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ABSTRACT

The purpose of the work is to measure and evaluate
thermal and epithermal neutron activation data for irradiation
facilities ét the Imperial College Reactor Centre, including
resonance integrals, thermal cross—sections and decay data for
neutron capture products. These are data required for routine
activation analysis and calculation of activation in reactor
materials.

The work includes:

(1) A detailed 1look at high precision og9amma-ray
spectroscopy with special emphasis on peak area evaluation,
manual and analytical, pulse pile-up,y, coincidence summing
effects and the generation of precise efficiency curves.

(2) The proposal and testing of an empirical
efficiency formula as a function of distance and energy. This
method removes the neceéssity to carry out measurements at only
pre—calibrated source—-detector distances.

(3) A description of a neutron flux convention used
to characterize the thermal and epithermal neutron fluxes in
an irradiation facility and the use of a generalized
least-squares technique, which, from measured reaction rates,
determines the best values of the flux parameters and the
nuclear data of the measured isotopes.

{(4) A method for flux normalization is proposed and
used to ensure-irradiation under the same conditions required
by neutron activation analysis.

(3) The use of the flux convention in the calibration
" of the irradiation positions at Imperial College Reactor

Centre and the measurement of nuclear data for the following



isotopes:

71(33, 7595’ 8igr, 855r“, :liSIn, 1215,3’ 13305, 1525m,
iSBBd’ 159Tb, iSSHD, 159Tm, 175Lu’ 179H.‘:’ iSiTa, 136w, 197Qu,
and 238y,

(7) A comparison of the nuclear data values obtained

in this work with reported literature values.
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CHAPTER ONE

INTRODUETION

Resonance integrals, as defined in chapter four, are
important nuclear data which are required in fields such as
experimental reactor physics, reactor shielding, epithermal
neutron activation analysisy, neutron flux standarization, in
the measurement of slowing down spectra and in checking
nuclear resonance parameters. In the measurement of resonance
integrals, one of the major requirements is an accurate and
consistent flux convention where the reaction rate for a
radiative capture reaction, in which the fast neutron
contribution is negligible, is formulated in terms of the
effective thermal cross—section and the resonance integral.

Flux conventions are also required in the fields of
neutron fluence measurements, the purpose of the flux
caonvention being to simplify the calculation of reaction rates
and hence enabling the experimenter to unfold as much
information as possible from the experimental results.

In the characterization of thermal and epithermal
neutron fields, use has often been made [1,2,31 of the
assumption that the neutron flux distribution can be
represented by a Maxwellian thermal component and an
epithermal slowing down spectrum proportional to 1/E.
Unfortunately, because there is an overlap of the two
components it is not possible to choose an energy cut—off
which will excatly divide all Maxwellian neutrons from those
in the 1/E distribution. WESTCOTT [1] suggested that it be

assumed that the epithermal flux goes to zero at five times
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" the energy corresponding to the Maxwellian temperature T, i.e.
5 kT, where k is the Boltzmann’s constant. Also a 1/E slowing
down spectrum is only valid in systems where the slowing down
density is constant and this can only be expected in the
absence of leakage and absorption. WILLIAMS [4]1 has shown
that in the case of energy independent buckling and absarption
cross-section the flux per unit energ? is approximately
propartiocnal to 1/E1+X, Functions containing this type of
deviation from the 1/E spectrum have also been proposed on
empirical grounds by many authors [5,6,7,8,91.

It bas been shown [35,6,8]1 that failure to account for
deviation from a 1/E epithermal spectrum can result in severe
changes in the apparent resonance integral, and this is
believed [10,111 to be one of the reasons for the large
scatter in the compilation of resonance integrals by GRYNTAKIS
and KIM [12].

In the flux conventions cited in literature
[B,92:11,13,14]1 the reaction rate is given in terms of certain
flux and nuclear parameters. AHMAD [111 has proposed a
neutron flux convention in which the neutron flux destribution
is described in terms of three parameters, and any deviations
from a 1/E spectrum are assumed to be of the form 1/E1*X_, The
validity of this flux convention has been tested [10,151 and
proved to be reliable. This flux convention is the one used
in this work.

The standard method is to calibrate an irradiation
site by measuring the reaction rates of two or three isotopes
in the same position, depending on the number of flux
parameters, then substituting in the equation relating

reaction rate to flux parameters to obtain values for these



parameters. Then these flux parameters can be used to
determine nuclear parameters for other isotopes from measured
reaction rates. However , when determining these flux
parameters the nuclear parameters (resonance integral, thermal
cross—-section, etc), are considered constants. This leads to
bias in the measured Fflux parameters, and ignoring the
uncertainties of the nuclear parameters (particularly the
resonance integral cross—secfions) would significantly affect
the estimated uncertainties in the flux parameters. This
approach in turn 1leads to bias in the measured nuclear
parameters using these flux parameters.

A logical solution to this problem is to determine
the flux parameters of the irradiation positiony the nuclear
parameters of the isotopes of interest and their uncertainties
simultaneously from the measured reaction rates and their
uncertainties. The best method to estimate these parameters
is the one which requires more measured quantities than the
minimum in order to produce an over determined set of
simul taneous equations. The best values for these parameters
can then be obtained by applying a generalized least square
approach.

A description of the flux convention used in this
work, the methods for measuring the flux and nuclear
parameters simultaneously fraom measured activation data and
their uncertainties alone, is given in chapter four.

The purpose of the experiment described in chapter
six was to carry out the method described in chapter four, for
the calibration of the three irradiation positions used in the
Imperial College Reactor Centre and shows the new independent

set of nuclear parameters obtained from that experiment for



the isotopes used in this wark.

Throughout this work, use 1is made of the (n,¥Y)
reaction in the experimental measurement of saturated
activities. The detecting method employed is high resolution
Ge(Li) gamma-ray spectroscopy. Chapter two gives a detailed
description of the experimental procedure followed in this
work to obtain results with high precision when wusing
gamma-ray spectroscopy.

One of the important factors in gamma-ray
spectroscopy is the detector efficiency calibration. The best
methad (see chapter twa) is by employing a set of standard
gamma—réy sources of knawn emission rate and energies.
However, this provides an efficiency calibration for that
particular source—-to-detector distance and the measuring
procedure is to be repeated for every source-to-detector
distance to be used. Sa it is easiery and less time
consuming, if the efficiency can be calculated for any energy
and distance. Chapter three describes the experimental
procedure used to develop an empirical efficiency function, in
terms of energy and distance, for the Ge(<Li) detector used in
this work.

In neutron activation analysis (NAA) use is made of
the assumption that all samples are irradiated in the same
flux. Howevery since the irradiation of the standards and
samples are usually done at different times, unless the flux
is constant a method for flux normalization is required to
obtain any meaningful results. In chapter five a method for
flux normalization is proposed and tested in the Imperial
College Reactor Centre using the coolant outlet temperature as

a normalization indicator.



Chapter seven summarizes the results obtained in this

work and draws the final conclusions.



CHAPTER TWO

GAMMA-RAY SPECTROSCOPY

Recently precision measurements of gamma-ray
intensities have been required for non—-destructive nuclear
fuel investigation. Precision measurements are also required
for the investigation of nuclear fuel burn—up rates, nuclear
fission cross-sections, activation analysis and nuclear
spectroscopy.

The accuracy of gamma—-ray intensities obtained depend
on the following factors:

1) A good knowledge of the capabilities and

limitations of the system in use,

2) the peak area determination,

3) abplying the appropriate corrections (coincidence

summing, pulse pile—-up, dead-time etc)

4) and the determination of the detector peak

efficiency at that energy.

The literature was reviewed for each of the above
factors and various methods were selected for this work. A

set of single line gamma-ray standard sources was used +for

peak and total efficiency measurements.

2.1 System Limitation

For precision measurements it is important to
determine the limitation of the experimental system. In this
case it is the counting system which consists of a Ge(Li)
detector, pre—amplifier, amplifiers analog to digital

converter and a multichannel analyser. In this work the
9



concern is with the capability of the counting system in
.o\o,'%e,vmlz\iv\j the disintegration rate of a radio-nuclide within

the statistical errors.

To carry out the test a radioactive isotope of known
disintegration rate, and a long half-life compared to the test
period is to be used. Also the source is to be measured at

the same position and for the same counting period.

137cs is chosen for this test and the measurements
are taken over a period of five weeks and the photopeak from
the 661-keV line was used and the peak area evaluated using

the method outlined in section 2.2.1b.

For n measurements the reduced chi—-square is given

by:
n - 2
xﬁ _ 1 { (Ni N)
-1 2
n=1 -1 °n.
i
where i refers to the ith measurement, N = [ — and GN is
. i
i=1

the uncertainty in the ith measurement.
The obtained value of X2 is 5.32 which fails the
chi—square test at the 25% probability level. This indicates

an extra error which is purely systematical, and is given by:

the relative error in N;j is 0.2%Z, hence an additive

systematic - error of 0.4% is found.

10



2.2 Peak Area Determination

The purpose of any peak area analysis, manual or
analytical, should be to provide a representation of the area
and position of the peak independent of the spectral
backaround. If the same method is used to represent the areas
for the efficiency calibration spectra and the unknown
spectra, it is not necessary to determine or even define a
"true" area. Two methods are examined 1) manual, and 2)

analytical.

2.2.1 Manual Method

The basis of this method is to determine the
boundaries of the peak between which the summation is to take
placey, and the shape of the background function under the
peak. Two methods are used and compared for consistency at
different count rates and energies.

a) By summing all recorded counts in the interval
(C-406, C+40); where C is the peak centrond and ¢ is
F.W.H.M/2.35; and subtracting the counts recorded in the
intervals (C-9¢, C-5¢) and (C+5c¢, C+9¢) for background. This
method is known as the modified DEBERTIN method [16,101.

b) By summing all recorded counts between two points,
the first point is on the lower energy tail of the photopeak
and is taken where the actual spectrum deviates significantly
from a straight line fitted to the background which is arising
from multiple Compton events. The second point is where the
upper tail of the photopeak reaches a point where it is no
longer significantly above the background [171].

When measuring high intensity 9amma-ray sources at

short source—-detector distances, distortion in the peak shape

11



due to pulse pile-up results in loss of shape symmetry and a
long tailing on the high energy side of the peak. Method (a)
fails to account for the extra tailing, while method (b)
showed an independence of the peak shape andvsymmetry.

After determining the peak boundaries the
construction of the background in the peak region should be
done in such a way that the resulting peak area is independent
of the background. In practice if the background contribution
is small compared with the peak area in the photopeak region,
then errors in the background construction under the peak do
not affect the accuracy or the precision of the measurement.
However if the background contribution is not small (e.g if
weak gamma-rays are measured in the presence of a strong
higher energy gamma-ray) then small errors in the background
construction may cause large errors in the peak area [18].

For this work the background is constructed as
follows: Once the peak boundaries are defined (1 , u)s where 1
and u are the lower and upper boundaries respectively (see
fig.2.1), suitable regions adjacent to these are chosen for
background determinations. Each region is fitted to a straight
line and then the two 1lines are extrapolated to the peak
centroid C, and the background regions (B;sBy) are then fitted

as shown in fig.2.1. The net peak area is then defined as:

N = T-B
u
where T = [ cj total area
i=1
B = B;+By where B; and B, are function of the

counts in the regions indicated

12
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Fig. (2.1) Background construction under photopeak area.
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cj = number of counts in channel number i

and the error in the net peak area N is

where o¢g is determined from the error in the parameters

constructing the background.

2.2.2 Anal ytical Method

In complicated spectra, where peaks are close
together or overlapping, the manual method is very difficult
or impossible to apply. So the use of some sort of an
analytical function is necessary. Also for well isolated
peaks, the analytical fitting of the photopeak could add more
information by reducing the variance in the net peak area.

In this work, all gamma-ray peaks under study are of
known energi%?, so the priority in the analytical fitting is
for the best fitting functional form to a gamma-ray photopeak.

A wide variety of analytical fitting functions have
been propaosed in 1literature to represent the shape of a
gamma-ray photopeak from a Ge semiconductor detector. Some of
these functions (especially those of SAMPO [19]1 and GAMANAL
£201) are widely used. In some comparisons of the quality of
fits [21,22]1 to specific peaks, the advantage of the more
complex (i.ey; those with more free parameters) functions have
been indicated.

The primary contribution to the photopeak in a
semiconductor detector is a gaussian distribution arising from
the statistical fluctuation in the division of absorbed energy
between ionization and heaﬁing of the crystal lattice (fano

factor). The degree to which the experimental data deviate

W14



from this fundamental description is dependent on the
detector, associated electronics and other experisental
considerations.

The impurities of the semiconductor crystal of the
detector in use affect the charge collection processes and the
electronic noise associated with the 1leakage current.
Low-energy tailing and worsened resolution result from loss of
free charges in the device due to recombination, uncompensated
impurities which act as traps and the escape of photoelectrons
from the sensitive region.

Instrumental effects, such as instability in the
amplifier or the analyser can affect line width at higher
energies, especially if the data acquisition is over a long
duration. Finally, random summing of pulses at high count
rate can broaden the photopeak and give rise to tailing on the
high energy side of the peak.

From these considerations of experimental effects and
detector propefties, it is apparent that the mathematical
representation of the full energy peak should include a basic
gaussian shape. For the low and high energy tailing, the main
deviation from the simple gaussian forms should be included in
the functional description. Most of the analytical functions
in use [19,20,22-271 have a gaussian or a skew gaussian as the
functional main portion, and an exponential as the additive
tailings.

After taking several spectra and studying the shape
of the photopeaks produced by the detector in use, the
functional form chosen to represent the photopeak in this work
is a main gaussian plus an exponential tailing on both sides

of the peak.
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The spectral background in the region of the peak
consists of three components:

1) pulses related to radiation from other sources

(i.e.y the background radiation),

2) pulses from higher energy gamma-rays from the

source being measured, and

3) pulses from the desired gamma-ray energy but for

which enough energy is lost from the sensitive
volume of the detector to put the count in the
spectral distribution below the peak.

It is assumed that the first two contributions can be
represented by a constant or a low order polynomial (often a
linear function). The third contribution could be represented
by a step like function [25,26,28-311.

The individual contributions to the final analytical
shape chosen in this work to unfold an experimental photopeak

are given by:

: = 2
(_E(I_Flz, )
F1(i) = py.e P3
where p; is the gaussian amplitude at the centroud P2y P3 is a
parameter of the gaussian width and i is the channel number.
An exponential at the lower energy side, accounting for

incomplete charge collection is given by:

(i_—E’_Z) .

Psg
pg.e F3
F2(i) =
(L= P2,
(1 +e P3 )4

An exponential on the peak’s high energy side accounting for

pulse pile-ups is given by:

16



(L—_pZ) .P7

PS-E p3

F3(i)
_(i;p?_)

(1 + e P3 )4

where py and pg are the exponential amplitudes, pg and p, are

the exponential ranges. | The multiplication of the

exponentials by a step like function to the power four is to

ensure a rapid decay of .the exponential coﬁtribution in the
vicinity of the peak.

The background at the low eneray side of the peak

N © is represented by a step like function,

decaying in the peak region. the function is

Pg

Fa(i) =

(L= P>,

(1 +e FP3 )2

where pg is the step amplitude.

The natural béckground is represented by a first order

pol ynomial,

FS(i) = pg.i + py,

- -~

The total functional form to represent a photopeak is

then given by:

F = F1 + F2 + F3 + F4 + FS
(-5(—F2,%, Py-e
F = py.e P3 + +
(i____g.?_)
(1 +e P3 )4

17



i -
(____jﬂl)-p7

pg.e 3 Pg
+ +
_(i_:_EZ) (i_:;EZ)
1 +e P3 )4 (1 +e P3 )2

Pg.i + pPyq

The function is tested on photopeaks with energies
ranging from &40 keV to 1115 keV at different count rates.

The general least—équare model is used to perform the
fitting. Using the CERN 1library code  MINUIT [321,

minimization is performed on the function

. ‘ 2
(Ci— FCis,pi_pPyg))

1 Ci

XN
Il
8
W~ 3

Il

where =51 data at channel 1i.

The evaluation of the fit is normally by studying the X2
value. However, this method of evaluation has been proved to
be inadequate [33]1; so the final goodness of fit test, was
done visually with plots and detailed scans of residuals.

Some examples of the photopeak fittings are shown in
figs 2.2 to 2.5, where figs 2.2 and 2.3 show the fitting for
24ipm and 137Cs photopeaks from a Ge(Li) detector with a long
counting time and 8192 channel conversion gain. Figs 2.4 and
2.5 show the fittings for 241iam and 137Cs photopeaks from a
Ge detector with a shart counting time and 2048 channel
conversion gain.

The advantage of éuch a function is also that, by
studying the variation of functions F2 and F3 which account

for deviation from a pure gaussian, with respect to the pure

gaussian Fl, one gains useful information about the detecting

18
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system stability.

The net peak area is calculated from Fi, F2 and F3 by
integrating each of these functions from -o to +0©0, hence
getting aver the problem of deciding on the peak limits. The
integrals of F2 and F3 are approximated to a Beta function and
then it can easily be shown that the net peak area is given
by:

1% T(pg).T(4-pg)

N = (2x) .Ha%-+ P3.P 4 ( ) +
()

P(P-,) .I"(4—p7)
P3-Pg- ( )
-

In general good fits are obtained using this
functional representation. The gaussian peak width parameter
p3 obtaind from fitting standard gamma energies photopeaks is
plotted against energy in fig.2.46y, which shows a linear
relation. This expected linear dependence is another
indication of a good analytical representation.

