of unrelated local 

minima, showing a similar structure as the one of the phase space of a spin glass 

(Figure 2.9). These are usually considered as "hard" or "complex" optimization 

problems, for in most of them, the finding of the optimal solution takes a 

computing time which grows exponentially, or in other words, non-polinomially 

(NP-complete), with the size of the system. The search for the ground state of a 

spin glass is, for most spin-glass models, an NP-complete problem.

A classic example of such a problem is the travelling salesman. 

Given N cities randomly distributed in a plane, the salesman is to visit each city 

once and return to the starting point, in such a way as to minimize the total 

length of the tour (Lawler et al 1985). Since both the starting point and the 

direction along each circuit are irrelevant, the number of different routes is 

given by,

Nr =  (N -  1)! ,

and for large N , one can use the Stirling's formula,

( 2.6.1)

N! s  (2xN)^ Nn exp(-N) (2.6.2)
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to write,

Nr 2 exp (N InN) ; N large . (2.6.3)

Clearly, as the number of cities becomes large it is impossible to test all possible 

routes to look for the optimal one.

The travelling salesman problem can be shown to correspond to the 

limit m -+ 0 of an m-vector spin glass and can therefore, be studied through 

spin-glass techniques (Kirkpatrick and Toulouse 1985, Mezard and Parisi 1986).

Another example is the graph-partitioning problem, particularly relevant to 

microchip design. Consider a set of N vertices, labelled i = 1,...,N , connected 

by edges according to a connectivity matrix {aij} , where aij = 1 if there exists 

an edge, zero otherwise. The problem is to partition the vertices in p subsets such 

as to minimize the number of edges between the subsets, while avoiding the 

congestion of any particular subset. Note the correspondence to the microchip 

design problem throughout the identifications: 

vertices 4—► circuits 

edges 4—► connections 

subsets 4—► boards

For p = 2 , the bi-partitioning problem, the objective is to minimize the number 

of connections between boards,

N c= £ a i j i ( l - S i S j )  , (2.6.4)

where Si takes the values ± 1 according to whether a given circuit i is in one 

board or the other. One usually studies bi-equipartitioning, which corresponds to 

the minimization of Nc subject to the constraint,
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m = £ Si = 0 , (2.6.5)i

which ensures an equal number of circuits in each board. Since the connectivity 

matrix elements in (2.6.4) are non-negative, this problem is equivalent to finding 

the ground-state energy of a dilute ferromagnet subject to a constraint of zero 

magnetization. However, if one relaxes the constraint (2.6.5) by adding to (2.6.4) 

the term

«H = 4- (SSi )2 =A S Si Si +  ̂AN , (2.6.6)
Z i (ij)

which restricts fluctuations around m = 0 to order N 7 , one gets the 

hamiltonian,

H = -  £ ( i  aij -  A)(Si Sj -  1) + const . (2.6.7)
( i j ) * *

The "interaction" ( ^ aij -  A) can now assume both positive and negative values 

at random, and the hamiltonian (2.6.7) describes essentially and Ising spin glass.

The generalization to the p-partitioning problem can easily be done by 

means of a cost function,

H = -  £ (aij -  A)(& , -1 )  , (2.6.8)

analogous to the hamiltonian of the Potts spin glass, where ki = l,...,p , labels 

the location of circuit i in one of the p different boards. The number of possible 

solutions in this case is,
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Ns = pN = exp(Nlnp) , (2.6.9)

showing the NP-completeness character of the problem.

One conventional strategy for dealing with such problems is iterative 

improvement. One starts with a randomly chosen initial configuration, performs 

some rearrangement, and the new configuration is accepted if it corresponds to a 

lower value for the cost function, rejected otherwise. The procedure is iterated 

until no further lowering is attained. In problems characterized by many local 

minima separated by high cost barriers, the system may head towards the nearest 

local minimum which is usually far from the global optimum, becoming trapped 

there. In order to avoid that, the optimization scheme must incorporate a 

mechanism for escaping from such traps.

Motivated by the analogy between spin glass and optimization problems, 

Kirkpatrick et ai (1983) proposed a scheme known as optimization by simulated 

annealing (OSA), as a method for finding low-lying local minima. The basic idea 

is to introduce a control parameter in the optimization problem, playing a role 

analogous to that of the temperature in statistical mechanics. The search for 

minima is done by using Monte Carlo methods (for reviews see Binder 1979, 

1985). One starts at a fairly high "temperature" and the system is "cooled" 

slowly. Changes which lower the cost are always accepted, but uphill moves, with 

a controlled probability, can also be accepted and in this way, one avoids getting 

stuck in a local minimum.

It should be noted that like optimization by simulated annealing, many 

other techniques developed for spin glasses have been used to study optimization 

problems (for reviews see van Hemmen and Morgenstern 1986, 

Mezard et al. 1987).
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Another recent application of spin-glass techniques goes towards brain 

research. The brain contains many neurons (of order 1010 ) which are highly 

connected through the synapses (of order 1015 ), representing a suitable system for 

the application of statistical mechanics. The link is provided by the 

Hopfield-Little model (Hopfield 1982, 1984, Hopfield et ai 1983, Little 1974, 

Little and Shaw 1978). This model is based on an earlier simple idealization of the 

neuron, in which it is allowed to be at any time in one of the two states, firing or 

not firing (McCulloch and Pitts 1943).

In the Hopfield-Little model one represents this by associating to a neuron a 

two-valued variable Si = ± 1 according to whether it is firing or not. The 

synaptic junctions present efficacies, Jjj , which determine the contribution of a 

signal fired by the j-th neuron to the potential at the i-th neuron, and can be 

either positive (excitatory synapse) or negative (inhibitory synapse). Assuming 

only pairwise interactions, one can write the total input potential at neuron i as 

the sum,

Vi = ? J i,^ ( S j + l) , (2.6.10)

where (Sj + l) /2  contributes with unit if neuron j is firing, zero if not. This 

input potential will affect the neuron at i , which will fire a signal if its 

potential Vi exceeds a given threshold value Ui . The stable states of the 

network will be those in which the variables Si align with their molecular fields,

hiSi > 0 ; hi = Vi -U i , (2.6.11a)

or in other words,
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Si = sign(hi) = sign |  ?  Jij ^ (Sj + 1) -  Ui |  • (2.6.11b)

The identification with the spin-glass problem is done by assuming 

symmetric synapses,

Jij =  Jji ; Jii =  0 , (2.6.12)

in which case, conditions (2.6.11) are equivalent to the requirement that the 

hamiltonian,

H = S hi Si = £ Jij Si Sj + S bi Si , (2.6.13a)
i ( l j ) i

bj = i  £ Jij -  Ui , (2.6.13b)
Z j

takes its local minimum. The many local minima correspond to the retrieval 

states, and similarly to spin glasses where the bond realizations, i.e. the {Jij} , 

determine the minima, the retrieval states are defined by the synapses. Hopfield

(1982) adopted the form proposed by Hebb (1949),

p

Jij = N - ' ^ ^ ^  . (2.6.14)
a = 1

where £* , a = l,...,p , are quenched random variables assuming the 

values ± 1 with equal probabilities. By using this choice of couplings one gets a 

set of p patterns {£*} stored simultaneously.
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We can recognize the familiar spin-glass hamiltonian in equations (2.6.13). 

This model has been studied within the framework of spin-glass techniques 

(Amit et al 1985a, 1985b, 1987), and extensions of it in order to include dilution, 

asymmetric synapses, correlations between memories and other more realistic 

features constitute a very active field in spin-glass research nowadays.

2.7. Short-range spin glasses

The spin-glass theory as discussed in sections 2.4 and 2.5 applies to 

infinite-range models, in which limit mean-^ield theory is believed to be exact. 

Although such a theory is fairly well understood, at least for the 

Sherrington-Kirkpatrick model, much less is known about the more realistic 

short-range spin glasses. A lot of effort has been done in the study of finite-range 

models through qualitative arguments, approximate methods and numerical 

simulations, but a satisfactory understanding is still lacking. A full description of 

the work done in this area can be found in several reviews (see for example Binder 

and Young 1986, van Hemmen and Morgenstern 1983, 1986), and here we shall 

give a compact sketch in what concerns the existence of a finite-temperature 

phase transition and the character of the low-temperature phase (whenever there 

exists one).

For the Ising spin glass on a square lattice it is generally accepted that there 

is no finite-temperature transition. This has been shown by several distinct 

methods and for different bond distributions with some of them listed below:

a) Real-space renormalization group (Migdal-Kadanoff scheme 

(Migdal 1975, Kadanoff 1976)): both ± J and continuous bond distributions 

(Southern and Young 1977, Kirkpatrick 1977).
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b) Monte Carlo simulations: ± J (Young 1983a, McMillan 1983).

c) Phenomenological scaling: continuous bonds (Bray and Moore 1984, 

1985, 1986, McMillan 1984a, 1984b).

d) High-temperature series expansion: ± J (Singh and Chakravarty 1986).

Although until recently no consensus existed, nowadays it is believed that 

the Ising spin glass in a cubic lattice does indeed exhibit a finite-temperature 

phase transition. Some of the works showing this are:

a) Real-space renormalization group (Migdal-Kadanoff scheme): 

both ± J and continuous bonds (Southern and Young 1977, Kirkpatrick 1977).

b) Monte Carlo simulations: ± J (Bhatt and Young 1985, Ogielski and 

Morgenstern 1985).

c) Phenomenological scaling: continuous bonds (Bray and Moore 1984, 

1985, 1986, McMillan 1984a, 1984b, 1985a).

d) High-temperature series expansion: ± J (Singh and Chakravarty 1986).

Therefore, the "lower critical dimension" d] , i.e. the dimension where finite 

temperature ordering disappears, for the short-range Ising spin glass, 

satisfies 2 < di < 3 .

It is a well-known fact that the lower-critical dimension for the m-vector 

ferromagnet (di = 2) is higher than the one for the corresponding Ising 

model (di = 1). The same seems to happen in spin glasses. For the m-vector spin 

glasses (XY and Heisenberg), most of the recent work is consistent 

with di > 3 (McMillan 1985b, Morris et al 1986, Olive et ai 1986, Jain and 

Young 1986, Chakrabarti and Dasgupta 1986). However, the inclusion of a
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uniaxial anisotropy induces a finite-temperature transition (Morris and 

Bray 1984, Chakrabarti and Dasgupta 1987). This may be the reason why, 

experimentally one measures spin-glass transitions on Heisenberg systems 

presenting critical exponents closer to those of Ising models, than to isotropic 

Heisenberg models.

The "upper critical dimension" du , i.e. the dimension where mean-field 

theory becomes exact, is, for most spin glasses, du = 6 , For dimensions between 

the upper and lower critical dimensions, di < d < du , mean^ield theory for the 

Ising spin glass as realized in the Sherrington-Kirkpatrick model, is only 

approximate, and one is tempted to ask which of its intriguing features (many 

valleys, non-trivial structure of P(q), ultrametricity), survives in such range of 

dimensions. In particular, one would like to know what happens by the time the 

physical value d = 3 is reached. Recent arguments (Fischer and Huse 1986, Bray 

and Moore 1986) in favour of a much simpler ordered phase for the 

three-dimensional Ising spin glass (a single thermodynamic state, a trivial delta 

function for P(q), no Almeida-Thouless line), constitute an issue of much 

controversy at the the present moment. While the droplet model of Fischer and 

Huse has been criticized by Villain (1986), the one-parameter scaling theory of 

Bray and Moore lacks an understanding of how it breaks down at higher 

dimensions. Numerical simulations to elucidate this point are waited for. 

Experimentally, the best test would be to look for an Almeida-Thouless line at 

low temperatures. The experiments done so far which identify Almeida-Thouless 

lines (or Gabay-Toulouse lines) in the h-T plane, are not very conclusive in 

showing the divergence of relaxation times. The clarifying of this matter is crucial 

for a better understanding of real spin-glass systems.
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Figure 2.1: The RKKY interaction: depending on the separation R.̂  between 

two given impurities, they may experience either a ferromagnetic (Jij > 0) or an 

antiferromagnetic coupling (Jij < 0) .
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Figure 2.2: Schematic two-dimensional slice showing the magnetic impurities 

distributed randomly in the host metal. At low temperatures the magnetic 

moments freeze in random directions.
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Figure 2.3: Field dependence of the a.c. susceptibility: the curves are flat for 

non-zero values of the magnetic field but they tend to a cusp as the field is 

reduced to zero.

Figure 2.4: Frequency dependence of the a.c. susceptibility: three different curves 

1 , 2 and 3 for the a.c. susceptibility axe shown schematically at different 

frequencies uj\ , ^  and u/3 (u/3 < < ^ 1) • The freezing temperature decreases

with ui.
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Figure 2.5: The low-temperature magnetization in a field: two distinct situations, 

the Field Cooled (FC) and the Zero-Field Cooled (ZFC) magnetizations are 

observed. The FC curve is completely reversible and is believed to represent the 

equilibrium magnetization. The ZFC curve is irreversible and evolves slowly 

towards the FC curve.
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Figure 2.6: An illustration of the frustration effect in a two-dimensional square 

lattice. Two elementary squares, called "plaquettes" are shown. In (a) ail bonds 

are satisfied at low temperatures, whereas in (b) there is always one unsatisfied 

bond and the plaquette is said to be frustrated.



60

Figure 2.7: The free energy for the Sherrington-Kirkpatrick model in the 

replica-symmetry ansatz. For T < Tg , the spin-glass (full line) presents a higher 

free energy than the q = 0 (dashed line) solution. The Parisi ansatz, which is 

believed to be the correct one, gives an even higher free energy than replica 

symmetry.
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Figure 2.8: The Almeida-Thouless line: a phase transition is predicted in the h-T 

plane for the Sherrington-Kirkpatrick model. The line signals the instability of 

the replica-symmetric solution.
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Figure 2.9: The free-energy multivalley structure for the Sherrington-Kirkpatrick 

model. The figure shows schematically a slice through the free-energy surface. 

The ordinate is the free energy per spin, and the abcissa should be considered as a 

one-dimensional qualitative representation of a multidimensional space.
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Figure 2.10: The Parisi replica-symmetry-breaking scheme.



64

Figure 2.11: (a) The Parisi function for the Sherrington-Kirkpatrick model in

zero magnetic field. Both the height of the plateau (qm) and the breaking point 

(x) are of 0(e) ( e = (Tg -  T )/T g) . (b) The probability distribution P(q) 

associated to the function q(x) shown in (a) .
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Figure 2.12: The hierarchical structure of the Parisi ansatz showing its ultrametric 

structure. For any three arbitrarily chosen states, 1 , 2 and 3 , the distances 

between them in phase space axe such that, either they are all equal or the two 

smaller ones axe the same.



66

CHAPTER 3: THE INFINITE-RANGE P-STATE CLOCK SPIN GLASS

3.1. Introduction

Systems in which the spin variable does not possess reflection symmetry like 

quadrupolar (Goldbart and Sherrington 1985) and Potts glasses (Erzan and Lage 

1983, Elderfield and Sherrington 1983a, b, c, Goldbart and Elderfield 1985, Gross 

et al 1985), present very different critical behaviour from the well established 

m-vector spin glasses. In particular for zero magnetic field, the Parisi function, as 

introduced in the previous chapter, changes drastically; also, discontinuous phase 

transitions occur as a direct consequence of the absence of reflection symmetry in 

the spin variable. Whether such "anomalies" are peculiar to Potts and 

quadrupolar glasses only, or if they also happen in other systems, is not known.

In order to investigate the relevance of reflection symmetry in the spin 

variable on other systems, it is interesting then, to study a p-state clock 

spin-glass model. Such a system can be seen as an XY model in an infinite p-fold 

anisotropy field, such that the spin variables are restricted to p orientations in a 

plane. Reflection symmetry is absent for every p odd and is present for p even, in 

which cases one expects the conventional critical behaviour already observed for 

the m-vector spin glasses.

In section 3.2 we define the infinite-range p-state clock spin glass and 

explore its relation to well-known models. In section 3.3 we apply the replica 

method to this model; we present perturbative expansions for the free energy in 

sections 3.4 and 3.5. In sections 3.6 and 3.7 we deal respectively, with the 

replica-symmetric solution and its stability in the spin-glass phase.
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3.2. The model

As an attempt to investigate magnetic systems where symmetry-breaking 

crystalline fields are present in addition to the usual exchange couplings,

Jose et al. (1977) introduced the model defined by the hamiltonian,

H = - J  X S i . Sj -D Scosptfi , (3.2.1)
<ij> i

where i denotes sites of a regular lattice and the symbol (ij) indicates a sum over 

nearest-neighbour lattice sites only. The quantity J is a ferromagnetic exchange 

coupling (J > 0), D represents an anisotropy field, and the Si axe continuous spin 

variables of fixed length restricted to a plane.

For D = 0 , we have the well known and extensively studied XY model.

However, for positive finite D , and at a sufficiently low temperature, the system

is forced into a state of broken symmetry in which one of the directions

0 =  2 lk  ; (k = 0, 1, .... p—1) (3.2.2)

is especially preferred. In the limit D = oo , the hamiltonian (3.2.1) describes 

what is called as the p-state clock (or planar Potts) model (Wu 1982).

In this limit, by introducing random couplings, one gets the p-state clock 

spin glass as defined by

H =  -  X J i j £ i . £ j - h . S a i
( i j ) *

(3.2.3)
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where h is an external magnetic field and the Sj are now, unit vectors restricted 

to p equally angularly spaced orientations in a plane. Throughout this thesis we 

will be interested in the infinite-ranged interaction case (Sherrington and 

Kirkpatrick 1975) for which the summation is over all pairs (ij) and the {Jij} are 

quenched random couplings distributed according to the probability

P(Jij) = (N/2irJ2)’ exp (—NJjj/2J2 ) . (3.2.4)

The components of Si can be represented as,

Six — cos$i , S i y — sin ft , (3.2.5a)

0i = ^ k i  (ki = 0, 1, .... p-1) . (3.2.5b)

The model defined by (3.2.3) is particularly rich, presenting as special limits:

a) p = 2

This is the Ising case (Six = ± 1 ; Siy = 0) introduced by Sherrington and 

Kirkpatrick (SK model) which was discussed in Chapter 2.

b) p = 3

Making use of the identity,

cos^T (ki -  kj) =  \ . kj ~  ̂ > (ki» kj — 2) (3.2.6)

equation (3.2.3), for a magnetic field along the x direction (h = hx), can be 

re-written as a Potts hamiltonian (equation (2.5.3)),
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H = -  £ Jij & i - h  £ & n + constant , (3.2.7a)
( ij) i Ki)u

where

{Jij} =  |  {Jij} ; h =  | h  . (3.2.7b)

Hence, for p = 3 , the clock and Potts are identical models, provided the 

re-scalings (3 .2 .7b) are performed.

c) p = oo

In this limit the angles become continuous variables and (3.2.3) describes 

now the infinite-range XY spin glass.

How does the critical behaviour change when one interpolates between the 

very distinct limits of low values of p (p = 2, 3) to p = oo ? This is one of the 

main questions which will be addressed throughout this thesis. In order to do this 

we shall staxt, in the next section, by applying the replica method to such a 

model.
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3.3. The replica method

In this section the replica method (Kac 1968, Edwards 1970, 1971, 

Emery 1975, Edwards and Anderson 1975) will be used in order to obtain an 

expression for the disorder averaged free energy of the p-state clock spin glass. 

From equation (2.3.11),

-  ffF l.v  =  [lnZ]av =  lni g  i  ([Z"]av -  1) , (3.3.1)

where Z° is defined for integer n as the trace over n replicas of the original 

hamiltonian as in (2.3.13).

