HYPERSONIC CAVITY FLOWS

M.P. Netterfield B.E., MSc

December 1988

A thesis submitted for the degree of
Doctor of Philosophy
of the
University of London
and for the
Diploma of Imperial College

Department of Aeronautics
Imperial College of Science and Technology
London SW7 2BY



Abstract

Axisymmetric cavity flow experiments have been conducted
in the Imperial College No.2 Gun Tunnel at Mach 9 and unit
Reynolds number of 1.7x10°/m and 5.5x10’/m. The oncoming
turbulent boundary .layer developed over a cone forebody of 50
semi-angle for a distance of 0.72m, with transition taking place
in the first third of the forebody. Pitot measurements were
made in the boundary layer to determine the velocity profile just
before separation. Surface pressure measurements were made
around cavities with length to depth ratios in the range
0.8<L/D<2.4 at both Reynolds numbers, and compared with other
two dimensional planar results. Strong Reynolds number effects
were noticed in the region of shear layer reattachment on the
rear face where the highest pressures were recorded, and where
evidence of flow unsteadiness was also found. A frequency
analysis of the fluctuating pressures showed that the oscillation
could have been due to a transverse acoustic mode in the cavity.

Heat transfer measurements were made at both Reynolds
numbers around the surface of cavities with L/D=0.8, 1.6 and 2.4
using a thin film technique. The heat transfer results followed
the same basic trends as the pressure results. Strong Reynolds
number dependence was noticed again in the region of shear
layer reattachment.

A basic semi-empirical analysis was used to try to predict
and extrapolate the experimental results. Good predictions of
separated shear layer spreading and reattachment were achieved
by the use of relatively simple equations, and using this analysis
the experimental results were extrapolated to different cavity
lengths.

A laminar Navier-Stokes code was developed using a
Godunov-type Euler code as a basis. Hypersonic flat plate
boundary layer computations gave very accurate results when
compared to known solutions. A Mach 8 L/D=2 laminar cavity
flow was computed, and surface pressure, heat transfer and skin
friction profiles in the cavity produced. These seemed in

qualitative agreement with the turbulent experimental results.
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Nomenclature

a (2.6.1) Critical depth for thin film gauges
a (3.2.3) Average speed of sound in the cavity
a (6.3.2) Speed of sound in a cell

A,B Empirical constants in 3.2.3

B, Bandwidth of spectral window in a Fast Fourier Transform
c Heat capacity

C Constant in power law temperature-viscosity relation
Ce Skin friction coefficient

Cp Specific heat at constant pressure

D Cavity Depth

e Internal energy per unit mass

E Bridge output voltage

f Frequency

H Total enthalpy

k Thermal conductivity

L Cavity length

L Horizontal co-ordinate in 2.6.3

M Mach number

n Emperical constant in 5.3.2

P Static pressure

P Pitot pressure

Pr Prandtl number

q Heat transfer rate

Q Total heat flux

Qo Total heat flux without cavity

R Gas constant

Re Reynolds number

S Reynolds analogy factor

St Stanton number

Str Strouhal number

t Time

T Temperature

u Streamwise velocity component

v Transverse velocity component

X,y Streamwise and transverse co-ordinates
Xo0'Yo Effective origins for the separtaed shear layer
X, Cavity co-ordinate as defined on Fig.33
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Greek Symbols

o Thermal diffusivity = k/pc
An Temperature coefficient of resistance

Ratio of specific heats

3 Boundary layer displacement thickness
At Time increment

Ax Increment in x

Ay Increment in y

€, Error in Fast Fourier Transform analysis
9 Boundary layer momentum thickness

e Flow deflection angle

A Bulk viscosity

u Dynamic viscosity

e Density

o (5.2) Shear layer spreading parameter

o (6.3) Normal stress

1 Shear stress

P Cone angle

Subsacripts

aw Adiabatic wall conditions

c Cone values; actual surface values (2.6.2)

D Dividing streamline values

e Boundary layer edge values before separation
h Hyperbolic terms

i,j Finite difference co-ordinates in x and y directions
max Maximum values in the cavity

min Minimum values in the cavity

n Time n

p Parabolic terms

r Body radius

s Measured surface values (2.6.2)

t Pitot values

w Wall values



wi,w2

g o

Metal and gauge wall values respectively
Streamwise direction

Transverse direction

Initial values; total values

Free stream conditions
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CHAPTERI1

INTRODUCTION
1.1 General

A cavity, or surface cutout, is a fundamentally important
aerodynamic geometry. Apart from being of interest in many
practical problems, a cavity flow exhibits some of the most
complicated and important aerodynamic phenomena such as
separation, reattachment and flow unsteadiness, and therefore
has proved ideal as a test problem for studying these flow
features. Cavity flows occur practically for a wide range of free
stream flow conditions, from subsonic and low supersonic Mach
numbers where drag and flow oscillation are of primary
importance, to high stipersonic and hypersonic Mach numbers
where heat transfer is also of considerable importance, and
where, generally, bulk unsteadiness of the flow is low.

Cavity flows may be of direct practical interest under a
variety of circumstances. At low Mach numbers flow oscillation
in bomb bays and wheel wells can lead to noise, buffeting and
cyclic stresses on the structure (see Plumbee et.al.(1962)). Gaps
between lifting and control surfaces, and surface cutouts, can
increase drag and alter the heat transfer characteristics of the
surface of vehicles flying at high Mach number (see
Larson(1959)) .

Low speed cavity flows have been the subject of considerable
experimental effort in the past, but information about such
flows in the hypersonic regime is sparse . At a time when
several countries are contemplating reusable launch vehicles, a
more extended knowledge of such a basic hypersonic flow
phenomena is essential. The aim of this work is then to collect
pressure and heat transfer data for such a flow, and thereby get
a better physical understanding of the important mechanisms
involved. Parallel with this is the development of a

Navier-Stokes code, with the results of the computations
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hopefully enhancing the physical understanding of the flow. The
time spent on the experiments and analysis, and on the

computations, is in part determined by support from the

sponsor of this work.
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1.2 Background-Experimental

1.2.1 Mean Flow Characteristics

Most data available in the literature for supersonic cavity
flows are for two dimensional flows. A schematic of such a
flowfield is shown on Fig.1. A comprehensive series of
experiments was performed by Charwat et.al.(1961). These
included pressure and heat transfer measurements for cavity
length to depth ratios 0.5¢ L/D < 30 for Mach 1.9-3.5 turbulent
flows over a range of Reynolds numbers. They, and other
investigators, found that there is a critical value of L/D of
around 10, and that at this value a fundamental restructuring of
the flow occurs. Above this value the separated shear layer from
the upstream face attaches to the floor of the cavity, and
separates again as the flow approaches the downstream
(recompression) face. This is shown in Fig.2a, and is called a
closed cavity flow. Below L/D=10, the shear layer effectively
jumps the cavity, reattaching at the recompression face. This is
shown in Fig.2b, and is called an open cavity flow. Strong
stagnation pressure recovery is noticed at the downstream face
while the floor pressure is relatively constant.

Other two dimensional flows were investigated by Zhang(1987)
at Mach 1.5 to 3, McDearmon(1960) at Mach 3.55, Stallings and
Wilcox(1987) at Mach 1.5 to 2.86, Clark et.al .(1980) at Mach 0.6
to 3.0, and an axisymmetric cavity by Johanneson(1955S)at Mach
1.97. Nicoll(1964), Ginoux et.al .(1968), and Hahn(1969) all studied
axisymmetric laminar cavities at hypersonic Mach numbers.
Larson(1959) investigated laminar and turbulent axisymmetric
cavities at Mach 0.3-4.0 and found turbulent heat transfer rates
(normalized by the value on the forebody) quite similar to
laminar ones and relatively Mach number independent, which
contradicts the theoretical results of Chapman(1956) for
turbulent flows, although agreement with Chapman's theory for
the laminar results was good. Fig.3 shows Larson’'s heat transfer
results for both laminar and turbulent flows.in terms of average

cavity heat transfer coefficient normalised by the heat transfer
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coefficient for the attached boundary layer. It can be seen that
for his relatively long cavities, the average heat transfer
coefficient is about half the attached value. Johanneson showed
that the results for axisymmetric cavities are not very different
from two dimensional cavities, except that axisymmetric cavities
exhibit a slightly larger drop in pressure moving from the front
to the rear of the cavity floor. This is illustrated on Fig.4. The
"two dimensional” cavity investigations all report strong 3
dimensional effects due to the presence of the cavity side walls,
which is one of the features which prompted our interest in
axisymmetric configurations.

A hypersonic two dimensional cavity at Mach 6.3 and 8.5 was
studied by Nestler et.al. (1968) for values of S < L/D < 30 . Heat
transfer and pressure measurements were made on the cavity
floor. Other heat transfer data were taken by Gortyshov et.al
.(1982) for M=3.5-4.5, White(1971) at subsonic and low
supersonic Mach numbers, and Wieting(1970) at Mach 7 for deep
cavities (L/D<0.524). Lamb (1981) attempted a correlation of all
the cavity flow parameters to predict heat transfer rates. He
found heat transfer rates in the cavity to be primarily dependent
on the rate of spreading of the separated shear layer into the
cavity flowfield and therefore strongly dependent on initial
boundary layer thickness and cavity length. Cavity depth was
found to be of secondary importance in determining both peak
and average heat transfer rates in open cavity flows.

It is expected that peak heat transfer rates in the cavity will
occur in the region of shear layer impingement on the back face.
In that sense the reattachment of turbulent separated flows in
general are of interest, and a summary of correlated data in this
field is given by Merzkirch(1988) et.al., who looked at available
experimental data on the influence of Reynolds number,
upstream boundary thickness, Mach number, and body geometry
on heat transfer rates to cavities, rearward facing steps and
base flows. Various attempts have been made, notably by
Korst(1956) and Chapman(1956), Nestler(1973) Gerhart and
Thomas(1974), Keyes(1977), and Tanner(1976) to analyse the
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reattachment process to predict the heat transfer rates.
Pressures and heat transfer rates are loosely linked, and some
authors have found power laws linking pressure and heat
transfer to fit quite well.

Little detail is available on the structure of the captured
vortex in open cavity flow. Gortyshov et.al. found the captured
vortex to split into a primary and secondary vortex for
approximately L/D>2. This is illustrated on Fig.S. In addition to
these two main vortices, there is also a sequence of smaller
vortices at corners. Roshko(1955) made some measurements in
the primary vortex in subsonic flow, and found that
recirculation velocities were as high as 40X of the free stream
velocity.

The boundary layer in the present experimental study
separates at a five degree angle with respect to the cavity
alignment (see Fig.32). In this respect the separated shear layer
resembles that of a base flow, at least initially, and so it is
instructive to look at the wave systems observed in some base
flows at the point of separation. Martellucci et.al.(1966) at Mach
6 and Marcillat(1974) at Mach 7 illustrate the shock-expansion
system at the point of separation on cone base flows, which is
shown on Fig.6a. Pressure is essentially uniform in the base
region (that pressure being dependent on the cone angle). The
lip shock in the shock-expansion system seems to be due to an
initial overexpansion of the inner part of the boundary layer to
maintain pressure continuity across the separated shear layer,
and then a subsequent compression. This effect later proves
important in calculating the separated shear layer of the cavity
configuration in this study. Martellucci et.al. measured total
temperatures in the base region and found them on average to
be about 0.65 times the free stream total temperature. This
compares well the experiments of Emery et.al.(1965), who found
total temperatures in the separated region of a cavity flow to be
0.66 times the free stream total temperature. In addition to the
lip shock in the base flow problem, there is also a trailing

shock (as identified on Fig.6) which aligns the flow with the
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body axis downstream of separation. The trailing shock is
stronger than the lip shock, and pressures immediately
downstream of it rise above the free stream pressure before
falling gradually further downstream to the free stream value.
Another type of supersonic separated flow that bears
similarities to open cavity flows is that induced by shock waves,
such as at a compression corner as studied by Lowder(1984) and
Holden(1972). A schematic of such a flow is shown on Fig.6b.
Similarities with hypersonic open cavity flows include the fact
that bulk unsteadiness of the flow is low, and that peak heating
and pressures occur near the shear layer reattachment point.
However separations at compression corners differ in that full
shear layer reattachment occurs (as opposed to partial
reattachment for open cavities), and this is reflected in the
much higher reattachment heat transfer rates recorded. The
mechanism of separation is also different, with pressure induced
separation occuring at compression corners rather than "fly
away"” separation in cavity flows. Lowder conducted his
experiments at Mach 9 for two different Reynolds numbers and a
number of different axisymmetric and asymmetric compression
steps. He found surface pressures at reattachment up to a
factor of 100 greater than the surface pressure before
separation for compression steps of 40°. Coleman(1973) found
reattachment heat transfer rates for such compression steps to
rise by a factor of up to 50 over the surface heat transfer rate
before separation. Lowder also noticed a Reynolds number
dependence for the reattachment process, with higher Reynolds
numbers leading to higher normalized reattachment pressures.
Holden's experiments were conducted for 6.5(M<13, and included
attempts to identify the onset of separation with increasing
wedge angle. This was attempted by the use of skin friction
gauges to record at which wedge angle the skin friction reduced

to zero.
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1.2.2 Fluctuating Flow Characteristics

The flow inside a cavity can oscillate under a wide range of
conditions, the nature of the oscillation depending on the free
stream Mach number, the cavity geometry, and the thickness of
the separated shear layer.

Krishnamurty (1955) found short cavities (L/D=1-2) at
transonic speeds emitted high frequency radiation which was
strong and directional (out of the cavity) . This frequency was
found to be inversely proportional to cavity length in both
laminar and turbulent flow. No simple relationship between free
stream Mach number and cavity length was noticed.

Rossiter(1966) , also at transonic Mach numbers, found that
the unsteady pressures contain both random and periodic
components. The random component dominated in shallow
cavities ( L/D>4 ) and was most intense near the rear face, while
the periodic component dominated in deeper cavities ( L/D<4 ).
With the aid of flow visualization he noticed discrete vortices in
the shear layer being shed from the cavity leading edge. He
constructed a model based on these vortices impacting on the
rear face of the cavity and, in doing so, emitting acoustic waves
which travel upstream to the leading edge and initiate the
shedding of another vortex, thus forming a feedback loop. This
theory was found to predict cavity oscillation frequencies quite
well. The theory was modified slightly by Heller et.al.(1971) to
account for the cavity speed of sound being different from the
free stream value , thus improving the accuracy at higher Mach
numbers. The discrete vortices noticed by Rossiter look similar
to the large scale structures found, for example, in a subsonic
free mixing layer by Brown and Roshko(1974). Their study,
originally to investigate the effect of density ratio on a mixing
layer, identified optically these apparently two dimensional
vortical structures being shed from the point of separation of a
low speed free mixing layer. Rockwell and Knisely(1979) made a
low Reynolds number experimental study of a separated shear
- layer over a rearward facing step in incompressible flow, and a

cavity for the same flow conditions and step size (ie., the same
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step Reynolds number). The results for fluctuating pressures in
the shear layer, shown on Fig.7, indicate that the effect of the
rear face of the cavity was to enhance the organization of the
large scale structure of the shear layer, which for the rearward
facing step case exhibited vortices of the "Brown and Roshko”
type. However lkawa and Kubota(1975) at Mach 2.47 and
Wagner(1973) at Mach S found no evidence of these large scale
structures in supersonic shear layers.

MacGregor and White investigated flow over short cavities
(L/D=0.5-3) over a large Mach number range (0.3-3) to obtain
estimates of cavity drag. They claim pressure oscillations can
increase cavity drag by up to 250%, and found such oscillations
over the entire Mach number range. This increase in drag is
presumably due to the large scale unsteadiness in the flow
tending to produce a larger vertical exchange of, amongst other
flow properties, axial momentum, and hence higher time
averaged pressures on the rear face of the cavity and so higher
drag. They observed the discrete vortex shedding similar to that
of Rossiter at subsonic Mach numbers and found that his theory
fitted their data well.

Although the shedding of discrete vortices from the cavity
leading edge has been observed at subsonic Mach numbers, it
has not been observed over the complete Mach number range
where oscillations are found to occur. Bilanin and Covert(1973)
constructed a mathamatical model whereby oscillations are
caused by shear layer instabilities (ie., disturbances in the shear
layer which have grown, rather than being damped out)
interacting with the trailing edge of the cavity. As in Rossiter's
model, the trailing edge interaction leads to acoustic waves
propagating upstream and completing the feedback loop. The
empirical constants of Rossiter's formula are found analytically.
Bilanin and Covert modelled the shear layer as an zero thickness
vortex sheet, which according to Miles(1958) should be stable
for free stream Mach numbers greater than 2Y2. Tam and
Block(1978) improved upon this by taking shear layer thickness

into account and analysing more rigorously the acoustic
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radiation from the rear face. A summary of these theories is
provided by Rockwell(1983). The Tam and Block theory was
extended to supersonic flow by Zhang(1987) , whose flow
visualization seemed to confirm the theory that the separated
shear layer becomes stable for Mach numbers above about 2.7.
However although these theories predict accurately the
frequencies at which longitudinal modes can occur, they do not
predict which of these modes in practice will dominate, nor the
amplitude of the oscillations. However a clue to this may come
from the work of Rockwell and Knisely. It seems from their
work that the separated shear layer for the cavity flow chose as
its dominant frequency, out of the possible resonant frequencies
for that cavity, the one closest to the natural vortex shedding
frequency (of the "Brown and Roshko” type). In other words, the
cavity feedback mechanism seemed to effectively enhance the
frequency which already existed in the shear layer. This is
backed up by the results of Zhang(1987) who found the dominant
frequency in his cavity flows remained effectively constant with
cavity length (ie., out of possible resonant frequencies for each
cavity, it seemed to "home in"” on a particular preferred absolute
frequency). These results are illustrated on Fig.8. These
pressure fluctuations were noticed throughout the entire cavity,
and were most intense on the rear face.

Heller and Bliss(1975) point out that the discrete vortices
observed by Rossiter and the shear layer instabilities observed
at higher Mach numbers are not necessarily different
mechanisms. They contend that the discrete vortices are actually
a manifestation of the shear layer instabilities, which at
subsonic speeds are far more rapidly amplified and roll up into
these vorticies.

Clark et.al.(1980) conducted a comprehensive series of
experiments looking at fluctuating pressures over the entire
cavity for a Mach number of 0.6 to 3.0 and L/D ranging from 5
to 10. They found at all positions a broad band frequency
spectrum upon which was superimposed one or more peaks.

Highest fluctuating pressures were found on the rear face of the
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cavity. Although peaks were noticed over the entire Mach
number range, the contribution of the peaks decreased with
increasing Mach number.

Although the longitudinal oscillation mode (shear layer
instability, longitudinal acoustic feedback) seems to dominate
for most flow conditions, a different mode has been noticed for
deep cavities. Plumbee et.al.(1962), East(1966) and Tam(1976)
found evidence of a transverse mode in these flow conditions.
A schematic of this mode is shown on Fig.9, and compared with
the longitud;;nal mode. This transverse mode is a vertical
acoustic mode in the cavity, where the air mass in the cavity
acts in some way like a Helmholtz resonator. It is not clear
whether natural shear layer instability is required to excite this
mode, and if not it seems that quite high Mach numbers would
be required to excite this mode in shallow cavities if the energy
for the oscillations was to come from turbulent fluctuations
within the shear layer. The reduced frequencies (fD/a), where f
is the frequency and a the average speed of sound in the cavity,
measured by East were in the range 0.15-0.20.

In summary, it is not clear from the literature whether
cavity pressure oscillations are to be expected at Mach 9, the
Mach number of the present study. The well documented
longitudinal mode of shear layer instability and acoustic
feedback should cease to exist above about Mach 2.7. However
other investigators have found evidence of unsteadiness above
this Mach number (eg., the Schlieren photographs of Ginoux
et.al.(1968) at Mach S5.3). It seems that if oscillations do occur,
they would be most severe on the rearward face. It also seems
possible that transverse modes could be excited at the high
Mach number of the present study. It is important to recognize
any unsteadiness in the cavity flowfield as White(1971) showed
that such pressure oscillations can substantially alter the heat

transfer rate in the shear layer reattachment zone.
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1.3 Background-Computational

Numerical modelling of cavity flows can yield enormous
amounts of information about such flows that is difficult to
obtain experimentally, and so is becoming increasingly popular.
The main literature review for this field can be found in Chapter
6, but at this stage it is instructive to look at the status of
such Navier-Stokes computations and the main problems in
carrying them out.

