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ABSTRACT

The heavy fermion (HF) systems such as superconducting CeCuZSia,
magnetic NpBe13 and materials with no ordering such as CeA13, are so
named because at low temperatures they behave as very heavy Fermi
liquids. This low temperature Fermi 1liquid state is characterised
by flat f like quasi particle bands near the Fermi level which give
rise to a much enhanced effective mass m*/m = 200, enormous zero
temperature specific heat 1 and low temperature magnetic
susceptibility values, and maxima in the resistivity at low
temperatures.

In Chapter 1 the unusual low temperature behaviour of, and
various theoretical models for, the HFs are discussed. In Chapter 2
an attempt is made to treat the paramagnetic HF impurity cerium
systems as an alloy of occupied and unoccupied impurity sites in
which the occupation of the impurity site has a time dependence.
This time dependent alloy analogy 1idea proves difficult to
implement. However a self energy is obtained which is exact in the
atomic limit. This result is an improvement over the self energy of
Horvatic’ and Zlatic’ (1982) which is only exact in the atomic 1limit
for the symmetric case.

The remainder of the thesis 1is concerned with modelling the
build up of HF behaviour in the ferromagnetic cerium systems as well
as modelling the HF system CeSix. In Chapter 3 the spin degenerate
periodic Anderson model is used to model a system with a strongly
ferromagnetic ground state. The f electron Green function is
calculated via a variational treatment. The numerical calculations
of the f density of states, mass enhancement and Fermi wave vector
show the build up of HF behaviour and the breakdown of the magnetic
state with increasing hybridisation. An effective Kondo temperature
is obtained which differs from the Bethe ansatz impurity Kondo
temperature by a factor of two in the exponent.

The calculation 1is repeated including an exchange interaction

in order to model systems like CeSix, 1.7 < x < 1.83 in which



exchange and hybridisation compete. For certain magnitudes of the
exchange coupling, it is found that the exchange and hybridisation
add as an effective exchange Iinteraction in agreement with the
result of a Schrieffer-Wolff transformation for the Anderson
impurity hamiltonian plus exchange interaction. In general though
the hybridisation and exchange interaction affect the system in
different ways. It is seen that the exchange interaction, favouring
a magnetic ground state, could contribute to the mass enhancement.
For V > 0, the effective Kondo temperature agrees with the Bethe
ansatz impurity result.

In Chapter 4, the error in the exponent of the lattice
effective Kondo temperature 1is shown to be a fault of the
variational approach via an analogous calculation for the impurity.
The fault is identified as the unrealistic assumption that in the
magnetic ground state there is no minority f spin occupation. The
model is then pushed to the weakly magnetic regime to allow for some
small minority f spin occupation and improve the effective Kondo
temperature. @ The dominant self energy diagrams are identified. The
calculated magnetisation shows good agreement with Bethe ansatz
results. The Kondo temperature is identified and shown to be an
improvement over the effective Kondo temperature of the strongly
magnetic model.

In Chapter 5 the model is extended to include crystal field and
spin orbit effects in order to describe magnetic anisotropy. It is
shown that the two band model of a band of 1‘7 doublet states
hybridising with a single conduction band in a lattice with
inversion symmetry cannot describe magnetic anisotropy, contrary to
the results of Thyamballi and Cooper (1985). It is concluded that
the magnetic anisotropy arises as a result of the hybridisation
between the l"7 doublet band and all the conduction bands. The
existence of magnetic anisotropy is shown for a three band model of

l"7 band and two conduction bands.
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CHAPTER 1.

INTRODUCTION.

1.1. PLAN OF ACTION.

The subject of the present work is a model for heavy fermion (HF)
cerium systems, a problem tackled by many theorists and
experimentalists since the discovery of HF CeAl3 in 1975 and the
subject of countless publications. HF systems are metals with

either magnetic (NpBem, Uan , UCd11 and CeSi1 8), non magnetic

(CeAl3 and CeCuz), or super:onducting (CeCUZSiz, UBe  and UPtS)
ground states in which the interactions of the system result in
unusual low- temperature behaviour generally accepted as that of a
very heavy Fermi liquid. The heavy Fermi liquid state occurs for
very low temperatures of order 10-3 times the degeneracy temperature
of normal metals and is characterised by the temperature dependent
Kondo resonance in the f density of states thought to arise from
flat quasi particle bands of f{ character around the Fermi level.
The enormous mass enhancement, huge low temperature susceptibility
and specific heat which identify the HF systems can all be explained
in terms of the temperature dependent Kondo resonance above the
Fermi level. The unusual low temperature thermodynamic behaviour of
the HFs is discussed in Section 1.3.

In all HF systems, one of the elements of the unit cell is a
magnetic rare earth, wusually cerium, or an actinide, wusually
uranium, and has inner shell electrons, 4f for cerium and 5f for
uranium. However not all compounds involving magnetic materials
with inner shell electrons are HF. Transition metals have inner
shell 4d electrons but these electrons are mainly itinerant and
therefore are usually non heavy. At the other extreme, gadolinium
has highly localised 4f electrons and no f weight at the Fermi level
so 1is also non heavy. The HF along with the closely related

intermediate valence (IV) materials lie somewhere between the two,
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in that the moment carrying electrons are partially localised and
partially itinerant so that neither an itinerant nor localised
theory will suffice.

In both the HF and IV systems, the dominant interactions are
considered to be the hybridisation of the flat f band (or d band for
some IV systems) with the conduction electrons as well as a coulomb
repulsion between f electrons on the same site (see Section 1.4 for
particular models). In HF systems, the position of the f 1level is
far below the Fermi level and the hybridisation between f and
conduction states is small. The interactions in the system result
in a very narrow resonance of f character around the Fermi level,
mass enhancement and other general Fermi liquid behaviour. Most of
the f weight remains around the unhybridised f level position, so
that the f electron is only slightly delocalised and the system is
almost integral valent. In the intermediate valence system, the
unhybridised f level position is much closer to the Fermi level so
that in the interacting system the hybridisation reduces the f
occupation considerably and the system is said to be intermediate
valent. The two types of system are classified according to a
schematic f density of states picture in Figure 1.1. The two types
of system, HF and IV, are closely related and similar models are
used to describe them. The aim of any theory must ultimately be to
decribe the full range of materials from the itinerant transition
metals through the IV and HF systems to gadolinium.

In the bulk of the work of the thesis, the systems described
are assumed to have magnetic ground states in contrast to the
situation in very heavy cerium systems like CeAl3 which have non
magnetic ground states. The majority of work on HF cerium systems
has concentrated on modelling the paramagnetic state of these very
heavy systems, as we do in Chapter 2. However any complete model
must be able to describe the transition from the very heavy non
magnetic to the normal magnetic rare earth system. It seems
reasonable therefore to build a model for magnetic cerium systems
and study how, or if, it predicts the build up of HF behaviour. The
theory, therefore, aims to decribe the build up of HF behaviour in
normal magnetic cerium compounds as well as modelling the fully
fledged magnetic HF, C3311.8' The development of a model for the

magnetic systems is useful since the standard HF theories are not

13



able to deal with magnetic order. Most authors concentrate on the
non magnetic sytems.

The present work includes a model for HF paramagnetic systems
in Chapter 2. The model is based on the alloy analogy and attempts
to take better account of coulomb correlation site by introducting a
time dependence to the f occupation of the impurity site. This time
dependent alloy analogy idea proves difficult to implement. However
a self energy is obtained which is exact in the atomic 1limit. This
result is an improvement over the self energy of Horvatic’ and
Zlatic’ (1982) which is only exact in the atomic 1limit for the
symmetric case. A

In Chapters 3 to 5 the magnetic cerium systems are treated.
The starting point is a variational approach for the spin degenerate
Anderson model. The treatment predicts that the magnetic state
breaks down and the mass enhancement builds up as the hybridisation
increases, in accord with the observation that all very HF cerium
systems are non magnetic. However the calculated effective Kondo
temperature has a factor of two wrong in the exponent. The question
of the form of the competition between the R.K.K.Y. interaction and
hybridisation in these HF materials is addressed. Why is it that
the long range R.K.K.Y. interaction which leads to the magnetic
ground states in the transition metals, as well as rare earths
themselves is so apparently ineffectual in the HFs. The variational
calculation is repeated including an exchange interaction in order
to model systems like CeSix 1.7 < x < 1.83 in which exchange and
hybridisation compete. For certain magnitudes of the exchange
coupling, it is found that the exchange and hybridisation add as an
effective exchange interaction in agreement with the result of a
Schrieffer-Wolff transformation for the Anderson impurity
hamiltonian plus exchange interaction. In general though the
hybridisation and exchange interaction affect the system in
different ways. It is seen that the exchange interaction, favouring
a magnetic ground state, could contribute to the mass enhancement.
For V » 0, the effective Kondo temperature agrees with the Bethe
ansatz impurity result.

In Chapter 4, the error in the exponent of the lattice
effective Kondo temperature is shown to be a fault of the model via

an analogous calculation for the impurity. The fault is identified
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as the unrealistic assumption, that in the magnetic ground state
there is no minority f spin occupation. The model is then pushed to
the weakly magnetic regime to allow for some small minority f spin
occupation, as a test case for the extension of the lattice
calculation to the weakly ferromagnetic regime. The dominant self
energy diagrams are identified. The calculated magnetisation shows
good agreement with Bethe ansatz results. The Kondo temperature is
identified and shown to be an improvement over the effective Kondo
temperature of the strongly magnetic model.

In Chapter 5 the model is extended to include crystal field and
spin orbit effects in order to describe magnetic anisotropy. It is
shown that the two band model of a band of I‘7 doublet states
hybridising with a single conduction band in a lattice with
inversion symmetry cannot describe magnetic anisotropy contrary to
the results of Thyamballi and Cooper (1985). It is concluded that
the magnetic anisotropy arises as a result of the hybridisation
between the I‘_, doublet band and all the conduction bands. The
existence of 'magnetic anisotropy is shown for a three band model of
I'_, band and two conduction bands. As an introduction to the HF
problem, a general description of the more popular or successful HF
theories is presented (see Section 1.4) highlighting their
relationship to, and expanding on those which allow most comparison
with, the work of the thesis. Before any structured account of the
theories can be presented, some of the vocabulary of the HF
literature must be defined. Since no theory is needed before
experimental discovery, the experimentally determined thermodynamic
behaviour typical of HF systems is described. To cover all these
areas in a logical manner, the remainder of the introduction is
divided into three areas of discussion headed: History and
Definitions, Experiment, and Theory.

Within the History and Definition section some popular terms of
the 1literature namely: Kondo impurity, Kondo lattice, Anderson
hamiltonian and intermediate valence, are introduced and defined and
their role in the HF scenario is described. Under Experiment, the
experimentally determined temperature dependence of specific heat,
magnetic susceptibility, and resistivity of a few HF systems Iis
reported. Under Theory, some of the better known theories are

presented and a general picture unifying these and the results of
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the present approach 1is described. More detailed discussion is
reserved for those theories which permit most detailed comparison
with the work of the thesis. In particular, we concentrate on those
which permit the definition of a criterion for magnetism as they can

be compared with the present work on the magnetic cerium systems.
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1.2. HISTORY AND DEFINITIONS.

1.2.1. Kondo Impurity.

1975, the year CeAl3 was identified, is recognised as the birth of
the HF problem but in fact much earlier studies of local moments in
L.al_xCexAl2 for x<1, what is now referred to as a dilute HF systen,
revealed specific heats per impurity as large as those for
concentrated systems. This and other similarities between the
thermodynamic properties of the dilute and concentrated systems led
to the hope that the concentrated system could be modelled as a
lattice of impurities, the interactions between these f electron
impurities being negligible. This hope was fuelled by the fact that
the impurity problem had been under investigation for some years and
to a large extent had been solved. For these studies of the
impurity problem the reader is referred to publications such as:
Krishnamurthy et al (1980), Andrei et al (1983), Tsvelick and
Wiegmann (1983) and references therein.

Dilute magnetic alloys in which the magnetic impurity contains
inner shell electrons were originally modelled by the s-d
hamiltonian. The hamiltonian models the interaction between the
conduction band of s type -electrons and the single localised
magnetic impurity f or d electron level lying a few electron volts
below the Fermi level. The model assumes that the dominant
interaction is an exchange interaction between the localised
impurity spin, S, and the spin of conduction electrons in its

vicinity, o(0), so that

Hs_d= lz(:o-skci-o_cko_ - JS.a(0) . (1.2.1)
where ci'o, creates an electron in the free electron state with
momentum k and energy g, - The first term in equation (1.2.1) Jjust
describes a band of conduction electrons. In 1964, J. Kondo (Kondo
(1964)) used the s-d model to describe magnetic impurity alloys
exhibiting both a resistance minimum and evidence of local impurity

moment behaviour. Kondo concluded that the concurrence of these
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phenomena implied the resistance minimum was due to the interaction
of the spins of the localised and conduction electrons and showed
that this behaviour could be described using the s-d model of
equation (1.2.1) with J negative. The negative J makes it more
energetically favourable to align conduction and impurity spins
antiparallel in these systems and is the origin of their non
magnetic ground state. The description of systems of magnetic
impurities in non magnetic metals which exhibit these thermodynamic
properties, that is, a resistance minimum and Kondo screening of the
moment in the ground state, has become known as the Kondo impurity
problem. Also the s-d hamiltonian with J negative is known as the
Kondo hamiltonian.

The Kondo problem has been studied by many authors. However
the most successful treatments of the model have been made using the
Bethe ansatz approach (Tsvelick and Wiegmann (1983), Andrei et al (
1983)). The temperature dependence of the susceptibility,
magnetisation and specific heat have all been determined. At high
temperatures, the thermodynamic quantities behave as though the
impurity moment is free and localised. At low temperatures, there
is a cross over to a strong coupling or Fermi liquid regime where
thermodynamic properties scale with a characteristic temperature T°
(similar to the Kondo temperature TK) and which features the famous
Kondo, or Abrikosov Suhl, resonance in the f density of states. The
characteristic temperature, To, plays the role of a degeneracy
temperature where To« TF and TF is the degeneracy temperature of
normal metals. The very narrow Kondo resonance near the Fermi level
implies some small delocalisation of the f electrons and
consequently the number of f electrons in the interacting system is
slightly less than integral. This limit of near integral valence is
known as the Kondo limit.

All of the above impurity problem properties: the strong
coupling Fermi liquid regime for T < To, the resistance minimum, <n?
z 1, where <nf> is the f occupation and the Kondo resonance in the f
electron density of states have come to be known as Kondo behaviour.
The concentrated systems or HF systems which show similar behaviour

are said to be ‘Kondoesque’.
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1.2.2. Kondo Lattice.

The term Kondo lattice is used to label concentrated f atom systems
which exhibit similar thermodynamic behaviour to the dilute or
impurity systems. These are the ‘Kondoesque’ systems mentioned in
the previous section. In these concentrated systems a flat band of
magnetic impurities lying a few volts below the Fermi level, instead
of the single impurity of before, is interacting with the conduction
band. For example CeAl3 is termed a Kondo lattice system because it
has a screened moment at low temperatures, a Curie Weiss
susceptibility at high temperatures, a low temperature resistance
minimum, and Kondo resonance in the f electron density of states
near the Fermi level, all of which are similar to recognised
impurity properties. There are however differences between the
lattice and impurity systems as 1is evident via the resistance
behaviour. The resistance of impurity systems saturates at low
temperatures to a finite value, while in the concentrated systems it
drops sharply to a very small zero temperature value. The low
temperature resistance behaviour of the concentrated systems is
attributed to the development of coherence between the f impurity
electrons (see Figure 1.4 of Section 1.3).

Throughout the work of the thesis, the terms Kondo lattice and
HF are considered as essentially synonymous. However which of the
Kondo lattice systems merit the title ‘heavy’ depends on the
individual’s definition of ‘heavy’. f‘or example, YbCuAl (Mattens et
al (1980)) is a Kondo lattice system but with a y of 135 mJ/molK?
(see Section 1.3.1) it is light compared to the very heavy systems
like CeAl3 where ¥y = 1620 mJ/molk®. Both systems exhibit Kondo like
behaviour of thermodynamic quantities, and have a sharp resonance in
the f density of states around the Fermi level and so some mass
enhancement. In both cases, the large density of states around the
Fermi level and the resulting mass enhancement are due to the same
mechanism. The description of this mechanism is the root of the HF
problem. It seems reasonable therefore to group together all the
systems in which the heaviness occurs as the result of Kondo type
behaviour instead of splitting them up according to degrees of
heaviness. By this reasoning Kondo Lattice implies HF in what

follows.
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1.2.3. The Anderson Hamiltonian.

In 1961 P.W. Anderson proposed his famous hamiltonian to model a

single spin 1/2 magnetic impurity in a metal (Anderson (1961))

C et b }
Hmp = }:o'ekcko_ga_ + § ef £+ EO-(kacka_fo, + h.c.) + U fi fa f'i £,

(1.2.2)

where ci'o‘ creates a conduction electron in the free electron state
of momentum k and energy e, and fi-_ creates an f electron with spin o
and energy €. on the impurity site. Term by term, the hamiltonian
includes a single band of conduction electrons, a single spin
degenerate f electron impurity level at €. hybridisation between
conduction electrons and the impurity of a strength ka and a
coulomb repulsion between f electrons on the impurity site.

This Hamiltonian is ideally suited to the description of cerium
systems since Ionic cerium has one f electron but within any
material the f occupation 1is between one and zero. In its
application to cerium, the energy €, is a many body energy
corresponding to an excitation from a ar! (5des) configuration to a
4f0(5d558), where € denotes a state at the Fermi level. In the case
of uranium systems, the most likely relevant configurations of the
uranium are f° and f° so that the form of the hamiltonian for
uranium is not certain. Anderson developed his hamiltonian to
describe magnetic impurity systems in which the impurity has inner
shell electrons, that 1is those also described by the Kondo
hamiltonian. In fact, in this the spin 1/2 case, the Anderson
impurity hamiltonian transforms under the Schrieffer-Wolff
transformation (Schrieffer and Wolff (1966)) to the Kondo
hamiltonian of equation (1.2.1) with

J=- . (1.2.3)

The term Anderson hamiltonian has become a group heading for a
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number of hamiltonians with the same basic components as those of
equation (1.2.2). When the full f electron degeneracy is included,
it becomes the orbitally degenerate Anderson impurity hamiltonian.
When the f impurity is replaced with a flat band of f electrons, it
becomes the periodic Anderson hamiltonian and inclusion of spin
orbit coupling and crystal field effects modifies it again. All of
these different improvements to the original model are important in
different limits.

Like the Kondo hamiltonian the Anderson impurity hamiltonian
has been studied extensively. The most renowned techniques and
results for the Anderson impurity hamiltonian are: the
renormalisation group approach (Krishnamurthy et al (1980)), large
Nf (where Nf is the degeneracy of the impurity orbital) approaches
(Coleman (1983), Read and Newns (1883)), and the Bethe ansatz method
(Tsvelick and Wiegmann (1983) and references therein). These
theories predict the observed high temperature 1local moment
behaviour of the HF impurity systems as well as the crossover at low
temperature to the strong coupling or Fermi liquid regime. In this
low temperature regime, all properties scale with Tk and are said to
show Kondo behaviour. The results are in agreement with those for
the Kondo Hamiltonian.

Other well known approximate methods of solving the impurity
problem which compare well with Bethe ansatz results shall be

described later in their generalisation to the lattice case.

1.2.4. Intermediate Valence.

Intermediate valence systems (IV) are generally rare earth systems
where the proximity of the f level to the Fermi level results in
instability of the valence (Lawrence et al (1981)). In these
materials the bonding states 4f"(5d6s)" and ar™ ' (5d65)™! are
nearly degenerate so that the valence is intermediate between the
values of these two configurations. In the HF systems, the f
electron level is sufficiently far below the Fermi 1level to render
the system almost integral valent. In the IV systems both
configurations are present and charge fluctuations between the two

occur on a timescale va. Experiments which probe the system on a
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timescale less than va see both configurations, and greater than
Tvr see the intermediate valence. In terms of a schematic density
of states picture (see Figure 1.1), the hybridisation of the f band
with the conduction band results in incomplete filling of the f

resonance and thus intermediate valence.

1.2.5. The Total Picture.

In ordinary rare earth materials, the picture is of highly localised
4f electrons having well defined moments and Curie Weiss
susceptibility. The hybridisation with conduction electrons is
described by an s-f exchange interaction leading to an indirect
R.K.K.Y. interaction between the f's and a magnetic ground state.
In HF and IV systems the high temperature behaviour is again that of
local moments. However the very important difference between these
and the normal rare earth systems 1is the crossover at low
temperatures to the strong coupling or Fermi liquid regime where the
f electrons appear to exhibit both a localised and itinerant nature.
This behaviour 1is reflected in the 1low temperature resistivity,
specific heat and magnetic susceptibility (see Figures 1.2 to 1.4).
The differences between the HF and IV systems is the near integral
valence, Kondo resonance and resulting large mass enhancement of the
HF not shown by the IVs. Also the non magnetic ground state of the
IV systems is due to the quenching of the Ce3+ ion moments by
valence fluctuations. However 1In HF systems like CeAl3 it is
thought that direct valence fluctuations cannot be responsible for
the non magnetic ground state; rather spin fluctuations arising from
virtual charge fluctuations are responsible, that is an f hops to
the conduction band and then back with a change of spin .

In short HF systems are 4f rare earth or 5f uranium, samarium
systems with almost integral valence often called Kondo lattice
systems. They have ©possible magnetic, non magnetic or
superconducting ground states. At high temperatures they have the
thermodynamic behaviour of normal rare earths but at low
temperatures there is a crossover to a strong coupling regime where
the behaviour 1is described as Kondoesque. The low temperature

Kondoesque behaviour for T < To is similar to the impurity behaviour
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with the additional development of coherence manifesting itself in
the resistivity behaviour.

Any theory of Heavy Fermion systems must describe the
transition from normal rare earth through to the almost integral
valent HF systems, the intermediate valence and on to transition
metals as the f electron level moves nearer to the Fermi level and
the hybridisation takes over from exchange in the R.K.K.Y

interaction.
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Figure 1.1. The variation from trivalence to tetravalence with
f level energy ef. The hatched areas denote occupied density of
states below the Fermi level EF. The intermediate valence of the
materials with e = EF is reflected in the incomplete filling of the
f resonance. The near integral valence of the HFs where €, < EF is

reflected in an almost completely filled f resonance.
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1.3. EXPERIMENT.

1.3.1. Specific Heat.

In a normal metal at temperatures T < /50K, © the Debye

temperature, the specific heat varies with temperature as:
3
C =T + BT, (1.3.1)

where ¥ o« N(O)(1+d), N(O) being the band density of states at the
Fermi energy and (1+A) an enhancement factor due to phonons and
possibly spin fluctuations. A plot of C/T versus T? has a constant
gradient of B and a C/T intercept of j%. At low temperatures the
specific heat behaviour of a HF system differs significantly from
that of a normal metal. For T < 10K the specific heat variation
with temperature of HF systems has so far been seen to exhibit three

main types of behaviour:

a) As in a normal metal but with a highly temperature dependent

v and enormous y(T=0) values:
C = ¢(T)T + BT, (1.3.2)

where for T < 10K, 7 increases rapidly with decreasing temperature.
The resulting enormous low temperature ¥ wvalues have been attributed
to a highly temperature dependent dressed density of states at the
Fermi level (Stewart (1884a)). This type of low temperature, T <
10K, behaviour is displayed in the following compounds:
superconducting CeCuZSi2 above the superconducting transition
temperature Tc= 0.6K (Steglich et al (1979), Stewart et al (1983)),
superconducting UBe 13 above the superconducting transition
temperature ’I‘c = 0.97K (Ott et al (1984b), Stewart et al (1984b)),
magnetic NpBe13 above the magnetic transition temperature 'I'm = 3.4K
(Stewart et al (1984c)), nonmagnetic CeAl3 (Oott et al (1984c),
Berton et al (1977), Benoit et al (1981), Andres et al (1975)) and
nonmagnetic CeCu6 (Stewart et al (1984d)).

A plot of C/T versus T? (see Figure 1.2) shows very similar

behaviour for each of the systems. The specific heats of the
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superconducting and magnetic systems do of course have sharp peaks
at the transition temperatures, so that for temperatures less than
the transition temperatures the C/T behaviour is extrapolated from
the behaviour above the transition temperatures. A plot of C versus
T for each of the five systems listed shows low temperature peaks,
distinct from those due to transitions in the superconducting and
magnetic systems, of differing height and widths for each of these
systems. Attempts have been made to identify the entropy wunder
these peaks with the KBIn(ZS+1) per spin associated with the
quenching of the moments in the impurity problem. In the lattice
case the analogous quantity of entropy would be RIn(2S+1) (Stewart
(1984a)). The peak in the specific heat of superconducting CeCuZSi2
around 3.5K (Steglich et al (1979)) corresponds to RIn2 entropy
consistent with ‘Kondoesque’ behaviour. Less entropy is associated
with the peak at 2K for UBe13 (Ott et al (1984b)). 1In CeAl_ there
are small peaks containing much less than RIn(2S+1) entropy at
0.35K, 2.5K and 6K (Berton et al. (1977)). The peak at 0.35K
correlates well with anomalies in other properties. In conclusion,
although comparison of C versus T behaviour between the systems
shows good qualitative agreement the low temperature details do not

compare well and have yet to be explained.

b) As for a normal metal but with an additional T31nT term and

again enormous values of 7¥:
= 3 3
C = 9T + BTY + ST 1InT. (1.3.3)

The above behaviour is shown by the superconductor UPt3 above the
superconducting transition temperature, Tc = 0.54K, up to 15K with ¥
= 452 mJ/molk® (Stewart et al (1984e)) .This behaviour is
qualitatively similar to that of the non heavy spin fluctuator UAl2
(Trainor et al (1975)) . Doniach and Englesberg (1966) and Brinkman
and Engelsberg (1968) predicted that long range spin fluctuations

would produce such a TslnT term.

c) Identical at low temperatures, T < 10K, to normal metal

behaviour:
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C = 9T + BTI , (1.3.4.)

but as in cases a) and b) with unusually large ¥ values. Behaviour
of this type is shown by U22n17 above the transition temperature, Tln
= 9.7K, up to 13K (Ott et al (1984a)), and UCcl11 above the
transition temperaure T =5.0K (Fisk et al (1984)) . The data for
U22n1 . and UCd11 are consistent with ¥y = 535 mJ/molk® and 840
mJ/mole respectively, after extrapolation to zero.

In all three cases a,b and c¢ the low temperature behaviour is
dramatically different from that of normal metals consistent with
enormous y(T=0) of around 400mJ/ mol’K. When we compare the large
7(0) values with the free electron type formula:

s 2

m k_k
F B

7(0) = ——, (1.3.5)
2,2

nh3
where m. is the effective mass, kr the Fermi wavevector, kB the
Boltzman constant it is seen that the large ¥(0) values of the HFs
can imply large effective masses of order 103 for these systems.
Also when the specific heat is interpreted in terms of the fraction
of electrons in the band that are thermally excited (Lee et al.
(1986)) a characteristic bandwidth temperature To of around 10K is
deduced. Both the enormous mass and characteristic temperature To
which is 10":3 of a typical Fermi temperature are consistent with the
picture that HF systems are very heavy Fermi liquids at very low

temperatures T < To.
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Figure 1.2. The C/T versus T2 behaviour for some typical

HF systems.

1.3.2. Magnetic Susceptibility.

Many studies have been made of the variation with temperature of the
magnetic susceptibilities of HF systems such as: CeCuSi2 (Sales and
Viswanathan (1976)), UBe13 (Troc et al (1971), Ott et al (1984b)),
NpBeu3 (Stewart et al (1984c), UZZn” ( Ott et al (1984a)), UCd11
(Fisk et al (1984)), CeAl3 (Edelstein et al (1974)), CeCu'5 (Stewart
et al (1984d)) and UPt3 (Frings et al. (1983)). The x(T) versus T
plots for the different systems show many similarities, in
particular: a large temperature dependence having Curle Weiss

behaviour at high temperature
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1

x(T) « , (1.3.86)
T+0

large effective moments uBe" > 2;18 (where u;" = gzu:J (J+1),

Hy is the Bohr magneton, J is the total angular momentum of, and g
the Lande g-factor of either the free Cea’ ions or U3+ or Uh ions),
and extremely large low temperature susceptibility x(T) often
described as enhanced Pauli paramagnetic. In fact for CeCu2512
x(T=0) = 8x10 Jemu/mol (Sales and Viswanathan (1976)) and UBe13
x(T=0) = 13.5x10 Jemu/mol (Troc et al (1971)) are seen to be truly
enormous when compared to x(T=0) = 0.5x10™2 of Pu (Smith and Fisk
(1982)) the nearest S5f electron element to being magnetic. The
susceptibility behaviour described above 1is typical of HF systems
and is suggestive of local moment behaviour at high temperatures
crossing over at low temperatures to Fermi 1liquid behaviour (see
Figure 1.3) ,

It appears that a typical HF C(T) and x(T) have been
identified and attempts have been made to establish some correlation
between the two. A popular method of examining any correlation is
to calculate the Wilson Ratio:

nszzx(T=0)

R=——— (1.3.7)
SMBWJ(J+1)

The calculation of R poses the problem of determining the effective
moment ue". At high temperatures x(T) does not follow the Curie
Weiss behaviour expected of simple £! or f£? ( + £2 for uranium)
while at low temperatures some mechanism destroys the Curie Weiss
behaviour making it difficult to choose an effective moment. Using
an approximate Boep (Stewart (1984a)) finds R to increase through
the systems from superconducting to non magnetic to magnetic. R
remains finite throughout indicating that the mechanism which

screens the low temperature moment enhances both ¥(0) and x(0) .
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Figure 1.3. A typical inverse susceptibility plot for the HF
systems. The data shown is for CeAl3 (Andres et al (1975). The

insert shows the low temperature behaviour on an expanded scale.

1.3.3. Resistivity.

Studies of resistivity behaviour with temperature have been made
for: CeCqui2 (Stewart et al (1983)), UBe13 (Ott et al (1983)), UPt3
(Stewart et al (1984e)), NpBe13 (Stewart et al (1984c)), U22n1_, (ott
et al (1984a))}, UCd11 (Fisk et al (1984)), CeAl3 (Ott et al (1984c))
and CeCu6 (Stewart et at (1984d)). With the exception of UF’t3 which
has normal superconductor p(T) behaviour, the HF systems have
similar p(T) behaviour with a large maximum in p(T) at low
temperatures, pmax(T) = 120pQcm to 250uQcm, and a decrease in p(T)
at low temperatures due to the development of coherence. In some of
these systems for example CeAl:3 (Andres et al (1975)) and CeCu2512

(Lieke et al (1982)), the expected p(T) « AT® low temperature
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behaviour of a Fermi liquid has been seen.
In particular the p(T) versus T behaviour of CeCu2512 and

UB are very similar with peaks at low temperature and shoulders

e
at 1:Ialigher' temperatures. The three magnetic systems are again
similar with a flat temperature dependence for T > 100°K and sharp
falls below critical temperatures. The resistivities of CeAls,
CeCuS, show maxima at low temperatures and flat temperature
dependence above 100°K. Figure 1.4 shows a typical HF resistivity
variation with temperature.

Magnetoresistance measurements for UBe13 (Stewart et al
(1984b)) show large negative values increasing in magnitude with
decreasing temperature and increasing field. The temperature
dependence of AR/R is similar to that of C/T and the authors
conclude that the same mechanism causes the low temperature y(T) and
p(T) behaviour.

CeAly 1
electrical resistivity ]

Tk

Figure 1.4. A typical resistivity versus temperature plot for
the HF systems. The data shown is for CeAl3 (Ott el al (1984c) and
Andres et al (1975)).
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1.4. THEORIES OF HEAVY FERMIONS.

Many theories have been proposed to describe HF systems, often based
on impurity problem approaches, but so far the lattice problem has
remained unsolved. The aim of any theory is to describe the high
temperature local moment behaviour as well as the crossover at low
temperatures to the strong coupling or Fermi liquid regime. In low
temperature regime the thermodynamic behaviour of the lattice is
similar to the low temperature behaviour of the impurity. However
there 1is the additional problem in the lattice case of the
development of coherence. The coherence manifests itself in the
resistivity behaviour.

There are in general two main starting points in any treatment
of the problem: either to work with a model hamiltonian, usually the
periodic Anderson hamiltonian for cerium systems, or to attempt a
self consistent band calculation for each system. The results of
the two approaches for cerium compounds can be compared via their
prediction for the f electron density of states. The band
calculations, despite yielding good Fermi surfaces, predict a narrow
f band of width around 1leV with its lower end pinned to the Fermi
level. Although the band is narrow it is still far too broad to be
the Kondo resonance of the low temperature Fermi 1liquid. Also the
density of states arising from this band at the Fermi level is not
in agreement with the results of X.P.S. and B.I1.S. experiments which
measure f weight at €, and ef'_ + U where sf is the f level energy.
The f weight around these energies as well as the Kondo resonance
around the Fermi level can be understood on the basis of the
Anderson hamiltonian (Gunnerson and Schdnhammer (1983)). The
problem of resolving the two approaches remains and is discussed in
Section 1.4.1.

In the following section some account is given of a few of the
better known attacks on the HF problem, concentrating on those
treatments which allow most comparison with the work of the thesis.
Most workers have concentrated on the HF cerium systems modelling
these by either the periodic Anderson model or a lattice
generalistation of the Kondo hamiltonian. From these two starting
points several approaches have led to an effective hamiltonian

describing a band of non interacting f electrons at renormalised f
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level energy hybridising via a renormalised hybridisation with a
conduction band. This effective hamiltonian describes quasi
particle bands near the Fermi level, much narrower than those of the
band calculations, and is consistent with a low temperature Fermi
liquid description. All of these approaches are therefore grouped
together for discussion in Section 1.4.1 along with a mention of
band calculations. Other treatments such as perturbation methods,
the alloy analogy and, for the impurity, the large Nf treatment of
Gunnarson and Schénhammer are discussed separately. In all cases an
attempt is made to point out the successes and weaknesses of each

theory as well as the relationship to the present work.

1.4.1. Quasi Particle Bands and Fermi Liquid Pictures.

Throughout the introduction the HF systems have been referred to as
Fermi liquids at low temperatures. In Landau Fermi liquid theory a
strongly interacting system is viewed as a system of quasi particles
having a distribution function equal to that of a non interacting
system. The quasi particles are characterised by an effective mass,
enhanced over the free electron mass, and an effective interaction
parameterised by an infinite set of molecular fields quantified by
Landau parameters. At temperatures less than the degeneracy
temperature, TF, a normal metal can be described as a Fermi liquid.
It is now generally accepted that HF systems are also Fermi liquids
with degeneracy temperature, To, a couple of orders of magnitude
smaller than those for ordinary metals that is To =~ 10K to 100K.