This analytical peak evaluation method and the manual

methad described in section 2.2.1 were used throughout this

wark.

2.3 Dead-Time and Pulse Pile-up Correction

When a signal is accepted by the multichannel
analyser, there is a finite time taken for the signal to be
processed, analysed and stored, during that time the analyser
does not accept any signal. This leads to count losses and
this effect is known as the "dead time" effect.

Count 1losses Ffrom the full energy peak are also

23
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caused from spectrum distortion due to pulse pile-up. This
effect can be divided into two categories: resolution
degradation and sum distribution. The first category is
caused mainly by the long term time constant in the pulse
shaping circuitsy and is commonly called the tail pile—up, and
the result is a general degradation of resolution and shifting
and smearing of the spectrum [35]. The second category arises
because the processes of radioactive disintegration are
completely random in time, and the resolving time of the
electronic system is finite, pulses from two events can
overlap in time and the two events will sum in amplitude.
This probability of random summing is proportional to the
square of the input pulse rate i.e. prob(random summing) oN2
where N is the input pulse rate.

" The problem of dead-time and pulse pile-up is always
encountered in precision gamma-ray intensity measurements.
Several methods have been proposed to correct for the above
effects [34-421, but most reviews [38,39,431 showed the
advantage of the pulser metheod. This method was originally
praoposed by ANDERS [381 and BOLOTIN et al [39]1 which considers
that pulses from the pulser if introduced along with the
detector events will suffer losses in the same proportion as
those coming from the detector.

The pulser method is chosen for this work. In the
methaod, a pulser signal of known repetition rate is introduced
along with the detector eveﬁts. The area of the pulser peak,
divided by the number of generated pulses, gives the

correction for pile-up and dead—-time:

25



where N = number of nuclear events, with zero dead-time

and pulse pile-up

N~ = recorded number of nuclear events.
P = oenerated rate of pulser events.
P~ = recorded number of puiser signals.
Te = real (clock) counting time.

In order for the abave relation to hold, three
criteria have to be satisfied to assure that the pulser
signals are introduced in the spectral distribution as if they
were a true spectral component:

1) The shape of the pulser signals entering the preamplifier
must resemble that of the detector signals.

2) The pulser signals have to be introduced in a random
saequence with respect to the detector signals.

3) the pulser rate must be always at a constant fraction of
that of the detector rate.

The Ffirst criterion was satisfied by feeding pulses
from the detector and the pulser simultaneously into the
preamplifier. The amplifier ocutput of these two socurces were
then viewed on an oscilloscope and the pulser signals were
shaped to resemble the detector pulses by adjusting the rise
and fall times of the pulser signals.

When detecting long lived nuclides or when the change
in the count rate during counting is negligible, criterion (3)
is satisfied by keeping the pulser signral at constant rate
during counting (constant pulser method). When the source
decay rate is not negligible during counting, criterion (3)

can be satisfied by using the proportional feedback method
26



[261 which works as follows: A fast discriminator
continuously monitors the number of pulses arriving from the
preamplifier and the output pulses of the discriminator are
applied to a fast scaler that resets after a preset number of
counts. At the end of the scaling cycle, a trigger output
from the scaler is used to initiate a pulse generator signal
that is injected into the amplifier input. The scaler is
reset and a new cycle is started.

The combination of fast discriminator, pulse shaping
circuitry and recycling scaler in the above method will
introduce an uncertainty [35]1 in the counting losses, also the
proportional feedback method only gives more accurate results
than the constant pulser method when the counting rate of the
detector is time dependent [35]1. According to JUNOD [371, the
detector count rate can be considered time independent as long
as the counting period does not exceed 27 of the nuclide’s
half-life.

The constant pulser method is the one chosen in this
part of the work, since all nuclides used are 1long 1lived
(compared to the counting period).

In using the pulser method, extra care has to be
taken [351 to avoid the systematic error arising due to the
fact that pulser signals come evenly spaced in time, and thus
they are able to interact with the detector signals, which are
randomly distributed, but not with themselves. As they are
also part of the dead-time causing population, the sampling is
not correct, because the losses suffered by the pulser signals
will correspond to the dead—-time produced by the detector
signals only, whereas the détector signals will be lost at a

rate determined by the combined dead-time produced by the
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pulser and detector. This problem was recognized by BOLOTIN
et al [39]1 and he recommended the use of a pulse rate as low
as possible, in order to maintain its dead—time contribution
at negligible levels.

On the other hand the interactions between the
detector and the pulser signals are random events, and as such
are governed by statistical laws, and the precision of the
measurements will grow with the number of counted signals.
With relatively long-lived nuclides, the low repetition rate
of the pulser may be compensated by a sufficiently 1long
counting period, so thét the statistical error due to the
pulser will be negligible. But when short-lived nuclides are
being counted, the initial counting rate must be high and the
counting period short if meaningful results are to be obtained
L441.

Since the 1lost pulser pulses are due to random
interaction with the detector events, the variance in the

dead-time and pulse pile-up correction is then estimated as:

assuming any fluctuations in P are negligible.

The variance in the total count in the net peak area

is then given by:

P N
oﬁ= N | —5 % (—52

P N

r r

2.4 Coincidence Summing

In high precision gamma-ray intensity measurements,
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another wumning correction has to be taken into account which
i= bowwn as coincidence summing.

Since the lifetimes of nuclear levels for gamma-ray
decay are much shorter then the charge collection time in a
Ge(L1) detector, coincidence summing will occur with
radionuclides emitting two or more cascading photons within
the resolving time of the detector. If for example, the first
photon deposits its total energy in the germanium crystal and
if the second photon is also detected, a sum pulse is
recorded. The event is lost from the full energy peak of the
first photon. The probability and magnitude of such summing
occuring depends on the specific features of the decay scheme,
and it increases with decreaéing source—-to—detector distance,
but is independent of the count rate.

Several authors [45-481 have pointed to this problem
and have given useful correction formulae. Consider the
simple decay scheme shown in fig9.2.7 which is wused in
explaining the principle of the coincidence summing correction

factors.

B(3

W(S,2) W(3,1)

U

8(2)

E1l -
W(2,1) E

8cn E2

4 1

Fig.2.7 Simple cascade decay scheme
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where A = Activity in disintigration per sec.

B(I) = probability of direct transitions to level 1
per sec
W(j,k) = Total branching ratio (i.e gamma-ray pPlus

internal conversion for transitions from level
jJj to level k.
Neglecting coincidence summing, the number of
gamma—rays with energy E2 in the photopeak are
1

= A.B(2).W(2,1).€ (2,1). +
P (1 + x(2,1))

1
A.B(3) . W(3,2) . H(2,1).€ (241). (2.1)
(1 + x(2451))

where «(2,1) = Internal conversion coefficient for
transitions from level 2 to level 1 (which is
the ratio of the number of internal Conversion
‘electrons to the number of gamma-rays emitted)

€p photopeak detection probability.

When including coincidence summing but assuming that
angular correlation between gamma-rays can be ignored, the
recorded number of gamma-rays with energy E2 in the photopeak
is smaller. Since each gamma with energy El1 is followed by a
gamma with energy EZ in coincidence, it may happen that both
gamma rays are detected at the same time thus 1leading to a

single pulse. So the true number of detected E2 gammas are:

1
= A.B(2).W(2,1).€ (2,1). +
P 1 + x(2,1)
1
A.B(3) . W(3,2) . W(2,1). € (2,1). -
P 1 + x(2,1)
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1 1
A.B(3) . W(3,2).W(2,1). . E (3,2).€p(2,1). -

1 + x(3,2) T 1 + x(2,41)
(XK 1
A.B(3).W(3,2).—————————.QK.ET(X).W(2,1).Ep(2s1).
1 + x(3,2) 1 + x(2,1)
(2.2)
where €t = Total gamma-ray detection prabability.
€T(X) = Total X-ray detection probability.
xg = K-conversion coefficient.
2t = Fluorescence efficiency.
XK

————— = prab. of internal conversion from K-shell.
1+x(I,J)

In the case of an electron capture (E.C) decay
scheme, the B(I) ‘s represent the percentage of E.C decays to
level 1 per sec. Then each B(I) in equation (2.2) is

multiplied by

(1 - e7(X).PK.Qp)

il

wheaere PK

S

praob. of E.C from K-shell.

prob. of K X-ray being emitted in preference

I

to an auger electron.

Therefore the net peak area of E2 is to be multiplied

by the correction factor

aqn(2.1)
ct = ————
eqn(2.2)

Similar correction expressions can be obtained for E1
and E3, except that the observed E3 rate will be greater than
the true rate due to gamma-rays E1 and E2 being detected

simultaneogusly.
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In order to determine the true detection rate, these
correction factors have to be applied. Several programs are
available which calculate the correction factors [43-471.
Programm KORSUM [47]1 is the one chosen for this work because
it allows for coincidence summing of gamma-rays with X-rays
following internal conversion or electron capture.

The following input data are required by program
KORSUM = type of decay (heta, E.C), emission probabilities,
mean energy of K X-rays, F1ugre502m&@_ yield. Also at each
source—to-detector distance to be used,; a set of values of
photopeak and total efficiency have to supplied, from which
efficiency curves are set up and the photopeak and total
efficiency for any energy can be calculated.

The parabolic fit for £n(efficiency) vs 1ln(energy
used by KORSUM for efficiency curves is replaced by a «
.bettevs efficiency function (see section 2.5 below).

Coincidence summing can be ignored if C471 the

source—-to-detector distance is greater than 20 cm.

2.5 Efficiency and Efficiency Curves

Accurate calibration of the detecting system for the
full energy gamma-ray peak efficieny as a function of energy
is necessary in order to make precise and accurate
measurements of gamma-ray emission rates and intensities. The
most accurate efficiency calibration is achieved
experimentally by wusing a set of single 1line gamma-ray
standard sources, of known energies and activities which
covers the energy range of interest, or a few sources that
provide a series of lines of known intensities, as long as the

count rates in the peak areas are corrected for coincidence
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summing effects.

To calibrate the detector used in this work, a set of
single-line gamma-ray standard sources with well known
absolute activities and energies ranging from 579-1115 keV were
used. The sources are 24iam (59 keV), 10%cd (88 keV), 57Co
(122 and 136 keV), 139%Ce (165 keV), 113sn (391 kev), 137Cs
(661 keV), S4Mn (834 keV) and ©5Zn (1115 keV).

The photopeak efficiency is calculated from the

following relation:

N
€, = = (2.3)
AoPY'D'C
where N- = the count rate in the net peak area corrected

for dead—-time, pulse pile—up and coincidence
summing.

Ap = the source absolute activity at some reference
time |

PY = the gamma-ray emission probability.

D = e_Atd
= correction factor for the source decay between

its reference time and the time of counting,
where A is the decay constant and t4 is the
decay time.
(1 - e Mec )

[ =

A

carrection factor for the source decay during

]

counting, where tc is the counting time.

33



and the error in the efficiency is given by:

1+ B ¢ 2 T,

N A P o 4
o2 = & | 5% —H% —H D P
P N_ A, P, D c
[+2
where (—2)2 = t2 qz
d A
D
2
-At
T o t e "€
c.2 _ A c 2
and T TR TR | A

assuming any errors in t. and ty are negligible.

In the total efficiency calculation, for each source
the pulse height spectrum was recorded on an energy calibrated
multichannel analyser. The total efficiency is calculated
using eqn (2.3), but N. in this case is the total caount rate
between the threshold energy and the maximum energy [471 after
subtracting the background. Pulses below the threshold energy
w ere taken intb account, by fitting the low energy side of
the spectrum with a polynaomial (first order polynomial was
adequate), and integrating between zero and the threshold
energy.

For the sources used, small contributions of weak
X-rays have to be subtracted (for more detail see DEBERTIN
£471).

The uncertainties in the €7 obtained in this work
vary from 27 to 8%, mainly due to the extrapolation to zero
energy and the subtraction of the 1low energy X-ray and
gamma—-ray contributions.

In practice the gamma—ray emission rates under study
are of energies different from the ones used to calibrate the

detector.  So a construction of an approximate efficiency
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curve from the measured efficiences is needed so that the
curve can be used to determine efficiencies at different
energies.

Many classes of functions have been proposed by
different authors to fit the efficiency data with a smooth
continuous curve. P.W.GRAY and A.AHMAD [49] carried out a
survey of these fitting functions, and they showed that most
of these functions are nﬁn—linear in the parameters which
could lead to bias in the estimate of any interpolated points
and their errors.

As a result of their survey they proposed the
following linear function:

€ar = (Pi+PnE+P3(EnE) *+P (£nE) +P5(£nE) S+P (2nE) T ) /E

where Pi— Pg are parameteré to be determined by the
experimental data and E is the gamma ray energy in MeV. The
last term (P (ELnE)7) is only needed if the energy range is
extanded [49] below 120 keV or above 18346 keV.

The photopeak and total efficiency data were fitted
to the above functional form using a least-squares method.
The measured and fitted efficiencies are shown in fig.2.8. and

fig.2.%9.
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CHAPTER THREE

GERMANIUM DETECTOR RESPONSE FUNCTIO

In the last several years Ge and Ge(Li) detectors
have been widely used for measuring the intensities and
energies of gamma-rays, because of their excellent energy
resolution. The aécuracy of the ogamma-ray intensities
obtained depends critically on how precisely the full-energy
peak efficiency of the detector in use is knaown.

Usually the most accurate efficiency determination
(as discussed in chapter two) is done by employing a set of
standard r‘e.'l;eAre‘ncé gémﬁé—ray' sources of well known emission
rates and energies which cover the range of interest.

The points of interest in the precise calibration of
Ge and Ge(Li) detectors have been discussed and studied in
detail by several authors [146,456,47,501. They calibrated
their detectors with errors of about 1%Z or less. Normally one
determines ihe efficiency for several source—to—-detector
distances and then to use these efficiencies we are limited to
these particular geometries. The constraint of using the same
geometry limits the comparison to source intensities of almost
the same order of magnitude of that of the standard source.
Comparison between measurements of different geometries
introduces the need for solid angle corrections.

There are many papers [51-54]1 dealing with different
methods of efficiency calculation using solid angle geometry
corrections. This involves a large number of complex
measurements,; and the geometrical solid angle alone cannot

fully account for the geometrical aspects of the peak
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efficiency [511. Also using the active volume dimensions of
the detector to calculate these corrections is not feasible
[351, because they are only known to a first order
approximation.

Thus it would be convenient, if the detector
efficiency could be calculated rather than measured for any
source—to-detector distance with the leést possible
calculations and knowledge of the detector dimensions.

In this work an empirical function for representing
the photopeak efficiency as a function of energy and distance
(in the X—axis direction) based on the point detector model is

proposed and tested.

3.1 Experimental Set-up and Detecting System

The detecting system consists of a closed-end up
right Harshaw Ge(Li) detector, madel AC0&& with a 70 cc
crystal and 2.1 keV resolution at 1.33 MeV. The accampanying
electronics are an Ortec 472 amplifier, Ortec 459 pawer
supplys a Northén Econ II series A.D.C and multi-channel
analyser with a 1024 channel memory and a B.N.C FB.4 pulse
generator.

The standard gamma-ray sources used are listed in
section 2.4 and were caommercially obtained. The sources are

in the form of liquid, depasited and encapsuled hetween two

thin polythene sheets. The sources are within 3 mm in
diameter. A drawing of the source assembly is shaw in fig
3.1b.

A plastic source holder is constructed so as to
position the sources at various distances from 1 - 16 cm at 1

cm intervals from the top of the detector aluminum can
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assembly which encloses the germanium crystal. A drawing of

the detector-sample holder assembly is shown in fig.3.1la.

3.2 Experimental Procedure

The experimental procedure to determine the photopeak
efficiency is as follows: A source is placed at a selected
distance from the detector aluminum cap. A spectrum of that
particular source and geaometry is accumulated in the MCA
memoryy, then printed out on a teletype printer. This
procedure is repeated for each source at each selected
distance. Measurements are made at the following distances:
1.4 2., 3.{ 47, 57, ;0. and 16. cm.

The efficiency (photopeak efficiency) is calculated
using the relation described in section 2.5. But since in
this part of the work, the efficiency is measured as a
function of distance, and at short source—to—detector
distances the standard sources can not be considered as point
sources any mores the efficiency measured with a finite source
is multiplied by a correction féctor to determine the
efficiency for a point source. The point source photopeak

efficiency is then given by:

Nc
Ep = — (1 + B)
AopyD'c
where B is the caorrection factor for deviation from a point

source, and it is given by (see appendix A):
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Fig. (3.1a) Detector-Sample Holder Assmbly.
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Fig. (3.1b) Source Assembly.
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where R = 1.5 mm and H = 0.05 mm and they are the radioactive
source radius and thickness respectively. dg is the distance

of the detector below the aluminum cap as shown in fig 3.1b.

3.3 Limits On The Precision

In developing an empirical function, where the
parameter wvalues and their upcertainties depend entirely on
some experimental measurements (random variables) and their
uncertaintiesy, a careful and accurate assessment of the
measurement errors is necessary.