Similarly to what happened for the SK model, as discussed in Chapter 2, the 

analytic continuation from integer n to n =  0  is one of the main difficulties of this 

problem, and this is one of the points to be addressed in detail later. The average 

over the disorder can now be easily performed,

[Zn]av = /  n dJi j P(.Jij) Z n{J ij} , (3.3.2)
*  ( lj)

in such a way that for a gaussian probability distribution like in (3.2.4), and a 

magnetic field along the x direction (h =  hx) , one gets after discarding 

terms 0 (1 /N ),

[Z "]a v  =  T t

{ S i }

exp
2

+  /3hSSS?*
1 a

(3.3.3)
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where (a0) denotes distinct pairs of replicas and /*, v are cartesian 

components ( / i , v — x , y).

Using the identity,

eAa2 (3.3.4)

equation (3.3.3) is reduced to a single-site form (from now on, the site index will 

be dropped),

[ z V n n
(af3) nu

X exp [- N g(R“„ , Q ° J )] (3.3.5a)

where

g (R ?„ Q ^ )  =  ^ - s s (r “ )
a  \iv

-  In Tra exp {H eff} (3.3.5b)

Hrff = 5 - S S  R “
^ Cl pi/ r  r

a S" + ^ - s ' S  Q ^ s " s f  + / 3 h S S ?  , (3.3.5c)
A a(3 \iv * a

with E denoting a sum over different replicas, a £ ft . 
ot0
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It is important to remember that one is interested in the thermodynamic 

limit, N -» oo , and it would be very convenient in this case to use the steepest 

descents method to evaluate (3.3.5a). Strictly, the n -+0 limit must be taken 

before the N -+ oo and although no rigorous proof exists it is usually assumed that 

these limits can be freely interchanged. For some years, it was suspected that this 

interchange of limits was responsible for the failure of the SK solution at low 

temperatures (van Hemmen and Palmer 1979, 1982), but it is now believed that 

this does not really create trouble. Then, interchanging the limits, (3.3.5a) can be 

evaluated by steepest descents, and the free energy per spin, f =  [F]av /N  , will be 

given by

/* =  n )} . (3.3.6)

where the Rj* and are given self-consistently by the saddle-point conditions,T*u

^ £ -  =  - 1 ^ = 0 (3.3.7a)

or, in other words,

, • Tr S“ S "  exp {H eff}par a Qc r \ _  I im a M- u J
T ra exp{He ( f }

(3.3.7b)

,aa a i • Tra S“ S(; exp{Heff}
q ° J -  ; . ( 1 W

T r a e x p j H e f f }
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In each case the ( ) brackets denote thermal averaging with respect to Heff . In 

order to give a finite contribution for the free energy in (3 .3 .6 ), the term 

Tr exp{Heff} in (3.3.6b) must go to 1 as n-+0 and then, the denominators in 

equations (3.3.7) can be neglected.

The next step now is to find the correct solutions of equations (3.3.7) in the 

limit n-*0 . It is obvious that Heff is invariant under permutations of the indices of 

the replicas, as long as n is a positive integer; however, what is not obvious is that 

this symmetry is preserved when one takes n-*0 . This leads to the point of finding 

a particular parametrization for R^u and which gives sensible physics after

n-*0 .

If h =  0 , one expects that, on the average, the system will be isotropic in 

spin space, for p >  2 , and the solutions of (3.3.7) simplify a lot if one assumes the 

isotropic conditions,

R ", = X" ^  , (3.3.8a)

- (3.3.8b)

which means that all directions in spin space are equivalent. The choice (3.3.8b) 

has been criticized based on the fact that, for h =  0  , one can rotate all the spins 

in a single replica without any cost of energy, leaving Heff invariant. Therefore, 

solutions allowing independent rotations between replicas should also be taken 

into account (Sompolinsky et al. 1984). One can find equivalent solutions,

f\Otj3 _  y  rpCt rnfl Ctfi
“ * n  1 up 1 u<x ^ p a  

pa
(3.3.9)
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where Tjjp is a 2x2 rotation matrix for replica a . The isotropic choice assumes 

that there is always a rotation for which (3.3.8b) is true.

The next chapter will deal with a particular case for which the choices

(3.3.8) can not be assumed a priori and one should consider as possible solutions 

in zero field,

R“x # R ? y ; * Q$f , (3.3.10)

as well as the habitual isotropic ones. For the moment, we shall then, take the 

usual assumption that there is a possible rotation for which the crossed 

parameters will not contribute even for h  ̂0  ,

R"* =  = 0  > «  ■ (3-3.11)

Making use of (3.3.11) it is convenient to define,

R “ = R ? x - 2=  J - R y y  , (3.3.12)

to get,

g(Ra , Q
aft " (/5J)2 + iM L  £ ( R " ) 2 +

0 z a

O

-  In Tr0 exp {Heff} (3.3.13a)
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with

+  0h £  S? . (3.3.13b)
a

Ra is called a quadrupolar parameter and is a measure of anisotropy in the 

replicated spin space,

Ra =  ((S x )2> - 1 / 2  , (3.3.14a)

while Q%i and are respectively the spin-glass parameters, parallel and

perpendicular to the external field,

Qxx =  (S ?  s i )  , Q ^ = ( S ? s f )  ; a * / ?  . (3.3.14b)

For p =  2 , the clock spin glass reduces to the SK model for which Qyy is 

zero and R a is a constant. Throughout this thesis, instead of restricting to p >  2 

only, we shall use the convenience of doing a general calculation for any p > 2  , 

taking the limit p =  2  as a check of the results.

For h z  0 and T close to Tg (Tg is the paramagnetic/spin glass critical 

temperature) one expects the parameters R a , Qxx and Qyy to be ail small. 

The free-energy functioned g(Ra , Q ^ , Q ^ )  can then be expanded 

perturbatively (Landau and Lifshitz 1980); this expansion is going to be used 

throughout this thesis and it can be seen in Appendix B.



In Chapter 5 the case h ^ 0 will be treated in detail and for the remainder of 

this chapter we will be concerned with the situation h = 0 . In the Landau

expansion in Appendix B, equation (B.l), one has for h = 0 ,

-  ngo -  A2 S (R“ f  -  B2 S ' (Q xxf -  D2 S ' (Q °f )2 -  -
a a(3 a(3

, (3.3.15a)

2
go = lnp + (1 + 262,p) , (3.3.15b)

(3.3.15c)

BJ = ^ - { ^ ( l  + 3&,P) - l }  • (3.3.15d)

(3.3.15e)

The onset of ordering of quadrupolar or spin-glass type is signaled by the 

change of sign of the corresponding quadratic contributions. As can be seen, if the 

temperature is lowered, the coefficient B2 becomes zero at

Tg — ^  (1 +  3 * 2 ,^ (3.3.16a)

and for p > 2 , D2 also goes through a zero for

Tg (3.3.16b)

(we work in units k = 1), signaling the onset of spin-glass order. 
B
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For p >  2 (and £ 4), the coefficient Ao of the term quadratic in the 

quadrupolar parameter does not change sign until a lower temperature,

(0) T
Ta = 4  (3.3.16c)

82

and the transition at Tg can be considered of the normal isotropic type.

Since <  Tg , in order to investigate the possibility of occurrence of a 

second phase transition, from the isotropic to an anisotropic spin-glass state, one 

needs to take into account the effects of the Q orderings at Tg . This requires a 

more careful analysis because far from Tg , Q is not small and an expansion like 

(B. l )  does not hold anymore. As argued for the m-vector spin glasses (Toulouse 

and Gabay 1981), by considering the Q ordering, the temperature Ta° is 

renormalized to a lower value Ta and, although there is no rigorous proof, it is a 

current belief that Ta =  0 , for h =  0 , at least for the m-vectors.

A curious situation happens, however, for the case p =  4 , where A2 , B2 and 

D2 all become zero for h =  0 at the same temperature, namely, Tg =  J/2 . In the 

next chapter, this problem will be discussed in detail and it will be shown that, 

besides the usual isotropic choice (3 .3 .8 ) another solution is possible, satisfying

R?x f  Ryy , (3.3.17a)

Q“? = Q a/V V  (or =  Qa \ , ^ y ) • (3.3.17b)

Next, perturbative expansions for the free-energy functional will be 

developed, first using solutions of the type (3.3.8) for all p >  2 , including p =  4 ; 

the anisotropic solution for p =  4 will be dealt in separate.
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3.4. A perturbative expansion of the free energy for h =  0  

(the isotropic solution)

The final discussion in the last section led to the conclusion that as fax as the 

transition at Tg is concerned, for h =  0 , solutions of the type (3.3.8) can be 

assumed for all p >  2 (and £ 4), while in the case p =  4 it can be taken as one of 

the possible solutions. Using that,

R?X +  Ryy =  <(S +  <(S?)2> =  1 , (3.4.1a)

condition (3.3.8a) gives,

R ? x = 4 ( l  +  M  ; Ryy =  2 ( l - 4 p) (3.4.1b)

and from (3.3.12) one gets,

R “ =  3 «2,p , (3.4.1c)

where the case p = 2  has been included for completeness.

Within the space of solutions (3.3.8), the free-energy functional in equations

(3.3.13) can be written as

g(Q°^) = -  |(/?J)2(1 + 4.p) + ^ ( 2  -  6.p) s ' (Qo/5)2
°  ̂ ap

-  In Tra exp {Heff} (3.4.2a)
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(3.4.2b)

where

Qa/3 =  ,2 _1g ;p < S ? s £ + S ? S ^ )  . (3.4.3)

Close to the phase transition ( Qa? small), equation (3.4.2a) may be 

expressed in terms of a Landau expansion,

g(Qa^) = - n g o - i A 2S ( Q ^ - i A j S  (Qa/V - 4 B 3 £ Q ^ Q ^ Q 70
^ a|3 ^  a|3 ^ a(3*\

- 4 a 4 £  ( Q " ^ 4 +  4 c 4 £  ( Q a/5)2 ( Q ^ ) 2 - 4 D 4 S  Q a ^ ( Q ^ 7)2 Q 7a
a{3 ^  a(3“i

- 4 b 4 £  Q ^ t /T 'Q ^ Q 'k '+ C X Q 5) (3.4.4)
1Z a(3-i6

where the summations now are totally unrestricted. The coefficients in equation

(3.4.4) are given by

2

go =  lnp +  (1 + 6 2 ,p) , (3.4.5a)

A2 =  m 2 { ^ ( 1  +  *2 , p) - C2 - ^ u > ) . )  , (3 .4 .5b)

A 3 =  3̂>p (3.4.5c)
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B3 — (1 + 3^2,p) , (3.4.5d)

g

A4 = (3 + 29^2,p + 4̂>p) , (3.4.5e)

^4 = ^ ( /3 J )  (1 + 7^2,p) , (3.4.5f)

C4 =  | ( W 8 (l + 7fep) , (3.4.5s)

d 4 = ! osj)8 *3)P • (3.4.5h)

From (3.4.4) the spin-glass critical temperature can be obtained for all 

values of p by equating A2 =  0  ,

Tg =  £ ( l  +  3$j,p)* , (3.4.6)

which is the same as the one obtained by setting B 2 =  0  from the expansion 

given by equations (3.3.15).

By looking at equations (3.4.4) and (3.4.5), it can be seen that the 3-state 

clock spin glass is very special; the terms with coefficients A3 (a third-order term) 

and D 4 (a fourth-order term) only appear for p =  3 . A qualitative analysis of 

higher-order terms in the expansion (3.4.4) can show that special contributions 

also occur for p =  5 on terms of 5th or higher order. In general, if one goes to mth 

order in the expansion (3.4.4), some single extra terms appear for all odd values of 

p with p < m . These special contributions come as a direct consequence of the 

absence of reflection symmetry in the spin variable for odd values of p . The 

identities derived in Appendix A show how these terms happen, where traces
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which normally vanish for p even, do indeed give a non-sero contribution for some 

odd values of p . These terms will be responsible for special critical behaviour for 

odd values of p as will be seen in the forthcoming chapters.

3.5. A perturbative expansion of the free energy for h =  0 :  

the case p =  4 (anisotropic solution)

As will be discussed in the next chapter, the 4-state clock spin glass presents 

two equally important solutions: besides the isotropic one used in the last section, 

an anisotropic solution satisfying (3.3.17) becomes possible. In this section, an 

expansion of the free energy for such a solution will be developed.

From (3.3.17a) and (3.4.1a) one gets that the quadrupolar parameter R a  

defined in (3.3.12) is now nonnzero. By choosing x as the preferred direction in 

spin space,1 equations (3.3.17) lead to

R“ >  0 ; Q?x =  Q °^ ; Qyy =  0 . (3.5.1)

For this solution, the free-energy functional will be given by

g(Ra , Qal)) = -  £ ( p r f  + U t y -  £ (Ra)2 + m *- 2  (Qa/V
5 1 a  * cx(3

-  In Tra exp {Heff} , (3.5.2a)

Heff =  (/5Jf  £  Ra [(S?)2 -  1/2] + ^ - £ 7 Qa/5 S? , (3.5.2b)
a  z  a(3

•This is done by applying a small symmetry breaking field, h =  hx , which is 
taken to zero after the limit N -» oo .
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where

R a = < ( S ? ) V l / 2  ; Q a/3= ( S ? s £ >  . (3.5.3)

For T just below Tg , Ra  and Qa^  are small and (3.5.2a) can be expanded in 

a power series. The resulting expansion is a particular case of the one in equation 

(B.l) by taking h = 0 , p = 4 and solutions of type (3.5.1). One gets,

gOt", Qa/3) = -n g 0 - A 2 S (R a)2 - B 2 S (Qa ^ - D 3 S Q ^ Q ^ Q 7*
a  a{3

- G 3S Ra (Qa/?)2 - A 4 S (R a)4 - B 4 E (Q a/3)4
a0 a a(3

- C 4 £ (Q a^ 4 (< / ?)S - E 4 £
a(3~(6

- 0 4 S Ra R ^(Q a/3)2 - R 4 £ Qa^ Q ^ 7 Q7a Ra - . . .  (3.5.4)
a{3

The summations are unrestricted and the coefficients in equation (3.5.4) are the 

same as the ones in Appendix B for h = 0 and p = 4 , namely,

go = ln4 + ,
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A 4

8
c4 =

(3.5.5)

The expansion above will be used in Chapter 7, where the Parisi 

parametrization will be explored, as well as in the next two sections, where the 

simplest parametrization will be taken: the so called replica-symmetric ansatz.

3.6. The replica-symmetry ansatz

In order to perform the averaging over the disorder, the replica method, as 

used in section 3.3, introduced n equivalent and independent copies of the system. 

It is clear that, as long as n is a positive integer, Heff is invariant under 

permutations of the replica indices and so, it appears as a natural first attempt to 

try the replica-symmetric (RS) solutions,

Ra = R  , all or ; , p = x,y , all a f p  . (3.6.1)

Within this space, a straightforward physical interpretation of the parameters in

(3.3.14) appears. Let us look for example, at the statistical mechanics order 

parameter,

Qp+i “  lav 5 (3.6.2)

where ( ) denotes a thermal average with respect to H and [ ] a v is an average 

over the disorder. This can be written as
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tr« S® exp(-/3H“ ) tr„ e x p ( - M

where tra denotes a trace over a single replica a . Multiplying both numerator 

and denominator by Z° one gets,

Q l .  Tra s “ s£exp [ - /8£HT]
av

P  >

with Tra denoting a trace over n replicas. In the limit n-4) the denominator will 

give 1 and similar calculations to the ones done in section 3.3. lead to

[ e x p [ - /J S H T ] ] av = exp {Heff}

and

Qw  =  “ o Tr« s ? 4 exP M  =  K s f> ; ■ ( 3-6-3)

Also, one can show that

R = [<Sx)T]av -  2 = “  0 Tt« W  -  ^  “ P <H'«> ’ f3-6-4)

which is a measure of anisotropy in the system.
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Replica symmetry assumes that whatever the pair of replicas (af$) we 

choose, equation (3.6.3) will be valid. In this space, the spin-glass parameters 

defined by (3.3.14b) are all of Edwards-Anderson's type, with no distinction from 

the statistical mechanics parameter (3.6.2). The measure of breakdown of 

ergodicity, as defined in (2.3.17), is zero in every direction in spin space 

( \  = 0 ; p = X,y).

Within the RS approximation, the free energy can be evaluated,

*  .  _ u f + uf  ,E>+ R ) .  u p !  (Q1 + + UVL
00 00 

"0 0  "0 0

/ dudv -u2/2  .v2/2
~7i r °e 1 e ' InZ (3.6.5a)

where R , Q*x and Qyy are to be determined self-consistently from the saddle 

point equations,

R

00 <

dudv -u2/2  _v2/2  
~Ti~e e

"1 / z

da-x
1
2

(3.6.5b)

QMU
dudv _u2/2  
~Yr~e

e-vV 2

1 0
(n = x,y) (3.6.5c)

"00 “00
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with

Z =  tr exp (bSx +  axSx +  aySy) , (3.6.5d)

2

ax =  /?JQxxu 4* /5h , ay =  /?JQyyv , b =  ( 2 R — Qxx +  Qyy) • (3.6.5e)

Considering the case h =  0 , similarly to what was done in section 3.4 , one 

makes use of the isotropic conditions (3.3.8) and gets,

/* =  -  (1 +  *j,p) - £ £ p - ( 2  -  fo,p)Q2 +  ^  Q

00 00

_ J  J  d u |v e.uV 2 e-vV 2 lnZ (3.6.6a)

"00 “ 00

where

Q =
>p

oo c

JJ dudv
~TT

,-u2 / 2  -v2 / 2 . V 1 ® '
2

4-
2'

#ax
„  .

0ay (3.6.6b)

with

Z =  tr exp (axSx +  aySy) , (3.6.6c)

ax =  #JQ7u ; ay =  #JQTv (3.6.6 d)
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Near the phase transition, one has the expansion,

/* = -  go +  ^ A 2 Q +  ^ A 3 Q — ̂  6 3  Q + 0 ( Q ) (3.6.7)

where the coefficients are given by (3.4.5). The extremal equation,

0II (3.6.8)

gives,

Q = ...i-A2 , +  0 (Q 2) ,
2B 3 -  A 3

(3.6.9)

or, in other words,

Q =  e +  0(e2) ; p =  2 , (3.6.10a)

Q =  ^ e +  0(e2) ; p =  3 , (3.6.10b)

Q =  2  +  0(e2) > p >  3 , (3.6.10c)

where

£ =  (Tg -T )/ T g (3.6.11)

and Tg is given by (3.4.6).
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Equations (3.6.10) give a continuous phase transition at Tg , for all values 

of p . This is in contrast to what happens for the Potts (Elderfield and 

Sherrington 1983a) and quadrupolar (Goldbart and Sherrington 1986) glasses, 

where first order phase transitions are obtained within RS approximation for 

p >  6  (Potts) and p >  4.6 (quadrupolar), as a direct consequence of the absence of 

reflection symmetry in the spin variable. For the clock spin glasses this effect is 

irrelevant as far as the kind of the transition at Tg is concerned.

Now, the anisotropic solution for h =  0 and p =  4 , as mentioned in section

3.5, will be considered within the replica-symmetry ansatz. Using (3.5.1) one gets,

#  =  -  (Ft,2 +  R )  -  U & L  q 2_  f  J u -j .  e- u 2 / 2  InZ (3.6.12a)
8 1 4 J  (2x Y

where

00

Z =  t r  exp (bSx +  axSx)

= /UQ’u

(3.6.12b)

(3.6.12c)

(3.6.12d)

(3 .6 .12e)
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For T close to Tg , the free energy becomes,

fit = ~ go — A2R + B2Q — 2D3Q + G3RQ +  0(e4) , (3.6.13)

where the coefficients are given by (3.6.5). The extremal equations,

(3.6.14)

give respectively,

-  2A2R +  G3Q2 +  0 (  c3) =  0  , (3.6.16a)

2B2Q - 6 D 3Q2 +  2 G3RQ +  0 (e 3) =  0  . (3.6.15b)

Equations (3.6.15) can be solved,

R =  j + 0 ( e 2) , (3.6.16a)

Q =  f +  0 (e 2) , (3.6.16b)

giving a continuous phase transition at T =  Tg .