Suppose we choose our model hamiltonian as the periodic
Anderson hamiltonian. The hamiltonian is suited to the description
of HF cerium systems since ionic Ce3+ has one f electron per cerium
but in compounds the hybridisation with the conduction band allows
the possibility of <nf>, the f occupation of a site, less than one.
From a general diagramatic derivation of the f electron Green
function for the periodic Anderson model we can show that if the HF
are very heavy Fermi liquids then in the ground state they must have
quasi particle bands around the Fermi level and therefore a
resonance in the density of states near the Fermi level.

The spin degenerate periodic Anderson hamiltonian is written:
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oo } b oaef
H - E:o.ekckO'ckO' * E:o_efka‘ka' * §V(Ck0’fk0'+fk0'ck0‘)

+ Uf-‘:ff+f . (1.4.1)

where ci'o_ and fi-c' create a conduction electron and an f electron in
a state of momentum k and energy € and €, respactively. Term by
term the hamiltonian H:au includes a conduction band with
dispersion e, 2 flat band of f electrons energy €., a hybridisation
term allowing hopping between conduction electron and f electron
states and a strong on site coulomb repulsion between f electrons
which makes double occupancy of an f site unfavourable. In the

hamiltonian H: the hybridisation, V, is assumed real and momentum

independent asattzsual. Also the orbital angular momentum of the f
level 1is neglected so that Nf, the f level degeneracy is Jjust the
spin degeneracy of two. In reality crystal field and spin orbital
coupling effects, which are not included here, split the degeneracy
of the f level. However iIin cerium compounds the lowest energy f
states in the ground state are a I‘7 doublet so that treating the f
level degeneracy as two is not unreasonable.

If both the coulomb interaction and hybridisation are treated
as perturbations then a completely general diagramatic derivation of

the single particle Green function gives:

foc'(k’E) = (1.4.2)

where everything that is unknown about the interactions in the
system is stored in the proper self energy Zno'(k,E)ex. If the HF
metals can be described by the periodic Anderson hamiltonian H‘l\att,
and if they are heavy Fermi 1liquids at low temperature then they
must have a Fermi surface and therefore the imaginary part of the
self energy Z”w(k,E)ex must be zero at the Fermi gnergy. Therefore
around the Fermi energy the self energy can be expanded in a Taylors
expansion about the Fermi energy to give a Dyson equation for the

quasi particle energies E. Here the k dependence of the self energy
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near the Fermi energy is neglected in favour of the energy

dependence so that:

~ ~2
(E ef)(E - ek) =V, (1.4.3)
where
- sf‘ * szc'(o)ex , dszO'(E)ex
ef‘ = , and zrro-(O)ex =
1 -2z (0) dE E=0
f£ffo ex _
(1.4.4)
and
V2
Ve — (1.4.5)
- ff‘O"(le

Equation (1.4.3) implies that near the Fermi 1level the quasi
particle bands are those of an f level of renormalised energy Ef
hybridising via renormalised hybridisation V with the conduction
band. A completely general derivation of this form shows how a self
energy which has the correct properties for a Fermi liquid can give
rise to quasi particle bands around the Fermi level.

There are several different methods which start from a periodic
Anderson hamiltonian and 1lead to a renormalised non interacting

Anderson hamiltonian which for spin degeneracy only has the form:

H =zec+c +25f+f +z\7(c+f ot o ). (1.4.8)
eff k kO ko £ kO ko k0" kO© kO kO
ko ko’ ko

The eigenfunctions of this effective hamiltonian form the quasi
particle bands near the Fermi level of equation (1.4.3). The model
is therefore consistent with a Fermi 1liquid picture. The methods
which lead to an effective hamiltonian He” include the Gutzwiller
variational approach to the orbitally degenerate periodic Anderson
model by Rice and Ueda (1985), the functional integral approach for
the lattice generalisation of the Kondo model by Read, Newns and
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Doniach (1984), and the slave boson approach of Coleman (1984). The
size of mass enhancement predicted by these models and width of the
resonance depends on the actual behaviour of the real part of the
model self energy around the Ferml level. The corresponding self
energy of the band calculation deals with the Fermi surface very
well but does not have enough energy dependence to flatten the bands

sufficiently for a Kondo type resonance.

a) The Gutzwiller variational method (Gutzwiller (18965)),
originally applied to the Hubbard model, is extended by Rice and
Ueda (1985) to treat the two band orbitally degenerate Anderson
model in the Kondo 1limit. The method amounts to proposing a
variational ground state wavefunction for the system which contains
an operator projecting out doubly occupied f electron
configurations, and another fixing the number of f electrons. The
energy of the ground state is then minimised. The main difficulty
of the Anderson or Hubbard hamiltonian, that of taking adequate
account of the many body coulomb correlation, is treated here via
the projection operator which makes it unfavourable to have many
doubly occupied f orbitals in the ground state. The orbitally

degenerate Anderson hamiltonian is written:

T + Fe ot
i z 8kck0'ck0' * Z €:ffklO"fkld" * Z Vkl(cko’fk10‘+fk10’ck0‘)
ko’ klo klo

Yy n. n.,_,

2 i ivve’
i

E

o1’ o’

(1.4.7)
where c+ creates an electron in conduction state of momentum k spin
o and fk10' creates an electron in f state of momentum k and energy
€, which is a bloch sum over sites i of f states with z component of
orbital angular momentum 1 around the site i. The variational
wavefunction is written as:

> =P P [y > (1.4.8)

where P and Pnf are operators which remove double occupancy and fix
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the number of f electrons respectively. The operator P is treated
by renormalising all hopping processes by a factor q(nf, L) where Nf
= 2L 1is the degeneracy of the f electron orbital. Since a hopping
process involves a factor of Vil then the hybridisation, Vkl, is
renormalised by q'’2. In the U infinite limit, q is given by the
ratio of occupation number factors for the correlated and
uncorrelated wavefunctions. In the correlated wavefunction an fw
electron can hop onto a site only if there are no f electrons on the
site whereas in the uncorrelated wavefunction there need only be no

lo electrons on the site. Therefore

q = , (1.4.9)

where n is the number of f electrons and n. is the occupation of f
electron state with z component of orbital angular momentum 1 and
spin s. The operator Pnf which fixes the number of f electrons is
treated by introducing a chemical potential K, so that the energy to
be minimised is that of the effective hamiltonian:

st _ oot st 7 (cte et
Hef!‘ z € ko xor +L (8 uO‘)kaO'fkl(T L vkl(ckcfklo'+fklo-ckc')
ko klo klo
where V = 1/2(1'1 L)V .
k1 k1

(1.4.10)

It is easily seen that when only spin degeneracy is included, that
is L = 1, the effective hamiltonian Hi?i is of the form of H___ of
equation (1.4.6) and is consistent with the low temperature Fermi
liquid picture of quasi particle bands around the Fermi level.

For L # 1 the authors diagonalise H’. by assuming V_ to be
a constant. However within this approximation 1 is not conserved in
the hopping processes and only the symmetric combination of orbitals
is hybridised and effectively L = 1. The authors calculate a
characteristic energy which has a form similar to the characteristic

energy, the Kondo temperature, of the impurity problem:
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(2L - 1)(?:xF - e - 1)

212y

(1—nf ) « e , (1.4.11)

where n is the number of f electrons and (exF - g, - 1) the depth
of the bare f level from the Fermi level. For L = 1, that is spin
degeneracy only, the exponent differs from that of the Bethe ansatz
Kondo temperature by a factor of two. However as the degeneracy
tends to infinity it agrees with the Kondo temperature of Bethe
ansatz results.

The authors also calculate the magnetic susceptibility and find

that for L = 1 the paramagnetic state is unstable towards magnetic
order. Only in the mixed wvalence regime, that 1is large
hybridisation, or for large degeneracy and not too small

hybridisation is their paramagnetic state stable. The criterion for
the stability of the paramagnetic state is:

('ekF- €, - 1)

2L = 2 (1.4.12)
LV

The result agrees with the criterion for paramagnetism of Read et al
(1984) and Coleman (1983) only in the respect that large orbital
degeneracy stabilises the paramagnetic state. The result 1is too
crude to be applied to real systems.

The Gutzwiller treatment of the orbitally degenerate periodic
Anderson hamiltonian, then, gives quasi particle bands near the
Fermi level and a Kondo temperature but a criterion for magnetism
which disagrees with that of Read et al (1984) and Coleman (1983)
(see (b) and (c) of this section). The Gutzwiller treatment helps
clarify the relationship between the HF Fermi liquid description and
that of the prototype Fermi 1liquid %He. In the Gutzwiller approach
to the periodic U infinite Anderson hamiltonian doubly occupied f
configurations are projected out while keeping the f occupation
close to one. The model is analogous to the almost localised Fermi
liquid model for SHe of Volldhart (1984) where there is a small
number of doubly occupied and empty sites. Wwhen °He is studied

using Landau theory the observed divergence of the static
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susceptibility can support the claim of Stoner theory that the
system is near a ferromagnetic transition. However this divergence
in the susceptibility can also mean that m*/m is diverging
indicating that the spin carrying systems are becoming localised.
By applying the Gutwiller variational method to 3He Vollhardt (1884)
finds solutions which indicate °He is almost localised rather than
almost magnetic and that spin fluctuations are important but are a
result of approaching localisation. The claim is that the HFs and
SHe are almost localised Fermi liquids. However comparisons between
the two systems should be made with care due to the lack of Galilean
invariance in the HF's as well as the presence of the heavy electron

charge.

b) The functional integral approach of Read et al (1984) to the
lattice generalisation of the Kondo model also results in an
effective hamiltonian of the form of equation (1.4.6). The starting
point is the SU(N) Kondo model (Cogblin and Schrieffer (1969))
extended to the lattice:

+ - 4
= zg ckc + z c) ,cC lf f (1.4.13)
k

where ci' creates a conduction electron in a free electron state of
momentum k and f‘i-l , '1.'1 creates an f or conduction electron
respectively at site i with z component of orbital angular momentum
1. The authors neglect the spin of the electrons for simplicity.
To find the large Nf limit in the non magnetic regime the properties
of the ground state are calculated via the partition function as in
the analogous impurity calculation (Read and Newns (1983)). The
resultant effective hamiltonian appearing in the partition function
definition is a one ©body hamiltonian. Within the static
approximation this effective hamiltonian 1is, once again, a zero
correlation periodic Anderson hamiltonian with renormalised
hybridisation and f 1level energy as in equations (1.4.10) and
(1.4.8). The renormalising parameters are determined self
consistently to minimise the free energy and fix the number of
electrons in the conduction band, as in the Gutzwiller treatment of
Rice and Ueda (1985).
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In the limit Nf—» o the authors find that the system behaves as
a lattice of impurities with intersite effects coming in at order
1/Nf. For this large Nf they calculate a Kondo temperature equal to
that of the impurity case:

1
TH"™ = D exp| - , (1.4.14)
K

podJo

where po 1is the conduction band density of states and D is the
energy difference between the chemical potential and the effective
bottom of the band. To determine the stability of the non magnetic
Kondo ground state the energy of this ground state is compared with
that of a ground state fully magnetised via the R.K.K.Y.
interaction. The Kondo ground state is considered stable provided
its energy 1is less than the corresponding magnetic ground state,
that is provided

1 (poJo)?
expl- — | > A—, (1.4.15)
poJo N

where A is a constant of proportionality which depends on the band
structure and the type of magnetic order. The criterion for non
magnetic Kondo ground state of equation (1.4.15) agrees with that
derived by Coleman (1983) and shows that for finite Nf the stability
of the nonmagnetic ground state is greatest for large Jo. Also the
critical coupling, Jo, for a non magnetic ground state tends to zero
as the degeneracy tends to infinity, in agreement with the result of
Rice and Ueda (1985).

Since both exchange and hybridisation can polarise the
conduction band then both these interactions contribute to the
exchange interaction of equation (1.4.13). In Chapter 3 the
competition between these two Interactions and their effect on the

criterion for magnetism is examined.
c) The slave boson technique is another large Nf treatment of

the Anderson hamiltonian in which the end result is an effective one

body hamiltonian of the form of equation (1.4.10). The
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thermodynamic properties are calculated as a series in 1/Nf and then
the 1limit as Nf tends to infinity is taken. The starting point is
the orbitally degenerate Anderson hamiltonian in the U infinite
limit. In the U -5 o limit, double occupancy of any impurity site is
strictly forbidden by placing a slave boson on each f site so that

the hybridisation term becomes:

- b oot
H!_c =‘/: Z Vim(k)(cimkbi fim + h.c.), (1.4.18)
N ikm
where Cimk creates a conduction electron in a state of energy e _on
a site i with z component of angular momentum m, about this site and
fim creates an f electron in a state of energy e, on site i with z
component of angular momentum m, about this site. The mixing term
ch of equation (1.4.16) only includes hybridisation between
conduction and f impurity electrons of the same angular momentum, an
approximation necessary for the method. The resriction to
hybridisation between electrons of the same angular momentum means
that intersite effects arising from an f hopping onto the conduction
band and back with a change of angular momentum are neglected. This
approximation is possibly one of the reasons that the lattice
appears to be equivalent to a lattice of impurities to leading order
in 1/Nf.
The next step is to conserve the operator

= bt
Q; = blb, + n (1.4.17)

i £i’

When Qi is set equal to one, the conservation of Qi ensures that
n“., the number of f electrons on site i, is 1less than one as
required. The condition Qi = 1 1is implemented in different ways by
Coleman (1984) and Read and Newns (1984) for the impurity problem.
Coleman calculates the temperature dependence of %(T) and C(T) and
the f spectral function. He obtains the development of a Kondo
resonance with small spectral weight above the Fermi level however
the approximations of the method produce spurious results at low
temperatures. Read and Newns (1984) impose the condition Qi = 1 by
introducing a mean field for the boson and using functional integral

techniques. They obtain a finite theory at low temperatures. The
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method is equivalent to replacing the operator b of equation
(1.4.17) by a constant, beo, which renormalises the hybridisation so
that V(k) = bo V(K). The constraint Qi = 1 is expressed as an
integral and in the mean field is evaluated at its saddle point.
This brings in a second parameter which plays the role of a lagrange
multiplier and shifts £, to E‘_. In the mean field theory it is
shown that the limit Nf > o must be taken firstly maintaining Q/Nf
constant, and then setting Q/Nf= 1/Nf at the end of the calculation.
When this proccess is carried out the mean field theory produces
finite zero temperature y and y as well as the correct exponent in
the Kondo temperature.

The mean field approximation has been applied to the lattice by
Read and Newns (1984) and results in a renormalised U infinite
Anderson hamiltonian with

V - boV bo

!
—
|

n and € > ¢ (1.4.18)
Iy £ f

a result equivalent to large Nf Gutzwiller and functional integral
results.

All of the effective hamiltonians resulting from the Gutzwiller
method, functional integral techniques and the slave boson approach
are equivalent and yield narrow f quasi particle bands near the
Fermi level which are consistent with a low temperature Fermi liquid
description.

The alternative approach to the use of a model hamiltonian is
to attempt a self consistent band calculation for a particular
system using the 1local density approximation. Band calculations
have been used successfully to determine the ground state properties
of transition metals and give reasonable cross sections, effective
masses and band structures. There have been many calculations of
this type performed for HF systems. Calculations for CeCuSi2
(Jarlborg et al (1883)), UBe13 (Takegahara et al (1985) and CeSn3
(Koelling (1982)) give good Fermi surfaces all of which are in good
agreement with one another, the main feature being a "wide" (=leV) f
band around e‘_. These results do not, however, agree with the
results of photo emission or inverse photo emission experiments for
cerium compounds which show peaks in the f density of states at £,

and €, + U as well as a very narrow resonance (of width « 1eV)
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around the Fermi energy. These density of states features at €, and
e, + U are built into the Anderson model and their absence in the
band calculation results is attributed to the 1linear density
approximation not accounting well enough for the strong f electron
correlation, a prominent feature of the Anderson model. It would be
comforting if the differences between these results could be
resolved allowing the band calculations to take their proper place

as a basis for many body calculations.

1.4.2. Other Techniques.

There are many other techniques used to tackle the Anderson
hamiltonian. However we choose to discuss only the perturbation in
U treatment developed by Yoshida and Yamada and the application of
this method by Horvatic’ and Zlatic’, as well as the alloy analogy
approach and the variational method of Gunnarson and Schonhammer.
The alloy analogy and perturbation in U treatments are discussed in
Chapter 2 in the context of the work of the thesis. The method of
Gunnarson and Schonhammer is used to treat the impurity Anderson
model for dilute cerium systems but a short description of the
method is included here because of 1its success in fitting XPS and
BIS measurements of concentrated systems.

The method of Gunnarson and Schoénhammer relies on the
degeneracy of the impurity orbital Nf being large and gives exact
results in the limit Nr infinite. However even for Nf as small as
six the results are in very good agreement with the Nf > o results.
The Anderson impurity hamiltonian is written with angular momentum
as a good quantum number. Here the problem of generalising to the
lattice hamiltonian is the same as for the slave boson technique,
that is, only hybridiation between conduction and impurity states of

the same z component of angular momentum can be included.

H =
GS
v

i T + de + T ( V( +
Y l[lc e efz[;vwv + [ e)lllulllev + h.c.)de +U vanu ,

EV £V
1 vy

(1.4.19)

nM =

with
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» 2 = 2 ’
§ ViaViar (e - ) = E |V, |"8(e - € )3m’ = |V(e) | “Sm’
(1.4.20)

where wiv creates an electron in a state of energy € and angular
momentum v, about the impurity site, and wi creates an f electron
with energy €, and angular momentum v. Here v = (m,c) 1is the
combined index for orbital and spin degeneracies since these
degeneracies are equivalent when the model assumption of equation
(1.4.20) is made.

To compare with BIS results the single particle f electron

Green function for E > 0, defined as:

1 I
g (z) = < ¢ol wv l/'v | ¢o> , (1.4.21)
z + Eo(N) - H
is calculated. Here |¢°> and Eo(0O) are the exact ground state and
ground state energy of the system respectively. The authors

calculate this ground state, ground state energy and Green function
via an approximation which is exact in the Nf infinite 1limit. By
acting on the vacuum repeatedly with HGS new states are formed. The
ground state is chosen as a linear combination of those which have a
non zero coupling to the ground state in the limit Nf infinite. The
Nf infinite limit is taken so that NfV remains finite. In this way
the variationally determined ground state is ensured of being an
eigenstate at least for N,« > o. To calculate the Green function of
equation (1.4.21) a complete set of basis states is inserted on
either side of the operator so that

1 . oot 1
| ><Jl v | ¢>

1 . .
& (2) =1§ < ¢°|¢v|1 >< i

z + Eo(N) - H
(1.4.22)

where |¢;> and Eé(N) are the approximate ground state and ground
state energies calculated in the Nr infinite limit. Normally a very
large basis set {|i >} 1is required to evaluate g (z) but in the Nr
infinite limit the basis set is small. This basis set is determined
by repeatedly acting on wi |¢:> with Hcs to form new basis states
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and then keeping only those which have a non vanishing coupling to
wi|¢;> in the Nf infinite 1limit. In this first order calculation,
the problem reduces to the inversion of a simple matrix. However in
more accurate calculations where wavefunctions coupling with O( 1/Nf)
are included in the basis set the 1inversion must be done
nunmerically.

The authors have calculated f electron density of states
showing peaks around €, and e, + U as well as a narrow Kondo
resonance which are in very good agreement with experiment. They
are also able to calculate XPS core spectrum and found that <nf> >

0.7 and A = 0.1eV for cerium systems such as CeN12 and CePda.
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CHAPTER 2.

THE ALLOY ANALOGY.

2.1. THE ADVANTAGES AND DISADVANTAGES.

The alloy analogy (AA) treatment of the the Anderson hamiltonian is
generally used as a model for the IV systems. However the basic AA
idea can equally well be applied to the almost integral valent HF
cerium systems. The system is treated as an alloy of Ilf‘1 and 4f‘°
ions. Fach site is either occupied by one or zero f electrons in
analogy with an AB alloy which has either an A or B atom on each
site. Consider an up spin f electron in the system. It sees an
atomic potential of €. where e, is the f level energy, at site i if
this site is empty or e, + U if the site is occupied by a down spin
f. Within the AA approximation the up spin f electron is described
as moving in a static random potential taking values of €, with
probability (1 - <nf¢>) and e+ U with probability <n_y>.

The AA approximation has several advantages and disadvantages.
It is exact in both trivially soluble atomic, V = 0, and =zero
coulomb correlation limits. Also it has been applied to the
periodic Anderson hamiltonian as a model for IV systems and the
resulting magnetic susceptibility and specific heat are in very good
agreement with experiment (Leder and Czycholl (1979), Seki (1980),
Czycholl (1982), Czycholl and Leder (1981), (1982)). The AA
therefore seems to be a good starting point for a model of the
almost integral valent HF systems in which the hybridisation is
known to be small. Unfortunately the AA cannot describe a Fermi
liquid, there is no Fermi surface. Also 1its treatment of the
coulomb correlation is not sophisticated enough to allow the
description of the many body Kondo resonance of the HF systems. The
lack of a Fermi surface in the AA treatment is a problem for both

the IV and HF systems. However the correct treatment of the coulomb
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correlation is more important in the HF systems since the many body
Kondo resonance is the origin of all the strange HF low temperature
behaviour. In the IV materials the Kondo resonance, and hence its
effect, is swamped by the resonance at e, (see Figure 1.1).

The treatment of the coulomb correlation is lacking in the AA
because the model does not account for the fact that the ‘type of
atom’ is not fixed for all time as in a genuine alloy, but can in
fact change with time as an f hops off into the conduction band. In
the following section an attempt is made to deal with this failing
via a time dependent AA (TDAA). Within the new TDAA the f electron
spins are not frozen. The f electron occupation of any site has a
time dependence and the static approximation of the AA is 1lifted.
With the introduction of this time dependence it is proposed that

the coulomb correlation can be more adequately treated.
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2.2. THE TIME DEPENDENT ALLOY ANALOGY.

In this section a prescription for a TDAA 1is discussed. The
treatment is applied here to the Anderson impurity hamiltonian and
results in a modification of the straightforward AA self energy.
The 1ideas can equally well be applied for a treatment of the
periodic Anderson model where an analogous self energy is found when
the single site approximation is made. The original aim of the
present calculation was to determine the form of the modified self
energy for the impurity and study its success via comparisons with
the exact Bethe ansatz impurity results. If the comparison was
good, the analogous self energy of the lattice case could then be
calculated with a certain amount of conviction. In the present
chapter a TDAA Iimpurity self energy is found which has the
attractive feature of the exact atomic 1limit. This self energy is
the origin of a sharp resonance near the Fermi level in the f
electron density of states and reduces to the result of Horvatic’
and Zlatic’ for the symmetric Anderson model. Unfortunately the
derivation of this self energy is not rigorous, so that we resolve
simply to highlight its advantages of over the perturbation theory
result of Horvatic’ and Zlatic’(1980) (1982).
The spin degenerate Anderson impurity hamiltonian is written:

Cpeof } }
H:mp —kg € Cxoxo § €fofo +k§ ViCuole * Boc) + U fif#if"

(2.2.1)

where ci’o, creates a conduction electron in a state of energy g
momentum k, and spin o and fi creates an f electron in a state of
energy € and spin o on the impurity site. In the following the
hybridisation is assumed to be real and independent of momentum. In
this chapter the discussion concentrates on the proper f electron

retarded self energy ZNO_(E) which is defined in the Dyson equation:
_ RO o
G“_a,(E) = G“_O_(E) + foO'(E)szO'(E)foO'(E) , (2.2.2)

where G__ (E) is the f_ electron propagator and G°_ (E) is the
£r0 o ffo

unperturbed f‘o_ electron propagator when the unperturbed hamiltonian
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is the =zero correlation hamiltonian. From equation of motion

methods
1
G;“T(E) = . (2.2.3)
E - €. - A(E) + iA(E)
where

v 2
A(E) -~ iA(E) = ¥ (2.2.4)
kK (E - ck)

In the following, a constant unperturbed conduction band density of
states is assumed so that A(E) is independent of E. Also the
contribution of A is neglected since this Jjust produces a small
shift in the f resonance position.

From equation of motion methods the retarded fo- electron Green

function can be written:

foo‘(t) = foO'(t)

[+
’ (~O 47 ’ ’ . +
+ U-i dt G“_o_(t t' )« f(r(t )nf_o_(t ) .fo_ »,

(2.2.5)

where n_ O_(t’) = f'_!'o_(t’)f_a_(t’). Within the straightforward time

independent AA of Section 2.1 this equation is decoupled as:
« £ (t'In_ (t') :f+ » =N «f (t') :f‘+ » ., (2.2.6)
o £-0 o f-0 O o

so that

«©
AA - o , ~0 Y AA ,
G () =Gl () + UN__ i dt’G) (t-t')G'° (¢') ,  (2.2.7)

where N = | or (Q with probabilities (1 - <n_ >) and <n_ >
£-0 £f-0 £-0

respectively. Within the new TDAA, equation (2.2.5) is decoupled so

as to retain the time dependence of the f_c_ occupation using:
« £ (t')n (t;’):f‘+ » =V (t')« f (t) :f‘+ » (2.2.8)
c £-0 o -c o o
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so that

-]

TDAA o , ’ o 4 TDAA ‘
fo‘u‘ (t) = foa-(t) + -i dt V-a'(t )Grrcr(t t )Grrc' (),
(2.2.9)
with
vV (t’) =UN_ (t), (2.2.10)
-0 f-0
where now N{_G(t') = 0 or 1 at time t’. The fo_ Green function of
the TDAA (equation (2.2.9)) is then expanded as:
TD @
AA _ RO o - o
wa' (t) = G”o_(t) + _i dt1 G”O,(t t1)v-0'(t1)Grra'(t1)
o] [o+]
o o o
+-mj' dtl_i dt2 Grm'(t-t1)v-0‘(t1)cfr0'(t1 tz)v-(r(tz)cffcr(ta)"'
(2.2.11)
In order to evaluate equation (2.2.11) we write
V-o-(t1)v-0'(t2)v-a-(t3)" "‘V-o-(tn) =
n
U <nf_a_>P_°_(t2, t1)P-0'(t3’t2) ..... P-c‘(tn'tn-1),
(2.2.12)

where P—cr(tn’ t 1) is the probability that if Nf_c,(t) is unity at

time t (that is the impurity site is occupied by an f‘_o_ at time t)
where t is the earlier of times tn and tn—l' then it is still unity
at the later of times tn and tn—1' In the straightforward AA, this

probability has no time dependence and is equal to unity for all

time. In the TDAA, the static approximation 1is 1lifted and this
probability can deviate from unity as time evolves. In the HF
systems, which we hope to model, the hybridisation between

conduction and f electron states is small, so that the likelihood of

an f hopping off the impurity site is also small. Therefore we
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expect that in the HF systems the probability P_o_(tn, tn-l) is close
to unity for all time. The function P_o_(tn, tn_l) must reflect the
behaviour of the f_c_ occupation of the impurity site and is
identif'ied with the charge density function:

2

<T[n (t)n (t )I>-x >

P (t, t 1) - £~ n~  £-0 n-1 £-0 ,

noons <n_ >(1 -<n_ >)
£-0 £-0
(2.2.13)
which has the property that
P (t,t)=1, (2.2.14)
-0 n n

as it must, and which ensures that the TDAA reduces to the AA when
the time dependence of P—cr(tn’ tn-1) is lifted. Also
2

<T[nf—0'(tn)nf-0'(tn-1)]> - <n£'-0'> = x-O'(tn -t n-1 )

(2.2.15)

where

Xt -t )= . (2.2.18)

where the full 1lines represent the f-o- propagators and Q\\

represents all the interactions between these f-o- electrons. Hence

x-c‘(tn - tn-l)

P G(t , t ) = - i . (2.2.17)
<n >(1 - <n >)
f-0 o

Now when we substitute equation (2.2.12) into equation (2.2.11) then
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From here on we choose to work with an approximation to the self
energy of equation (2.2.22) which arises when we convolute the
unperturbed Green function, GZYG(E), in the denominator of equation

(2.2.22) to give GZ{G(E). The time dependent alloy analogy

therefore becomes:

TD U<nf‘ O'>
2 PNE) = - ) (2.2.23b)
f£f£o

~0
1- UG (E)(1-Un__ >)

This self energy is exact to second order and is also in agreement
with the second order self energy of Horvatic’ and Zlatic’ in the

symmetric case (see sections 2.3 and 2.4).



-]

TDAA _ o o _ o
foc (t) = foa(t) * U<nf-ai£ dt1 Grra(t tl)fow(t1)
® ® o ~0 o
+ U<nf‘2';f dtl_i dt2 Grro'(t—t1)cfro-(t1_ tz)Grm'(tz)"'
(2.2.18)
where
~0 _ O _
fo(tn-l- tn) = G“_o_(tn_1 tn)P—v(tn' tn-1)' (2.2.19)

When we take the Fourier transform of equation (2.2.18) we find:

= o o o
GI22'(E) =G (E) + Un__ > G° (E)GD_(E)

o ~o0 o
+ U<n_ > G._ _(E)G (E)G“_O_(E ) IR

£-0 ffo £fo
(2.2.20)
or, after summing the series in equation (2.2.20),
TDAA o o 1 o
G (E) =G _(E) + U<n_ >G,__(E) G__ (E),

£fo £f£o f-0 f£f0O 1 —UEO (E) £ff£fo

(2.2.21)

Equation (2.2.21) is a T matrix equation for the TDAA fc- electron

Green function. The corresponding self energy is:

U<nf 0>
TDAA -
szg (E) = — o N ’ (2.2.22)
- <
1 UfoU(E) + Ufoc(E) n__.

where, after substituting equation (2.2.17) into (2.2.19) and taking

the Fourier transform we find:

1 x_ (E-E")

(”;‘r’f (E) = — T dE’G;m_(E') ) (2.2.23)
o 2ni <n >(1 - <n >)
-0 -0

*
This TDAA result reduces to the straightforward AA result when
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either the time dependence 1is neglected, or the hybridisation is

zZero, since in each of these cases

P (t,t ) =1, (2.2.24)
and hence

c“;;’m_(}:) = G;N(E) , (2.2.25)
so that

2 MNE) = 22 () = PPe-a’ (2.2.26)

ffo f£ffo

o
1-UG (E)N1-<n_>)

The f electron Green function therefore reduces to its AA

expression:

" (1 - <nr-o->) <nf_¢>
G (E) = + . (2.2.27)
£fo

(E—e‘_+1’A) (E-cf—U + iA)

This reduction to the straightforward AA expression for V - O
ensures that the TDAA like the AA is exact in the atomic limit.

The form of the convoluting charge susceptibility x_o_(E - E’)
in equation (2.2.23) remains a problem. If we suppose that for
small hybridisation the addition of time dependence Jjust produces a
small fluctuation in P-o-(tn tn-1)’ then the corresponding charge
susceptibility x_o_(E) has poles at the Fermi energy and at small
energies on either side of the Fermi energy. These poles at small
finite energies are difficult to identify with any real excitation
and lead to shar‘p resonances in the fo' electron density of states
Jjust above and just below the Fermi level. This unrealistic result
arises because the decoupling described in equation (2.2.12) is only
good if the times tn to t1 are already time ordered, that is tn >
t > L., t. > tl. However this is not in fact the case.

The decoupling described and hence the self energy of equation
(2.2.22) are suspect. However the idea that the time dependence can
be introduced by convoluting some Green function with a charge

susceptiblity seems reasonable. In order to find a Dbetter
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prescription for a TDAA, we compare the straightforward AA self
energy with that of Horvatic’ and Zlatic’ (Horvatic’ and Zlatic’
(1980), (1882)). These authors treat the Anderson impurity
hamiltonian for general asymmetry using the perturbation in U
techniques of Yosida and Yamada (Yosida and Yamada (1970), (1975),
Yamada (1975a), (1975b) Yamada (1976)). The origin of the success
of the second order self energy of Horvatic’ and Zlatic’ Iis
identified as due to the fact that, for the symmetric case, it is
exact in the atomic 1limit for any correlation. A modification of
the straightforward AA is proposed which retains the exact atomic
limit not only for the symmetric case of Horvatic’ and Zlatic’ but

for any asymmetry.
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2.3. THE PERTURBATION IN U OF HORVATIC AND ZLATIC.

2.3.1. The Method.

The perturbation in coulomb correlation energy approach was first
developed to treat the symmetric Anderson impurity hamiltonian where
the virtual bound state accommodates one half of the impurity
electron of each spin (Yosida and Yamada (1870)). In fact it relies
on the presence of electron hole symmetry for the expansions in U to
be tractable. In their series of papers Yosida and Yamada
concentrate on the symmetric Anderson impurity model and choose the
unperturbed hamiltonian as the zero correlation hamiltonian. For
this starting point, the expansions in u = U/nA, where A is the half
width of the virtual bound state, are good for small correlation,
that is u < 1. The reader is referred to Yosida and Yamada (1870)
for details of the expansions. The essential point about the
expansion around the zero correlation result is that the odd order
terms vanish because the unperturbed f electron Green functions have
the property G;f(r) = - G;f(—‘t). The even order terms are given as
imaginary time integrals of determinants built from the impurity
electron Green functions, G;f('c), of the unperturbed hamiltonian.

The perturbation expansions, in u = U/mA, for the macroscopic
quantities are found to be rapidly convergent up to u = 4. The
magnetic susceptibilty, specific heat, entropy and resistivity are
calculated to fourth order in u (Yamada (1975a) and Yamada (1976)).
The results are consistent with those of Krishnamurthy et al (1975).
Also the perturbation terms are calculated for general order (Yosida
and Yamada (1975)) to investigate the relations between the specific
heat, susceptibility and scattering t matrix. The results are
consistent with the phenomenological Fermi 1liquid theory of Noziéres
(Nozieres (1974)).

The same authors also formulate the perturbation expansion in
terms of deviations from Hartree Fock for general asymmetry in order
to treat the strong correlation regime (Yosida and Yamada (1870)).
However without the electron hole symmetry the odd order terms do
not vanish and the expansions become extremely complicated. The
authors calculate the second order deviation from the Hartree Fock

ground state and find it to be of order A/U. However they concede
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that this does not mean that the higher order terms will also be
small for large U and conclude that each term in the expansion must
be calculated and examined individually.

In the first of a series of papers on the subject, Horvatic’
and Zlatic’ study the low temperature properties of the asymmetric
Anderson impurity hamiltonian wusing the perturbation methods of
Yosida and Yamada to expand around the Hartree Fock results
(Horvatic’ and Zlatic’ (1980)). For this the asymmetric case the
determinantal expressions of Yosida and Yamada become extremely
complicated. However Horvatic’ and Zlatic’ (1980) propose that in
the 1limit of not too large correlation and small asymmetry the
perturbation expansion of Yosida and Yamada must retain its rapid
convergence. The authors also claim that in the dilute alloy region
where U/mA = 1, the correlation effects are significant for the
nearly symmetric ground state only and that only the first few terms
are necessary in an expansion in U about the Hartree Fock solution.
They therefore apply the method of Yosida and Yamada to the
asymmetric non degenerate Anderson impurity hamiltonian and
calculate the corrections to the Hartree Fock f electron self energy
to second order in U. The difference between the expansion for the
self energy of Horvatic’ and 2Zlatic’ (1980), (1982) for the
asymmetric case and that of Yamada (1975) for the symmetric case is
that the odd order terms in the expansion for the asymmetric case
are non zero.