Solution of the time dependent Navier-Stokes equations is
essential for almost all cavity flowfields. At subsonic and low
supersonic speeds, large scale unsteadiness of the flowfield is
usual and time marching is obviously required. At higher
supersonic Mach numbers time marching is also highly desirable
in order to calculate subsonic and supersonic portions of the
flowfield simultaneously, as the time dependent equations are
always hyperbolic regardless of the flow velocity. Unfortunately
solution of the time dependent equations tends to lead to large
computational times before a steady or stationary state is
established, and the finer the mesh, the smaller the time step
that is allowed. Recent work by Baysal et.al.(1988) and
Zhang(1987) demonstrate the capabilities of such methods in
calculating supersonic cavity flows in two dimensions.

Baysal et.al. used a computational grid of 9000 cells for
their Mach 1.5 computations and were able to capture the
fluctuating flow characteristics and time mean pressures
reasonably accurately (within about 15% of experiment). However
shock waves did not seem to be accurately captured. Zhang used
a slightly more coarse grid of about 6500 cells, and although his
computations seemed to reproduce the basic flow physics
correctly (in terms of bulk unsteadiness of the flowfield), his
computations could not accurately predict the time mean
pressures or the wave structures. These methods have numerical
diffusion (due to the finite difference formulation) and artifical
dissipation to damp oscillations near shock waves. It is

important to ensure that these mechanisms do not swamp the
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real viscous dissipation in the flow, and inaccurate capture of
wave structures is an indication that this has not been achieved.
In both of the above cases a simple turbulence model was used
to relate the Reynolds stresses to the mean flow field, which
was probably inadequate for a cavity flow situation.

Three dimensional cavity computations were attempted by
Rizzetta(1988). These computations seemed to predict essentially
the correct pressure field, and highlighted the highly 3
dimensional nature of planar cavity flows.

None of the above studies attempted to predict the cavity
heat transfer rates. These are more difficult to predict than the
cavity pressures because it is necessary to resolve accurately the
boundary layers on the cavity walls. This then requires small
numerical diffusion, a more elaborate turbulence model, and a
finer mesh, and so much larger computational times. However
laminar hypersonic separated flows can be modelled quite
accurately, as shown by Power and Barber(1988) in their
computations of flow over a compression step, where skin
friction and surface heat transfer were found to agree quite well
with experiment.

The approach of this study is then to start with a very high
resolution Euler scheme, and to minimise numerical diffusion, so
that the viscous features can be captured with fewer cells than
would be otherwise necessary. Then a Navier-Stokes option will
be added, and tested extensively for laminar flows where the
viscous equations are exactly known. The next stage would be
the addition and assessment of a turbulence model, but this is

not regarded as an objective here.
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a.

CHAPTER 2

FACILITIES AND
INSTRUMENTATION

2.1 The Imperial College No.2 Gun Tunnel

The No.2 Gun Tunnel is located on the ground floor of the
Aeronautics Department of Imperial College, and a full
description is given by Needham et.al.(1970) . The tunnel was
last run S years previous to the beginning of this work, and so
initially required considerable effort to restore it to an
operational state, which was actually in itself one of the aims of
the current work. This entailed not only replacing or repairing
major parts of the equipment (eg., a new vacuum pump), but also
“rediscovering” experimental techniques where expertise has
been lost in the department in recent years (eg., the production
of thin film heat transfer gauges). The important stages of this
work are described in the following sections.

The schematic of the tunnel is shown in Fig.10 and its
operational conditions in Tablel. The low pressure condition is
achieved using aluminium diaphrams and the high pressure
condition using mild steel diaphrams. The nozzle produces a
nominal Mach number of 9 which is slightly higher at high
pressure due to decreased boundary layer thickness on the
nozzle walls.

The steady run period is approximately S ms, and a typical
tunnel total pressure trace is shown on Fig.liq: These data are
taken for each run by a Kistler piezoelectric transducer mounted
adjacent to the nozzle throat. A real gas correction factor was
estimated for the total pressure values in the test section using
the results of Cullotta and Richards(1970) . Thermodynamic
equilibrium was assumed to have been achieved at the nozzle
exit. Reynolds numbers are of the order of 0.5 million/cm. Since
model lengths of the order of Im will be used, this permits

natural transition of the boundary layer, if desired, and
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turbulent separation to be studied. The stream total
temperature is 1070K, whereas the model will be at room
temperature, so that highly cooled wall conditions will be
simulated. This leads to a high transition Reynolds number,
which Edwards(1981) found to be about 6 million on a flat plate.

The tunnel always requires two operators and strict safety
procedures are maintained. The minimum turn around time is

about 45 minutes.

2.2 Data Acquistion

Analogue signals from the test section were passed into the
control room, the tunnel total pressure being fed straight into
the digital recording system and model instrumentation signals
through bridge-amplifier systems into the digital recorder. The
previous digital sampling system was found to be inoperational
and so a new system was purchased and installed. The new
digital recorder is an expandable Microlink system which for
this project recorded 6 channels of data simultaneously, each
channel containing 4k samples, at a maximum sampling rate of
125kHz. This gives about 625 samples during the steady run time
of the tunnel. The whole system is software controlled, and is
triggered by the tunnel total pressure transducer. The digital
recording system is connected through an IEEE interface to a
BBC microcomputer which controls the system. Software in BBC
basic was written to set up the data system and to unload the
data after a run, and finally a graphics package written to
display any part of the data on the screen. Numerical integration
of the heat transfer data also took place on the BBC, and this is
described in more detail in Section 2.6.2. A hard copy of
graphical output was obtained by means of a screen dump to an

EPSON printer.
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2.3 Model Design

2.3.1 Axisymmetric or 2-Dimensional

Considering the wealth of data available on two dimensional
cavities, it may seem at first that this would be the best
geometry to study to allow a more direct comparison with the
results in the literature. However several investigators, notably
McDearmon and Zhang , found that supposedly two dimensional
cavity flows in fact showed very strong three dimensional
effects due to the presence of the side walls from subsonic
right through to hypersonic Mach numbers. The boundary layers
on the side walls were found to roll up into vortices which
moved into the main flow. The results of McDearmon show
clearly how cavity width could substantially change the mean
pressure distrubution, thus casting considerable doubt on the
validity of comparisons between different sets of “two
dimensional” data. Considering that Johanneson and Charwat
et.al. found no great differences between their axisymmetric and
two dimensional results, it is probable that comparisons
between axisymmetric and two dimensional studies are as valid
as between two different sets of two dimensional data. Of
course a disadvantage of an axisymmetric model is the reduced
quality of the Schlieren flow visualization, but it was felt that

0"

this was far outweighed by the desire not to include "end
effects”, and so an axisymmetric model was chosen.

2.3.2 Forebody

A cone forebody was chosen mainly from the point of view
of obtaining reliable boundary layer data (avoiding serious
external effects, such as streamwise pressure gradient, which
are difficult to document) at the point of separation into the
cavity. A previous study by Lin and Harvey (1987) gives boundary
layer data on a cone of 52 semi angle at positions 620, 720, and
820 mm from the tip. Thus a 50 semi angle cone forebody was
chosen with the cavity positioned 720 mm from the tip.

Following the cavity was a cylindrical afterbody, and a

schematic of the entire model is shown on Fig.12.
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At first glance it would seem simplest to have the approach
flow parallel with the top of the cavity (ie., a cone cylinder
forebody, with the cavity positioned some distance downstream
of the junction). However, at this high Mach number, the Mach
angle is very low and the recovery zone quite long, and so
expansion waves from a cone cylinder junction on the forebody
would inevitably interfere with the flow at the cavity. This
would be highly undesirable in terms of limiting the usefullness
of the study as a reference flow, and in terms of documenting
an upstream boundary layer influenced by a strong pressure
gradient, and so it was decided to make the expansion an
integral part of the cavity configuration. Other advantages of
the model to be used are ease of manufacture, and the fact that
the conically developed boundary is already documented for this
flow condition and geometry. Computations were carried out to
obtain a rough assessment of the effect of the approach flow
being angled at 5° to the cavity, and it was found to reduce
cavity pressures by a factor of about 2 compared with the
parallel approach flow situation for the same free stream
pressure. This dispelled worries that cavity pressures might be
too low to measure experimentally. In fact, the effect of an
expansion at the point of separation on a cavity flowfield is
worth studying in itself in terms of simulating gaps between
lifting and control surfaces on hypersonic vehicles.

The material for the cone forebody, except the tip, was
aluminium. The screw on tip was machined from mild steel to
give it greater hardness.

2.3.3 Cavity Dimensions

It appears from the literature that a fundamentally
important parameter in determining cavity flows is the length to
depth ratio, L/D, and so it was decided to vary this parameter
over a reasonably large range (0.8¢ L/D <2.4), although only
open cavity flows are expected for these values. This range of
L/D was achieved with a 25mm deep cavity, and cavity lengths of
20, 30, 40, 50, and 60mm. The L/D=2.4 case was also achieved

using a 12.5mm deep and 30mm long cavity. The cavity section of
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the model, shown in Fig.13, was made of mild steel and was able
to slide along a central member and lock into the cone forebody
(which was also screwed into the central member). The rear
bulkhead could slide backwards and fo;wards to change the
cavity length. The cylindrical aluminium afterbody was fastened
to the cavity section by four screws. The whole assembly was
located rotationally by a locking pin through the afterbody and
axially by two lock nuts behind the afterbody.

2.3.4 Model Support

In the test section of the Gun Tunnel, there exists a sting
into which models can be inserted. The central member of the
model was designed in such a way that it could be inserted
through the sting and locked into position by two locking rings
from the rear. Stress calculations were carried out to make sure
that the model could withstand starting loads. The design load
used was that of a badly asymmetric starting condition, with
zero pressure across one side of the model, and pressure
corresponding to conditions behind a normal shock on the other
side.

The model was aligned by the equalisation of static pressure
at three different circumferential positions on the model
surface. An error of 2% was achieved for these readings. The
final alignment was very close to the geometric alignment of the

model with the bed on the floor of the test section.
2.4 Static Pressure Instrumentation

Pressure readings were taken using ENDEVCO absolute
pressure transducers. Six were used rated at either 15 or 50 psi.
Brass caps were machined to screw onto the transducers, which
enabled them to be connected by a small length of plastic
tubing to equally small lengths of copper tubing (ID 1.0mm)
soldered to the model pressure tappings (also of 1.0 mm
diameter). The set-up is shown on Fig.14. Care had to be taken
not to "crimp"” the plastic tube. The dead volume in the

3

transducer/brass cap arrangement was about 22mm~. Tappings
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at the same radius from the model centreline were placed at
several different circumferential positions in the cavity to
assess any non axisymmetric effects that might occur (as
opposed to model alignment). The closest tapping to the top of
the cavity was centred 2mm from the rear lip.

The entire cavity was instrumented, as well as the area
immediately downstream of the cavity and the cone surface
30mm upstream of the cavity. Particular interest was payed to
the top of leading and trailing faces of the cavity, as the top of
the trailing face is where strong shear layer impingement can be
expected, and the top of the front face is a possible region
where any longitudinal cavity feedback mechanisms could be
noticed (see Zhang(1987)).

The transducers were calibrated in position by sucking the
test section down to a near vacuum, and then letting small
amounts of air back in, with the transducer output and test
section pressure being read about one minute after each closing
of the exhaust valve to the test section. This was done prior to
the start of the pressure measurements. The calibrations were
found to be linear, with correlation coefficients greater than
0.999.

As will be discussed later, fluctuating pressures were found
to occur on the rear face of the cavity. In order to study this
phenomenon accurately, it was necessary to reduce the "dead"
volume between the pressure tapping and the transducer, as it
transpired that the Helmholtz resonance frequency of this
volume (roughly SkHz) was of the same order as the frequency
of the fluctuations to be measured. It was decided not to flush
mount a transducer directly because of fears for its safety
under the starting conditions and also because of a loss of
spatial resolution if this were done (the diaphram diameter of
the transducer is 3.8mm), but instead to recess it imm from the
surface behind a 1.5mm diameter pressure tapping. This setup
gives a calculated Helmholtz resonance frequency of about
60kHz, which is still smaller than the basic transducer resonant
frequency of 120kHz , but an order of magnitude above the

likely frequencies to be measured.
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2.5 Pitot Pressure Instrumentation

Pitot pressure measurements were required to check the
upstream boundary layer documentation as measured by Lin and
Harvey (1987). A pitot tube was manufactured in the department
and is shown in Fig.15. This was clamped in the cavity section by
the device shown in Fig.16, and the nose of the pitot tube
protruded approximately 20mm upstream from the point of
separation. Schlieren photographs taken earlier showed no
discernible influence from the cavity on the upstream boundary
layer. Although this is not a really sensitive measure of
upstream influence, the literature does not indicate that any is
to be expected, and in any case it was desired to measure the
boundary layer in an "as is" condition. The position of the pitot
tube could be moved about 10mm in the vertical direction, which
was easily enough to measure a boundary layer about 6 mm thick.
The pitot tube itself was made of stainless steel with an initial
inside diameter of about 1.13mm. The nose was flared out and
squashed to give a vertical resolution of 0.4mm and the same
cross sectional area as the tubing (2.8mm wide nose). It was
considered that this vertical resolution would be adequate
across a boundary layer which should be about 6mm thick at
separation. The total height of the nose was 0.8mm.

As discussed later, the initial boundary layer study yielded
results slightly different to those of Lin and Harvey. A second
pitot tube was then constructed, twice as long as the first one
to remove the clamp as far as possible from the point of
measurement, and with a thinner nose (0.2mm internal height
and 0.5Smm total height) in an attempt to reduce blockage
effects (if any significant blockage effects existed) and give
better vertical resolution. The total width of the nose of this
probe was 5.3mm, which gave a difference in height between its
centre and edges of 0.05mm from the surface of the model.

The accuracy of the pressure measurements (static and pitot)

is estimated as follows:
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Gauge Calibration t 1%

Amplifier Calibration t 14
Tunnel Running Conditions t 3%
Spatial Errors + 1%
TOTAL & 6%

2.6 Heat Tranafer Instrumentation

2.6.1 Gauge Design

The theory and operation of heat transfer gauges is given by
Schultz and Jones(1973). For this study thin film gauges were
chosen, as used previously in this department by Edwards(1981)
and Lowder(1984) amongst others.

The substrate material chosen was quartz because of the
uniformity of its thermal properties over a relatively wide
temperature range. The Gun Tunnel has quite a short run time
(total run time about 20ms), and the surface temperature of the
gauge should not rise by more than about 152, which
Edwards(1981) concluded would result in an error of no more
than 4% if /pck for quartz was taken as constant at its room
temperature value of 0.151 J cm™! K1 s°1/2, The film material
chosen was platinum because of previous experience in dealing
with this material in the department. Silver paint was used to
connect the platinum film to copper strips at the base of the
gauge, onto which the connecting leads were soldered, as shown
on Fig.17.

Schultz and Jones give an approximate analysis for the
required substrate depth to be considered semi-infinite. This is
defined as the depth at which the temperature and heat transfer
should be less than 1% of their surface values, and their one
dimensional analysis for constant heat flux yields

a>40yat mm
which gives the minimum depth of a=0.6mm in this case.

The quartz was ground and polished by the Optics Section of
the Physics Department at Imperial College. Two different
shaped gauges were used. For the front and rear faces of the

cavity and on the cone surface, single cylindrical button gauges
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were used as shown in Fig.17 . The measuring face was 3mm
diameter and the length of the gauge 10mm, much longer than
the 0.6mm required to be considered semi infinite. On the cavity
floor a strip gauge was used 2mm thick, 3mm wide and 70mm
long, as shown in Fig.18. Limitations of space underneath the
cavity floor of the model (the metal wall thickness is only Smm)
meant that this gauge depth could not be more than 2mm thick,
but this is still comfortably above the 0.6mm required. Thin
platinum films were deposited at Smm intervals on this gauge.
All platinum films were deposited by a sputtering process in the
Thin Films section of the Electrical Engineering Department at
Imperial College.

Because the thermal properties of platinum films can vary
from gauge to gauge, each gauge had to be calibrated separately.
This was done in a heated oil bath, using a multimeter to
measure gauge resistances at different temperatures over the
expected operating range. A least squares method was then used
to deduce the temperature coefficient of resistance, aps for each
gauge. These least squares calculations gave a correlation
coefficient of more than 0.999 for all gauges used, indicating
little scatter in the calibration.

Each gauge is connected into one arm of a Wheatstone bridge
curcuit, with output voltage proportional to resistance change.
This resistance change can be converted directly to temperature
rise, and then integrated to find the heat transfer rate.

Once in place, the gauges seemed to be quite robust. During
the time they were used for measurements, which for each gauge
was about 10 tunnel runs, the gauge resistances were found to
increase by less than 1%. Repeatability was good, with run to run
variations for the same gauge within the range of tunnel run to
run variations. No dynamic or direct heat flux calibration of the
gauges was carried out.

2.6.2 Digital Reduction of Data

The bridge output voltage (proportional to temperature rise)
was digitized at a sampling rate of 125kHz, which was then

integrated to find the surface heat transfer rate q using every
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32nd sample point to reduce the computational time involved.
Tests were made to prove the accuracy of this procedure, which
showed that in terms of average heat flux over the steady run
time of the tunnel there was a difference of less than 0.5%
between integrating every data point and every 32nd data point.
A one dimensional analysis of heat flowing into a

homogeneous solid yields

q_(t)= ( ck)'/? E(t) + 1 *EW-Ew 4 ] 1.
a E, Tt o (t- (t-1) 372

where E(t) is the bridge output voltage at time t and E, is the
initial bridge voltage.

A numerical evaluation of the integral is possible but leads
to problems at the singularity where t=t. There are various
methods available for dealing with this singularity. Cook and
Felderman(1966) approximate E(t) in the region t=t by a

piecewise linear relation such that

E(1) = E(ti_l) + E(ti)-E(ti-i) (t‘ti_l) 2.
At

The finite difference formulation of Eqn.l then becomes

q(t,) = (pck)"z[ E(t,) +“"( E(t)-E(t;) _ E(tp)-E(t;_,)

ImagEq L 7t S\ (tmtp1/2 (ty-t;_ )12
¢ 2 E(t)-E(t;_ g ) + E(t )-E(t,_,) ] 3.
(t -t)1/2+(t -t;_,) 172 At

We also know that at t=0, E(t,)=0, so Eqn.3 simplifies to

q(t,) = 2(pck)'’? ' E(t)-E(t;_,) 4.
TragEy A (b=t 2+ (-t 172
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A program, in BBC basic, was written to implement this. A

constant heat flux of the form

T,= 24t
;npck

was entered in the form of the surface temperature T_ and the
program output was seen to give the correct value of q.

A typical surface temperature trace and corresponding heat
transfer trace are shown in Fig.19.

2.6.3 Errors in Heat Transfer Measurement

2.6.3.1 Variations in Thermal Properties of Quartz

As mentioned previously, the thermal properties of quartz
have been assumed constant over the range of temperatures
measured, and this is expected to give an error of no more than
+ 4%.

2.6.3.2 Surface Temperature Discontinuities

The thermal properties of quartz are such that the heat
transfer gauge will assume a temperature higher than that of the
surrounding material under flow conditions. This surface
temperature discontinuity can }'éffect the thermal boundary layer
by reducing the wall temperature gradient and thus the heat
transfer at the wall. This is illustrated on Fig.20.

Kays(1966) investigated this effect for both incompressible
laminar and turbulent boundary layers over a two dimensional
flat plate. Winter(1976) extended this analysis to compressible

flows, which yielded the following results

''y3/744 -1/3

(_l—s =1+ M[ 1 +( !.‘ ) for laminar flows
qc Tr - TW1 X -

. 'L 9/10q -1/9

ds_ 1+ @ I: 1+ ( I‘) for turbulent flows
qc Tl" - Twi X -

where the variables are defined on Fig.21.

- 36 -



It can be seen that the error is worst in areas of high heat
transfer (where T ,-T ., is large) and for small gauges (where x
is only just greater than L ).