By having the free energy, one can derive the thermodynamics of the model 

for each value of p and the problem would die at this point. Unfortunately, in a 

similar way to what was discussed in Chapter 2 for the SK model, the apparently 

harmless replica-symmetric choice leads to trouble in the spin-glass phase. This 

will be discussed in the next section.
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3.7. Stability analysis for the replica-symmetric solution in zero 

magnetic field

One question of the most importance concerns the stability of the 

replica-symmetric solution. As discussed in Chapter 2 for the Ising case, this kind 

of solution becomes unstable in the spin-glass phase (de Almeida and Thouless 

1978), and so, the same could happen for the p-state clock glass with p >  2 .

The stability analysis for h £ 0 will be carried out in detail in Chapter 5 

and throughout this section we will look at the case h =  0 . First we will deal 

with the isotropic solution (3.3.8) and afterwards the anisotropic solution 

for p =  4 will be analysed.

a) Isotropic solution

For solutions of the kind (3.3.8), the free-energy functional is given for a 

general value of p by equations (3.4.2). In order to investigate the validity of the 

RS ansatz, we will turn to the stability analysis in an Almeida-Thouless (AT) 

fashion by considering fluctuations around the replica-symmetric solution,

Q ^ = Q  +  , ^  ; a f p  . (3.7.1)

The free-energy functional can be expanded,

a/?) = g(Q) + (/?J)2 £(a0 ) (^6 ) RS
+  (3.7.2a)

where the stability matrix 3  has dimension ^ n (n -l)  * rjn(n-l) and elements
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s (<^)(7*) =  J 2K =  (2 -  Sx,P) 6 aM ' rSi - ( j 8 J)* ( / ( S ? s £ +  S? )
dQapdQ7° ^

* ( s 2 s i + s ; r s £ ) ) - ( s ? s £ + s ? s f ) ( s 2 ' s | + s 7 s £ ) ]  . (3.7.2b)

The stability matrix elements are to be evaluated in the RS approximation, 

and (ar/3) denotes distinct pairs of replicas. As discussed in the previous chapter, 

the minimum condition in equation (3.3.6) requires the matrix S 1° be positive 

definite i.e., all eigenvalues should be positive, for stability.

Three distinct matrix elements can occur (de Almeida and Thouless 1978):

s(<*$(<*/?) = (2 _ &ip) -  (/3J)2 j((S? s i  + Sf Si  )2)

- ( S ? S £ + S ? S ^ ) 2) = U  , (3.7.3a)

s(o$(*7) = -  m 2 (((s? s i  + S? Si )  (S? Sj + S? S j ))

- ( s ? s £ + S " s £ ) 2) - V  , (3.7.3b)

s( = _ (jgj)2 |̂ (s“ s i  + s? si )  (s2 si + s j  s$))

- ( s ? S ^ + S " S ^ ) 2j =  W , (3.7.3c)

which hold for or,$ 7 ,5 all different from one another.

One has then, to solve the eigenvalue equation,

Sa =  * n (3.7.4a)
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where

M = { { ’f a®})  « =  l , 2 ,...,n (3.7.4b)

is a column vector with ^ n (n -l)  elements.

The complete set of eigenvectors of S falls into three symmetry classes 

which will be described below.

1) Vectors which are replica independent:

>jia^  =  a . all ( a P )  ■

The corresponding eigenvalues axe, in the limit n =  0 ,

A =  | { ( U - 4 V  +  3W )±  | - ( U - 4 V  + 3W )|}  , (3.7.5)

which are non-negative throughout the spin-glass phase. This case corresponds to 

replica-symmetric fluctuations; de Almeida and Thouless argued that in this case, 

the condition for positive A is equivalent to the condition that the RS solution 

should be a saddle point.

2) Vectors which depend on a single replica index:

rĵ a^  =  a , for a  or p =  9 ; 4 ° ^  =  b , for a,fl $ 0

Imposing orthogonality between and 3 , , one gets that the 

corresponding eigenvalues are, in the limit n =  0  , the same as the ones found 

in (3.7.5).

3) Vectors which depend on two replica indices:

4 ^ )  =  a ; ,(3M  =  , ( ^ )  =  b

r){a® = c , i o ia ,P i 9 , v  .

for a $ 0, v
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To ensure orthogonality to jj, and j}2 one must take

a =  (2-n)b ; b =  ^ (3-n)c

The substitution of such a vector in the eigenvalue equation (3.7.4a) leads to the 

eigenvalue,

A =  U - 2 V  +  W . (3.7.6)

For T just below Tg , Q is small and A can be evaluated perturbatively; one gets,

A =  -  2A 3Q — ^ A 4Q +  0 (Q  ) . (3.7.7)

Using A 3 and A 4 from (3.4.6), one sees that A is negative, leading to instability of 

the spin-glass phase.

In the derivation of (3.7.7) only the "most dangerous" fourth-order term, the 

term with coefficient A 4 , was considered in the Landau expansion (3.4.4). This is 

known as the Parisi approximation (Parisi 1980a). In looking at the stability of 

the RS solution for the SK model, one finds that it is the E(Qa^) term that 

makes A negative (Bray and Moore 1978, Pytte and Rudnick 1979). The same 

happens for the p-state clock spin glass for all values of p except p =  3 , for 

which the S(Q a ^ ) 3 term is responsible for A negative.

Then, the instability in (3.7.7) appears at order Q , i.e. at order e , for 

p =  3 , while for all other values of p it occurs at 0 (e 2), as in the SK model. 

Therefore, the replica-symmetric approximation is even worse for the 3-state 

clock spin glass. As expected, this instability for p =  3 , is in agreement with 

results already known for Potts glasses (Elderfield and Sherrington 1983a), since
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as shown in section 3.2, the p =  3 clock and the 3-state Potts models are 

isomorphic.

b) Anisotropic solution for p =  4

For p =  4 , a solution like (3.5.1) gives the free-energy functional (3.5.2). 

The AT stability analysis can be followed by taking,

Ra  =  R +  J*  ; Q0^ =  Q + (3.7.8)

for which

\

(3.7.9a)

where denotes evaluation of matrix elements within the Replica-SymmetryRS
ansatz.

(3.7.9c)

(3.7.9d)
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Now, seven distinct elements can occur, namely,

( ( ( s ? )4) - < ( s ? ) 7 ) = a  ,

Sa f  =  " ( W 2 (<(S?)2 ( S ^ > - < ( S ? ) 7 !  =  B ,

si t ® a =  - ( W a j ( ( s ? ) 3 s £ ) - ( s ? s £ ) ( ( s ? ) 2) )  =  C 

s [ f i  = -(m2 [(s?skslf)-(s?si)((slf))=D 

sJ =  i -  (m2 ( ( (S ?  s^)2)  -  ( s  ?  s ^ 2) =  E ,

s ( ^ ( « l )  =  - ( / j j ) 2 (^(S? ) 2 s £ s ? ) - ( s ? s £ ) 2) =  F

s ( ° $ ( 7 « )  = ,_ ( # ) *  ( ( s ? s £ s ? s f ) - ( s ? S ^ 2) =  G

which hold for all distinct a ,# 7 ,5 .

The eigenvalue equation is

S £  =  A £  ,

where

r r OS •»
{a/ }

u — ( a\ a — 1 ,2 ,....n

is a column vector with ^ n (n + l)  elements.

(3.7.10a) 

(3.7.10b) 

(3.7.10c) 

(3.7. lOd) 

(3.7.10e) 

(3.7. lOf) 

(3.7.10g)

(3.7.11a)

(3.7.11b)
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Similarly to what was done for the isotropic solution, three types of 

eigenvectors are possible. The one responsible for replica-symmetry breaking, £ 3  , 

have all uia zero and

c ; (aP) =  (Ou)

(2 -n ) " 1 c ; a or p —B o iu  , but not both , (3.7.12)

2(2-n)"1(3-n) - 1 c ;

The eigenvector (3.7.12) leads to the eigenvalue,

A =  E - 2 F  +  G . (3.7.13)

In order to ensure orthogonality to the other vectors, one must take all 

ua =  0 for the vector £ 3 . As a consequence of this, the eigenvalue in (3.7.13) is 

similar to the one in (3.7.6), for the isotropic solution, showing that the inclusion 

of the single-replica-dependent parameter R a , does not affect replica-symmetry 

breaking. In fact, all quantities involving a single-replica index are replica 

independent, i.e. are replica symmetric.

Near the phase transition, the eigenvalue in (3.7.13) becomes,

A = - 1 6 B 4Q2 +  0 (Q 3) , (3.7.14)

where B 4 is given in (3.6.5) and so, A is negative, leading to instability of the 

spin-glass phase. Here also, the only quartic term included in the calculation of A 

was the "dangerous" £(Q a ^ ) 4 term in the expansion (3.5.4).

1<*P) -  ,Is -
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Hence, as for the Sherrington-Kirkpatrick model, the simple choice 

preserving the symmetry under permutation of replicas, the replica-symmetric 

solution, becomes unstable when T <  Tg for any p in the p-state clock spin 

glass. This instability is even stronger in the case p =  3 . Any satisfactory 

solution for the spin glass phase must break the symmetry between the replicas 

and such a solution will be presented later in Chapter 7.

3.8. Conclusion

In this chapter, the infinite-range p-state clock spin glass was introduced. 

Its relation with well-known systems like the Sherrington-Kirkpatrick, 3-state 

Potts and XY models was discussed. The standard replica trick was applied to 

such a model, reducing it to a single site problem. For zero external magnetic 

field, argumentation was given in favour of a choice of solutions preserving 

isotropy in spin space for all p > 2 , but for p =  4 an alternative (anisotropic) 

solution was also considered. Perturbative expansions of the free energy, which 

will be used in the forthcoming chapters, were developed near the transition point. 

The replica-symmetric solution was presented, and no discontinuous phase 

transitions were obtained for any p . This is in contrast to other known models 

with absence of reflection symmetry in the spin variable, like Potts and 

quadrupolar glasses, for which first order phase transitions are present. Finally, an 

Almeida-Thouless stability analysis was carried out, proving the instability of the 

replica-symmetric solution in the spin-glass phase for any p ; it was shown that 

such an assumption is even more serious for p =  3 , where the instability occurs at 

a lower order in perturbation theory.



98

CHAPTER 4: THE FOUR-STATE CLOCK: A COLLINEAR SPIN GLASS

4.1. Introduction

This chapter introduces a very unexpected feature, an anisotropic spin-glass 

solution to a spin-glass model with an isotropic hamiltonian. The model in 

question is a 4-state clock model with symmetric exchange P{Jij} = P {—Jij} . As 

defined in the previous chapter, a p-state clock model is a special case of a 

vector-spin model in which the vectors (of constant length) may point only in p 

equally angularly spaced orientations in a plane.

To date it has been generally considered that vector spin-glass models with 

isotropic and unbiased exchange can be described in terms of spin-glass solutions 

which are isotropic in spin space, i.e.

Q ? ? = N ' ' s  < S ^ S ? „ ) » Q a,3V  , (4.1.1)

where a,fl denote replicas and /z,*' are cartesian coordinates. In the previous 

chapter, it was argued that although all other clock glasses axe normal in this 

regard, as far as the transition from paramagnet to spin glass is concerned, for the 

4-state clock such a conclusion could not be drawn immediately.

In this chapter we prove that for the 4-nstate clock the spin-glass state is 

highly anisotropic, i.e., collinear;

QqP = Q qP8 8
[A u  ^  \ iV  V |XX

or Q (4.1.2)
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with small fluctuations from collinearity only showing up because of 

replica-symmetry breaking.

In section 4.2, we introduce the 4-state clock spin glass and point out its 

special character within the realm of p-state clock glasses; an alternative 

representation in terms of two identical Ising spin glasses follows, In section 4.3, 

we solve the saddle-point equations within the replica-symmetric approximation 

and find two distinct solutions corresponding to the same free energy. In section 

4.4, we prove the collinearity property (4.1.2) by means of the mapping to two 

identical Ising models. In section 4.5, we give further support in favour of the 

anisotropic solution by means of a pure-state analysis. In section 4.6 we introduce 

a higher-order test function able to distinguish between isotropy and 

quasi-collinearity, and also (in principle) to show up the fluctuations from perfect 

collinearity expected from replica-symmetry breaking; we perform a Monte Carlo 

simulation to test the assertion of anisotropic spin-glass order.

4.2. The four-state clock spin glass

As defined in section 3.2, a four-state clock spin glass is described by the 

hamiltonian,

H = -  S JijSi.Sj , (4.2.1)
( ij)

where the {Jij} are quenched random couplings distributed according to the 

probability (3.2.4) and the Si are unit vectors with components defined by

(3.2.5), i.e.,
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Six =  1,0,-1,0 ; Siy =  0,1,0,-1 ; for ki =  0,1,2,3 . (4.2.2)

The application of the replica method as performed in section 3.3 leads to 

the free energy per spin in the thermodynamic limit (N -+ oo) as the extremal 

problem

/* =  j-m in{g(R “ , Q“^)} (4.2.3)

The functional g(R a , Q ^ )  is given by

g(Ra , = -  5 (m* + ^  s  (Ra)2 + ^  s ' s  (Q *fr
u a  ^ a(3 nu

-  In T ra exp {H eff} (4.2.4a)

where

(4.2.4b)

It is important to notice that in obtaining (4.2.4), no assumption on the 

parameters in (3.3.7) was done so fax. The single-replica-dependent parameter,

R ?y = ( S ? S ? >  , (4.2.5)

is identically zero for p =  4 since from (4.2.2) whenever S? (Sy) is
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non-zero, Sy (Sx) is zero. Therefore, Ra  is the quadrupolar parameter, as defined 

by (3.3.12),

Ra  = <(S?)2> -1 /2  , (4.2.6a)

while are the usual spin-glass parameters,

Q $ = < S ? S &  ; a t p  . (4.2.6b)

Note that g satisfies the symmetry condition

g(Ra , Q $  = g(-Ra , Q $ (4.2.7a)

where p  , v  cure the complements of f i , v  ; i.e. if

fi = x then Ji— y ,

fi = j  then Ji = x (4.2.7b)

In the discussion at the end of section 3.3, by analysing the Landau 

expansion in Appendix B, one was led to the conclusion that for all clock models, 

with p > 2 (and ^ 4), the transition at Tg is to the normal isotropic spin-glass 

state, since the term quadratic in the quadrupolar parameter changes sign at a 

temperature lower than Tg .
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However, for the case p =  4 , the free-energy functional in (4.2.4) may be 

expanded,

g(R“ , =  -  ngo -  A0  S (R ° ) 2 -  \  A0  S S (Q $ 2 +
a(3 p,u

(4.2.8)

with

go =  +  ln4 (4.2.9a)

Aa 2 ( M
4 - * ]

(4.2.9b)

Therefore, as the temperature is lowered, both quadrupolar and spin-glass 

quadratic contributions to (4.2.8) become zero at

rp J 
A« =  2

(4.2.10)

Another problem in which the matching of these critical temperatures occurs 

is the m-vector spin glass in the limit m =  oo , i.e., the spherical model 

(Kosterlitz et al 1976, de Almeida et al 1978). In assuming the isotropic 

conditions (3.3.8), de Almeida e< al (1978) obtained the striking result that the 

replica-symmetric solution becomes stable in the spin-glass phase as m oo . 

Although this result was obtained by setting R®v =  0  , no changes are expected 

for non-zero , since as discussed in section 3.7, single-replica dependent 

parameters do not affect replica-symmetry breaking. Another unusual feature 

presented by this model is in the short-range interaction limit, where the upper 

critical dimension du is equal to 8  (Green et al 1982), as opposed to du =  6  for
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other spin-glass models. In such a derivation, fluctuations around mean-field 

theory are done by means of an e-expansion (e =  8 -d), and the retaining of the 

Rjiu parameters is crucial, as shown by Green et ai (1982). Whether the 

low-temperature phase for m =  oo is anisotropic, or if the quadrupolar effects 

are totally suppressed by the spin-glass ordering, is not known.

Since R is an anisotropic order parameter, the above matching of critical 

temperatures suggests that the four-state clock spin-glass phase is anisotropic. 

This will be demonstrated explicitly in the forthcoming sections and in order to 

do this, it is useful to change representation.

As shown in Table 4.1, the four-state clock spin variable Si = (Six , Siy) in 

equation (4.2.2), is related to Ising variables tx , <7 i (=  ± 1) by

Six =  ̂( Ti + î) j Siy = ( Ti ~ î) • (4.2.11)

Within this representation, the hamiltonian in equation (4.2.1) may be 

re-expressed as

H = -  E Jij (nTj + <7iorj) ; {Ji j}  = i{Jij} ; (4.2.12)
( ij) z

that is, the four state clock model is equivalent to two independent Ising models 

with identical exchange interactions of strength one half of those of the original 

clock model.
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Table 4.1

ki Six Siy n Vi

0 1 0 + 1 + 1

1 0 1 + 1 - 1

2 - 1 0 - 1 - 1

3 0 - 1 - 1 + 1

Table 4.1: The values of Six =  cos ^ ki and Siy = sin ^ ki (ki =  0,1,2,3), for the 

four-state clock model; the last two columns show the corresponding values of the 

Ising variables T{ and <?{ such that (4.2.11) is satisfied.
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The free-energy functional in equations (4.2.4) can be re-written in terms of 

the Ising variables,

, q f , t^ ) = - | ( W 2 + ^ S '  ( q f f  + ^ s '  ( q f f

+  S ( taP f  -  In Tra exp {Heff}
op

(4.2.13a)

Hrff =  i V  +  q“^ / /  +  , (4.2.13b)
<*3 ot3 a0

where the summations over t a^ are now totally unrestricted. The and q ^  

are Ising spin-glass parameters,

q ^ = ( r a r^) ; = (aa a^) ; a ^/3 (4.2.14a)

ctdand t H is a measure of the correlation between the r's and cr's in the replica 

space,

t aP = { r a(T̂ ) ; any a ,(3 . (4.2.14b)

The parameters in (4.2.6) are related to the ones in (4.2.14) by,

Q ^ - ^ q ^ + q ^ + S t ^  ; a* / } (4.2.15a)

Q?f =  i ( q ? /J +  q“ /?- 2 t a^) ; * t p (4.2.15b)
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Q ^ = Q ^ = l (q^ - q^ )  ; a t  fi , (4.2.15c)

Ka = \ \ . aa . (4 .2 .15d)

In this representation, the isotropic solution as described by (3.3.8) requires

that

q (4.2.16a)

t a / ? = 0 (4.2.16b)

and anisotropy will be present whenever (4.2.16b) is not satisfied.

From now on, we shall concentrate on the understanding of the 

low-temperature phase of the four-state clock spin glass. To start with, in the 

next section, calculations within replica symmetry will be carried out.
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4.3. The four-state clock spin glass in the 

replica-symmetry approximation

In the Ising representation of the four-state clock spin glass, the replica 

symmetry ansatz is given by

=  q, ; q“  ̂=  q* ; all a   ̂ ^ ,
Qlfi ___ (4.3.1a)

t aP = t ; all a,/? (4.3.1b)

Within this approximation, the free energy in (4.2.3) is given by

/* =  - l ^ ( l - q)2 - 2 J  J  ^ e - y V 2 e-zV 2 l n J 2c03h| - ^ ( q _ t)^

+ (4.3.2)

and the saddle-point equations, (4.2.14), become

q7 = q<r =  q (4.3.3a)

00  00

- !  /  ^
e- ? 2 / 2  e- z 2 / 2  t a n h 2 £ r ( q - t ) * y  + ^ r t V j  ,

"00 "00

(4.3.3b)
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t =  J  j  j e-x2 / 2  e-y2 / 2  e.zV 2  tanh J ^  (q _  t )*x +  §a t * ,j

“ 00 “ 00 “ 00

* tanh £ (q — t)^y +  7̂7* t^zj . (4.3.3c)

Two solutions of equations (4.3.3) are particularly interesting:

(a) q £ 0  ; t =  0

This corresponds to the isotropic spin glass as mentioned in equations 

(4.2.16).

