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ABSTRACT

The heavy fermion (HF) systems such as superconducting CeCu2Si2,
magnetic NpBe and materials with no ordering such as CeAl , are so 
named because at low temperatures they behave as very heavy Fermi 
liquids. This low temperature Fermi liquid state is characterised
by flat f like quasi particle bands near the Fermi level which give
rise to a much enhanced effective mass m*/m = 200, enormous zero
temperature specific heat y and low temperature magnetic
susceptibility values, and maxima in the resistivity at low
temperatures.

In Chapter 1 the unusual low temperature behaviour of, and 
various theoretical models for, the HFs are discussed. In Chapter 2 
an attempt is made to treat the paramagnetic HF impurity cerium 
systems as an alloy of occupied and unoccupied impurity sites in
which the occupation of the impurity site has a time dependence.
This time dependent alloy analogy idea proves difficult to
implement. However a self energy is obtained which is exact in the 
atomic limit. This result is an improvement over the self energy of 
Horvatic7 and Zlatic' (1982) which is only exact in the atomic limit 
for the symmetric case.

The remainder of the thesis is concerned with modelling the 
build up of HF behaviour in the ferromagnetic cerium systems as well 
as modelling the HF system CeSi^. In Chapter 3 the spin degenerate 
periodic Anderson model is used to model a system with a strongly 
ferromagnetic ground state. The f electron Green function is 
calculated via a variational treatment. The numerical calculations 
of the f density of states, mass enhancement and Fermi wave vector 
show the build up of HF behaviour and the breakdown of the magnetic 
state with increasing hybridisation. An effective Kondo temperature 
is obtained which differs from the Bethe ansatz impurity Kondo 
temperature by a factor of two in the exponent.

The calculation is repeated including an exchange interaction 
in order to model systems like CeSi , 1.7 < x < 1.83 in which

X
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exchange and hybridisation compete. For certain magnitudes of the 
exchange coupling, it is found that the exchange and hybridisation 
add as an effective exchange interaction in agreement with the 
result of a Schrieffer-Wolff transformation for the Anderson 
impurity hamiltonian plus exchange interaction. In general though
the hybridisation and exchange interaction affect the system in 
different ways. It is seen that the exchange interaction, favouring 
a magnetic ground state, could contribute to the mass enhancement. 
For V -> 0, the effective Kondo temperature agrees with the Bethe
ansatz impurity result.

In Chapter 4, the error in the exponent of the lattice 
effective Kondo temperature is shown to be a fault of the
variational approach via an analogous calculation for the impurity. 
The fault is identified as the unrealistic assumption that in the 
magnetic ground state there is no minority f spin occupation. The 
model is then pushed to the weakly magnetic regime to allow for some 
small minority f spin occupation and improve the effective Kondo
temperature. The dominant self energy diagrams are identified. The
calculated magnetisation shows good agreement with Bethe ansatz 
results. The Kondo temperature is identified and shown to be an 
improvement over the effective Kondo temperature of the strongly 
magnetic model.

In Chapter 5 the model is extended to include crystal field and 
spin orbit effects in order to describe magnetic anisotropy. It is 
shown that the two band model of a band of T doublet states7
hybridising with a single conduction band in a lattice with
inversion symmetry cannot describe magnetic anisotropy, contrary to
the results of Thyamballi and Cooper (1985). It is concluded that
the magnetic anisotropy arises as a result of the hybridisation
between the T doublet band and all the conduction bands. The 7
existence of magnetic anisotropy is shown for a three band model of 
T band and two conduction bands.7
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CHAPTER 1.

INTRODUCTION.

1.1. PLAN OF ACTION.

The subject of the present work is a model for heavy fermion (HF) 
cerium systems, a problem tackled by many theorists and
experimentalists since the discovery of HF CeAl3 in 1975 and the
subject of countless publications. HF systems are metals with 
either magnetic (NpBe^, UZn^, UCd and CeSii 8), non magnetic 
(CeAl and CeCu ), or superconducting (CeCu Si , UBe and UPt )3 2 2 2 13 3
ground states in which the interactions of the system result in 
unusual low temperature behaviour generally accepted as that of a
very heavy Fermi liquid. The heavy Fermi liquid state occurs for

— 3very low temperatures of order 10 times the degeneracy temperature 
of normal metals and is characterised by the temperature dependent 
Kondo resonance in the f density of states thought to anise from
flat quasi particle bands of f character around the Fermi level.
The enormous mass enhancement, huge low temperature susceptibility 
and specific heat which identify the HF systems can all be explained 
in terms of the temperature dependent Kondo resonance above the 
Fermi level. The unusual low temperature thermodynamic behaviour of 
the HFs is discussed in Section 1.3.

In all HF systems, one of the elements of the unit cell is a
magnetic rare earth, usually cerium, or an actinide, usually 
uranium, and has inner shell electrons, 4f for cerium and 5f for 
uranium. However not all compounds involving magnetic materials
with inner shell electrons are HF. Transition metals have inner
shell 4d electrons but these electrons are mainly itinerant and 
therefore are usually non heavy. At the other extreme, gadolinium 
has highly localised 4f electrons and no f weight at the Fermi level 
so is also non heavy. The HF along with the closely related 
intermediate valence (IV) materials lie somewhere between the two,
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in that the moment carrying electrons are partially localised and 
partially itinerant so that neither an itinerant nor localised 
theory will suffice.

In both the HF and IV systems, the dominant interactions are 
considered to be the hybridisation of the flat f band (or d band for 
some IV systems) with the conduction electrons as well as a coulomb 
repulsion between f electrons on the same site (see Section 1.4 for 
particular models). In HF systems, the position of the f level is 
far below the Fermi level and the hybridisation between f and
conduction states is small. The interactions in the system result 
in a very narrow resonance of f character around the Fermi level, 
mass enhancement and other general Fermi liquid behaviour. Most of 
the f weight remains around the unhybridised f level position, so 
that the f electron is only slightly delocalised and the system is 
almost integral valent. In the intermediate valence system, the 
unhybridised f level position is much closer to the Fermi level so 
that in the interacting system the hybridisation reduces the f
occupation considerably and the system is said to be intermediate
valent. The two types of system are classified according to a 
schematic f density of states picture in Figure 1.1. The two types 
of system, HF and IV, are closely related and similar models are 
used to describe them. The aim of any theory must ultimately be to 
decribe the full range of materials from the itinerant transition 
metals through the IV and HF systems to gadolinium.

In the bulk of the work of the thesis, the systems described
are assumed to have magnetic ground states in contrast to the
situation in very heavy cerium systems like CeAl3 which have non
magnetic ground states. The majority of work on HF cerium systems
has concentrated on modelling the paramagnetic state of these very
heavy systems, as we do in Chapter 2. However any complete model
must be able to describe the transition from the very heavy non
magnetic to the normal magnetic rare earth system. It seems
reasonable therefore to build a model for magnetic cerium systems
and study how, or if, it predicts the build up of HF behaviour. The
theory, therefore, aims to decribe the build up of HF behaviour in
normal magnetic cerium compounds as well as modelling the fully
fledged magnetic HF, CeSi . The development of a model for the1*8
magnetic systems is useful since the standard HF theories are not
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able to deal with magnetic order. Most authors concentrate on the 
non magnetic syterns.

The present work includes a model for HF paramagnetic systems 
in Chapter 2. The model is based on the alloy analogy and attempts 
to take better account of coulomb correlation site by introducting a 
time dependence to the f occupation of the impurity site. This time 
dependent alloy analogy idea proves difficult to implement. However 
a self energy is obtained which is exact in the atomic limit. This 
result is an improvement over the self energy of Ho r vatic7 and 
Zlatic' (1982) which is only exact in the atomic limit for the 
symmetric case.

In Chapters 3 to 5 the magnetic cerium systems are treated. 
The starting point is a variational approach for the spin degenerate 
Anderson model. The treatment predicts that the magnetic state 
breaks down and the mass enhancement builds up as the hybridisation 
increases, in accord with the observation that all very HF cerium 
systems are non magnetic. However the calculated effective Kondo 
temperature has a factor of two wrong in the exponent. The question 
of the form of the competition between the R. K. K. Y. interaction and 
hybridisation in these HF materials is addressed. Why is it that 
the long range R. K. K. Y. interaction which leads to the magnetic 
ground states in the transition metals, as well as rare earths 
themselves is so apparently ineffectual in the HFs. The variational 
calculation is repeated including an exchange interaction in order 
to model systems like CeSi^ 1.7 < x < 1.83 in which exchange and 
hybridisation compete. For certain magnitudes of the exchange 
coupling, it is found that the exchange and hybridisation add as an 
effective exchange interaction in agreement with the result of a 
Schrieffer-Wolff transformation for the Anderson impurity 
hamiltonian plus exchange interaction. In general though the 
hybridisation and exchange interaction affect the system in 
different ways. It is seen that the exchange interaction, favouring 
a magnetic ground state, could contribute to the mass enhancement. 
For V -» 0, the effective Kondo temperature agrees with the Bethe 
ansatz impurity result.

In Chapter 4, the error in the exponent of the lattice 
effective Kondo temperature is shown to be a fault of the model via 
an analogous calculation for the impurity. The fault is identified
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as the unrealistic assumption, that in the magnetic ground state 
there is no minority f spin occupation. The model is then pushed to 
the weakly magnetic regime to allow for some small minority f spin 
occupation, as a test case for the extension of the lattice 
calculation to the weakly ferromagnetic regime. The dominant self 
energy diagrams are identified. The calculated magnetisation shows 
good agreement with Bethe ansatz results. The Kondo temperature is 
identified and shown to be an improvement over the effective Kondo 
temperature of the strongly magnetic model.

In Chapter 5 the model is extended to include crystal field and 
spin orbit effects in order to describe magnetic anisotropy. It is 
shown that the two band model of a band of T doublet states7
hybridising with a single conduction band in a lattice with 
inversion symmetry cannot describe magnetic anisotropy contrary to 
the results of Thyamballi and Cooper (1985). It is concluded that 
the magnetic anisotropy arises as a result of the hybridisation 
between the T doublet band and all the conduction bands. The7
existence of ■ magnetic anisotropy is shown for a three band model of 
T band and two conduction bands. As an introduction to the HF7
problem, a general description of the more popular or successful HF 
theories is presented (see Section 1.4) highlighting their
relationship to, and expanding on those which allow most comparison 
with, the work of the thesis. Before any structured account of the 
theories can be presented, some of the vocabulary of the HF
literature must be defined. Since no theory is needed before 
experimental discovery, the experimentally determined thermodynamic 
behaviour typical of HF systems is described. To cover all these
areas in a logical manner, the remainder of the introduction is
divided into three areas of discussion headed: History and
Definitions, Experiment, and Theory.

Within the History and Definition section some popular terms of 
the literature namely: Kondo impurity, Kondo lattice, Anderson
hamiltonian and intermediate valence, are introduced and defined and 
their role in the HF scenario is described. Under Experiment, the 
experimentally determined temperature dependence of specific heat, 
magnetic susceptibility, and resistivity of a few HF systems is
reported. Under Theory, some of the better known theories are
presented and a general picture unifying these and the results of
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the present approach is described. More detailed discussion is 
reserved for those theories which permit most detailed comparison 
with the work of the thesis. In particular, we concentrate on those 
which permit the definition of a criterion for magnetism as they can 
be compared with the present work on the magnetic cerium systems.
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1.2. HISTORY AND DEFINITIONS.

1.2.1. Kondo Impurity.

1975, the year CeAl3 was identified, is recognised as the birth of 
the HF problem but in fact much earlier studies of local moments in 
La Ce A1 for x<l, what is now referred to as a dilute HF system,

1 - x  x  2
revealed specific heats per impurity as large as those for
concentrated systems. This and other similarities between the 
thermodynamic properties of the dilute and concentrated systems led 
to the hope that the concentrated system could be modelled as a 
lattice of impurities, the interactions between these f electron 
impurities being negligible. This hope was fuelled by the fact that 
the impurity problem had been under investigation for some years and 
to a large extent had been solved. For these studies of the
impurity problem the reader is referred to publications such as: 
Krishnamurthy et al (1980), Andrei et al (1983), Tsvelick and 
Wiegmann (1983) and references therein.

Dilute magnetic alloys in which the magnetic impurity contains 
inner shell electrons were originally modelled by the s-d
hamiltonian. The hamiltonian models the interaction between the 
conduction band of s type electrons and the single localised 
magnetic impurity f or d electron level lying a few electron volts 
below the Fermi level. The model assumes that the dominant 
interaction is an exchange interaction between the localised
impurity spin, S, and the spin of conduction electrons in its 
vicinity, <r(0), so that

H = V e c^ cs-d u  k kir kcr k<r
JS. <r(0) (1.2 .1 )

where c * creates an electron in the free electron state with k<r
momentum k and energy ê . The first term in equation (1.2.1) just 
describes a band of conduction electrons. In 1964, J. Kondo (Kondo 
(1964)) used the s-d model to describe magnetic impurity alloys 
exhibiting both a resistance minimum and evidence of local impurity 
moment behaviour. Kondo concluded that the concurrence of these
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phenomena implied the resistance minimum was due to the interaction 
of the spins of the localised and conduction electrons and showed 
that this behaviour could be described using the s-d model of 
equation (1.2.1) with J negative. The negative J makes it more 
energetically favourable to align conduction and impurity spins 
antiparallel in these systems and is the origin of their non 
magnetic ground state. The description of systems of magnetic 
impurities in non magnetic metals which exhibit these thermodynamic 
properties, that is, a resistance minimum and Kondo screening of the 
moment in the ground state, has become known as the Kondo impurity 
problem. Also the s-d hamiltonian with J negative is known as the 
Kondo hamiltonian.

The Kondo problem has been studied by many authors. However 
the most successful treatments of the model have been made using the 
Bethe ansatz approach (Tsvelick and Wiegmann (1983), Andrei et al ( 
1983)). The temperature dependence of the susceptibility,
magnetisation and specific heat have all been determined. At high 
temperatures; the thermodynamic quantities behave as though the 
impurity moment is free and localised. At low temperatures, there 
is a cross over to a strong coupling or Fermi liquid regime where 
thermodynamic properties scale with a characteristic temperature TO
(similar to the Kondo temperature T ) and which features the famous 
Kondo, or Abrikosov Suhl, resonance in the f density of states. The 
characteristic temperature, T , plays the role of a degeneracyO
temperature where T « T^ and T^ is the degeneracy temperature of 
normal metals. The very narrow Kondo resonance near the Fermi level
implies some small delocalisation of the f electrons and
consequently the number of f electrons in the interacting system is 
slightly less than integral. This limit of near integral valence is 
known as the Kondo limit.

All of the above impurity problem properties: the strong 
coupling Fermi liquid regime for T < T , the resistance minimum, <n>o f
= 1, where <nf> is the f occupation and the Kondo resonance in the f 
electron density of states have come to be known as Kondo behaviour. 
The concentrated systems or HF systems which show similar behaviour 
are said to be 7Kondoesque7.
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1.2.2. Kondo Lattice.

The term Kondo lattice is used to label concentrated f atom systems 
which exhibit similar thermodynamic behaviour to the dilute or 
impurity systems. These are the 'Kondoesque' systems mentioned in 
the previous section. In these concentrated systems a flat band of 
magnetic impurities lying a few volts below the Fermi level, instead 
of the single impurity of before, is interacting with the conduction 
band. For example CeAl^ is termed a Kondo lattice system because it 
has a screened moment at low temperatures, a Curie Weiss 
susceptibility at high temperatures, a low temperature resistance 
minimum, and Kondo resonance in the f electron density of states 
near the Fermi level, all of which sire similar to recognised 
impurity properties. There are however differences between the 
lattice and impurity systems as is evident via the resistance 
behaviour. The resistance of impurity systems saturates at low
temperatures to a finite value, while in the concentrated systems it 
drops sharply to a very small zero temperature value. The low 
temperature resistance behaviour of the concentrated systems is 
attributed to the development of coherence between the f impurity 
electrons (see Figure 1.4 of Section 1.3).

Throughout the work of the thesis, the terms Kondo lattice and
HF sire considered as essentially synonymous. However which of the
Kondo lattice systems merit the title 'heavy' depends on the
individual's definition of 'heavy'. For example, YbCuAl (Mattens et
al (1980)) is a Kondo lattice system but with a y of 135 mJ/molK2
(see Section 1.3.1) it is light compared to the very heavy systems

2like CeAl3 where y = 1620 mJ/molK . Both systems exhibit Kondo like 
behaviour of thermodynamic quantities, and have a sharp resonance in 
the f density of states around the Fermi level and so some mass 
enhancement. In both cases, the large density of states around the 
Fermi level and the resulting mass enhancement are due to the same 
mechanism. The description of this mechanism is the root of the HF 
problem. It seems reasonable therefore to group together all the 
systems in which the heaviness occurs as the result of Kondo type 
behaviour instead of splitting them up according to degrees of
heaviness. By this reasoning Kondo Lattice implies HF in what
follows.
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1.2.3. The Anderson Hamiltonian.

In 1961 P.W. Anderson proposed his famous hamiltonian to model a 
single spin 1/2 magnetic impurity in a metal (Anderson (1961)) :

H 1 mp Ai£ e cT c + V e f ' f  + u k k<rko* u f <r <r k or <r
j+ f

k<r
(V c 1 f + h.c.kf kO* 0* ) + U ft  ft  f+.

( 1 . 2 . 2 )

where c ' creates a conduction electron in the free electron state kcr .
of momentum k and energy and f^ creates an f electron with spin <r 
and energy ef on the impurity site. Term by term, the hamiltonian 
includes a single band of conduction electrons, a single spin 
degenerate f electron impurity level at ef, hybridisation between 
conduction electrons and the impurity of a strength V and a 
coulomb repulsion between f electrons on the impurity site.

This Hamiltonian is ideally suited to the description of cerium 
systems since ionic cerium has one f electron but within any 
material the f occupation is between one and zero. In its 
application to cerium, the energy is a many body energy
corresponding to an excitation from a 4f1(5d6s) configuration to a 
4f°(5d6se), where e denotes a state at the Fermi level. In the case 
of uranium systems, the most likely relevant configurations of the

2  3uranium are f and f so that the form of the hamiltonian for
uranium is not certain. Anderson developed his hamiltonian to 
describe magnetic impurity systems in which the impurity has inner 
shell electrons, that is those also described by the Kondo
hamiltonian. In fact, in this the spin 1/2 case, the Anderson 
impurity hamiltonian transforms under the Schrieffer-Wolff 
transformation (Schrieffer and Wolff (1966)) to the Kondo
hamiltonian of equation (1.2.1) with

J =
2V

I s Ii f i
(1.2.3)

The term Anderson hamiltonian has become a group heading for a
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number of hamiltonians with the same basic components as those of 
equation (1.2.2). When the full f electron degeneracy is included, 
it becomes the orbitally degenerate Anderson impurity hamiltonian. 
When the f impurity is replaced with a flat band of f electrons, it 
becomes the periodic Anderson hamiltonian and inclusion of spin 
orbit coupling and crystal field effects modifies it again. All of 
these different improvements to the original model are important in 
different limits.

Like the Kondo hamiltonian the Anderson impurity hamiltonian 
has been studied extensively. The most renowned techniques and 
results for the Anderson impurity hamiltonian are: the
renormalisation group approach (Krishnamurthy et al (1980)), large 

(where Nf is the degeneracy of the impurity orbital) approaches 
(Coleman (1983), Read and Newns (1983)), and the Bethe ansatz method 
(Tsvelick and Wiegmann (1983) and references therein). These

theories predict the observed high temperature local moment
behaviour of the HF impurity systems as well as the crossover at low 
temperature to the strong coupling or Fermi liquid regime. In this 
low temperature regime, all properties scale with T^ and are said to 
show Kondo behaviour. The results are in agreement with those for 
the Kondo Hamiltonian.

Other well known approximate methods of solving the impurity 
problem which compare well with Bethe amsatz results shall be
described later in their generalisation to the lattice case.

1.2.4. Intermediate Valence.

Intermediate valence systems (IV) are generally rare earth systems 
where the proximity of the f level to the Fermi level results in 
instability of the valence (Lawrence et al (1981)). In these 
materials the bonding states 4fn(5d6s)m and 4fn-1(5d6s)m+1 are 
nearly degenerate so that the valence is intermediate between the 
values of these two configurations. In the HF systems, the f 
electron level is sufficiently far below the Fermi level to render 
the system almost integral valent. In the IV systems both 
configurations are present and charge fluctuations between the two 
occur on a timescale T . Experiments which probe the system on a
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timescale less than T see both configurations, and greater than 
T see the intermediate valence. In terms of a schematic densityvf
of states picture (see Figure 1.1), the hybridisation of the f band 
with the conduction band results in incomplete filling of the f 
resonance and thus intermediate valence.

1.2.5. The Total Picture.

In ordinary rare earth materials, the picture is of highly localised 
4f electrons having well defined moments and Curie Weiss 
susceptibility. The hybridisation with conduction electrons is 
described by an s-f exchange interaction leading to an indirect 
R. K. K. Y. interaction between the f’s and a magnetic ground state. 
In HF and IV systems the high temperature behaviour is again that of 
local moments. However the very important difference between these 
and the normal rare earth systems is the crossover at low 
temperatures to the strong coupling or Fermi liquid regime where the 
f electrons appear to exhibit both a localised and itinerant nature. 
This behaviour is reflected in the low temperature resistivity, 
specific heat and magnetic susceptibility (see Figures 1.2 to 1.4). 
The differences between the HF and IV systems is the near integral 
valence, Kondo resonance and resulting large mass enhancement of the 
HF not shown by the I Vs. Also the non magnetic ground state of the

3 +IV systems is due to the quenching of the Ce ion moments by 
valence fluctuations. However in HF systems like CeAl3 it is 
thought that direct valence fluctuations cannot be responsible for 
the non magnetic ground state; rather spin fluctuations arising from 
virtual charge fluctuations are responsible, that is an f hops to 
the conduction band and then back with a change of spin .

In short HF systems are 4f rare earth or 5f uranium, samarium 
systems with almost integral valence often called Kondo lattice 
systems. They have possible magnetic, non magnetic or
superconducting ground states. At high temperatures they have the 
thermodynamic behaviour of normal rare earths but at low
temperatures there is a crossover to a strong coupling regime where 
the behaviour is described as Kondoesque. The low temperature 
Kondoesque behaviour for T < T is similar to the impurity behaviourO
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with the additional development of coherence manifesting itself in 
the resistivity behaviour.

Any theory of Heavy Fermion systems must describe the 
transition from normal rare earth through to the almost integral 
valent HF systems, the intermediate valence and on to transition 
metals as the f electron level moves nearer to the Fermi level and 
the hybridisation takes over from exchange in the R. K. K. Y 
interaction.

Figure 1.1. The variation from trivalence to tetravalence with 
f level energy ê . The hatched areas denote occupied density of 
states below the Fermi level E . The intermediate valence of the

F

materials with ef =* E^ is reflected in the incomplete filling of the 
f resonance. The near integral valence of the HFs where < E^ is 
reflected in an almost completely filled f resonance.
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1.3. EXPERIMENT.

1.3.1. Specific Heat.

In a normal metal at temperatures T < 0/5OK, 0 the Debye 
temperature, the specific heat varies with temperature as:

C = yT + /3T3 , (1.3.1)

where y « N(0)(1+A), N(0) being the band density of states at the
Fermi energy and (1+A) an enhancement factor due to phonons and

2possibly spin fluctuations. A plot of C/T versus T has a constant 
gradient of 3 and a C/T intercept of y. At low temperatures the 
specific heat behaviour of a HF system differs significantly from 
that of a normal metal. For T < 10K the specific heat variation 
with temperature of HF systems has so far been seen to exhibit three 
main types of behaviour:

a) As in a normal metal but with a highly temperature dependent 
y and enormous ,y(T=0) values:

C = y(T)T + 0T3, (1.3.2)

where for T < 10K, y increases rapidly with decreasing temperature. 
The resulting enormous low temperature y values have been attributed 
to a highly temperature dependent dressed density of states at the 
Fermi level (Stewart (1984a)). This type of low temperature, T < 
10K, behaviour is displayed in the following compounds: 
superconducting CeCu2Si2 above the superconducting transition 
temperature T = 0.6K (Steglich et al (1979), Stewart et al (1983)),

C

superconducting UBe^ above the superconducting transition
temperature T = 0.97K (Ott et al (1984b), Stewart et al (1984b)),

C

magnetic NpBe above the magnetic transition temperature T = 3.4K13 m
(Stewart et al (1984c)), nonmagnetic CeAl3 (Ott et al (1984c), 
Berton et al (1977), Benoit et al (1981), Andres et al (1975)) and 
nonmagnetic CeCug (Stewart et al (1984d)).

A plot of C/T versus T (see Figure 1.2) shows very similar 
behaviour for each of the systems. The specific heats of the
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superconducting and magnetic systems do of course have sharp peaks 
at the transition temperatures, so that for temperatures less than 
the transition temperatures the C/T behaviour is extrapolated from 
the behaviour above the transition temperatures. A plot of C versus 
T for each of the five systems listed shows low temperature peaks, 
distinct from those due to transitions in the superconducting and 
magnetic systems, of differing height and widths for each of these 
systems. Attempts have been made to identify the entropy under 
these peaks with the K ln(2S+l) per spin associated with theB
quenching of the moments in the impurity problem. In the lattice 
case the analogous quantity of entropy would be Rln(2S+l) (Stewart 
(1984a)). The peak in the specific heat of superconducting CeCu2Si2 
around 3.5K (Steglich et al (1979)) corresponds to Rln2 entropy 
consistent with 'Kondoesque' behaviour. Less entropy is associated 
with the peak at 2K for UBe (Ott et al (1984b)). In CeAl there13 3
are small peaks containing much less than Rln(2S+l) entropy at 
0.35K, 2.5K and 6K (Berton et al. (1977)). The peak at 0.35K
correlates well with anomalies in other properties. In conclusion, 
although comparison of C versus T behaviour between the systems 
shows good qualitative agreement the low temperature details do not 
compare well and have yet to be explained.

b) As for a normal metal but with an additional T InT term and 
again enormous values of y:

C = yl + 0t3 + ST3InT. (1.3.3)

The above behaviour is shown by the superconductor UPt^ above the 
superconducting transition temperature, T = 0.54K, up to 15K with yc
= 452 mJ/molK2 (Stewart et al (1984e)) .This behaviour is
qualitatively similar to that of the non heavy spin fluctuator UA12 
(Trainor et al (1975)) . Doniach and Englesberg (1966) and Brinkman 
and Engelsberg (1968) predicted that long range spin fluctuations

3would produce such a T InT term.

c) Identical at low temperatures, T < 10K, to normal metal
behaviour:
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C = yT + 3t3 , (1.3.4.)

but as in cases a) and b) with unusually large y values. Behaviour 
of this type is shown by U Zn above the transition temperature, T2 17 m
= 9.7K, up to 13K (Ott et al (1984a)), and UCd^ above the 
transition temperaure T = 5. OK (Fisk et al (1984)) . The data form
U Zn and UCd are consistent with y = 535 mJ/molK2 and 8402 17 112mJ/molK respectively, after extrapolation to zero.

In all three cases a, b and c the low temperature behaviour is 
dramatically different from that of normal metals consistent with 
enormous y(T=0) of around 400mJ/ mol°K. When we compare the large 
y(0) values with the free electron type formula:

y(0)

* 2m k kF B

* V 3
(1.3.5)

where m is the effective mass, k the Fermi wavevector, k theF B
Boltzman constant it is seen that the large y(0) values of the HFs

3can imply large effective masses of order 10 for these systems. 
Also when the specific heat is interpreted in terms of the fraction 
of electrons in the band that are thermally excited (Lee et al. 
(1986)) a characteristic bandwidth temperature T of around 10K isO
deduced. Both the enormous mass and characteristic temperature TO—3which is 10 of a typical Fermi temperature are consistent with the 
picture that HF systems are very heavy Fermi liquids at very low 
temperatures T < T .O
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2Figure 1.2. The C/T versus T behaviour for some typical 
HF systems.

