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ABSTRACT

A 1 —D, two —fluid transport code has been developed to model the interaction

between tearing modes, impurity radiation, additional heating, and transport processes 

within tokamak plasmas. Magnetic islands arise through nonlinear growth and saturation 

of tearing modes and their sizes are computed using first-order effects usually 

neglected by other authors. It is assumed the effect of the islands on global plasma 

properties can be described by a large enhancement in radial transport across the

island. The sawtooth oscillation that is important in limiting axial current is also 

simulated, using the Kadomtsev model for collapse triggered by a resistive m= 1 mode.

Disruption is triggered by the m = 2 , n= 1 island growing to large size. This 

steepens the global current gradient and causes a cascade of instability to short 

wavelength modes. These modes interact with the sawtooth and provide a thermal 

short-circuit across the whole radius. The disruption cannot be followed into the 

current quench phase, but the dynamics described with this simple model agree with

that of a full 3 —D simulation.

An analysis of the response of the 2/1 island size to parametric variation of 

several plasma quantities is made, including the effects of a conducting wall, the

thermal conductivity, and additional plasma heating. Heating just inside the resonant

surface produces maximum destabilization of the island, while heating outside the island 

prevents disruption.

The postulate that the plasma becomes ballooning mode unstable as the plasma 

approaches disruption is investigated. The onset of instability is found to depend 

strongly on the shape of the q profile following sawtooth collapse.

The effects on disruption stability of radiation cooling from light impurities is

studied with a coronal model which includes anomalous diffusion of impurity species. 

With sufficient impurity contamination, radiative contraction of the outer plasma occurs, 

initiating sudden 2/1 instability, with oscillations in island size and temperature 

characteristic of minor disruptions. Only if the radiation losses are sufficient to cause a 

complete collapse of island temperature to low values does interaction with the hot,

central core ensue. The onset of radiation —induced 2/1 instability is found to

correspond to experimental Murakami density limits for disruption —free tokamak 

operation.
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CHAPTER ONE 

INTRODUCTION

1.1 D i s r u p t i o n s  in T o k a m a k s

A tokamak is a toroidally shaped vacuum vessel for the production, confinement, 

and heating of a plasma. Tokamaks are the most promising device for achieving fusion 

power generation, despite the recent and apparently erroneous claims for "cold fusion"

[1]. Proposed experimental reactors such as NET [2] would operate with a

deuterium —tritium gas mixture and would attain temperatures necessary for

thermonuclear fusion, while simultaneously meeting the Lawson criterion [3] for density 

and confinement time that would at least allow energy breakeven, if not net energy 

production. There are three main physical processes that have prevented present-day  

tokamaks from meeting these objectives.

(i) The electron energy and particle confinement times are up to a factor 1 0  ̂ times 

less than those predicted by neoclassical theory.

(ii) There is a limit to the maximum (3 (the ratio of plasma to magnetic pressure). As 

the fusion power goes as /3̂ , large pressures are desirable for energy production and 

economic viability.

(iii) The tokamak discharge frequently terminates very suddenly, with total loss of

plasma confinement. These disruptions are the subject of this thesis.

Figure 1.1 shows experimental traces for the total current, oscillations of

perturbed magnetic field, and soft X—ray emission during a typical disruption in the 

Frascati tokamak [4]. Four stages may be identified.

(1) Steady—state, stable operation.

(2) Growth to large size of a magnetohydrodynamic (MHD) perturbation with poloidal 

mode number m= 2. This is typically the first precursor to disruption. Many other 

modes can also appear later in this stage [5].

(3) Sudden loss of the thermal energy when the X —ray emission, which is a measure 

of the axial temperature, drops to zero. At the end of this stage, without strong 

external control, a fast inward motion and expansion in radius of the plasma column is 

observed [5], and high, localised power loads on the limiters are possible.

(4) A decay in the total current, on a slower timescale than stage (3), but still very 

fast compared to resistive timescales. In the JET machine [6 ], 7MA currents can drop 

to zero over only a few milliseconds, and large induced voltages and currents can
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exert strong, and possibly damaging forces on the vacuum vessel.

Experimental scaling laws [7,8] allow one to predict energy breakeven as the 

dimensions of the tokamak are increased, so problems (i) and (ii) above can be 

overcome, although large and expensive tokamaks are required. However if large 

tokamaks are a necessity, then so too are large disruptions, and their potential for 

causing reactor damage increases. Any disruptions in a power reactor will also inhibit 

their economic viability, so NET for example has required very low disruption 

probabilities per discharge of lO'-  ̂ and io  —4 [2 ] in the two phases of it's operation. 

To avoid disruption and achieve these figures then greater understanding is required of 

the causes of disruption, and of the plasma dynamics during disruption.

F i g u r e  1.1 The  to tal  curr en t ,  m = 2  m a g n e t i c  osc i l la t ions ,  a n d  s o f t  X - r a y  em iss ion  

p r i o r  to  a n d  d u r in g  a d i s ru p t i o n  on the  Fra sca t i  F T  t o k a m a k .  The  t races  o c c u p y  

3 0 m s  ( f r o m  [4 ]) .

1.2 A i m s  a n d  L a y o u t  o f  the Thesi s

The aim of this thesis is to discover how the stable tokamak discharge in stage 

(1) above can suddenly become unstable to a m = 2 MHD mode, and then disrupt, 

without any apparent change in operating conditions. Many other authors have studied 

this problem, notably [9], who coupled the nonlinear theory of resistive tearing modes
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to a one dimensional transport code. This approach is also taken for this thesis, but 

with several natural extensions to the model.

To begin chapter 2 therefore provides an introduction to, and a review of the 

linear and nonlinear theory of resistive tearing modes with helical symmetry. Chapter 3 

then describes the development of a two —fluid, ID  transport code called TRID that is 

subsequently used to analyse the pre —disruptive state. Only the plasma behaviour up 

until the end of stage (3) of the previous section can be modelled in one dimension, 

and as the external circuit is not included, the current quench is also not simulated.

The m= 1 sawtooth oscillation observed in tokamak discharges is reviewed in

chapter 4 and a description follows of how the Kadomtsev prescription [10] for the 

post —collapse profiles is implemented in TRID. The response of the saturated magnetic 

islands to varying current is examined and disruption is interpreted as a strong 

interaction between the sawtooth and the m= 2  island.

Chapter 5 examines the effect of varying several of the most important 

parameters in TRID. Firstly the catastrophe model [4] for island instability at high 

current is reviewed, and compared with TRID, where extra first-order terms in the 

saturation expression for island growth are not neglected. The position of the 

conducting wall is found to be more crucial in determining stability to disruption. 

Changes to local current gradients by additional plasma heating may have strong

influences on island stability, so the effect on the islands of different positions and 

power levels of localised additional heating is modelled. Finally chapter 5 examines the 

likelihood of the pre —disruptive state being unstable to ballooning modes.

Chapter 6  is concerned with the interaction between radiation, islands, and

transport. A hydrodynamic—coronal model for the oxygen impurity distributions

responsible for radiative cooling is implemented within TRID. The stability to radiative 

collapse and island destabilization, for different impurity levels, plasma densities, and 

currents is studied and compared with experimental findings. The final chapter 

summarises the findings and outlines fruitful areas for further work.
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CHAPTER TWO

THEORY OF RESISTIVE TEARING MODES

2.1 In t ro du c t io n

The resistive MHD equations upon which this work is based are [11]:

d p
07 + V .pv =0

P + v .V  v

0B
07 " -V XE

V. B= 0 

V x  B -  >i0j 

E + v x B = 

V .v  = 0

( 2 .. 1 )

= -  j X B -  Vp ( 2 .■ 2 )

( 2 ..3 )

( 2 ..4 )

( 2 ..5 )

( 2 ,. 6 )

( 2 • 7)

Some insight into the relative importance of resistivity can be gained by deriving the 

induction equation. E and j are substituted for from eqs.(2.5) and (2.6) into Faraday's 

Law eq.(2.3), and assuming constant resistivity:

= Vx(vxB) + ^-V2b ( 2 . 8 )

The characteristic time associated with resistive diffusion of the field (second term of

eq.(2 .8 )) is Tp =  while the growth time for ideal instabilities is characterised by

TA = l/k v ^ , where the Alfven speed v^=  B /((.i 0p ) ^ 2 (which can be seen from a 

dimensional analysis of eq.(2.2)). The magnetic Reynolds number S=tr / t ^  gives the

relative importance of resistivity, and for typical tokamak parameters (eg. B =1T , 

a = lm , p= m^j3Xl0^kgm — rp 8X10“ ^(Spitzer)) equals 6X10)7. It appears from this 

very large S that ideal MHD should indeed provide a good description for tokamaks, 

but inspection of eq.(2 .8 ) shows that, wherever the first term on the right hand side 

becomes equal to zero, then the resistive term is of comparable importance. The 

significance of large S, it shall been seen later, is to imply that this "resonant surface" 

where Vx(vxB) is close to zero is very narrow. The problem of resistive instability 

becomes one of boundary layer theory; ideal MHD holds in the exterior regions
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outside the resonant surface, but eigenfunctions must match to the interior region 

where 77 is not negligible.

In an ideal plasma the magnetic field lines are "frozen" into any perfectly 

conducting fluid [12]. This can be seen by neglecting 17 in eq.(2.8), integrating over a 

surface, and with /B.ds then

+ (j> (vxdl) .B = 0 (2.9)

vxdl is just the area/unit time swept out by an element of the periphery of the flux

loop. Therefore the total flux through a surface moving with the fluid does not change

in time, ie. field lines are fixed to flow, and as flow is single —valued then the field 

lines cannot break or change topology. This means that there may exist inaccessible 

states of lower magnetic energy near an initial state in ideal MHD. However the 

inclusion of if allows the fluid to slip relative to the field, which can break and 

reconnect, and the release of magnetic energy as the plasma relaxes to lower energy 

states drives a whole new class of resistive instabilities.

Two such resistive instabilities that are interchange in nature are the rippling 

mode and the resistive g — mode. They both occur at short wavelength and depend on 

local values of plasma quantities [13]. The g — mode occurs with large pressure 

gradients in regions of strong unfavourable magnetic field curvature but are stabilized 

by shear and are stable for tokamaks [14]. The rippling mode is located near the 

plasma edge in tokamaks and would have little effect on global properties and overall

stability toward disruption. A third and more important resistive instability, the tearing

mode is considered next.

2,2 L i n e a r  A n a l y s i s  o f  T e a r i n g  M o d e s  in P l a n e  G e o m e t r y

The zero order field is taken to be fixed in time and assumed to have a null at 

x= 0 , corresponding to the resonant surface just discussed, and is shown in figure 2 .1 . 

All distances are normalised to the width L = (0 F /3 x )~ * of the corresponding current 

sheet, and the plasma is initially stationary. With such an equilibrium both the 

magnetic and velocity fields can be given in terms of scalar flux functions and the 

MHD equations reduce to the well known "reduced" equations, which are now 

derived.
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By o
<ky

/

*

\

K

%

t

F i g u r e  2 . 1  Z e r o  o r d e r  B f i e l d  i

By0*=BF(x) , F(x) odd and F(x)~x, x«l 

Bz o=B2 , constant, BZ» B

^xo*'®

p l a n a r  g e o m e t r y ,  w i t h  a  n u l l  a t  x = 0 .

With V.B= 0 and constant Bz one has

B= zxVv'+ Bz, B - - ^ ,  B - ^  (2.10)v z x oy y ox

where the flux function also satisfies B.Vi^=0. ie. B is tangential to surfaces of 

constant y'. Similarly for incompressible velocities, v= zxVy?. Substituting eq.(2.10) into 

the z component of Ampere’s Law eq.(2.5) gives

and substitution into eq.(2 .8 ) and taking only the x component then

( 2 . 11 )

"3? 3T " 3y(vxBL ' 3 ^ jz ' (2'12)

Integrating with respect to y yields

§ £  + v.V ^~ 7,jz  + E . ( 2 . 1 3 )

E, the constant of integration is an external (if any) imposed electric field. Finally if 

one operates on the momentum equation (2 .2 ) with z.Vx, and assumes constant 

density then

a
par z . V x v  -  z . V x ( j x B ) B.Vj z  ’

and substituting for v and B

p^o!rv2^ " z - [wx^jz] •

(2.14)

(2.15)
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E q u a t io n s  ( 2 .1 1 ) ,  ( 2 .1 3 )  a n d  ( 2 .1 5 )  a r e  t h e  r e d u c e d  e q u a t io n s .  T h e  z e r o  —o r d e r  s ta te  o f  

f ig u r e  2 .1  is  g iv e n  b y  <p=0, \fi'0(x)= BF(x) w ith  ^y(x)= nQ]Z0. T h e  r e d u c e d  e q u a t io n s  

a r e  n o w  l in e a r iz e d ,  in tr o d u c in g  a p e r tu r b a t io n  g r o w in g  w ith  g r o w th  r a te  y th a t  in te r a c ts  

w it h  t h e  r e s o n a n t  s u r f a c e ,  b y  w r it in g  [1 5 ]

I f  t h e  p e r t u r b a t io n  is  a s s u m e d  t o  b e  s t r o n g ly  lo c a l is e d  a r o u n d  x =  0  ( i . e .  n a r r o w  t e a r in g  

la y e r  x-p ) t h e n  f ig u r e  2 .2  i l lu s tr a te s  t h e  s t r e a m lin e s  fo r  e q s . ( 2 .1 8 )  a n d  ( 2 .1 9 ) .  A w a y  

f r o m  x =  x j  t h e r e  is  o n ly  a n  x  c o m p o n e n t  v x  to  t h e  f lo w  i f  d<p}/dx=A. W ith in  th e  

t e a r in g  la y e r  t h e r e  is a  v e r y  ra p id  f lo w  Vy a w a y  f r o m  t h e  n u ll  a t  ( 0 ,0 ) ,  a n d  th e n  

r e tu r n  f lo w  — v x  o u t  o f  t h e  la y e r  a t  y =  ± x /k .  I f  r)= 0  t h e n  t h e  f ie ld  is  f r o z e n  in to  t h e  

f l o w  s o  in it ia l ly  s tr a ig h t  f ie ld  l in e s  w ill f ir s t  b u lg e  in  to w a r d  t h e  s u r f a c e  a t  x = 0 ,  a n d  

w h e n  t h e y  e n t e r  t h e  t e a r in g  la y e r  w ill r e a c t  a s  in  f ig u r e  2 . 3 .  T h e  s t r o n g ly  c u r v e d  f ie ld  

l in e s  h e r e  g iv e  r is e  to  s t r o n g  r e s to r in g  f o r c e s ,  a n d  th u s  in  id e a l  M H D  th is  f lo w  is  

p r e v e n t e d .  I f  r e s is t iv i ty  is  p r e s e n t ,  r e c o n n e c t io n  o f  t h e  f ie ld  c a n  o c c u r ,  p r o d u c in g  a 

f ie ld  t o p o lo g y  a s  in  f ig u r e  2 . 2 .  T h e  m a g n e t ic  e n e r g y  c a n  b e  le s s  th a n  in  th e  id e a l  c a s e  

a n d  r e s is t iv i ty  c a n  a l lo w  a n  a d d it io n a l c la s s  o f  in s t a b i l i t ie s .

T h e  d o t t e d  l in e  in  f ig u r e  2 . 2 ,  w h ic h  is  th e  s u r f a c e  o f  z e r o  f ie ld  th a t  d iv id e s  th e  

t w o  t o p o lo g i c a l l y  d if f e r e n t  r e g io n s ,  is c a l le d  t h e  s e p a r a tr ix ,  a n d  s u c h  a  f ie ld  s tr u c tu r e  is  

c a l le d  a  m a g n e t ic  is la n d . T h e  w id th  w =  2 h  is t h e  d is t a n c e  b e t w e e n  s e p a r a tr ic e s  a t  y =  0 .  

T o  d e r iv e  h  t h e  v a lu e  o f  $ a t  t h e  x — p o in t  ( 0 ,0 )  is  e q u a te d  t o  t h a t  a t  (h ,7 r /k ) , w h ic h  

is  g iv e n  b y  a  T a y lo r  s e r ie s  e x p a n s io n  o f  e q . ( 2 . 1 6 ) ,

\Kx,y) - ^(x) + yp (x)cosky (2.16)

<p(x,y) “ (x)sinky (2.17)

a n d  t h e  f lo w s  a r e  g iv e n  b y

(2.18)

(2.19)

- tfo<o>+*i<0) - M ° > +}h2^ ' < ° W i ( 0 ) ( 2 . 20)

so,

h - 2 W 1(0)/l̂ '(0)]i/2 ( 2 . 21 )

T h e  r e q u ir e m e n ts  fo r  in s t a b i l i ty ,  a n d  t h e  l in e a r  g r o w th  r a te  a r e  n o w  c a lc u la t e d .
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Fisure 2.2 First-order fields and 

flows associated with a linear 

tearing mode, when h « x j .

Fieure 2.3 The contorted magnetic 

field that would result if it were 

frozen into the flow of the tearing 

motion in figure 2.2



20

Equations (2.16) to (2.19) are substituted into the reduced equations which when 

linearized give

(x)-F(x)tf (x) i-(^;'(x)-k2^ ( X)] ( 2 . 22 )

- F(x)[^;'(x)-k2vti(x)]-F'1(x)vti(x) (2.23)

Lengths are normalised to the shear length L, ta ^ P ^ o) ^ 2/kB, and T- p = p QLp-/r]. 

Assumptions concerning the solution are now made that are verified a p o s t er io r i .  The 

linear growth rate is assumed much less than ideal rates, 7 < < 1 / t a > and secondly the 

resistivity can be neglected outside the tearing layer; i.e. rp 0 for x>>x>p. Therefore 

in the exterior region where rj is negligible eqs.(2.22) and (2.23) reduce to

( 2 . 2 4 )
Vi ; ' - (k2 + F " /F ) ^ ,- 0  ( 2 . 2 5 )

F(x), the zero —order B field is known, so the solution of eq.(2.25) can be found. As 

xj-^O, eq.(2.25) becomes singular and so although the exterior solution for t/, i(x) is 

continous across the tearing layer, it's derivative is not, and the quantity

A’=(v ;̂ ( 0 + ) - ^ ;  ( 0 “ ) ) / V ,  ( 0 ) ( 2 . 2 6 )

characterises the linear tearing mode. This exterior solution must be matched to the 

interior solution where eq.(2.25) no longer holds and the full equations (2.22) and 

(2.23) must be solved. This solution and matching is reviewed in Appendix A.

2.3 O n se t  o f  N o n  — L i n e a r i t y

Inspection of eq.(A.9) reveals that 7 tr «52/5> >  i  ̂ so during a tokamak discharge 

evolving on resistive timescales, very many linear growth times will pass, and it is 

necessary to examine the nonlinear behaviour of the mode. Simple arguments are now 

used to derive the first-order flows in figure 2 .2 , and by equating the work done by 

these forces, a more transparent derivation of the tearing width results. The nonlinear 

forces that replace inertia and provide saturation of the mode are then derived, and 

the criterion for when they become important is developed.

The perturbation (2.16), which corresponds to perturbed field (Bx ^inky.By ,,cosky),
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induces a first-order current jzi within the tearing layer. From Faraday's Law, 

3BXl/3t= — 3Ez l /3y, so

*yB
Ez i -  - ^ i l c o s k y  ( 2 . 2 7 )

and this drives a current

y B
j - — ^-cosky (2.28)

When crossed with the equilibrium field this produces first-order forces, as in figure

2 .2 , that drive a vortex flow into the x —point and a return flow from the island 

centre. FX1= - j ZlByo, or

- y B  B
F ---- LLJL2cosky (2.29)

xi  77 k

Aw’ay from the singular layer the vx flow this force produces is given by Ohm's Law, 

vx = “ Ez i /Byo (*) negligible), or

- 7B ,
v = ■X1cosky ( 2 . 3 0 )x kB ^yo

The presence of a large Bz implies incompressible flow [16], so the vx must be 

balanced by a strongly sheared vy flow over the narrow width x j :

vy
7b
1 X1 . .-o-T-- o s 1 nky
k B  xfyo T

( 2 . 3 1 )

where 3/3x-»l/xj and By0= B^0x7 .The work done driving the vx flow is balanced by 

the energy dissipated by the vy flow so

Fxi XT

Substituting eq.(2.29) and (2.31), the tearing width is found to be

( 2 . 3 2 )

xT
7 PV

f kB ’ 1 L yoJ
11/4

2
( 2 . 3 3 )
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which, substituting 7^  and tr , is identical to eq.(A.lO), except for a factor of two.

As the mode grows in amplitude, nonlinear forces become large, replacing inertia 

as the mechanism opposing growth of the mode. Second —order jxB forces arise

X  2 - j  B Jzi yi
-7b B 0' xi yi 2.
---ijk---005 ky ( 2 . 3 3 )

that do not contribute to the torque driving the vortex flow, so forces to third order 

must be considered. Second-order y —independent currents are induced by the flow:

j = v B -v B JZ 2 x yi y xi 2 2 kZB ’ x^ yo T
( 2 . 3 4 )

where B y ^ B ^ / k x j  (implied by V.B= 0) has been used. When jZ2 is crossed with 

BX1 the resulting third —order force Fy3 provides a torque that opposes that produced 

by linear forces.

Fys j BJ Z 2  XI

s i nky

xo
2
T

This time requiring Fy3/ k = F x l x j  then gives the condition

( 2 . 3 5 )

XT "
B
X1

kB7-yo

1 /2
( 2 . 3 6 )

The definition (2.10) of ^  implies and B y,0= ]/',0' so eq.(2.36) is equivalent

to x j =  o ' l ^ ’ This 1S 531116 as eq.(2 .2 1 ) for the island width, neglecting

numerical factors. The nonlinear and linear forces are therefore of comparable size 

when the island has grown to become as wide as the tearing layer. For tokamak 

evolving on resistive timescales, over tearing width dimensions, this would occur very 

rapidly, so the dynamics of magnetic islands will always be nonlinear. The replacement 

of inertia by nonlinear forces decreases the growth rate 7  so the inertial term in 

eq.(2.15) is unimportant and V^xVjz=  0, which implies

Jz=JzW ( 2 . 37 )

Rutherford [17] has analysed this case, assuming small islands compared to the shear
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length of the equilibrium field, and constant \f/ within the singular region. It is found 

that growth of the mode becomes proportional to A'.  This is easy to show.

At the o —point v = 0 , so eq.(2.13) gives

a * , / a t  = 17(0) j z i  (0 ) ( 2 . 3 8 )

Within the tearing layer, if jzi is assumed constant, and 0 2/d x 2> > k ^ , then eq.(2.11) 

becomes, when integrated across the layer

Jzi ( 0 ) 2h » A' ^CO)  ( 2 . 3 9 )

Combining eq.(2.38) and (2.39) the growth of h is given by

= a 'k  cn
dt 2 /x0

( 2 . 4 0 )

During a tokamak discharge, many growth times of eq.(2.40) will pass, so the island 

will become comparable to the shear length. Equation (2.40) has therefore been 

quasilinearly extended by White et al. [18] for the case h/L«l. As the interior region, 

which now corresponds to the island is large, the constant (and j z i ) approximation 

can no longer be made, and the matching of solutions is now made at the island 

separatrices.

2.4 S a tu ra t i o n  o f  I s la n d  G r o w th

As x j <  <  L, then all previous linear results will hold in more complicated 

tokamak geometry, although the solution for \ i n  the exterior region, upon which A' 

depends, will strongly depend on this geometry. Therefore before discussing saturation 

of the tearing mode, the fields and equations valid for the cylindrical tokamak 

approximation are given.

The well known [16,19] low—beta cylindrical tokamak ordering is assumed, 

( a / R < < l ,  aBz/RB0 * l), and furthermore only single perturbations with fixed helical 

symmetry are considered. Therefore the nonlinear coupling of modes of different 

helicity is excluded. These assumptions imply the torus can be replaced by a cylinder 

of length 2xR, the ^ —coordinate replaced by z= ^R, all plasma quantities are a 

function only of r, m fl+kz, and t. Perturbations of the form
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^ ( r ) e l(m0+kz\  k=-n/R (2.40)

may then be considered, where m  and n are the poloidal and toroidal mode numbers. 
The helical symmetry eliminates the z— coordinate since

3 _ k a 
3z m a~6 (2.41)

Singular surfaces do not now occur for a null in the equilibrium field as in the plane 
case, but when the second term of eq.(2.8) equals zero; i.e. VX(vxB0)= B 0.W= 0.
Using eq.(2.40) this implies

mB
r

6 o v=0

where the safety factor q(r) is defined by

(2.42)

q(r)
rBz (2.43)

Tearing modes grow about the mode rational surface where q(rs)=m/n. Requiring this 
surface to correspond to 3v/0/3r=0 (analogous to the plane case), and the fact that 
V.B= 0 allows B to be written in terms of a helical flux function:

B s zxVii - — B 6 + B z m z z

The equilibrium helical flux satisfies

(2.44)

3^
3?

0 (2.45)

With the definition (2.44) the reduced equations are the same as in section 2.2, except 
V is replaced by Vj_=V— z3/dz, and eq.(2.11) now becomes

2 9kR
V  ' m " ^ i z W  (2.46)

Saturation of the tearing mode is now considered. A  single pitch perturbation 
expansion of the form
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\p ■= o ( r ) + e]P'i (r)cosm 0 + e^( \P2Q( r ) + \ p 2 ( r ) c o s 2 m 6 )  + . . .  ( 2 . 4 7 )

j = J a ^ o +^ )  + f^j  i (>/'o+^ )  + • • •  ( 2 . 48 )

where \J,Q and j a ( 0) are the unperturbed quantities, is substituted into eq.(2.46) to 

give

i" -2kB-/mro rro z + e yL' '+^' —  \Pi r 1 2 1r
cosm 0 + M0 j 0( r ) + c// o j 1 (O cosm fl 

/*0j W  ( 2 . 49 )

From eq.(2.21) the expansion parameter e ^ h ^ o ' -  This is very small, and so there 

should be little error in excluding the effects of mode —coupling. To first order 

eq.(2.49) becomes

1 2m , . 3J.v' ' ' +-^'' 1 r i--2̂ 1 r
cosmO - ^ cosm0+j/oAj (^ 0) = n 0] , ( r ) cosm0.  ( 2 . 5 0 )

z\j, ,  the change in the functional form of j(y/), must equal zero so eq.(2.50) can be 

rewritten as

cF + r5r
J'oJzo 0 ( 2 . 5 1 )

Equation (2.51) shall henceforth be called the stability equation, and is the cylindrical 

equivalent of eq.(2.25). It is singular where q(rs)=m /n, and like the plane case, 

applies in the region exterior to the island. Within the island \ a n d  j(i/-) are not now 

taken constant as in [17], but are assumed to be [18]

\ £ ( r , 6 )  *= ^ ( r )  + eV, i ( r x ) (l+ sx )co sm 0  ( 2 . 52 )

j b (i/) -  a , + b , ^  for  £>^s -vK rx ) ( 2 . 53 )

A Taylor expansion of ^ (r )  has been made about rx, the position of the x —point, so 

x = r  —rx and the slope s of within the island is

S = v̂ ; ( rx)/v^i ( rx) ( 2 . 54 )
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F i g u r e  2 . 4  S u r f a c e s  o f  c o n s t a n t  

h e l i c a l  f l u x  \ f > ( r , 8 ) ,  f o r  a  l a r g e  

m a g n e t i c  i s l a n d  i n  c y l i n d r i c a l  

g e o m e t r y .  T h e  i s l a n d  r e g i o n  b i s  

b o u n d e d  b y  t h e  s e p a r a t  r i x  ,

w h i c h  s e p a r a t e s  i t  f r o m  t h e  

e x t e r i o r  r e g i o n  a.

With such a perturbation, the cylindrical island structure of figure 2.4 arises. If y' 0(r) 

in eq.(2.52) is expanded about the x —point, and 6 is defined to be

5 s  - 2 ^  1 ( r x )/v' □' ( r x ) (2.55)

then the angular position of the separatrix is given by

cosinfls
- l - s x - x ^ / 5

I+sx (2.56)

If s is negative, the x — and o —points are shifted outward and inward respectively 

from the singular surface

r x- r s - i5 s /2 , r 0 - r s + 6 s /2  ( 2 . 5 7 )

Substituting 6S=  0 into eq.(2.56), the island half—width is found to be

h-(2{+5Js*)l/2 - [-Avt, <rs)/vtj,* (rs)]l/2 (2.58)

The inner and outer edges of the island are not equidistant from rs for large islands, 

and are located at
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r2=rs+h(l+hs/4) 
r ̂ rg-hQ-hs/^) (2.59)

Equation (2.53) corresponds to the first two terms of a Taylor series expansion of 

j(vO, and a, and b, are constants that are solved for by matching \p in the island and 

exterior regions across the separatrix. Integration of eq.(2.49) times cosm 6 gives

and this is then integrated across the island between r, and r2. The first term gives

The A(h) defined here equals A' of the previous section for small h, and is given by

solution of the stability equation (2.51). The integrals of the right hand side of

eq.(2.61) are tedious but non —trivial, and first involve transforming ja(^) to a function 

of x and 6, and then transforming the resulting functions of 6S to functions of x 

before integrating over the island. Equation (2.60) then relates A(h) to a 1 and b v but 

a second condition is necessary to fully determine them. Integrating eq.(2.49) over 0,

the change in total current can be shown to be of order P-, so to order e^ /2  (or ^3)

current is conserved and

Carrying out the integrations we find a trivial typographical error in [18] (the 124/135 

factor should read 128/135).