(b) q =  t # 0

This gives the anisotropic solution (collinear spin glass),

Qxx — q 1 Qyy — Qxy — Qyx — 0 , (4.3.4a)

R =  S . (4.3.4b)

The relation R =  Qxx/2 has been already obtained in Chapter 3, when the 

anisotropic solution was treated in the original clock representation, by means of a 

perturbation expansion close to Tg , as shown in equations (3.6.16).

A curious fact about the above solutions is that both provide the same value 

for the free energy as can be seen by direct substitution in equation (4.3.2). In 

fact, by changing the variables,
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^ q * u  =  ^ ( q - t ) * y  +  4 r t* z  

^ q * v  =  ^ t * y - ^ ( q - t ) * z

(4.3.5a)

(4.3.5b)

the free energy may be re-expressed as

#  =  - 2 ^ ( ! - q ) 2 - 2 j du e-u2 / 2

7 ^
In |  2 cosh (f’H)

and the self-consistent equation for q ,

00

00

(4.3.6)

(4.3.7)

Equations (4.3.6) and (4.3.7) are very familiar (Sherrington and Kirkpatrick 

1975). Equation (4.3.6) gives twice the free energy of the SK spin glass with 

exchange couplings Jij as defined by (4.2.12), reflecting the fact that the 

four-state clock is equivalent to two independent Ising models. Equation (4.3.7) is 

the self-consistent equation for the spin-glass parameter of the SK model with 

couplings Jij .

The fact that the free energy presents no t dependence, makes it difficult to 

choose the correct low-temperature solution even within the replica-symmetric 

approximation. In the next section, the four-state clock spin glass will be 

examined in the full replica space and by applying a small symmetry-breaking 

field, argumentation will be given in favour of the anisotropic solution as 

represented by (4.1.2).
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4.4. Full replica-space and symmetry-breaking field analysis

The four-state clock spin glass in the n-replica space can also be described in 

terms of a single Ising model in a 2n-replica space. In order to do this, one may 

define the Ising variable £a (=  ± 1 ), where a is now a replica index running from 

1  to 2 n ,

e  =

Equations (4.2.13) become

a
t  ; a =  1 , . ..,n 

a a =  n + 1 , . . . ,2 n

In this space, the spin-glass parameters,

p a h  =  m f y  . a  *  b

(4.4.1)

2 2

g(P*b) =  - |  (/3J) 2 +  (P a b ) 2 -  In Tra exp s '  P»b{l 4b|  (4.4.2)

(4.4.3)

axe the elements of a 2 n x 2 n matrix,

IP =
a / 3

7

/3a a/3
(4.4.4)
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It is interesting to note the relation of the simultaneous mode-softening of 

both and R a degrees of freedom in the clock representation to this Ising

model. In a replication of the Ising system described by equation (4.4.2) 

there are 2 n spins per site, leading to the softening at the transition 

of 2n (2n -l)/2  =  (2n2n i) Ising Pab modes. In the clock representation

there are n spins with four combinations, xx , xy , yx , yy , giving 

4n (n -l)/2  =  2n2-2n modes. The inclusion of the n R a modes gives a total

of 2n2-n as in the Ising representation. This argument shows that 

the R a  modes are completely equivalent to the modes for the 4-state

clock and must be included in any description of the ordered state.

It is clear that in applying the replica-symmetry ansatz to the Ising model in 

a 2 n-replica space, one should take

Pab =  P ; for all a  ̂b , (4.4.5)

irrespective to whether Pab is in a q-block or in a t-block of the matrix IP . 

Solutions (4.4.5) correspond to the collinear spin glass described by (4.3.4). 

Obviously, fluctuations from collinearity should be expected when the replica 

symmetry is broken, but the anisotropic solution can still be obtained on the 

average, as it will be discussed next.

Let us now present a simple argument in terms of the effects of an 

infinitesimal symmetry-breaking field h , adding to the hamiltonian in equation 

(4.2.1) the term,

Hfield — “  k  • ?  S jl
- h * S S I X1 “ hy (4.4.6)
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If the spin-glass phase is isotropic it should be unaffected by the application of h 

in the limit h -+ 0. It will be seen that this is not the case. In terms of the Ising 

variables,

Hfield — “  h E  Ti — h S  <7iT i U i (4.4.7a)

where

hr =  2 ‘(hx +  hy) , h^ =  ?j- (hx -  hy) . (4.4.7b)

Hence a symmetry-breaking field along the x direction gives hr =  h^ and then, 

because the r's and a's are completely equivalent,

( n ) T =((Ti)T , (4.4.8a)

so

<Siy>T =  0  , (4.4.8b)

where ( )  denotes the average with respect to H. Similarly, a field along the y 

direction gives

( ri)T =  -  <cri>T . (4.4.9a)

so

(Six) T — 0 (4.4.9b)
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Although one can argue that (4.4.8b) and (4.4.9b) follow trivially from symmetry 

reasons, an expression for R in terms of the Ising statistical mechanics order 

parameter q ( R =  ^[(Ti)^]av =  ! | ) , analogous to (4.3.4b) can be shown to be 

be true in general. That exhibits the anisotropic behaviour of the low-temperature 

phase of the four-state clock spin glass, implying on a perfect collinear state 

(R =  ^ ) at zero temperature.

In the next section, we present a pure-state analysis for the four-state 

clock spin glass.

4.5. Pure-state analysis

Let us now consider the four-state clock in terms of the pure thermodynamic 

states of the Ising model. Two situations for the Ising system can be identified:

(i) There are only two pure states, which are global inverses of one 

another. This is the situation for a conventional Ising ferromagnet and 

has been argued to be the situation for a short-range Ising spin glass 

(e.g. Fisher and Huse 1986; Bray and Moore 1986), although that 

problem remains incompletely solved.

(ii) There are many pure states, which are unrelated by global symmetry 

(as well as global inverse pairs). This is the situation for the 

infinite-ranged spin-glass model of Sherrington and Kirkpatrick (1975).

In case (i), as discussed in the previous section, it is immediately clear that 

all pure states of the four-state clock are perfectly collinear. One has either
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(4.4.8a) or (4.4.9a), depending upon whether the r  and u systems are in the same 

pure Ising state or global inverses; an arbitrarily small field will determine these 

states. The former leads to a collinear state in the x direction and the latter to a 

collinear state in the y direction.

In case (ii), it is only if the r  and a systems belong to globally identical or 

inverse Ising states that perfect collinearity results. In general, this is not the 

case; nevertheless, there does result average collinearity in the sense discussed in 

section 4.4 . To see this within the pure-state language, let us first separate the 

complete set of pure states into two groups, each group having a common sign of 

overall magnetization or positive overlap

q“ ' = N ' , ? < r i>g <r1)s/ , (4.5.1)

where subscripts s,s' label the pure states. We restrict ourselves to one such group 

and for definiteness take the same group for the r  and a systems (one could 

equally well take the opposite group for each).

Consider now the statistical mechanics order parameter as defined 

by (2.5.8),

Qjiu —
s' V s ' N W s < S >s' W =  x,y (4.5.2)

av

where the s ,s ' are states of the clock system, with probabilities P- , P 5/ . Each
S 3

state s is made up of two states, s,s' of the Ising r  and a systems, with

P~s = P P /s s (4.5.3)
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where P is the probability of state s. Noting thatO

(4.5.4)
av

takes the same value irrespective of whether tj,£ axe t,<t, collinearity follows in the 

sense that

q =
3,3'

P P ,S S N'1 s (Vi),

Qxx — q > Qyy — Qxy — Qyx — 0 • (4.5.5)

Explicitly,

\ Ps Ps ' Ps " Ps ' " N ? { < * > .< * > » "
L S,s' , S ' ' ,3 '  ' '

+ \  ( ° i ) s / ( r i)s / / + K  ( r i)g (^i)g/ / / + u (^Og' (^Og' ' ' ]

=  \  q ( i + A ^ X i + A j  ’ (4.5.6)

where

A (4.5.7)

Similarly to the discussion at the end of the previous section, one can argue 

that (4.5.5) follows trivially from symmetry reasons. In the next section the 

collinearity property will be demonstrated by means of a Monte Carlo simulation.
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4.6. Monte Carlo simulation

The main limitation in applying numerical simulations to study many-body 

problems, is the fact that only finite systems can be handled by the computer. In 

fact, statistical mechanics tells us that the occurrence of phase transitions is 

intimately linked to the thermodynamic limit, N -♦ oo . In a finite system, a 

phase transition in strict sense cannot occur at all; any singularities associated 

with the transition in the infinite system are washed out for finite N . However, 

very good agreement with both theory and experiment can be obtained by 

extrapolating the finite system behaviour to the large N limit.

For the p-state clock spin glass, as an example, the distribution P IQ ^} , 

which gives the probability that there are states s and s' with 

overlaps {Q^ } equal to {Q^,} , as defined in section 2.5, cannot be obtained in 

a computer simulation since on finite samples, the barriers are finite and it is not 

possible to divide the phase space into mutually inaccessible regions corresponding 

to the various pure states. However, one can define the overlap distribution 

microscopically (Young 1983b, 1985), without direct reference to thermodynamic
I 2

states. Consider two independent sets of spins {Si} , {S i} , i = 1,..,N , with the 

same interactions, and define

p .tQ ,-,}  -  [ < "  >>t ] „  - ( 4-6 1 a )

where

N

= N 1 X  5 ^ ' v = x ’ y ’ (4.6.1b)
i * 1
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as the probability that the two systems have overlaps {Q^J} . It is possible to 

show that (Young 1985),

1 im  P {Q^} = P{Q^} • (4.6.2)
N-»oo

From equation (4.6.2) it follows that the moments of P^{Q^} and P{Q^} are 

all equal in the limit N -+ oo . In particular, the first moments give the statistical 

mechanics parameters {Q^,} as defined in section 2.5,

1 i m /  dQ  ̂Pn{Q^} = 1 i m N ‘ S [(S^ S ■„) ]av 
N-*oo N-+oo 1

= 1 im  N ' S[(SiM) <Siu) ]av = = , (4.6.3)
N->oo 1

since in the thermodynamic limit, the statistical mechanics average corresponds to 

an average over all pure states ( ( ) -» S P ( )  ) .
T S Ss

Equations (4.6.1) have the advantage that they can be used for finite systems, in 

which the microscopic states are generated by the computer simulation. 

The { ) refer to thermal averages over both sets of spins, which in a Monte 

Carlo simulation are replaced by time averages, and [ ]av refers to an average 

over different realizations of the {Jij} .

In order to test the assertion of anisotropic spin-glass order by means of 

computer simulation, one needs to define a test-quaintity requiring that it should:

(a) preserve the symmetries of the hamiltonian (inversion and x «—» y 

interchange);
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(b) remain invariant under independent rotations between the replicas 1 

and 2 as stated in (3.3.9);

(c) provide different results for isotropic and anisotropic order.

Such a quantity is

(4.6.4a)

where

a =  4 [< (Q A lf (Q ^ )2 +  (Q iy)2 (Q yl)2 >T lav , (4.6.4b)

b =  [< (QAA)2 +  (Q $ )2 +  (QA?)2 +  (QyA)2 >2 lav • (4.6.4c)

Using (4.6.1b) one can write,

a =  8 N Ski [ (  S i x  S jx  Sky S iy  ]av > (4.6.5a)

■ < « ■ » >

which is closely related to Xg6 > where \aa 1S spin-glass susceptibility,
SG

(4.6.5c)
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For T — Cft } there are no correlations and the averagings can be evaluated

by making use of the identities of Appendix A for p =  4 ,

( sTx ) T =  < sTy ) T =  0  , for m odd (4.6.6a)

( s T x S i y ) T =  0  , for any m,n (m,n  ̂0 ) , (4.6.6b)

( Six ) T =  ( Siy ) T =  rj (4.6.6c)

One can easily show that

#  _  1 N - l (4.6.7)

which gives $  =  1/2 in the limit N -» oo .

Were the low-temperature order isotropic as stated in (4.1.1), one would get

1 im  ^ =  1 , as T 0 , (4.6.8a)
N-*oo

whereas perfect collinearity as in (4.1.2), would give

l im  *  =  0 , for T < T g . (4.6.8b)
N-+oo

Clearly, these are two very distinct limits.
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In the infinite-range case one can again use the Ising mapping to relate to 

the order parameter space of the Sherrington-Kirkpatrick model. One has, for the 

anisotropic solution,

a =  (32N*) 1 |  4 [<<7i aj ]av

2 2+  12 K * i ^ i ) T (n )T ] a v - 8  [<<7i (7j <T\c <7l)T (<7i <7j)T <7l)T ]av

- 8  [(^i o-j)T (o-j frk) T (ok <ri)T < 0 1  ^i)T lav |  , (4.6.9a)

b =  N 4 .?w [(<Ti <Tj}“ (<rk <n}  ̂]av (4.6.9b)

The terms in equations (4.6.9) can be written in the replica formulation; as 

an example,

K ° i  ^  lav

, a  a  a  a  , a  3 0 (3 {3 A -
trot ^  0k exp(-/2H ) trp a- <rk al exp(-/3H^)

a a a a 3 3 3 3  
1 Tra <T[ <7 j OY <J\ CTi <Tj <7fc (J\ exp
zn

£ £ H a $ 8

n -2
where in the last step, both numerator and denominator were multiplied by Z , 

and tra is a single^eplica trace whereas Tra denotes a trace over the n replicas. 

In the limit n -* 0 , Z° will give 1 and, as in section 3.6,
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[ exp [-  ft S H7j j ^  =  exp {Heff} ,

so that the averages are now to be evaluated with respect to Heff. The effective 

hamiltonian is single-site dependent and then, contributions from different sites 

decouple. The important contributions from equations (4.6.9) in the 

thermodynamic limit, cure the ones with i,j,k,l all distinct (all other cases give 

terms 0 (1 /N ) ). One gets,

r/ i /  ® ® ® 3 \  /  ® / aftv4
[<*i <T) <7k On)T jav =  ( ^ i  V i> <<Tj (Tj) { ffk ffQ  {(T{ <T{) =  ( q ^

where ( ) denotes an average with respect to exp{Heff} and 

the Ising spin-glass parameter in equation (4.2.14a).

Similar analysis can be carried for the other terms,

[<°i ®j>T <<Tc ]»v = (q“ )̂2 (q" f f  ,

[(o-j £7j (71c <71) <<Ti (7j) (<7|c <n>T ]av =  (qf f i  (q V f  .

K^i <Ti>T t o  " O t t o  <^)t t o  =  q ^ q ^  < \ls % a  .

(4.6.10a)

, 1  * P , is

(4.6.10b) 

(4.6.10c) 

(4.6. lOd)

which hold for all distinct a, ft 7 ,5 .

Because of replica-symmetry breaking, q ^  depends on the choice of 

replicas and the correct thing to do now is to sum equations (4.6.10) over all 

replicas. Therefore, summing both sides of each of equations (4.6.10) over

1  l  ' '
N ( N - l ) ( N - ! iP - a r  n(n—l)(n—i2 )(n—3)
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/
(the S summations denote all indices distinct), and taking the limits N -+ oo , 

n -♦ 0 , $  may be expressed in terms of the Parisi function for the Ising spin 

glass, q(x) (Parisi 1979, 1980a, 1980b, 1980c, 1980d, 1980e). Using the rules 

presented in section 2.4 , one gets for T <  Tg ,

^[q] = (4.6.11a)

where

a[q]=  ’k  { +  3  ( q 2 ) 2 " 4  ( q) 2(q2)  +  f 0 d x f 0 d? [ q2(x ) -  q2(y) f

-  4 <q> f 0 dx q(x) f 0 dy [ q(x) -  q(y) ] 2

~f o^x fo dySo d z lq (x) - q ( y ) ) 2 [q(x) - q ( z) f } . (4.6.iib)

b[q] =  5  { -  <q4> + 4 <q2 ) 2 +  2 f o dy [ q2(x) -  q2(y) ]' |  , (4.6.11c)

(qm> =  f  dx q”(x) (4.6. l id )

Clearly, if q(x) is a non-zero constant, the replica-symmetric situation for 

T <  Tg , this indeed leads to 4* =  0 . More generally, for the replica-symmetry
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broken situation, this result holds only in the limits T -+ Tg and T -* 0 . For 

small e =  (Tg -  T)/Tg , q(x) is given by (Kondor 1983, Thomsen et aL 1986, 

Sommers 1985)

q(x) = ^ (1 + 3e)x -f 0 (e3) ; x < xi

=  q( l )  ; x > x j (4.6.12a)

with

q(l) =  e +  e2 -  e3 +  0 (e 4) (4.6.12b)

xj =  2e -  4e2 +  0 (e 3) . (4.6.12c)

This leads to

* ( < 0
4

45
76 1

"45 + 0 (e3) (4.6.13)

so 4^(e)-+0 as T -+ Tg .

Also, as T -♦ 0 , q(x) ^ 1  so t  vanishes in this limit too. Thus, for the 

anisotropic solution, $  is expected to be zero at T = Tg and T =  0 and 

non-zero in between, where fluctuations from perfect collinearity are present due 

to replica-symmetry breaking.

The expected behaviour of ^  , in the thermodynamic limit, for both 

isotropic and anisotropic solutions is shown in Figures 4.1a and 4.1b respectively.
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To test the above argument, a Monte Carlo simulation of $  was performed, 

using the original clock representation and a "heat-bath" Monte Carlo algorithm 

(Binder 1979, 1985), for which single spins are changed or not according to the 

probability,

p -  t t 4 w  ’ (4'6'14)

and AE is energy required for the spin to go from its initial to its final state.

The thermal averages were performed as Monte Carlo averages (time 

averages) over times ranging from to to nto , n >  2  , where to is the equilibration 

time as estimated by the method of Bhatt and Young (1985), that is, by looking 

for the coalescence of upper and lower bounds to the spin-glass susceptibility in 

equation (4.6.5c). The time-dependent four-spin-correlation function,

XSG(t) =  N'' [  ?• S (»«) s î  ( ‘ +  ‘ 0) Sjn (to) Sjv (t +  to)]av (4.6.15a)

involving temporal correlations of a single system, averaged over {Jij} instances, 

gives an upper bound estimate,

* sg =  ' (4.6.15b)

approaching xSG from above if to is not long enough. The lower bound involves 

correlations between the two identical but simultaneously evolving systems 1 ,2 , 

given by
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(Nto)'1 [ S
t «i

S S sL (t +  to) s*„ ( ‘ +  to)

* ®iV (t +  to) Sj,, (t +  *o)]iv • (4.6.16)

Since the two sets of spins are initially uncorrelated, approaches v from

below if to is shorter than the necessary equilibration time. Data was only 

accepted if XgG and XgG agreed within the errors. Typical errors were of 

order 1 0 % .