1.3.2. Magnetic Susceptibility.

Many studies have been made of the variation with temperature of the
magnetic susceptibilities of HF systems such as: CeCuSi2 (Sales and
Viswanathan (1976)), UBei3 (Troc et al (1971), Ott et al (1984b)), 
NpBe (Stewart et al (1984c), U Zn ( Ott et al (1984a)), UCd 
(Fisk et al (1984)), CeAl (Edelstein et al (1974)), CeCu (Stewart3 6
et al (1984d)) and UPt3 (Frings et al. (1983)). The %(T) versus T 
plots for the different systems show many similarities, in
particular: a large temperature dependence having Curie Weiss
behaviour at high temperature
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%(T) oc
1

(1.3.6)
T+0

2 2 2large effective moments u > 2 u (where ll = g li J(J+1),Beff B Beff B
H is the Bohr magneton, J is the total angular momentum of, and gB 3♦ 3 + 4♦the Lande g-factor of either the free Ce ions or U or U ions), 
and extremely large low temperature susceptibility %(T) often 
described as enhanced Pauli paramagnetic. In fact for CeCu Si2 
y(T=0) = 8xl0~3emu/mol (Sales and Viswanathan (1976)) and UBe13
%(T=0) = 13.5xl0-3emu/mol (Troc et al (1971)) are seen to be truly 
enormous when compared to %(T=0) = 0.5x10 of Pu (Smith and Fisk 
(1982)) the nearest 5f electron element to being magnetic. The
susceptibility behaviour described above is typical of HF systems 
and is suggestive of local moment behaviour at high temperatures 
crossing over at low temperatures to Fermi liquid behaviour (see 
Figure 1.3)

It appeal’s that a typical HF C(T) and %(T) have been 
identified and attempts have been made to establish some correlation 
between the two. A popular method of examining any correlation is 
to calculate the Wilson Ratio:

7r2k 2%(T=0)
B

R = ---;-------, (1.3.7)
gu rJ(J+l)

B

The calculation of R poses the problem of determining the effective 
moment n . At high temperatures %(T) does not follow the Curie

 ̂ 1 2  3Weiss behaviour expected of simple f or f ( + f for uranium)
while at low temperatures some mechanism destroys the Curie Weiss 
behaviour making it difficult to choose an effective moment. Using 
an approximate p (Stewart (1984a)) finds R to increase through 
the systems from superconducting to non magnetic to magnetic. R 
remains finite throughout indicating that the mechanism which
screens the low temperature moment enhances both 3r(0) and %(0) .
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Figure 1.3. A typical inverse susceptibility plot for the HF 
systems. The data shown is for CeAl3 (Andres et al (1975). The 
insert shows the low temperature behaviour on an expanded scale.

1.3.3. Resistivity.

Studies of resistivity behaviour with temperature have been made 
for: CeCu Si (Stewart et al (1983)), UBe (Ott et al (1983)), UPt2 2 13 3
(Stewart et al (1984e)), NpBe (Stewart et al (1984c)), U Zn (Ott13 2 17
et al (1984a)), UCd (Fisk et al (1984)), CeAl (Ott et al (1984c))11 3
and CeCu (Stewart et at (1984d)). With the exception of UPt which6 3
has normal superconductor p(T) behaviour, the HF systems have 
similar p(T) behaviour with a large maximum in p(T) at low 
temperatures, pmax(T) = 120fiflcm to 250fi£2cm, and a decrease in p(T) 
at low temperatures due to the development of coherence. In some of 
these systems for example CeAl (Andres et al (1975)) and CeCu Si3 2 2
(Lieke et al (1982)), the expected p(T) « AT2 low temperature
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behaviour of a Fermi liquid has been seen.
In particular the p(T) versus T behaviour of CeCu2Si2 and 

UBei3 sire very similar with peaks at low temperature and shoulders 
at higher temperatures. The three magnetic systems are again 
similar with a flat temperature dependence for T > 100°K and sharp 
falls below critical temperatures. The resistivities of CeAl3, 
CeCuB> show maxima at low temperatures and flat temperature
dependence above 100°K. Figure 1.4 shows a typical HF resistivity
variation with temperature.

Magnetoresistance measurements for *-®e13 (Stewart et al 
(1984b)) show large negative values increasing in magnitude with 
decreasing temperature and increasing field. The temperature
dependence of AR/R is similar to that of C/T and the authors 
conclude that the same mechanism causes the low temperature y(T) and 
p(T) behaviour.

Figure 1.4. A typical resistivity versus temperature plot for 
the HF systems. The data shown is for CeAl3 (Ott el al (1984c) and 
Andres et al (1975)).
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1.4. THEORIES OF HEAVY FERMIONS.

Many theories have been proposed to describe HF systems, often based 
on impurity problem approaches, but so far the lattice problem has 
remained unsolved. The aim of any theory is to describe the high 
temperature local moment behaviour as well as the crossover at low 
temperatures to the strong coupling or Fermi liquid regime. In low 
temperature regime the thermodynamic behaviour of the lattice is
similar to the low temperature behaviour of the impurity. However
there is the additional problem in the lattice case of the 
development of coherence. The coherence manifests itself in the 
resistivity behaviour.

There are in general two main starting points in any treatment 
of the problem: either to work with a model hamiltonian, usually the 
periodic Anderson hamiltonian for cerium systems, or to attempt a 
self consistent band calculation for each system. The results of 
the two approaches for cerium compounds can be compared via their
prediction for the f electron density of states. The band 
calculations, despite yielding good Fermi surfaces, predict a narrow 
f band of width around leV with its lower end pinned to the Fermi 
level. Although the band is narrow it is still far too broad to be 
the Kondo resonance of the low temperature Fermi liquid. Also the
density of states arising from this band at the Fermi level is not
in agreement with the results of X. P.S. and B. I.S. experiments which 
measure f weight at and + U where is the f level energy. 
The f weight around these energies as well as the Kondo resonance 
around the Fermi level can be understood on the basis of the 
Anderson hamiltonian (Gunnerson and Schonhammer (1983)). The 
problem of resolving the two approaches remains and is discussed in 
Section 1.4. 1.

In the following section some account is given of a few of the 
better known attacks on the HF problem, concentrating on those 
treatments which allow most comparison with the work of the thesis. 
Most workers have concentrated on the HF cerium systems modelling 
these by either the periodic Anderson model or a lattice
general is tat ion of the Kondo hamiltonian. From these two starting 
points several approaches have led to an effective hamiltonian 
describing a band of non interacting f electrons at renormalised f
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level energy hybridising via a renormalised hybridisation with a 
conduction band. This effective hamiltonian describes quasi 
particle bands near the Fermi level, much narrower than those of the 
band calculations, and is consistent with a low temperature Fermi 
liquid description. All of these approaches are therefore grouped 
together for discussion in Section 1.4.1 along with a mention of 
band calculations. Other treatments such as perturbation methods, 
the alloy analogy and, for the impurity, the large treatment of 
Gunnarson and Schonhammer are discussed separately. In all cases an 
attempt is made to point out the successes and weaknesses of each 
theory as well as the relationship to the present work.

1.4.1. Quasi Particle Bands and Fermi Liquid Pictures.

Throughout the introduction the HF systems have been referred to as 
Fermi liquids at low temperatures. In Landau Fermi liquid theory a 
strongly interacting system is viewed as a system of quasi particles 
having a distribution function equal to that of a non interacting 
system. The quasi particles are characterised by an effective mass, 
enhanced over the free electron mass, and an effective interaction 
parameterised by an infinite set of molecular fields quantified by 
Landau parameters. At temperatures less than the degeneracy 
temperature, T , a normal metal can be described as a Fermi liquid. 
It is now generally accepted that HF systems are also Fermi liquids 
with degeneracy temperature, T , a couple of orders of magnitudeO
smaller than those for ordinary metals that is T ^ 10K to 100K.O

Suppose we choose our model hamiltonian as the periodic 
Anderson hamiltonian. The hamiltonian is suited to the description

3  +of HF cerium systems since ionic Ce has one f electron per cerium 
but in compounds the hybridisation with the conduction band allows 
the possibility of <n^>, the f occupation of a site, less than one. 
From a general diagramatic derivation of the f electron Green 
function for the periodic Anderson model we can show that if the HF 
are very heavy Fermi liquids then in the ground state they must have 
quasi particle bands around the Fermi level and therefore a 
resonance in the density of states near the Fermi level.

The spin degenerate periodic Anderson hamiltonian is written:
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H = V e clatt u  k k(T kO*k<r
v c f ^ f  + v v(c+ f +f+ c )
u  € kO* k(T u  k(T kO' kO* kO*k <r k<r

+ y. u ft f ,fi f . (1.4.1)

where cT and fT create a conduction electron and an f electron in kO* k<r
a state of momentum k and energy and e respactively. Term by 
term the hamiltonisui HA includes a conduction band withlatt
dispersion ê , a flat band of f electrons energy ef, a hybridisation 
term allowing hopping between conduction electron and f electron 
states and a strong on site coulomb repulsion between f electrons 
which makes double occupancy of an f site unfavourable. In the

Ahamiltonian H the hybridisation, V, is assumed real and momentumlatt
independent as usual. Also the orbital singular momentum of the f 
level is neglected so that Nf, the f level degeneracy is just the 
spin degeneracy of two. In reality crystal field and spin orbital 
coupling effects, which are not included here, split the degeneracy 
of the f level. However in cerium compounds the lowest energy f 
states in the ground state are a T doublet so that treating the f 
level degeneracy as two is not unreasonable.

If both the coulomb interaction and hybridisation are treated 
as perturbations then a completely general diagrsunatic derivation of 
the single particle Green function gives:

Gf f<r(k, E)
Z (k,E)f f(T ex

(1.4.2)

where everything that is unknown about the interactions in the 
system is stored in the proper self energy Z (k,E) . If the HF

CX Ametals can be described by the periodic Anderson hamiltonian H ,latt
and if they are heavy Fermi liquids at low temperature then they 
must have a Fermi surface and therefore the imaginary part of the 
self energy Zff^(k,E) must be zero at the Fermi energy. Therefore 
around the Fermi energy the self energy can be expanded in a Taylors 
expansion about the Fermi energy to give a Dyson equation for the 
quasi particle energies E. Here the k dependence of the self energy
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near the Fermi energy is neglected in favour of the energy 
dependence so that:

(E - ef)(E - ek) = V2 , (1.4.3)

where

Gf

G
f + £  ( 0 ) f f<r ex

1
/

Zf  f<r
(0 )ex

and
dZ (E)ff<r ex

Z (0)ff<r ex
dE E=0

(1.4.4)

and

V2
V2

1
/

zf  rcr(0 )
(1.4.5)

Equation (1.4.3) implies that near the Fermi level the quasi 
particle bands are those of an f level of renormalised energy ef 
hybridising via renormalised hybridisation V with the conduction 
bard. A completely general derivation of this form shows how a self 
energy which has the correct properties for a Fermi liquid can give 
rise to quasi particle bands around the Fermi level.

There are several different methods which start from a periodic 
Anderson hamiltonian and lead to a renormalised non interacting 
Anderson hamiltonian which for spin degeneracy only has the form:

eff = E
k<r

G c"f" C  +  k k<r k<r G f +  f
kcr f k<r k<r E V(

k<r
VCc^ f +A+f! C ) kcr k<r k<r k<r (1.4.6)

The eigenfunctions of this effective hamiltonian form the quasi 
particle bands near the Fermi level of equation (1.4.3). The model 
is therefore consistent with a Fermi liquid picture. The methods 
which lead to an effective hamiltonian H include the Gutzwillereff
variational approach to the orbitally degenerate periodic Anderson 
model by Rice and Ueda (1985), the functional integral approach for 
the lattice generalisation of the Kondo model by Read, Newns and
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Doniach (1984), and the slave boson approach of Coleman (1984). The 
size of mass enhancement predicted by these models and width of the 
resonance depends on the actual behaviour of the real part of the 
model self energy around the Fermi level. The corresponding self 
energy of the band calculation deals with the Fermi surface very 
well but does not have enough energy dependence to flatten the bands 
sufficiently for a Kondo type resonance.

a) The Gutzwiller variational method (Gutzwiller (1965)),
originally applied to the Hubbard model, is extended by Rice and 
Ueda (1985) to treat the two band orbitally degenerate Anderson 
model in the Kondo limit. The method amounts to proposing a 
variational ground state wavefunction for the system which contains 
an operator projecting out doubly occupied f electron 
configurations, and another fixing the number of f electrons. The 
energy of the ground state is then minimised. The main difficulty 
of the Anderson or Hubbard hamiltonian, that of talcing adequate 
account of the many body coulomb correlation, is treated here via 
the projection operator which makes it unfavourable to have many 
doubly occupied f orbitals in the ground state. The orbitally 
degenerate Anderson hamiltonian is written:

Hgut = E
k<r

G C^ C k k<r kcr k 10*
e f 1 f f ki<r ki<r k nr

V (c+ f +A  c ) k l k<r kio* knr kcr

+ - E
2 i
la*!' a'

n . n .110* II

(1.4.7)

where cT creates an electron in conduction state of momentum k spinkjO*
<r and f£ creates an electron in f state of momentum k and energy 
Gf which is a bloch sum over sites i of f states with z component of 
orbital angular momentum 1 around the site i. The variational 
wavefunction is written as:

l*> = P„rP I V (1.4.8)

where P and P are operators which remove double occupancy and fix
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the number of f electrons respectively. The operator P is treated
by renormalising all hopping processes by a factor q(n^, L) where
= 2L is the degeneracy of the f electron orbital. Since a hopping

2process involves a factor of V then the hybridisation, V , is
1/2 krenormalised by q . In the U infinite limit, q is given by the

ratio of occupation number factors for the correlated and
uncorrelated wavefunctions. In the correlated wavefunction an f lcr
electron can hop onto a site only if there are no f electrons on the 
site whereas in the uncorrelated wavefunction there need only be no 
1 o* electrons on the site. Therefore

q
1

1 n 1 s

(1.4.9)

where nf is the number of f electrons and n is the occupation of f 
electron state with z component of orbital angular momentum 1 and 
spin s. The operator P which fixes the number of f electrons is 
treated by introducing a chemical potential n so that the energy to 
be minimised is that of the effective hamiltonian:

Hgut 
ef f E c c 1 c 

k  kcr kcr
k<r

+ E
k  l o*

cv  ^ ) f + f 
k i o *  k i o *

+ r v  (C+ f +f+ c )
u  k l  kO* k  10* k  10* kO* 

k  10*

where V = q1/2(n ,L)V
k l  M f  k l

(1.4.10)

It is easily seen that when only spin degeneracy is included, that 
is L = 1, the effective hamiltonian Hgut is of the form of H ofeff eff
equation (1.4.6) and is consistent with the low temperature Fermi 
liquid picture of quasi particle bands around the Fermi level.

For L * 1 the authors diagonalise by assuming V to be
a constant. However within this approximation 1 is not conserved in
the hopping processes and only the symmetric combination of orbitals 
is hybridised and effectively L = 1. The authors calculate a 
characteristic energy which has a form similar to the characteristic 
energy, the Kondo temperature, of the impurity problem:
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(2L - 1) (e - e - 1)K f f

2LV
(1-n ) oc e , (1.4.11)f

where n is the number of f electrons and (e - e - 1) the depthf K f f r
of the bare f level from the Fermi level. For L = 1, that is spin 
degeneracy only, the exponent differs from that of the Bethe ansatz 
Kondo temperature by a factor of two. However as the degeneracy 
tends to infinity it agrees with the Kondo temperature of Bethe 
ansatz results.

The authors also calculate the magnetic susceptibility and find 
that for L = 1 the paramagnetic state is unstable towards magnetic 
order. Only in the mixed valence regime, that is large 
hybridisation, or for large degeneracy and not too small 
hybridisation is their paramagnetic state stable. The criterion for 
the stability of the paramagnetic state is:

(• e - e - 1 )kF f
2L s --------------- (1.4.12)

LV2

The result agrees with the criterion for paramagnetism of Read et al 
(1984) and Coleman (1983) only in the respect that large orbital 
degeneracy stabilises the paramagnetic state. The result is too 
crude to be applied to real systems.

The Gutzwiller treatment of the orbitally degenerate periodic 
Anderson hamiltonian, then, gives quasi particle bands near the 
Fermi level and a Kondo temperature but a criterion for magnetism 
which disagrees with that of Read et al (1984) and Coleman (1983) 
(see (b) and (c) of this section). The Gutzwiller treatment helps
clarify the relationship between the HF Fermi liquid description and

3that of the prototype Fermi liquid He. In the Gutzwiller approach 
to the periodic U infinite Anderson hamiltonian doubly occupied f 
configurations are projected out while keeping the f occupation 
close to one. The model is analogous to the almost localised Fermi 
liquid model for 3He of Volldhart (1984) where there is a small

3number of doubly occupied and empty sites. When He is studied 
using Landau theory the observed divergence of the static
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susceptibility can support the claim of Stoner theory that the 
system is near a ferromagnetic transition. However this divergence 
in the susceptibility can also mean that m*/m is diverging 
indicating that the spin carrying systems are becoming localised.

3By applying the Gutwiller variational method to He Vollhardt (1984)
3finds solutions which indicate He is almost localised rather than 

almost magnetic and that spin fluctuations are important but are a 
result of approaching localisation. The claim is that the HFs and
3He are almost localised Fermi liquids. However comparisons between 
the two systems should be made with care due to the lack of Galilean 
invariance in the HF’s as well as the presence of the heavy electron 
charge.

b) The functional integral approach of Read et al (1984) to the 
lattice generalisation of the Kondo model also results in an 
effective hamiltonian of the form of equation (1.4.6). The starting 
point is the SU(N) Kondo model (Coqblin and Schrieffer (1969)) 
extended to the lattice:

Hc s Y e c^ cu  k k lc k

Jo
N

E
i 11

cf ,c .i l' i l 4 . li* (1.4.13)

where cT creates a conduction electron in a free electron state of
k 4 - 4 -momentum k and f ' ,c creates an f or conduction electroni l li

respectively at site i with z component of orbital angular momentum 
1. The authors neglect the spin of the electrons for simplicity. 
To find the large limit in the non magnetic regime the properties 
of the ground state are calculated via the partition function as in 
the analogous impurity calculation (Read and Newns (1983)). The 
resultant effective hamiltonian appearing in the partition function 
definition is a one body hamiltonian. Within the static
approximation this effective hamiltonian is, once again, a zero 
correlation periodic Anderson hamiltonian with renormalised 
hybridisation and f level energy as in equations (1.4.10) and 
(1.4.6). The renormalising parameters are determined self
consistently to minimise the free energy and fix the number of 
electrons in the conduction band, as in the Gutzwiller treatment of 
Rice and Ueda (1985).
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In the limit Nf-> « the authors find that the system behaves as 
a lattice of impurities with intersite effects coming in at order 
1/Nf. For this large they calculate a Kondo temperature equal to 
that of the impurity case:

.pfun
K = D exp

1

p o  J o
(1.4.14)

where po is the conduction band density of states and D is the
energy difference between the chemical potential and the effective 
bottom of the band. To determine the stability of the non magnetic 
Kondo ground state the energy of this ground state is compared with 
that of a ground state fully magnetised via the R. K. K. Y.
interaction. The Kondo ground state is considered stable provided 
its energy is less than the corresponding magnetic ground state, 
that is provided

exp
1

p o  J o

> A
(poJo)2

(1.4.15)

where A is a constant of proportionality which depends on the band 
structure and the type of magnetic order. The criterion for non 
magnetic Kondo ground state of equation (1.4.15) agrees with that 
derived by Coleman (1983) and shows that for finite the stability 
of the nonmagnetic ground state is greatest for large J o .  Also the 
critical coupling, J o ,  for a non magnetic ground state tends to zero 
as the degeneracy tends to infinity, in agreement with the result of 
Rice and Ueda (1985).

Since both exchange and hybridisation can polarise the
conduction band then both these interactions contribute to the
exchange interaction of equation (1.4.13). In Chapter 3 the
competition between these two interactions and their effect on the 
criterion for magnetism is examined.

c) The slave boson technique is another large Nf treatment of 
the Anderson hamiltonian in which the end result is an effective one 
body hamiltonian of the form of equation (1.4.10). The
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thermodynamic properties are calculated as a series in 1/Nf and then 
the limit as tends to infinity is taken. The starting point is 
the orbitally degenerate Anderson hamiltonian in the U infinite 
limit. In the U -» co limit, double occupancy of any impurity site is 
strictly forbidden by placing a slave boson on each f site so that 
the hybridisation term becomes:

H = --- £ V. (k)(cl bfc / . 1m Ink 1V N 1km
:t bt f.ink 1 1m + h. c. ), (1.4.16)

where c . creates a conduction electron in a state of energy e onI n k  k
a site i with z component of angular momentum m, about this site and 
f . creates an f electron in a state of energy e on site i with zin f
component of angular momentum m, about this site. The mixing term
H of equation (1.4.16) only includes hybridisation betweenf c
conduction and f impurity electrons of the same angular momentum, an 
approximation necessary for the method. The resriction to
hybridisation between electrons of the same angular momentum means 
that intersite effects arising from an f hopping onto the conduction 
band and back with a change of angular momentum are neglected. This 
approximation is possibly one of the reasons that the lattice 
appears to be equivalent to a lattice of impurities to leading order 
in 1/N .f

The next step is to conserve the operator

Q. = bib. +
l  l i

nf l (1.4. 17)

When is set equal to one, the conservation of ensures that 
n the number of f electrons on site i, is less than one asf l
required. The condition = 1 is implemented in different ways by 
Coleman (1984) and Read and Newns (1984) for the impurity problem. 
Coleman calculates the temperature dependence of x(T) and C(T) and 
the f spectral function. He obtains the development of a Kondo 
resonance with small spectral weight above the Fermi level however 
the approximations of the method produce spurious results at low 
temperatures. Read and Newns (1984) impose the condition = 1 by 
introducing a mean field for the boson and using functional integral 
techniques. They obtain a finite theory at low temperatures. The
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method is equivalent to replacing the operator b of equation 
(1.4.17) by a constant, b o , which renormalises the hybridisation so 
that V(k) = bo V(K). The constraint = 1 is expressed els eui 
integral and in the meEm field is evaluated at its saddle point. 
This brings in a second parameter which plays the role of a lagrange 
multiplier and shifts to ef. In the mean field theory it is 
shown that the limit -» co must be talcen firstly maintaining Q/Nf 
constant, and then setting Q/N = 1/N at the end of the calculation.

f  f
When this proccess is carried out the mean field theory produces 
finite zero temperature % and y as well as the correct exponent in 
the Kondo temperature.

The mean field approximation has been applied to the lattice by 
Read and Newns (1984) and results in a renormalised U infinite 
Anderson hamiltonian with

V  -» b o V  b o = 1 - n and e -» e (1.4.18)
f  f  f

a result equivalent to large Gutzwiller and functional integral 
results.

All of the effective hamiltonians resulting from the Gutzwiller 
method, functional integral techniques and the slave boson approach 
are equivalent and yield narrow f quasi particle bands near the 
Fermi level which are consistent with a low temperature Fermi liquid 
description.

The alternative approach to the use of a model hsimiltonian is 
to attempt a self consistent band calculation for a particular 
system using the local density approximation. Band calculations
have been used successfully to determine the ground state properties 
of transition metals and give reasonable cross sections, effective 
masses and band structures. There have been many calculations of 
this type performed for HF systems. Calculations for CeCuSi 
(Jarlborg et al (1983)), UBe^ (TaJcegahara et al (1985) and CeSn^ 
(Koelling (1982)) give good Fermi surfaces all of which are in good 
agreement with one another, the main feature being a "wide" (=leV) f 
band around cf. These results do not, however, agree with the 
results of photo emission or inverse photo emission experiments for 
cerium compounds which show peEtks in the f density of states at cf 
and e + U as well as a very narrow resonance (of width « leV)

f
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band calculation results is attributed to the linear density 
approximation not accounting well enough for the strong f electron 
correlation, a prominent feature of the Anderson model. It would be 
comforting if the differences between these results could be 
resolved allowing the band calculations to take their proper place 
as a basis for many body calculations.

around the Fermi energy. These density of states features at and
e + U are built into the Anderson model and their absence in thef

1.4.2. Other Techniques.

There are many other techniques used to tackle the Anderson
hamiltonian. However we choose to discuss only the perturbation in
U treatment developed by Yoshida and Yamada and the application of
this method by Horvatic/ and Zlatic', as well as the alloy analogy
approach and the variational method of Gunnarson and Schonhammer.
The alloy analogy and perturbation in U treatments are discussed in
Chapter 2 in the context of the work of the thesis. The method of
Gunnarson and Schonhammer is used to treat the impurity Anderson
model for dilute cerium systems but a short description of the
method is included here because of its success in fitting XPS and
BIS measurements of concentrated systems.

The method of Gunnarson and Schonhammer relies on the
degeneracy of the impurity orbital being large and gives exact
results in the limit N infinite. However even for N as small asf f
six the results are in very good agreement with the N -» co results. 
The Anderson impurity hamiltonian is written with angular momentum 
as a good quantum number. Here the problem of generalising to the 
lattice hamiltonian is the same as for the slave boson technique,
that is, only hybridiation between conduction and impurity states of 
the same z component of angular momentum can be included.

Nf r
H = E cs U=1

iji de + e i + J( V(e)i/rh/r + h. c. )de +U T n n ev ev f v v  v ev u v fi
p<fj

(1.4.19)

with



T V* V , 5(e - e ) = V |V |25(e - e )8um' = |V(e)|25mm' ,"  km km k "  1 k 1 k 1 1k k
(1.4.20)

where <//T̂ creates an electron in a state of energy e and angular 
momentum v, about the impurity site, and creates an f electron
with energy and angular momentum v. Here v = (m, <r) is the
combined index for orbital and spin degeneracies since these 
degeneracies are equivalent when the model assumption of equation 
(1.4.20) is made.

To compare with BIS results the single particle f electron 
Green function for E > 0, defined as:

g>(z) < <f> \ \po 1 ir
z + Eo(N) - H

ip^ \ <t> >V 1 o (1.4.21)

is calculated. Here I<f> > and Eo(0) are the exact ground state andO
ground state energy of the system respectively. The authors 
calculate this ground state, ground state energy and Green function 
via an approximation which is exact in the Nf infinite limit. By
acting on the vacuum repeatedly with H new states are formed. The

G S
ground state is chosen as a linear combination of those which have a 
non zero coupling to the ground state in the limit infinite. The 
N infinite limit is taken so that N V remains finite. In this way
the variationally determined ground state is ensured of being an 
eigenstate at least for Nf -» co. To calculate the Green function of 
equation (1.4.21) a complete set of basis states is inserted on 
either side of the operator so that

g> r \ £ < 01 \iJj \i >< i(z) = o|ru'
z + Eo(N) - H

j >< J\ 0+ I

(1.4.22)

where I<pil> and Eo(N) are the approximate ground state and ground 
state energies calculated in the infinite limit. Normally a very 
large basis set f | i >} is required to evaluate g>(z) but in the 
infinite limit the basis set is small. This basis set is determined 
by repeatedly acting on |0X> with H to form new basis states
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and then keeping only those which have a non vanishing coupling to 
ilî\<bl> in the N infinite limit. In this first order calculation, 
the problem reduces to the inversion of a simple matrix. However in 
more accurate calculations where wavefunctions coupling with 0(1/Nf) 
are included in the basis set the inversion must be done 
numerically.

The authors have calculated f electron density of states 
showing peaks around e and + U as well as a narrow Kondo 
resonance which are in very good agreement with experiment. They 
are also able to calculate XPS core spectrum and found that <n^> > 
0.7 and A s 0. leV for cerium systems such as CeNi2 and CePd3«

44



CHAPTER 2.

THE ALLOY ANALOGY.

2.1. THE ADVANTAGES AND DISADVANTAGES.

The alloy analogy (AA) treatment of the the Anderson hamiltonian is 
generally used as a model for the IV systems. However the basic AA 
idea can equally well be applied to the almost integral valent HF 
cerium systems. The system is treated as an alloy of 4f* and 4f° 
ions. Each site is either occupied by one or zero f electrons in 
analogy with an AB alloy which has either an A or B atom on each
site. Consider an up spin f electron in the system. It sees an
atomic potential of ef, where is the f level energy, at site i if 
this site is empty or ef + U if the site is occupied by a down spin 
f. Within the AA approximation the up spin f electron is described 
as moving in a static random potential taking values of with
probability (1 - <nf4>) and + U with probability <nf >̂.