In the notation of Horvatic’ and Zlatic’ the symmetric Anderson
hamiltonian is identified by Ed = 0 where Ed =g, ¢ (U/2)<nd>, e, 1is

d
the d level energy and <nd>/2 = <ndo_> = <nd_o_> is the d electron
occupation of either spin. The authors choose to drop the spin

index since the spins are equivalent in the paramagnetic case.
Therefore Ed can be used as a measure of the asymmetry of the model.
We note here that the model was originally developed to model
magnetic impurity systems where the impurity has inner shell d
electrons. Hence the subscript d in Ed and e, Later the results
of Horvatic’ and Zlatic’ are discussed in their application to the
HF systems where the magnetic impurity has inner shell f electrons
and Ed becomes Ef.

The second order correction to the Hartree Fock self energy is:
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Fw) = Ly ¢ -ex (w) (2.3.1)
8 ° m B 70 B

where

— _1_ HF HF
xo(wB) = . g Gdd(wF)Gdd(wF + wB) , (2.3.2)

F

and G:;(wn) is the d electron propagator within the Hartree Fock

approximation:

1
G:;(w ) = ., w o=%2n+ 1), (2.3.3)
n v - E_+ ibw " B

o, |

where w_ = (n/B)(2n + 1) and w, = (n/B)2n are the Fermi and Bose
frequencies respectively. An analytical expression for the second
order retarded self lener'gy 2;:)(0)“) is found for kBT/A. w/A and Ed/A
all « 1 (Horvatic’ and Zlatic’ (1980)). The imaginary part of the
self energy is zero at the Fermi energy so that the self energy has
the correct behaviour for a Fermi liquid. The results are good for
dilute alloys with nearly half filled virtual bound state such as
AlMn. Also, for Ed = 0, the results coincide with those of Yamada
(1975), as they must. In Horvatic’ and Zlatic’ (1982) the second
order self energy is recalculated as a function of Ed/A and the
effect of asymmetry on the macroscopic quantities is examined. For
the moment we concentrate on the effect of asymmetry and correlation
on the impurity electron density of states. When the authors
calculate the T = 0 (where T 1is temperature) impurity electron
density of states using their second order self energy they find two
types of behaviour. For u = U/(mA) < 1 the impurity density of
states has a single narrow peak around the Fermi level. However for
u = U/(wA) > 2 it has narrow resonance around the Fermi level as
well as two broader peaks around £:f and ef + U , as seen by Yamada
(1975) for the symmetric case. These impurity density of states
features are reminiscent of the f electron density of states of the

HF cerium systems.
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2.3.2. The Self Energy and Impurity Density of States.

There are several comments to be made on the suitability of this
second order self energy approximation in a model for the HF cerium
systems. In these systems the correlation is strong and in general
Ef # 0. Consider the T = 0 d electron Green function of Horvatic’
and Zlatic’ (1980), (1982), in which the self energy is approximated

by its second order term:

1
G, (E) = — — , (2.3.4)
E-E -ReZX (E) + 1A -iuUmZ (E)
d ad dd

where Ed =€, + U/2<nd> includes the Hartree Fock term of the self
energy. Here the prefixes Re and Im denote real and imaginary
parts. For energies near the Fermi energy, EF = 0, the real and

imaginary parts of the second order self energy can be expanded in a

Taylor series around E = 0. Also since

ms2o? = Yz
dd dE dd

cad

]
o

(E) ) (2.3.5)

E=0

(Horvatic’ and Zlatic’ (1980)) then for energies near the Fermi

energy the d electron density of states is given by:

X A
pdd(E) = , (2.3.6)

A (E-F:d)2+ I

where

E =

4 ( E, + Rz (0)), (2.3.7)

= ) =]

and
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1

A= (2.3.8)
1 - d—Rez;:(E)
dE E=0

For |x| = |ed|/U > 1, that is in the weak correlation regime where U
< |8d|!

E E E

- R RTL .t U W (2.3.9)

A A A || X

where u = U/(mA), (Horvatic’ and Zlatic’ (1982)) so that in this
weak correlation regime, (ﬁd / B) » Ed/A with increasing asymmetry.
Therefore, for energies near the Fermi energy, the impurity electron
density of states is that of a renormalised resonance at Ed. For Ed
= 0 this narrow resonance lies on the Fermi level, and provided the
asymmetry, and hence Ed, is small, the resonance is always near the
Fermi level in this the weak correlation regime. However in the

strong correlation regime that is |x| < 1 or U > |ed|

Ed Ey Ed 2 2 2 2
—=—|1-—u (n°74a - 2) ~ ( n°/74 - 17)x"... ,
A A A
(2.3.10)
(Horvatic’ and Zlatic’ (1982)). It is easily seen that even for

small asymmetry the renormalised resonance will not lie on the Fermi
level and will move far away from the Fermi level for large U.
Therefore in the HF systems where the inner shell impurity electrons
are f electrons and u = 2 or 3, the second order self energy of
Horvatic’ and Zlatic’ will only produce a narrow resonance (the
Kondo resonance) near the Fermi energy, for extremely small
asymmetry. In fact it can be shown that the three peaked structure
in the impurity electron density of states (Horvatic’ and Zlatic’
(1980), (1982)) is entirely dependent on small asymmetry for two
reasons. Firstly, it is seen that only for small asymmetry and
small correlation will the renormalised f resonance lie near the
Fermi level. Secondly, and perhaps more importantly 1is that

provided EIf = 0 the second order self energy of Horvatic’ and
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Zlatic’ is exact in the atomic limit for any size of correlation, a
point which the authors do not make in any of their papers.

Consider the exact atomic 1limit self energy which is given by
equation (2.2.26) with A = 0. We write this self energy as the sum

of Hartree Fock and all higher order terms as:

N Un__ >(1 - <n__ >)G)_ (E)
foO’(E)ex = U<nf-o'> + ° ’ (23 11)
1 -U(1 - <nf_¢>)c;”o_(}-:)
where
o 1
CrpglEB) = ——— - (2.3.12)
£fo E - .+ i

Here the superscript, AL, stands for atomic limit and the subscript,

ex, denotes that this is the exact expression. The second term in

equation (2.3.11) is re-expressed by multiplying top and bottom by
o

(G2 __(E) )"! and adding and subtracting a factor of U<n,_ > in the
denominator so that

U<n_ >(1 - <n_ >)G'" (E)
zo (E) =U__ >+ ad =7,
££0  ex - 1 -U(1 - 2<n_ >)G._(E)
f-0 f£o
(2.3.13)
where
G (E) = : (2.3.14)
eeo ' o

E-¢€ - Un >+ ié
f -0

is the Hartree Fock f electron Green function in the atomic 1limit.
It is now immediately obvious that in the symmetric case where Ef=0
and <nm_> = <nr-a'> = 1/2, that the exact atomic limit self energy
has no terms higher than second order in U, that is

AL

me_(f-:)'ex = + — Gfta'(E)' (2.3.15)
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Now compare this exact atomic limit self energy for Eif = 0 with the
self energy of Horvatic’ and Zlatic’ for E,- =0and T =0 :

HZ ca2)

_u
Z,E) = = +£x 7 (E), (2.3.186)

where a spin index has been added to the notation of Horvatic’ and

Zlatic’ to allow easy comparison with the self energy of the TDAA

HZ

self energy in the following section. In Zno_(E) of equation
(2.3.16) the first term is Jjust the Hartree Fock term and the second
term is the second order self energy of equation (2.3.1) at T = O.

Therefore

HZ

£ff0o

u U

+
2 2ni

(E) =

1RF ’ V)
J dE foO'(E )xo(E E’), (2.3.17)

where G;;o-(E) is the f‘(r electron Green function in the Hartree Fock

approximation of equation (2.3.14) and

xo(E-E') =i—J‘dE

HF 7
- O'(Ep - EI)Gfm,(Ep - E’). (2.3.18)

HF
G
p ff

In order to perform the integrals over E’ and EIp in equations
(2.3.17) and (2.3.18) we express G;;O_(EI) and xo(E) in terms of

spectral representations:

+

. o A (wl) o A (-wl)
Gfro-(E) = — dw1 + S —————— dw1 ,
0] wl —E - i8 - w1 - E + id
(2.3.19)
where
+ HF
A (E) = - p”o,(E) for E > Er =0 |, (2.3.20)
- HF
A (-E) = - p”o,(E) for E < EF =0 , (2.3.21)

and similarly for xo(E) to find
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. @ ® A*(wl) J*(wz)
szo—(E) = ° I dm1 J do

) 0 (w +w -E-1i8)
1 2
0 o A-(—wl) J-(-wz)
- _I‘dw1 J dw ,
-» -0 (o +w -E + i8 )
1 2
(2.3.22)
where
+ 1
J(E) ==1Imyx (E)
T o
@ o HF HF
= oI dw, _i doy Pppgly) Prggle, ) 8L, -0 - E)
E>E_=0,
F
(2.3.23)
and
- 1
J(-E) = - =1Imx (E)
T ()
(o] 0

H

- J'dw3 J‘dw4p
]

. ) (w) p (w)é(ws —w4+E)

££0 3 ffo 4
E<E_=0
F
(2.3.24)

Here p ;;O_(E) are the f electron densities of states within the
Hartree Fock approximation. Therefore in the limit V - O there will
only be contributions to J'(E) and J (-E) when the Hartree Fock
density of states are centred around the Fermi level, that is when
Ef = 0. For EIf =0,

JY(E) = S(E) for E > El__

4

1]
o

(2.3.25)

J(-E) = - 8(E) for E < E =0, (2.3.286)

4

and substituting equations (2.3.25) and (2.3.26) into equation
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(2.3.22) gives:

Z”o_(E) = 4— Gfm_(E) , (2.3.27)
so that

HZ _ U U2 HF

}:"o_(E) = ; + 4— G "(S_E) , (2.3.28)

which is the exact atomic limit result of equation (2.3.15). From
this comparison of the exact atomic 1limit self energy and that of
Horvatic’ and Zlatic’ for V -» 0, it is easily seen that for EIr # 0,
the accuracy of the second order perturbation result deteriorates on
two counts. Firstly, for Ef # 0, the exact atomic limit self energy
has terms of all orders in U so that the second order perturbation
theory cannot hope to describe even the atomic 1limit for strong
correlation. Secondly, for Ef # O the Hartree Fock densities of
states are not centred on the Fermi level, so that as V tends to
zero these functions will shrink to & functions which are not
centred on the Fermi level. Subsequently the integrals over these
density of states in xo(E) (see equation 2.3.18) will not yield the

correct result:

1

JYE) =~ Imx (E) =<n__ >(1-<n_ >)3(E), (2.3.29)

J(-E) = -z Im g (E) = - <n__ >(1 - <n__ >)3(E) , (2.3.30)

of the atomic limit. Therefore when EIf # 0, even the second order
term of Horvatic’ and Zlatic’ is no longer equal to the second order
term in the exact atomic 1limit self energy. It would appear that
the success of this type of second order perturbation theory result
relies on the nearness of the parameter space in which Erz 0 and the
correlation is small to that where Ef = 0. In its application to
the strong correlation HF systems, the second order self energy can
only be good for Ef = 0.

To improve on the result of Horvatic’ and Zlatic’ we need a
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prescription for a self energy which retains the atomic 1limit even
for Ef = 0. In the following, the ideas of the TDAA are used to
obtain a self energy which has this property. This self energy
reduces to that of Horvatic’ and Zlatic’ for Ef = 0. However it is
an improvement over the result of Horvatic’ and Zlatic’ since it
retains the exact atomic 1limit for E:r # 0. This new self energy is

not restricted to the small correlation regime for E:r # 0.
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2.4. A TIME DEPENDENT ALLOY ANALOGY SELF ENERGY.

Let us rewrite the straightforward AA self energy of equation

(2.2.26) as the sum of Hartree Fock and all higher order terms as:

v<n  >(1 - <n_ c>)cl (E)
s** (E) = U<n > + -0 - £fo ’
£fo £f-0 _ '

1 -(uCt - 2<n,_ -2 (0))G, (E)
(2.4.1)
where

. 1
G o (E) = , (2.4.2)

E-¢€ -Un >-%  (0) + iA
f -0 ££o

and Erm'(O) is the exact self energy, minus the Hartree Fock term,
evaluated at: E = EF = 0. This straightforward AA self energy is
exact in the atomic limit. At this stage a lead is taken from the
TDAA discussion of Section 2.2 so that the Green functions GifG(E)
are convoluted with the Fourier transform of the charge
susceptibility of equation (2.2.16). In equation (2.2.16) the lines
now represent the propagators G;w,(E) so that
2

U°<n >(1 - <n_ >)G
o £-0

TDAA £f-

z (E) = Un_ > +
o £-0

1

el E)

g ~1
1 - -2¢n__ -2 (0))& _ (E)
(2.4.3)

where

<1 1 . 2 (E - E)
G ooE) = — S dE'G_ (E’) . (2.4.4)
2ni <n_ >(1 - <n_ >)
-0 f-0

Suppose that this function ﬁifa(E) is evaluated by making the
simplest approximation to xia(}: - E’) that is xi(E - E’), where
xz(E-E') is given by equation (2.3.18) with G;;o_(E) replaced by
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Gt (E). When G (E) and xl(E - E’) are written in terms of
£fo £fo o

spectral representations then

» @ o AT () I (W)
G“_o,(E) = J dw1 J dw2
0 0 (w +w -E- i8§)
1 2
0 0 AI'(-wl) Jln(-wz)
- .,r dwl I dw ’
- - (w1+w2-E+i6)
(2.4.5)
where
AY(E) = - p! (E) for E>E_=0 (2.4.8)
ptm' F ’ s
1- _ 1 -
A" (-E) = pffO‘(E) for E < EF o , (2.4.7)
and
1+ 1 1
J"(E) = = Im x (E)
T o
-] 0 1 1
= of dw4 _i dws pffO’(wa) pffa'(w4 ) 8 Wy T U7 E)
E>E =0,
F
(2.4.8)
1- 1 1
J  (-E) == = Im x (E)
T )
o] (o] 1 1
= —OJ‘ dw_ _i dw, pno_(ws) pfm_(w4 ) &( w, -w +E )
E<E =0
F
(2.4.9)
and
. 1 A
pf‘fo‘(E) =1—t' ~ . . . (2.4.10)
(E-e€ -Un >-% (0))°+aA
£ £-0 ££0
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As V 5 0 and hence A 5 0 the lorentzian function p:_m_(E) shrinks to

a delta function. Also since the Friedel sum rule can be expressed
as:
<n_>=32rpl (E)dE (2.4.11)
fo T £ffo i t

then as V > 0 p:.m_(E) must shrink to a delta function at the Fermi

level in order to obtain the correct f occupation <nm. >. Therefore
JY(E) = <n_ >(1 - <n_ >)S(E) , (2.4.12)
£-0 f£-0
V-0
1- - — —
J" (-E) = <nf__°_>(1 <nf_°_>)6(E) , (2.4.13)
V-0

and when equations (2.4.12) and (2.4.13) are substituted in equation

(2.4.5) we find

x1 _ Al
Gfro'(E) = foc_(E) . (2.4.14)
V-0

When equation (2.4.14) is substituted in equation (2.4.3) we see

DAA

that the self energy 2;“’_ (E) has the exact atomic limit result of

equation (2.4.1) even for Ef # 0.
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2.5. DISCUSSION.

In the ©previous sections the success of the second order
perturbation theory of Horvatic’ and Zlatic’, in its application to
the impurity density of states calculations, 1is identified. The
second order perturbation theory self energy of Horvatic’ and
Zlatic’ is seen to yield impurity density of states at €, and o + U
for Ed =~ 0 and small correlation because it is exact in the atomic
limit for EId = 0. For Ed # 0 all terms in the exact atomic limit
self energy of higher order than u? are multiplied by Ed. Therefore
although these higher order terms vanish for I-:Id = 0, for Ed # 0 they
will be 1large when the correlation is large. Therefore it is
concluded that when the second order perturbation theory self energy
is used in a model for the HF systems its validity must surely be
restricted to EIf = 0.

A non rigorous TDAA derivation leads to a self energy which is
an improvement over that of Horvatic’ and Zlatic’ since it retains
the exact atomic limit for Ed # 0. This TDAA has terms of all
orders in U and is therefore better suited to a description af the
- large correlation regime than that of Horvatic’ and Zlatic’. Also
for EZf = 0 it retains all the attractive features of the Er = 0 self
energy of Horvatic’ and Zlatic’. This TDAA self energy would
therefore appear to be a better prescription for the HF systems
where the coulomb correlation is large and Ef:ﬁ 0.

The TDAA model is not pushed any further since the derivation
of the self energy is not rigorous. However we could take a further
lead from Zlatic’, Horvatic’ and Sokéevic (1985) and Horvatic’ and
Zlatic’ (1985) and use this self energy along with exact definitions
like the Friedel sum rule and the Wilson ration to calculate the

charge and magnetic susceptibilities.
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CHAPTER 3.

THE SPIN ONLY CASE.

3.1. INTRODUCTION.

In the following chapters the Anderson lattice hamiltonian is used
to model cerium systems which have a ferromagnetic ground state.
The periodic Anderson hamiltonian in its various forms is generally
used to model the very heavy cerium systems which have non magnetic
ground states. However in the 1limit of weak hybridisation it can
describe the magnetic ground state of a normal rare earth metal.
The present work approaches the problem from this magnetic end. The
model predicts build up of HF behaviour and breakdown of the
magnetic state with increasing hybridisation. As well as modelling
the precursors of HF behaviour in the non heavy magnetic rare earth
systems, the model can also be thought of as a starting point for a
description of ferromagnetic HF systems such as CeSil.B. If pushed
to the weakly ferromagnetic regime the model predicts build up of
Kondoesque behaviour and breakdown of the magnetic state with
increasing hybridisation and so offers some explanation of the
variation between ferromagnetic CeSix, 1.7 < x < 1.83, and
nonmagnetic CeSix, 1.83 < x < 2.0, which will be discussed in
Chapter 5.

The early part of the present chapter serves as an introduction
to the variational method of determining the f electron Green
function which is used throughout the present work. The starting
point is the spin degenerate periodic Anderson hamiltonian so that
the calculation 1is referred to as the ‘spin only case’. A
preliminary calculation (Edwards (1987)) includes some unnecessary
approximations which 1limit the validity of the results to the region
of small hybridisation. The following calculation contains none of
these approximations so that the expressions obtained for the single

particle f down spin Green function, mass enhancement and Fermi
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wavevector are better suited to the description of the larger
hybridisation regime where the hybridisation starts to produce large
mass enhancements.

In the the latter half of the present chapter the treatment of
the spin only model is extended to the case where both exchange
interactions and hybridisation are present. The treatment of
exchange is usually neglected in work on HFs probably because most
workers study the very heavy non magnetic cerium systems where the
hybridisation is considered to be the dominant interaction. However
in the rare earth metals themselves the exchange interaction
dominates in the R.K.K.Y interaction and leads to magnetic order.
This is paricularly evident in gadolinium which is ferromagnetic
with a saturation moment of 7.8}18 indicating a large conduction spin
polarisation parallel to the f moment of 0.67p.B. Hybridisation
alone leads to antiparallel spin alignment. It is 1likely therefore
that in some systems exchange and hybridisation are competing on an
equal footing. The manner in which these interactions are competing
is an important problem for any theory which hopes to treat the full
range of rare earth systems from magnetic to non magnetic, normal to
heavy.

To study the competition between exchange and hybridisation in
the lattice systems a variational calculation of the single particle
f down spin Green function is made for an assumed ferromagnetic
system which is modelled by the spin degenerate periodic Anderson
hamiltonian plus exchange interaction. The results of this
variational calculation are examined for the form of competition
between the hybridisation, favouring breakdown of the magnetic
state, and an exchange interaction favouring stability of the
magnetic state. The effect of these two interactions on the Kondo
temperature of the model is examined in the light of the criterion
for magnetism of Read et al (1984) and Coleman (1983) (see Section
1.4). The combined behaviour of hybridisation and exchange for the
lattice system is compared with that predicted for the impurity by a
Schrieffer Wolff transformation on the Anderson impurity hamiltonian

plus exchange interaction.
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3.2. THE F ELECTRON GREEN FUNCTION.

3.2.1. The Model.

In this section a variational calculation of the f electron Green
function is made for a strongly ferromagnetic system described by
the spin degenerate Anderson lattice hamiltonian. The breakdown of
the magnetic state is examined to see if the classic features of the
nonmagnetic HF appear such as an increase in the effective mass and
Kondo resonance in the f electron density of states. It is found
that the magnetic state breaks down as the hybridisation Iis
increased there being a particular point, defined as the effective
Kondo temperature of this model, at which the initial assumption of
strong ferromagnetism collapses. The model succeeds in predicting
reasonable build up of mass enhancement due to a build up of density
of states at the Fermi level. This sharp density of states is
considered to be a precursor of the HF Kondo resonance.

The calculated effective Kondo temperature differs from the
impurity Kondo temperature of Bethe ansatz calculations by a factor
of two in the exponent. This is not the same factor of two found by
Rice and Ueda (1985). In Chapter 4 an analogous variational
calculation for the impurity also leads to an effective Kondo
temperature with the same factor of two missing in the exponent. We
therefore conclude that the difference between the lattice effective
Kondo temperature and the impurity Kondo temperature of the Bethe
ansatz calculation is a failing of the variational method rather
than a genuine difference between the lattice and impurity systems.
In Chapter 4 the model 1is improved to predict a better Kondo
temperature for the impurity.

The following calculation of the f down spin Green function for
the strongly ferromagnetic case involves proposing a reasonable
approximate ferromagnetic ground state, of no down spin occupation,
for the system assuming it to be modelled by the spin one half
Anderson lattice hamiltonian, and then postulating a variational
wavefunction for a down spin f electron introduced into the system.
The method 'leads to a Dyson equation for quasi particle energies
greater than the Fermi level which yields a flat band of f like

quasi particles very close to the Fermi level and thus a resonance
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in the f density of states near the Fermi level. The picture of a
flat band of f 1like quasl particles near the Fermi level Iis
consistent with the Fermi 1liquid pictures described in the
introduction (see Section 1.4).

The starting point, then, is the spin degenerate or spin one
half periodic Anderson model:

latt

= Zec+c + f+f + ZV(c+f +f‘+c )
kO’k ko

ko ko G f ko kO ko ko kO kO

+yusTe eTe | (3.2.1)
i 11\1 1.14, 14,

where ci'o_ creates a conduction electron in a state of energy ek,
momentum k and spin o and fi-o- creates an f electron in a state of
energy ef, momentum k and spin o. Term by term the hamiltonian
describes a conduction band of energies ck, a flat f band of energy
€. hybridisation between the f and conduction bands with a strength
V assumed independent of k as 1is usual and finally a coulomb

interaction between f electrons on the same site.

3.2.2. The Ground State.

An approximate strongly ferromagnetic ground state for the Anderson
lattice hamiltonian is calculated using the Hartree Fock
approximation to the coulomb interaction which puts the down spin f
level up at energy €. + U<nf1‘> where <nr¢> is the up spin occupation
in the ground state. U is taken to be large so that the
hybridisation of this down spin f level with the conduction band is
assumed to result in negligible down spin occupation. The ground
state, then, is one of an unhybridised down spin conduction band,
unhybridised flat f down spin band, so that <nf > = 0, and two up
spin bands resulting from the hybridisation of up spin f and up spin
conduction electrons. The ground state bands are drawn
schematically in Figure 3.1. The two up spin bands are labelled by
n, the band index, equal to 1 or 2. The states in the up spin bands
are created by eigenstate creation operators ai'n,r and have energies

ekn. The ground state is given by:
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kn
k Tk<k
n1\ F

occ

where |V> is the vacuum state, and the product in (3.2.2) is over
wavevectors of occupied eigenstates. Also

a.+ = A f+ + B c+ , (3.2.3)
kn,r kn,r kqs kn,]\ k,r

where Ain”‘ is the f up spin electron weight, and Bin¢ the up spin

conduction electron weight, in the state ai'n,,,lv>. It is easily
shown that
v
A = , (3.2.4)
kn
/ (e. - g )+ V®
k f
(e. - &)
B = kn o (3.2.5)
knp 2. .2
(e - €. ) +V
n f
with energies € (see Figure 3.1) given by the two roots of
-
(s:kn s:k)(z:kn ef) Ve (3.2.8)
£
T l Figure 3.1. A schematic ground
state band picture for the spin
degenerate periodic Anderson model
i« ¢ in the limit U 5 ». The lower and
i upper up spin bands are labelled
! 2 and 1 respectively.
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3.2.3. The f Down Spin Wavefunction.

Now that the ground state is established we postulate a variational
wavefunction for an f down spin electron introduced into the system.
The end result of this procedure is a Dyson equation with an
identifiable down spin f electron self energy.

From a completely general diagramatic expansion in which the
hybridisation and the coulomb interaction are both treated as

perturbations the f single particle Green function is given by:

v
—_——— = —_— o+ e — _
Gm(k,E) : G;.(k,E) G;'(k,E) Gd‘(k,E) G,;(k,E) Gﬁ(k.E)
(3.2.7)
v
]
= -—)—-ﬁ=
. (3.2.8)
G, k) G (kE) G lkE)
so that
_ o o
G{f\dk,E) = Gtr"’(k’E) + Gfpb(k,E) VGcf¢(k,E)
(o]
foJ,(k,E) foJ,(k,E) Gﬁ“b(k,E) ’ (3.2.9)
and
G_o(kE) = G (kE) VG (kE), (3.2.10)
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where G:fJ,(k,E). G, 4(K,E) are the unperturbed and full down spin f
electron propagators, G:c of k,E) 1is the unperturbed down spin
conduction electron propagator and Gc‘_(k,E) is the Fourier transform
of the propagator i<0| TI[ fk¢(t) ,ci@(O) 1]0>. Also everything that
is unknown about the interactions of the system is stored in the f
electron self energy, fo,l,(k,E)ex. This contains all processes in
which the f electron first interacts with the system via the
coulomb interaction and after all subsequent interactions emerges
finally as an f electron. From equations (3.2.9) and (3.2.10) we
find

1
G”J’(k,E) = V2 . (3.2.11)
E -& - - Z__ (kE)
£ E -¢ ff¢ ex
k
The full f down spin self energy
F V2 :
fo¢(E) = c . + szik'E)ex' (3.2.12)

However in the following text the term ‘f electron self energy’ is
used to mean Zf{¢(k.E)ex. It is desired that any treatment of the
Anderson hamiltonian give a Green function of the form of equation
(3.2.11). Within the present approach a variational wavefunction is
postulated for an f down spin electron of momentum k in the system
as the sum of all the most 1likely processes which would occur if an
f electron were added to the ground state. This approach yields a
Green function of the form of equation (3.2.11) as required.

A down spin f electron entering the system can sample the f
down spin state of momentum k, the down spin conduction state of
momentum k, since it can hybridise with this state wvia V, and be
involved in many other more exotic excitations all of which must be
included for an exact self energy Z” (k,E)ex. It is impossible to
. (k,E)ex,
instead only the most important set are included. To identify the

include the infinite set of possible processes in Zr
most important set of of processes or diagrams in E” (k,E)ex an
4
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analogy is drawn between the present situation of ferromagnetic
Hartree Fock ground state for the Anderson hamiltonian of equation
(3.2.1) and the treatment of the Hubbard model (Hubbard (1963),
(1964)) of Edwards (1968) where again the approximate ground state
is ferromagnetic Hartree Fock. In the present model the approximate
ground state is one of hybridised up spin bands and an unoccupied
down spin f level at €, + U<nr1,>. The f density of states can be
represented schematically as in Figure 3.2.a. The next stage is to
write down the most likely processes occurring due to the coulomb
correlation between f electrons in the ground state. In the
treatment of the nearly half filled Hubbard model by Edwards (1968)
the initial ground state is again calculated within Hartree Fock so
that the f density of states is as in Figure 3.2b. As for the
periodic Anderson model the next stage is to write down the most
likely processes occurring due to the coulomb interaction between f

electrons, the only electrons in this case.

Figure 3.2a. A schematic f density

of states for the spin degenerate
T J’ . periodic Anderson model in the
limit U 5> w. The hatched area

denotes occupied density of states

(3)*'d

below the Fermi energy EF.

Py E)
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Figure 3.2b. A schematic density
of states for the Hubbard model.
The hatched area denotes occupied
density of states below the Fermi
— b energy EF.

g —D
. -
(3)d

For both models the approximate ground state has no down spin f
occupation and few numbers of up spin holes, or rather in the case
of the present model, small up spin weight in the states above the
Fermi level. The task of taking better account of the coulomb
correlation by inclusion of diagrams other than Jjust Hartree Fock is
the same in both cases. Therefore the arguments of Edwards (1968)
apply equally well to the present model if the up spin f electron
propagators of the Hubbard model are replaced by the hybridised up
spin f electron prqpagators of the Anderson model. The self energy
diagrams with the least number of up spin electron lines will have
the 1largest contribution since in the corresponding analytic
expression each up spin electron line brings in a factor of the
number of up spin states above the Fermi level. Therefore the
smaller the number of wup spin electron lines the larger the
contribution. The dominant diagrams are represented schematically

as in Figure 3.3.
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Figure 3.3. The corrections to the Hartree Fock self energy
for the spin degenerate periodic Anderson model. The lines
+ and + represent the up and down spin f electron
propagator's respectively The dotted lines represent scattering via

the coulomb interaction.

The diagrams in Figure 3.3 describe a down spin f flipping to an up
spin f and exciting a magnon as well as interactions between this
magnon and the single particle excitations. The diagrams of Figure
3.3 are exact to order U The inclusion of the interactions
between the magnon and single particle excitation brings in terms
of all orders in U and is discussed in Chapter 4 where a diagramatic
treatment of the problem is given for the weakly magnetic impurity
case.

For the moment we are concerned with identifying likely
processes involving down spin f electrons for inclusion in a
variational f down spin wavefunction. In the present chapter, then,
the small number of unoccupied up spin states argument is used to
postulate a variational wavefunction which includes a process in
which the down spin f flips to an up and excites a magnon.

The variational wavefunction is written:

Il/l> = [Af+¢ + Fk Ci-d’ + Z G 11a+1 1 S k-k’ ]|O>'
k/ 1>k
F
(3.2.13)

where the subscript k‘i denotes an up spin quasi particle state of
momentum k’ in band 1 of Figure 3.1 and S;_k, is an approximate

magnon creation operator given by:
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s. ., =L ¢ c et
k-k’ E (p-k’) g (p=k)p

+ f
(p-k)y (p-k)p'

(3.2.14)

o ™M

where k-k’ is the momentum of the magnon. If the down spin
wavefunction is just written as a sum of the first two terms of
(3.2.13) then the Dyson equation yields down spin bands of the same
form as the up spin bands of Figure 3.1 but with the f down spin
level postion at €, + U<nf,r>. The self energy for this case would
just be the first, that is, Hartree Fock term of a perturbation
expansion and would not yield a resonance at the Fermi level which
arises from the many body character of the coulomb interaction. To
improve on the Hartree Fock solution better account must be taken of
the coulomb correlation, that is more diagrams must be summed in the
self energy or, equivalently, more processes must be included in the
variational wavefunction. In this 1limit of a small number of
unoccupied up spin states the addition of the third term Iis
considered to take account of the most important consequences of the
coulomb correlation. In fact the third term in the variational
wavefunction of equation (3.2.13) leads to a contribution to the
down spin self energy, given by equation (3.2.18), which within
certain approximations is in exact agreement with the analytical
expression corresponding to Figure 3.3. This statement is discussed
later in Section (3.4.3) for the periodic Anderson hamiltonian plus

exchange interaction.

The coefficients Ak, Fk. and Gk,1 in the variational
wavefunction are sought by left multiplying the Schrodinger
equation:

Hly> = g|y> (3.2.15)

+
by <O|fk¢, <O|ck¢, and <0|S a Here & is the energy of

k-k,' klll’["
the state |y>, and stq is the hermitian conjugate of s;. The three
equations for the coefficients are solved to give I-"k and Gk, in

1

terms of Ak so that
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1]
o

A €E-E -¢_ - - T (&-E )
k o f ffJ, o

(8 - Eo- ek)

for & - E°> o, (3.2.16)

where Eo is the ground state energy and & the energy of the
variational wave function describing the ground state plus one f
down spin electron. The quantity E = & - Eo is identified as an
excitation energy so that equation (3.2.16) corresponds to a Dyson
equation for the particle excitation energies of the systen. The
Fermi energy is taken as E = 0 so that only solutions of the Dyson
equation with E > 0 are significant, others being strictly
inconsistent with the assumption of no down spin f occupation in the
ground state. Since the excitation energies are by definition the
poles of the f down spin Green function equation (3.2.16) is

consistent with an f down spin Green function:

GfrJ,(E,k) = for E > 0,

(3.2.17)
which is of the correct form predicted by the general diagramatic

analysis of equations (3.2.7) to (3.2.11). The approximate f

electron self energy sz (k,E) is calculated as:
4
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(3.2.18)

where the sums are over the up spin quasi particle wavevectors in
band one such that the state of momentum k in band 1 is unoccupied.
Also hwk_k,is the magnon energy and is given by:
<OIS;-k’ :att ;-k'|0>
hwk = - - . (3.2.19)
<0ls; ., S "~ ,l0>
k-k -k

k

The operator~S;_k, is only an approximation to the creation operator
of the real magnon and within this approximation we find that the
model magnon dispersion has a zero momentum, k-k’= O, magnon energy
of zero in disagreement with the finite energy of the zero momentum
magnetic excitation in a real system such as CeSix (M.Kohgi et al
(1987)). The non zero magnon energy of the real world is a result of
crystal field and spin orbit coupling effects which are not included
in the spin degenerate periodic Anderson model. In the following,
then, a lead is taken from experiment and a flat magnon dispersion
is assumed (Kohgi et al (1987) and Figure 5.1). In Chapter 5 an
attempt is made to remove the Iinconsistency, which is introduced
here when we insert the magnon energy by hand, by improving the
model to include crystal field and spin orbit coupling effects.
Within the flat magnon dispersion approximation the self energy of

equation (3.2.18) is k independent and is rewritten as:

U<n_o>
£
fo¢(E) = , (3.2.20)

-

Uz (E)
ff‘b

<n 4>
et
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where

A 7,<n »
- k' f
° (B) = L , (3.2.21)
£f R k l)kF
E-¢g, -ho
k' mag
and hwmag is the now momentum independent magnon energy. To

evaluate (3.2.21) a sum has to be performed over Ai,l the f up spin
density of states above the Fermi level. If the model was entirely
self consistent there would be some small down spin occupation so
that the up spin Green function would also have self energy
contributions due to the coulomb correlation. These would affect
the down spin self energy via the sum over k;. In the following
chapter this self consistency is introduced for the impurity case by
including non zero down and up spin f electron self energies in the
model. However in the present strongly ferromagnetic case it is
neglected.