Naturally, only finite-sized systems can be studied, but an analysis of several 

different sizes can reveal key features. The results for various sizes and 

temperatures are shown in Figure 4.2 . They do present finite-size effects, but are 

clearly in accord with the collinear/anisotropic prediction of a step function at 

Tg =  J/2 from #  =  0 at Tg to #  =  1/2 for T > Tg in the thermodynamic 

limit, N -+ oo . They unequivocally rule out isotropy. They also show that the 

fluctuations from perfect collinearity for temperatures 0 <  T < Tg , due to 

replica-symmetry breaking, are relatively small. However, these results are unable 

to detect the rise of ^  beneath Tg as predicted by the Parisi theory, but this 

may be because the sizes studied are too small.
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4.7. Conclusion

In this chapter, the special character of the 4-state clock spin glass was 

pointed out within the realm of p-state clock glasses. An alternative 

representation in terms of two identical Ising spin glasses has allowed one to use 

knowledge of the infinite-ranged Sherrington-Kirkpatrick model to analyse the

4-state clock glass. Within the replica-symmetric approximation, two distinct 

low-temperature solutions corresponding to the isotropic and collinear spin glasses 

were shown to provide the same value for the free energy. It was argued that the 

average spin-glass order is essentially collinear (two-fold symmetric) despite the 

four-fold symmetry of the hamiltonian. Fluctuation effects were predicted only for 

systems with pure states unrelated by symmetry. A Monte Carlo simulation was 

performed in support of the assertion of anisotropic spin-glass order.



127

Figure 4.1: The expected behaviour of #  in the limit N -* oo :

(a) if the low-temperature phase is isotropic;

(b) if the low-temperature phase is anisotropic (collinear). The rising of ^  

for temperatures 0 < T < Tg , represents fluctuations from perfect, collinearity 

as predicted from Parisi theory.

In both cases (a) and (b) the transition temperature is Tg = ^ .
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Figure 4.2: Plot of $  versus T /J  for N = 20 ,80  , 320 . The transition 

temperature is predicted as Tg = ^ . These results are clearly in accord with the 

anisotropic prediction in Figure 4.1 (b) . They also show that the fluctuations 

from perfect collinearity for 0 < T < Tg are relatively small.
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CHAPTER 5: INSTABILITIES OF CLOCK SPIN GLASSES IN A

MAGNETIC FIELD

5.1. Introduction

In a ferromagnetic system the introduction of a magnetic field removes all 

singularities and consequently, the phase transition is destroyed. However, for 

spin-glass models (at least within mean-4ield theory), a magnetic field leads to 

interesting behaviour, with new phase transitions related to the onset of strong 

irreversibility, i.e. replica-symmetry breaking (de Almeida and Thouless 1978).

In real spin glasses the relaxation times become very large at low 

temperatures, suggesting irreversibility, and many experimental observations 

claim the existence of an Almeida-Thouless line (for a review see Binder and 

Young 1986). Nevertheless, neither the experimented measurements nor the 

numerical simulations were able to show a true divergence of relaxation times in 

three-dimensional spin glasses, being this a controversial issue at the present 

moment (Fisher and Huse 1986, Bray and Moore 1986, Villain 1986), as discussed 

in section 2.7 .

The investigation of the effects of a magnetic field in the infinite-range 

p-state clock spin glass is the main purpose of this chapter. The onset of 

replica-symmetry breaking for the two extremum cases, p = 2 (de Almeida and 

Thouless 1978) and p = oo (Gabay and Toulouse 1981, Cragg et ai 1982) appears 

in very different ways, defining two distinct universality classes. We show that 

the p = 3 case is peculiar, lying in a different universality class than the ones 

mentioned above, and that the results change under reflection of the magnetic 

field (h -  h). The p = 4 case lies in the same class as p = 2 and, despite the 

four-fold symmetry of the spin variable, a small magnetic field induces the
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spin-glass order to two-fold symmetric, confirming the results of the previous 

chapter. Finally, we show that all p > 5 clock glasses axe XY like.

5.2. The p-state clock spin glass in a magnetic field

Throughout this chapter we will work with the p-state clock spin glass as 

defined in equation (3.2.3), with a magnetic field in the x direction (h =  hx). We 

assume that there is a possible rotation for which condition (3.3.11) is satisfied,

that is, the crossed parameters are zero. The free energy per spin, in the 

thermodynamic limit, N -» oo , is obtained by extremizing the functional 

g(Ra , Qxx , Qyy ) (see equations (3.3.6), (3.3.13) and (3.3.14)),

g(Ra , Q ?£, Q $ )  =  -£(/3J)2 +  1 ^ I s (r q)2 +  s '  [(Q?£)2 + (Q y$ 2 ]
0 ^ a *  a(3

-  In Tra exp {Heff} (5.2.1a)

Heff = (/3J)2SRa [(S?f
a

aPcCt y y Oy Oy )

+  , 5h£Sxa
(5.2.1b)

where,

Ra = ((Sx)2> -1 /2 (5.2.2a)

Q x i  =  ( S ? s 6 Q y y  = (Sy S $ )  ; a f  f i  . (5.2.2b)
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For p=2 , our model reduces to the well-known Ising spin glass of Sherrington 

and Kirkpatrick (1975) for which Ra and Qy^ are zero (see section 2.4). In the 

following discussion, we shall restrict ourselves to p >  2  .

Within the replica-symmetric approximation, Ra =  R , Qxx =  Qxx > 

Qyy =  Qyy , any average in the replica space in the limit n -» 0 , is related to a 

disorder-averaged product of thermodynamic averages (Kirkpatrick and 

Sherrington 1978),

1 im  
n- > 0

’ ... (sftj ( S ] f  ... ( S 6y)k (sf)g ( S § f  ... (SI f  (SyT )
d ifferen t r d ifferen t- ------------- t d iffe r e n t  ----------^
replicas replicas rep licas

<si ) l  <sj )I <S* s™ >!' av (all replica indices different)

dudv .u2 / 2

~7i r e z’1 Z-"
q

z -' /z r
z x / tmz 1

$ax ^ day . <?ax <?ay _
(5.2.3a)

where

Z =  tr exp (bSx +  axSx +  aySy) (5.2.3b)

ax = /^JQxxU + /2h , ay = #JQ jyv , b = (2R -  Qxx + Qyy) . (5.2.3c)

As discussed in section 3.7 for the case of zero magnetic field, one question of 

the most importance concerns the stability of the replica-symmetric solution 

(de Almeida and Thouless 1978). As is well known, for the m-vector spin glasses
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(Gabay and Toulouse 1981, Cragg et al 1982), a critical line in the h-T plane 

occurs, below which replica symmetry is unstable. For small h, this line looks in 

general, like

; c = (Tg -  T)/Tg (5.2.4)

where Tg is the spin-glass critical temperature in zero field.

For two particular limits of the p-state clock glass the above behaviour is 

found but the critical exponent sta lls  into different universality classes:

a) p =  2 (Ising spin glass) (de Almeida and Thouless 1978): in this case, the 

critical line is a direct consequence of replica-symmetry breaking and ip =  2 /3 .

b) p =  oo (XY spin glass): the ordering of the transverse degrees of freedom 

takes place at a critical line for which ^ = 2  (Gabay and Toulouse 1981), and 

below this line replica symmetry is unstable (Cragg et al 1982).

The main purpose of this chapter is to investigate how this critical line changes as 

we interpolate between these two limits.

In order to do this, we turn to the stability analysis in an Almeida-Thouless 

fashion by taking fluctuations around the replica-symmetric solutions 

(R a =  R + ua ; Qxx = Qxx + ; Qyy = Qyy + <pa  ̂ ; <*#/?)• The derivation

of Cragg et al (1982) can be reproduced straightforwardly for the p-state clock 

glass to give (see Appendix C)

( I - X i l *  - A ) ( l - X<2 > _ A ) - ( x <2 ) ) 2 =  0  , (5.2.6a)

where

x^V =  (W * <s - V av (/M'= X,y) (5.2.5b)
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The "correlation functions" aie to be evaluated in the replica-symmetric 

approximation and stability requires all eigenvalues A to be positive.

For large h, by solving equations (5.2.5), the softening to zero of A is 

satisfied by small T and one gets (see Appendix D)

T  =  - 2 aTexp(-h2/2;P) ( T ~ 0 )  , (5.2.6)
J (2x)T

which is valid in general for any value of p . The coefficient ap is a number 

depending only on the value of p , and typical values are listed in Table D .l 

(Appendix D).

For small h however, different values of p lead to distinct behaviour with 

different values for the exponent rp, and this will concern the analysis 

which follows.

5.3. p =  3

As discussed in section 3.2 , this case is identical to the 3-state Potts glass. 

As is well known, in the isotropic situation (h=0) , the absence of reflection 

symmetry in the spin variable plays a crucial role in this problem, changing 

radically the critical behaviour (Gross et al. 1985, Goldbart and Elderfield 1985, 

Nobre and Sherrington 1986). Special properties can also be noticed for h  ̂0 .

For small h, by solving equations (B.14) (Appendix B), one gets the critical 

line associated with the transverse spin-glass freezing,

+ 0(h3/JS) (5.3.1)



134

at which,1

R = j  + 0 (h 3/ J 3) , (5.3.2a)

Qxx = “ j 1" t  ■+■ 0 (h 3/  J3) . (5.3.2b)

In the equations above,

a± = g (2(34 ± 8) ; ( a , »2.18 ; cts0 .41) , (5.3.3a)

± 96 + 104a, t 222a + 53a^
A = ------------------ ----------- -----------— ; ( f t x -7.88 ; 0. « -0.67) (5.3.3b)

18 a± =f 16

and the upper (lower) signs refer to h > 0 (h < 0) .

In contrast to the m-vector spin glass, the results vary under the operation 

h- »- h  for small |h | and in particular, the parallel spin-glass parameter Qx* 

decreases,

Qx*(h>0) > Qxx(h<0) , (5.3.4)

!The quadrupolar parameter turns out to be a magnetization for p = 3 (Elderfield 
and Sherrington 1983a). Trivially one has,

R = [<Sx)T]av -  \  = [̂ COS ^  -  7 ) t ] av = \  [(C0S ] av = 7 KSx)T]av ,

(k =  0 ,1 ,2 ).
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whereas the transverse spin-glass-freezing temperature Tf ,

Tf =  Tg { l 4 ( 4 ^ a ±>17 i

n
2

(X — cP"u± ' 4 ± ^ ± j ^ + }  +  o(hVJ») (5.3.5)

satisfies

Tf(h>0) <  Tg <  Tf(h<0) . (5.3.6)

From equation (5.3.1) one gets that for h > 0 , e =  0 only if h =  0 . 

However, for h < 0 , >ne gets two solutions with e =  0 , namely,

1*1=0 , or 1^1 s  0.14 , (5.3.7)

providing the small |h | behaviour shown in Figure 5.1 .

Thus, the operation h - » - h  tends to weaken the parallel spin-glass 

ordering, while enhancing the perpendicular ordering. This is reflected in the 

change of sign of the parameter R and is a direct consequence of the absence of 

reflection symmetry in the spin variable. The fact that R is negative for h <  0 , 

makes the transition in Qyy more Ising like, in contrast to the usual transition 

found for the m-vectors.

For T just below Tf , equations (5.2.5) can be solved and the lowest 

eigenvalue is

2a. ^  + (24 ± 16a. -  15a^ )Q2yy + ( h * 0 ) (5.3.8)
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where Qyy grows as

Qyy =  2  T * (5.3.9)

and again the upper (lower) signs refer to h > 0 (h <  0) . Then, replica

symmetry becomes unstable at an even lower order than the usual m-vector
0

glasses for which the instability occurs at order Qyy on A . For the 3-state clock 

spin glass in a magnetic field, this instability occurs at order e2 J / | h |  , or using 

(5.3.1), at order e . Such a lowering in the order of the instability has already 

been noticed for the case of a Potts glass in zero magnetic field (Elderfield and 

Sherrington 1983a).

For large |h | , the transverse spin-glass transition is given by (5.2.6) for 

both h positive and negative. This is expected physically, since for either h >  0 

(XY-like transition) (Gabay and Toulouse 1981) or h <  0 (Ising-like transition) 

(de Almeida and Thouless 1978), the large |h | behaviour is the same.

Therefore, the 3-state clock lies in a different universality class than the 

Ising and XY spin glasses, obeying an equation like (5.2.4) but with 

exponent 0 = 1 .  The absence of reflection symmetry on the spin variable plays a 

crucial role for small |h | , where the inversion of the field changes drastically the 

critical line, but becomes irrelevant for large |h | . The critical lines for 

both h >  0 and h <  0 are shown in Figure 5.1 ; they signal the transverse 

spin-glass ordering and below them, replica symmetry is broken.
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5.4. p =  4

This case has been extensively discussed in the previous chapter. It was 

shown that this model is essentially collinear, in the sense that an infinitesimal 

field suffices to orient all the spins along the same axis (that of the field). 

Therefore, one expects the replica-symmetry breaking in the presence of a 

magnetic field to be Ising like, i.e. an Almeida-Thouless line should be obtained.

Introducing the Ising variables as defined by (4.2.11), the hamiltonian in 

equation (3.2.3) with a magnetic field in the x direction (h =  hx) , may be 

re-written as

H =  - E  Jij (rirj +  <7 i<7j) - h  S( r i  +  ^i) ; (5.4.1a)
( ij) i

{Jij} =  2  {Jij} I h =  jr • (5.4.1b)

Hence, the 4-state clock model is equivalent to two independent Ising models, 

each with exchange interactions and magnetic field re-scaled by a factor of one 

half with respect to those of the original clock model.

The onset of replica-symmetry breaking can be obtained within this 

representation, for which an Almeida-Thouless line follows for each of the 

independent Ising models. Alternatively, in the original clock representation 

(equation (3.2.3)), equations (5.2.5) can be solved with the "correlation 

functions" xffi evaluated in the replica-symmetric approximation, by making 

use of equations (4.3.4),

2 R — Qxx ; Qyy — 0 (5.4.2)
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One gets an Almeida-Thouless line, taking into account the proper 

re-scalings,

; (h small) , (5.4.3a)

I - j M 1 < * 1 ™  ; ( h k v )  . (5.4.3b)

The Gabay-Toulouse type of behaviour, where the ordering of the transverse 

degrees of freedom takes place already in the replica-symmetric space, can not 

occur for this case as a consequence of equation (5.4.2). Despite the four-fold 

symmetry of the spin variable, a magnetic field sets the spin-glass order to 

two-fold symmetric, in further support to the results obtained in the last chapter.

5.5. p > 5

For the isotropic case (h =  0) , pc =  5 is the clock dimension at and above 

which, the effect of the absence of reflection symmetry in the spin variable 

becomes irrelevant and the critical behaviour is XY like (Nobre and 

Sherrington 1986). The same happens for the case h  ̂ 0 , where corrections due to 

this effect appear only as higher-order terms in the perturbation expansion. 

Solving equations (B.14) (Appendix B) to leading order, one gets the critical line 

associated with the transverse spin-glass freezing,

(5.5.1a)
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close to which,

R =  \  (~j"j i Qxx =  ^ - ^ -  (5.5.1b)

The stability analysis can now be done by solving equations (5.2.5); for T 

just below Tf and small h , the lowest eigenvalue is given by

A =  -  3Qyy -  g  Qyy +  0 (h  Qyy) , (5.5.2)

which is negative, signaling instability. For large h , the onset of 

replica-symmetry breaking is given by equation (5.2.6). Therefore, the clock 

glasses for p > 5 all lie in the same universality class as the XY spin glass 

(Gabay and Toulouse 1981, Cragg et al 1982).

5.6. Conclusion

By studying the p-state clock spin glass in a magnetic field we have found 

that the p =  3 case (3-state Potts) is very peculiar. The onset of 

replica-symmetry breaking is of the Gabay-Toulouse type but with a different 

exponent. The results depend on the sign of the magnetic field and in particular, 

h >  0  (h <  0 ) enhances the parallel (perpendicular) spin-glass ordering. 

For p =  4 , the critical behaviour is Ising like, despite the four-fold symmetry of 

the spin variable. An Almeida-Thouless type of instability results in this case, in 

further support to the results obtained in Chapter 4 . For p > 5 , the effects due 

to the absence of reflection symmetry in the spin variable appear only as 

higher-order terms in a perturbation expansion, and the dominant behaviour is 

XY like.
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I h |

Figure 5.1: Phase diagram of the 3-state clock spin glass in a magnetic field h . 

The lower line is for h > 0 and its shape is much like the Almeida-Thouless line 

for the Sherrington-Kirkpatrick model (see Figure 2.8). The upper line is 

for h < 0 , and for small |h | one has Tf > Tg . In either case, the transition is 

of the Gabay-Toulouse type, signaling the transverse spin-glass ordering; below 

each line, replica symmetry is unstable.
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CHAPTER 6 : THE XY SPIN GLASS IN A FOUR-FOLD 

ANISOTROPY FIELD

6.1. Introduction

As discussed in section 3.3 , as the temperature is lowered, most clock spin 

glasses (p  ̂ 2,4) in zero magnetic field, go through a phase transition from a 

paramagnetic to an isotropic spin-glass state at a given temperature Tg . 

By further decreasing of the temperature, a second instability becomes possible, 

signaled by the onset of a quadrupolar parameter. This would occur between the 

isotropic and an anisotropic spin-glass state at a temperature Ta (T a <  Tg) . 

The investigation of such an instability is a difficult task, since below Tg one 

needs to deal with an infinite number of order parameters, which are not 

necessarily small near T a , and an analytical approach through series expansions 

is not valid anymore. Computer simulations, probably the most appropriate tool 

for that, become very difficult at low temperatures due to long equilibration 

times. Although there is no rigorous proof, it is a current belief that T a =  0 , 

for h =  0 , for most spin glasses (Toulouse and Gabay 1981).

In the last two chapters we have argued that the 4-state clock glass is 

exceptional regarding this matter: one has that Ta = Tg and the

low-temperature phase is uniaxial with small fluctuations occurring only due to 

replica-symmetry breaking. Therefore, it is interesting to investigate the role of a 

four-fold anisotropy field on the XY model and to look at how the glass phase 

behaves as one changes the strength of this anisotropy. This is the main purpose 

of this chapter. We show that the normal four-fold symmetric spin-glass phase 

occurs except in the limit of infinite anisotropy.
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6.2. The XY spin glass in a four-fold anisotropy field

Let us consider the model defined by the hamiltonian,

H = - E  Jij cos( 9 i - 9 \ )  -  D £ cos40i , (6.2.1)
( ij) i

where the are continuous angles varying from 0 to 2t and the {Jij} obey 

the same probability distribution as in equation (3.2.4). Our analysis will be 

restricted to D > 0 and clearly, D=0 and D=oo correspond respectively to the 

XY and 4-state clock spin-glass limits.

Standard calculations lead to a free-energy functional,

g(Ra

-  In Tra exp {Heff} (6.2.2a)

Heff = (jftJ)2 S R a [(S?)2 -  1/2] +
a

s' (Q?x S? Sjf + Q
a(3

qQ- q/?\
y y  ° y  Dy )

+ /3D £ cos4 Bq
a

(6.2.2b)

and again we are assuming that condition (3.3.11) is valid.

Making use of the traces evaluated in Appendix E, the above free-energy 

functional can be expanded in a power series,

g = -  ngo - m 2 { a2 S (Rq)2 + b2 s ' S ( Q $ 2 ] + ...
l a  a£ n  ̂ J

/* = x,y (6.2.3)
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with

go = ^ P -+  ln[Io(/®)] , (6.2.4a)

a2 = i [ ^ ( 1+AJ) - 1] , (6.2.4b)

(6.2.4c)

where

Ai = h U M  t (6.2.4d)
Io(/?D)

and the Ik(/3D) denote modified Bessel functions of the first kind of order k . 

For D large we can expand the Bessel functions,

A| = 1 — --------- L _  + 0 (O )-3 )  . (6.2.5)
2/3D 8(/8D)

Thus, for D finite we always have A i<l and the quadrupolar parameter critical 

temperature, associated with a2=0 , is always lower than the Q-ordering 

temperature Tg=J/2 ,* associated with 1)2=0 , resulting in four-fold symmetric 

spin-glass order for T just below Tg . However, as T is lowered further, a

iNote that Tg is unrelated to D through the corresponding independence of b2 . 
As shown in Appendix E, this is due to the independence of D of the ratio,

X2n
d<? cos 9 exp( /2Dcos40)

x2*
d0 exp(/3Dc os40)
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second transition becomes possible, at a temperature Ta(D) (T a(D) < Tg) . If the 

renormalizing effects of the four-fold symmetric spin-glass ordering were ignored, 

a second transition to a partially collinear state would occur at the lower 

temperature where a2 = 0  . However, when such effects are included, modifications 

result, lowering (or removing) the second transition temperature (Toulouse and 

Gabay 1981).