Assuming the model remains at room temperature, and
ignoring axisymmetric effects, this analysis yields a 4% error for
the button gauges for a 152 rise in surface temperature. This
error is in the negative sense (ie., underestimating the heat
transfer rate), and is less applicable to the strip gauges on the
cavity floor.

Lowder(1984) measured relatively high heat transfer rates
(over 100 W/cm?) in flare induced separated flows, and
concluded that the above formula may have been an
underestimate of the likely error in that situation. However the
heat transfer rates expected in this study are much more
modest, and so this analysis deemed to be adequate.

2.6.3.3 Heat Leakage from Gauge Edge

Another result of the gauge being at a higher temperature
than the surrounding metal is that heat will leak from the edge
of the gauge into the surrounding material, so that a transient
one dimensional heat transfer analysis does nnt exactly model
the ‘true situation. To get an estimate of the error involved, the
problem was broken up into two one dimensional heat transfer
problems- heat transfer into the surface of the gauge, and heat
transfer out of the sides of the gauge and into the surrounding
metal. A full two dimensional analysis was not deemed
necessary to obtain an estimate of the likely errors involved in
neglecting heat loss from the gauge to the surrounding metal. A
small program was written to solve these two one dimensional
heat flow problems simultaneously. The gauge is exposed to a
constant heat flux and the surrounding model is assumed to
remain at room temperature. The two problems are time marched
simultaneously, and the result, illustrated on Fig.22 in terms of
gauge surface temperature after 15ms of run time, shows a less
than 2% error (again in the negative sense) in the average
temperature and hence heat flux across the gauge. In fact, the

error will probably have been slightly overestimated as small
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chamfers on the gauge surface mean that the thin film does not
quite reach the metal interface, although these chamfers may
lead to other errors.

2.6.3.4 Presence of the Surface Sensor Fllm

The equations for calculating heat transfer rate from surface
temperature were derived assuming the surface temperature was
not affected by the presence of the thin film. Even though the
sensor is quite thin (vacuum deposited films such as these have
thicknesses down to 0.ipum), the effect is a finite one. Edwards
used the results of Schultz and Jones to conclude that the error
for this type of gauge would fall within the generally accepted
limit of 2% (again in the negative sense).

An estimate of the likely accuracy of the experiment can now
be made, as is given below

Systematic Errors

Variation in thermal properties of quartz + 4%
Due to surface temperature discontinuities + 4%
Due to heat leakage from gauge + 2%
Due to presence of surface sensor + 2%
+ 12%
- 4%

Random Errors

Gauge Calibration t 1%
Tunnel Running Conditions t 3%
Amplifier Calibration _+ 1%
t 5%
TOTAL + 17%
- 9%

A plus sign indicates a correction that should be added to
the experimental value. However all data presented subsequently
are UNCORRECTED. Errors due to gauges not being mounted
completely flush with the surface of the model are not included
here as they are very difficult to quantify. This is discussed in

more detail in Chapter 4.
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2.7 Flow Visualization

A single pass Schlieren system is included in the test
facility. A schematic is shown in Fig.10. The argon spark light
source has a duration of 1lus, and is triggered by the tunnel p,
transducer located adjacent to the nozzle throat. A delay
between trigger and spark is incorporated such that the
photograph is taken during the steady run time of the tunnel.
Horizontal cut off is used and the optical path is approximately

50 metres.
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CHAPTER 3

PRESSURE MEASUREMENTS

3.1 Boundary Layer at Separation

It was decided to investigate the boundary layer just before
separation with two objectives in mind. The boundary layer
obviously can be expected to control the separation so
knowledge of it is needed both for physical interpretation of the
cavity flow, and also as a starting point in any numerical
prediction. Transition takes place in the first third of the cone
forebody so that the boundary layer at the point of separation is
fully turbulent. As discussed in section 2.5, Lin and
Harvey(1987) made boundary layer measurements on an
essentially identical 5% cone in the same test facility. The idea
was to make enough independent boundary layer measurements
to confirm their data.

3.1.1 Pitot Pressure

The raw data of pitot pressure against distance normal to
the cone surface for the high Reynolds number running condition
is shown in Fig.23 , and compared with the results of Lin and
Harvey(1987) which were taken in the same tunnel for the same
running conditions. There is a small but noticeable difference
between the two sets of results, with the boundary layer
measured by Lin and Harvey being slightly thicker, which is why
a more comprehensive set of tests was carried out than
originally planned. It was at first thought that this difference
could be due to pitot blockage effects, or the proximity of the
pitot clamp, and so a second longer, more slender nosed pitot
tube, as described in section 2.5, was built. It was also hoped
that this would alleviate the unusual "kink" in the data at about
y=1.75mm, which was also noticed by Bartlett(1981) for a flat
plate boundary layer, and seemed to be eliminated by probe
redesign. However Fig.23 shows that apart from partially

eliminating this "kink"”, the second pitot head gave virtually the
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same results as the first. No measurements were possible
immediately adjacent to the wall with the second pitot tube as
its long unsupported length gave rise to vibrational problems in
that area, as evidenced by low frequency oscillations in the pitot
measurements. The mechanism for this vibration is not well
understood, but would seem to be a wall interference effect.

As mentioned before, upstream influence from the cavity was
not expected at the position where the boundary layer
measurements were taken. The subsonic portion of the boundary
layer at this Mach number and Reynolds number is very thin
(less than O.lmm thick) and is extremely unlikely to carry
disturbances far upstream 1in a turbulent flow. Charwat
et.al.(1961a) also found no evidence of upstream influence on the
boundary layer just before separation even for Mach 4 cavity
flows. In any case, the differences between the results of Lin
and Harvey and those of the present study were also noticed in
the outer part of the boundary layer, whose domain of influence
lies well upstream.

Schlieren photographs, such as that shown on Fig.24, were
taken of the flow around the original pitot tube in an attempt
to see if it, or the probe support, was severely interfering with
the boundary layer. It is difficult to tell from the photograph if
there is any interference occuring, but none is obvious.

Misalignment of the model can also be ruled out as the cause
of the discrepancy as the measurements were taken at several
different circumferential positions. Indeed this is further proof
of the accuracy of the original model alignment, as
misalignment would have caused a thicker boundary layer on one
side model than the other.

Although the pitot tube protrudes about 20mm upstream
from the point of separation (in order to remove any upstream
influence from the cavity ), this shortening of the boundary
layer development length is not sufficient, over a total
development length of 720mm, to produce the differences
observed between the two sets of results. In fact, as shown in

Fig.25, the results of the present study are much closer to those
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of Lin and Harvey at x=620mm. Pitot displacement errors are
also unlikely to be the cause of the differences noticed. The
results of Lin and Harvey were also uncorrected for
displacement errors, which in any case could not explain the
magnitude of the discrepancy noticed. Also, in the outer part of
the boundary layer where displacement errors would be
smallest, the differences in the two sets of results are still
seen.

Bearing these facts in mind , and that the second pitot tube
with a smaller inlet and the probe support twice as far away as
the first gave virtually the same results as the first pitot, it is
safe to assume that the discrepancy is not due to an upstream
influence from the probe support or the cavity.

It was concluded that the difference in the two sets of
results was most probably due to a difference in the position of
transition in the two experiments. The physical position of the
model! in the tunnel can significantly affect the position of
transition, due to disturbances emanating from the nozzle
boundary layer. Thus if the model of Lin and Harvey was placed
further upstream than that of the present study, transition
would have occured earlier and thus the turbulent boundary
layer would have had a different effective origin. The model
position was kept fixed for the present study (with the cone tip
20cm upstream of the nozzle exit plane), but no information is
available about the position used by Lin and Harvey.

3.1.2 Mach Number and Velocity Distributions

Pitot pressure was converted to Mach number through the

Rayleigh supersonic pitot formula

v/v-1 1/v-1

P, [(7+1)M2] [ v+ ]
P. 2 2YyM? - (y-1)

with v=1.4 for nitrogen.

The average cone static pressure p_ was measured to be
5290N/m2 (0.77psi), and the static pressure was assumed

constant across the boundary layer (ie., po=p.).
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The Mach number profile is shown in Fig.26. Taking account
of differences in local static pressure (ie., run to run
variations), the conversion to Mach number has reduced the
difference between the two sets of data considerably.

To convert the Mach number profiles to velocity profiles,
information about the temperature distrubution in the boundary
layer is required. Usually, in the absence of measurements, an
approximate relation linking temperature, velocity and Mach
number based on the similarity between heat and momentum
transfer is used. However, fortunately in this case the total
temperature profile for the boundary layer at X=720mm has been
measured and is given by Wang(1987) , and is used in this case.
The difference in the pitot pressure profiles as discussed in 3.1.1
does not significantly affect the validity of the use of the total
temperature profile to calculate the velocity, as the total
temperature profiles seem to change quite slowly in the
streamwise direction at this distance from the nose.

The velocity profiles can then be calculated from

172

Ele

e

M [ To [ 1+ 1/2(y-1)M2 ] ]
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To L[ 1+ 1/72(y-1)M? ]
e

and the result is shown in Fig.27. It can be seen that, in terms
of velocity, there is almost no difference between the results of
this study and that of Lin and Harvey.

A few data points were also taken for the low Reynolds
number boundary layer. These points, shown on Fig.28, indicate
that, as expected, this boundary layer is slightly thicker than
the high Reynolds number case.

- 43 -



3.2 Cavity Flows

3.2.1 Cavity Flow Structure

Using the results of flow visualization, pressure
measurements, and information from the literature, an initial
picture of the cavity flow structure can be built up.

Fig.29 to Fig.31 show Schlieren photographs of the cavity
flow at the high Reynolds number condition for L/D= 0.8, 1.6,
and 2.4. Obvious in all of these photographs is the reattachment
shock at the trailing lip of the cavity. The pressure
measurements to be shown later indicate that this shock is
followed by an expansion fan, so that what exists at the trailing
edge is a shock-expansion system. Also clearly visible for
L/D=2.4, and less so for L/D=1.6 and 0.8, is a Prandtl-Meyer
expansion which appears to emanate from the leading lip of the
cavity. Thus the boundary layer at separation is rapidly expanded
as it turns from its initial direction parallel to the cone surface
to a direction approximately parallel to the cavity.

Unfortunately, due to the axisymmetric nature of the flow,
the Schlieren flow visualization does not provide a clear picture
of the flow inside the cavity. However it is known from the
literature that cavity flows with these values of L/D will
definitely be of the open type (ie., the shear layer reattaches to
the rear face of the cavity and not to the cavity floor) which is
consistent with the reattachment shock, and from the pressure
measurements it will be seen that the shear layer reattaches
somewhere in the region y/D<0.25 on the rear face for all the
cavity lengths studied, where y is the distance down the rear
face of the cavity with its origin at the rear lip.

The shape of the captured vortex within the cavity depends
upon L/D. The results of other investigators (eg., Stallings and
Wilcox (1987) and Zhang(1987)) show that for supersonic flows
with L/D less than 1 the captured vortex is a single vortex,
whereas for L/D greater than 2 two vortices are present. Of
these two, the trailing edge vortex has by far the greater
rotational strength. Between L/D=1{ and L/D=2 the vortex

structure is in a state of transition.
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a.

Using all this information, a schematic of the anticipated
flowfield can be constructed and is shown on Fig.32.

3.2.2 Mean Static Pressures

Static pressure measurements around the cavity and on the
afterbody were made for a 25mm deep cavity with L/D of 0.8,
1.2, 1.6, 2.0 and 2.4 at both the high and low Reynolds number
running conditions. Measurements were also made for a 12.5mm
deep cavity with L/D=2.4 at both Reynolds numbers.

The mean static pressure at a position was taken to be the
time averaged pressure during the steady run time of the tunnel.
These pressures are initially normalized by the static pressure
on the cone just before separation, p_, which was measured to
be on average 0.77psi (5290N/m2). The horizontal coordinate X,
is the total distance from the point of separation down the
front face of the cavity, along the cavity floor, up the back face
of the cavity, and along the afterbody (ie., the distance around
the cavity periphery). This is illustrated on Fig.33 . A typical
pressure-time trace is shown on Fig.34o: and compared with the
tunnel total pressure trace. The pressure-time traces indicate
that the cavity pressures have reached a stationary state during
the steady run time of the tunnel, which is in agreement with
our expectations of physical response times. To assess this
response time, we can consider a viscous disturbance in the
boundary layer propagating upstream at, on average, say 1/2 the
free stream velocity (~700m/s), would take about Ims to travel
from the tip of the cone to the cavity. Now the steady run time
(where the measurements are taken) does not begin until about
1Sms after the tunnel fires, so there is plenty of time for the
flow on the forebody to reach a steady state. It is more
difficult to estimate the time needed for the cavity flow to
reach a steady state, but if an average cavity velocity of 10% of
the free stream velocity is assumed (Krisnamurty(1955) measured
cavity velocities up to 40% of the free stream), then a
disturbance would take 0.8ms to travel around the cavity
periphery, which is still only a small fraction of the total

running time. In fact, this is really an estimate of the time

s -

Due to the transducer mounting arrangement, high frequency

components of the total pressure record are attenuated.



required for the cavity flow to reach equilibrium in terms of its
viscous nature. Pressure equilibrium in the cavity is actually
achieved by the propagation of acoustic waves at the local speed
of sound (which is probably somewhat greater than the typical
viscous convection velocity in the cavity), so that the time
required to reach pressure equilibrium is even less than this.

The static pressure tappings were placed in a spiral around
the circumference of the cone as a further check on the
alignment of the model. Tapping locations can be seen in
Appendix 1.

3.2.2.1 General Observations

Fig.3S5. to Fig.39. show the results for L/D=0.8 to 2.4 at both
the high and low Reynolds numbers, with pressure normalized by
the cone pressure p_. The most noticable feature is the impact
recovery pressure on the top of the rear face (ie., in the area of
shear layer reattachment), which has been noticed by all other
investigators and which is seen for this experiment to generally
increase with increasing cavity length. Fig.40 plots peak
recorded reattachment pressure (at the top of the back lip,
y/D=0.08) against L/D. The rapid drop in pressure moving
downwards along the rear face implies considerable cavity
velocities in this region. Partial pressure recovery then occurs at
the bottom of the back face. Along the cavity floor the direction
of the pressure gradient is such that the flow once again seems
to accelerate (in the reverse flow direction), the pressure
reaching a minimum near the middle of the cavity floor and
partially recovering again near the bottom of the front face.
This minimum in floor pressure most probably lies under the
primary vortex core. Pressures along the front face are
relatively constant.

Apart from the area of shear layer reattachment, cavity
pressures are generally below those recorded on the cone
forebody before separation, with pressures on the floor and the
front face on average 0.62 times the cone pressure. Investigators
of two dimensional planar flows and axisymmetric flows with

the cavity floor parallel to the forebody, have found these floor
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and front face pressures approximately equal to the static
pressure on the forebody, and hence also approximately equal to
static pressure in the shear layer since the expansion at
separation is quite weak for such flows. The present results are
compared on Fig.41 with the two dimensional planar results of
McDearmon(1960) at M=3.55 and L/D=2.19, where p_ for
McDearmon’'s results is the forebody pressure. A comparison
with results at lower Mach numbers seems reasonable as cavity
pressures show only a weak Mach number dependence (see
Lamb(1981)), with reattachment pressures generally increasing
with increasing Mach number. It can be seen from this
comparison that the floor pressures in McDearmon's results are
slightly greater than the forebody pressure, whereas in the
current experiment they are on average 0.62 times the forebody
pressure. The effect of the shear layer expansion at separation
in the current experiment is then, by comparing the floor
pressures, to reduce the static pressure in the shear layer, and
cavity pressures in general, by about 40%. In the external Mach 8
flow, a 5° expansion (to align the flow with the cavity
geometry) would reduce the static pressure by about 65%. In
reality this full effect is not felt at the cavity because the Mach
number values and the boundary layer thickness mean that the
flow has a "relaxation” length several times the cavity length,
and the static pressure will only reach this theoretical value far
downstream. These effects are analysed in more detail in
Chapter S.

Peak reattachment pressure in the present work can be
compared with the results of other studies if it expressed as a
ratio of peak recovered pressure to minimum floor pressure, as
this minimum floor pressure has been seen by many authors (eg.,
Stallings et.al. (1987)) to be approximately equal to the static
pressure in the shear layer. This normalization procedure then

makes an allowance for the 5° expansion at separation in the

present study. For the L/D=2.4 case, we have (pmax/pmm)=3.65,
which can be compared with the results of McDearmon where
(Pmax’/Pmin)=2-13 at L/D=2.19 and M=3.55. p_ .. was taken in the
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same position in both cases (y/D=0.08 on the rear face). It is
not surprising that p_ __/p_ ., should be greater for the present
study than for the results of McDearmon as Charwat et.al
(1961a) showed that this ratio rises with increasing Mach
number. The effect of the expansion at separation is discussed
in more detail in Chapter S.

3.2.2.2 Dimensional Analysis

A dimensional analysis can be carried out on the cavity flow
to illustrate the parameters governing the flowfield. Fig.42
shows the fundamental layout. Assuming that 3 dimensional
effects can be neglected, the pressure at any point in the cavity

can then be described by

p(x,y,t) =fn(x, y, t, L, D, 9, §, 9, Pe, Pes Tes Ues Her T, ¥, kg,
where 3 and 9 denote the displacement and momentum
thicknesses of the upstream boundary layer respectively.
Buckingham's theorem states that the number of independent
dimensionless groups is equal to the number of independent
variables minus the number of fundamental dimensions (here
length, mass, temperature and time). Typically the thirteen

dimensionless groups in this case could be

(x/L), (y/D), (tu./L), (poued/us), (8/D), 8/9, (u./(ype/p)t”?

(Te/Ty), (L/D), @, ¥, YPelle , D/r
(Y-1pTeke

From past experiments it is clear that L/D is a
fundamentally important parameter in determining the cavity
flow. (poued/p.) is a Reynolds number (several could have been

)1“2 is the Mach number, yp uo/((y-1)pT ke)

chosen), u./(Ype/pe
is the Prandtl number (which can be regarded as constant during
this experiment), and tu./L is a non-dimensional time or inverse
frequency that characterises any unsteadiness in the flow. Heat
transfer is obviously dependent on T./T,,, which again is nearly
constant for the experiment. Other researchers have found that

the upstream boundary layer thickness, characterised by §/D or
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3/L, is important in determining conditions in the area of shear
layer reattachment. The parameter 8/9 is a type of shape factor
for the boundary layer just before separation, and is determined
by the growth of the boundary layer along the forebody.
Strictly, there are several other thicknesses (eg., energy) needed
to describe the boundary layer. In reality, however, this are not
all important and can probably be described as unique functions
of 8 and 9 given the near zero pressure gradient development of
the boundary layer. Axisymmetric effects are characterized by
D/r, where r is the body radius.

3.2.2.3 Effect of L/D

Fig.40 shows pressure at y/D=0.08 (ie., near the top of the
back face) plotted against L/D. At both high and low Reynolds
numbers these pressures rise steadily, and then at high Reynolds
number appear to level out between L/D=2.0 and L/D=2.4.
Stallings et.al.(1987) also commented on this rise of peak
pressure with L/D at relatively low values of L/D. They
speculated that this rise and subsequent levelling out of peak
pressure was due to the flow structure changing from a single
vortex to a double vortex system, as illustrated on Fig.5, with
rising L/D. According to their argument, the levelling out of
peak pressure at around L/D=2.0 would then correspond to the
stabilization of the two vortex system. Although the flow
structure does undoubtedly change from a one vortex to a two
vortex system with increasing L/D, it seems unlikely that this is
the cause of the rise and subsequent levelling out of peak
pressure with increasing L/D.

An alternative explanation is found by looking at the physics
of the shear layer as it grows into the cavity, as illustrated on
Fig.43 and discussed in connection with the effect of Reynolds
number (and analysed later in section 5.2). We will now briefly
digress to discuss the physics of the development of a free
shear layer from an initial boundary layer, which is essential to
understand the following discussion. As a boundary layer
separates, a new shear layer grows into the bottom of the

original boundary layer velocity profile. Moving downstream,
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this shear layer gradually “"consumes” the original boundary
layer profile until, at some distance after separation, the detail
of the original boundary layer profile is lost, and the shear layer
spreads thereafter at an essentially constant rate. This
asymptotic spreading rate is dependent on many parameters,
most notably the Mach number and Reynolds number of the free
stream. The initial spreading rate of the shear layer (before the
asymptotic state is reached) is much greater than the asymptotic
rate, as shown on Fig.43.