This matching relates the amplitude of \J/y to the island width h. Evolution of the 

island is then determined by eq.(2.13). If this is averaged along lines of constant  ̂ the 

convective term gives zero contribution. At the x — and o —points eq.(2.13) then 

reduces to

2 1 r
^ ^ [ J g sjb(̂ )c°sm0d0 +J^Ja(vOcosmfld# j (2.60)

(2.61)

(2.62)

(2.63)

(2.64)

Equations (2.63) and (2.64) are subtracted, and using 2^ ,(rs)= + ^ i(ro))’

expanding rj(rx)= 77JI — dST] /̂2r]s ], and substituting
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j(ro)=a1+bn/,0(ro)+b^1 (r0)
(2.65)

j ( rX) =a 1 +b 1 ’Z' 0 ( rx) +b^ 1 ( rx̂

gives,

( 2 . 6 6 )

Only terms to order have been retained. With the definition (2.58) of island width 

it follows that

dh Cr7s rl
dT = 2J10 lz[ i ^ ( h ) - a  h] ( 2 . 6 7 )

where C =135x/128, and

2m s + ( 1 -C“ 1)a j 2r rs s J

A(h) is given by the exterior solution of eq.(2.51) and s, the slope of i/'t in the island 

interior, is taken as the average value of \p\ at the island edges, where yj/\ is also 

obtained from solution of eq.(2.51):

White et al. [18] find an additional term in eq.(2.68) proportional to Ẑ O)- How this 

might arise is not obvious to the author and is neglected here.

For a given equilibrium, the zeros of eq.(2.67) correspond to a saturated island,

i.e.:

For hsat small it is frequently supposed to be a good approximation to take ajhsat=  0 

[4,9,20]. This is not a requirement for this work, and the validity and consequences of 

this assumption are examined in Chapters 4 and 5. The equilibrium profiles, and 

therefore A(h) and aj, evolve in time, so eq.(2.67) then describes the growth of a 

saturated island in response to a changing current profile.

s ( 2 . 69 )

^(hsat)  Qjhsat ( 2 . 70 )
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The preceding analysis is invalid for the special case of m= 1 [52]. This can be 

seen if eq.(2.51) is rearranged, substituting eq.(2.46) for P-0]zo> anc* noting 

B 0O(1 — nq/m)= so the stability equation becomes

odr • - \P -r-ri/'' ' = i dr o
m2-l

K * -
( 2 . 7 1 )

For m= 1 the solution of eq.(2.71) is where c is a constant. Also, in the

exterior region where this holds, eq.(2.13) implies ^ ,+ £ 1/^ = 0 , where the radial 

displacement £ is defined by v^ -y^ . Therefore the solution for £ to first order in 

kr/m is

Hr )  = £0 
= 0

r<r,
r s <r<a

( 2 . 7 2 )

The solution for £ outside rs must equal zero to match the boundary condition 

£(a)=0.  The singularity at rs is resolved by either including inertia which gives an 

ideal m= 1 mode, or else resistivity as well, to give a resistive mode. The resolution 

of the singularity allows a matching of the two solutions in eq.(2.72), but due to the 

large change in £ across the singular layer the constant —i/- approximation no longer 

holds, so the m= 1 mode must be treated differently. The solution (2.72) represents a 

constant displacement of the central region and has no analogue in slab geometry. The 

m= 1 mode is discussed further in Chapter 4.

2.5 T e a r in g  M o d e s  a n d  E n e rg y

Detailed calculations of the changes in magnetic energy across the tearing layer 

have been made in ref. [21]. This section highlights the main points. The change in 

magnetic energy for incompressible flow is [2 2 ]

6W “ i f f — B2 + J „. («XB , ) l d 3x ( 2 . 7 3 )Z J V Q 1 0 » J

In plane geometry with the fields and flow of eqs.(2.16) to (2.19), and noting 

7toizo= ^ 0 ,= BF’ then eq.(2.73) becomes

*w - ^ J k 2+ kV F' H ^ v ] dx (2-74>
In the exterior region i/^/F (from eq.(2.24)), and then integrating the last term by
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parts, eq.(2.74) equals

6W
4 <̂

(2.75)

The surface term is of order 1 /x j , but ref.[21] shows this term is cancelled by 

contributions from the interior region. Within the singular layer there is a large 

redistribution of magnetic energy from the tearing layer outward into a skin layer, 

which is still small compared with the scale length of the zero —order field. However 

the net magnetic energy released comes from outside this region and is given by 

eq.(2.75), with the surface term set to zero. It is a simple matter to show this energy 

is dissipated only within the tearing layer. The kinetic energy K equals /^pv^dV, and 

substituting for v and 7 ^  this becomes

„ 1 2 2 r r ,2^ 2 2] ,K - 2T77:tA^ J 1 1̂ + k '5iJdx
If the first term is integrated by parts, and eq.(2.23) is used, then

(2.76)

1 2 2 r 1 oo lfco r 2 F' ' i
K - TAh * ; ] - + *,]<* (2.77)

In plane geometry <py is odd so the surface term equals zero. In cylindrical geometry 

this is not the case but as 7 ^t^ < < 1 , the surface term may still be neglected. In the 

exterior region the integrand of eq.(2.77) is just the stability equation, and so equals 

zero. Contributions to K must therefore come only from the interior region.

The potential energy can also be related to Z\'(0). This will be done for the 

cylindrical geometry more applicable to tokamaks so deriving 6W in an identical 

fashion to eq.(2.75):

5W tt2Rfa ,,2 +V. + HL + ^°^zo
r2 B (1 q)6 o

rdr ( 2 . 7 8 )

Integrating ^[2 by parts gives

6W x2R r f ,. ia
'a [13 m2 °̂̂ 'zo ■

K * ; J 0 -
0

r3rr3r '
r2

rdr ( 2 . 7 9 )

The integrand of eq.(2.79) equals zero. The surface term gives an energy proportional 

to A'(0 ), and if there is also a vacuum region between the plasma boundary at r=a
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and a conducting wall at r= b then

5 W - i r K ^ (rs ^ ' (0> -■»^c)[i+[B]Zm][l-[H]zT 1} <2-80>
al 2ml 2ml -1'

Whenever A' is positive then growth of a tearing mode permits a reduction in

magnetic energy. The second term of eq.(2.80) is always negative and destabilizing. 

When b-»a then i/^Ca) also tends to zero, so the case of a conducting wall on the

plasma corresponds to minumum destabilization, while the opposite limit of b-*» is 

most destabilizing. The effect of the current profile can be seen from eq.(2.78). The 

only negative contribution to 5W can come from the current gradient term. Tokamak 

profiles invariably have negative and this is weighted strongly by the

(1 — nq(r)/m )~l factor, which is large and positive for r< rs, and large and negative

for radii greater than rs . Therefore large current gradients just inside rs are strongly 

destabilizing, but for r> rs they have a stabilizing effect. Finally the (m/r)2 

line —bending term will give a large positive contribution to 5W for large m, so

high —m modes could be expected to be much more stable than low—m tearing modes.
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CHAPTER THREE

DESCRIPTION OF THE TRID CODE

3.1 I n t r od u c t io n

This chapter describes a time—dependent one dimensional computer code which is 

used to follow the interaction between transport, radiation, magnetic islands and 

disruptions; hence the name TRID. The equations and transport coefficients that 

constitute TRID are presented, and the algorithmn and computational methods used to 

solve them are briefly outlined. A more detailed description then follows of the 

solution of the stability equation, and finally an example of some low current results 

with q> 1 are presented.

3.2 Ch oic e  o f  M ode l

Chapter 2 showed how resistive instabilities are governed by plasma profiles and 

in particular the radial current profile. These profiles are transport —determined, and 

transport in turn is affected by the presence of instabilities. A full simulation of this 

interaction would require:

(i) a three dimensional simulation including several potentially unstable modes,

(ii) a self consistent evolution of the temperature profile,

(iii) a simulation on transport timescales,

for a study of how disruptive conditions might arise. However the saturation 

mechanism discussed in chapter 2 , in which island widths depend on radial profiles 

only, presents us with the possibility of modelling in one dimension and not three. 

The transport across the complicated three dimensional flux surfaces of islands must 

then in this case be averaged to give an equivalent 1 — D effect. Also with a 1 —D 

model it is not prohibitively expensive on the computer to obtain equilibria with 

saturated islands, and it becomes possible to realise the aim of understanding the 

parametric behaviour of disruptions with radiation cooling and additional heating. The 

assumptions inherent in a 1 —D description will not allow a precise prediction of 

plasma behaviour, but the results obtained reproduce many of the features observed in 

a recent 3 —D simulation by Bondeson [23].

The model assumes a large aspect ratio cylindrical tokamak with standard tokamak
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ordering introduced in section 2.2. It follows the "TRINIO" model conceived by Turner 

and Wesson [9], but with several additions and changes which are summarised here.

(i) A two fluid model is used whereas TRINIO is one fluid.

(ii) A realistic radiation loss term is included in the electron energy equation. Power

loss profiles are obtained from a one dimensional inpurity transport model, and the

effect of impurities on Zeff and ohmic heating is consequently known.

(iii) Simple additional heating terms are included in the energy equations.

(iv) A criterion for ballooning mode stability is tested.

(v) The Kadomtsev model of the sawtooth oscillation can be included explicitly in the 

code. Alternatively the average effect of the sawtooth is represented, although in a 

different fashion to [9].

(vi) Non-uniform  thermal conductivity is allowed for.

(vii) The first order term in the nonlinear growth equation (2.67) is included. Islands

are not symmetric about rs.

3.3 T r a n s p o r t  E qu a t io n s

The basic equations used are those introduced in chapter 1; eqs.(2.1) to (2.6). A 

large aspect ratio, low beta tokamak of circular cross-section is assumed [19] with Bz 

constant and quantities varying in radius and time only. Numerous experiments 

[26,28,48] have found that particle diffusion is anomalous with diffusion coefficient D 

in the range 0.5 —1.0 m^s- 1, but to obtain agreement with observed density profiles 

an anomalous inward particle flux is also required. To model tokamak density evolution 

it is therefore necessary to compute profiles with a poorly understood diffusion 

coefficient, and then "fix" it with an equally misunderstood pinch term. Therefore in 

TRID a deuterium plasma is assumed that is Gaussian in radial profile, and is constant 

in time. This assumption also obviates the need for a calculation of, or an analytic 

model for the neutral deuterium density, from which the particle source term can be 

calculated.

The plasma energy content is modelled by:

(i) Electron Energy Equation

3 a
--- n kT
2 8 t e (

.2 1 8
>!JZ ------r Br

3m n k
r Q --- — - [t -T.l + H - P

e  m . r  l e  i J e
(3.1)

l e
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(ii) Ion Energy Equation

3 3 

2 9t
n.kT. l l

1 3 3m n k
rQ. + — — - [t -T.1 + H. l m.T l e lJ lr 3r l e

(3.2)

Advection terms in the energy equations have been neglected. Assuming

quasi —neutrality the electron density ne equals the background ion density nj plus a 

contribution from any impurities that may be present, i.e. ne= n j +  In zz. The source 

and sink terms on the right hand side of (3.1) are respectively ohmic heating, thermal 

conduction, equipartition, additional heating and impurity radiation loss P. Also

omitted from eq.(3.1) are energy losses associated with ionization of the impurities, and 

the power needed to heat the resulting electrons. Mercier et al. [29] in a more 

complete simulation of TFR showed that line radiation losses typically 300kW and 

ionization losses much smaller at 30kW. The radiation term P in eq.(3.1) therefore 

slightly underestimates the impurity cooling; inclusion of this effect would be useful in 

further work.

The effects of additional heating and radiation are not discussed until chapters 5 

and 6  respectively so the functional forms assumed for He>j and P are not given until 

then. The total low—Z impurity density is found in chapter 6  to be at most just a 

few percent of the deuterium density, so it is reasonable to neglect contributions from 

impurities to the total plasma thermal energy. Bremsstrahlung radiation through 

free—free collisions of electrons with the bulk deuterium ions is assumed small in 

comparison to impurity radiation and is neglected. The resistivity is taken to be given 

by the classical Spitzer—Harm expression [24]

1
5 . 2 x l O ~ SlnA 

A(Z) T^/ 2 (eV)
fim, or 7) sp

A(Z) ’ where

A(Z) - 1 . 957
Z

0.46 l 
(1.08+Z)J

( 3 . 3 )

( 3 . 4 )

If the electron —ion collision time is eliminated in favour of the resistivity then the 

equipartition term becomes

2 26n e 7] k
m.l

(T -T.) e \ (3.5)

Ampere’s Law, Faraday’s Law and Ohm's law are respectively:
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3 b . 3e
6 z  

3 t  Hr- (3.6)

and these can be combined to give

(iii) Poloidal Magnetic Field Equation

0 B 0 3 ij 3
( 3 . 7 )

o

This set of equations can be solved for the three unknowns Te , Tj, and B q if the

transport quantities and source terms can be given in terms of these variables in some

way.

3.4 T r a n s p o r t  C o e f f i c i e n t s

Neoclassical transport theory [15] was formulated to take into account the 

geometry of magnetic fields in tokamaks and their effect on particle behaviour. Some

predictions seem to be confirmed by experiment, such as the ion thermal conductivity 

being within a factor two of the neoclassical value. However both the cross —field 

particle diffusion and electron thermal conductivity appear to be one or two orders of 

magnitude greater than the theoretical values [25,26]. For this reason a semi —empirical 

transport model is employed where only the diagonal coefficients that couple the 

thermodynamic forces to the fluxes are taken. Where there is disagreement between

theory and experiment, an anomalous value that scales according to experiment is 

added to the neoclassical value. Therefore the heat fluxes have the form

The neoclassical coefficients are derived in Hinton and Hazeltine [15], but the 

value used for K^c is the modified version due to Bolton and Ware [27]:

( 3 . 8 )

i 2n . f a „
( 3 . 9 )

where e= r/R, a^e j is the poloidal electron/ion gyroradius

(3.10)
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j the cyclotron frequency eB/me j , and vtejj , the thermal velocity,

v te  , i

2kTe , l
m

e , l

1/2

The electron —ion and ion —ion collision times are defined by

(3.11)

[4*fo]23me K l 1
6  4 (2x)^e^Z^n.InA

m.l
me

T .l
Te

3 / 2

T e ( 3 . 1 2 )

The functions Kj, K2 e i, and K3  in eq.(3.9) are rational functions of the 

collisionality parameters of order one that ensure Knc is valid in all neoclassical

collisional regimes. The collisionality parameters (ratio of trapped particle bounce 

frequency to collision frequency) are defined by

y2rB
* e , i _ 3 / 2B  v  .r . e 

8 t e , 1 e , 1

( 3 . 13 )

There is no agreed theory for anomalous conduction so Turner and Wesson were 

motivated to choose the simplest empirical scaling consistent with experiment of 

K |n= constant. Other transport codes have often used a temperature dependence for 

K |n (eg. T^"l [26,28]; T^"3/4 [29]), but in TRID the choice [9] of constant thermal 

conductivity is also made. In section 5.5 the effect of a radially varying thermal 

conductivity is examined.

Radial transport in the presence of magnetic islands is now considered. Magnetic 

field lines near the separatrix connect plasma regions lying on opposite sides of the 

island. The radial flux through an island is thus determined, not by the perpendicular 

conductivity but by the much higher longitudinal conductivity. Typical classical values in 

a tokamak imply ((>  1 j_, for example, so the temperature would be expected

to be equalised across an island extremely rapidly. This is implemented in TRID by 

defining the transport coefficients to be the sum of the background already defined, 

and a large enhancement between the island boundaries, so that:

rr-r 1 2 l a
1 + K 1 - c y

1 h J J fo r  r -h<r<r +h c c ( 3 . 14 )

r 1 c r + s
1 h2 
4 h swhere ( 3 . 1 5 )
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An identical expression holds for Kj(r). If K , is made much greater than unity then 

profiles are flattened and the particular functional form for the enhancement will not 

be important; this is illustrated in section (5.4) with various choices for a r  It will be 

set equal to 1 in subsequent chapters. To complete this set of transport equations the 

growth rate of each island is given by eq.(2.67), i.e.

dh r j ( r  ) rl
_  ,  i . 6 6 - j q ? 4 ( h )  -  a  h ( 3 . 16 )

3.5 B o u n d a r y  C o n d i t i o n s ,  D ime ns io n less  Fo rm s ,  In i t ia l i sa t io n

At r= 0 the usual boundary conditions for odd and even functions hold, ie B^pO, 

Te ' =Tj ' =0 .  At the plasma edge a limiter is assumed to be present at r= a followed 

by a highly resistive, cold, zero current region between a < r < b ,  where b is the radius 

of a perfectly conducting wall. The edge temperatures are fixed to constant, small 

values:

Te(a , t) = Te(a,0) = 5eV
T i ( a , t )  = T j ( a ,0)  = 5eV ( 3 . 1 7 )

The total current (proportional to l/q a) is taken to be either constant and fixed in 

time or else programmed in time according with a linear current ramp:

Bf l ( a , t )  = Bf l (a, 0 ) ( l + t / t d ) ( 3 . 1 8 )

At r= 0 and in the region a< r< b, jz=  0, so the solution of eq.(2.51) is just

= c , r m + C2 r “m ( 3 . 1 9 )

where C, and C 2 are constants. At the conducting wall ^ (b )  must be zero so the 

boundary condition on 1 at the limiter becomes (dropping the 1 subscript for i/^)

1ra

a

1 - t r m 
1 + ra2mm

(3.20)
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a n d  it  is  e a s y  to  s h o w  th a t  t h e  c o n d it io n  o n  ^  a t  r =  0 b e c o m e s

\J/ = r^'/m as r-»0 (3.21)

B e f o r e  d e s c r ib in g  t h e  s o lu t io n  o f  t h e  tr a n s p o r t  p r o b le m  a s e t  o f  d im e n s io n le s s  

v a r ia b le s  a n d  c o n s t a n t s  is  in tr o d u c e d  a n d  a ll  e q u a t io n s  c o n v e r t e d  to  d im e n s io n le s s  fo r m .  

A n y  v a r ia b le  X  h a s  a n  a s s o c ia t e d  d im e n s io n le s s  v a r ia b le  X  a n d  n o r m a lis a t io n  X 0 w h e r e  

X =  X / X Q ( n o t e  th a t  i f  T 0 is  m e a s u r e d  in  e V  t h e n  k T = T  X  e T 0) .  T h e r e f o r e  o n e  c a n  

d e f in e  t h e  d im e n s io n le s s  v a r ia b le s :

r = r/ a ,  f = t / t 0 , n e =  r ^ / n o ,  n i = n i /n D> T e = T e / T 0 , T j = T j / T 0 , B = B 0/ B o , 

1=y'U, K e = K e / K o ’ K p K j / K j , ,  rF=r)/r)0, P = P / P 0 , H e = H e / P Q>

a n d  i f  t h e  f o l lo w in g  d im e n s io n le s s  c o n s ta n ts  a r e  d e f in e d ,

2 2 2 
B 6 u n ^ e  a  P  to o D oo

c  =  -----------—— , c  =  -----------------------  , c  =  -------- —— ,
i n n ^ eT _  2 m . 3 n _ e T'o D 0 l D o

t h e n  s u b s t i t u t io n  in to  th e  t r a n s p o r t  e q u a t io n s  g iv e s  t h e  b a s ic  e q u a t io n s  fo r  T R I D  ( t h e  

t i ld e  n o t a t io n  is  n o w  o m it t e d  fo r  s im p lic i ty ) :

3 0  ^ 1 0  0 T  „
— —  n  T =  C T 7j + --------- rK  — -  -  c  n  r? [ t  - T . 1 +  c  H
_ ee i o  2 e  l  e  l J 3 (2 0 t  r  0 r  0 r

3 0  1 0  0 T . „ f
---------- n . T .  =  ---------  r K . — -  +  c  n  n  T - T . 1 +  c  H.
n 1 1  1 ^  2 e  1 1 e  1 J 3 12 o t  r  o r  0 r

lr " If ( r  3?(rB)]
, , _ , - 1 t - 3 / 2  V ~ A ( Z )  T e

c P (3.22) 
3

(3.23)

(3.24)

(3.25)

H T -  1 . 6 6 , ( r s ) ( ^ ( h )  - c . h ] (3.26)

0 ^  1 01  ̂
37* + r 5r

m j '

B(i - £q) m
^ = 0

w h e r e  rjQ=  5 .2 X 1 0  5 ln A  T 0 3 / 2 , t 0= / r 0a 2 /r? 0 , B 0=  a B z /R q a ( t =  0 ) ,

K 0= n D a ^ / t o ’ anc* h 1S h a l f — w id th  d e f in e d  in  e q . ( 2 .2 1 ) .

(3.27) 

j 0 ® 0^ oa>
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T R I D  is  in it ia l iz e d  w ith  a g iv e n  s a f e t y  f a c t o r  p r o f i le  w h ic h  e q u a ls  q 0 o n  a x is ,  a n d  

qa a t  t h e  l im it e r :

q ( r )  -  q 0 tl + [q0 ' -ll r 2 0 ' + 0 A l/0' , Q=qa/ q 0 ( 3 . 2 8 )

w h ic h  a ls o  d e f in e s  B ^ (r )  a n d  j z ( r ) .  T h e  p r o f i le s  a r e  t h e n  a f u n c t io n  o f  f o u r  

p a r a m e t e r s :  t h e  v a lu e  o f  q  a t  t h e  a x is  a n d  l im it e r ,  a n d  t w o  s h a p e  p a r a m e te r s  0 , a n d  

0 2 . I f  (3 2=0  t h e n  th is  p a r a m e t r iz a t io n  b e c o m e s  e q u iv a le n t  t o  th a t  o f  [ 3 1 ] .  T h e  

in c r e a s e d  c o m p le x i t y  h e r e  a l lo w s  t h e  t e m p e r a t u r e  to  b e  s p e c i f i e d  in  a c o n s is t e n t  w a y .  

A t t =  0, T j ( r ) = T e (r )  is  a s s u m e d , n o  im p u r i t ie s  a r e  p r e s e n t  s o  Z e f f ( r ) = l ,  a n d  th e  

d e u te r iu m  d e n s i t y  p r o f i le  is  ta k e n  to  b e  G a u s s ia n  w ith  c e n t r e  a n d  e d g e  d e n s i t ie s  

t y p ic a l ly  nj(0)=2np), a n d  n j ( a ) =  O .O Snpj:

n. (r) n.(0) + (n.(O)-n.(a)) ( 3 . 2 9 )

In  th e  l im it  o f  u t e n d in g  to  z e r o ,  n j(r )  h a s  a s im p le  q u a d r a t ic  d e p e n d e n c e .  T h e  

r e q u ir e m e n t  o f  s o m e  s p e c i f i e d  a v e r a g e  d e n s i t y  np> im p l ie s

j j n . ( r ) r d r  -  i  ( 3 . 3 0 )

a n d  a llo w s  a s im p le  n u m e r ic a l  s o lu t io n  fo r  a. T o  p r o c e e d  fu r th e r  n o t e  th a t  a t  

e q u il ib r iu m  3 / d t =  0 ,  s o  F a r a d a y s  la w  im p l ie s  E z  is  u n if o r m , a n d  f r o m  e q . ( 3 .2 5 )  fo r  17

Te (r)  -  Te o ( j z ( r ) / j z ( 0 ) ) 2 / 3  ( 3 . 3 1 )

j z (a )  is  e v a lu a t e d  fr o m  ( 3 .3 1 )  a n d  s u b s t itu te d  in to  ( 3 .2 8 )  t o  o b ta in  a r e la t io n  fo r  (32 in  

t e r m s  o f  0 1t T e o , T e a , q ( 0 ) ,  a n d  q (a )  w h ic h  c o m p le t e s  t h e  in it ia l is a t io n :

0 - 2 0
1- ( W T e nP q

1-Q-0,
- 1 ( 3 . 3 2 )

3 .6  Difference Scheme

G iv e n  s o m e  u n k n o w n  u (r ,t )  a n d  i t ' s  v a lu e  u °  a t  t =  0  t h e  s o lu t io n  to
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is required, where L is a nonlinear operator [32]. The difference scheme used is 

second order accurate in space and can be either fully or partially implicit. Since the 

equations are nonlinear it is necessary to iterate towards a solution at each timestep. 

Equation (3.33) becomes

UP + 1  =  u ?  +  < M tL u P + 1  +  ( l - $ > ) A t L u "  ( 3 . 3 4 )

up+ 1  is the (p +  l)th  iteration to u at mesh point i and timestep n + 1 , and <t> a 

measure of the implicitness. A nonlinear term such as Kp +  ̂ 8Tp"f'V3r is linearized, 

replacing Kp-1"̂  by it's value Kp at the previous iteration. The equations for T p 4̂  

and Tp + 1 are coupled only through the equipartition term but serious numerical 

oscillation occurs if attempts are made to separate their solution. Therefore they are 

solved for simultaneously using the new T p4-* to update resistivity. The poloidal field 

diffusion is then solved and finally all transport coefficients are updated before 

repeating the iteration cycle.

As an example of the difference scheme consider (3.22). The mesh spacing A is 

constant throughout so r p  iA for i=0. .N,  three —point centred differences are used, 

and defining rjScf)^t/(rj^) and /qs(l — cf))^t/(r^), then:

^  = Lu (3.33)

[-j’.r. ,K̂ . ,] + T^t1 [̂ n , + i'.[r. ,K̂ . ,+r. ,K̂ . ,|+$4tc n^.77?] +
e i - i L  1 i - £  e i - $ J  e i  12  e i  l l  i - j e i - ]  i - £  e i - $ J  2 e i  ' i J

T p + ’ f - r . r .  J < P . J  +  i f f U l t c  n 2 . , p l  -  M t c  ^ [ j P ] 2 +  
e i + i  L 1 i - £  e i - £ J  11  L 2 e i ' i J  i ' i l J i J

(l-*)itcî [j^‘]2+ ^ t c 3[HPj+p(TP .]] + <l-*)Atc [l£ +p f t  ]]

+ Tn . \ n . r .  ,Kn . 1 + T n . f 4 n  . - j t . f r .  .Kn . ,+r .  ,Kn . . 1 - ( l - $ ) A t c  n . »/?l 
e 1 - 1 L 1 i - £  e i - $ J  e i L 2  e i  l  l-j e i - ]  i - £  e i - £ J  2 e i ' i J

+  T n  \n.r. , K n . ] +  T n . [ ( l - $ ) A t c  n .-q!] 
e l  +  i L r 1 i - J  e i - £ J  i l l  2 e i ' i J

The differenced equations for Te and Tj written in matrix form are

( 3 . 3 5 )

A ?  u P + l  +  B P u p + 1  +  CP u P + 11 
1 1 - 1  1 1 1 1 + 1

w. ( 3 . 3 6 )
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where w is a 2 —vector and A, B, and C are 2x2 matrices, some of whose elements 

are found in eq.(3.35). An equation identical in form to eq.(3.36) results for B q but

the matrices now become simple numerical coefficients. Equation (3.36) is solved using 

a simple recursive method to invert a block tridiagonal matrix; this is described in 

Appendix B .

When the implicitness parameter $ equals 1/2 the differencing becomes the 

Crank —Nicholson scheme, which is second order accurate in time and is always stable

for equations with one independent variable and any choice of timestep. However this

does not guarantee numerical stability for the iteration over the three varibles in this 

work. Whitfield [33] has performed a local stability analysis for a similar set of 

equations and not surprisingly finds £<$<1 for stability. Tests of the method here have

been carried out with no radiation or heating for various choices of $  and At. For 4>

close to serious oscillations during iteration, and non —convergence are observed, 

unless At is restricted to unnecessarily small values. For $ close to 1 the solution is

much better behaved and good agreement is obtained between runs with typical

At=10 — and a tenth of this. The choice 4=1 is therefore made in TRID, and At 

is taken to be of order 10~ ^ tr which typically corresponds to At=lms for DITE

parameters, and At= 40ms for JET. In fact the presence of strong radiation imposes 

strict limits on At. If an error eP exists in the pth iteration then linearizing eq.(3.34), 

one obtains for the amplification factor

(3.37)

For stability |eP +  ̂ / e P | < l ,  so for the particular case of the electron energy equation 

and considering just the radiation term, eq.(3.37) reduces to

At < At « De for all 0<r<lrad ( 3 . 38 )

e

This limit can be very low for a strongly radiating plasma. Having ensured stability the 

timestep is additionally restricted to give a certain accuracy in the solutions:

Atn+1 < Atn 0.05 Min[0.5(T°+1+T?)/(TD+1-TD)] 0<i<N ( 3 . 39 )
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3.7 So lu t ion  o f  the S t a b i l i t y  Eq uat ion

The thermal conductivity depends sensitively on islands widths, which must be 

obtained for each mode from solving (3.27). At the resonant surface rs where q= m/n 

this equation is singular so requires special considerations. Furth et al [34] are followed 

here. First substitute r= rs + x  and perform Taylor expansions for B^, q and j':

O  , 1

2 r dx s
l- 2L  +.

dx
m i - 2 2  +.. i+ - cl+ c +..

Now defining y= x/rs and keeping leading terms this reduces to

yj, = 0

( 3 . 4 0 )

dj£ + d^
r + k 2

4, = 0

dy dy

where k 1 and k 2 are constants depending on values at rs :

( 3 . 4 1 )

- r J q , s Js ( 3 . 4 2 )

k„ = m + kn r 
2 I s

B'

j:
6s

l6s 2 q' ( 3 . 4 3 )

If a formal solution of eq.(3.41) is assumed to be

n= 0 na y o+n ( 3 . 4 4 )

then only one independent solution can be found (ie. roots of indicial equation differ 

by an integer). Therefore assume eq.(3.41) has solution

4(y) = u(y) + V(y)1n|y|

U(y)  " 4 - 0  V
Q+n

« >  - L  v s*"
( 3 . 45 )

and making the substitution one finds:

vKy) = A , ( y )  + (y)k, 1 n|y| + $ 2 (y) , y< 0

tf(y) “ A 24>,(y) + (y)k, ln|y| + $>2 (y) , y> 0

(3.46)
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where

$ i y * , - 1 + y2 ( K -  k - s M V 1] ] + •••

Use has been made here of the fact that \p must be continuous at y= 0, and all that 

is required of ^ in evaluating A(h) is it’s relative magnitude. This allows i^r^ to be 

set to one in eq.(3.46). Furth et al. neglected the k 2 and di/7dy terms in eq.(3.41) 

and so their solution for  ̂ is incorrect. However the differences between their solution 

and eq.(3.46) first appear in terms of order y^, and so for small y they are not 

significantly different.