In order to investigate whether a transition from fourfold to 

twofold-symmetric order occurs, let us define

Q ? £  +  Q f y

o
z “^ =

Qa0 _ Qa0 ^ixx Hyy
( a t  0) ( 6.2.6)

by means of which, equations ( 6 .2 .2 ) may be re-expressed as

g(R“ , , Za$ ) =  -  “ ( +  i $ -  S ( R “ ) 2 + S' ( Q a? f
° z a z a0

2
+  UQX- s '  (Za/y  -  In Tra exp {Hetf} ,

Heff =  (0$) s  Ra  [(S? ) 2 -  1 / 2 ] +  1 4 P - s '  Q a / ? ( S ?  s i  + S? s i)
a  ̂ a(3

+  Za^ ( S ? S ^ - S y  Si) + 0DZcosi9a .
1 a(3 ot

(6.2.7a)

(6.2.7b)

If the transition at Ta is of the continuous type, then for T just below T a both 

R and Z are small. We can then, expand the free-energy functional.
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g (R ° , Qa^ , Za )̂ =  g( 0  , Q0/J, 0 ) +  U$X s  s ? f
<x0 EB- EsZsO R R1

+ 2  £  S^ 7
(a0 )-i LiL EsZsO

; a % 7

+ s  g ( a/^)(7^)
<o$)(-,6 > zz EsZsO

• afir ŷS (6.2.8)

The stability matrix (de Almeida and Thouless 1978) S has dimension ^ n (n -fl)  

by ^ ( n + l )  and elements,

K l  =  =  * * - ( w *  « ( S ^ ( S 6 2> - < ( S - ) 2> < ( S ^ »  , (6.2.9a)

s^ 7 = d f c  = -  (v ?  1((S“ s* -  s ? S'yXSx7)2)

(6.2.9b)- ( s ? s £ - s ? s ^ ( ( s 7 ) ^ ]  ,

i f iyS] = = ^ (lS) - m f  «<S?s i - S «S*)

- (S2 S ^ - S 7  S ^ ) ^ - ^ S ? S ^ - S “ s f  s ^ - s ?  S ^ )  . (6.2.9c)

Within the replica-symmetric approximation, continuous phase transitions are 

signaled by the softening to zero of an eigenvalue of the replica-symmetric 

eigenfunction of S in the limit n -♦ 0 .

The replica-symmetric eigenfunctions of S give, for n=0 , the eigenvalues

— -  a 2 — 2 b 2 ± ( a ' - 2 b^)2 - 2 c ' 21 (6.2.10)



146

where

a J du|ve-u2/2e-v2/2jG40_((320f  ] _2J

^ 2 ^(G2 o) - 2 (G u) +  (G 0 2)

- 4 G 2 o( G io) + 8G11G10G01 -  4 G o2(Goi)

+  3(Gio) -6(G oi) (G10) +  3(Goi) j - 1

dudv
~T T e-u2/ 2 e-v2/ 2 [ g 3oG , o - G oiG2.

-(G10) G 20 +  ( G oi) G20

an d

Gian — Gkm/Goo

Gta
2n k iQ .L X _

d#cos 9 sin 0 exp(#JQ*ucos# + /?JQ!vsin0 + /3Dcos40’

(6.2.11a)

(6.2.11b)

(6.2.11c)

(6.2. lid )  

, (6.2.lie )

with the mean spin-glass parameter satisfying the self-consistency equation.
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(6.2. Ilf)

The coefficients in equations (6.2.11) are related to the free-energy 

functional in its replica-symmetric form by

/ _ 1 lim  1 ffgfR, Q,Z)
w

2 n-» 0 n E«Z«o
(6.2.12a)

_  1 lim  1 ffg(R,Q,Z)
2 2(y3J)2 n" °  " dZ 2 RaZ«0

(6.2.12b)

c> -  1 1 ^g(R ,Q ,Z)
(j3J)2 n" °  n dKdZ RsZsO

(6.2.12c)

and for Q=0 ,

d I =  a« ; bo I =  2b2 ; c2 I =  0
2 1 Q=o ^  2 'Q=o 2 2 'Q«o

(6.2.13)

Within this replica-symmetric approach, the onset of anisotropy is signaled 

by one of the eigenvalues X± becoming negative. Instead of analysing A± 

directly, it is much easier if one looks at the quantities,

7  =  ^ ( At + A.) =  -  a£ -  2b£ , (6.2.14a)

£ = 4  A,A. =  4a£b^ +  < 4  . (6.2.14b)

The stability condition for the isotropic spin-glass phase, i.e. A+ , A_ > 0 , is now 

translated into 7 , 8  > 0 .
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Near the transition paramagnetic/four-fold-symmetric spin glass, Q is small 

and equations (6.2.11) can be expanded in powers of e ( e is given by (3 .6.11)),

3-2 =: \  ( — 1) + ^  (1 + Ai)e + g (5 + 4A| — Ai )e2 + 0( e3) , (6.2.15a)

b« = -  € - i  A, 1

33 + 77 Al e2 -  ae3 4- 0 ( e4)

— (1 + A|)e -f ^(1  -f Ai) 5 + ^ Ai e2 4- 0 (e3)

(6.2.15b)

(6.2.15c)

The third-order coefficient in (6.2.15b), a — o(D) , was not evaluated explicitly, 

but it is required to provide a finite value for the 4-state clock (D -> 00), such that 

the series expansion for b«J converges in this limit, or in other words, it should 

not present a (1 — Aj)"1 factor.

The quantities 7 and 8 can be computed within this expansion,

7 — ^-(1 -A i)  + ^ (3 -A i)e  + g — 5 + 20A1 -+■ -Tj- Aj e2 + 0 (e3) , (6.2.16a)

8 = (1 -  Ai) |  e -j|r(6  -3A j -  A 1 )e"

+ [ a  A| (1 + Aj) e3 j  -f 0( e4) (6.2.16b)

As can be seen from equations (6.2.16), one gets 7 , 8 > 0 for any finite 

D (Ai < 1) , but up to 0 (e3) , 8 goes to zero .n the 4-state clock limit 

(D -+ 00 , Aj 1). Therefore, the four-fold-symmetric spin-glass phase is stable 

except in the clock limit.
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The above result has been checked numerically (Nobre et al 1989) and no 

instability of the four-fold-symmetric state has been found at non-zero 

temperatures and finite D . One concludes that the clock limit is very special, 

because only in this case the model can be described in terms of two independent 

Ising models. For any finite D , such a decomposition is not possible and the 

system then prefers the four-fold-symmetric state.

6.3. Conclusion

We have studied an XY spin glass with a four-fold anisotropy. In searching 

for an instability of the four-4old-symmetric spin-glass state, we have analysed 

the fluctuations of the quadrupolar, and the difference between the spin-glass 

parameters in the x and y directions, within the replica-symmetry ansatz. We 

have shown that the four-fold-symmetric spin-glass phase is stable, except in the 

limit of infinite anisotropy (the four-state clock limit).
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CHAPTER 7: THE PARISI FUNCTION FOR CLOCK SPIN GLASSES

7.1. Introduction

The Parisi replica-symmetry-breaking scheme (Parisi 1979, 1980a, 1980b, 

1980c, 1980d, 1980e) as presented in section 2.4 , is believed to be the exact 

solution for the Sherrington-Kirkpatrick model (Sherrington and 

Kirkpatrick 1975). Although being a marginally stable solution (Thouless 

et al 1980, De Dominicis and Kondor 1983), it provides results which are in very 

good agreement with numerical simulations. Its generalization to the 

infinite-range m-vector spin glasses is very similar to the SK model, i.e. the Parisi 

function is continuous and monotonically increasing (Gabay et ai  1982, Elderfield 

and Sherrington 1982). All models studied so far, in which the spin variables are 

symmetric under reflection (Si-+-Si) , show such "conventional" behaviour in 

the Parisi function.

However, the same procedure when applied to systems in which the spins do 

not present symmetry under reflection, like quadrupolar (Goldbart and 

Sherrington 1985) and Potts glasses (Erzan and Lage 1983, Elderfield and 

Sherrington 1983a, 1983b, 1983c, Goldbart and Elderfield 1985, Gross et ai 1985), 

turns out to provide rather surprising behaviour. Discontinuities in the Parisi 

function as well as first-order phase transitions are observed. Whether these 

effects are peculiar to Potts and quadrupolar glasses only, or if they also happen 

on other systems, is not known.

An interesting problem is, therefore, to investigate the Parisi solution for the 

p-state clock spin-glass model as defined in Chapter 3 , for which the spins 

present (do not present) reflection symmetry for every even (odd) value of p . 

An analysis of the behaviour of the Parisi function as p varies, is the main
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purpose of this chapter. In section 7.2 we present the replica-symmetry-breaking 

theory for the clock spin glasses. We show that although the p = 3 case has the 

peculiar behaviour already observed for Potts models, the absence of reflection 

symmetry is qualitatively irrelevant for all other odd-state clock glasses. In 

section 7.3 we analyse the solution for p = 3 in detail. In section 7.4 we deal 

with the anisotropic solution for the 4-state clock.

7.2. Replica-aymmetry breaking for clock spin glasses

In this section we apply the Parisi scheme to the p-state clock spin glass in 

zero magnetic field. We restrict analysis of the ordered phase to e small (see 

equation (3.6.11)) using a Landau expansion. First, we deal with the isotropic 

solution (3.3.8) for all p . The anisotropic solution for p = 4 will be treated later 

in section 7.4 .

Near the phase transition (Q°^ small) the free-energy functional within the 

isotropic conditions, can be written as a power series (see section 3.4). The Parisi 

parametrization may easily be implemented by using the rules (2.4.17) -»(2.4.22) 

in expansion (3.4.4). In doing that, the free energy in (3.3.6) will be expressed as

P f[Q] =  -  go + 77 A 2 (Q 2) +  ^ A 3 (Q 3)

1

“ 3 dx xQ3(x) + 3 Q(x) dy Q2(y) +  Y2 A 4 ( Q 4)

-T 3  C4 { <Q4> -  2 (Q 2 ) 2 -  / o‘ dx / oX dy [ Q2(x) -  Q2(y ) f  }
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- ^ D 4 { 2  <Q> <Q3> +  / o‘ dx Q2(x) J'*  dy [ Q(x) -  Q(y) f  |  

- ^ B 4 {< Q 2 ) 2 - 4 < Q > 2 <Q2 > - 4 < Q >  / o'd x  Q(x) f *  dy [ Q(x) -  Q(y) f

dz [ Q ( x ) - Q ( y ) f  [ Q ( x ) - Q ( z ) ] ‘ |  + ... , (7.2.1)

where the coefficients are given in equations (3.4.5) . In equation (7.2.1) the Parisi 

function Q(x) is such that

Q ^tx) =  Q(x) 5^ ; y , (7.2.2)

and

(Q“) =  / 0’ dt Qm(t) (7.2.3)

In order to find the shape of Q(x) , one needs to solve the extremal equation,

(7.2.4a)

or in other words,
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A2 Q(t) +  As Q2(t) -  J f i ,  { 3tQ2(t) +  3 f *  dy Q2 (y) +  6  Q(t) dy Q(y) }

+  g  A.4 Q3(t) +  C4 (Q 2) Q(t) — ^  D 4 1 2 (Q 3) +  6  (Q ) Q-(t) +  4tQ3(t)

-  6  Q2(t) f *  dy Q(y) -  2 dy Q3(y) +  2  Q(t) <Q2> j

- ^ B ,  { 4 <Q2> Q(t) - 1 6  <Q> 2 Q(t) -  1 2  <Q2> <Q> - 1 2 t<Q> Q2(t) - 4 t 2 Q3(t)

-  4 f 0 dy Q(y) f j  dz [ Q(y) -  Q(z) ] 2 +  1 2  (Q> dy Q2(y)

+  24 <Q> Q(t) dy Q(y) +  1 2 tQ2(t) f o dy Q(y) + 4 £  dy yQ3 (y)

-  4tQ(t) dy Q2(y) -  4 Q(t) dy yQ2(y) -  8  Q(t) dy Q(y) dz Q(z)

- 3  f t dy Q2(y) dz Q(z) +  4 dy Q(y) f o dz Q2 (z)

+  4 f t dy Q(y) f *  dz Q2 (z) +  8 Q(t) £  dy Q(y) dz Q(z)

- 4 Q ( t ) ^ ‘ d y / oy d z Q 2( z ) }  +  ... = 0  . (7.2.4b)

We can now take the derivative of (7.2.4a) and write it in the form.

m  = Q , ( °  ~ °  > (7-2-s)
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where

*[Q] =  A2 +  2 A 3 Q(t) - 2 B 3 j tQ(t) + f t ‘ dy Q(y) } +  A 4 Q2(t) +  J C4 <Q2)

-  { 6  <Q) Q(t) +  6 tQ2(t) - 6  Q(t) f *  dy Q(y) +  <Q2) j

- | B 4 { <Q2} -  4 <Q) 2 - 6 t<Q> Q(t) - 3 t2 Q2(t) +  6  <Q> f *  dy Q(y)

+ 6 tQ(t) dy Q(y) - 1 d y Q 2( y ) - ^  dy yQ2(y)

- 2 / o dy Q(y) dz Q(z) +  2  £  dy Q(y) dz Q(z)

~ ft  dy f f  dz Q2(z) |  + ... . (7.2.6)

Equation (7.2.5) has two types of solutions,

1) Q '( t ) * 0  ; $[Q] =  0 , (7.2.7a)

2) Q '(t) =  0 ; <i>[Q] # 0 . (7.2.7b)

Solutions of type 2 are the replica-symmetric ones which axe known to be 

unstable, as shown in section 3.7 . Let us restrict ourselves for the moment to a 

search for type-1 solutions. Then, from equation (7.2.5) we get

7 m ^ T O ^ i W 1 = 2 A 3 - 2®3t +  O(e) =  0  ■ (7-2-8)
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which tells us that the function Q(t) can only vary in the neighbourhood of the 

point t with width 0 ( e) ,

t = - ^ +  0 (e) = - % £ +  0 (f)
B3 1

(7.2.9)

Taking one further derivative on (7.2.5), one gets

d 1 d 1 d
3 T (T T U 3 r ^ rx t7 ^ t

= - 2 B 3 +  2  (A 4 - D 4t +  B 4t2) Q '(t) +  0 (e ) =  0 , (7.2.10)

which gives

Q / (t) =  .  ,  - - - j --------- — + 0 ( c )  • (7.2.11)
B 4t“ —■ D 4t +  A4

Using equations (7.2.4), (7.2.9) and (7.2.11) the Parisi function can be 

obtained, to leading order in e , for any value of p . Let us now look at some 

special cases.

P = 2
In this case our model reduces to the spin glass of Sherrington and 

Kirkpatrick discussed in Chapter 2 . Within our truncated approximation we have 

(see Figure 7.1(a)),

Qm= £  +  0 (e 2) ; x =  2£ +  0 (e 2) (7.2.12a)
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Q '(x) = + 0 (e) ; for 0 < x < x  . (7.2.12b)

P =  3

This is equivalent to the 3-state Potts glass as shown in section 3.2 . A 

type- 1  solution leads to Q '(x) <  0 and therefore, to a negative probability 

(see equation (2.4.29)), which is clearly incorrect. As will be discussed in detail in 

the next section, the right solution in this case turns out to be a step function 

(Gross et al 1985). This is a type-2 solution for every x € [0,1] except at the 

breaking point, at which Q '(x) =  oo (see Figure 7.1(b)).

P =  4

One gets a solution as shown in Figure 7.1(a) with,

Qm =  ^ +  0 (e2) ; x =  2 e +  0 (e2) , (7.2.13a)

Q '(x) =  ^ +  0 (e ) ; for 0 < x < x  . (7.2.13b)

This was obtained within the space of isotropic solutions (equations (3.3.8)); the 

anisotropic solutions, equations (3.3.17), will be treated in section 7.4 . 

p > 5

Stopping expansion (3.4.4) at the fourth-order terms, we have that the 

p-state clock with p > 5 is identical to the corresponding truncation for the XY 

glass. Looking at higher-order terms one concludes that in truncating the 

expansion at m-th order, deviations from the XY glass occur only for p < m . 

As can be seen from the traces derived in Appendix A , these deviations arise just 

as a change in some coefficients in the Landau expansion if p is even, while they 

also appear as new extra terms if p is odd. For any p > m , one gets exactly the 

same terms and coefficients as for the XY glass.
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Let us now analyse what changes would result from the introduction of the 

possible "dangerous term"

S (Q a/V  ,

in the expansion (3.4.4) for the case p =  5 . Equations (3.4.4) and (7.2.1) would 

be respectively,

g(Qa^) =  g ( Q ^ ) - f7 TA5 S (Q ° ^ ) 5 , (7.2.14a)

/?f[Q] =  /?f[Q] +  ^ A 5 <Q6) , (7.2.14b)

where

A5 =  ^ p  . for p =  5 . (7.2.14c)

In equation (7.2.8) this term would give a correction 0 (e 2) on t , while in 

(7.2.11) this would appear els

Q '(‘) =  - --------- -— ^ ------- 1--------  , (7.2.15)
B 4t 2 — D4t + A4 +  AsQ(t)

contributing as a higher-order correction to the constant term A 4 in the 

denominator.

Therefore, the inclusion of higher-order terms in (3.4.4) do not change 

qualitatively the shape of the Parisi function and for all p > 5 one gets the
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"conventional" behaviour shown in Figure 7.1(a). The Parisi function is similar to
2

the one of an XY glass with spins of unitary length (Si =  1) . In Figure 7.1(a) 

one has,

Qm — ■+■ 0 ( e2) ] x — ^ e +  0 (e2) , (7.2.16a)

Q '(x) =  ^ +  0 (e ) ; for 0 < x < x  . (7.2.16b)

Let us now turn to the stability of the above solutions. We do that in a 

restricted space, based on the analysis by Thouless et ai (1980) for the SK model. 

The full stability analysis, as performed by De Dominicis and Kondor (1983) for 

the SK model, is quite a difficult task and is still lacking for other infinite-range 

spin glasses.

As discussed in section 2.4 , the condition for a minimum of the free energy, 

as required in (3.3.6), only makes sense when seen as a local stability condition in 

the full replica space, i.e. minimum with respect to each of the Q H 's . After the 

limit n -♦ 0 is performed, this changes into a maximum condition. Therefore, in 

the analysis which follows, a maximum of the free-energy functioned (7.2.1) will 

be required for stability.

Let us consider the stability functional,

(7.2.17)

which must be negative definite for the Parisi solution to be stable. Taking two 

functional derivatives of (7.2.1) one gets
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S[Q] = £(t-s)<t>[Q] + Q[Q] , (7.2.18)

where 8 (t-s) is a Dirac-delta function, <£[Q] is given by (7.2.6), and

Q[Q] =  -  2B 3 {Q(s)0 (t-s) +  Q(t)0 (s-t)} +  0 (e 2) , (7.2.19)

with

fo
0 (x) =  -

1

x < 0  

x >  0
(7.2.20)

Therefore, for any p  ̂ 3 , the type-1 solution in (7.2.7a), gives

E[Q] =  0[Q] (7.2.21)

which is clearly non-positive for the function Q(x) as shown in Figure 7.1(a). 