The uncertainty in the photopeak efficiency is

- calculated from the following relation (see section 2.3):

[+2 [+ [+ 2 [+ 3

€ N A P o 3
(—232 = (—5)% & (—52 + ()2 4 (D)2 4, (E2
Eb Nc An PY D C

However , since in this part of the work, the
variation of efficiency with distance is bheing investigated,
it is also necessary to estimate the uncertainty in the count
rate due to uncertainties in determining the source position.
These uncertainties arise from three sources which have to be
added to the above relation:

(i) the location of the active material within the standard
(og51)

(ii) the location of tﬁe standard source within the source
holder (ogn)

(iii) the location of the source holder (ogh).

So the factors to be added to the above equation are

(see Appendix A):
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(-=L,2, (sh,2, . smz2 B2
N N N N
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<

The general least—-square. model is used to determine

the parameters of the empirical function by minimizing the x2

function
x2 = (v-Fe )V iev-Fimr - (3.1)
where Y is a vector that contains the experimental

measurements
F(p) is a vector containing the parameters that form
the predicted measurement.
V is a vector containing the variance—covariance
matrix of the experimental measurements
T and -1 refers to transpose and inverse repectively.
If no correlation exists between experimental measurements
then vector V is a diagonal matrix.
The variance—covariance matrix components are
calculated as follows: Let i and r denote the ith and rth
gamma-ray energys j and s deqote the source position (distance

from the detector cap).

Consider Cov(ocgs (i) ys0- (rs))
€p €p 'l

whenever the same source is used op, o)y Opys G051 and opg will

be carrelated with ¢=1, contributing the components:

G‘A O’p °_2 02 0_2 0_2
__% + _;. + ._12).. + _g + _S_l_ + _B
A P D > NS N2
0 Y c C
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when the same shelf position (distance) used, the contribution

to the covariance is

csh(1).csh(r)

Ng (i) . Ng €5)

The variance—-covariance matrix is calculated from the

following relation

(i3 =
Cov( Te, 13),cep(rs) )

GNC(IJ).UNC(FS) 0A0(1J).0Ao(rs)
€ (ij).€ (rs) S, .8.5 + sir +
P P N _ (ij).N _ ¢rsy 7 3 A (ij).A _(rs)
c c 0 0 -
o (ij).o _(rs) o (ij).o_(rs)
D D s+ C C 5.+
D(ij).Dt(rs) 7 Ctij).Ctrs) 7
o (ij).o (rs) ..
pT PT R . 651(13).051(rs) . .
.. ir . . ir
pY(IJ)'PY(rS, Nc(13).NC(r5)

o.{ij3).0_(rs) o, {(ij).o (rs)

B B 5. + sh sh 8.5 +
N (ij).N ¢rs) 7 N ¢Gij).N (rs) 7

C c C [y

o (ij).o  (rs)
sm sSm

N (ij).N _(rs)
(s c

——————— 1 for x =y

where by =

bm——-9 0 for x # y
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3.4 Results and Empirical Formula

The measured efficiéncies as a function of energy are
shown in fig.3.2 for different distances. As can be seen, the
variation of efficiency with energy for the same distance is a
typical germanium response to gamma-rayss and they can be
fitted to curves similar to the ones used in section 2.3 as
shown in fig.3.2.

To find a relationship between efficiency and
distance, first we consider the idea that a Ge(lLi) detector
can to some extent be considered as a point detector (the
point where the detector can be considered to be concentrated)
by introducing the idea of an effective interaction depth d
[35,56,571. The effective interaction depth is defined as
distance below the surface of the outside detector mounting
can at which a gamma-ray of particular energy appears to
interact or gives up all its energy.

This pbint detector behaviour can be shown by
plotting EE% against distance x (where x 1is the measured
distance from the top of the detector can). Fig.3.3 shows
that behaviour for 24iam (60-keV), 137Cs (&b61-keV) and 55In
(1115-keV), except at short source-detector distances [431].
By letting &, + © so that e;% + 0, or by extrapolating the
straight lines of fig.3.3 to cut the X-axis, the value of d,
is that value on the X-axis below the origin where it
intercepts. And it can be seen that d; varies with energy.

If the point detector behaviour is corrects then the
photopeak efficiency for a certain energy E¢ as a function of

distance x can be written in terms of do(EY) as:s
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1
€ (x,Eyp) @ = . (3.2)

KAWADE et al [57]1 proposed an energy and distance
dependent correction factor on the basis of the point detector

.

model. This is 9iveﬁ~by:

Ep(x ,‘E?)

OBy = €_(20,E_)
P oY
where €p(x,Ey) and Eb}ZO,EY) are the photopeak efficiencies at
distance ¥ and 20 écm respectively. So by knowing the
efficiency for a particular energy at 20 cms then the
efficiency for that energy can be calculated for any distance.
However, standard sources with energies identical to the ones
of interest or under study are not always available.

In order to test the validity of equation (3.2) for
representing efficiency as a function of distance, first we
consider the Ge(Li) detector as a point detector, and then
take into account the deviation from a point detector (at
short distances).

The deviation from a point detector behaviour at
short distances, is due to the deviation of the gamma-ray beam
from a parallel beam [5371. KAWADE et al [57]1 showed that the
deviation from a point detector behaviour at short distances

can be represented by the functional form,

S(x,Ey) = a(Ep.e D Ey)-x

where S(x,EY) is the deviation factor for gamma-ray energy Ey
at distance x, and it decreases with increasing distances.

So the following functional form is proposed to
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repr2sont the vari-fi..¢ . th2 photopeak efficiency of energay

E-{ with distance:

- P(EY)

(x + do(ET))

EP(X,E (1 - S(x,EY)) (3.3)

Y 2
where P(EY) is a geometry independent efficiency parameter.

The measured efficiencies of the same energy, at
different distances are fitted to the. functional form of
equation (3.3). The general least—square method is used to
determine the parameter values, and by performing minimization
on equation 3.1, the goodness of fit is determined by studying
the values of X2. The CERN library code MINUIT [321 is used
to pefform the minimizatian.

The chi-square values for the individual fits are
shaown in table 3.1 and the probability distribution of these
X2 values is shown in fig.3.4. And as it can be seen that the

X2 values pass the two tail test at 95%Z level. These
results indicate that equation 3.2 is adequate for efficiency
representation as a function of distance.

Fig.3.5 shows the measured efficiencies Vs distance
for different energies, and the fitted efficiencies using
equation 3.3 and the parameters DbtAined from the individual
fittings.

The parameters P(Ey), dg(Ey)y a(Ey), b(Ey) and their
errors cbtained from fitting measured efficiencies of the same
energy but different distances to equation 3.3 are listed in
table 3.2. In order to develop an empirical formula from the
measured efficienciess which relates efficiency to energy and
distance simultaneously, functional forms which represent

these parameter variations with energy are required.
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Table 3.1 The X2 values per 3 degrees of freedom
for individual fits of efficiency versus distance

for different energies

Energy in x? value for
Y 3 degrees of
freedam
60 5.79
88 3.66
122 1.61
165 2.16
391 3.72
661 1.53
834 2.72
1115 2.51
0.0 0.5
| &1 i ——f—— 31—t 141 1

Fig.3.4 Fraobability distribution of X2 values
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Parameter P(Ey) is the inverse of the(ﬁlcpérbf the
lines in fig.3.3. Different functions are tested to fit the
P(Ey) values listed in table 3.2 and the best fit is obtained
from the linear‘function proposed by AHMAD and GRAY [4%21 which
represents the efficiency as a function of energy in the
following form:

2 3 S 7
P(EY) = (p1+p2£nEY+p3(£nEY) +p‘(£nEY) +p5(£nET) +p6(£nET) )/EY

where Pi 0-018' P2 = 0.00192, P3 = 0-002é4, P‘ = 0-00169,

pg = —0.800x10™&, p, = -0.425x1075 and Ey is in MeV.
The values of P(Ey) from table 3.2 and the above
Afittedﬁfunc?ion‘versus energy are shaown in fig.3.6.

The values of the interaction depth parameter dg(Ey),
obtained from fitting the efficiency for each energy against

distance and listed in table 3.2 are fitted to a functional

farm given by:

dg(E) = p7 - pge PoEY

where p; = 3.26 cmy pg = 1.76 cmy Py = 0.00347 and Ey in MeV
The values of dj(Ey) and the above fitted function
are shown in fig.3.7. As can be seen from fig.3.7,y as the
gamma-ray energy Ey 3+ 0, the value of dy is equal to pyPg
which is the distance between the surface of the active volume
and the outer detector cap. As Ey goes to © the value of dg
is equal to py the distance between the outer detector cap and
the centre of the active volume. From the above parameters
(P7 and pg)s it suggests that the detector active crystal is
of 3.52 cm vertical thickness and mounted 1.5 cm below the top

aluminum cap.
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Table 3.2 Determined parameter values from individual

fitting of efficiency Vs distance for the same

energy
Energy
P (Ey) dg (Ey)
in keV
&0 29.2 + 0.61 1.82 * 0.05
a8 77.1 £ 1.0 1.96 + 0.07
122 87.6 * 1.1 2.14 * 0.07
165 81.9 + 1.2 2.32 % 0.11
391 43.5 t 0.9 2.79 * 0.06
661 25.8 + 0.7 3.11 *+ 0.08
834 21.0 ¢ 0.6 3.12 + 0.09
1115 17.1 + 0.7 3.24 * 0.05
a(Ey) b (Ey)
60 S.15 + 0.31 0.75 + 0.11
88 4.05 t 0.35 0.62 * 0.10
122 3.15 t 0.25 0.67 * 0.13
165 2.75 + 0.41 0.63 + 0.11
391 1.21 * 0.31 0.83 t 0.16
661 1.15 * 0.36 0.78 * 0.13
834 1.15 * 0.32 0.84 % 0.15
1115 1.05 + 0.29 0.88 * 0.18
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The a(EY) values are fitted to a function of the

farm,
= .103)P11
a(EY) pio(EY 10%)
where Pjp = 6.61 and p;y = —0.573. The values of a(Ey) and

the fitted function are shown in fig.3.8.
Due to the large errors on b(EY) values,.a straight

line is adegquate to represenf the b(EY) variation with energy

as shown in fig.3.9, so that,

b(E) = 0.72 = py,

Using all the above relations, the functional form
propased to represent the photopeak efficiency as a function

of distance and energy is:

2 3 S T
p1+pz£nET+p3(£nEY) +p‘(£nEY) +p5(2nEY) +p5(1£nEY)

€ (X’E )= —
i v Ey- (¢ + Pz = pge PoEy 42

L1 - (piotEY.103)piie"p12'“)) (3.4)

This function was tested by fitting the experimental
efficiencies of different energies at different distances
simultaneously to equation (3.4) using a least-square model
and performing minimization on a X2 function similar to that
of egquation (3.1).

The CERN library code MINUIT [32]1 is used to perform
the minimization. The value of %2 obtained for 45 degrees of
freedom is 54 which passes the chi-square test at 95%Z level.
This is an indication that the photopeak efficiency can be

represented by a functional form similar to that of equation
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(3.4). The 11 parameter valges and their standard deviations
obtained from the final minimization are listed in table 3.3
and the correlation coefficients matrix which is required for
error calculations of the calculated efficiencies is listed in
table 3.4.

Table 3.5 shows the measured and calcul ated
efficiencies and their errors. The error on the calculated

efficiencies is given by:

%pra1 %€pcal ..
. -0{iyj).ojo;
1 Pj oP j

L,

T~

gpcal .

where ¢ij is error of parameter i
e(iyj) is the correlation between oj and T; and

n is the number of parameters.

3.9 Conclusion

Fig.3.16 shaws the calculated deviation factor
S(x,Ey) for 24ipm (60-keV), 57Co (122-keV) and 55Zn (1115-keV)
versus distance. As can be seen this Ge(Li) detector behaves
like a point detector for distances above 8 cm. The deviation
of the experimental efficiencies from the calculated ones are

shown in fig.3.11, where A is

¢ Epcal - EF’exP )

Ebexp

All values of A are within 1.5%Z, and most of them are within
0.8%.
Whe® considering that the experimental efficiencies

are measured with errors of 1.5%Z at short source-detector
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distances to about 0.77 at large distances, fhe empirical
function of equation ((3.4) is a 9ood representation of
photopeak efficiency as a function of distance (one dimension)
and energies between 50-1115 keV. The lower limit is due to

the use of the linear six parameter function of AHMED and GRAY

L4921 in the empirical function.
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Table 3.3 Determined parameter values from the fitting
of efficiency Vs distance and energy

simul taneously

Determined parameter
parameter

values p A error
Py 0.17801 % 0.00012
Pa (0.21576 * 0.00043)x10 *
P3 (0.29003 # 0.00015)x10 1
P4 (0.15650 * 0.00005)%10 *
Ps (0.65213 * 0.00070)x10 °
Pe -(0.96802 + 0.00088)x10 *
Py 3.258 ¢ 0.006
Pa 1.665 % 0.013
Po 3.397 £ 0.055
Pio 5.12 + 0.32
Pey -.575 + 0.005
Pia 0.75 % 0.05
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tJ

!

4l

10

11

1 2 3 4 5 & 7 8 9 10 11
.092

-.097 .110 L
.091 -.106 .111
.092 -.107  .112 -.106 .
.086 -.102 .107 -.100 -.101

-.050 .059 -.062 .058 .059 .€S6
.020 -.033 .038 -.029 -.029 -.021 .015

-.046 .057 -.061 .055 .055 .0S0 -.030 .00S

-.081 .089 -.092 .091 .092 .090 -.051 .037 -.052

-.067 .079 -.083 .078 .079 .074 -.043 .020 -.040 -.048
.071 —.082 .086 -.082 -.082 -.078 .046 —-.023 .043 .070 .061

Table (3.4) Correction coefficients of the determined parameters.




Tabl:

3.5 Measured and calculated efficiebcies

Energgy Efficiency Efficiency
(keV) (Measured) (calculatted)
60 (0.278 + 0.004)x10 1 (0.281 * 0.00&6)x10 !
88 (0.177 * 0.002)x10 } (0.175 * 0.002)x10 !
122 (0.735 + 0.009)x10 1 (0.738 * 0.008)x10 1
165 (0.647 * 0.008)x10 (0.655 + 0.006)x10 1
391 (0.261 * 0.004)x10 (0.257 *+ 0.002)x10 !
661 (0.148 * 0.002)x10 1 (0.148 * 0.001)x10 1
834 (0.116 * 0.001)x10 1 (0.115 * 0.001)x10 1
1115 (0.869 * 0.009)x10 = (0.871 *+ 0.003)x10 2
1 cm Source-Detector Distance
60 (0.178 + 0.002)x10 1 (0.180 * 0.003)x10 !
88 (0.411 * 0.005)x10 1 (0.409 * 0.003)x10 !
122 (0.463 * 0.005)x10 1 (0.866 * 0.003)x10 *
165 (0.410 * 0.004)x10 ' (0.416 *+ 0.003)x10 1
391 (0.178 * 0.002)x10 1 (0.180 % 0.001)x10 !
661 (0.988 * 0.009)x10 2 (0.984 *+ 0.004)x10 2
834 (0.767 + 0.008)x10 2 (0.769 * 0.003)x10 2
1115 (0.580 * 0.006)x10 = (0.583 + 0.002)x10 2

2 cm Source-Detector distance
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Table 3.5 Continued
60 (0.120 + 0.001)x10 1 (0.122 + 0.002)x10 *
8a (0.282 + 0.003)x10 1 (.285 + .002)x10 !
122 (0.316 * 0.003)x10 1 (0.315 * 0.002)x10 *
165 (0.279 * 0.003)x10 1 (0.283 + 0.002)x10 }
391 (0.128 * 0.001)x10 1 (0.126 * 0.001)x10 1
661 (0.697 * 0.004)x10 2 (0.697 % 0.002)x10 2
834 (0.541 * 0.005)x10 = (0.547 * 0.002)x10 2
1115 (0.417 * 0.003)x10 = (0.414 % 0.001)x10 2
3 cm Source-Detector distance
60 (0.851 + 0.008)x10 2 (0.863 * 0.012)x10 2
88 (0.198 * 0.002)x10 1 (0.197 * 0.001)x10 *
122 (0.225 + 0.002)x10 1 (0.225 *+ 0.001)x10 !
165 (0.201 * 0.002)x10 1 (0.204 + 0.001)x10 1
391 (0.935 + 0.011)x10 2 (0.928 + 0.003)x10 2
661 (0.519 * 0.004)x10 2 (0.518 % 0.002)x10 2
834 (0.404 * 0.004)x10 = (0.407 # 0.001)x10 2
1115 (0.310 * 0.003)x10 = (0.309 % 0.001)x10 2

4 cm Source-Detector distance
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Table 3.5 Continued
60 (0.631 * 0.006)x10 = (0.639 + 0.008)x10 =
a8 (0.149 * 0.001)x10 T (.1481 * .0005)x10 !
122 (0.166 * 0.001)x10 * (0.168 * 0.001)x10 1
165 (0.151 * 0.001)%10 1 (0.153 + 0.001)x10 }
391 (0.717 * 0.007)x10 = (0.709 *+ 0.002)x10 2
661 (0.399 * 0.003)x10 = (0.399 + 0.001)x10 2
834 (0.311 + 0.002)x10 2 (0.314 + 0.001)x10 2
1115 (0.239 * 0.002)x10 2 (0.239 + 0.001)x10 2
S cm Source-Detector distance

60 (0.215 *+ 0.002)x10 2 (0.217 % 0.002)x10 2
88 (0.513 + 0.004)x10 2 (0.511 % 0.002)x10 2
122 (0.592 + 0.004)x10 2 (0.588 + 0.002)x10 2
165 (0.539 * 0.005)x10 2 (0.542 * 0.001)x10 2
391 (0.265 * 0.002)x10 2 (0.265 + 0.001)x10 2
661 (0.153 + 0.001)%10 = (0.1527 * 0.0003)x10 =
834 (0.120 + 0.001)x10 = (0.1211 * 0.0002)x10 2
1115 (0.931 * 0.007)x10 > (.927 * .001)x10 >

10 cm Source-Detector distance
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Table 3.5 Continued
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CHAPTER FOUR

FLUX PARAMETERIZATION

In almost all cases, when measuring the neutron flux
spectra or when using neutron activation analysis, the
quantity which is measured is the reaction rate. By
definition the reaction rate per target atom of a given type
is given by the product of the flux per unit energy interval,
f(E), times the microscopic cross—sectiony ¢(E), integrated

over all passible energies

o (E) f (E)dE.