The AA approximation has several advantages and disadvantages. 
It is exact in both trivially soluble atomic, V = 0, and zero
coulomb correlation limits. Also it has been applied to the
periodic Anderson hamiltonian as a model for IV systems and the 
resulting magnetic susceptibility and specific heat are in very good 
agreement with experiment (Leder and Czycholl (1979), Seki (1980), 
Czycholl (1982), Czycholl and Leder (1981), (1982)). The AA
therefore seems to be a good starting point for a model of the 
almost integral valent HF systems in which the hybridisation is
known to be small. Unfortunately the AA cannot describe a Fermi
liquid, there is no Fermi surface. Also its treatment of the
coulomb correlation is not sophisticated enough to allow the 
description of the many body Kondo resonance of the HF systems. The 
lack of a Fermi surface in the AA treatment is a problem for both 
the IV and HF systems. However the correct treatment of the coulomb



correlation is more important in the HF systems since the many body 
Kondo resonance is the origin of all the strange HF low temperature 
behaviour. In the IV materials the Kondo resonance, and hence its 
effect, is swamped by the resonance at (see Figure 1.1).

The treatment of the coulomb correlation is lacking in the AA 
because the model does not account for the fact that the ' type of 
atom7 is not fixed for all time as in a genuine alloy, but can in 
fact change with time as an f hops off into the conduction band. In 
the following section an attempt is made to deal with this failing 
via a time dependent AA (TDAA). Within the new TDAA the f electron 
spins are not frozen. The f electron occupation of any site has a 
time dependence and the static approximation of the AA is lifted. 
With the introduction of this time dependence it is proposed that 
the coulomb correlation can be more adequately treated.
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2.2. THE TIME DEPENDENT ALLOY ANALOGY.

In this section a prescription for a TDAA is discussed. The 
treatment is applied here to the Anderson impurity hamiltonian and 
results in a modification of the straightforward AA self energy. 
The ideas can equally well be applied for a treatment of the 
periodic Anderson model where an analogous self energy is found when 
the single site approximation is made. The original aim of the 
present calculation was to determine the form of the modified self 
energy for the impurity and study its success via comparisons with 
the exact Bethe ansatz impurity results. If the comparison was 
good, the analogous self energy of the lattice case could then be 
calculated with a certain amount of conviction. In the present 
chapter a TDAA impurity self energy is found which has the 
attractive feature of the exact atomic limit. This self energy is
the origin of a sharp resonance near the Fermi level in the f 
electron density of states and reduces to the result of Horvatic' 
and Zlatic' for the symmetric Anderson model. Unfortunately the 
derivation of this self energy is not rigorous, so that we resolve 
simply to highlight its advantages of over the perturbation theory 
result of Horvatic' and Zlatic'(1980) (1982).

The spin degenerate Anderson impurity hamiltonian is written:

H*imp V e C 1 C + u u k kcr kcr "k<r o*
: Aff <r <r :+ f

kcr
(V c 1 f + h.c. k k«r <r ) + U fW i 4

( 2 . 2 . 1 )

where cT creates a conduction electron in a state of energy e , k<r | 6,7 k
momentum k, and spin <r and fT creates an f electron in a state of

O'

energy e and spin <r on the impurity site. In the following the
hybridisation is assumed to be real and independent of momentum. In 
this chapter the discussion concentrates on the proper f electron 
retarded self energy Zffo#(E) which is defined in the Dyson equation:

Gf f<r(E) = G" (E)f fo* + G (E)I (E)G (E) ff<r ff<r ff<r ( 2 . 2 . 2 )

where G (E) is the f electron propagator and G° (E) is the ff<r <r ff<r
unperturbed f electron propagator when the unperturbed hamiltonian
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From equation of motionis the zero correlation hamiltonian. 
methods

Gf fcr(E)
1

E - e - A(E) + iA(E)*f

(2.2.3)

where

A(E) — iA(E) = £ V (2.2.4)
k (E - e )

k

In the following, a constant unperturbed conduction band density of 
states is assumed so that A(E) is independent of E. Also the
contribution of A is neglected since this just produces a small 
shift in the f resonance position.

From equation of motion methods the retarded f electron Green 
function can be written:

Gf fO*(t) Gfee(t)

+
00

U s dt'G” (t-t')« f (t')eee e e-e
-0 0

n (t7) :f+ »,

(2.2.5)

where n (t7) = f"t* (t7 )f (t7). Within the straightforward time e—e -e -o*
independent AA of Section 2. 1 this equation is decoupled as:

f (t')n Jt') o* e-e : f 1 » = N « f-o* f (t7)O' :f+ (2 . 2 . 6)

so that

G (t) = G° (t) + UN f dt7G° (t-t7 )G (t7) , (2.2.7)rfo - fro* f-o - fee ffo*
00

where N = | or 0 with probabilities (1 - <n >) and <n >f-o' w * f - c r  f - e
respectively. Within the new TDAA, equation (2.2.5) is decoupled so 
as to retain the time dependence of the f occupation using:

in (t7):f+« f (t7)n (t7 ): f T » = V (t7)« f (O' f-O" O' -O' O' t7) : f ( 2 . 2 . 8 )
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so that

GTDAA(t) f f<r G° Ct) + S dt'V (t')G° (t-t' ) G ™ AA(t' )rf<r -<r rrcr ff<r-00
(2.2.9)

with

V (t') = UN (t') , (2.2.10)
-<r f-< r

where now N (t') = 0 or 1 at time t'. The f Green function of r -c r  <r
the TDAA (equation (2.2.9)) is then expanded as:

00

GTDAA(t) = G° (t) + Jdt G° (t-t )V (t )G° (t )ff <r ff<r l ff<r l -<r l ff<r l
- 0 0

00 00

+ / dt S dt G° (t-t )V (t )G° (t - t )V (t )G° (t )l 2 fftr 1 -0* 1 ffO* 1 2 -o* 2 ffo* 2
- 0 0  - 0 0

( 2 . 2 . 11 )

In order to evaluate equation (2.2.11) we write

V (t )V (t )V (t )..... V (t ) =-O* 1 -O' 2 -O' 3 -O' n

un <n >P (t , t )P (t ,t )...P (t ,t )f-O' -O' 2 1 -O' 3 2 -O' n n-1 ,

(2 .2 .12)

where P (t , t ) is the probability that if N (t) is unity at-O' n n-1 f-O'
time t (that is the impurity site is occupied by an f at time t) 
where t is the earlier of times t and t , then it is still unityn n-1
at the later of times t and t . In the straightforward AA, thisn n-1
probability has no time dependence and is equal to unity for all 
time. In the TDAA, the static approximation is lifted and this 
probability car deviate from unity as time evolves. In the HF
systems, which we hope to model, the hybridisation between
conduction and f electron states is small, so that the likelihood of
an f hopping off the impurity site is also small. Therefore we
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expect that in the HF systems the probability P (t , t ) is close 
to unity for all time. The function P (t , t ) must reflect the-O' n n - 1
behaviour of the f occupation of the impurity site and is 
identified with the charge density function:

P Jt , t ) =
-O’ n n-1

< T[ n (t ) n (t ) ]> - <n >‘________ f-CT n f-CT n-1____________ f—O*

<n >(1 - <n >) f-cr f-cr
(2.2.13)

which has the property that

P
-O’

(t , t ) = 1 ,n (2.2.14)

as it must, and which ensures that the TDAA reduces to the AA when 
the time dependence of P (t , t ) is lifted. Also

-O’ n n-1

<T[n (t )n (t )]> - <n >' 
f-cr n f-cr n-i f-cr X (t - t ,-CT n n-1

where
(2.2.15)

(2.2.16)

where the full lines represent the f propagators 
represents all the interactions between these f electrons.

and
Hence

P
-O’

(t , tn-1 ) = - i
X J t  - t ) -or n n-1

<n >(1 - <n >) f-cr f-cr
(2.2.17)

Now when we substitute equation (2.2.12) into equation (2.2.11) then
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From here on we choose to work with an approximation to the self 
energy of equation (2.2.22) which arises when we convolute the 
unperturbed Green function, (E), in the denominator of equation
(2.2.22) to give G°^^(E). The time dependent alloy analogy 
therefore becomes:

U<n >
2TDAA(E) = --------— --------------- . (2.2.23b)
ff<r 1 - UG° (E) ( 1 - U<n >)f f o* f-<r

This self energy is exact to second order and is also in agreement 
with the second order self energy of Horvatic' and Zlatic' in the 
symmetric case (see sections 2.3 and 2.4).



GTDAA(t) = G° (t) + U<n >X dt G° (t-t)G° (t)fftr ffcr f-tr 1 fftr 1 fftr 1-00
00 00

+ U<n >s dt s dt G° (t-t )G° (t - t )G° (t )..r-<r l 2 fftr l fftr l 2 fftr 2 
- 0 0  - 0 0

00

(2.2.18)

where

G° (t - t ) = G° (t - t )P (t , t ). (2.2.19)fftr n - 1 n fftr n-1 n -<T n n-1

When we take the Fourier transform of equation (2.2.18) we find:

G tdaa(E) = G° (E) + U<n > G ° (E)G° (E)fftr fftr f-tr fftr fftr

+ U<n > G° (E)G° (E)G° (E )... ,f-<r ff<r ff or ff <r

or, after summing the series in equation (2.2.20),

(2 . 2 . 20)

g tdaa(e )f f<r G° (E) + U<n >G° (E)ff <r f-o- fr<r 1 - U G° (E) ff<r
G r r J E )  ’ f f <r

(2 .2 .21)

Equation (2.2.21) is a T matrix equation for the TDAA f electron 
Green function. The corresponding self energy is:

z tdaa(e )f f<r
U<n > f-<r

1 - UG° (E) + UG (EXn >ffcr fftr f-tr
( 2 . 2 . 2 2 )

where, sifter substituting equation (2.2.17) into (2.2.19) and taking 
the Fourier transform we find:

X (E - E')
G (E) = --  S dE'G {£' ) -

f f t r  o • ff<r  ̂  ̂  ̂ . x2ni <n >(1 - <n >)
(2.2.23)

f-cr f-tr

This TDAA result reduces to the straightforward AA result when
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either the time dependence is neglected, or the hybridisation is 
zero, since in each of these cases

P (t , t ) = 1 , (2.2.24)-O' n n - 1

and hence

G (E)f f  O' G
ff«r

(E) , (2.2.25)

so that

T D A A -  - A AZ (E) = Z (E) = f fc r  f fc r

U<n > f-o*

1 - U G  (E)(l - <n >) f fc r  f —cr

(2.2.26)

The f electron Green function therefore reduces to its AA 
expression:

G A A

f fc r (E)
(1  -  <nf-o-> )

( E - e + iA)
f

<n >r-cr
( E - e - U + iA)f

(2.2.27)

This reduction to the straightforward AA expression for V -» 0 
ensures that the TDAA like the AA is exact in the atomic limit.

The form of the convoluting charge susceptibility x ^(E - E') 
in equation (2.2.23) remains a problem. If we suppose that for 
small hybridisation the addition of time dependence just produces a 
small fluctuation in P (t t ), then the corresponding charge-O' n n-1
susceptibility % ^(E) has poles at the Fermi energy and at small 
energies on either side of the Fermi energy. These poles at small 
finite energies are difficult to identify with any real excitation
and lead to sharp resonances in the f electron density of states
just above and just below the Fermi level. This unrealistic result 
anises because the decoupling described in equation (2.2.12) is only 
good if the times t to t are already time ordered, that is t >n 1 n
t > .....t > t .  However this is not in fact the case.n-l 2 1

The decoupling described and hence the self energy of equation 
(2.2.22) are suspect. However the idea that the time dependence can 
be introduced by convo luting some Green function with a charge
susceptiblity seems reasonable. In order to find a better
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prescription for a TDAA, we compare the straightforward AA self 
energy with that of Horvatic7 and Zlatic7 (Horvatic7 and Zlatic7 
(1980), (1982)). These authors treat the Anderson impurity
hamiltonian for general asymmetry using the perturbation in U 
techniques of Yosida and Yamada (Yosida and Yamada (1970), (1975),
Yamada (1975a), (1975b) Yamada (1976)). The origin of the success
of the second order self energy of Horvatic7 and Zlatic7 is 
identified as due to the fact that, for the symmetric case, it is 
exact in the atomic limit for any correlation. A modification of 
the straightforward AA is proposed which retains the exact atomic 
limit not only for the symmetric case of Horvatic7 and Zlatic7 but 
for any asymmetry.
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2.3. THE PERTURBATION IN U OF HORVATIC AND ZLATIC.

2.3.1. The Method.

The perturbation in coulomb correlation energy approach was first 
developed to treat the symmetric Anderson impurity hamiltonian where 
the virtual bound state accommodates one half of the impurity 
electron of each spin (Yosida and Yamada (1970)). In fact it relies 
on the presence of electron hole symmetry for the expansions in U to 
be tractable. In their series of papers Yosida and Yamada 
concentrate on the symmetric Anderson impurity model and choose the 
unperturbed hamiltonian as the zero correlation hamiltonian. For 
this starting point, the expansions in u = U/ttA, where A is the half 
width of the virtual bound state, Eire good for small correlation, 
that is u < 1. The reader is referred to Yosida and Yamada (1970) 
for details of the expansions. The essential point about the 
expansion around the zero correlation result is that the odd order 
terms vanish because the unperturbed f electron Green functions have 
the property G° (t ) = - G° (-t ). The even order terms are given asf f f f
imaginary time integrals of determinants built from the impurity 
electron Green functions, G° (t ), of the unperturbed hamiltonian.f f

The perturbation expansions, in u = U/ttA, for the macroscopic 
quantities are found to be rapidly convergent up to u = 4. The 
magnetic susceptibilty, specific heat, entropy and resistivity are 
calculated to fourth order in u (Yamada (1975a) and Yamada (1976)). 
The results are consistent with those of Krishnamurthy et al (1975). 
Also the perturbation terms are calculated for general order (Yosida 
and Yamada (1975)) to investigate the relations between the specific 
heat, susceptibility and scattering t matrix. The results are 
consistent with the phenomenological Fermi liquid theory of Nozidres 
(Nozidres (1974)).

The same authors also formulate the perturbation expansion in 
terms of deviations from Hartree Fock for general asymmetry in order 
to treat the strong correlation regime (Yosida and Yamada (1970)). 
However without the electron hole symmetry the odd order terms do 
not vanish and the expansions become extremely complicated. The 
authors calculate the second order deviation from the Hartree Fock 
ground state and find it to be of order A/U. However they concede
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that this does not mean that the higher order terms will also be
small for large U and conclude that each term in the expansion must 
be calculated and examined individually.

In the first of a series of papers on the subject, Horvatic7 
and Zlatic' study the low temperature properties of the asymmetric 
Anderson impurity hamiltonian using the perturbation methods of
Yosida and Yamada to expand around the Hartree Fock results 
(Horvatic7 and Zlatic7 (1980)). For this the asymmetric case the 
determinantal expressions of Yosida and Yamada become extremely
complicated. However Horvatic7 and Zlatic7 (1980) propose that in 
the limit of not too large correlation and small asymmetry the
perturbation expansion of Yosida and Yamada must retain its rapid 
convergence. The authors also claim that in the dilute alloy region 
where U/ttA =* 1, the correlation effects are significant for the
nearly symmetric ground state only and that only the first few terms 
are necessary in an expansion in U about the Hartree Fock solution. 
They therefore apply the method of Yosida and Yamada to the 
asymmetric non degenerate Anderson impurity hamiltonian and 
calculate the corrections to the Hartree Fock f electron self energy 
to second order in U. The difference between the expansion for the 
self energy of Horvatic7 and Zlatic7 (1980), (1982) for the
asymmetric case and that of Yamada (1975) for the symmetric case is 
that the odd order terms in the expansion for the asymmetric case 
are non zero.

In the notation of Horvatic7 and Zlatic7 the symmetric Anderson 
hamiltonian is identified by E = 0  where E = e + (U/2)cn >, c isd d d d d
the d level energy and <n >/2 = <n > = <n > is the d electrond do* d—O'
occupation of either spin. The authors choose to drop the spin 
index since the spins are equivalent in the paramagnetic case. 
Therefore E^ can be used as a measure of the asymmetry of the model. 
We note here that the model was originally developed to model 
magnetic impurity systems where the impurity has inner shell d 
electrons. Hence the subscript d in E and e . Later the resultsd d
of Horvatic7 and Zlatic7 are discussed in their application to the 
HF systems where the magnetic impurity has inner shell f electrons
and E becomes E .d f

The second order correction to the Hartree Fock self energy is:

55



u 2
(2.3.1)_c 2 52 (udd m

P

_  H F ,G (u>dd m -

where

Z (w ) = -o B —  E
(3 o

H F . . _  H FG (o) )G (o> + a) )dd F dd F B (2.3.2)

and GHF(w ) is the d electron propagator within the Hartree Fock dd n
approximation:

_  H F . .G ..(w )dd n iw - E + iAwf n

co = -(2n + 1) , 
n 0

co

(2.3.3)

where a> = (rr/B)(2n + 1) and <ô = (n/B)2n are the Fermi and Bose f B
frequencies respectively. An analytical expression for the second 
order retarded self energy 2 ca)(a) ) is found for k T/A, w/A and E /Add n B d
all « 1 (Horvatic' and Zlatic' (1980)). The imaginary part of the 
self energy is zero at the Fermi energy so that the self energy has 
the correct behaviour for a Fermi liquid. The results are good for 
dilute alloys with nearly half filled virtual bound state such as 
AlMn. Also, for E =0, the results coincide with those of Yamadad
(1975), as they must. In Horvatic' and Zlatic7 (1982) the second 
order self energy is recalculated as a function of E /A and thed
effect of asymmetry on the macroscopic quantities is examined. For 
the moment we concentrate on the effect of asymmetry and correlation 
on the impurity electron density of states. When the authors 
calculate the T = 0 (where T is temperature) impurity electron 
density of states using their second order self energy they find two 
types of behaviour. For u = U/(7tA) < 1 the impurity density of
states has a single narrow peak around the Fermi level. However for 
u = U/(ttA) > 2 it has narrow resonance around the Fermi level as 
well as two broader peaks around c and c + U , as seen by Yamadaf f
(1975) for the symmetric case. These impurity density of states 
features are reminiscent of the f electron density of states of the 
HF cerium systems.
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2.3.2. The Self Energy and Impurity Density of States.

There are several comments to be made on the suitability of this
second order self energy approximation in a model for the HF cerium
systems. In these systems the correlation is strong and in general
E * 0. Consider the T = 0 cl electron Green function of Horvatic7r
and Zlatic7 (1980), (1982), in which the self energy is approximated
by its second order term:

1
G (E) = -----------------------------------  , (2.3.4)

E - E - Re EC25(E) + iA - ilmZC23(E)d dd dd

where E = e + U/2<n > includes the Hartree Fock term of the selfd d d
energy. Here the prefixes Re and Im denote real and imaginary 
parts. For energies near the Fermi energy, E = 0 ,  the real andF
imaginary parts of the second order self energy can be expanded in a 
Taylor series around E = 0. Also since

= 0 , (2.3.5)
E=0

(Horvatic7 and Zlatic7 (1980)) then for energies near the Fermi 
energy the d electron density of states is given by:

Im2<2>(0)Rdd — ImZC23(E) 
dE dd

p (E) = —  --------------  , (2.3.6)dd
7T A (E - Ej)2 + A2

where

E - — ( E + ReZC2'(0)) , (2.3.7)d . d dd

and

57



A =
1

1

C 2D

dd (E)
E=0

(2.3.8)

For lx I = |e |/U > 1, that is in the weak correlation regime where Uii d

Ed
A

r e
1 d 2 7r (1 - ln2) i1 - —  u 1 13 4* ' 'A L M X

(2.3.9)

where u = U/(ttA), (Horvatic7 and Zlatic7 (1982)) so that in this 
weak correlation regime, (E / A) -> E /A with increasing asymmetry.d d
Therefore, for energies near the Fermi energy, the impurity electron 
density of states is that of a renormalised resonance at E . For Ed d
= 0 this narrow resonance lies on the Fermi level, and provided the 
asymmetry, and hence E , is small, the resonance is always near thed
Fermi level in this the weak correlation regime. However in the 
strong correlation regime that is |x| < 1 or U > |ed |

E E E “ “
d
A

■°l <1
ll 1 d 2- —  u 

A
( tt2/4  - 2) - ( 7T2/4 - 17)x2. .•

(2.3.10)

(Horvatic7 and Zlatic7 (1982)). It is easily seen that even for 
small asymmetry the renormalised resonance will not lie on the Fermi 
level and will move fan away from the Fermi level for large U. 
Therefore in the HF systems where the inner shell impurity electrons 
are f electrons and u =* 2 or 3, the second order self energy of 
Horvatic7 and Zlatic7 will only produce a narrow resonance (the 
Kondo resonance) near the Fermi energy, for extremely small 
asymmetry. In fact it can be shown that the three peaked structure 
in the impurity electron density of states (Horvatic7 and Zlatic7 
(1980), (1982)) is entirely dependent on small asymmetry for two
reasons. Firstly, it is seen that only for small asymmetry and 
small correlation will the renormalised f resonance lie near the 
Fermi level. Secondly, and perhaps more importantly is that
provided = 0 the second order self energy of Horvatic7 and
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Zlatic' is exact in the atomic limit for any size of correlation, a 
point which the authors do not make in any of their papers.

Consider the exact atomic limit self energy which is given by 
equation (2.2.26) with A = 0. We write this self energy as the sum 
of Hartree Fock and all higher order terms as:

I (E) = U<n > +
f f < r  e x  f - < r

U2<n X I  - <n >)G° (E)f-cr________f-cr fftr
1 - U(1 - <n >)G° (E)

f - < r  f f < r

(2.3.11)

where

G (E) =
ffO* E - e + iS 

r

(2.3.12)

Here the superscript, AL, stands for atomic limit and the subscript, 
ex, denotes that this is the exact expression. The second term in 
equation (2.3.11) is re-expressed by multiplying top and bottom by 
(G°fo#(E) )-i and adding and subtracting a factor of U<nf ^> in the 
denominator so that

Z (E)
f  f< r e x

U<n > + f - c r

U2<n X I  - <n >)Ghf (E) 
f - c r ___________ f  -  o' r e a r

1 - U(1 - 2<n >)Ghf (E) f-cr f f o -
(2.3.13)

where

C  (E)fro*

1

E - e - U<n >+ id f f-cr
(2.3.14)

is the Hartree Fock f electron Green function in the atomic limit.
It is now immediately obvious that in the symmetric case where Ef=0
and <n > = <n > = 1/2, that the exact atomic limit self energy 

ro* f - c r

has no terms higher than second order in U, that is

(E) = y + —  g"f (E)
f f c r  e x  „  fre r2 4

(2.3.15)
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Now compare this exact atomic limit self energy for E = 0  with the 
self energy of Horvatic7 and Zlatic7 for Ef = 0 and T = 0 :

ZH2 (E) = - + Z C25 (E)f f<r ff <r (2.3.16)

where a spin index has been added to the notation of Horvatic7 and 
Zlatic7 to allow easy comparison with the self energy of the TDAA 
self energy in the following section. In z ”̂ (E) of equation 
(2.3.16) the first term is just the Hartree Fock term and the second 
term is the second order self energy of equation (2.3.1) at T = 0. 
Therefore

— X d E ' ) Z Q(E - E'), (2.3.17)
2 2iri

where G hf (E) is the f electron Green function in the Hartree Fock ffcr cr
approximation of equation (2.3.14) and

X (E - E7) = —  f dE GHF (E - E)GHF (E - E7). (2.3.18)o _ p ff <r p ff<r p2tt

In order to perform the integrals over E7 and E in equations
H F  P(2.3.17) and (2.3.18) we express G (E) and % (E) in terms off f O' o

spectral representations:

G H F

f f<r(E)
00 A+ (oj )
S ------ ----- dw +
o o) — E — iSl

o A” (-« )
J* ------- ---- dw

-co D — E + iS 1 l
(2.3.19)

where

A+(E) = - pHF (E) for E > E = 0  , (2.3.20)ff cr f

A"(-E) = - p“F (E) for E < E = 0  , (2.3.21)f f<r f

and similarly for x (E) to find

60



s ‘2’(E) = u2 rro*
00 00 A+(td)J(Cd)

J do> S dw ---------------------
o 1 o 2 (a> + w - E - i5 )1 2

0 0 A-(-W ) )
- J* d« J* do> --------------- ---- ,1 2

-oo -oo (Ci) +o> - E + iS )1 2  -I
(2.3.22)

where

J+(E) = - Im x (E)7T o

00 0
= ,f dw J du p (a) ) p (a) )5(a) - u> - E )

4 3 K f f < r  3 f f f < r  4 4 3
0 -co

E > E = 0 ,F
(2.3.23)

and

J"(-E) = - - Im x (E)TT o

oo 0
Jdo> Jdo) pHF (W ) pHF (« ) 5 ( w  -o> + E )

3 4 r ff< T  3 ^ f f c r  4 3 40 -oo
E < E = 0F

(2.3.24)

Here p HF (E) are the f electron densities of states within the f f<r
Hartree Fock approximation. Therefore in the limit V -> 0 there will 
only be contributions to J+(E) and J (-E) when the Hartree Fock 
density of states are centred around the Fermi level, that is when 
E =0. For E =0,f f

J+(E) = for E > E = 0 , (2.3.25)
4 F

J"(-E) = - 5151 for E < E = 0 , (2.3.26)
4 F

and substituting equations (2.3.25) and (2.3.26) into equation
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(2.3.22) gives:

f f < r

C 2 ) (2.3.27)

so that

f  f  <r

H Z (2.3.28)

which is the exact atomic limit result of equation (2.3.15). From 
this comparison of the exact atomic limit self energy and that of
Horvatic7 and Zlatic7 for V -» 0, it is easily seen that for E * 0, 
the accuracy of the second order perturbation result deteriorates on 
two counts. Firstly, for E * 0, the exact atomic limit self energy 
has terms of all orders in U so that the second order perturbation 
theory cannot hope to describe even the atomic limit for strong 
correlation. Secondly, for Ef * 0 the Hartree Fock densities of
states are not centred on the Fermi level, so that as V tends to
zero these functions will shrink to 5 functions which are not 
centred on the Fermi level. Subsequently the integrals over these 
density of states in z (E) (see equation 2.3.18) will not yield theO
correct result:

of the atomic limit. Therefore when E * 0, even the second order
f

term of Horvatic7 and Zlatic7 is no longer equal to the second order 
term in the exact atomic limit self energy. It would appear that 
the success of this type of second order perturbation theory result 
relies on the nearness of the parameter space in which E “ 0 and the
correlation is small to that where Ef = 0. In its application to 
the strong correlation HF systems, the second order self energy can 
only be good for Ef = 0.

To improve on the result of Horvatic7 and Zlatic7 we need a

J+(E) = - Im % (E) = <n >(1 - <n >)S(E) ,7T o f-O' f -O' (2.3.29)

(2.3.30)

f
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prescription for a self energy which retains the atomic limit even 
for * 0. In the following, the ideas of the TDAA are used to
obtain a self energy which has this property. This self energy 
reduces to that of Horvatic' and Zlatic' for E =0. However it isf
an improvement over the result of Horvatic' and Zlatic' since it 
retains the exact atomic limit for E * 0. This new self energy is 
not restricted to the small correlation regime for E * 0.
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2.4. A TIME DEPENDENT ALLOY ANALOGY SELF ENERGY.