This knowledge of free shear layer development can now be
applied to the cavity flow situation. At low values of L/D the
bottom edge of the shear layer just impinges on the top edge of
the rear face of the cavity. Increasing cavity length allows rapid
growth of the shear layer towards its similarity velocity profile,
and so streamlines from further outboard in the shear layer
carrying higher momentum fluid impact upon the rear face,
raising the reattachment pressure. However once the shear layer
has reached its similarity mean velocity profile (in terms of
mean velocity, this is approximately an error function profile),
or approaches it, the shear layer spreads thereafter quite slowly
at an essentially constant rate, and so peak pressure levels out
with further increasing of cavity length.

Apart from peak pressures, changing L/D does not seem to
significantly affect pressures in the remainder of the cavity.

This is consistent with the results of other investigators.

3.2.2.4 Effect of Reynolds Number

The results for the two different Reynolds numbers are not
greatly different except that the peak impact recovery pressure
is slightly lower for the low Reynolds number case for the
shorter cavities, as shown on Fig.40, and slightly higher for the
longest cavity. This reversal in trend with increasing cavity
length on Fig.40 is not unambiguous, as it is evident only for
the L/D=2.4 measurements, and the difference between these
points is almost within the accuracy of the measurements.

However it is believed that this trend reversal is real, as peak
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heat transfer measurements to be presented in Chapter 4 (and
shown on Fig.57) illustrate this effect more clearly. The fact
that peak p/p_ for the low Reynolds number case is slightly
lower than for the high Reynolds number case for the shorter
cavities suggests a faster shear layer spreading rate at high
Reynolds number for the shorter cavities. This is because a
faster spreading rate implies higher velocities on the dividing
streamline (ie., the streamline which reattaches near the top of
the rear face) and hence larger recovery pressures near the top
of the rear face. The trend observed for p/p_ for the longest
cavity is the opposite to that of the shorter cavities, and implies
a larger spreading rate for the low Reynolds number flow. This
is the trend observed by Charwat et.al.(1961b) for longer
cavities.

One possible explanation for the apparent change in Reynolds
number dependence with increasing cavity length is that the low
Reynolds number flow could still be showing the effects of
transition, which takes place significantly later than for the
high Reynolds number flow. The separated low Reynolds number
shear layer might then initially be spreading slower because of
this effect, but at the same losing its history effects from
transition as it develops, such that by the time of reattachment
for the longest cavity it has actually spread further than the
high Reynolds number shear layer.

Another possible explanation is the effect of the initial
boundary layer thickness at separation. The high Reynolds
number boundary layer is thinner, and so the separated shear
layer can more quickly "swallow” the initial boundary layer
profile to reach its self-similar velocity profile and spreading
rate (an error function velocity profile, as will be discussed in
more detail in section 5.2). This is illustrated on Fig.43. The
evidence is that the shear layer will adjust to this velocity
profile quite quickly.(see Mach 5 free shear layer measurements
by Wagner(1973)). Hence the low Reynolds number shear layer
will initially have a smaller spreading rate because of the

thicker initial boundary layer. However the low Reynolds number
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shear layer will probably have a higher asymptotic spreading
rate (see Charwat et.al.(1961b)), and so further downstream will
start to spread faster as it approaches the self similar velocity
profile, thus explaining the change in Reynolds number
dependence with increasing cavity length. The measurements of
Charwat et.al. were taken well downstream after the shear layer
probably had reached its self-similar profile.

Although both of the above explanations seem reasonable, it
is considered that the second is more likely to have the greatest
effect as the boundary layer measurements pointed to a
thickness change from high to low Reynolds number while not
showing any definite evidence of transitional effects on the
velocity profile of the low Reynolds number boundary layer.

3.2.2.5 Effect of 3/D

As will be discussed in Chapter S5, reattachment pressures
are mainly governed by boundary layer thickness § and cavity
length L (Lamb(1981) used 8/L as a correlating parameter), and
so should be relatively independent of cavity depth D. However a
second cavity of smaller depth 12.5mm (ie., half the initial value)
was studied at L/D=2.4 to see whether cavity pressures away
from reattachment are affected by the parameter 8/D. This also
changes the axisymmetric parameter D/r, but this effect should
be minimal. Results for the shallow cavity are given on Fig.44,
and compared with the D=25mm cavity on Fig.4S5, together with
the results of McDearmon. The shallower cavity exhibits slightly
higher pressures away from reattachment, but this is probably
due to the fact that this cavity is shorter (L=3cm, as opposed to
L=6cm for the deeper cavity), and so the geometry of the
expansion fan at separation and associated shear layer
"relaxation” has meant that the separated shear layer for the
shorter cavity has not experienced the same pressure drop as
has the shear layer for the longer cavity. In other words, in the
case of the short cavity the "relaxation™ length of the expansion
is relatively longer. This is confirmed by looking at the results
for the L=3cm, D=2.5cm cavity (Fig.37), which shows nearly the
same pressures away from reattachment (eg., on the cavity

floor) as the L=3cm, D=1.25cm cavity (Fig.44).
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3.2.3 Fluctuating Pressures

As discussed in Chapter 1, fluctuating pressures in the cavity
caused by shear layer instabilities will theoretically not occur
for free stream Mach numbers above 2]/2 (Miles(1958)) . However
in the present study strong pressure fluctuations in the region
of shear layer reattachment on the top of the back face were
noticed. A typical trace is shown on Fig.46. Model vibration
tests were performed, using accelerometers attached to the
model surface, to find the natural frequencies of vibration.
These frequencies (0.29kHz in the vertical direction and 0.25kHz
in the horizontal direction) were found to be much lower than
the pressure fluctuation frequencies recorded, so that model
vibration could be ruled out as a possible cause.

The transducer frequency response is modified by the
mounting system used. In the data of Fig.46, the transducer was
connected to the tapping by a cap-tubing arrangement which
would provide a low pass filter frequency of a few kHz at best.
To overcome this, the data were repeated using the nearly flush
mounted arrangement described in section 2.4. The centre of the
flush mounted transducer was positioned at y/D=0.20 below the
top lip on the rear face of a cavity with L=6cm and D=2.5cm, and
a typical pressure trace over the steady run time is shown on
Fig.47. A non dimensional time tu_/L is used, as discussed in
the dimensional analysis. To determine the extent of vertical
shear layer movement required to produce the observed peak to
peak pressure fluctuations on the rear face, the experimental
time averaged pressure gradient along the rear face can be used.
Fig.39 indicates this pressure gradient to be about - 0.4p_/mm
in the reattachment region. The maximum peak to peak
fluctuation on Fig.47 is about 0.8p_, indicating that the shear
layer oscillating imm about its mean position could produce the
observed fluctuations. This is quite a small magnitute, and
would indicate that no large scale unsteadiness of the flow is
occuring.

The pressure-time trace on Fig.47 indicates a low frequency

oscillation to be dominating, and to gain a better insight into
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this phenomenon it was decided to perform a Fast Fourier
Transform on the data. This presented a considerable problem in
that the steady run time of the tunnel was far too short for the
results of one run to yield any useful answers. A Fast Fourier
Transform program, written in BBC basic, was thus modified in
such a way that blocks of data, taken from different runs, could
be processed separately and the results averaged, thus
effectively increasing the total sample time. Sixteen sets of data
were recorded and processed in this way. The error in processing

data over a total run time of At is given by Zhang(1987) as

where B_ is the bandwidth of the spectral window used, limited
in this case to 244Hz by the length of each individual data trace.
The total run time At is the data length of each individual run
times the number of runs averaged. Thus if 16 runs are averaged,
then the maximum error at each frequency is 17.9%.

The resulting plot of spectral power (energy per bandwidth)
against frequency is shown on Fig.48. It is obvious that most of
the energy is at relatively low frequencies and there seems to be
a broad band feature centered on about 2.8kHz. This also
corresponds approximately to the frequency below which half of
the total energy lies. The vertical scale is spectral power per
bandwidth normalized by the maximum of this value. Although
the feature at 2.8kHz is not much greater in magnitude than the
accuracy of the analysis, it is possible by looking closely at the
pressure time trace of Fig.47 to see the low frequency peaks
that correspond to this frequency. This 'frequency can be
non-dimensionalised, either by using a streamwise length scale
(normalizing by streamwise convective properties) to give

f L =0.12

ue

or in the transverse direction (normalizing by transverse

acoustic properties), if the temperature in the cavity is assumed
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to be 700K for the purposes of calculating the local speed of
sound (which was indicated by preliminary computations),

f D=0.12
a

The fact that these values are equal is purely coincidental. The
first of these non-dimensional frequencies would characterize
any longitudinal oscillation mechanism, where disturbances are
convected downstream. The second would characterize any
transverse acoustic mechanism in the cavity.

Zhang(1987) also noted a broad band low frequency
oscillation experimentally and computationally for his
experiments at Mach 1.§ and 2.5 which corresponded to a
transverse Strouhal number of Str=0.20. East(1966) recorded
transverse Strouhal numbers smaller than this in subsonic flow,
and found these Strouhal numbers to be dependent on L/D.
However the more dominant higher frequency modes caused by
shear layer instabilities coupled with longitudinal acoustic
feedback which were also noted by Zhang amongst others , and
characterized by longitudonal Strouhal numbers in excess of 0.5,
are not noticed in the present experiments. This is not
surprising since, as discussed earlier, the shear layer should be
free of large scale instabilities for free stream Mach numbers
above 2/2 according to Miles(1958), and this also fits in with
the magnitude of the fluctuations.

As discussed in the Chapter 1 , there are considered to be
basically two different mechanisms which can produce periodic
pressure fluctuations in an open cavity flow, and these
mechanisms often interact with each other. Firstly, the
longitudinal mechanism consists of the separated shear layer
rolling up into vortices which convect downstream at roughly
60% of the free stream velocity and interact with the
downstream edge of the cavity. This interaction results in the
propagation of acoustic waves upstream in the cavity which
reach the front face an initiate the shedding of another vortex,
thus closing the feedback loop. This mechanism tends to

dominate for long cavities (L/D>1 or 2) and low speed flows
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(M<2Y2), as shear layers are theoretically stable above this Mach
number, and so will not roll up into vortices. Secondly, the
transverse acoustic mechanism consists of a normal acoustic
resonance in the cavity, where the mass of gas in the cavity
behaves like a Helmholtz resonator. This mode tends to
dominate in deep cavities, and may be possible in high speed
flows.

It seems that the low frequency flow oscillation observed
experimentally in the present study cannot be caused by a
longitudinal feedback of the type proposed by Rossiter(1966)
amoungst others, as the frequency is too low (longitudinal
Strouhal numbers for these modes are greater than 0.5). The
magnitude of the oscillations is also to small for such large
scale unsteadiness to be present, and there is no other
experimental evidence of this oscillation mode occuring at high
supersonic or hypersonic Mach numbers. Turbulent fluctuations
within the shear layer will contribute to some low frequency
unsteadiness (see Wagner(1973)), but these fluctuations will
presumably be unstructured, and Wagner's results show no
evidence to refute this. Although the unsteadiness in the
present study is of a broadband nature, there does seem to be
some structure present. The magnitude of the pressure
fluctuations also seems to be too large to have been caused
entirely by turbulent fluctuations, given that it is the low
velocity part of the shear layer that is reattaching (see again
Wagner(1973)).

Zhang(1987) attributed the low frequency broad band
oscillation in his experiments to the captured vortices moving
around by a small amount. This would also move the shear a
small amount, and given the small amount of shear layer
movement needed to produce the observed pressure fluctuations,
this must be a possible cause of the oscillations in the
reattachment region of the current experiment.

Another possibility is a transverse (normal) acoustic
oscillation, and there is other theoretical and experimental

evidence to support this. East(1966) measured transverse
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acoustic modes at subsonic Mach numbers in a two dimensional
cavity. Then, adapting the solution for acoustic resonance in an

open ended pipe, he concluded that a formula of the form

( faD)[1 + A(TI;) :] = 0.25

would give an accurate prediction of acoustic modes in cavities.
Using A=0.65 and B=0.75, he found extremely good agreement
between the experimental and theoretical results over a
surprisingly large range of L/D. If this formula is used here, it
yields a result of (fD/a)=0.11, which is quite close to the
experimental result of 0.12.

Tam(1976) solves the acoustic equations for the normal
acoustic mode of a two dimensional cavity. His results show
that the normal acoustic modes are damped, with the damping
increasing with L/D. This means that continuous energy input is
required to excite these modes, which he assumes comes from a
fluctuating shear layer or turbulent fluctuations within the
shear layer. In any case this implies that normal acoustic modes,
especially for L/D>1, are more likely to be excited at high Mach
numbers. At Mach 8 the shear layer should be stable, so it is
assumed that the energy comes from turbulent fluctuations.
However once the normal acoustic mode has been excited, it
seems likely that it would force the shear layer to oscillate
slightly (although these oscillations would not grow naturally).
This then could give rise to the large pressure oscillations
noticed in the reattachment region on the back face of the
cavity.

In summary, the observed pressure fluctuations in the cavity
seem to be the result of a complex interaction of different
phenomena. Central to this is the behaviour of the separated
shear layer, but whether this involves any ‘“resonant”
phenomenon is not certain. The shear layer only needs to
oscillate by a small amount about its mean position to produce

the pressure fluctuations noted in the reattachment region. This
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shear layer oscillation could be due to movement of the
captured vortices, or possibly a transverse acoustic oscillation.
The existence of these oscillations may be important in terms of
peak reattachment heat transfer rate as White(1971) showed how

broad band unsteadiness could increase this heat transfer.
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CHAPTER 4
HEAT TRANSFER MEASUREMENTS

4.1 Cone Forebody

The button gauges described in section 2.4 were not actually
designed specifically for measuring heat transfer on the cone
surface as the gauge measuring surface was not contoured to
the curved shape of the cone surface. However other
investigators (eg., Lin and Harvey(1987)) have used similar flat
gauges on surfaces with roughly the same curvature as this
model without incurring large errors, as can be seen by
comparing their data with that of Hopkins et.al.(1969). Thus,
bearing this in mind, it was decided to insert two gauges on the
cone surface at a position 20mm upstream from the cavity in
order to check the data recorded by Lin and Harvey for the same
angle cone and the same running conditions.

Both gauges were fixed into the model with araldite, and
returned values of heat transfer rate for the high Reynolds
number running condition in good agreement with each other
with the average being 5.56 W/cm2. This can be normalized by
conditions at the edge of the boundary layer to produce the
local Stanton number given by

q
PeleCp(Taw-Ty)

St.=

where T, is the adiabatic wall temperature.

Assuming the model remains at room temperature, this
returns a value of St.= 2.34x10™*. This does not agree well with
the average value recorded by Lin and Harvey of 9.7 W/cm?2
which corresponds to St.= 4.10x10™%, Upstream influence from
the point of separation is discounted as a possible cause of this
discrepancy as the two dimensional results of Nestler
et.al.(1968), who made several measurements upstream of
separation, showed no evidence of such an influence. The results
of Lin and Harvey seem to agree quite well with those of other

investigators (eg., Hopkins et.al.), so this pointed to an error in
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the mounting of the gauges in the current experiment. In fact,
the midpoints of the two gauges used were found to be recessed
from the surface by a small amount of O.lmm. Another gauge
was then inserted into the model at a distance SOmm upstream
from the point of separation, with great care being taken during
the mounting process to ensure that the gauge was not recessed
from the surface.

This gauge gave a heat transfer rate for the high pressure
condition of 9.18W/cm?2, St.= 3.86x10-4, which is within 6% of
the average result of Lin and Harvey. The conclusion of this
experiment is that gauge mounting is very critical to the
accuracy of the experiment, especially if gauges are recessed
from the surface, and that great care must be taken during the
mounting procedure. By implication, heat transfer measurements
made on curved surfaces should, if possible, be made with
gauges contoured to the surface shape. Edwards(1981) also
noticed large sensitivity to the location of button gauges in his
experiments on a turbulent boundary layer on a flat plate. He
found that a gauge location error of *0.15mm gave a factor of up
to 3 scatter in the data.

The results for the low pressure running condition gave a
cone heat transfer rate of 3.10 W/cm?2 , Ste=4.86x10-4. The
Reynolds number dependence for an attached turbulent flat plate
boundary layer gives Ste~Re_Vs. Assuming this Reynolds
number dependence is similar for cone boundary layers (see
Hopkins et.al.), one would then expect the Stanton number on
the cone surface for the low Reynolds number case to be a
factor of 1.28 above that of the high Reynolds number case. In
fact it is 1.26 times the Stanton number for the high Reynolds

number case.
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4.2 In the Cavity

Fixing the button gauges into the flat surfaces of the cavity
was a considerably easier task than for the curved surface of the
cone forebody. The front and rear face modules of the cavity are
detachable and so placing each module face down on a flat
surface allowed the gauges to be inserted to a considerable
degree of accuracy. It was necessary to positively force the
gauges in position throughout the whole time the araldite was
drying otherwise the drying process pulled the gauges into a
slightly recessed position.

The pressure distribution inside the cavity showed a
relatively smooth variation as L/D was varied between 0.8 and
2.4, so that it was decided to make heat transfer measurements
at L/D=0.8, 1.6 and 2.4 only. Peak heat transfer measurements
were also made at L/D=1.2 and 2.0. Limitations of space on the
cavity floor meant that unfortunately only 3 gauges could be
connected on the quartz strip on the floor.

4.2.1 General Observations

An example of a temperature and corresponding heat transfer
trace was shown on Fig.19. The heat transfer rate seems to have
reached a stationary state by the steady run time, which was
also in agreement with our expectations of physical response
times as discussed in relation to the pressure measurements in
section 3.2.2. Although there was some evidence of unsteadiness
in the heat transfer results in the reattachment region, the
procedure used to integrate only every 32nd point to find the
heat transfer rate, effectively reducing the sampling frequency
to 3.9kHz, meant that a frequency analysis of the data was not
possible.

Fig.49 to Fig.51 show the heat transfer rates inside the
cavity normalized by the cone heat transfer rate. The variable
X4 is the same as that used in the presentation of the pressure
measurements. The form of the results bears a strong
resemblance to the pressure measurements (see Figs 35-39),

indicating a correlation between pressure recovery and heat
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transfer rate. This will be discussed in more detail in Chapter S.
As with the pressure measurements, the highest heat transfer
rates were recorded in the region of shear layer impingement
(ie., the top of the rear face of the cavity). The highest heat
transfer rate recorded was 23.24 W/cm?2 (Ste=1.02x10_3) at the
point closest to the back lip for L/D=2.0. This is 2.53 times the
value on the cone forebody. Also in accordance with the
pressure measurements, peak heat transfer rates rise from low
values of L/D and seem to level out at higher values, as shown
on Fig.52, and there is a strong Reynolds number dependence
evident.

Figs 49 to S1 show heat transfer rates falling with distance
down the back face and out of the reattachment region, and then
rise slightly approaching the floor, which is also what the
pressure measurements shown on Figs 35 to 39 indicated. For the
short cavity (L/D=0.8), the heat transfer rate on the cavity floor
is approximately equal to that near the intersection of the back
face and the floor, while the longer cavities show the heat
transfer dropping continuously along the floor to quite a low
value at the intersection with the front face. The reason for this
could be that in the case of the longer cavities, the flowfield
has settled to a two vortex system, with the second vortex of
much lower rotational strength sitting in the front half of the
cavity. This change from a one vortex to a two vortex system
was discussed in Chapter 3, and is illustrated on Fig.5. The
second upstream vortex in the longer cavities would induce
lower velocities in the upstream corner and hence lower heat
transfer rates.

A "bump” is noticed in the heat transfer distribution on the
front face of the cavity. This was also evident in the results of
White(1971), but he offered no explanation. However if the
secondary vortex is relatively small compared with the primary
vortex, and if it is positioned as illustrated on Fig.53, a
secondary stagnation region could occur on the front face and
cause the bump noticed in the heat transfer distribution, with

the heat transfer rate reducing to nearly zero where the flow
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separates at the top and bottom of the front face. This also
raises the question as to whether the heat transfer rate should
be nearly zero at the downstream corner. The computations in
Chapter 6 indicate this to be the case, and presumably the
reason the experimental results did not positively indicate this
was that there were no gauges close enough to the corner,
although the results on Fig.50 and Fig.51 show the start of the
trend on closer inspection.