The purpose of a neutron Fflux convention is to
simplify the calculation of reactiaon rates in typical reactor
spectra in which both thermal and epithermal neutron
contributions are significant, hence enabling the unfolding of
different information concerning the neutron flux and the
nuclear data of the irradiated isotopes from the measured

reaction rates.

4,1 Resonance Integral Convention

If the neutron abso?ption can be formulated in terms
of resonance absorption at certain distinct energies, then the
cross—section for absorption due to resonances (providing the
resanances are not too close together ) is considered to be
the sum of single Breit-Wigner terms [2]
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N
¢ (E) = | o) (4.1)

i=4
where i refers to the ith resonance
Eri # I‘ir‘Y‘i

and c.(E) = Gri > 2 (4.1a)

t E TS+ 4(E - E_.

i ri

and %i -is the eneray of the ith resonance,

r; is the full width of the ith resonance,

rYi is the partial width of the ith resonance for

radiative capture
6ri 1is the peak cross—section at that resonance

energy.
It can be seen that when the resonance energy E,. is

much greater than the neutron kinetic enerqgy E, or

asymptotically, as E #» O then

Eri
ci(E) 2+ o .

and the cross—section essentially varies as (1/v), and hence
the 1/v tail at low eneragies.
It also can be seen that above the resonance energy
E, as the neutron energy E + ©® then
ri Efi Ti Tyi

o. (E) -
5
1 ag®

the cross—seéﬁnn varies as the~- 3/2 power of the neutron
energy. Because of this great variation with energy above a
resanance [2]1, isotopes with resonances near the thermal
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region are used as absorbers (e.g9.s cadmium ) which will
absorb all neutrons below a particular energy and transmit all
those above it.

The integration of equation 4.1 between the energy
limits E; * Eps is known as the resonance integral I, and is

given by:

and the reduced resonance integral 1° is defined by:

Ez
. dE
I = o (E) —
R E
Ey
where o({E) = cR(E) + cl/v (4.1b)

the second term on the right hand side is the 1/v contribution
to the resonance cross—section.

The upper limit of the integration, E; is normally
taken as 1 Mev or infinity but the difference it makes to the
integral value is not significant, but this is not true in the
case of the lower 1limit E;. STOUGHTON and HALPERIN [21

defined the resonance integral as:

1 Mev

dE
oc(E) —
E

-
]
Il

pkT
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and another convention wused by HOGDAHL [31 defined the

resonance integral as:

1 Mev
dE
I = o(E) — (4.2)
E

ECd

where Egg is the cadmium cut-off energy and is defined below
in section 4.5.

The most commonly wused convention in activation
analysis is that of equétion (4.2) with a variation in the
upper limit which is set to infinity. So the resonance

integral is defined here as:

Ig = o(E) — (4.3)

The cadmium cut—-off energy Epgq has been set at 0.35 eV for a
cylindrical cadmium box with a uniform wall thickness of 1 mm

as reported by GOLDSTEIN et al [381].

4.2 Neutron Flux Convention

The neutron flux convention adopted in this work is
taken from AHMAD [13] and is similar te that used by BEREZNAI
and MACMAHDN}[B] and also has features in common with that of
DE CORTE et al [?1]. The flux convention is reproduced here
for the sake of clarity.

The reaction rate, or saturated activity per target
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atom

where

far

s o, VY Yeneo of reaction is given by:

th Yth T ¥ 1% (4.4)

$+h is the conventional Maxwellian thermal flux
equal to ngpvys the product of the thermal
neutron density, and the reference speed of 2200

m/s.

Oth is the effective activation cross—section for

cadmium absorbable neutrons, and it is given by:

cd

_ e i
%th = 9% + o(E) — & dE (4.5)

where pkT is the energy dividing the thermal
region from the epithermal region. The second
term on the right hand side corresponds to the
cross—section for neutrons in the energy
interval between pkT and Epg

L I is the epithermial flux per unit £nE at energy
E s which is an arbitrary energy chosen for

convenience to be 1eV. i.e

for (E 3 pkT) (4.46)

where fgo(E) is the epithermal neutron flux

density, assumed proportional to 1/E1*%, and
Ig(x) is the effective resonance integral in a

non—-1/E spectrum, defined similarly to equation

(4.3) s but it depends on the value of «:
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- R

Io(u) = c(E) rp

dE (4.7)

ECd

Toa deal with the integral from pkT to Egg which
appears in equation 4.5, the dimensionless quantity W(x) is

introduced, and it is given by:

Eca o
. 9%,V Ey
W) = =— o(E) — dE (4.8)
1t
0 v E
ukT

The factor 9, is the well known Westcott g-factor
that allows for deviations from a 1/v cross-section in the
thermal region, and for 1/v cross—-section g9 = 1. W is the
factor allowing for deviation from a 1/v cross—section between
BkT and Ecgs and for a 1/v cross-section W= o.

Combining equations 4.4, 4.5 and 4.8B gives:

A = §th960 + QE cow (x) + goufi(u) + Io(u) ] (4.9)
ECd
Vo E:
where filx) = — dE (4.10)
1+«
E
pkT

which can be easily evaluated for any value of «.

I(x) is not a nuclear constant because of its
dependence on «s and in order to evaluate it from available
nuclear data, use is made of the concept of the effective
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resonance energy Er introduced by RYVES and PAUL [&61 and
defined as "The energy of a single resonance which gives the
same resonance activation effect as the actual resonances for

- the isotope"”. It is given by:

o .
E I (x) ( Ig(x) — g0 _f _(x) )
= = = 0 2 (4.11)
E_ I (o) ( Ig — go f,(0) )

where f5(x) is the 1/v contribution to the resonance integral

and is given by:

dE (4.12)

and by rearranging equation 4.11 we get

Ei ("4 IO
)" ( — - fz(u)) + fz(u) (4.13)

Io((x) = go { —
E, =13

Combining equationg (4.%9) and (4.13) gives

W (x) Ei « Io
A = $.n99,* $ 90, + f () + (7)) (—— - £ (0)) + £ ()
9 Er aFg

(4.14)
In neutron activation analysis, when an element is

irradiated in a neutron flux, then counted on a gamma-ray

spectrometer the saturated activity per target atom is given

by:
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N M
A = = (4.15)

NAVBPYmEYSDth

where Nc is the net peak area in the gamma ray spectrum
corrected for losses due to deadtime, pulse
pile~up and coincidence summing.
M is the atomic mass of the target isotope
Nay 1is Avogadro’s number
8 is the natural isotopic abundance

P? is the gamma—-ray emission probability

Ey is the gamma-ray photopeak efficiency

m is the element mass

S is the correction factor for saturation during
irradiation
= (1 - e Ati )

D is the correction factor for decay between
irradiation and gamma-ray counting, as defined in
chapter two

c is the correction factor for decay during
countings as defined in chapter two

t- is the clock counting time.

When equaténg equations (4.14) and (4.13) the four
items of nuclear data (8, Pysy M and go3) which appear as a
product are treated as a single compound nuclear constant, =,
where

n = BPngnh_l . _ (4.16)

and the advantage of ®n as a constant [11] is that, although

the individual components of the nuclear data may not be known
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precisely, the n constants themselves can be determined from
reaction rate measurements with a precision greater than that

of the individual compoments. SIMONITS et al [59] used a

nuclear constant K where
OQAU
-1
8P gcoﬂ |
Ky oy = Y - = — (4.17)
’ —
(BPTQUDM. )Au ﬂAu

Combining equation 4.14, 4.15, 4.16 and letting E; =

l1eV gives

w .
Ng = Ny,n {8, + #_ E 0+ E TN - £, + 0|3
. . 9 : 960
— (4.18)
where N_ = meSDCtC)-l

s

Its equivalent for cadmium covered activity is given

by:
= -« o
= - + .
NCd NAV“ QE{(EF) fg(ﬂ) fz(m)} (4.19)
o
0
and for the cadmium ratio ( RCd = )
NCd
$,, /7% + W (x)/9 + f4(x) '
R. —1 = th e (4.20)
Cd I
= 0 .
(Ep) —_ - fa(o) + fz(u)
900

Then in order to use the above equations in neutron

activation analysis, it is necessary to know:
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W () _ I,
s TN )\y Er- and ——

9 990G,

(1) five items of nuclear data,

(2) two cut—off energies, pkT and ECd

(3 three neutron flux parameters, o, ¢ thand é e

4.3 The Calculation of W’ (x)

The non—1/v part of the resonance activity produced by
neutrons with energies between the cadmium cut—off energy Ecg
and the epithermal cut—off energy pkT, is given by the
quantity W'(x). It was shown by AHMAD [111 that W is weakly
dependent on «; and so it is justified to replace W' (x) by W’

(i.e. for o = Of and then W’ is given by:

1 E, 4] °E
W' = — C(E) - 9o ( — ) — (4.21)
pkT

It is assumed that only the lowest principal resonance
departs from the 1/v dependence between the 1limits of
integration f£601. Using the Breit-Wigner formula of equation
(4.1) For this resonance, the integral can be evaluated
numerically using the Simpson rule technique [10], or one can
use values of W° tabulated by RYVES and ZIEBA L[601, which are

shown in chapter six.

4.4 Calculation of E}

The effective resonance energy concept first
introduced by RYVES and PAUL [4]1 then redefined later by

L.MOENS et al [611 as:
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(x)

|
[N

(4.22)

(o)

[— Y

From equation (4.22) the effective rescnance energy is
a function of oy and thus in principle, is not a nuclear

constant for a given isotope.
If the reduced resonance integrals in equation (4.22)
are replaced by the summation of the integrated Breit-Wigner

terms for all resonances, and it is assumed that the resonance

peaks are narrow [61] then it can be shown that L[611]:

R
= .~ i 2 ri
(Er) = (4.23)
) T %Ty
. 2 E .
i ri
where i refers to the ith resonance and the other terms have

the usual meanings.

When expanding (E,-)_tx in a series, the higher order
terms can be omitted for sufficiently low E,. and/or low

x—values such that

()% = e XINE~  _ o _ alnE_). (3.24)

Introducing the expression of equation (4.24) for E- and E.j;
into equation (4.23)y and after some rearrangement [58]1 we

obtain an expression +for the effective resonance energy

independent of « :
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o. " .
_ - E .
1nE = 1% ri (4.25)
r o. T
E it yi
- E .
1 ri

L.MOENS et.al [611, showed that the error introduced
by the above approximation even for values of E. as high as
4000ev and values of x as high as 0.1 is not more than 1.6%.

In the tabulated values of E- by L.MOENS et al (621,
resonances below the cadmigm cut—-off energy were not taken
into account when calculating Ij and Ig(x). However since
only few isotopes show resonances . below that energy (e.g

178 u), these values are adequate for most isotopes.

4.5 Cadmium Cut—-off Energy ECd

The " effective cadmium cut-off" as defined in the IAEA
report [431 is the energy Egyg associated with a perfect filter
(infinite absorption below the cut—-off, and zero absorption
above it) under which an irradiated material would have the
same reaction rate as under a cadmium cover.

Because of the wide range of values of the cadmium
cut—off energy E.yq reported in the literature, the European
American Nuclear Data Committee recommended a value of Egg =
0.55 ev for a cylindrical cadmium filter with uniform wall
thickness of 1imm and height/diameter ratio = 2. Details of
the conditions are reported in GOLDSTEIN et al [581].

Resonance integrals are defined with a lower limit set
at 0.55 eV, so it will be interesting to see the effect of
using a different value say x, on the resonance integral I,,
so the change in I, is
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dE
Al, = oc(E) — (4.26)
E
X
For these purposes we will assume that o(E) = go’n(Eu/E)’é s and

then equation (4.26) becomes
Al = 2«;«701-:;’é (x) & (0.55)'*] (4.27)

Since the quantity measured here is I3/90; (see
chapter six) rather then the resonance integrals then
A(Ig/903) can be approximately expressed as a fraction of

I9/9065 by the following expression:

A(Ig/90) 0.318 —% —g
—_—t (x)* - (0.55) (4.28)
19790y Ig/90,

for Ep = 0.0253 ev.

A correct cadmium cut-off energy is needed as it can
be seen from equation (4.28) specially at low I3/90, ratio.
For example consider the case of a 1/v detector with no
resanance in the epithermal region, then 1I3/90p; = 0.429.
Using equation (4.28), it is easily shown that for values of

0.4 and 0.7, Allp/90g) varies between 17.25% and —-11.35%
ID/QO'D

]

b
respectively, and it decreases with increasing values of
IO/géro and .pbecemes: less sensitive to the accuracy of the
cut-off energy Ery

For the thermal cut-off energy pkTy, which divides the
Maxwellian from the 1/E region, Westcott [11 suggested that

the epithermal flux goes to zero at five times the energy
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corresponding to the Maxwellian temperature T, i.e S5kT, where
k is Boltzmann’‘s constant. HUGHES (641 suggested a cut-off at
the point where the Maxwellian flux is equal to that of the
1/E spectrum. This cut—-off point turns out to be 0.17 ev for
a graphiteAreactor L611. STOUGHTON and HALPERN [21 concluded
that the 35SkT cut-off energy (i.e. approximately 0.13 ev) of
WESTCOTT is a more appropriate choice, since the actual
cut—off energy of HUGHES [64]1 will be more difficult to
determine.

In non ideal spectra where the flux varies as 1/gi%«x,
AHMAD [11]1 shaowed that the cut-off energies Egg and pkT
slightly depend on «, but that these changes will have a

negligible effect on Ig5/9¢;.

4.6 Determination of Flux Parameters

Methods of finding the flux parameters fall into three
categaries involving the measurement of
(a) Absolute activities of at least three isotopes to
obtain the three parameters $ihs $ and «
(b) cadmium covered absolute activities of at least
two isotopes to estimate $; and «
(c) cadmium ratios of two or more isotopes to
estimate #th/%e and «.
Examples of the use of these methods are described in BEREZANI
and MACMAHON [81 and DE CORTE et al [9,631. The basis of
these methods involves finding values of the parameters which
satisfy equations 4.18, 4.19 and 4.20
Equation 4.18 can be used to find a unique set of flux
parameters in an irradiation site by measuring the reaction

rates in that site for three isotopes. The results will be
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biased because of inadguate knowledge of the nuclear data
especially for I13/903 and 1, and because of the errors in the
measurements. The same reasoning is true for cadmium covered
absolute activities and cadmium ratio, when measuring the
reaction rates of two isotopes.

For this reason, the number of reaction rates to be
used should be more than the number of flux parameters to be
determined, hence producing an over determined system in arder
to reduce the biases and to aobtain direct information on the
size of the uncertainties in the results. | This technique,
known as the generalized least-square technique (MARTIN L[661),
was first applied to this type of problem by AHMAD [111, with
reference to bare irradiations using equation (4.18), but the
same principles are applicable in the other two methods.

In a bare irradiation, for example , when more than
three reaction rates are measured no one set of values $ghy ¥
and x can be found which will excatiy reproduce the measured
values when applied in equation (4.18). This is because of
the presence of uncertainties or errors in all measured
quantities which ﬁuét be'taken into account when seeking the
values of $thy &% and o« which minimize the appropriate
weighted sgquare deviations between measured and calculated
values. Since the nuclear data are also based on measurements
with uncertainties, the best values must not be assumed equal
to the values evaluated from the literature. AHMAD [11]1 and
JEFFERIES [10] applied this technique with the above flux
convention to determine values of the nuclear data (n and
Ig3/903) and the flux parameters simultaneously by evaluating
'the best values of ® and I;/906y from the reported literature

values and then using these values as input measurements, then
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obtaining values with improved uncertainties (see Ahmad [151]
for more details). The same technique is used by GHURBAL
[i3], in which he provided Simultaneously determination of
reduced resonance integrals and effective resonance energies.

For some isotopes there are not enough literature
data to perform any sort of statistical evaluation of the best
values, to be used as input measurements. Instead new values
for the nuclear data (I;/goyy and 1) should be determined
together with the flux parameters which will best fit equation
4.18 or equation 4.19 and 4.20 depending on measuring
techni que.

In order to deterqine the flux parameters &thps $o and
«x and the nuclear data I3/g90y and n simultanuosly, they are
considered as unkh;wn parameters to be determined by measuring
the saturated activities for n isotopes at m different

channels so that for bare irradiation the minimum number of

measurements required to solve equation (4.18) is
= 3Im +2n

and for cadmium covered irradiation the minimum number of

measurements is
= 2m + 2n

When estimating a number of different parameters
simultanecusly by the least square method [661, it implies
that the estimates of the parameters are statistics having a
multivariant normal distribution. The probability
distribution function for such a distribution involves not
only the means and the variances of each parameter but also

the covariances between each pair of parameters. An estimate
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of the set of these quantities for each parameter constitutes
a complete specification of the praobability distribution
function of ths parameters, which can be wused in any
subsequent calculation to provide a proper estimate of
errors.

