
TECH N IQ U ES FOR IM PROVING TH E PERFO RM ANCE OF 
FREQ U EN CY-H O PPED  M U LTIPLE-A CCESS  

COM M UNICATION SYSTEM S

by

Mohammad Reza Movahedi

A thesis submitted for the degree of 

Doctor of Philosophy

in the Faculty of Engineering of the University of London, 

and for the Diploma of Imperial College.

Digital Communications Section, 
Department of Electrical Engineering, 

Imperial College of Science, Technology Sz Medicine, 
Exhibition Road,

London. SW7 2BT.

October 1989



In memory of

V a l fa j r e  H a s h l  

a n d

K a r b a la y e  P a n j

-2-



ACKN O W LEDGM EN TS.

I would like to thank my supervisor, Professor L.F. Turner, for his constant 
guidance and support during the research period, and for his invaluable 
assistance during the preparation of this thesis.

I should also like to thank the Science and Engineering Research Council 
(SERC) of UK, for providing the financial support for this research.

Many thanks go to all the staff and students of the digital communications 
section, past and present, who have made my time here such a pleasant and 
unforgettable experience. In particular I would like to thank Wilf Bishop, Jalil 
Chitizadeh, Gamal Khalaf, Nahy Nassar, Reginald C. Onyeka (‘Reg’) and 
Vojislav Vucetic (‘Vuchko’).

Most of all however, I thank my parents, without whose constant 
encouragement and moral support I would have never managed to get this far.

- 3 -



A B STR A CT

Frequency Hopping systems have been primarily used in the past in military 
communication systems, mainly to combat jamming. A relatively new 
application of these systems is in multiple access channels.

This work considers the use of frequency hopping techniques in a multiple 
access environment, where the user signal experiences fading. A typical 
application of such a system is in urban mobile radio. The presentation focuses 
on the use of non-coherent multi-level FSK systems, with TFCSS systems 
considered as a special case. The application of pertinent coding techniques 
which try to maximise bandwidth efficiency, while improving transmission 
quality is the main goal of this work.

A general review of the analysis of systems is given and new results are 
presented to provide upper and lower bounds to performance. Results are also 
presented to emphasise the importance of soft decision decoding for the channel 
model considered. A new coding technique based on concatenation is presented 
for TFCSS systems, which greatly enhances performance, without unduly 
increasing decoding effort. The use of erasure correcting RS codes is also 
considered, and methods for obtaining erasure information are investigated. The 
use of slow hopping systems with side information and error and erasure 
correction is also considered, and new results are given for practical schemes 
which try to obtain this information. The presentation of the performance of 
specific codes is accompanied by the derivation of the channel cutoff and 
capacity parameters, for determining the limiting performance achievable. In 
addition to the case of having random access to the channel, the performance of 
systems with limited central control is also examined. The performance of a 
decoding scheme which minimises interference using knowledge of system 
parameters is investigated.
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CHAPTER ONE

Introduction

1.1 - General Background of Spread Spectrum Systems.

Traditionally, multi-user communication systems have relied on co
operative, prearranged separation of signals in the time, frequency or space 
domains to minimise signal interference from one source to another. The cellular 
mobile telephone system for example, relies on frequency division multiple access 
(FDMA) for signal separation within a ‘cell’, while spatial separation is used to 
minimise interference between two cells using the same channel set. The new 
Pan-European GSM system on the other hand uses time division multiple access 
(TDMA) in providing its multi-user services. Unfortunately, these traditional 
approaches may not always be feasible or desirable as will be outlined below.

In a military communication system, FDMA/TDMA systems tend to be 
prone to high levels of signal jamming during hostilities, and can not be effective. 
Another example of the deficiency of the classical approach can be seen by 
considering the growing demand for cellular mobile radio telephone services. This 
has meant that smaller and smaller cells have to be used, and if the growth 
continues, the spatial-frequency separation technique of existing systems may not 
be able to meet demand. Moreover, the complex network control required, may 
make such systems no longer cost-effective. A solution to the above problems is 
to use a class of communication systems known as ‘Spread Spectrum’.

The essence of the spread spectrum technique is to greatly increase the 
signal co-ordinates (in time, frequency, or both) over that required by the 
original data modulation scheme —hence the term spread spectrum. At any 
instant of time, the signal only occupies a small portion of these co-ordinates. 
Data transmission is thus only affected by that portion of the interference which 
occupies the same co-ordinates as the signal, and this allows the system to 
c o m m u n i c a t e  i n  t h e  p r e s e n c e  o f  i n t e r f e r e n c e .  Spread spectrum multiple access systems 
exploit this interference rejection property to allow a number of users to utilise a
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common communications channel, without the high degree of central control 
required by FDMA/TDMA systems (which have to allocate channel resources).

Traditionally spread spectrum systems have been used by the military. In 
recent years, however, there has been an upsurge of interest in the use of spread 
spectrum techniques in civilian communication systems. This has been largely 
due to the ever decreasing cost of frequency synthesiser technology, making such 
systems worthwhile not only for military communication purposes but also for 
civilian ones as well.

The origins of spread spectrum go back to well before the second world war. 
In fact the earliest patent recognised by the US patent office as being spread 
spectrum in nature, was filed in 1924, and was proposed to counteract the effects 
of fading on short-wave communication links. It was however during the second 
world war, that the need for electronic supremacy, led both the Allies and the 
Germans to do intensive research on spread spectrum techniques. In fact by the 
end of the war, on the Allied side, nearly every heavy bomber was carrying at 
least two jammers. On the German side, it is estimated that at one time as 
many as 90 percent of all available electronic engineers were involved in some 
way in a tremendous but unsuccessful anti-jam programme [Sch 82].

After the war, the research on spread spectrum continued with the main 
aim of developing systems providing anti-jam capability. However, spread 
spectrum systems were also used for low probability of intercept and ranging 
applications. In all cases, the end user of such systems was the military. Since 
the early 70’s, as indicated earlier, due to the ever-decreasing cost of 
implementing spread spectrum systems, various proposals began to appear for 
the use of spread spectrum in civilian communication systems. These included 
the use of spread spectrum in mobile digital radio systems to combat channel 
fading and in terrestrial/satellite packet radio networks [Kah 78].

There are two main distinct classes of spread spectrum system:
i) Direct Sequence (DS)
ii) Frequency Hopping (FH)

Both systems have the following common features:
i) The carrier is a wideband signal generated using a pseudo-random sequence.
ii) The bandwidth of thevcarrier is much larger than that of the data.
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iii) Reception is accomplished by the use of a synchronously generated replica of 
the sequence used at the transmitter.

In direct sequence systems, the pseudo-random sequence is used to phase 
modulate the carrier, thus spreading the signal over a wide bandwidth. In 
frequency hopping however, the sequence is used to determine the frequency of 
the carrier at any given instance in time. The carrier thus continuously moves 
about the spread spectrum bandwidth.

The main advantage of direct sequence over frequency hopping is that in Wie. 
former the carrier can be demodulated coherently, whereas in frequency hopping, 
since the carrier is constantly changing over a wide bandwidth, this is much 
harder to achieve [Vit 79]. However, frequency hopping has the following 
advantages over direct sequence [Sim 85]:
i) With current technology the spread spectrum bandwidth can be much larger 
with frequency hopping than with direct sequence and thus a larger ‘processing 
gain’ (ie the gain in using spread spectrum ) can be achieved.
ii) In frequency hopping, if a certain part of the spectrum can be detected to 
contain interference, then this can be avoided by the system by changing the 
hopping sequence.

Many of the spread spectrum systems in use today use frequency hopping.

Thesis aims and objectives
The aim of this thesis is to investigate the performance of frequency hopped 

multiple access (FH/MA) systems and find realistic means of improving it. The 
work presented is mostly concerned with the application of various form of 
channel coding. The limiting performance of frequency hopping systems with 
different signalling alphabets is also considered.

1.2- System and Channel Models.

1.2.1-MFSK/FH systems
Multilevel Frequency Shift Keying (MFSK) is the form of modulation used 

in most frequency hopping systems. Source data is first passed onto the channel 
encoder, which by using a linear mapping of input bits (a code), adds extra bits 
of redundant information to it. These redundant bits are then used at the
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receiver decoder to try to detect and/or correct errors which may have occurred 
in the transmission process. This channel coding process is an essential part of 
any spread spectrum system for the following reasons:

i- The limitation of system bandwidth usually means that it not possible to 
spread the signal coordinates sufficiently to achieve a desirable quality of 
transmission.
ii- The randomisation of transmitted data by using spread spectrum provides an 
environment in which channel coding can be very effectively applied.

The encoded data is then passed onto the MFSK modulator, which conveys 
information by choosing one of M tones, each tone representing k bits of 
information (k=log2 M). The chosen tone determines the shift of the carrier from 
its centre (or zero) frequency. The carrier frequency itself, is at any instant of 
time determined by a pseudo-random hopping sequence assigned to each user. 
The MFSK frequency hopped (MFSK/FH) signal can thus be represented 
mathematically as:

R(t) =  ^2S cosj (w0+ bAw^ + dAwj. )t +  (1.1)

where:
S is the average signal power,
w0 is the lowest frequency used by the system,
b is an element of the pseudo-random sequence ,
Aw^ is the separation of the frequency slots, 
d is the data symbol,
Awj. is the tone separation,
and 6 is a random phase term which varies from hop to hop.

The MFSK/FH concept is depicted in Figure 1.1 . In the terminology of 
frequency hopping systems, each pulse transmitted during a hop is referred to as 
a ‘chip’ , and the collection of chips transmitted per hop a ‘frame’. Each MFSK 
band (ie the band containing a set of M tone positions) is usually referred to as a 
‘frequency slot’.

The effect of the frequency hopper is to randomly shift the MFSK band
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around the total system bandwidth available. By doing so, the interference 
experienced on each data block can be randomised (whether it is other-user, 
fading or jamming) and thus channel coding techniques can be more effectively 
applied. Though in some systems, the same randomisation can be achieved by 
using time interleaving, in many cases this may be not at all be possible, (eg 
Partial band jamming) or unfeasible (due to the time delay involved).

The frequency hopping system can be arranged so that frequency slots are 
non-overlapping as shown in Figure 1.1 . Alternatively, the slots can be allowed 
to overlap which can be useful in a jamming environment. In any case, the slot 
separation Aw^ must be such that the interference experienced from hop to hop 
is uncorrelated. For a given user, this may result in having frequency slots which 
are not contiguous in the frequency domain.

The rate of hopping is an important system parameter, whose choice 
depends on the interference likely to be encountered. In some situations it may 
be necessary to transmit only one MFSK symbol per hop, and to repeat this on 
many hops. In this case the system is referred to as F a s t  F r e q u e n c y  H o p p i n g  (FFH) 
as the chip rate equals the hopping rate. Conversely, if the hopping rate is 
smaller than the chip rate, the system is referred to as S l o w  F r e q u e n c y  H o p p i n g  

(SFH). A FFH system is used primarily in jamming environments to counter the 
threat of a repeat-back jammer (ie a jammer who attempts to follow the 
communicators hopping pattern). Due to its implementation complexity and 
cost, FFH are less preferable to SFH systems. However, to randomise data 
symbols in a given codeword, an interleaver/de-interleaver is usually required in 
a SFH system, which adds to the data transmission delay.

At the receiver, the signal is first dehopped using a replica of the pseudo
random sequence used at the transmitter. Precise synchronisation between the 
transmitter and receiver is essential to the proper operation of the dehopper. In 
the rest of this thesis it will be assumed that any system being considered, has 
achieved this synchronisation. Methods for achieving hop-synchronism by 
themselves constitute a large topic, and will not be considered. It is important to 
point out though, that the operations of the frequency hopper/dehopper axe 
effectively transparent to the rest of the system, and need not be taken into 
account in the analysis of the system.

After dehopping, the signal is passed onto the MFSK detector, which 
consists of a series of M bandpass filters each tuned to one of the MFSK tones,
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followed by envelope detectors. The use of non-coherent detection is due to the 
fact that during the short period of a hop (which may only be a few symbol 
periods long), it is usually impossible to track the phase of the carrier. Moreover, 
for channels such as a fast fading mobile radio channel, the phase variations of 
the channel during a given hop may be too fast to follow anyway. The use of 
non-coherent detection is thus universally adopted in the analysis of frequency 
hopping systems. The outputs of the envelope detectors may be used to make a 
hard (1 of M) decision, or may be passed directly to the channel decoder.

It is important to point out at this stage, that the receiver only receives that 
frequency slot transmitted by its communicating pair. Interference is caused by 
either jamming or fading occurring on that slot, or by another system user 
hopping onto the slot at some point in the hop interval. The latter process is 
known as a l h i f  and it plays an important role in the performance of multi-user 
frequency hopping systems.

The basic elements of the MFSK/FH system described above are shown in 
Figure 1.2.

1 .2.2 TFCSS Systems
A class of MFSK/FH systems have been proposed for multiple access use, in 

which there is only one MFSK band covering the entire available spread 
spectrum bandwidth. The M tone positions thus coincide with the frequency slot 
positions (ie Aw^=AW|.) and the size of the MFSK alphabet may be as large as 
512. To distinguish these systems from ordinary MFSK/FH systems, they are 
usually referred to as l T i m e  a n d  F r e q u e n c y  C o d e d  S p r e a d  S p e c t r u m ’ (TFCSS) systems.

In TFCSS, all system users share the common MFSK band. To provide 
diversity against interference, each user by utilising a pseudo-random sequence 
repeats the intended transmission symbol L  times (L is the order of diversity), 
each time on a different frequency. By proper choice of hopping sequences it is 
possible to ensure that although all the system users are sharing the s a m e  M F S K  

b a n d w id t h ,  there is minimum ambiguity in reception.
To clarify the description, the following example is given:

Suppose that user m intends to transmit the data symbol d , where:

0 < d < M - l
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and M is the size of the MFSK alphabet.
Let us define the two vectors Am and Xm , where Am is a unique sequence of L 
elements assigned to user m, which is usually referred to as the ‘a d d r e s s ' :

A m =  [ a i> a 2> ••• i a L ]

and Xm is the row vector containing d as all its L elements.

Xm— [ d, d, ... , d ]

User m then produces the transmission sequence Ym, such that it is a function of 
both Am and Xm :

Ym= F(Am , Xm )

where Ym is the transmission sequence and F(A ,X ) is a suitably defined 
function.

A simple method is to define F(A,X) as the modulo-M of the vectors Am 
and Xm . Recovering the message from the transmitted sequence is then by 
simple modulo-M subtraction of Am from Ym .

From the above description it can be seen that the basic difference between 
TFCSS and MFSK/FH is that in the latter, each user’s signals axe distinguished 
from others by the hopping sequence used, whereas in TFCSS, the transmitted 
tone sequence not only caxries the user data, but also the user identity.

The basic operations involved in the transmission and subsequent recovery 
of a data symbol axe shown in Figures 1.3a & 1.3b.

The TFCSS receiver is basically the same as a MFSK/FH receiver, and only 
differs from it in the method used for detecting and decoding received signals. It 
is comprised of a series of bandpass filters tuned to each one of the M frequencies 
followed by envelope detectors. A more practical and elegant realisation is also 
possible using a fast Fourier transform of the spread spectrum bandwidth [Vit 
78], [Bre 86]. In any case, using a suitably defined signal threshold (depending on 
the average received SNR), the receiver makes a decision as to which tone 
positions contain a signal and which do not. In this way a signal pattern (or i i m e -  

f r e q u e n c y  m a t r i x  ) of all users’ signals is produced (see Figure 1.4a). To recover the
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data, the receiver removes (subtracts by modulo-M for the example above) the 
user address from the signal matrix after the reception of each frame (L chips). 
Those signals corresponding to the transmitted data then appear as a complete 
row in this ‘decoded matrix’ (Assuming no interference, ie no insertions or 
deletions made to the transmitted matrix). On the other hand, other user signals 
appear as random entries (Figure 1.4b). In the presence of interference however, 
some of the signals appearing in the data row may be deleted, and extra entries 
made in other rows. In this case, the receiver uses a majority logic decision rule, 
and chooses that row with the largest number of entries. Even when the channel 
interference is zero, other user signals can also sometimes combine to form an 
erroneous data row in the decoded matrix. Thus a TFCSS system, as with any 
other multiple access system, is interference limited even when channel 
impairments are zero.

1.2.3- Channel Model
The transmission channel is assumed to impair signal transmissions in two 

ways:
i- Signal fading.
ii- Other user interference.

Fading is a serious source of performance degradation in such systems as 
over the horizon HF communications and urban mobile radio. The signal in such 
systems arrives at the receiver via a multiplicity of paths and is thus the 
superposition of many independently attenuated and phase shifted versions of 
the transmitted signal. The total received signal can, by the central limit 
theorem, be modelled as a complex Gaussian process with a Rayleigh distributed 
amplitude and uniformly distributed phase [Ste 87].

For the sake of mathematical tractability, the following assumptions will be 
made in this thesis about the nature of the fading:
i- The fading is slow, so that the amplitude and phase random variables axe 
constant over the duration of a chip.
ii- The fading is ‘flat’ (non-selective) over the bandwidth of a frequency slot, so 
that any signals transmitted within the bandwidth axe affected by the same fade 
factor.
iii- The fading from one frequency slot to another is independent. This requires 
that the slots axe sepaxated by at least the ‘coherence bandwidth’ [Ste 87] of the
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channel.

The second source of transmission impairment is other user signals. The 
severity of such interference depends on the following factors:
i- The physical location of interfering transmitters with respect to the receiver.
ii- The distribution of other user power levels.
iii- The ratio of the number of system users to the number of available frequency 
slots.

In addition to the above factors, the type of hopping sequence used can be 
important in determining the level of this interference. The use of well-defined 
hopping sequences [Sha 84] will lead to a minimisation of such interference. In 
this thesis however, it will be assumed that the hopping sequences are random, ie 
they are chosen such that for a given system user, the probability of choosing a 
frequency slot at a given time is 1 , q being the number of slots. This assumption 
was based on the following reasons:
i- Random sequences make the analysis of frequency hopping systems more 
tractable.
ii- It has been shown by Geraniotis [Ger 82] and Haskell [Has 81] that for large q, 
the performance of optimum sequences can be tightly upper bounded by random 
sequences.

Yet another issue related to other user interference, is that of synchronism 
between interfering signals. Although it has been assumed that perfect 
synchronism exists between a transmitter and its receiver (for this is essential to 
the operation of the system), no such assumption is made about interfering 
transmitters. This is because even if such synchronism was possible (which would 
require the use of a central controller, and hence greater complexity), it can not 
be guaranteed that all signals arrive at a receiver at the same time. For reasons 
of mathematical tractability however, it will be assumed that when other user 
interference occurs, it results in a complete overlap of a signal, which is 
effectively the same as assuming chip synchronism between interferers. 
Intuitively, it can be argued that this represents the worst case of other user 
interference, (as compared to the case when only partial overlap of interfering 
signals takes place)
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1.3 - Performance measures.