From equation (3.2.6) we see that for small hybridisation the
dispersion of quasi particle states for energies greater than the
Fermi level 1is practically identical to that of the original
unhybridised conduction band. The sum over the quasi particle
wavevectors k; in equation (3.2.21) can therefore be evaluated as
an integral over the unhybridised band energies from the Fermi
energy (EF = 0) to the top of the band so that

-~
o

fo¢(E) =
<n_> V (Tp - €)% + V2 E- Tp - ho
T B(E) mag
1n|: > > — B(E)1ln
W 2 e +V E - he
£ mag
B(E)(E - €. - hwmag) - Tp - €, N
tan — tan ,
\' \" \
(3.2.22)
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where

v
B(E) =

> P (3.2.23)
(E-2¢_ -hw JE-hw ) +&° +V
f mag m £

ag

Z?f (E) and hence Z" (E) has no imaginary part for energies less

N
than the magnon energy so that for energies greater than the Fermi
energy and less than the magnon energy the Dyson equation can be

solved for down spin quasi particle energies € m where

€ - &£ - - T ()
km £ '£fy, km

for 0<g < hwmg (3.2.24)
and m is an index labelling the possible multiple solutions of
equation (3.2.24). As E > hwmg the logarithmic term in equation
(3.2.22) diverges so that sz (E) tends to zero as the magnon energy
is approached. Far away from the magnon energy qu(E) is dominated

by the Hartree Fock term U<n‘_,,~>. From Figure 3.4

g+ & Figure. 3.4. The f down spin
resonance energy for the spin
degenerate periodic Anderson model.
The figure shows the solution of
equation (3.2.25).

~

we see that for some energy E very near the magnon energy

E - e - szd,(E ) =0, (3.2.25)
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so that for energies very near E a Taylor expansion of the self

energy around E is valid and the Dyson equation can be written:

~ - ~2
(ekm E )(ekm— ek) Ve, (3.2.26)
“with
E = £, + Zf%(E) (3.2.27)
and
v2 =’ (e, )
~3 ~ ff 3 km
Ve = , ’ (E) =
~ £y d ~
’ £
1 -2 (E) km ¢ =E
ff km

(3.2.28)

When equation (3.2.26) for the down spin quasi particle energies is
compared with equation (3.2.6) and Figure 3.1 for the up spin quasi
particle energies it 1is easily seen that for energies 0 < €in <
hwmg the down spin quasi particles form banfs resulting from the
hybridisation via renormalised hybridisation V of an f level at
renormalised energy E with the conduction band. The quasi particle
bands are sandwiched between the magnon energy and the Fermi energy

and are represented schematically as in Figure 3.5.
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Figure 3.5. A schematic picture of
the f down spin quasi particle
bands for the spin degenerate
periodic Anderson model. The bands
are sandwiched in the narrow energy
Mg 7/ /52 region between the Fermi level at

Er = 0 and the magnon energy hwm
In the hatched region E > hw

mag
there are no well defined bands.

ag'

- There is no f down spin weight

\\/ﬂfi below the Fermi level.

It should be noted that the self energy is varying rapidly in
the region between the Fermi level and the magnon energy so that
despite the narrowness of this energy region an expansion around E
gives reasonable self energy values only very close to E. Equation
(3.2.26) is therefore only useful for fixing the position of the
resonance. When we calculate the mass enhancements and Fernmi
wavevector, both of which involve evaluating the self energy at the
Fermi level, the expansion around E is not used.

The final picture of an f level of renormalised energy, E,
hybridising via a renormalised hybridisation V to yield quasi bands
at the Fermi level is consistent with the argument of Section 1.4
that flat quasi particle bands of this type must occur if the system
is a Fermi liquid at zero temperature. The flat quasi particle
bands of the present model result in a sharp resonance in the f down
spin density of states above the Fermi level which we identify as
the precursor of a Kondo resonance. For small hybridisations, (A =
0.02eV), the resonance is extremely narrow and lies extremely close
to the magnon energy so that the quasi particle density of states at
the Fermi level is not much enhanced over the unhybridised density

of states. As the hybridisation increases the renormalised f energy
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E moves closer to the Fermi level and the quasi particle bands are
pushed flatter at the Fermi level (see Figure 3.5). Hence the quasi
particle density of states at the Fermi level and subsequently the
mass enhancement increase (see Section 3.3). A limit to the model
must be defined since as the hybridisation and the subsequent build
up of density of states at the Fermi level increases, there is also
a build up of down spin f density of states below the Fermi level in
the tail of this resonance above the Fermi level. At some point the
density of states below the Fermi 1level supports a non negligible
down spin f occupation violating the basic assumption of the model
of strong ferromagnetism. A limit is placed on the hybridisation in
Section 3.3 for this the strongly ferromagnetic case. In Chapter 4
the model is pushed to the weakly magnetic regime for the impurity

case, allowing an extension of the model to larger hybridisations.
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3.3. RESULTS.

3.3.1. The Effective Kondo Temperature.

The Kondo temperature Tx of the impurity problem is defined in the
Bethe ansatz expression for the high temperature susceptibility
(Andrei (1983)). Below the Kondo temperature the conduction
electrons screen the impurity moment so that TK locates a point on
an energy scale below which a screened moment is favoured over a
free moment. For the lattice case the Kondo temperature also
locates an energy dividing regions in which magnetic and non
magnetic Kondo like ground states are stable (Doniach (1977), Read
et al (1984) and Coleman (1883)).

The effectve Kondo temperature of the present treatment of the
spin degenerate lattice system is defined now as the magnon energy
for which the postulated ferromagnetic state breaks down. When the
resonance lies on the Fermi energy we assume the break down of the
magnetic state is complete. Thus the magnon energy for which the
model breaks down is given by equation (3.2.25) with E set to zero.
It is considered that this definition locates an effective Kondo
temperature which must at least be related to the real Kondo
temperature. In fact in Section (3.4.4) we find that when an
exchange interaction is included in the model, and the hybridisation
tends to zero, the effective Kondo temperature is in agreement with
the calculated Kondo temperature of Read, Newns and Doniach (1984)
and Coleman (1983) as well as the exact Bethe ansatz result for the
impurity.

For small hybridisation, E lies very close to the magnon energy
so that for E = O the magnon energy must be very close to zero and
in equation (3.2.22) E;N’(O) is dominated by the 1n|hwmg| term so
that

2
<nf,T,> \'

o
2“4’(0) ~ 1n Ih(gagl . (3.3.1)

We
£

When equation (3.3.1) is used In equation (3.2.25) with E = 0 we
find that in the 1limit of large U the effective Kondo temperature of
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the model is given as:

<n_p> W |ef|

v2

e . (3.3.2)

When the effective Kondo temperature of the model is compared with

the Bethe ansatz result for the impurity, namely:

Wole

2v?

T x e , (3.3.3)

it is seen that the effective Kondo temperature of the model differs
from the impurity Kondo temperature by a factor of two in the
exponent. The factor of two is not the same factor of two of Rice
and Ueda (1985) and appears to be a product of the model rather than
a genuine difference between the lattice and impurity cases. The
same. error occurs in the effective impurity Kondo temperature of
Chapter 4. Therefore the model yields an effective Kondo
temperature which 1is too small or, equivalently, the postulated
ferromagnetic ground state is too stable in contrast to the result
of Rice and Ueda where the factor of two means that their non
magnetic ground state is too stable.

A possible explanation for the error in the exponent of the
effective Kondo temperature is that the up spin density of states at
the Fermi level which enters the exponent as V2/ Iefl2 is too small
by a factor of two. The strictly ferromagnetic ground state is too
rigid an approximation since for finite U, no matter how large,
there will always be some down spin occupation due to hybridisation.
A schematic f density of states picture in a more realistic U finite

approximation is shown in Figure 3.6.
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Figure 3.6. A schematic f density

of states for the spin degenerate

pm(E)

periodic Anderson model for U

finite. The hatched areas denote

occupied density of states below

the Fermi energy EF

:
/;.
A

- ,,”///////////////////
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It is easily seen that, if a resonance is building up in the down
spin density of states due to processes represented by the diagrams
of Figure 3.3, then there must be analogous processes in which down
spin hole lines play the part of up spin particle lines, giving rise
to a resonance in the up spin density of states below the Fermi
level. A completely self consistent calculation would therefore
yield an up spin density of states at E_ larger than V2/|s:r|2 due to
the extra contribution from the up spin resonance lying Jjust below
the Fermi level.

The build up of the resonance in the up spin density of states
is consistent with an earlier breakdown of the ferromagnetic ground
state. As the hybridisation increases both the up and down spin
resonances move nearer the Fermi level. The up and down spin quasi
bands are pushed flatter at the Fermi level and subsequently the up
and down spin f electron density of states at the Fermi level
increases. The increase in f electron density of states of both
spins around the Fermi level means that more up spin electrons and
down spin holes are available for excitations of the sort
represented by the diagrams of Figure 3.3. Therefore more f
electron density of states is built up around the Fermi level via
these additional excitations. There is a kind of bootstrapping
effect building up weight at EF. In Chapter 4 the bootstrapping

effect is studied in the impurity problem with a view to correcting
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the effective Kondo temperature.

3.3.2. The Mass Enhancement.

The mass enhancement of the model is defined as the density of down
spin quasi particle states at the Fermi level, N(E), divided by the
unhybridised conduction band density of states at the Fermi level,

NO(E), so that

»*
m _ N(E) ’ (3.3.4)
m N (E) |E=0O
o
where the Fermi energy EF = 0. The general definition of the
density of states for any dispersion relation is:
) ! as
N(E) = ) (3.3.5)
s(E)
|Vek|

where the integral is over a surface of constant energy E. For both
the new quasi particle bands and the unhybridised conduction bands
the energy of the band states is assumed to be a function of |k|.
The Fermi surface for both the unperturbed and quasi particle bands
is therefore a sphere of radius equal to the relevant Fermi
wavevector. Therefore to evaluate the density of unhybridised
conduction states or quasi particle states at the Fermi energy we
integrate over the surface of a sphere of a radius equal to the
relevant Fermi wavevector in equation (3.3.5). As a result the mass

enhancement is given by:

- dk
. Y 4nk® —
m m de g€ =0, k=k
km' km Fm
—_— = , (3.3.6)
m
4nk2 dk

de e =0,k=k
k k F
where ekm are the quasi particle energies in band m, ek are the
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unperturbed conduction band energies, ka is the Fermi wavevector of
the quasi particle band m and kr is the Fermi wavevector of the
unperturbed conduction band. The definition (3.3.6) allows for the
possibility of more than one quasi particle band crossing the Fermi
level and contributing to the mass enhancement. In the present case
there is only one value of m for which €m = 0, that is only one
quasi band at the Fermi level. Schematically (see Figure 3.5) the
treatment of the strong on site coulomb correlation via inclusion of
the magnon excitations in the down spin wavefunction has resulted in
a flat band of states at the Fermi level giving a large down spin f
density of states at the Fermi level. The quasi particle bands are
pushed flat so that the value of the gradient in equation (3.3.5) is
decreased over the corresponding value for the unperturbed
conduction band to give the mass enhancement. The flat quasi bands
describe quasi particle states which are more localised than the
unperturbed conduction band states and therefore electrons in these
states appear heavier.

To evaluate equation (3.3.6) a constant unhybridised conduction

band density of states is assumed so that
N
N (E) = —, (3.3.7)
° W

where W is the width of the band and N the number of sites. The
assumption of a constant unperturbed conduction band density of

states means that

2 dk ! = amk® 9K . (3.3.8)

de |e =0, k=k W de |e =0,k=k
k! k F k' km F

4mk

m

so that when this result is used in equation (3.6.6) we find:

de
_k
»*
T o= 3 EE . (3.3.9)
m m de
dk (e =0,k=k
km Fm
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An expression for the mass enhancement is found by differentiating
the Dyson equation (3.2.24) with respect to k and solving for m‘/m
in terms of the derivatives with respect to k of the quasi particle
energies and unperturbed band energies as they appear in equation
(3.3.9). Finally we need the value of the unpertubed conduction band

energy £ = eka for which €L = 0 apd k = ka . That is the
unperturbed conduction band energies for which the quasi particle

bands cross the Fermi level. These are found from equation (3.2.24)

with € = 0.
km

v2

€ = (3.3.10)

k ’
Fa 2“%(0) + £,

so that
1-Z ffiekm)
™ 2 _
I TR dE e =0.k=k_ (3.3.11)
m > (0) + €,

Figures 3.7 and 3.8 show the mass enhancement versus hybridisation
behaviour for coulomb correlation U = 7eV, conduction bandwidth W =
10eV and f electron energy ef = -1.5eV. These parameter values
apply for all the Figures 3.7 through to 3.11 and are reasonable for
typical HF materials. Figure 3.8 shows how the mass enhancement of
the model increases rapidly for hybridisations greater than 1.3 eV.
However for hybridisations as large as V = 1.3eV the Fermi wave
vector has deviated appreciably from the zero down spin occupation
value of 0.0669eV (see Section 3.3.3) so that the initial assumption
of no down spin occupation does not apply. The model therefore
cannot be trusted for hybridisations greater than V = 1.3eV. In
Chapter 4 an attempt is made to generalise the technique to the
weakly magnetic case for the impurity and thus probe the larger
hybridisation region. The model is extended for the impurity case,

for which exact results are available as a test case for the
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possible extension of the lattice model to the weakly ferromagnetic
regime. Figure 3.7 shows in more detail the mass enhancement for
hybridisations of magnitudes more consistent with the assumptions of
the model. The figure shows mass enhancements of around 12 for
hybridisations of 0.85eV (A = 0.2eV). The model therefore predicts
a build up of mass enhancement as the hybridisation increases and
the magnetic state breaks down. It cannot, however, be pushed to
the larger hybridisation regime where the truly very heavy masses

occur.

3.3.3. The Fermi Wavevector.

For a constant unhybridised conduction band density of states and €,
a function of |k| the conduction band energies, €., must vary as the

cube of the wavevector. The expression

e =W - W+ Tp, (3.3.12)

max

where Tp and W are the top of and width of the conduction band
respectively, ensures that e, equals Tp for the maximum value of k
and €, equals Bt, the bottom of the conduction barid, when k equals
zero. When we substitute the value of e, when k equals ka from

equation (3.3.10) into equation (3.3.12) we find:

(=

= -Tp + W . (3.3.13)
k W Z(0) + £,

The behaviour of the quasi band Fermi wavevector with increasing
hybridisation is shown in Figures 3.9 and 3.10. As the
hybridisation increases the Fermi wavevector and Fermi volume also

increase consistent with an increase in down spin occupation.
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Figure 3.9 shows that for V = 0.75eV (A = 0.177eV), the Fermi
wavevector has increased in size by approximately 2% over the
unperturbed Fermi wavevector of 0.0668eV, an amount considered large
enough to determine the 1limit of the model’s validity. Figure 3.10
is included for completeness and shows how the Fermi wavevector
increases dramatically as the hybridisation 1is increased beyond
about 0.85eV (A = 0.2eV).

3.3.4. The f Down Spin Density of States.

The band density of states, N(E), is defined as the sum of all the

single particle density of states:

N(E) = - _1 Im ¥ G (E+i3,k). (3.3.14)
k

4

The model allows the calculation of the f down spin Green function

for energies above the Fermi level:

E>0, (3.3.15)

Z=E+ié \)
Z - -— =% (2)

and therefore we can calculate the f down band density of states
above the Fermi level. The density of states can be divided into
two energy regions. For energies less than the magnon energy the
down spin f electron Green function has a quasi particle pole for
each k. The quasi particle pole occurs at energy €. given by the
Dyson equation (3.2.24) where the index m allows for the possibility
of more than one quasi particle for a given k. In the energy region
0 < E K hwmag the f down spin density of states is given by the sum
of the weights in the quasi particle poles for each k. For energies
E = hwmag ,the continuum, the density of states 1is calculated
without any approximation and is found to Jjoin continuously at the

magnon energy with the density of states for E < hwmag
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For E < hw

mag
: Z(ekm
Gfr¢(E+18,k) =3 , (3.3.16)
m .
(E + id8 ekm)
where Z(ekm) is the weight in the quasi particle pole. Thus
N(E) = ¥ Z(ekm) 3(E - € 0 ), (3.3.17)

km

where km are the wavevectors of the quasi particle states in band m.
The sum over km is as usual changed to an integral over energy from

the bottom to the top of the band to find

v2

N(E) = , E<hw . (3.3.18)
WE-¢ -%  (E)? ma9
£ ff¢

For energies greater than the magnon energy the density of
states is calculated from equation (3.3.14). At the magnon energy

the density of states is given exactly as:

1 Im 1
N(E=hw ) =--— -
mao n (hw - € + i8)
mag
-0
1 Tp V2
J - de
w(hwmag— e, + 18 ) Bt ( hwmag— e, + 18 )( e -th]— ig ) +V

(3.3.19)

where Tp and Bt are the top and bottom of the unhybridised

conduction band respectively. Therefore
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1

N(E=ho ) =-—1"
mag T (hw - e + i8 )
mag f
5§50
v2 Tp de
- 2 J 2 !
Wlho -€ + i8)°Bt (& - ho + \' - is)
mag f i _—
(hw - ¢))
mag £

(3.3.20)

and after taking the imaginary part in equation (3.2.20) we find

that at the magnon energy the f down spin density of states is given

as:

v2

N(E=hew } = , (3.3.21)
me9 W(hw -e P
mag f

which Jjoins continuously with the density of states for E = hwmg-g,

where ¢ is a small quantity, of equation (3.3.18).
The resulting f down spin electron density of states is shown
, and how =

mag
0.005eV, as in the mass enhancement calculation, and V = 0.35eV.

in Figure 3.11 for U = 7eV, W = 10eV, e:f = BeV

The f down spin density of states exhibits the expected narrow
resonance around energy at s:f + U which is consistent with the
picture of most of the f down spin weight still being around this
energy. It also shows a very narrow resonance close to the spin

wave energy of 0.005eV, which is identified as a precursor of the

Kondo resonance.

3.3.5. Discussion.

The model is seen to predict build up of Kondo 1like behaviour of
mass enhancement, density of states and Fermi wavevector with
increasing hybridisation up to V = 0.75eV, if the model is only
strictly trusted in the strongly ferromagnetic regime. To probe the

larger hybridisation regime the restriction to no down spin

85



occupation must be lifted and is the subject of the following
chapter. The model does succeed in predicting that the build up of
HF behaviour is concurrent with breakdown of the magnetic state.
However the wrong  exponent in the effective Kondo temperature
remains a problem. This error in the exponent is attributed to the
up spin density of states used in the calculation being too small by
a factor of two. An attempt to correct the exponent in the Kondo
temperature is given in the following chapter for the impurity as a
test for a possible way of improving the lattice effective Kondo

temperature.
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DENSITY OF STATES

Figure 3.11.  F DOWN SPIN DENSITY OF STATES FOR V
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3.4. THE EXCHANGE INTERACTION IN HEAVY FERMION SYSTEMS.

3.4.1. Introduction.

In normal rare earth metals the magnetism is a consequence of the

exchange interaction:

Iex = - .Jex §1' o, (3.4.1)
an on site interaction between the f spin (o) and conduction
electron spins (S) such that for .Jex positive it 1is energetically
favourable to align these spins parallel. Via the conduction
electrons a localised impurity spin on one site can interact
indirectly with impurity spins on neighbouring sites tending to
align them all parallel or antiparallel depending on the sign of
Jex. The conduction band is polarised via the exchange interaction.
However it can also be polarised via hybridisation. Therefore the
R.K.K.Y. interaction, that is the interaction between ions which
results via conduction electron polarisation and governs the
magnetism of a system, is built up via both exchange and
hybridisation. The question of how the hybridisation and exchange
interactions compete in the range of systems from the rare earth to
the HF is the subject of the following sections.

We know that the hybridisation term of the Anderson impurity
hamiltonian transforms wunder a Schrieffer-Wolff transformation
(Schrieffer and Wolff (1966)) to an exchange interaction, as defined
in equation (1.2.1), (or equivalently equation (3.4.1) where i is
the impurity site) with a negative effective coupling constant
—2V2/]ef]. The result is usually assumed to apply also to the
lattice so that in a model for say gadolinium where the size of the
ground state moment indicates that the total exchange coupling must
be positive, the hybridisation is neglected. On the other hand in
theories of the non magnetic HF systems the exchange interaction is
generally neglected in favour of the hybridisation between the
conduction and f electrons so that these systems are often modelled
by a periodic Anderson hamiltonian. It is through this
hybridisation that f electron weight is built up at the Fermi level

resulting in the large mass enhancement and other hallmarks of the

99



HF systems. For the non magnetic HF systenms, then, the
hybridisation term seems to dominate the ground state properties,
including the magnetism, and it seems reasonable to neglect any
exchange interaction in its favour. As the f level energy moves
deeper towards the normal rare earth regime and the hybridisation
matrix decreases the exchange interaction takes over and dominates
in the R.K.K.Y. interaction. Any treatment of the full class of
rare earth systems must therefore include accounts of both these
interactions in the intermediate regime where neither exchange nor
hybridisation dominates.

From a Schrieffer-Wolff transformation for the Anderson
impurity. hamiltonian plus exchange interaction we find that in the
Kondo limit, V « |ef|, the exchange and hybridisation add as a new
effective exchange interaction when J = « 2V2/|ef| for J__
positive or negative, and also for Jex » 2V2/|ef| when Jex is
positive. To study the competition between exchange and
hybridisation in the lattice a variational calculation of the single
particle f down spin Green function is made for an assumed
ferromagnetic system which 1is modelled by the spin degenerate
periodic Anderson hamiltonian plus exchange interaction with Jex
positive. A calculation of the effective Kondo temperature for this
model shows that, for the effective Kondo temperature at least,
exchange and hybridisation add as an effective exchange, as in the
impurity case. Also as V 5 O this effective Kondo temperature
agrees exactly with the Bethe ansatz result. In the region Jex x
2V2/|ef| it is seen that, as in the impurity case, the exchange and
hybridisation do not add simply as an effective exchange
interaction. Also we find that in the region where Jex is of order
2V2/|cf| the exchange interaction can have a non negligible effect
on the mass enhancement. For HF systems like CeSix in which the
exchange and hybridisation are competing in the ground state we

propose that exchange should be included in the model.

3.4.2. A Schrieffer - Wolff Transformation.

The Schrieffer-Wolff transformation 1is performed on the Anderson

impurity hamiltonian:
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ol pedt - Fo oot
Hlmp = kzo,ekcka'ckcr +§ effcrfrr + Ufif,rfif@ + }EO.V(C“O'f"' + fo. cko,),

(3.4.2)
where ci-o- creates a conduction electron in a state of energy ek,

momentum k and spin o and fi creates an f electron in a state of

energy €, and spin o on the impurity site. The aim of ‘the
transformation is to project out operations which change the number
of f electrons in a state. The transformation leads to a new
hamiltonian: '
2v? _
H = S. o + H + H, (3.4.3)
eff - - o
.|
£
where
oo’
S.oco = C]Lc f‘+ f + Z——c',l'c f+, f,
== o k'c k-0 -0 o o 2 k'oc xo o o

Qx

(3.4.4)

The term H contains a direct spin independent interaction, a term
which shifts the f electron energy and a term which changes the
occupancy of the f orbital by two (Schrieffer and Wolff (1966)). In
the new effective hamiltonian He” the important interaction is of
the form of the exchange term of the s-d hamiltonian of equation
(1.2.1). The exchange coupling strength, —2V2/|ef|, of the
effective exchange interaction 1is negative and is built entirely
from hybridisation. The negative sign of the effective coupling
constant means that it 1is energetically favourable to align the
conduction and impurity spins antiparallel resulting in a quenching
of the impurity moment. Therefore through the Schrieffer-Wolff
transformation the non magnetic ground state and resistance minimum
of the Anderson impurity hamiltonian can be viewed in terms of the
Kondo type picture. When the exchange coupling constant of equation
(1.2.1) is negative the s-d hamiltonian is normally referred to as

the Kondo hamiltonian.

In the remainder of this section the results are quoted for a
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Schrieffer-Wolff tranformation on the Anderson impurity hamiltonian
plus exchange interaction. The Anderson impurity hamiltonian of

equation (3.4.2) with an added exchange interaction is written:

TS R , (3.4.5)
imp imp imp
where
I = =-J S.o0 . (3.4.86)
imp ex — -

The hybridisation and exchange are both treated as perturbations and
following Schrieffer and Wolff (1966) a canonical transformation is
chosen to eliminate the hybridisation term of the impurity
hamiltonian of equation (3.4.5) to first order. The two
interactions, exchange and hybridisation, can only be compared if
the orbital angular momentum of the impurity is neglected, since
otherwise the hybridisation can result in a change of orbital
angular momentum which the exchange interaction cannot.

We follow the method of Schrieffer and Wolff (1966) and take
the 1limit U infinite to exclude intermediate states with double f

occupancy. The transformed hamiltonian is given as:

I 2V _
= - J - S. oo + H + H
eff ex - [}
le_|
f
(o'a")VJex
- L ci-c" C;l(-tr ko o’
k ok k_ 2(e - ek ) 1 2 3
o o’ '

(3.4.7)

where H is as in equation (3.4.3). In the limits
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U-w V« |e | and J -
f ex

or equivalently

J >0 and J__ »2V¥/|e, | or J _ « 2V¥/|e_|
X f f

ex e ex
vV« |ef| ,
J <0 and J « ZV;ICJ
ex ex
(3.4.8)
the hamiltonian H:” reduces to
H' =- JS.oc +# H + H, (3.4.9)
eff = - o
where
2v?
J = J - (3.4.10)
ex
e
£

Therefore within the 1limits defined in equation (3.4.8) the
important term is again an exchange interaction with a new exchange
coupling constant J. With Jex negative the total coupling constant
is negative and a non magnetic ground state is favoured. For Jex
positive the exchange interaction favours a magnetic ground state
and will dominate for Jex large enough to determine the sign of J.
If this new impurity result is also true for the lattice then the
criterion for a Kondo like non magnetic ground state of equation

(1.4.15) becomes:

1
- 2
_ ( poJ )
(=Deo,  p —, (3.4.11)
2
N
£
with J given by equation (3.4.10). The assumption that impurity

results can be applied to the lattice 1is found to be not
unreasonable by Read, Newns and Doniach (1984). The authors find

that for large N;' where Nf is the orbital degeneracy of the f
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level, the concentrated system behaves as a lattice of impurities,
intersite effects coming in at order (1/Nf).

Consider the rare earth systems where Jex is positive. For
very small hybridisation, the criterion for magnetism of equation
(3.4.11) predicts that the magnetic ground state is stable. The
result therefore supports the treatment of the magnetic rare earth
systems by an R.K.K.Y. interaction. At the other extreme of large
hybridisation, 2V2/|cf| » J_, the hybridisation dominates and the
ground state is non magnetic. In this large hybridisation region
the result supports the Anderson lattice treatment. In the
intermediate regime where J_ is of the order of 2V2/|ef| there can
exist either a magnetic or a non magnetic ground state. In this
intermediate regime the exchange and hybridisation do not simply

couple as an effective exchange interaction.

v

I

intermediate valence
non magnetic - hybridisation dominates

non magnetic - exchange and hybridisation compete

magnetic - exchange and hybridisation compete.

magnetic - exchange dominates.

1
Figure 3.12. The variation from magnetic to non magnetic
ground state in the rare earths with increasing hybridisation. We

assume that Jex remains fairly constant from system to system but

that the hybridisation varies.

From Figure 3.12 where the arrow points 1in the direction of
increasing hybridisation we see that the systems with a Kondo like
ground state which are nearest to integral valence, that is, have
the smallest hybridisation, are those in which the exchange

interaction could play an important role. Some HF systems could
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therefore fall into regime of non negligible exchange interaction
implying that the exchange interaction should be included in their
treatment. However it is possible that heaviness only occurs when
2ve/ |ef| » J__ so that the neglect of exchange in the treatment of
HF systems is reasonable. In the following section we investigate
the effect of exchange and hybridisation on the mass enhancement
when ,Jex is of the order of 2V2/[ef|, via a variational calculation

for the lattice.

3.4.3. The f Electron Green Function.

In the present section the variational calculation of Section (3.2)
is reworked with an exchange interaction included in the
hamiltonian. We treat the case where the exchange interaction
favours parallel alignment of the conduction and impurity spins
since this is the situation in the rare earth systems.

The system is again assumed strongly ferromagnetic with no down
spin occupation in the ground state and is described by the Anderson

lattice hamiltonian with an exchange interaction included:

AT _ A

= + 1 , (3.4.12)
latt latt latt

where anu is given by equation (3.2.1) and

=-% Jex[c+c T f +Zf°’_' c+c T

I = il , £f!, ,f ]
latt kO k+q-0 k’-0 k’-q0O ko k+q0 k‘0’ k' -qo’ |’

2 ok’ kq d 0 oo q q
(3.4.13)

with Jex > 0. At this stage it is useful to determine the exact
form of the f electron Green function as in Section (3.2.3). From a
general diagramatic expansion treating the coulomb, hybridisation
and exchange interactions as perturbations the f down spin single

particle Green function is written as:
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=y = —_— s > r— +

G kE) G, (k) Gy (kE) G (kE) G (k.E) Gy KE)

‘i (3.4.14)
y Gy, (kE)

Gm(k,E)

v
i = > > +
° ° kE
G, KE) G, kE) G, (kE) G kE) G, (kE)
" (3.4.15)

G (K.E) G, kE)

where G?‘r (k,E) and G” (k,E) are the unperturbed and full down spin
g N

f electron Green functions respectively, ch (k,E) 1is the fourier

N
transform of the Green function <O|TI c, (t) f‘i- (0)1]0>. Also
% N2
GZC (k,E) and Gcc (k,E) are the unperturbed and full down spin
4 $
conduction electron Green functions respectively. Also 2“{ (k,‘E)ﬁx
J

is a proper down spin- f electron self energy representing all
processes in which the f down spin electron first interacts with the
system via the coulomb interaction or the exchange interaction and
after all subsequent interactions it emerges still as an f down.
ch\l’(k,l:".)ex is another proper self energy in which the f down spin
electron first interacts with the system via the coulomb or exchange
interactions and after all subsequent interactions it emerges as a
down spin conduction electron. Finally Zc;‘l’(k,E)ex is another
proper self energy in which a down spin conduction electron first
interacts with the system via exchange and after all subsequent
interactions it emerges as a down spin conduction electron. The f

down single particle Green function is therefore given as:
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- o o
fo‘b(k,E) = Grf¢(k’E) + fo‘b(k,E) v GCfJ,(k'E) +

o 1
foJk,E)E ffik,Is)G ffik’E) +

[+]
G”‘L(k, E)Z£c¢(k, E)Gcf¢(k, E),

(3.4.186)

where

- r° o
G fa,(k’E) = Gc%(k.E) v Gfﬁ»(k,E) + Gch,(k’E)zcr(k’E)Grf¢(k’E)

(]

o

G (k,E)Z (k,E)G (k,E) ,
ccy ccy cf¢

(3.4.17)
so that
1
G“_ (k,E) = 2
v (v+z (kE)_) .
E-¢ - °ty °x - %~ (k,E)
£ ff¢ ex
(E-¢e -2 (k,E) )
k ccy ex
(3.4.18)

The subscripts, ex, denote that these are the exact quantities. The
same notation will be used without the subscripts, ex, for the
corresponding approximate quantities of the model. From the form of
the exact f down spin electron Green function of equation (3.4.18)
we see that including an exchange interaction in the model modifies
the f electron self energy term, introduces a conduction electron
self energy and an additional contribution Zcf (k,E)ex to the
hybridisation. The result is a similar f electron Green function to
that of equation (3.2.11) where exchange is not included in the

model, but now with a new effective energy dependent hybridisation:
VI(E) = (V+ 5 (k,E) ). (3.4.19)
ex cf¢ ex

The analysis of Section 3.4.2 predicts that if the impurity result
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can be generalised to the lattice then in any Ilattice solution the
hybridisation strength V and exchange coupling J ex must appear as in
equation (3.4.10). Therefore in the variational calculation we
expect that for J__ » 2Vv®/|e | and J_ « 2V°/|e | we will find an

effective hybridisation matrix Ve“:

leg1d

£ ex

\ =V - -, (3.4.20)
2

(at least near the Fermi level) as well as a new effective Kondo

temperature:

offl - ¢ (=J) po where J=J -
K ex

T (3.4.21)

However from the diagramatic expansion it is obvious that in general
exchange and hybridisation appear in the f electron Green function
in quite different ways. The exchange interaction contributes to a
conduction electron self energy ch‘b(k,E)ex and an energy dependent
hybridisation ch‘l'(k'E)ex'

In the remainder of this section the variational calculation
for the f down spin electron is made and the competition between Jex
and V examined. An approximate ground state is calculated by making
the Hartree Fock approximation to both the exchange and coulomb
interactions so that the many body periodic Anderson hamiltonian
plus exchange interaction becomes two single particle up and down

spin hamiltonians as before:

Hy= E ek,l\ci',rck,p + E ef,,\fi}f‘k,P + E V(ci¢fk¢+fi¢ck¢), (3.4.22)
H=1Y ¢ c+ c, (3.4.23)
v E ky ko v

J

ex
€ 4= €, 5 <nf¢>, (3.4.24)
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<nf¢>, (3.4.25)

€ 4= €.~ ? [<nc¢> - <nc\b>:|, (3.4.26)

where <nc¢> and <nc > are the up and down spin conduction electron
N

occupation in the ground state and <nf¢\> is the up spin f occupation

in the ground state. Within the Hartree Fock approximation we solve

the up spin problem for the ground state:

[0>'= m ax+ nc+ |v> (3.4.27)
kn k
knp 'T‘k<kF v
occ

where the up spin eigenstates a;i'¢lv> and energies e:m as well as
the conduction and f electron amplitudes, B;n and A:m, in a state
are given by equations (3.2.3) to (3.2.6) with €, replaced by € 1
and e, by g 1 In the ground state |0>1 the up and down spin bands
are as in Figure (3.1) but with up spin bands shifted by --Jex
<nf¢>/2 and the down spin bands by Jex<n[,r>/2 due to the exchange
interaction.