A shooting method is used to determine the correct values for A 1 and A 2 that 

match the solution of (3.27) to the boundary conditions. The boundary condition (3.20) 

is converted into a function f of A 2 that for correct choice of A 2 will be equal to 

zero.

f( A 2 ) =  v^( A 2 ,a) +

1<—
i

a ]  2m
b J

1 + [
a t  2m
bJ

y^(A7 ,a) - ^ ( A ? a - A ) ( 3 . 47 )

Matching to the boundary conditions is then equivalent to finding the roots of f(A ^ =  0 

and v'(A1 , r =0 ) =0  and for this the NAG Library routines [35] are fast and suitable.

F ig u re  3.1 G r a p h  o f  & ( h = 0 )  aga ins t  x
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The initial values of i/' and close to rs are calculated from the series solution (3.46) 

and depend on A, and A 2. The point of fitting is at values of y sufficiently small for 

(3.41) to be valid but not so small that the singularity causes difficulties.Figure 3.1 is 

a graph of A(h= 0) for a typical DITE profile versus on a logarithimic scale, where 

is the distance from the singular surface. For x^<2XlO~^ A,  and A 2 become 

larger, it takes longer to find them and A(h= 0 ) diverges as the singularity is

approached. For large x^>1 0 “ 2 eq.(3.41) no longer holds, and for x^ within this 

range A varies slightly between 7.35 and 7.45. The choice x^=2x l 0  — 4 is used in all 

TRID simulations. From these two starting values for ^ and the stability equation

is integrated from rs to the centre and edge using a 4th order Runge —Kutta scheme

and this gives f(A 2 ,a) and i/{Alt0).

Once is known the island width is advanced a timestep according to (3.26)

which becomes, when differenced

hn+1 - hn + 1.66.it [«>;P+1[A(h)n+1-a"+1hn+1] + (l-fl)ij"['Kh)n-a'?hn]]

(1 -  e ) tj" (A (h ) n-o"  hn] ] ( 3 . 48 )

In this instance 6=  £ is taken to preserve second order accuracy for h. An iterative 

method for solving eq.(3.48) failed, as hn + l would fail to converge to a single value 

but would oscillate between two. Therefore hn +  * is found at each at each timestep by 

numerically solving for the roots of the equivalent nonlinear equation to eq.(3.48). 

Implicit in each evaluation for A(h)n + 1 is an iteration scheme for s (upon which c*j 
depends), because the edges of the islands, r n and r 2, at which i/-' is to be evaluated 

also depend on s:

s - *W'(r2) + ^'(r,)]
= i[0*(rs+h(l+ish)) + ^'(rs-h(l+ish))] (3.49)

The effect of s on the island edges r, and r 2 is second order in h so rapidly 

converges after a few iterations. When r 2 exceeds a, eq.(3.31) provides \p'(r2) in terms 

of i” (a):

^*(r2)
1 +

1 +

b I 2 m‘

Til.
s r

( 3 . 50 )

Turner and Wesson [9] set ^'(r2) t0  ^*(a) » so for example with m=2 ,  b/a= cc and
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r 2/a=1.05,  this corresponds to an underestimation of |^'(r2) |  by 5 % ,  which in turn 

implies an overestimation of A. Once the island intersects the limiter TRID predicts a 

slightly slower growth rate than [9].

The steps taken to obtain a solution for time tn +  l given a solution at tn are 

summarised in figure 3.2. The calculation can be conveniently separated into two 

halves: (i) calculation of energy and field profiles for given island width and, (ii) 

calculation of new island widths. This differs from what is described in eq.(3.35) as

the matrix elements multiplying T g + 1 and T p + 1 In (3.35) depend on KP and hence 

hP. Each iteration for TP + * should involve a revaluation of hP, but this can be a

long and time consuming process, especially if many modes are considered. Therefore 

comparisons have been made with simulations with one h evaluation per timestep, and 

with simulations where several evaluations were made. The differences in island size 

are a few percent, while the saturated widths are of course independent of the number 

of h evaluations. At the completion of a timestep the conservation of energy can be 

checked. The total energy is not a variable in TRID so this check provides a good

guide to the behaviour of the numerical scheme.

In figure 3.2 there are many facilities for adjusting the timestep, which is 

confined to a preselected range, typically (0.01 Atmax,Atmax). At is reduced if,

(i) the radiated power losses are large,

(ii) the field and energy solutions haven't converged after a specified number of

iterations,

(iii) the change in solution over a timestep exceeds the accuracy requirement and,

(iv) the change in h exceeds Ahmax (typically 0.02a).

If At< Atmjn then the run is terminated. The run is also terminated if the conditions 

for a disruption as described in chapter 4 are met.

3.8 L o w  Cu rre n t  E q u i l ib r ia

This section presents the results of running TRID from some initialisation to a 

steady state in which saturated islands are present. "Low—current" means the value of 

qa is chosen sufficiently high to ensure that q always remains above one everywhere so 

that the m= 1 mode nevers occurs. This situation is described in the next chapter. 

Table 3.1 contains all the initial plasma parameters, which will be the default values 

chosen, unless otherwise stated. The machine dependent parameters are for either the 

DITE [36], or JET [6 ] experiments.
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T a b le  3 .1  In i t i a l  da ta  f o r  T R I D  code

Background e l e c t r o n  thermal  

conduct iv i  ty  

Enhancement o f  K 

Shape o f  enhancement 

Average deuterium d e n s i t y  

Edge d e n s i t y  

Central  d e n s i t y  

Edge temperature  

E f f e c t i v e  charge  

Conduct ing wal l  radi us  

I n i t i a l  p r o f i l e  f a c t o r

Major radi us  

Minor radi us  

Toroi da l  magnet i c  f i e l d

Ke 19 -15xl(J m is-1

*1 100
a l 1
nD 3xl019m”3
nj  (0) 0 . 05nj3

n i (a ) 2 .0 n D

êa> îa 5eV
zef f 1.0
b 00
0i 1

DITE JET
R 1.17m 3.0m
a 0.26m 1.2m
Bz 1.34T 3.0T

Figure 3.3 has been produced by TRID simulation of DITE with initialisation 

Teo=350eV , qa=4 . 5 ,  and q(0)=1.4.  In figure 3.3(a) the positions of the inner and 

outer edges of the m/n= 3/1, 2/1, and 3/2 islands have been plotted as a function of 

time. The 2/1 island quickly reaches a saturated size of about 0.1a and then remains 

stable at this size, but gradually shifts inward as the plasma resitively evolves towards 

equilibrium. However as q(0) increases above 1.5 the resonant surface for the 3/2 

mode shifts inwards, and the corresponding island decays and finally disappears. All 

other modes for this particular case were always stable. It is frequently found sufficient 

to follow evolution of just these three modes. The increased energy required for the 

line —bending of higher m modes, as described in section 2 .6 , is indeed sufficient to 

either completely stabilise the mode, or else to produce very small islands whose size 

is negligible in comparison to the 2/1 and 3/2 islands.

Figure 3.3(b) is the energy—checking diagnostic, with A i=  0.5ms and number of 

grid points N =150. The solid line is the change per timestep in the total integrated 

plasma energy, i.e. (Un + 1 —Un)/At, where

U"= Jo[l(neTe + ? T7) +c,B2n/2]rdr ( 3 . 5 1 )
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F ig u re  3 .3  D IT E  evo lu tio n  to w a rd s  an e q u ilib r iu m  w ith  q a= 4 .0 .  (a ) T h e  ra d ia l  ex te n t o f  th e  3 / 1 ,  

2 / 1  a n d  3 / 2  is la n d s . ( b ) T h e r a te  o f  ch an ge o f  to ta l p la sm a  e n e rg y  ( s o lid  l in e ) , a n d  th e  to ta l  

e n erg y  f lu x  in to  th e  p la sm a  (d a sh ed  lin e ) , (c )  R a d ia l p r o f i le s  o f  th e  e q u ilib r iu m  ( t= 6 0 m s )  

elec tron  te m p e ra tu re  ( s o lid  lin e )  a n d  ion  te m p e ra tu re  (d a sh e d  lin e ) , (d )  T h e  e q u ilib r iu m  

cu rren t d e n s ity ,  s a f e t y  f a c to r ,  a n d  p e r tu rb e d  h elica l f lu x  f o r  th e  2 / 1  m o d e  (d a sh e d  lin e ) .

00

I
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and the dotted line the flux S of energy into the plasma which should be equal to 

eq.(3.51), and is in fact coincident and not easily visible in the figure.

S
0T . 0T

c E B . + K.— —̂ + K — —̂ i z 6 l dr e dr r=l
1

c (He+Hi-P)rdr 
0 3

( 3 . 5 2 )

The agreement between the two is such that (AU — S)/U<5xl0 — with the maximum 

when islands are largest. A relation such as this can also be used in TRID to impose 

limits on At. Figures 3.3(c) shows the electron temperature and ion temperature 

(dashed line) at equilibrium, while (d) shows normalised current, safety factor, and the 

perturbed helical flux for the 2/1 mode (dashed line). The island is visible as a step 

in the current and temperature profiles.

It was pointed out in [20] how the initialisation chosen affects the transient 

behaviour of the islands. A particularly unstable example in [20] showed islands 

covering 37% of the radius soon after beginning the simulation, while the saturated 

equilibrium contained only one island with width h2 i=  0.03a. Tests are also made with 

TRID with different initialisations for a JET plasma with qa= 4 .0  and Te(0)= lOOOeV. 

Such a study shows which particular characteristics of the current profile lead to strong 

island growth. The island behaviour is found to be quite insensitive to the initial 

Te(0), but initial growth rates depend strongly on q(0) and /31 in eq.(3.26). Figure 

3.4(a) shows contours in q(0) — space of j^ , the current gradient at the q= 2 

surface, and (b) plots contours of the linear growth rate A(h= 0 ) of the 2/1 mode. 

Figures 3.4(c) and (d) show the corresponding current and q profiles at the four 

corners of (b) where q 0 and (3 take the following values:

(1):

o'i—tIIOcr 0 , =  0.0;

(2):

°qIIocr £ , =  0 .0 ;

(3): q0= 1 -8’ 0 , =  4 .O ;

(4): q0= 1 -°. (3}= 4.0.

The growth rate varies from A =  6 for q 0=1.0 ,  to A =  240 at (3). Maximum 

instability corresponds to profiles with high q 0 and also very flat q(r) near the axis 

((3, large), which cause rS21 to be located in a region of steep current gradient. The 

transient island behaviour for cases (1) and (3) are compared in figures 3.5(a) and (b) 

respectively. h 21 is plotted as a function of time in (c) for all four initialisations. The 

same saturated width, h 21= 0.045a, is of course achieved in all four cases, but for (3) 

it is initially 2.5 times greater than for (1). At lower current, evolution of the plasma 

from profiles similar to (3) could result in island overlap and interaction with the wall 

[31,37]. This is an artificial situation as (3), with such strong island growth, is clearly 

not close to equilibrium, and such profiles would not arise naturally during a discharge,
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except possibly with other influences present (eg radiation). Ohmic heating will cause a 

greater peaking of axial current than in (3), and so current profiles corresponding to 

(1) and (4) in figure 3.4(c) are more likely. Although (1) and (4) have the same 

linear growth rate, figure 3.5(c) shows that (4) experiences much less nonlinear 

stabilization and h 21 is 60% greater at t= 0.45s. This is due to the initially flat 

current profile outside the q= 2 surface. Such profiles might be expected with large 

radiation losses from the edge, so this would be a destabilizing influence (see Chapter

6 ). TRID simulations are henceforth initialised with profiles closest to equilibrium, e.g. 

^ ,=  1 and q(0) close to 1. The dynamics of island growth when q 0 is less than one 

are examined in the next chapter.
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(a) (b)
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F ig u re  3 .4  (a ) C o n to u rs o f  j z s , the c u rren t g ra d ie n t a t th e  2 !  1 reson an t s u r fa c e , as 

fu n c t io n s  o f  q (0 )  a n d  p r o f i l e  f a c to r  0,. (b )  C o n to u rs o f  in i t ia l  g ro w th  ra te  A (h = 0 )  

f o r  th e  2 / 1  is la n d , (c ) T h e  cu rren t p r o f i le s  c o rre sp o n d in g  to  th e  f o u r  corn ers  o f  

(a ) ,  i .e . (1): q 0= 1 .0 , 0 , = 0 . 0 ;  (2): q 0= J . 8 , <3,=0.0; (3 ): q 0= 1 . 8 , 0 , = 4 . 0  an d; (4): 
q  = 1 .0 , (3, =  4 .0 . (d )  T h e  co rre sp o n d in g  s a f e t y  f a c to r  p r o f i l e s  f o r  (c ) .
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F isu re  3 .5  T h e ra d ia l e x te n t o f  th e  m a g n e tic  is la n d s  a s  fu n c t io n s  o f  t im e , f o r  (a ):  

in i t ia l is a t io n  (1) o f  f ig u r e  3 .4 (c )  a n d , (b ):  in it ia l is a t io n  (3). T h e tra n s ie n t beh aviou r  

o f  th e  2 / 1  is la n d  w id th  f o r  a ll f o u r  in it ia l is a tio n s  is  sh ow n  in  (c ) .
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CHAPTER FOUR 

SAWTEETH AND DISRUPTIONS

4.1 In t r o du c t io n

The simulations presented in the previous chapter will not accurately describe 

tokamak behaviour because the sawtooth oscillations that will occur when q drops 

below 1 near the axis have been neglected. This chapter presents the experimental 

observations that characterise sawteeth, and then reviews the Kadomtsev theory that 

seeks to explain them. In TRID a sawtooth collapse is taken to be triggered by a 

m= 1 resistive mode growing to large size, and the post—collapse fields to be given by 

the Kadomtsev prescription. Discrepancies between the Kadomtsev theory and more 

recent sawtooth observations are also noted and new theories for the sawtooth are 

discussed. It is shown that a time —averaging of the effect of the sawtooth on transport 

still provides an adequate description. Finally the interaction between the sawtooth and 

the m= 2  island is interpreted as a disruption.

4.2 E a r ly  E x p e r i m e n t a l  O b se rv a t io n s

Sawtooth oscillations in the soft X —ray emission of the ST tokamak were first 

observed by von Goeler in 1974 [38], and since then a wealth of experimental data 

shows that they are common to all tokamaks [39]. It can be shown for all tokamaks 

that the onset of sawtooth activity coincides with the safety factor on axis falling to 

unity. Features common to the oscillations observed in early small machines, and to 

oscillations in low—current ohmically heated discharges of larger machines include:

(i) A slow ramp phase during which the temperature and density near the 

centre increase linearly by about 1 0 % and a few percent respectively.

(ii) A rapidly growing oscillation emerges at the end of the ramp phase and is a 

precursor to the rapid collapse of temperature that follows. Analysis indicates that the 

oscillations are consistent with the rotation of an m= 1 mode.

(iii) The oscillation ceases when it's amplitude is comparable with the change 

occuring during the slow rise phase; the temperature and density rapidly collapse, 

achieving near flat profiles.

In small tokamaks the repetition time r s of the sawtooth is 1 —5 ms, the collapse
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time tc ^ 1 0 0  ps,  and the growth rate of the precursor oscillations « 3ms” 1. Figure 

4.1(a) shows the precursor oscillations followed by rapid collapse in the line integrated 

density in a JET discharge [40]. Figure 4.1(b) shows the electron temperature profiles 

just before, and just after the collapse phase.

TIME, s

(a ) (b)

F ie u re  4 .1  (a ) S a w to o th  o sc illa tio n s  in  the lin e  in te g r a te d  d e n s ity  d u r in g  the

c u r r e n t—r a m p  p h a se  o f  an o h m ic a lly  h e a te d  d isc h a rg e  in  J E T  [ 4 0 ] .  ( b ) P e a k e d  a n d  

f la t t e n e d  e le c tro n  te m p e ra tu re  p r o f i le s  p r io r  to , a n d  su c c e e d in g  a sa w to o th  c o lla p se  in  

an  a d d it io n a lly  h ea ted  J E T  p la sm a  [ 4 2 ] .

4.3 T h e  K a d o m t s e v  Mod e l

The starting point for an explanation was that it appeared it was the m= 1 

precursor growing to large size that initiated a collapse, but the obvious assumption 

that it might be an unstable ideal MHD internal kink mode was first discarded. Von 

Goeler et al [38] showed that it’s growth rate was approximately seven times greater 

than that of the precursor, and furthermore Rosenbluth et al [41] showed in the 

low beta limit that it should saturate at a much lower amplitude than was observed.
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However Kadomtsev [10] observed that further evolution was possible with resistivity 

present.

F ig u re  4 .2  Se qu en ce  sho wing  the re a rr a n g e m e n t  o f  f l u x  co n tours  e x p e c t e d  wi th  the 

K a d o m t s e v  mode l  f o r  reconnec t ion  o f  the m =  1 mo de .  ( T a k e n  f r o m  W h i t e  175]) .

His now famous reconnection model for the collapse phase is now briefly reviewed 

with the aid of figure 4.2. The first figure shows the initial helical flux contours and 

position of a q= 1 surface dotted in, if a monotonically increasing profile is assumed. 

At some time an initial small amplitude ideal m= 1 perturbation is triggered. This 

displaces the central region and reconnection begins at the x —point. The two surfaces 

labelled 1 with the same ^ connect to form one surface. The subsequent evolution of 

the flux inside this surface does not involve resistivity so the value of  ̂ and the 

toroidal flux inside the surface are conserved. The process occurs with the other 

surfaces until the o —point is expelled through the x —point and the contours have 

returned to an axisymmetric state. Figure 4.3 shows the initial and final forms for the 

helical flux. Given ^  just before collapse, the final form \J/f is obtained from the 

relations expressing conservation of toroidal flux, and the requirement that reconnection 

be between regions of equal helical flux, i.e.
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F ig u r e  4 .3  H e l i c a l  f l u x  b e f o r e  sa w to o th  col lapse  (s o l i d  l ine ) ,  a n d  f l u x  j  a f t e r  a 

K a d o m t s e v  re con nec t ion  ( d o t t e d  l ine ) .

P C  T

F ig u re  4 . 4  I n v e r t e d  hel ical  f l u x  b e f o r e  a n d  a f t e r  co l lapse .  P o r t io n s  o f  the curve  

l a b e l l e d  R j  a n d  d e f i n e  t e rm s  in equa t ion  (4 .3 ) .

F ig u re  4 . 5  I n i t i a l  a n d  f i n a l  s a f e t y  f a c t o r  p r o f i l e s  f o r  a K a d o m t s e v  reconne c t ion
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r1dr1 + i*2dr2 = rdr

d^
3^.
37- dr r 1 

1

3^.
" “ 37”

3i/'f
37- dr

(4.1)

A more transparent form for the prescription that is used in TRID to obtain figure

4.3, can be seen if it is inverted and Rj(vO» and R(\0 are defined as being

those parts of the curve indicated in figure 4.4. It can be noted that

dR
dJ

’3\J-.r i ■
3r“ r2

and substituting similarily for Rj

- 1

and R into eq.(4.1)

R2W) - rIw  - R?W

(4.2)

(4.3)

To find the reconnected profiles in TRID the initial helical flux is inverted, R(i )̂ is 

calculated using eq.(4.3) and then this is inverted to obtain the final helical flux, and 

consequently B^(r), q(r) and jz(r). The initial and final profiles for qf are illustrated 

in figure 4.5. qf is now above one everywhere and essentially flattened out to some 

mixing radius rm defined by Vq(rm)= Vi(0)- Outside rm the profiles are assumed to 

remain unchanged. Kamdotsev calculates rm for the special case of a quadratic current 

profile and finds rm= . / 2 rS l , ^ut here, with this general computational method for 

arbitrary transport —determined profiles, rm is less than this: typically in the range 

1.20 — 1.30 times rS l .

Simultaneously with the reconnection, all quantities tied to the field lines, such as 

temperature and impurity ion density, are redistributed, subject to the constraints of 

conservation of particles and energy. These constraints are insufficient to determine the 

mixed profiles and additional information is needed. The Kadomtsev model would imply 

hollow profiles after reconnection but if mixing were turbulent then a flattening of 

profiles would be expected. Experimentally, flat Te profiles are frequently reported 

[42]. 3D numerical simulations of the reduced MHD equations [43,44,45] also produce 

flat profiles, so therefore TRID also assumes a flattening of Te and Tj out to r= rm. 

In this respect TRID is consistent with other transport simulations of sawteeth [46,47]. 

The small amount of magnetic energy released during reconnection will also 

additionally heat the electrons, but in practice is small enough to be negligible. Thus:
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J o "  [neTe i + i K l  - B*f] ] rdr
ef

JAm n rdr 0 e
(4.4)

Once the collapse is completed, stability is restored with q> 1 everywhere and the 

plasma enters the ramp phase, relaxing back towards a steady state in which heating 

and energy losses are balanced. The core of the plasma heats up through ohmic 

heating and the energy deposited near the mixing radius diffuses away, giving rise to 

the heat pulse observed. As the central region heats up, so the current on axis is able 

to increase, allowing q to drop below one and instability to develop again.

The collapse phase of the JET sawtooth oscillation in figure 4.1 takes 

approximately lOO^s, while DITE collapse times are also of comparable duration. The 

collapse time t c  can be estimated by [48]

T
C

1 . 5
"o p
2vBe

0 . 5 "I £

( 4 . 5 )

With the parameters of Table 3.2 and rSl=  0.35a, then for DITE one finds tc= 9 7 /zs, 

but for JET this increases to rc=  3.2ms. The Kadomtsev model therefore gives correct 

predictions for rc for the early, smaller tokamaks, but it fails to explain the rapidity 

of collapse for plasmas of JET dimensions.

Another problem with the initial formulation of this model is that the trigger for 

a sawtooth collapse, and hence the sawtooth period, is undefined. After collapse the q 

profile, which is greater than 1 everywhere must evolve to one in which q< 1 

throughout the region inside rsi since q is assumed monotonic at collapse. However if 

it were an ideal mode causing the collapse then instability would be expected as soon 

as q became equal to one, and not at some much later unspecified time. Numerical 

simulation by Sykes and Wesson [49] and analytic work by Bussac et al. [50] showed 

that the m= 1 ideal mode might be stabilised by toroidal effects, for sufficiently low 

poloidal beta. They also concluded that even in the large aspect ratio limit that the 

cylindrical result of ideal instability would not apply. Study therefore turned to the 

possibility of marginal stability of the ideal mode, and instability due to a resistive 

mode. Reconnection leading to Kadomtsev—prescribed profiles would not occur during 

the nonlinear phase of an ideal mode, but would occur continuously during the linear 

and nonlinear development of an m = l magnetic island. This modification to 

Kadomtsev’s model was proposed by Jahns et al [51] and has the advantage that the
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plasma becomes unstable as soon as q drops below one, and not at some arbitrary 

trigger time.

4.4 R e s i s t i v e  m =  1 M o de

Coppi et al. [52] derived a dispersion relation for the growth rate of a m= 1 

internal mode, in which the ideal and resistive modes are just different limits of this 

dispersion relation. A more complete analysis was made by Waddell et al. [53] that 

included equilibrium diamagnetic flows and the Hall (or diamagnetic) term in Ohm's 

law. In the limit of a stable ideal m= 1 internal kink, the growth rate of the resistive 

m= 1 tearing mode, modified by diamagnetic drifts is

3
7 (7+ i .) (7 -i ) = 7t (4-6)

A discussion of the derivation of eq.(4.6), and definition of the various quantities in it, 

is contained in Appendix D. Waddell et al. [43] in their simulation find that the m= 1 

mode continues to grow at approximately the linear rate 7 , even as it grows to large 

size. Jahns et al. [51] therefore assumed an m= 1 island to grow linearly until collapse 

so

f»i (t ) = h1 (0 ) exp ( J* 7 ( 0  dt ) (A.7)

and then carry out a Kadomtsev collapse instantaneously when the m= 1 island extends 

to the axis. They additionally assume y < < a * e>} implying 7 = 7 7̂ (j*ecii*j, but it is 

found here that this limit is not applicable, so the full expression eq.(4.6) is used for

7 . Both however imply a reduction in growth due to diamagnetic terms. In [43] it is 

shown that the m= 1 precursor does indeed grow at a slower rate than predicted by 

yp alone and so if this theory is to predict the correct repetition time then 

diamagnetic and finite gyroradius effects cannot be ignored. The initial size of the 

m= 1 island h^tg) is assumed to be the thickness of the tearing width f , ,  at time t 0, 

when q first reaches 1 .

Immediately after collapse when profiles are flat, the growth rate which is 

proportional to the shear squared, will be low but would continously become greater as 

the profiles steepened. Jahns et al. [51], assuming a linear increase in Te, and 

neglecting variation in and rSl , derive an island growing like:
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h, (t)
In — --

h^O)
ft? 1

O). O), . 7 7 _*e *i A R
s 1+ a dt (4.8)

If ctSl dominates then a t  ̂ dependence will be apparent in (4.8) and h ,(t) will be 

small for almost all the duration of it's growth. The assumed linear growth should 

therefore be correct for much of this time and the effect of the m= 1 island on the 

transport and the equilibrium profiles will only be apparent as h 1 rapidly approaches 

rSl and would take the form of a fast collapse.

Figure 4.6(a) illustrates the position of rSl(t) and h,(t) over a few sawtooth 

periods obtained with TRID, for a DITE plasma with qa= 3 .0 , Zeff= 2, and no m> 1 

modes present. Only a single q= 1 resonant surface is observed. Figure 4.6(b) shows 

shows the corresponding electron temperature on axis . Beginning with the initialisation 

of section 3.5, the sawtooth, after the first few oscillations, settles into a steady 

pattern with period 4.6ms, and amplitude ATe(0)/Te(0)= 9 % .  The ion temperature 

exhibits identical behaviour. If the simulation is repeated with hydrogen the 

steady—state sawtooth period is 2.1ms. As yp goes as the period, and also

ATe , are less for a hydrogen plasma. Near the end of the ramp phase some saturation 

of Te(0) is observed in figure 4.6(b) as thermal conduction starts to become 

comparable to ohmic heating. This suggests that if TRID is to model truly linear 

sawteeth then the axial thermal conductivity should be reduced, or that the triggering 

condition is possibly leading to too large a value for 7 ^ ^  Section 4.6 shows that if 

the zone of instability extends to greater radius then the period and flattening of the 

ramp are less. It can be concluded that for DITE —like discharges the Kadomtsev 

model for collapse, triggered by an unstable m = l magnetic island, seems to provide a 

good description for the sawtooth, reproducing many of the characteristics observed 

experimentally. Discrepancies and other models are discussed in section 4.5.

Equation (4.8) derived by [51] implies that ln(h ,(t)/h ,(0)) goes like t  ̂ for large 

q^ / ĉ q, and like t in the opposite limit. This has been examined in figure 4.7 by 

plotting the log of this quantity against ln(t) for the DITE sawteeth of figure 4.6. At 

the beginning of each ramp—phase, when AT is near linear, the t^ behaviour is 

apparent. However the exponent of this power law for y  steadily decreases throughout 

the ramp, but even just prior to collapse, it's minimum value is about 2.4. The m= 1 

island therefore remains very small during most of the ramp phase, and so should 

continue to grow linearly during this time.

If there were any hollowness in the current density during the ramp phase then
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t /m s

t /m s
Fig ure  4 .6  (a )  P os i t io n  o f  the q =  1 s ing ular  s u r f a c e  ( s o l id  l ine) ,  a n d  s i z e  

m =  1 i s la n d  ( d o t t e d  l ine) ,  f o r  a D I T E  s im ula t ion  w i t h  q a= 2 . 9  (b)  A x ia l  

t e m p e r a tu r e  va r ia t io n  co rre sp o n d in g  to (a) .

l n ( t - t o )

o f  the  

electron

Fig ure  4 . 7  G r a p h  o f  l n ( l n ( h j ( t ) / h ( / t ) ) )  aga ins t  ln ( t )  f o r  the sawtee th  o f  f i g u r e  4.6.  

G r a d ie n t  var ie s  d u r i n g  m =  1 g r o w th ,  a n d  changes  f r o m  be ing  in i t ia l l y  be tween  4 and  

5 ,  when  S T e is  l inear ,  to  about  2 .4  p r i o r  to col lapse .



62

F i g u r e  4 .8  ( a )  I n i t i a l  h e l i c a l  f l u x  \ ^ j ( r )  ( s o l i d  l i n e )  f o r  t w o  q = l  

r e s o n a n t  s u r f a c e s  w i t h  $ i ( O ) ^ i ( r s , ^ ) . D a s h e d  l i n e  i s  t h e  r e c o n n e c t e d  

f l u x  t f ( r )  a f t e r  a  K a d o m t s e v  c o l l a p s e ,  t r i g g e r e d  w h e n  t h e  m=l i s l a n d  

e q u a l s  rS11. ( b )  T h e  s a m e  p r o f i l e s  a s  ( a )  b u t  w i t h  $ }  (0)>\P j ( r s , , )  , 

i n  w h i c h  c a s e  t h e  c o l l a p s e  d o e s  n o t  e x t e n d  t o  t h e  a x i s .