The performance measure of a digital communications system is usually the 
probability of a bit error (P^) and this criterion will be used here to assess the 
quality of a given modulation and coding scheme. For a multiple access system, 
the other criterion of interest is the maximum number of users which can be 
supported while maintaining a certain desirable error rate. Since in this thesis 
different systems with varying MFSK alphabet size and coding options are 
studied, it is not possible to simply present performance results in the form of bit 
error rate versus the number of users. The interaction of system parameters, and 
their relation to available resources has to be taken into account. For example, 
although using a lower code rate1 allows a lower error rate to be achieved, it also 
requires more bandwidth. On the other hand, increasing the number of frequency 
slots also leads to a lower transmission error rate, but can be wasteful of 
bandwidth. It is thus convenient to use a normalised performance measure 
termed c h a n n e l  u t i l i s a t i o n , which is defined as the ratio of the composite data rate 
to the system bandwidth. Thus if the number of system users is I and the 
average transmission rate of each user is R ^  (bits/second), then the channel 
utilisation is given by:

V =_  Composite Data rate _  
Total system bandwidth Wg ( b i t s /  s e c / H z ) ( 1 .2)

where Wg is the system bandwidth.
Channel utilisation is a measure of the spectral efficiency of the system, and 

it allows a fair comparison to be made between two systems achieving the same 
error rate, but with different system parameters. For a MFSK/FH or TFCSS 
system, 77 is evaluated as follows:

Let the data transmission rate per user be R^ (bits/second) and the number 
of system users I. If the code rate is rc , then the chip transmission rate is:

Chip transmission rate =  R ^ jp  =  R<j ^dog2M/ rc (1.3)

*Code rate is defined as the ratio of information digits transmitted by a code, to the total 
number of digits transmitted (information and check bits). The higher the code rate, the lower is its 
redundancy.
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This follows from the fact that each k=log2M bits of information is encoded into 
one MFSK symbol, so that the symbol transmission rate is (R^/log2M) 
symbols/second. After adding the code check symbols, the symbol transmission 
rate is increased by l / r c. The chip transmission rate determines the minimum 
allowable spacing between MFSK tones. Non-coherent detection requires that the 
MFSK tones be separated by at least [Pro 83] :

Awt ^ Rchip

Each frequency slot thus has a minimum of bandwidth of:

(1.4)

n = MRchiP

and the total system bandwidth is:

(1.5)

WS =  (MRchip). q (1.6)

where q is the number frequency slots in the system.
The channel utilisation is thus:

For a TFCSS system, there is only one slot, and thus:

n =  (j^)- (l°g2M). rc (1.8)

Note that for a TDM A or FDMA system using on-off keying, the channel 
utilisation is 1.

1.4 -Outline of Previous Work.

1.4.1- General Work
The idea of allowing a number of asynchronous users access a common 

channel, goes back to the end of the second world war. It was, however, in 1950, 
shortly after the publication of Shannon’s theory of communication, that White 
[Whi 50] with the insight provided by that theory, considered such a system
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from a theoretical point of view. Considering interference to be caused only by 
other user transmissions, and by using Shannon’s capacity formulae, White 
derived the capacity of an asynchronously multiplexed transmission system. His 
results showed that by reducing the duty cycle of transmissions (ratio of ones to 
zeros), as the number of users increases, capacity approaches that of a 
synchronously multiplexed system (such as FDMA or TDM A). White also 
considered the use of simple 2 and 3 repeat codes to reduce the error probability 
of transmissions.

It was only after the development and maturing of channel coding 
techniques in the 50’s and 60’s that interest in White’s work re-emerged. Chesler 
[Che 66] used a simple non-binary repetition code in deriving the performance of 
a multiple access system. In his system, each user is assigned a set of M 
addresses, each address consisting of k pulses out of a time-frequency matrix size 
of N. Reception is achieved by using a coincidence circuit, which detects the 
presence of a given address. It is interesting to note that Chester’s system, had 
all the basic features of a TFCSS system. By considering a Poisson distribution 
on the number of system users, Chesler showed that in the limit, by using a very 
large time-frequency matrix, it is possible to achieve arbitrarily small error rates 
for c h a n n e l  u t i l i s a t i o n  le v e ls  b e lo w  70%. Later Sommer [Som 67],[Som 68] extended 
White’s earlier capacity derivations, to include the effects of channel noise. His 
results showed that in a noiseless case, the capacity of an asynchronously 
multiplexed channel is 70% that of the synchronous case. Another interesting 
point was that for optimum operation, the duty cycle of user transmissions 
should be such that the channel contains ones (signal pulses) in half its 
dimension. This means that if the number of users is I, the optimum duty cycle 
of transmissions is in fact:

which goes to zero as I goes to infinity.
Sommer also for the first time proposed a practical implementation of the 

system, using a satellite transponder to provide a multiple access facility to a 
number of ground stations.

Cohen and Viterbi [Coh 71], considered the use of a more advanced coding 
scheme for a multiple access channel. They used an orthogonal convolutional 
code with repetition to achieve low error rates, while maintaining a low

-22-



transmission duty cycle as required by theory. Pseudo-random sequences were 
used to provide user identification.

None of the above works involved any frequency hopping, as the nature of 
the interference was such that it was enough to spread the signal in the time 
domain, rather than time and frequency. It was not until the late 70’s, with the 
increase in the popularity of frequency hopping systems, and with the application 
of the multiple access idea to fading channels, that such systems were considered.

C > u .+

The work mentioned above, did however pointvthe potential of an asynchronous 
multiple access channel.

1.4.2 -MFSK/FH
Most of the work done on frequency hopping systems over the past 15 years 

is concerned with the use of various channel coding techniques to overcome the 
effects of jamming, especially partial band noise and tone jamming. The 
motivation for this work seems to have come from an interesting article by 
Viterbi and Jacobs [Vit 75] in 1975, who advocated the use of coding and 
diversity with soft decision decoding for fading and partial band interference 
channels. More recent publications have largely dealt with Reed Solomon coding 
with errors and erasure correction in channels for which ‘s i d e  i n f o r m a t i o n ’ 

(information regarding the reliability of received data) is available. Multiple 
access channels have on the whole received much less attention than jamming 
channels.

One of the earliest frequency hopped multiple access systems was put 
forward by Cooper and Nettleton [Coo 78], who proposed such a system for 
cellular high capacity mobile radio. They used one-coincidence hopping sequences 
and differentially coherent biphase modulation with orthogonal coding to achieve 
diversity against fading and multiple access interference. It was claimed that the 
scheme had several distinct advantages over contemporary FM/FDM techniques 
used in mobile radio, including more consistent voice quality and more efficient 
spectrum usage. In their analysis of the system, Cooper and Nettleton modelled 
other user interference as Gaussian in nature, on the basis that the sum of a large 
number of interfering (other user) signals tends to be Gaussian. Later on, a more 
rigorous analysis of the system by Yue [Yue 82a] showed that in fact its 
spectrum efficiency was much lower than the FDM technique. Yue [Yue 81] also 
showed that modelling other user interference as Gaussian in nature, leads to 
results which are too optimistic and thus misleading.
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Geraniotis and Pursley [Ger 82] considered frequency hopping multiple
access from a more general point of view. They obtained formulae for the
probability of a lhii’ for various types of hopping sequences in slow frequency
hopping systems. These formulae have been used by many authors in the
analysis of such systems. The results showed that the hit probability becomescV-
independent of the typev hopping sequence used (random sequences or one- 
coincidence sets) as the number of frequency slots becomes large. Various bounds 
were also obtained for the uncoded probability of error of binary FSK in a 
channel with multiple access interference and fading.

1.4.3 -TFCSS
Following his earlier work (see section 1.4.1), in 1978 Viterbi [Vit 78] 

proposed a scheme for multiple access data transmissions by low rate mobile 
through a satellite transponder. The system differed from the one considered 
earlier by Viterbi in 3 ways:
i- Frequency hopping was used to randomise other user interference. Signals were 
thus spread both in the time and frequency domains rather than in the time 
domain only. Because of this, the system has been referred to as Time and 
Frequency Coded Spread Spectrum (TFCSS).
ii- Since operation in a noisy channel was being considered, a signal threshold 
was used to detect the presence of a signal in each chip of the time-frequency 
matrix.
iii- A simpler block orthogonal code with repetition was used instead of the 
orthogonal convolutional code.

Viterbi proposed the use of MFSK with non-coherent detection, with each 
symbol being repeated L times on a different frequency according to an address 
assigned to each user. User addresses were chosen at random and all signal 
transmissions were assumed to be asynchronous. Specifically, the transmission 
sequence was generated as follows:

Ym— © Am .

where:
© denotes modulo-M addition, 
Am is the address,
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Xm the data symbol,
Ym the transmission sequence of user m,
and Am , Xm , and Ym are all row vectors with L components.

Viterbi analysed the performance of such a system and derived upper 
bounds on its performance. He also considered the use of dual-k convolutional 
codes to further improve system performance. Dual-k codes effectively increase 
the length of the address sequence without sacrificing data transmission rate. 
Hence an improvement is obtained, though at the cost of increased decoding 
complexity at the receiver. Viterbi’s scheme was later modified and analysed by 
many authors.

Goodman et al [Goo 80] used Viterbi’s idea to propose a system for digital 
speech transmission in a mobile radio environment. The system not only 
provided multiple access to mobile users, but also diversity against fading. 
Assuming that all transmissions were chip synchronised, Goodman obtained 
upper bounds to performance in a Rayleigh fading environment. It was shown 
that the system had roughly 3 times the capacity of the Cooper & Nettleton 
scheme.

In connection with Goodman’s system, Einaxsson [Ein 80] developed a set of 
optimum addresses (which were in fact Reed Solomon sequences) with the 
property that between any user pair, there was at most one coincidence per 
signal frame and hence a minimum amount of other user interference. This was 
achieved at the cost of requiring that all transmissions be synchronous both at 
frame and chip levels. When frame synchronisation was not possible, Einarsson 
showed that it was possible to design sequences with no more than two 
coincidences between any user pair per frame.

Haskell [Has 81] investigated the performance of RS sequences and ‘cAt'rp’ 
sequences compared to random sequences. It was shown that RS and chirp 
sequences have an equal performance which is slightly better than that of 
random sequences, with the difference diminishing as the number of frequency 
slots becomes large. Haskell also considered the use of a decoding technique, 
which by using the knowledge of other user addresses, reduces the error rate. 
This is done by identifying other user interference patterns and separating these 
from the user signal. The work however considered transmissions in a noiseless 
case.

Timor [Tim 80] also used the well-defined algebraic structure of RS
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sequences to design a decoding procedure for reducing the effects of other user 
interference. The scheme had the advantage of not requiring the knowledge of 
other user addresses. For the case considered, with a noise free channel, Timor 
showed that an increase of 60% in the number of active users was possible. Later 
[Tim 81], he extended his decoding technique to make use of information 
regarding the number of active users. This resulted in a system which would 
accommodate twice the number of users as the original scheme with no decoding. 
More recently Healy [Hea 85] also studied a variant of Timor’s decoding 
algorithm.

Einarsson [Ein 84] considered the use of simple Reed Solomon and dual-k 
codes instead of the repetition codes used in TFCSS. His results showed that a 
marked improvement in performance was possible using these codes, with the 
convolutional code offering the best performance. This was however, at the 
expense of greater complexity at the receiver.

Yue [Yue 82b] considered the question of maximum likelihood detection for 
TFCSS systems. For a system with power control, Yue showed that the use of a 
square law detector followed by a linear combiner leads to an unacceptable level 
of performance. Yue then showed that the optimum combiner can be well 
approximated by a linear combiner preceded by an adjustable limiter. Moreover, 
the use of a binary decision device as proposed by Viterbi was shown to provide 
a performance very close to that of the optimum combiner.

1.5 -Thesis Outline.

In this section the remaining chapters of this thesis are briefly outlined.
In Chapter 2, previously derived bounds on frequency hopped multiple 

access systems are re-examined and new upper and lower bounds are presented. 
A similar analysis is carried out for a binary FSK/FH system. The question of 
optimum decoding for these systems is considered, and the performance of some 
simple codes is evaluated. Finally, based on the results derived, comparisons are 
made between the performance of MFSK/FH and TFCSS systems.

Chapter 3 deals with the application of more sophisticated coding schemes 
for TFCSS systems. In particular, the performance of a concatenated system 
using Reed Solomon codes with errors only, and errors and erasure correction is 
considered. The chapter ends with a derivation of the theoretical limit in system 
performance as indicated by the channel cut-off parameter Rq, and the
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performance of various coding schemes is compared with the theoretical upper 
limits.

In Chapter 4, the performance of slow frequency hopping systems with side 
information is considered. The improvement in performance when this 
information is available is demonstrated, and various means of obtaining it are 
investigated. The limiting performance of such systems is then evaluated using 
the cutoff parameter.

Chapter 5 deals with the performance of frequency hopping systems with a
limited amount of central control. The performance of a TFCSS system using an
interference reducing algorithm is investigated. Although the performance of

++\e. #
similar algorithms has been previously studied for noiseless channel, no work has 
been done for noisy channels. Computer simulation results of system 
performance are provided and comparisons are made with a channel coding 
technique of similar performance.

Finally, in Chapter 6 conclusions are drawn, and suggestions for further 
work made.
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F igu re  1.1 - M FS K /FH  signal in  the  tim e /frequency dom ain. 
M = 8 , q = 6 .
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Figure 1.2 - The basic structure of a MFSK/FH system.
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CHAPTER TWO

Performance Analysis of TFCSS and M FSK /FH  Multiple
Access Systems

2 .1 - Introduction

In the last chapter, a historical background to spread spectrum systems was 
presented and the motivations for using such systems were explained. Relevant 
channel models and descriptions of systems were also provided. Additionally, the 
basis for comparing the performance of these systems was set out. In this chapter 
an analytic framework for the analysis of frequency hopped multiple access 
systems is presented. The results given, will be used extensively in the 
forthcoming chapters, which deal with ways of improving the performance of 
such systems.

As discussed in Chapter 1 , the MFSK alphabet size of a TFCSS system is 
usually very large, much larger than that of a MFSK/FH system. To contrast 
the performance of these two types of system, the study presented here focuses 
on the use of a MFSK/FH system with an alphabet size of two (hence referred to 
as BFSK/FH), and compares its performance with a TFCSS system with a much 
larger alphabet size.

Initially, the performance analysis of TFCSS systems is considered, with a 
short review of previous work and their shortcomings. New results, which are 
lower and upper bounds to the performance of these systems are then presented 
and relevant comparisons are made.

A similar analysis is then presented for the BFSK/FH system, where a new 
lower bound is presented. New results are also given for the performance of these 
systems with near maximum likelihood decoding of block and convolutional 
codes.

Finally, using the bounds thus derived, a comparison of these frequency 
hopped multiple access systems is made, and the objectives for attaining better 
performance are outlined. These objectives are then pursued in the following 
chapters.
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2.2 - TFCSS System Analysis

2.2.1 - Previous Work
It is convenient to refer back to Figure 1.4b for a better understanding of 

the formulae derived for the analysis of TFCSS systems. The diagram shows a 
decoding matrix after the removal of the user address. The majority logic device 
counts the number of entries in each row and chooses the row with the largest 
number of entries as the ‘true row* (ie corresponding to the transmitted data 
symbol). In the case of a tie, a random selection is made between the contending 
rows. A decoding error occurs when a true row contains fewer entries than a 
‘false row’ (ie corresponding to the wrong data symbol), or when after a random 
selection, the true row is not chosen.

Applying the TFCSS concept to digital transmissions in urban mobile radio, 
Goodman et al [Goo 80] derived an exact expression for the decoded symbol error 
probability, assuming base to mobile transmissions. Belezinis [Bel 86],[Bel 88] 
used a slightly different approach to arrive at the same result, again considering 
base to mobile operation. The result is:

ps=E E f e ) - P t r G ) • (Mr x) • (pfcG))r- (g p fr( i) )M‘ l

+ E  ptr(j)- ( 1 -  I E P f r t t ^  -1)j=0 i=0

where ,

(2.1)

Pfr(j)= (5 j ' 4  > (2.2)

is the probability of j entries in a false row and,

P tr(™ )=(& ) ' i 1 -  PD)“  PD m (2-3)

is the probability of m entries in a true row.
The probability Pj of an insertion due to interference is:

PI_  Ph (1 - P d ) + (1 - P h )PF (2.4)

where PH is the hit probability (the probability of a tone position containing
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other user signals):

PH =  1 <2-5)

is the probability of a signal deletion due to fading, which is given by:

PD = 1 - -p(~ 2flfc)
and Pp is the probability of a false alarm which is:

PF= ex p (-

(c.f. eqs. 9.5.4 to 9.5.9, [Sch 66] ) , 

and
bo is the receiver’s normalised detection threshold, 
j o  is the average received signal to noise ratio (SNR),
L is the number of diversity (or signal repetition),
M is the size of the MFSK alphabet,
I is the number of system users.

(2.6)

(2.7)

The bit error rate P^ can then be worked out using the standard conversion 
formula [Pro 83]:

Pb= | ± P S (2-8)

where k=log2M.

This assumes that all symbol errors are equally likely, which is a valid 
assumption in this case, as the interference is random.

Einarsson [Ein 84] on the other hand, derived the probability of error 
between the true row and a false row a s?

P* =  t  Ptr(j)- E  Pfrtt + § E Ptr(j) Pfr(i) (2-9)j=0 i—j+1 j=0 _____
______ __________________

It must be noted tha t as a result o f considering mobile-to-base operation, the expression used by 
Einarsson fo r the channel insertion probability, Pj, is different from (2 .4 ). As a result expressions 
evaluated fo r P^r and P^r w ill also be different from the case considered by Goodman and Belezinis.
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(2.10)Ps =  (M—1 ) P 2

Despite the fact that the bound is obviously loose at very high error rates, it 
gives very good results at moderate to low error rates and it is much simpler to 
calculate than (2 .1 ) .

In his analysis, Einarsson considered mobile to base transmissions. However, 
he made the simplifying assumption that when a chip contained two or more 
signals, it was always detected with probability equal to unity.

While all of the above expressions are precise and accurate in their own 
right, it is the underlying assumptions leading to their derivation, which puts 
into question their usefulness. The derivations of Goodman and Belezinis for 
example, assume base to mobile operation, which means that each chip in the 
matrix contains only one signal. This simplifies their derivation. In the mobile to 
base case, each chip in the matrix can contain up to I user signals, each with 
randomly distributed amplitude and phases. When two or more signals axe 
present in a chip, the resultant signal amplitude is not simply the sum of each 
component, and the probability of deletion can not be considered zero, as 
assumed by Einarsson.