The function to be minimized in order to find the
least—-square estimates of the flux parameters and the nuclear

data is

where E is the vector of experimental reaction rates
.L is the vector of calculated reaction rates (which
is a function of the parameters $xs ¥ &y Ig/790;
and =)

Vo is the variance-covariance matrix of the

experimental reaction rates.
All the quantities in square brackets are matrices,
and T indicates the transpose of a matrix and —1 the inverse.
This technique is applied in chapter six to determine
new nuclear data values (n and I,/9¢y) for some isotopes and
Providing a test for the flux model in predicting these

nuclear data from measured saturated activities alone.
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CHAPTER FIVE

FLUX NORMALIZATION

The use of any method in neutron activation analysis
(NAA) makes use of the assumption that all samples are
irradiated in the same flux. However since the irradiation of
the étandards and samples are usually done at different times,
unless the flux is constant a method for flux normalization is
required to obtain any meaningful results.

A method for studyiag the extent of flux variation in
the Imperial College reactor and its effect on the reaction
rates is proposed and used to reduce the uncertainty due to

flux perturbation.

5.1 Normalization thhod’

The standard method for flux normalization [10] is to
record the number of counts accumulated in a neutron counter
at that irradiation site, during the same irradiation time of
each sample or using the (ns¥) reaction from the same element
irradiated with each sample, then gamma counted and then all
measurements are normalized to a mean count rate.

However, in a thermal reactor where both thermal and
epithermal neutron contributions to the reaction rate are
significant, the measurements have to be normalized to a mean
thermal and epithermal flux. Since the thermal flux 1is
characterized by temperature while the epithermal flux is

'
characterized by energy (see chapter four for details), their

variations with time are expected to be independent of each

other.
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If an isotope is irradiated in constant thermal and
epithermal fluxes, for a time t, then the activity induced in

the iscotope at the end of the irradiation is given by:
= - ) (3. 1)
A m © ’th + B ’e ] (1 e

where « and $ are constants of the irradiated isotope and the
irradiation pasitiony, m is the isotope mass and the factor
(1-e”At) is the build-up factor of the activity during
irradiation.

Consider the activity due to thérmal neutrons only,
it will be given by:

Ath = m ch(l - e ) (5.2)

and the activity due to epithermal neutrons only is,

—-At
= 1 -— ( .3)
AE m P je(l e ) 3.3

Let the factor &§; account for deviation of the
thermal flux from an otherwise constant flux and &8, account
for deviation of the epithermal flux from a constant flux.

Equations (5.2) and (5.3) now become:

Ath = &§; m «x ch(l - e ) (5.4)

AL = 8 mB § (1 -e ) (5.5)

For constant thermal and epithermal fluxes, then §;=8,=1
For variable fluxes, but variable in the sense that &§;=56,#1,
then the standard normalization method [10] can be used. For

variable fluxes, so that, 5 #8, #1,y then the method to be used
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i= ' - wilize all measurements to a mean thermal and
epithermal flux.

So in order to decide on the normalization method,
the variations of &§; and &6, are to be monitored with time.
Also it is the number of reactions induced in purely thermal

and purely epithermal detectors respectively.

9.2 Experimental Procedure and Methaod

The irradiation site is in the Imperial College
Reactor, which is a tank type reactor. The fuel is 80%Z
enrt ched 235) and the moderator is light water, which acts
. also as coolant. The reactor has facilities for many samples
to be irradiated in different irradiation channels at the same
time. The irradiation chanﬁel used for this work is known as
I.C.I.S, the in core irradiation system, and has a ratio of
thermal to epithermal flux of = 17.

An ionization chamber is installed in the core and is
used to monitor the power output. The power output is kept at
100 kW by means of raising and lowering of a fine control rod
positioned near the centre of the core, also the temperature
of the water outlet from the core is monitored by a
thermocouple positioned abave the core.

In order to find &8; and &5, an isotope which is
mainly sensitive to thermal neutrons and another mainly
sensitive to epithermal neutrons are to be irradiated together
at the same position for a short period during which ¢y, and
$o can be considered constant. This procédure is repeated at
different times in order to cover a wide range of factors
(different reactor operators, different samples in the core,

etc).
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A combination of isotopes satisfying the requirements
to find 8; and &5, is found in the element lutetium. This
element has one stable isotope, 175Lu, and one, 178 u which
for practical purposes is also stable since it has a half-life
of 1010 yoarg, Neutron capture in 1lutetium produces two
radioactive nuclides, 176M_y and 177Lu (the m indicates that
the decay proceeds from a metastable level or excited state of
the 178 4 nucleus rather than from the ground state). Both
nuclides beta decay to excited states of hafnium isotopes
whichy in turns, decay to their ground states by gamma-ray
emission. The 175 y(n,y)176M_y reaction is used to monitor
the epithermal flux because of its high epithermal to thermal
cross-section, and 178Lu(n,¥)177Lu reaction to monitor the
thermal flux because the thermal to epithermal ratio in
I1.C.I1.S5 is = 17 and the epithermal to thermal cross-section of
17Ny is = 1, so that tﬁe main contribution to the reaction
rate will be due to thermal neutrons.

Two thin foils (7 mm diameter) of aluminium with 1%
lutetium are positioned back to back in a polythene capsule
and then irradiated in I.C.I.S for 3 min,. The same procedure
is repeated with two foils of Al.1%Z.Lu irradiated for the same
length of time at the same irradiation position at different
times of the day and different times of the week, and then
each foil is gamma counted on a Ge(Li) detector (for details
of the gamma spectroscopy system see chapter 3I) for 2000 sec.
The B88-keV gamma-ray from 176M_ y and the 208-keV from 177 u
are used to measure the number of reactions in the
corresponding isotope. For each measurement the outlet

temperature of the coolant was recorded.
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5.3 Results and Discussion

The results, in number of counts in 2000 sec per unit
mass from each foil for 178m y and 177Lu, are shown in
fig.5.1 and fig.5.2 respectively. The means from each
measurement are shown in fig.5.3 and 5.4 respectively. The
contributions to the calculated uncertainty are from counting
statistics and weighing errors. Using the mean-—-square
deviation, the means from fig.5.3 and 5.4 gave a X2 values of
132 and 232 respectively for 24 degrees of freedom which are
very large, and they failed the X2 test at 99.9%Z level. This
suggests a definite variation in the number of reactions
greater than the measured uncertainties. To find from these
results whether the .main source of variation in the
measurements is due to-"._ counting and weighing statistics or
flux perturbation, the analysis of variance and expected mean
squares for the one—-way classification (ANOVA) [47] is applied
assuming all measurements have the same counting and weighing
errors. This test gives an idea of the variation within each
group of measurements compared to the variation between
groups, and it has'ﬁn F'histribuion [671.

For the results of 178M_y and 177Lu from fig.S5.1 and
3.2 for 24 independent groups of measurements and two
measurements in each group, the recorded F-values of 4.94 and
7.13 respectively fail the F-test at .999 probability level
which indicates a variation in the measurements due mainly to
flux perturbation.

To find the variation of the thermal flux with
respect to the epithermal flux or 6§;/8,s the ratio of the
number of reactions from 176m_ /177, of the same foil is

plotted in fig.5.5 for different measurements. Applying the
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(ANOVA) analysis the F-value obtained from the ratio results
is .71 and it passes the F-test at the .90 probability level.
This indicates that the reaction rates from 176M_y and 177Lu
are affected by the flux perturbation in the same manner and
at the same rate, and hence the ratio of epithermal to thermal
flux or 8§,;/8, can be assumed constant. Hence the flux can be
normalized by irradiating a single monitor with each sample
and then all measurements are normalized to a mean number of
reactions produced in the monitor.

To find if the temperéture of the coolant outlet can
be used as an indicator of the flux variations, the mean of
each group of measurements from fig.5.3 and 5.4 are plotted
with the recorded temperature of the coolant outlet above the
core during that particular irradiation in fig.5.6 and 3.7
respectively. To determine if there 1is any correlation
between recorded temperatures and the number of reactions, the
percentage points distribution of the correlation coefficient
when ¢ = 0 [67] is used, and the values of r obtained from
176m 4 and 177Lu are .79 and .71 respectively and both fail at
the .005 two tail test. Hence a definite correlation exists
between the cooclant outlet temperature and the flux.

To find whether this correlation or rate of change of
thermal and epithermal flux with temperature is similar, the
number of reactions from 178M_y and 177Lu per unit mass Vs
temperature are plotted in fig.5.8 and 5.9 respectively, and
it can be seen that there is a pattern of decrease in the
number of reactions with increase in the coolant outlet
temperature in hoth isotopes, and to measure the rate of
decrease of the number of reactions from both isotopes, assume

that the number of reactions per unit mass is given by:
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Y = MX + C

where X is the temperature for Y reactions, M is the slope,

and C is the number of reactions at X = 0. M is given by:

n
E (Xj— X d(Yi—- ¥)

1

M =
n

b oxi- X

i

2

where i refers to the group number. The M value for 176MLy is
-(0.062 * 0.010)x%10% and -(0.033 * 0.008)x103 for 177Lu. To
find if these slopes are significant, a student t-test [48] is
used with the assumption that M=0 and T-values of 5.74 and
6.04 were found for 176M_ y and 177Lu respectively and both
failed at the 0.995 probability level indicating that M # O
and there is a definite decrease of the thermal and epithermal
fluxes with an increase in the coolant ocutlet temperature.

The rate of change of number of counts with the
outlet temperature for 176M y and 177 u are —(0.395 * 0.065)%
and -(0.351 + 0.083)%L per degree respectively. Both
percentage rates of change are within one standard deviation
so a mean rate of change is taken to be —-(0.38 + 0.04)%Z per
degree of the coolant outlet temperature.

Correcting all measurements to a mean coolant outlet
temperature, the results of fig9.3.3 and 5.4 are plotted again
in fig9.5.10 and 5S.11 respectively. The %2 values for the
means in fig.5.10 and 5.11 are 41 and 70 respectively which
still fail the X2 test at .95 probability level but show a
factor of three reduction from the results hefore normalizing

all measurements to a mean temperature. So an error due to
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flux perturbation still exists and to find from the results an
estimation of that error in the form of an additive standard

deviation, the true variance is given by:

(x; - 02
o’_:
X n—1
where 02 = 02 + 02
X s f

where subscript s refers to the statistical error due to
counting and weighing and f refers to flux perturbation. The
standard deviations og for 176M_y and 177Lu are 0.7%Z and 0.6%
respectively and ¢4 is 0.7%.

Applying the (ANOVA) L[67]1 test again for the
measurements in fig.5.10 and 5.11, the F-value obtained far
the 178M_y passes the F-test at .90 probability level while

the F-value for 177Lu is 3.13 which fails.

5.4 Conclusion

The results indicate a variation or perturbation of
the thermal and epithermal fluxes with time even with keeping
the output power at 100 kW by raising or lowering of the
control rod to compensate for flux variations. Because the
indication of power comes from a single position in the core
where the ionization chamber is positioned, the flux at other
locations may not be the same.

Both thermal and epithermal fluxes at the irradiation
paosition useds vary in the same manner with time and at the
same rate so only a single monitor need to be irradiated with

each sample,s, then gamma counted so that all measurements can
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be normalized to a mean flux, by normalizing to a mean number
of counts per sec produced by the monitor. Alternatively, by
recording the outlet temperature of the coolant during each
measurement and then correcting all measurements to a mean
temperature and adding an error of ©0.7%Zy a reasonable
normalization can be achieved. The 0.77% represents the
factors mentioned above (different reactor operators,

different samples, etc)
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CHAPTER SIX

EXPERIMENTAL DETERMINATION OF RESONANCE INTEGRALS AND

NUCLEAR_DATA

6.1 Choice of Isotopes

It was shown in section 4.4 that in order to predict
the measured gamma emission rates, five items of nuclear data
are required. They are W'/9, w1y Ay E- and I,/90,. In an
ideal situation these items would be known exactly so that the
solution for the flux parameters and their variance—covariance
matrix could be correctly determined from the measured
saturated activities and their uncertainties. In practice
reported values for all the above items carry uncertainties
and hence influence the solution for the flux parameters.
According to AHMAD [11] the flux parameters to be estimated
are not sensitive to changes in W'/9 and E,., but this is not
true for n and Ij/90y. o9 which appears in n and basically
determines the reaction rate in mainly thermal neutron spectra
has uncertainties of 5 to 10%. As far as I, isLFqncerned, the
uncertainties may be as much as a factor of 10 greater than
for og- The scatter in resonance integrals is well
illustrated in the compilation of GRYNTAKIS and KIM [12].

In 1982 AHMAD [111, 1983 JEFFERIES [10] used values
of n and I,/9c¢; evaluated from reported literature values of
I o9 and the components of n. Then from the measured
activities, new and improved values of a1 and I,/90, are
predicted. Unfortunately, for some isotopes, the number of

reported values is too small (or non existent) to perform any
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sort of best value evaluation. For this reason it was decided
to consider n and I3/963 as unknown parameters to be estimated
with the flux parameters from the measured saturated
activities and their uncertainties, also providing a test of
the flux model of chapter four.

In using the bare irradiation technique, where the
saturated activity per target atom per second is predicted by

the following relation (equation 4.18):
L T ée -+ fi(u) + Er _ - fz(u) + fz(u) ’

most of the reactions induced in the irradiated detector are
due to thermal neutrons. In other words, the information
carried in that measurement is mainly about o, of that
isotope, and $¢x- In order to use the above relation to gain
enough information about all the five parameters, the ratio
Ig/90¢9 should be larges; or comparable with §¢L/955 hence
ensuring that enough information about the epithermal flux in
that position and the resonance integrals of the irradiated
isotopes are obtained.

If using the cadmium covered technique, the saturated
activity per target atom per second is predicted by the

following relation (equation 4.19):
I
N.. = Non é |[E %] —2 - (o) | + F_(x
Cd AV e| r 2 2
90'0

where the measured reaction rate in the irradiated detector is
purely due to epicadmium neutrons. Hence, the best

information about the resonance integral for that particular
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isotope is obtained.

However, when using the cadmium covered technique the
cadmium cut—-off energy Epg is set equal to .35 eV for a
cadmium box of 1 mm uniform wall thickness with a ratio of
height/diameter = 2 [38]1. But in some practical situations,
these conditions may prove difficult to meet and may effect
the true cut—off energy Ecyg. It was shown in section 4.8,
that the higher the ratio of I,/90; the less sensitive it is
to variations in the cadmium cut-off energy. Taking into
account the above points, and the choice of irradiation
channels available in the reactor, in our opinion the flux
model can best be used to provide new values of 1 and I;/90,
with resonable uncertainties from measured reaction rates, for
isotopes with high I3/90, ratios.

In the latest compilation of Ko,Au (n/npy)s @y
(Ig/70y) and related nuclear data in 1986 by F.DE CORTE et al
[621y they indicated that for some isotopes, a more accurate
determinations of nuclear data are desirable. The isotopes
chaosen for this work and the reactions of interest are listed

in table 6.1

6.2 Neutron Self-Shielding

When the neutron activation method is used, some
assessmeﬁt of the effect of neutron self—-shielding occuring in
saome of the materials used as detectors, must be included.
Although the use of a thin sample generally cauées a
negligible perturbation in the neutron flux in the medium
surrounding the sample, the flux may be greatly depressed in
the sample itself due to shielding by its outer regions. This

will occur mainly at neutron resonance energiess when the
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Table 6.1 Isotopes chosen for this work and the

reactions of interest

eatn, ) 26a
7SAs(n,T)76A5
81Br(n,Y)BzBr

86Sr(n,?)87m5r

11SIn(n,Y)iismIn

124gh thy v 1225

1330 (n, vy 1347

is25m(n,Y)1535m

15864 ¢, v °°6d

5% b tn, v 5%

165 atn, v 5%

1%ty 1 tm

175Lu(n,T)i-mmLu

0
i8 mH

1% tnyv) f

184 tn, v 1821,

186 (n, v 187y

197 putn, v 1?80

ZSBU(n,Y)239U
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collision mean—free—path becomes comparable to, or small
compared with, the sample dimensions.

The self-shielding factor, G for a detector is
defined as the ratio of the experimental activation to the
theoretically expected activation without self-shielding.
Several authors have already L69-721 studied these
sel f-shielding factors for a number of isotopes and have also
provided some useful formulae to calculate these factors.

For all the material used in this work ((Au, In, W
etc.)y the reported literature values [63,731 indicate
negligible self-shielding factors, i.e. G is nearly 1, at low
enough concentration. To neglect the effect of self-shielding
in the samples, the thickness of each element is kept below

0.1 mg/cm?2.

6.3 Epi—cadmium flux depressian

When using the cadmium cover technique, the presence
of a cadmium box in the irradiation media causes a fractional
change in the flux due to its high thermal absorption
cross—section. In a multiplying medium this 1leads to a
reduction in the fission rate in the medium surrounding the
cadmium box.

In order to reduce the above effect, also due to
limitation on the amount of cadmium allowed in the reactor,
the cadmium boxes used are of 0.5 mm wall thickness and 3 cm?
surface area.