F i g u r e  4 .9  ( a )  T y p i c a l  p r e -  a n d  p o s t - c o l  l a p s e  s a f e t y  / a c t o r  p r o f i l e s  

p r e d i c t e d  b y  t h e  m in im u m  e n e r g y  s t a t e  s a w t o o t h  m o d e l  f o r  a  JET p l a s m a  

w i t h  r m= 0 . 3 a  a n d  q a - 2 . 9 .  ( b )  C o r r e s p o n d i n g  c u r r e n t  p r o f i l e s .

F i g u r e  4 . 1 0  T h e  s t e a d y - s t a t e  m in im u m  e n e r g y  s t a t e  s a w t o o t h  p e r i o d  ( a ) ,  

a n d  p o s i t i o n  o f  t h e  q - l  r e s o n a n t  s u r f a c e  ( b ) , a s  a f u n c t i o n  o f  m i x i n g  

r a d i u s ,  f o r  a  JET d i s c h a r g e  w i t h  q a - 2 . 9 .



63

two q= 1 surfaces would be expected and partial reconnection extending only part —way 

to the axis could occur. Figure 4.8 shows the two possible helical flux profiles for 

such a current distribution, and the corresponding profiles following collapse. Pfeiffer 

[54] has adapted the simple Kadomtsev prescription to allow for such a case but used 

a specified trigger time for collapse. In the TRID simulations a m= 1 island is allowed 

to grow about the outer surface and reconnection is triggered when either:

(i) \KrSl ,)>  i/{0) and h ,=  rSl l  (figure 4.8(a)), or;

(ii) \KrSl t)<  i/{0 ) and — rS l 2  (figure 4 .8 (b)).
An m= 1 island would also be expected to grow about the inner surface rs , 2 but this 

lies in a hotter region for a peaked temperature profile, and as the resistive growth 

i ,  it's growth rate will be less than the island at larger radii, and so is 

neglected. In case (ii) reconnection does not disturb the profiles on axis, so collapse of 

the core temperature is not acheived. The plasma then continues to resistively evolve 

until the next full or partial reconnection. Pfeiffer [54] has succesfully modelled 

double —sawtooth oscillations observed in the Doublet III tokamak. In the simulation of 

figure 4.6 no hollowness is observed, but it is found later that when the m= 2 mode is 

growing, the rapid inward diffusion of current observed can give rise to these sort of 

profiles.

4.5 O th e r  S a w to o th  Mo de l s

Before applying the sawtooth model just described to a large tokamak some 

generalexperimental observations of sawtoothing in high current discharges in JET are 

presented [40] that vary in several respects from those already described in section 4.2.

(i) Part way through the ramp phase a partial collapse is observed that does not

disturb the plasma core. Such compound sawtooth are frequent, and seem to be a

characteristic of large tokamaks. The partial reconnection model of the previous section 

could account for this.

(ii) Generally no precursor oscillations precede collapse. Post—collapse successor

oscillations with probable m= 1 structure are often observed that decay away in «1 0 ms.

(iii) "Monster" sawtooth collapses of the temperature profile, with greatly extended 

period are frequently observed during additionally heated discharges.

These differences, and in particular the lack of a precursor, imply that two

different forms of instability are operating in these two regimes. Wesson [55] 

re-exam ined the possibility of an ideal mode being responsible. The rapidity of onset 

of the instability without precursor could possibility be attributed to inertial growth
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rates. Reconnection would occur after the collapse phase at the beginning of the ramp 

phase giving rise to successor oscillations. However Bussac et al [50] showed ideal

modes in toroidal geometry would be stable for sufficiently small poloidal beta /3p, 

whereas in JET sawtooth activity occurs for 0p much less than this critical value. 

Bussac et al assumed a simple parabolic profile for jz , which still has significant shear 

inside the singular surface, so Wesson [55] recalculated the critical 0p with a piecewise 

definition of jz with very small shear, consistent with actual experimentally derived 

shear. He found that the critical /3p tends to zero as q(0) tends to one; this implies 

ideal instability as soon as q drops below one anywhere within the plasma. However 

with 1 — q< e, the rigid shift trial function for the ideal m= 1 instability is now no 

longer valid in minimising the potential energy. Wesson replaced the rigid shift

displacement with a convective type flow termed a "quasi —interchange" shift. This

appeared to be in agreement with experimental eigenfunctions derived from X —ray 

emission on JET. However evidence against this form of instability is present in that 

[56] calculates the switch —on time for the quasi —interchange to be three orders of 

magnitude slower than required by the experimental evidence. This model may

therefore provide many of the answers to sawtoothing in large tokamaks but is not 

amenable to implementation in our ID code. The shape of the profiles after collapse 

is not determined, and a mixing radius for temperature flattening is not well defined, 

beyond being approximately the radius of the singular surface.

Ward [48] takes a different approach. He assumes that the plasma will become 

ideally unstable whenever q drops below one anywhere, as shown by Wesson, but no 

attempt is made to model the specific form of instability. However in [48] it is 

pointed out that, over the short collapse time of the sawtooth, the total helicity 

H=/A.BdV within the collapse region must be essentially constant as it evolves on 

resistive timescale. Using this constraint of constant helicity, and also using the 

constancy of the vector potential A on the surface of a closed system, Woltjer [57] 

had earlier shown that the minimum magnetic energy state of a closed system 

corresponds to one with a force —free field, i.e.

VxB=/xB (4.9)

with ft constant and Vp= 0. The net result of the sawtooth collapse is assumed in [48] 

to produce such a minimum energy state inside some mixing radius rm, while outside 

the profiles are unchanged. Inside rm the post—collapse profiles are therefore given by 

eq.(4.9) which becomes Bessel's equation in cylindrical geometry. With the constraints 

on H and A at r= rm this can be solved for the post—collapse fields B#f and Bzf,



65

with all arbitrary constants determined. It is found that

B 0f(r> - (4.10)

and the constant n is found from the iterative solution of Hp= Hf;

H. - 4x a R2 2p a R - J (nr ) (nr ) (4.11)U r n  i m J

If a state of maximum entropy is also attained then VT= 0 [48] and so the

post —collapse temperature profiles are also flattened as with the Kadomtsev model. 

The total magnetic energy is decreased much more than with the Kadomtsev 

prescription. The toroidal energy is in fact increased here (minimum toroidal magnetic 

energy corresponds to Bz= constant), but the extra freedom with non —constant Bz 

allows a much greater relaxation of poloidal energy.

It is possible to implement this collapse in TRID, but as the cylindrical 

approximation requires Bz constant, the redistribution of Bz and it's resistive evolution 

is not followed. Figure 4.9 shows typical pre— and post —collapse q and current 

profiles, with evolution of Bg only, for a JET plasma with qa= 2.9, no other islands 

present and rm chosen equal 0.3a. The qf has negative shear out to r= rm and then 

during the ramp phase the plasma heating causes the current to peak, but away from 

the axis, q reaches one and the collapse triggered again. This model is unsatisfactory 

as rm is still arbitrary; detailed knowledge of the instability, as with the Kadomtsev 

model, is necessary to predict rm. The chosen rm determines the minimum qf(r) and 

thus the time for current diffusion to drop q to one, also depends directly on

rm. Ward obtained agreement between experimental rsaw on JET and a theoretical 

prediction from this model. This is now shown to be somewhat fortuitous.

In a JET plasma with qa= 2 .9 , rm is specified, and TRID has been run toward 

equilibrium until steady—state sawteeth with constant are observed. Figure 4.10

plots, as a function of rm/a, the sawtooth period, and the position of the q= 1 

surface. As rm increases the minimum qf becomes greater, the current peaks closer to 

the axis and Tsaw is a strongly increasing function of rm, varying from near zero to 

600ms for rm varying between 0.28a and 0.36a. This heating time of course also 

depends on the thermal conductivity, Zeff, and the total current. However the 

arbitrarines of rm and the fact that toroidal modelling of the redistributed B^r) is
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required makes the minimum energy state collapse unsatisfactory for TRID. The 

Kadomtsev prescription although possessing limitations is the sawtooth model 

implemented on TRID.

4.6 A v e r a s e d  Sawtoo th  E f f e c t

Chapter 5 is concerned with the parametric variation in size of the steady —state 

2/1  island, in which case detailed knowledge of the sawtooth is not necessary, and 

must be averaged so a true steady—state can be found. In fact the question of 

whether the post —collapse Kadomtsev profiles and r53w are predicted correctly need 

no longer concern us. Whatever the instability producing the collapse, the average 

effect of flattening the temperature and preventing q from dropping below one should 

be the same. This is achieved in TRID by enhancing the thermal conductivities Ke>j(r) 

a large amount if a q= 1 surface at r=rSl should arise. This enhancement is over a 

region from r= 0  to r= rm ( > r Sl ) and has the form

K <r) = e K COe 0

K 2l 2'
1 + —- 1 -  L-.

K 2
0 rmJ

r<rm ( 4 . 12 )

As with eq.(3.14) and demonstrated in section 5.4 the particular functional form is 

irrelevant with the choice K ,=  100K0> > K o. Eq.(4.12) serves to keep Te>j(r) flat in 

(0,rm), and also q(0 ) is kept very close to 1 (typically 0.995). This is because as soon 

as q falls below 1 the flattening of Te stops the resistivity increasing and further 

peaking of current is prevented. No further enhancement of 17 is necesary to achieve 

this, unlike Turner and Wesson [9], where only an averaged sawtooth was modelled, 

and both an enhancement of Ke , similar to eq.(4.12), and an additional enhancement 

of resistivity was made. They also assumed a quadratic profile for current was always 

present before collapse, and so assuming the Kadomtsev prescription rm was always 

taken as rm=  y2rs ,. However from both experiment and the following TRID simulation 

the profiles are known to be much flatter, so rm is significantly less than this. The 

curves in figure 4.11 are from a DITE simulation with only sawteeth present, but one 

in which a very slow current ramp is applied, so that at any time the sawteeth are 

almost steady with constant and rm. The period and ratio rm/rSl are plotted as

functions of 1 ^  in (a) and (b), and as functions of rSl/a in (c) and (d). Important 

features to note here are:

(i) For low current and rSl the mixing radius rm= ^-^rs i ’ which agrees with 

quadratic —like profiles being present near the axis. As rSl increases rm/rSl decreases,
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Figure 4.11 (a) The steady state sawtooth period as a function of l/qa 

(current), for DITE p a rameters, with triggering of a Kadomtsev collapse 

by an m=l resistive mode growing to large size, (b) The ratio of the 

mixing radius to rs i , the position of the q=l resonant surface, as a 

function of current, (c) Same as (a) but plotted as a function of rs i .

(d) Same as (b) but as a function of rs 1 .

Figure 4.12 (a) The steady state JET sawtooth period as a function of 

rs 1 , for the Kadomtsev collapse triggered by the m-1 mode, (b) The 

steady state JETT mixing radius, as a function of rs1 .
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so for rSl>  0.55a, rm< l - l r S1.

(ii) The period rsaw peaks for rSl in the range (0.3a,0.4a) and then begins to 

decrease as rSl becomes larger. The linear m= 1 tearing growth rate 7 j  goes as 

qs / 3tR i /3 t A 2/a* an£* larger shear, and the smaller temperature and density of 

resonant surfaces at larger radii account for the decrease in rsaw.

(iii) A change in behaviour is evidenced by the change in the slope of both 

curves near rSl= 0 .5a . Observation of the q profiles shows for rSl less than this that q 

is monotonically increasing with only one q= 1 surface present, while above rSl= 0 .5a  q 

has an o ff-a x is  minimum with q(0 ) > l ,  and reconnection of helical flux profiles as in 

figure 4.8(a) now occurs.

Figure 4.12 plots the same sawteeth quantities as in figure 4.11, but for a JET 

plasma. The steady—state mixing radii of figures 4.11 and 4.12 are used for rm in 

eq.(4.12) when an averaged sawtooth model is implemented. Two simple piecewise 

curves for rm are fitted, as functions of rS l, to figures 4.11(d) and 4.12(b), i.e. for 

DITE

r /r m s i = 1.4
- 1.411 + 0.026rs 1
= 1.240 - 0.235rs 1

1.316r2 s 1
0<r <0.1,s 1
0.1<r <0.48,s 1
0.48<r ,s 1

(4.13)

and for JET

r /r m s i 1.450
1.130

1.424rs 1
0.164rs 1

0<r <0.26 (4.14)si
0.26<rs 1

An interesting numerical instability was observed with the averaged—sawtooth model 

and is discussed in Appendix C. It's effect is to limit At to small values, typically less 

than 1.0ms for DITE if the enhancement is large.

4.7 D is r u p t io n :  A n  In terac t ion  B etw een  S a w tee th  a n d  m ^ 2  Is la n d s

The results of combining both explicit modelling of Kadomtsev sawteeth and m^2 

island evolution are shown for in figure 4.13 for a standard DITE discharge with 

qa= 2.6. Only the 2/1 and 3/2 islands are found to be unstable, and the positions of 

their inner and outer edges (solid lines), the resonant surfaces (dashed lines), and the 

sawtooth mixing radii are shown in figure 4.13(a). A dynamic equilibrium is rapidly 

attained with steady oscillation of both the saturated island sizes, and the changes this
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Figure 4.13 (a) The behaviour of the 

2/1 and 3/2 island regions (solid 

lines) after initialisation of a DITE 

plasma with qa-2.6. Dashed lines are 

resonant s u r f a c e s , and crosses the 

positions of sawteeth mixing radii. 

Dynamic equilibrium is rapidly 

a t t a i n e d .

(b) Island half widths h 21 (solid 

line), and h 32 (dashed line).

(c) Central curve is the growth rate 

of the 2/1 island. The contributions 

from the zero order term A / 2 , and 

first order term ctjh, are also shown.

Figure 4.14 (a) Island regions for the 2/1 and 3/2 modes, and also the 

sawtooth, for a current ramp simulation with qa (t=0)*=3.1 and t(j=230ms. 

(b) Island sizes, (c) Axial electron and ion temperatures. (d) Growth 

rate of the 2/1 island (solid line) from t S O m s  until termination of 

the simulation when rm intersects the 2/1 island.
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makes to the current profile also induce oscillation in rm. The h 21 oscillation leads 

h 32, which in turn leads rm. As the 2/1 island grows this steepens the current 

gradient inside the q= 2 surface, especially at the q = 1 .5  resonant surface of the 3/2 

mode, and the 3/2 mode is destabilised, while it is the additional profile —flattening 

from the 3/2 island that stabilises the 2/1 island and causes the oscillation. With no 

3/2 mode present and qa= 2 .6 , h 21 is observed to grow without bound from

initialisation, and the subsequently described disruption occurs. At lower current, with 

only a 2/1 mode permitted, no disruption takes place, a damped oscillation of h 21 

always occurs and a steady—state is eventually reached as in figure 3.5. With both 

modes present there is a critical safety factor qa «2.85, above which similar damped 

oscillation of the islands is seen, and below which the interaction between the modes 

is strong enough to give the oscillations of figure 4.13(a). The average value and 

amplitude depend strongly on the transport coefficients Ke and rj.

In the simulation in figure 4.14 a linear current ramp (eq.(3.18)) is applied with 

qa(t= 0 )= 3 .1  and a doubling time t  ̂ for the current of 230ms. Initially the lower 

current means the islands are more deeply embedded within the plasma, so there is 

more current outside the resonant surfaces and the 3/2 mode is completely stabilised, 

while the 2/1 mode does begin a relaxation oscillation, as in figure 4.13, but of 

smaller amplitude. The resonant surfaces move out toward the limiter with increasing 

current and h 21 gradually grows larger. As current tries to diffuse into the centre, the 

restriction of axial current due to the steady sawteeth present there means the mixing 

region moves outwards, and an increasing proportion of plasma is involved in the 

sawteeth. At t= 55ms the 2/1 mode drives the 3/2 mode unstable for the first time, 

and the subsequent flattening of current causes h 21 to then decay significantly. 

However at t= 59ms, corresponding to the second to last sawtooth, there is a sudden 

increase in h 21 growth (which eventually also drives h 32  unstable). This occurs 

because rm at this time is close to the outer islands. Directly after collapse the 2/1 

mode therefore experiences a large inside q = 2 , and as the mode is now also close 

to the wall, there is little stabilising effect from the outer region current.

The growth rate for the 2/1 island (middle curve) is plotted in figure 4.14(d), 

along with the contributions to it proportional to A/2  and ojh. After t= 62.5ms these 

are not included on the scale of figure 4.14(d). At this time the island intersects the 

limiter and it rapidly cools to the edge temperature, so rjs , a factor in the growth 

rate, increases sharply. After intersection with the limiter the growth rate actually 

decreases, while still remaining positive. The noise in dh/dt at 59ms is associated with 

h 21 going to zero, and arises because of the suddenness of the change in j' and j"
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when the profile flattening is removed. Increasing the number of grid points gives a 

smoother response for dh/dt when h is small.

The net result of m^2 island growth to large size is a restriction on the amount 

of current able to flow in the outer region, and this, along with the sawtooth 

restricting the axial current means the next sawtooth collapse has a mixing radius that 

intersects the inner edge of the 2/1 and 3/2 islands. This interaction between the hot 

interior and the cool exterior regions gives a large drop in Te(0) from 350eV to 

255eV. Prior to this final collapse the preceding few sawteeth have increased 

significantly in size as the mixing radius has moved outwards towards the cooler island 

regions. The collapse at t= 59ms when h 21 is also large, gives a 21% change in T e(0) 

and could be interpreted as a minor disruption. The magnetic signals associated with 

the perturbed fields B#, and Br i , with mode number m, are [58]:

B<h 1 0 ^ B*s h* q; Br 1

B e \p 0 r a s a B 6a
4 qs ’ B e

, ,  v B h2 q ’mi/'Ca) 6 s  s
aip B Q 4  6 a

(4 .1 4 )

i.e. they are proportional to h^. Therefore this simulation reproduces both the 

temperature collapse and the growth of the B ^ 1 precursor in figure 1.1  prior to 

disruption. It is also unlikely that the plasma would easily recover after such a violent 

sawtooth that essentially provides a thermal short —ciruit across the whole plasma. For 

these reasons this interaction between the 2/1 island and the sawtooth has been taken 

to be equivalent to a disruption, and at this point the simulation is then terminated.

4.8 I n f lu e n c e s  on D is r u p t iv e  B ehaviour

Figure 4.15(a) and (b) show the island behaviour, and T(0) for an identical 

simulation to figure 4.14, but with the averaged sawtooth model of section 4.6. The 

agreement between the two is very good. Hopcraft and Turner [59] also simulated a 

current —limited disruption but differing from figure 4.14 in some respects. Prior to 

disruption in [59] three large oscillations in h 21 are observed, in which the island 

grows to large size before decaying to zero. h 32 is destabilised each time and rm also 

responds in an oscillatory manner. These were interpreted as "minor” disruptions. The 

islands in the TRID simulation exhibit much more stable behaviour, until just prior to 

disruption. The difference in island behaviour can be explained by the additional 

stability provided by the ojh term in eq.(2.67), while the deficiences in the sawtooth 

averaging of [59] also contribute to the extra instability.
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In [59] the 3/2 island is more unstable, attaining a much larger size. It's inner 

edge at disruption is inside the 2/1 island, and it hastens the creation of a thermal

short-circuit. In figure 4.14, h 32 is always much less than in [59] and, near 

disruption, the inner edges of both the islands are coincident. The actual role of the 

3/2 mode in disruption is shown in the TRID simulation of figure 4.15(c). The

current —limited disruption of figure 4.14 is repeated, but without the stabilising

influence of the 3/2 mode. Little oscillation in h 21 is seen and disruption occurs as

early as t=54m s. The 3/2 mode does have a role in delaying disruption, but it is

strong instability of the 2/1 island, and subsequent interaction with the sawtooth that

explains the initiation of disruption.

Hopcraft and Turner [59] used a faster current ramp while simulating disruption, 

so now a comparable doubling time for the current, t^= 1 0 0 ms, is used to obtain

figure 4.15(d) with all other parameters unchanged from section 4.7. The faster ramp 

enables 2.37 to be reached before disruption, to be compared with qa= 2 .44  at the 

time of disruption with the slower ramp. The islands exhibit no oscillatory behaviour, 

and rapid growth of h 21 is initiated not by sawtooth current—steepening, but by actual 

contact of the island with the limiter.

Turner and Wesson [9] also neglected the first order term in the nonlinear growth 

equation (3.26). Figure 4.15(e) and (f) show the effect of such a neglect in TRID in 

an identical simulation to the oscillating islands of figure 4.13. After initialisation less 

than 4ms elapse in (e) before the islands, which grow continuously, overlap and 

interact with the sawtooth. The role of oj is further investigated in section 5.2.

Figure 4.15(f) plots the same island structure as (e), but on an expanded scale 

just prior to collapse, and illustrates how several partial sawtooth collapses of section

4.4 occur before a full collapse extending to the axis provides the thermal quench. At 

t= 2.9ms the peaking of current, caused by diffusion of current from the outer region

(where the m= 2  island has restricted the current), causes a second q = l surface to

arise at position rS l 2  in figure 4.15(f). It is not until t= 3.3ms that the helical flux 

has evolved sufficiently so reconnection to the axis can occur.

Finally for this section figure 4.16 demonstrates the plasma behaviour when a 

large number of modes are included. Once again the simulation of figure 4.14 is

repeated, but only for 50ms before being restarted with many extra modes switched

on. In order of decreasing radius from r= a  they are: m /n = 2 /l, 5/3, 3/2, 4/3, 5/4,
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Figure A. 15 All simulations here are identical to the current ramp 

simulation of figure 4.14 but investigations of different models and 

conditions are made, (a) and (b) show the island regions and the axial 

temperatures respectively, when the average sawtooth model of section 

4 .6 is used, (c) The 3/2 mode is excluded but otherwise this is an 

identical simulation to figure 4.14. (d) The doubling time of the 

current is reduced to 100ms. (e) The first order term in e q .(3.26) is 

excluded. The islands grow without bound and intersect the sawtooth 

after only 3.3ms. (f) Expanded timescale for (e) prior to disruption. 

Two resonant surfaces rsi1 and rsi2 arise, and several partial 

reconnections occur before collapse to the axis is achieved.
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0-0 5-0 10-0 15.0
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Figure 4.16 The simulation of figure 4.24 is restarted from t=50ms with 

a large number of extra modes whose resonant surfaces in order of 

decreasing radius in (a) are: m/n=2/l, 5/3, 3/2, 4/3, 5/4, 6/5, 7/6. 

Also included in (a) is the dynamical behaviour of the island regions, 

the sawtooth mixing radii (crosses) , the q-=l surface, and the size of 

the m=l island, (b) plots the actual island widths.
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6/5, 7/6. Figure 4.16(b) plots several of the island widths. Tests including modes 

outside the range l<m/n<2 show they are not strongly excited. The steepening of the 

current gradient inside q= 2 at t= 6 .8 ms and t= 11.7ms now not only excites the 3/2 

mode, but initiates an sequence of unstable high m and n modes. The main 

constituents in the cascade are the Fourier components with m = n + l ,  whose respective 

resonant surface are located successively deeper within the plasma. The higher the 

mode number, the later the onset of instability, although the delay between high— m 

modes tends to zero for large m. The sawtooth at 7.5ms does not intersect the 

islands which then decay due to flattening of the current, but the next sequence of

island growth at higher current does produce a total overlap of modes, and disruption.

This behaviour can be characterised as an inwardly accelerating "shock —front" and 

was first reported by Bondeson [23] using a 3D code that solved the reduced equations 

in cylindrical geometry with finite differences in the radial direction and Fourier

expansion in the 6 and z directions (although this TRID simulation was made

concurrent with, but independent of [23]). The surprising feature here is that TRID 

should reproduce exactly the same dynamic behaviour, and this underlines the dominant 

effect of the zero —order current on tearing mode stability, and shows how the TRID 

quasilinear model with transport enhancement can be trusted to represent dynamic 

island behaviour. However the critical requirement to initiate disruption is the growth 

of the 2/1 island, and so in the parametric analyses of Chapter 5, which seek to 

discover the causes of disruption, it is necessary to examine only the saturated 2/1 

island size to find disruption limits. All following time—dependent disruption 

simulations, for reasons of clarity and computational economy, will show just the 2/1 

and 3/2 (and sometimes 3/1) modes, but it must be remembered that associated with 

each disruption there is the cascade to short wavelength modes and the inwardly 

propagating shock observed here.
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CHAPTER FIVE 

PARAMETRIC STUDIES

5.1 In tro d u c t io n

The previous chapter showed the 2/1 island size is critical in determining the 

stability of the plasma to disruption. The saturated island size will vary as plasma 

quantities such as current, thermal conductivity, and additional heating, to name just a 

few, are varied. This chapter is therfore concerned with the parametric variation in 

island size, and in particular, in determining what changes in plasma conditions are 

instrumental in initiating or preventing disruption.

To this end it is apparently just necessary to run TRID for a long time to 

determine plasma quantities for each point of a parametric variation. However it has 

been shown in figure 4.14(a) for example, that steady—state equilibria are not always 

attained, and in fact the 2/1 island and plasma as a whole often undergo a relaxation 

oscillation. The approach here therefore has been to adapt TRID so that the plasma 

evolves toward an equilibrium containing island —flattened profiles, but with h 21 a 

specified quantity. A succession of these equilibria are then found for h 2, increasing 

from 0 to 0.16a. Only that case for which dh/dt= 0 corresponds to a true saturated 

equilibrium. This process must be repeated over the whole range of parametric 

variation, but is not too consuming as the perturbed flux now does not have to be 

evaluated at every timestep, and as only the final equilibrium is of interest then 

relatively large timesteps can be used (possible with an implicit code).

This equilibrium code is henceforth referred to as "SAT". The sawtooth in SAT 

is represented by it's averaged effect, and the other modes (3/2, 3/1 etc) can not be 

included. This is not a real disadvantage as for reasons already discussed, it is 

sufficient to study only the 2/1 mode when examining disruption criteria. If there exists 

no equilibrium with a saturated island (dh/dt> 0  for all h) then this is taken to 

represent a disruptive plasma and h 21 is set equal to 0 .2 , the outer edge of the island 

intersects the limiter, and rm and the inner island edge are set equal.

In section 5.2 the current —limit is reviewed, section 5.3 examines the influences 

of a shaped thermal conductivity, and section 5.4 investigates how the position of a 

conducting wall can be critical in providing stability. In section 5.5 both the
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time —dependent behaviour of additionally heated profiles, and the response to 

parametric variation of the additional heating is studied. The last section examines the 

possibility that high —n ballooning mode instability could be present, especially with the 

high pressure gradients prior to disruption.

5.2 H i s h —C u rren t  E q u i l ib r ia

From calculations with the TRINIO code Wesson et al. [4] deduced a catastrophe 

model to explain the current —limited disruption. This was done taking only the 

zero —order term in the Rutherford island growth equation, so that saturation 

corresponds to A(h)= 0. This section examines the effect of the first-order term in 

eq.(3.26) on this model. It will be shown that the catastrophe model still holds, 

although a significantly more optimistic current —limit results, so the following results 

provide both a summary and an extension to the catastrophe model.

Figure 5.1(a) plots the growth rate dh/dt, from a SAT calculation of a DITE 

plasma, as a function of saturated island width h 21 for several values of qa. The 

intercept of each curve with the dh/dt= 0 axis provides the saturated island width. As

q̂  decreases this increases, and by qa=  2.70 the growth rate curve develops a turning

point with a second, unstable solution for the saturated island size. At some critical 

current between qa= 2 .7 0  and qa= 2 .68  the minimum of this curve will just touch the

axis, and if the current is raised infinitesimally above this then equilibrium with a

saturated island no longer exists. The island would grow spontaneously without limit, 

for an apparently infinitesimal change in plasma quantities, and disruption would result.

Comparison between the inclusion and exclusion of aj is made in figure 5.1(c), 

which plots the saturated island size as a function of l /q a, and in figure 5.1(d) which 

shows the radial extent of rm and the 2/1 island. The dashed lines correspond to the 

aj= 0 case. A significant result of this comparison is the saturated width for low 

current, which for aj? 0̂ is almost constant at 0.06a whereas for oj= 0 it is 65% to 

75% greater. This contradicts [18], where the first-order term was shown to be of 

negative sign, and inclusion of aj predicted larger saturated widths. This can be 

attributed to the dominance of the ja and ja' terms in eq.(2 .6 8 ), as the zero —order 

current was not flattened by the island in ref. [18]. In TRID, once an island grows 

then the gradient terms in eq.(2 .6 8 ) can be neglected and aj is equal to
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F igure  5 .1  (a )  C a lc u la te d  g ra p h s  o f  2 / 1  g ro w th  ra te  a t e q u i l ib r iu m ,  versus s p e c i f i e d  i s la n d  s i z e ,  f o r  several  

values o f  q a . In te rc e p t  o f  the  curves w i th  the d h f  d l = 0  a x is  g iv e  the true  sa tu r a te d  i s la n d  w id th ,  (b )  D o t te d  

l ines a re  A(h) a n d  2 a jh  as f u n c t io n s  o f  h, f o r  q a= 3 . 2 .  S u b tra c t io n  o f  these te rm s  g iv e s  the so l id  l in e  w ith  

co rresp o n d in g  hsa t= 0 . 0 5 2 a .  T h e  o th er  s o l id  curve  is  A(h) w i th  o t j  a n d  s n eg lec ted ,  (c )  S a tu r a te d  is la n d  s i z e  

h 2} as a f u n c t io n  o f  H q a . C o m p a r iso n  is  m a d e  be tw een  neglect ( a j h = 0 )  a n d  in c lu s ion  o f  the f i r s t  o rder  

te rm , (d )  T h e  c o rre sp o n d in g  2 / I i s la n d  a n d  sa w to o th  reg ion s  f o r  (c ) .