In general it can be argued that the two most important modes of operation 
which should be considered in the analysis of frequency hopped multiple access 
systems axe:

i) Mobile-to-base operation with power control.
In this mode of operation, each transmitter is modelled as adjusting its 

power, so that the a v e ra g e  received signal power at the base station is the same 
from all transmitters. Though from a practical point of view, this can be an 
unrealistic model to implement, it nevertheless provides a convenient means for 
the analysis of multiple access systems as described below.

In some cases, such as the uplink transmissions of ground terminals to a 
multiple access satellite, power control can represent a realistic mode of 
operation. On the other hand, in an urban mobile radio system, it is very 
difficult to achieve. This is because the shadowing effects of buildings and other 
obstructions in the transmission path cause large vaxiations of the received signal 
# ... “ ....... ....
Note tha t the union bound technique is a general approach fo r approximating the performance o f a 
given communication system, and could also have been used fo r the base-to-moblle case.

He then used a union bound to derive the symbol error probability as:
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strength. To realistically analyse the performance of a receiver in such an 
environment, would require considering the presence of a possibly large interferer 
population, each having distinct power and spatial distributions. It is needless to 
say that such a model is analytically impossible to analyse. A simpler approach 
is to replace the individual interfering power levels by their average, denoted as 
P. System performance can then be derived in terms of the average signal to 
interferer power ratio S/P (S being the average user power level). This does 
simplify the analysis model, but provides a tractable means of assessing the 
system performance. The power controlled model to be used in the later analysis, 
is the special case in which S /P = l.

It is interesting to note that this ‘average’ multiple access model is similar 
in concept to a random tone jamming model. In the jamming model however, 
the jammer selects the frequency slots to be jammed ‘intelligently’, whereas in 
the multiple access model, the interfering tones fall randomly amongst the 
frequency slots. The multiple access model has also the added complication that 
each energy detector output at the receiver, contains the sum of more than two, 
possibly up to I, signals.

ii) Mobile-to-base operation — worst-case.
In this case the signal from the desired user when located ‘far’ from the 

receiver, is overpowered by the signals of other interfering users located ‘near’ 
the receiver. This so-called ‘near-far’ problem, can happen for example, when one 
or more interferers are in direct line of sight of the receiver, whilst the desired 
transmitter signal is blocked by obstructions. The near-far problem usually 
establishes the limiting performance of a receiver in a mobile environment.

To provide a more meaningful and complete analysis of TFCSS, the
derivation of system performance for the two cases above will be presented here.

siftce.
The results from the second case axe especially useful/as will be shown later, 
they do not depend on the distribution of user power levels and axe upper bounds 
to TFCSS performance.

2.2.2 - New Bounds on TFCSS Performance.

fal Analysis of mobile-to-base operation with power control.
With mobile-to-base operation, each chip in the received matrix (at the
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base) can contain up to I signals. Each signal is assumed here to arrive at the 
receiver via a separate path, and thus they axe assumed to have independently 
and identically distributed (i.i.d.) fading statistics. As the average number of 
signals in a chip increases, the probability of not detecting the chip (deletion) 
decreases. Thus a user’s signal arrives at the receiver with higher certainty. It is 
not intuitively clear how this affects the average probability of error for a system 
user, as other user interference will also be detected with higher certainty. It 
must also be added that the probability of false alarm is unaltered in this case 
and is the same as in the base-to-mobile case.

Derivation of the average chip deletion probability.
To assess the performance of the system, the probability that a chip in the 

matrix containing one or more signals (from different sources) is not detected 
(deleted), needs to be evaluated. This will be denoted by PD and can be formally 
written as:

P q  =  Pr(Chip is deleted | chip contains one or more signals) (2 .1 1 )

This conditional probability can be re-written using using Bayes’ rule as:

■d _  Pr(Chip containing signal(s) is deleted )
— ---------;---------- ;---------------------- ;---------

Pr(chip contains one or more signals)

The numerator of (2.12) can be written as the summation:

Pr( Chip containing signal(s) is deleted) =

1y ;  Pr(chip is deleted | chip has j signals). Pr (chip has j signals) (2.13) 
j=i

The first term in the summation, ie the conditional probability of deletion 
for a chip containing j signals can be found by considering the envelope of the 
sum of j Rayleigh fading signals in noise, and is given by (see appendix 1):

(2.12)

Pd(j) =  1 -  expl
2(l+j7c)

where j c is the average SNR per chip.

(2.14)
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The second term in the summation of equation (2.13) can be written down 
by inspection as:

Pr ( chip has j signals) =  (?) ( ^ ( 1  -  jL)1 S (2.15)

Finally, the denominator of (2 .12 ) can also be easily derived, and shown to be:

Pr(chip contains one or more signals) = 1 — Pr(chip has no signal)

(2.16)

Therefore, finally using equations (2.12) to (2.16) :

m  -  exp( -  2s f c » -
PD “

1 -  ^ - m )1

(2.17)

Although this expression can be cumbersome to evaluate, in general only the 
first few terms need to be evaluated. This is because the probability that a chip 
contains j signals falls rapidly for j > 1 , and for all system parameters. This can 
be seen by considering the fact the value of I in a system is usually less than M. 
Even with I set to M, the most probable number of signals in a chip is one.1

Mobile-to-base Operation -Worst-case analysis.
In the worst case of signal reception, all the interferes are in direct line of 

sight of the receiver, and their signals are assumed to be detected with 100% 
certainty. The user signal will be assumed to be still subject to noise and fading. 
The probability of an insertion into the matrix, which was previously given as 
(equation 2.4) :

p i = p h (1 _ p d ) + (1 - P h )p f

is now changed to:

1The number o f signals in a chip has a binomial d istribution o f the form  ( j^ )p ^ ( l-p )n 
The most likely event o f such a distribution is given in [Pap 84] as: kmax=  [ (n + l) p ] .  Setting n=M , 
and p = l /M ,  K max= (M - { T ) /M ~ l  fo r large M.

- 3 8 -



pI - pH+ U -P h ^ F (2.18)

(ie P D =  0)

It must be noted here that the above assumption means that if the user’s signal 
coincides with an interferer’s signal, then it too must be detected with 100% 
certainty. The occurrence of this event has however been neglected for 
simplicity.
Using (2.18) and (2 .1 ) , the worst-case performance can be evaluated.

Comparison of System performance Bounds
The equations derived above have been used to plot the performance of a 

TFCSS system with an alphabet size of M=64 and at two diversity levels of 
L=12 and L=18. The choice of the system diversity parameter needs some 
explanation. The performance results presented in this thesis axe given as a 
function of the SNR per information bit 7^, which is related to the SNR per chip 
7c by:

7b=rc7c (2.19)

where rc is the ‘effective code rate’. For a TFCSS system, rc is given by:

rc=  £ (2 .20)

Many practical coding schemes incorporate code rates of approximately 0.5. In 
this thesis, two code rate values of |  and 1  are used throughout in the 
presentation of results. It is based on these two values that the diversity levels of 
L=12 and L=18 were chosen

The performance results axe shown in Figures 2.1 to 2.4. They pertain to 
base-to-mobile, mobile-to-base and worst-case performance. Also shown for 
comparison is the result of the union bound derivation for the mobile-to-base 
case.

The results show that mobile-to-base operation (case ii) with power control 
results in the best system performance for all parameters. However, the base-to- 
mobile operation (case i) closely follows that of case (ii), with the difference in
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performance diminishing at low error rates. In fact in the region of interest (P^ 
< 10"2), the difference in channel utilisation is 0.5% maximum.

The worst-case results can be clearly seen to upper bound cases (i) and (ii). 
However, the difference between them reduces at low error rates, and is no more 
than 3.5% (at =10"2). It is also interesting to note that this difference is 
larger at the lower code rate (Figures 2.1 and 2.2).

The union bound results axe interesting and show that although at high 
error rates the bound is loose as expected, at lower error rates it is very tight. In 
fact for error rates below 10~3, it coincides with the exact derivations.

In the ensuing sections of this thesis, the lower bound based on mobile-to- 
base operation with power control will be exclusively used. The results thus 
obtained will represent the best performance achievable with TFCSS systems.

2.2.3 - The Effect of Detection Threshold.
In a TFCSS system, as explained in Chapter 1 , each envelope detector is 

followed by a binary decision device, which using a suitable threshold, 
distinguishes between the condition of a signal being present and that of no 
signal. The optimum threshold depends on the average signal to noise ratio, and 
the duty cycle of ones and zeros in the matrix. The optimum value for the case 
of binary signalling (ie 50% duty cycle) can be found in [Sch 66]. The analysis 
presented thus fax, has assumed the use of a threshold based on the 50% 
criterion. However, it is obvious that in a TFCSS signal matrix, the 0 -1 ratio is 
not only variable, but vaxies from a very large value of neaxly 1 , occurring when 
only one user is using the system, to neaxly zero at high user levels. This suggests 
that the threshold should be variable and be adjusted for best performance at 
each user level. Since the relationship between the average error rate and the 
detection threshold is not straightforward, an analytic approach to the problem is 
not possible. Thus the effect of the threshold has been investigated by a 
computer search method, which determined the optimum threshold at each SNR 
and user level. The results obtained axe shown in Figures 2.5 to 2.8, which show 
the system performance with the optimum threshold, and with the threshold 
used previously.

The results show that although the effect of the threshold is negligible at 
high SNR (maximum discrepancy is 1% between optimum and non-optimum 
thresholds), at the lower SNR (15dB), the difference in channel utilisation is 
between 4 to 5 percent, which is significant, as the channel utilisation at 15dB is
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very low anyway.
In a practical system, the implementation of a variable threshold is difficult. 

It not only requires the measurement of the average SNR (which can be 
continuously varying, especially in a mobile radio environment), but also the 
level of channel usage. Therefore, in the following sections of this thesis, the use 
of a threshold based on the 50% criterion will be assumed. It is also interesting to 
point out that for optimum operation in the noiseless case, the multiple access 
channel should contain l ’s in half its dimensions [Coh 71],[Som 68], which would 
mean a pulse duty cycle of 50%.

2.3 - Analysis of BFSK/FH Systems.

In this section the derivation of a tight lower bound for uncoded 
transmissions in a BFSK/FH system is considered, and this is compared with a 
previously available upper bound. Results axe then presented for coded 
performance of such a system using simple binary BCH codes. Initially, results 
are given for the case of hard decision decoding of the received bits. A derivation 
of the performance of a system employing (near) maximum likelihood decoding is 
then presented.

2.3.1 - Error Probability for Uncoded Transmission.
The BFSK/FH system considered here has q frequency slots which axe 

chosen at random and with equal probability by all system users, according to 
their hopping sequence. Each slot is assumed to be fading independently, and 
FFH or SFH with interleaving is used so that the interference on consecutive bits 
in a sequence can be considered random. Data is transmitted by binaxy FSK, so 
that each data bit is conveyed by the transmission of one of two tones in a slot. 
At the receiver, the envelope detector with the larger output is chosen as 
representing the transmitted bit. An error occurs when more than one user try to 
use the same frequency slot. In this case the tone(s) from the interfering user(s) 
can cause the wrong bit to be chosen. The probability of having interfering tones 
on a given slot (having a hit) is given by:

pH = i  -  (i - 1 )w (2.21)



Errors also occur even when there is no hit, due to the effects of noise and 
fading. For binary FSK with non-coherent detection, the probability of error in a 
Rayleigh fading channel is given by [Pro 83] :

P 2 =  - L
2+7b

where 7^ is the average SNR per bit.

(2.22)

The total probability of error for a BFSK/FH system can thus be written down
as:

=  Pr(Error , hit) -f Pr(Error, no hit)
=  Pr( Error | hit ). Pr (hit) + Pr( error | no hit) . Pr (no hit)
= Pi • P jj + (1— Pjj) P2 (2.23)

Where P 2 is the probability of error given a hit, and P 2 is given by (2 .12;).

These derivations were first considered by Geraniotis [Ger 82] in connection 
with slow frequency hopping BFSK systems. The derivation of an exact value for 
P ^  hinges on obtaining a precise value for P 1? the probability of e r r o r  g iv e n  a h i t  

All the other variables in the above equation are known.
The exact derivation of P x requires the imposition of various operating 

constraints on the system. For example, the use of a power control strategy must 
be specified. If no such imposition can be made, then it is only possible to write 
down various bounds on Pi. One such bound, which is independent of other user 
power level is that Pi =  1  , ie the probabilities of error and no error are equal. 
P^ can then be written down as:

P^ = ^ P r  + P2(1 — Pjj) (2.24)

This expression is quite useful, since its independence from system 
implementation details means that it can be used in the general analysis of 
BFSK/FH systems. Moreover, since it is an upper bound, it allows a fair 
comparison between BFSK/FH and TFCSS systems operating under the worst- 
case condition.
To supplement the above bound and to assess its tightness, a new exact
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2.3.2 - Error Probability for Power Controlled Systems.
When the constraint of power control is imposed, then it is possible to 

derive an exact expression for the performance of the system. This is because the 
statistics of the energy detector outputs are then predictable. To get an 
expression for the probability of error, the conditional probability of error when 
hit, needs to be derived, and this is done as follows:

The first term on the RHS of (2.23) can be re-written as:

I
Pr(Error , hit) =  ^  Pr(Error | j hits) Pr( j hits) (2.25)

j=i

Assuming without loss of generality, that the transmitted bit (by the desired 
user) is a zero, then in a given hit state there will be a number of interfering 
signals, denoted by i, which are also zeros, and the other j —i signals will be ones. 
Therefore the conditional probability term in the summation of (2.25) can be 
written as:

Pr (Error|j hits) =  y^Pr(Error|N0= i, Nx =j —i). Pr(N0=i,N 1= j —i) (2.26) 
i=o

Where N0 refers to the number of interfering bits which agree with the 
transmitted bit, and Ni is the number of bits which do not.
The first term in the summation of (2.26) can easily be shown to be given by 
(see appendix 2 ):

Pe i =Pr(E rror|N „=i, N1= j —i) =  lT |,+1)T~ (2.27)
,+  l+  0 -i)7 b

which for 7^ >  1 is closely approximated by: 

p . = _____ 1_____
ei 1 +  ( H - O / O - i )

expression for the performance of B FSK /FH  with power control is derived below.

The second term in equation (2.26) is given by: 

Pr( j hits)= ( j )(l)i (1)^= ( j ) (If (2.28)



which is based on the fact that each interferer chooses one of the two tones 
positions with equal probability of 1 .
Finally, using (2.15) and (2.25) to (2.28), the probability of error when a hit 
occurs is given by:

Pr(Error, hit) =  £  { Q  (l)j} ( ] )  ( l - t f *  (2.29)

Although this is a cumbersome expression to evaluate, its calculation can be 
simplified by observing the fact that the probability of having j hits, diminishes 
rapidly for j > 1 . (as pointed out earlier in section 2 .2 .2)

Using (2.29) and (2.23) the probability of error for the system with power 
control can be derived.

Figures 2.9 and 2.10 show the performance of a power controlled BFSK/FH 
system and compare it with the upper bound of (2.24) in a typical system with 
q=100 frequency slots. It is evident from the graph that the upper bound is 
loose, and usually more than an order of magnitude higher than the lower bound. 
It can also be seen that the uncoded error rates axe very high, even at low other 
user interference levels. This should be intuitively obvious, as even if there is 
only one interferer present, the probability of error is approximately ( 
in this case means an error rate of 0.005 .
In the following section the use of the lower bound on error probability will be 
assumed.

2.3.3 - Coded Performance.
As the results in the previous section show, the performance of uncoded 

BFSK/FH is poor. From a multiple access point of view, system performance 
can be improved, by increasing q (whilst keeping I constant), as this decreases 
the hit probability PH' This would however be wasteful of bandwidth, even if the 
extra frequency slots required were available. Moreover, due to the presence of 
signal fading, the error rates obtained would then probably be still too high. This 
situation can be remedied by the effective use of channel coding, which as 
mentioned before, is an essential part of any spread spectrum multiple access 
system.

In this section, the coded performance of BFSK/FH using a number of 
simple binary BCH codes is derived. The performance of a binary BCH code

i ) ,  which
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(assuming the use of a bounded distance decoder) can be evaluated using the 
expression [Mic 85] :

Pbc £ 1 4 -ft) K  d -  p b)n'j (2-30)j= t+l J

where t is the error correcting capability of the code, P^ is the coded error 
probability and the uncoded error probability.

By using (2.23) and (2.29) the uncoded error rates of BFSK/FH can be 
evaluated, and then using (2.30) the coded performance derived. This has been 
done and the results for a number of codes with various error correcting 
capabilities, axe shown in Figures 2.11 and 2.12 .

As can be seen from the graphs, the coded performance is very poor indeed. 
At 7^=  15 dB the error rates axe unacceptably high, and even at 25 dB, where 
acceptable error rates axe obtained, the channel utilisation is very low.

This poor performance of coded BFSK/FH may be attributed to the fact 
that the system considered above used hard decision (ie non-maximum 
likelihood) decoding. It is interesting to point out at this stage that if a TFCSS 
system made a hard, 1 of M decision, (ie during each chip interval, the tone 
position with the largest output is chosen as representing the transmitted 
symbol), then its performance would obviously be unacceptably poor, even in the 
presence of small levels of other user interference.

In the following section, a new mode of operation for a BFSK/FH system is 
proposed, which even with short codes, gives a performance compaxable to 
TFCSS. This is based on achieving maximum likelihood decoding using a 2-level 
quantised output from the envelope detector.

2.3.4 - Maximum Likelihood Decoding.
The question of efficient coding for fading channels has been considered by 

many authors [Pie 78],[Vit 75]. (the references cited axe two of the more notable 
contributions). Results obtained for these channels indicate that the use of soft 
rather than hard decision decoding will result in a performance gain which can be 
laxger than 6-7 dB. This compares to the 2dB difference often associated with the 
AWGN channel. Proakis [Pro 83], by using a Chernoff bound argues that the use 
of hard decision decoding leads to an effective reduction in the minimum
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distance of a code by a factor of 2. For a fading channel, this reduction has a 
more pronounced effect on error rates than the AWGN channel.

The maximum likelihood decoder for a fading channel consists of a square 
law (or envelope) detector followed by a linear combiner. In a multiple access 
channel however, due to the presence of pulsed (other-user) interference, such a 
decoder will perform poorly. This is because in the worst case, the presence of 
even one strong interfering tone can be enough to cause the code metric 
calculated for a wrong codeword to exceed that of the correct codeword, causing 
continuous erroneous decoding.