The relatively low heat transfer rates on the cavity floor and
front face agree with the conclusion of Lowder(1984) that a
region of separated flow effectively insulates the wall from the
higher heat fluxes in an attached flow. However where the flow
reattaches the heat transfer can be considerably greater than
the attached value (here the peak recorded value is about 2.5
times greater than the attached value for the longest cavity).

4.2.2 Effect of Reynolds Number

Figs 54 to 56 show the heat transfer results converted to
Stanton number. This indicates quite good Stanton number
correlation between the high and low Reynolds number running
conditions, with the exception of peak heating rates in the shear
layer reattachment region. Fig.57 records peak recorded Stanton
number (occuring on the rear face at y/D=0.08, ie., the gauge
closest to the rear lip) against L/D for the high and low
Reynolds number cases. Peak Stanton number is higher for the
low Reynolds number case at larger values of L/D, and the
opposite for smaller values of L/D. Larson(1959), and Charwat
et.al.(1961) found peak Stanton numbers for longer cavities to
vary roughly as Re 275 (where Re is the unit Reynolds number)
for turbulent flows , which agrees with the present results in
the reattachment region for the longest cavity (cf. the attached
boundary layer on the cone forebody where Ste~Re-1/S).
However at lower values of L/D the high Reynolds number case
returns the larger peak Stanton number. This is the same trend
as was observed for the peak pressures, as was discussed in
Chapter 3. It seems likely that there will be some simple

relationship between pressure and heat transfer rates in the

- 63 -



reattachment region, as both should be strongly dependent on
dividing streamline values (ie., the streamline which reattaches
to the very top of the rear face). As will be illustrated by the
computational work in Chapter 6, reattachment pressure is
nearly equal to stagnation pressure on the dividing streamline.
This is also an assumption behind theories such as proposed by
Nash(1963) and Tanner(i1978). In the case of heat transfer,
Nestler(1972) adapted the solution of Lees(1956) for stagnation
point heat transfer, to find that peak reattachment heat transfer

rates varied as

172
q~ [pnuno(ﬂ) ] (Hp-H_)
dy /p
where the subscript D indicates values on the dividing
streamline, 0 indicates stagnation values, and w wall values. H
denotes total enthalpy, and du/dy denotes the velocity gradient.

Thus, as was the case with peak pressure, the reattachment
heat transfer rate should rise as the separated shear layer
spreads further into the cavity increasing the dividing streamline
velocity and total enthalpy. The other parameters (ie., pp, upg
and (du/dy)D) will also change individually, but should be of
secondary importance as pp and pp, change in the opposite
sense. The value of (du/dy) is less easy to predict, but if, as
seems likely, only the inner part of the shear layer reattaches to
the rear face, then (du/dy), should increase with increased
shear layer spreading (as the velocity profile of the separated
shear layer is approximately an error function profile).

The explanation for the changing Reynolds number
dependence of reattachment heat transfer rates with cavity
length is then the same as given in Chapter 3 in relation to peak
pressures, and illustrated in terms of shear layer spreading on
Fig.43. The high Reynolds number flow has a thinner initial
boundary layer at separation and so the separated shear layer
spreads more quickly towards its self similar profile (ie.,
"swallows” the detail of the original boundary layer profile).

Thus, for shorter cavities where the shear layer has not reached
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a self similar profile at reattachment, the high Reynolds number
shear layer would have spread further and so would have higher
reattachment Stanton numbers. However the low Reynolds
number shear layer will spread faster as the self similar profile
is approached further downstream in accordance with the
turbulent shear layer measurements of Charwat et.al.(1961b).
Thus for longer cavities the low Reynolds number shear layer
will have spread further into the cavity, and so show the higher
reattachment Stanton numbers.

4.2.3 Comparison With Other Results

The heat transfer results, normalized by the attached value
before separation, are shown on Fig.58 for L/D=2.4 and
compared with the results of Nestler et.al.(1968) at M=6.8 and
L/D=5. The L/D=0.8 results are compared on Fig.59 with the
results of Wieting(1970) at M=7 and L/D=0.524. These results for
comparison are obviously for different test conditions than the
present study, and both were two dimensional planar
experiments as opposed to axisymmetric, but they were the
closest that could be found. However, given the rather different
test conditions, there seems to be broad agreement between the
results of the present study and those of other investigators.
The results of Nestler et.al. show higher heat transfer rates on
the cavity floor than in the present study, but it should be
remembered that those results were for a L/D=5S cavity (with
similar 8/D to the present study), and since heat transfer rate
on the floor has been found generally to rise with cavity length
for a given & (see Charwat et.al.), this explains much of the
difference. In fact Gortyshov et.al.(1982) at M=3.5 found
maximum floor heat transfer to rise by a factor of 2 between
L/D=1.8 and L/D=4.8 in their experiments, and this appears to be
the trend observed comparing the results of the present study
with those of Nestler et.al.

The effect of the Prandtl-Meyer expansion of the upstream
boundary layer at the front lip of the cavity on peak recorded
reattachment heat transfer rates seems to be less pronounced

than for the pressure measurements. The probable reasons for
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this are discussed in Chapter S5, including the general
relationship between pressures and heat transfer rates in the
cavity.

4.2.4 Total Heat Flux

The heat transfer rate distributions in the cavity can be
integrated to find the total heat flux through the walls (ie.,
floor plus front and back faces) of the cavity. This is shown on
Fig.60, normalized by Qo which is the heat flux that would have
existed had there been no cavity (ie., if the outside radius of the
cavity is r, then Q,=2rrLq_, where q_ is the cone forebody heat
transfer rate). The results are obviously strongly Reynolds
number dependent. At the lowest value of L/D, Q/Q, is large
primarily because the wetted area in the cavity is considerably
greater than if there were no cavity. However it is significant
that Q/Qg is less than unity for all cases, indicating that the
cavity has reduced the overall heat loading to the model.

Another useful way of presenting the data is in terms of an
average cavity Stanton number, §t, which is spatially averaged
over the wetted surface of the cavity, and plotted on Fig.61.
Here it is evident again that, as for peak reattachment Stanton
numbers, the Reynolds number dependence of average cavity
Stanton number changes sign between L/D=1.6 and 2.0. For
shorter cavities, higher Reynolds numbers lead to higher average
Stanton numbers, while the opposite is true for cavity lengths
above about 4.5cm (L/D=1.8, or §/L=0.13). Other researchers (eg.,
Larson(1959) and Gortyshov et.al.(1982)) have found St~Re 2/°
(unit Reynolds number) , but only studied relatively long
cavities (although Gortyshov et.al. studied a L/D=1.0 cavity, the
physical cavity length was a constant 14cm). For the longest
cavity of the present study, L=6cm, the Reynolds number
dependence of St would seem to be approaching that found by
other investigators.

In his axisymmetric experiments, Larson found -S—t/St,E
relatively constant over a wide range of Mach numbers and equal
to about 0.5 for ReL=3x106. The results of the present study for
L/D=2.4 show S_t/Ste=0.4 for the high Reynolds number running
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condition (ReL=3.3x106). However the cavity Larson studied had
rounded corners at both ends of the cavity floor, which might
eliminate secondary separated regions and thus tend to increase
St.

In terms of hypersonic vehicle design, average Stanton
number is a useful parameter as it gives an estimate of total
heat loading to the structure which is important for "heat sink”
type structures. These results indicate that care must be taken
with the use of such a parameter because of strong Reynolds

number effects.
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CHAPTER S
THEORETICAL ANALYSIS

It is possible to undertake a limited theoretical analysis of
the cavity flowfield to obtain a better physical understanding of
the processes involved and flow properties that are important.
This has been attempted for separated flows by other
investigators such as Korst(1956) and Tanner(1978), but these
theories were developed to be more applicable to base flow
problems than cavity flows. However there are obvious
similarities between base and cavity flows, and certain elements
of the base flow analysis of Nash(1963a) will be applied in the
subsequent work.

The flowfield will be broken up into 3 main component parts,
and each section analysed separately. These component parts are
- (1) the rapid turning and expansion of the approaching
boundary layer as it separates from the cone forebody- (2) the
growth of the separated shear layer from the boundary layer
after turning and (3) the partial reattachment of the shear layer

on the rear face of the cavity.
5.1 Rapid Expansion of the Cone Boundary Layer

The Schlieren photographs of Fig.29 to 32 indicated that the
cone boundary layer encounters a Prandtl-Meyer expansion at
the point of separation, as shown on Fig.32. It is thus necessary
to analyse how this expansion changes the original boundary
layer profile.

It should be remembered that parts 1 and 2 of the analysis,
the expansion of the boundary layer and the spreading of the
shear layer, are to some extent taking place simultaneously.
However the inner part of the boundary layer, which is the most
important in terms of reattachment conditions, is expanded
quite rapidly before viscous effects can change this part of the
profile to a significant extent, and so it seems reasonable to

analyse the expansion separately.
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If there was no boundary layer profile at separation (ie.,
‘uniform inviscid flow), the Prandtl-Meyer expansion at that
point would turn all streamtubes in the flow through a constant
angle and uniform pressure corresponding to that isentropic
expansion angle would exist immediately downstream of the
separation. However a Mach number gradient exists close to the
surface because of the presence of the boundary layer. Thus if
the initial turning angle was indeed constant, the low Mach
number layers in the initial boundary layer profile would
experience a much smaller pressure drop than the high Mach
number layers. In practice, the expanding boundary layer tries to
maintain pressure continuity in the normal direction, and this is
achieved by a series of wave reflections which modify the shape
of the shear layer profile immediately downstream of the
expansion. The pressure across the shear layer immediately after
the expansion is then somewhat greater than that corresponding
to the external flow turning through the same angle as the inner
part of the boundary layer. More wave interactions then occur as
the shear layer "relaxes"” to a condition far downstream where
all streamlines are parallel and the pressure asymptotes to the
value given by the isentropic turning of the external flow.

It is possible to use several different methods to analyse the
expansion, all of varying degrees of complexity and accuracy.
The simplest of these is the so called isentropic streamtube
method, the accuracy of which was demonstrated by Small
et.al.(1973). This method assumes constant turning angle at all
levels (ie., x=const) in the shear layer, and hence large normal
pressure gradients, through the boundary layer downstream of
the expansion. The boundary layer is divided up into streamtubes
whose widths after the expansion are calculated from
continuity. However the results of this analysis tend to reflect
the crudeness of the model in taking no account of the effect of
the Mach number gradient on the expansion process. -

Inviscid modelling, in particular characteristics calculations,
have been found to give good results as the inertial forces

dominate viscous forces for a rapid expansion, but are time
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consuming. However there is another inviscid method, outlined
by Weinbaum(1966), which seems to give results quite close to a
characteristics analysis for small turning angles (8<10°), and so
is applicable here. It will be used in a two dimensional planar
analysis, as the axisymmetric correction should be quite small.
It is a linearised analysis which takes into account first order
wave reflections during the expansion process, and so gives
results which approximate conditions immediately downstream
of the expansion. If an expansion wave in a fluid of Mach
number M (where M<Y2) meets an interface of Mach number
M+dM, then a proportion of the expansion

(M2-2).dM

2M(M?-1)
is reflected, and the transmitted wave has strength (1-da). If

M<KY2, the reflected wave is compressive and the transmitted
wave has strength (1+da). Following the analysis of Weinbaum, it
is possible to sum the effects of these reflected and
transmitted waves to yield
(M2-1)174
T Me

= const

which gives flow deflection angle in degrees as a function of
Mach number. If the value of the constant is appropriately
chosen (based on characteristics results, to give the desired
flow angle at the bottom of the boundary layer, or sonic line if
desired), then the turning angle can be found anywhere from the
pre-expansion Mach number profile, and so the post-expansion
Mach number pofile and other flow properties found.

The boundary layer was split into 12 equal vertical segments,
and this analysis performed. Based on data presented by
Weinbaum for a characteristics analysis, the value of the
constant was set to 0.122. Implicit in the setting of this
constant is the assumption that the sonic line in the boundary
layer turns parallel to the cavity floor, which was the case
studied by Weinbaum, and so this is effectively the boundary
condition on the shear layer just after expansion. This boundary

condition implies a slight over expansion of the subsonic
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portion of the boundary layer into the cavity, which is similar to
what has been observed in base flows. The calculated Mach
number and pressure profiles immediately after expansion are
shown on Fig.62 and Fig.63, where y is measured from the inner
edge of the layer outwards towards the free stream. These
profiles are also compared with the boundary layer profiles
before expansion.

The static pressure in the shear layer generally determines
cavity floor and front face pressures, and a spacial average of
the results of the expanded boundary layer in the transverse
direction gives a result of 0.60p., which is quite close to the

experimental cavity floor pressure result of 0.62p..
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5.2 Growth of the Shear Layer

Growth of the shear layer into the cavity is important in
" determining peak pressures and heat transfer rates at
reattachment. Many authors have found that the error function

velocity profile,

1
%e= 5‘[1 + erf{%y}]

where the co-ordinates are defined on Fig.64, gives a good
estimate of turbulent shear layer velocities for small steamwise
pressure gradients. This holds even at high Mach numbers (see
Mach S free shear layer measurements by Wagner(1973)),
providing the appropriate value of spreading rate parameter o is
chosen, and the self-similar state has been reached, or nearly
reached. Zero velocity is assumed on one side of the shear layer
and free stream velocity on the other. Spreading rate generally
decreases with Mach number, but for Mach numbers greater than
3 the data presented by Bradshaw(1980) indicates that spreading
rate seems to level out. Based on this information and the data
of Wagner, a value of 0¢=35 is chosen here (cf., 0=12 for
incompressible flow as given by Bradshaw).

The error function velocity profile only gives a good
approximation to shear layer velocities after the layer has
reached a self-similar state in terms of mean velocity. However
the initial spreading of the shear layer is dominated by the
boundary layer just before separation. After separation a new
shear layer begins growing into the bottom of the original
boundary layer profile. Some distance downstream the original
boundary layer profile is consumed by the shear layer growth
and the self-similar state is reached.

Following the analysis of Nash(1963b), the effect of the
initial boundary layer thickness on the asymptotic shear layer
can be viewed as shifting the effective origin of the shear layer
upstream by an amount xg so that

u

-1 ' oy
:e— 2 [1 ¥ erf{ (x-xo)}]
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The value of xg can be found,vfollowing the analysis of Nash,
by equating the momentum thickness of the boundary layer after
expansion to the momentum thickness of a shear layer at that
position but with its origin at xo. The momentum thickness is

given by

Y eu u
9 = f [1 - - ] dy
Opeue ue

which has a value 9=0.45mm for the calculated boundary layer

profile after expansion (compared with 0.3mm before expansion).
The error function calculation can then be performed to return a
value of xg=-260mm. If there had been no expansion at
separation (8=0.3mm), the value of xg at separation would have
been -165mm, so the effect of the expansion is to move the
effective origin of the shear layer upstream, as well as, of
course, to reduce the static pressure in the shear layer. These
calculations were done iteratively, varying xo until the correct
value of 9 resulted. The total temperature was assumed to vary
linearly with shear layer velocity, in a Crocco type relationship,
with free stream total temperature on one side of the shear
layer, and 0.66T,_ on the low velocity side (ie., in the cavity).
Thus

T
o u
TOe_ 0.66 + 0.44u

e

This value of total temperature in the cavity was based on the
experimental results of Emery et.al.(1965) for cavity flows , and
the almost identical result of Martellucci et.al.(1966) for base
flows.

There is a question, of course, as to whether the velocity
profile has adjusted itself to the error function profile by the
time of reattachment. However there is evidence (Nash(1963b))
that the mean velocity profile adjusts remarkably quickly to that
of the error function velocity profile. Even at Mach 5, the
results of Wagner(1973) seem to indicate that the self-similar
profile is approached about 10 initial boundary layer thicknesses
from separation, and that, at least for the longer cavities of the

present study (L=5 and 6cm), the error function velocity profile
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will be a good approximation at reattachment. The results of
Wagner were for a unit Reynolds number of 1.6x10” /m, which is
close to the low Reynolds number condition in the current
experiment.

Wagner's results show that, despite the velocity profile
being roughly symmetric about the u/u.=0.5 line, this line is
slightly inclined to the x axis, implying the need to use a small

Yo correction similar to xg such that

u o(y oly-yo)
U 2 [ “(x=xg) J :|
The results of Wagner show ygo to be quite small. In the
absence of experimental shear layer measurements in the current
study, the experimental pressure at the point closest to the rear
lip can be used to set the value of y,. This is achieved by
calculating the velocity and Mach number distributions at
reattachment for different values of Yo» and then assuming that
reattachment pressure is equal to the stagnation pressure of the
oncoming streamline, "pegging” the calculated reattachment
pressure at the y/D=0.08 position to the experimental value by
-chosing the appropriate value of y,. Using this procedure, a
value of y5=0.028x is chosen. The results of the calculation are
then shown in terms of Mach number just before reattachment
for the L=6cm cavity on Fig.65., and compared with the results
for an unexpanded boundary layer at separation. The
implications of these results on reattachment conditions are

now analysed.
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5.3 Partial Shear Layer Reattachment

5.3.1 Pressures at Reattachment

It is reasonable to assume that the pressure at reattachment
is approximately the stagnation pressure of the approaching
streamline (Korst(1956)), as the results show Mach numbers on
these streamlines to be not much greater than 1, and viscous
effects should be generally neglectable during reattachment.
Laminar computations described in Chapter 6 also indicate this
to be the case. This assumption does, of course, become less
valid further away from the dividing streamline, as no divergence
of the reattaching streamline is allowed for. Assuming then
constant pressure across the shear layer (as calculated earlier),
an estimate of reattachment pressures can be made from the
calculated Mach number (and hence stagnation pressure)
distribution, and the results are shown of Fig.66 for the L=6cm
cavity. It is apparent that the experiments agree quite well with
the calculated results, given that one of the calculated points
was "pegged” to the corresponding experimental point. In
addition, the calculations give an idea of what happens right up
to the reattachment lip where experimental results could not be
obtained because of the spatial resolution of the static pressure
instrumentation. It seems that the absolute peak reattachment
pressure may be about 4.5 times the cone surface pressure for
this cavity length, whereas the maximum measured value was
1.72p.. It is also apparent that the initial boundary layer
expansion has a considerable effect on peak cavity pressures,
tending to lower them. The effect becomes more pronounced
very close to the lip, where the calculations predict that the
peak pressure is reduced by a factor of slightly more than 2 by
the expansion.

It would appear that the experimentally observed rise of
peak pressure with L/D from low values of L/D corresponds to
the shear layer rapidly adjusting to the self similar velocity
profile. Levelling out of the peak pressure at L/D=2.0 and 2.4

then corresponds to the shear layer (or at least the low velocity
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portion of it) having reached this profile. It seems that the low
Reynolds number case may take longer to reach similarity.
Calculations for longer cavities than studied experimentally
show peak pressure rising quite slowly with cavity length.

5.3.2 Reattachment Heat Transfer

The relationship between shear layer properties and
reattachment heat transfer rate is even more difficult than the
case of reattachment pressure. Adapting the solution of
Lees(1956) for stagnation point heat transfer, Nestler(1972) found

that peak reattachment heat transfer rates varied as

_ 1/2
q~ [pnuno(c-li) ] (Hp-H) (1)
dy /p

where the subscript D indicates values on the dividing
streamline, 0 indicates stagnation values, and w wall values. H
denotes total enthalpy, and (du/dy)y is the velocity gradient on
the dividing streamline.

The constant of proportionality in the above equation is,
however, very uncertain. Nestler found that peak reattachment
heat transfer rates could best be predicted in a semi-empirical
manner from the pressure measurements in the form

. n

q p

-.—=(—) (2)
q Pc

(=4

where c denotes the cone or forebody values, and he found n=0.8
fitted the data quite well for a two dimensional cavity of L/D=5
and M=6.8. In the current experiment, a value of n=1.6 is found
to fit the data at reattachment quite well, as shown on Fig.67.
Away from reattachment the power law cannot be expected to be
give good results, and the correlation falls away particularly on
the front face. This difference in the value of n implies that the
effect of the expansion at separation does not reduce the
reattachment heat transfer rates as much as the reattachment
pressures. This was seen earlier to be the case when comparing
pressures and heat transfer rates of the current experiment with

those of other investigators.
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An estimate of absolute maximum heat transfer rate on the
very top of the rear face of the cavity is difficult to obtain. It
may seem that equation (2) could be applied to get an estimate
based on the theoretical pressure predictions, but Gerhart and
Thomas(1974) note that maximum heat transfer occurs slightly
away from reattachment, so that equation (2) is unlikely to be
valid right up to the rear lip.