79

a . 
J

2
m s  
—  -  -
r  r  

s  s

( 5 . 1 )

a n d  s o  is  n e c e s s a r i ly  p o s it iv e  a n d  s t a b i l iz in g .  T h e  r e a s o n  f o r  s u c h  a  la r g e  r e d u c t io n  in  

h 21 w h e n  a j h  is  in c lu d e d  b e c o m e s  a p p a r e n t  w h e n  t h e  t w o  te r m s  in  t h e  e x p r e s s io n  

( 2 .6 8 )  f o r  n o n l in e a r  is la n d  g r o w th  a r e  p lo t t e d ,  a s  in  f ig u r e  5 . 1 ( b ) ,  a s  f u n c t io n s  o f  h .  

T h e  d o t t e d  l in e s  s h o w  t h e  r e la t iv e  s iz e s  o f  A a n d  2 a  jh , a n d  t h e ir  s u b tr a c t io n  g iv e s  th e  

s o l id  c u r v e  th a t  im p l ie s  1 1 ^ =  0 .0 5 2 a .  A t  t h is  p o in t  o f  s a tu r a t io n  rs =  0 .7 1 a ,  A ( h ) =  2 .0 ,  

s =  — 7 . 6 ,  a n d  a j = 1 8 . 5 ;  ty p ic a l  v a lu e s  fo r  t h e s e  q u a n t it ie s .  O n e  c a n  v e r ify  th a t  a j  is  

g iv e n  b y  e q . ( 5 . 1 ) .  T h e  o t h e r  so lid  c u r v e  in  f ig u r e  5 .1 ( d )  is  A (h )  c a lc u la t e d  n e g le c t in g  

a j  a n d  s ,  a n d  is  s h if t e d  t o  th e  r ig h t ,  r e la t iv e  to  t h e  d o t t e d  z ^ h )  c u r v e .  T h is  is  b e c a u s e  

w ith  stK) t h e  is la n d  is  t h e n  a s y m m e tr ic  a b o u t  rs  V ^ ( r 2)  is  l i t t le  c h a n g e d  b u t  | i / ' | ( r 1) |  

is  le s s  a n d  s o  A (h )  is  r e d u c e d ,  a n d  e n h a n c e m e n t  o f  t h e  is la n d  s ta b i l i t y ,  in  a d d it io n  to  

th a t  f r o m  t h e  f ir s t  o r d e r  t e r m , is  o b t a in e d .  T h e  c u r r e n t — lim it  in  f ig u r e  5 . 1 ( c ) ,  

p r e d ic te d  to  z e r o  o r d e r  is  3 .0 ,  w h i le  t o  f ir s t  o r d e r  th is  is  r e d u c e d  to  q a « 2 .7 0 .  T h e  

e f f e c t  o n  th is  l im it  o f  a lt e r in g  t h e  p o s i t io n  o f  t h e  c o n d u c t in g  w a ll  is  e x a m in e d  in  th e  

n e x t  s e c t io n .

5 .3  Conducting Wall

In  s e c t io n  2 .5  it  w a s  d e m o n s tr a te d  h o w  t h e  p r e s e n c e  o f  a  p e r f e c t ly  c o n d u c t in g  

w a ll s t r o n g ly  s t a b i l iz e s  t h e  l in e a r  g r o w th  o f  t h e  r e s is t iv e  t e a r in g  m o d e .  T h e  s a tu r a te d  

s iz e  o f  m a g n e t ic  is la n d s  w o u ld  t h e r e fo r e  b e  e x p e c t e d  to  b e  d im in is h e d  a s  t h e  r e la t iv e  

p o s i t io n  b /a  o f  t h e  w a ll  a p p r o a c h e d  1 .  F ig u r e  5 .2 ( a )  p lo ts  h 21 a g a in s t  l / q a f o r  t h r e e  

v a lu e s  o f  b /a .  F o r  l / q a u p  t o  « 0 .3 3 ,  h 21 is  t h e  s a m e  ( 0 .0 5 a )  in  a ll  t h r e e  c a s e s .  T h e  

is la n d  a t  t h e s e  lo w  c u r r e n ts  is  d e e p ly  e m b e d d e d  in  t h e  p la s m a  a w a y  fr o m  t h e  w a ll a n d  

s o  t h e  p o t e n t ia l  e n e r g y  a v a ila b le  fo r  d r iv in g  t h e  m o d e  c o m p le t e l y  d o m in a t e s  t h e  w a ll  

s t a b i l iz a t io n .  W ith  n o  c o n d u c t in g  w a ll ( b / a = « )  t h e  w id th  r a p id ly  g r o w s  a s  c u r r e n t  

in c r e a s e s  a n d  th e  c u r r e n t — lim it  o f  t h e  p r e v io u s  s e c t io n  is  r e p r o d u c e d .  F o r  th e  o t h e r  

e x t r e m e  o f  b /a =  1 t h e  is la n d  is  m a d e  c o n t in o u s ly  m o r e  s t a b le  a s  c u r r e n t  in c r e a s e s  s o  

b y  l / q a = 0 - 4 3  2 /1  in s t a b i l i ty  is  p r e s e n t ,  a n d  t h e  T R I D  m o d e l  w o u ld  p r e d ic t  n o

d is r u p t io n .  F o r  t h e  in t e r m e d ia t e  c a s e  o f  b / a = 1 . 2  t h e  is la n d  a t  f ir s t  b e c o m e s  m o r e  

u n s t a b le  a s  q a  d e c r e a s e s  b e lo w  3 ,  b u t  t h e  w a ll  s t a b i l iz a t io n  b e c o m e s  r e la t iv e ly  m o r e  

im p o r t a n t  a t  h ig h e r  c u r r e n t  a s  th e  is la n d  a p p r o a c h e s  t h e  w a l l ,  a n d  t h e  is la n d  is  

s t a b i l iz e d .

M o s t  p r e s e n t - d a y  to k a m a k s  o p e r a t e  w ith  a p o o r ly  c o n d u c t in g  w a l l ,  e q u iv a le n t  to
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1/q.

F i g u r e  5 . 2  ( a )  S a t u r a t e d  i s l a n d  w i d t h  / i21 a s  a  f u n c t i o n  o f  l / q a , f o r  

t h r e e  p o s i t i o n s  o f  t h e  c o n d u c t i n g  w a l l .

( b )  T h e  c u r r e n t  r a m p  s i m u l a t i o n  o f  f i g u r e  4 . 1 4  i s  r e p e a t e d ,  w i t h  a  

p o o r l y  c o n d u c t i n g  w a l l  a t  b ~ 1 . 0 5 a ,  b u t  w i t h  w a l l  s t a b i l i z a t i o n  w h i l e  

r s < 0 . 9 5 a .  ( c )  T h e  i s l a n d  w i d t h s  f o r  ( b ) .
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b =  oo, b u t  t h e  q  — lim it  p r e d ic te d  h e r e ,  a lth o u g h  r e d u c e d  f r o m  3 . 0  to  2 .7  b y  th e  

in c lu s io n  o f  a j ,  c a n  s t il l  n o t  b e  r e c o n c i le d  w ith  e x p e r im e n t a l ly  o b s e r v e d  c u r r e n t  — lim it s .  

J E T  f o r  e x a m p le  [ 4 2 ]  r e p o r t s  a  q — lim it  o f  2.0t0A o v e r  a  w id e  r a n g e  o f  o p e r a t in g  

c o n d i t io n s ,  a l t h o u g h  it  o p e r a t e s  w ith  a c l o s e l y — f it t in g , b u t  o n ly  p a r t ly  c o n d u c t in g  w a ll  

t h a t  w o u ld  b e  e x p e c t e d  to  p r o v id e  o n ly  m in im a l w a ll  s t a b i l iz a t io n .  T h is  p r o b le m  

a p p e a r s  t o  h a v e  b e e n  s o lv e d  in  s o m e  r e c e n t  w o r k  b y  P e r s s o n  a n d  B o n d e s o n  [ 6 0 ] ,  in  

w h ic h  t h e  e f f e c t s  o f  a n  e q u ilib r iu m  p o lo id a l  p la sm a  r o t a t io n  a r e  c o n s id e r e d .  A t  th e  

r e s o n a n t  s u r f a c e  t h e  p e r tu r b e d  f ie ld  m u s t  r o t a t e  w ith  t h e  p la s m a ,  a n d  i f  t h e  f r e q u e n c y  

o f  r o t a t io n  is  m u c h  g r e a te r  th a n  t h e  in v e r s e  r e s is t iv e  t im e  — c o n s t a n t  o f  th e  w a ll th e n  

t h e  p e r tu r b e d  f ie ld  w ill  n o t  b e  a b le  to  d i f f u s e  th r o u g h  t h e  w a l l ,  w h ic h  w ill  t h e n  a p p e a r  

c o n d u c t in g .  A s  t h e  c u r r e n t  is  in c r e a s e d  t h e  sa tu r a te d  w id th  w o u ld  t h e n  f o l lo w  t h e  

b / a =  1 c u r v e  o f  f ig u r e  5 .2 ( a ) .

T h e  2  — D  n u m e r ic a l  s im u la t io n  o f  [6 0 ]  th a t  s o lv e s  t h e  r e d u c e d  e q u a t io n s  w ith  

e q u il ib r iu m  r o t a t io n ,  b u t  n o  r e s is t iv i ty  e v o lu t io n ,  s h o w s  w h a t  h a p p e n s  a s  t h e  r e s o n a n t  

s u r f a c e  r e a c h e s  t h e  p o o r ly  c o n d u c t in g  w a l l .  T h e  m o d e  in  th is  r e s is t iv e  r e g io n  is  a b le  to  

d e c o u p le  f r o m  t h e  t h e  r o t a t io n ;  i t ' s  r o t a t io n  s lo w s  a n d  t h e  f lu x  b e g in s  to  d i f f u s e  

t h r o u g h  th e  w a l l .  A s  t h e  m o d e  r o t a t io n  d e c r e a s e s ,  w a ll s t a b i l iz a t io n  b e c o m e s  le s s ,  

t h e  f lu x  a t  t h e  w a ll  in c r e a s e s ,  a n d  t h e  m o d e  b e c o m e s  e v e r  m o r e  u n s t a b le ,  E v e n t u a l ly  

t h e  s im u la t io n  s h o w e d  lo c k in g  o f  t h e  m o d e  to  t h e  w a l l ,  a l lo w in g  it  to  a p p e a r  

n o n - c o n d u c t i n g  a n d  p r e c ip it a t in g  r a p id  2 /1  g r o w th . It w a s  s u g g e s te d  th a t  i f  th e  

o u t e r m o s t  r e g io n  o f  t h e  p la sm a  w a s  h ig h ly  r e s is t iv e ,  t h e n  m o d e  — lo c k in g  a n d  g r o w th  

w o u ld  o c c u r  w h e n  t h e  q =  2  s u r fa c e  e n t e r e d  th is  r e g io n ,  g iv in g  r is e  to  t h e  o b s e r v e d  

q — lim it  ju s t  a b o v e  2 ,  b u t  th is  h a s  y e t  t o  b e  d e m o n s t r a t e d .

A  s im p le  m o d e l l in g  o f  th is  s c e n a r io  is  p o s s ib le  in  o n e  d im e n s io n  w ith  T R I D  i f  it  

is  a s s u m e d  t h e r e  is  a  h ig h ly  r e s is t iv e  r e g io n  b e t w e e n  rr a n d  a ,  a n d  a ls o  th a t  a  p o o r ly  

c o n d u c t in g  w a ll  is  n o w  lo c a te d  a t  r =  b , b u t  w h i le  r s l ie s  in s id e  t h e  r e s is t iv e  r e g io n  it 

a p p e a r s  c o n d u c t in g .  W h e n  r 21 e n t e r s  t h is  r e g io n  t h e  m o d e  is  a s s u m e d  to  r a p id ly  lo c k ,  

a n d  s t a b i l iz a t io n  d is a p p e a r s  s o  b  in c r e a s e s  to  in f in it y .  T h is  c a n  b e  m o d e l le d ,  r e d e f in in g  

b  a n d  t h e  e d g e  r e s is t iv i ty  b y

b = bexp
r  - r  2 1 r

r  > r  2 1 r

v = w exp sp a
r - r

1- r
r  > r

( 5 . 2 )

( 5 . 3 )

F ig u r e  5 .2 ( b )  r e p e a t s  t h e  c u r r e n t  r a m p  s im u la t io n  o f  f ig u r e  4 .1 4  b u t w ith  b =  1 .0 5 a ,
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rr=  0 .9 5 a  a n d  a^=l ( s o  rj{a.)= I0̂ rjsp ) .  T h e  2 /1  is la n d  n o w  b e c o m e s  p r o g r e s s iv e ly

s m a l le r  a s  c u r r e n t  in c r e a s e s  u n t il  rs  e x c e e d s  rr w h e n  s t a b i l i t y  is  lo s t  a n d  it  g r o w s  

e x p lo s i v e ly .  T h is  c a n  b e  s e e n  m o r e  c le a r ly  in  f ig u r e  5 .2 ( c )  w h ic h  p lo t s  s e v e r a l  is la n d  

w id th s  o n  a n  e x p a n d e d  t im e s c a le  n e a r  t h e  p o in t  o f  d e s t a b i l iz a t io n .  O t h e r  m o d e s  a r e  

a ls o  d r iv e n  u n s t a b le ,  a n d  t h e  o u t e r  r e g io n  c u r r e n t  d i f f u s e s  in w a r d s , s o  t h a t  th e

s a w t o o t h  m ix in g  r a d iu s  in te r s e c t s  t h e  c o ld  r e g io n  a f te r  s e v e r a l  p a r t ia l r e c o n n e c t io n s .  

T h e  c u r r e n t  a t  d is r u p t io n  is  e q u iv a le n t  to  q a = 2 . 2 0 ,  b u t  t h is  d e p e n d s  o n  t h e  a r b itr a r y  

c h o i c e  o f  r ^  0 .9 5 a  m a d e  h e r e .

It a p p e a r s  f r o m  th is  s h o r t  r e v ie w  o f  [6 0 ]  th a t  t h e  h ig h  — c u r r e n t  l im it  d is r u p t io n s  

o f  c h a p te r  4  m u s t  b e  d o u b te d .  H o w e v e r ,  a s  i l lu s tr a te d  in  f ig u r e  5 . 2 ( a ) ,  t h e  sa tu r a te d  

is la n d  s iz e  is  in d e p e n d e n t  o f  a n y  c o n d u c t in g  w a ll f o r  qa  d o w n  to  3 . 0 ,  a n d  s o

p a r a m e t r ic  d e p e n d e n c ie s  d e m o n s t r a t e d  s u b s e q u e n t ly  a r e  v a lid  fo r  q a g r e a te r  th a n  th is .  

S im ila r ly ,  s im u la t io n  o f  d e n s i t y  — lim it ,  h ig h  — q d is r u p t io n s  in  C h a p te r  6  c a n  b e

e x p e c t e d  t o  g iv e  a  v a lid  d e s c r ip t io n  o f  to k a m a k  b e h a v io u r .

5 .4  Thermal Conductivity

I t  is  n e c e s s a r y  t o  b e  s u r e  t h e  p a r t ic u la r  fo r m  c h o s e n  fo r  t h e  e n h a n c e m e n t  o f  

t r a n s p o r t  a c r o s s  a n  is la n d , ie  e q . ( 3 .1 4 ) :

Ke (r) - Keo(r)[l + ((r-r^/h)2]01, (5.4)

d o e s  n o t  in f l u e n c e  is la n d  s t a b i l i t y  a n d  s iz e .  U s in g  S A T ,  f ig u r e  5 .3 ( a )  p lo t s  th e  

s a tu r a te d  2 /1  is la n d  w id th  v e r s u s  t h e  r e la t iv e  tr a n s p o r t  c o e f f i c i e n t  K ^ K q f o r  a D I T E  

p la s m a ,  w it h  qa = 3 . 3 ,  f la t  b a c k g r o u n d  e le c tr o n  t h e r m a l  c o n d u c t iv i ty  ( K e o ( r ) = K 0) ,  a n d  

a ,  c h o s e n  e q u a l  t o  2 .  W ith  K , =  0  a n d  th u s  n o  t r a n s p o r t —c o n s is t e n t  m o d if ic a t io n  o f  

t h e  z e r o  — o r d e r  c u r r e n t  p r o f i le  t h e n  q u a s il in e a r  s a tu r a t io n  a lo n e  w o u ld  p r e d ic t  a  la r g e  

2 /1  is la n d  o f  s i z e  0 .1 4 a ,  b u t  a s  K j  b e c o m e s  la r g e r  th is  r a p id ly  d e c r e a s e s  to  th e  

c o n s t a n t  v a lu e  o f  0 .0 5 5 a .

F ig u r e  5 .3 ( b )  p lo t s  th e  s a tu r a te d  w id th  v e r s u s  t h e  s h a p in g  f a c t o r  a 1 fo r  t h r e e  

v a lu e s  o f  K ,. A s  a , in c r e a s e s  t h e  s h a p e  o f  t h e  e n h a n c e m e n t  b e c o m e s  in c r e a s in g ly  

s p ik e  — lik e  a n d  t h is  e x p la in s  t h e  in c r e a s e  in  s a tu r a te d  w id th  h 21 f o r  la r g e  a r  T h e  

c u r r e n t  g r a d ie n t  is  n o w  n o  lo n g e r  r e d u c e d  s o  m u c h ,  e s p e c ia l ly  n e a r  t h e  is la n d  e d g e s ,  

r e s u lt in g  in  s l ig h t ly  la r g e r  is la n d s . H o w e v e r  fo r  la r g e  K 1 a n d  s m a ll  a ,  c o r r e s p o n d in g  to  

s t r o n g ly  f la t t e n e d  p r o f i le s  t h e n  h 21 is  in d e p e n d e n t  o f  K ,  a n d  a 1 . S u c h  s t r o n g
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F i e u r e  5 . 3  ( a )  S a t u r a t e d  i s l a n d  w i d t h  h 21 a s  a  f u n c t i o n  o f  i s l a n d  

t h e r m a l  c o n d u c t i v i t y  e n h a n c e m e n t  f o r  a  D ITE p l a s m a  w i t h  q a - 3  .3  . 

( b )  h 21 a s  a  f u n c t i o n  o f  a 1f t h e  s h a p e  f a c t o r  o f  t h e  e n h a n c e m e n t  , 

f o r  t h r e e  v a l u e s  o f  K , .

r /o

F i g u r e  5 . A ( a )  T h e  b a c k g r o u n d  e l e c t r o n  

t h e r m a l  c o n d u c t i v i t y  p r o f i l e  g i v e n  b y  

e q . ( 5 . 5 ) ,  f o r  i n c r e a s i n g  a .  ( b )  T h e  

2 / 1  i s l a n d  a n d  s a w t o o t h  r e g i o n s ,  a s  

f u n c t i o n s  o f  t h e  t h e r m a l  c o n d u c t i v i t y  

j(c) s h a p e  a .  ( c )  T h e  s a t u r a t e d  i s l a n d  

w i d t h  c o r r e s p o n d i n g  t o  ( b ) .

o.oo1
0 .0  1 .0  2 .0  3 .0  4 .0  5 .0

a
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m o d if ic a t io n  w o u ld  in d e e d  b e  im p l ie d  b y  K ,,« 1 0 ^ 2 K j _, s o  a l l  p r e v io u s  a n d  fu tu r e  

n u m e r ic a l  e x p e r im e n t s  u se  K ^ l O O K g  a n d  a ^ l .

T h e  e f f e c t  o f  a  n o n —c o n s t a n t  a n o m a lo u s  e le c t r o n  t h e r m a l c o n d u c t iv i t y  is  n o w  

in v e s t ig a t e d  w it h  S A T .  T h e  g e n e r a l  f o r m

K ( r )  -  CT ~v ( 5 . 5 )
e o  e

w h e r e  C  a n d  v a r e  v a r ia b le ,  is  in tr o d u c e d  b y  R o b e r t s  [ 6 1 ] .  ^ = 0  c o r r e s p o n d s  to  t h e  

A lc a t o r  s c a l in g  u s e d  u n t il n o w ,  w h i le  v b e t w e e n  0 .5  a n d  1 .0  g iv e s  a  b e t te r  f i t  t o  o th e r  

d e v ic e s  [ 6 2 ,6 3 ] .  K e  is  g e n e r a l ly  a n  in c r e a s in g  f u n c t io n  o f  r a d iu s . H o w e v e r  e q . ( 5 . 5 )  is  a 

f u n c t io n  o f  t w o  f r e e  p a r a m e t e r s ,  C  a n d  r ,  w h ic h  w o u ld  p r o v id e  a n  u n d u ly  c o m p lic a te d  

d e p e n d e n c y  o f  h 21 o n  K ^ r ) .  T h e  a p p r o a c h  h e r e  t h e r e f o r e  h a s  b e e n  t o  p a r a m e tr is e  

K g ^ r )  a ls o  a s  a n  in c r e a s in g  f u n c t io n  o f  r , b u t  in  t e r m s  o f  a  s in g le  p a r a m e t e r  a ,  a n d  

t o  r e q u ir e :  ( i )  K e o (r )  to  b e  c o n s t a n t  fo r  a= 0 ,  a n d  ( i i )  t h e  a v e r a g e  v a lu e  o f  K e o (r) to  

b e  c o n s t a n t ;  i . e . :

K ( o = 0 , r )  -  K 
e  o

jj<<e<“ ' r)rdr -  \k o

I f  K g ^ r )  g o in g  a s  e x p ( a r 2 ) is  c h o s e n ,  th e n  e q s . ( 5 .6 )  a n d  ( 5 .7 )  im p ly :

K ( r )  i [ o r 2 . 1 
e o l + a l e  - 1 J

~ K  a ~
o e  - 1

a n d  t h is  h a s  b e e n  p lo t te d  in  f ig u r e  5 .4 ( a )  fo r  s e v e r a l  c h o ic e s  o f  a.

(5.6)

(5.7)

(5.8)

It s h o u ld  b e  e m p h a s is e d  th a t  e q . ( 5 .8 )  is a  c o n v e n ie n t ,  a r b itr a r y  c h o ic e  f o r  K e  th a t  

d o e s  n o t  h a v e  a th e o r e t ic a l  b a s is ,  b u t it  s h o u ld  q u a l i ta t iv e ly  r e p r e s e n t  a  v a r ie ty  o f  

e x p e r im e n t a l ly  d e r iv e d  s c a l in g  la w s  a n d  a n a ly t ic  e x p r e s s io n s ,  a n d  g iv e  s o m e  g e n e r a l  

in f o r m a t io n  o n  h o w  h 21 s c a le s  w ith  in c r e a s in g ly  s t e e p  c o n d u c t iv i t y  p r o f i l e s .  O t h e r  

o n e  — p a r a m e t e r  s c a lin g s  f o r  K e (r )  ( e g  p o w e r — la w  d e p e n d e n c e )  w e r e  a ls o  in v e s t ig a te d  

a n d  v e r y  s im ila r  is la n d  b e h a v io u r  w a s  s e e n .  F ig u r e  5 .4 ( b )  s h o w s  t h e  s a w t o o t h in g  r e g io n  

r m  a n d  t h e  r a d ia l e x t e n t  o f  t h e  2 /1  m o d e  a s  a  f u n c t io n  o f  a ,  w h i le  f ig u r e  5 .4 ( c )  p lo ts  

t h e  s a t u r a te d  is la n d  w id th , fo r  a D I T E  p la sm a  w ith  q a= 3 . 5 .  I n c r e a s in g  g r a d ie n t  o f  K e  

a l lo w s  m o r e  p e a k in g  o f  a x ia l  c u r r e n t ,  r e d u c e s  t h e  o u te r  r e g io n  t e m p e r a t u r e s  a n d  

c u r r e n t  g r a d ie n t s ,  a n d  s h if t s  t h e  r e s o n a n t  s u r f a c e s  o u t  to  h ig h e r  r a d ii .  T h is  h a s  th e
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e f f e c t  o f  m o v in g  t h e  p la s m a  fr o m  e q u il ib r ia  w ith  n o  s a w t o o t h in g  a n d  s m a ll  2 /1  is la n d s  

t o  e q u ilib r ia  w ith  s a w t o o th in g  in f lu e n c in g  h a l f  t h e  p la s m a  r a d iu s  a n d  c o n t a in in g  m u c h  

la r g e r  sa tu r a te d  is la n d s . T h e  e x t r e m e  c a s e  o f  q = 5  (w ith  K e ( a ) /K e ( 0 ) =  7 6 0 )  is  u n l ik e ly  

t o  b e  r e a lis e d  in  p r a c t ic e .  It c a n  b e  c o n c lu d e d  th a t  d is c h a r g e s  w ith  s t r o n g ly  v a r y in g  

a n o m a lo u s  e le c t r o n  t h e r m a l  c o n d u c t iv i t ie s  a r e  m u c h  m o r e  u n s t a b le  t o  t e a r in g  m o d e  

a c t iv i t y ,  w ith  la r g e r  s a tu r a te d  is la n d s  o b ta in e d  c o m p a r e d  w ith  f la t  t h e r m a l  c o n d u c t iv i t y  

p r o f i le s .

5 .5  Additional Heatins

T h e  e le c t r o n  a n d  io n  e n e r g y  e q u a t io n s  ( 2 .1 )  a n d  ( 2 .2 )  c o n t a in  a d d it io n a l h e a t in g  

t e r m s  w h ic h  h a v e  b e e n  p a r a m e tr is e d  w ith  t h e  f o l lo w in g  G a u s s ia n  fo r m :

T h u s  H e  }(r) is  g iv e n  in  t e r m s  o f  t h r e e  p a r a m e te r s :  ( i )  r j^ , t h e  p o s it io n  o f  p e a k  

a p p l ie d  p o w e r ;  ( i i )  h w , t h e  fu ll  h e a t in g  w id th  a t  h a lf  m a x im u m  p o w e r ,  a n d ;  ( i i i )  P p j,  

t h e  t o ta l  a d d it io n a l p o w e r  d e l iv e r e d  to  t h e  e l e c t r o n s  o r  io n s .

F ig u r e  5 .5  p lo t s  t h e  r e s u lts  o f  a  r a y — t r a c in g  c a lc u la t io n  o f  t h e  io n  c y c lo t r o n  

r e s o n a n t  h e a t in g  ( I C R H )  in  a ty p ic a l  J E T  p la s m a  [ 6 4 ] .  P r a c t ic a l ly  a l l  t h e  c o u p le d  

p o w e r  is  tr a n s fe r r e d  t o  t h e  1 0 %  H  m in o r it y  s p e c ie s  p r e s e n t ,  a n d  is  t h e n  r e d is tr ib u te d  

b y  c o l l i s i o n s  to  g iv e  t h e  e l e c t r o n  a n d  d e u te r o n  p o w e r  d e p o s it io n  p r o f i le s  in  f ig u r e  5 .5 .  

T h e  a d d it io n a l  h e a t in g  o f  e l e c t r o n s  is  v e r y  lo c a l is e d  a n d  is  d e s c r ib e d  w e l l  b y  e q . ( 5 .9 )  

w ith  h w « 0 .0 5 a .  T h e  s a m e  r a y — tr a c in g  m o d e l  h a s  b e e n  c o m p a r e d  d ir e c t ly  w ith  

e x p e r im e n t a l ly  m e a s u r e d  e l e c t r o n  d e p o s it io n  p r o f i le s  in  J E T ,  a n d  g o o d  a g r e e m e n t  is  

f o u n d  [ 6 5 ] .T h e  F W H M  in  t h e s e  c o m p a r is o n s  w e r e  « 6 0 c m  f o r  o n — a x is  h e a t in g ,  a n d  

« 2 0 c m  f o r  o f f - a x i s  h e a t in g .  T h e s e  w id th s  a r e  d e t e r m in e d  b y  p la s m a  q u a n t it ie s ,  a n d  f o r  

la r g e  to k a m a k s  c a n  b e  v e r y  s m a l l ,  a lth o u g h  t h e  p o s it io n  o f  h e a t in g  a n d  to ta l  a p p lie d  

p o w e r  c a n  b e  f r e e ly  v a r ie d .  P a r a m e t r iz a t io n  w ith  e q . ( 5 .9 )  t h e r e f o r e  p r o v id e s  a 

r e a s o n a b le  a p p r o x im a t io n  t o  e x p e r im e n t a l  IC R H  d e p o s i t io n  p r o f i l e s ,  s u f f i c ie n t  to  m o d e l  

t h e  e f f e c t  o f  h e a t in g  o n  is la n d s .

He , i ( r )  "  V Xp
( 5 . 9 )
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F ig u re  5 .5  A  r a y —tra c in g  ca lcu la t ion  o f  the  e lec tron  a n d  deu teron  p o w e r  d e p o s i t io n  

p r o f i l e s  in  a J E T  p la sm a  [ 6 4 J.

It is proposed that if the local temperature and current gradients were sufficiently 

altered by additional heating then island growth could be stabilized and disruption 

prevented. Alternatively the heating could have an adverse effect on island stability. 

This question has been examined in figure 5.6, where Pj^ and rj  ̂ have been 

systematically varied in SAT. The resulting saturated island edges, resonant surfaces 

and mixing radii plotted in figures 5.6(a) to (d), as a function of r^ for four different 

choices of Pj_j, while (e) and (f) show the corresponding island widths and axial 

electron temperatures. These calculations are for a DITE plasma with qa= 3 .5  and 

additional electron heating only is assumed, with hypO .la . The dashed lines 

correspond to the case of zero heating, in which case no sawtoothing is present, and 

rS21=  0.61a. The main effects of electron heating can be summarised by:

(i) If heating is on axis then sawtoothing is initiated. The q = 2  surface is shifted 

outwards and the 2/1 island reduced in size. As P^j increases so the sawtoothing 

region gets larger but h 21 does not change.

(ii) For rj^>0.3a the sawtoothing disappears, due to the ability of the plasma to carry 

more outer region current. However the 2/1 island shifts inwards and becomes larger 

increasing it's saturation width to more than double it's original size for r^j=0.4a. 