Yue [Yue 82b], has considered the use of maximum likelihood decoding for a 
TFCSS system with power control (though his results will also apply to 
MFSK/FH systems, since the channel interference conditions a re  th e  s a m e ) . His 
results show that the use of a square law detector followed by a linear combiner 
does indeed lead to very poor levels of performance. Yue then derived the 
structure of the optimum combiner, which is a non-linear device, and difficult to 
implement. The device in fact resembles a soft limiter (a linear combiner 
followed by a limiter) whose limiting level depends on the multiple access 
interference and the average SNR. Yue also showed that the use of a threshold 
detector followed by a linear combiner provides a very good approximation to 
the optimum decoder. Moreover, it is very simple to implement and analyse, and 
this is the reason for which it has been used in the analysis of TFCSS systems 
presented here. In this section, the performance of a BFSK/FH system with 
maximum likelihood decoding using this sub-optimum detector is analysed.

To achieve maximum likelihood operation for a BFSK/FH system, the 
following mode of operation can be used:

i) Instead of making a hard decision on each of the envelope detector outputs 
during each bit period, a threshold is used to assign a one or zero value to these 
outputs.
ii) After receiving all n bits in a code block, the receiver forms the following 
metric for each possible transmitted codeword:

vi= D  cij yy  + U -  cij)yoj) i= l ... M (2.31)

where M =2^ is the number of possible codewords, ygj and y ^  denote the
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(quantised , 0 or 1) detector outputs for the jth  bit and c -  denotes the bit of

the i ^  codeword.
iii) The codeword w ith the largest m etric is then chosen as the correct word.

Performance Analysis.
In order to examine the performance of the decoder, it is convenient to 

visualise the transmission of an n-bit codeword by BFSK as a transformation 
converting the original n bit code to a new code of length 2n. If the original 
codeword is an n-tuple denoted by C:

c  — {  Co , Cl  , . . .  , Cn }

then C f is a 2n-tuple:

C' =  {co , c; , ... , c'2n}

defined by the transformation:

c, -* 10 if c,= 0

and ci -* 01 if c ,= l .
(the order of transformation is unimportant)

The bits in C* represent the sequence of FSK tones transmitted per 
codeword. The introduction of the transformed code C; is due to the fact that the 
performance of the system can be more easily explained and derived in terms of 
it rather than C. It should be noted that the transformed code C r has minimum 
distance 2d • (d • being the minimum distance of the original code) and all 
its codewords have a fixed weight of n. The latter property is an important 
requirement for the practical implementation of a maximum likelihood decoder 
[Pie 78].

A loose upper bound on the error probability can be obtained by noting the 
fact that the probability of error between the correct codeword and any other 
codeword is given by:

Pr( v, < v. ) < Pe ( 2dmin) (2.32)



where v0 is the metric calculated for the correct codeword , v- is the metric for
the wrong one and Pe(2dm*n) is the probability of error between two sequences
which differ in 2d • bits.mm

Equation (2.32) follows from the fact that the probability of error in 
deciding between two metrics o n ly  d e p e n d s  on the number of places in which their 
corresponding codewords differ. This difference is at least (2drn-n).

Using a union bound, the probability of codeword error can then be written 
down as:

Pw < (2k - 1 ) Pe (2dmin)

OT Pb =  2^-1  Pw “  ^  Pe 2̂dmin '̂ (2'33)

which assumes all error events are equally likely. To evaluate (2.33), an 
expression for Pe(.) is required, which is derived as below.

If the two codewords of C7 differ in j bits, then (^) of these bits axe zeros, 
and (^) are ones. By considering the metric evaluated for each codeword 
(equation 2.31), it can be seen that an error occurs if the sum of (j/2) chips 
corresponding to the transmission of o n e s , is less than the sum of (j/2) chips 
corresponding to the transmission of z e r o s . This situation is in fact analogous to 
the probability of error between a true row and a false row in a TFCSS system2, 
where L=|. An expression for this probability has already been given (equation 
2.9) , and this can be used directly in this case. Thus:

Pe(j) =  P .(j) (2-34)

where P 2(.) was defined in equation (2.9).
Using (2.33) and (2.34), the coded performance with maximum likelihood 
decoding is derived.

o I t is interesting to  point ou t th a t MFSK signalling used in TFCSS systems, can be 
regarded as binary block orthogonal coding, where the minimum distance between codewords is 2. 
When each codeword is repeated L times, the resulting binary sequences (corresponding to  different 
data symbols) d iffer in 2L places. Thus the probability o f error between a true row and a false row, 
is the probab ility o f error between tw o binary sequences which differ in 2L places.
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If the weight distribution of the code is known, a refinement to the union 
bound above can be made by using the equation [Pie 78] :

Pw < A- P 2(j) (2.35)
-*= d min

where Aj represents the number of codes with weight j.
It must be noted that this equation can only be used for a linear code, where the 
weight distribution is the same as the distance distribution.

Performance Results
Since it is impractical to implement maximum likelihood decoding for codes 

with a large alphabet size M, the performance of two short block length BCH 
codes was evaluated using (2.35). The parameters of each code are shown in 
Table 2.1

Table 2.1 - Code Parameters Used in Assessing the performance of 
Maximum Likelihood decoding for BFSK/FH systems.

Code dmm

CNIIs

Code rate

(31,11) 1 1 2048 0.35

(24,12)* 8 4096 0.5

* - Extended Golay code.

The required weight distribution data is widely available for the Golay code. 
For the (31,11) code this was obtained by tabulating all possible codewords using 
its generator polynomial given in [Lin 83].

Although the bound given by (2.35) is much tighter than that of (2.33), the 
results obtained at low SNR (15dB) were still found to be very inaccurate (error 
rates above 0.5). A computer simulation programme was thus used to evaluate 
the exact performance of both codes. The results obtained axe shown in Figures
2.13 and 2.14. Also shown in Figure 2.14, are the analytic results based on (2.35). 
The results show that the bound is indeed very loose, only agreeing with the 
exact results at very low error rates.

Overall, the results show a significant improvement in performance over 
that achieved by bounded distance decoding with hard decisions. (For
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comparison, Figures 2.15 and 2.16 show the performance of both decoding 
schemes). However, this performance is still poor, when compared to that 
obtained by TFCSS systems. This is especially so at low SNR, where the error 
rate is above 10"2 even at very low channel utilisation levels. Table 2.2 shows a 
comparison of the results obtained by TFCSS and BFSK/FH systems (Using 
maximum likelihood decoding)

Table 2.2  - Comparison of TFCSS and BFSK/FH Systems. 
Maximum value of tj , at a given error rate and SNR.

System 7b=  15dB

pb=io-3

7k=25db

Pb = 10-6

TFCSS

|  rate 0.012 0.06

BFSK/FH

(24,12) Golay code - 0.02

It is of course possible to improve the performance of the BFSK/FH system 
by using longer codes, but this will result in greater decoding effort, and it is 
unlikely that codes much larger than those used above can be practically 
implemented.

Convolutional Codes
Up to now, the analysis presented here has focused on the use of block 

codes. However, for many channels, convolutional codes are known to provide a 
superior performance compared to block codes of the same order of complexity 
[Vit 71]. Moreover, the implementation of maximum likelihood decoding using 
the ‘Viterbi algorithm’ for convolutional codes, is considerably simpler than the 
‘word correlation’ technique used for block codes. To complete the presentation 
in this section, the performance of these codes using the maximum likelihood 
decoding technique outlined above will be derived.

Following Viterbi [Vit 71], and assuming without loss of generality that the 
all zero sequence is transmitted, the bit error rate can be derived using the 
derivative of the code transfer function T(D,N) evaluated at N =l:

<9T(D,N)
dN (2.36)

- 5 0 -



In the summation of (2.36), represents the number of paths which differ from 
the all zero path in j bits, and bj is the number of bit errors caused by 
erroneously choosing such a path (rather than the all zero path).

The bit error rate can then be upper bounded using a union bound in much 
the same way as for block codes (cf. equation 2.35):

where d£ is the m inim um  free distance of the code.

oo
Pb < E  bj p e(2j) 

j=df J
(2.37)

where Pe(j) is the probability of error in choosing a path of distance j from the 
all zero path.
Following the derivation given for block codes, Pe(j) is given by (2.34) and thus 
finally, the bit error rate can be written down as:

oo
Pb -  X  bj P 2(j)

j=df J
(2.38)

For most codes, the values of bj in the above series axe known only for the 
first few values of j, and hence the series has to be truncated. The results thus 
obtained are approximate. In [Con 84], the first 18 values of bj are given for some 
good codes. Using these values, the performance of a short constraint length 
(k=7) code with redundancies of 1 and ^ has been evaluated. As for block codes, 
the use of the union bound in (2.38) was found to be too inaccurate to be of any 
value at 7^=15 dB. Results were thus obtained using a computer simulation of 
the Viterbi algorithm, and these cure shown in Figures 2.17 and 2.18.

The results show that a very good performance can be achieved using simple 
convolutional codes. For the cases considered, these results are considerably 
better than those of block codes. For example, at 7^=25 dB, with P^=10"6, the 
maximum utilisation is 6%, which is 3 times as much as the (24,12) Golay code, 
and the same as the 1 rate TFCSS system. On the other hand, at 7^=15 dB, the 
performance of the convolutional codes, like the block codes, is very poor.

Finally, it can be noted that as expected, the results obtained using the 
analytic bound (2.38) axe very loose.
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2.4 - Assessment of FH /M A  System Performance

From the results obtained in the previous sections it can be seen that the 
use of a large MFSK alphabet (such as in TFCSS) allows acceptable system 
performance to be achieved even when using simple repetition coding. For a 
system with a small alphabet size to achieve the same performance, sophisticated 
coding is required which may not be practically implementable. On the other 
hand it must also be remembered that the BFSK/FH system needs a much 
simpler receiver compared to the TFCSS system. This is because it need only 
take two signal samples in the frequency domain per chip interval, compared to 
M for a TFCSS system. It is also interesting to point out that the use of a large 
signalling alphabet is consistent with the spread spectrum philosophy of 
spreading one’s signal over as wide a bandwidth as possible.
Two interesting questions which arise at this point are:

i- Given enough coding complexity, is it possible for a BFSK/FH system to 
achieve the same kind of performance as a TFCSS system?
ii- The TFCSS systems considered in this chapter had an alphabet size of M=64. 
What improvement in performance is possible by using larger alphabet sizes, and 
what is the limit in doing so?

These questions are answered in the following chapter, which treats both TFCSS 
and MFSK/FH systems in general, from an information theoretic point of view.

Even though the TFCSS systems considered showed a superior performance 
compared to BFSK/FH, their performance can still be considered to be quite 
poor with respect to bandwidth efficiency. For example, to achieve a modest 
error rate of 10"3 at 15 dB requires that the channel utilisation be less than a few 
percent. While this level of performance may be acceptable in some systems, 
such as a packet radio network, where the data traffic is bursty, and the number 
of simultaneous users not very large, in other systems such urban mobile radio, it 
is clearly unacceptable. Ways of improving this poor performance are 
investigated in the following chapter.
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CHAPTER THREE

Coding Options for TFCSS Systems.

3.1 - Introduction.

In the previous chapter, methods for deriving bounds on the performance of 
TFCSS and BFSK/FH systems were investigated. System performance curves 
were presented for TFCSS systems which showed that acceptable data 
transmission is possible with such systems, as long as the channel utilisation is 
low. This is clearly an undesirable situation, since efficient spectral usage is a 
prime consideration in the design of most civilian communications system.

In this chapter, various means of achieving higher channel utilisation levels 
through the use of efficient channel coding techniques axe investigated. Emphasis 
will be placed on the use of algebraic decoders, which can easily operate at high 
data rates, and axe also relatively easy and inexpensive to build. In the previous 
chapter it was shown that maximum likelihood decoding is essential to providing 
acceptable performance levels in FH/MA systems. Unfortunately, the 
implementation of such decoders usually results in great receiver complexity, 
unless fairly simple codes such as repetition codes axe used. Algebraic decoders 
which try to achieve maximum likelihood decoding can thus represent a good 
compromise between good performance and minimum decoder complexity.

Since Reed Solomon (RS) codes are used extensively throughout this chapter 
and the following chapter, the presentation following this introduction begins 
with a short review of these codes. New results are then presented on the 
application of vaxious configurations of RS codes in a concatenated form to 
TFCSS systems. First the application of a simple error correcting scheme is 
considered. The performance gains achievable by using the erasure correcting 
capability of the codes axe then also demonstrated. Analytic derivations of the 
performance of two erasure detecting schemes then follows. A comparison is then 
made between the proposed schemes, and work previously done by Viterbi and
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Einarsson on coding for TFCSS systems.
Finally, this chapter ends with a theoretical derivation of the limit in the 

performance of frequency hopped multiple access systems, by using the channel 
cut-off parameter. This new approach allows a simple, yet valuable assessment of 
the coding options for these Systems to be made, and also provides a convenient 
means of comparing their performance with that of systems employing 
centralised control. New results are also presented on the effect of alphabet size 
on system performance, which help to explain the questions raised at the end of 
the previous chapter.

Reed Solomon Codes.
R e e d  S o lo m o n  (RS) codes axe an important and popular subclass of non-binary 

BCH codes. They are codes defined over GF(P), where P is a power of a prime 
number, and have block length N, where N is equal to P —1, P or P -fl [Mic 85]. 
They are convenient for use with non-binary modulation schemes, and are also 
often used with other codes in concatenated schemes. An important property of 
RS codes is that the minimum distance d is given by:

dmin =  N - K+ !  (3-D
K being the number of information symbols in a block.

A code with the above property is called a ‘maximum distance separable’ 
(MDS) code, and is optimum in the sense that for fixed N and K, no other linear 
code can have a larger minimum distance. Furthermore, any shortened1 RS code 
is also MDS. The MDS property of RS codes can be a strong justification for 
their use in many communications systems. The ease of implementing high 
performance decoders for RS codes, is yet another reason for their popularity.

A useful property of MDS codes is that their weight distribution can be 
readily obtained from the expression [Mic 85]: (for codes over GF(P) )

Aj = (* )  ( P - i) g " ' ( - i) 1 (i 71) (3.2)

^  shortened code is one in which some o f the information bits or symbols are intentionally  
forced to  zero, and are thus not transm itted. Th is allows the block length o f the code to  be 
decreased to  some desired value.
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With bounded distance decoding, a RS code can correct up to j= [N ~K ] 
errors, or e= N —K erasures. In general, any combination of j errors and e erasures 
can be corrected provided that:

2j + e < N -  K (3.3)

3.2- Concatenated Coding for TFCSS Systems.

In a simple TFCSS system, a (L,l) repetition code is used. This is in fact a 
simple shortened RS code2 defined over GF(P), where P equals the MFSK 
alphabet size. This code represents the simplest coding scheme for the system. 
The next obvious step in increasing coding complexity is to take two data 
symbols and produce a sequence of 2L elements (which keeps the code rate j- as 
before). This can be done again by using a shortened RS code from GF(P). This 
(2L,2) code has minimum distance (2L—1) compared to L for the repetition 
code, and can thus be expected to have a superior performance. Alternately, a 
dual-k convolutional code [Ode 76] of rate ^ can be used to the same effect. 
Einarsson [Ein 84] and Viterbi [Vit 78] have investigated the use of these codes 
and shown that their performance is markedly better than that of the repetition 
code. It might therefore seem natural to extend this idea, and by grouping 
together larger sets of data symbols, use codes with better distance properties. 
The only difficulty with this approach is that the decoder complexity increases 
exponentially with code information content K. For example, with the (L,l) 
code, for each data symbol, P code metrics need to be evaluated, while for the 
(2L,2) code, P metrics need evaluation for every two data symbols. In general, 
for a (N,K) code, ^  metrics need evaluation for every data symbol. It is obvious 
that even with fairly small values of P, it is impractical to use values of K above 
two.

An alternative to the above approach is to use a concatenated coding 
scheme, in which a simple low complexity code with maximum likelihood 
decoding is used as the inner code, and a larger, more powerful RS code with 
algebraic decoding is used as the outer code.

The application of this idea to a TFCSS system is straightforward, and is 
shown in Figure 3.1 . Source information symbols are first coded using a (N,K)

S ho rtened  from  (P-1, P -L ) to  ( L , l ) .
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RS code. Each code symbol is then transmitted by the TFCSS system as normal 
by using a (L,l) repeat code. At the receiver, after maximum likelihood decoding 
of the inner code, each block of N symbols is decoded to produce the transmitted 
data. The overall code rate for such a concatenated scheme is clearly :

r = © .( K )  (3.4)

where k=log2M.
In the work presented in the following sections, comparisons are made 

between TFCSS systems with and without concatenation, operating with the 
s a m e  c o d e  r a te  . This allows a fair comparison to be made between two systems 
operating at the same channel utilisation.

3.2.1- Errors only correction.
The performance of a given RS code of block length N and information 

content K can be upper bounded using the expression [Mic 85] :

Psc= t  i # .  (?) P i(l -P s)N'j (3.5)
j = t + l

where t is the error correcting capability of the code, Psc is the coded symbol 
error probability, and Ps is the symbol error probability at the input of the RS 
decoder.
The t  term inside the summation takes into account the number of extra errors 
which may be introduced by the decoder when a d e c o d in g  e r r o r  (ie the decoder 
produces the wrong code symbol) takes place. This is based on the assumption 
that in the event of a decoding failure, t errors at the most are introduced into 
the decoder output. Most of the codes investigated in this chapter have a large 
minimum distance, and hence a large value of t. Berlekamp [Ber 80] has shown 
that for a t-correcting RS code, the probability of a decoding error is related to 
the probability of a d e c o d in g  fa i lu r e  (ie when the decoder does not try to correct) 
by the expression:

Pr(DEC-error) «  1  Pr(DEC-fail) (3.6)

For large t, the probability of a decoding error is thus negligibly small 
compared to that of decoding failure, and can be neglected. The probability of
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(3.7)p sc= t i- 0?) p i a  - p s ) N 'jj = t+ r ^

Equation (3.7) is thus a lower bound on performance, but since it is very tight 
for most error rates of interest, it has been widely used in other research work.

(It is also the same expression as that used previously for the evaluation of 
the performance of binaxy BCH codes with bounded distance decoding).

Using the bounds given in the previous chapter on the performance of 
TFCSS systems, the error rate at the output of the inner decoder can be 
evaluated. Then using (3.7), the symbol error rate (and hence the bit error rate) 
of the concatenated system can be computed.

An interesting question which arises, concerns the optimum choice of code 
parameters for the inner and outer codes. For a given fixed overall code rate, a 
range of possible inner/outer code rates are available. The lower the rate of the 
inner repetition code, the lower is the probability of error at the input of the 
outer code. The outer code will however have to operate at a higher rate and 
hence its correcting capability is less. An optimum inner/outer code rate pair 
must thus exist for each level of overall code rate.