A qualitative estimate of the effect of the separation
expansion on absolute maximum heat transfer rate can be made
using equation (1), with the results of the shear layer
calculation being used to give the values on the dividing
streamline. Inserting the appropriate values, it can be seen from
the result on Fig.68 that for the longest cavity the effect of the
expansion is to reduce peak heat transfer by about 40%. In
comparison, the effect of the expansion was to reduce peak
pressure by over 60%, which is consistent with the earlier
conclusion that peak heat transfer rate is reduced less than
peak pressure.

Calculations were also made for cavities longer than studied
experimentally, and the results showed peak heat transfer rate
rising slowly with cavity length, as was the case for peak

pressure.
5.4 Reynolds Number and Geometry Dependence

5.4.1 Reattachment

It is apparent from this line of analysis that reattachment
conditions are governed generally by spreading of the separated
shear layer , so that the important geometric parameters are
L and 8. This is in agreement with the conclusion of Lamb(1981),
who tried to correlate different sets of experimental data for
cavity flows. To a certain extent peak heat transfer rates are
affected by the pressure gradient along the rear face, which is
determined by the structure of the captured vortex, and that in
turn infuenced by L/D, but Lamb found this effect relatively
weak such that St_~ (3/H) 22 for constant L/5. He also found

a weak Mach number dependence.
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The effect of Reynolds number on reattachment conditions
seems to be quite complex. The evidence is that reducing
Reynolds number will increase the asymptotic spreading rate of
the separated shear layer (see Charwat et.al.(1961b). Thus for
cavity lengths where the self-similar velocity profile has been
reached at reattachment, the low Reynolds number flow should
record higher reattachment pressures and heat transfer rates.
However reducing Reynolds number also results in a thicker
upstream boundary layer. A thicker upstream boundary layer
means that the separated shear layer will take longer to reach
its asymptotic spreading rate (ie., it will not approach the
self-similar velocity profile until further downstream). Thus for
short cavities where the self-similar state in the shear layer has
not been reached at reattachment, the low Reynolds number
flow may have not spread as far as a high Reynolds number
flow, and so record smaller reattachment pressures and heat
transfer rates. These, in fact, were the trends recorded
experimentally. It must, however, be noted that this explanation
of Reynolds number dependence changing with cavity length is
just a hypothesis, and that experiments on hypersonic separated
shear layers need to be performed to find the exact nature of
the Reynolds number dependence of shear layer spreading.

5.4.2 Away From Reattachment

Away from the reattachment region cavity pressures are
determined mainly by the static pressure in the shear layer, and
recirculation velocities in the captured vortex. Heat transfer
rates are determined by the new boundary layers growing on the
cavity walls. It can be seen that higher reattachment heat
transfer rates seem to lead to slightly lower heat transfer rates
deeper in the cavity. Lamb(1981) also noticed this, and attributed
it to larger impingement heat transfer producing thicker
boundary layers deeper in the cavity.

Larson(1959) found total heat flux to an axisymmetric cavity
approximately 1/2 the heat flux to the surface if no cavity had
existed. Interestingly, on integrating the heat transfer

distrubution around the cavity surface for the L=6cm and
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D=2.5cm cavity (as described in Chapter 4), an almost identical
result is found for the current experiment. The expansion at
separation would seem to have had little effect on the total
heat flux to the surface, although it seems to have reduced peak

heat transfer rates.
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CHAPTER 6

COMPUTATIONS

6.1 Background

In recent years, attempts at the numerical solution of the
Navier-Stokes equations have become common. The literature is
vast, with numerous combinations of methods used.
MacCormack(1985) reviewed the current status of such
computations at that time. He describes two widely used
numerical procedures of his own, one implicit and one explicit.
Although the implicit procedure is very efficient, having
theoretically an unrestricted time step size, it involves much
more complex coding. More complete descriptions of these
methods are given by MacCormack(1969) and (1982).

A major problem with methods such as described above is
that of artifical and numerical dissipation. Numerical dissipation
is caused by truncation errors in the finite difference
formulation (higher order terms in the Taylor series expansion
are ignored), while artifical dissipation or diffusion is caused by
diffusive terms which are intentionally added to the finite
difference formulation to counteract truncation errors which
cause instabilities in the solution. Kuruvila et.al.(1985) studied
the effect of this artifical dissipation in terms of flow over a
rearward facing step using MacCormack's standard explicit
method. Their results indicated that for a cold wall heat
transfer case artifical dissipation has a major effect on the
results, particularly in the separated region. However for an
adiabatic wall case, artifical dissipation was found to have
virtually no effect on the results. They did not put a reason
foward as to why the cold wall heat transfer case should be
more sensitive to artifical dissipation. For the purposes of
comparing experimental and computational results in the current
study, highly cooled wall conditions must be simulated and so
these results suggest that artifical and numerical dissipation

should be minimised as much as possible.
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Applications of MacCormack's method to solving the
Navier-Stokes equations are abundant. Berman et.al.(1982) deals
with flow over a rearward facing step with transverse
non-reacting hydrogen injection, in the context of a scramjet
engine. Sullins(1982) et.al . deals with supersonic base flow with
parallel injection, while White et.al.(1982) use the implicit
variation for nozzle flows. More complicated applications can be
found in Weidner et.al.(1981) , with staged fuel injection for
supersonic combustion, and Schetz et.al.(1981) where the
complete flowfield of a scramjet combustor with fuel injection
is analysed.

Ben-Artzi and Falcovitz(1984) describe a second order
"Godunov-type"” inviscid scheme which has been under
development in the department for the past few years (see
Hillier(1987,1988)). It shows excellent ability to capture and
resolve flow discontinuities (ie., shock waves, contact surfaces,
and vortex sheets) . The method is an explicit time marching
scheme, able therefore to compute both steady and unsteady
flows, the former being achieved by a time stepping iteration
from an impulsive start. The time stepping ability is important,
firstly to be able to deal simultaneously with supersonic and
subsonic portions of the flow (as the time dependent equations
are always hyperbolic), and secondly to be able to deal with any
genuine unsteadiness that might be present in the recirculating
region. Typical computations were made by Hillier et.al.(1985)
using this method. Similar Godunov-type schemes have dealt
successfully with a range of aeronautical problems from
transonic to supersonic/hypersonic . The Godunov scheme seems
to be an ideal Euler code upon which to build the Navier-Stokes
option for the current work because of the small amount of
numerical diffusion it seems to give.

It is possible to introduce a Navier-Stokes option to convert
the code from an inviscid to a viscous one. It can be
implemented by an operator splitting technique whereby the
computation is advanced one increment in time by two separate

coupled stages, firstly an inviscid step, and then a second
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viscous solution. MacCormack(1976) shows how an operator
splitting technique has been used successfully to split the
parabolic (viscous) terms and hyperbolic (inviscid) operators in a
Navier-Stokes code.

Navier-Stokes computations have been carried out by
Zhang(1987) for cavity flows at supersonic Mach numbers. He
used a Brailovskaya finite difference scheme with a two layer
eddy viscosity turbulence model. This technique was second
order accurate in space and first order accurate in time, and
seemed to reproduce the basic physics of the unsteady flowfield,
athough an artifical viscosity was used to stabilize the scheme
and so the results suffered badly from artifical diffusion.

The aim of the computational work was then the
development, testing and use of a shock capturing Euler code,
plus the initial development and testing of a Navier-Stokes
option for the code. This was to be tested rigourously for
laminar boundary layers, and separated cavity flows. In the time
available it was not considered possible to develop a turbulent
version of the code. Such a turbulence model would be
necessarily quite crude, and there is not yet agreement in
hypersonic flow as to which modelling strategy to follow. It is
thus probable that a fully tested laminar version of the code
would yield as much useful information about the cavity
flowfield as a code with a simple turbulence model. The
computations will build upon an already existing "Godunov"” type
inviscid code which has been under development in the
department. It was hoped that the computational work would
shed some light upon the flow structure in the cavity, as well
as serve to estimate the accuracy of such a Navier-Stokes
scheme in predicting hypersonic separated flowfields. In this
respect comparisons with the cavity flow computations of

Zhang(1987) and Baysal et.al.(1988) are pertinent.
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6.2 Inviscid Computations

6.2.1 The Godunov Code

The Godunov-type code used here is an explicit time
marching Euler code, of the type described by Ben-Artzi and
Falcovitz(1984) for one dimensional computations, that is second
order accurate in both time and space (but has an option to run
as a first order accurate scheme). A Godunov scheme is a
method whereby the Riemann problem is solved between adjacent
cells in the flowfield after an imaginary diaphram between cells
is removed at the start of a time step. The resulting fluxes of
flow properties into and out of cells can then be calculated as
an analytical solution to this initial value problem and so the
new values of flow properties within cells found at the end of a
time step.

Time marching is important for the calculation of supersonic
flows as the time dependent Euler and Navier-Stokes equations
are hyperbolic for both subsonic and supersonic flows, allowing
convenient calculation of regions of subsonic flow embedded in
the supersonic flow. Time marching also allows the calculation
of any genuine unsteadiness that might exist in the flowfield
(eg., in a separated region), so that it is regarded as essential
here. Steady flows are calculated by a time stepping iteration to
a steady state.

6.2.2 Finite Differencing

The two dimensional Euler equations are given by

v (3)

where Q, E and F are vectors given by

Q=1p E= [ou F= [ov 7
ou p+ou? puv
ov puv p+ov?
pe : u(p+pe) v(p+pe)
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where u and v are the x and y components of velocity, p is the
density, p is the pressure, and e is the internal energy per unit
volume. Thermodynamic closure is achieved by the perfect gas
assumption (ie., p=pRT)

The Godunov method is a cell based method, as shown on
Fig.69. Letting co-ordinates i,j identify a cell and it1r/2,j and
i,jt1-2 identify the interfaces, then to advance the solution by
At, from time level n to n+l, the above Euler equations are

represented by

n+1 n n+1/2 n+1/2 +1/2 n+1/2
Qi,j - Qi,j E1+1/2,j' Ei—l/z,j 1,j+1/2'F1,j—1/2
+ +

At Ax Ay

=0 (4)

where the flux vectors E and F are calculated from the solution
of the Riemann problem. The scheme will be second order in
space if the fluxes are evaluated to second order accuracy in
space, and second order in time if they are temporally evaluated
at n+1/2 (ie., mid time step).

There are many second order space averagings for the flux,
perhaps the most simple and well known being the Jameson
finite volume algorithm where

=1 (E ;+E

E, )
1+1/2,j — i*ilj
2

Formally this is second order accurate in space (central
difference) but as a consequence produces oscillatory behaviour
near shock waves which must be stabilised by an artifical
damping term which is added to each flux. The Godunov method
avoids this particular difficulty by incorporating a shock wave
solution (if necessary) as part of the flux function, so that more
or less correct dissipation is achieved. This solution is
represented by a Riemann solver which is described below.

The Riemann problem itself can be considered (firstly in one
dimension) by studying the interface i+1/2 between cells i and
i+1, as shown on Fig.70, across which there is an initial
discontinuity in properties between regions 1 and 4 (where

conditions are assumed initially constant, ie., piecewise linear).
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The resultant flow generates left and right running waves L and
R, separated by a contact surface across which the pressure and
velocity must be continuous but all other variables may be
discontinuous. Regions 2 and 3 are uniform property regions. In
turn, each wave L and R may be either a shock wave or a
rarefaction wave, depending on the initial conditions, so that
there are 4 possible wave configurations. For piecewise constant
initial conditions the wave field is self-similar with time (ie.,
expands linearly with time). Calculation of the wave field
requires an iterative solution which has been described in
several references (eg., Godunov(1959)). Once the wave field is
known, the flux E?:://zz at the cell interface is taken as the value
from whatever part of the wave zone is coincident with the
interface, so the scheme has an "upwind” nature. Although this
wave zone was illustrated as region 3, it could in fact have been
region 1 for example, so the ability exists to simulate a slip
discontinuity.

The basic Godunov scheme is strictly first order accurate
when flow properties across cells are taken as constant across
each cell as described above. However various schemes have been
used to provide second order accuracy. Ben-Artzi and
Falcovitz(1984) allow piecewise linear distributions across cells,
and solve the appropriate Riemann problem at the cell interface
discontinuity, and the solution of this "generalized Riemann
problem” is used here to achieve second order accuracy in space.
This results in a non self-similar wave development, and fluxes
are evaluated at mid time step. The initial gradient in a cell is
found from a central difference of the cell centred values of the
cells on either side of it. If fitting a gradient through a cell
produces a new extreme at one of the boundaries of the cell,
then this boundary value is changed such that the new extreme
is eliminated. This monotone constraint appears to be the only
condition required to provide a stable scheme.

In two dimensions, there are two versions of the code
available. The so-called unsplit version solves for the x and y

terms of the Euler equations simultaneously for each cell, while
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the split version solves firstly in one direction for all cells and
then in other direction. The split version was used for the
current computations because it allows the use of a symmetrical
operator (as described in 6.3.1) in the x and y directions and so
formally maintains second order accuracy, and allows a slightly
larger time step to be used. The coding is also less complicated
than for the unsplit version.

6.2.3 Inviscid Cavity Flows

The program geometry routine was modified such that
boundary conditions for a blunt nosed body with a cavity, as
shown on Fig.71a, could be computed. It was decided to perform
some inviscid flow computations initially to check the geometry
routines and boundary conditions (discussed in 6.3.1), show the
importance or otherwise of numerical diffusion, and to act as a
rough guide to the experimental pressure levels for the purchase
of pressure transducers. The computations were found to reach
a steady state for the Mach 3 and Mach 9 cases, the results
showing a clockwise circulation inside the cavity.

The geometry routine was modified again to study flow over
a flat plate and cavity, as shown on Fig.71b . However even with
a non-zero starting velocity in the cavity, the solution converged
to a situation of zero velocity in the cavity, indicating the
ability of the code to sustain a "shear” or "slip” discontinuity
precisely, provided it is aligned with the mesh and stationary
relative to it (ie., for these special cases the code provides no
numerical diffusion). Presumably the reason the previous
geometry of blunt nose followed by cavity showed some
circulation in the cavity was that a pressure gradient was
present after the flow passed the blunt nose providing a non
zero y component of velocity which was sufficient to cause some
numerical diffusion and cavity rotation.

The computations were therefore generally tending to the
inviscid free streamline solution. To provide circulation
therefore requires a proper viscous stress model, but as a final
inviscid test a simple "mixing” model was introduced, generating
an effective shear stress proportional to shear velocity. If the

vertical velocity gradient exceeds a certain limit, x momentum
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from the low speed flow is transferred to the high speed flow
and vice versa, the amount of momentum transfer being
proportional to the streamwise velocity differential. The results
approach a steady state, and a typical cavity pressure profile for
such a computation is shown on Fig.72. Results from these
computations were used as a rough guide to the expected cavity
pressure levels and hence for the purchase of pressure

transducers.
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6.3 Viscous Computations

6.3.1 Addition of the Viscous Terms

The basic inviscid code incorporates the sophisticated wave
interaction model or Riemann solver previously described to
calculate inviscid fluxes at interfaces between cells. The logic
for Navier-Stokes developments gives the option either of
adapting this Riemann solver to include viscous effects or
separating inviscid (hyperbolic) and viscous (parabolic)
calculations into separate "operator-split”" routines, as done
successfully by MacCormack(1976).

It was decided to follow the latter course of action and
therefore to create an entirely separate routine to deal with the
viscous terms. Development of a new routine is convenient and
also preserves the simplicity of the original Riemann solver, and
would seem to be a novel development of Godunov methods. The
operator splitting routine is thus alternate inviscid and viscous
steps. If L, (At) and Lp(At) are operators which advance the
hyperbolic and parabolic parts of the Navier-Stokes equations by
a time step At, with second order accurate solutions in time and
space, then the sequential operator

L(2At)=Lp(At).Lo(At). L (At).LL(At)
or any other symmetric combination, gives a second order
accurate operator which advances the solution by 2At. Such an
operator is no more expensive than a combined solution of the
hyperbolic/parabolic terms; indeed ,as will be seen there are
some positive advantages to splitting the procedure up into
separate operators.

The operator split routine used here is dependent on the
stable time steps for the viscous and inviscid parts of the code,
which are calculated at regular intervals.

The full two dimensional Navier-Stokes equations are given
by

20 | OE | OF _
ot +c)x"..:)y_o
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where the vectors Q, E, and F are given by

-1 r

Q=Te E= [ou F= [ov
pu p+pu2+ox puv+t,
pv pllV""txy p+pv2+oy
ee u(p*‘pe*Ox)*Vtyx*'qu L:'(p+pe+c5y)4-utxy+qy_J
and for laminar flow
0, = -M[ou + av] - 2udu
ox oy ox
oo [ay c)x]
oy= ~A[Qu + 91] - 2uv.
ox oy oy
q,= kT 5 = -kJT
x oX Y oy
where the Stokes approximation is usually made that

3\ + 24 =0

(5)

For turbulent flows a model equation is required to relate

turbulent stresses (oy, 0y, Tyy, Tyx) to the mean flow field.

There is no unique formula, but a simple two layer mixing length

model of the type described by Baldwin

commonly used.

and Lomax(1978)

is

After the inviscid terms in the Navier-Stokes equations (5)

are solved using the Godunov method and the flow variables

updated from that solution, the remaining viscous equations to

be solved are

op N

3¢ (continuity)

d(pu) + do, + dt,,, = 0 (x-momentum)
3t 39X Jy

dlpv) + dt,, + 9o, = 0 (y-momentum)

ot oX oy

a(pe) + a(uox«l» Vtvx"’qx) + C)(VOV"'utxv*ql)

ot oxX oy
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Central differencing was used for all terms, including the
cross derivatives, to maintain second order accuracy. For

example, the x momentum equation for a uniform grid reduces to

Apu) = o4 y-0,p + Tp-1T
At Ax Ay

where the subscripts L, R, T, and B denote values at the left,
right, top, and bottom interfaces of a cell respectively; Thus,

for example

T = 2l Biged [“1.1«1“ Yij * Vrae1- "T,i—i]
, 2 Ay 2Ax

where v 4= Vi g% Vi .1 etC
2

This differencing is only second order accurate for a uniform
mesh. The code actually takes a proper weighting between cells
to maintain second order spatial accuracy for stretched meshes.

A predictor-corrector method of time marching was used to
retain second order accuracy in time. This involves calculating
time derivatives of values at an intermediate time At/2, and then
assuming this time derivative constant across the full time step.

The Sutherland temperature-viscosity law given below. was

used.
ko ( T )1/2 1.505
e o\ T, 1+ 0.505(T_/T)

Continuative boundary conditions at the top and downstream
boundaries were used. This means that flow values immediately
outside the boundaries are set equal to the values in the
corresponding cell immediately inside the boundary, so that
gradients at these boundaries are set to zero. On solid
boundaries a zero slip condition was used. Adiabatic wall
boundary conditions were simulated by setting the temperature
" in the cell inside the body and adjacent to the wall equal to the
adjacent cell in the flowfield, thus producing zero normal
temperature gradient at the wall. Isothermal wall boundéry
conditions were achieved by setting the temperature of the cell
in the body such that interpolation between it and corresponding

flowfield cell would give the desired temperature at the wall.
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Careful checking on the consistency of coding and accuracy of
the model was carried out. This included a hand calculation over
a time step, and computing boundary layers on identical
horizontal and vertical flat plates.

A mesh stretching routine was also added to allow better
resolution near solid surfaces or where flow gradients are large.

6.3.2 Laminar Boundary Layer Computations

It was decided to test the viscous version of the code by
computing some laminar flat plate boundary layers and
comparing the results with the theoretical profiles of van
Driest(1952). Although the van Driest results are for the thin
shear layer approximation to the Navier-Stokes equations
(compared to the full Navier-Stokes computations of the present
study), this should have negligible effect in comparing boundary
layer profiles. Two Mach 8 boundary layers were chosen, one
with an adiabatic wall boundary condition, and the other with an
isothermal wall T, /T_= 6 boundary condition. Both cases were
computed for several different meshes to assess the effect of
mesh refinement on the results.