This radius of maximum destabilization corresponds to heating at the inner edge of the



87

island. The island is efficient at transporting applied energy away from the core so the 

amount the axial temperature increases by is greatly reduced.

(iii) If sufficient heating is applied outside the island then the outer region can 

increase enough so that q(0 ) becomes greater than 2  and no island is then present. 

Almost all the the additional energy supplied is lost to the wall and Te(0) is not 

raised significantly.

Unanswered by figure 5.6 is the question of what happens if even more power 

than 250kW is applied. Does the 2/1 island keep growing and finally intercept the 

sawtooth as seems to be suggested by figure 5.6(d). This is not the case. In figure 5.7 

the heating centre rpj has been fixed at 0.1a in (a) and (b), and rp p 0 .4a  in (c) and

(d), while the total applied power has been scanned in SAT. It is observed in both 

situations that h 21 attains some constant saturated width for large Pj^, independent of 

P{ .̂ For rj_j= 0.4a this occurs for Pj^> 300kW and equals 0.115a.

Motivated by these simulations of the saturated island behaviour, the transient 

island response is now examined for two heating positions: rj^= 0.4 with results in

figures 5.8(a) to 5.8(c), and and rj-j=0.1 in figures 5.8(d) to 5.8(f). Once again a

DITE plasma with qa= 3 .5  and electron heating only is simulated. A 250kW heating 

pulse is switched on instantaneously at t= 40ms after initialisation and switched off at 

t= 90ms. The dashed line corresponds to quantities evolving with no applied heating. In 

the case of r^= 0.4a the immediate effect is to drive the 2/1 mode unstable and it 

attains a large maximum width of 0.15a in figure 5.8(b). After the end of heating the 

island undergoes a relaxation oscillations back to it's original size. The 3/2 mode is 

also followed in figure 5.8(a) and is also observed to go unstable but only reaches a 

maximum size of 0.036a before the current diffuses away from the axis and q(0) rises 

above 1.5. After heating the q=1.5  surface is restored with the mode never growing.

Figure 5.8(c) for comparison shows the island behaviour when heating is continuously

applied and not switched off after 90ms. Large amplitude oscillations result where the 

maximum h 21 is in the range (0.12a,0.14a) which agrees with the predicted saturation 

width in figure 5.7(d).

The axial heating case of figures 5.8(d) to (f) models what is more commonly

achieved experimentally, and like experiment, giant sawteeth result. The spikes of

figure 5.8(d) are the m= 1 islands, while the crosses are the sawtooth mixing radii.

Between collapses the axial heating is much greater than for the ohmic case, so the 

electron temperature peaks much more and the subsequent collapse in Te much

greater. There is also a saturation of Te(0) during the ramp phase, compared with the



88

r«/a

rH/a r«/a

F ig u r e  5 .6  ( a ) —(d )  T h e  reg ion s  o c c u p ie d  b y  the s a tu r a te d  2 ( 1  is la n d ,  a n d  the  

sa w to o th  ( so l id  l in es ) ,  as  a f u n c t io n  o f  r p j ,  the  p o s i t io n  o f  a d d i t io n a l  G au ss ian  

e le c tro n  h ea t in g ,  f o r  f o u r  choices o f  to ta l  a p p l i e d  p o w e r:  5 0 ,  150 , 2 00 ,  a n d  2 5 0 k W .  

A  D 1 T E  p la sm a  w ith  q a=  3 .5  is  m o d e l led .  D a sh e d  l in es  rep resen t  the  2 / 1  i s la n d  when  

no  a d d i t io n a l  h ea tin g  is  p re se n t ,  (e) T h e  2 / 1  i s la n d  h a l f - w i d t h  / i21 as a f u n c t io n  

o f  rp j ,  f o r  severa l  cho ices  o f  to ta l  a p p l i e d  p o w e r ,  ( f )  T h e  c o r re sp o n d in g  axial  

e le c tro n  te m p e ra tu re .
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F igu re  5 . 7  (a) a n d  (b): T h e  h ea tin g  c en tre  is  f i x e d  at r ^ = 0 . 1 a  w h i le  P j^  v a r ie s  

betw een  0 a n d  8 0 0 k W , f o r  a D I T E  p la sm a  w i th  q a= 3 . 5 .  (a) p re se n ts  the is la n d  a n d  

saw too th  re g io n s ,  a n d  a lso  the i s la n d  p o s i t io n  f o r  no h ea l in g  (d a sh e d  l in e s ) ,  (b )  show s  

the s a tu r a te d  w id th  / i21 as a f u n c t io n  o f  P jq .  (c )  a n d  (d ):  S a m e  as above ,  but r jq  

now  equ a ls  0 .4 a .
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t / m s

t / m s

t / m s

F ig u re  5 .8  (a) T im e  d ep en d en ce  o f  the  2 !  1 a n d  3 / 2  i s la n d s  f o r  a D 1 T E  p la sm a  

( q a= 3 . 5 ) ,  w i th  a 2 5 0 k W  h ea tin g  pu lse ,  c e n tr e d  a t r p f = 0 .4 a ,  s w i tc h e d  on a t  t = 4 0 m s ,  

a n d  tu rn e d  o f f  a t  t = 9 0 m s .  (b )  T h e  tra n s ie n t  2 / 1  is la n d  s i z e  o f  (a ) .  D a sh e d  l in e  

sh ow s  evo lu tion  w ith ou t h ea t in g , (c )  I s la n d  beh av iou r  f o r  an e q u iva len t  s im u la t io n  to  

(a ) ,  bu t the  h ea t in g  is  con tin u ou s ly  a p p l i e d ,  a n d  not s w i tc h e d  o f f  a t 90 m s .  (d )  A n  

eq u iv a le n t  s im u la t io n  to  (a) but the  h e a t in g  is  now  c e n tre d  a t r t f = 0 . 1 a .  S p ik e s  are  

th e  m =  1 is la n d ,  a n d  crosses  the K a d o m ts e v  m ix in g  r a d i i ,  (e )  T ra n s ie n t  beh av iou r  o f  

h 2 y f o r  the s im u la t io n  o f  (d ) .  ( f )  G ia n t  sa w tee th  a re  o b se rv e d  in  the ax ia l  e lec tron  

t e m p e r a tu r e  d u r in g  the s im u la t io n  in (d ) .
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linearly increasing Te(0) of the ohmic ramp phase. This is attributable to the large 

heat —flow associated with the steep temperature gradients of the additionally heated 

plasma prior to collapse. The sawtooth period is increased here to 9ms from the 4ms 

of figure 4.6, and this is because the sawtooth collapse with heating present is more 

violent and leaves q(0 ) much greater than 1 , compared to the sawtooth collapse 

without heating. The plasma therefore takes longer to diffuse to a state with q< 1 . 

During the heat pulse the 2/1 island moves outward to a region of lower current 

gradient and the saturated size of 0.015a is consistent with figure 5.7(b). After heating 

the sawtooth gradually diminishes and disappears, and the islands revert to their 

original size.

5.6 H e a t in g  in J E T

DITE is a small tokamak which with present-day thermal conductivities will never 

achieve the lOkeV necessary for fusion. SAT is now used for plasmas of JET

dimensions to examine island dependencies and to see to what extent the results of

figures 5.7 and 5.8 will scale up to larger plasmas. Figures 5.9(a)and (b) therefore 

give the island and sawtooth regions, and the island size as a function of applied

heating position rj-j, for qa= 3 .5 , total applied power= 4MW and heating width 

hw= 0 .1a . The solid lines as before correspond to electron heating only, while the

dashed lines are with no electron heating, but the same Gaussian profile for ion 

heating Hj(r) in the ion energy equation. Figure 5.9(c) shows the axial temperature for 

the electron —heating, and figure 5.9(d) with ion heating. Considering now the He(r) 

case, the 2/1 island and the sawtoothing region behave identically to the DITE plasma, 

but with the position of rj  ̂ for maximum h 21 now equal to 0.45a. If ion heating is 

applied it's influence on the islands is indistinguishable from He for small r^, but 

becomes less drastic as r ĵ moves away drom the axis. The maximum h 21 is 0.09a 

compared with 0.12a for He, and it is not until rpj=0.7a that the mode is completely 

stabilized by heating driving q(0 ) above 2 .

Figure 5.10 plots the same quantities as in figures 5.9(a) and (b), but here r^j is 

fixed at 0.1a, while the total power applied has been scanned to 8 MW. There are no 

qualitative differences between these JET results and the DITE results of figure 5.7(a), 

and the island sizes are the same for both He and Hj.

As SAT simulations use the averaged sawtooth model, the temperatures obtained 

in figures 5.9(c) and (d) also correspond to an averaged temperature. With axial
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F ig u re  5 .9  (a) R esp o n se  o f  the is la n d  a n d  sa w to o th  reg io n s  to  a d d i t io n a l  h ea t in g  o f  a 

J E T  p la sm a  w i th  q a= 3 . 5 ,  f o r  P ^ = 4 M W  a n d  r jq  v a r y in g  be tw een  0  a n d  0 .9 a .  S o l id  

l in es  are  f o r  e lec tron  h ea t in g  on ly ,  a n d  d a sh e d  l in es  f o r  ion  h ea t in g  o n ly ,  (b )  2 1 1  

i s la n d  s i z e s  ca lc u la te d  in  (a ) ,  (c) A x ia l  e lec tron  a n d  ion  te m p e ra tu re s  f o r  a p p l i e d  H e . 

(d )  A x ia l  te m p e ra tu re s  f o r  a p p l i e d

1 .0

o.o
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---------------------------------------!----,---- j----1----1----1----
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2 000  4000  6 0 0 0
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8 0 0 0

F ig u re  5 .1 0  P p j  is  v a r ie d  be tw een  0  a n d  8 M W  f o r  a J E T  p la sm a  w i th  q a= 3 . 5 ,  a n d  

r f j = 0 . 1 a .  (a )  sh ow s the is la n d  reg io n s ,  (b )  the m a g n i tu d e  o f  / i21. S o l id  l in es  are  f o r  

e lec tron  h e a t in g ,  a n d  d a sh e d  l in es  f o r  ion  h ea t in g .
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F ig u re  5.11 T ra n s ie n t  behaviour o f  a J E T  p la sm a  ( q a= 3 . 5 )  f o r  4 M W  o f  e lec tron  

a d d i t io n a l  h ea t in g  c e n tr e d  at 0 .1 a ,  a n d  a p p l i e d  between 2 a n d  6s. (a )  to  (c) show  

re s p e c t iv e ly  the i s la n d  reg io n s ,  the i s la n d  s i z e  / i21, a n d  the ax ia l  t e m p e r a tu r e s ,  (d )  

p lo ts  the  sa w to o th  p e r io d  as a f u n c t io n  o f  t im e .  r saw  in crea ses  f r o m  5 5 m s  to  1 .25s  

w ith  the T R 1 D  sa w to o th  m odel
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heating, "monster** sawteeth in fact result and determine the actual peak temperatures 

achieved. Figure 5.11 presents such a JET simulation with qa=3.1  and with a 

electron—heating pulse of 4MW, centred at rpj=0.1a, applied between t= 2s and t= 6 s. 

The peak Te between collapse increases to 9keV, the sawtooth period increases from 

55ms to 1.25s, and there is a small reduction in h 21.

The conclusion from this study of heating effects on island growth can be 

summarised by:

(i) Heating on axis, or well inside the q= 2 resonant surface gives rise to giant 

sawteeth and a reduction in saturated size of the 2/1 island.

(ii) Heating at or just inside the resonant surface strongly destabilizes the island. 

Saturated sizes 2.5 times greater are observed.

(iii) Heating outside the island can allow q(0) to rise above 2 and so remove the 

2/1  mode.

5.7 B a lloon in g  M o d e  In v e s t ig a t io n

In the simulation of Bondeson [23], large sawteeth, as previously seen in section 

4.7, were observed, with Te(0) dropping from 245eV to 155eV. In TRID this 

behaviour is termed a disruption, while [23] on the other hand continued simulation 

that showed the "shock —front*' stopping, and recovery of the plasma to give further 

giant sawteeth. Bondeson proposed that at the shock —front prior to disruption, the 

steep pressure gradients found there would be strongly unstable to ideal ballooning 

modes. These modes are excluded from [23] as toroidal and pressure driven effects are 

neglected in reduced MHD. The effect of a ballooning instability would be to rapidly 

erode these steep gradients and bring about strong interaction between the hot central 

region and the cold island —dominated exterior, giving the total thermal quench and 

broadening of current that [23] did not give.

Hopcraft et al. [20] tested for high —n localised ballooning mode instability in 

TR1NIO using a criterion due to Lortz and Niihrenberg [6 6 ]. This criterion is:

2
S, > *v a .  for  s t a b i l i t y ,  where: b 1 \ b  J

y -  | ( l + l / y 2 ) -  1 . 28

( 5 . 1 0 )

( 5 . 1 1 )

Sb -  r q ' ( r ) / q ( r ) ( 5 . 1 2 )
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a b
-2Rq^n

B2
z

jlE ( 5 . 1 3 )

and is valid for circular flux surfaces in the limits e= r/R-*0, Ŝ -̂ O, and and so

is strictly correct near the axis. No instability was reported in [20], which is somewhat 

surprising as eq.(5.10) predicts instability for shear S5  going to zero.

This section also tests for ballooning instability but uses both eq.(5.10), and also 

an alternative criterion [67]. The explicit modelling of the sawtooth, and the two fluid 

nature of TRID give more realistic profiles of shear S5  and pressure gradient %> and 

so give quite different results to [20]. This criterion obtained from analytic solution for 

the ballooning mode eigenfunction, valid for large aspect ratio and circular 

cross-section, is given by:

F (s b ’% ] s  s b + 2“b [ e [i -^2) 4 ( i - 4 s b]e “1 / | S b l ] - 0 ( 5 -U )

For €-*0 and Ŝ -̂ O, this reduces to a quadratic; S ^ l .S a ^ ,  which gives a greater 

chance for ballooning instability than eq.(5.10). Figure 5.12(a) is a repeat of the 

current —limit disruption simulation in figure 4.14, but only the island evolution after 

t= 50ms is plotted ( t =0  in fig. 5.12(a)). The points labelled "x" correspond to the 

sawtooth mixing radii, the additional solid line inside rm is the q= 1 surface, while the 

shaded areas bounded by " +  " show regions of the plasma that fail to satisfy eq.(5.14). 

With steady sawtoothing until 55ms there is always a low—shear region between the 

axis and some radius inside q= 1 that can be expected to be ballooning mode unstable. 

After 55ms, when both rm and the island regions are large, a second narrow region of 

instability arises. This is not due to steep pressure gradients, but in fact corresponds to 

a second low—shear region arising as a result of the sawtooth redistribution of profiles. 

When eq.(5.10) is used as a ballooning criterion, similar regions to those in figure 

5.12 are observed, although they are generally larger in size.

Figure 5.12(b) plots FfSjj.c^) at t= 57.5ms as a function of r. The outer 

ballooning —unstable region is clearly visible where F < 0 . F is also less than zero for 

r<0.12a this is not evident on this scale. After the sawtooth collapse at 58ms the 

axial ballooning—unstable region disappears, and this is because the post—collapse q 

profile now evolves into one with slight negative shear in this region. The narrow 

region at 0.42a has approximately zero shear so F<0 .  Just prior to the final sawtooth 

collapse another narrow (two grid points here) ballooning —unstable region at 0.59a can 

be observed. This still does not arise through large |p' |  , but appears because a small
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partial sawtooth collapse occurs at this time, flattening q(r) here. It is conceivable that 

instability at this time could then speed interaction between the inner and outer plasma 

as earlier proposed. However the hypothesis of [23] that ever increasing |p* | would 

lead to ballooning instability is not borne out by TRID, as all instances at which it is 

predicted here are for low—shear, post — collapse q profiles. These profiles of course 

depend delicately on the Kadomtsev prescription, and the doubts concerning the 

sawtooth mechanism must therefore apply to these predicted ballooning mode regions.

It can be concluded from this section that:

(i) Steep pressure gradients when islands are large do not initiate ballooning instability.

(ii) It is the particular form of the post—collapse q(r) profile that is critical in 

determining ballooning instability.

(iii) With the Kadomtsev prescription, narrow, low—shear ballooning—unstable regions 

inside the q= 1 surface arise that could hasten the interaction between the hot, inner 

region, and the cool, island —dominated outer plasma. Larger ballooning unstable 

regions are predicted on axis during steady sawtoothing.
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t /m s

r/ a

F ig u re  5 .1 2  (a )  A  rep ea t  o f  th e  s im u la t io n  in  f i g u r e  4 .1 4 ,  s ta r t in g  f r o m  t = 5 0 m s .  

T h e  b a l lo o n in g  c r i te r io n  e q . (5 .1 1 )  is  te s te d ,  a n d  sh a d in g  show s the p r e d ic t e d  reg ion s  

o f  ba l lo o n in g  in s ta b i l i t y ,  (b )  T h e  ra d ia l  d e p e n d e n c e  o f  F(Sf) ,Q:i}) at t= 5 7 .5 m s .  

I n s ta b i l i t y  c o rre sp o n d s  to  F < 0 .
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CHAPTER SIX

RADIATION AND DISRUPTIONS

6.1 I n tro d u c t io n

No present-day tokamaks operate free from impurities, and impurity radiation 

generally accounts for between 50 and 100% of the electron energy loss [68]. In this 

chapter a hydrodynamic —coronal model is implemented in TRID to give the radiation 

losses from oxygen impurities. Sudden impurity influx, and density —ramp simulations 

are made and radiative contraction of the outer plasma is observed prior to disruption. 

A simple fitted profile for the radiated loss is used to examine the variation in density 

limit with current under various assumptions, and good agreement between the resulting 

Hugill diagram and experimental density limits is obtained.

6.2 H y d r o d y n a m i c —C oronal M ode l fo r  T o k a m a k  I m p u r i t y  R a d ia t io n

A hydrodynamic —coronal model for the impurity ions is used in TRID to 

calculate the radiation loss term P(r) in eq.(3.22). It is similar to Roberts [68] but is 

not steady —state. In low density tokamak plasmas the rates of radiative decay to lower 

levels are much greater than the collisional rates of excitation, so coronal equilibrium 

is set up with a balance between collisional ionization and recombination processes. 

The radiated power for each ionization stage of the impurity is a combination of four 

processes:

(i) Bremsstrahlung radiation produced when an electron makes a free —free transition 

when colliding with an ion.

(ii) Radiative recombination radiation due to radiative capture of a free electron into a 

bound state.

(iii) Dielectronic recombination radiation produced when a free electron with energy 

just below threshold for excitation of a bound electron collides with an ion. The 

excitation still occurs but the once free electron has insufficient energy for escape and 

is also captured. The excited and captured electrons radiatively decay to lower levels.

(iv) Line radiation produced from the spontaneous radiative decay of excited ions into 

their ground state.
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All the above processes give rise to a radiation intensity that is given as the 

product of the electron density, the impurity density, and some atomic coefficient 

depending on ionization state z and temperature. Formulae for the various terms are 

given in [69]. It will be found later that the dominant term contributing to radiation 

cooling is the line radiation from the lower ionized states that are localised in the 

cooler plasma edge. The expression for the power density emitted as line radiation is 

given by:

P = 1.6x10 19n n 1 Q. AE . Wm 3 (6.1)1 e z J J J
where Qj is the excitation —rate coefficient and the summation extends over the 

transitions given in [69].

The impurity ion distributions nz(r) in eq.(6.1) are now calculated. Numerous 

experiments [ 68  and refs, therein] on different machines have shown that an anomalous 

impurity transport is necessary to account for measured radiation losses. Therefore for 

a particular impurity species, a system of diffusion equations in cylindrical geometry for 

the nz(r) is solved:

3n

3 t ‘
- l  a
r dr r\L + n z e nZ-1 S n z z -a n z z a n Z+1 z+ ,] ( 6 . 2 )

^z is the radial flux of impurity ions of charge z, and Sz and a z  are the 

ionization and recombination rates (given in [69]), and are strong functions of electron 

temperature. Uncertainties in the atomic coefficients are expected to give rise to a

factor of two inaccuracy in the power profiles. There are nine coupled equations in 

this system in the case of oxygen (and 27 for iron for example). It is assumed in

TRID simulations that oxygen is the only impurity present. It is usually the dominant 

light impurity observed in tokamaks [61], but in any case the radiated power profiles

versus temperatures for other light impurities such as carbon or nitrogen are very 

similar to oxygen. It is not justified to neglect heavy impurity ions like iron which are 

commonly observed, and which have quite different power profile characteristics. At 

typical tokamak temperatures Fe is still incompletely ionized even in the hot core, so 

the heavy ion radiation cooling is peaked on axis, unlike that from light impurities 

which is strongly localized at the plasma edge. Here the question of heavy impurities

is left to future study as the computational cost of solving large numbers of coupled 

equations becomes prohibitive, and the presence of two or more impurities could mask 

their respective effects on island growth and make the simulation unduly complicated.
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The boundary conditions for eq.(6.2) are d n ^ d ^  0 for r= 0 , and n ^ a ^ O  for 

z> 0. The neutrals are assumed to have some specified density n ^a) at the limiter, 

and to penetrate the plasma with a constant velocity vox, where vox is the velocity of 

a thermal atom with an energy of leV . Finally the impurity fluxes \pz  are defined:

\p ■= -n (r)v for z=0, ^ ■= -D^nz for z=1..8 (6.3)Z 0 ox Yz

where D is some constant anomalous diffusion coefficient, taken to be 0.5 m^s-  ̂ in 

TRID. Any contribution of neoclassical flux to eq.(6.3) has been neglected, as most 

present-day experiments indicate that anomalous diffusion is predominant. Scaling of D 

with plasma parameters is not well understood so the simplest case of constant D is 

used, except in the island regions where D is enhanced by a large amount as for the 

thermal conductivity.

Charge exchange collisions betwen ionized impurities and neutral deuterium (and 

also the opposite reaction) are neglected in eq.(6.2). They have the effect of increasing 

the penetration depth and recycling of neutral oxygen [81]. In ref. [82], by varying the 

neutral oxygen penetration energy between 0.2 and lOeV, it is shown that there is 

negligible effect on the power loss from to 0  ̂+  , while for the lower states it is

increased by a factor of 2 — 3. However the radiation from these states also depends 

sensitively on ne(r) which is fixed in TRID. Therefore the inclusion of charge 

exchange processes, which also entails a modelling a neutral deuterium, is left for 

further work. The radiation model implemented here is still expected to describe the 

main features of low—Z impurity radiation, and it's interaction with magnetic islands.

When differenced system (6.2) can be cast it into a 9x9 block tridiagonal form 

which is simply inverted using the recursive method of Appendix B. Upwind 

differencing of the first order equation for n 0 ensures diagonal dominance of the 

matrices and stability of the recursive method. Centre differencing the diffusion terms, 

then eq.(6.2) with z= 0 becomes, for i= l ,N  —1:

b . n i
n+1 
0, i + n+1 n+ic . n . + e. n

1 0 , 1 + 1  1 1 , 1
w o, 1

with coefficients:

b.=l -1-p S .n .-p 
r o o , i  e , l r1 i + ,/ri. e . = p q . n l o i , l e i ’

w 0 , 1
n-p n1 0,1

( 6 .4 )

P o ' V o ' o 0' P,- D/(vox^)
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and fo r  z = l . . . 8 :

A n+i , _ n+ 1 , ^n+i , _ n+ 1 , - n+iA.n . + B .n .+ C.n . + D .n .+ E .n
1 Z , l - 1  Z , 1  Z , 1  1 Z , l  +  1 Z - 1 , 1  Z - 1 , 1  Z + 1 , 1  Z + 1 , 1

w ith  m atr ix  c o e f f i c i e n t s  d e f in e d  by:

z ,  i 

( 6 .5 )

A .= r. D. /r., C .*= r. D-, /r. , B .=l i-i 1 - 1 i l i +1 i +V 1 Z, 1
D .= p n . S E .= p n . a wz, l 2 e , l z, l z,, l 2 e, 1 Z, 11 z

pr
2 2n S a A / D  D o V

2 2
a  A / D t At0

-A.+C.+D . +E . +p ,l l z , l  z , l  r 3

-----p nn
3 Z , i

For given Te(r), ne(r), and a given neutral density at the wall n 0(a), eqs.(6.4) and 

(6.5) can be solved, and using the expressions in ref.[69], such as eq.(6 .1 ), the power 

loss profile at time tn + 1  can be calculated.

Figure 6.1 compares two steady—state (d/dt= 0) radiated power calculations for a 

DITE plasma. The density is assumed Gaussian and given by eq.(3.29), with 

np)= 3x10 ^ m  — 3, ne(0)=2nj), and other relevant parameters are a= 0.26m,

D =0.5m ^s~^, and n 0(a)= 3x1 O^m- ^ T ea= 5eV, and Te(0)=400eV. All dashed lines 

correspond to a Gaussian electron temperature profile

Te (r ) = T + (T (0 )-T  ea e ea ( 6 . 6 )

with 0= 2 , while solid lines represent calculations for an idealised temperature profile 

with both sawteeth and a 2/1 island present. A small temperature difference across the 

island regions (0,rm) and (r 1tr 2) of 5eV is assumed, with a constant temperature 

gradient elsewhere. Such an idealised profile is an approximation to those observed 

with TRID simulations such as in figure 3.2. The temperature of the island, Tjsj, is 

assumed to be that of the Gaussian at the outer edge r 2. Figure 6.1(a) shows both of 

these profiles, with rm= 0 .4a , r 21= 0 .7a  and h 2= 0 .1a . In figures 6.1(c) and (d) the 

radial profiles for the various ionized states are plotted for the island —modified and 

the Gaussian Te profiles respectively. Progressing from the limiter inwards the densities 

peak at some radius which moves into the plasma as z increases. The effect of 

anomalous diffusion is to shift the peak densities of the lower states deeper into more 

dense plasma where they radiate more strongly than in pure coronal (D= 0) 

equilibrium. The dashed line of figure 6.1(e) shows the radiated power/unit volume as 

a function of radius for the Gaussian Te profile. For the relatively low temperatures 

near the edge, and even for the core temperatures of a DITE plasma, the line
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L L g u r e  , 6 . 1  C o m p a r i s o n  o f  t w o  r a d i a t e d  p o w e r  c a l c u l a t i o n s  f o r  a  DIT E  

p l a s m a .  A l l  s o l i d  l i n e s  c o r r e s p o n d  t o  t h e  i s l a n d - f l a t t e n e d  p r o f i l e  o f  

( a ) ,  a n d  d a s h e d  l i n e s  t o  t h e  G a u s s i a n  T e ( r ) .  ( b )  R a d i a l  p r o f i l e s  a n d  

a v e r a g e d  v a l u e  f o r  Z e f f .  ( c )  a n d  ( d )  T h e  r a d i a l  d i s t r i b u t i o n s  o f  t h e  

i o n i z e d  s t a t e s  o f  o x y g e n  i m p u r i t y ,  ( e )  R a d i a l  p r o f i l e s  o f  r a d i a t e d  p o w e r ,  

( f )  N o r m a l i s e d  p o w e r  l o s s  a s  a  f u n c t i o n  o f  Te . ( g )  C o m p a r i s o n  o f  t h e  

f i t t e d  c u r v e ,  e q . ( 6 . 8 ) ,  t o  t h e  a c t u a l  p o w e r  l o s s  i n  ( f ) .
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radiation comprises almost all the radiation losses. The peak near the edge is 

associated with excitation of line radiation from ions up to 0 3-H. The minimum near 

r= 0.65a is due to most of the ions at this radius being 0 ^ + (He —like) which are not 

easily excited at outer region temperatures. With islands present flattening of the n^r) 

profiles is naturally observed. Although the actual peak densities achieved in figure 

6 .1 (d) are less, so the radiation peak is smaller, the larger fraction of lower ionized 

states across the island means the radiation at these radii is greater, and the total 

losses are also larger. The shape and magnitude of the axial temperature has little 

influence on the edge radiation profile and the total losses.

The presence of impurities will also give rise to an increase in ohmic heating, 

due to their raising Zeff, the effective charge of the plasma:

zeff(r) = tn i + Xnz z 2 ] / [ n j  + Xnz z] (6.7)

which is substituted into the Spitzer —Harm resistivity, eq.(3.25). Typically with 

n 0(a)= 2xl0  — ̂ np), Zeff increases to somewhere in the range 1.5 to 2.0. It is the 

highly ionized heavy impurities that have been neglected that give rise to Z eff of 3 — 5 

frequently observed. In figure 6.1(b) the Zeff(r) is plotted for both temperatures 

profiles, with little difference observed between them, while the constant value 1.61 

plotted here is the resistance —averaged Zeff [6 8 ] for the Gaussian temperature.

6.3 A C u r v e —Fi t  f o r  S t e a d y —St a te  R a d ia t i o n  Loss

The radiation calculation described above is very time-consuming, especially when 

losses are large and the timestep becomes limited by eq.(3.38) to small values.

Therefore an algebraic form is fitted to the loss curve that will accurately represent 

the steady —state radiation over a large range of conditions. In figure 6.1(e) the two 

forms for P(r) are quite different; it is not possible to represent them with the same 

general form. However in figure 6.1(f) power loss, normalised by density, 

PX(T)= P(r)/ne(r)n0(a) Wcm3, is plotted as a function of temperature. Both forms are

now very similar, the islands have only a small effect on P j ,  and for a variety of

simulations with varying parameters (eg ne(0),Te(0),Tjs],r 2 ,) the widely separated 

twin —peak shape for P j  is quite general. Px  can be described in terms of six

parameters: P, and P 3 are the maxima of Px  at T , and T 3 respectively and P 2 the 

minimum at T 2. The functional form fitted to P j  is:
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Pf(T) = aThexpC-bT/T,) + cTdexp(-cT/T3) (6.8)

here a, b, c, d are constants to be determined. If T 1 and T 3 are widely separated as 

in figure 6.1(f) then the maxima of Pf(T) simply correspond to T n and T 3, so 

aT^exp( — b), and similarily for T = T 3. Requiring a minimum at T = T 2, the 

determination of a to d in eq.(6 .8 ) reduces to finding B, the root of:

F(B) - b(l-T2/T,)B + d(l-T2/T3)(P2-B) = 0
where
b _____ ___________  _ in(P;-B)/P3___l-T2/T,+ln(T2/T,)’ Q l-T2/T3+ln(T2/T3)'

(6.9)

B - aTbexpC-bTj/T,)

Pf(T) has been fitted to the solid curve in figure 6.1(f) and the comparison between it 

(dashed line) and the actual loss is shown in figure 6.1(g). Pf(T) in this case 

overestimates Pj(T) slightly in this case, but as the ionization cross-sections are 

accurate to a factor of two, this difference, which is less than this, is not important.