Performance results.
The performance of two TFCSS systems, with M=64 and overall code rates 

of approximately |  and  ̂ has been computed for various inner/outer code rates 
and is shown in Figures 3.2 to 3.5 . The code parameters used are shown in Table 
3.1. The RS codes used are defined over GF(64) and thus have block lengths of 
N=63.

coded symbol error thus becomes:

Table 3.1. Inner/outer code pairs used in Figures 3.2 to 3.5

Code rate~ | Code rate ~  |

Inner code Outer code Inner code Outer code

L (N,K,t) L (N,K,t)

10 (63,35,14) 4 (63,21,21)

12 (63,42,11) 6 (63,31,16)

14 (63,49,7) 8 (63,42,11)

16 (63,56,4) 10 (63,52,6)

^ _________________________
Note tha t (3 .5) is only an upperbound, as the t term in tha t equation represents the maximum  
number o f extra errors introduced by the decoder in the event o f a failure. Equation (3 .7 ) follows  
form  (3 .5 ) because the decoder fa ilure probability is considered to  be small, and thus the t  term is 
neglected.
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The results show that a major improvement in performance over simple 
TFCSS systems is obtained. As suggested above, for each case considered, the 
results show that an optimum inner/outer code pair exists, and in fact the use of 
any pair other them the optimum, can result in a serious degradation in system 
performance. This is more pronounced for the case of the  ̂ code rate system 
(Figures 3.4 and 3.5). The use of a particular pair depends on the required 
maximum error rate, and as is apparent from the figures, there are a series of 
transition points occurring as one pair outperforms another (with the channel 
utilisation increasing). Over the error rate range of interest (10"6<  P^< 10’3), the 
results show that in all cases, when the optimum code pair is used, a greater 
than a three-fold increase in channel utilisation is achieved over the simple 
TFCSS system. A comparison of results is shown below in Table 3.2.

Table 3.2 - Maximum value of rj , for the Concatenated TFCSS system, at a 
given error rate and SNR.

Error rate Code rate ^  I -  3 Code rate -  \

& SNR Simple Concatenated Simple Concatenated

7b = 15dB
p b = n r 3

0.012 0.06 0.02 0.06

7b =  25dB 

p b =  i<r»

0.08 0.185 0.06 0.19

It is interesting to note that the best performance is achieved with a low rate 
inner code, and a high outer code rate.

3.2.2- Operation with Errors and erasure correction.
As noted earlier, an RS code can correct any combination of errors and 

erasures as long as the total number satisfy the inequality of (33). Referring to 
this equation, it is obvious that it is advantageous to use the erasure correcting 
capability of an RS code, as in a given codeword, twice as many erasures as 
errors can be corrected. This however requires the use of a reliable erasure 
declaring demodulation scheme. Non-availability of reliable erasure data will lead 
to a loss in system performance, if for instance, it results in the erasure of 
uncorrupted data.
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The use of concatenation does mean however, that by using the output of bathe inner decoder, it may possible to derive quite reliable erasure information for
the outer code. If for example, the output of the inner decoder contains two
symbols with equal numbers of chips, it may be better to declare an era-sure
rather than pass a possibly wrong symbol to the outer code. Alternatively, since
the number of chips received for each symbol can be regarded as a measure of its
reliability, a chip threshold could be used to erase those data symbols which do
not attain enough chips.

In the following section the performance of two erasure declaring schemes in 
a concatenated TFCSS system is investigated. In each case, expressions are 
derived for the probability of error and erasure at the output of the inner code, 
which axe then used to derive the performance of the outer code using the 
equation:

p s c = £  ( $ X 3 ) l 4 . B g .  ( l - P s - E s ) N-j-e
j+ e  <  N 

dm in< 2 j+ e

(3.8)

where:
Ps is the probability of a symbol error at the input of the decoder,
Es is the probability of a symbol erasure at the input of the decoder,
j represents the number of errors in a codeword,
e represents the number of erasures in a codeword,
and ( N \  N!^  UjV "j! e! (N -e - j ) !  ’
is the number of ways of having e erasures and j errors in N symbols.

This expression is similar to the one used for the errors only decoder, and takes 
into account all the error events in which the number of errors and erasures 
exceeds the correcting capability of the code. Note that the expression assumes 
pessimistically that if the decoder fails, then all the erased symbols will be in 
error.

Erasure detection based on ambiguous symbols (scheme i).
It is convenient to refer to back to Figure 1.4b to understand the operation 

of this scheme. The inner decoder sums the number of chips in each row of the
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‘decoding matrix’. The ‘true row’, corresponding to the correct data symbol, will 
usually have more entries than all other ‘false rows’ and is chosen. If there is a 
tie between two or more rows, then a random selection is made. It may be better 
to declare an erasure in such a case, since the probability of choosing the wrong 
symbol is at least 1.

To derive the probability of an erasure, it is more convenient to first derive 
the probability of a correct decoding (Pc) and the probability of a decoding error 
(Ps) and then to use the following expression to evaluate the erasure probability:

Pc-f Ps +  Per =  1 (3*9)

where Per is the erasure probability.

The probability of a correct decoding can be defined as:
LPr(Correct Decode) =  Pc =  ^  Pr(TR=j) . Pr(Correct decode | TR=j )

j=i
=  I > ( T R = j )  -Pr( FRmax<j) (3.10)j=i

where (TR=j), denotes the occurrence of the event that the true row contains j 
chips, and (FRmax < j), denotes the event that the false row with the maximum 
number of entries has less than j chips.

An error occurs when a false row has more chips than the true row and 
there is only one such row, ie:

L - i
P s=  Pr(Decode error) =  ^  Pr(TR=j) .Pr(Decode error | TR=j)j=o

=  £ P r (T R = j).P r(FRmax >j, N[FRmax]= l)  (3.11) j=o
where N[FRmax] denotes the number of false row with maximum number of 
chips.

The derivation of (3.10) and (3.11) is fairly straightforward and in fact 
similar derivations have been made by Belezinis and Turner [Bel 88]. Starting 
with equation (3.10), the probability that the false row with the maximum 
number of entries has fewer than j entries can be written as:
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=  I £  Pfr0)I M'1 (3-12)
i=0

(In the above equation, and the derivations which follow, the notations pfr(j) 
and PfcrCj) axe used. These have already been defined in Chapter 2 —equations 
(2.2) and (2.3)).

The term in the square brackets is the probability that a g iv e n  false row has fewer 
than j entries. Equation (3.12) then follows from the assumption that the entries 
in each row of the decoding matrix are independently distributed variables, and 
the fact that there axe (M—1) false rows. Using (3.10) and (3.12), the probability 
of correct decoding can thus be written as:

p c=  £  Ptr(i)- I £  PfrWJ M'X (3-13)
j = l  i=0

Using a similar approach to derive (3.11), in this case let the false row with 
the maximum number of entries have exactly s entries. All other (M—2) false 
rows have (s—1) or fewer entries. Since there axe (M—1) combinations of one 
false row , then:

Pr(N[FRmax]=l I FRmax=s) = (M - l)  Pfr(s)J £ P fc(i)]]M ‘2 (3.14)
i=0

Irvcts

Given that the true row j entries, then an error occurs for all values of s more 
than j. The total error probability is found by summing (3.14) for all values of s 
more than j:

Pr (error | TR =j ) =  £  (M -l)  . Pfr(s) . [ £ P fr(i)J M'2 (3.15)
s = j+ l  i=0

Using (3.11) and (3.15), the probability of incorrect decoding can the be -written 
as:

P r( FR m ax< j) =  Pr( All false row have j — 1 or fewer entries)

p s=  £  Ptr(j) • { £  (M -l) .  Pfr(s). I £ P fr(i)l M-2} (3.16)
j= 0  s = j+ l  i=0

Using equations 3.9, 3.13 and 3.16 the symbol error and erasure probabilities can 
be evaluated.
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Erasures based on a threshold (scheme ii).
In this case an erasure is declared if there is a tie between two or more 

symbols and a d d i t io n a l ly  if the row with the maximum ^ , contains fewer entries
than a given threshold, denoted here by The probabilities of error and
erasure axe in this case simply derived by slight modification of the limits of 
summation in the expressions derived for scheme (i).

The probability of a correct decoding is :

Pc =  ^ 2  CFR=ji PR-max <j j j > ^Th )
j = i

= E  Ptr(j)- I E  PfrMJ M-1 (3-17)j=Lth i=0
which is the same as (3.13) derived above with the lower limit modified.

An error occurs with probability:

Ps= ^  Pr(TR=j , FR-max >j> N[FRmax] =1 , j>Lrpjj) (3.18)
j= o

Here again (3.16) can be used with the additional restriction imposed on s that 
s> Rpjj , ie the last term in (3.16) now becomes:

{ £  (M - l)  Pfr(s) • I E  Pfr (i) 1M 2 }  (3-19)
s = j+ l  i=0
s > Lth

Performance of the Errors/Erasure Decoders.
Using the results obtained in section 3.2.1, a good inner/outer code pair 

were chosen to evaluate the performance of the erasure decoding schemes. The 
results are presented in Figures 3.6 to 3.9 .

The results shown axe for erasure scheme (i) only. The use of scheme (ii) 
was found to provide no improvement in performance, and in fact as the 
threshold (L»pjj) was increased, the performance started to deteriorate. This can 
be explained by the fact that a high threshold results in the erasure of many 
correct data symbols, and hence a loss in performance.

The figures also show the performance of the errors only decoder for
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comparison. It can be seen that an improvement of a few percent in channel 
utilisation is possible by using erasure correction, with this improvement being 
more marked for the  ̂ code rate system. Table 3.3 shows a comparison of the 
gain in performance achieved by using these decoders.

Table 3.3 - Maximum value of tj , for the Concatenated TFCSS system, at a 
given error rate and SNR.

Error rate Code rate ^  1 “  3 Code rate “  2
k  SNR Errors only E. k  Erasure Errors only E. k  Erasure

7b =  15dB 
p b =  i<r3

0.06 0.065 0.06 0.075

7b =  25dB 

pb = lO'6

0.185 0.20 0.19 0.22

From the results it can be seen that the use of erasure correction does not 
lead to a too significant an improvement in performance. It must also be 
remembered that erasure correction can lead to a significant increase in decoding 
delay, since it requires multiple runs of the errors only decoder. Therefore in 
many cases, the use of a simple error correcting outer code may be preferable.

3.3- The Performance of Other Coding schemes.

Viterbi [Vit 78] after proposing the use of TFCSS systems with repetition 
coding, also investigated the use of dual-k convolutional codes. Dual-k codes axe 
non-binary codes of constraint length two, which have attractive distance 
properties. Viterbi showed that the use of these codes can result in a large 
improvement in system performance. Einaxsson [Ein 84] also considered the use 
of dual-k codes, and compared their performance with that of the (2L,2) RS 
code. To compare the performance of these two codes with that of concatenated 
codes considered in this chapter, their performance has been evaluated as set out 
below.

For the RS code, the weight distribution was evaluated using equation (3.2) 
and the performance computed using a union bound:
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(3.20)>k-l Co
i <  A----- • T  A; P 2(j
b " 2 k - l j = d  • J *  1 J a min

0)

where dmjn =  2L—1, Aj is the weight distribution of the RS code and P2(j) is the 
probability of error for two sequences which differ in j bits, as given by (2.9).

This is a more exact derivation than that used by Einarsson, who used a 
union bound based on the code’s minimum distance. Note also that the symbol 
error probability has been converted to the bit error probability, by using the 
usual conversion factor of 2k~^/2k—1.

The performance of the dual-k code can be evaluated by using the standard 
procedure used for a convolutional code, using the derivative of the code transfer 
function. Unlike most other convolutional codes, the transfer function of this 
code is known exactly, and has been given by Oldenwalder [Ode 76] as:

T (D ,N )= -------
1- N

( M - 1 ) N D 2L___________

( M - L - 1 ) D L +  L D 1 ' 1}

where M and L have the same values as in a simple TFCSS system. 
Talcing the derivative of (3.21) w.r.t. N, and setting N = l:

(3.21)

a T (D ,N ]| =  __________ ( M - 1)D 2L__________

lN = 1  { l - ( M - L - l ) D L -  l d l_ 1 } 2
(3.22)

The exponent of D, expresses the distance of a path from the all zero path. The 
probability of error in deciding between a path of distance j from the all zero 
path, is given by P2(j). Therefore, using the substitution P 2(j)=D^ in (3.22), the 
bit error probability can by upper bounded by:

pb *
2k - l  5 T (D ,N )

2k - l aN
w = l ,  DJ= P 2(j)

____________ MP2(2L)____________
2 { l - ( M - L - l ) P j ( L )  -  L P 2( L - 1 ) } 2

(3.23)

<Note: = arftij >

Using (3.20) and (3.23), the performance of these two codes has been
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evaluated and is shown in Figures 3.10 to 3.13 . Also shown for comparison is the 
performance of a concatenated scheme with errors and erasure correction.

The results show that the performance of the concatenated system is 
superior to that of the (2L,2) RS code for error rates below 10"3. However, the 
dual-k code code outperforms the concatenated scheme for error rates down to 
10"6. Therefore, unless very low error rates axe required, the use of the dual-k 
code seems preferable. It is also interesting to note the gradual increase in error 
rate versus channel utilisation for the dual-k, as compared to the more abrupt 
behaviour of the concatenated scheme.

The excellent performance of the dual-k code is not only attributable to its 
large minimum distance, but to its good weight spectrum which is much better 
than that of the RS code. Its superior performance over the concatenated code is 
due to the fact that it uses maximum likelihood decoding only. This however 
requires a prohibitively high amount of decoding effort. In fact it can easily be 
shown that the decoding effort required for decoding a dual-k code is (2M2L) 
times that of a (L,l) repetition code, of the same rate. For the dual-k codes 
considered above, this represents a factor of approximately 105.

3.4- The Theoretical Limit in the Performance of FH/MA Systems

Up to now, the performance of FH/MA systems has been evaluated using 
specific codes at given values of code rate. While this study has shown to some 
degree the limits in performance of such systems, it is by no means clear what 
the upper limit in performance can be. Additionally, an issue which has been 
avoided up to now is that of choosing the optimum code rate. It is clear, that to 
achieve a certain error rate, the code rate has to be lowered as the number of 
system users increases. However, since the channel utilisation 77, depends linearly 
on code rate, and inversely on user population, a maximum value of 77 must 
exist. Additionally, if one imposes the constraint of a fixed energy per bit (7^), 
the coding optionrare further complicated. The use of a low rate code means a 
lower error rate, but also results in a lower value of 7^.

To answer the above questions, the capacity of the TFCSS channel, ie the 
limit in performance as ideal, infinitely long codes are used, can be derived. Here 
instead, the computational cut-off parameter Ro will be derived. The reasons for 
using Rq are:
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i- Rq is widely believed to be the p r a c t ic a l  limit in coding for a channel, since 
transmission in rates below Rq using very long constraint length convolutional or 
block codes can be decoded without suffering an unbounded growth in the 
number of decoding operations [Jor 66].
ii- For many channels, the derivation of Rq is much simpler than that of 
capacity.

Derivation of R̂ ».
Although the transmission format used by a TFCSS system is M-level FSK, 

due to the implementation of maximum likelihood decoding with two-level 
quantisation, the transmission channel can be regarded as a binary input, binary 
output channel. In fact each M-ary symbol can be regarded as a codeword of an 
orthogonal b in a r y  code of length n=M , and information content k=log2M, with 
each codeword consisting of (M—1) zeros and one 1. Under the reasonable 
assumption that each chip is subject to i.i.d. interference, then the TFCSS 
channel can be regarded as a d is c r e te  m e m o r y le s s  c h a n n e l (DMC), with transition 
probabilities shown below:

where Pj and PD are the probabilities of insertion and deletion, as defined in the 
previous chapter.

The cutoff parameter for the general M-input, Q-input memory less channel is 
given by [Woz 66]:

*o = -  tos* { SSS 2 J I I1 j=0 i=(
in  b i ts  p e r  c h a n n e l  u se . (3.24)

where P(X-) represents the probability distribution of input bits, P(Yj| X-) the

- 7 5 -



channel transition probabilities, and the minimisation is carried out over all 
distributions of input bits P(X-) as indicated.

For a TFCSS system, P(X*) is fixed as given below, and no minimisation is 
necessary.

P(Xo) =  1 - 1

p (x ‘) =  M
Therefore, using (3.24), R0 can be written down as:

Ro = -  log* { (1 - &) + ^  (&) ]2 +

[ ^ i • a -  & + < & )  j2 } (3-25)

For a given number of channel users, Pj and PD are known, and can be 
worked out using the equations given in the last chapter. The only complication 
is that Pj and Pj  ̂ are themselves dependent on 7^, which for a fixed power level 
depends on the code rate. Therefore, assuming o p e r a t io n  a t R 0 (ie code rate equals 
Ro), the value of Ro at each user level, can be derived using an iterative 
computer search method.

It must be noted here that (3.25) gives Rq in terms of bits/channel use. It is 
however more convenient for presentation purposes to convert this into the more 
familiar form of c o d e  r a te  which has been used up to now. To do this, it is noted 
that each TFCSS frame conveys k bits of information, and in effect consists of 
(M x L) transmitted binary digits. The rate of the system is bits per channel use 
is thus:

r = b its  p e r  c h a n n e l  u se . (3.26)

where rc=  (j£) is the ‘effective code rate’, as defined previously. Using (3.26), Ro 
can thus be converted (normalised) into the same form as the code rate by 
multiplying it by M. This normalised form of Rq will be denoted by Ron-

Using the values of Rq, the channel utilisation as a function of user 
population can also be computed. Since the values of Rq represent the highest
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possible code rate at each user level, the channel utilisation computed using Rq, 
is the highest obtainable with any coding scheme. In the following sections, this 
maximum utilisation will be denoted by rjm ax.

Performance Results
The results obtained for operation at three different values of 7^ are 

presented in Figure 3.14 . A number of interesting points can be seen from the 
results. The first is that with operation at SNR of 15 dB, Ron drops sharply to 
zero, as the number of system users reaches 22. This same behaviour is not 
apparent for operation at the other two SNR levels, for the range of user levels 
considered. The implication of this behaviour is that reliable operation becomes 
impossible above a certain user level, which depends on the SNR. The second 
interesting point is that as expected, the channel utilisation is maximised at a 
certain user population and drops off quite rapidly on either side. The value of 
Ro at the maximum utilisation, gives a designer a good guideline for choosing the 
optimum code rate for a given system to optimise performance.