The saturated activity for an isotope irradiated

under cadmium cover is given by [731:

110



N

N - - (6.1)
Cd
FCdEYSDC
where N. is the corrected count in the net peak area (as

defined in chapter four) and Fgg is the cadmium epithermal
neutron transmission factor, which accounts for the fact that
the epicadmium activation of cadmium covered irradiated
isotope is, in some cases, significantly different from that

of a bare irradiated isotope. Fpg is defined as [731:

Cd

e =] for epicadmium neutrons

Usually Fpg factors do not differ from unity for most
isotopes. However, when the resonance of Cd and of the
Cd-covered isotope partially overlapsy Fpg can be markedly
lower than unity. This is the case for (731 188y(n,y) 187y,
where there is an overlap between the 1i3Cd: 1B.4 eV resonance
and the 186y: 18.84eV resonance. Moreover, for isotopes with
large resonances in the 1-10 eV rangey, F.-4 can also be lower
than unity due to the high energy tailinq of the dominant
0.178 eV 11i3¢d resonance (e.g 11i5In(n,y)118MIn, resonance at
1.457 eV and 197au(n,¥)1%8Au, resonance at 4.906 V). Also,
Fcg can be higher than unity if neutrons, which are resonance
scattered in cadmium, enter the correct energy band to be
resonantly captured in the cadmium covered isotope (e.g
65Cu(nsy) 88Cu) .

When using the cadmium cover technique, the cut-off
energy Egg is a function of cadmium thickness. Faor the
cadmium boxes with 0.5 mm wall thickness used in this work

the cut—-off eneragy is taken to be 0.4 eV. To account for the
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extra activity induced in the sample due to a lower cut-off
energy Egg compared to that of 1.0 mm thick Cd, equation 4.19

is modified as follows:

N' 4 ’ I
= —x 0
NCd = NAV“’E — + fi(“) + Er fzto) + fe(u)
Q 95'0
— (6.3)
0.95
1 EO % dE
where W = — o(E) — go_(—) (6.4)
0 1+
o E E
0
0.4
0.55
. E dE
and f () = 0¥ — (6.5)
E E
0.4

6.4 Input Data

In order to determine the flux parameters of the
irradiation position and the nuclear data (a and I,/90,) of
the measured isotopes simultaneously, the items, A, E-, g, W’
and Fpg are considered constants. These items, for each
detector are listed in table 6.2.

For the values of the decay constant Ay the
half-lives for the different isotopes used in this work were
taken from the 1986 compilation by DE.CORTE et al [4621, the
effective resonance energy values E. were taken from
S.JOVANOVIC et al L[771]. The Westcott g factors were taken
from C.H. WESTCOTT [741, and only the g value for gold, indium

and uranium were found to differ from 1.0.
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Table 6.2. Detector characteristics and nuclear
constants
Target Reaction of Mass Gamma half
Element Interest (pg) Energy Life
(keV)

Tiga 7iGa(n,¥) 72Ga 19.65 834 14.1 h

75as 75as(n,y) 76As 35.92 559 26.32 h

8ipr 8iBr (n,y) 82Br 30.00 554 35.3 h

Bégr 865 (n,y) 87Mgr 40.00 388 2.805 h
11510 |1451n(n,y) 116mn 0.326 417 54.15 h
121igp 12igh(n,y) 1225p 6.95 564 2.70 d
133cs | 133cs(n,y) 134mcg 30.00 127 2.91 h
152gm 152g5m(n,y) 153cm 25.51 103 456.7 h
158Gd 1585d (n,y) 15%Gd 21.21 363 18.56 h
1597h 159Tb(n,y) 160Tb 37.81 87 72.1 d
165 165Ha(n,¥) 168Ho 23.06 80 26.8 h
1691 169Tm(n,y)170Tm 30.61 84 128.6 d
175 u 175 utn, ) 176M y| 3.06 88 3.635 h
1794¢ 179Hf (n,y) 180MHf¢ 1 40.00 332 5.519 h
184145 181iTa(n,y) 182Ta 40.00 152 114.43d
186y 188(n,y) 187y 3.93 134 23.9 h
197y 197au(n, ) 198au 10.61 412 2.695 d
238y 238y(n,y)23% 3.32 74 23.50 m
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Tablg 6.2. Continued
Target effective
resonance N
Element | energy Ep W 9 Feg
teV)
TiGa 154 o) 1.0 1.0
75as 106 o 1.0 1.0
8ipr 152 0 1.0 1.0
8&gr 795 o) 1.0 1.0
1451n 1.56 0.2953 1.0195 0.961
121igp 13.1 0.0268 1.0 0.982
133cg 9.27 0.0255 1.0 1.0
152gm 8.53 0.0151 1.0 0.991
158gd 48.2 o) 1.0 1.0
1597p 18.1 0.0121 1.0 0.988
165SHg 12.3 0.0134 1.0 0.975
169Tm 4.80 0.0519 1.0 1.0
175y 16.1 0.0198 1.0 0.991
1794¢ 16.2 0.0253 1.0 1.0
18171, 10.4 0.0171 1.0 1.0
186y 20.5 0 1.0 0.983
197y, 5.65 0.0501 1.0053 0.996
238y 16.9 0.0126 1.0017 0.977
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For the factor W'y which accounts for deviation of
the cross—section from 1/v law in the region between pkT and
Ecgr. the values were calculated using the RYVES [60]1 method.
The reported literature values of the cadmium transmission
factors Fpgs for a 0.5 mm thick cadmium box for the isotopes
used in this work, were difficult to find since most of the
reported values are for 1 mm thick cadmium covers. In order
to make use of the recommended values by ELNIMR (73,781, the
relation between Fpg and cadmium thickness is considered to be

of the following form [131]1:

(6.6)

where t is cadmium thickness and &§; cadmium attenuation for

isotope i. The Fpg for .5 mm are calculated as follows:

eln(FCd) 4%0.3

ca’0.5 =

where the subscripts 1 and 0.5 correspond to the cadmium cover
thickness. The Fpgq values for 1586d and 18iTa are given by
ELNIMR [73]1 as 1.0, although they are expected to be lower due

to low energy resonances (1-10 eV.)

4.5 Sample Preparation

Since most of the isotopes chosen for this work are
naot available commercially in the form of dilute foils, and
because of the long time involved, if the iscotopes were to be
irradiated individually, the samples are prepared in the faorm
of multielement standards, to simulate a practical situation
and save time.

In preparing a multielement standard, for the
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calibiat - af irradiation facilities, the multielement

components can be chosen to satisfy the following
requirements:
(i) Minimum interference or overlapping between

gamma—ray peaks of the product isotopess in order to make the
peak area evaluation reasonably easy.

(11) The product isotope should not appear as a
product of any of the other isotopes in the same sample.

(iii) The isotopes forming the sample, should have a
combination of half-lives and activation cross—sections, so
that a reasonable activity from the product nuclides is
obtained after the chosen time of irradiation.

Taking the above points into account,; the eighteen
isotopes were divided over three samples.

All these elements are available in the form of
standard solutions (103 or 104 parts per million). To prepare
the samples, the standard solution of each element was diluted
down to the appropriate concentration, then a drop of 10pl was
deposited on a 7mm diameter filter paper placed on a sticky
tape. The filter papers are then placed in an oven at low
temperature to dry, then sealed by another tape on the top. A

list of the elements

ue
y

in each sample is shown in table 6.3.

The depositing of the 10ul solution was done by a
micropipette. The accuracy and reproducibality of the same
volume was evaluated by, weighing 10pl of water using the same
micropipette and then repeating the same procedure N times,

then the error in reproducing 10pl is given by:
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Table 6.3. The components of each sample plus the
element mass, target isoptope and the
gamma—-ray of interest.

TARGET NUCLIDE of
ELEMENT INTEREST
Au 197au
u 238U
Ho 165SHg
Lu 175
Sm 1S2gn
Cs 133cg
in 11531
SAMPLE - 1 -
Ga Tiga
As T5as
Sr 865,
Gd 1S85d
Hf 1794¢
W iBGw
Tm 169Tn

SAMPLE — 2 -
Tb 1597p
Ta 18114
Br 8ipr
Sb i2igh

SAMPLE - 3 -
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N

b owg- @
62 = . St (6.8)
v (N - 1)
where q@ is the variance due to the micropipette and is

found to be (2.0%)

Wi the weight of the it measurement
W the mean of N measurements and is found tao be
?.7 pa.
The gamma spectra of samples type 1, 2 and 3 ar'e

shown in figs. 6.1, 6.2 and 6.3 respectively.

6.6 Dead Time Correction

The correction factor for the decay of a nuclide with

decay constant A, during counting C, is defined as

tc

cC = rit) e M gt (6.9)

where t. is the count period (clock or real time) and 7(t) the
ratio of real to live counting times. If t. is short compared
with the nuclide half-life, then 7(t) is constant during the

counting period O0-t. and equation (46.9) becames

— o Ate
c = v [ L——{i———- ] (6.10)

If the counting period is longer than, or comparable
with, the nuclide half life, then the above correction factor
is not applicable because the factor 7((t) varies with time.

But during a short interval At (short compared with the
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nuclide half-life), the dead-time can be considered constant,
then the true number of counts in the ith spectrum during that

interval is given by

—-AAE

1 — e

N, = AC = ATl — (6.11)
1 01 1 01 1
A
where A | = p o timDIAAE
01 [1]

Ag = naitial Cotnwt vake -

and after n spectra, the correct number of counts are given by

n n
N = E N. = A 1-e [ y, & (171IAAE (6.12)

To satisfy the above equation, the data acquisition
is done as folldws:

Consider the decaying of an isotope with time,
between t; and t, as shown in fig.6.4. The data is acquired
during the time intervals t,., then corrected for dead-time and

stored during intervals t;. The total time is given by
ta— ty = n(t+ t3) (6.13)

and

t. = —m =t (6.14)

In an interval (t;j, tj) the corrected number of
counts due to the peak of a nuclide with decay constant A is

given by
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a t;
A e M gy = T At (6.15)
01 A
tj
t;
A
= Ui | oAty At (6.16)
A

Given n spectra, for spectrum i the number of counts is

i=1,n (6.17)

A i
N = o0 [ | - e M | A (et
1 A

and the correct number of counts from n spectra is

n
N = [ N
i
i=1
A n-1
- _0 1 - E—Atr z E—J(A(tr+ta)) (5.18)
A j=0
Ao e (1 - E—A(tr+ta)n )
= — 1 - e r (6.19)
A (1 - E—A(tr+ta) )

the true count rate at time t; of a nuclide with a decay

constant A is given by:

N A [ 1 -
A = (6.20)

0
[l_ez\tr][l_e)\(tati)}

E-A(tz—ti) /n }
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NA[1—E—)‘T]

N
Ay = - (6.21)
[l_e—,\tr][l_e—u] c
where T = to,—t,. The correction for decay during counting in
this case is given by:
[ (6.22)
A [ 1 - E—AT/n ]
and the variance in Cy, ¢2 is given by:
C/Ca_
- - . 2
1 t_e A e Te M T/n e 2T/ 2
(—) + ( Y+ (—m ) + ( ) GA-
A l_e_Aﬁtr I_E—A;T l_e—ksT/n
— (&.23)
assuming negligible error in ¢, and T
~N
~
N \
= -
‘\‘~
ty ] I | I ! t,
t- ta t- t, t, ty l

Fig 6.4 Decay of a radioactive isotope with time
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The spectrum was accumulated after each interval ¢t,.,
then each channel in that spectrum is corrected for dead time
during interval t,., then stored. The same procedure is
repeated for each interval then added to the other intervals.

The intervals t,. are chosen to be small compared with

shartest half-life.

6.7 Experimental Procedure

In order to measure with any accuracy, the flux
parameters $tho $. and x for an irradiation position
simultaneously with the nuclear data n and 1I,3/905 for the
isotopes listed in table 6.1, it is necessary to measure the
reaction rates for these isotopes in at least 3 irradiation
sites so as to provide an over determined set of solutions to
equation 4.18

Taking into account the abave point, three
irradiation positions were chosen in the Imperial College
reactors and they are shown in fig.6.5. The positions are:

(1) C.A.S aluminium tube, the Cyclic Activation
System. This facility is installed just inside the core
boundaries, where samples can be loaded for irradiation in an
aluminium tube.

. (2) C.A.S cadmium tube, which is positioned next to
system (1) but samples are irradiated in a cadmium tube.

3) I1.C.I.S5 tubey the In-Core Irradiatioﬁ System.
This facility is installed at the centre aof the care.

Samples were irradiated individually to reduce the
effect of any perturbation in the flux due to neighbouring

nuclides. For each irradiation, the sample was placed in a
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pol ythene capsule. Bare irradiation was performed in C.A.S
aluminium and I.C.I.S, and the irradiation in C.A.S cadmium
was considered bare since some nautrons are getting
thermalized when passing through the polythene capsule.

Cadmium covered irradiation was performed in I.C.I.S
by placing the sample in a cadmium box of 0.5mm wall thickness
then placing the cadmium box in the polythene capsule. The
capsules for C.A.S are too small in diameter to allow a
cadmium box to be irradiated.

In preparing the sanmples, an extra error is
introduced due to pipetting and slight precipitation in some
of the standard solutions (Au, W, U). To reduce the bias in
the experimental measurements due to that extra error which
can be reflected in the prediction of the flux parameters and
nuclear data, five duplicates of each sample were irradiated
at each position then 9amma counted on the gamma-ray
spectroscopy system listed below. The temperature of the
coolant output was recorded for each measurement and then all
measurements are normalized to a mean temperature in order to
reduce the effect of flux variation over time (for details of
the flux normalization method see Chapter four). The weighted
mean value of the corrected net peak area and the variance of
the mean were calculated using equation 6.24. and 6.25. or

b6.26. (whichever gave the larger value) respectively:

N= ——— (6.24)
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[

o2 = (6. 25)
N n
E 1
0-2
i=1 i
n
- 2
boave, - oo
o2 = 11 | (6.26)
s

nin — 1)

where NC. is the ith net peak area
i

¢j is the error in Nci
n is the number of measurements

The ¢;'s were determined from the errors on
a) The gamma-ray net-peak areas
b)Y The correction factors described in Chapter two. Except
far dead-time correction for a multielement which is dealt
with in section 6.6,
c) The uncertainties in the weighing ¢, and concentration ¢
of the standard solutions and
d) The correction due to flux variation ?: as described in
Chapter four.

Equations 6.25 and 6.26 are sometimes referred to as

the internal and external errors respectively.

Detector and Associated Electronics

Detector: closed—end HARSAW Ge(lLi) model ACO0&4
with 70 c.c crystal.

H.T supply: Ortec model 459.

Amplifier: Ortec 472.

Multiplexer: Ortec 476-4.

ADCAM: Ortec 218 (multichannel buffer).

M.C.A: IBM-PC-XT.
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6.2 Anal ysis Method

If n observations (measurements) of saturated
activities are written as a vector E with its associated
variance matrix Vg of the order (n x n), the predictions of
the model, the flux model containing the flux and nuclear
parameters, forms the vector C. What is required is to find a
set of flux and nuclear parameters, and their associated
variance-covariance matrix, which minimize the difference
between the observations in vector E and the predictions in
vector C to within the errors of matrix Vg.

The method used to estimate the flux and nuclear
parameters is the generalized least—square method. Since the
model wused is non linear with respect to the parameters, an
iteration procedure is necessary in order to estimate these

parameters. The parameters are .found such that the function,

x> = € -cf v;1<s - ) (6.27)
is minimized. The solution for the parameters is given by
[&61

-1 - -1
P = (D' VoD 'D VE- (6.28)

and with a variance matrix

= T ,'py~1 o
var(P) = (D' VgD) (6.29)

N

where D is known as the design matrix that contains the
differentials of the model with respect to the parameters.
The minimization is performed by the CERN library code MINUIT

[321].

The variance of the saturated activities is
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o o, o o, T T
o2 = N2 | (Mo e —Er % (2 )% (2% (£ )P
s N € S D c
P
(5.30)
N
where €C is the error in the peak area (eqn 6.23 or 6&6.26)
Ne
<rE
—PR error in the interpolated efficiency
€p
%g
error due to the correction for saturation
S
during irradiation, and it is given by
t e Mt ‘
¢ ) - UA (6.31)
1 - E—Aitl ‘ S i
neglecting any error in tj the irradiation time.
7D
errar due to delay correction factor between
D
irradiation and counting (see chapter two).
3
C error due to correction for decay during

counting.
Due to using the same standard solutions and
efficiency function, the measurements are correlated for
example, when using the same element irradiated in different

channels “é ' O and ¢, are correlated.
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When using any element irradiated in any channel then

all the o are correlated.