With the approximate ground state established the steps of the
variational calculation are repeated. Firstly a variational
wavefunction 1is proposed for the f down spin electron. The
variational wavefunction of the spin only calculation ( see equation
(3.2.13)) still represents the sum of the most 1likely processes
occurring when a down spin electron enters the system, even with the
addition of an exchange interaction. Once again the f down spin
electron can access the level at e‘_¢ + U<nf¢> or, via the
hybridisation any of the unoccupied conduction states. Also, since
the f weight in the unoccupied up spin states is still small, the
additional lowest energy excitations which are most likely are those
in which a down spin f, or conduction electron, excites a particle
hole pair in the opposite spin band and propagates with the hole as
a magnon. The third process can now occur via the exchange or the

coulomb interactions. The variational wavefunction is written:
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1 I -
wie o el v o adas L Jlo
k t>kF
(3.4.28)

where S;_k, is the approximate magnon creation operator of equation
(3.2.14). As in Section 3.2.3 we obtain equations for the

1 1 I

coefficients Dk, Fk, Gk,l by 1left multiplying the Schrodinger
equation by each of the constituent elements of the variational
wavefunction ||[1 >", The equations for the coefficients are solved
for a Dyson equation in the limit of small hybridisation and Jex «
U. The Schrieffer-Wolff transformation of Section (3.4.2) for the
impurity predicts that, for Jex as defined in equation (3.4.8), the
exchange and hybridisation just add in the ratios .Iex to 2V2/|sf|
to give an effective exchange coupling, J, of equation (3.4.10).

However it cannot describe the regime where Jex is of the order of

2V2/|ef|. In order to be able to study this regime, for the

lattice, and take the 1limit of small hybridisation we work to order

v?/le |® and J /|e_|. Also in this Kondo limit V < |e_| the up
f ex f £

spin f density of states above the Fermi level is approximated by
its value at the Fermi level. Within these approximations (see

Appendix A) the Dyson equation becomes:

(V+E (x,E))? .
cy - s (xE) = o,
ff‘b

(E-¢-Z% (kx,E))
k CCJ'
(3.4.29)

which agrees exactly with the form predicted by the general

diagramatic expansion of equation (3.4.18) with Z;f (k,E) calculated
g

within the model as:

J

ex

I
£z (k,E) = U<n 4> + )

7<n > + ' (k,E), (3.4.30)
£ry co £f

2

where the first two terms are Jjust the Hartree Fock contributions

due to the coulomb and exchange interactions and
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X
- obe [E - c;l, - hwk_k,]
Zfr¢(k,E) = , (3.4.31)
ua'? +J B'*
1 - k1 ex k1
X
ki’ 1
occ [E - ekt' - hwk-k']
where
12 Ve
- = p (3.4.32)
Foo|e ]

is the f up spin density of states at the Fermi level in the 1limit

of small hybridisation. The superscript I distinguishes this f

electron self energy from that of Section (3.2) where exchange is

not included.
Also £ (k,E) is given by:
ch,

~

£ ! (x,E)J
ff¢ ex

ch (k,E) = - : , (3.4.33)
¥
UAk .
F
and £ (k,E) by:
ccd'
J
ex "
Z (k,E) = <n 4> + Z (k,E) , (3.4.34)
ccy, 2 f ccy

where the first term of equation (3.4.34) is just the Hartree Fock

term and
| 2
~ sz¢(k’E)Jex
z (k,E) = —mm8m™, (3.4.35)
ccy U2A12
k 1

F

In each of these self energies hwk_k, is the magnon energy which is
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later approximated by a consta nt hwmag as in Section (3.2.3) In
Section (3.2.3) it was stated that the approximate self energy

-~

Z”J,(E) of equation (3.2.18), which results from a variational
treatment of the spin only model, 1is given exactly by the
contribution of diagrams of Figure 3.3 Within the present
treatment of the periodic Anderson model plus exchange interaction
the self energy terms i,-:- (k,E), Zc%(k.E) and zch,(k’E) can also be
identified with the contributions of particular diagrams. When we
express the coulomb and exchange interactions of equation (3.4.12)
in terms of the Hartree Fock basis operators, ai'n,r., akn,r, ftb, fk ¢
ciw cy no= 1 or 2 then we can show that, within certain
approximations, the self energies of the variational calculation can
be 1identified as those of Figures 3.13 to 3.15. These
approximations are: the up spin propagators + and the down
spin conduction and f electron propagators ﬁ%— and %ﬁ—
are all approximated by their Hartree Fock expressions, the
hybridisation is small, the magnon pole approximation is made to the
susceptiblity and the scattering between the up spin electron and
the magnon results in zero momentum transfer. In each of Figures
3.13. to 3.15 the broken lines —.—.—.— represent scattering via
the coulomb or exchange Iinteractions while the dotted 1lines

represent scattering via the exchange interaction alone.

P e .
TN

Figure 3.13. The self energy diagrams, other than Hartree
Fock, in the down spin f electron self energy of the variational
calculation for the spin degenerate periodic Anderson model plus
exchange interaction. The broken lines represent scattering via

both the coulomb correlation and exchange interaction.
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Figure 3.14. The diagrams in Zcf\b(k,E) of the variational
calculation for the spin degenerate periodic Anderson model plus

exchange interaction.

T
co | el
il
!' ol !- [
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>

¥

Figure 3.15. The diagrams, other than Hartree Fock, 1in the

down spin f electron self energy Ecc¢(k,E) of the wvariational
calculation for the spin degenerate periodic Anderson model plus

exchange interaction.

3.4.4. Properties of The Solution.

With the approximation of a flat magnon dispersion, the self
energies if;¢(E), §c€¢(E) and %cc (E) are now momentum independent.
These self energies are very similar to the f electron self energy
of the spin only case and therefore have similar properties. For
energies less than the magnon energy the imaginary part of any of
the self energies is zero, and the Dyson equation (3.4.29) can be
solved for quasi particle energies. Again near the magnon energy
the f self energy Zfid,(E) tends to zero so that for some energy E

very close to the magnon energy (see Figure 3.16)
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Figure 3.16.

(3.4.36)

The f resonance

energy for the spin degenerate

periodic Anderson model plus

exchange interaction.

The figure

illustrates the solution of

pe €quation (3.4.38).

When the self energy Zf; (ﬁ) is expanded in a Taylor series around
N2

then in the limit U 5 o the quasi particle energies very close to

are given by:

(E - EJ(E - Ck‘l') =

1 -z

where
E= e+ 3% (E)
f £fy
and

V3(E) = (V + ch(é))z

E
E
da=! (E)
. I

. LB = A

dE E=E
(3.4.37)
(3.4.38)
(3.4.39)

with Zcf(E) given by equation (3.4.33). For energies close to E the

quasi particles form the bands of an f level of renormalised energy

E hybridising via a renormalised hybridisation with the conduction

band.
3.5 with E replaced by E.
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As in the spin only case the magnetic state breaks down as the
hybridisation increases and the resonance near the Fermi level
accomodates non negligible down spin occupation. From Figure 3.16
we see that the inclusion of the exchange interaction shifts these
quasi particle bands at the Fermi level relative to their positions
in the spin only case so that the resonance position is shifted
further away from the Fermi level. Therefore for any hybridisation
the exchange interaction, with exchange coupling .Jex positive,
stablises the magnetic state in accord with the prediction of the
criterion of magnetism of equation (3.4.11), where exchange and
hybridisation are considered to add as an effective exchange
interaction.

In the limit U » o» we find using equation (3.4.36) to solve for

s NE) that
f£f

ay A le_|
VRE) =VE | 1+ X T 1, (3.4.40)

If the the exchange and hybridisation do in fact combine as an
effective exchange or effective hybridisation as in the impurity
then we expect the hybridisation matrix to be given by equation
(3.4.20). The disagreement between the expected result and the
result of the variational calculation could be due to the fact that
the variational wavefunction does not deal adequately with
hybridisation, hence the wrong Kondo temperature in Section 3.3.1.
However the implication that 1in general the hybridisation and
exchange do not add as an effective hybridisation is the correct
result, as is seen from the general diagramatic expansion.

The effective Kondo temperature of the model does however
vindicate the idea tﬁat exchange and hybridisation add to give an an
effective exchange interaction. The effective Kondo temperature of
the model 1is defined as that magnon energy for which the
ferromagnetic state breaks down. The breakdown is considered to
occur when the resonance lies on the Fermi level, since then the
down spin density of states below the Fermi level is holding non
negligible down spin and the initial postulate of no down spin

occupation 1is invalid. The resonance energy E is defined in
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equation (3.4.38) so that for E = 0
€ - U<n‘_¢> - 2“_‘»(0) =0 (3.4.41)

and equation (3.4.41) can be solved for the magnon energy or
effective Kondo temperature. The self energy term E“I_ o (E) is
considered to be well treated by the variational wavefunction of
equation (3.4.28) so that we expect the calculated Kondo temperature
to be a good test of whether exchange and hybridisation add as an
effective exchange or not. In the limit of U -5 o, the effective

Kondo temperature is given by:

T'°ff & e e, ) (3.4.42)

For J ox” 0 the effective Kondo temperature of the model reduces to
the spin only result of equation (3.3.2) and is once again wrong by
a factor of two in the exponent. This error is discussed in Section
3.3.1 and is treated in Chapter 4 for the impurity. However for V -
0 the effective Kondo temperature agrees with the Kondo temperature
of Read el al (1984) and Coleman (1983) where the system is modelled
by the orbitally degenerate version of H::tt. (see equation (3.4.12))
with V = 0. The result for V -5 0 also agrees with exact Bethe
Ansatz results for impurity. The agreement with exact results for V
> 0 vindicates the model definition of the effective Kondo
temperature and shows that for U » o the variational ansatz treats
the exchange interaction contribution to in J(E) very well but, as
in the spin only case, 1is lacking in the treatment of the
hybridisation. We identify the origin of the error in the exponent
of the Kondo temperature as due to the fact that even for large U
there will be some down spin occupation in the ground state and
subsequently some up spin self energy which is neglected in the
<nf¢> = 0 ground state. In Chapter 4 the effective Kondo
temperature is improved for the impurity by treating the

hybridisation of the up and down spins on an equal footing and
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performing a self consistent calculation.

In equation (3.4.42) Jex enters the exponent in the effective
Kondo temperature as predicted by the Schrieffer Wolff
transformation of Section (3.4.2) for the impurity, if we accept the
missing factor of two in front of V2. The result is consistent with
the postulate that for V « |ef| and J_ <« 2V2/|ef| or J_ » 2V2/|er|
hybridisation and exchange can be thought of as simply adding to
give a total exchange strength J of equation (3.4.10), favouring a
magnetic or non magnetic ground state depending on the magnitude of
J.

3.4.5. Conclusion.

From the variational treatment of the spin degenerate Anderson
hamiltonian with exchange interaction we find that the magnetic
state breaks down and the mass enhancement builds up with increasing
hybridisation, as before. However we also find additional
contributions to the down spin f electron self energy, iffJ,(k,E),
due to the exchange interaction which push the narrow down spin f
resonance at the Fermi level nearer to hwlnag than for the Jex =0
case. If this were the only effect of exchange then the mass
enhancement would be slightly decreased over that of the Jex = 0
case for any hybridisation. However the exchange interaction also
acts to increase the effective hybridisation (see equation
(3.4.40)), so that for any hybridisation, V, the net result on the
mass enhancement depends on which of the two competing effects of
exchange is dominant.

The postulate that the exchange interaction and hybridisation
present in rare earth systems combine as an effective exchange
interaction for J_ « 2V¥/|g_| or J_ » 2v?/|e_|, with effective

coupling constant J where

J=1J - , (3.4.43)

as suggested by a Schreiffer Wolff transformation on the impurity is
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vindicated by a lattice calculation of the effective Kondo
temperature. In general, though, the variational calculation of the
f down spin Green function shows that the hybridisation and exchange
interactions affect the system in quite different ways. This result
is in agreement with the predictions of the completely general
diagramatic expansion in which the exchange interaction leads to an
energy dependent contribution, ch(k'E)’ to the hybridisation as
well as a conduction electron self energy, ch(k,E). Therefore in
general no simple addition of exchange and hybridisation is
possible.

Consider the results and their application to rare earth
systems where Jex is positive. In gadolinium the f level is deep
below the Fermi level, the hybridisation is small and the ground
state is magnetic. As we move through the rare earth series the
hybridisation changes. The magnetic ground state remains stable
until the hybridisation is of such a magnitude that the criterion
for a non magnetic ground state of equation (3.4.11) is satisfied.
Some of these rare earth systems are heavy and are usually
considered to be those in which the exchange interaction is
negligible. In these systems the ground state is non magnetic and
the hybridisation dominates in the mass enhancement. However there
are other systems with possibly magnetic or non magnetic ground
states where Jex is of the order of 2V2/|ef|. The variational
calculation with the exchange interaction included shows how mass
enhancement could build up via both exchange and hybridisation in
these systems.

In their studies of CeSix Sato et al (Preprint) claim that in
this system exchange and hybridisation are competing for the
hybridisations associated with 1.7 < x < 2.0. In this HF system the
magnetic state breaks down with increasing silicon concentration, or
hybridisation. Therefore this system 1is an 1ideal candidate for
comparison with the model. The authors postulate that magnetic
CeSiL8 and non magnetic CeSil'g flank very heavy systems (see
Figure 3.17). Therefore for CeSix, at least, there may well be very
heavy systems with 1.8 < x < 1.9 in which the exchange interaction
is not yet dominated by the hybridisation. These systems are suited
to the description by the model developed here which shows how

exchange could contribute to large mass enhancement.
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CHAPTER 4.

THE WEAKLY MAGNETIC PROBLEM.

4.1. INTRODUCTION.

In Chapter 3 a model is developed for cerium systems to describe the
breakdown of the strongly ferromagnetic state and the build up of HF
behaviour with increasing hybridisation. The main limitation of the
model is that the arguments on which it is based start to break down
as soon as the hybridisation produces some non negligible down spin
occupation. Therefore the next step must be to improve the model in
order to describe the weakly ferromagnetic regime. Also the main
possible problem result of the model of the previous chapter is the
missing factor of two in the exponent of the effective Kondo
temperature.

In the present chapter both the extension of the model to the
weakly magnetic regime and the correction of the effective Kondo
temperature are examined for the impurity. We 1initially model the
strongly magnetic case to determine whether the discrepancy of two
in the effective Kondo temperature of the previous chapter is a
genuine difference between the lattice and impurity cases, or a
defect in the variational method. The calculation is then extended
to the weakly magnetic regime. The wultimate aim is to develop a
model for the impurity in the weakly magnetic regime which gives
reasonable agreement with Bethe ansatz and, via the lattice
analogue, gives some insight on how to extend the lattice model to
the weakly ferromagnetic regime.

The system under investigation is a dilute HF cerium system
described by the Anderson impurity hamiltonian. It is assumed that
a magnetic field acts on the impurity to ensure a magnetic ground
state. First the variational method is used to calculate the f down

spin Green function for the strongly magnetic case of no down spin f
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occupation. The density of states is calculated and the effective -
Kondo temperature of the model is defined and evaluated for this
strongly magnetic limit. As for the lattice calculation of Chapter
3 we find that the effective impurity Kondo temperature differs from
the exact impurity result by a factor of two in the exponent. The
self energy diagrams equivalent to the variationally calculated self
energy are identified and found to be those of Edwards (1868). The
model is next pushed into the weakly magnetic regime of non
negligible down spin occupation which 1is analogous to the weakly
ferromagnetic regime of the lattice problem. The self energies for
both the up and down spin Green functions are postulated. Within
certain approximations these are identical to the self energy of the
variational calculation. The magnetisation 1is calculated as a
function of magnetic field and is found to have the scaling
behaviour predicted from Bethe ansatz results. The new Kondo
temperature for the improved model 1is shown to be in Dbetter
agreement with the exact Kondo temperature than that of the strongly

magnetic model.
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4.2. THE STRONGLY MAGNETIC CASE.

4.2.1. The Variational Calculation.

The spin degenerate Anderson impurity hamiltonian with magnetic
field on the impurity is written:
A

B* = Teuly o+ Te yly o+ z<vw+w+hc>
o

imp crkk(’"ko’ foO 00 k' 0 kO

rUy Yyl Y (4.2.1)
where l,{l+ creates an f electron on the impurity site with spin o, and
l[l+ creates a conduction electron in a state of momentum k, energy

€ and spin o. Also

_ + when the spin is down

€0 = S * (@Il (@) = _ hen the spin is up ’ (4.2.2)

fo

so that the magnetic field only acts on the impurity. Following

Gunnarson and Schdnhammer (1983) we introduce the new one particle

states:

1
gt v = — TV ste - s ul v (4.2.3)
Vie) x

and make the model assumption

L v |%se-¢e) = [Va)]* , (4.2.4)
k

so that within this new basis the hamiltonian can be rewritten as

A

H =17 Z ¢+ Y de Z € w+w ) (V(c)wiw€¢+ h.c. )de
(o

imp £0 €0 fo o 0O

+ Uw+w NLUBES T (4.2.5)

-0 -0

The final term in the hamiltonian, Hs, Just counts all the energies
of those conduction electrons which do not hybridise with the

impurity, that is those which have orbital angular momentum not
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equal to three. This term will just give a constant energy shift of
the total energy of these 1#3 non interacting electrons and will not
contribute to the interesting physics. In the remainder of this
chapter the unhybridised conduction band density of states is
assumed to be a constant equal to the number of electron sites
divided by the band width W. Therefore when we assume that the

hybridisation Vk is real and momentum independent then

'

L |v|%s(e - e ) = |V]* (4.2.86)

k

R T I— (4.2.7)
W

As in the lattice case of Chapter 3 the first step in the
variational calculation is to propose a ground state for the system
described by the hamiltonian H:mp. Again we make the Hartree Fock
approximation to the coulomb interaction. The coulomb interaction
is assumed to be large so that the hybridisation of the down spin f
level at energy €. + uBH + U<nf1~> produces negligible down spin f
occupation. Therefore the approximate ground state has no down spin
f electrons and consists of a filled Fermi sphere of down spin
conduction electrons and a filled Fermi sphere of states resulting
from the hybridisation of the up spin f electron level with the up

spin conduction band. The ground state is written:

T
|0>= n¢ kr<lk v, ky brcr’cwawlvz (4.2.8)
OCC 1$3\

where ¢+ are the eigenstate creation operators for the states in
the hybr‘ldlsed up spin bands. The operators ¢+ diagonalise the up

spin hamiltonian:

A

H o+ =S¢ wi}we,rde + ep .pi% + JV (wiwep h.c.)de ,
(4.2.9)

where the energy integrals are from the bottom to the top of the

unperturbed conduction band and
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¢j:-q~= J c(s,e)¢i¢de + d(r-:)wi . (4.2.10)

cz(E,c) is the weight of the up spin conduction state of energy ¢ in
the new up spin eigenstate of energy E and d2(E) the f up spin

weight in this eigenstate. Also
I (g, e)de + d%(r) =1, (4.2.11)

so that each new state can hold one electron and the operators ¢i’¢
¢E"‘ obey normal anticommutation relations. The coefficients d(e)
are determined using the relations between the single particle up

spin f electron Green function and the eigenstate Green function:

< Y wi»E = fd®(e)« ¢E¢¢i+ »p dE (4.2.12)
! 2
> - —;— Im « Yq wi»E = d°(E). (4.2.13)

From equation of motion methods the up spin f electron Green

function in the Hartree Fock approximaton is:

1
« w¢wi e = T , (4.2.14)
E +16 -Cf,\\-f de
B E+is - €

where Tp and Bt are the top and bottom of the unhybridised
conduction band. To solve for d?(E) we take the imaginary part and
use the usual definition:
~
Tp V2

J]——— de = A(E) -~ iA(E). (4.2.15)
Bt E + id - ¢

Since we have already assumed a constant unhybridised conduction
band density of states of width W, we find that A(E) is a constant,
A = an/W, independent of energy. Also the contribution of A is
neglected as is usual in the literature since it Jjust provides a

small shift in the f level resonance position so that
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d“(E) = - ) (4.2.18)

is Just the wup spin f density of states. Therefore in any
eigenstate of energy E, d2(E) gives a measure of the up spin f
weight in that state. From equation (4.2.16) the up spin f weight
in any up spin band eigenstate is seen to be small for all states of
energy E except those for which E = € Similarly the up spin

conduction electron weight in any eigenstate of energy E is:

~2
cz(E,e) = 8(E - &) - L Im 1
. 2 .
14 (E+ i8 - € )°(E - ¢ ot iA)

(4.2.17)

For states with energy E far from €1 the up spin conduction weight
in the state is practically unity. For states of energy E very
close to €1 the second term in equation (4.2.17) is not negligible
so that the up spin conduction weight in states of this energy is
reduced and the eigenstate has more f character.

Within the Hartree Fock approximation, for U - ®, the up and
down spin f densities of states in the ground state can be drawn

schematically as in Figure 4.1

fe
Figure 4.1. A schematic impurityf
T l density of states in the U - o

Hartree Fock ground state. The

hatched area denotes occupied

(3)'d

density of states below the Fermi

py,(E)

energy EF .
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The next stage in the calculation is to take better account of the
coulomb correlation than the simple Hartree Fock approximation.
From a general diagramatic expansion in which both the coulomb
interaction and the hybridisation are treated as perturbations the f

down spin Green function can be written:

G (E) = , (4.2.18)
£fy T 42
E - ¢ - J de -z (E)
f‘¢, fi‘\b ex
Bt
(E-€)

where everything that 1is wunknown about the interactions of the
system is stored in an exact self energy fo¢(E)ex. Within the
Hartree Fock approximation the only contribution to this self energy
is U<nf¢>. The aim of the variational calculation is to take better
account of the coulomb correlation and calculate further
contributions to the exact self energy Z”J’ (E)ex. Correct account
of the coulomb correlation is the basis of the impurity problem and
a good treatment will yield the Kondo resonance in the f electron
density of states and the resulting strange thermodynamic properties
of these dilute HF systems.

As in the spin only lattice case a variational wavefunction is
proposed for an f down spin electron entering this system described
by the Anderson impurity hamiltonian H':mp. The wavefunction is
written as the sum of all the lowest energy and most likely
processes to occur if an f down spin electron were placed in the
system. Once again an analogy can be drawn between the present
situation and that of the nearly half filled Hubbard model with a
ferromagnetic ground state (Edwards (1968)). Consider a schematic
representation of the f weight in any state for the impurity ground
state of equation (4.2.8) and Figure 4.1. When a down spin f
electron enters the system described by hamiltonian H:mp, it can
sample the unhybridised f down spin state at energy E = e, + uBH +
U<nr,r>, any of the unoccupied down spin conduction electron states
via hybridisation V, as well as an infinite number of other
processes, all of which must be included for an exact self energy

2” (E)ex. If only the first two possibilities are included, the
N2
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down spin eigenstates are given by equation (4.2.10) ( with 7T
replaced by , ) , in which d?(E) is now the down spin density of
states, and we have the Hartree Fock solution. To improve on the
Hartree Fock result we must take better account of the coulomb
correlation by including more processes in the variational
wavefunction. To determine the processes with the largest
contribution to the f down spin self energy, other than the Hartree
Fock contribution, an analogy is drawn between the present problem
and that of the nearly half filled Hubbard model of Edwards (1968).
There is only one type of electron in this problem and the coulomb
correlation exists between any of these electrons on the same site.
The density of states in the Hubbard model Hartree Fock ground state
is as in Figure 3.2b. To improve on the Hubbard model Hartree Fock
approximation we include diagrams with the smallest number of up
spin electron lines since the up spin density of states above the
Fermi level is small. Diagrams with the least number of electron
lines involve the least number of integrations over this small up
spin density of states above the Fermi level and have the largest
contribution. Therefore in the Hubbard model self energy we include
diagrams representing a down spin exciting a particle hole pair in
the opposite spin band and then propagating with the up spin hole as
a magnon and scattering off the up spin electron. The diagrams are
represented schematically as in Figure 3.3 and are exact to second
order for the strongly ferromagnetic case.

In the present Anderson impurity problem the coulomb
correlation acts only between the f electrons on the impurity site
so that processes involving the coulomb correlation will depend on
the f weight in any state. From the schematic f density of states
for the impurity of Figure 4.1 we see that up spin f weight 1in any
state ¢i¢|V> where E 1is greater than the Fermi 1level is small.
Therefore from the analogy with the Hubbard model arguments we
include processes in which the number of times we integrate over
this density is small. The diagrams are therefore once again those
of Figure 3.3 except that this time the up and down spin f electron
propagators are those of the Anderson impurity problem. In the
variational wavefunction we include processes where an f down spin
excites a particle hole pair in the opposite spin band via the

coulomb correlation. The variational wavefunction
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b ¥ ret b o
¥ > = |ap,T + 1 Fledyl, + I G(E)¢[4S [0 >, (4.2.19)
0

where

A

H mp|n/1 >=E |y >, (4.2.20)
and the operator S is defined as:

s = f+¢ £a (4.2.21)
and creates a particle hole pair of opposite spin. The coefficent
G(E) of equation (4.2.19) will depend on the f weight in the up spin

eigenstate created by ¢;|:-'r~~ As in the lattice case we solve for the

coefficients A, F(e) and G(E) and find

Tp 2

E-e&g - [ v de - (E)=0 for E > O, (4.2.22)
£y o ££y,
(E-£)
where
E=E- Eo, Eo is the ground state energy, (4.2.23)
and
2,2
Tp u®d“(e) <nf¢>
I de
° E- ¢ - ho_
ZMJ,(E) = U<nfT> + . E >» O.
U d?(e)
Tp
1 - 5 de
° E-¢€ - hw

(4.2.24)

Here hwo is the energy to flip an f electron spin and is defined by
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0| s* ®#' s7|o
imp

E + ho = (4.2.25)
<0| s* s7|o>

In order to arrive at equation (4.2.22) we require that there is no
down spin occupation in the ground state. For this condition to be
strictly true the bottom of the conduction band must 1lie on the
Fermi level otherwise the hybridisation will always result in some
down spin occupation. Therefore for the case of no down spin
occupation the integrals over the band energies in equation (4.2.19)
and equation (4.2.22) are necessarily from Bt to Tp where Bt = 0. A
more realistic ground state is one in which the bottom of the
conduction band lies below the Fermi level so that the hybridisation
produces small but finite down spin occupation. For this more
realistic situation the integrals in equations (4.2.19) and (4.2.22)
are again from Bt to Tp but Bt # O. We assume that the down spin
occupation is infinitely small but non zero in the following. The
energy E of equation (4.2.23) is identified as an excitation energy
so that equation (4.2.22) is a Dyson equation consistent with a down

spin f electron Green function

1
G _(E) = . E > 0.
££y p 2
E - ¢ - 7 v de - (E)
£y Bt £fy
(E-¢)

(4.2.26)

We retain the restriction to energies greater than the Fermi level
in equation (4.2.26) since solutions of energy E < 0 are
inconsistent with the postulate of no down spin f occupation, and we

are assuming that this occupation is negligibly small.

4.2.2. Results.

The form of the self energy of equation (4.2.24) has similar
consequences for the impurity down spin f electron density of states
as the analogous self energy of the spin only lattice model has for

the f band density of states. The self energy, Eff,L(E), has no
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imaginary part for energies less than hwo, so that for energies
greater than the Fermi energy and less than hwo the Dyson equation

becomes:

E - ef¢ + iA - foJ’(E) =0, 0 <EX hwo, (4.2.27)
where equation (4.2.15) has been used, and the contribution of A has
been neglected. The Dyson equation (4.2.27) can only yield finite
lifetime quasi particle solutions since A is non =zero for all
energies. In analogy with the lattice case there is an energy E
close to hwo for which the real part of the Dyson equation is zero,
implying that there is a finite lifetime quasi particle with this

energy. For energies near E we can expand the self energy in a

Taylor series around E so that

1 1 A% .
- — In fo (E) = E =E, (4.2.28)
T v A 2 ~2

where

A = ) (4.2.29)

d=__,(E)

R

dE

Therefore from equation (4.2.28) we see that for energies near E
there is a sharp resonance in the f density states which is
identified as a precursor of the Kondo resonance of the nonmagnetic
HF impurity systems.

The effective Kondo temperature for the impurity case is, in
analogy with the lattice calculation of Section (3.3.1), defined as
the value of hwo for which the resonance lies on the Fermi level and
the strongly magnetic ground state has broken down. In the limit of
very large U and lefl » uBH , the effective Kondo temperature for

the impurity is given by:
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eff (4.2.30)

The result is compared with the exact Kondo temperature of the Bethe
ansatz (Andrei et al (1983)):

Wole |

T, x e 2V5 . (4.2.31)
As for the lattice case the exponent is wrong by a factor of two
suggesting that the up spin density of states at the Fermi energy,
V2/|ef|2, is too small by a factor of two. The variational approach
leads to the same exponent in the effective Kondo temperature for
both the lattice and the impurity cases. Therefore we conclude that
the missing factor of two in the lattice effective Kondo temperature
is a defect of the variational method rather than a genuine
difference between the impurity and the lattice cases. In Section
4.3 we improve the model and hence the effective Kondo temperature
for the impurity by solving the problem self consistently including
the resonances in both the down and up spin densities of states, and
thus raising the magnitude of the up spin density of states at the
Fermi energy.

In Figures 4.2 and 4.3. the calculated f down spin density of
states is plotted for U = 7eV, W = 10eV, e, = ~-1.5eV and a magnon
energy of 0.005eV. In Figure 4.2, V = 0.25eV and the f down spin
density of states is seen to have a narrow resonance near the magnon
energy which we identify as a precursor to the Kondo resonance. The
resonance is extremely narrow and so close to the magnon energy that
the computer cannot detect the difference between the two. The
other density of states feature, the resonance at €, + U<nf,r>
supports most of the f weight. Figure 4.3 shows density of states
for V = 0.75eV where the two features are more obvious. The model
is breaking down for this size of hybridisation. However the actual
value is not unreasonable for HF systems. Gunnarson and Schénhammer
(1983) calculate A =~ 0.1eV from their fits to XPS and BIS

experiments for materials like CeN il!5 and CePd3 using a
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semi-elliptical conduction band. This corresponds to V = 0.56eV
when the conduction band is taken as a constant 1/W, where W is the
band width, and W = 10eV.

For both values of hybridisation the f down spin density of
states agree qualitatively with the results of Gunnarson and
Schénhammer (1983) as well as the results of XPS and BIS experiments

for materials such as CeNiS and CePd3.
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DENSITY OF STATES

Figure 4.3.
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4.2.3. The Self Energy Diagrams for the Strongly Magnetic Case.

As for the lattice case we can identify a particular class of self
energy diagrams which within certain approximations correspond
exactly to the self energy of the variational calculation (see
equation (4.2.24)). In this section the diagrams for the strongly
magnetic case of no down spin f occupation are identified. Later in
Section 4.3 the model is pushed to the weakly magnetic regime using
similar diagrams for both the up and down spin self energies.

The exact self energy is written as the sum of the Hartree Fock

contribution plus all other contributions as:

Eff¢(E) = U<nf¢> + fo¢(E)’ (4.2.32)
where in this case of small up spin f weight above the Fermi level
the dominant diagrams in EJH \L(E) are those with the smallest number

of up spin electron lines (see Section 4.2.1). Therefore

i
Lo INT (4.2.33)
L ! !i>|! g

\

where the full lines now represent the full f electron propagators
of the impurity problem and the dashed lines represent interactions
via the coulomb interaction. Also the arrows label the spins of
these f electron propagators. }E“_ (E) is a very difficult function
to evaluate within a completely self consistent calculation.
Therefore approximate solutions are sought which retain the
important features of the problenm. Consider first the self energy

diagram:

134



22 o

U Zfr¢(E) = (4.2.34)
The corresponding analytical expression is :
75 ° v
= _ ’ ’ R 4
Ef{¢(E) = - J dE th¢(E Jx(E-E’), (4.2.35)

and is exact when G“_,,\(E) is the full up spin f electron propagator
and x(E - E’) is the exact susceptibility. Once again this
analytical expression is extremely difficult to evaluate self
consistently so that we approximate the up and down spin f electron
propagators by their Hartree Fock expressions, G:m_(E) and calculate
the susceptibility within  RPA. Within the Hartree Fock
approximation for U tends to infinity, we assume that the

hybridisation of the down spin f is negligible, therefore:

1
o
G A(E) = , (4.2.38)
E-¢e + iA
fa
1
G?f (E) = , (4.2.37)
v E-¢g_ -Un_p> + id
f\‘, f

where we have wused equation (4.2.15) and have neglected the

contribution of A. Also the RPA susceptibility is:

xo(E-E’)
xRPA(E—E’) = , (4.2.38)
1- Uxo(E—E’)

where
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i
’ - — o - o _
x_(E-E’) - [ dE GY 4(E - E)G) J(E -E'). (4.2.39)

To evaluate the integral over Ep in equation (4.2.39) we write the

Hartree Fock propagators in spectral representation:

dw p%{f(w)

G° M(E-E) = -f -
£e™ 7p ,
o (w - Ep + E -i8) -0 (W - Ep+ E + id8)

(4.2.40)

o
o dw p¢rf(w)

b

and
[o]
dw pfr¢(w)

G (E-EF -J , (4.2.41)
o7 o (w- E + E-i8)

where pzf¢(w), p:€¢(w) are the up and down spin densities of states
within the Hartree Fock approximation. When equations (4.2.40) and

(4.2.41) are substituted into equation (4.2.39) then

o (]
(o] J pffT(wx) prf¢(wa)
x (E-E’) = - [ dwl J dwa
° - o (E - E’ + W=+ is8)

, (4.2.42)

so that after inserting the expressions for the Hartree Fock

densities of states in equation (4.2.42) we find

1 0 A
XO(E-E') =- -7 > 2
T bt (wl— e+ uBH )T+ A
1
dw{
(E-E + w - - uBH - U<nf¢> + i8)
(4.2.43)

The analogous analysis for the strongly ferromagnetic ground state
of the Hubbard model yields an expression for x::f(k-k’, E-E’)
(Edwards and Hertz and Hertz and Edwards (1873)) which has a low

energy pole for positive energy E-E’ for which
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1 - nggi(k-k’, E-E’) =0 (4.2.44)

and corresponds to the excitation of a magnon where the magnon

creation operator is given by:

- T
S, .+ = E FITIE R (4.2.45)

The RPA susceptibility of the impurity problem, equation (4.2.38) is
dominated by a similar but now finite lifetime excitation. From
equation (4.3.43) the real and imaginary part of xo(E-E’) in the

limit of small hybridisation and large U are found to be:

- <n _a>
30

R

Rexo(E—E’) (4.2.48)

Ed ’ - - ’
E-E 2uBH U<nf1.>

A

Imxo(E-E') (4.2.47)

’ 2 2
(E-E —ZuBH - U<nf¢>) + A

Therefore although the denominator of equation (4.2.38) 1is never

exactly zero there is positive energy E-E’= hwo = 2uBH for which
1 - URexo(hwo) = 0, (4.2.48)
Imy (hw ) = 0O, (4.2.49)
o o

so that there exists a slightly damped excitation with this energy.
For low energies then, we can expand the RPA susceptibility in a

Taylor series around its pole at E-E’= hwo = 2;181-{ so that

-1
1 -1 dxo(E—E’ )

x (E-E’ )= 2
RPA (E - E'- hw ) |x_(ho ) d(E-E’) |e-&’=ho

(4.2.50)
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- <n _,>
et

x.. (E-E’)=

RPA (4.2.51)

(E-E-hw)
o

At small energies the the impurity RPA susceptibility is dominated
by an excitation, of energy hwo & ZMBH, with a small but finite
lifetime. This excitation corresponds to a damped f electron spin
flip. The amount of damping is small for small hybridisations.
Therefore, for small hybridisation, it is reasonable to approximate
the RPA susceptibility by its pole contribution and neglect the
damping. When we substitute equation (4.2.51) into equation

(4.2.35) and carry out the integral over E’ we find:

2
<nf¢>d (e)

~ Tp
Vs 2 (E) = U [ de . (4.2.52)
) (E—e—2p8H+16)

Therefore the contribution to the self energy from the diagrams of
equation (4.2.34) agrees exactly with the self energy of the
variational calculation of equation (4.2.24) to order v’. So far no
account has been taken of the interaction between the electron hole
pair of opposite spin and the single particle excitations which are
included in the self energy diagrams of equation (4.2.22). Within

the spin flip pole approximation these diagrams can be redrawn as:

E > EF (4.2.53)

where \NW\J/A/\/ is the positive energy spin flip excitation, %A’—
represents the up spin particle line and the broken lines represent
interactions via the coulomb correlation. These diagrams can be

expanded as:
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-V

which we write analytically as

JAE "G A(E’) x(E-E’) +
2ni

1 1
N 1~ ’ _ U - 1~ O , T
- JAE!G? A(E7)A(E El)} [ FAE!G? A(E?)R(E-E7) |+..