It must at this stage be pointed out that the values of Rq derived thus far 
have been based on lower bounds on system performance ( the lowest values of 
Pp Pj} were used). If following the derivation in Chapter 2, the worst case 
condition is assumed, then the values of channel utilisation will be lower than 
those obtained above. Using the results given in Chapter 2, the values of Ron 
and 7/max have been derived for the worst case condition and are presented 
below in Table 3.4 along with the results derived above. These values thus 
represent upper and lower bounds on the efficiency of the TFCSS system 
considered.

Table 3.4- Maximum values of rj and corresponding value of Ron for a TFCSS 
system with M=64.

SNR

7b(dB)

Lower bound Upper bound

*7max Fon ^max Hon
15 0.1 0.50 0.073 0.58

20 0.24 0.62 0.205 0.73

25 0.35 0.68 0.321 0.73
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The Dependence of Channel utilisation on alphabet size.
Equation (3.25) can also be used to compute Rq and hence rjm ax  for any 

MFSK/FH system using maximum likelihood decoding with 2-level quantisation. 
To investigate the dependence of rjmax on the alphabet size, it will be assumed 
that the system under consideration has an arbitrary number (q) of frequency 
slots and that the MFSK alphabet size is chosen to be less than or equal to q. 
(with equality in the case of a TFCSS system). The number of slots can be 
arbitrary, as by referring back to equation (1.7), it can be seen that the channel 
utilisation is proportional to to the u s e r - c h a n n e l  r a t io  (I / q ) and not the absolute 
value of q. It is also the ( i)  ratio which determines the hit probability, and hence 
the multiple access performance of the system.

Figures 3.16 and 3.17 show 77max as a function of (I/q) for various values of 
M ranging from 2 (BFSK/FH) to 256. A number of interesting points are 
evident. First, with operation at 7k=15dB, no results axe given for M=2. This is 
because channel utilisation levels computed were all very near zero. Therefore a 
BFSK/FH system can not be used for reliable communication at this low SNR. 
This supports the results obtained in Chapter 2, for the coded performance of 
BFSK/FH at 7^=15dB, where error rates were always found to be very high (P^ 
>102). At 7^=25dB, the use of BFSK/FH means that r}m30C is less than 50% of 
that achieved by M=64. Therefore, even if ideal codes were available, the 
performance of a BFSK/FH system can not reach that of the TFCSS system 
considered. It can also be seen that at both SNR, rjm ax  increases with M, but 
this increase is more gradual above M=16. In fact increasing M from 64 to 256 
results in a negligible increase in »7niax* It is interesting to note that Goodman 
[Goo 80] and Einarsson [Ein 84], have considered the use of TFCSS systems with 
M=256 and M=512. In view of the negligible gain in rj available by using such 
systems, and in view of their added complexity, it seems that the use of such 
large signalling alphabets is not warranted.

Comparison with FDMA/TDMA
To make an assessment of the loss in performance due to multiple access 

interference only, the values of Rq and rj have been evaluated for a system which 
has centralised control (such as FDMA/TDMA). In such a system the 
performance degradation is due to signal fading only. Assuming the use of binary 
FSK, the channel can be treated as a binary symmetric, whose cutoff using
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equation (3.24) is given by:

Ro =  1 -  log2{ l+  2^Pt( l - P t) }

where P̂ . is the channel transition probability.

(3.27)

If the use of non-coherent detection with hard decision decoding is assumed, 
then P̂ . is given by:

P+ = jr-r-I—  , r being the code rate, t 2+7br &

Substituting (3.28) into (3.27), Rq can be written down as:

Ro =  1 -  log2 { l  +  (2+72bRo) ^ 1+7bRo)}

Again, as for TFCSS systems, this expression cannot be put directly in 
terms of Rq. Instead the value of Ro has been evaluated using an iterative 

evaluation procedure .The maximum channel utilisation of the system is then 
derived using:

(3.29)

. _§o
* 7 m a x  — (3.30)

Equation (3.30) follows from the fact that the maximum channel utilisation of a 
BFSK system is

Table 3.5 shows a comparison of the values of rj for a TDMA/FDMA system 
and a FH/MA system with M=64 (as the results in the previous section showed, 
there is a negligible increase in r/max for M greater than 64).

Table 3.5 - values of rjm ax  for FH/MA and TDMA/FDMA systems.

SNR (dB) Maximum Channel Utilisation (r/max)

FH/MA (upper bound) FDMA/TDMA

15 0.07 0.21

20 0.21 0.35

25 0.32 0.42
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The results show that the presence of multiple access interference leads to a 
large loss of spectral efficiency, especially at low values of SNR. Ultimately, this 
is the price which has to be paid in order to avoid the complexities of centralised 
control. It must however be remembered that the values obtained for 
FDMA/TDMA systems are optimistic. An FDMA system for example requires 
the use of ‘guard bands’ between adjacent frequency slots, which will lead to a 
reduction in spectral efficiency. It should also be noted that the results obtained 
for FH/MA systems have been based on the use of a 2-level (sub-optimal) 
maximum likelihood detector.
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Figure 3.1 - Application of Concatenation to aTFCSS system.
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CHAPTER FOUR

Coding Methods For Slow Frequency Hopping B F S K /F H
Systems.

4.1- Introduction.

In Chapter 2 it was shown that the performance of BFSK/FH is inferior to 
TFCSS, offering acceptable error rates only at low channel utilisation levels and 
high SNR. The results presented in that chapter, were for the case of completely 
randomised errors, with the receiver making no attempt to make use of channel 
memory. A BFSK/FH system can, however, be used in a slow frequency hopped 
system, and thus has the option of using such memory. This is in contrast to 
TFCSS systems which are inherently fast frequency hopping systems.

The motivations for using BFSK/FH systems are:

1- The fact that they can be used in slow hopping systems means that the 
hopper/dehopper circuitry is much easier to implement. A frequency synthesiser 
whose frequency is changed rapidly produces large amounts of spurious output, 
which need to be suppressed.
2- The TFCSS receiver (especially the FFT processor) is expensive to realise.
3- The high channel utilisation levels of a TFCSS system may not be required.

In this chapter, methods for improving the performance of BFSK/FH  
systems by exploiting channel memory are investigated. This involves deriving 
information about the reliability of a group of bits transmitted on a given hop, 
which allows the channel decoder to perform better.

Following the introduction, a short study is made of the nature of errors on 
a BFSK/FH system and possible coding strategies. The assessment of the 
performance of two coding schemes assuming perfect knowledge of hits (side 
information) then follows. This is then extended to include knowledge of the 
channel signal to noise ratio. While the idea of using side information with
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erasure correction in a frequency hopped system is not new, its application to a 
fading multiple access channel has not been considered before. Previous studies 
have looked at anti-jam systems, in which the side information, regarding 
jammed transmissions, has always been assumed available. Another new aspect 
of the work presented here is a study of the practical means of achieving the 
desired side information. Three simple schemes axe considered, and the 
performance of each derived and analysed. A novel approach for using soft 
decision decoding when perfect side information is available is also presented. 
Finally, using the channel cutoff and capacity parameters, the limit in 
performance of BFSK/FH with hard decision decoding is investigated.

The Nature of Errors on BFSK/FH Channels

The BFSK/FH channel can be characterised as having two states:

i- The ‘not hit’ state. In this state, the only impairment to the signal is due to 
fading. If the fading is slow enough, the channel can be regarded as an AWGN 
channel, with the SNR varying from hop to hop. Therefore, the nature of errors 
is not bursty, and the use of a burst correcting code will often lead to a 
deterioration in performance.
ii- The ‘hit’ state, when two or more users try to use the same frequency slot. In 
the worst case the probability of bit error is 0.5, and the use of a burst correcting 
code is appropriate.

Due to the two-state nature of the interference, it is not immediately clear 
what type of coding should be used for best performance.

To simplify the analysis in the following sections, it will be assumed that the 
systems under consideration employ frame-synchronous hopping. The imposition 
of this constraint means that when a hit occurs, it affects all the bits in a given 
hop, ie there are no partial hits. The use of frame synchronous frequency hopping 
does not pose an operational problem for a slow frequency hopped system, as the 
timing requirements are not stringent.
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4.2 - Errors and Erasures Correction for B FSK /FH  Systems.

4.2.1 - Perfect Side Information Available.
Initially it will be assumed that the demodulator knows with certainty 

which bits or group of bits have been hit and thus the channel decoder can erase 
them. Means of obtaining this ‘side information’ are investigated later.

Two coding schemes suitable for errors and erasures correction are 
considered:

i- Binary BCH codes.
ii- RS codes, where each code symbol consists of k=log2M bits transmitted as a 
block on a hop.

For the first scheme, it will be assumed that all the bits in a codeword axe 
randomised by interleaving, and by transmitting each bit on a different hop. 
Hence no attempt is made to make use of channel memory. In the second case, it 
is assumed that the interference remains constant during the transmission of a 
code symbol, and that each symbol from a given codeword is transmitted on 
different hops. The interference from one symbol to another is thus random.

The performance of each scheme can be derived as outlined below.

For the first scheme, the probability of uncoded bit error is:

=  Pr(error | hit)Pr(hit) -f Pr(error | no hit)Pr(no hit)
=  Pr(error | no hit) (1 — P jj) (4.1)

where P jj is the hit probability.

When a hit occurs on a hop, all the bits transmitted on that hop are erased, therefore 
Equation (4.1) follows because an error can only occur when a hit has not
occurred. Moreover, since the side information is assumed perfect, the erasure 
probability Per is given by:

Per = PH =  P r(H it) = l - ( l - l ) 1-1 (4.2)

In (4.1), the probability of error given not hit, is that of binaxy FSK in fading,
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which has already been given (equation 2 .22).
The probability of error at the output of the BCH decoder can then be 

derived by using the same equation as that given for the performance of RS 
codes with errors/erasure correction in the last chapter, with the symbol 
error/erasure probabilities replaced by the bit error/erasure probabilities:

Pbc =  £  ( ^ ) ( enj)  *b • P«  • (1 - P b-Per)n'J'6 (4-3)j+e <n ' /ve,J/ 
dm in ^ '+ e

For the second scheme, equations (4.1) and (4.2) also apply. However, the 
probability of error when not hit is different from case (i). In this case, the 
probability of a symbol error is the probability of having one or more errors in a 
block of k bits. Assuming that the fading is slow enough that all the bits in a 
given block are affected by the same fade attenuation factor, then the probability 
of error for a given symbol on a given hop is:

Pe(-y) =  Pr( one or more errors in a k-bit block)
=  1 — Pr( no errors in a k-bit block)

= i -  ( i-P b(7))k = £ ( 1D (-i) j+1(Pb(r»J (« )
j=l J

where P ^ t) is the probability of bit error during the transmission of the symbol. 
Since a slow fading channel can be regarded as an AWGN channel with variable 
SNR, then P ĵ t) is simply the probability of error for non-coherent FSK on the 
AWGN channel:

Pb(T) = g exp (~ y  ) (4-5)

To find the average probability of symbol error for all hops, (4.4) should be 
averaged over the probability distribution (pdf) of 7 . Since the signal amplitude 
has a Rayleigh distribution, then it is easy to show that the pdf of the SNR is 
given by:

p (t ) =  ^  exp ( - ^ )  (4.6)

where 70 is the average SNR of the channel.
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Therefore, the average symbol error probability P s is given by:

p s =  J p e(7) p (t) d?
0

The result of the integration is:

(4.7)

(4.8)

It should noted here that (4.8) can be used to evaluate block error rates for 
values of k up to approximately 100. For higher values of k, computational 
problems axe experienced. In this case, (4.7) can be evaluated directly using 
numerical integration.

The probability of symbol erasure is also P jj in this case, and using equation 
(4.3), the coded word error rate (and hence the bit error rate ) can be derived.

Figures 4.1 and 4.2 show the performance of two binary BCH codes with 
errors/erasure correction. These axe the same codes as used to evaluate the 
performance of the errors only decoder in Chapter 2 . Figures 4.3 and 4.4 show 
the performance of two RS codes.

The results axe rather interesting and surprising. The performance of the 
binary BCH codes is not very good, and in fact by comparing these with the 
results of the errors only decoder in Chapter 2 (Figures 2.11 and 2.12), it can be 
seen that the use of erasure correction has only led to a small improvement in 
performance. The RS codes on the other hand exhibit a performance which is 
much better than the BCH codes (though only at high SNR, the results at low 
SNR axe poor in both cases), with the performance improving significantly as the 
code block length increases. This excellent performance is attributable to the 
good distance properties of the RS codes. Comparing the BCH (31,11,5) code and 
the RS (31,11,10) code for example, shows that the latter is capable of correcting 
twice as many errors in a block as the former. Therefore, in spite of the fact that 
the symbol error probability is higher than the bit error probability, the RS code 
achieves a better performance. Figures 4.5 and 4.6 compare the performance of
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the RS codes with and without side information. It can be seen that the use of 
side information does lead to a significant improvement in performance, with this 
being more pronounced at high channel utilisation.

These results show that provided the channel SNR is high enough, the use of 
RS coding with erasure correction of hit symbols can lead to acceptable 
performance levels in a BFSK/FH system.

In the following sections, the performance of various erasure correcting 
schemes under the condition of having a high channel SNR (25 dB) is 
investigated.

4.2.2 - Erasing Low SNR symbols.
It is natural to extend the use of erasure correction to symbols which have 

been transmitted on a hop when the SNR has been low, and which axe thus more 
likely to be in error. This is possible by monitoring the signal level during the 
reception of a given symbol, and declaring an erasure if it falls below a certain 
threshold. The optimum erasure threshold will inevitably depend on the average 
SNR of the channel, the channel utilisation and the code used and needs to be 
determined.

The performance of this scheme can be derived by noting the fact that a 
symbol error can now only occur if the SNR on a hop is above the erasure 
threshold. The average probability of symbol error is thus:

oo
Ps =  (  PeW  P «  d7 (4.9)

a

where a is the erasure threshold, and Pc(t) is given by (4.4). The probability of 
erasure is given by:

Per =  PH + Pr(erase| no hit).Pr(no hit) (4-10)

The conditional probability term in (4.10) is the probability that the SNR falls 
below the threshold which is :

a
Pr(erase| no hit) = jp (7 ) d y  =  l  — exp(— a^) (4-11)

0
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Using (4.9) to (4.11), the dependence of the bit error rate on the erasure 
threshold and channel utilisation has been evaluated and is shown in Figures 4.5 
and 4.6.

The results show that with the optimum erasure threshold chosen, the bit 
error rate is significantly reduced, with this reduction being more marked at the 
lower channel utilisation levels. This scale of this reduction is also more 
significant for the longer code- (63,33,15). The optimum threshold does not seem 
to depend on the code used, and varies between 3.5% to 7.5%. For 77=0.05, the 
optimum threshold is approximately 5%, and using this fixed value of threshold, 
the performance of this scheme has been evaluated and is shown in Figures 4.7 
and 4.8. It can be seen that the use of this non-optimum threshold leads to a 
significant improvement in performance.

where a^ is the normalised threshold defined as:

4.3 - Obtaining Side information.

In the previous section it was assumed that perfect side information 
regarding hits was available. Many recent studies of frequency hopping systems 
in jamming environments, have studied the use of RS codes with errors and 
erasure decoding [Ger 87], [Pur 82], [Pur 86], [Sta 85a], having assumed the 
availability of reliable side information. Channel monitoring of received signal 
levels has been put forward as a means of achieving this. While this may be 
feasible in a jamming environment, where high signal levels axe involved, and the 
presence of jamming may be easily discernible, in a multiple access channel 
encountering signal fading, such operation is questionable.

In this section three different methods of obtaining this side information axe 
described which try to extract side information from the received data. They rely 
on adding small amounts of redundancy to the information transmitted on each 
hop, which is then used to determine whether a hit has occurred or not.

4.3.1 - Using a test Sequence.
With this method, a known sequence of s, bits is transmitted at the 

beginning of each hop. The receiver, by counting the number of errors which 
have occurred in the sequence can determine if a hit has taken place on a given
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hop, and erase all the symbols transmitted on that hop. Assuming that when a 
hit occurs, the probability of bit error is 0.5 ( i n  th e  w o r s t case), then it is highly 
probable that one or more bits in the sequence will be in error in this state. The 
receiver will thus be able to decide with high certainty if a hit has occurred. If 
the duration of the test sequence is short compared to the hop duration, then the 
added redundancy due to using the sequence is negligible and can be neglected. 
This will be assumed in the results which follow.

The only problem with this approach is that even when a hit has not 
occurred, it is possible that an error occurs in the test sequence, leading to 
erasure of possibly reliable data symbols. This can be overcome by declaring a 
hit only when the number of errors in the sequence is above a certain threshold t. 
The choice of a value for t is quite critical. On one hand, a low value results in 
high certainty in detecting hits, but can also result in the erasure of reliable 
symbols. On the other hand, a high value of t reduces this probability, but 
results in some hits being undetected.

It should be noted that the reliable operation of this scheme is dependent on 
having the channel distortion factor remaining constant during the hop. This 
ensures that the state of the channel during the reception of the test sequence is 
a good indicator of the channel state during the rest of the hop.

To evaluate the performance of this scheme, it will be assumed that an 
erasure is declared if the number of errors in the test sequence is t or more. The 
probability of erasure on a given hop is then given by:

Per =  Pr ( t or more errors occur in s bits)
=  1 — Pr( less than t errors in s bits)

=  1 -  £ ( p  H  (! -  Pb)S'j (4-12)j=o J

where P^ is the bit error rate during the reception of the test sequence and is 
given by:

Pb =  1  , when hit (a)
1 (4.13)

Pb =  ^ exp ( — ^ ) ,  when not hit. (b) 

where 70 is the average SNR during the reception of a hop.
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The to ta l erasure probability is given by:

Per =  Pr(erase | hit ) Pr(hit) + Pr(erase | no hit) Pr(no hit)

= (! -  PM )PH + Pf (J -  PH) (4-14)

where PM and Pp are defined as:

P ĵ j- =  Pr( m is s  ) =  Pr (not erase | hit ) (4.15)

Pp =  Pr (fa l s e  a la r m  ) =  Pr (erase | no hit ) (4.16)

By substituting (4.13a) in (4.12) P^- can be found. To find Pp, (4.13b) 
should be substituted in (4.12), and the expression averaged over the pdf. of 7 . 
This is done by re-writing (4.12) as a double summation and then integrating. 
The result is:

Pp — 1 t - i  s-j
z m v ’K-1)j= o  1=0 J

2
To(i+j)+2

(4.17)

Bearing in mind that an error can only occur if an erasure has not taken place, 
the total error probability is given by:

Pe =  Pr(error, no erasure )
=  Pr(error, no erasure , hit ) + Pr(error , no erasure , no hit)
=  Pr(error | no erasure , hit). Pr(no erasure | hit). Pr(hit) +

Pr(error | no erasure , no hit ) . Pr(no erasure | no hit). Pr(no hit)

=  ** + Ps (1 -  Pp)(l ~ P h  ) (4.18)

where in (4.18):
Pr (error | no erasure , hit ) has been upper bounded by 1 , since the probability of
having a correct symbol when hit is nearly zero.
and,
Ps=  Pr(error | no erasure , no hit ) is the conditional symbol error probability 
given that no hit or erasure has occurred. Bearing in mind that the occurrence of 
errors in a test sequence, and a symbol block transmitted on the same hop as 
that sequence axe independent events (noise affecting transmitted bits is i.i.d.),
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then the symbol error and erasure events axe also independent. Ps thus simply 
reduces to Ps=  Pr(error | hit), which can be evaluated using (4.8).