All computations were time marched to a steady state using
a CFL number of 0.8. The stable time step for the inviscid part
of the code was set as the maximum time allowed before an
acoustic disturbance could travel from one side of a cell to the
other in either the horizontal or vertical direction (in other
words At _ = min(Ax/(u+a);Ay/(v+a)) ). A similar constraint
was set for the viscous part of the code based on the diffusion
of viscous and thermal disturbances, where the stable time step

used was given by Peyret and Taylor(1983) as
At < sz[ﬁ_ (2__7+ ]/_2_)]”1
Rep \Pr 3
which seemed to work quite well.
A steady state was assumed to have been reached when flow
variables remained constant to 3 decimal places throughout the
flowfield. The mesh was designed such that the shock wave

from the leading edge of the plate (arising from the leading

edge interaction) passed across the downstream boundary of the
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flowfield, and not through the top boundary. This allowed a
further check on convergence to a steady state by integrating
mass and total enthalpy fluxes across the flowfield at several
different stations on the plate and checking that the results
were equal to the values of the integrated quantities upstream
of the plate (less the heat loss to the wall). These values were
found to differ by no more than 0.2%.

Fig.73 and Fig.74 show the velocity and temperature profiles
for the Mach 8 adiabatic wall boundary layer at Re = 587 000,
where the pressure in the boundary layer has fallen from the
leading edge value interaction value to 15% greater than the free
stream value. These profiles show excellent agreement with the
van Driest thin shear layer, zero pressure gradient solutions.
The recovery temperature for the computational results does not
quite reach the Mach 8 van Driest adiabatic solution. This seems
to be the result of “"contamination” of the flow due to the
relative coarseness of the mesh near the leading edge of the
plate where the initial boundary layer growth generates a strong
leading edge shock which attenuates with distance along the
plate. The effect of this shock is raise the surface pressure near
the leading edge and exert a pressure gradient on the flow
downstream as the pressure slowly reduces to the free stream
value. This also introduces a "false origin” effect. As the mesh
is refined, the wall temperature moves very slowly towards its
van Driest value.

Mesh independence is established for meshes with greater
than 14 points across the boundary layer at this Reynolds
number, and even the mesh with 7 points across the boundary
layer gives a reasonable estimate of the profiles. However Fig.75
to Fig.77, which show density contours for the adiabatic wall
for the different meshes, show that the 7 point mesh cannot
resolve the leading edge shock properly. These contour plots
also show how the density changes' most rapidly near the
boundary layer edge. Fig.78 shows the pressure contours for the
finest mesh. The pressure is almost constant across the

boundary layer (ie., vertically), and the streamwise pressure
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gradient at the downstream end of the plate (where the profiles
were taken) is quite small.

Fig.79 and Fig.80 show the velocity and temperature profiles
for the Mach 8 isothermal wall (T, /T_=6) case at Re =587 000
for different meshes. For this case the boundary layer pressure
has fallen to 1.10p__ at the position where the profile data is
taken. Again excellent agreement with the van Driest solution is
seen, although slightly more points across the boundary layer
were needed to resolve it accurately. This is presumably the
result of a more complex temperature profile. Fig.81 to Fig.83
show the corresponding density contours for this boundary layer
and different mesh sizes. The boundary layer thickness is about
25% less than the adiabatic wall case because of the wall
cooling.

If a cell adjacent to the wall is of height Ay, the gradients
at the wall can be calculated from the cell centered values from
(c)u/c)y)W =2u/Ay and (aT/r)y)w=2(T— T, /Ay. Using the adiabatic
wall temperature from the adiabatic wall computations, the heat
transfer and skin friction can then be calculated for the
isothermal wall case (at Re =587 000) from

St_= ky(dT/0y),, = 3.88x107*

P LU C (T - T))

© c p

(cf., van Driest St_= 4.04x10™%)

Ce_= p (du/dy),, = 6.46x107*
feo w
172 g_u?

(cf., van Driest Cg_=6.65x10"%)

This yields a Reynolds analogy factor

S= 28t__ = 1.20 (cf., van Driest S=1.21)

Cteo

The skin friction coefficient can also be calculated for the
adiabatic wall case, which gives Cfm=6.14x10_4, compared with
the van Driest value of 6.07x10™%.

It is also possible to compare the leading edge shock
wave/boundary layer interaction predicted computationally with

experimental measurements. Fig.84 shows the surface pressure
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P./P. Plotted against an interaction parameter

M3/c
where C is a constant from an equivalent temperature-viscosity
relationship (u/um=(T/T°°)C ). The value of C is often taken as
unity, and that is assumed here. This is also compared with the
experimental results of Kendall(1957). Although there is some
difference between the computational and experimental results,
a few points should be noted. Firstly, Kendall's results were at
Mach 5.8 and not Mach 8, and M3}/C/}/Rex may not be a
universal correlating parameter. Secondly, experimental results
taken by different investigators of this problem show a
reasonable amount of scatter between their results, and thirdly,
the computational mesh near the leading edge is by necessity
relatively coarse in the vertical direction. The effect of this near
the leading edge can be seen quite dramatically by looking at
the results of two different meshes such as Fig.75 and Fig.77.
The mesh with 22 points across the boundary layer at the
downstream end of the plate is twice as fine as the mesh
labelled 14 points across the boundary layer. However, bearing
these points in mind, the agreement with experimental results
looks reasonable.

The overall agreement of the boundary layer calculations
made with the laminar version of the Navier-Stokes code with
known results looks very good. This then allows laminar cavity
flow computations to be made with some confidence.

6.3.3 Laminar Cavity Computations

It was decided to embark upon a set of laminar cavity flow
computations not from the point of view of trying to produce
results that could be directly compared with the experimental
data, but rather with the view of producing definitive laminar
data whose flow structure may lead to a better understanding of
the experimental'results. It is obviously incorrect to compare
the numerical values of laminar computations with turbulent
experimental results, but flow features and trends in such flows

may well be qualitatively the same, and much easier to identify
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computationally. Indeed turbulent computations would have had
to have been treated in much the same qualitative spirit for such
a separated flow, as none of the turbulence models available
have really been validated for complex hypersonic flows.

The computations will be planar two dimensional and have
the upstream flow parallel to the cavity floor. This again differs
from the experiments in that the experimental model was
axisymmetric (although Charwat et.al.(1961a) found Ilittle
difference between axisymmetric and two dimensional flows),
and that the approach flow to the experimental cavity was
angled at 5 to the cavity. However, bearing in mind that direct
numerical comparison with the experiments will not be possible
anyway, it was decided to incorporate neither of these features,
and produce two dimensional calculations that could at some
future time be used as a reference flow.

A cavity length to depth ratio of 2 was chosen, which was
one of the L/D values studied experimentally and where
qualitatively the flow structure should be similar to the
experiments. The results of other experiments also indicate that
a two vortex flow structure is to be expected for this geometry.
The Reynolds number based on cavity length is 3.3x10% (the same
as the experiments) and free stream Mach number 8.0 (also the
same as the experimental value). An isothermal wall boundary
condition with Tw/Tw=6.0 was used, which was the boundary
condition used for one of the boundary layer computations and
so allowed the correct upstream boundary layer profiles to be
used. This boundary condition is also reasonably close to the
experimental situation, which is approximately an isothermal
wall boundary with T /T_=5.0. The upstream boundary layer
velocity thickness was set at 0.24 times the cavity depth which
is the same as the experimental value.

A stretched mesh in both the x and y directions was used to
allow better resolution of the flow where gradients are large
(eg., near the cavity walls and in the separated shear layer).
Stretching was limited to a 15% change in mesh size between

adjacent cells, and the overall mesh size was 70x60. This
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allowed approximately a factor of 10 change between the
smallest and largest values of Ax and Ay. The mesh can be seen
on Fig.85. The computations took place on a CDC Cyber 855 at
Imperial College.

The calculation reached a steady state after about 40000 sec.
on the Cyber, with no evidence of bulk unsteadiness of the flow.
The physical (flowfield) time required to reach a steady state
was about 1.2ms, with the pressure reaching equilibrium a factor
of 4 faster than this. This is because pressure equalizes through
pressure waves (travelling at the speed of sound), whereas heat
transfer depends on boundary layer convection velocities which
are quite low in the cavity. However this time to reach a steady
state is considerably less than the typical running time for the
Gun Tunnel in the experiments (15ms total run time, Sms steady
run time). This implies again that the experimental cavity flow
probably did reach a steady state, since it was a turbulent flow
which should reach viscous equilibrium quicker than the laminar
flow of the computations. The computational result, in terms of
velocity vectors, is shown on Fig.85 . On this plot vector length
is proportional to velocity. The maximum velocity in the -cavity
is 12% of the free stream velocity, so vectors are only plotted
from one cell above the cavity down, such that cavity velocities
are more visible. Fig.86 shows the cavity velocities plotted in a
different way. Here vector length is proportional to velocity to
the power of 0.25. This enables the entire flowfield up to the
free stream to be plotted, and much greater detail to be shown
in the recirculating flow inside the cavity. However it must be
remembered when looking at Fig.86 that small vectors indicate
very small velocities.

The velocity vector plots indicate the two main vortices
lying in the cavity. The primary vortex, with greater rotational
strength, lies near the rear face of the cavity. The second major
vortex lies near the front face of the cavity and rotates in 4the
opposite direction to the primary vortex. Smaller vortices in the
bottom corners of the cavity can also be seen. The wave

structure in the cavity can be seen from the pressure, density,
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and temperature contours which are shown on Fig.87, Fig.88 ,
and Fig.89 respectively. The pressure contours show a
Prandtl-Meyer expansion emanating from the leading edge of the
cavity which turns the oncoming boundary slightly into the
cavity, and in doing so reduces the pressure in the shear layer by
about 6%. At the trailing edge the flow is compressed as the
separated shear layer reattaches to the rear lip, with the
maximum reattachment pressure being about 15% above the free
stream pressure. The computations indicate the dividing
streamline Mach number to be approximately 0.455 before the
reattachment process begins, which fits well with the
assumption in Chapter S5 that reattachment pressure is
approximately equal to the stagnation pressure of the oncoming
streamline (a Mach 0.455 flow has a stagnation pressure 1.152
times greater than the static pressure).

Further out from the rear lip a reattachment shock forms,
and behind this lies another Prandtl-Meyer expansion. Thus the
wave system predicted computationally agrees well with that
observed experimentally, although, as expected, the
reattachment pressures are smaller ‘than observed
experimentally because the turbulent shear layer in the
experiments grows faster than the laminar shear layer in the
computations.

Surface pressure is plotted on Fig.90 for the entire cavity.
The variable X, is the same as that defined in Chapter 3 and on
Fig.33 (ie., the total distance around the cavity starting from the
leading edge). Fig.91 shows this pressure plot on an expanded
scale, and it seems to agree quite well with the experimental
pressure distrubutions on a qualitative basis. The pressure drops
from the reattachment value with distance down the rear face
under the influence of the primary vortex. A small amount of
pressure recovery occurs in the bottom corner of the rear face
as the flow separates before the corner. The minimum in floor
pressure corresponds to, as expected, the position under the
core of the primary vortex. As with the experimental results,
the pressure along the front face of the cavity is relatively

constant.
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The boundary layers growing on the cavity walls seem to
have been captured quite well, with up to 6 points across these
layers. This enables the calculation of other important
parameters such as heat transfer and skin friction. Fig.92 shows
local Stanton number, normalized by free stream values, for the
entire cavity and the afterbody, and Fig.93 shows local skin
friction coefficient, also normalized by free stream values.
Surprisingly, heat transfer is larger on the front face of the
cavity than on the rear face. The reason for this could be that
the boundary layer growing on the rear face of the cavity has
retained some of the profile of the reattaching shear layer, and
so is thicker because it does not grow from a definite origin. On
the other hand, the boundary layer on the front face grows from
virtually zero thickness near the leading lip, and so is thinner
than that on the rear face, and has larger gradients and hence
larger heat transfer rates. Because the separated laminar shear
layer has spread more slowly than the turbulent shear layer in
the experiments, the reattachment heat transfer rates are much
lower than recorded experimentally. The dip in the heat transfer
distribution near the middle of the .cavity floor corresponds to
the point of separation between the two main vortices in the
cavity. The spatially averaged cavity heat transfer rate is about
80% that of the oncoming boundary layer, which is almost the
same as that measured by Ginoux et.al.(1968) for a L/D=2
laminar cavity flow, although their peak reattachment heat
transfer rates were somewhat higher. This, however, can be
attributed to transition to turbulence of the shear layer near
reattachment, which was noticed by Hahn(1969).

An interesting feature of the heat transfer results is that
the heat transfer appears to go negative on the afterbody. There
must, however, be a question as to whether the vertical mesh
resolution of the boundary layer on the afterbody was fine
enough to calculate a reversal of temperature gradient near the
surface if one occured. To test this, a boundary layer calculation
was made using the vertical profiles from the cavity

computation two cells along the afterbody as a starting
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condition for the new computation. The new mesh used was five
times finer near the wall than the mesh used for the cavity
computations, in order to capture any reversal of temperature
gradient that might occur near the wall. These compuations took
a long time to reach a steady state (about 20000 seconds on the
Cyber 8S55) because of the fine mesh. However the results,
plotted as Stanton number on Fig.94 and Skin Friction
Coefficient on Fig.95 (where x is the distance downstream on
the afterbody from the start of the computation), show basically
the same trends as the original cavity computations. Skin
friction reduces with downstream distance, levelling out at a
value close to that on the forebody.

There is other experimental evidence of the heat transfer
reducing on the afterbody of a cavity configuration in laminar
flow. The experiments of Ginoux et.al.(1968) included a few
points on the afterbody and showed heat transfer rate dropping
steeply on the afterbody. However the cavity configuration for
their experiments had a radius on the rear lip (with the radius
equal to the step height), and so is not directly comparable. The
physical reason for the heat transfer rate going negative seems
to be that the inner part of the original boundary layer which
carries the reversal of temperature gradient (and hence produces
the heat transfer to the surface), is swallowed by the shear
layer growing into the bottom of it. The inner part of the new
shear layer is then also swallowed by the cavity as the shear
layer reattaches, and so the flow on the afterbody shows the
profile characteristics of a shear layer with the low velocity
part "chopped off". A sketch of this is shown on Fig.96 . Then
before viscous forces can change the inner part of the
temperature profile on the afterbody, a rapid expansion occurs
(as part of the shock-expansion system at reattachment) which
reduces the temperature near the wall, and hence surface heat
transfer rate, even further. The relatively high value of T /T_
is also a contributing factor. Subsequently, as viscous forces
begin to take effect, the heat transfer rate levels out at a
negative value, and will presumably climb to a positive value

further downstream.
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In terms of hypersonic vehicle design, this is clearly an
effect that deserves further experimental investigation. It is not
clear whether the same trends would be noticed for turbulent

flow, where viscous forces can take effect much more quickly.
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CHAPTER 7

CONCLUSIONS

7.1 Cavity Flow Structure

The flow structure for Mach 8 axisymmetric turbulent cavity
flows with dimensions 0.8{L/D<2.4 was determined at
Re=1.7x10"/m and 5.5x107 /m by means of Schlieren flow
visualization, pressure and heat transfer measurements, and by
consulting the literature. This revealed a Prandtl-Meyer
expansion of the upstream boundary layer at the leading edge of
the cavity, and a shock-expansion system as the separated shear
layer reattaches at the downstream face of the cavity. The flow
structure in the cavity seemed to change from a one
recirculation vortex system, to a two vortex system for L/D=22.
The primary vortex, with its centre close to the rear face,
induces higher cavity velocities than the secondary vortex
situated in the front half of the cavity, as evidenced by the

surface pressure measurements.
7.2 Mean Cavity Pressures

Surface pressure vs time traces (and later heat transfer
measurements) indicate that the cavity flow has reached a
steady state by the steady run time of the tunnel. This is in
accordance with expectations of physical response times, and
confirmed later in the computational work. Surface pressure
measurements were made in the cavity and on the afterbody of
cavities with L/D=0.8, 1.2, 1.6, 2.0 and 2.4 at both the high and
low Reynolds number running conditions. A large pressure rise
was recorded in the area of shear layer reattachment on the rear
face of the cavity (maximum pressure closest to the rear lip was
70% greater than the free stream pressure). Pressures in the
remainder of the cavity were about 0.62 times the cone pressure,

with this reduction relative to the cone pressure being due to
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the expansion of the cone boundary layer at the leading edge of
the cavity. Apart from the strength of this expansion (which was
due mainly to angle of the oncoming flow relative to the cavity),
the trends in the data agreed well with two dimensional planar
data taken by other investigators at lower Mach numbers.

A strong Reynolds number effect was evident for the
reattachment pressures. For shorter cavities, the high Reynolds
number flow gave higher reattachment pressures, while for
longer cavities the low Reynolds number flow gave the higher
reattachment pressures. This Reynolds number dependence was
explained in terms of spreading of the separated shear layer,
and the effect of upstream boundary layer thickness. Pressures
away from reattachment showed little Reynolds number

dependence.

7.3 Fluctuating Cavity Presasures

Pressures on the cavity surface were generally steady, except
for the area of shear layer reattachment on the top of the rear
face of the cavity where large fluctuations were noticed (up to
60% of the mean pressure). Close inspection of the traces
revealed some low frequency structure in the oscillations, and a
frequency analysis showed a broad band feature at about 2.8kHz.
It was hypothesised that these oscillations could have been
caused by a transverse (vertical) acoustic mode in the cavity,
which may have "bumped” the otherwise stable separated shear
layer up and down to produce the unsteadiness in the
reattachment region. Comparison with data at subsonic Mach
numbers confirmed that the recorded oscillation frequency was

approximately correct for a transverse acoustic mode.
7.4 Heat Transfer Measurements
Heat transfer measurements were made at both Reynolds

numbers for cavities with L/D=0.8, 1.6 and 2.4. The heat transfer

results followed basically the same trends as the pressure
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results. Large heat transfer rates were recorded in the
reattachment region (up to 2.34 times the cone forebody value),
but heat transfer fell well below the cone value in the
remainder of the cavity. Total heat flux to the model through
the cavity walls was less than if there had been no cavity and
the upstream boundary layer had passed over the cone surface.
For the longest cavity studied (L/D=2.4), this total heat flux
was about 1/2 the no cavity value for both Reynolds numbers.

As for the pressure measurements, strong Reynolds number
effects on heat transfer rate were noticed at reattachment. The
Reynolds number trends for heat transfer were basically the
same as for the pressure results. Reynolds number dependence
was also reflected in the values of total heat flux.

Heat transfer measurements on the cone forebody indicated a
large sensitivity to gauge location in the surface. A gauge
recessed O0.lmm from the surface was found to give a heat
transfer rate a factor of 2 lower than a gauge flush with the

surface.

7.5 Theoretical Analysis

A simple theoretical analyisis was undertaken in an attempt
to gain a better understanding of the flow physics, and to
extrapolate the experimental results. The flowfield was broken
into 3 component parts and each analysed separately. These 3
parts were the initial turning and expansion of the cone
boundary layer, the spreading of the separated shear layer, and
the reattachment process at the top of the rear face.

It was found that relatively simple equations, with some
empirical constants, could be used to model quite accurately the
separation, spreading, and reattachment of the shear layer, and
that the experimental results could, by using these analytical
tools, be extrapolated to different cavity lengths. It was also
possible to get a quantitative estimate of the effect of the
expansion of the cone boundary layer on conditions at

reattachment, which was found to reduce peak pressures more
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than peak heat transfer rates. By assuming that reattachment
pressure was equal to the stagnation pressure of the
approaching streamline, it was possible to get an estimate of
reattachment pressure right up to the rear lip of the cavity. It
was found that this could be 4.5 times the cone pressure for
L/D=2.4 cavity.

The limitations of the analysis were that it could only
predict reattachment conditions for cavity lengths where the
separated shear layer had reached a self-similar mean velocity
profile at reattachment. At best, this was only valid for the
L/D=2.0 and 2.4 cavities. No attempt was made to predict
conditions away from reattachment.