Let us rewrite the straightforward AA self energy of equation 
(2.2.26) as the sum of Hartree Fock and all higher order terms as:

2 “  (E) f f<r U<n > + f-cr
U2<n >(1 - <n >)G* (E)f-<r f -or ff o*

1 -fu(l - 2<n » - E (0) )G1 (E)V f-o* ff <r ffo*
(2.4.1)

where

Glff <r(E)
1

E - e - U<n > - E (0) + iA f f-<r ff<r

(2.4.2)

and Eff^(0) is the exact self energy, minus the Hartree Fock term,
evaluated at E = E^ = 0. This straightforward AA self energy is
exact in the atomic limit. At this stage a lead is taken from the
TDAA discussion of Section 2.2 so that the Green functions G1 (E)f f<r
are convoluted with the Fourier transform of the charge 
susceptibility of equation (2.2.16). In equation (2.2.16) the lines 
now represent the propagators G*^(E) so that

e tdaa(e )f ftr U<n > + f-<r
U2<n X I  - <n »G 1 (E)f-cr f-cr ff<r

1 -(U(l - 2<n >) - E (0) )G* (E) ̂ f-<r ff<r f f o'
(2.4.3)

where

Q1 ,(E) =
1

S dE'G1 (E7)ffO*
Z (E -0* - E7)

(2.4.4)ffO* 2 ni <n >(1 - f-cr <n >) f-cr

Suppose that this function G1 (E) isf fO* evaluated by making the
simplest approximation to - E7) that is /(E -o E7), where
/(E-E7 )o is given by equation (2.3.18) with G (E) ffo- replaced by
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G1 (E). When G1 (E) and %1(E - E') are written in terms of
ff< r f f < r  o

spectral representations then

ffO*
(E)

00 00 A 1 (o >  )  J 1 ( a )  )

X du S dco -------------------
o 1 o 2 (0 + 0 - E - i 5 )1 2

o o A1-(-a> ) J1-(-w )
- S dw X du -----------------—  ,1 2

-co -oo (0 + 0 - E + iS )1 2  J
(2.4.5)

where

for E > E = 0  , (2.4.6)F

for E < E = 0  , (2.4.7)F

A (E) - - < W E)

A‘-(-E) = - p\ (E)

and

J1 + (E) = - Im /(E)
7T o

oo O
= X dw S dw p1 (w ) p1 (w ) 5( w - 0 - E )4 3 rff<r 3 rffO* 4 4 3O -00

E > E = 0 ,F
(2.4.8)

J1~(-E) =- - Im x1(E)
7T o

oo O
= - f dw S dw p1 (w ) p1 (w ) 5( w - 0 + E )

J  3 j  4 Hff<r 3 Hffcr  4 3 4
0 -oo

E < E = 0  .F
(2.4.9)

and

1
p1 (E) = - rr ra­ il

(2.4.10)
( E - e - U<n > - I (0) )2 + A2 f f-cr frcr
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As V -) 0 and hence A -» 0 the lorentzian function p1 (E) shrinks tof f o*
a delta function. Also since the Friedel sum rule can be expressed 
as:

<n > = - S P1 (E) dE , (2.4.11)
f  O' TT ' f f O '

then as V 0 p1 (E) must shrink to a delta function at the Fermi 
r €f<r

level in order to obtain the correct f occupation <n >. Therefore
f  O'

J1+(E)
v-»o

<n >(1 - <n >)5(E) , c-ar f-c r
(2.4.12)

J1-(-E)
V-X)

= - <n >(1 - <n >)5(E) ,
f-0 *  f -O '

(2.4.13)

and when equations (2.4.12) and (2.4.13) are substituted in equation 
(2.4.5) we find

G1 (E) = G1 (E) . (2.4.14)ffo* f f<r
V-X)

When equation (2.4.14) is substituted in equation (2.4.3) we see 
that the self energy Z^°^*(E) has the exact atomic limit result of 
equation (2.4.1) even for Ef * 0.
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2.5. DISCUSSION.

In the previous sections the success of the second order
perturbation theory of Horvatic7 and Zlatic7, in its application to
the impurity density of states calculations, is identified. The
second order perturbation theory self energy of Horvatic7 and 
Zlatic7 is seen to yield impurity density of states at e^ and cd + U 
for E “ 0 and small correlation because it is exact in the atomicd
limit for E =0. For E * 0 all terms in the exact atomic limitd d

2self energy of higher order than U are multiplied by E . Therefored
although these higher order terms vanish for E =0, for E * 0 theyd d
will be large when the correlation is large. Therefore it is
concluded that when the second order perturbation theory self energy
is used in a model for the HF systems its validity must surely be
restricted to E =0.f

A non rigorous TDAA derivation leads to a self energy which is 
an improvement over that of Horvatic7 and Zlatic7 since it retains 
the exact atomic limit for E * 0. This TDAA has terms of alld
orders in U and is therefore better suited to a description af the
large correlation regime than that of Horvatic7 and Zlatic7. Also
for E - 0 it retains all the attractive features of the E = 0  self f f
energy of Horvatic7 and Zlatic7. This TDAA self energy would 
therefore appear to be a better prescription for the HF systems
where the coulomb correlation is large and Ef* 0.

The TDAA model is not pushed any further since the derivation 
of the self energy is not rigorous. However we could take a further 
lead from Zlatic7, Horvatic7 and Sokdevic (1985) and Horvatic7 and 
Zlatic7 (1985) and use this self energy along with exact definitions 
like the Friedel sum rule and the Wilson ration to calculate the 
charge and magnetic susceptibilities.
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CHAPTER 3.

THE SPIN ONLY CASE.

3.1. INTRODUCTION.

In the following chapters the Anderson lattice hamiltonian is used
to model cerium systems which have a ferromagnetic ground state.
The periodic Anderson hamiltonian in its various forms is generally
used to model the very heavy cerium systems which have non magnetic
ground states. However in the limit of weak hybridisation it can
describe the magnetic ground state of a normal rare earth metal.
The present work approaches the problem from this magnetic end. The
model predicts build up of HF behaviour and breakdown of the
magnetic state with increasing hybridisation. As well as modelling
the precursors of HF behaviour in the non heavy magnetic rare earth
systems, the model can also be thought of as a starting point for a
description of ferromagnetic HF systems such as CeSi . If pushed1*8
to the weakly ferromagnetic regime the model predicts build up of 
Kondoesque behaviour and breakdown of the magnetic state with 
increasing hybridisation and so offers some explanation of the
variation between ferromagnetic CeSi , 1.7 < x < 1.83, and

X

nonmagnetic CeSi , 1.83 < x < 2.0, which will be discussed in
X

Chapter 5.
The early part of the present chapter serves as an introduction 

to the variational method of determining the f electron Green 
function which is used throughout the present work. The starting 
point is the spin degenerate periodic Anderson hamiltonian so that
the calculation is referred to as the 'spin only case'. A 
preliminary calculation (Edwards (1987)) includes some unnecessary 
approximations which limit the validity of the results to the region 
of small hybridisation. The following calculation contains none of
these approximations so that the expressions obtained for the single 
particle f down spin Green function, mass enhancement and Fermi
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wavevector are better suited to the description of the larger 
hybridisation regime where the hybridisation starts to produce large 
mass enhancements.

In the the latter half of the present chapter the treatment of 
the spin only model is extended to the case where both exchange 
interactions and hybridisation sire present. The treatment of 
exchange is usually neglected in work on HFs probably because most 
workers study the very heavy non magnetic cerium systems where the 
hybridisation is considered to be the dominant interaction. However 
in the rare earth metals themselves the exchange interaction 
dominates in the R. K. K. Y interaction and leads to magnetic order. 
This is paricularly evident in gadolinium which is ferromagnetic 
with a saturation moment of 7.6p indicating a large conduction spinB
polarisation parallel to the f moment of 0.67fi . Hybridisation

B
alone leads to antiparallel spin alignment. It is likely therefore 
that in some systems exchange and hybridisation are competing on an 
equal footing. The manner in which these interactions are competing 
is an important problem for any theory which hopes to treat the full 
range of rare earth systems from magnetic to non magnetic, normal to 
heavy.

To study the competition between exchange and hybridisation in 
the lattice systems a variational calculation of the single particle 
f down spin Green function is made for an assumed ferromagnetic 
system which is modelled by the spin degenerate periodic Anderson 
hamiltonian plus exchange interaction. The results of this 
variational calculation are examined for the form of competition 
between the hybridisation, favouring breakdown of the magnetic 
state, and an exchange interaction favouring stability of the 
magnetic state. The effect of these two interactions on the Kondo 
temperature of the model is examined in the light of the criterion 
for magnetism of Read et al (1984) and Coleman (1983) (see Section 
1.4). The combined behaviour of hybridisation and exchange for the 
lattice system is compared with that predicted for the impurity by a 
Schrieffer Wolff transformation on the Anderson impurity hamiltonian 
plus exchange interaction.
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3.2. THE F ELECTRON GREEN FUNCTION.

3.2.1. The Model.

In this section a variational calculation of the f electron Green 
function is made for a strongly ferromagnetic system described by 
the spin degenerate Anderson lattice hamiltonian. The breakdown of 
the magnetic state is examined to see if the classic features of the 
nonmagnetic HF appear such as an increase in the effective mass and 
Kondo resonance in the f electron density of states. It is found 
that the magnetic state breaks down as the hybridisation is 
increased there being a particular point, defined as the effective 
Kondo temperature of this model, at which the initial assumption of 
strong ferromagnetism collapses. The model succeeds in predicting 
reasonable build up of mass enhancement due to a build up of density 
of states at the Fermi level. This sharp density of states is 
considered to be a precursor of the HF Kondo resonance.

The calculated effective Kondo temperature differs from the 
impurity Kondo temperature of Bethe ansatz calculations by a factor 
of two in the exponent. This is not the same factor of two found by 
Rice and Ueda (1985). In Chapter 4 an analogous variational 
calculation for the impurity also leads to an effective Kondo 
temperature with the same factor of two missing in the exponent. We 
therefore conclude that the difference between the lattice effective 
Kondo temperature and the impurity Kondo temperature of the Bethe 
ansatz calculation is a failing of the variational method rather 
than a genuine difference between the lattice and impurity systems. 
In Chapter 4 the model is improved to predict a better Kondo 
temperature for the impurity.

The following calculation of the f down spin Green function for 
the strongly ferromagnetic case involves proposing a reasonable 
approximate ferromagnetic ground state, of no down spin occupation, 
for the system assuming it to be modelled by the spin one half 
Anderson lattice hamiltonian, and then postulating a variational 
wavefunction for a down spin f electron introduced into the system. 
The method leads to a Dyson equation for quasi particle energies 
greater than the Fermi level which yields a flat band of f like 
quasi particles very close to the Fermi level and thus a resonance
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in the f density of states near the Fermi level. The picture of a 
flat bard of f like quasi particles near the Fermi level is 
consistent with the Fermi liquid pictures described in the
introduction (see Section 1.4).

The starting point, then, is the spin degenerate or spin one 
half periodic Anderson model:

where cT creates a conduction electron in a state of energy c ,kO* . ^  k
momentum k and spin <r and f ' creates an f electron in a state of
energy ef, momentum k and spin cr. Term by term the hamiltonian 
describes a conduction band of energies ê , a flat f bard of energy 
ef, hybridisation between the f and conduction bands with a strength 
V assumed independent of k as is usual and finally a coulomb 
interaction between f electrons on the same site.

3.2.2. The Ground State.

An approximate strongly ferromagnetic ground state for the Anderson 
lattice hamiltonian is calculated using the Hartree Fock
approximation to the coulomb interaction which puts the down spin f 
level up at energy + U<n where <nf^> is the up spin occupation 
in the ground state. U is taken to be large so that the
hybridisation of this down spin f level with the conduction band is 
assumed to result in negligible down spin occupation. The ground 
state, then, is one of an unhybridised down spin conduction band, 
unhybridised flat f down spin band, so that <n = 0, and two up
spin bands resulting from the hybridisation of up spin f and up spin 
conduction electrons. The ground state bands are drawn
schematically in Figure 3.1. The two up spin bands are labelled by 
n, the band index, equal to 1 or 2. The states in the up spin bands 
are created by eigenstate creation operators a | ^  and have energies 
e . The ground state is given by:

H latt

t  f . ft f . ,
1 .̂1 ^ -l 4, (3.2.1)

kn
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|0> = n aL ^ n ct,lv> - 0.2.2)kn^ ^k<k ^1 Foc c

where |V> is the vacuum state, and the product in (3.2.2) is over 
wavevectors of occupied eigenstates. Also

a"f" = A A  + B , (3.2.3)kn^ kn^ k^ kn^ k^

where A^^ is the f up spin electron weight, and the up spin
conduction electron weight, in the state a^ *|V>. It is easily 
shown that

Akn̂ .
V

Cj. )Z +

Bkn^
Cf)

ef )* + V*

(3.2.4)

(3.2.5)

with energies (see Figure 3.1) given by the two roots of

(e - e ) (ekn k kn (3.2.6)

Figure 3.1. A schematic ground 
state band picture for the spin 
degenerate periodic Anderson model 
in the limit U -» oo. The lower and 
upper up spin bands are labelled 
X and 1 respectively.
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3.2.3. The f Down Spin Wavefunction.

Now that the ground state is established we postulate a variational 
wavefunction for sin f down spin electron introduced into the system. 
The end result of this procedure is a Dyson equation with an 
identifiable down spin f electron self energy.

From a completely general diagramatic expansion in which the 
hybridisation and the coulomb interaction are both treated as 
perturbations the f single particle Green function is given by:

V

4-

(3.2.7)

V

(3.2.8)

so that

Gff4,(k,E)

(3.2.9)

and

(3.2.10)
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where G°f^(k,E), Gff^(k,E) are the unperturbed and full down spin f 
electron propagators, G° .(k,E) is the unperturbed down spin 
conduction electron propagator and G (k,E) is the Fourier transformI ef
of the propagator l<01 T[ f^(t) ,cT^(O) ] |0>. Also everything that 
is unknown about the interactions of the system is stored in the f^ 
electron self energy, Zff^(k,E)ex. This contains all processes in 
which the f^ electron first interacts with the system via the 
coulomb interaction and after all subsequent interactions emerges 
finally as an f^ electron. From equations (3.2.9) and (3.2.10) we 
find

(k, E) =f f (3.2.11)

E - e - ------ - Z (k,E )
f E - c k

The full f down spin self energy

f f (E) =
E - G

2 (k,E) .f f ^  ex (3.2.12)

However in the following text the term 7f electron self energy7 is
used to mean Z (k,E)f f It is desired that any treatment of the
Anderson hamiltonian give a Green function of the form of equation 
(3.2.11). Within the present approach a variational wavefunction is 
postulated for an f down spin electron of momentum k in the system 
as the sum of all the most likely processes which would occur if an 
f electron were added to the ground state. This approach yields a 
Green function of the form of equation (3.2.11) as required.

A down spin f electron entering the system can sample the f 
down spin state of momentum k, the down spin conduction state of 
momentum k, since it can hybridise with this state via V, and be
involved in many other more exotic excitations all of which must be
included for an exact self energy Z (k,E) . It is impossible to
include the infinite set of possible processes in Z (k,E) ,f ex
instead only the most important set are included. To identify the 
most important set of of processes or diagrams in Zff (k,E) an
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analogy is drawn between the present situation of ferromagnetic 
Hartree Fock ground state for the Anderson hamiltonian of equation
(3.2.1) and the treatment of the Hubbard model (Hubbard (1963), 
(1964)) of Edwards (1968) where again the approximate ground state 
is ferromagnetic Hartree Fock. In the present model the approximate 
ground state is one of hybridised up spin bands and an unoccupied 
down spin f level at + U<nf/T>. The f density of states can be 
represented schematically as in Figure 3.2. a. The next stage is to
write down the most likely processes occurring due to the coulomb
correlation between f electrons in the ground state. In the
treatment of the nearly half filled Hubbard model by Edwards (1968) 
the initial ground state is again calculated within Hartree Fock so 
that the f density of states is as in Figure 3.2b. As for the
periodic Anderson model the next stage is to write down the most 
likely processes occurring due to the coulomb interaction between f 
electrons, the only electrons in this case.

Figure 3.2a. A schematic f density 
of states for the spin degenerate 
periodic Anderson model in the 
limit U -» oo. The hatched area 
denotes occupied density of states 
below the Fermi energy E .F
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Figure 3.2b. A schematic density 
of states for the Hubbard model.
The hatched area denotes occupied 
density of states below the Fermi 
energy E .F

For both models the approximate ground state has no down spin f 
occupation and few numbers of up spin holes, or rather in the case 
of the present model, small up spin weight in the states above the 
Fermi level. The task of taking better account of the coulomb 
correlation by inclusion of diagrams other than just Hartree Fock is 
the same in both cases. Therefore the arguments of Edwards (1968) 
apply equally well to the present model if the up spin f electron 
propagators of the Hubbard model are replaced by the hybridised up 
spin f electron prqpagators of the Anderson model. The self energy 
diagrams with the least number of up spin electron lines will have 
the largest contribution since in the corresponding analytic
expression each up spin electron line brings in a factor of the 
number of up spin states above the Fermi level. Therefore the 
smaller the number of up spin electron lines the larger the 
contribution. The dominant diagrams are represented schematically 
as in Figure 3.3.
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t

Figure 3.3. The corrections to the Hartree Fock self energy 
for the spin degenerate periodic Anderson model. The lines
--- V---  and ----\ represent the up and down spin f electron
propagators respectively. The dotted lines represent scattering via 
the coulomb interaction.

The diagrams in Figure 3.3 describe a down spin f flipping to an up 
spin f and exciting a magnon as well as interactions between this 
magnon and the single particle excitations. The diagrams of Figure 
3.3 are exact to order U2. The inclusion of the interactions
between the magnon and single particle excitation brings in terms 
of all orders in U and is discussed in Chapter 4 where a diagramatic 
treatment of the problem is given for the weakly magnetic impurity 
case.

For the moment we are concerned with identifying likely 
processes involving down spin f electrons for inclusion in a 
variational f down spin wavefunction. In the present chapter, then, 
the small number of unoccupied up spin states argument is used to 
postulate a variational wavefunction which includes a process in 
which the down spin f flips to an up and excites a magnon.

The variational wavefunction is written:

|0> ft,. +k k' F c'K +k k * E  G k ' i k ' i *  S  k - k 7
k7 i >k

0 >,

(3.2.13)

where the subscript k71 denotes an up spin quasi particle state of 
momentum k7 in band 1 of Figure 3.1 and is an approximate
magnon creation operator given by:
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(3.2.14)k-k' * E
p

IC( p-k' )^C(p-k)t y f + f ^ (p-k')^ Cp-k)̂ ’P 1

where k-k' is the momentum of the magnon. If the down spin
wavefunction is just written as a sum of the first two terms of
(3.2.13) then the Dyson equation yields down spin bands of the same 
form as the up spin bands of Figure 3.1 but with the f down spin 
level postion at + U<nf >̂. The self energy for this case would 
just be the first, that is, Hartree Fock term of a perturbation
expansion and would not yield a resonance at the Fermi level which 
arises from the many body character of the coulomb interaction. To 
improve on the Hartree Fock solution better account must be taken of 
the coulomb correlation, that is more diagrams must be summed in the
self energy or, equivalently, more processes must be included in the
variational wavefunction. In this limit of a small number of
unoccupied up spin states the addition of the third term is
considered to take account of the most important consequences of the 
coulomb correlation. In fact the third term in the variational
wavefunction of equation (3.2.13) leads to a contribution to the 
down spin self energy, given by equation (3.2.18), which within 
certain approximations is in exact agreement with the analytical
expression corresponding to Figure 3.3. This statement is discussed 
later in Section (3.4.3) for the periodic Anderson hamiltonian plus 
exchange interaction.

The coefficients A , F , and G , in the variationalk k k'i
wavefunction are sought by left multiplying the Schrodinger
equation:

H|ip> = §\if)> , (3.2.15)

by <0|fk4,, <01 c^, and <0 |Sk+k, ,3.̂ ,, t. Here & is the energy of
the state I \b>, and S+ is the hermitian conjugate of S . The three1 -q q
equations for the coefficients are solved to give F^ and G in
terms of A so thatk
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Z ( & - E n*4, ° = 0

for & - E > 0 , (3.2.16)
o

where E is the ground state energy and & the energy of theO
variational wave function describing the ground state plus one f
down spin electron. The quantity E = & - Eq is identified as an
excitation energy so that equation (3.2.16) corresponds to a Dyson 
equation for the particle excitation energies of the system. The
Fermi energy is taken as E = 0 so that only solutions of the Dyson 
equation with E > 0 are significant, others being strictly
inconsistent with the assumption of no down spin f occupation in the 
ground state. Since the excitation energies are by definition the
poles of the f down spin Green function equation (3.2.16) is 
consistent with an f down spin Green function:

1
Gff4.(E,k) = _________________________________

v2E - ef - ___I____ - Zff (k, E)
(E - e) *k

for E > 0,

(3.2.17)

which is of the correct form predicted by the general diagramatic 
analysis of equations (3.2.7) to (3.2.11). The approximate f
electron self energy E (k,E) is calculated as:
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E
k 7 i >k

U2A2, <n t>k i f T

Z (k,E) = U<n *> +
E - e . - ho> ,k 7 i k - k 7

f f

E
k 7 i > k

U A2,k 7 i

E - e . - hu .k 7 i k - k 7

(3.2.18)

where the sums are over the up spin quasi particle wavevectors in 
bard one such that the state of momentum k in bard 1 is unoccupied. 
Also ha>k k/is the magnon energy and is given by:

hu>k-k
<0|S+ , HA S" J Ok - k 7 latt k - k 7 1

<0|S* S " |0>k-k k - k

(3.2.19)

The operator -S , is only ar approximation to the creation operator 
of the real magnon and within this approximation we find that the 
model magnon dispersion has a zero momentum, k-k7= 0, magnon energy 
of zero in disagreement with the finite energy of the zero momentum 
magnetic excitation in a real system such as CeSi (M. Kohgi et al

X

(1987)). The non zero magnon energy of the real world is a result of 
crystal field and spin orbit coupling effects which are not included 
in the spin degenerate periodic Anderson model. In the following,
then, a lead is taken from experiment and a flat magnon dispersion 
is assumed (Kohgi et al (1987) and Figure 5.1). In Chapter 5 an 
attempt is made to remove the inconsistency, which is introduced 
here when we insert the magnon energy by hand, by improving the 
model to include crystal field and spin orbit coupling effects. 
Within the flat magnon dispersion approximation the self energy of 
equation (3.2.18) is k independent and is rewritten as:

u<v >
I (E) = ---------------- , (3.2.20)

U Z° (E)
1 - ff+

<nft>
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where

ff (E) = E
k 7 o k

A 2,<nk i fT

E - e . - hwk i mag
(3.2.21)

and hw is the now momentum independent magnon energy. Tomag 2
evaluate (3.2.21) a sum has to be performed over A^, t the f up spin 
density of states above the Fermi level. If the model was entirely 
self consistent there would be some small down spin occupation so 
that the up spin Green function would also have self energy 
contributions due to the coulomb correlation. These would affect 
the down spin self energy via the sum over k7. In the following 
chapter this self consistency is introduced for the impurity case by 
including non zero down and up spin f electron self energies in the 
model. However in the present strongly ferromagnetic case it is
neglected.

From equation (3.2.6) we see that for small hybridisation the 
dispersion of quasi particle states for energies greater than the 
Fermi level is practically identical to that of the original 
unhybridised conduction band. The sum over the quasi particle 
wavevectors k7 in equation (3.2.21) can therefore be evaluated as 
an integral over the unhybridised band energies from the Fermi 
energy (E^ = 0) to the top of the band so that

Zof f (E) =

<n *> V B(E) (Tp - e )2 + V2f
- B(E)In

E - Tp - hwmag
W

In
2 e + V E - ho>r mag

B(E)(E - e - hw )f mag tan”1
Tp - ef — tan 1

- ef
V V V

(3.2.22)
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where

BCE) = --------------------------------------— . (3.2.23)
(E - 2e - hw M E  - hw ) + e + Vf mag mag f

V

Z° (E) and hence Z (E) has no imaginary part for energies less 
than the magnon energy so that for energies greater than the Fermi 
energy and less than the magnon energy the Dyson equation can be 
solved for down spin quasi particle energies e wherekm

Gkm Gf
V2

Ckm Gk
km 0,

for 0  < g  < hw (3. 2. 24)km mag

and m is an index labelling the possible multiple solutions of 
equation (3.2.24). As E -» hw the logarithmic term in equation

IDd Q

(3.2.22) diverges so that Z (E) tends to zero as the magnon energy 
is approached. Far away from the magnon energy Z (E) is dominated
by the Hartree Fock term U<nf/r>.

r

From Figure 3.4

Figure. 3.4. The f down spin 
resonance energy for the spin 
degenerate periodic Anderson model. 
The figure shows the solution of 
equation (3.2.25).

we see that for some energy E very near the magnon energy

E - e - Z (E ) = 0, (3.2.25)f ^ 4,
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so that for energies very near E a Taylor expansion of the self 
energy around E is valid and the Dyson equation can be written:

U  - E H e  - e ) = V2,km  km k (3.2.26)

with

E = e + Z (E) 
f ff i.

(3.2.27)

and

V2 =
1 - Z '(E)

s ;  (e ) =
dZ ' (e )ff 4, km

dekm c =E
(3.2.28)

When equation (3.2.26) for the down spin quasi particle energies is 
compared with equation (3.2.6) and Figure 3.1 for the up spin quasi 
particle energies it is easily seen that for energies 0 < e <km
hw the down spin quasi particles form bands resulting from themag
hybridisation via renormalised hybridisation V of an f level at 
renormalised energy E with the conduction band. The quasi particle 
bands are sandwiched between the magnon energy and the Fermi energy 
and are represented schematically as in Figure 3.5.
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Figure 3.5. A schematic picture of 
the f down spin quasi particle 
bands for the spin degenerate 
periodic Anderson model. The bands 
are sandwiched in the narrow energy 
region between the Fermi level at 
E = 0  and the magnon energy hwF mag
In the hatched region E > hwma g
there are no well defined bands. 
There is no f down spin weight 
below the Fermi level.

It should be noted that the self energy is varying rapidly in 
the region between the Fermi level and the magnon energy so that
despite the narrowness of this energy region an expansion around E 
gives reasonable self energy values only very close to E. Equation 
(3.2.26) is therefore only useful for fixing the position of the 
resonance. When we calculate the mass enhancements and Fermi
wavevector, both of which involve evaluating the self energy at the 
Fermi level, the expansion around E is not used.

The final picture of an f level of renormalised energy, E, 
hybridising via a renormalised hybridisation V to yield quasi bands 
at the Fermi level is consistent with the argument of Section 1.4 
that flat quasi particle bands of this type must occur if the system 
is a Fermi liquid at zero temperature. The flat quasi particle
bands of the present model result in a sharp resonance in the f down 
spin density of states above the Fermi level which we identify as
the precursor of a Kondo resonance. For small hybridisations, (A = 
0.02eV), the resonance is extremely narrow and lies extremely close 
to the magnon energy so that the quasi particle density of states at 
the Fermi level is not much enhanced over the unhybridised density
of states. As the hybridisation increases the renormalised f energy
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E moves closer to the Fermi level and the quasi particle bands are 
pushed flatter at the Fermi level (see Figure 3.5). Hence the quasi 
particle density of states at the Fermi level and subsequently the 
mass enhancement increase (see Section 3.3). A limit to the model 
must be defined since as the hybridisation and the subsequent build 
up of density of states at the Fermi level increases, there is also
a build up of down spin f density of states below the Fermi level in
the tail of this resonance above the Fermi level. At some point the 
density of states below the Fermi level supports a non negligible 
down spin f occupation violating the basic assumption of the model
of strong ferromagnetism. A limit is placed on the hybridisation in 
Section 3.3 for this the strongly ferromagnetic case. In Chapter 4 
the model is pushed to the weakly magnetic regime for the impurity
case, allowing an extension of the model to larger hybridisations.
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3.3. RESULTS.

3.3.1. The Effective Kondo Temperature.

The Kondo temperature Tr of the impurity problem is defined in the 
Bethe ansatz expression for the high temperature susceptibility 
(Andrei (1983)). Below the Kondo temperature the conduction 
electrons screen the impurity moment so that Tr locates a point on 
an energy scale below which a screened moment is favoured over a 
free moment. For the lattice case the Kondo temperature also
locates an energy dividing regions in which magnetic and non 
magnetic Kondo like ground states are stable (Doniach (1977), Read 
et al (1984) and Coleman (1983)).

The effectve Kondo temperature of the present treatment of the 
spin degenerate lattice system is defined now as the magnon energy 
for which the postulated ferromagnetic state breaks down. When the 
resonance lies on the Fermi energy we assume the break down of the 
magnetic state is complete. Thus the magnon energy for which the 
model breaks down is given by equation (3.2.25) with E set to zero.
It is considered that this definition locates an effective Kondo
temperature which must at least be related to the real Kondo
temperature. In fact in Section (3.4.4) we find that when sui
exchange interaction is included in the model, and the hybridisation 
tends to zero, the effective Kondo temperature is in agreement with 
the calculated Kondo temperature of Read, Newns and Doniach (1984) 
and Coleman (1983) as well as the exact Bethe ansatz result for the 
impurity.