Before Pf(T) can be used, the variation of P 1 . .P 3, T 1 . .T 3 and also Zeff must be 

calculated over a wide range of plasma conditions. At each timestep in a TRID 

simulation, area —weighting then interpolates to find the P , etc for the particular 

plasma quantities at this time, and Pf(T) evaluated with eq.(6 .8 ). This procedure allows 

a large saving in computational time, simulations of density—limit disruptions, and an 

examination of the disruption behaviour in response to variation of radiation 

parameters. The scan of radiation parameters is made with the Gaussian ne(r) profile, 

with variable nj), and with the electron temperature parametrized by the 

island —modified profile of figure 6 .1 (a), but with a quadratic dependence for r < r v  

i.e.:

Te(r) - Te(0)-[Te(0)-Te(rs,)](r/r1)2 0<r<r,

= Te<ri M Te(ri )-Te(r2) ](r"ri )/(r2”ri) r,<r<r2 (6.10)

- Te(r2)-[Te(r2)-Tea](r-r2)/(l-r1) r2<r<l

here r,-r2-2h21, Te(r2)=Te(r2,)-2.5 
r 2 i “t* 2 -h 2 ̂ , Tg (r 1 )“Tg ( r 2 ̂) +2.5

Variation in the five independent quantities, nj), Te(0), Te(r 21), r 2 and h 21, over 

suitable ranges should represent all the possible Te(r) that arise during during a TRID
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T«(rsl) T.(r„)

F ig u re  6 .2  The  e f f e c t  o f  i s la n d  coo l ing  on r a d i a t e d  p o w e r  loss,  (a)  T h re e  

re p re se n ta t i v e  i s l a n d —f l a t t e n e d  e lec t ron  t e m p e r a tu r e  p r o f i l e s ,  (b)  Th e  co rr e sp o n d in g  

n o r m a l i s e d  p o w e r  loss as  a f u n c t i o n  o f  T e . (c)  M a x i m u m  value  o f  (b)  as a f u n c t i o n  

o f  the i s l a n d  t e m p e r a tu r e .  ( d ) —(e) T h e  po s i t io n  a n d  t e m p e r a t u r e  res p ec t i v e l y  at  w hi ch  

the  p ea k  p o w e r  loss in  (b )  occurs ,  as a f u n c t i o n  o f  T ^ r 2 J .  ( f )  The  total  r a d i a t e d  

p o w e r  f o r  T e( r 2 v ar y i ng .
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V
E-

n.

h2i /a  h21/ a
Fig ure  6 .3  T h e  e f f e c t  o f  i s l a n d  w i d t h  (at  constan t  T e( r 2 , ) )  on r a d i a t e d  p o w e r .

(a)  Th re e  T e(r )  p r o f i l e s  w i t h  h = 0 . 0 ,  0 .07 5a ,  a n d  0 .15a .  (b)  The  co rr e sp o n d in g  

n o r m a l i s e d  p o w e r  loss as  a f u n c t i o n  o f  T ^ r ) .  (c)  T h e  m a x i m u m  value o f  (b )  as  a 

f u n c t i o n  o f  / i21. (d )  To ta l  r a d i a t e d  p o w e r  as a f u n c t i o n  o f  /i21.

F ig u re  6 .4  R a d i a l  p r o f i l e s  o f  (a):  e l ec t ron  t e m p e r a t u r e ,  (b):  r a d i a t e d  p o w e r ,  a n d  (c):  

cu rr en t ,  d u r i n g  the r a d ia t i v e  co l lapse  s im u la t io n  o f  f i g u r e  6 .5 .  P r o f i l e s  a re  p l o t t e d  at  

t = 5 2 m s  ( d a s h e d  l ines ) ,  a n d  t = 5 5 m s  ( s o l i d  l ines) .
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simulation. For example for DITE 

nD =  1, 3, 5, 7Xl01 9 m “ 3 

Te(0) =  200, 300, 400, 500eV 

Te(r21) =  10, 40, 70... 190eV

r 2/a =  0.35, 0.48, 0.60, 0.73, 0.85, 0.98 

h 21/a =  0.00, 0.05, 0.10, 0.15 

are chosen.

The idealised temperature profiles of eq.(6.10) are used in figure 6.2 and 6.3 to 

gain some understanding of how the radiation profiles vary in response to the island. 

The axial temperature is fixed at 400eV, n 0(a)/nj-)= 3X10^3/3X10^9, the 2/1 island has 

r 1 and r 2 specified to be 0.65a and 0.85a, while the island temperature is free to 

vary. Figure 6.2(a) shows three such profiles for Te(r 21)= 1 0 , 6 8 , and 125 eV. and 

(b) show's the corresponding Pt (T) profiles. The maximum value P , of (b) is plotted 

as a function of Te(r21) in (c) while the temperature T 1 and radial position rp at 

which this maximum occurs are plotted in (d) and (e). Finally in (f) the total radiated 

power as a function of Te(r21) is given. For Te(r21)>70eV  the radiation losses are 

largely insensitive to Te(r 21), although T , decreases linearly as cooler islands are 

considered. When Te(r 21) approaches T , the radiation begins to cool the island, the 

densities of the lower ionized states increase strongly in the island region, and both 

the total and the maximum radiated power increase rapidly, so that more than ten 

times as much total radiative loss is seen with Te(r 2 ,)=  20 —40eV. The position of 

maximum power also shifts rapidly inwards and locates near the inner island edge.

The time —dependent effect of the results of figure 6.2 would be to lead to

radiative contraction of the plasma. As the island cooled this would lead to greater 

impurity content, the radiation loss would therefore increase, producing even stronger 

cooling of the island. Without the enhanced island transport this positive feedback 

effect of the radiation cooling on itself still exists, but in a much weaker form. The

profile modification of this cooling will have a strong destabilizing effect on the island,

so it is useful to see how the radiated loss varies with island size. In figure 6.3 r 21 is 

fixed at 0.75a, Te(0)=400eV, Te(r 2 ,)=  80eV, while h 21 now varies. The figures here 

plot equivalent quantities to figure 6.2. The important point to note here is that for 

fixed Te(r 21) the radiation losses decrease smoothly as the island becomes larger. This 

agrees qualitatively with figure 6 .2  as the outer temperatures are less for small h 2 , so 

more impurities are allowed into the plasma. Two competing effects are illustrated

here:

(i) Cooling of the island produces an increase in radiation.
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(ii) Growth of the island decreases the radiation losses.

The combined effect of the radiation —island interaction is therefore complicated and 

must be observed time —dependently.

6.4 R a d i a t i o n —I n d u ce d  D is r u p t i o n s

A simulation is presented here of the effect on island stability of a sudden influx 

of oxygen impurity ions into a stable tokamak discharge. A stable DITE discharge with 

qa= 4 .5 , np)= 3 x l0 ^ m ~ 3, and no radiation losses is set up in figure 6.5 by running 

TRID for 40ms from initialisation. At this time the impurity influx is modelled by 

linearly increasing the neutral oxygen density at the wall from zero to 3 Xl0 ^ m “ 3 jn 

4ms, after which time it remains constant. Current and deuterium density are assumed 

constant throughout the simulation. It is convenient at this point to define the impurity 

fraction f of the discharge as the ratio of the neutral oxygen density at the limiter to 

the average deuterium density:

f  = n 0 ( a ) / n D ( 6 . 1 1 )

The fitted model Pf(T) is not used in this instance but system (6.2) is solved in full. 

Several plasma quantities, from just before impurity influx until disruption, are shown 

in figure 6.5. They are:

a) The positions of the 3/1, 2/1, and 3/2 islands. No sawtoothing is present until near 

54ms when the mixing radii (crosses) intersect the outer islands. The dashed line 

follows the position rp of the peak in the radiation loss.

b) The 2/1 and 3/1 (dashed line) island widths.

c) Electron and ion axial temperatures.

d) The electron temperatures of the 2/1 and 3/1 islands.

e) The average effective ionic charge.

f) The average impurity fraction, i.e.: nQX/n£)=/Inz(r)rdr//nj)(r)rdr.

g) The total input (ohmic) power, and the total radiated power.

h) The ratio of the perturbed radial magnetic field at the limiter to that of the zero 

order poloidal field, for the 2/1 and 3/1 modes.

The radiation induced disruption has the following scenario.

Initially the radiated power increases as the impurity fraction increases, cooling the 

outer plasma only, as evidenced by a falling Tjsj and constant Te(0). This causes 

contraction and peaking of the current profile, and the q= 2 surface moves outwards in
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F ig u r e  6 .5  S im u la t i o n  s h o w in g  the resul ts  o f  a su dd en  ox yg en  i m p u r i t y  i n f l u x  w i th  

l i m i t e r  d e n s i t y  n 0( a ) =  3 x J 0 ^ m " ~ ^ , a t  t = 4 0 m s ,  in to  a D 1 T E  p la sm a wi th  

n j ) = 3 x l 0 l 9 m ~ 3  a n d  q a= 4 . 5  ( d e sc r i p t io n  o f  curves  can be f o u n d  in  sec t ion  6 .4 ) .
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radius, with the 2/1 island however remaining stable. At 45ms there is an increase in 

the total radiated power from one to two times the input power, associated with the

3/1 island becoming larger and rp moving inside the q= 3 surface. As the 3/1 island

grows it allows the lower ionized states to penetrate deeper into a more dense part of 

the plasma where they radiate more strongly. At this time Zeff and nox/nj), which are 

closely correlated, also increase significantly, while falls rapidly. The flattened

current profile leads to an explosive growth of the 2/1  island, but this strong growth, 

along with induced 3/2 growth has a stabilizing effect, and h 21 then decays to zero.

The process repeats giving further oscillations, with a collapse of island temperature 

whenever the mode is destabilized and strong island growth occurs. Each collapse 

leaves a cooler island than the previous one, and eventually at t= 53.5ms and again at 

t= 55ms the radiation losses become large over both the island and exterior regions, 

and Tp moves rapidly inward to locate at the inner edge of the 2/1 island. Figure 6.4 

plots the electron temperature, the radiated power profiles, and the current profile at 

t= 52ms (dashed lines) before strong radiation cooling of the island, and after it

commences at t= 55ms (solid lines). After 55ms the plasma is very cool from 0.4a to 

the limiter, and radiation is large over this region. The outer region current is 

restricted and a skin current diffuses inwards, to give q< 1 and sawtooth behaviour. As 

the outer plasma is cold the sawtooth collapses are very large, indicating likely 

disruption. Prior to the cooling of the 2/1 island and collapse of Tjsi, a lossy, 

MHD —active, but non —disruptive plasma is present, but after the island —radiation 

interaction disruption appears inevitable.

Figure 6 . 6  shows an identical simulation to figure 6.5 but with qa now equal to 

3.0. The curves in both figures plot equivalent quantities except figure 6 .6 (f) plots the 

sawtooth period and not the average impurity fraction. After impurity influx the 

resonant surfaces shift outward slightly and a modest increase in h 21 to 0.075a results. 

No disruption is observed and a steady state with Pfad^in=  0-4 is attained. This 

relatively low radiation fraction, along with the absence of a 3/1 mode to aid impurity 

penetration means no radiative contraction occurs and h 21 remains stable. The most 

noticeable effect of the radiation in this case is on the sawtooth. The larger, 

radiatively cooled 2/1 island contracts the current profile, forcing the q= 1 surface to 

greater radii. The collapses have greater amplitude, the period is reduced (for the 

reasons of section 4.6), and therefore the ramp phase has a more linear shape than 

figure 4.6.

A further radiating, non —disruptive DITE discharge, similar to figure 6.5, is 

simulated in figure 6.7. The safety factor is again 4.5 but a smaller fraction



P 
(K
W)
 

ZE
FF

 
T«(

0)

111

t/ms

F ig u re  6 .6  Equ iv a le n t  s i m ul a t io n  to  f i g u r e  6 .5 ,  but  w i t h  q a no w equa l  to 3 .0 .  The  

s a m e  q u a n t i t i e s  are  p l o t t e d , excep t  f o r  ( f ) ,  which  shows the saw too th  p er io d .
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Figure 6.7 Impurity influx simulation similar to fig. 

6.5, with qa-4.5 and n Q (a)/nD- l . 8 x l O l 5 / 3 . O x l O 19.
No disruption is observed.
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Figure 6.8 Density ramp simulation of DITE plasma 

with qa=4.5. The ramp is switched on at t-40ms, 

when np=lxl()19m~3, and doubling time for density 

is 20ms. Disruption observed at t=79.8ms.
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n 0(a)/nj)= 1.8X10^/3X10^ of oxygen is introduced into the plasma at t= 40ms. Similar 

behaviour to the oscillations observed in figure 6.5 results, but the radiation in this

case is insufficient to cool the island, and no collapse of T jsj and rp is seen. The 3/1 

island remains stable and is not shown. Variable amplitude sawtoothing is initiated, 

with largest collapse correlated with a large 2/1 island also being present. The total 

radiation losses do at times exceed the input power but Pra<j, along with Tjsj, also 

exhibit oscillatory behaviour correlated to h 21. The times at which the island goes 

unstable and suddenly begins to grow are also precisely the times at which the island 

temperature Tjsj begins to drop rapidly. Peaks in the impurity radiation correspond to 

minima in T jsj, in agreement with the predictions of section 6.3. The changes in T jsj 

are in the range 30 — 40%, and resemble the "minor" disruptions in ref. [83].

Finally for this section the results of a density ramp simulation are shown in 

figure 6 .8 . A DITE plasma with qa= 4 .5 , nj^= lX lO ^ m - 3, and a constant impurity 

fraction f= 1 0 - ^, is run from initialisation toward equilibrium, until at t= 40ms a 

density ramp is switched on. The doubling time for the density is 20ms, and as the 

TR1D model does not include evolution of the deuterium density, the Gaussian profile 

shape is assumed unchanged while nj) increases linearly. Time dependent simulation of 

the background plasma density profile is a necessary extension to the TRID model.

After t= 40ms the radiation losses in figure 6 .8 (f) initially increase quadratically (see 

eq.(6.15)), and both Te(0) and Tjsj gradually fall, while the islands are unaffected. 

However at t= 6 8 ms Pracj becomes equal to P0 hm» rp moves inward, Tjsj begins to 

drop more rapidly and the 2/1 island is very suddenly destabilized. The plasma

recovers from this mode destabilization as at this time the radiation losses are

insufficient to cool the island and cause a total collapse in Tjsj. After several such 

oscillations in h 21 and Tjs], the radiation losses are great enough to cause disruption,

almost identical in nature to that in figure 6.5. Disruption occurs for this current and

impurity fraction at a density of nj)= 3.0X10 ^ m - ^. Variation of this density limit is 

examined in the following section.

The onset of destabilization of the 2/1 mode, for the simulations of this section, 

coincides with the ratio $ of radiated power to input power becoming equal to one. In 

the next section the 4= 1 criterion for 2/1 destabilization is found to be independent 

of current. This criterion has been previously proposed [70] as a necessary, although 

not sufficient criterion for producing thermal contraction of the plasma. [70] then 

argued that such a contracted plasma would be unstable to tearing modes and

disruption would result. The simulations here not only support this argument, but links 

the 4= 1 criterion directly to 2/1 instability. However figure 6.7 shows that although
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4=  1 is sufficient to produce 2/1 instability, it does not necessarily guarantee disruption.

The island is not cooled, Tjsj remains high, and the profiles are not contracted

sufficiently for the sawtooth to interact. In figure 6 . 8  the density and radiation

continually increase and only when losses are sufficient to cause a collapse in T jsj does 

disruption occur. This implies figure 6.7 is a discharge very close to disruption, and 

that only a small increase in f or np> would be sufficient to cause one.

6.5 D is r u p t i o n  Con tro l  w i t h  A d d i t io n a l  H e a t i n g

In section 5.5 stabilization of the 2/1 island was achieved with additional heating 

outside the 2/1 resonant surface. Prior to the disruption in figure 6.5 the 2/1 island

width grows to large size, so if a condition such as h 21> h 21 crjt (= 0 .1 2 a for

example) were used as the trigger for such an exterior region heating pulse, then 

stability should be restored and disruption prevented. This hypothesis is tested in figure 

6.9, where the simulation in figure 6.5 of impurity influx at t= 40ms is repeated. In

figure 6.9(a) to (c) a 10ms pulse of 300kW of additional heating, centered at 0.75a

with width h ^ O .la ,  is switched on when h 21>0.12a. The other figures are for 

various other combinations of heating position, power and heating time, as described in 

the figure.

In (a) and (d) the condition h 21> 0 .12  is met at t= 48ms, heating halts the collapse 

in Te(r21), and outer region temperatures are raised so impurity levels and Pracj fall. 

The q= 2 resonant surface moves inward as current diffuses into the hotter outer 

region and after a brief delay the 2/1 island starts to decay, finally reaching a near 

steady value of M3.03a. The heating is switched off at 58ms, but the island remains

stable for a considerable time after this until Pracj exceeds P0hm anc* Te(r 21) c°UaPses 

again. In (a) the final island behaviour prior to disruption is then identical to figure

6.5. In (d) the heating is reapplied at t= 72 and 100ms when h 21>  0.12a a second 

and third time. The heating periodically forces Te(r 21) to rise and provides stability of 

the 2/1  island, but with the impurity content fixed at f = 1 0 ~^ , the current and 

temperature then try to collapse again when Hg is removed.

The other simulations have been made with the same triggering condition for He 

but with different centres of heating. If rpj= 0.3 (i.e. just inside the island) then large 

oscillations in h 21 are not prevented but island temperatures are raised sufficienly to 

prevent a buildup of impurities and radiative collapse. If the heating is not pulsed but 

applied continuously after 58ms then an equilibrium containing a large 2/1 island of 

width h 21= 0 .la  results. In the case of axial heating then giant sawteeth are initiated.
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0 40 . 80 120t/ms 40 .0 5 0 .0  60 .0  7 0 .0  8 0 .0  90 .0t/ms

F ig u re  6 .9  I m p u r i t y  i n f l u x  s im u la t i o n s  s im i l a r  to  6 .5  but  w i t h  var iou s  f o r m s  o f  

a d d i t i o n a l  e l ec t ron  he a t ing ,  t r i g g e r e d  when  h 7 y > 0 . 1 2 a .

(a)  to  (c):  I s la n d  po s i t io ns  a n d  t e m p e ra tu re s ,  a n d  the total  o h m ic  a n d  r a d i a t e d  

p o w e r s ,  f o r  a s in g l e  10ms  heat  pu l se  w i t h  P j - j = 3 0 0 k W , hw = 0 . 1 a ,  a n d  r p j = 0 . 7 5 a .

( d )  : S a m e  as  (a)  but  hea t ing  i s  a p p l i e d  p e r io d ic a l l y  w hene ver  h 7 y > 0 . 1 2 a .

( e )  : I s l a n d  p o s i t io n s  f o r  1 0 m s  heat  pu l ses  a p p l i e d  p e r i o d ic a l l y .  P p f = 3 0 0 k W ,  h w= 0 . 1 a ,  

r f t = 0 . 3 a .

( f )  : I s l a n d  p o s i t io n s  w i t h  con t inuous  ax ia l  he a t ing  s w i t c h e d  on when  h 7y f i r s t  exceeds

0 .12a .  P H = 3 0 0 k W ,  hw = 0 . 2 a ,  rH = 0 . 0 a .



116

If the applied power is great enough, as in figure 6.9(f), the island temperatures are 

raised sufficiently so that outer region current restriction does not force the subsequent 

sawteeth to large enough radii so they interact with the island and radiation dominated 

region. With lesser amounts of applied power, or greater impurity fractions than in (f), 

then the outer region is cooled more and disruption results. Axial additional heating is 

therefore less reliable in controlling disruptions.

The results of this section are consistent with section 5.5. Additional heating 

prevents collapse and disruption, with maximum 2/1 stabilization if rj^>r$21. If the 

impurity levels are constant then disruption is delayed until after the end of the heat 

pulse. To test these predictions experimentally, a triggering condition for heating could 

be supplied by the Bri perturbations (proportional to h^; see eq.(4.18)) reaching some 

critical level.

6 . 6  D i s r u p t i o n —Free  O p e r a t i n g  Re g ion s

The maximum density attainable before disruption varies with current, and this 

relationship is traditionally shown with the aid of a Hugill diagram, which plots l /q a 

on the vertical axis, and on the horizontal axis the maximum value before disruption 

of the average "normalised" density: njvj=n£>XlO~^R/Bz Figure 6.10 is such a

diagram [70], that plots the instant of disruption for a series of ohmic discharges on 

JET. Disruption —free operation is possible to the left-hand side of the straight-line 

curve that has been fitted to the data. This experimentally observed linear relation 

between current and density limit was first observed by Murakami et al. [71], and so 

the density limit is now given in terms of the Murakami parameter (symbol M here):

n

10

B
( 6 . 12)

which for figure 6.10 approximately equals 12. Prior to disruption the total radiated 

power increases, reaching about 1 0 0 % of the input power at disruption, when the 2/1 

mode is destabilized as in section 6.4. A test for the TRID model of a radiation 

disruption is therefore to produce such behaviour for the density limit, and figure 6.11  

show's the results.

Each point in figure 6.11 corresponds to a single TRID simulation of DITE that 

has been run from initialisation until disruption occurs. A slow ramp in time of the 

density is applied, the impurity fraction is constant, and the current is a prescribed



-  117 -

nDR/Bj ( l0 19m '2T"‘)

F i g u r e  6 . 1 0  H u g i l l  p l o t  o f  

d e n s i t y  l i m i t  d i s r u p t i o n s  

i n  JET o h m i c  d i s c h a r g e s  

( f r o m  [ 7 0 ] ) .

0 . 4 5

0- 40

0- 35

i / q .
0 . 3 0  

0- 25  

0.20 

0 . 1 5
1. 0  2 . 0  3- 0  4 . 0  5 . 0  5 . 0

nDR/B2 (1019iti”2T-1)
F ig u re  6.11 H u g i l l  d i a g r a m  o b t a i n e d  f r o m  T R 1 D  s im u la t io n s .  D i s r u p t i o n - f  ree  

op e ra t i o n  is  p o ss ib le  in  the lower  l e f t  r eg ion  o f  the f i g u r e .  The  three  cases  shown  

are  (i): f = 1 0 ~ 4 , 2 !  1 i s la n d  o n ly  ( s o l id  l ine) ,  ( i i ) :  f = 1 0 ~ 4 , 2 1 1  a n d  3 1 1  i s lands  

( la rge  d a s h e d  l ine ) ,  ( i i i ) :  f = 0 . 5 x ! 0 ~ 4 , 2 / 1  a n d  3 / 1  i s la nd s  ( smal l  d a sh e d  l ine ) .

F ig ur e  6 .12  C o m p a r i s o n  o f  i s la n d  behav iour  w i t h  (a ) ,  a n d  wi t ho ut  (b)  the 3 / 1  mo de ,  

d u r i n g  id e n t i c a l  d e n s i t y  r a m p  s im u la t io n s  ( D 1 T E ,  f = 1 0 ~ 4 , q (f t = 0 ) = 4 . 0 ,  n j ^ ( t = 0 ) = 2 ,  

g =  0 .04 3 ,  1̂ =  4 0 m s ,  r a m p  on at  l = 3 0 m s ) .



118

linear function of density, so:

nM( t )  " V ° ) ( 1 + t / t d>
l / q a ( t )  -  l / q a ( 0 ) + g [n M( t ) - n M( 0 )]

(6 .1 3 )

(6 .1 4 )

Typically nj^(0)=2, qa(0 )= 4 , and t ^  600ms. g is the gradient of the straight-line 

trajectories the discharges follow in figure 6 .1 1 , from (njy (̂0 ),qa(0 )) until disruption.

The curve —fitted steady —state radiation model is used and the Kadomtsev sawtooth is 

explicitly modelled. As t  ̂ is chosen large then the plasma will always be close to

steady—state and the radiation model will be valid. Stable operation is obtained within 

the bottom left corner of figure 6 .11  with the disruption boundaries corresponding to

three different situations;

(i) solid line: f = 1 0 —4, 2/1 island only;

(ii) large dashed line: f= 10 2/1 and 3/1 islands included;

(iii) small dashed line: f= 0 .5 x l0  — 4, 2/1 and 3/1 islands.

With slowly varying quantities, other islands (eg 3/2 mode) only become unstable after 

destabilization by the 2/1 mode just prior to disruption and have a negligible effect on 

the stability limits of figure 6.11. With the shorter ramp times of experimental

discharges, qa would be able to reach lower values before disruption, so the curves

given by TRID in figure 6.11 are conservative, and give lower bounds for the density 

limit.

The curves to the bottom right all represent density—limit disruptions. For low 

currents there is no difference between case (i) and (ii), the curves are close to linear, 

and the Murakami parameter goes from M =11.8 at qa= 5 .5 , to M =12.6 at qa= 4 .0 .

With half the impurity fraction in (iii) and consequent reduction in radiation losses, the 

density limit shifts to the right, and M is increased to 15.4, and 16.1, for the same 

q3  values. As the trajectories are made steeper, then both the (ii) and (iii) curves turn 

over and give a disruption limit when the qa= 3 barrier is approached, while (i) shows 

no such limit. Figure 6.12 compares the island behaviour in a simulation including the 

3/1 mode (a), with an identical simulation in which it is excluded (b). To allow

equilibrium conditions to develop the density ramp is started after t= 30ms, t ^  40ms,

and the impurity fraction equals 10“ .̂ Initially nj^p 2 and qa= 4 .0 , while during the

density ramp eq.(6.13) applies with g= 0.043. At the time of disruption in (a), 

q ^  3.29 and njvj=3.25 , while in (b) qa= 2 .37  and njvj= 6.0. With sufficient radiation 

the 3/1 mode is destabilized as in (a) when qa approaches 3, and the combined

cooling due to the radiation and the island in turn destabilizes the 2/1 mode to initiate 

disruption. This difficulty in crossing the qa=  3 barrier is commonly encountered during 

tokamak discharges [72]. For small enough np> the radiation losses are insufficient to
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drive 3/1 unstable and the qa=  3 barrier disappears. This occurs at higher density for 

case (iii) since the radiation losses are less. The near horizontal lines in figure 6.10(b) 

that then appear at high current (qa=2.6 —2.7) and low density (radiation) correspond 

to the current —limit disruptions described in sections 4.7 and 5.2. The stabilizing 

influence of plasma rotation [60] would imply current —limits closer to 2 . 0  and not the

2.6 reported here, but the TRID code gives a satisfactory representation of the density 

limit.

All three cases deviate from true linear behaviour, with M increasing for large 

l/q a . This can be understood in terms of simple energy balance arguments. The 2/1 

mode is destabilized when 4 = 1 , and as line radiation constitutes practically 1 0 0 % of

Prad then

prad = A7r2 Ra2 (n DxlO - 1 9 ) 2 fR 1 ( 6 .1 5 )

where the radiation factor R 1 is

f l  ne (r )  

0 nD

Y n X1*) v oo
1  -- = - r r - Aq A E  .elO rdr
2  n (a) J z j  z j

The input power in figure 6.11 is purely ohmic:

(6.16)

P. l n

2 2 4x Ra rjEdr
0

2 2Att a B E z
/vil

and substituting for electric field E,

Bz ^sp - 3 /2  -1  
T P.//0qaR A(Z) eo %

where the temperature profile factor

T e

0
T (0 )  

L  e

3/2
rdr

gives for 4>:

$ =
q Rnn^ a D o

Bz1019
' J H P i ’/’p r

77 0 1 1sp

(6.17)

(6.18)

( 6 .1 9 )

( 6 . 2 0 )
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In terms of the parameters in eq.(6.12) this gives

M =
yj $sp 11/2

A(Z) f //2p R T3 / 2  
0 1  i eo

( 6 . 21 )

A comparison of the quantities appearing in eq.(6.21) is made for qa= 4.0 and

5.5 with f= 10 4. For both cases just prior to disruption the average Te(0) is 

300±20eV, and Z (= Zeff) is also constant at 1.66. However both p 1 and R 1 vary

slowly giving rise to the curved shape in figure 6 .1 1 , i.e.; qa= 5 .5 : p ^ O . l l ,  

R ,=  1.52X10^; qa= 4 .0 : p ,=  0.076, R ,=  2.62X10**. At lower current the island is more 

deeply embedded in the plasma, and radiation cooling therefore covers a greater

proportion of the outer region before the 2/1 mode feels it's influence and is

destabilized. Temperature profiles are therefore more peaked at lower current prior to 

disruption, which is borne out by the increasing p 1 observed for higher l /q a. The

radiation factor has a complicated dependence on temperature through the impurity 

profiles and the excitation —rate coefficients, but is observed to decrease somewhat for 

increasing current, and this effect dominates p , variation to give the slightly higher M 

at higher current in figure 6.11. Equation (6.21) predicts a y2 increase in M when f 

is halved going from case (ii) to (iii), if all other factors remain constant. Figure 6.11 

does give an increase, but of only 30%. In fact Zeff, T eo p v  and R 1 all vary 

significantly with f, making precise predictions of M difficult.