It was found that a simple emperical relation such as

c-l _(P )1.6

4 \pe
could be used to express the relationship between surface
pressure and heat transfer rate in the reattachment region. The
value of 1.6 is somewhat higher than other investigators have
found for cavities with no expansion of the upstream boundary
layer at the point of separation, and reflects again the fact that
reattachment heat transfer rates are affected less than

reattachment pressures by this expansion.
7.6 Computational Results

A Godunov-type Euler code was used as the basis for
producing a laminar, operator split Navier-Stokes code. This
was tested initially against known laminar boundary layer cases.
The results were very accurate, and enabled hypersonic laminar
cavity flow computations to be tackled with some confidence.

In a qualitative sense, the laminar cavity computations
showed basically the same flow trends as the turbulent
experimental results. The aim was not to compare the results
quantitatively with the experiments, but to try to get a better
understanding of the flow structure. A stretched mesh was used

near the cavity walls to enable better resolution of the boundary
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layers on these walls. Surface pressure, skin friction, heat
transfer, and average cavity Stanton number seemed to be
consistant with experimental laminar cavity flows. Results in
the reattachment region seemed to justify the earlier assumption
in the theoretical analysis that reattachment pressure is
approximately equal to the stagnation pressure of the oncoming
streamline.

An interesting feature of the computational result was that
heat transfer on the afterbody was negative. A boundary layer
calculation of the afterbody using a much finer mesh was made,
and seemed to confirm the result. The reason for the negative
heat transfer seemed to lie in the reattachment process, where
the innner part of the shear layer is "swallowed” by the cavity,
and the profile reattaching to the afterbody is rapidly expanded
to produce negative heat transfer rates before viscous forces
have time to act and reverse the situation. The relatively high
value of T, /T_=6 was probably also a contributing factor.

This Godunov-type code showed little numerical diffusion,
and being able to capture shocks and large flow gradients
accurately, seems an ideal tool for computing separated

hypersonic flows.
7.7 Proposals for Future Work

7.7.1 Experimental

Due to the uncertain nature of the spreading of the
separated shear layer, especially for short cavities, experimental
data on the spreading of the shear layer, including the effect of
Reynolds number and initial boundary layer thickness, would be
very valuable in understanding more clearly the process of
reattachment. This would also allow a more accurate prediction
of reattachment conditions using the simple analytical tools
outlined in this work.

The laminar computational prediction of negative heat
transfer on the cavity afterbody indicates that this might be a

promising area for experimental study. Although a turbulent
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cavity flow might not show negative heat transfer, it is possible
that the heat transfer rate on the afterbody might be
significantly reduced for some distance downstream.

7.7.2 Computational

The next computational task is to introduce a turbulence
model into the code. These turbulent computations must then be
validated against experimental results such as those produced in

this study.
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HIGH REYNOLDS NUMBER

LOW REYNOLDS NUMBER

M_=9.26

T =1070K
Re_=5.5x107/m
p_=2473N/m2(0.36psi)
T_=58.6K
P.=5290N/m2(0.77psi)

M_=9.02
T, =1011K
Re_=1.7x107/m
p_=706N/m2(0.103psi)
T_=58.5K
p.=1511N/m2(0.22ps1)

Table 1. Free Stream Values
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Fig.24 Schlieren photograph of pitot tube
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Fig.29 Schlieren photograph for L/D=0.8 cavity



Fig.30 Schlieren photograph for L/D=1.6 cavity



Fig.31 Schlieren photograph for L/D=2.4 cavity
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Fig.71b Flat plate with cavity



P/, P/Ro
rd 7 rg SP Iolo I?'O B
[} ®
l
®
L
A
- »
/
- »
/
= »
A
n |
10-0
L,
"] n
blk. |
"’ i
50 ¢ +
* L4 +* + L 4 -+ L J &
n
n
A
»n 4
[e] rd 7 > > 7 rd ra r

Pig.72 Inviscid cavity

pressures for M=9




y.VRe /x

160

]
g Re,=587000
] o 22 POINTS ACROSS B.L.
] A 14 POINTS ACROSS B.L.
1 ® 7 POINTS ACROSS B.L.
: X VAN DRIEST SOLUTION
120
]
80 J
40 ]
] a
] am @ oD B e
1 n @ x84 .
0 4o e S —— e — ,
0.0 0.2 0.4 0.6 0.8 1.0

Fig.73 Velocity profiles for Mach 8 adiabatic wall flat plate boundary
layer at Re,=587 000



160

lllIIJJIlllllJl;lll‘Llllllllll‘lllllllllLlJ

Re,=587000

22 POINTS ACROSS B.L.
14 POINTS ACROSS B.L.
7 POINTS ACROSS B.L.
VAN DRIEST SOLUTION

Xo b3

S mow T Wa¥ gop

LANNL S R S SR D B A N BN R L B fvvlv—ﬁrvtvllv—rl'fivri|||%‘*ﬁ

2.5 5.0 7.5 10.0 12.5
T/T.

Fig.74 Temperature profiles for Mach 8 adiabatic wall flat plate
boundary layer at Re_ =587 000



Yx4

_—

L] L] ¥ L] v

! 2 3 4 5 6
Ra, / 16"
Fig.75 Density contours for Mach 8 adiabatic wall flat plate boundary

layer with 22 points across the boundary layer at the downstream
end



Re, /10
Fig.76 Density contours for Mach 8 adiabatic wall flat plate boundary

layer with 14 points across the boundary layer at the downstream
end



ch / 10°

Fig.77 Density contours for Mach 8 adiabatic wall flat plate boundary

layer with 7 points across the boundary layer at the downstream
end



Yyx4

T v ¥

-
e

0 ! 2 3 n < 4 s 6
2,/ 10
Fig.78 Pressure contours for Mach 8 adiabatic wall flat plate boundary
layer with 22 points across the boundary layer at the downstream
end



y.VRe /T

160

—
E-N @ N
o o o

JLlllJlllllllllllllll_lllllll!lllllllllLAI_J

OO

Re,=587000

23 POINTS ACROSS B.L.
16 POINTS ACROSS B.L.
10 POINTS ACROSS B.L.
VAN DRIEST SOLUTION

%
1%
19
1%

xXo 3

&

.0 0.2 0.4 0.6 0.8 1.0

Fig.79 Velocity profiles for Mach 8 isothermal wall (T /T _=6)
flat plate boundary layer at Re =587 000



—
[v)]
o

s

LlllLlJl!I!l!lll_lllll,lALlllllllIll!Llll

Re,=587000

23 POINTS ACROSS B.L.
16 POINTS ACROSS B.L.
10 POINTS ACROSS B.L.
VAN DRIEST SOLUTION

Xée b0

0.

T/T.
Fig.80 Temperature profiles for Mach 8 isothermal wall (T_/T_=6)
flat plate boundary layer at Re =587 000



Yyx4

/

: 2 -; ‘;‘ ‘;" 6
Rat / '0‘
Fig.81 Density contours for Mach 8 isothermal wall (Tw/Tw=6) flat
plate boundary layer with 23 points across the boundary layer at
the downstream end



yxs

! 2 3 4
Re / los

Fig.82 Density contours for Mach 8 isothermal wall (T, /T <=6) flat

s 6

plate boundary layer with 16 points across the boundary layer
at the downstream end



3 s
Re, /10
Fig.83 Density contours for Mach 8 isothermal wall (T,/T_=6) flat

plate boundary layer with 10 points across the boundary layer
at the downstream end



p/p-

: o °
] a
]
T A
-
] ul
- A
] X A
_ A 0O A
. X M
) a M
} X
] A
1 x
1 x
9
] 00 22 POINTS ACROSS B.L.
i A 14 POINTS ACROSS B.L.
. X  KENDALL(1957) M=5.8
L Ll Ll L] T T L] L) Ls I LS LS LS LJ L] T L] L] L l """ L] L] L) I L] L LS LJ L3 T T L3 T l ¥+ "V 7 1T 1T 0 L L] L ]
0 ? 4 6 8

Fig.84 Surface pressure vs leading edge interaction parameter
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to velocity to the power of 0.2§
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Fig.87 Pressure contours for Mach 8 L/D=2.0 laminar cavity flow
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Fig.88 Density contours for Mach 8 L/D=2.0 laminar cavity flow
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Fig.89 Temperature contours for Mach 8 L/D=2.0 laminar cavity flow
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Fig.96 Schematic of temperature profile at reattachment



Appendix 1 Experimental Results

BOUNDARY LAYER DATA

HIGH REYNOLDS NUMBER

WIDE NOSED PITOT

Y tmm) | Py (psi) LOW REYNOLDS NUMBER
0.400 5.800
Q.750 11.000

1.000 | 15.650

1.250 [ 20.200 Y(mm) | P, (psi)

1.300 24,600 -
1.750 54 600 0,400 1.390
2.000 | 26.510 @.750 | 2.630
~ 8OO 0. 600 1.000 3.820
3,000 | 36.610 1.230 3. 430
<. 500 47,550 1.500 6.440
4,000 | 50.500 1.730 &'620
4 500 54,900 4,000 12.620
S.000 59.330

5. 500 61.860
& . 000 60.600
& . 200 61.850

NARROW NOSED PITOT

ylmm) | P, (pst)

1.300 22.700
1.750 24,000
2.000 23.200
4 .000 49 .200




PRESSURE RESULTS - HIGH REYNOLDS NUMBER - D=2.3cm

L=6cm L=4cm
Xe Ple X B/R
0.120 0.612 L) (3
Q0.240 0.640 J3.360 0.612
0.400 0,609 3.280 0,599
0.320 0.709 3.200 0.564
0.640 0.612 3.480 1,060
Q.760 0.612 3.080 0.574
0.880 0.643 2.720 Q.722
0.920 0.623 2.840 0.664
1.200 0.588 2.960 Q.657
1.400 0.392 2.680 0.68%9
1.600 0,568 3.5920 1.627
1.800 0.388 2.200 0.664
2.000 0.347 2.400 0.736
2.200 0.309 1.200 0.664
2.400 0.475 1.400 0.6473
2.600 0.209 1.600 0.395
2.800 0.544 1.800 0.547
3,000 0.330 2.000 0.571
Z.200 0.795 0.080 0.647
3.480 0.746 0.120 0.4643
3,520 0.698 Q.240 0.650
3.640 Q0.736 0.400 0.647
2.760 0.643 0,320 0.643
3.880 0.971 0.760 0.678
4,000 0.381 0.920 0.678
4,080 0.578 Q. 600 0.674
4,160 Q0.767 0.880 0.688
4.280 1.314 0.320 Q.633
4 320 1.706 4,200 0.482
4,320 O .640 3.720 0.581
4,600 0.623 3.800 0.616
4,800 0.337 4.000 0.499
5.000 0,019 3.680 Q.608

P.® 0.77psi (average)



PRESSURE RESULTS - HIGH REYNOLDS NUMBER - Ds2.5cm

L=Scm
L=3cm
Xy P/P
1.200 0.4619
1.600 0.3571
1.800 | ©.537 X PlR
1.400 0.612 1.4600 0.589
2.000 0.526 1.800 0.636
2.400 0.554 1.400 0.616
2.600 0.564 2.000 0.736
2.200 0.316 1.200 0.674
2.800 0.712 ~ 0.920 0.695
0.520 0.671 0.5640 0.687
0.920 Q0.647 0.880 0.702
0. 600 0.633 0.760 0.691
0.880 0.633 0,400 0.6373
0.760 Q.640 0.080 0.660
0.400 0.664 0.240 0.630
0.080 0.664 0,320 0.647
0.320 0.633 0.520 0.643
0.240 0.647 =.080 1.004
J.920 1.788 2.560 0.657
2. 600 0.547 2.880 Q0.599
3120 0.733 2.4680 0.602
3.880 1.259 2.280 0.709
3.360 0.687 2.960 0.657
| 3.680 0,571 2.440 0.695
3.480 0.992 3.120 1.383
3.080 0.683 3.800 0.526
3.760 0.709 3.320 0.654
3.240 0,681 3.280 Q.660
4.600 0.499 3.600 0.513
4.120 0.640 3.400 0.623
4,200 0.633
4.400 0.516
4.080 0.630




PRESSURE RESULTS - HIGH REYNOLDS NUMBER - D=2.5cm

L=2cm
X | B/B
2.720 0,963
2.680 0.737
2.560 0.619
2.480 0.550
2.280 0.548
2.400 0.544
2.160 0.602
1.880 0.619
1.920 0.595
2.040 0.623
0.320 0.537
1.400 0,647
1.200 0.640
1.600 0.643
0.120 0.550
0.080 0,602
0.640 0.592
0.920 0.698
0.400 0.461
0.520 0.588
0.240 0.581
0.760 0.671
0.880 0.695
3.400 0.509
2.920 0.640
3.000 0.612
3.200 0.506
2.880 0,630




PRESSURE RESULTS - LOW REYNOLDS NUMBER - D=2.5cm

L=6cm

L=8om
A | PIR X, | p/R

4,320 1.569

4.080 0.616 1.200 0.612
3.520 0.664 1.600 0.595
3.480 0.688 1.800 0.574
4.280 1.273 1.400 0.612
4.000 0.585 2.000 0.595
3.760 0.630 2.200 0.609
3.640 0.636 2.400 0.612
3.880 0.578 2.600 0.612
4,160 0.740 2.800 0.698
3.200 0.702 0.520 0.643
2.800 0.568 0.920 0.599
2.600 0.564 0. 600 0.602
2.400 0.574 0.880 0.616
2.200 0.544 0.760 0.616
2.000 0.547 0.400 0.674
1.800 0.568 0,080 0.671
1.600 0.581 0.320 0.4695
1.400 0.58% 0.240 0.698
1.200 0.595 3.120 0.702
3.000 0.619 3.600 0.640
0.240 0.616 3.920 1.545
G.120 0.619 3.880 1.128
0.520 0.585% 3.360 0.702
0.400 0.623 3.680 0.674
0.640 0.605 3.480 0.664
0.920 0.626 3.080 0.691
0.320 0.605 3.760 0.4695
0.760 0.599 3.240 0.4695
0.880 0.616 4.4600 0.561
0.080 0.585 4,120 0.709
5.000 0.574 4.200 0.4688
4,520 0.633 4.400 0.561
_ 4,600 0.619 4,080 0.674
4.800 0.550

4,480 0.633

P~ 0.22psi (average)



PRESSURE RESULTS - LOW REYNOLDS NUMBER - D=2.5cm

L=4cm
L=3cm

Xu P/Pc
3.360 | 0.59% Xe P/P
3.280 0.585
3.200 0.588 1.600 0.643
3.480 0.853 1.800 0.626
3.080 0.585 1.400 0.660
2.720 0.626 1.000 0.678
2.840 0.616 1.200 0.674
2.960 0.623 0.920 0.695
2.680 0.6172 0.640 0.688
T.520 1.276 0.880 0.709
2,200 0.685 0.760 0.4678
2.400 0.709 0.400 0.660
1.200 0.685 0.080 0.674
1.600 0.643 0.320 0.671
2,000 0.619 0.240 0.630
1.400 0.674 0. 320 0.702
1.800 0.647 2.320 Q.705
0.080 0.647 2.800 0.643
0.120 0.588 3.080 0.771
0.240 0.64% 2.560 0.643
0.400 0.657 2.880 0.619
0.320 0.664 2.680 0.619
0.760 0.4685 2.280 0.688
0.920 0.674 2.960 0.688
0.640 0.688 2.440 0.68S
0.880 0.685 3.120 1.111
0.520 0.698 3.320 0.702
4.200 0.568 3.400 0.705
3,720 0.716 3.600 0.571
3.800 0.671 3.280 0.702
4,000 0.557 3.800 0.548
3.680 0.719




PRESSURE RESULTS - LOW REYNOLDS NUMBER - D=2.5c¢m

L=2cm

X, P/r.
0.880 Q.667
0.240 0.3557
0.320 0.3961
Q.760 0.609
0.400 0.588
0.640 0,593
0.520 0.571
0.080 0.381
1.200 0.38%5
1.600 0,609
1.400 0.636
2.400 0,626
2,680 Q.709
2.040 0.616
2.1460 0.616
2,720 0.798
2.560 Q.612
1.920 0.616
1.880 0.643
2.480 0.640
2.280 0,602
3.400 0.3561
2.920 0.674
3.000 0.643
3,200 Q.3544
2.880 0.688"
2.880 0.688




PRESSURE RESULTS - D=1.25cm L=3cm

HIGH REYNOLDS NUMBER LOW REYNOLDS NUMBER
Xﬂ Plp" X* b/ pG
4.320 2.305 4,320 2.085
4.280 1.572 4.280 1.273
4.240 1.404 4.240 1.132
4.200 1.101 4.200 0.929
4.160 0.912 4,160 0.850
4.080 0.750 4.080 0.757
4,000 0.657 4.000 0.722
X.880 0.643 3.880 0.726
I.760 0.716 3.760 0.757
3.640 0.757 3.640 0.774
3.520 0.819 3.520 0.815
3.480 0.822 3.480 0.822
4.480 0.808 4,480 0.877
4,520 0.791 4.520 0.839
4,600 Q.695 4,600 0.781
4,720 0.636 4.720 0.722
4.800 0.602 4.800 0.698
5.000 0.571 5.000 0.654
3.160 0.853 3.160 0.850
2.360 0.636 2.360 0.719
2.120 0.667 2.120 0.726
2.520 0.59%5 2.520 0.688
2.760 0.599 2.760 0.685
2.920 0.722 2.920 0.774
1.960 0.678 1.960 0.767
1.320 0.702 1.320 0.746
1.520 0.688 1.520 0.722
1.680 0.691 1.680 0.746
0.080 0.764 0.080 0.760
0.120 0.729 0.120 0.781
0.240 0.729 0.240 0.753
0.320 0.746 0.320 0.791
0.520 0.712 0.520 0.781
0.640 0.712 0.640 0.781
0.720 0.722 0.720 0.784
0.800 | 0.736 0.800 0.805
0.880 0.743 0.880 0.795




L=6cm
4 ) 3

X, q{W/cm')
4, 320 22.360
4,280 15.460
4.200 12.560
4,120 7 .860
4,000 6.280
3.800 2.800
3.600 J.120
3.480 4,020
3.200 4,060
2.200 2,000
1.200 1.360
0.800 0.920
0.600 2.360
Q.400 1.800
QO.200 Q0.9220

L=2cm

X, |a(W/em)
2.720 15.820
2.680 7 .920
2.600 5.680
2.220 4,120 |
2.400 3.340
2.200 1.360
2.000 1.380
1.920 2..600
1.880 2.060
1.200 2.180
0.800 1.460
Q.600 2.260
0. 400 1.800
0.200 0.560

HEAT TRANSFER RESULTS - HIGH REYNOLDS NUMBER - D=2.Scm

L=4cm
X, |alwW/cmt)
3.820 21.020
3.480 12,120
J.400 8.440
3.320 3.860
J.200 5.020
J.000 2.200
2.800 2.720
2,720 3.960
2.680 J.360
1.200 1.480
2.200 3.400
0.800 1.400
0.600 2.880
0.400 2,000
0.200 0.640
L / D qup,o.oe(W/C"a\)
2.400 22.378
1.600 21.022
0.800 14.267
C2.000 23.244
1.200 20.756




HEAT TRANSFER RESULTS - LOW REYNOLDS NUMBER - D=2.5cm

L=6cm L=4om
X 3wl X[ wiend)
4,320 10.060
4,280 4,760 3.520 6.280
4,200 3.440 3.480 J.360
4.120 2.520 3400 2.160
4,000 1.800 JF.320 1.560
3.800 0.660 3.200 1.240
3.600 0.480 3.000 0.400
3.520 0.800 2.800 0.280
3.480 1.000 2.720 0.680
3.200 1.280 2.680 0,380
2.200 0.600 200 0.220
1.200 0.340 2.200 0.600
0.800 0.080 0.800 0.340
0,600 0.420 0.600 0.360
0.400 0.340 0.400 0.400
0.200 0.280 0.200 0.200
L=2cm
X q (W/erd)
2.720 J3.260
2.680 1.580
2.600 1.000
2.520 Q.760 B
2.400 0.440 L/ D [|GuipeoosWid)
2.200 0.160 2.400 10.067
2.000 0.140 1.600 6.133
1.920 0.240 O .800 2.733
1.880 0.280 2.000 8.622
1.200 0.340 1.200 4,733
©0.800 0.200
0.600 0.380
0.400 0.300
Q.200 0.120