In general the off-diagonal components of the Mot vix

Ve are calculated as follows:

Cav(c,, (ijk),o

Ng Ns(rsl)) =

Cnv(cEp(ijk),gG (rsl)) cc(ijk).cc(rsl)

N_ (ijk).N_(rs1) + 8, +
s €, (iik) . €, (rsl) clijk).c(rsl)
. (1jk) .o (rsl) c.(1jJk). o (rsl)
5 s 5, + D D 5, +
S(ijk).S(rsl) 1 D(ijk).D(rsl)

cc(ljk).cc(rsl)

C(ijk).C{(rsl)

5. (46.32)
ir

where i and r are two isotopes

J and s are two samples

k and 1 are two irradiation channels
i.e Ng(ijk) is the net peak area measured for isotope i in
sample j irradiated in channel k, and

— 1 for x = vy

Ry

L—> 0 for « # vy

6.9 Results and Discussion

When the least—square model was applied to predict

the parameters listed in table 6.4 simultaneously, from the 72
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Table &.4. List of the parameters and parameter numbers

Nao. Parameter No. Parameter No. Parameter
i98 1 i98 1 1
1. Au 19. Au 37. L
T 2. 239y 20. 239y 38. oo CAS (Al)
3. 166K 21. 166Hg 39. x
178 176 3
4, Lu 22. Lu 40. L
5. 153gm 23. 183gm 41. ¢,  CAS (Ca)
&. 134cg 24. 134cs 42. x
14186 116 = 1
7. In 23. In 43. ’th
8. 12Ga 26. 12Ga 44, N ¢ ICIS
9. 76pg 27. Tépag I, 45. «
r N SO
10. 875, 28. 875 9c,
11. 159Gd 29. 159gd
12. i80¢ 30. 1804
13. 187y 31. 1B7w
14. 1701 32. 1701
15. 1607hH 33. i601p
16. 18214 34. 1827145
17. 82p, 35. 82g,-
18. 1225 | 36. 1232gh
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measured saturated activities and their variance—-covariances,
the value of the X2 obtained is 34 for 27 degrees of freedoms
which passed the two-tailed test at 90%Z confidence level. The
solution values for Ij/9¢p are listed in table 6.5 together
with values of Qjp(= 145/0y) taken from the 1986 compilation by
F.DE.CORTE et al [421. All wvalues are obtained with errors
less than 2% except for 170Tm and 238y. The large errors in
these parameters are due to an error in the dilution of Tm
standard solution, and precipitation in the uranium solution
on the container walls which led to an error in the weight of
this element. In general there is a good agreement between
the results of this work (I;/g9oy) and the @ values of
SIMONITS [75,76]1 reported in DE.CORTE et al. 1986 compilation
[&21. For 1535m there is a difference of 4 standard
deviations between the value obtained in this work and the
value of SIMONITS (75,761, 7 std for 180Thb and 4 std for 187y,
So more indepgndent measurements are needed for these
isotopes.

The nuclear constant fn values obtained in this work
are listed in table 6.46. All values are obtained with errors
less than the individual components (8, py and og), for
example 1596d the error in py is 38%Z where ngg is obtained
with a combined error of 1.6%. The Kg,au values reported by
DE.CORTE et al [62] are converted to an values by multiplying
the Kg,au by (PyBacy/M)p,. The low errors of DE.CORTE et al.
£62]1 are due to neglecting errors in the flux and nuclear
data.

The values of the flux parameters (¥¢hsy ¥ + x)
determined simultaneously with nuclear data are listed in

table 6.7. All three positions have negative o—value. The
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Table 6.5.

Results of Iy/90; values campared

with the reported literature values.

product This Work Reported Values
Nuclide ( *+ errors) DE CD;¥E et al.
(* errors)
12Ga 6.85 * 0.12 6.63 t 0.35
76pg 15.12 ¢ 0.32 13.6 £ ( =)
82p, 19.83 & 0.37 19.3 * 0.6
875 4.32 + 0.10 4.11 * 0.07
116m;n 16.33 + 0.32 16.8 * 0.3
122gh 33.65 % 0.460 33 ¢ 1
134cg 12.26 * 0.25 11.8 * 0.6
153gm 13.43 & 0.24 14.4 * 0.3
159Gd 32.91 * 0.63 31 1
160ThH 20.88 % 0.48 17.9 * 0.7
166Hg 10.49 + 0.21 10.9 * 0.3
170Tn 16.9 * 1.6 14.5 * ( - )
178y 34.79 * 0.464 34.8 * 1.1
180H¢ 14.10 % 0.26 14.4 * 0.4
187y 12.78 * 0.23 13.7 + 0.3
182715 30.0 *+ 0.5 33.3  ( —-)
198y 15.52 + 0.12 15.71 %+ 0.28
239y 111 + 12 103.4 + 1.3
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Table 4.6.

Results of ® values compared
with the repoaorted literature values.

product This Work Values Derived
from
Nuclide ( Z errors) DE CORTE et al.
(Z errors)
124 2.48x10 © (1.4) 2.5x10 2 (0.6)
T6as 2.28x10 2 (1.6) 2.37%10 2 (0.6)
82p, 1.16x10 2 (1.5) 1.14%10 2 (1.1)
875 7.28x10 % (1.5) 7.12x10" % (o.5)
116myp 3.70x10 1 (1.5) 3.60x10 1 (1.1)
122gh 1.90x10 2 (1.4) 2.09x10 2 (1.5)
134cg 2.60x10 2 (1.3) 2.62x10 2 (1.7)
1535 1.12x10 1 (1.5) 1.10x10 * (0.4)
15959 3.51x10 % (1.&) 3.95%10 4 (-
1607h 1.63x10 2 (1.7) 2.01x10 2 (1.1)
166Hg 2.48x10 2 (1.86) 2.61x10 2 (1.6)
1707y 2.01x10 2 (1.6) 2.06x10 2% (-)
176 8.39%x10 2 (1.2) 8.26x10 2 (1.5)
180+ 2.91x10 * (1.4 2.82x10 * (1.5)
187y S.56%x10 ° (1.3) 5.4%x10 2 (0.7)
18275 8.25x10 2 (1.4) 7.69%10 2 (0.7)
198ay 4.80x10 1 (3.8) 4.785x10 1 (0)
239y 5.16x10 ° (1.5)
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Table 6.7.

Flux Parameters

paositions

of the irradiation

Irradiation Flux measured
position parameter values
[ $ (1.36 + 0.02)x101%
th =
CAS 11
Aluminium ] ¢, (0.686 *+ 0.009)%10
i « -0.035 * 0.005
b, (0.573 + 0.463)x101°
CAS i1
Cadmium ¢ (0.510 * 0.003)x10
o —-0.027 % 0.002
$ (2.31 * 0.03)x1012
th *
I.C.1.S 3 (1.347 + 0.007)x10%1
« -.034 + 0.002

136




, . oo - w 0 w o

i v NN O O M T MY O O M g 3 N0 [ AN 4 1 tn ~1 NI e~ e WL N OO oL
(1e) N O O O O = «~ O QO « I U VOV O O W € ) (I (I ) (II—Q ) 00 0y OO )
— " O UL O U O O U LU W U W W W L) LY L Y Cretge L1s LJe LWe e (1o
. [} . ) [ [ [ . . L) [} . . . . . [] . - [] . . . . el ] [ ey
| ] 1 ] ) ' ' | [} t ] ] ] ) ! ]
; QO <1t o~ RS ) Ny 0
; S MO N e e MY N M N M = O MM N OO~ ) ) ML) L) o)
N~ OO O O O O v~ O QO v~ O O O () O — ) M ) ) OO0 =) O OC) €I €ICH
L ad OO0 O O O QO O O O O QO O C ) € Y €Y D € € () eCr e &« € v () s C3 o Cr s €)oo
u [ I ] . [ ] . L] . L] L L] - . . . . . . - . . L] L] . . L ] [ . [ |
[ | ] ] ] ] ] 1 ] ] } 1 ! ' [} ] ] ]
() «— W ~f L g ) [ ) o)y
SMNe— N O NN N M NN e 2 e Y O e IO e ) 000 () (NN
. 0 QOO «— O U O ~ O — «— O WU ) L () N D ) () UMM () L) (D0 =) «t)
(| - QLU0 O LV LW L U O O W W W U W O L L Y L) ) el) o) o() e« () e () (Je €l e ()e
\ 0o @ . [] . . . . [ [} ] . . L] . [] [] . . (] . el o [ L] e ol .
11 ! ] 1 ) ! ] ! | ] ] ] ! 1 ! ) ]
UEUREEE S AR 74 B 2 ) — (Y5 ] "m ) (AF}
mMuwnuvy < M O = - NN Wy MY O N~ Q O O NN I 2 O ~20) () LW
n ' —O0nN M~ O N O M — 0 N D e~ - L ad ~t () WU OO OO0=D) D0 (I NI 20 O
E -~ QOO O O O O O O O QO O QO O O (O O (7 2 ) eC) o o) () » Cl s (I s €)e (Vs Ve
. * » 0o @ . - L) L] L] . (] . L] L . ] . . L] ey = - el e LN} . o) o1 .
[ I I I ] ' ] 1 | [} ' [} ] ] ] ' L] 1
QU <! 0w 0 ) i) "y ~1 3 ~1
OO W~ O O Q) N ST N N O Y Y ) NN N U ON tNe— 1Y () Nle= (e
1 OQOULUMNO O O O «— N O e N W O QO L W o e (DO I I—) () (I3 1IC) e=0) )
<« QOUOQ O O O O O O O (J W W W L D ) Cr €) ety o1 o) o) e() o () ®« () e (Vs (Ve (Ve
* s 8 00 L] [ e L] L] [] . L] [ . [] L] . L] ] ol s . . o] o} e | . e | ot .
i LI I I | [} [} ! 1 ' ! [} [} 1 1 ] | ] ] [}
o 0 1 €D Q) Ua) - O uN try
| RO )~ O O O M Y Uy N0 N e iUt e R Ut e NMles (M (e et e
w M QOOOOO0 O O O N N O « N1 (O3 0O M O O O OHNIONIIOIINICHII=C) =) eI O 0 D
| -— 000000 O O O O QO O O O O O QA QO O O Cre) of) oY) o) oI 8D e )2 e (Vs O e O
« 8 ® ® 8 @ [ ] [ ] . » . [ ] [ ] [ ) . o . . ] L] [ [ L] s o f . . [ ] ol L ] . e |
! LI I A | ] ' ] 1 [} ] ' [} ] ' [} t ] 1
. ) Y ) 1Y ANl e~ 0Ny () -0 ~t 0~ ~ ~
: MIOIAamMnmgE M O ~f 00 O 0O DN e— NN B 4 IR EAYER R Lau T BRI LY ST AV SNT 2o Y AT VAT aR } AN V] N O CIC) tNe— e
i MoVl OOOVOMOVL O O W ) DI O O w I ) L D CY DI DUICICIUDII I DENICICDCD  CILY) €31 LY (OCY ()
t  aud QOODOUOVYY O O O O O U O O O 0O ) C) ) C o) o) ol et ) o ) of) o) o (Y & (J o €Yo (I s (Ve
“ e s e 00w . [] . . . . . . . . . . . . ol o] o = . el o (Y] . e e | .
LI I B A I | ] ' 1 ! ' ! | [} ! ] ! 1 ]
— e 0 = () = = N 0 ~y ) o v o
{ QOO M = N~ 1) 00 = N 3 T N OO OINOIMUINC 2 OIS0 e— (D () Pty 6090 ()
L OO0 (N O M N «— O (N «— OO O I 0O QOO0 M0 €ICY CID 116D €y €0 )
' - OOOOOOO0 O O O O 0O O O O (D O C 3 ) oD o) o) af) of) or) of) o) ¢ () o () & (D s (Ds ()&
%y RN . . . . . . . . . . . . el » ol o} o ey = o) o1 ] . 'Y .l .
) [ A | ] ' ] ! [} ] | [} [} [} [} [} ! ]
! - 09 N (N e ) = Uy oy © ~ 72 ~ )
! MOININWNIMNINe— I~ O 1 MM 00 2 0O O o M N OO IO O OOV I N = (O I~ 36D DD ()
v (& ] OVOOVOVLLOO U O O VU VU VU O ~ O OV WV LOODULUSIOILICILILIOIIUI JI I Y=Y 1) W Q) Y LI
f - OO0V LOUOO O O O O O O O VU O O O L) efD o) i) el ) o() o) e ) o() o) o (I s (I e (e (Is (Vo
¢ e 8 a & 8 0 s @ O . . [ . . L] - L] . . ol o o ol o) o} = . of e [N ] . (] e .
] ! ! [} ] ! ! 1 1
~3 0 O a0 ~t [EATEEERN J 2 = - (V] 74 Q 24 ] *y
t OMEMNISINTIMUTG W O YUY e~ N 00 U W ) ST OO OMUIUNW I IO UMW PIA TSR ATAS T ZAYUD TR TAY U BN VAV U0 B L ST U BN N85 B TAY O}
,.~ (e e AINMeEecrO N ) = N e e IN - DOOOOIINOINAIE= NI =D0NDDIUMD) 10 A0 =) NG 1O
¢ . O0O000000VVOO O O O O O W O O O O ) o) eC) oC) (D st) o) o) af) () o€) o (VD o (2 s C) e C) s (I3 o
. ® ® & 8 8 ® ¢ 8 9 . . . [ ] . L] . e ) . [ [} [ . [} L] . o] e o . . (] [ ] [ (]
] ' (] 1 ' [} ] ' 1 [
¢ NN 1Y N Y N T e -1 o~ ) £y 28] O Q
i VNIFTC0OOVOINMNN. 0 «— M 0 v~ O & O 00N O0 OO OO N0 W) U (M) 00 OO WD
“ [+ ] N=OO0NIODr—=r—r— O O N T I o (V0 N = OO Cle0)e=0IN0 M D= (0 Y= de=CI-20Y 173D MC)  (IF) e pArs)
i QOUOOOVLVOVLVLOOVOVU O O O O O O WV QL W O Q) o) o) et el ) sL) o) () ot ) ol) o} o C) o () o (Vs (Ve tI e
N ® o o 6 o ®» ® ® v 0o [] L] [} [} . [} . L] . af o L] L] a ) o L] . o] o o . . CH | . . .|
t [ ] 1 1 1 ! 1 ] 1 t | 1 ]
i O o O ™ i O = 0 ) N - X} N o M %
MITIT N NONIWVOMUe D ™ = N S Wy Iy 3 MY O O O I ST e (MO e PO I\ o= SIS U 1T — ) e~ [4INMY pealtey
{ [ OOOMNOODN—OO0OO N O O «— O O v O OOOAOOCICICICI=CICIEICICIICIIC IOICIIOIDICY  MIC) ()Y O I0) )
| COOOMOOOOOONN O O O O O ©O O L) O o) o) oD o) oCD o) sC) o€ o) of) sl) 3(d o () s (I ® €3 » €N o () o
w " s 9 e 9 e 09 e e L] [] . . . L] L] . o) s o L] L o] o . . o) ef ® . . e . . [ ]
1 ] [ | ' ] ] ] ] ! ] ! ' | 1 ) ) [}
H M = n O O O D vy I~ Y D ~ o - 0 N~
{ ANOVNUOLONOCOTITMEJIND N O SN2 M U Uy O U0 OO e 1= 00 = O N = U ie=t) o= b3 ~d ot UL 3N O Oe
_ S O IO UUENINerereQ)) O = N M~ O SOOIV DU OO =000 J 0N IST ) () 1) v 30D ML)
. COOULLVLVLOVULVVLVLLVLY U O O O O O QO Q) e et el sl o) o) o) o) st J o) o() sl o) o LJ & LI % (I e (J e )=
' @ ® 2 & o » & 0o 0 0 0 P [ ] ] . [ ] ] [} [ ] [ ] [ ] e [ ) L ) (] ot . [ ] o) . . - . . (N ] . (] L}
: ] tr et L 1 § 1 ] ) | [} [} ] | [} [} [} ' \ t
Lo B 4 B L0 BN oV BN Vo TR A A R T N S I TA T 75 W 04 B T Q o) uy ~ )
OO OMNIY M- 0O O NSO M O M OISO OO OO OIS G (O e=C() NIy ACY) tNCd oD O L)
(2} VOO NINIOINITNIN — O N O N0 ™ MOMNOEOOO IO I NI (Ve 0 I = de—C YN <10 10 (Y NYC)  pAL)
OO0O0OO0LOOOVUOVOUND W O LU O O O O *O Q) 20 o o 0D ot o) oCY o) al) o) o 28I ¢ Cr o () o I s s ()«
,ﬁ ® o6 o 8 @ o 5 0 0 8 s 0w . [ . L] [ [} ol o) e o L] . . L] L] . . *) et @ . (] o ot . Ll
. ' L2 R T T T IO IR IO | 1 ' 1 1 ' ' | ' ' ' ' ' 1 ! '
| N O ooy Y N O - (R & S (W .t [ T o TR [0 o ~ o] .
i [Vs} NN O ONINO — NN O N S i A BV B 81 @ T a1 EN SVATERILAY o lve JUl } SOUNRTRRTSAVREN NANTANT S i1 N 45 IR Y SR F SN SR T SR VAN T i ) QO MM M N0y e
[ MOV D === CQ1DM)) O O «— & O Q)OI D0I0CITCIDICH I Ye— 0 Vo=~ Ve I IO 1 Y0 ILIC I I =0 INIL) =) () (DI =0 «01)
' P LOUOQUOULVOLIVILVLLOLL O LW O O Q) O st o) sl) o) oL L) el ) ot ) ar ) sl) et ) el st ) st ) s ) e () e () e () s () s () oo
. ur » 8 @ 0 @ 0 0 5 e o % 8 0 s (] . L} . [} [] ol o (] . o) o e = ol ot ey @ . el e} .| . L} . .
! i [ ] 2 T T I O I N | [} ' ) ! ! ! [ [ ! 1 ' 1 1 [ '
(@) LTA TR 4 T S S ST AT v B S S i T S T4 Y o T4 B N A W uy ) EAIZVEEE N AN
(3] OO UV~ V0OOVINOOUe— (VM U — (v e UNIMIN- = INOQOOLINOUIST L O U e LI U MM WUNILUIY U3 I MY Q0NN
’ ten OOOAOOVDNIDWOCHIOIND O O (O 0 OOCIODCIIDICICDC IO ICICMICIE WD I HICHNOIIDICICY  €W) eI IO OO
' u. OOO00O0CLOLOVLIDVOVICY O ) (I O O o) o o) oI o() #() o) o€ af ) ol) o) o) () o1 ol ) #C) o (I o (D e () o () s () ¢ @
: 1 ® 8 8 8 8 8 % 8 % » PV e @ W . . [] . ey @ ) L] L] o) o e o (] oy o ol » o] ey Y} . ol ot g o
! ') 1 ' ' 1 1 [ ' '
. L Lo BENY AV IR & SHRNS £ BRRNEY & BN T o TN A SRR AV IR e 24 Y S IR DU 74 D SN A SN B & S N | "y M (S Y Ta TR 2414 NN 2AYS N
' OO OVOONO NI O (V) MO O NGO OO O (O e 0 20000 de= 1ty VC 1 0N le—  (Iv~= Orne—0) Do (' — v
t N O MIMOUOMST OO0 N0 s (O N NS OOONOITOOLVOVOVEUVICE OO O = ()= Vo= (e Je=() = NI IO M Y=t 20 )
(] QUOOULVLUOLOVOLVLUVLOOUO O O QO O s o) o) o) o) o) o) o) ol ) et ) () ol o) st ) (i oL st L) & 1) s (I s () sl o s() s @
! [&] e " ® o0 9 8 9 e U e L e S . ) . . ol = of = . . o] o} ey o o] o] e} . . el of LR . ol L | L |
} T 1 (I I} [ | ' [ [ ' 1 ' [ t
s § . U N Q) = O Q) o~ ) L) 1Y e ) ) 1) () e (\} (A} —-F (M) =
- NOMEUYTMISTON O ST OOUMOIN N ) v~ (NUNUVOST OO0V OO OO O e U0 L0 U0 OO 0O U0 110 DI UIISNT WS 10N
WD NNONMOOOD e O (I D « O 20NN ONICOIDIODIOIDICUDICI— I Ve IVNDICICICIIOIONI NN M =IO D — OV eI
: & OODOUOOLODODOLVOUVCLLLO ) ) O sC) *D o) wl) of) o) () ol ) o() o) sl ) o) olJ 80) () o() o() o) » (U & () » o) s 8() & o) o »
{ o ...-.-...-.l-:x..l. L] L[] [ [ ] L] L] [ ] . [ ] . .- L4 [ . o . 3 L[] . [} L ] s | . LN ] o J 1 [
(S ] [ I I A | [ (] L] ] [} [ ! 1 1 ] ] ]
QO . 2 DD N DN D e = Y)Y Y Y (N Y Y )N e [ Y N | N N 2 BT e 1 20 TR ¢ N 20 )
FOUM T NONOOONIM S UVNNIRWON O —ONINIMNOT NN O R U OO e v =N )3 LI ) D=l e = e DN v OO O )3 LI NIy
= e ete A ANOANONONOMNON NI OO IOIMIOIIN IALINC IACINCI AL $0) <30I OMIFON 3OO $1O0D
(3 | . L] L L] L] L] L] L] . e . . L] [ ] L] [ ] L] [ ] [ ] L] [ ] s 8 LI o e e s 0
' ) ! [} 1 ] ! | ! ! [} s L [} 1 1 t !
(0 <] N = O D N O O ) €Y N e v = 0 () O et 0T I L) e e
/W NN O O e O DN LD O U DY ) D) WU U (e e e~ () et —
O O ¢ O DO D3 D D (3 M O D 4D 1) D D ) (D (D) LI DD O O O Oy DD
. L L] L L] . L] L] L L] L] . L] L] L[] L] . ] L] L] L] L e o - e L * e LI ]
S ! ! ] ] ] ] L 11t t ] [ |
w
'