For small hybridisation, E lies very close to the magnon energy 
so that for E = 0 the magnon energy must be very close to zero and

At
in equation (3.2.22) E° (0) is dominated by the lnlhw I term sof f ̂  mag
that

<nfT> V2
1° (0) * ------ In |ho> I . (3.3.1)ffj, We2 1 m a g 1

f

When equation (3.3.1) is used in equation (3.2.25) with E = 0 we 
find that in the limit of large U the effective Kondo temperature of
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the model is given as:

<nfi> w lcfl

V2
(3.3.2)

When the effective Kondo temperature of the model is compared with 
the Bethe ansatz result for the impurity, namely:

it is seen that the effective Kondo temperature of the model differs 
from the impurity Kondo temperature by a factor of two in the
exponent. The factor of two is not the same factor of two of Rice
and Ueda (1985) and appears to be a product of the model rather than 
a genuine difference between the lattice and impurity cases. The 
same - error occurs in the effective impurity Kondo temperature of 
Chapter 4. Therefore the model yields an effective Kondo
temperature which is too small or, equivalently, the postulated 
ferromagnetic ground state is too stable in contrast to the result 
of Rice and Ueda where the factor of two means that their non
magnetic ground state is too stable.

A possible explanation for the error in the exponent of the
effective Kondo temperature is that the up spin density of states at 
the Fermi level which enters the exponent as V / |ef| is too small 
by a factor of two. The strictly ferromagnetic ground state is too 
rigid an approximation since for finite U, no matter how large, 
there will always be some down spin occupation due to hybridisation. 
A schematic f density of states picture in a more realistic U finite 
approximation is shown in Figure 3.6.

W I c1 f

2V,2

(3.3.3)

87



Figure 3.6. A schematic f density 
of states for the spin degenerate 
periodic Anderson model for U 
finite. The hatched areas denote 
occupied density of states below 
the Fermi energy

It is easily seen that, if a resonance is building up in the down
spin density of states due to processes represented by the diagrams
of Figure 3.3, then there must be analogous processes in which down 
spin hole lines play the part of up spin particle lines, giving rise 
to a resonance in the up spin density of states below the Fermi 
level. A completely self consistent calculation would therefore
yield an up spin density of states at larger than V /|ef| due to 
the extra contribution from the up spin resonance lying just below
the Fermi level.

The build up of the resonance in the up spin density of states 
is consistent with an earlier breakdown of the ferromagnetic ground 
state. As the hybridisation increases both the up and down spin
resonances move nearer the Fermi level. The up and down spin quasi 
bands are pushed flatter at the Fermi level and subsequently the up 
and down spin f electron density of states at the Fermi level
increases. The increase in f electron density of states of both 
spins around the Fermi level means that more up spin electrons and 
down spin holes are available for excitations of the sort
represented by the diagrams of Figure 3.3. Therefore more f 
electron density of states is built up around the Fermi level via 
these additional excitations. There is a kind of bootstrapping 
effect building up weight at Ê . In Chapter 4 the bootstrapping 
effect is studied in the impurity problem with a view to correcting
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the effective Kondo temperature.

3.3.2. The Mass Enhancement.

The mass enhancement of the model is defined as the density of down 
spin quasi particle states at the Fermi level, N(E), divided by the 
unhybridised conduction band density of states at the Fermi level, 
N (E), so that

m* N(E)

m N (E) E=0
(3.3.4)

where the Fermi energy E = 0 .  The general definition of theF
density of states for any dispersion relation is:

N(E) = J\ , -----dS , (3.3.5)
|Ve I1 k 1

where the integral is over a surface of constant energy E. For both 
the new quasi particle bands and the unhybridised conduction bands 
the energy of the band states is assumed to be a function of |k|. 
The Fermi surface for both the unperturbed and quasi particle bands 
is therefore a sphere of radius equal to the relevant Fermi 
wavevector. Therefore to evaluate the density of unhybridised 
conduction states or quasi particle states at the Fermi energy we 
integrate over the surface of a sphere of a radius equal to the 
relevant Fermi wavevector in equation (3.3.5). As a result the mass 
enhancement is given by:

m

dk
E 47rk2 —
m de km e =0,k=k km Fm

m
4rck2 dk

de e =0,k=kk F

(3.3.6)

where e are the quasi particle energies in band m,k m e are thek
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unperturbed conduction band energies, k is the Fermi wavevector ofF m
the quasi particle band m and k^ is the Fermi wavevector of the 
unperturbed conduction band. The definition (3.3.6) allows for the 
possibility of more than one quasi particle band crossing the Fermi 
level and contributing to the mass enhancement. In the present case 
there is only one value of m for which e = 0 ,  that is only onekm
quasi band at the Fermi level. Schematically (see Figure 3.5) the
treatment of the strong on site coulomb correlation via inclusion of 
the magnon excitations in the down spin wavefunction has resulted in 
a flat band of states at the Fermi level giving a large down spin f 
density of states at the Fermi level. The quasi particle bands are 
pushed flat so that the value of the gradient in equation (3.3.5) is 
decreased over the corresponding value for the unperturbed 
conduction band to give the mass enhancement. The flat quasi bands 
describe quasi particle states which are more localised than the 
unperturbed conduction band states and therefore electrons in these 
states appear heavier.

To evaluate equation (3.3.6) a constant unhybridised conduction 
band density of states is assumed so that

N
N (E) = --- , (3.3.7)
° W

where W is the width of the band and N the number of sites. The 
assumption of a constant unperturbed conduction band density of 
states means that

4rck2 dk

de
= 4rrk2 dk

e =0,k=k k F W de
(3.3.8)

e =0,k=kkm Fm

so that when this result is used in equation (3.6.6) we find:

*
m

m

dek

E
dk

dekm
dk e =0,k=kkm Fm

(3.3.9)
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An expression for the mass enhancement is found by differentiating
*the Dyson equation (3.2.24) with respect to k and solving for m /m 

in terms of the derivatives with respect to k of the quasi particle 
energies and unperturbed band energies as they appear in equation 
(3.3.9). Finally we need the value of the unpertubed conduction band 
energy e = e for which e = 0  and k = k . That is the

^  k k k m  FmFm
unperturbed conduction band energies for which the quasi particle 
bands cross the Fermi level. These are found from equation (3.2.24) 
with e =0.km

C k F» Z (0) + cf f

so that

m
*

m
1 +

1 - Z (c. )f f , km

dir e =0,k=kkm Fm.

Z (0) + e

(3.3.10)

(3.3.11)

Figures 3.7 and 3.8 show the mass enhancement versus hybridisation 
behaviour for coulomb correlation U = 7eV, conduction bandwidth W = 
lOeV and f electron energy = -1.5eV. These parameter values 
apply for all the Figures 3.7 through to 3.11 and are reasonable for 
typical HF materials. Figure 3.8 shows how the mass enhancement of 
the model increases rapidly for hybridisations greater them 1.3 eV. 
However for hybridisations as large as V = 1.3eV the Fermi wave 
vector has deviated appreciably from the zero down spin occupation 
value of 0.0669eV (see Section 3.3.3) so that the initial assumption 
of no down spin occupation does not apply. The model therefore 
cannot be trusted for hybridisations greater than V = 1.3eV. In
Chapter 4 an attempt is made to generalise the technique to the 
weakly magnetic case for the impurity and thus probe the larger 
hybridisation region. The model is extended for the impurity case, 
for which exact results are available as a test case for the
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possible extension of the lattice model to the weakly ferromagnetic 
regime. Figure 3.7 shows in more detail the mass enhancement for 
hybridisations of magnitudes more consistent with the assumptions of 
the model. The figure shows mass enhancements of around 12 for 
hybridisations of 0.85eV (A = 0.2eV). The model therefore predicts 
a build up of mass enhancement as the hybridisation increases and 
the magnetic state breaks down. It cannot, however, be pushed to 
the larger hybridisation regime where the truly very heavy masses 
occur.

3.3.3. The Fermi Wavevector.

For a constant unhybridised conduction band density of states and 
a function of |k| the conduction band energies, ê , must vary as the 
cube of the wavevector. The expression

e = W 
k

3

- W + Tp ,
k

max

(3.3.12)

where Tp and W are the top of and width of the conduction band 
respectively, ensures that equals Tp for the maximum value of k
and equals Bt, the bottom of the conduction band, when k equals
zero. When we substitute the value of e when k equals k from

k n Fm
equation (3.3.10) into equation (3.3.12) we find:

" k 1 V2 1
— -  T p  + W

k
L m axJ

w Z ( 0 )  +  eL f  J

(3.3.13)

The behaviour of the quasi band Fermi wavevector with increasing 
hybridisation is shown in Figures 3.9 and 3.10. As the
hybridisation increases the Fermi wavevector and Fermi volume also 
increase consistent with an increase in down spin occupation.
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Figure 3.9 shows that for V = 0.75eV (A = 0.177eV), the Fermi 
wavevector has increased in size by approximately 2% over the 
unperturbed Fermi wavevector of 0.0669eV, an amount considered large 
enough to determine the limit of the model's validity. Figure 3. 10 
is included for completeness and shows how the Fermi wavevector 
increases dramatically as the hybridisation is increased beyond 
about 0.85eV (A = 0.2eV).

3.3.4. The f Down Spin Density of States.

The band density of states, N(E), is defined as the sum of all the 
single particle density of states:

N(E) = - Im £ G^(E+i5,k). (3.3. 14)
k

n

The model allows the calculation of the f down spin Green function 
for energies above the Fermi level:

1
G . (Z, k) = ----------------------------f f4,
Z=E+i5 V2

Z - e - ------ - I  ( Z )f ^ f f a.7 - p

E>0, (3.3.15)

and therefore we can calculate the f down band density of states
above the Fermi level. The density of states can be divided into
two energy regions. For energies less than the magnon energy the
down spin f electron Green function has a quasi particle pole for
each k. The quasi particle pole occurs at energy e given by thekm
Dyson equation (3.2.24) where the index m allows for the possibility 
of more than one quasi particle for a given k. In the energy region 
0 < E < hw the f down spin density of states is given by the summag
of the weights in the quasi particle poles for each k. For energies 
E ^ hw , the continuum, the density of states is calculatedmag
without any approximation and is found to join continuously at the 
magnon energy with the density of states for E < hwmag

93



For E < hwmag

Gff4.(E+i5,k) = £
ZCc )km

(E + id - e )km
(3.3.16)

where Z(e ) is the weight in the quasi particle pole. Thuskm

N(E) = £ Z(e ) S(E - e ),km kmkm
(3.3.17)

where km are the wavevectors of the quasi particle states in band m. 
The sum over km is as usual changed to an integral over energy from 
the bottom to the top of the band to find

N(E)
V2

W(E - e - Z (E))*
E<ha>mag (3.3.18)

For energies greater than the magnon energy the density of 
states is calculated from equation (3.3.14). At the magnon energy 
the density of states is given exactly as:

1
N(E = hu )= - ~mag rr

6-X)

Im
( hw - e + iS )

mag f

Tp

W(hw - e + iS ) Bt ( hw - e + id ) ( e - U  - iS ) +m a g f  m a g f
de

(3.3.19)

where Tp and Bt are the top and bottom of the unhybridised 
conduction band respectively. Therefore
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N(E = hw ) = —
mag

7T
5-HD

Im
( hw - e + iS )

mag f

s
Tp dc

W( hw - e + iS ) Bt ( c - W  +
mag f

“3
- iS )

(ho) -  G ) 
mag f

(3.3.20)

and after taking the imaginary part in equation (3.2.20) we find 
that at the magnon energy the f down spin density of states is given 
as:

N(E = hw ) = -------------, (3.3.21)
maq W(hw - e )x

mag f

which joins continuously with the density of states for E = hw -C,,mag
where ^ is a small quantity, of equation (3.3.18).

The resulting f down spin electron density of states is shown 
in Figure 3. 11 for U = 7eV, W = lOeV, e = 5eV , and hw =

f  mag
0.005eV, as in the mass enhancement calculation, and V = 0.35eV.

The f down spin density of states exhibits the expected narrow 
resonance around energy at Gf + U which is consistent with the 
picture of most of the f down spin weight still being around this 
energy. It also shows a very narrow resonance close to the spin 
wave energy of 0.005eV, which is identified as a precursor of the 
Kondo resonance.

3.3.5. Discussion.

The model is seen to predict build up of Kondo like behaviour of 
mass enhancement, density of states and Fermi wavevector with 
increasing hybridisation up to V = 0.75eV, if the model is only 
strictly trusted in the strongly ferromagnetic regime. To probe the 
larger hybridisation regime the restriction to no down spin
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occupation must be lifted and is the subject of the following 
chapter. The model does succeed in predicting that the build up of 
HF behaviour is concurrent with breakdown of the magnetic state. 
However the wrong exponent in the effective Kondo temperature 
remains a problem. This error in the exponent is attributed to the 
up spin density of states used in the calculation being too small by 
a factor of two. An attempt to correct the exponent in the Kondo 
temperature is given in the following chapter for the impurity as a 
test for a possible way of improving the lattice effective Kondo 
temperature.

96



M
AS

S 
EN

HA
NC

EM
EN

T 
MÂ
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3.4. THE EXCHANGE INTERACTION IN HEAVY FERMION SYSTEMS.

3.4.1. Introduction.

In normal rare earth metals the magnetism is a consequence of the 
exchange interaction:

I =  -  J  S . .  <r. ,ex ex — 1 ~1 (3.4.1)

an on site interaction between the f spin (<r) and conduction 
electron spins (S) such that for J positive it is energetically 
favourable to align these spins parallel. Via the conduction
electrons a localised impurity spin on one site can interact 
indirectly with impurity spins on neighbouring sites tending to 
align them all parallel or antiparallel depending on the sign of 
J . The conduction band is polarised via the exchange interaction.ex
However it can also be polarised via hybridisation. Therefore the
R. K. K. Y. interaction, that is the interaction between ions which 
results via conduction electron polarisation and governs the 
magnetism of a system, is built up via both exchange and
hybridisation. The question of how the hybridisation and exchange
interactions compete in the range of systems from the rare earth to
the HF is the subject of the following sections.

We know that the hybridisation term of the Anderson impurity 
hamiltonian transforms under a Schrieffer-Wolff transformation 
(Schrieffer and Wolff (1966)) to an exchange interaction, as defined 
in equation (1.2.1), (or equivalently equation (3.4.1) where i is
the impurity site) with a negative effective coupling constant

2 , .-2V /|e |. The result is usually assumed to apply also to the 
lattice so that in a model for say gadolinium where the size of the 
ground state moment indicates that the total exchange coupling must
be positive, the hybridisation is neglected. On the other hand in 
theories of the non magnetic HF systems the exchange interaction is
generally neglected in favour of the hybridisation between the 
conduction and f electrons so that these systems are often modelled 
by a periodic Anderson hamiltonian. It is through this
hybridisation that f electron weight is built up at the Fermi level 
resulting in the large mass enhancement and other hallmarks of the
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HF systems. For the non magnetic HF systems, then, the 
hybridisation term seems to dominate the ground state properties, 
including the magnetism, and it seems reasonable to neglect any 
exchange interaction in its favour. As the f level energy moves
deeper towards the normal rare earth regime and the hybridisation 
matrix decreases the exchange interaction takes over and dominates
in the R. K. K. Y. interaction. Any treatment of the full class of 
rare earth systems must therefore include accounts of both these 
interactions in the intermediate regime where neither exchange nor 
hybridisation dominates.

From a Schrieffer-Wolff transformation for the Anderson 
impurity hamiltonian plus exchange interaction we find that in the 
Kondo limit, V « |e |, the exchange and hybridisation add as a new 
effective exchange interaction when J « 2V /|e I for Jex 1 f 1 ex2positive or negative, and also for J » 2V /|e | when J is
positive. To study the competition between exchange and
hybridisation in the lattice a variational calculation of the single
particle f down spin Green function is made for an assumed
ferromagnetic system which is modelled by the spin degenerate 
periodic Anderson hamiltonian plus exchange interaction with Jex
positive. A calculation of the effective Kondo temperature for this 
model shows that, for the effective Kondo temperature at least, 
exchange and hybridisation add as an effective exchange, as in the 
impurity case. Also as V -> 0 this effective Kondo temperature 
agrees exactly with the Bethe ansatz result. In the region J ^e x22V /|e I it is seen that, as in the impurity case, the exchange and 
hybridisation do not add simply as an effective exchange
interaction. Also we find that in the region where J is of orderex2 i i2V /|c | the exchange interaction can have a non negligible effect 
on the mass enhancement. For HF systems like CeSi in which the

X

exchange and hybridisation are competing in the ground state we 
propose that exchange should be included in the model.

3.4.2. A Schrieffer - Wolff Transformation.

The Schrieffer-Wolff transformation is performed on the Anderson 
impurity hamiltonian:
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Ht = E e c+ c +y e f+f + Ufif^ftf, + V V(c+ f + f+imp u  k k<T k<T u  f O' O' T  T  'l' 4' L* kO' O' O'k O' 0* kO*
c ),kÔ

(3.4.2)
where creates a conduction electron in a state of energy e ,ko- . k
momentum k and spin or and creates an f electron in a state of 
energy e and spin o* on the impurity site. The aim of 'the 
transformation is to project out operations which change the number 
of f electrons in a state. The transformation leads to a new 
hamiltonian:

2V
Hef f S . O' + H + H ,— — o (3.4.3)

where

S.cr = £
kkO'

e t c  f+ f + E --- e t c  f+/ f /k O' k-0* -O' O' / « k O' kO* O' O'o-' 2
(3.4.4)

The term H contains a direct spin independent interaction, a term 
which shifts the f electron energy and a term which changes the 
occupancy of the f orbital by two (Schrieffer and Wolff (1966)). In 
the new effective hamiltonian H the important interaction is ofeff
the form of the exchange term of the s-d hamiltonian of equation
(1.2.1) . The exchange coupling strength, -2V /|e |, of the 
effective exchange interaction is negative and is built entirely 
from hybridisation. The negative sign of the effective coupling 
constant means that it is energetically favourable to align the 
conduction and impurity spins antiparallel resulting in a quenching 
of the impurity moment. Therefore through the Schrieffer-Wo Iff 
transformation the non magnetic ground state and resistance minimum 
of the Anderson impurity hamiltonian can be viewed in terms of the 
Kondo type picture. When the exchange coupling constant of equation
(1.2.1) is negative the s-d hamiltonian is normally referred to as 
the Kondo hamiltonian.

In the remainder of this section the results are quoted for a
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Schrieffer-Wolff tranformation on the Anderson impurity hamiltonian 
plus exchange interaction. The Anderson impurity hamiltonian of 
equation (3.4.2) with an added exchange interaction is written:

HAI = HA + I , (3.4.5)imp imp imp

where

I = - J S. o* . (3.4.6)imp e x ----

The hybridisation and exchange are both treated as perturbations and 
following Schrieffer and Wolff (1966) a canonical transformation is 
chosen to eliminate the hybridisation term of the impurity
hamiltonian of equation (3.4.5) to first order. The two
interactions, exchange and hybridisation, can only be compared if 
the orbital angular momentum of the impurity is neglected, since 
otherwise the hybridisation can result in a change of orbital 
angular momentum which the exchange interaction cannot.

We follow the method of Schrieffer and Wolff (1966) and take 
the limit U infinite to exclude intermediate states with double f 
occupancy. The transformed hamiltonian is given as:

Heff
2V‘

S. <r + H + H“ - o

(<r<r/ ) V J
ex 4- 4------------ CT , CT c f ,, k <r k <r k <r <r k k k 2(e - e ) i a 3

- E
1 2  3 f  k

ar or'

J V
ex + 4 ----------- CT CT c f, x k -O' k O' k -O' O'k k k (e - c ) i 2 3

- E
1 2  3 f kor (3.4.7)

where H is as in equation (3.4.3). In the limits
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to < to J V
U -» oo,  V « |e 1 and J ------ » e x

i f  i e x  | |ei f i 1C 1 1 f 1
or equivalently

V «
' J

e x

J
^  e x

> 0 

< 0

and

and

J„  » 2V2/1 e I or J « 2V2/ I e I
© X f  © X f*

>
J « 2V 5le I

e x  1 f

(3.4.8)

the hamiltonian H1 reduces to
e f  f

H1 = - J S . <r + H + H ,
e f f  -  o

(3.4.9)

where

J J
e x

2V2 n

Ic II f  I J

(3.4.10)

Therefore within the limits defined in equation (3.4.8) the 
important term is again an exchange interaction with a new exchange 
coupling constant J. With J negative the total coupling constant 
is negative and a non magnetic ground state is favoured. For J

e x

positive the exchange interaction favours a magnetic ground state 
and will dominate for J large enough to determine the sign of J.

e x

If this new impurity result is also true for the lattice then the 
criterion for a Kondo like non magnetic ground state of equation
(1.4.15) becomes:

(-J)p< ( poJ )
(3.4.11)

with J given by equation (3.4.10). The assumption that impurity
results can be applied to the lattice is found to be not
unreasonable by Read, Newns and Doniach (1984). The authors find 
that for large Nf, where is the orbital degeneracy of the f
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level, the concentrated system behaves sis a lattice of impurities, 
intersite effects coming in at order (1/Nf).

Consider the rare earth systems where J is positive. Forex
very small hybridisation, the criterion for magnetism of equation 
(3.4.11) predicts that the magnetic ground state is stable. The 
result therefore supports the treatment of the magnetic rare earth 
systems by an R.K.K.Y. interaction. At the other extreme of large 
hybridisation, 2V /|e | » J the hybridisation dominates and the 
ground state is non magnetic. In this large hybridisation region 
the result supports the Anderson lattice treatment. In the
intermediate regime where J is of the order of 2V / e there can 
exist either a magnetic or a non magnetic ground state. In this
intermediate regime the exchange and hybridisation do not simply 
couple as an effective exchange interaction.

VT
intermediate valence 

non magnetic - hybridisation dominates
lnon magnetic - exchange and hybridisation compete
l

magnetic - exchange and hybridisation compete.
Imagnetic - exchange dominates.

Figure 3.12. The variation from magnetic to non magnetic 
ground state in the rare earths with increasing hybridisation. We 
assume that J remains fairly constant from system to system butex
that the hybridisation varies.

From Figure 3. 12 where the arrow points in the direction of 
increasing hybridisation we see that the systems with a Kondo like 
ground state which are nearest to integral valence, that is, have 
the smallest hybridisation, are those in which the exchange 
interaction could play an important role. Some HF systems could
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therefore fall into regime of non negligible exchange interaction 
implying that the exchange interaction should be included in their 
treatment. However it is possible that heaviness only occurs when 
2V /|e | » J so that the neglect of exchange in the treatment of
HF systems is reasonable. In the following section we investigate 
the effect of exchange and hybridisation on the mass enhancement 
when J is of the order of 2V /|c I, via a variational calculationex 1 f 1
for the lattice.

3.4.3. The f Electron Green Function.

In the present section the variational calculation of Section (3.2) 
is reworked with an exchange interaction included in the
hamiltonian. We treat the case where the exchange interaction
favours parallel alignment of the conduction and impurity spins 
since this is the situation in the rare earth systems.

The system is again assumed strongly ferromagnetic with no down 
spin occupation in the ground state and is described by the Anderson 
lattice hamiltonian with an exchange interaction included:

AI AH = H + I1 a 11 latt latt (3.4.12)

where H is given by equation (3.2.1) and

l a t t "  " £  JCTk kq
c+ c A ,  r  , + vk<r k + q-(T k -0* k -q<r

<r<r

cr' 2
c+ c f , f , , ,kO* k + qO* k 0*' k -q(T

(3.4.13)

with J > 0 .  At this stage it is useful to determine the exactex
form of the f electron Green function as in Section (3.2.3). From a 
general diagramatic expansion treating the coulomb, hybridisation 
and exchange interactions as perturbations the f down spin single 
particle Green function is written as:
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( U k ,E ) f y k . E I  f y k , E )  G ^ lk .E ) (^ (k ,E ) G l k . E I

<V((k.E)

(k,E)

G f((k,E)

(3.4. 14)

G(,(k,E) G* (k.E) G lk ,E)cc* n) ■
G;(tk.E)

(3.4. 15)

where (k,E) and G _  (k,E) are the unperturbed and full down spin

Ga,(k.E) Grf|(k.E)

f f f f
f electron Green functions respectively, G (k,E) is the fourierf I
transform of the Green function <01T[ c (t) f* (0)]|0>. Also
o k4, k4,G (k,E) and G (k,E) are the unperturbed and full down spin
CCj, C C ^

conduction electron Green functions respectively. Also Z (k,E)f ex
is a proper down spin' f electron self energy representing all 
processes in which the f down spin electron first interacts with the 
system via the coulomb interaction or the exchange interaction and 
after all subsequent interactions it emerges still as an f down.
Z (k,E) is another proper self energy in which the f down spinf ex
electron first interacts with the system via the coulomb or exchange
interactions and after all subsequent interactions it emerges as a

idown spin conduction electron. is anotherFinally Z * (k,E)C C |  ex
proper self energy in which a down spin conduction electron first 
interacts with the system via exchange and after all subsequent 
interactions it emerges as a down spin conduction electron. The f 
down single particle Green function is therefore given as:
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G (k,E) = G ° (k, E) + G° (k,E) V G (k,E) +^4, ****4, cfvU

G° (k,EJZ1 (k,E)G (k,E) +
****4, ****4, f f 4,

G° (k,E)Z (k,E)G (k,E),fr4, fc4, cf4.

(3.4.16)
where

G (k, E) = G° (k, E) V G (k,E) + G° (k,E)Z (k, E)G (k,E)
c  * * 4 , c c 4 -  * * ^ 4,  c c 4 ,  ^ * * 4,

G° (k,E)Z (k,E)G (k,E) ,CC4, cc^ cfj,
(3.4.17)

so that

G (k,E) =f f ( V + Z „ (k,E) )
E - e - r

cf - Z * (k,E)rr
( E - e - Z (k,E) )

k c c 4, ex
(3.4.18)

The subscripts, ex, denote that these are the exact quantities. The
same notation will be used without the subscripts, ex, for the
corresponding approximate quantities of the model. From the form of
the exact f down spin electron Green function of equation (3.4.18)
we see that including an exchange interaction in the model modifies
the f electron self energy term, introduces a conduction electron
self energy and an additional contribution Z (k,E) to thecfj, ex
hybridisation. The result is a similar f electron Green function to 
that of equation (3.2.11) where exchange is not included in the 
model, but now with a new effective energy dependent hybridisation:

V 1 (E) = (V + Z (k,E) ). (3.4.19)ex cf^ ex

The analysis of Section 3.4.2 predicts that if the impurity result
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can be generalised to the lattice then in any lattice solution the 
hybridisation strength V and exchange coupling J must appear as in 
equation (3.4.10). Therefore in the variational calculation we

2 i i 2 i iexpect that for J » 2V / e and J « 2V / e we will find anex 1 f 1 ex 1 f
effective hybridisation matrix V :

V = Vef (3.4.20)

(at least near the Fermi level) as well as a new effective Kondo 
temperature:

1
2V2

TeffI = e (“J) po where J = J - ---- . (3.4.21)K ex | |

However from the diagramatic expansion it is obvious that in general 
exchange and hybridisation appear in the f electron Green function 
in quite different ways. The exchange interaction contributes to a 
conduction electron self energy Z , (k,E) and an energy dependentcc'*' ex
hybridisation Z ^(k, E) .

In the remainder of this section the variational calculation 
for the f down spin electron is made and the competition between Jex
and V examined. An approximate ground state is calculated by making 
the Hartree Fock approximation to both the exchange and coulomb 
interactions so that the many body periodic Anderson hamiltonian 
plus exchange interaction becomes two single particle up and down 
spin hamiltonians as before:

E elc'rĉ 'rclĉr + E + E »

E e,

ckT' ek

Jex
<n t

(3.4.22)

(3.4.23)

(3.4.24)
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ek4̂
exJ

e +k 2 <nft> (3.4.25)

ef e
f

Jex

2
<n *>c 1

(3.4.26)

where <n and <n > are the up and down spin conduction electronC 1
occupation in the ground state and <nf^> is the up spin f occupation 
in the ground state. Within the Hartree Fock approximation we solve 
the up spin problem for the ground state:

0> = TT 2kn/j, 
oc c

I TTol
kn, TT v>

k<k
(3.4.27)

where the up spin eigenstates aIT*|v> and energies e* as well ask n 11 kn
the conduction and f electron amplitudes, B and A , in a statekn kn
are given by equations (3.2.3) to (3.2.6) with replaced by
and e by e In the ground state |0>r the up and down spin bands 
are as in Figure (3.1) but with up spin bands shifted by -J
<nf,jv> / 2 and the down spin bands by <n^>/2 due to the exchange
interaction.