2ni <nf¢> 2ni
(4.2.55)
and hence
- o
U 2 (B
E>E
~o F
1 - UZ“_J,(E)
<n!_,T\>
fo¢(E) = 4 (4.2.586)
- 0 E<E
F
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Equation (4.2.56) of the diagramatic treatment is identical to
equation (4.2.24) of the variational calculation. Therefore the
variational n'\ethod yields a self energy contribution which can be
identified with the diagrams of equation (4.2.33) when the
propagators are approximated by their Hartree Fock expressions and

the spin flip pole approximation is made to the susceptibilty.
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4.3. THE WEAKLY MAGNETIC CASE.

4.3.1. The Self Energy Diagrams for the Weakly Magnetic Case.

In this section the model and ideas developed for the strongly
magnetic case, where <nf J> 1s constrained to be strictly zero, are
extended to describe the more realistic finite U case where <nf W =
0 and <n;1~> = 1, In any real system there is always some down spin
occupation due to hybridisation, therefore in any system there is
also some up spin self energy due to coulomb correlation. In the
<nf > = 0 model the up spin self energy due to coulomb correlation
is approximated as zero. The effective Kondo temperature for this
<nr¢> = 0 case is too small as a result of a missing factor of two
in the exponent. A possible explanation for the error in the
exponent is that the up spin density of states at the Fermi level
for the <nr > = 0 model is too small by a factor of two. The
extension of the model to account for the fact that in a real system
<nf 4> = 0 results in an up spin self energy contribution and hence
some extra up spin density of states, which could be the missing
density of states of the <nf > = 0 model. The motivation for the
present calculation 1is therefore the possible improvement of the
effective Kondo temperature of the <nf > = 0 model. The calculation
was also intended as a test case for the generalisation to <nf WO
in the lattice.

In the following sections both up and down spin self energy
diagrams are defined. They are essentially those of equation
(4.2.33) where for the up spin self energies the up spin electron
lines of equation (4.2.33) are replaced by down spin hole lines and
vice versa. These self energies are the origin of a sharp resonance
in the down spin den_sity of states above Fermi level, as before, as

well as a new similar resonance in the up spin denéity of states

below the Fermi level. It is easily seen that up spin density of
states at the Fermi level is now larger than for the <nf > = 0 model
and thus the effective Kondo temperature must be improved. In

Section (4.3.2) a quantitative comparison of the Kondo temperature
of the <nf y> = 0 model is made with the exact Bethe ansatz results
(Andrei (1983)) to show the improvement over the effective Kondo

temperature of the <nr ¢> = 0 model. Also the wvariation of the
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magnetisation with magnetic field is calculated and shows good
agreement with the exact Bethe ansatz results.

The system is once again modelled by the Anderson Impurity
hamiltonian, H':mp, with a magnetic field acting on the impurity (see
equation (4.2.1). The starting point is again an approximate ground
state in which the coulomb interaction 1is treated in the Hartree
Fock approximation. For this finite U case the Hartree Fock

propagators are:

1
G A(E) = , (4.3.1)
E - e, - U<nf¢> + iA
0

and

1

G2 4 (E) (4.3.2)

E - er¢ - U<n€¢> + IA
Therefore the up and down spin f electron densities of states are
lorentzians around € .1 + U<nf 4> and €.y + U<nf,,\> respectively and
the hybridisation produces non negligible down spin occupation. At
this stage it is more convenient to think in terms of self energy
diagrams rather than variational wavefunctions. In the approximate
ground state only the Hartree Fock term U<nf 0'> is included in the

exact self energy sza'(E)ex (see equation (4.2.18) with ¥ = o).
Once again we are faced with the problem of taking better account of
the coulomb correlation via corrections to the Hartree Fock
approximation.

From the schematic f electron density of states picture Figure

(4.4)
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Figure 4.4. A schematic impurity f
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we notice that for finite U the number of unoccupied up spin states
is of the same order of magnitude as the number of occupied down
spin states, and 1is in fact identical for the symmetric 'Anderson
model where e, = -Us2. For <nf¢> = 0 and <nf¢> =~ 1 the number of
unoccupied up spin states is still small and therefore the dominant
down spin self energy diagrams will still be those of equation
(4.2.33). Similarily the number of occupied down spin states is
small. Hence by parallel arguments the up spin self energy, other
than the Hartree Fock term, is dominated by diagrams with the

smallest number of down spin hole lines so that
2 AE) = Un > + £ 4(E), (4.3.3)
where the first term is just the Hartree Fock contribution and

T aE) = (4.3.4)

Here the full lines once again represent the full f electron
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propagators and the broken lines represent interactions via the

coulomb interaction. In the up spin self energy if +(E) the down
... particle.,. . hole .
spin hole lines play the part of the up spin particle lines of

the down spin self :ener'gy diagr'a:ns EI” (E). For the case of <nf¢> =
0 and <nf¢> = 1, foJ,(E) and fo,r(E) are given by the diagrams of
equations (4.2.33) and (4.3.4) respectively. Within certain
approximations these diagrams are equivalent to the variational self
energy for the <nf y> = 0 case. To evaluate the contributions of the
diagrams of equations (4.2.33) and (4.3.4) we treat firstly the

contribution from diagrams:

/[\

220 _
U"E? L(E) = (4.3.5)

2.0
UE 7 A(E) (4.3.86)

The interactions between the electron hole pair and the single
particle excitations equation of (4.3.4) are treated later. For the
moment we treat the problem of evaluating the analytical expressions
corresponding to equation (4.3.5) and (4.3.6):

U2

- © - — ‘ PRI Ry
Vs 2 (E) = - FdE‘G (E')x’(E-E’). (4.3.7)

Once again this extremely complicated expression is evaluated within
some reasonable approximations. As Dbefore the susceptibility is

calculated within RPA so that:
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x‘:(E-E' )
xR:A(E-E’) = , (4.3.8)
1- Ux:(E—E’)

where

i
x:(E—E’) = — [ dE

- ° !
. _a_(E'.p E)foO"(Ep E’). (4.3.9)

GO
p ff
and G?N_(E) are the Hartree Fock propagators. When we substitute

the spectral representations for the Hartree Fock propagators in

equation (4.3.9) and perform the integral over Ep then

[«] o
r o 0 p“_,T‘(wl) pff¢(wa)

- 7T dwl I dt«)Z E-E’ > EF
- 0 (E - E + W=+ is8)

xt(E—E') = { (4.3.10)

O(up spin f weight at EF) X

- O(down spin f weight at EF) E-E’ = EIF
and
O(up spin f weight at Er) E-E" > EF
O(down spin f weight at EF)
XT(E-E’) = 4 (4.3.11)
o o
0 ] pff¢(w1) pff¢(wz)
J dw J dw, E-E ’= EF
- 0 (E-E +w-w- i3)
where EF = 0 is the Fermi energy and p;m_(E) are the spin o f
electron density of states within the Hartree Fock approximation.
As for the <nf¢> = 0 model xR:A(E—E’) are dominated by finite
lifetime excitations at positive energy E-E’ = hwO v = ZpBH for
3 T/ $ —F! = - o~ - ™ T/
xRPA(E E’) and negative energy E-E hwo,,\ ZpBH for xRPA(E E’).

Once again these excitations correspond to a damped f electron spin

flip excitations. For small hybridisations the damping 1is small
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since Imy Y (E-E’) is small for E-E’ = 2u H + Ul<n_,> -<n_;>) and
T . 5 —F/ - -
Imy ;,(E-E’) is small for E-E’ # -2p H + U(<n > -<n_>).
For small hybridisations the damping is neglected and the
susceptibilities are written as expansions around their poles so

that

[ <nf¢>( 1 - <nf¢ >)
- E-E’>EF
(E-E’'-ho g+ i5)
o
‘1’ -F/ ~
xRPA(E E’) 4 (4.3.12)
§ 0 E-E’ <E
F
and
[ 0 E-E’>E
F
T -E/ )~ 4
xRpA(E E’) (4.3.13)
<nf1~>( 1 - <nf¢ >)
- E-E’=E
F

(E-E’'+ho, =~ i8)

When these pole approximations are used to calculate the self energy

contributions of equations (4.3.5) and (4.3.6) then we find

[ Tp d,zr(e)
2
<nf¢>(1-<nf¢>)U I . de E = EF
o (E-€-how + i8)
[o]
= [o]
UE 2L (E) = (4.3.14)
0 E < E
- F
and
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[ 0 E>E
F
22 o -
UE n(E)= 1 (4.3.15)
di(e)
<n_p>(1-<n_>)U° [ EsE_
{ Bt(E-e-ﬁ-hwoq\—iﬁ)

where for a completely self consistent calculation di(e) and di(e)
are now the up and down spin f electron densities of states
associated with the Green function which we are trying to calculate.

To calculate éf{v(E) of equations (4.3.4) and (4.2.33) we must
include the interactions between the single particle excitations and
the electron hole pair of opposite spin. For small hybridisations
the diagrams are redrawn within the spin flip pole approximation.
At this stage we assume the system is modelled by the symmetric
Anderson model so that the accuracy of the pole approximation is the

same for each spin and

E_ 4(E) (4.3.16)

™M>

(E) =

(4.3.17)
££y
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where ’\/\)r\/\r'epresents a positive energy spin flip excitation and
\/\_/\’\_/\,a negative energy spin flip excitation, —QT—— an up
spin particle line and —T a down spin hole line. When
equations (4.3 16) and (4.3 17) are expanded as in equation (4.2.54)
then

r AO
U 2 L(E)
E>E
o F
1 - Uz”,,,(E)
<n >
Z L(E) = (4.3.18)
0 E = E
\ F
and
([ 0 E>E
F
Z 4(E) = J . (4.3.19)
U zfﬂ‘(E)
E =E
1+ Uz (E)
| <n_p>

with U°° (E) given by equation (4.3.14) and U’s° .(E) by equation
eev reT

(4.3.15) and hwo¢, = —hwo,r. ~ ZuBH. Both the up and down spin self
energies for this <nf > = 0 and <nf¢> ~ 1 model have similar
properties to the self energy of the <nf > = 0 model (see equation
(4.2.24)). They are the origin of a sharp resonance in the down

spin density of states above the Fermi level as well as a new
similar (identical for e, = U/2 ) resonance in the up spin density
of states Jjust below the Fermi level.

Within the <n > = 0 model the magnetic state breaks down with

increasing hybridisation as is expected. However the breakdown does
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not occur quickly enough. The magnetic state is too stable or the
Kondo temperature is too small. The breakdown of the magnetic state
occurs as down spin density of states builds up around the Fermi
level due to processes described by equation (4.2.33). As the
hybrisation increases the up spin density of states above the Fermi
level available for excitations of equation (4.2.33) increases and
in turn the resonance near the Fermi level in the down spin density
of states grows. Within the new <nr¢> =~ 0 and <nf¢> =~ 1 model there
are resonances in both the up and down spin density of states around
the Fermi level. Therefore there are more up spin states available
for the processes of equation (4.2.33), the origin of the down spin
resonance near the Fermi level. Similarily there are more occupied
down spin states available for the excitations of equation (4.3.4)
leading to a build up of the up spin density of states near the
Fermi level. As hybridisation increases both these resonances grow
each aiding the build up of the other, so that the magnetic state of
the improved <nf¢> = 0 and <nf¢> ~ 1 model breaks down more quickly
than for the <nf¢> = 0 case. The extension of the model to describe
<nf¢> = 0 and <nf¢> ~ 1 and subsequently an up spin self energy must
therefore improve the exponent of the effective Kondo temperature.

In the following section the magnetisation is calculated as a
function of field and the results compared with those of Bethe
ansatz. The comparison shows that the extension of the model to
account for the fact that <nf¢> = 0 and <nf¢> = 1 does indeed

improve the effective Kondo temperature.

4.3.2. Magnetisation Versus Magnetic Field.

From the exact Bethe ansatz results for the impurity model (Andrei
et al (1983)) the f electron magnetisation in a magnetic field is

given as:

m=1-—//——"", (4.3.20)

21ln

= | o
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where H is a high field such that H/TK > 10° and Tx is the Kondo
temperature. In this section we calculate the magnetisation of the
new weakly magnetic model as a function of magnetic field. The
calculated magnetisation versus the magnetic field behaviour is
found to be in good agreemént with the exact Bethe ansatz behaviour
of equation (4.3.20) so that a Kondo temperature for the model can
be determined. The Kondo temperature for this weakly magnetic case
is an improvement on the effective Kondo temperature of the <nr $>=0
case as expected.

From the analysis of the previous section the up and down spin

densities of states are:

(aA- ImZ‘”o,(E))

p (E) =
f£fo - - 2 A 2
( E- €og ~ U<nr-a'> - ReZNO_(E)) + (A - ImZ‘.”o_(E))

(4.3.21)

where Im;".'”a_(E) is the imaginary part of, and Reifm_(E) the real
parts of the self energy contribution me_(E) of equations (4.3.18)
and (4.3.19) with, for this the symmetric Anderson model, ef = -U/2
and <n > = (1 - <nf¢>). For a completely self consistant
calculation of the down spin self energy term Z‘.NJ,(E) we need the up
spin density of states above the Fermi 1level (see equation
(4.3.14)). However this function is only known below the Fermi
level. Similarly to calculate the up spin self energy term Z”'T*(E)
we need the down spin density of the states below the Fermi level
(see equation (4.3.15)). However this function is only known above
the Fermi level. The contribution to irro_(E) from these unknown
densities of states is lost when we make the the spin flip pole
approximation to the susceptibilities of equations (4.3.10) and
(4.3.11).

The problem, then, is to find a reasonable approximation for
the densities of states in the unknown energy regions. The
information available about these unknown densities of states is
that they must Jjoin continuously with the known densities of states
at the Fermi level and also .they must hold the correct f up and down

spin electron weight as given by the Friedel sum rule. The
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condition that the f densities of states are continuous at the Fermi

level is written:

. 1 A
P”1~(0)=;(_8 + g H - U<n > - % (0))2+A2,
£ B ' £eT
(4.3.22)
_ 1 A
P ‘L(O ) = — N .
£f 2 2
114 ( - ef - ;J.BH - U<nf¢\> - 2“_4,(0)) + A
(4.3.23)

Also the Friedel sum rule (Luttinger (1960)) for an infinitely wide

band can be expressed as:

Tp
<n > = Jop, E)GE
)
1 -1 €¢ T “BH * U<nf‘1'> * sz’T‘(O)
= — cot )
T A
(4.3.24)
and
)
<n > = J‘p”,b(E)dE
Bt
1 -1 €, * M H+ U<nf1‘> * sz‘b(O)
= — cot
T A
(4.3.25)

For energies close to zero we can expand the up and down spin self

energies in a Taylor expansion around zero to find:

~ ~

A A
p (E) =2

feo vo2 a2
E = o nA (E Eq_) + Ao-

g , (4.2.286)

where
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A = . , (4.2.27)
T (1- 4z (E)|)
cfo
dE E=0
and
_ (ef + U<nf_ > + im(O))
£ = o -0 . (4.2.28)
[on ~
A
o

If the density of states expansions of equation (4.2.26) are used
for the form of the densities of states in the unknown energy
regions then, from equations (4.3.18) and (4.3.19) for 52”0_(0) in
the symmetric case, where & =r-U/2 and <nr¢> = (1 - <“f'r>)' we find
that

~

8, =8, and Ep=-E, (4.2.29)
and hence from equation (4.2.26)
prrqx(E) = prf\b(_E) N (4230)

as it must be, in this symmetric case. The original idea was to
approximate the densities of states in the unknown energy regions by
p”o,(E) of equation (4.2.26). With this prescription the continuity
condition is automatically satisfied and the up and down spin f
densities of states in the unknown energy regions are the tails of
some effective resonance in the known energy region. For the up
spin f density of states the effective resonance is built from
contributions from the up spin f resonance around e - uBH + U<nf¢,>
and the narrow resonance around —2uBH. Similarly for the down spin
density of states. Also when we allow the bandwidth to tend to
infinity A > A and the Friedel sum is satisfied.

Unfortunately for this choice of up and down spin f densities
of states in the unknown energy regions it was found that that A
varied too rapidly with magnetic field. Therefore the assumption

that the expansions around E = O of equation (4.2.26) are good for
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all energies E > O for up spin and E < 0 for down spin is not valid.
In the following we retain the idea that for small
hybridisations the densities of states in the unknown energy regions
must be the tail of some effective resonance in the known energy
region. The up and down spin densities of states in the unknown

energy regions are chosen as:

1 A
qu(E)E_ N E>E,
£f 2 2 F
n (E-e +uH=-Un >-Z 4(0))" +A
(4.3.31)
and
1 A
p.  (E) = — N E=<E_,
£f 2 2 F
n ( E- €. - uBH - U<nf¢> - fo¢(0)) + A
(4.3.32)

which satisfy the continuity condition and the Friedel sum rule
exactly. These forms reduce to the correct up and down spin

densities of states within the Hartree Fock approximation and for

the symmetric Anderson model where e . = U/2 and <nf¢> =1 - <nr¢>
they give:
Reszqx(_E) = - Rezfr¢(E) N (4-3.33)

and hence

pff¢(E) = pff¢(—E), (4.3.34)
as must be true for this the symmetric Anderson model.

To calculate the magnetisation for this the symmetric case e, =
- U/ 2 we use

m=(1- 2<nf¢> ), (4.3.35)

where from equation (4.3.25)
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o 1 A
<nf > =7 - Py 2 > dE.
v Bt w (E - €~ uH - Un o> - Z (0))° + A
v

(4.3.386)

From equation (4.3.36) for <nr¢>, we see that <nf¢> is a function of

2” (0) and hence éf?‘ (0). However from equation (4.3.14) with
v ¥

(1—<nf¢>) = <n_,> and d”(g) = p“_,r,(E) of (4.3.31), then:

1 Tp A(1- <n ¢>)2
PN ° J‘ f
fo¢ (0) = o 2 2 2

L (e -~ e+ pH-Un p>= 2 4(0))7 + A

1
de,
(- e - ZuBH )
(4.3.37)

so that 2”4,(}3) is a function of Z”,,\(E) and vice versa. However in
this the symmetric case we can decouple equation (4.3.37) using the

relation:

€. = M H + Un o> + sziO) = - (e o uH + Ucn >+ fo¢( 0)).
(4.3.38)

When equation (4.3.38) is used in equation (4.3.37) we can find ir?¢
(E) as a function of <n_,> and magnetic fleld. This relation is
then used in equation (4.3.36) to find <n_y >
Equation (4.3.36) cannot be solved analytically for <nf¢>
instead it is solved computationally as a transcendental equation
for <nf¢>. To find the solution the computer evaluates both sides
of the equation for several values of <nf y> in a specified interval
until it finds a value for <nf¢> for which both sides match to the
required accuracy. For each <nf¢> in this interval a sinmilar
procedure is carried out to solve equation (4.3.37) as a
transcendental equation for i;f¢(E).
The Bethe ansatz result of equation (4.3.20) «can be

re-expressed, assuming H and TK are measured in units of eV, as:
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1
—— = In|H| - In[T, |, (4.3.39)
4<n >
fy
where H and %x are dimensionless. Therefore a plot of 1/4<n lL>

versus 1n|fi| should have a gradient of one and cut the 1/4<nf¢> axis
at ln|Tk| for any hybridisation. Figures 4.6 to 4.9 are plots of
the calculated 1/4<n_ ,> versus In|H| for various A. For each case
the scaling is seen for H/TK > 10 (assuming TK = 0.0007eV) and H < D

where

|ef|n

T =pe °2A : (4.3.40)

(Andrei et al (1983)). For each of the figures the upper curve is
the Hartree Fock result, where the exact self energy is approximated

as:

zf!‘O‘(E)ex = U<nf—a'>’ (4.3.41)

and the lower curve is the model result:

A

E”o,(E)ex= U<nf_¢> + zrm'(E)' (4.3.42)
The dotted line has the expected gradient of one for comparison with
each of of the curves. For each hybridisation the model gives
better agreement with the Bethe ansatz behaviour (shown by the
dotted line) than the Hartree Fock result. The bandwidth is chosen
to be extremely large W = 200eV in order to ensure the validity of
the Friedel sum rule -and U = 7eV. The hybridisations studied range
from V = 0.56 (A = 0.005eV) to V = 1.69 (A = 0.045eV). For the
smallest hybridisation, A = 0.005eV, the Hartree Fock and model
results are closest. For larger but still small hybridisations the
model results show increased improvement over the Hartree Fock
result.

To see how the extension of the model to <nf o> = 0 improves the

Kondo temperature we substitute the Bethe ansatz expression for the
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Kondo temperature of equation (4.3.40) in equation (4.3.39) so that

1 le |
. . £
— - In|H| = -1n|D| + — . (4.3.43)
4<n_ > 2A
fy
From equation (4.3.43) we see that a plot of 1/4<n€¢> - 1n|fI| versus
Iefln/A should have a gradient of 1/2 if the exponent in the Kondo
temperature is correct. For the <n£ 4> = 0 model the exponent of the
effective Kondo temperature is wrong by a factor of two so that in
terms of the aforementioned plot the gradient is one rather than
1/2. Figures 4.9. and 4.10 show this same plot for the improved
<nf¢> =~ 0 model. These plots have a gradient of around 1/3 so that
the Kondo temperature 1is indeed improved. In Figure 4.10 the
magnetic field is taken to be 0.01leV (H/TK = 10) while in Figure
4.11 it is 0.1eV (H/Tkz 10%).  For the larger field case of Figure

4.11 the Kondo temperature shows the best improvement.

4.3.3. Conclusion.

We identify the origin of the error in the exponent of the effective
Kondo temperature of the strongly magnetic case to be the
inconsistency introduced when we assume that the hybridisation is
non zero and yet maintain that the down spin occupation is zero.
When the model is extended to treat the fact that the down spin
occupancy 1is never strictly zero, the weakly magnetic case, we see
that although this occupation is still small it allows the build up
of an up spin self energy. The up and down spin self energies for
this weakly magnetic case are identified and are seen to be the
origin of resonances in both the up and down spin densities of
states near the Fermi energy.

A numerical calculation of the magnetisation as a function of
magnetic field is made for the symmetric case where e, = -U/2 and
shows good agreement with Bethe ansatz results. Also via a
comparison with the Bethe ansatz results we can identify a Kondo
temperature. This Kondo temperature is shown to be an improvement

over the effective Kondo temperature of the strongly magnetic case
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in which the down spin occupation and the up spin self energy are
assumed to be zero. Therefore when we treat the hybridisation of
the down spin more self consistently we find that the magnetic
ground state breaks down earlier with increasing hybridisation.

Similar reasoning can be applied for the analysis of the weakly
ferromagnetic situation in the lattice. Up and down spin self
energies analogous to those of the impurity calculation can be
identified. Once again they are the origin of resonances in the up
and down spin density of states near the Fermi level so that again
we see how the inclusion of the up spin self energy leads to a
quicker breakdown of the magnetic state with increasing
hybridisation and hence an improved Kondo temperature. As in the
impurity case the model does not yield expressions for the f
electron density of states in certain energy regions once we make
the magnon pole approximation to the susceptibility. In order to
make any numerical calculations some form must be proposed for these
missing densities of states. Unlike the impurity calculation there
is no Friedel sum rule for guidance. Therefore we either have to
introduce some inconsistency to the model by guessing at these
densities of states or, perhaps relax the magnon pole approximation
so that the susceptibility has some lorentzian form. This second
possibility would of course bring in the complication of parameters

which would then have to be fitted.
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CHAPTER S.

CRYSTAL FIELDS.

5.1. INTRODUCTION.

In most HF systems the degeneracy of the f level is treated as spin
only, that Is as two, rather than the full angular momentum
degeneracy of fourteen. For many cerium systems this approximation
is reasonable since crystal field effects and spin orbit coupling
split the degeneracy and in the ground state the lowest level is a
doublet. In treatments of HF systems account of the coulomb
interaction and hybridisation is wusually given first priority and
the crystal field effects and spin orbit coupling are neglected.
However it is through a combination of crystal fields and spin orbit
coupling that the spin rotational symmetry of a system is broken, so
that these effects are the origin of magnetic anisotropy in real
systems. The existence of magnetic anisotropy means that it costs
different energy to point the moment in different directions. In
the spin only case of Chapter 3 the zero momentum magnon excitation
corresponds to a rotation of total spin and costs no energy since
the model does not care how the moment is orientated. However in
the real systems the existence of magnetic anisotropy means that
this rotation costs energy and thus the zero momentum magnon energy
is finite as is seen in Figure 5.1.

Consider an improved model which takes account of crystal field
effects, spin orbit splitting, hybridisation and coulomb
correlation. If all these ingredients are present and are treated
in a sensible way then a calculated magnon dispersion relation must
permit comparison with the experimentally measured magnon energies.
The ultimate aim, then, 1is to develop a model which contains
magnetic anisotropy and then apply it to a particular system. Since
any calculated magnon energy is necessarily a function of

hybridisation, a comparison of the calculated and experimentally
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measured magnon energies then gives a measure of the hybridisation
of the system. Once the hybridisation is determined it can be used
for a self consistent mass enhancement prediction. In the present
work a model which can describe magnetic anisotropy is proposed and
an analytical expression for the magnon energies is obtained. The
actual calculation of the magnon energy and the comparison with
experiment is left to future work.

A comparison of this sort is worthwhile since the hybridisation
is very much an unknown quantity. The hybridisation is some measure
of the overlap of conduction electron wavefunctions and the
localised f electron wavefunctions, and is normally taken as
momentum  independent, which is a very crude approximation.
Gunnarson and Schénhammer estimate A = anpo. where P, is the
unhybridised conduction band density of states, to be of the order
of 0.1eV for typical rare earth systems. They arrive at this value
by fitting their calculated densities of states to XPS and BIS
results.

The systems we aim to model are ferromagnetic systems in which
the crystal fleld splitting is large and the lowest lying crystal
field states form a Kramers doublet. In these systems the remainder
of the crystal field states are at higher energies and can be
considered to be unoccupied in the ground state. The ferromagnetic
HF system CeSix, where 1.7 < x < 1.83, falls into this category. 1In
CeSix the lowest energy f states have J = 5/2 and from a low lying
l",7 doublet as well as two other doublets up by 300K (Sato et al
(Preprint) and Section 5.2.4). This system has a gap at q = 0 (see
Figure 5.1) in the magnetic excitation spectrum due to the presence
of magnetic anisotropy.

In normal 1local theories of rare earth metals the magnetic
anisotropy is described assuming the full J = 5/2 is involved in the
ground state. However in systems like HF CeSlx, 1.7 < x < 2.0, and
CeAs where there is a large crystal field splitting, only the l"7
state has non negligible occupation in the ground state and
therefore the anisotropy should result from interactions of the
conduction band with the 1‘7 band alone. In fact Thayamballi and
Cooper (1985) find magnetic anisotropy for Jjust such a case, that is
a two band model of a flat 1"7 band and a conduction band. Therefore

we expect that to obtain magnetic anisotropy it is sufficient to
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consider only the 1‘7 band and conduction band in the model.

The system 1is treated here as a doubly degenerate f level
which hybridises with a conduction band. The f electrons now occupy
the crystal field states of the low lying doublet and are subject to
coulomb repulsion when they occupy crystal field states on the same
site. When the Anderson hamiltonian is written in this new basis of
crystal field eigenstates the effects of crystal fields and spin
orbit coupling are Iincluded in the model. The resulting hamiltonian
is different to the spin only hamiltonian of Chapter 3 because now
both the f doublet states hybridise with both the up and down spin
conduction bands. The model therefore has a non spin only nature
and thus we expect it to contain the magnetic anisotropy found by
Thayamballi and Cooper (1985).

The new model, 1like the spin only model, also predicts the
breakdown of the magnetic state with increasing hybridisation and so
is ideally suited to description of the HF system CeSflx which is
discussed in Section 5.2.4. For 1.7 < x < 1.83 CeSix is magnetic,
while for 1.83 < x < 2.0 it is non magnetic. From a tight binding
picture we find that increasing the Si concentration increases the
hybridisation (see Appendices B and C). Therefore in CeSix the
magnetic state breaks down as the hybridisation increases so that
this HF system 1is an 1ideal candidate for comparison with
quantitative predictions of the model.

In the following sections we set up a general model in which it
is recognised that for a particular case the model reduces to ’spin
only’. When a model or a hamiltonian is labelled as ‘spin only’ we
mean that the hamiltonian can be written within a new basis so that
each of the two degenerate f doublet states hybridises with only one
of the new orthogonal conduction states. Also the hybridisation
between these two sets of f states and conduction band states is the
same. Therefore we can easily identify a zero momentum pseudo
magnon excitation which costs no energy. Any hamiltonian which is
described as ‘spin only’ is analogous to the spin only model where
the spin o f’s only hybridise with the spin o conduction electrons,
with the same hybridisation, and a simple zero momentum magnon
excitation costs no energy. A ’spin only’ hamiltonian does not
describe magnetic anisotropy.

A similar variational calculation to that of Chapter 3 is made
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and, since the findings of Thayamballi and Cooper (1985) indicate
that the model should have magnetic anisotropy the mass enhancement
is calculated, avoiding the choice of hybridisation for which the
model reduces to ‘spin only’. Later it is shown that the spin only
condition is always satisfied when a 1‘7 doublet hybridises with a
single s or P, conduction band in any lattice with inversion
symmetry. The implication 1is that the magnetic anisotropy
calculated by Thayamballi and Cooper (1985) is due to some numerical
error. In fact Thayamballl and Cooper remark that their calculated
spin wave dispersion has the structure of ’‘spin only’ which seems to
vindicate the conclusion that their magnetic anisotropy is an error.
Finally it is shown that in order to obtain the magnetic
anisotropy which we know to exist In real systems like CeSix and

CeAs at least two conduction bands are needed.

CeSie Magnetic Excitations T=1.5K

{0.0.0} | (¢.6.0)

050 o5 o0 02 04 06 08 L0

Figure 5.1. The magnetic excitation dispersion in CeSix (Kohgi
et al (1987)).
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5.2. A GENERAL THEORY.

5.2.1. The Hamiltonian.

Consider a system like HF CeSix or CeAs in which the crystal field
is large so that in the ground state the lowest lying f states form
a Kramers doublet. The remainder of the crystal field states are at
much higher energies than the doublet and can be assumed to have
negligible occupation in the ground state. We propose a Anderson
lattice hamiltonian, for systems such as these, which describes a
band of conduction electrons, a flat band of f electrons in the
crystal field states of the low 1lying doublet, the hybridisation
between the f electron states and the conduction electrons and the
coulomb repulsion between f electrons in crystal field states on the

same site:

A +
HCF =Y €¢, S0 * E effn.ifn.i + ¥ ( VO‘n(k)ckO’fkn+ h.c )
ko nil kno

* § Ut ififaifar

(5.2.1)
where

+ - -ik.Ri +
fin = § e f'kn . (5.2.2)

Here ci'o' creates a conduction electron in a state of momemtum k and
energy e , while f‘i'n, n =1 or 2, creates an f electron in one of
the degenerate crystal field states (labelled by n) on site i. The
hybridisation term is chosen to allow mixing between f and
conduction electrons of the same spin only. Since the crystal field
states are a mixture of both up and down spin states this term
hybridises both the up and down spin conduction states with both
crystal fleld states to degrees dependent on the amplitude of up and
down spin f’s present in the crystal field states.

The various Va_n(k) are defined as:
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Vv, (K) = <Vlc H: £ |V>. (5.2.3)
In general the hybridisation matrix, Vcn(k) is treated as momentum
independent and we adopt the same strategy later in this section.
In Section 5.3.1 and 5.3.2 the full momentum dependent
hybridisations, Vo'n(k)’ are calculated within the tight binding
approximation. The calculation shows that for the present model
with hamiltonian HQF given by equation (5.2.1) the momentum
dependence of the hybridisation must be considered to avoid the loss
of important symmetry properties.

At this stage we notice that if we choose new basis states as
linear combinations of the original up and down spin conduction

states with creation operators:

Y Ve (k)c+
o n

ko
ckn = -_— (5.2.4)
2
J LV, o]
o
where n = 1 or 2 labels the new basis states, then, within the new
basis, c+ , C., f‘+ , £ , n = 1 or 2, the hybridisation term
kn kn kn kn
becomes:
thb =¥ ( Vn(k)cknf‘lm + h.c. ), (5.2.58)
kn
where
_ 2
AGE /g v 2. (5.2.6)

The condition for the new basis states ci'1|v> and ci'2|V> to be

orthogonal is:

(el c 1=5, (5.2.7)

kn' km nm

or
* »
V, = Vo, (K)Va (k) + V (K)Vy, (k) = 0. (5.2.8)
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c f =
kh kn’ fkn' n 1

or 2. Also if the hybridisations Vo-n(k) are such that not only is
the orthogonality condition, ch = 0, satisified but also

When Voc = 0 we have a new orthogonal basis: ci'n,

V1(k) = Va(k). (5.2.9)

then the hamiltonian H(A:F reduces to a ’‘spin only’ type hamiltonian
in which the conduction electron states and the f electron states
are characterised by a pseudo spin, n = 1 or 2, instead of just a
straightforward spin and we can identify a zero momentum magnetic
excitation which costs no energy. This excitation is a zero
momentum pseudo magnon which results in a pseudo spin flip analogous
to the straight forward spin flip which results when the magnon of
Chapter 3 is excited. Also in analogy with the original spin only
case, the zero momentum pseudo magnon amounts to a uniform rotation
of the pseudo moment and since this costs no energy the new model is
insensitive to different orientations of the pseudo moment.
Therefore when Voz = 0, Vl(k) = Vz(k), the model contains no magnetic
anisotropy. Since Thayamballi and Cooper find magnetic anisotropy
using a simple two band model it is assumed that for general
hybridisation the criteria for the reduction to a ’spin only’
problem are not satisfied. In the remainder of this section the
model 1is treated for general hybridisations assuming that the
conditions for the reduction to ’‘spin only’ are not satisfied.