The eigenvalue equation

f o' ds f(s) E[Q] =  A f(t) (7.2.22)

presents however, zero eigenvalues (Thouless et ai 1980) showing the marginal 

stability of the Parisi solution.
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7.3. p =  3

The procedure developed in the previous section leads, for p =  3 , to a 

negative Q '(x) which is an unphysical result according to the interpretation 

given for the Parisi function in section 2.4.3 . In this section we show that the 

correct solution in this case turns out to be a step function (Gross et al 1985), as 

seen in Figure 7.1(b) ,

Q(t) =  Qm0 (t—t) . (7.3.1)

Except for the discontinuity at the breaking point, this is a type-2 solution in 

equations (7.2.7).

Substituting (7.3.1) into (7.2.1) one gets the free energy as 

/?f(Qm>t) =  -  go + ry Ao Qm ( 1 - t ) +  ^ A 3 Qm ( 1 —t) -  6 3  Qm (1 - t )  (2 - t )

+  j*2 "h Q® ) ~¥2 Qm

+  ^ B 4 Q m ( l- t ) { 3 - 3 t  + ( t ) 2} +  0 ( f 5) . (7.3.2)

The equilibrium conditions,

Qm,t)) _  q  . 0  , ( 7 .3 .3 )
<?Qm dt

give respectively
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A 2 +  A 3 Qm — B 3 Qm (2 —t ) +  ^ A 4 Qm +  ^ C4 Qm ( 1 “ t ) — D 4 Qm (2—t )

+  3 B 4 q I {3 - 3 t  +  ( t ) 2} +  0 (e 3) =  0 , (7.3.4a)

— A2 — ^ A3 Qm — ^ B 3 Qm (-\3+2t) — A4 Qm + j2  Qm (~2+ 2 t )

~ ^ 4  Qm (—3-f-2t) +  Yj B 4 Qm 6 4- 8t — 3(t )2} -f 0 (  e3) =  0 . (7.3.4b)

By solving equations (7.3.4),

t =  +  0 (  e) =  i  -f 0 ( e) , (7.3.5a)
b3 2

Qra = ---- = -£ 2- ---- + 0 ( e 2) =  e +  0(e2) , (7.3.5b)
2(B 3 -  A3)

giving a continuous phase transition at Tg , i.e. Qm goes continuously to zero 

as T ^ T g .

The next question to address concerns the stability of the present solution. 

In order to do this, let us substitute (7.3.1) into the stability functional £[Q] as 

defined in the previous section. Substituting the step-function solution 

into (7.2.18), one gets

$(Qm,t) =  A o +  2 A3 Qm̂  (t— t ) — 2 B 3 Qm {( 1 —t ) + t 9 (t—t )} -f A4 Qm 9 (t—t )

+  ̂C4 Qm (1—t ) — ̂  D4 Qm f(l—t ) + 6# (t—t )}
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+ B 4 Ql  { (1 -t ) 2 +  t(2 -t)0  ( t - t )}  +  0 (e 3) , (7.3.6a)

Q(Qm,t)  =  - 2 B 3 Qm$ (t—t )9 (s—t ) +  0 (e 2) . (7.3.6b)

The quantity *̂(Qm> t ) can be decomposed in two parts, i.e. for t >  t and 

t <  t , respectively. Making use of equations (7.3.4), these may be expressed as

A 4 Qm -  ^ D 4 Qm t +  ^ B 4 Qm ( t ) 2 +  0 (  e3) , (7.3.7)

where the +  (-) sign refer to t > t  (t <  t) . The stability functional becomes,

E[Q] =  { < M (t-t )  +  ^ ( t - 4 ) } 6 ( t - f l ) - 2 B 3 Q m 0(t-t)d(»-t) . (7.3.8)

To find the eigenvalues associated to (7.3.8) one needs to solve equation (7.2.22). 

In doing this, one gets the following eigenvalues and their corresponding 

eigenfunctions,

f*(t)

<!>- f.(t) ; k.9( t-t)

4>+ -  2B 3 Qm (1 -t) Ah.6 ( t - t )

where /c+ , a. are constants and f+(t) (f-(t)) vanishes for t < t (t >  t) 

non-zero otherwise, restricted to
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/ '  dt f,(t) = f  ‘ dt f.(t) = 0 . (7.3.9)

It is clear that the above eigenfunctions form a complete set, since they are

orthogonal and any arbitrary function f(t) , 0 < t < 1 , may be expressed as a

linear combination,

f(t) = f_(t) + f+(t) + k-9(t- t)  + Ac+flft-t) . (7.3.10)

Hence, one has the eigenvalues,

Aj = { A4 - D4 t -f B4 (t)~ } Qm + 0 (e3) , (7.3.11a)

A2 = -  2B3 Qm ( 1- t ) + 0 (e2) . (7.3.11b)

It is interesting to note that for any p ^ 3 ,  equation (7.2.9) gives t = 0(e) 

and then,

A, = ^ A 4 Qm + 0 ( f3) ; P #3  , (7.3.12)

which is positive, signaling the instability of the step-function solution. However, 

for p = 3 , one has t = 1/2 + 0 (e) , and using the coefficients given in 

equations (3.4.5) ,

A, = - ^ Q ^  + ° ( e 3) ; A2 = -  ^  Qm + 0( e2) , (7.3.13)

providing stability to solution (7.3.1). Notice that there are no zero eigenvalues.
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This is to be contrasted with the marginal stability obtained from conventional 

Parisi solutions for the cases p # 3 , as discussed in the last section. The 

step-4unction solution, as shown in Figure 7.1(b), represents just the first stage of 

Parisi's replica-symmetry-breaking scheme. The probability distribution for the 

overlaps, P(q) , is simply given by two delta functions, and different states can 

either present overlaps 0 or Qm .

7.4. p =  4 : the anisotropic solution

In the previous sections the Parisi functions for clock glasses, in zero 

magnetic field, were investigated within the space of isotropic solutions, equations

(3.3.8). However, as demonstrated in Chapter 4 , the case p =  4 in highly 

anisotropic and instead of (3.3.8), one has (3.3.17) with small fluctuations from 

perfect collinearity. In this section we shall investigate the Parisi solution 

resulting from (3.3.17). We do this by using the rules (2.4.17) -♦ (2.4.22) in 

expansion (3.5.4); note that the single-replica-dependent parameter R does not 

affect replica-symmetry breaking, as discussed in section 3.7 . We get,

/?f[R,Q] =  -g o  -  A 2R2 +  B2 <Q2> - D j dx xQ3(x) +  3 Q(x) f  dy Q2(y) 
• ' 0

+  GSR <Q2> -  A 4R 4 +  B 4 <Q4> -  R4R / o' dx xQ 3(x) + 3 Q(x) £  dy Q2(y)

-  C4 { -  <Q4> +  2  (Q 2 ) 2 +  / o' dx f *  dy [ Q2(x) -  Q2(y) f  } +  0 4R 2 <Q2>

-  E4 |  <Q2 ) 2 -  4 <Q) 2 <Q2) -  4 <Q> dx Q(x) f a dy [ Q(x) -  Q(y) ] 2
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- / o dx /«*  dy foX dz [ Q(x) -  Q(y) f  [ Q ( x ) - Q ( z ) f }  +  ... , (7.4.1)

where the coefficients are given in equations (3.5.5). In equation (7.4.1) the Parisi 

function Q(x) is such that

Q ^(x) =  Q(x) Sp, ; p,v =  x,y , (7.4.2)

and (Qm) is defined as in (7.2.3).

At the extrema the replica-symmetric parameter R can be eliminated 

to give

= 2B2 Q(t) -  D3 |  3tQ2(t) -f 3 f o dy Q2(y) + 6 Q(t) £  dy Q(y) j

3

+  X? Q(t) { Gs <Q2> -  <Q2 ) 3 +  ^ T 1  <Q2>
2 1 2A2

-  Ra f 0 dx £ xQ 3(x) +  3 Q(x) dy Q2(y )

+  4 B 4 Q3(t) - 4  C4 <Q2> Q(t) +  (Q2) Q(t)
2A2

<Q2> { 3tQ2(t) +  3 f *  dy Q2(y) + 6  Q(t) dy Q(y)

- E 4 1 4 <Q2> Q(t) - 1 6  <Q> Q(t) - 1 2  <Q2) (Q ) -  12t(Q ) Q2(t) -  4t2Q3(t)
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-  4 f 0 dy Q(y) f *  dz [ Q(y) -  Q(z) f  +  1 2  (Q ) dy Q2(y)

+  24 (Q ) Q(t) f a dy Q(y) + 1 2 tQ2 (t) dy Q(y) + 4 £  dy yQ3(y)

- 4 ‘Q (0  / o dy Q2 (y) -  4 Q(t) dy yQ2 (y) -  8  Q(t) dy Q(y) dz Q(z)

- 8  f t dy Q2(y) f j  dz Q(z) +  4 dy Q(y) dz Q2 (z)

+ 4 f t dy Q(y) f j  dz Q2 (z) +  8  Q(t) dy Q(y) f *  dz Q(z)

- 4 Q ( t ) ^  dy j"J dz Q2 (z) j  + ... =  0 . (7.4.3)

One can now follow the same steps as in section 7.2 to find a type- 1  solution 

(equation (7.2.7a)), as shown in Figure 7.1(a) , with

Qm =  e +  0 (e2) ; x =  e 4 - 0 (e2) , (7.4.4a)

Q '(x) =  l  +  0 (e) ; for 0  < x < x (7.4.4b)

stability analysis can also be performed to give

o
6 D 3 {Q (s)0 (t-s) +  Q(t)0 (s—t)} + 2  ^  Q(t) Q(s) -f 0 ( e2) , (7.4.5)

and using equations (3.5.5),
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£[Q] =  - 8 { q (s) [ 1  - 7 Q (t)]«(»-«)

+  Q (t) [l - i  Q(s)] ^ (s-t) } +  0 (e 2) , (7.4.6)

which is clearly non-positive for the function Q(x) in equations (7.4.4) . Note 

the appearance of an extra term in (7.4.5) as compared to the stability functional 

for the isotropic solution (equations (7.2.19) -* (7.2.21)). This term makes the 

stability functional even closer to zero, as seen in equation (7.4.6), and a higher 

marginality is expected for the collinear solution, within the realm of our 

simplified stability analysis.

7.5. Conclusion

The Parisi replica-symmetry-breaking scheme was applied to the p-state 

clock spin-glass model near the transition temperature. The case p =  3 has 

presented an anomalous behaviour: a step function, that is, the first stage of the 

Parisi process is the stable solution. No zero eigenvalues were found, in contrast to 

the marginal stability obtained from the conventional Parisi solution in the 

Sherrington-Kirkpatrick model. The absence of reflection symmetry in the spin 

variable was shown to be qualitatively irrelevant for all other odd-state clock 

glasses. All p $ 3 cases behave in the conventional way and for p > 5 , the Parisi 

function is to leading order in e , the same as for the XY spin glass.
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Figure 7.1: The Parisi function for the clock spin glasses.

(a) Cases p ^ 3 ;

(b) case p = 3 .
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CHAPTER 8 : CONCLUSION

The infinite-range p-state clock spin-glass model has been studied. Such a 

system can be seen as a realization of an XY spin glass in an infinite-strength 

p-foid anisotropy field, presenting as particular cases the Sherrington-Kirkpatrick 

(p =  2) , the 3-state Potts (p =  3) and the XY (p =  oo) models. The spin 

variable exhibits (does not exhibit) symmetry under reflection for every even 

(odd) value of p . Special attention has been devoted to the relevance of reflection 

symmetry for this model.

It has been shown that the lack of reflection symmetry in the spin variable 

plays an important role for p =  3 , but it is qualitatively irrelevant for all other 

odd-state clock glasses. Deviations from the XY spin-glass behaviour appear for 

p > 5 , as higher-order corrections and the dominant behaviour is XY like.

The Almeida-Thouless instability of the replica-symmetric solution, in zero 

magnetic field, has been demonstrated to occur at 0 (e2) for any p , except for 

p =  3 , in which case this instability appears at 0(e) (e =  (Tg -  T)/Tg ) . For a 

non-zero magnetic field, it has been shown that the critical line associated to the 

transverse spin-glass freezing changes under reflection of the field (h -> -h ) for 

p =  3 , but all p > 5 clock glasses present the conventional XY-like 

Gabay-Toulouse line. By applying the Parisi replica-symmetry-breaking scheme, 

it has been proven that all values of p present the conventional Parisi solution, 

except p =  3 , for which a step function is the stable solution. All these peculiar 

properties for p = 3  come as a direct consequence of the absence of reflection 

symmetry in the spin variable.

Particular emphasis has also been given to the investigation of the nature of 

the low—temperature phase of the 4-state clock spin glass. It has been



demonstrated that the average spin-glass order is essentially collinear 

(two-fold symmetric), despite the four-fold symmetry of the hamiltonian. 

Fluctuations from perfect collinearity are present due to replica-symmetry 

breaking but these have been shown to be relatively small. The role of a four-fold 

anisotropy field on the XY spin glass has also been analysed. It has been argued 

that the normal four-fold spin-glass phase occurs except in the limit of infinite 

anisotropy.
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Appendix A: Bare averagings for a p-state clock model

Whenever doing perturbation expansions in the order parameters for a 

p-state clock model, one needs to evaluate quantities like

P - 1
/  Qm Qn \  1 , f cra on 1 I V  ra 2 xk . *\ bx by ; 0 -  tro bx by J -  -  cos “p -  sinn 2 xk (A .l)

k = 0

where m, n, are positive integers and ( ) 0 denotes a "bare" average i.e. an 

averaging over a system with zero hamiltonian.

In order to evaluate such quantities we will make use of the identity,

y  ei2xkm/p _  p ^ 0 (mocj } (A.2a)

k = 0

which can also be written as

p - 1  p - 1

^  cos m =  p<$n,o (mod p) ; ^  sin m =  0 , (A.2b)

k= 0 k = 0

where

m̂,o (mod p) —
1 , if m =  0 ,p.2 p,... 

. 0 , if m # 0 ,p,2 pt...
(A.2c)
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Using (A.2b) together with basic trigonometric relations, averages like (A .l)  

can easily be evaluated. Here follows a list of the ones used throughout this thesis,

valid for any p integer (p > 2):

( Sx )o =  ^ (1 +  <$2 >p) > (A.3a)

( Sy )o =  ^ (1 “ 2̂>p) » (A.3b)

( Sx )o =  ̂ 3̂>p 5 (A.4)

( Sx )o = g(3 + 5<$2,p + #4>p) ) (A.5a)

<Sy >0 = ^( 3- 3^, p+ 54,p) , (A.5b)

( Sx ) 0 = ] (̂5^3>p + ^,p) , (A.6)

( Sx ) 0 = ^ ( 1 0  + 22^2,p -f 3̂,p + 6<$4,p + 6̂,p) ) (A.7a)

( Sy )o =  ^2 ( 1 0  ~ 1 0 2̂,P -  3̂>p +  6 4̂ ,P ~ 6̂ >p) > (A.7b)

( Sx )o = ^  (21 ̂ 3>p + 7(̂ 5,p + ^7,p) , (A.8)

( Sx ) q = yrjg(35 + 93<$2,p + 8<̂3,p + 29^4,p + 8 ĝ,p + 8̂>p) > (A.9a)

{ Sy ) q “  (35 — 35^2,p — 8 4 P 4* 29<̂ 4,p — 8 ^ ,P *h 8̂>p) > (A.9b)
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( Sx Sy ) 0 — -  £  #3 ,p , (A.10)

( SX Sy ) q =  “  3^3,p +  ^5,p) , (A .l l)

( S XS y ) 0 =  -Ĵ -( -  3̂ ,p “ 5̂,p) , (A .12)

( SX Sy ) q =  ( “ 3^3,p — <$5 ,p +  Sj,p) , (A .13)

( Sx Sy ) q =  g (1 — $2 ,p — 4̂5p) > (A .14)

( Sx Sy ) 0 =  (2 -  2^2,P +  3̂>P “  2^4jp +  6̂?p) ) (A. 15a)

( Sx Sy ) q =  Tgj ( 2  — 2 2̂ ,p — $3,p — 2 4̂ ,p — <̂6)p) ) (A.15b)

( Sx Sy )o =  yrjg (5 -  5#2,p +  4 3̂ ,p — 5 <̂4 ,p +  4(̂ 6,p — 8̂ ,p) > (A. 16a)

( Sx Sy > 0  =  (5 — 5^2,p -  4^3,p -  5^4,p — 4^6,p — $8 ,p) , (A. 16b)

( Sx Sy ) q =  jrjg (3 -  3<$2,p -  3^4,p +  8̂ >p) > (A. 17)

( Sy ) 0 =  0  , for m odd , (A. 18a)

( Sx Sy ) 0 =  0  , for n odd (any m) (A. 18b)
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Let us now make a few comments on equations (A .3) -+ (A. 18):

a) As it should be, all averages involving the component Sy vanish for p =  2 .

b) Averages which would normally vanish for systems possessing reflection 

symmetry, e.g. (A .4), (A .6 ), (A .8 ), (A .10) -> (A .13), do contribute for some odd 

values of p. In particular, (A .4) and (A .10) are responsible for the appearing of 

special terms in expansion (B .l) which do lead to special behaviour for p =  3 as 

described in Chapters 3, 5 and 7 . Contributions of the type (A .6 ), (A.8 ), 

(A. 11) -* (A. 13) only occur in higher order terms and are insufficient to change 

radically the behaviour of other odd values of p.

c) As can be seen in equations (A .3) -♦ ( A.18), the invariance x « y is 

respected for all p even (p > 2) but p =  6 . This can be explained by looking at 

Table A .l , where it is shown that the (instate clock spin variable can be 

written in terms of an Ising variable t and a 3 -state clock spin variable £ ,

Sp. =  ( T=  ± 1 ; /i = x,y) (A .19)

Sx =  cos ^ k ; Sy =  sin ^ k II o Ln (A.20a)

£x =  cos ; £y =  sin (i =  0 ,1 ,2 ) . (A.20b)

From (A. 19) it follows that

( Sx Sy ) 0 = ( £  £  ) 0 (m,n even numbers) (A.21)
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and this explains why the case p =  6  in equations (A.7), (A.9), (A .15) and (A. 16), 

instead of respecting the invariance x « y , gives similar results to p =  3 . These 

terms however, only contribute as higher-order terms in expansion (B. l )  and are 

unable to change the XY behaviour for p =  6  .

Table A .l

k Sx Sy ) r

0 1 0 0 +1

1 1/2 V3/2 2 - 1

2 - 1 / 2 V3/2 1 + 1

3 - 1 0 0 - 1

4 - 1 / 2 -V 3 /2 2 +1

5 1/2 - m 1 - 1

Table A.l: The values of S., ([a =  x,y) for the 6 -state clock model; the last twor*

columns show the corresponding values of the three-valued variable j and the 

Ising variable rsuch that (A .19) is satisfied.