With the approximate ground state established the steps of the 
variational calculation are repeated. Firstly a variational
wavefunction is proposed for the f down spin electron. The
variational wavefunction of the spin only calculation ( see equation
(3.2.13)) still represents the sum of the most likely processes
occurring when a down spin electron enters the system, even with the 
addition of an exchange interaction. Once again the f down spin
electron can access the level at e ^ + U<n^> or, via the
hybridisation any of the unoccupied conduction states. Also, since 
the f weight in the unoccupied up spin states is still small, the
additional lowest energy excitations which are most likely are those
in which a down spin f, or conduction electron, excites a particle 
hole pair in the opposite spin band and propagates with the hole as 
a magnon. The third process can now occur via the exchange or the 
coulomb interactions. The variational wavefunction is written:
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I*>‘ = + F.‘ c+j, + r e ,  a l . S
k '  i > k

k k' k k' E G1, a"tu  k i k i k - k |0>,

(3.4.28)

where is the approximate magnon creation operator of equation
(3.2.14). As in Section 3.2.3 we obtain equations for the
coefficients D.̂ , F̂ , by left multiplying the Schrodinger
equation by each of the constituent elements of the variational
wavefunction |ip > x. The equations for the coefficients are solved
for a Dyson equation in the limit of small hybridisation and J « 
U. The Schrieffer-Wolff transformation of Section (3.4.2) for the
impurity predicts that, for J as defined in equation (3.4.8), the

2exchange and hybridisation just add in the ratios J to 2V /|ef| 
to give an effective exchange coupling, J, of equation (3.4.10). 
However it cannot describe the regime where J is of the order of

e x2 . .2V /|e |. In order to be able to study this regime, for the
lattice, and take the limit of small hybridisation we work to order 
V2/1 c 12 and J /lei. Also in this Kondo limit V < lei the up 
spin f density of states above the Fermi level is approximated by 
its value at the Fermi level. Within these approximations (see 
Appendix A) the Dyson equation becomes:

E er
( V + Z (k,E) ) 2 

fc^
( E - e - Z (k,E)) k cc^

Z 1 Ck.E) = 0,

(3.4.29)

which agrees exactly with the form predicted by the general 
diagramatic expansion of equation (3.4.18) with Z 1 (k,E) calculatedf f
within the model as:

Z 1 (k,E) = U<n *> + Vffi f T  u
+<n > + Z" (k,E),ccr ff I. (3.4.30)

where the first two terms are just the Hartree Fock contributions 
due to the coulomb and exchange interactions and
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2) (k, E) =f f

e

u 2 a 1 2
k  i 

F

k  i 7
o  c c [E

I
-  G  ,  

k  i -  h V k , ]

1
U  A 1 2  +  J  B i a -

E

k  i  e x  k  i
F F

k  i  7 
o  c c [ E  -  e 1 ,  -  h w  , 1

L  k i 7 k - k / J

(3.4.31)

where

A 12
k 1

F

V2
(3.4.32)

is the f up spin density of states at the Fermi level in the limit 
of small hybridisation. The superscript I distinguishes this f
electron self energy from that of Section (3.2) where exchange is 
not included.

Also Z (k,E) is given by:

Z * (k,E)J f ex
Z (k, E) = - ------------ , (3.4.33)
fc^ UA 1k i

and Z (k,E) by:cc^

Jex
Z (k, E) = --- <n *> + Z (k, E) , (3.4.34)cĉ , 2 f 1 cc^

where the first term of equation (3.4.34) is just the Hartree Fock 
term and

Z (k,E)CCj,
f f (k, E) J

u 2a 12k
F

2
ex

(3.4.35)

In each of these self energies hw^ , is the magnon energy which is
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Section (3.2.3) it was stated that the approximate self energy
later approximated by a constant ho> as in Section (3.2.3) Inmag

Z (E) 
treatment

of equation (3.2.18), which results from a variational 
of the spin only model, is given exactly by the 

contribution of diagrams of Figure 3.3 Within the present
treatment of the periodic Anderson model plus exchange interaction 
the self energy terms Z 1 (k,E), Z (k,E) and Z (k,E) can also becc^
identified with the contributions of particular diagrams. When we
express the coulomb and exchange interactions of equation (3.4.12) 
in terms of the Hartree Fock basis operators, a£^, a ^ t, f^, f ^ , 
c+„ c j,, n = 1 or 2 then we can show that, within certain
approximations, the self energies of the variational calculation can 
be identified as those of Figures 3.13 to 3.15. These
approximations are: the up spin propagators --------  and the down
spin conduction and f electron propagators *

t and
% ' Uare all approximated by their Hartree Fock expressions, the 

hybridisation is small, the magnon pole approximation is made to the 
susceptiblity and the scattering between the up spin electron and 
the magnon results in zero momentum transfer. In each of Figures
3.13. to 3.15 the broken lines---------- represent scattering via
the coulomb or exchange interactions while the dotted lines 
--------- represent scattering via the exchange interaction alone.

*

ft
Figure 3.13. The self energy diagrams, other than Hartree 

Fock, in the down spin f electron self energy of the variational 
calculation for the spin degenerate periodic Anderson model plus 
exchange interaction. The broken lines represent scattering via 
both the coulomb correlation and exchange interaction.
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*

u

Figure 3.14. The diagrams in Z fJ/(k,E) of the variational 
calculation for the spin degenerate periodic Anderson model plus 
exchange interaction.

♦

Figure 3.15. The diagrams, other than Hartree Fock, in the 
down spin f electron self energy Z ,(k,E) of the variationalcc'*'
calculation for the spin degenerate periodic Anderson model plus 
exchange interaction.

3.4.4. Properties of The Solution.

With the approximation of a flat magnon dispersion, the self 
energies Z * (E), Z (E) and Z (E) are now momentum independent. ̂̂4, c ̂4̂ c c4,
These self energies are very similar to the f electron self energy
of the spin only case and therefore have similar properties. For
energies less than the magnon energy the imaginary part of any of
the self energies is zero, and the Dyson equation (3.4.29) can be
solved for quasi particle energies. Again near the magnon energy
the f self energy Z 1 (E) tends to zero so that for some energy E

f f4,
very close to the magnon energy (see Figure 3.16)
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e ( 3 . 4 . 3 6 )

y

Figure 3.16. The f resonance 
energy for the spin degenerate 
periodic Anderson model plus 
exchange interaction. The figure 
illustrates the solution of 
equat ion (3.4.36).

When the self energy Z (E) is expanded in a Taylor series around E 
then in the limit U -» co the quasi particle energies very close to E 
are given by:

(E
V2 (E)

E M E  - c ,) =
1 - Z'

f  f
(E)

dZ1 .(E)
f f 4.

dE E=E

(3.4.37)

where

E = c + Z (E) (3.4.38)

and

V2(E) = (V + Z (E) ) 2 (3.4.39)
c f

A A

with Z (E) given by equation (3.4.33). For energies close to E the
c f

quasi particles form the bands of an f level of renormalised energy 
E hybridising via a renormalised hybridisation with the conduction 
band. The quasi particle bands are drawn schematically as in Figure 
3.5 with E replaced by E.
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As in the spin only case the magnetic state breaks down as the 
hybridisation increases and the resonance near the Fermi level 
accomodates non negligible down spin occupation. From Figure 3. 16 
we see that the inclusion of the exchange interaction shifts these 
quasi particle bands at the Fermi level relative to their positions 
in the spin only case so that the resonance position is shifted 
further away from the Fermi level. Therefore for any hybridisation 
the exchange interaction, with exchange coupling J positive,ex
stablises the magnetic state in accord with the prediction of the 
criterion of magnetism of equation (3.4.11), where exchange and 
hybridisation are considered to add as an effective exchange 
interaction.

In the limit U -* oo we find using equation (3.4.36) to solve for
A .  A

Z (E) that
ff4,

V2(E) = V2 (3.4.40)

If the the exchange and hybridisation do in fact combine as an 
effective exchange or effective hybridisation as in the impurity 
then we expect the hybridisation matrix to be given by equation 
(3.4.20). The disagreement between the expected result and the 
result of the variational calculation could be due to the fact that 
the variational wavefunction does not deal adequately with
hybridisation, hence the wrong Kondo temperature in Section 3.3.1. 
However the implication that in general the hybridisation and 
exchange do not add as an effective hybridisation is the correct 
result, as is seen from the general diagramatic expansion.

The effective Kondo temperature of the model does however 
vindicate the idea that exchange and hybridisation add to give an an 
effective exchange interaction. The effective Kondo temperature of 
the model is defined as that magnon energy for which the 
ferromagnetic state breaks down. The breakdown is considered to 
occur when the resonance lies on the Fermi level, since then the 
down spin density of states below the Fermi level is holding non 
negligible down spin and the initial postulate of no down spin 
occupation is invalid. The resonance energy E is defined in
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equation (3.4.38) so that for E = 0

-e - U<n *> - Z ,(0) = 0 (3.4.41)r f1 ff*

and equation (3.4.41) can be solved for the magnon energy or 
effective Kondo temperature. The self energy term Z (E) is 
considered to be well treated by the variational wavefunction of 
equation (3.4.28) so that we expect the calculated Kondo temperature 
to be a good test of whether exchange and hybridisation add as an 
effective exchange or not. In the limit of U -> «, the effective 
Kondo temperature is given by:

V2

T 1 ef f 
K oc e

W
c I r 1

- 1

Jex
(3.4.42)

For J = 0 the effective Kondo temperature of the model reduces toex
the spin only result of equation (3.3.2) and is once again wrong by 
a factor of two in the exponent. This error is discussed in Section 
3.3.1 and is treated in Chapter 4 for the impurity. However for V -» 
0 the effective Kondo temperature agrees with the Kondo temperature 
of Read el al (1984) and Coleman (1983) where the system is modelled 
by the orbitally degenerate version of (see equation (3.4.12))
with V = 0. The result for V -» 0 also agrees with exact Bethe 
Ansatz results for impurity. The agreement with exact results for V 
-» 0 vindicates the model definition of the effective Kondo
temperature and shows that for U -» 00 the variational ansatz treats 
the exchange interaction contribution to Zff^(E) very well but, as 
in the spin only case, is lacking in the treatment of the
hybridisation. We identify the origin of the error in the exponent 
of the Kondo temperature as due to the fact that even for large U 
there will be some down spin occupation in the ground state and 
subsequently some up spin self energy which is neglected in the 
<n > = 0 ground state. In Chapter 4 the effective Kondo
temperature is improved for the impurity by treating the
hybridisation of the up and down spins on an equal footing and
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performing a self consistent calculation.
In equation (3.4.42) J enters the exponent in the effectiveex

Kondo temperature as predicted by the Schrieffer Wolff
transformation of Section (3.4.2) for the impurity, if we accept the

2missing factor of two in front of V . The result is consistent with
the postulate that for V « |e | and J « 2V2/|e | or J » 2V2/|e |

f OX f* OX f
hybridisation and exchange can be thought of as simply adding to 
give a total exchange strength J of equation (3.4.10), favouring a 
magnetic or non magnetic ground state depending on the magnitude of
J.

3.4.5. Conclusion.

From the variational treatment of the spin degenerate Anderson 
hamiltonian with exchange interaction we find that the magnetic 
state breaks down and the mass enhancement builds up with increasing 
hybridisation, as before. However we also find additional
contributions to the down spin f electron self energy, Sff^(k,E), 
due to the exchange interaction which push the narrow down spin f 
resonance at the Fermi level nearer to hw than for the J = 0mag ex
case. If this were the only effect of exchange then the mass 
enhancement would be slightly decreased over that of the J = 0ex
case for any hybridisation. However the exchange interaction also
acts to increase the effective hybridisation (see equation
(3.4.40)), so that for any hybridisation, V, the net result on the 
mass enhancement depends on which of the two competing effects of
exchange is dominant.

The postulate that the exchange interaction and hybridisation
present in rare earth systems combine as an effective exchange 
interaction for J « 2V / e or J » 2V / e , with effectiveex 1 f 1 ex 1 f 1
coupling constant J where

2
2V

J = J - ---- , (3.4.43)ex i |ei f i

as suggested by a Schreiffer Wolff transformation on the impurity is
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vindicated by a lattice calculation of the effective Kondo 
temperature. In general, though, the variational calculation of the 
f down spin Green function shows that the hybridisation and exchange 
interactions affect the system in quite different ways. This result 
is in agreement with the predictions of the completely general 
diagramatic expansion in which the exchange interaction leads to an 
energy dependent contribution, Z (k,E), to the hybridisation asc f
well as a conduction electron self energy, E (k,E). Therefore incc
general no simple addition of exchange and hybridisation is
possible.

Consider the results and their application to rare earth 
systems where J is positive. In gadolinium the f level is deepex
below the Fermi level, the hybridisation is small and the ground
state is magnetic. As we move through the rare earth series the
hybridisation changes. The magnetic ground state remains stable
until the hybridisation is of such a magnitude that the criterion
for a non magnetic ground state of equation (3.4.11) is satisfied.
Some of these rare earth systems are heavy and sire usually
considered to be those in which the exchange interaction is
negligible. In these systems the ground state is non magnetic and
the hybridisation dominates in the mass enhancement. However there
are other systems with possibly magnetic or non magnetic ground

2states where J is of the order of 2V /|e . The variationalex 1 f 1
calculation with the exchange interaction included shows how mass 
enhancement could build up via both exchange and hybridisation in 
these systems.

In their studies of CeSi Sato et al (Preprint) claim that in
X

this system exchange and hybridisation are competing for the
hybridisations associated with 1.7 < x < 2.0. In this HF system the
magnetic state breaks down with increasing silicon concentration, or
hybridisation. Therefore this system is an ideal candidate for
comparison with the model. The authors postulate that magnetic
CeSi and non magnetic CeSi flank very heavy systems (see 

1 . 8 1.9
Figure 3.17). Therefore for CeSi , at least, there may well be very 
heavy systems with 1 . 8 < x < 1.9 in which the exchange interaction 
is not yet dominated by the hybridisation. These systems are suited 
to the description by the model developed here which shows how 
exchange could contribute to large mass enhancement.
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2Figure 3.17. The yCmJ/molK ) versus silicon concentration in 
CeSi (Sato et al (Preprint)).
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CHAPTER 4.

THE WEAKLY MAGNETIC PROBLEM.

4.1. INTRODUCTION.

In Chapter 3 a model is developed for cerium systems to describe the 
breakdown of the strongly ferromagnetic state and the build up of HF 
behaviour with increasing hybridisation. The main limitation of the 
model is that the arguments on which it is based start to break down 
as soon as the hybridisation produces some non negligible down spirv 
occupation. Therefore the next step must be to improve the model in 
order to describe the weakly ferromagnetic regime. Also the main 
possible problem result of the model of the previous chapter is the 
missing factor of two in the exponent of the effective Kondo 
temperature.

In the present chapter both the extension of the model to the 
weakly magnetic regime and the correction of the effective Kondo 
temperature are examined for the impurity. We initially model the 
strongly magnetic case to determine whether the discrepancy of two 
in the effective Kondo temperature of the previous chapter is a 
genuine difference between the lattice and impurity cases, or a 
defect in the variational method. The calculation is then extended 
to the weakly magnetic regime. The ultimate aim is to develop a
model for the impurity in the weakly magnetic regime which gives 
reasonable agreement with Be the ansatz and, via the lattice 
analogue, gives some insight on how to extend the lattice model to 
the weakly ferromagnetic regime.

The system under investigation is a dilute HF cerium system 
described by the Anderson impurity hamiltonian. It is assumed that 
a magnetic field acts on the impurity to ensure a magnetic ground 
state. First the variational method is used to calculate the f down 
spin Green function for the strongly magnetic case of no down spin f



occupation. The density of states is calculated and the effective 
Kondo temperature of the model is defined and evaluated for this 
strongly magnetic limit. As for the lattice calculation of Chapter 
3 we find that the effective impurity Kondo temperature differs from 
the exact impurity result by a factor of two in the exponent. The 
self energy diagrams equivalent to the variationally calculated self 
energy are identified and found to be those of Edwards (1968). The 
model is next pushed into the weakly magnetic regime of non 
negligible down spin occupation which is analogous to the weakly 
ferromagnetic regime of the lattice problem. The self energies for 
both the up and down spin Green functions are postulated. Within 
certain approximations these are identical to the self energy of the 
variational calculation. The magnetisation is calculated as a 
function of magnetic field and is found to have the scaling 
behaviour predicted from Bethe ansatz results. The new Kondo
temperature for the improved model is shown to be in better 
agreement with the exact Kondo temperature than that of the strongly 
magnetic model.
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4.2. THE STRONGLY MAGNETIC CASE.

4.2.1. The Variational Calculation.

The spin degenerate Anderson impurity hamiltonian with magnetic 
field on the impurity is written:

H = Y c ip + E e + E + h. c. )imp u  k’ kcr kcr u rcr crcr u  k <r kcrk<r cr k cr
!rU + b +

+ U ijj<r o" -cr -cr (4.2. 1)

where creates an f electron on the impurity site with spin <r, and 
^  creates a conduction electron in a state of momentum k, energy 

and spin cr. Also

e = efO' f
f \ .. f \ + when the spin is down+ (<r)ii H, (O') = , ,, , . ,b - when the spin is up (4.2.2)

so that the magnetic field only acts on the impurity. Following 
Gunnarson and Schonhammer (1983) we introduce the new one particle 
states:

Iv> = --- V V* 5(c - e IV> ,eo- 1 v u  k k ^ k O*1V(e) k
(4.2.3)

and make the model assumption

E IV, 12S(e - ej  = IV(e) I21 k 1 k 1 1k
(4.2.4)

so that within this new basis the hamiltonian can be rewritten as

H* = J* E G Xlitj,e.rrdZ + S + S E (V(e) ^ 0  + h. C. )dei mp e<r eo* ter cr cr " cr ctror cr cr

+ Uip̂ifj \Iĵ  \b + H cr cr —cr -O' s (4.2.5)

The final term in the hamiltonian, H , just counts all the energies
S

of those conduction electrons which do not hybridise with the 
impurity, that is those which have orbital angular momentum not
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equal to three. This term will just give a constant energy shift of 
the total energy of these 1*3 non interacting electrons and will not 
contribute to the interesting physics. In the remainder of this 
chapter the unhybridised conduction band density of states is 
assumed to be a constant equal to the number of electron sites 
divided by the band width W. Therefore when we assume that the 
hybridisation is real and momentum independent then

E IV12S(e - e, ) = |V|2 , (4.2.6)11 k 11k

V2
=> v2 = --- (4.2.7)

W

As in the lattice case of Chapter 3 the first step in the 
variational calculation is to propose a ground state for the system

Adescribed by the hamiltonian H . Again we make the Hartree Fock
1 mp

approximation to the coulomb interaction. The coulomb interaction 
is assumed to be large so that the hybridisation of the down spin f 
level at energy + U<nf^> produces negligible down spin f
occupation. Therefore the approximate ground state has no down spin 
f electrons and consists of a filled Fermi sphere of down spin 
conduction electrons and a filled Fermi sphere of states resulting 
from the hybridisation of the up spin f electron level with the up 
spin conduction bard. The ground state is written:

i0>= it $' n
k<kocc F

+
n.o c.e 1 

1 * 3

(4.2.8)

where <p[ are the eigenstate creation operators for the states in
en I

the hybridised up spin bards. The operators <f>J diagonalise the up
E n

spin hamiltonian:

H* t = J e ^de +imp™ eT eT 'I'i-'l*' S VV (tfta h. c. )de
(4.2.9)

where the energy integrals are from the bottom to the top of the 
unperturbed conduction band and
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0 ^ =  S  c ( E , c ) 0 ^ t d£ + d ( E ) 4  . (4.2.10)

2c (e,c ) is the weight of the up spin conduction state of energy e in 
the new up spin eigenstate of energy e and d (e) the f up spin 
weight in this eigenstate. Also

S c2(E,e)de + d2(E.) = 1, ( 4 . 2 . 1 1 )

so that each new state can hold one electron and the operators
obey normal anticommutation relations. The coefficients d(e) 

are determined using the relations between the single particle up 
spin f electron Green function and the eigenstate Green function:

« 0* 'J*i»E = J'd2 ( e )« »£ dE , ( 4 . 2 . 1 2 )

1

n
Im « = d2(£). ( 4 . 2 . 1 3 )

From equation of motion methods the up spin f electron Green 
function in the Hartree Fock approximaton is:

«
E + id - c  ̂- S

Tp y2

Bt de
E +iS - e

( 4 . 2 . 1 4 )

where Tp and Bt are the top and bottom of the unhybridised 
conduction band. To solve for d (E) we take the imaginary part and 
use the usual definition:

Tp
S ~
Bt E +

V2

id
■ de = A(E) 
e

iA(E). ( 4 . 2 . 1 5 )

Since we have already assumed a constant unhybridised conduction
band density of states of width W, we find that A(E) is a constant, 

2A = 7rV /W, independent of energy. Also the contribution of A is 
neglected as is usual in the literature since it just provides a 
small shift in the f level resonance position so that
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1 A
(4.2.16)d (E) = -

n ( E - v )2 +

is just the up spin f density of states. Therefore in any 
eigenstate of energy E, d (E) gives a measure of the up spin f 
weight in that state. From equation (4.2.16) the up spin f weight 
in any up spin band eigenstate is seen to be small for all states of 
energy E except those for which E ^ e^. Similarly the up spin
conduction electron weight in any eigenstate of energy E is:

c2 (E,e) = 5(E - e)
7T

1

(E + i5 - e )2(E - e iA)f 1 J
(4.2.17)

For states with energy E far from the up spin conduction weight
in the state is practically unity. For states of energy E very 
close to ef/T, the second term in equation (4.2.17) is not negligible 
so that the up spin conduction weight in states of this energy is 
reduced and the eigenstate has more f character.

Within the Hartree Fock approximation, for U -» oo, the up and 
down spin f densities of states in the ground state can be drawn 
schematically as in Figure 4. 1

Figure 4.1. A schematic impurityf 
density of states in the U -» » 
Hartree Fock ground state. The 
hatched area denotes occupied 
density of states below the Fermi 
energy Ê .
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The next stage in the calculation is to take better account of the 
coulomb correlation than the simple Hartree Fock approximation. 
From a general diagramatic expansion in which both the coulomb 
interaction and the hybridisation are treated as perturbations the f 
down spin Green function can be written:

Gf f (E)
vU

1

E e
Tp ~ 2
S _ _ de

Bt (E-e)

(4.2.18)

ex

where everything that is unknown about the interactions of the 
system is stored in an exact self energy Z (E) . Within thef ex
Hartree Fock approximation the only contribution to this self energy 
is U<n *>. The aim of the variational calculation is to take betterfT
account of the coulomb correlation and calculate further
contributions to the exact self energy Zf f (E) Correct account
of the coulomb correlation is the basis of the impurity problem and 
a good treatment will yield the Kondo resonance in the f electron 
density of states and the resulting strange thermodynamic properties 
of these dilute HF systems.

As in the spin only lattice case a variational wavefunction is 
proposed for an f down spin electron entering this system described

Aby the Anderson impurity hamiltonian H . The wavefunction isImp
written as the sum of all the lowest energy and most likely 
processes to occur if an f down spin electron were placed in the 
system. Once again an analogy can be drawn between the present 
situation and that of the nearly half filled Hubbard model with a
ferromagnetic ground state (Edwards (1968)). Consider a schematic
representation of the f weight in any state for the impurity ground 
state of equation (4.2.8) and Figure 4.1. When a down spin f

,Aelectron enters the system described by hamiltonian H
1 mp it can

sample the unhybridised f down spin state at energy E = c + fi H +f B
U<n^^>, any of the unoccupied down spin conduction electron states 
via hybridisation V, as well as an infinite number of other 
processes, all of which must be included for an exact self energy 
Z (E) . If only the first two possibilities are included, thef ex
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down spin eigenstates are given by equation (4.2.10) ( with ^
replaced by 4, ) , in which d (E) is now the down spin density of
states, and we have the Hartree Fock solution. To improve on the 
Hartree Fock result we must take better account of the coulomb 
correlation by including more processes in the variational 
wavefunction. To determine the processes with the largest
contribution to the f down spin self energy, other than the Hartree 
Fock contribution, an analogy is drawn between the present problem 
and that of the nearly half filled Hubbard model of Edwards (1968). 
There is only one type of electron in this problem and the coulomb 
correlation exists between any of these electrons on the same site. 
The density of states in the Hubbard model Hartree Fock ground state 
is as in Figure 3.2b. To improve on the Hubbard model Hartree Fock 
approximation we include diagrams with the smallest number of up 
spin electron lines since the up spin density of states above the 
Fermi level is small. Diagrams with the least number of electron
lines involve the least number of integrations over this small up 
spin density of states above the Fermi level and have the largest
contribution. Therefore in the Hubbard model self energy we include 
diagrams representing a down spin exciting a particle hole pair in 
the opposite spin band and then propagating with the up spin hole as 
a magnon and scattering off the up spin electron. The diagrams are 
represented schematically as in Figure 3.3 and are exact to second 
order for the strongly ferromagnetic case.

In the present Anderson impurity problem the coulomb 
correlation acts only between the f electrons on the impurity site
so that processes involving the coulomb correlation will depend on 
the f weight in any state. From the schematic f density of states
for the impurity of Figure 4.1 we see that up spin f weight in any
state 0^|V> where E is greater than the Fermi level is small. 
Therefore from the analogy with the Hubbard model arguments we 
include processes in which the number of times we integrate over 
this density is small. The diagrams are therefore once again those
of Figure 3.3 except that this time the up and down spin f electron 
propagators are those of the Anderson impurity problem. In the 
variational wavefunction we include processes where an f down spin 
excites a particle hole pair in the opposite spin band via the 
coulomb correlation. The variational wavefunction
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> =
I tp , tp I
T + S F(€)^ + J* G(E)0jts |0 > (4.2. 19)

where

H, J *  > = E 1^ >- (4.2.20)

and the operator S is defined as:

r = ft* f̂ . (4.2.21)

and creates a particle hole pair of opposite spin. The coefficent 
G(E) of equation (4.2.19) will depend on the f weight in the up spin 
eigenstate created by 0^. As in the lattice case we solve for the 
coefficients A, F(e) and G(E) and find

Tp ~2
E - e  - T de - I (E) = 0

o f£̂(E-e)
for E > 0, (4.2.22)

where

E = E - E , E is the ground state energy,O O (4.2.23)

and

Z-^(E) =f f' U<n *> +r 1

U2d2 (e) <n+> Tp f 1
ds

E - e - hw
E > 0.

Tp U d (e)

E - e  - hw
ds.

(4.2.24)

Here hw is the energy to flip an f electron spin and is defined byO
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(4.2. 25)
<0| S+ HA S"|0>

1 1 mp 1
E + ho> = ------------------

o  o

<o| s+ s"|o>

In order to arrive at equation (4.2.22) we require that there is no 
down spin occupation in the ground state. For this condition to be 
strictly true the bottom of the conduction band must lie on the 
Fermi level otherwise the hybridisation will always result in some 
down spin occupation. Therefore for the case of no down spin 
occupation the integrals over the band energies in equation (4.2.19) 
and equation (4.2.22) are necessarily from Bt to Tp where Bt = 0. A 
more realistic ground state is one in which the bottom of the 
conduction band lies below the Fermi level so that the hybridisation 
produces small but finite down spin occupation. For this more
realistic situation the integrals in equations (4.2.19) and (4.2.22) 
are again from Bt to Tp but Bt * 0. We assume that the down spin 
occupation is infinitely small but non zero in the following. The 
energy E of equation (4.2.23) is identified as an excitation energy 
so that equation (4.2.22) is a Dyson equation consistent with a down 
spin f electron Green function

1
G (E) = ---------------------------------------- . E > 0.f f I* Tp ~2

E - c S de - Z (E)
f4, Bt ----- ff^Bt (E-e)

(4.2.26)

We retain the restriction to energies greater than the Fermi level 
in equation (4.2.26) since solutions of energy E < 0 are
inconsistent with the postulate of no down spin f occupation, and we 
are assuming that this occupation is negligibly small.