Once again a completely general diagramatic derivation of the f
electron Green function is useful. Suppose that the hybridisation
and the coulomb interaction are treated as perturbations on the non
interacting system of up and down spin conduction bands and two flat
crystal field bands. An f electron now enters the system. It can
either propagate without interacting as either a non interacting i‘1
or f2 propagator or it can interact with the system. If the
interactions with the system are treated in two parts, namely, those
in which the f electron emerges still as an f and those where it is
changed to a conduction electron, then the propagator can be written

as the solution of the self consistent equations:
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v, tk)

ﬁ==++Z.L\

G, KE! G, k) = G, IkE) G, IkE)
(5.2.10)
T eyl
JkE) Gyl E) G kE) 6, [kE)
.V,;(k) V;(k)
=== = == 4 P (5.2.11)
GHE GO ke GO Gk
(k)

== = 2 >- = + @-
G (kE) G;flk,E) G (kE) G°f(k,E) (5.2.12)
J T2

= o 6, k)

+

6, (k) 6, (kE)

so that
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G . (k,E) =G

o
] £G° (kE)V_(K) G _ (kE)

o 2 2 o 2

o
f £
2 2 2

(k,E) +

o
+ Gf . (k,E) Zaa(k,E) Gf ; (k,E)

2 2 2 2

o
+ Gf . (k,E) sz(k,E) Gf fik,E),

a 2 1

(5.2.13)
»
- o
G, . (k,E) = G ", (k,E) Va,z(k) G, . (k,E)
ag 2 g o 2 2
+G° (k .
c e ,E)Vﬂ(k)G”(k.E).
g o 12
(5.2.14)
- (]
G, , (KE) =L G° (kE) V_(k)G _ (KE)
1 2 o 1 1 o 2
o
+ Gf . (k,E) Z‘ia(k.E) Gt . (k,E)
1 1 2 2
o
+ G“xfi(k’E) Z“(k,E) Gfl ra(k,E),
(5.2.15)
and the quasi particle energies E are the zeros of
E-¢ 0 -v (k) -vV_ (k)
k 1 2,
0 E-¢ -V (k) -V_ (k) =0
. Kk 1, 2,
-v ¢(k) —V%(k) E ‘— €.~ Su(k,E)ex Zla(k,E)ex
»* »
-V2¢(k) —V2¢(k) ZakE) E -e -Z,KE)
(5.2.18)

All the unknown quantities have been assigned to the self energies
an(k,E)ex n,m one or two. The subscript, ex, is intended to

indicate that these are the exact quantites. Znn(k,E)ex contains
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all processes or diagrams in which an fn electron first interacts
with the system via the coulomb interaction and after all subsequent
interactions it emerges finally still as an f‘n. 212(k’E¢)=x is
another proper self energy containing all processes or diagrams in
which an f1 first interacts with the system via the coulomb
interaction and after all subsequent interactions it emerges as an
fz' Similarly for ZZI(R,E)GX.

The following calculation involves postulating a reasonable
variational wavefunction for an f electron in the system by
including those processes which are considered to be the most
important under the condition of large U and negligible occupation
of one of the crystal field levels, that is strong ferromagnetism.
The method ylelds determinantal equations for the quasi particle

energies of the correct form derived above.

5.2.2. The Ground State For U Infinite.

As for the spin only case a variational wavefunction for an f
electron in the system is proposed and a Dyson equation for the
quasi particle energies results. The first task is to propose a
ground state for the system and, once this is established, to
calculate the f single particle Green function by postulating what
happens when an f electron is added to the system.

The method 1is applied firstly to the U infinite or strongly
ferromagnetic system. The description is of a ferromagnetic system
where it is assumed that in the atomic 1limit the f1 state of the low
lying doublet is occupied, and coulomb repulsion renders the other
crystal field state unoccupied at large energy. Therefore
the starting point for V # 0O is a Hartree Fock ground state of f
states hybridising with both up and down conduction bands and an
unoccupied and unhybridised crystal field band of fa states at
energy ef+ U<n1>, where <n1> is the occupation of crystal field f‘1
states in the ground state.

In this U » o Hartree Fock ground state we assume that the off
diagonal or Hartree Fock exchange terms are zero due to symmetry in
the lattice (see Section 5.2.6) or are at least small for large

enough U. Later in Section 5.2.6 when the Hartree Fock ground state

169



is examined more closely we find that this is indeed the case but
only for a certain choice of hybridisations. These particular
hybridisations satisfy one of the criteria for a ‘spin only’
hamiltonian, that is V = 0 (see equation (5.2.8)). For general
hybridisation, Va # 0 and these Hartree Fock exchange terms are non
zero and must be included (see Section 5.2.6).

In the remainder of this section we assume that the Hartree
Fock exchange terms are negligible. The hybridisation of the lower
crystal fileld level with the conduction band results in new bands

whose energies and wave fuctions are eigenstates of:

o _yeoh + o ot
Hcr - Z:kcko'cka' * E: erfufu +kzo‘v0"l(cka'fk1+fklck0’)’ (5.2.17)

where the hybridisation matrix is assumed real and k independent as

is usual in treatments of the Anderson hamiltonian. The operators
aT , a which diagonalise the hamiltonian H' _ are:
kb kb cf
a+ = A f+ + ) B c+ , (5.2.18)
kb knb kn o kob ko
where
H® a +|v> =¢ a Jr|v>, (5.2.19)
CF kb kb kb

and the subscript b allows for the possibility of more than one

band. As for the spin only case we solve for A the fn amplitude

knb’
in any eigenstate, Bkﬂ, the spin o conduction electron amplitude in
any state, and new band energies energies € u The eigenstates of

energy ekb are found to form three bands with energies satisfﬁing

ekb— ek 0 - V'r~1
0 € - € -V =0 (5.2.20)
kb k o1
-V -V € - ¢
1 o1 kb f
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where the subscript b labels the possible multiple solutions, or
bands, of equation (5.2.20). When equation (5.2.20) for the quasi
particle energies is coupled with the with the final equation for
the flat band at e‘_+ U<n1>, that is

€p ~ € - Un>=0 (5.2.21)
then the full equation for the quasi particle energies of the
approximate ground state 1is identical in form to the general
equation for the quasli particle energies determined from a general
diagramatic expansion (see equation (5.2.16)). In this approximate
ground state the coulomb interaction is treated in the Hartree Fock
approximation and the hybridisation of crystal field f2 with the
conduction bands is assumed to be zero so that zaz(E)ex is
approximated by U<n1> and vao' by zero in equation (5.2.16). Fronm
this Hartree Fock starting point we proceed to include more effects
of the coulomb correlation. The improvements appear as corrections
to the Hartree Fock self energy, as they must to agree with the
prediction of the general diagramatic expansion

The three hybridised bands of equation (5.2.20) are labelled by

the band index b = a, B or ¥ and have energies ¢ kbgiven by:

g =g , (5.2.22)

€ +¢ * (8—8)2+4V2
68 = k  f “/ £k , (5.2.23)
k
2

where

Vi =g, o+ vil (5.2.24)
These energies, €’ describe a quasi band labelled by « in which
the quasi particle states are a mixture of up and down spin
conduction states only, and have energies equal to the original
conduction band energies. The other two bands contain a mixture of
both up and down spin conduction states as well as some f weight.
The f weights in the quasi particle states are Aiw where
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= b=R87, (5.2.25)

Ab )
/(ekb - gf-)].*' v

and
A =0, (5.2.28)

and the up and down spin conduction weights are BiO‘b where

o1 (ekb - cr)
Bkc’b = - - b =87 (5.2.27)
v ﬂekh - ef) +V
Voo
B = 0o . (5.2.28)
koo
\'

In equation (5.2.28) o = 1 when spin is up and o = -1 when spin is

down. Also the normalisation associated with equation (5.2.18) is:

2 2

Y Bkm: + Aklb =1, (5.2.29)
o
for any band b. The ground state is written iIn terms of the

eigenstate creation operators as:

10> =11 ai'bIV> (5.2.30)
kb

occ

It is correct in the atomic limit of no hybridisation and is
considered to be a good basis for an improved treatment of coulomb
interaction. In the postulated ground state |0> the band picture

can be drawn schematically as in Figure 5.2
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Figure 5.2. A schematic ground
state band picture for the periodic
Anderson model with crystal field
and spin orbit effects included.

From equation (5.2.25) for the f weight in the B and ¥ bands we see
that for €. b =8 or 7, near e, the states in these bands are of

mainly f character whereas for € , b = B or ¥, away from ef they

kb
are mainly conduction in character. The initial assumption that the
upper crystal field level is unoccupied and that its hybridisation
may be neglected results in an a« band of purely conduction

character.

5.2.3. A Variational Wavefunction.

The next stage in the calculation is the proposal of a variational
wavefunction for an f electron of momentum k in the presence of the
interactions described by the periodic Anderson hamiltonian of
equation (5.2.1). As in the spin only case of Chapter 3 the
wavefunction is written as a linear combination of all the most
likely processes which would occur if an f electron were put into
the system. At zero temperature the lowest energy and most likely
processes are considered to be the following: the f electron can
occupy the upper crystal field state fz, it can, via hybridisation

V. , occupy the state a and via V the state a and also in
10° 20° ka

kB

analogy with the spin only case it can, via the coulomb interaction,
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scatter into a state a

xB

excitation. The creation operator of the low energy particle hole

and excite a particle hole or magnon type

excitation of this problem which is analogous to the magnon in the
spin only case is approximated as:

Ak-k' = Ef(p-k')z f(p-k)l

(5.2.31)
This low energy excitation created by A;_k, is not actually a magnon
but will be called by that name in what follows. The variational
wavefunction is written as a linear combination of all these

possible low energy excitations:

> = Mkfk2|0> +b=§BNkbakaO> + EIGR'B ak'B Ak-k' 0>, (5.2.32)

k/Bmocc

where the sum over k’ is such that states k‘B arewnoccupied. The
third process in the wave function is mediated by the coulomb
interaction and has the end result of adding a correction to the
Hartree Fock self energy of the approximate ground state. The self
energy diagrams which correspond to this third process in which the
f electron scatters into an ak, 8 state and excites a magnon can be
represented by Figure 3.3 where now the up spin f propagators are
replaced by the f‘1 propagators and the down spin f propagators by
the f‘2 propagators. The self energy diagrams of Figure 3.3 and
hence the corresponding process in the variational wavefunction are
considered to be the most important for inclusion in the calculation
of this strongly ferromagnetic ground state in thch the occupation
of the f‘1 state is close to one in analogy with the spin only case
(see Section 3.2.3).

We solve for the coefficients of the variational wavefunction

by left multiplying the Schrodinger equation:
H|¥> = E|W (5.2.33)

+
by sz, akB and Ak_k,,ak,,B .

the excitation energy E = }:T-E’.o where Eo is the ground state energy

The result is equation (5.2.34) for

and E > 0. Since the poles of the f electron Green function are by
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definition these very excitation energies then equation (5.2.34) is
a Dyson equation for the quasi particle energies E greater than the

Fermi level:

E-¢g 0 - M2 (k)
k o
0 E- €8 - M25(k) =0, (5.2.34)
- M2 (k) - MZB(k) E-e¢ -Z,(KE)
where
M2a(k) = (% VaaBkoa)’ (5.2.35)
M2 (k) = (LV_B ), (5.2.36)
B o 2 ko
and
UzAi,”<n1
X
uk’e
nocc.
E-€¢€, - ho ’
£ (k,E) = k'8 k-k + U<n > .
22 1
U AZ,
Z k“13
1 -
k’'s
unocc.E - g , _ hw ,
k' B k-k
(5.2.37)

The magnon energy in this approximation is defined by:

<0|A;-k'H:F Ak-;' 10>
hwk +E = (5.2.38)

+ -
<0|Ak_k, A k_k,|0>

where ]3o is the energy of the approximate ground state.

The Dyson equation (5.2.34) can be expressed in the form
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expected from the general diagramatic expansion of (5.2.16). We
rewrite the hamiltonian H:F in the new basis of eigenstates aki'lv>
and perform another general diagramatic derivation, this time
treating only the hybridisation of the f2 level and the coulomb
interaction as perturbations. The Dyson equation which results must
describe the same quasi particle energies as equation (5.2.16).
Since the variational wavefunction of equation (5.3.32) can only
describe f electron states with k > kl__ and E > Er where kF is the
Fermi wavevector and Er is the Fermi energy we write down this
general diagrammatic expansion for an f‘2 particle propagator, that
is with k > kr’ The Dyson equation which results has exactly the
form of equation (5.2.34) so that the calculated Dyson equation
(5.2.34) is equivalent in form to that expected from the diagramatic
expansion of equation (5.2.186).

The spin only model of Chapter 3 does not describe magnetic
anisotropy and thus does not- support the definition of a realistic
magnon. This 1limitation of the ’‘spin only’ model means that in the
spin only self energy of equation (3.2.18), which is analogous to
the crystal field self energy of equation (5.2.37), we do not
calculate the magnon dispersion self consistently but approximate it
by a flat magnon dispersion. The approximation of a flat magnon
dispersion is not unreasonable for CeSix (see Figure 5.1). The new
crystal field model however can describe magnetic anisotropy
provided V # 0 or Vl(k) # Vz(k) (see equations (5.2.8) and
(5.2.9)). Therefore at this stage we could define and calculate a
more realistic magnon dispersion which could then be compared with
the measured magnon dispersion for a particular system to determine
the hybridisation in this system. However in Section 5.3.1 we show
that when a 1"7 doublet band hybridises with either an s or P,
0 and

conduction band in a lattice with inversion symmetry Voc
Vl(k) = Va(k) so that the model reduces to ‘spin only’. Therefore
this simple two band model cannot describe the magnetic anisotropy
observed in the large cystal field system CeAs. CeAs has a cubic
lattice and therefore inversion symmetry. It is also likely that
the two band model 1is not sufficient to describe the magnetic
excitation spectrum in systems where the lattice does not have
inversion symmetry. Therefore we continue to search for a model

which does not reduce to ‘spin only’ and can describe magnetic

176



anisotropy.

In order to discuss the ’‘spin only’ or non ‘spin only’ nature
of a model the actual hybridisations between the F,, doublet band and
a conduction band must be calculated for a particular system. At

this stage the prototype system CeSix is introduced.

5.2.4. The Prototype System CeSi.x

The model of the previous section is completely general in that it
can be applied to any system in which the crystal field is large and
the only f states which are occupied in the ground state form a
doublet. As in the spin only case of Chapter 3 the model predicts
the build up of HF behaviour as well as the breakdown of the
magnetic state with increasing hybridisation. In order to make any
quantitive comparison with experiment it is necessary to calculate
the hybridisation for a particular system. The HF system CeSix is
chosen for the calculation.

For 1.7 = x < 1.83 the system CeSix is magnetic while for 1.83
s x s 2.0 it is non magnetic at least down to 0.1K. The electronic
specific heat of the non magnetic system 1is fairly large 7y =
0.1J/molk® for x = 2.0 and y = 0.2J/molk® for x = 1.86. From
studies of the magnetic susceptibility and the magnetic part of the
resistivity the system is Jjudged to be a dense Kondo lattice system
(M.Kohgi et al (1987)). The system undergoes a magnetic transition
for x < 1.83 at Tc = 10K. The saturation moment is much reduced
from the moment expected by conslidering the crystal field effects
for a Ce>* ion, as 1is the magnetic entropy. These measurements
suggest that the ferromagnetic state 1is also strongly affected by
the Kondo effect. The experimental facts indicate that CeSix is on
the boundary of a ferromagnetic instability caused at least partly
by the competition between the Kondo effect and the exchange
interactions. The HF system CeSlx is an 1ideal candidate for
modelling since: it is heavy, it varies from magnetic, 1.7 = x <
1.83, to non magnetic, 1.83 = x = 2.0, with increasing silicon
concentration or hybridisation and in the ground state the lowest
lying crystal field states form a l"_7 doublet.

In CeSlx the multiplet J = 5/2, where J is the total angular
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momentum, of the ce3* splits into three doublets in the tetragonal
crystal field. These three doublets are the lowest lying crystal
field states of the system and consist of a l"_, doublet and a split
l"8 quartet at higher energies. The splitting between the I‘7 doublet
and the lowest of the higher energy states is 300K (Sato et al
(Preprint) so that only the I‘,’ has a non negligible occupation in

the ground state. The states of the 1‘7 doublet are written:

r_ = alt> - bl7> (5.2.39)
where a and b are coefficients depending on the crystal field of the
system. For CeSix x = 1.7 ( a magnetic system ) these
coefficients are calculated to be a = 0.472 and b = 0.882 (Sato et
al (Preprint)). Also the same authors calculate a = 0.454 and b =
0.981 for the non magnetic system with x = 1.86. These values for a
and b are not much different from the cubic crystal field values of
a = 0.408 and b = 0.913.
The states |t-2> and |t§> of the I doublet all have total
angular momentum J = g and are quantised by their z components of
5

angular momentum Jz = i:(_; and Jz = tg respectively. The two states

of the l"_, doublet are written:

- ¢t = af+S _3
7 = f11'v > = a|+é> - b] > (5.2.40)
r = f‘+ |V > = a|-§> - b|+3> (5.2.41)
27 21 2 2’ t
where |V> is the vacuum and i a site index. These states can be

written as linear combinations of products of their orbital angular
momentum and spin components weighted by Clebsch Gordan coefficients

as:

|J >= |J=§, J >
z 2

- _ 1 _S _ 1
Y <L=3,s= E’mx.'msl‘]—é"’z > |L—3,mL>|S-5,m

mm
L s

s>’

st.m +m =J
L S 4

(5.2.42)
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where L is the total orbital angular momentum which is three for f
electrons, S the total spin of 1/2, mL the z component of orbital
angular momentum and m the z component of spin either :':% for spin
up or down. We write the Clebsch Gordan coefficients

<L=3,S=-1-,m ,m |J=§,J >, as C where o now serves the purpose of
2 L s 2 z mLo
m_ so that

£l;0v> = a xc £ [V - b EcC _fl [V
mo L L mo L L
L L
m +o0 =5/2 m +0 ==3/2
L L
(5.2.43)
£flv> = a Fpc £l |V - b TC fi |V,
mLO L L mLa L L
m +0 ==5/2 m +0=3/2
L L
(5.2.44)

where fi.'m - is an operator, obeying normal fermion anticommutation

relations, which creates an f electron with z component of orbital
angular momentum m and spin o on site |. At this stage it is
useful to calculate the magnetic moments, B of the I‘n_, states. The

magnetic moments are defined as:

p =<C_|J+s | _ > n=1 or 2, (5.2.45)
n7!' z z' n7

n

where Jz is the usual operator which measures z component of angular

momentum in a state so that

J, J >, (5.2.486)

, o> =0|S=2, 0> (5.2.47)

Here J, Jz, S and m  are as in equation (5.2.42). The magnetic

moments for arbitrary a and b are therefore:
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u =% a2 - ¥ b2— (5.2.48)

where we have substituted the values of the relevant Clebsch Gordan
coefficients iIn equations (5.2.43) and (5.2.44). For the
ferromagnetic ground state of CeSii._, we expect that one or the
other of the crystal field states 1is practically fully occupied.
The magnetic moment expected by considering the crystal fileld
effects is H= - 0.5223;1B 1f the F” level is occupied or M= 0.523;.1B
if the l"27 is occupied. However the measured magnetisation for
CeSil',, with Tc = 13K is strongly anisotropic with a saturation
moment for the Ce atom of around 0.45;}.B along the a axis. The
moment of the ferromagnetic ground state is therefore already much
reduced from its expected value of 0.52:3;1B for the strongly
ferromagnetic ground state of zero l"17 occupation. The Kondo effect
must be competing with exchange so that there is some l‘l_’ occupation

in the ground state.

5.2.5. The Mass Enhancment.

The model and variational treatment of Sections 5.2.1 to 5.2.3 are
only good in the limit Va + 0 where Va is defined in equation
(5.2.8) since only in this limit are the Hartree Fock exchange terms
negligible (see Section 5.2.6). In Section 5.3.1 we show that for a
band of 1"7 doublet states hybridising with a single conduction band
in any lattice with inversion symmetry the criteria for a ’spin
only’ hamiltonian as defined in Section 5.2.1 are always satisfied.
Therefore the magnetic anisotropy of the model is lost. However in
real systems like CeSix there are deviations from complete inversion
symmetry as the concentration of silicon is varied.

In the remainder of this section a brief mention is made of an
initial mass enhancement calculation for CeSiL7 in which it is
assumed that the off diagonal Hartree Fock terms are negligible but
Vm # 0. The hybridisation, Vo,n, of the crystal field state l"n7 with
the conduction band state of spin o, is assumed to be proportional

to the amplitude of the spin o, f in the state l"n_,. From equations
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(5.2.43) and (5.2.44) we find:

V,a x (2%c2, + 032 " (5.2.49)
Vo (a%i + b 07 (5.2.50)
Voo=V,, and V=V, (5.2.51)

As for the spin only model, the mass enhancment is defined as the
ratio of quasi particle band density of states over the unperturbed
conduction band density of states. The states in the quasi particle
bands are a mixture of f electrons of both spins. The band picture
can no longer be split into up and down spin band parts as was the
situation in the spin only case. Therefore mass enhancment is given

by:

m L N, (E)

b
- = — , (5.2.52)
m NO(E) E=0

where Nb(E) is the density of states in quasi particle band b and
NO(E) is now the sum of the up and down spin conduction band density

of states.
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MASS ENHANCEMENT VERSUS HYBRIDISATION

MASS ENHANCEMENT
H

0.4 0.6
HYBRIDISATION (EV)

Figure 5.4. The mass enhancement versus hybridisation. The
figure shows a plot of mass enhancement versus V = ( Vf,,. + VTJ, )
for €= - 1.5eV, U = 7eV and unperturbed conduction band width W =
10eV. Also a = 0.472, b = 0.882 (Sato et al (Preprint)) and the
magnon dispersion is taken to be flat with hwk_k,= 0.002eV for all

k-k’ (Kohgi et al (1987)).

5.2.6. The Hartree Fock Ground State For U Finite.

When the calculation is extended to U finite it becomes clear that
the U infinite 1limit of Section (5.2.2) 1is only strictly correct

when the condition Va 0 1is satisfied and not for general
hybridisation as was assumed for the mass enhancement calculation.
For general hybridisation the off diagonal Hartree Fock terms are
non zero and, as the following calculation shows, are finite even
for infinite U.

With U finite the operators which diagonalise the Hartree Fock

hamiltonian are:

knl kn ko'l kO

at =[ZR f++)j§ c+] [v>, (5.2.53)
o
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where 1 is the band index and n = 1 or 2 labels the crystal field
doublet states. The new Hartree Fock eigenstates are seen to be
mixtures of both up and down conduction states as well as both f‘1
and f‘a crystal field states. Also

ioatiwesat
Hcr akl|V> = eklakllv>, (5.2.54)

where ﬁc; is the U finite Hartree Fock hamiltonian and ;:k' are the

Hartree Fock eigenstate energies. To find ﬁc:‘ and ;:m_ we solve

[ af

7y A
kl ]

, H = 0, (5.2.55)
CF

where the = is replaced by = when the Hartree Fock approximation is
made to the coulomb Iinteraction. To make the Hartree Fock
approximation groups of operators in the coulomb interaction
contribution to equation (5.2.55) are replaced by the sum of the
possible ways they can be written as number operators. The

resulting Hartree Fock hamiltonian is:

Ao— + + +
HCF_ ELchkcpkU * E;efnfnkfnk * E (Vch(k)ckafkn+ h.c. )

nko
- Y| <« >tT £+ ne |, (5.2.56)
" 12" " k1 k2
where
€., € + U<n2> ,
(5.2.57)
e =g + Un> ,
£2  f 1
and
~ A » L ]
<n, >= Y A _ A =<n_ > (5.2.58)
12 k11l k21 21

k1l occ

~

Here 1 1labels the bands or the multiple solutions of equation
(5.2.54) and <n > and <n_ > are the exchange terms of Hartree Fock.
These terms reflect the fact that an f‘1 state can hop into the
conduction band and then back to an fz' In the previous sections

this on-site hopping is assumed to be zero due to symmetry or at
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least to be small for U 5> ». When we solve the Hartree Fock problem

< .
for n12> we find:

A _ % v
k21 a
X
séc (e, -e)e -e -UWn>) -F |V (k)|
k1 k' k1 f 2 o on
<n > = ’
1
IAkZl |2 (e,,” &)
1 + U}
k1

2
[(e“- ek)(ekl- €. - U<n2>) - § |V°_n(k)| ]

(5.2.59)

so that <n1 2> and hence <n21> are zero when the lattice has
inversion symmetry and Va = 0. However when the lattice does not
have inversion symmetry it is seen that even for large U <n12 > is
finite. We let U to tend to infinity in equation (5.2.59) and

retain terms to leading order in U so that

A, 17V, ]
k21 a
L
kl
. occ (ekl Ck)<n >
<n = - - , (5.2.60)
12
U 2
U-> o IA kall
1 ~ Y
k1
occ <n >
L 2 |
and since
- 2 _
kzlj 1Al = <n_>, (5.2.61)

occ

then as U » o the denominator in <n12> tends to zero so that <n12>
is finite even for U tends to infinity.
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5.3. MAGNETIC ANISOTROPY IN THE LARGE CRYSTAL FIELD LIMIT.

5.3.1. Symmetry Considerations.

In this section we study Iin more detail the symmetries of the
momentum dependent hybridisation between a 1‘7 doublet and a single
conduction band. We choose to study a I‘7 doublet since this is the
low lying doublet in CeSix, the prototype system. The hybridisation
is calculated explicitly within tight binding to show that for any
lattice with inversion symmetry the hybridisation between a band of
I‘,7 doublets and an s or P, conduction band always satisfies the
criteria for reduction to a ‘spin only’ model (see Section 5.2.1).
Therefore the two band model of the previous sections cannot
describe the magnetic anisotropy seen in the large crystal field
system CeAs which has a cubic lattice and hence inversion symmetry.

The system is modelled by the hamiltonian H::’F given by equation
b
ko
where the superscript b labels the type of conduction band, that is

(5.2.1) but with the conduction state operators written as c:j_', c

s or p_ and so on. The hybridisation term of the hamiltonian H;- is

written:
B =7 (v ) e+ hoe ) (5.3.1)
hyb no kG kn t ! e
kno
so that
Vi) =<v | KT v (5.3.2)
no k0 CF kn : T

In order to remain in keeping with the notation of Slater and Koster
(1954) the hybridisation is rewritten as:
f

bf = b b
Vo) =<y | B | v, >, (5.3.3)

where now | w:o- > is a b conduction wavefuction of momentum k and

bt £
spin o equivalent to o |v> and | wkn

> is an f wavefunction of
momentum k in equivalent to fkn|V>. From the standard tight binding

theory (Slater and Koster (1954)):
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£ ikx.(R - R )
%o | CF L e LY
. b
J ¢bo,(r Ri)Hchtfn(r'-Rj)dv
(5.3.4)

where the sum is over the N unit cells of the system. Rl ranges
over the positions on which the f orbitals, ¢m, are located while
RJ ranges over the positions of the atoms on which the conduction
orbitals, ¢b0, are located. The orbitals ¢fn and ¢b0’ are not atomic
orbitals because Bloch sums of atomic orbitals are not orthogonal,
rather they are orthogonal 1linear combinations of atomic orbitals
called Lowdin functions. The Lowdin functions show similar symmetry
to the atomic orbitals from which they are derived (Slater and
Koster (1954)). In equation (5.3.4) the sum over RJ can be
eliminated by letting RJ fix the position of a specific atom on
which a ¢fn orbital is located. The sum over Rl then amounts to
summing over all the neighbours, on which the orbitals ¢b°_ exist, of
this central atom. Therefore if the position of this central atom

is taken as the origin then:

1 :
b b f - ik.R
<yl H ¥ >= . r e E s on(B) (5.3.5)
R
(f to b)

where R is the vector to the b orbital sites and

- * — b
Eb”n(R) = I¢bo_(r R)Hcy¢m(r‘)dv. (5.3.86)

In Appendix B it is shown that for any lattice in which a l"_’ band
hybridises with a single conduction band that

»*

(R)

Eb,rn Eb¢fe(R) ) (5.3.7)

»
Ey (R Ey oo

(R). (5.3.8)

Also for b =s or p :
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E (R) = - Ea (-R), (5.3.9)
and

E (R) = E (-R), (5.3.10)
pxofn pxofn

so that it is easily shown (see Appendix B) that the hybridisations
between a r7 band and an s or P, conduction band in a lattice with

inversion symmetry satisfy the relations:

Vartk) = vig'(k), (5.3.11)

Vi (k) = - vig'(k), (5.3.12)
and

Vi (k) = - vig'(k), (5.3.13)

Vi (k) = vzg'(k). (5.3.14)

From the arguments of Section 5.2.1 these hybridisations satisfy the

criterion for a ‘spin only’ hamiltonian namely:

Vo = VRTaovRit o + ViR Vit = o, (5.3.15).
and
vor) = varx), (5.3.186)
where
VoK) = v( v, (5.3.17)
o
and b = s or P, (see equations 5.2.8 and 5.2.8). Therefore there

exist linear combinations, c:i |V>. of the up and down conduction

b,f+,f,n=lor'
kn

states such that within the new basis cb+, c
kn kn kn
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2, each of the crystal field states f+ |V> hybridises with only one

of the conduction band states c +|V> where

£ v aoett
bt o
cPT = _, (5.3.18)
kn

J LIV
o

We can easily remind ourselves of how the ‘spin only’ nature of the
hamiltonian in the new basis comes about by transforming to the new

baéis where the hamitonian HZF becomes:

bf bfe
) Vo (k) Vo, (k)

P = ) &P o cb+¢b
CF Kb k kn kn
, bf 2 £ 2
w /w1 g )
o o
bf bf*
E an(k) an,(k) b+
+ ¥ c I, f + h.c.
kn® kn
kb bf 2
nn /z |V, . (k)|
o
* E effknfk * § U f11f11f12f12 ?
(5.3.19)
where b = s or px and n, n” = 1 or 2. Now since
V; for n # n’
2 V (k)V (k) = (5.3.20)

X |V:,f;(k)|2 for n = n’
o

then
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wb b b} b + bf v}
CF Z eknckn Ckn * E E:f‘nf‘nkfx'nl;z + Z (Vn (k)cknfkn+ h'c')
b kn knb
+ YU f-l.- f. f‘-*.- £, ,
i i1 i1 i2" i2
(5.3.21)
where
b _ b _ b
€., =€, =5 ) (5.3.22)

and V:f(k) are given by equation (5.3.17) with b = s and P, Within
the new basis we can easily identify a set of low energy collective

magnetic excitations with creation operator:

o b

(o] +
k-k’ E(p-k')ac(p-k)l Ef(p-k')zf(p-k)t

(5.3.23)

which result in a single ‘pseudo’ spin flip and which cost no energy

when they have zero momentum since

=b & b b bt b
(H_,S _ 1= Yle_ -¢€ |c +c +
CF o L2 k1| k2 ki1

X [ [v:‘ (k) - v‘l"(k)] Py [v:"(k) - v';"(k)] T cb]

k2 ki k2 k1
k

(5.3.24)

These ’‘pseudo’ magnons are analogous to the magnon excitations of
the spin only model. Therefore the observed gap in the magnetic
excitation spectrum at q = 0 which indicates that the magnetic
excitation with zero momentum has finite energy remains unexplained.
The observed finite energy of the real zero momentum magnetic
excitation is due to magnetic anisotropy which is not included in
the two band model contrary to the results of Thayamballi and Cooper
(1985).

The development of a model for systems 1like CeSix and CeAs
which exhibit magnetic anisotropy and have a large crystal field, so

that only the 1'7 doublet has a non negligible occupation in the
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ground state, remains a problem. The origin of the magnetic

anisotropy in these systems is discussed in the following sections.

5.3.2. A Three Band Hamiltonian.

In the previous section it 1is shown that the two band periodic
Anderson model of a flat f band of l"7 crystal field states
hybridising with a single conduction band cannot describe the
magnetic anisotropy seen in systems like CeSix and CeAl. The
problem of building magnetic anisotropy into the Anderson model
remains.

The rare earth systems are usually studied using localised
models and assuming that all the crystal field states (not Jjust the
1‘7 as is assumed in the previous sections) are involved in the
ground state. However In systems like CeSix and CeAl where the
crystal field is large it cannot be a bad approximation to assume
that only the I'7 is involved in the ground state (see Section
5.2.4). In these large crystal field systems we propose that the
magnetic anisotropy is due to the interaction of the f band with all
of the conduction bands and cannot be described using an idealised
two band model.

Consider now a first improvement over the two band model, that
is a three band model of one f band, again a 1‘7 band, and two
conduction bands. In the following it is shown that addition of a
second conduction band introduces an extra degree of freedom which
allows the system to respond in different ways to different moment
orientations even when the lattice has inversion symmetry.

The three band hamiltonian is written:

spx_ b b} b + bf vt
Hcr L € ko Sk T ) efnfknfkn * L (VO‘n(k)ckO'fkn+ h.c.)
kOb kn knob

be o 22+ () o
+ %:U fhfiifizfiz + E:o. (v (k)cko_cka_+ h.c. ) ,
(5.3.25)

where the superscript b labels the type of conduction band orbitals,

which are taken to be s and P The conduction bands of the model
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calculation are chosen as s and P, since in CeSix, the prototype
system, the basic structure 1is approximated as tetragonal (see
Figure C.1) and in a tetragonal lattice the remaining four p bands
may be at much higher energies than the P,- Therefore restricting
the conduction bands to Jjust an s and px is not unreasonable for
CeSix.

The Hamiltonian H:::x contains two conduction bands each
hybridising with the f band of 1‘7 states and also with one another.
Suppose now that we are modelling a system in which the lattice has
inversion symmetry. As illustrated in Section 5.3.1. there exist
linear combinations of the up and down conduction states in each of
the two separate bands, c:i'|o> given by equation (5.3.18) with b = s
or Pp_, which hybridise with only one of the degenerate f bands.