Using (4.14), (4.18) and (4.13), the performance of this scheme can be evaluated.

Figures 4.11 and 4.12 show the performance results obtained for the case of 
using a test sequence of length s=10, with values of t from 1 to 4. The results 
show that with t= l ,  the performance is not as good as that of the perfect side 
information case. This is due to the fact that although the miss probability is 
low, the false alarm rate is high. As t is increased, performance improves, and a 
value of 2 or 3 seems to be optimum. When t is increased to 4, performance 
starts to degrade again, reflecting an increase in the miss rate. Overall, these 
results show that the use of a test sequence is a simple, yet effective means of 
obtaining side information.

4.3.2 - Using a Single-Paritv-Check Code.
In this case, a simple single-paxity-check code is used to determine if 

individual symbols have been hit or not. This code will detect any odd number of 
errors in a code block. This means that on average, only half the number of hits 
will be detected (in the worst case). On the other hand, the code will also detect 
errors in a symbol even when no hit has occurred, thereby yielding an 
improvement in overall performance. Note that the use of this scheme only 
requires that the channel distortion factor remain constant over the duration of a 
code block ( k + 1  bits ).

The performance of this scheme is evaluated as below:
An erasure is only declared if an odd number of errors occurs in the (k+1) 

block of bits. Therefore the erasure probability can be derived from the 
expression:

i= 2j + 1 (4.19)

where P^ is defined by (4.13) and [k/2] denotes the largest whole number equal 
or less than k/2. Equation (4.19) simply sums the occurrence probability of all 
error patterns with an odd number of errors.
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and Pp can now be derived as for scheme (i), using (4.13) and (4.19), 
and then the total erasure probability derived using (4.14). The total error 
probability can be derived from (4.18) after a slight modification of the term Ps 
defined in that equation. This is necessary because the probability of codeword 
error and symbol error (ie the k bits of information) axe in this case correlated, 
whereas for scheme (i), the probabilities of test sequence and symbol error were 
not correlated.

For equation (4.18), the term Ps was defined as:
Ps= Pr(error | no erasure , no hit )

In this case, if no erasure has taken place, then the number of errors in the 
codeword must be even (0,2,4,...). A symbol error takes place if the number of 
errors is a non-zero even number (2,4,...). Ps can thus be written as:

Ps =  Pr( 2,4,... errors | number of errors is 0,2,4... )

Pr( 2,4,... errors) 
Pr(number of errors is 0,2,4,... )

_  Phlock~PF 
-  1-P™

(4.20)

where is the
which can be evaluated from (4.8). Equation (4.20) follows because Pp is in this 
case, by definition, the probability of having an odd number of errors in a block.

probability of one or more errors in the codeword block,

Substituting (4.20) in (4.18) gives the total error probability as:

Pe =  PM PH + (Pblock "  Pf )(1 “  PH ) (4-21)

In Figures 4.13 and 4.14 the performance of this scheme is compared with 
that when perfect side information is assumed. It can be seen that the 
performance of this scheme is inferior to scheme (i), and this is due to the high 
miss probability. However, at low values of channel utilisation, the performance 
of this scheme is better than that of scheme (i). This is because unreliable 
symbols transmitted on hit free hops are also erased.
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4.3.3- Using Error Detecting Codes
Instead of using the simple parity check code above, a more powerful error 

detecting code can be used. If more than one MFSK symbol is encoded into one 
binary codeword, then the additional redundancy of the error detecting code will 
not significantly increase the overall redundancy of the system.

As an example, the performance of the shortened (14,10) Hamming code 
(Shortened from the (15,11) Hamming code), is considered. Each code block 
consists of ten information bits, which in this example will be used to convey two 
MFSK symbols. Four additional parity check bits are then added to each block.

The performance of this scheme can be derived in a similar manner to that 
of the parity check code. Since the code is linear, the probability of erasure in 
this case is given by:

Per =1 -  E A j  H  (1 -  Pb)n' j
j=0 J

(4.22)

where n is the code block length, Aj represents the weight distribution of the 
code and is given by (4.13).

Equation (4.22) follows from the fact that error detection only fails when an 
error pattern matches one of the codewords of the code, and is therefore 
indistinguishable from it. Using (4.22) and (4.13), PM and Pp can be derived as 
described for the parity check code. The total error and erasure probabilities can 
then be evaluated using (4.14) and (4.21). It must be pointed out here, that the 
use of (4.21) implies that the codeword and symbol error probabilities are the 
same. This was the case for the parity check code, as each codeword consisted of 
only one symbol. In this case however, this is obviously not strictly true, as a 
given undetected error pattern may only affect one MFSK symbol rather than 
both. An exact derivation of the relationship between the codeword and symbol 
error probabilities would however require an enumeration of all the possible error 
events and the resulting symbol error probabilities, which needless to say, is a 
tedious task. Therefore, the upper bounding of the symbol error probability by 
the codeword error probability is a reasonable alternative.

The above approach assumes that the weight distribution of the code is
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known or can be worked out. If this is not so, then Pj^ and Pp can be derived as 
follows.

When a hit occurs, all 2n codewords are equally likely to occur (since 
P^=0.5), and the probability of not erasing (miss) is given by:

P M =  2 ^ = 1 . 2k‘“ (4.23)

This is because an error pattern is not detected if it matches one of the (2^ —1 ) 
non-zero codewords.

In the not hit state, the probability of false alarm is:

Pp  =  Pr(code block error) — Pr (error not detected) (4.24)

Since the probability of a bit error in this state is usually much less than 0.5, the 
probability of undetected error is small and can be neglected. Pp can thus be 
upper bounded by:

Pp < Pr(block error) =  Pblock

and Pblock 
blocks axe erased.

Equations (4.23) and (4.25) can then be used to evaluate the performance of this 
scheme. It should be noted that in using (4.25), the results obtained will be a 
lower bound to actual performance, as all erroneous code blocks are assumed to 
be erased. However, as the code block length increases, the results can be 
expected to become more accurate, as the probability of undetected error goes 
down to zero.

Figure 4.15 shows the performance of the (14,10) code evaluated using both 
methods outlined above. It can be seen that the lower bound is very tight for 
error rates down to 10"5. Comparing the performance of this scheme with that of 
the single-parity-check code, it can be seen that a significant improvement in 
performance has occurred. This can be accounted for by observing that the

is given by (4.8). Note that (4.25) implies that all erroneous code

(4.25)
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miss probability is in this case only 6.25%, compared to 50% for the parity check 
code. At high channel utilisation, the performance of this scheme is however, 
inferior to that of the perfect side information. This can be accounted for by the 
fact that the redundancy of the code causes a 30% decrease in channel 
utilisation.

Using Long Error Detecting Codes.

For a Hamming code, the n and k parameters are given by [Pro 83]: 

n=  2m — 1

> , where m is a positive integer. (4.26)
k= 2m -  1 -  m J

For these codes, the probability of not detecting a hit is given by (4.23) as:

P M ~ 2k' n =  2'm (4.27)

Therefore as m tends to infinity, P^- tends to zero, ie the side information 
becomes more reliable as the code block length increases. On the other hand the 
code rate is given by:

r -  k _  2m -  1 
rc -  n -  2m -  1 _  m

which tends to one as m tends to infinity. Therefore, using very long Hamming 
code it should be possible to derive reliable side information, without sacrificing 
channel utilisation due to extra code redundancy. On the other hand, it would 
intuitively appear that in the not hit state, as the code block length n is 
increased, the probability of having one or more errors in a block , (the false 
alarms rate) would increase rapidly, causing a loss in performance.

To investigate this, the performance of some Hamming codes with block 
lengths of up to 127 has been evaluated using the lower bound described above. 
In each case, the code was shortened, if appropriate, to match the symbol length 
of the RS code. The results obtained axe shown in Figure 4.16. It can be seen
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that as the block length is increased, system performance does improve, coming 
quite close to that of perfect side information. However, the improvement is 
slight as n is increased from 61 to 127.

To explain these results, the probabilities of miss and false alarm for each 
code have been evaluated using (4.23) and (4.25) are shown below in Table 4.1

Table 4.1 - Probabilities of miss and false alarm for Hamming codes.
Code PM PF
(14,10) 6.25 x 10-2 6.25 x 10" 2
(30,25) 3.13 X 10"2 7.96 X 10"2
(61.55) 1.56 x 10"2 9.59 X 10"2
(127,120) 7.81 x 10"3 1.12 x 10"2

It can be seen that as the block length is increased, P |^  decreases quite 
rapidly (by a factor of 2 each time). The increase in Pp on other hand, is much 
s lo w e r . It can be expected that as the block length is further increased, a point 
will be reached at which performance will deteriorate. At this point, the loss due 
to the increasing symbol error rate will outweigh any gains due to the decrease in 
the miss rate. This transition point will depend on the channel SNR and the 
parameters of the RS code.

Concluding Remarks.
An assessment of the three schemes covered in this section shows that it is 

possible to derive quite reliable side information from the received data using 
very simple codes, p r o v id e d  th a t  th e  fa d i n g  is  s lo w  e n o u g h  to  r e m a in  c o n s ta n t  o v e r  th e  

d u r a t io n  o f  s o m e  30 to  60 b its . It is also interesting to point out that all three 
schemes considered are examples of concatenated coding, in which the inner error 
detecting code provides reliability information for the outer RS code. This 
contrasts with the classic (text book) view of concatenation, which views this 
technique as one of achieving long code block lengths, without unduly increasing 
the complexity of the code.
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4.4 - Soft decision decoding with side information.

In Chapter 2 it was explained that due to presence of pulsed other user 
interference, the use of a square law detector, followed by a linear combiner for 
maximum likelihood decoding, leads to a degradation in performance. In this 
section, the possibility of using such a combiner when side information is 
available is considered. With such information, the combiner need only use those 
received bits which have not been hit. The resulting system is then effectively 
the same as a soft decision decoder on a fading channel, whose diversity is 
controlled by the level of other user interference.

To derive the performance of this system, a union bound will be used. 
Therefore, as usual, an expression for the probability of error between two 
sequences differing in L bits is required. When there is no other user interference, 
this is given by the probability of error for ‘L-diversity’ (repetition) combining of 
non-coherent FSK which is [Pro 83]:

Pe(L) 1 l+ ivl+T oN i
2 + 7 o j^ j' ■ ' '2 + 7 o'

(4.29)

When a hit occurs, some of the bits in a sequence are discarded, which 
results in a reduction of the distance between that sequence and another. The 
average probability of error when other user interference is present is thus:

L
P 2(L) =  £  Pr (error | No. of diversities=j). Pr (No. of diversities=j) (4.30) 

j=o

The probability that the number of diversities is j, is simply the probability 
that j chips out of L have not been hit. The expression for P 2(L) can thus be 
written down as:

P2(L) = £ ( L )  (1 - PH)J (PH)L'j PeG
j=0 J G) (4.31)

with Pe(0) =  ^ (ie when all diversities are hit, then a random choice is made) 
Using a union bound, the probability of error for a given binary block code 

can then be written down as:

>b -
(4.32)
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where Aj is the weight distribution of the code, and k, is the number of 
information bits in a codeword. Alternately, P 2(L) can be substituted in the error 
rate equation for a convolutional code, (such as equation 2.38)

Since the union bound is not usually very tight, computer simulation 
programmes were used to obtain exact performance results. Results were 
obtained for convolutional codes with Viterbi decoding, and these are shown in 
Figures 4.15 to 4.18. Also shown for comparison in each case is the maximum 
likelihood decoding results of Chapter 2, along with the results based on the 
analytic bound (4.32). The reason for using convolutional codes only is that as 
noted previously, the implementation of soft decision decoding is considerably 
simpler for Viterbi decoding of convolutional codes, than for word correlation 
decoding of block codes. Whereas quite simple block codes required considerable 
simulation time, the soft decision decoding of the convolutional codes was found 
to be require slightly more effort than that of hard decision decoding.

The results obtained are rather interesting and show the use of this 
technique can lead to a significant improvement in performance especially at low 
SNR. However at very high values of channel utilisation (high probability of hit), 
performance degrades over that of the hard combiner. This is because the large 
number of hits reduces the effective diversity between two sequences to zero. It 
can also be seen that the analytic results are loose as expected.

Finally it should be noted that the results presented here pertain to the case 
of perfect side information. Obviously, the performance of this scheme can be 
expected to degrade considerably when the side information is imperfect.

4.5 - The Limit in the Performance of BFSK/FH Systems.

In this section, the limiting performance of BFSK/FH systems is evaluated 
using the cutoff parameter. The results presented here axe different from those of 
Chapter 3, as they apply to a system where a hard (1 of 2 ) decision is made for 
each received bit.

The transmission channel considered earlier in this chapter (k bits per 
symbol, perfect side information), can be regarded as an M-ary erasure channel

106-



with transition probabilities as shown in Figure 4.19. The cutoff parameter for 
this channel, using the definition of the parameter (equation 3.24), can easily be 
derived as:

R o  =  -  l ° g M  I J l - P - q  +  | M —l)p f  + q }

in s y m b o ls  p e r  c h a n n e l  u se . (4.33)

where p and q axe the error and erasure probabilities respectively. Note that for 
convenience, the base of the logarithm in (4.33) is given as M and not 2. Note 
also that this gives Ro in terms of symbols rather than bits per channel use. The 
values of p and q can be derived from equations (4.2) and (4.8), and Ro and 
hence the maximum channel utilisation evaluated.

Figure 4.20 shows the results obtained for various values of k. The results 
show that as k is increased, the channel utilisation starts to deteriorate. This is 
however contrary to the numerical results derived in section 4.2, which showed 
performance improving as k was increased. The reason for this anomaly is that 
the cutoff parameter, decreases with channel memory, [Vit 79], [McE 84] and is 
thus not perhaps suited to deriving the performance of the channel considered 
above. This behaviour of the cutoff parameter is in contrast to that of the 
channel capacity, which increases with memory. The use of the channel capacity 
thus seems more appropriate in this case.

The capacity of a M-input, Q-output memoryless channel is defined by [Pro 83]: 

M - l Q - l P (Y j| X j)
C = Sffi? E  E  P(Xj)P(Yil xp l o g ^

J j=0 i=0 J J '

in  b i ts  p e r  c h a n n e l  u se . (4.34)

Using (4.34), the capacity of the M-ary erasure channel shown in Figure 4.19 
can be derived as:

c  =  (1 -p -q )  logM { - (11_Pq q )}  + P lo g M { ( M —^ l _ q ) }

in s y m b o ls  p e r  c h a n n e l  u se . (4.35)
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Note th a t as M becomes large, the capacity tends to :

C M -too =  1 -  P -<J (4.36)

which is independent of M.

Using (4.35), the maximum channel utilisation has been evaluated for 
vaxious values of k and is shown in Figure 4.21. A number of interesting features 
are evident. It can be seen that maximum utilisation increases slightly with k. It 
can also be seen that for k= l (binary FSK), the results derived using the 
capacity and cutoff parameters differ by approximately 6%, which is a significant 
discrepancy. Also for the k= l case, comparing these results with those obtained 
for maximum likelihood decoding in the previous chapter, it can be seen that the 
use of hard decision decoding has led to a 33% decrease in the maximum 
utilisation. This observation once again re-affirms the importance of maximum 
likelihood decoding for multiple access channels.

Finally, it is interesting to point out that while the increase of the channel 
capacity function with memory is a well known fact, the converse behaviour 
relating to the cutoff parameter is not so well known and has only been recently 
pointed out [McE 84].
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Fig 4.19- Channel Model For the M-ary erasure Channel 
p : error probability, q : erasure probability.
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CHAPTER FIVE

Frequency Hopping Systems with Limited Central Control

5.1- Introduction.

The work presented in the previous chapters has been for the case of a 
frequency hopping system in which access to the available channel bandwidth is 
random, ie no attempt is made to control or regulate channel access by system 
users.

In this chapter, a different type of system is examined, in which a limited 
degree of central control is introduced. In the context of this chapter, this control 
takes the form of a central (or coordinating) station which obtains information 
about each active system user, and makes this available to all other system 
users. With this knowledge it is possible to reduce or even avoid other user 
interference. A typical application of such a system is in a packet radio network, 
which typically consists of a number of geographically distributed ‘stations’, 
which gather and relay information about active system users [Kah 78].

Following the introduction, the application of central control to a TFCSS 
system is examined. A description is given of the way in which other user 
interference causes errors in such a system, and how with sufficient knowledge of 
system parameters, this interference can be identified. A description of the 
algorithm to carry out the required checking procedure then follows. This has 
been previously investigated by Haskell [Has 81], and a similar algorithm by 
Timor [Tim 80], [Tim 81], but only for noiseless channels. The extension of the 
operation of the algorithm to include the more important case of having a noisy 
channels is then discussed. Results of computer simulation of this procedure are 
then presented. Feasibility considerations are then discussed to evaluate the 
usefulness of the proposed technique and comparisons made with a coding 
technique with similar performance. The results presented show that the use of 
such an algorithm is suited to channels in which the error probability is low, and 
not for fading channels.
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5.2 C entral Control of TFCSS Systems.

5.2.1 - The full decoder - noiseless case.
In the following discussion it will be initially assumed that the channel is 

noiseless, ie no deletions or insertions are made to signal transmissions, and the 
only source of interference is other user. The discussion will consider a TFCSS 
system with I  active users and will focus on the transmissions of a given system 
user, which shall be referred to as user 1 . The discussion assumes (without loss of 
generality) that the transmission vector is produced by the modulo-M addition of 
the address and data vectors, as described in Chapter 1 .

In a TFCSS system, an error occurs when two or more complete rows are 
found in the decoding matrix (Figure 5.1a). One of these rows, corresponding to 
the correct symbol, is due to the transmissions of user 1 , although some of the 
chips in this row may also coincide with other user transmissions (Figure 5.1a). 
The other row(s) is/axe caused by the other user transmissions. Normally, the 
receiver has to make a random choice between the contending data symbols. 
However, it is possible to distinguish between a true row, and a false one, by 
further examination of the decoding matrix. This is done by checking to see if 
the chips in a given row a re  p a r t  o f  a n o th e r  s y s te m  u s e r ’ s  t r a n s m is s io n  s e q u e n c e  o r  n o t.  