4.2.2. Results.

The form of the self energy of equation (4.2.24) has similar 
consequences for the impurity down spin f electron density of states 
as the analogous self energy of the spin only lattice model has for 
the f band density of states. The self energy, Zff^(E), has no
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greater than the Fermi energy and less than ho> the Dyson equationO
becomes:

E - e  - h i A - E  (E) = 0 , 0 < E < hw , (4.2.27)

where equation (4.2.15) has been used, and the contribution of A has 
been neglected. The Dyson equation (4.2.27) car only yield finite 
lifetime quasi particle solutions since A is non zero for all 
energies. In analogy with the lattice case there is an energy E
close to hw for which the real part of the Dyson equation is zero,O
implying that there is a finite lifetime quasi particle with this 
energy. For energies near E we can expand the self energy in a 
Taylor series around E so that

imaginary part for energies less than ho) , so that for energiesO

Im G (E) =
n

f fvl'
A2

" A (E - E ) 2 ♦ A2

E * E, (4.2.28)

where

A = (4.2.29)

dS .(E) f f*
1 -

dE

Therefore from equation (4.2.28) we see that for energies near E 
there is a sharp resonance in the f density states which is 
identified as a precursor of the Kondo resonance of the nonmagnetic 
HF impurity systems.

The effective Kondo temperature for the impurity case is, in 
analogy with the lattice calculation of Section (3.3.1), defined as 
the value of hw for which the resonance lies on the Fermi level and

o

the strongly magnetic ground state has broken down. In the limit of 
very large U and |ef| » n̂ H , the effective Kondo temperature for 
the impurity is given by:
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oc e (4.2.30)

<nf/j,>W

TeffK V2

The result is compared with the exact Kondo temperature of the Bethe 
ansatz (Andrei et al (1983)):

W Is Ii r i

Tr « e 2 V2 . (4.2.31)

As for the lattice case the exponent is wrong by a factor of two 
suggesting that the up spin density of states at the Fermi energy, 
V /|e | , is too small by a factor of two. The variational approach 
leads to the same exponent in the effective Kondo temperature for
both the lattice and the impurity cases. Therefore we conclude that 
the missing factor of two in the lattice effective Kondo temperature 
is a defect of the variational method rather than a genuine
difference between the impurity and the lattice cases. In Section 
4.3 we improve the model and hence the effective Kondo temperature 
for the impurity by solving the problem self consistently including 
the resonances in both the down and up spin densities of states, and 
thus raising the magnitude of the up spin density of states at the 
Fermi energy.

In Figures 4.2 and 4.3. the calculated f down spin density of
states is plotted for U = 7eV, W = lOeV, = -1.5eV and a magnon
energy of 0.005eV. In Figure 4.2, V = 0.25eV and the f down spin
density of states is seen to have a narrow resonance near the magnon
energy which we identify as a precursor to the Kondo resonance. The
resonance is extremely narrow and so close to the magnon energy that
the computer cannot detect the difference between the two. The
other density of states feature, the resonance at e + U<n *>

r  f 1
supports most of the f weight. Figure 4.3 shows density of states 
for V = 0.75eV where the two features are more obvious. The model 
is breaking down for this size of hybridisation. However the actual 
value is not unreasonable for HF systems. Gunnarson and Schonhammer 
(1983) calculate A * 0. leV from their fits to XPS and BIS
experiments for materials like CeNi and CePd using aS 3
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semi-elliptical conduction band. This corresponds to V ^ 0.56eV
when the conduction band is taken as a constant 1/W, where W is the 
band width, and W = lOeV.

For both values of hybridisation the f down spin density of
states agree qualitatively with the results of Gunnarson and
Schonhammer (1983) as well as the results of XPS and BIS experiments
for materials such as CeNi and CePd .s 3
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4.2.3. The Self Energy Diagrams for the Strongly Magnetic Case.

As for the lattice case we can identify a particular class of self 
energy diagrams which within certain approximations correspond 
exactly to the self energy of the variational calculation (see 
equation (4.2.24)). In this section the diagrams for the strongly
magnetic case of no down spin f occupation are identified. Later in 
Section 4.3 the model is pushed to the weakly magnetic regime using 
similar diagrams for both the up and down spin self energies.

The exact self energy is written as the sum of the Hartree Fock 
contribution plus all other contributions as:

Ef f (E) U<n *> + E (E),fT f fj, (4.2.32)

where in this case of small up spin f weight above the Fermi level 
the dominant diagrams in E^fvi/(E) are those with the smallest number 
of up spin electron lines (see Section 4.2.1). Therefore

♦

E (E)

where the full lines now represent the full f electron propagators 
of the impurity problem and the dashed lines represent interactions 
via the coulomb interaction. Also the arrows label the spins of
these f electron propagators. E (E) is a very difficult function ̂̂ vj/
to evaluate within a completely self consistent calculation. 
Therefore approximate solutions are sought which retain the 
important features of the problem. Consider first the self energy 
diagram:

(4.2.33)
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The corresponding analytical expression is :

U2
ITS V(E) = --- S dE'G *(E' )%(E-E7),

2ni

(4.2.34)

(4.2.35)

and is exact when Gff^(E) is the full up spin f electron propagator 
and %(E - E') is the exact susceptibility. Once again this
analytical expression is extremely difficult to evaluate self
consistently so that we approximate the up and down spin f electron 
propagators by their Hartree Fock expressions, G°^(E) and calculate 
the susceptibility within RPA. Within the Hartree Fock
approximation for U tends to infinity, we assume that the 
hybridisation of the down spin f is negligible, therefore:

1
G° (E) = ------------ , (4.2.36)

E - c + iA

1
G° (E) = --------------------- , (4.2.37)

F  -  r  - I  J< n

where we have used equation (4.2.15) and have neglected the 
contribution of A. Also the RPA susceptibility is:

X (E-E7)o

1- U% (E-E')O

Zr p aCE-E') = ------------, (4.2.38)

where
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X (E-E7)o
2 n

f dE G° *(E - E)G° , (E -E7 ).p ffT p €€'*' p (4.2.39)

To evaluate the integral over E in equation (4.2.39) we write theP
Hartree Fock propagators in spectral representation:

dm p^ff(w)
G° *(E - E) = -Sf r 1 p o (w - E + E -id)

p

and

G° (E-£> -J*
f f . p 1

dw p ° i (w) oo

o (w - E + E -id)p

0 d“
f -----------------,

-oo ( u> -  E + E + id) p
(4.2.40)

(4.2.41)

where p°ft(w), P°f4,(w) are the up and down spin densities of states 
within the Hartree Fock approximation. When equations (4.2.40) and 
(4.2.41) are substituted into equation (4.2.39) then

o
X (E-E7) = - J dwO 1-00

p (̂0) ) p , (w )oo Hf f ^  i a

J* ---------------------o 2 (E - E7 + w - w + id)
(4.2.42)

so that after inserting the expressions for the Hartree Fock 
densities of states in equation (4.2.42) we find

1 o
X (E-E7) = - - So

n bt

A

(c*> — e + (i H ) 2 + A2i f B

( E - E7 + 0)1 c - p H -  U<n + id)
dw .1

(4.2.43)

The analogous analysis for the strongly ferromagnetic ground state
HUBof the Hubbard model yields an expression for x (k-k7, E-E7)R P A

(Edwards and Hertz and Hertz and Edwards (1973)) which has a low 
energy pole for positive energy E-E7 for which

136



1 - Ux (k-k', E-EM = 0 (4.2.44)RPA

and corresponds to the excitation of a magnon where the magnon 
creation operator is given by:

k - k
+= y f f

U  ( p-k' >4, (p-k)xf. P '
(4.2.45)

The RPA susceptibility of the impurity problem, equation (4.2.38) is 
dominated by a similar but now finite lifetime excitation. From 
equation (4.3.43) the real and imaginary part of % (E-EM in theO
limit of small hybridisation and large U are found to be:

" <nfT>
Rex (E-EM « --------------------- , (4.2.46)

° E - E' - 2|i H - U<n .>B

A
Im% (E-EM = -----------------------;----T ' (4.2.47)

° (E - E' -2\k H - U<n *>) + A
B f  1

Therefore although the denominator of equation (4.2.38) is never 
exactly zero there is positive energy E-E' = hw ^ 2\i H for whicho B

1 - URe% (ho> ) = 0, (4.2.48)o o

Im% (hw ) - 0, (4.2.49)o o

so that there exists a slightly damped excitation with this energy. 
For low energies then, we can expand the RPA susceptibility in a 
Taylor series around its pole at E-E/= hw * 2\i H so thato B

W E-E<)“

-1
1 - 1  dx (E-EM 0

(E - E'- hw )o X (hw f dtE-E7)L 0 o E-E7=hu

(4.2.50)
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(4.2.51)
-  <nf1,>

W E-E'’“ (E - E'- hu )O

At small energies the the impurity RPA susceptibility is dominated 
by an excitation, of energy hw ^ 2fi H, with a small but finiteo B
lifetime. This excitation corresponds to a damped f electron spin
flip. The amount of damping is small for small hybridisations. 
Therefore, for small hybridisation, it is reasonable to approximate 
the RPA susceptibility by its pole contribution and neglect the 
damping. When we substitute equation (4.2.51) into equation 
(4.2.35) and carry out the integral over E' we find:

<n ^>d2(e)
Tp fITZ ° I (E) = IT S --------------------- de . (4.2.52)

^  o ( E - e - 2 ( i H + i S )B

Therefore the contribution to the self energy from the diagrams of 
equation (4.2.34) agrees exactly with the self energy of the 
variational calculation of equation (4.2.24) to order U2. So fair no 
account has been taken of the interaction between the electron hole 
pair of opposite spin and the single particle excitations which sire 
included in the self energy diagrams of equation (4.2.22). Within 
the spin flip pole approximation these diagrams can be redrawn as:

E > E (4.2.53)F

where v/\/X/r\/‘ is the positive energy spin flip excitation, —
represents the up spin particle line and the broken lines represent 
interactions via the coulomb correlation. These diagrams can be 
expanded as:
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which we write analytically as

Z (E) = U2. 
ff4,

1
----SdE 'G° AE ') x(E-E') +
2ni

1 1 U

< v >

r i i
.fdE'G* AE' )*(E-E' )0 . i f f 1 i i2m

SdE'G* AE') z (E-E' )0 . 2 f f  1 2 2 2711
+ . .

(4.2.55)

and hence

ff'

U2 E!.g,(E)f f ’

1 - UZ.^CE)
f f

<rV >

E>EF

E^E F

(4.2.56)
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Equation (4.2.56) of the diagramatic treatment is identical to 
equation (4.2.24) of the variational calculation. Therefore the 
variational method yields a self energy contribution which can be 
identified with the diagrams of equation (4.2.33) when the 
propagators are approximated by their Hartree Fock expressions and 
the spin flip pole approximation is made to the susceptibilty.
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4.3. THE WEAKLY MAGNETIC CASE.

4.3.1. The Self Energy Diagrams for the Weakly Magnetic Case.

In this section the model and ideas developed for the strongly 
magnetic case, where <n j> is constrained to be strictly zero, are 
extended to describe the more realistic finite U case where <n .> ^f4,
0 and <nf^> » 1. In any real system there is always some down spin
occupation due to hybridisation, therefore in any system there is
also some up spin self energy due to coulomb correlation. In the
<n^^> = 0 model the up spin self energy due to coulomb correlation 
is approximated as zero. The effective Kondo temperature for this
<nf4,> = 0 case is too small as a result of a missing factor of two 
in the exponent. A possible explanation for the error in the 
exponent is that the up spin density of states at the Fermi level 
for the <nf4> = 0 model is too small by a factor of two. The 
extension of the model to account for the fact that in a real system 
<n ^ 0 results in an up spin self energy contribution and hence 
some extra up spin density of states, which could be the missing 
density of states of the <nf^> = 0 model. The motivation for the 
present calculation is therefore the possible improvement of the
effective Kondo temperature of the <nf^> = 0 model. The calculation 
was also intended as a test case for the generalisation to <nf^> * 0 
in the lattice.

In the following sections both up and down spin self energy 
diagrams are defined. They are essentially those of equation
(4.2.33) where for the up spin self energies the up spin electron 
lines of equation (4.2.33) are replaced by down spin hole lines and 
vice versa. These self energies are the origin of a sharp resonance 
in the down spin density of states above Fermi level, as before, as 
well as a new similar resonance in the up spin density of states 
below the Fermi level. It is easily seen that up spin density of
states at the Fermi level is now larger than for the <n = 0 model 
and thus the effective Kondo temperature must be improved. In
Section (4.3.2) a quantitative comparison of the Kondo temperature 
of the <n i> - 0 model is made with the exact Bethe ansatz results 
(Andrei (1983)) to show the improvement over the effective Kondo 
temperature of the <n = 0 model. Also the variation of the
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magnetisation with magnetic field is calculated and shows good 
agreement with the exact Bethe ansatz results.

The system is once again modelled by the Anderson Impurity 
hamiltonian, H^ , with a magnetic field acting on the impurity (see 
equation (4.2.1). The starting point is again an approximate ground 
state in which the coulomb interaction is treated in the Hartree 
Fock approximation. For this finite U case the Hartree Fock 
propagators are:

1
G®*(E) = --------------------- , (4.3.1)

E - e U<n ,> + iA

and

1
,(E) = --------------------- . (4.3.2)

E - e - U<n /k> + iA*4, ^

Therefore the up and down spin f electron densities of states are
lorentzians around + U<nf4> and c ^ + U<nft> respectively and
the hybridisation produces non negligible down spin occupation. At
this stage it is more convenient to think in terms of self energy
diagrams rather than variational wavefunctions. In the approximate
ground state only the Hartree Fock term U<n > is included in thef-o*
exact self energy Z (E) (see equation (4.2.18) with ^ = <r).f f O' ex
Once again we are faced with the problem of taking better account of 
the coulomb correlation via corrections to the Hartree Fock 
approximation.

From the schematic f electron density of states picture Figure
(4.4)
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Figure 4.4. A schematic impurity f 
density of states in the U finite 
Hartree Fock ground state. The 
hatched areas denote occupied 
density of states below the Fermi 
energy Ef.

we notice that for finite U the number of unoccupied up spin states 
is of the same order of magnitude els the number of occupied down 
spin states, and is in fact identical for the symmetric Anderson
model where e = -U/2. For <n ^ 0 and <n *> « 1 the number off f4,
unoccupied up spin states is still small smd therefore the dominant 
down spin self energy diagrsims will still be those of equation
(4.2.33). Similarily the number of occupied down spin states is 
small. Hence by parallel arguments the up spin self energy, other
than the Hartree Fock term, is dominated by diagrams with the
smallest number of down spin hole lines so that

Z *(E) = U<n ,> + I *(E),ffT f4' ffT (4.3.3)

where the first term is just the Hartree Fock contribution and

(4.3.4)

Here the full lines once again represent the full f electron
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propagators and the broken lines represent interactions via the 
coulomb interaction. In the up spin self energy S ^(E) the down
spin lines play the part of the up spin lines of
the down spin self energy diagrams (E). For the case of <nf4> ^ 
0 and <nf./|v> ^ 1, and Zff/T.(E) are given by the diagrams of
equations (4.2.33) and (4.3.4) respectively. Within certain
approximations these diagrams are equivalent to the variational self 
energy for the <nf4,> = 0 case. To evaluate the contributions of the 
diagrams of equations (4.2.33) and (4.3.4) we treat firstly the 
contribution from diagrams:

The interactions between the electron hole pair and the single 
particle excitations equation of (4.3.4) are treated later. For the 
moment we treat the problem of evaluating the analytical expressions 
corresponding to equation (4.3.5) and (4.3.6):

U2Z ° (E) =
f fO *

U‘

2ni
S dE/Gff_<r(E/ )x (E-E' ). (4.3.7)

Once again this extremely complicated expression is evaluated within 
some reasonable approximations. As before the susceptibility is 
calculated within RPA so that:

144



(4.3.8)C * (E-E'> = — —
1- Ux‘r(E-E')O

X^E-E' )

where

X (E-E7) =o
2 n

S  dE G (E - E)G (E -E7 )p ff-<r p ff<r p (4.3.9)

and G° (E) are the Hartree Fock propagators. When we substitutefftr
the spectral representations for the Hartree Fock propagators in 
equation (4.3.9) and perform the integral over E then

r^E-E')

P° /^(w ) p °  i (w )
0  00 1 H f H '  a

-  S  da>i S  da>2 ------------------------------------
-oo 1 o 2 (E - E7 + o> - (j + i S )

E-E7 > EF

(4.3.10)

0(up spin f weight at E^) x
0(down spin f weight at E ) E-E7 ^ EF F

and

X^E-E7)
o

0(up spin f weight at E^)
0(down spin f weight at E^)

o oo
S  do) f  do>2 1

p° ,(a) ) p° ^(w ) rff* i ffT a

(E - E7 + w - w - id)1 2

E-E7 > EF

(4.3.11) 

E-E 7< EF

where E = 0 is the Fermi energy and p° (E) are the spin <r f 
f f fcr

electron density of states within the Hartree Fock approximation. 
As for the <n .> = 0 model r (E-E7) are dominated by finite
lifetime excitations at positive energy E-E7 = hw , « 2p H foro'*' B
X ^ (E-E7) and negative energy E-E7 = -hw * a - 2ji H for x̂  (E-E7).
r p a  0,7 oT B RP A

Once again these excitations correspond to a damped f electron spin 
flip excitations. For small hybridisations the damping is small
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since Im% ^ (E-E7) is small for E-E7 * 2(i H + U(<n -<n ■ >) andRPA B f ' f'*'
Imr J (E-E7) is small for E-E7 * -2n H + U(<n t> -<n j>). rp a b r r

For small hybridisations the damping is neglected and the 
susceptibilities are written as expansions around their poles so 
that

<nft>( 1 - <nf4, >)

( E - E 7- ho) | + id )
E-E7 >EF
(4.3.12)

0 E-E7 ̂ EF

and

0 E-E7 >EF

x r ; a ( e - e ' ) *

<nft>( 1 - <nf4, >) 

( E - E ' + h u ^ - i S )O 1

(4.3.13)

E-E7 ̂ EF

When these pole approximations are used to calculate the self energy 
contributions of equations (4.3.5) and (4.3.6) then we find

<n ,*>( l-<n .>)U S
Tp cCjUe)

de E i  E
o ( E - e - ho> , + iS )

o ' 4'

U2Z °, (E) * -Iff'1' (4.3.14)

E < E

and
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E > E

U2S %(E) =ffT (4.3.15)

<n *>(l-<n.^U2 S

d ^ ( c )

E ^ E
Bt ( E - e + ho> + - Id )

2 2where for a completely self consistent calculation d^(c) and d^(e)
are now the up and down spin f electron densities of states
associated with the Green function which we are trying to calculate.

To calculate Z (E) of equations (4.3.4) and (4.2.33) we must f fe­
me lude the interactions between the single particle excitations and
the electron hole pair of opposite spin. For small hybridisations
the diagrams are redrawn within the spin flip pole approximation.
At this stage we assume the system is modelled by the symmetric
Anderson model so that the accuracy of the pole approximation is the
same for each spin and

Z ff' t' (E) (4.3.16)

(4.3.17)

147



where represents a positive energy spin flip excitation and
a negative energy spin flip excitation, ---^ --- an up

spin particle line and ---  a down spin hole line. When
equations (4.3 16) and (4.3 17) are expanded as in equation (4.2.54) 
then

U2 J,(E)f f *

1 - UZ° ,(E) f f *

<n ,>f4.

ff'.(E) *

E > EF

(4.3.18)

0 E ^ EF

and

2 t(E) «ff 1
U2 «(E)ff 1

1 + UZ° *(E) rr 1

E > E

(4.3.19)

E ^ E

<nr*>

with U2I°f4,(E) given by equation (4.3.14) and U2S°^(E) by equation
(4.3.15) and hw , = -hw ^ * 2fi H. Both the up and down spin self
energies for this <nf^> - 0 and <nf/j.> - 1 model have similar 
properties to the self energy of the <nf^> = 0 model (see equation
(4.2.24)). They are the origin of a sharp resonance in the down 
spin density of states above the Fermi level as well as a new 
similar (identical for = U/2 ) resonance in the up spin density 
of states just below the Fermi level.

Within the <n = 0 model the magnetic state breaks down with 
increasing hybridisation as is expected. However the breakdown does
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not occur quickly enough. The magnetic state is too stable or the 
Kondo temperature is too small. The breakdown of the magnetic state 
occurs as down spin density of states builds up around the Fermi 
level due to processes described by equation (4.2.33). As the 
hybrisation increases the up spin density of states above the Fermi 
level available for excitations of equation (4.2.33) increases and 
in turn the resonance near the Fermi level in the down spin density 
of states grows. Within the new <nf^> =* 0 and <nf^> ^ 1 model there 
are resonances in both the up and down spin density of states around 
the Fermi level. Therefore there are more up spin states available 
for the processes of equation (4.2.33), the origin of the down spin 
resonance near the Fermi level. Similarily there are more occupied 
down spin states available for the excitations of equation (4.3.4) 
leading to a build up of the up spin density of states near the 
Fermi level. As hybridisation increases both these resonances grow 
each aiding the build up of the other, so that the magnetic state of 
the improved <n̂  « 0 and “ 1 model breaks down more quickly
than for the <n ■> = 0 case. The extension of the model to describe 
<n^> ^ 0 and <n^^> ^ 1 and subsequently an up spin self energy must 
therefore improve the exponent of the effective Kondo temperature.

In the following section the magnetisation is calculated as a
function of field and the results compared with those of Bethe
ansatz. The comparison shows that the extension of the model to
account for the fact that <n ,> ^ 0 and <n *> =< 1 does indeed
improve the effective Kondo temperature.

4.3.2. Magnetisation Versus Magnetic Field.

From the exact Bethe ansatz results for the impurity model (Andrei 
et al (1983)) the f electron magnetisation in a magnetic field is 
given as:

m
1

1 -

21n
H

TK

(4.3.20)
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where H is a high field such that H/Tr > 102 and Tr is the Kondo 
temperature. In this section we calculate the magnetisation of the 
new weakly magnetic model as a function of magnetic field. The 
calculated magnetisation versus the magnetic field behaviour is 
found to be in good agreement with the exact Bethe ansatz behaviour 
of equation (4.3.20) so that a Kondo temperature for the model can 
be determined. The Kondo temperature for this weakly magnetic case 
is an improvement on the effective Kondo temperature of the <nf^>=0 
case as expected.

From the analysis of the previous section the up and down spin 
densities of states are:

1
(E) = -

f  f o - rc

( A - Im2 (E)) 
f  f  <r

( E - e - U<n > - Re2 (E))2 + ( A - Im2 (E))2 f<r f-cr ff<r ffcr

(4.3.21)

where I m2 (E) is the imaginary part of, and Re2 (E) the real 
f f < r  « f f < r

parts of the self energy contribution 2ffo<(E) of equations (4.3.18)
and (4.3.19) with, for this the symmetric Anderson model, = -U/2
and <n^t> = (1 - <n ^>). For a completely self consistant
calculation of the down spin self energy term 2ff>Ni,(E) we need the up
spin density of states above the Fermi level (see equation
(4.3.14)). However this function is only known below the Fermi
level. Similarly to calculate the up spin self energy term 2ff^(E)
we need the down spin density of the states below the Fermi level
(see equation (4.3.15)). However this function is only known above
the Fermi level. The contribution to 2 (E) from these unknown

f  f < r

densities of states is lost when we make the the spin flip pole 
approximation to the susceptibilities of equations (4.3.10) and 
(4.3.11).

The problem, then, is to find a reasonable approximation for 
the densities of states in the unknown energy regions. The
information available about these unknown densities of states is 
that they must join continuously with the known densities of states
at the Fermi level and also they must hold the correct f up and down 
spin electron weight as given by the Friedel sum rule. The
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condition that the f densities of states are continuous at the Fermi
level is written:

P ^ C O +)f f tt ( - e + ti H - U<n ,> - Z *(0))2 + A2f f'4' f f T
C4.3.22)

f f' 7T ( - c - p H - U<n *> - Z ,(0)) 2+ A2
(4.3.23)

Also the Friedel sum rule (Luttinger (I960)) for an infinitely wide 
bard can be expressed as:

r-K -  S  pf f t (E)dE<n xk> =

= - cot
n

-l
e - (i H + U<n ,> + Z ^(0)f * B  f'*' f f T

(4.3.24)

and

<nf4> = J* pff4,(E)dE
Bt

= — cot
n

-l
e + u H + U<n *> + Z . (0)f ^b ff'4'

(4.3.25)

For energies close to zero we can expand the up and down spin self 
energies in a Taylor expansion around zero to find:

p (E) r f fcr
E —  0

<r
ttA (E - E )2 + A2 <r <r

(4.2.26)

where
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Acr
A

(1 dZ (E) )
r n r

dE E=0

(4.2.27)

and

Eo* A
(e

f<r
+ U<n > + Z (0)) f-o* ff<r

AO'
(4.2.28)

If the density of states expansions of equation (4.2.26) are used 
for the form of the densities of states in the unknown energy 
regions then, from equations (4.3.18) and (4.3.19) for Z (0) inff O'
the symmetric case, where e = -U/2 and <nf^> = (1 - <n^>), we find 
that

Â , = A^ and E^ = - E^ , (4.2.29)

and hence from equation (4.2.26)

P r c f ( E) = Prr4.<-E’ > (4.2.30)

as it must be, in this symmetric case. The original idea was to 
approximate the densities of states in the unknown energy regions by 
p (E) of equation (4.2.26). With this prescription the continuity 
condition is automatically satisfied and the up and down spin f 
densities of states in the unknown energy regions are the tails of 
some effective resonance in the known energy region. For the up
spin f density of states the effective resonance is built from
contributions from the up spin f resonance around - p^H + U<n 
and the narrow resonance around -2p H. Similarly for the down spinB
density of states. Also when we allow the bandwidth to tend to 
infinity A -» A and the Friedel sum is satisfied.

Unfortunately for this choice of up and down spin f densities 
of states in the unknown energy regions it was found that that A 
varied too rapidly with magnetic field. Therefore the assumption 
that the expansions around E = 0 of equation (4.2.26) are good for
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all energies E > 0 for up spin and E < 0 for down spin is not valid.
In the following we retain the idea that for small 

hybridisations the densities of states in the unknown energy regions 
must be the tail of some effective resonance in the known energy 
region. The up and down spin densities of states in the unknown
energy regions are chosen as:

P „ t<E> s "re 7 i ( E - e  + (i H ■ U<n , > - Z *(0)) + Af f4' ffT
----- E > E ,2 . .2 F

(4.3.31)

and

Pff^(E) S "7i ( E - e - p H - U<n *> - E ,(0)) + Af ff4.
------ E ^ E ,2 . .2 F

(4 .3 .3 2 )

which satisfy the continuity condition and the Friedel sum rule 
exactly. These forms reduce to the correct up and down spin 
densities of states within the Hartree Fock approximation and for 
the symmetric Anderson model where = U/2 and <nf.jJ> = 1 - <n^> 
they give:

Relff1v(-E) = - ReZ ^(E) , (4.3.33)

and hence

Pf f * (E )  = Pf.f 4,(-E ) , (4 .3 .3 4 )

as must be true for this the symmetric Anderson model.
To calculate the magnetisation for this the symmetric case = 

- U / 2 we use

m = ( 1 - 2<nf4> ), 

where from equation (4.3.25)

(4.3.35)
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<n > = S ~t I dE.
Bt 7 t ( E - e - # i H  - U<n ,*> - Z (0)) + A

f f
(4.3.36)

From equation (4.3.36) for <n >̂, we see that <n is a function of
~ *  O  ^  ^Z (0) and hence Z (0). However from equation (4.3.14) with ff^ ff ■
(l-<n ,>) = <n *> and d (e) = p *(E) of (4.3.31), then:f* f1 ff1

A(l- <nf4,>)2

(e - e + H H -U<n ^>- X ^(O))2 + A2 f b r1 f r 1
rr (0 ) = S

Tp

TT

1

(- c - 2|i H )B
de,

(4.3.37)

so that Z .(E) is a function of Z *(E) and vice versa. However in 
this the symmetric case we can decouple equation (4.3.37) using the 
relation:

ef |iH + U<n ,*>B f T + z. (0)f r (e + p H + U<n .> + Z *( 0)). r  f 4, f f T
(4.3.38)

When equation (4.3.38) is used in equation (4.3.37) we can find Zf°j, 
(E) as a function of <nf^> and magnetic field. This relation is
then used in equation (4.3.36) to find <nf^ >.