Within the new basis cb+, c® ¢t , £
kn kn

n ,b=sor'pxandn=1or2,

kn
the hamiltonian is written:

+ Te fTe 4+ T (V:f(k)cbi'g o+ hoc.)
kn knb

+sz+f. £t ¢ + T (V::f(k)cii'c"" + h.c. )
1

i17 i1 i2" i2 ’ kn’ ’
nn
(5.3.26)
where €7 = €° = &° (see equation (5.3.22)) and vPi(k) = vPf(k) are
kn kn k 1 2
given in equation (5.3.17) with b = s or P, Also
» x x
VatUavRTT k) + Vit Ve (k)
VEP (k) = VP (k) .
nn 172 172
sf 2 pxf 2
[z [V, (k)] ] [z [V, o (k) | ]
o o
(5.3.27)

Therefore provided the hybridisation matrix V::f (k) is non zero then
there remains some interaction between the new conduction bands
which destroys the ’‘spin only’ nature of the model. It can be shown
that because of the presence of this interaction between the two
conduction bands, the three band model is sensitive to different

orientations of the magnetic moment. In the following the existence
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of magnetic anisotropy in the three band model is shown for the case
of s and P, conduction bands hybridising with an f band of I‘7 states
in a simple body centred cubic and tetragonal body centred lattice,
both of which have inversion symmetry.

The new basis wavefuctions c:i'|v> and f‘i'n|v> possess a pseudo
spin analogous to the straightforward spin of the spin only case
(see Chapter 3). As in the spin only case we can identify a set of
low energy collective magnetic excitations which we term pseudo
magnons and which are directly analogous to the magnons of the spin
only case. As in the spin only case the zero momentum pseudo magnon

with creation operator:

S =£cb+cb+2f +f‘, b=sorp , (5.3.28)
q=0 pb pz p? o pz pt x

corresponds to a simple twisting of the pseudo moment and in the
absence of magnetic anisotropy costs no energy.

In order, then, to 1illustrate the presence of magnetic
anisotropy in the model it is sufficient to show that the =zero

momentum pseudo magnon has non zero energy or:

[ HZ® S 1 =0. (5.3.29)
where 'ITIZ::" is given by equation (5.3.26). In the absence of the
hybridisation \7::: (k) between the two conduction bands the
hamiltonian fl;?x reduces to ‘spin only’. However when this
hybridisation is non zero the ‘spin only’ nature of the model is
destroyed. nThe new pseudo magnon creation operator, §;=0, commutes
with the first four terms of ﬁ::fx since 8:1 = 8:2 = e: and V:f(k) =
v:’"(k) (see equation (5.3.24)) so that

[HDY S 1=

¥Spx _ uyspx s-l- P * ~sSpx* _yspx* px-l- s
) [ (V2R* (k) - VEPT () e2TeRT o+ (VERTT() T (k)) BITel ]

&BP x s-l- p x _ s+ px
+ §V12 (k) [cmcu € .%. * h.c] s

(5.3.30)
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where we have used the relation V:Z”(k) = VP

inversion symmetry. Therefore the model describes magnetic

*(k) in a lattice with

anisotropy provided

&SP x _ gsp=x
( V11 (k) V22 (k)) =0, (5.3.31)

and, or
Vf;“(k) 20 (5.3.32)

or when equations (5.3.31) and (5.3.32) are rewritten using the
relations between the hybridisations for a lattice with inversion
symmetry (see equations (5.3.11) to (5.3.14)) we say that for a
lattice with inversion symmetry the three band hamiltonian contains

magnetic anisotropy provided:

veP (k) = o, (5.3.33)
and

E [ (v)ViZl(k) V:;f(k) + c.c] * 0, (5.3.34)
or

LV RVETk) = o, (5.3.35)

o
where (T) = 1 and (¥) = -1. In Appendix C we show that the criteria

for magnetic anisotropy are satisfied for both the simple bcc and
tetragonal lattices. Therefore we conclude that in systems with
large crystal fields where only a low lying f doublet is occupied in
the ground state the interaction of the low 1lying doublet states
with all the different conduction bands of the system is the origin
of magnetic anisotropy.

In a proper multiband treatment the three p bands should be
included for completeness. However since the main advantage of a

multiband model, magnetic anisotropy, is achieved by including Jjust
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the P, band the rest can be neglected for a first round attempt at
the problem. Also there is some Jjustification for the inclusion of
Just an s and a P, band since in a tetragonal lattice the remainder
of the p bands can be at much higher energies than the P, and can be

assumed unoccupied in the ground state.

5.3.3. A Self Consistent Magnon Within the Three Band Hamiltonian.

In the spin only model of Chapter 3 and the impurity model of
Chapter 4 as well as the preceding sections of the present chapter
the magnon creation operators are approximations to the creation
operator of the real low energy magnetic excitation. Therefore the
magnon energies of the various models are also approximations. The
success of these approximations and the accuracy of the calculated
magnon energy depends on how close these creation operators and
ground state are to the real situation. Within the three band model
a variational wavefunction for the self consistent magnon is

proposed:

s weyp it
S V> = L D72

(p-k’na(p-k)?w" (5.3.36)

pll

~

where a and a are the creation and destruction

(p-k’)1 (p-k) 1
operators of the one electron eigenfunctions in the Hartree Fock
ground state. Equation (5.3.36) is a variational wavefunction for

the magnon which has energy h&k , 8lven by:

-k

~ -

, Hspx sk-k'|0>’

(ho
k k CF
(5.3.37)

= ~+ - ~d
o tE J)<0|S _,S5 . ,|0> = <0|S§

Here ﬁo is the energy of the new three band Hartree Fock ground
state, |0>. When the energy ha')k_k, is minimised with respect to the
coefficients Dpli in the variational wavefuction we arrive at an
expression for the magnon energy which is in agreement with that of
the R.P.A. calculation of Muniz and Edwards (1985).

Within the Hartree Fock approximation the H is approximated

sSpx
,enn . _l_cr‘
as HE? which is diagonalised by the operators a where:
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H3P* ai'l|v> = Eklai'l|v> , (5.3.38)

and

(5.3.39)

Here the subscript, 1, labels the six bands of energy Ekl of the

"

Hartree Fock ground state, b s or p_ labels the type of
conduction band and n = 1 or 2 the crystal field states. The
Hartree Fock eigenstates are mixtures of both crystal field states
and up and down spin conduction states from both the s and P, bands.
Within the Hartree Fock approximation the coulomb interaction term

of the hamiltonian HZ: is treated as follows:

uy ¢t g ¢t g =
k1 k +q 1 k 2 k -q 2
k1ke 1 1 2 2

Y <n > £ 4 ¥ <n >¢T ¢ —Z[ U<h_>£ TE + h.c. ]
2 k1 k1 1 k2 k2 2 12 k1 k2

Kk Kk
(5.3.40)
with
~ ~ ~® ~ ]
<n. >= Y A _A = <n_ > , (5.3.41)
12 k11 k21 21

k1l occ

so that the band energies Ekl as well as the conduction state
amplitudes §:o-1 and crystal field state amplitudes Kknl in any

eigenstate are given by:

195



(E- e 0 veP " (k) 0 -Vs§¢(k) V::(k) ]
0 E - ¢° 0 veP** (k) vk -vET(k)
k 1¢ 24,
veP™ (k) 0 E - ef” 0 -vPrfk)  -vP (k)
k 14 2,
0 VP (k) 0 E - P vPri k) -vPrf(k)
k 1, 2,
_ysf* _ysf* _ypPxf* pxf* _ ~
V11~ (k) Vn (k) V11~ (k) V1¢ (k) E €0 <n12
sf* _ysf* pxf pxf _
- VZT (k) V% (k) V21~ (k) V% (k) <n_ > E e“J
T
~g ~g ~px ~px ~ _
x kq Bk4, By 4 Bn Aa Aee =0
(5.3.42)
where e , N = 1 or 2, are defined in equation (5.2.57). Once

again even the Hartree Fock problem is non trivial because of the
presence of the off diagonal Hartree Fock exchange terms. When
equation (5.3.42) is solved for <r~112> we find that for any lattice
with inversion symmetry these Hartree Fock exchange terms are zero

provided:
VP (k) = - v®P " (k). (5.3.43)

From standard tight binding ((Slater and Koster (1954)) and Appendix
C) we find that for a lattice with inversion symmetry

Vspx-(k) =Te -.ik.R(spo_)l =Te ix.R

R
(s }éo px) (s to px)

(spe) (-1) = - V¥P7(k),

(5.3.44)
,where (1,m,n) are the direction cosines of the vectore R.
Therefore the off diagonal Hartree Fock terms, <512> are zero and

equation (5.3.42) can be easily solved.
After lengthy algebra to minimise the energy h&k_k, we find:

-1
[1 + ranu(hwk_k,)wé“vn)] =0, (5.3.45)
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where

~ ~ ~ ~

~ - - -~ A - -
) A(u-k)sr A(k-k')urA(k-k')pr (k-k)Tr

r = (5.3.46
pnEn )
krrF ~ ~ ~
bo, v ¥ k-0 €l k-x")r
and all W = 0 except for
Euvn
Wiee = Youp, =-U (5.3.47)
W =W =U. (5.3.48)
1212 2121

The next stage in the calculation is the solution of equation
(5.3.45) for the magnetic excitation energies h&k_k, and ultimately
the comparison of these excitation energies with the magnetic
excitation spectrum in CeSix. However this calculation must be left

to future work.

5.3.4. Conclusions and Further Work.

It is found that the magnetic anisotropy observed in the large
crystal field systems such as CeSixand CeAs cannot be described by a
periodic Anderson model in which a I"_’ doublet band hybridises with a
single s or P, conduction band. This result suggests that the
magnetic anisotropy found by Thayamballi and Cooper (1985) is due to
some numerical error. In fact, these authors remark that their
calculated magnetic excitation dispersion is ‘spin only’.

It is maintained that in these large crystal field systems only
the low lying 1‘7 doublet has non negligible occupation and that the
magnetic anisotropy is due to the hybridisation of this 1"7 band with
all of the conduction bands. The magnetic anisotropy is shown to
exist for a periodic Anderson model in which a l"7 band hybridises
with two conduction bands (s and px), even in a lattice with
inversion symmetry.

Now that we have finally achieved a model which does not reduce
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to ‘spin only’, the stage is set for a calculation of the magnetic
excitation spectrum. It is proposed that the calculation be made
computationally, including all p bands in order to make a realistic
comparison with the observed magnetic excitation dispersion in
CeSix.
It should be noted that the anisotropy discussed above is exchange
anisotropy which cauées the interaction between two atomic moments
to depend on the direction of the line joining the moments. The
possible anisotropy of the g tensor describing the coupling of the

system to a magnetic field has not been discussed.
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APPENDIX A.

The system is modelled by the spin degenerate periodic Anderson
hamiltonian with added exchange interaction of equation (3.4.12).
The variational wavefuction for a down spin f electron introduced

into the system is proposed as:

1 1
||/; stie D‘kfi-'l' + ch;tb + 7 G;, 1a.;l", A S

Kk’ 1>k
F

i’ |o>, (A. 1)

where the superscripts I distinguish this wavefunction from that of
the spin only calculation without the exchange interaction. Here
f‘+¢ creates an f electron in a state of momentum k and energy €.
C.y creates a conducton electron in a state of momentum k and energy
€.y of equation (3.4.25) and a.;I:,I1 creates an electron in the up spin
eigenstate of momentumn k’ and energy e:,l of equation (3.2.6) with
e replaced by g 1 and £, by € ! ; I

To solve for the coefficients Dk, Fk, Gk,l we left multiply the
Schrodinger equation:

A1 1_ 1

Hlattlw >= gly >, (A.2)
by each of the constituent elements of the variational wavefuction

to find three equations for the three coefficients. The equations

are written:

D) M + F M2 + Y G ,M3(k,k’) = 6D, (A.3)
k Kk , k’1 k
k" 1>k
F
D_M2 + F_Mi(k) + T G, M5(k’) =8F, (A.4)
k/ 1>k
F
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and

! ’ 17 ! 4 7
D M3(k’k’’) + Fo M5(k’‘) + Gk”stdlag(k )
I e ’ 7 - 1 + -
+ 'Z Gk’ 1bﬁ(k,k ,k ) - gGkIl l<0|sk-kl lSk_kl |0>»
k 1>kF
(A.5)
Jex
ML=E + e+ Un > +;§.r<ncd>, (A.B)
M2 =V + JC, (A.7)
’ = - X _ _ 12 1
M3(k,k’) = U<nM>Ak,1 ..g:(l Ak,l)Bk,1
12 1
szg B(p-k)rAk'x<0| n(p-k)r(l n(p-k’)j,)|0>’
(A.8)
Ma(k) = Eo t gy » (A.9)
, _ _ 1 _ 1 12
M5(k’) = ‘{5nf1‘>Bk’z {FAk'ka'z , (A.10)
7 77 = r Mo , r7
M6(k,k’,k’’) Msdiag(k,k )ak,k,, + M6(k,k’,k’’), (A.11)
M6, (k,k’’)=(E + ho _,, + e,, )<o|s’ ,, s ,, |05,
diag o k-k k 1 k-k k-k
(A.12)
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ME(k,k’,k’’) = UA*, A*,, <n_ o> + — B BY,, <n_,>
’ ’ Kk kY f'r 2 k' k'’ qu
Jbl
b I 2r
s -
> PES Ak’: Ak"tB(p-k)s
<o - 1-n o>
|n(p-k)s(1 n(p-k’)=¢) ( (p-k”)=¢)|
J
ex I T I X
- B
5 pgv Bk'l Ak"x (p-k) v A(p-k'+k”-k)u
I 1 T T
+
Ak'x Bk"x A(p--k)v B(p-k'+k"-k)u
I T T T
Bk'l Bk"l A(p-k)v A(p-k'+k"—k)u
- A Y, BT * .
k' Ak"t (p-k)v B(p-k'+k"-k)u
B~ : <o - n >
(p-k’+k’’-k)u B(p-k)v |C1 (p-k’)e Jleo
+ ¥ ¢ .
A (1::-lt'+k"--k)uA (p-k)v:I
<oin n o>
(p-k’+k’’-k)u (p-k)v|
+ J B I T BI T + T Br T B r .
e;E [ k' Ak"l (p-k)sA(p-k)s Ak'i k'’ A(p-k)s (p-k)s
< - >
oln(p_k)s(l n(p_k,,)c¢)|o .
(A.13)

where Eo is the ground state energy, hw the magnon energy

defined by:

k—k' 4
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+ Al -
>
<0|Sk-k" latt k-k"lo
E + hwk_ ), = ; - , (A.14)
° <os. .,,s._ ,,|0>
k-k k-k

and <nf1.> and <nca> are the up spin f occupation and spin o

conduction occupation in the ground state respectively. Also

<0|S;*,,S;*,,|O> = <n > + T <O|n(p_k)¢(1-n(P*,,)c¢)|O>,

(A. 15)

where

p-xreo = Sip-116° (p-kic’ (A.16)
and

I I
C= L A B <0n |[O>, (A.17)
kr occ.

so that C is of the order of the up spin f amplitude in the states
of band 1 at the Fermi wavevector. To arrive at equation (3.4.29)
of the main text we take the 1limit of small hybridisation and work
to order V2/|ef¢|2 (the f weight in band 1 at the Fermi level).

Also since we want to study the competition between exchange and

hybridisation when Jex is of the order of 2V2/|ef¢| we work to order

J
ex

/|ef¢|. In this limit of small hybridisation the up spin f

weight above the Fermi 1level is approximated by its value at the
Fermi level for both bands 1 and 2 so that:

. \"
i x (A.18)
k>k I€f¢l
F
I v2
A x - (A.19)
ke 2 2
k>k |et*|
F
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Bkl = 1 - 2e |2 (A.20)
k>k T
. \'
ke =~ (A.21)
k>k |ef*|
F
and also
2
V" Tpa Jou
<n > =1 - Tpp = Tp = — <n_,>
£ £
Wle € |e q| + Tpy ) 2
(A.22)
and Tp is the top of the conduction band. Also
2
1| Jux Ve Tps
T o<n_ > = ; ; <n_p> + ; ( s Ton ) (A.23)
v |enlC e al + Toy
and
Tpyp V
1 I
Cx-Y AkFx BkFl = - (A.24)
K>k w|cf¢|

Within these approximations, equations (A.3) to (A.5) can be solved

for the Dyson equation:
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v -
UA )
Jix R F
E-¢g, - Un > - ;§ <n_>-Z J(kE) - -
I o (K, E)
E - ekJ’ -
UA'?
k 1
F
=0
(A.25)
where
2,12
U Ak , <nf¢>
) k' 1>k (E - €., = hwk_k,)
£ (kE) =
UA'? J B'?
k 1 Kk 1
F F
1 -
ki>k (E-e, -ho ,)
F k1 k-k
(A.28)
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APPENDIX B.

The systems under investigation are those in which the crystal field
splitting is large and the lowest lying f electron states form a l‘_,
doublet. It is assumed that in the ground state only the 1‘7 crystal
field states are occupied so that others do not feature in the

hamiltonian. The hamiltonian is given by

b _ b_b+ b + bf b
ch-' =7 €.C.:C¢ * ) effknfkn + X (Vo_n(k) cko,f‘kn + h.c )
ko kn ko'n
syuste sTg |

i i1" i1 2" i2

(B.1)

where n = 1 or 2 labels the states of the l"7 doublet, as in the main
text, and b labels the type of conduction band, that is, s, p, d and
so on. In the following, the possibility of an s or P conduction
band is considered. From standard tight binding theory the
hybridisation is written:

Vi) = § e F

R
(f to b)

bM’"(R), (B.2)

where the superscript b labels the type of conduction band, either s
or p_, R is the vector from the f orbital site to the b orbital site

and
E (R = " (r-R)H (r)d (B.3)
bof o =7 ¢,r cr e, (P)AV, :
where gbfn(r'), n =1 or 2, is the wavefunction of the crystal field
orbital I‘n7 on a site at the origin and ¢ba(r'—R) is the product of a

conduction band b orbital and spin function o on a site at R.

Therefore
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6. (r) = £5 v, (B.4)

where site i1 is at the origin. To evaluate the energy integrals
Eba“(R) we express the wavefunctions ¢fn (r) as products of
spherical harmonics and spin functions and use the Slater and Koster

tables of f energy integrals (Takegahara et al (1980)). We use the
mapping

tF vy e, (B.5)
mLO‘ 3mL

where Y3m is the spherical harmonic of orbital angular momentum
L
three and z component of orbital angular momentum m and |a-> is the

spin function, to rewrite the I‘7 doublet states of equations

(5.2.43) and (5.2.44) as

¢..(r) =a [ Cao YoaB  * Cpa Yaza]

-b [ C-z"‘ Y3_2a * C-1¢Y3-1B]’

(B.6)

and

(B.7)

where Cm - are the Clebsch Gordan coefficients, o« and B are the up

and down spin functions respectively and a and b are coefficients
which depend on the crystal field of the system (see equations
5.2.43 and 5.2.44). When we substitute equation (B.6) and (B.7)
into equation (B.3) and remember that the energy integrals and hence
the hybridisation is only non zero between states of the same spin

we find:
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1 ,
E _(R) = —
ot 2
1 -
E _(R) = —
Pyt vz L
1 -
E _(R) = —
Bafe vz L
1
E (R) = — [
Pyt V7

where we have inserted

E

sznL(R)

In equation (B.12)

= J ¢:

¢£m

-aE (R + b Em_a(m] : (B.8)
a¥s E . (R) - b/2E (R ] ., (B.9)
e B, R+ WEE (R ], 610
aE_, (R} - WEE_ (R ] . (B.11)

the relevant Clebsch Gordan coefficients and

(r-R) HZF ¢, (r)dv, (B.12)

L

(r)

L

iIs an f orbital with z component of

angular momentum m on the f electron site at the origin and ¢b(r'-R)

is a conduction electron b orbital function on the site at R.

In order to use the Slater and Koster tables of f energy

integrals (Takegahara

et al (1980)) we must express the spherical

harmonics in terms of the cartesian coordinate functions xyz, x(Sx2

- 3r? ) and x(y2 - 2°

). So that

oo [ .1 o2 2 .
Y:3i1 = Cf - * 3 V3 (5z ro)(x % iy) ] , (B.13)
Y - r/ ( + 7 2 14)
ata = Cf . 1s/2 (x £ iy)°z ], (B.
y = c | 3lvaxzs iy (B. 15)
3%3 o - ’ ’

(Lendi (1980)) and in terms of the functions xyz, x(5x° - 3r

2
z

x(y2 )

and all

2)’

those new functions acheived by cyclic

permutation of x, y and 2z,

+vs ( Visx(y®* 29

[ Va ( x(5x%- 3r%) iy(Sya- ar?) )

¥ i\/;y(zz- xz))].
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(B. 16)

C _ —_
Y ., = £ [ visz(x® - y?) £ i2v1s xyz ] , (B.17)
V2
Ce - 2 2 2 2
Y313=+;[w/5( x(5x“~ 3r°) ¥ iy(5y°“- 3r°) )

- V3 ( V1s x(yz- 2% = h’gy(zz— x3)
(B. 18)

When we substitute equations (B.16) to (B.18) into equation (B.12)
we find:

bYsi’x( ) =2 ;[ va ( Eb x(5xz-3r2)(R) t 1 Eb y(5ya-3rz)(R) )
PR LB FLE 2y ]’
(B.19)
1
bYatz( ) = ‘/: ¥[ b z(xe-yz)(R) = 4 E:b Xyz ]’
(B.20)
1 -
bYaia(R) =+ ; [‘/5 ( E:b x(sz-ara)(R) 4 E:b y(5y2-3ra)(R))
~ +
+ V3 ( E:b x(ye- ze)(R) i Eb y(ze- xz))] ’
(B.21)
so that in general
»
EbY“(R) = - Eby_a-x(R)’ (B.22)
*»
Ebyaa(R) = Ebya-a(R)’ (B.23)
»
E,,.R =-E_ " (R. (B.24)

Also when equations (B.22) to (B.24) are used in equations (B.8) to
(B.11) we find that for the case of a l"7 band hybridising with a

single conduction band that:
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»

Ea,(R) = -E (R, (B.25)

(R) = E

E o, e (R (B. 26)

The relationships between the f energy integrals in equations (B.25)
and (B.26) are true for the case of a I‘7 band hybridiation with any
type of conduction band. The actual values of the energy integrals

Eba“(R) depend on the type of conduction band and the type of
lattice in the systen.

For an s conduction band (Takegahara et al (1980))

1 .
~ 1 2 i 2
E o, (B = % [/ hisrP- + fase® -3 )
_ Vis . Vis s 2
+ Vs ( - I(m® - n®% 7 i —2—m(n -1 ))] (sfo),
(B.27)
1 ¢ Vis s s .
svaie(R) = Vz: [T n(l° - m°) + ivVis lmn ] (sfo),
(B. 28)
(R) = % - ( q151%-3) 5 Iaca®-3) )
sYs3ts =+ 4 s 2 * 2 miom
Vis 2 2 Vis 2 2
- V3 ( Tl(m - n%) tiTm(n -1%)) | (sfo),

(B.29)

where (1,m,n) are the direction cosines of the vector R. It is seen

that each of the functions E__ (R) of equations (B.27) to (B.29)
L

is an odd function of R:

E (-R) = - E

sY3a

sYa-L(R)’ (B.30)

and on substituting equation (B.30) into equation (B.8) to (B.11)
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with b = s for this s conduction band it is found that

E . .(-R)=-E__ (R). (B.31)

sofn fn
Also from equation (B.2)

Vi) = § ™R E L () (B.32)
R

(f to s)

so that using equation (B.25)

sf - ik.R . *
V,,,1 (k) = E e EB%Z(R)
t

- L J

= - E e Es‘l'fz(—R)'} , (B.33)
t

and provided the lattice has inversion symmetry we can use equation
(B.31) to show that

ik.R _ ySf*
;L: e E_y,(-R),| = Vi, (k). (B.34)
(f to s)
Therefore when a I'_, doublet state, labelled by n = 1 or 2,

hybridises with a spin o, s conduction state in a lattice with

inversion symmetry then

sf _ ysf*

Vay (k) = Vi 7 (k), (B.35)
and similarly

Vit = - valt). (B.36)

210



Similar relations exist between the hybridisation of a 1‘7 doublet
band and a px conduction band. The f energy Iintegrals for this px
conduction band are (Takegahara et al (1980)):

_ Vs
(R) = V1s lzmn(pfc') - = (31%- 1)mn(pfn), (B.37)

Px Xyz Va2

-1 2.2 _V3 2 2
e x(8x-arh (R) = 3 17(61°= 3)(pfe) = (51°- 1)(1*- 1)(pfn)
(B.38)
v xiy'sty ) = 3 V5 1%(0° - n®)(pfo)
-5 (3P-1) (o -r°) (pfm).
Ve
(B.39)

where (1,m,n) are the direction cosines of R. All the other energy
integrals which appear in equations (B.19) with b = p, to (B.21) can
be obtained by cyclically permuting x,y,z and 1l,m,n of equations
(B.37) to (B.39). We can easily see that each of these energy

integrals is an even function of R so that:

E (R) = E (-R), (B. 40)
pranL prJML

and on substituting equation (B.40) in equations (B.8) to (B.11)
with b = P for this P, conduction band, then

E (-R) = E (R). (B.41)
Therefore when the steps used to get from equation (B.32) to (B.35)
are repeated it is found that in a lattice with inversion symmetry
the hybridisations between the band of I‘_, doublets and a p
conduction band in a lattice with inversion symmetry satisfy:

VR = - VB (B. 42)

Vo) = vRrT e (B. 43)
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APPENDIX C.

In the main text it is shown that the hamiltonian H®P™ of equation

CF
(5.3.25) can describe magnetic anistropy provided
VP (k) = 0, (C.1)
and
sf pxf
( E(o-)v_m(k)va_2 (k) + c.c )=0, (C.2)
or
sf* pxf
Evﬂ (k)Vo_2 (k) =0 (C.3)
where
sf _ ik.R
Vo'n(k) = E e Eso“(R), (C.4)
(f to s)

and R is the vector form the f orbital site at the origin to the s
orbital sites. Also

VPr(k) = ¥ el¥-® E 0. (R), (C.5)
R
(f to px)

where R is the vector from the f orbital at the origin to the P,

orbital sites and

vP* (k) =3 e*PE (R), (C.6)
R s Px
(s to px)

where R is now the vector from a particular s orbital site to all p

orbital sites. The energy integrals Esa“(R) and Ep (R) are

xaf'
given in equations (B.8) to (B.11) with b = s or P, and

212



= * 8px _
Espx(R) J ¢s (r) ch-' ¢px(r R)dv. (Cc.7)
where R is again the vector connecting the site on which the s
orbital, ¢S (r), is located and the site on which the P, orbital,
¢ (r), is located. From the tables of tight binding energy

px
integrals (Slater and Koster (1954)) we find:

VP (k) = ¥ ' *'® (spo)l, (C.8)
R
(s to p=x)

where (1,m,n) are the direction cosines of the vector R which
locates the positions of all P, orbital sites relative to a single s
orbital site.

In the following the functions VZi(k), vf;;"(k) and V®P7(k) are
evaluated within the nearest neighbour approximation for a bcc and
tetragonal lattice. The conditlons for magnetic anisotropy are

shown to be satisfied for both cases.

A Model Tetragonal Lattice.

In CeSix the f orbitals are located on the cerium atoms while the
conduction s and px orbitals are located on the silicon atoms. The
nearest neighbours of any cerium atom are shown in Figure C.1 for a

simplified CeSflx structure.

Figure C.1. The nearest neighbour

silicon atoms of a cerium atom in

eSi 2 model tetragonal lattice.
O Ce

The z direction is taken along one of the a axis since the moment is

quantised in the z direction and is known from experiment to lie
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along an a axis in CeSix.
To evaluate equations (C.4) and (C.5) for V:_i(k) and Vg_;f(k) in
the nearest neighbour approximation we sum over the vectors { R }

where

{R}=1{ (%, ¢

S +
2

)}, (C.9)

a a
2’ "2
locate the eight nearest neighbour silicon atoms. The vectors { R }

have direction cosines { (I,m,n) }, where
{R}={|R|[(L, m n)}, (C.10)

so that for each of the eight vectors { R } locating the nearest

neighbour sites the direction cosines satisfy:
m* = n® = 2(1-1%). (C.11)

When we use equation (C.11) in equations (B.8) to (B.11) for

Esam(R) and }52p (R) we find that for a tetragonal lattice:

xOf

Vis
E 4. (R) = - — (sfo) n
s i 2 Via
[ (a - Vab)( g 2 - % ) + i2(a + Vsb)Im|,
(C.12)
Ve 3
E . (R = —= (sfe) | (b - Vsa)(51%- 3)1
s 8 V7
+ im [ avs (1 - 71%) - b(-3+51° )]
(C.13)
and from equations (B.25) and (B.26)
E . (R) = E., (R, ©(C.14)
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ES“' (R) = ‘Esﬂlx

e fI(R), (C.15)

Also
E » R) =Y25) (-a+ Wb )inx
pxq\f! 2
Y1is 3 2 1 Vs ,927
[—2-— ( > 1 - 2—)(pf‘a‘) - ‘7; ( Ef-i)(pfn)}

-i(a+b/s )mn x

[ Vis 1%(pfo) {-3(312— 1) (pfm) ]
V2

(C. 18)

E ¢t‘(R) = —1_ (-avevs + bve ) x
P av7

12 2 Va3 2 2
> (51° -3)(pfo) - ‘7_ (51°- 1)(1°- 1) (pfn)
)

. 1 1 s ,2 3— 3 5 2
_1[5-(-2—-2—1)(pf0')-—;(5—2—1)(pf‘n)]lmJ

+ i (aveva + tWavis)In x

vis ,1 3.2 Vs 1 3,2
{T (E - El )(pfeo) - ;—/'_(3 (E_ El )+ 2)(pf1t)} }
8
J
(C.17)

and from equations (B.26) and (B.25)

»
E 2, (R =E (R, (C.18)
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(C.19)

-
pr‘l'fa(R) = —pr’rfx(R)'
(C.12) and (C.13) into equation and

When we substitute equations
(C.4) and sum over the eight nearest neighbours using the relation:

i | R I (kxl+kym+kzn)
e

ix.R
) -1 ) ,
(f to s tem|t]  ta-]|m] te=|n|
n.n. only)
(C.20)
where
|1| - /2 , |m| - 972 , |n| = azz ) (C.21)
|R| R| |R|
we find that, in a tetragonal lattice
] Vis
Vil(k) = - 4 — (sfe¢) |n|
Via
ita -v5b) (2 1% - 1) cos(kx<) cos(kys)cos(kzs)
2 2 2 2 2
. c a a
+ 2(a + Vsb) |1||m| |n|sin(kx5) sin(kyE)sin(sz)
(C.22)
o Ve
Vo (k) = — (sfeo
! V7 .
i(b - v5a)(51% - 3)|1|sin(kxZ)cos(kyz)cos (kz2)
- |m;[ avs (1 - 71%) - b(-3 + 512 )]cos(kx;-)sin(ky;—)cos(kzg-)
(C.23)
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vark) = -viT), (C.24)
vaLta = viLt), (C.25)

Similarly when we use equation (C.16) and (C.l’fj in equation (C.5)

we find that in a tetragonal lattice:

Vi) = avis {

- (-a +w§)["1—5 (2 2~ L)(pfo) - s P —g)(pfnﬂj

2 Vs

| 1] |n| sin(kxg-) cos(ky%) sin(kz§ )

1(a+ws')[v1? 12(pfo) - gi (31% - 1)(pf‘1t):\
2

|m| |n|cos(kx§) sin(ky%) sin(kz%)

(C.26)
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Vigk) = 2 | (-avevs + b¥e ) x f
V7

12 2 V3 2 2
[ZT (51 =) pro) - T (5= - 1)(pf1t)] y
8

(o] a a
cos(kxa) cos(ky;) cos(sz)

(2-% 12)(pf1t)} 2] |m|

c a a
sin(kxg) sin(kya) cos(kza-) }

- i (aveva + bvavis) |1||n| x

["}; (& - 2P)(pto) - ‘i__(a L -2P) 2)(pf1t).!|
sin(kx3) cos(kyz) sin(kzz) ,
(C.27)
VP = v, (C.28)
VP = VP, (C.29)

To investgate the criteria for magnetic anisotropy we consider the
particular case of a body centred cubic lattice where the

hybridisation expressions are simpler.

The Body Centred Cubic Lattice.

For the particular case of a body centred cubic lattice the
relations of the previous section are simplified by the fact that a
= ¢ so that the direction cosines of the eight nearest neighbour

silicon atoms of a cerium atom are:
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{ (I,mn) } = { == ( +1, +1, #1) }. (C.30)
V3

The hybridisations V:;(k) and V; ;f(k) for a bcc lattice are obtained
from equations (C.22) to (C.25) and (C.26) to (C.29) respectively by
substituting 1?2 = 1/3. Also we use the values of a and b for a

cubic lattice (Sato et al (Preprint)):

a= l andb:V—S- (C.31)

Ve Ve

to show that in a bcc lattice

vif(k) = - 48 Y15 (cre) |1Psin(ked)sin(kyd)sin(kal)
1 VST 2 2 2
(C.32)
sf -
Vi, (k) =0 (C.33)
sf -
VR, (k) =0 | (C.34)
£ £
Vi, (k) = Vi (k) (C.35)
and
pxf = -
v11‘ (k) = &15 |_ V5 8 (pf‘cr)|12| sin(kx%) cos(ky%) sin(kz%)
Vevs
+ 1 815 (pfo) [1|? cos(kxz) sin(kyZ) sin(kz2)| .
/e 2 2 2
(C.38)
Vpif(k) = j4 §|1|2(V5 + VB) (pfm)sin(kx=)cos (ky=)sin(kz=)
1 @E 2 2 2
(C.37)
x £ x £ %
var (k) = VPIT (k) (C.38)
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VeI k) = - VPR ). (C.39)

Also to calculate V®P*(k) from equation (C.8) we sum over the

nearest neighbour silicon atoms of a silicon atom to find
ViP* (k) = i 2 a sin(kxa)(spo), (C.40)

therefore the first of the criteria for magnetic anisotropy, that is
VeP*(k) # O (see equation (C.1)) is satisfied. Also when we use
equations (C.33) and (C.34) in equations (C.2) and (C.3), which give
the second of the criteria for magnetic anisotropy, we find that in

this bcc lattice the second criterion becomes:

sf pxf sf* pxf*
Vap (RVEXT() + VRl VT (k) = 0, (C.41)
(from equation (C.2)) or
Varttvarfe) = 0, (C.42)

(from equation (C.3)). Also in a bcc lattice
sf sf*
Va (k) = Val'(k) = 0, (C.43)

(see equation (C.32)) so that the criterion for magnetic anisotropy
of equation (C.41) becomes

pxf

pxf®
V¢2

(k) = -V~ (k) #0, (C.44)
which from equation (C.39) 1is obviously satisfied. Finally from

equations (C.32) and (C.38) we see that the criterion for magnetic
anisotropy of equation (C.42) is also satisfied.
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