corresponding matrix of correlation coefficients of the
parameters is shown in table 6.8. These correlation
coefficients are important when calculating the propagation of
error for the calculated saturated activities using two or
more of the parameters in tables 6.5, 6.6 aﬁd 6.7.

Using the values obtained of the (I,;/9045),; n and
their variance-covariance matrix and values of 8 and Py from
£621, I, values are calculated and listed in table 6.9. All
values of I, are obtained with improved uncertainties, or an
improvement in the information of the listed I, values (except
for 238y and 179Tm for the reasons stated above).

Using reported values of o3y 95 8s M and their
uncertainties the m values can be unfolded and new, in some
cases more improved, values of Py can be obtained. Table 6.10
shows the calculated Py values for some elements compared with
values from ERDTMANN [801].

The calculated value (using oy of 162.3 (0.43%) [721)
of Py for 116MIn 417 keV is 27.4% (1.6%), which agrees with
the value of 27.8%Z (4%Z) reported by JEFFEﬁIES Ci111]. This
indicates an agreement with the conclusion of JEFFERIES that
the branching ratio of the indium 417 keV gamma may not be as
well known as it is claimed to be [811].

In the case of 1596d where ERDTMANN s [801 Py for the
363 keV gamma line is B8%Z (38%Z) the value aobtained from this
work, using og(158Gd) of 2.2 (9.1%) reported by MUGHABGHAB
£721, is 10.147Z (9.27%) which shows a factor of four
improvement in the error.

As shown in table 64.10 improvement is also achieved
in the Py values for, 186Ho 80 keVv, 170Tm 84 keVv and 1874 134

keV gamma lines.
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Table &6.9.

calculated values of I, from the solution

values of I,/90¢,, and reported values aof I,

I, values from

I, values from

Target I, from this
MUGHABGHAB F.DE.CORTE et at
nuclide} work (% error)
(* errar) (* errar)

1iGa 31.58 % 0.63 31.2 + 1.9 30.6 * 1.4
T6pg 68 t 2 61 t 4 52.5 (-
82pr S51.2 + 1.1 SO + 5 49.8 t 1.6
87gr 3.33 * 0.08 4.79 t 0.24 3.17 &t .06
i1iemrn 2650 * 53 2650 t 101 2638 t 105
122gp 213 * & 200 % 20 209 + 9
134cg 33.6 * 1.2 32.3 + 1.4
1535m 2954 + 88 2970 * 101 3168 t 101
159Gd 72.4 £ 6.7 73 t 7 76 (-
160TpH 497 * 14 418 * 20 426 * 17
166Hg 642 * 17 650 * 22 636 * 32
1701 1774 * 170 1720 + 29 1532 ( - )
176y 563 * 20 550 + 30 581 * 28
180h¢ 6.27 t 0.12 6.9 t 0.6 6.4 + 0.3
18214 613 * 12 660 * 23 679 ( =)
187y 484 * 12 485 t 15 530 t 28
198ay 1531 ¢ 12 1550 * 28

239y 297 % 33 277 + 3 284 + 7
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Table

4.10. Calculated gamma-ray

intensities.

Praduct Gamma-— % Py (Z error) % Py (Z errar)
nuclie ;i;rgy from this work by G. ERDTMANN
(keV)

i116myn 417 27.4 (1.6) 29.2 (4.9)
159Gd 363 10.14 (9.2) 8 (38)
166Hg 80 6.68 (2.4) 6.2 (6.3)
170Tn B84 3.61 (2.9 3.26 (4.9)
187y 134 9.54 (2) 7.5 (4.2)
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CHAPTER SEVEN

SUMMARY AND_ CONCLUSION

The model used in this work to describe the activity
induced in a detector, in terms of nuclear data and Fflux
parameters, is based on the model described by AHMAD [1351. In
this model, the gaturated gamma-ray emission rate per unit
mass of target element is related to the flux parameters and
nuclear data (for well diluted samples i.e ignoring self

shielding) as follows:

W’ -x| I
— — = 0 —
N = Npgnld + # -+ f (0 + E_ [—- flo | + 7.1
g9 90'0

If the detector 1is irradiated under cadmium cover, the

equivalent model is:

_x Io
cd™ N{W"’e Er__ _— - fz(o) + fz(u) - 7.2
=L

N

In order to obtain an unbiased set of flux parameters
and nuclear data when solving equation 7.1 or 7.2, it is
desirable to measure more isotopes than the minimum required
to determine these flux parameters and nuclear data. This
produces an over determined set of solutions which can be
treated in a least-square sense to find the best values.

The object of this work is to apply the described
procedure which, from measured experimental activation data

and their uncertainties, provides a simultaneous determination
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of the flux parameters and the nuclear data without any priori
information. it also provides a test aof the flux model used
in this work.

Using the procedure outlined in chapter two, it is
paossible to determine gamma-ray emission rates with a
precision of about 1%, even at very small source—-to-detector
distances.

Making use of the assumption that a germanium
detector behaves as a point detector the photopeak efficiency
for any energy at any source-to-dector distance can be
represented by a formula of twelve parameters, without any
information or assumptions about the detector crystal geometry
and configuration as shown in chapter three. With the minimum
of experimental measurements an empirical efficiency function
can be developed so that the photopeak efficiency can be
calculated instead of measured.

When the least-square technique was applied to the
measured reaction rates the chi-square value obtained is 34
for 27 degrees of freedom which passes the test at the 0%
prabability level. This result proves the relevance of the
flux model used in this work. The solution provided an
unbiased set of Ig/90y and n values for the isotopes used,
flux parameters for the irradiation positions used and their
variance—-covariance matrix in a single analysis. This method
is useful when studying isotopes with little or non reliable
information.

In order to get direct information on I, using the
technique described in this wark, the variable I3/9¢; was
decoupled and the errors were correctly propagated taking all

covariances into account as shown in chapter six.
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Alsos by decoupling the variable n information about
Py was obtained and in some cases with a better precision than
the published values. In the case of the Py value for the 363
keV transition in 1%96d the precision is four times better
than ERDTMANN [801. Similar improvement in the PY value has
been achieved for 116Min(417keV), 166Ho(8OkeV), 179Tm(B4keV)
and 187y (134keV).

The precision on the measured parameters can be
improved further by increasing the number of measurements
compared to the number of parameters to be estimated

(increasing the number of deagrees of freedom).
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APPENDIX A

1.A Finite Source Size Correction

Let N be the - =i count rate doQ *OLdVe<1tﬁ

(X jaXopakg). Expanding in a Taylor series gives to 2nd order

the approximation:

N(X1,X2’X3)
- = =1

(Xn)0,0)

X |

Detector l
Cap

3

3
N(Xiij’XS) = No+ E Ki(xi—xio) + Z

i=1 i=1 j=1

| [~ W
=
")
(%)

.(xi—xio)(xj—xjo)

-Al

2
BN(xiu,A o % ) 1 ©° N(xio,xzo,xao)
where x., = — g.. = —

2 Ox. 0x.
1 J

and

N = N(X10’0> 10 )

If it can be assumed that the detector is cylindrical

and coaxial with the end cap, then N = N(x4,t)

. 2
where t = x_ + % .

And if the expansion takes place about xl=0, 33=0 since only
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n
w

the variation in the x,; is considered and by transfering to t

space (see section 3.A below), equation Al becomes

N N 2 @3N =2 1 32N .
N(x st) = N+ —(x —x ) 4 —m N+ — w - {x —% )
{
0 ax i 10 2t 2 at 3 2 axa i 10
i b §
aN 1 22N , N
N(Xist) = N + — (x —x ) + — — (x —x% ) + — t . A2
0 ox 110 2 Bxi 140 at

In order to determine the bias in the count rate N

due to the source being of finite size, first assume that the

radioactive
L liquid drop can be approximated
E by a cylinder of radius R, height
¢RI H and volume V = ﬂRzH as shown in
fig.Al. Given a uniform
Fig.Al. distribution in the source, then

the total count rate arising in the source is given by:

N(Xist)
N = —_— dV
v

where dV = «dtdx,;, so that

hd 10"‘%" R2
1 1
N = N(x st)sadtdx = — N{x ,t)dtdx
~1!'R2H i | RZH i i
v H
X io_E 0

substituting for N(x,;,t) from equation A2, then the count rate

is given by:
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"10"’; R®
2
oN 1 ?°N oN dxidt
N =N -+ — (x,—x, ) + — —= (x —x_ ) + — t
0 dx i i0 2 axz i i0 at R2H
i i
H
Xio‘E 0
To perform the integrations let A = x4 4—x495 dA = dx; and

substitute in the above equation we get

H 2
5 R
N 1 ?°N , N dAdt
N = N, + N A =
ox 2 ox ot R™H
1 i
H
20
H
2
2
1 N, 1N, W1
= N, o+ — A + - — AR+ — =R dA
RZH ?x 2 o t 2
i i
_H
2
1 R* 22N 5 R* N
= Ng+ S| ——H + —H—
R%H | 24 o 2 at
HZ %N R BN
N = N +(——5 + — —) A3
24 ?x 2 ot

where the second term on the right hand is the bias due to
deviation from a point source.

Linearize about R, and H,5 and 1let R and H be
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inidpenst-nt - andom variables, so that R and H are functions
of
R cz and H 02 respectively
0’ "R o0’ "H P -

This variation corresponds to changing source size, without

changing source strength. And the variance in the bias of

equation A3 is given by:

2 2
2 aNZZZ N 2H0 2
°g = ( — IYRyog+ (—5 ) Oy -
ot Bxi 144
Using a point detector model of the form N = A/r?2
where
ro= ((xi+d)2+ £)%
and d 1is the distance below the detector cap. Then

transfering to r coordinates (see below section 4.A), equation

A3 is then given by:

Rﬁ 2n Hﬁ 6f
N = N0 + — (—)—3 + — Y
4r r 24 r
Ry Hy
N0 = N 1 + - = - = N(1+B)
2r 4

hence the correction factor to multiply the count rate is

(1+B) y where

1, M
B = — (Ro - - )
2r 2

and its fractional variance is given by:
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Njom

1 H
2 2 1] 2
a { Re v ¥ 7 %4 ]

4

The values of d are found by Ffitting E;ﬁ of the peak
efficiency against distance (see chapter three) without the
finite size correction. Ry ogrs H and oy are estimated from

the standard sources assembly and the estimated values are:

R = 0.15cmy &

0 n = 0.0Scm, H, = 0.015cm and o,, = 0.005cm

H

2.A Source Location Sensitivity

Consider equation A1, and 1let xj (i=1,3) be
independent random variables with means xj, and standard
deviations ¢j. Then given a little algebra and bearing in
mind that the expectation value E(x$) = 3¢¢ and the

expectation of odd numbers of the Xj are zero. Then

3
EC(N) = N+ [ B. . oo and
0 ii%i
i=1
3 3
L 2 2 2 4 [ 2 2 2
ol [ (f oF + 385 o + 2(p, B, + 267 Do) o
i=1 i1,3=1
i<j
If o = then:
Xa 3
N, 1 22N
E(N) = No + 2 — cx + — — o and
at *2 2 o X1
N 3N 22N 3 22N 3N
“1 i at:ax1 i %2 4 o i 2t 2
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Using a point detector model of the form N = A/r2,

then transfering to r coordinatesy, it can easily be shown

that:
o2 oo 1
Sloo 4 24 | 8ot + 2704 - 1267 &P
N2 |"2 I'" Xa Ry Xy X2
where ¢.,4 and o, are estimated from the variation in the

position of the radioactive 1liquid drop on the source
assembly. The estimated values are:

¢ = 0.01lcm and ¢ = 0.15cm
X4 Xa

Similar expressions can be obtained for

g?%ﬁrtainties, in source mount on the source holder (ogh)
with

o = 0.01cm and o = 0.015cm,
X4 Xa

and for the source holder positioning on the shelf rig (ogg)

with

o = 0.005cm and ¢ = 0.01cm.
Xy X2

34,A Transformation to (t,x) System

Let N = N(t,x,;), t = x5 + x§ and bearing in mind that

the expansion is about x3 = 0 and x3 = 0 then

oN

x = —

oyl

oN oN ot oN

®, = — = —— | =2 — =0
sz 0 ot sz 0 ot 0
oN oN ot oN
a)(a 0 ot BX3 ] ot [}
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1 ?°N l
., = — —
11 2 Bxi 0
1 92N aN ?°N N
B = — —_— = — 4+ ¥ = —
22 2 a3 1y ot ZFaxgot |, ot |,
1 92N N ?°N N
f’33=——‘=-—+x3 =—|
2 Bx3 0 Bt 3x33t 0 Bt 0
1 92N ?°N
pia = 521 = — | = ¥ | = 0
2 Bxiaxz 0 Bxiat 0
1 92N 2N
Bz = P33y = — —— = x | =0
2 3x13x3 0 Bx3bt 0
1 9N ?°N
Bag = Pza = — I = % I =0
2 3x23x3 0 3x33t 0

Transformation to r System

Let N = N(r), where r = (t + (x;+d)2)¥% then

oN oN or 1 ©oN or 1
—_— = —— = — — 4, where — = —
ot or ot 2r or ot 2r
3N BN or xg+d N r 1 x 4+d
— = — — = ( )— 5 where — = — 2( x4+d ) =
My or oxy r or %y 2Zr r
2 2
"N x 4+d 9N °or oN 1 X g +d x g+d
= ( ) —+t — | -+ - )( )
3“% r ar? 0%, o r r? r
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and at

oN

ot

X3 = O then

1 ©ON

— ——

2rg or

0

s

oN

axi
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