6.7 E x p e r i m e n t a l  C o m p a r i s o n s  a n d  Discuss ion

A recent paper by Wesson et al. [83] reviews the experimental characteristics of 

JET disruptions, and seems to support many of the ideas presented here, while also 

describing new and unexplained disruption phenomena. Clear evidence is presented for 

a flattening of electron temperatures close to q= 2 resonant surfaces, and this can be 

correlated to a large island growing at this surface. The curves labelled T 0  and T x in 

figure 6.13(a) correspond to radial temperatures measured at the o —point and x —point 

respectively, and show asymmetric islands, as proposed in section 2.4. These islands 

occur at the same time as bursts of m = 2 , n= 1 oscillations.

Prior to JET density limit disruptions, these precursor oscillations occur shortly 

after the radiated power fraction has become equal to one, and radiative contraction 

has begun, as in figures 6.5 and 6 .8 . However prior to, and during the contraction,
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JET radiated power —loss profiles are poloidally asymmetric. Before the point of 100% 

radiation, most power is radiated from plasma interacting with the limiter on the large 

major radius side of the tokamak. As density increases, Pracj increases to equal the 

input power and a "marfe" thermal instability occurs (a toroidally symmetric, but 

poloidally localized region, on the small major radius side, of dense, cold and strongly 

radiating plasma). After a short time (50 —100ms) the marfe decays, the temperature 

starts to shrink aw-ay from the limiter, and the radiation then becomes poloidally 

symmetric as the profiles contract.

The 1 —D nature of the TRID radiation model precludes nothing more than a 

good qualitative description of the earlier features of the asymmetric radiation profile, 

but the radiative contraction stage is well described. Oscillations in Pracj and P0hm *n 

ref. [83] during density ramp discharges resemble those of the simulations of the 

previous section.

nme is;
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F i s u r e  6 .13 (a )  M e a s u r e d  t e m p e ra tu re  p r o f i l e s  on J E T  thro ug h  the  o—p o in t  an d  

x —p o i n t ,  (b )  J E T  seq uenc e  o f  M H D  o sc i l la t ions  p r e c e d in g  a m a j o r  d i s ru p t i o n  at  

9 .2 5 s .  (c)  T e f o r  the d i s ch ar g e  in  (b )  ab ove ,  at  rad i a l  p o s i t io n s  3 . 7 4 m  close to the  

q = 2  resonant  s u r f a c e ,  a n d  at  3 . 9 9 m  o u t s id e  the 2 1 1  i s l a nd .  P r o f i l e  f l a t t e n i n g  is 

o b s e r v e d  d u r i n g  m i n o r  d i s ru p t i o n s  that  i s  cor re la t ed  to su d d e n  g r o w th  in the B r :  

s i g n a l  ( f r o m  183]) .
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The magnetic precursor oscillations are in general very complicated, with a typical JET 

sequence, after radiative contraction and prior to disruption, shown in figure 6.13(b). 

Figure 6.13(c) shows the corresponding electron temperatures signals, at radii calculated 

to be at the resonant surface R= 3.74, and just outside it. It is the 3/1 island that 

first becomes unstable, and after initial growth, locking of the mode rotation occurs so 

that B q disappears and Br begins to grow. It then decays away and a burst of m= 2 

Bfl oscillations is then observed. The associated 2/1 island in turn locks, and then

repeatedly oscillates in size, as indicated by the oscillations in the Br signal. Each 

sudden growth in Br (or h 21) is correlated to a minor disruption, with a rapid

collapse (2 —3ms in JET) of the island temperature, and a small rise in temperature

outside. After a series of such minor disruptions, a major disruption at 9.25s

terminates the discharge.

Although the simulations in this chapter were made with DITE parameters, it is 

found with JET parameters that the island behaviour is very similar to that described 

here. In both figures 6.5 and 6 . 8  the 3/1 mode is the first to be destabilized, as in 

figure 6.13, and the 2/1 mode then shows unstable behaviour, with sharp drops in

Te(r2 i) occurring whenever sudden growth of the 2/1 island is initiated. The number 

of minor disruptions is less in the simulations, but figure 6 . 6  shows that as this 

depends sensitively on the impurity fraction then more or fewer collapses would be

expected with small changes in f. The shape of the Bri signal also differs with the

experimental signal often exhibiting a flat—top phase (sometimes with a moderate 

linear decrease) between periods of more rapid growth and decay, whereas the

simulated signal is more sinusoidal in nature. The experimental minor disruptions also 

have a significantly greater amplitude of Te collapse, and between minor disruptions 

the ramping of Te(r21) is more linear than that of the simulations.

These discrepancies could be due to a variety of factors, including:

(i) The basic simplicity of the ID  TRID model.

(ii) The assumption of constant impurity fraction after radiative contraction. Inclusion 

of a plasma —wall interaction model (eg ref. [81]) within TRID would obviate the need 

for such an assumption.

(iii) Neglect of the deuterium density evolution.

(iv) Neglect of carbon and heavy impurities.

Nevertheless the TRID model gives support to the assertion that minor disruptions are 

due to successive destabilizations of the 2/1 magnetic island by impurity radiation.

New light has also been provided by ref. [83] on the mechanisms of the final
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energy quench and major disruption of the plasma. During the density ramp phase

prior to radiative contraction, steady sawtoothing is generally observed, even for high 

qa [84], while with TRID simulations sawtoothing only begins when qa«3.1 (fig. 5.1). 

A significant reduction in axial Ke(r) (eg. setting a  to «2.5 in eq.(5.8)) is found to be 

the only way, in the transport studies here, of allowing a sufficient peaking of T e and 

j to drive q(0) below one and so initiate high—qa sawtoothing. Before disruption 

though the normal sawtooth activity frequently stops, but during the final energy

quench a m= 1 , n= 1 structure develops that, through what has been described as a 

profile "erosion", leads to flattened, symmetric profiles [83] with a loss of half the

plasma energy. One ms later (typically) a rapid loss of the remaining energy occurs 

and the n= 1 and n= 2 modes rapidly grow to large amplitude, and following this the 

current decay begins. Resolution of the temperature profiles shows no displacement of 

the central region of the plasma, as would be expected with the rigid shift 

eigenfunction of the m= 1 mode. These experimental findings seem to require the 

growth of a m= 1 mode that is locally zero on axis. Another disturbing feature of 

JET discharges is that recent Faraday rotation measurements [85] have shown that the 

axial q value is possibly as low as 0 .8  throughout the normal sawtooth cycle.

These observations are at odds with the current sawtooth theories described in

chapter 4, and in particular with the TRID model for the final energy quench of the 

Kadomtsev sawtooth interacting with the radiation —island cooled outer region. However 

as this work is primarily concerned with influences on the pre —disruptive state, then 

knowledge of the actual mechanism of the final energy quench is not required. It is 

apparent though that the sawtooth oscillation still remains one of the most important 

unsolved problems in tokamak physics today.
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CHAPTER 7 

CONCLUSIONS

7.1 S u m m a r y

Chapter 1 introduced the experimental characteristics of a typical tokamak 

disruption, and discussed the motivations for gaining a greater understanding of their 

causes and dynamics. This disruptive instability is linked to the sudden growth of 

resistive MHD instabilities, so chapter 2 then reviewed the linear theory of tearing

modes and the energy source for their growth. The need for a nonlinear treament 

when magnetic islands exceed the tearing width is highlighted, and the derivation of

the saturated island growth expression is discussed in some detail. Chapter 3 then 

describes how the island growth can be coupled to a ID  transport code, in a similiar 

fashion to the TRINIO code [9]. When flattening of the current due to enhanced

island transport is accounted for, then this gives greater island stability to that provided

by quasilinear effects alone.

There is agreement between the gross features of the current —limited disruption 

when modelled by TRINIO and by TRID. The experimental disruption signatures of 

growing m= 2  magnetic perturbations, and loss of core thermal energy correspond to 

interaction of the sawtooth with a large, cool 2/1 island. In chapter 4 it is shown that 

strong island growth occurs prior to limiter intersection, when the q= 2  resonant 

surface approaches the plasma boundary so that outer region current stabilization 

largely disappears, and when sawtoothing gives rise to steep current gradients inside the 

q= 2 surface. Once the island intersects the limiter, rapid loss of island thermal energy 

increases tjs and island growth accelerates, but more significantly the cooling of the 

outer region restricts the current flowing there, the q= 1 surface expands in radius and 

and subsequent sawtooth collapse overlaps the cold island region to give a thermal 

shortcircuit.

To model the sawtooth explicitly the well known Kadomtsev prescription for the 

post—collapse profiles is used. The trigger for collapse is assumed to be a m= 1 

resistive mode, whose linear growth is reduced by diamagnetic effects. The growth rate 

and size of the perturbation is shown to be small throughout almost all the ramp 

phase, so the linear assumption is good. The sawtooth periods predicted are in the 

range 1.5 to 4.5ms for DITE, and 20 to 50ms for JET, with no heating or radiative
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cooling. There is good agreement for DITE, but the periods are a factor of 2 to 4 

too small to account for typical JET sawtooth periods. The usefulness for 1 —D

transport codes of a minimum energy state model for the post —collapse profiles was 

investigated. The arbitrariness in mixing radius, the strong dependence of sawtooth 

period on rm , and the necessity for considering a redistribution of toroidal magnetic 

energy rendered this approach impractical. If only the average effect (restriction of 

axial current) of the sawtooth oscillation is considered, then good agreement with the

current —limited disruption with explicit sawtoothing is obtained.

Detailed analysis was made of the effect on plasma dynamics of additional modes 

with m >2. Neglect of the 3/2 mode is unjustified. It's stability is strongly coupled to 

the 2/1  mode through the zero —order current, and it's growth provides an additional 

stabilizing influence to quasilinear effects for the 2/1 mode. Inclusion of the 3/2 mode 

induces island oscillations on the resistive timescale of the outer region. Prior to 

disruption when the sawtooth region is close to these two modes then a successive 

destabilization of modes with increasing poloidal mode number occurs. This is the first 

time an inwardly accelerating "shock —front" has been reported in ID , and agrees with 

a full 3D simulation. This supports the validity of the simple model of tearing 

instability discussed here. However the onset of disrupton may be understood in terms 

of the interaction of just two MHD modes, the 2/1 tearing mode, and the sawtooth 

oscillation.

Prior to the current —limited disruption large sawtooth collapses in Te(0) of 20%

are observed, when rm is close to the outer region occupied by large m ^2 islands, and

these could be interpreted as "minor" disruptions. The actual current limit corresponds 

to qa= 2 .6  —2.7. This is due to the effects of the first order term now included in the 

expression for island growth so for example when qa= 3 .3 , h decreases from 0.095a to 

0.055a. Neglect of this first order term is not justified if accurate saturated island 

widths are to be predicted * but the catastrophe model for current —limited models is 

still found to be valid.

The presence of a conducting wall at positions other than infinity is shown to be 

strongly stabilizing, with no disruptions predicted for a conducting wall on the plasma 

boundary. The saturated island width is shown to be independent of the conducting 

wall position when qa ^3.0, and should be the same for both rotating and 

mode —locked modes. Modelling of the current —limit with a constant b/a= °° could 

therefore be invalid with poloidal rotation, but for density—limit disruptions where qa 

is much greater than 3 then the conducting wall can be neglected.
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The effect on island width of a spatially varying electron thermal conductivity was 

examined. The width is largely independent of Ke(r) with no sawtoothing, although the 

position of the island moves outwards with increasing steepness of Ke . Eventually

reduction of Ke(0) allows sufficient peaking of current and initiates sawtoothing. The 

sawtoothing region increases in size with increasing Kg, and the resultant steepening of 

the outer current profile produces a steady growth in h 21. Constant or gradually 

varying Kg(r) give profiles that are most stable to island growth.

The response of saturated islands to additional heating has been modelled and is 

broadly similar for just electron heating only, or else only ion heating. Axial heating 

produces giant sawteeth whose periods agree, perhaps fortuitously, with those in

additionally heated JET discharges. Simultaneously the 2/1 island shifts outwards and is 

much reduced in size. If heating is applied outside the island then the axial value of 

the safety factor may rise sufficiently to remove the 2/1 mode altogether from the 

discharge, although only a small rise in core temperature results. However heating 

applied just inside the inner edge of the island is strongly destabilizing. The resulting 

island can be over 2 0 0 % greater than with no heating, although it moves inward away 

from the outer cooler region, while the increased current permitted in this region 

removes sawtoothing. Therefore even with the larger island present, these discharges 

are not likely to be more disruptive. Clearly though, additional heating should be

preferably axial, to maximize both the thermal energy content of the plasma, and the 

stability of the 2/1 island.

The hypothesis that steep pressure profiles between the q= 2 and q= 1 surfaces

would be ballooning unstable was not proven. However due to the presence of

low—shear regions after sawtooth collapse, ballooning was predicted on axis during 

steady sawtoothing, and at greater radii prior to disruption. The q profiles however 

depend delicately on the collapse dynamics, and the doubts concerning the sawtooth 

collapse must also apply to these predicted ballooning mode unstable regions.

A hydrodynamic —coronal model for the densities of oxygen impurities and the

radiation they emit has been combined with the transport code. This coupling of 

radiation to islands and transport cannot be neglected since idealised temperatures 

showed at least a ten —fold increase in radiated power when the island temperature 

was cooled to become comparable to the temperature of peak radiation power density. 

However an increase in island size with constant island temperature was predicted to

give a modest reduction in radiation loss. With this model, radiation —induced



127

disruption at low current for both a sudden impurity influx, and a linear density ramp 

have been simulated. When the radiated power and input ohmic power become equal 

then radiative collapse begins, and the position of peak loss moves rapidly inward. The 

small, quiescent islands present are destabilized, but disruption is only initiated if the 

radiation losses are strong enough to begin cooling the 2/1 island. If not then island 

oscillations are predicted.

A curve —fit model for the oxygen impurity radiation losses allowed simulations of 

many near steady —state radiating equilibria in the DITE tokamak. Agreement was 

observed between experimental density limits, and the point in the simulations at which 

destabilization and cooling of the 2/1 mode occurred, giving disruption. At high 

impurity concentrations difficulty in crossing the q= 3 barrier was observed since the 

3/1 island was then destabilized, allowing the impurities to penetrate deeper to cool the 

2/1 island. Additional heating prevents radiative collapse and disruption, but once 

heating is removed the plasma subsequently disrupts if the impurity radiation source is 

not also removed. Additional heating outside the q= 2 surface offers the best chances 

for disruption control.

7.2 Conclus ions  a n d  Fu r ther  W or k

The requirements for disruption are:

(i) The growth to large size of a 2/1 magnetic island. This can drive other modes 

unstable.

(ii) Cooling of the 2/1 island by interaction with either a limiter or else a cold plasma 

region cooled by light impurities. This restricts the outer region current near q= 2.

(iii) Expansion in radius of the sawtoothing region until it overlaps with the outer 

modes and the thermal quench occurs.

In the absence of a conducting wall, condition (i) occurs when the 2/1 surface is 

in close proximity to the plasma boundary, while at lower current this sudden growth 

is initiated by radiative collapse of the plasma. The sawtooth is responsible for the

final thermal quench, but the validity of the Kadomtsev prescription with the trigger 

proposed here is still an open question. With present-day knowledge, and with the 

evidence presented here it remains the most complete and useful description for one

dimensional modelling. Should other mechanisms for the final sawtooth collapse (such 

as the toroidal ideal internal kink discussed in chapter 4) eventually supercede the

Kadomtsev model, this does not invalidate the events described here leading to
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disruption, although the precise triggering condition for interaction of some internal 

region instability with the cold outer plasma would no doubt change. Continued 

research into the mechanisms of the sawtooth collapse is a necessity. Questions 

regarding the existence or not of low—shear ballooning unstable regions could also be 

resolved.

The ID simulations presented here with quasilinear saturation of magnetic islands, 

plus an enhancement of radial transport across islands not only models the gross 

experimental features of the predisruptive plasma, but also in many respects agrees 

with the fine details of 3D simulations. The simplicity of a one dimensional teatment 

allows analysis of the effect on disruption of variations in heating and radiation 

parameters. It is possible to stabilize the 2/1 island growth, and prevent disruption, 

with additional heating of the exterior region. A coupling of ray —tracing models of 

ICRF heating to the transport code would allow more precise prediction of the island 

dynamics with additional heating, but it is unlikely the general conclusions would 

change.

A limitation of the code described here is that the deuterium density remains 

constant in time. Implementation of particle diffusion would be a useful extension to 

the TRID code, and although this should not alter the gross behaviour of the islands 

presented here, the impurity radiation profile would then be more accurately calculated, 

and this could be significant. Low Z impurity contamination of some level is 

unavoidable in tokamaks, but only if these levels can be minimized through careful 

wall conditioning will the likelihood of density —limit disruptions be reduced. The 

q — limit near q ^  2 is simply avoided by operating at lower current, and if clean 

discharges are achievable then the qa=  3 limit is also avoidable. The probability of 

disruption is inevitably finite though, and only practical operating experience can 

determine what disruption frequencies are possible.
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LINEAR GROWTH RATE OF THE TEARING MODE

A P P E N D I X  A

In the interior region, x < <xj so ^|'>>k2i/'1, )//">> k2^ ,, and F(x)-x. The 
constant — ̂  approximation is also made [73]. It assumes that within the tearing layer 
t/ ^ i/^O) is constant, equivalent to requiring A'x j<<1. Equations (2.22) and (2.23) 
become

t , ( 0) -xp, ( x) - (t t r)-^;-(x ) (A.l)
y2rfo\ '  M  “ -X^j'(x) (A.2)

Equation (A.2) is integrated across the tearing layer and if this is to be matched to 
the exterior solution then

2 2 
- y  TA
^(0) -xT

- A' (A.3)

The asymptotic (x-*=c) behaviour of tp is assumed to give constant and so allow 
matching to A\ The limits of the integral in eq(A.3) are therefore extended to ±<x, 
and convergence guarantees matching. Once the solution for is known, eq.(A.3) 
determines y. Equations (A.l) and (A.2) are combined, eliminating and a
convenient rescaling is made,

^  -|TR/'>'TA]1/4't,(0)^ z) 

so \{z) satisfies

X’ 1- z 2x=z

and the matching condition becomes

5/4 3/4 1/2*Y T 77 R A
■00
-oc z dz -= A'

(A.4) 

(A.5)

(A.6)

(A.7)
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Equation (A .6) was first solved in ref.[73], but Rutherford and Furth [74] give a 

simple form for the solution,

X = - | j Q [ l - u 2] _1/ 4 e x p ( - i z 2u]du (A .8)

that asymptotically gives constant in the interior. With (A .8) the matching condition 

gives

7

4 /5
- 2 /5  - 3 /5
A R (A.9)

This implies ^/5< <  ] ancj the timescale assumption is verified. Note there is a

typographical error in [21] and [75]; a missing factor of two in the denominator of 

eq.(A.9).

If the integration (A .7) is truncated at z= ±2, then very little error results, so x j  

is set to

xT 2 ( 0 . 5 5 )

It scales as S 2/5 times the shear length and is very small.

( A . 10)
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RECURSIVE INVERSION OF A BLOCK TRIDIAGONAL MATRIX 

Equations (3.36) and (6.2) have the form:

Ai u i - 1  + Bi u i + c i u i+ l “ wi ( B. 1 )

where the A,B,C and w are matrices. A recursive method [32] is used to find u. 

Assume the solutions at adjacent mesh points are related by

u i+i = Xj uj + Yj (B.2)

where X is a matrix, and Y a column vector. If (B.2) is substituted into (B .l) then

u j = - ( B j  + Ci Xi ) “ 1Ai u i _1 + (Bj + Ci Xi ) - 1 (wi -  Cj Yj )  (B.3)

This is identical in form to (B.2) so the following identifications can be made:

Xi-l - -(Bj + CjX^-lAi
Y j . i  -  (Bj + C j X j ) "^(wj  _Cj Yj ) ( B.4)

The boundary condition for (B .l) at i= N is

Anun_ i + Bnun = wn (B •5)

which implies

XN_i = -B n1An

yN-1 = bn1wn ( b - 6 )

Therefore once Xjsj_] and Yjsj_| are known, all other Xj and Yj can be found 

recursively, sweeping down to i= 0 in (B.4). Using (B.2) with i= 0 and the boundary 

condition for (B .l) at i= 0:

A P P E N D I X  B

Bqu0 + C0U1 = w0 (B. 7)
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an equation for u q  is obtained

u0 = (B0  + C0 X0 ) - 1 (w0  -  CqYq) (B . 8 )

Beginning with u q , Xq and Yq, eq.(B.2) can be solved recursively for U j .  The 

procedure described is general for any matrix size, and contains many matrix 

operations. These are performed using the NAG Program Library [35]. In the case of 

the matrices being just simple coefficients, no matrix algebra is required.
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N U M E R I C A L  B I F U R C A T I O N

A P P E N D I X  C

An interesting numerical instability was observed in TRID when the average effect 

of the sawtooth was modelled by a highly enhanced conductivity for r^rm. For small 

enough At the solutions approached a steady state as expected, but for At greater than 

some critical value the solutions bifurcated, after initially appearing to converge toward 

the steady state. Within the iteration at each timestep the temperature and field 

profiles always converge, but between successive timesteps the solutions oscillate and 

after a long time these oscillations settle on two steady solutions. This oscillation 

occurs only when q< 1 somewhere and is an oscillation of the whole plasma radial 

profile but is best observed by examining the behaviour of rsj or Te(0). Figure C.l 

plots the asymptotic values of Te(0) against timestep At. For each value of At, TRID 

is run for a long time (300At) to allow transient behaviour to settle, and then 80 

iterations are graphed. For this run DITE parameters were used, qa= 2.7 and a

1 —fluid simulation was implemented to save computer time , although the 2 —fluid

shows identical behaviour. We see that, as well as the first bifurcation at At«1.3ms, as 

At is further increased, a point is reached at which each of the solutions itself

bifurcates. This ’‘periodic doubling" [76] continues with increasing At, but with ever 

decreasing increment between bifurcation, giving rise to 4,8,16... solutions. Finally for 

At 3.5ms the periodicity disappears and chaos appears. There is some evidence for 

"windows" at At= 4 where there are three separated chaotic bands but more points 

than have been plotted here are necessary to decide.

Bifurcation diagrams such as figure C.l (a) are common for models of population 

growth [76] and a universal charateristic of such period —doubling is the Feigenbaum 

number 6 [77]. If Atn is the timestep at the nth birfurcation whose period 2 n goes 

unstable, then defining 5n as the ratio of lengths of successive intervals between

bifurcation:

5n

At -  At . n_____ n - 1
"At . -  At n+ 1  n

(C.l)

then 6= 4.669 is the limit of 5n as n tends to The question of whether this holds 

for the TRID instability is now examined. Figure C.l(b) has increased resolution near 

At= 3, and gives At2= 2.481.01, At3=  3.07±.01, At4= 3.21 ±.01, and hence 6 3= 4 .2±0.8. 

It appears that the period —doubling here is not inconsistent with the Feigenbaum
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number, although much finer resolution is needed to properly examine the limit.

If the alternative approach of fixing At and increasing Kj is taken, then identical 

behaviour to figure C.l is observed, with bifurcation leading to chaos once again 

characterised by 5. The value of Kj at the onset of the first bifurcation decreases 

with increasing At. The consequence of this for TRID is to set a maximum limit for 

^t, to remove any chance of bifurcation, but as this limit is of the same size as the 

timestep needed to adequately resolve moderate island growth, it is not too 

troublesome.

Figure C.l \z) Bifurcation diagram of T e (0), as a function of At, for 

the sawtooth model with K ^ l O O . (h) Same as (a) but with 

increased resolution.
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DISPERSION RELATION FOR THE M= 1 MODE

A P P E N D I X  D

The outer solution for £, eq.(2.72), must be matched to the inner solution, but 

this is impossible with eq.(2.72), which was found with the reduced equations derived 

to lowest order in the expansion parameter kr/m. The exterior solution for £ must be 

found to the next order, so writing £(r)= £ 0 +  £ , (r) then [52]

t = t

S=0,

t  •
1

t  •s 1

s0 fr
gdr

s , gdr

r<rs

r>r s

where g is given for example in [52,79]. As r-»rs then

(D.l)

i asF 5?o r-»r s

where x = r -r  , and X„ s H

fr
:gdr

r s

(D.2)

(D.3)

Xjq is proportional to the linear growth rate of the ideal internal kink [79]. It is 

eq.(D.2) that gives the matching condition. Coppi et al [52] have done this analytically 

with the cylindrical analogues of eqs.(A .l) and (A .2) valid in the interior region. 

Waddell et al. [53] extended this linear analysis to include dimagnetic drifts, and this 

is now briefly reviewed.

The starting point for this analysis are the two-fluid equations of Braginskii [78]. 

The reduced equations for toroidal current and momentum balance are essentially 

unchanged from before, i.e.:

1  m z (D.4)

-  z .  (vv:xvjz)+z .vxni (D.5)

flj is the viscous drag. Before linearizing eq.(D.5) it is noted that equilibrium quantities
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vary only in r, and there is now an equilibrium velocity in the z direction,

v = zxV«o+v z (D.6)r zo

V- - S r * v

If perturbations have the form ^( r j e - then the electric field part of 

vzo introduces a Doppler shift to to, so Ero/B 0o may be omitted replacing co= iT+cop). 

It is also noted in [53] that the magnetic part of the viscosity cancels with the inertial 

term arising from vzo , and so within the tearing layer eq.(D.5) becomes

y-v-— o
8x

lmy!,»

Mors 1
(D.8)

where mi/ ,/r<  <  0 i/ ,/Bx is assumed, and the viscosity parameter n is defined by

3T.

1 0 m . to. t . l l l
(D.9)

but shall be neglected in this analysis. Equation (D .8 ) is analagous to (A .l)

A second equation valid in the interior comes from reconsidering the reduced 

equation for magnetic flux, but this time using a generalised Ohm's law for electric 

field. First note from the definition (2.44) of B that

, A  k r A- y  = A -  — Az  m 6

or ^-h.A, defining h=z-kr— im

(D-10) 

(D.ll)

Faraday's law can then be written

^  - h .E+h.V<p = h.E (D. 12)

The generalised Ohm's law for E, neglecting viscosity, can be written [53,80]

E -  -vxB + i j j x B  + L *  -  U p ,  + ^ [ ^ j . V n v - L j . V j ]  (D.13)

R - "e”[ V 2jJ  - °-71nb(b.V)Ie - !j;V(b^rjwith (D .14)
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Equation (D.12) becomes, neglecting all terms of order (kr/m)3 and (kr/m).(p/B^),

-  I _ j . w  + ^ [ j 2 +2 , e^ j z ] -  B . V T t (D -15)

Use has been made of the identity h.(cxB)= c.V^, where c is an arbitrary vector. 

Operating on the single fluid momentum balance equation with b. (= B ./B ), and 

neglecting terms of order 7 / 0$ one finds

J.V^ - Bl^zxVp) (D.16)

so the final form for the flux equation is

§f+ v -v<+ + - ” (Jz+2%3rJz] <D -17>

When linearized this becomes

'Z‘ S '** w 1 ' u ^0

where the diamagnetic frequencies are defined by

mp* . oi(j) — --------------------*i ner B s z
(D-19)

mp' 0.71mT'oe e oCi), = ----—— + ---- ——*e ner B er Bs z s z
(D.20)

To find the perturbed pressure p , and temperature Te i , the heat balance equations 

are used, ignoring V.v, and transport terms that prevent further analysis [53]. For 

example ion heat balance implies dpj/dt= 0 , and after linearization it is found that

P =
v P r 1r o

i 7+1 ci). .
v T'

j  _ ri eo
e 1 7+ i u)̂ . (D.21)

With p, and Te i defined, and ^ q=— |^ q' | x, eq.(D.18) gives the second interior

equation, analogous to (A .2 ):

7 .1̂ -v , x ' 1 r 1 rl M0
f f
1

(D.22)
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where

>!* = [1 -2,-e(7-f‘,'*i]]rr . Ti5T+iu*i. Yes7-i"*e (D.23)

At this point it is convenient to normalize time to the poloidal Alfven time

m(pnP)kB
i (D.24)

all lengths to a, to kBza^/m, <p to a^/r^, and we define

_ m K o ’ Ia = ------  ■= q (D.25)

in which case eq.(D.8 ) and (D.18) become

7V>' ' = -ia x^' ' ' s i (D.26)

V
7 1 ; +ia x p = ''li s S i (D.27)

To match to eq.(D.2), these interior region equations must first be written in 

terms of the displacement vector, which is defined by

7 .S = (D.28)

As x is expected to be small we rescale; Xex/ c,, where is the narrow singular 

layer width. 1/7 is also rescaled by ^-s— e , | | V so

¥ - -X£ + 7.Sef , (D.29)

2 2
£ < « = ci .ffsxfr' ' 

77 j
(D.30)

Defining the eigenvalue

x E s 7j e i / V * , (D.31)

then also requiring
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2 ' ' i
X -  -------  (D. 32)

2 2 
a e s 1

implicitly defines the tearing width e lt and eqs.(D.29) and (D.30) can be solved 

[52,53] and matched to (D.2). It is found that

X3/2+ 5 '
r x3/2- 1 '-1 x5/4 X= x H

4 4 8
(D-33)

The growth rate is obtained from X by rearranging eqs.(D.31) and (D.32) so

,3  3 - 1/ 3 2 / 3  /ri n/ \x 7j -  77j7e . 7t -  s «s (D.34)

If the ideal internal m= 1 kink is marginally stable (or stabilized by nonlinear effects 

at small amplitude) then X-»l as the right hand side of (D.33) tends to zero. In the 

absence of diamagnetic effects then with X= 1, eq.(D.34) shows that 7= 7 j ,  the growth 

rate of the pure m= 1 resistive tearing mode.
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