To do this the following information is required:

i- The addresses of all active users.
ii- The relative transmission timing of other users with respect to user l ’s data 
frame.

The ‘true’ row, (ie the row corresponding to the correct data symbol) will usually 
have some of its chips which axe o n ly  d u e  to  th e  t r a n s m is s io n s  o f  u s e r  1, and the rest 
will coincide with interference chips. However, the false row will have a ll of its 
chips due to other user interference, and can be thus recognised as such. The 
only ambiguity arises if all the chips in the true row also coincide with 
interference, in which case it is impossible to decode correctly. (Figure 5.1b)

A possible decoding algorithm for a noiseless channel using the above idea 
would be as follows:
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1- Remove user address ‘A^ from the received signal matrix to obtain the 
decoding matrix.
2- If there is only one full row, then this is the true row and the decoding will 
terminate as normal.
3- if there is more than one full row, then for each row carry out the following 
procedure:

i) For each chip C- in the row (i= l ... L), check to see if it is a part of another 
user’s (Un , n=2 ... I) transmission sequence. This is done by deciding if the chip 
satisfies the following ‘interference condition’:

Interference Condition
If u s e r  n  has made a transmission in chip Cm, then his data symbol 

must have been:

dn =  [ Cm 0  Ai(i)] © An(i) (5-1)

Where Ai(i) represents the H h element of user l ’s address, and An 
represents the address of user n.
The interfering sequence of L tones due to user n in the decoded 
matrix would be:

Yn ={ [ C; ® A,(i)] e  An(i)} ® {An e  A J  (5.2)

Yn being the L component row vector representing the interfering 
sequence.

I f  th e  v e c to r  Y n  e x is ts  in  th e  d e c o d e d  m a tr i x , th e n  i t  h a s  b e e n  c a u s e d  by  u s e r  n, 

a n d  th u s  c h ip  C j s a t i s f ie s  th e  in te r fe r e n c e  c o n d i t io n . (Note that it is also 
possible, though less likely that other user signals produce the same 
sequence.)

ii) Add up the number of chips satisfying the interference condition.

4- The correct row is chosen as the row with the minimum number of 
interference chips.
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The decoder described above is referred to as the ‘F u l l  D e c o d e r ’, as it 
considers all available information in the received matrix.

Performance of the full decoder.
If the insertion probability for the channel is Pj (the probability that a 

given chip contains an interfering signal), then the probability of having a second 
full row besides the true row is:

P2 = (Pr)L (5.3)

Using a union bound the probability of error for a simple decoder (ie that 
normally used by a TFCSS system) is:

Pb * ( f j ) ( M- l ) - p 2(L)= f  P2(L) (5.4)

(since M =2K)
Using a full decoder means that an error only occurs if the true row 

coincides with an interference row, so the probability of error now becomes:

Pb < f  - P2(L) .(p /  =  P2(2L) (5.5)

Thus the full decoder e f f e c t i v e ly  d o u b le s  th e  d iv e r s i t y  o f  th e  s y s t e m .

From the equation it can be seen that there can be a significant 
improvement in performance by using the full decoder. Additionally, since the 
decoding need only be carried out when an ambiguous symbol is received, the 
receiver complexity is not unduly increased.

5.2.2 - Operation in a noisy environment.

While the above argument makes it clear that the use of full decoding in a 
TFCSS system can lead to a significant improvement in performance, it is not 
clear how great this will be, if the transmission channel causes errors to 
transmitted chips. Indeed, the use of full decoding has already been studied by 
Timor [Tim 80], [Tim 81] and Haskell [Has 81] who have shown its performance 
advantage over simple decoding. Timor for example, derived a checking 
technique which involves far fewer operations than a full decoder, and whose
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performance is intermediate to that of simple decoding, and full decoding. 
Moreover, the technique does not require the knowledge of the addresses of 
active system users, though it does require frame synchronism between them (ie 
all data frames start at the same time). Later on, Timor extended his technique 
by making use of information regarding active users, to bring its performance 
very close to that obtained by a full decoder [Tim 81]. Haskell performed 
computer simulations on full decoding of a TFCSS system using chirp vectors. 
Both authors considered channels whose impairment is only other user 
interference.

Extending the operation of the full decoder to a noisy channel poses two 
questions:
i) How should the decoder operation be modified so as to take into account the 
fact that any user’s transmissions will not always be fully received (due to 
deletions), and extra chips which belong to no system user (false alarms) will also 
be received ?
ii) At what channel impairment level will the full decoder fail to produce a 
performance advantage over simple decoding ?

A simple solution to (i) above is to use a variable threshold to test for the 
presence of other user interference. The ‘interference condition’ defined 
previously is modified so that if the number of possible chips due to an interferer 
is above the chosen threshold, then that interferer is deemed present. A chip is 
thus labelled as interference if an interferer can be found whose possible 
transmission sequence exceeds the threshold. The threshold should be chosen so 
that random entries in the signed matrix cannot be mistaken for an interferer’s 
transmissions, and that a real interfering sequence with some possible deletions is 
recognised correctly.

The full decoder in the noiseless case is thus a special case of the generalised 
decoder outlined above, with the threshold set at L chips.

The use of a threshold poses a difficulty in that it inevitably depends on 
various system parameters including the number of active user, the system 
diversity and the channel error probability. Hence another question which needs 
to be answered is how should an optimum threshold be set for the generalised 
decoder ?
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Performance of the generalised full decoder.
Computer simulation programmes were used to evaluate the performance of 

the full decoder, as an analytic derivation is obviously very complicated and 
tedious. The simulations were based on the assumption that the transmission 
channel is binary symmetric (BSC), with transition probability (P^), which is the 
same for all frequency slots. It was decided to use this model for the following 
reasons:

i) The generation of random errors is considerably quicker than the generation of 
fading data, and hence simulation time is very much reduced.
ii) The results apply directly to the AWGN channel.
iii) The results can also be applied to the Rayleigh fading channel, as the 
randomising effect of frequency hopping makes the channel appear symmetric. 
The channel transition probability then represents the average probability of bit 
error for the channel, at a given SNR.

The following assumptions were also made in the simulations:

i- All user transmissions are frame synchronous. This reduces the amount of time 
required to carry out the required checking procedure. This assumption will not 
however affect the results obtained.
ii- User addresses were chosen from a one-coincidence set. This results in a 
minimum amount of interference and hence the results obtained axe lower 
bounds to the performance of the full decoder.

Due to the huge amount of computer time required to simulate a system 
with a large alphabet size (M>64), a small TFCSS system with M=16 was used 
in the simulations. Simulations were carried out at four different values of 
channel transition probability (P^). Additionally, in each case three values of 
threshold were used in the simulations.

In the next section this question and other performance considerations of the
decoder axe examined.
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5.2.3 - Simulation Results.
The simulation results axe presented in Figures 5.2 to 5.5 . In each case the 

error rate versus channel utilisation is given at a given channel transition 
probability (P .̂). For comparison of results, the performance of a simple decoder 
is also presented.

A number of interesting features can be seen from the graphs. The optimum 
choice of threshold f o r  a ll  v a lu e s  o f  seems to be a value equal to the system 
diversity (L). However as P̂ . is increased, the performance of the next lower 
threshold approaches that of the optimum. It is also clear from the results that 
the use of a very low threshold leads to a serious loss in performance, and 
actually causes the performance of the full decoder to be no better than that of 
the simple decoder. Overall, the results show that when Pj. is low (Pj.<10~3), the 
use of the full decoder leads to a significant improvement in performance, 
reducing the error rate by a factor of at least 100. At P .̂=10"2, the improvement 
factor is reduced to a factor of 10. At Pj.=10_1 the full decoder s t i l l  outperforms 
the simple decoder, but this is at unacceptably high error rates.

From the above observations, the following conclusions can be drawn:

i- The best choice of threshold for a full decoder seems to be a value equal to the 
system diversity. Intuitively, a lower threshold would have seemed more 
appropriate (especially at higher values of P̂ .), since this allows for chip 
deletions. Apparently, this also leads to a large number of false decodings, 
resulting in no performance gain being achieved over a simple decoder.
ii- The use of the full decoder is acceptable for values of P  ̂ down to 
approximately 10"2. The implication of this for operation on a fading channel can 
be seen be referring to Table 5.1. The table shows the values of P  ̂ for on-off 
keying on a fading channel, assuming for example, that the code rate is 0.5.

Table 5.1 - Values of P  ̂for on-off keying on a fading channel with code rate= 0.5

SNR p e r  b i t  (7 ^) in dB 15 2 0 25

p t 0 . 1 1 0.047 0.019

It is clear from the table that the operation of the full decoder on a fading 
channel is only worthwhile at high SNR.
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5.3 - Complexity and Feasibility

In this section, a comparison is made between the performance of the full 
decoder, and a dual-k convolutional code. It is interesting to point out that w h e n  

th e  c h a n n e l  t r a n s i t i o n  p r o b a b i l i ty  (P is lo w  (i^<10"3), the performance of a full decoder 
closely matches that of the dual-k code. To see that this is so, the expression for 
the probability of error for a dual-k code, given previously in Chapter 3, is 
expanded into a series:

p < ____________M. P,(2L)___________
b “  2 { l—( M - L - l ) P a(L) -  LPa( L - l ) } 2

=  M | p 2(2L) + a P ,(3 L -l)  + /?P2(3L) + 7P3(4L -1) +  ... }  (5.6)

where a, /?, y are constants.

When the interference is low, the dominating term in the series is the first one, 
and thus the series can be truncated to :

Pw < f  P2(2L) (5.7)

This is exactly the same expression as that given for the full decoder in the 
noiseless case (Equation 5.5). Figure 5.6 shows the performance of the dual-k 
code evaluated exactly using (5.6), versus the performance of the full decoder at 
Pj.=10’3. It is clear that the performance of the two schemes is indeed very much 
the same.

Though it achieves the same performance as the dual-k code, a simple 
consideration of the complexity of the full decoder shows that the computational 
effort required to decode one symbol is fax less than that required by the dual-k. 
Moreover, since decoding is o n ly  r e q u ir e d  when an ambiguous symbol is received, 
the overall computational effort required for using a full decoder is far less than 
the dual-k code. On the other hand, w h e n  th e  c h a n n e l  t r a n s i t i o n  p r o b a b i l i ty  is  h ig h , the 
full decoder performs poorly, whereas the performance of the dual-k code is still 
good. Figure 5.7 shows a comparison of the performance of the two schemes at 
pt=io-\

It can thus be concluded that if the channel interference is low, the use of a 
full decoder provides an attractive alternative to the use of a sophisticated coding
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i- The full decoder requires knowledge of system parameters; user addresses and 
timing information. This can impose a heavy burden on the operation of the 
coordinating station, especially if the user population is large.
ii- The use of a frequency hopping system provides a high degree of security to 
the communicator. This security is lost when using full decoding.

scheme such as a dual-k code. The use of the full decoder however, has the
following operational disadvantages over the dual-k code:
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C H A P T E R  SIX

Conclusions

In this thesis the performance of frequency hopping multiple access 
communication systems operating over fading channels was considered. The 
research objective pursued was not only that of improving this performance by 
various coding schemes, but also to find the limits of such performance.

In Chapter 2, a set of new upper and lower bounds were derived for TFCSS 
and BFSK/FH systems. These showed that a system operating with power 
control represents the best achievable performance, while without power control, 
in the worst case, performance degrades significantly. Results for hard decision 
decoding of BFSK/FH systems showed that when using random error correcting 
codes, such a system performs poorly. On the other hand, when maximum 
likelihood decoding is implemented, a performance comparable to a TFCSS 
systems is possible though at high SNR. Convolutional codes with Viterbi 
decoding were shown to perform better than similar complexity block codes.

In Chapter 3, the use of Reed Solomon (RS) coding with simple TFCSS 
systems in a concatenated scheme was considered. The motivations for using 
such systems were put forward as achieving good performance at reasonable 
complexity. Using RS codes with errors only decoding was shown to provide a 
considerable improvement in performance. This was, however, shown to require 
careful choice of the inner/outer code parameters. The use of RS codes with 
errors and erasures decoding was also considered. Reliability information was 
derived from the output of the maximum likelihood decoder, and two separate 
means of using this information were considered. Performance results showed 
that errors/erasures decoding leads to a small improvement in performance. A 
comparison with a dual-k convolutional code using maximum likelihood decoding 
showed that the latter was capable of much better performance than a 
concatenated system, though at the expense of increased decoding effort. Finally
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using the channel cutoff parameter, the limiting performance of TFCSS systems 
was derived. This was then extended to include any MFSK/FH system using 
maximum likelihood decoding. The analysis showed that for any FH/MA system, 
channel utilisation is maximised at a certain value of user-channel ratio. 
Moreover, to obtain reliable communications at low SNR means that a small 
MFSK alphabet, such as in BFSK/FH can not be used. On the other hand, 
though performance does improve with increasing alphabet size, this is negligible 
above M=64. Finally a comparison with centralised control multiple access 
systems showed that the random use of the channel in a FH/MA system leads to 
a considerable loss of channel utilisation, which is more significant a low SNR.

Chapter 4 considered the use of slow frequency hopping systems with burst 
correcting codes, operating with the worst case interference. With the imposition 
of frame synchronous hopping, it was shown that when perfect side information 
is available, and with a high enough channel SNR, the use of RS coding with 
errors and erasure decoding in such a system can provide an acceptable level of 
performance, which is comparable to a simple TFCSS system. If in addition to 
side information, the use of signal level monitoring is used to erase unreliable 
received symbols, then a further improvement in performance was shown to be 
possible, though it would require the use of a signal threshold. The question of 
obtaining reliable side information was then considered, and new results relating 
to the use of the received data for obtaining this information were presented. The 
use of a simple test sequence with an error threshold was shown to provide a 
very good performance, though it would require the fading to be slow enough to 
remain constant over the duration of tens of bits. A simple parity check code on 
the other hand, while not requiring this constraint, provided a performance 
which was poor especially at high channel utilisation. Hamming codes were 
finally considered, and it was shown that by using long block lengths, the 
reliability of side information could be improved without an increase in code 
redundancy. However, increasing the block length above a certain point was 
suggested to lead to a deterioration in performance. Chapter 4 also considered a 
novel way of using side information to allow soft decision decoding to be 
implemented. This was done by discarding hit bits. Such a scheme was shown to 
have a better performance than a maximum likelihood decoder using hard 
combining, especially at low SNR. Finally, in Chapter 4, by using the channel 
cutoff parameter, the limiting performance of BFSK/FH systems with hard
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decision decoding was considered. It was shown that the use of this parameter, is 
not suitable for considering channels with memory. Results were then derived 
using the channel capacity function. These showed that even when side 
information is available, the use of hard decision decoding leads to a 33% drop in 
maximum channel utilisation.

Chapter 5 considered the use of FH/MA systems with limited central 
control. This was taken as having a central station providing system information 
to all users, rather than proportioning channel resources. For a TFCSS system, 
in a noiseless channel, it was shown that with sufficient knowledge of system 
parameters, other user interference can be drastically reduced, effectively 
doubling the diversity of the system. The use of an algorithm to carry out the 
required checking procedure in a noisy channel was considered. Simulation 
results were presented which showed that that such a technique is only 
worthwhile if the channel transition probability is low.

Suggestions for Further Work

In this thesis the use of a simple 2-level detector for maximum likelihood 
decoding was universally adopted. It is interesting to investigate the form of an 
optimal maximum likelihood detector for the channel model considered in this 
thesis. Although Yue [Yue 82b] has considered this problem for a power balanced 
case, no work has been done for more general cases. Other forms of non-optimal 
decoding such as ‘List metric decoding’ axe also worth investigating.

Forward error correction (FEC) is the usual form of coding usually applied 
to FH/MA systems. The use of feedback communication can however, lead to a 
significant improvement in performance, while reducing decoder complexity. The 
application of suitable forms of feedback communication to FH/MA systems is 
worth consideration.
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APPENDIX ONE

Derivation of the probability of deletion for the sum of 
n independently fading signals.

The total signal can be modelled as:

r(t) =  Y ,  “j e >e‘- u(t) +  z(t) 
j = l

where :

(A l- l)

aj e J represents the channel distortion and is a zero mean, complex 
Gaussian process,

u(t) is the transmitted signal and 
z(t) represents the receiver noise.

Since the signal and noise are both zero mean Gaussian processes, their sum 
is also Gaussian with zero mean and variance:

<T2 =  1 E [ r(t). r*(t)] =  A[2nN7o + 2N ] =  N (1+ n7o)_ 1 (A1.2)

Where:
E[ ] denotes the expectation operation 
N is the mean square noise power and 
70 is the average signal to noise ratio defined as:

_  E  [ ti2 ]
T o------- 2N ' (A1.3)

Since r(t) is a zero mean complex Gaussian process, then its envelope a= |r(t) |, 
has a Rayleigh distribution:

p (a) = ̂  exp( (A1.4)

The probability of a deletion is defined as the probability that the sum of

- 1 3 6 -



the signal and noise fails to exceed a set threshold (b). Thus :
b 2

PD= P r(a < b )= jp (a) d a = l —exp ( | ^ )  =  1 -  exp { 2N(1+° 7q)} (A1-5)

where bQ is the normalised threshold, defined as:

b l =  $  (A1.6)

Note that when n = l, the results reduces to that derived in [Sch 66] for the 
case of a single fading signal.
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APPENDOX TWO

The Probability of Error for the Sum of n Binary FSK Signals in Fading.

For a given number n of signals, it will be assumed that i represent a zero 
transmission, and j  a one transmission. Assuming that the signal transmitted by 
the user under consideration is also a zero, then an occurs if the envelope 
detector output corresponding to a 0 (u0) has a smaller output than the one 
corresponding to a 1 (u^. The probability of error is thus given by:

OO U 0= U 1
p b =  Pr ( u° < u i ) =  |  p(uj) .{ J p(u0) du0 } dut (A2.1)

Ui=0 u0=o

The probability distributions of u0 and Ui have already been derived in 
appendix 1. After evaluating the integral, the result obtained is:

c i

(A2.2)

where a\ and c \ are the variance of u0 and ux and are defined as (see Appendix
1):

cq — N (1 + i7o) (A2.3)
<*\ =  N (1 + j70) (A2.4)

Therefore can finally be written down as:

P =  1
b 1 | 1 + 'To 

+ 1 +J7o
(A2.5)

Note that when j=0, the expression reduces to P^ =  — ,
known result for the error rate of binary FSK in fading.

which is the well-
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