Appendix B: Power-series expansions for a p-state clock spin glass

In this appendix, we will develop most of the power-series expansions used 

throughout this thesis. Close to the point h, e small (e =  (Tg -  T )/T g ) , Ra , 

Qxx > Qyy , are all small and using the traces evaluated in Appendix A , i.e. 

equations (A .3) -» (A .18), the free-energy functional g(Ra, Q?x , Qyy ) in 

equation (3.3.13a) can be written as ,

g(Ra, Qxx , Qyy ) =  -  ngo -  A| S R a -  B| S Q ? £ - A 2 £ ( R a)2 - B 2 £ (Q^ ) 2
a a(3 a a{3

- C 2 £  Q ? £ q & - D 2 £ ( Qy y f  - E 2 £ Ra Q ? £ - A 3 £ ( R a)3 - B 3 £ (Q? £ ) 3
a0^ a(3 a(3 a a|3

- C j  £  ( Q? f t 2 Q & - D ,  £  Q ? |Q ^ Q J ? - E 3 £  Q?y
a(3~i a(3*i

- F 3 s  Q ? ^ ( Q ^ 2 - G 3 r  Ra ( Qx x ) 5 - 13 £ Ra (Qyy) 2 - K 3 £ (R ^ 2 Q?£
a0 a0 ot0

- L 3 £ R a R ^ Q ? £ - H 3 £  Qxx Qxx R ^ -  A4 £  (R a ) 4 - B 4 £  (Q? ^ ) 4
a0 a(3  ̂ a a(3
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- P 4 S R a (Q ?£)3 - Q 4 S ( Qxxf  Q &  R 7 - R 4 S Q ^ Q & Q ? ? R a
a0  a(3̂  a0 ^

- S 4 S (R “ ) 2 R ^ Q ? ^ - T 4 £ (R q)2 ( Q ^ 2 - U 4 S R a R/3 (Q ? f ) 2
ot0 ot{3 a|3

- V 4 S Qyy Qyy Q /y  R ® - W 4 £  R a Q ^ ( Q ^ 2
a(3-i a(3

- X 4 £  Qxx Qxl  Ra R7 - -  • (B .l)
afh

In equation (B. l )  the summations over replicas sure unrestricted and the 

coefficients are given by,

go =  ln p  +  i ^ L  +  ^ ( 1  +  Si,p) + fo p

4
4- ( -  3 -  1362,p +  $4>p) +  0 (h5) (B:2)

At =  ^2,p +  $ 3 , p  +  (1 -  <$2,p +  ^4,p)

3

+  ^ - ( “ 3«i.p +  f o P)] + 0 (h«) (B.3a)

B, = iPllS& L f 1 + 3^>p + £3)p 1 + 0(h4) (B.3b)



wa)

(qg-a)

(«s'a)

(^a)

(wa)

(^'8)

(q>a)

‘ (^)0 + d,£? w^m= e°

Uh)0 + d‘E?('6/£ - T)= Ea

(iM)O +(d<iJ + d^ + d^g + (d‘9j + d.8?) j = 6V

(sH)O +(d‘*9Z + d‘E<? + d,s?5 - z) ^ + d<E? ] ^ 8(f^) = 5a 

(cH)O + { I - (d‘*''? - d‘E? + d,z? + I -) +
z

^-(d‘«s-i)]1^,}1^ = «a
Z Z

(eM)0 + (d,zu + I) = z0
z

‘ (ch)o + {i - [(d‘>? + d‘E? + d<z?6s - e -) +
z

d'Syitf + (d'Jye + x)

(cH)O +‘9g + d‘£^g-)
jki

+

(d‘«? +ile9)-^ + (d'i9 + d,s?-l)

(BKa)
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Ds =

g

- 1 +  7 6 2 ,p +  7j j +  0 (h 2) , (B.5d)

E 3 =
g

= ^ - ( 1 - ^ , P - | ^ 3 , p j +  ° ( h2) , (B.5e)

'l
Fs == ^ ( l - / 3 h ) 5 3,p +  0(h2) , (B.5f)

g 3 =

g

= m j L  [ 2(1 * >p +  <j4,p) +  M ~  2«3,p +  fc,P)] +  0(h>) , (B.5g)

h 3 =

g
= s3,p +  0(h») , (B.5h)

I3 = 2( 1 +  %,p «4,P) +  fa (h ,P ~ %,P)] + 0(h2) , (B.5i)

k 3

g

= (fr,P +  h ,P) +  0(h*) , (B.5k)

l 3 =

g

= ^ § - ( 1  +  # > )W  +  0(h*) , (B.51)

a 4

g
= ( 3 +  3^2,p 13$4,p 4- 8̂,p) +  0 (h ) , (B.6a)

b 4 = (9 + 247^2,p 5^4,p) +  0 (h ) , (B.6b)

c 4

g
3 61 &,p +  £4,p) +  0 (h ) . (B.6c)

D 4 =  3̂,p “b 0 (h) (B.6d)
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E4 = + 15^2, p) + 0(h) , (B.6e)

. . . 8
F4 = ^ r (9 - 952, p - 5«4,p) + ° ( h) , (B.6f)

O4 — '^ g  ( 3 + 3<$2,p + ^4,p) + 0(h) , (B.6g)

H4 =  ^ J - ( 1 - 5 2,p) +  0(h) , (B.6h)

I4 = (1 2̂>p + 3^4,p) + 0(h) , (B.6i)

( /3T\ ̂
K4 = i^o (  ̂ ^ ’P 4̂,p) "P ^ ^ )  , (B.6j)

L4 = ^ 2^ 3̂>p + 0(h) , (B.6k)

M4 = 3̂>p + 0(h) , (B.61)

. - . 8
N4 = fyQ ( 3^3,p + 6̂?p) + 0(h) , (B.6m)

8

O4 = ^ 5^ (1 2̂>p "h 3^4,p) + 0(h) , (B.6n)

P 4 = ^2^ 3̂,p ~*~ 1 (B.60)

Q4 = 3̂jp + 0(h) , (B.6p)
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R4  =  ^ - ( 1 - « 2, p + « 4 , p )  +  ° ( h ) - (B.6q)

s 4 =  *3,p +  0 (h) , (B.6r)

g

T4 =  ^ ^ - (  ^3>p ^65p) +  0 (h) , (B.6s)

U 4 =  ^ ^ - ( l  62,p +  3^4,p) 4- 0(h) , (B.6t)

V 4 =  ^ ( - l  +  6 , p - « » , „ )  + 0(h) , (B.6u)

W 4 = - ^ - « 3 , p  +  ° ( h ) , (B.6v)

X4 =  S3tp +  0(h) . (B.6w)



182

'i

In the replica-symmetric space (R a =  R , Qxx =  Qxx , Qyy =  Qyy), the 

free-energy functional in (B .l)  gives the free energy per spin in 

equation (3.3.6) as,

/?f(R > Qxx j Qyy) =  — ttn — OfjR 4* 0\Qxx — o^R 4* $>Qxx 4- 72Qyy 4* &RQxx

3 3 3 2 2 2
— Ô R — ftzQxx ~ 73Qyy 4“ ^jQxxQyy 4" ^RQxx 4* CsRQyy

2 4 4 4 2 2 3
4" J73R Qxx ~ 4" 4̂ Qxx "I" 74Qyy 4” ^QxxQyy 4" ^QxxQyy

2 2 3 3 2 2 3
4" C4R Qxx 4* 7?4RQxx 4" ^ R  Qxx 4" A4R Qyy 4* /^4RQyy

4- J^RQxxQyy 4“ • •• > (B.7)

where the coefficients above are related to the ones in equations (B.2) -»(B .6 ) by,

<*o =  go ,

aj =  Ai ; P\ =  Bi ,

C*2 —  A 2

A  = B; - c ,  =  ^ m
4

2

( 1  +  3 ^ ,p) +  /3ĥ 3,p

(B.8)

(B.9)

(B.lOa)

(B.lOb)
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72 =  ^ 2  ; <$2 =  Eo

=  A3 ,

fa — - ( B 3 -  C3 - 2 D 3)

8 +  56(52,p -  (1  -  21/3h)5s,p 1 +  0 ( h 2)

73 = 2E3 ; 63 = F3

(B.lOc)

(B .lla )

(B .llb )

(B .llc )

£3 =  G3 — H3

( 3  =  I3 ,

2(1 -  <$2,p +  4̂>p) +  /3h(—6$3,p +  <̂ >p) + 0(h*) , (B. l id )  

(B .lle )

73 = K3 +  L3 =  263,p + ^ 1(363, p +  65, p) + 0 (h 2) (B .llf )

a 4 =  A4 (B.12a)

/?4 =  B 4 — C4 — 2 D 4 +  3 E4

g
=  (117 + 20596a,p -  4863,P - 1 7 5 , ,p) +  0 (h ) , (B.12b)
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74 =  F 4 -G 4  +  3H4 =  ^ S r (117-117<2,p-17«4,p) +  0 (h ) , (B.12c)

. _  . 8

4̂ = I4 -  K4 -  2L4 = (5 -  5<$2,p -  8 3̂,P + 7^4,P) + 0(h) , (B.12d)

e4 = -  2M4 , (B.12e)

( 4 = N4 + 0 4 -  X4

{ /3T\ ̂
= ^ - ( 1 - ^ , p - 7 ^ p  + 3^,p + «6,p) + 0 (h) . (B.12f)

>)4 =  P 4 -  Q« -  2R4 = 1 $ ^ -  ( -  4 + 4 ^ 1P -  353,p -  4«4,P) +  0 (h) (B.12g)

«4 =  S4 , (B.12h)

l /9T\̂
A4 = T 4 + U4 = 25o ̂  ” ^ ,p ~ ^3,p ^ 4,p — ^6,p) 0(h) , (B.12i)

/i4 = -  2V 4 ; v\ = W4 • (B. 12j)
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The equilibrium conditions,

<9ffi(fy^xx,Qvv) _  q . ^ (R ^ x x iQ y y ) _  q . #ff(R^xx)Q yy) _  q ? (B.13)

give the self consistent equations for R , Qxx and Qyy respectively,

Qf| +  2 Q̂ R — ^Qxx d* 3a3R — CsQxx ~ CsQyy ~' ^^RQxx d* 4or4R — 2£4RQxx

3 2 2 3 2
— *?4Qxx “  3*4R Qxx ~ 2A4RQyy — fJ>4Qyy — J^QxxQyy d" ••• = 0 , (B.14a)

A d- 2/hQxx d- <52R -  3 * q L  d- S& ly  + 2e3RQxx d- ^R2 d- 4&q L  d- 2<$4Q xxQyy

d* 64Qyy d- 2 ( 4R Qxx d* 3 t̂4RQxx d- ^4R d* 4̂RQyy d* ••• — 0 (B. 14b)

^^Qyy ”  373 Qyy +  2<53QxxQyy d- 2 £3 RQyy +  474Qyy "I" 2<54Q xxQyy 

d- 3e4QxxQyy d" 2 A4R Qyy d~ 3/i4RQyy -f- 2l̂ 4RQxxQyy d* ••• — 0 (B.14c)
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Appendix C: Stability analysis for the clock spin glass in the

presence of a magnetic field

In this appendix, the Almeida-Thouless stability analysis will be derived for 

the p-state clock spin glass in the presence of a magnetic field. The calculation 

which follows is based on the derivation of Cragg et al (1982) for the m-vector 

spin glass.

The free-energy functional in (3.3.13) can be expanded around its 

replica-symmetric value by taking,

Ra = R + u/* ; Qxx = Qxx + ya^ ; Q?f=Qyy+ ^  ; . (C.l)

One gets,

g(Ra , Q x i  , Q$f ) = g(R , Qxx , Qyy) + (/?J)2 s s
a3

Otp
R R RS

a B
U) US

+ S g ( a/^)(7^)
(a0)(^6) Qx x Qxx

, £  g( <*/?)( 7 )̂
RS (a3)  (^6) Qy y Qyy RS y  Y

+  2 S S<a^ > / V +2 s
RS (ap)-t QyyR RS

( a fi) 7r j ui‘

+  2 S s i a^ S)
(a0)(^6) QxxQyy RS +  ••• (C.2)

where
RS

denotes evaluation of matrix elements within the Replica-Symmetry

ansatz.
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The stability matrix S has dimension n2 x n2 and elements,

d rfjr - ((is;Vrfr)-((s;,’)(<siV)) , <c.3»)

s« ” ? ‘ 5 5 % ' - (® )’ K s J s - <s S ! ) - ( s ^ O < (s 3 ! ) )  ■ ( a 3 b >
M’M’

g(«/5)(7 8)

'Wv

; i t ,  v = x  , j  . (C.3c)

The stability matrix elements are to be evaluated in the replica-symmetric 

approximation and stability requires the matrix S to be positive definite i.e., all 

eigenvalues should be positive.

The eigenvalue equation is

S £ =  A £ (C.4a)

where

a =

r r <*1

{» (a/3)}

U ^ } J

a  = 1,2,...,n (C.4b)

is a column vector with n2 elements. As in section 3.7 , the eigenvectors 

responsible for replica-symmetry breaking, , have all u/a zero and
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cx ; (ap) =  (Ou)

(2-n)"1 cx ; a or (3 =  0or v , but not both 

2(2 -n )-‘(3 -n )'i c x ;

cy ; (a/?) =  (0i/)

(2 -n )“l cy ; a or /? =  0or v , but not both 

2(2-n )_,(3-n)' 1 c y ; ar,/3^ 0,v

Therefore, the only contributing blocks of the matrix £  are the ones 

they present the following possible matrix elements:

sK f ) = ^ _(/3j)2 Ks“ s^s? s0 _(s“ s0 ( s“ s0 ) =E

sX r 7)=_(/3J)2 Ks “ s? s j  M s * s0 ( s" s 7 ) ) = F -

= - (/3j)2 Ks “ s^ s " s * ) - ( s ? s0 ( s7 s *) ) = G-

which hold for all distinct a,/l, 7 .

Equation (C.4a) yields for the vector £ 3 ,

)c„ =  Aĉ

or in other words.

(C.5a)

(C.5b) 

in (C.3 c);

, (C.6 a) 

(C.6 b) 

(C.6 c)

(C.7)

(C.8 a)
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where

42' = (W* [«s,A>T- <s,x>T (Su>T)2] av ; / * , "  =  x , y  • (C.8b)

Equation (C.8a) is valid for arbitrary c , giving the characteristic equation,

( l - x i x ’ - A ) ( l - X ^ '  - A ) - ( x g ’)2 = 0 • (C.9)
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Appendix D: The low-temperature replica-symmetry-breaking 

line for the clock spin glass in the presence of a magnetic field

In this appendix, the low-temperature replica-symmetry breaking line 

behaviour, for a p-state clock spin glass in the presence of a magnetic field will be 

derived. As discussed in Chapter 5 , the onset of replica-symmetry breaking takes 

place along the line Qyy =  0 , for which equations (5.2.5) give

A =  l - x i l ’ = 1 - ( / » ) *  [<Sx>T -2(Sx>T <Sx>T +  < S x> i]av ■ (D .l)

The function x ix* *° be evaluated in the replica-symmetric approximation 

and stability requires A to be positive. On this line one has,

A =  1 - ( / 9JV

(

/ du
(2x):

U2/2 * V 1 9'Z  '
0

2 z"‘
o

<TZ z '1 «  '
d&x <?ax ^ax

+ V '  9Z '
4 '

da,x
(D.2)

where

Z =  tr exp (bSx + axSx) ( D.3a)

ax — /?JQxxu + # i b = 14JI (2R — Qxx) (D.3b)
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Making use of the identity,

eaa _  |* j i Z—Hexp f + (2a)^ayl
J (2 t)t >■ 2 J
"0 0

00

(D.4)

equations (D.3) can be written as

00

Z =  j J ^  tr exp (cSx)

"C O

(D.5a)

c =  #J(2R -  Qxx)2y +  /?JQxxu + fki . (D.5b)

In the analysis which follows, the case p =  3 , h <  0 , will be treated 

separately.

(a) Cases p ■/= 3 (h positive or negative) ; p = 3 ( h >  0) 

At low temperatures, one expects that

Qxx = 1 + O(T) ; R = rj + 0(T) , (D.6)

and then,

#JQxxU > /?J(2R -  Qxx)^y ; /3h > £J(2R -  Q ^ y  , (D.7)

which gives
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Z s  tr exp (axSx)
P-1

X exp
k= 0

ax cos2xk
P

(D.8)

Equation (D.2) may now be written with ax as an integration variable, by using

u = T a x -  h 

JQ xx
(D.9)

or in other words,

A = 1 - / da,

Qxx j  (2x)
r exp 1 (Tax -  h)2 ,7-* / Z

2
L

—
*

 ̂X

___>

-  2 Z d \ V 1 «
2
X 7-' f  '

4 *
jj

<̂ ax tfax
•

i tfax (D.10)

As T -+ 0 , Qxx 1 and one gets

A =  1 -  /3J exp( -  h2/2J2)
(2t)t

(D.ll)

which gives the replica-symmetry-breaking line (A =  0) ,

?• =  — exp( -  h2/2J2)
J ( 2*)7

(D.12)
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In equations (D .ll)  and (D.12) ap is a number depending only on the value of p ,

00
J * r . 2  i 2 2 2 4 1

ap =  1 dax ■ 7-' » Z -  2  z" 1 d Z + ■7-' to
“ * * „ i/ax <7ax (D.13)

and Z is given by (D.8). The coefficient ap can easily be evaluated analytically for 

p =  2,4 or numerically for any p, and typical values are listed on Table D .l .

(b) Case p =  3 (h <  0)

As discussed in Chapter 5, the quadrupolar parameter Ra is for p =  3 , a 

magnetization parameter. Therefore, the inversion h - » - h  must come together 

with Ra -* -  Ra ; similar calculations as the ones in case (a) follow and equations 

(D.5) become,

Z =  I - j -I. r e~̂  ^  tr exp (cSx) , ( D.14)
J (2t)7
“ 00

c =  # I(- 2R -  Qxx)Ty +  £JQ£xU -I- flh . (D.15)

At low temperatures, one has

Qxx =  1 + 0 (T ) ; R =  - g +  0 (T ) , (D.16)

and then, equation (D.8) is obtained.

One gets the same replica-symmetry-breaking line as the one in 

equation (D.12).
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Table D .l

p 2 3 4 5 6 10 12 15

ap 4/3 0.562 2/3 0.571 0.583 0.571 0.571 0.571

Table D.l: The coefficient ap (equations (D.12) and (D.13)) for several 

values of p ; it oscillates for small p , but converges to a constant value as p 

gets large.
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Appendix E: Averagings for an XY model in a four-fold 

anisotropy field

When doing perturbation expansions in Chapter 6, for an XY model with 

four-fold anisotropy, one needs to evaluate quantities like

(S x  Sy ) D -  tr^ T ytrD Sx  s ;  j  =

f 2* in n^  J d 0 cosm0 sin 0 exp(/3Dcos49)

/* 2n
J d 0 exp(/?Dcos40)

(E.l)

where m, n, are positive integers and ( ) D denotes an average with respect 

to exp( /3Dcos4 9) .

In order to evaluate such quantities we will make use of the identities,

1 f 2*d0 sinm# exp(/?Dcos40) = 0 (E.2a)

J  d# cosmtf exp(/3Dcos40) = 6m,4k Ik(/2D) , (E.2b)

where Ik(/3D) are modified Bessel functions of the first kind of order k ,

Iit(z ) =  j j J  d0 coskO exp(zcos0) ; k = 0,1,2,... (E.3)
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Equations (E.2) together with basic trigonometric relations makes it possible 

to evaluate averages like (E .l). Here follows a list of the ones used in Chapter 6:

( Sx >D -  ( Sy ) D -  2 " ’ (E.4a)

<SX ) D =  < S y ) D =  |  +  g A |  , (E.4b)

( Sx Sy ) D =  Ai , (E.4c)

< S x > D =  < s y > D = T5 +  ] | Al . (E.4d)

( SX Sy ) D =  ( SX Sy ) D =  JQ ~ Al , (E.4e)

( S X ) D =  <S y ) D =  ^  +  ^ A ,  +  I^ A 2 , (E.4f)

( sx Sy >D =  < Sx Sy ) D = A, A2 , (E.4g)

( Sx Sy>D =  I | g - 3 g A i  + Y 5 g A 2 , (E.4h)

( Sx ) D =  < Sy ) D =  0 , for m odd , (E.4L)

( Sx Sy )  =  0 , for m or n or both odd , (E.4j)

where

A k -  W  . (E.5)
Io(/®)
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Equations (E.4) can be checked in two particular limits with equations 

(A .3) -+ (A .18) from Appendix A:

a) D =  oo : 4-state clock limit

One has Ak =  1 and equations (E.4) reproduce the equations from 

Appendix A for p =  4 .

b) D =  0 : XY limit

One has Ak =  0 and equations (E.4) reproduce the equations from 

Appendix A for p =  oo .
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