Equation (4.3.36) cannot be solved analytically for <nf^> 
instead it is solved computationally as a transcendental equation 
for <n^>. To find the solution the computer evaluates both sides 
of the equation for several values of <nf.vl,> in a specified interval
until it finds a value for <n ,>f4. for which both s ides match to the
required accuracy. For each <n in this interval a similar
procedure is carried out to solve equation (4.3.37) as a
transcendental equation for Z° ^(E) •

The Bethe ansatz result of equation (4.3.20) can be
re-expressed, assuming H and Tr are measured in units of eV, as:
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------ = In.IHI - In|T I, (4.3.39)
4<n > k

where H and T are dimensionless. Therefore a plot of l/4<n .>K r
versus In | H | should have a gradient of one and cut the l/4<nf^> axis 
at ln|Tk| for any hybridisation. Figures 4.6 to 4.9 are plots of 
the calculated l/4<nf^> versus In |H | for various A. For each case 
the scaling is seen for H/Tr > 10 (assuming Tr - 0.0007eV) and H < D 
where

1

|e |tt1 f 1

Tr = D e 2A , (4.3.40)

(Andrei et al (1983)). For each of the figures the upper curve is
the Hartree Fock result, where the exact self energy is approximated 
as:

Z (E) = U<n >, (4.3.41)f f O' ex f-O*

and the lower curve is the model result:

Z (E) = U<n > + Z (E). (4.3.42)ffO* ex f-O* ffO*

The dotted line has the expected gradient of one for comparison with 
each of of the curves. For each hybridisation the model gives 
better agreement with the Bethe ansatz behaviour (shown by the 
dotted line) than the Hartree Fock result. The bandwidth is chosen 
to be extremely large W = 200eV in order to ensure the validity of 
the Friedel sum rule and U = 7eV. The hybridisations studied range 
from V = 0.56 (A = 0.005eV) to V = 1.69 (A = 0.045eV). For the
smallest hybridisation, A = 0.005eV, the Hartree Fock and model
results are closest. For larger but still small hybridisations the
model results show increased improvement over the Hartree Fock
result.

To see how the extension of the model to <nfv̂ > ^ 0 improves the 
Kondo temperature we substitute the Bethe ansatz expression for the
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Kondo temperature of equation (4.3.40) in equation (4.3.39) so that

1 |e Inf 1
------ - In | H | = - In | D | + ------ . (4.3.43)
4<n > 2A

From equation (4.3.43) we see that a plot of l/4<nf4> - ln|H| versus 
| 17r/A should have a gradient of 1/2 if the exponent in the Kondo
temperature is correct. For the <nf^> = 0 model the exponent of the 
effective Kondo temperature is wrong by a factor of two so that in 
terms of the aforementioned plot the gradient is one rather than 
1/2. Figures 4.i, and 4.10 show this same plot for the improved 
<nf^> ^ 0 model. These plots have a gradient of around 1/3 so that 
the Kondo temperature is indeed improved. In Figure 4. 10 the 
magnetic field is taken to be O.OleV (H/Tr 10) while in Figure
4.11 it is 0. leV (H/T^^ 102). For the larger field case of Figure 
4. 11 the Kondo temperature shows the best improvement.

4.3.3. Conclusion.

We identify the origin of the error in the exponent of the effective 
Kondo temperature of the strongly magnetic case to be the 
inconsistency introduced when we assume that the hybridisation is 
non zero and yet maintain that the down spin occupation is zero. 
When the model is extended to treat the fact that the down spin 
occupancy is never strictly zero, the weakly magnetic case, we see 
that although this occupation is still small it allows the build up 
of an up spin self energy. The up and down spin self energies for 
this weakly magnetic case are identified and are seen to be the 
origin of resonances in both the up and down spin densities of 
states near the Fermi energy.

A numerical calculation of the magnetisation as a function of 
magnetic field is made for the symmetric case where e = -U/2 and 
shows good agreement with Bethe ansatz results. Also via a
comparison with the Bethe ansatz results we can identify a Kondo 
temperature. This Kondo temperature is shown to be an improvement 
over the effective Kondo temperature of the strongly magnetic case
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in which the down spin occupation and the up spin self energy are
assumed to be zero. Therefore when we treat the hybridisation of 
the down spin more self consistently we find that the magnetic 
ground state breaks down earlier with increasing hybridisation.

Similar reasoning can be applied for the analysis of the weakly 
ferromagnetic situation in the lattice. Up and down spin self
energies analogous to those of the impurity calculation can be 
identified. Once again they are the origin of resonances in the up 
and down spin density of states near the Fermi level so that again 
we see how the inclusion of the up spin self energy leads to a 
quicker breakdown of the magnetic state with increasing
hybridisation and hence an improved Kondo temperature. As in the
impurity case the model does not yield expressions for the f 
electron density of states in certain energy regions once we make 
the magnon pole approximation to the susceptibility. In order to 
make any numerical calculations some form must be proposed for these 
missing densities of states. Unlike the impurity calculation there 
is no Friedel sum rule for guidance. Therefore we either have to
introduce some inconsistency to the model by guessing at these 
densities of states or, perhaps relax the magnon pole approximation 
so that the susceptibility has some lorentzian form. This second 
possibility would of course bring in the complication of parameters 
which would then have to be fitted.
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CHAPTER 5.

CRYSTAL FIELDS.

5.1. INTRODUCTION.

In most HF systems the degeneracy of the f level is treated as spin 
only, that is as two, rather than the full angular momentum 
degeneracy of fourteen. For many cerium systems this approximation
is reasonable since crystal field effects and spin orbit coupling 
split the degeneracy and in the ground state the lowest level is a 
doublet. In treatments of HF systems account of the coulomb
interaction and hybridisation is usually given first priority and 
the crystal field effects and spin orbit coupling are neglected. 
However it is through a combination of crystal fields and spin orbit 
coupling that the spin rotational symmetry of a system is broken, so 
that these effects are the origin of magnetic anisotropy in real 
systems. The existence of magnetic anisotropy means that it costs 
different energy to point the moment in different directions. In 
the spin only case of Chapter 3 the zero momentum magnon excitation 
corresponds to a rotation of total spin and costs no energy since
the model does not care how the moment is orientated. However in
the real systems the existence of magnetic anisotropy means that 
this rotation costs energy and thus the zero momentum magnon energy 
is finite as is seen in Figure 5.1.

Consider an improved model which takes account of crystal field 
effects, spin orbit splitting, hybridisation and coulomb
correlation. If all these ingredients are present and are treated 
in a sensible way then a calculated magnon dispersion relation must 
permit comparison with the experimentally measured magnon energies. 
The ultimate aim, then, is to develop a model which contains 
magnetic anisotropy and then apply it to a particular system. Since 
any calculated magnon energy is necessarily a function of
hybridisation, a comparison of the calculated and experimentally



measured magnon energies then gives a measure of the hybridisation 
of the system. Once the hybridisation is determined it can be used 
for a self consistent mass enhancement prediction. In the present 
work a model which can describe magnetic anisotropy is proposed and 
an analytical expression for the magnon energies is obtained. The 
actual calculation of the magnon energy and the comparison with 
experiment is left to future work.

A comparison of this sort is worthwhile since the hybridisation 
is very much an unknown quantity. The hybridisation is some measure 
of the overlap of conduction electron wavefunctions and the 
localised f electron wavefunctions, and is normally taken as
momentum independent, which is a very crude approximation.

2Gunnarson and Schonhammer estimate A = ttV p , where p is theO O
unhybridised conduction band density of states, to be of the order 
of 0. leV for typical rare earth systems. They arrive at this value 
by fitting their calculated densities of states to XPS and BIS 
results.

The systems we aim to model are ferromagnetic systems in which 
the crystal field splitting is large and the lowest lying crystal 
field states form a Kramers doublet. In these systems the remainder 
of the crystal field states are at higher energies and can be
considered to be unoccupied in the ground state. The ferromagnetic 
HF system CeSi^, where 1.7 < x < 1.83, falls into this category. In 
CeSi^ the lowest energy f states have J = 5/2 and from a low lying 
T7 doublet as well as two other doublets up by 300K (Sato et al 
(Preprint) and Section 5.2.4). This system has a gap at q = 0 (see 
Figure 5.1) in the magnetic excitation spectrum due to the presence 
of magnetic anisotropy.

In normal local theories of rare earth metals the magnetic
anisotropy is described assuming the full J = 5/2 is involved in the
ground state. However in systems like HF CeSi^, 1.7 < x < 2.0, and
CeAs where there is a large crystal field splitting, only the r7 
state has non negligible occupation in the ground state and 
therefore the anisotropy should result from interactions of the 
conduction bard with the T7 band alone. In fact Thayamballi and 
Cooper (1985) find magnetic anisotropy for just such a case, that is 
a two bard model of a flat T band and a conduction bard. Therefore

7

we expect that to obtain magnetic anisotropy it is sufficient to
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consider only the r b a n d  and conduction band in the model.
The system is treated here as a doubly degenerate f level 

which hybridises with a conduction band. The f electrons now occupy 
the crystal field states of the low lying doublet and are subject to 
coulomb repulsion when they occupy crystal field states on the same 
site. When the Anderson hamiltonian is written in this new basis of 
crystal field eigenstates the effects of crystal fields and spin 
orbit coupling are included in the model. The resulting hamiltonian 
is different to the spin only hamiltonian of Chapter 3 because now 
both the f doublet states hybridise with both the up and down spin 
conduction bands. The model therefore has a non spin only nature 
and thus we expect it to contain the magnetic anisotropy found by 
Thayamballi and Cooper (1985).

The new model, like the spin only model, also predicts the 
breakdown of the magnetic state with increasing hybridisation and so 
is ideally suited to description of the HF system CeSi^ which is 
discussed in Section 5.2.4. For 1.7 < x < 1.83 CeSi is magnetic,X
while for 1.83 < x < 2.0 it is non magnetic. From a tight binding 
picture we find that increasing the Si concentration increases the 
hybridisation (see Appendices B and C). Therefore in CeSi^ the 
magnetic state breaks down as the hybridisation increases so that 
this HF system is an ideal candidate for comparison with 
quantitative predictions of the model.

In the following sections we set up a general model in which it 
is recognised that for a particular case the model reduces to 'spin 
only'. When a model or a hamiltonian is labelled as 'spin only' we 
mean that the hamiltonian can be written within a new basis so that 
each of the two degenerate f doublet states hybridises with only one 
of the new orthogonal conduction states. Also the hybridisation 
between these two sets of f states and conduction band states is the 
same. Therefore we can easily identify a zero momentum pseudo 
magnon excitation which costs no energy. Any hamiltonian which is 
described as 'spin only' is analogous to the spin only model where 
the spin <r f's only hybridise with the spin <r conduction electrons, 
with the same hybridisation, and a simple zero momentum magnon 
excitation costs no energy. A 'spin only' hamiltonian does not 
describe magnetic anisotropy.

A similar variational calculation to that of Chapter 3 is made
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and, since the findings of Thayamballi and Cooper (1985) indicate 
that the model should have magnetic anisotropy the mass enhancement 
is calculated, avoiding the choice of hybridisation for which the 
model reduces to /spin only7. Later it is shown that the spin only 
condition is always satisfied when a T7 doublet hybridises with a 
single s or p^ conduction band in any lattice with inversion 
symmetry. The implication is that the magnetic anisotropy
calculated by Thayamballi and Cooper (1985) is due to some numerical 
error. In fact Thayamballi and Cooper remark that their calculated 
spin wave dispersion has the structure of 'spin only' which seems to 
vindicate the conclusion that their magnetic anisotropy is an error.

Finally it is shown that in order to obtain the magnetic 
anisotropy which we know to exist in real systems like CeSi^ and 
CeAs at least two conduction bands are needed.

Figure 5.1. The magnetic excitation dispersion in CeSi^ (Kohgi 
et al (1987)).
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5.2. A GENERAL THEORY.

5.2.1. The Hamiltonian.

Consider a system like HF CeSi^ or CeAs in which the crystal field 
is large so that in the ground state the lowest lying f states form 
a Kramers doublet. The remainder of the crystal field states are at 
much higher energies than the doublet and can be assumed to have 
negligible occupation in the ground state. We propose a Anderson 
lattice hamiltonian, for systems such as these, which describes a 
band of conduction electrons, a flat band of f electrons in the 
crystal field states of the low lying doublet, the hybridisation 
between the f electron states and the conduction electrons and the 
coulomb repulsion between f electrons in crystal field states on the 
same site:

H =CF
+ + +

2  Ck°l«r0W  + Grfnifni + £ ‘ V<rn(k)°k/lcn+ h ° 5
k<r n 1 knO*

+ +

(5.2.1)

where

+  - iJ r  R f  +f . = V e f
I n  u  kn

k
(5.2.2)

Here c^ creates a conduction electron in a state of momemtum k and k<r i
energy c , while f [ , n = 1 or 2, creates an f electron in one ofk In
the degenerate crystal field states (labelled by n) on site i. The
hybridisation term is chosen to allow mixing between f and
conduction electrons of the same spin only. Since the crystal field
states are a mixture of both up and down spin states this term
hybridises both the up and down spin conduction states with both
crystal field states to degrees dependent on the amplitude of up and
down spin f’s present in the crystal field states.

The various V (k) are defined as: crn
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V(Tn( k )
f

<V|c H* f |V>.k(T C F  kn (5.2.3)

In general the hybridisation matrix, V (k) is treated as momentum0*n
independent and we adopt the same strategy later in this section.
In Section 5.3.1 and 5.3.2 the full momentum dependent
hybridisations, V (k), are calculated within the tight binding<Tn
approximation. The calculation shows that for the present model
with hamiltonian H*f given by equation (5.2.1) the momentum
dependence of the hybridisation must be considered to avoid the loss 
of important symmetry properties.

At this stage we notice that if we choose new basis states as 
linear combinations of the original up and down spin conduction 
states with creation operators:

E V (k)c+
u  <rn k<r

4-cj = ----------- , (5.2.4)kn _______________

A  ivc-„(k)i2<r

where n = 1 or 2 labels the new basis states, then, within the new
4- 4-basis, c 1 , c, f 1 , f , n = 1 or 2, the hybridisation termkn kn kn kn

becomes:

Hhy b = E <
kn

V (k)cn kn+ fkn h.C. ), (5.2.5)

where

V (k) A  lV,r„(k)|2-<r
(5.2.6)

The condition for the new basis 
orthogonal is:

states c+ I V> and c"̂  I V> to bekl 1 k2 1

[ C km = 5 ,nm (5.2.7)

or
Va = + V ^ k J V ^ k )  = 0. (5.2.8)
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4- 4-When V = 0 we have a new orthogonal basis: c 1 , c , f 1 , f , n = 1a  ®  kn kn k n  kn
or 2. Also if the hybridisations V (k) are such that not only is(Tn
the orthogonality condition, Va = 0, satisified but also

Vi(k) = V2(k), (5.2.9)

then the hamiltonian HA reduces to a 'spin only' type hamiltonianCF
in which the conduction electron states and the f electron states
are characterised by a pseudo spin, n = 1 or 2, instead of just a
straightforward spin and we can identify a zero momentum magnetic
excitation which costs no energy. This excitation is a zero
momentum pseudo magnon which results in a pseudo spin flip analogous
to the straight forward spin flip which results when the magnon of
Chapter 3 is excited. Also in analogy with the original spin only
case, the zero momentum pseudo magnon amounts to a uniform rotation
of the pseudo moment and since this costs no energy the new model is
insensitive to different orientations of the pseudo moment.
Therefore when V =0, V ( k ) = V ( k ) ,  the model contains no magnetic a l 2
anisotropy. Since Thayamballi and Cooper find magnetic anisotropy 
using a simple two band model it is assumed that for general 
hybridisation the criteria for the reduction to a 'spin only' 
problem are not satisfied. In the remainder of this section the
model is treated for general hybridisations assuming that the 
conditions for the reduction to 'spin only' are not satisfied.

Once again a completely general diagramatic derivation of the f 
electron Green function is useful. Suppose that the hybridisation
and the coulomb interaction are treated as perturbations on the non 
interacting system of up and down spin conduction bands and two flat 
crystal field bands. An f electron now enters the system. It can 
either propagate without interacting as either a non interacting f 
or f propagator or it can interact with the system. If the
interactions with the system are treated in two parts, namely, those 
in which the f electron emerges still as an f and those where it is 
changed to a conduction electron, then the propagator can be written 
as the solution of the self consistent equations:
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V M

^ f m  ^ (k.E) I ^lk.E) Gf(k,E)
( 5 .2 . 1 0 )

(KET)—- > =  + — >—
t\\(k.E) l\fJk,E) (̂k.E)

IKElWr
a,{k.E)
lTt

. V^lk)

Gf(k.E)
— >— j~ >
G° lk,E) &.(k,E)

rr  i ' t
G° (k,E) Ĉ (k,E)
r r i X.

( 5 . 2 . 1 1 )

6Jk.E)
Vz

-  I

V.(k)®i!

> i )
o- G; tk,E) G (k,E)

n Vz
G°lk,E)
IM

(KE)>=^=
G,,(k,E) ( 5 . 2 . 1 2 )
fA

Gf°.(k,E)Vl

(kE))= -r
Gf(K,E)V*

so that
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Gf f (k.E) = Gf°f (k,E) + £ Gf°r (k,E) V^fk) Gc f (k.E)
2 2 <r 2 2

+ G (k.E) Z (k.E) G , (k.E)f f 2 2 f f2 2 2 2

+ Gf°f (k,E) Zai(k,E) Gf f(k,E),
2 2 1 2

(5.2.13)

G (k,E) = G (k,E) V (k) G (k,E)C f C C 0*2 f fa 2 <7 C7 2 2

+ G (k,E)V (k)G (k.E), c c cri f f
CT <7 1 2

(5.2.14)

Gf f (k.E) = Yt Gf°f (k,E) V ^ k )  Gc f (k.E)
O’ i i

+ Gf f (k.E) Z 2(k,E) Gf f (k.E)
11 2 2

+ Gf"f (k.E) Z^tk.E) Gf f (k.E).
11 1 2

(5.2.15)

and the quasi particle energies E are the zeros of

E - e k 0 -V , (k) 
*T

“V (k) 
2*t

0
*

E - ek
*

-V (k) 
**

~V (k) =0

1 < N ** W -v (k) E - e -  Z (k,E) z (k,E)1^* U* f 11 ex 12 ex

-V (k) -V (k) Z (k,E) E - e - Z (k,E)Zl ex f 22 ex

(5.2.16)

All the unknown quantities have been assigned to the self energies 
I (k,E) n,m one or two. The subscript, ex, is intended ton o  ex
indicate that these are the exact quantites. 2 (k,E) containsnn ex
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with the system via the coulomb interaction and after all subsequent
interactions it emerges finally still as an f . Z (k,E) isn 12 ex
another proper self energy containing all processes or diagrams in 
which an f first interacts with the system via the coulomb 
interaction and after all subsequent interactions it emerges as an 
f . Similarly for I^Ck.E)^.

The following calculation involves postulating a reasonable 
variational wavefunction for an f electron in the system by 
including those processes which are considered to be the most 
important under the condition of large U and negligible occupation 
of one of the crystal field levels, that is strong ferromagnetism. 
The method yields determinantal equations for the quasi particle 
energies of the correct form derived above.

all processes or diagrams in which an f electron first interactsn

5.2.2. The Ground State For U Infinite.

As for the spin only case a variational wavefunction for an f 
electron in the system is proposed and a Dyson equation for the 
quasi particle energies results. The first task is to propose a 
ground state for the system and, once this is established, to 
calculate the f single particle Green function by postulating what 
happens when an f electron is added to the system.

The method is applied firstly to the U infinite or strongly
ferromagnetic system. The description is of a ferromagnetic system
where it is assumed that in the atomic limit the f state of the low

1
lying doublet is occupied, and coulomb repulsion renders the other 
crystal field state unoccupied at large energy. Therefore 
the starting point for V * 0 is a Hartree Fock ground state of f 
states hybridising with both up and down conduction bands and an 
unoccupied and unhybridised crystal field band of f states at 
energy cf+ U<ni>, where <n > is the occupation of crystal field f 
states in the ground state.

In this U -» oo Hartree Fock ground state we assume that the off 
diagonal or Hartree Fock exchange terms sire zero due to symmetry in 
the lattice (see Section 5.2.6) or are at least small for large 
enough U. Later in Section 5.2.6 when the Hartree Fock ground state
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is examined more closely we find that this is indeed the case but 
only for a certain choice of hybridisations. These particular 
hybridisations satisfy one of the criteria for a 'spin only' 
hamiltonian, that is = 0 (see equation (5.2.8)). For general 
hybridisation, Va * 0 and these Hartree Fock exchange terms are non 
zero and must be included (see Section 5.2.6).

In the remainder of this section we assume that the Hartree 
Fock exchange terms are negligible. The hybridisation of the lower 
crystal field level with the conduction band results in new bands 
whose energies and wave fuctions are eigenstates of:

H° = £ c 
c f  u

c 1 c +k kO* k0* kcr i
V c ft\f . + 
H  f li li f +f^E V (cT f +fT c ), 

u  01 k<r kl kl k<rk or
(5.2.17)

where the hybridisation matrix is assumed real and k independent as 
is usual in treatments of the Anderson hamiltonian. The operators
4-a 1 , a which diagonalise the hamiltonian H are:kb kb °  cf

a^ = A f+kb knb kn E B c^u kerb kcr or
(5.2.18)

where

+1H° a T |V> = g a T |V>,CF  kb kb kb
+ 1 (5.2.19)

and the subscript b allows for the possibility of more than one
band. As for the spin only case we solve for A , the f amplitude
in any eigenstate, the spin or conduction electron amplitude in
any state, and new band energies energies ekb The eigenstates of
energy ckb sire found to form three bands with energies satisfying

Gkb G k

0 G - Gkb k = 0

- Vt1 V
4,1

G kb G f

(5.2.20)
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where the subscript b labels the possible multiple solutions, or
bands, of equation (5.2.20). When equation (5.2.20) for the quasi
particle energies is coupled with the with the final equation for
the flat band at e + U<n >, that is f 1

c - e - U<n >= 0 (5.2.21)kb f 1

then the full equation for the quasi particle energies of the
approximate ground state is identical in form to the general
equation for the quasi particle energies determined from a general
diagramatic expansion (see equation (5.2.16)). In this approximate
ground state the coulomb interaction is treated in the Hartree Fock
approximation and the hybridisation of crystal field f with the
conduction bands is assumed to be zero so that Z (E) is22 ex
approximated by U<ni> and V by zero in equation (5.2.16). From 
this Hartree Fock starting point we proceed to include more effects 
of the coulomb correlation. The improvements appear as corrections 
to the Hartree Fock self energy, as they must to agree with the 
prediction of the general diagramatic expans ion

The three hybridised bands of equation (5.2.20) are labelled by 
the band index b = a, 0 or y and have energies e ^given by:

c
k a (5.2.22)

ek'
e + ek f G )2 + 4V2k

2
(5.2.23)

where

V2 (5.2.24)

These energies, g , describe a quasi band labelled by a in which
the quasi particle states are a mixture of up and down spin
conduction states only, and have energies equal to the original
conduction band energies. The other two bands contain a mixture of
both up and down spin conduction states as well as some f weight.

2The f weights in the quasi particle states are A^lb where
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Aklb
V

/•+ v*
b = 3,r . (5.2.25)

and

kia = 0 (5.2.26)

and the up and down spin conduction weights are B2k(Tb where

Bkerb
V

0*1
(ckb ' cr>

cf f + VK
b = &,7 (5.2.27)

V
B = o *  -<rl . (5.2.28)ko*a -----

V

In equation (5.2.28) o* = 1 when spin is up and cr - -1 when spin is 
down. Also the normalisation associated with equation (5.2.18) is:

V B2 + A2 =1, (5.2.29)u kO*b klb<r

for any band b. The ground state is written in terms of the 
eigenstate creation operators as:

10> = tt a^ | V>11 kb kbo c c
(5.2.30)

It is correct in the atomic limit of no hybridisation and is 
considered to be a good basis for an improved treatment of coulomb 
interaction. In the postulated ground state |0> the band picture 
can be drawn schematically as in Figure 5.2
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Figure 5.2. A schematic ground 
state band picture for the periodic 
Anderson model with crystal field 
and spin orbit effects included.

From equation (5.2.25) for the f weight in the 0 and y bands we see
that for e , b = 0 or y, near e the states in these bands are of
mainly f character whereas for e , b = 0 or y, away from they
are mainly conduction in character. The initial assumption that the 
upper crystal field level is unoccupied and that its hybridisation
may be neglected results in an a band of purely conduction 
character.

5.2.3. A Variational Wavefunction.

The next stage in the calculation is the proposal of a variational
wavefunction for an f electron of momentum k in the presence of the
interactions described by the periodic Anderson hamiltonian of
equation (5.2.1). As in the spin only case of Chapter 3 the
wavefunction is written sis a linear combination of all the most
likely processes which would occur if an f electron were put into
the system. At zero temperature the lowest energy and most likely
processes are considered to be the following: the f electron can
occupy the upper crystal field state f , it can, via hybridisation
V , occupy the state a and via V the state a and also ini<r k0 2cr ka
analogy with the spin only case it can, via the coulomb interaction,
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scatter into a state a ^  and excite a particle hole or magnon type 
excitation. The creation operator of the low energy particle hole
excitation of this problem which is analogous to the magnon in the 
spin only case is approximated as:

Ak-k'
y f + f
U  (p - k ' )2 (p-k)l P

(5.2.31)

This low energy excitation created by , is not actually a magnon 
but will be called by that name in what follows. The variational 
wavefunction is written as a linear combination of all these 
possible low energy excitations:

¥> = M f+ |0> + E N a+ |0> + E G , a+ A" , |0>, (5.2.32)k k2 kb kb , k p  k p  k - kb = a 3
k' dffiocc

where the sum over k' is such that states k'/3 are unoccupied. The 
third process in the wave function is mediated by the coulomb 
interaction and has the end result of adding a correction to the 
Hartree Fock self energy of the approximate ground state. The self 
energy diagrams which correspond to this third process in which the 
f electron scatters into an ak/£ state and excites a magnon can be 
represented by Figure 3.3 where now the up spin f propagators are 
replaced by the f propagators and the down spin f propagators by 
the f propagators. The self energy diagrams of Figure 3.3 and 
hence the corresponding process in the variational wavefunction are 
considered to be the most important for inclusion in the calculation 
of this strongly ferromagnetic ground state in which the occupation 
of the f state is close to one in analogy with the spin only case 
(see Section 3.2.3).

We solve for the coefficients of the variational wavefunction 
by left multiplying the Schrodinger equation:

H|4o = E|tf> , (5.2.33)

by f , a Q and A+ ,,a //a . The result is equation (5.2.34) fork2 k p  k - k  k p
the excitation energy E = £-E where E is the ground state energyO O
and E > 0. Since the poles of the f electron Green function are by
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definition these very excitation energies then equation (5.2.34) is 
a Dyson equation for the quasi particle energies E greater than the 
Fermi level:

E - e

- M2a(k)

0

E- e

- M2a(k)

- M2p(k)

M20(k) E - e - Z (k,E) p  f 22

= 0, (5.2.34)

where

M2 (k) = (Y V B ), a u cr2 k<ra<r
(5.2.35)

= ' E ' W W -o*
(5.2.36)

and

U2A2, <n > k 1 b 1

k 7 8uno c c .

Z (k,E) = 22
E - G . - hw .k 8 k -k + U<n > .l

U A2,k7 1 8

k' 8u n o c c .E - G . - hCt) .k 7 8 k-k

The magnon energy in this approximation is defined by:

(5.2.37)

hw , + Ek-k o

<01A+ 7HA A M 0 >k - k 7 CF k - k 7

<0|A* . A' ,|0> k - k  k-k

(5.2.38)

where E is the energy of the approximate ground state.o
The Dyson equation (5.2.34) can be expressed in the form
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expected from the general diagramatic expansion of (5.2.16). We
rewrite the hamiltonian HA in the new basis of eigenstates a "Hv>
and perform another general diagramatic derivation, this time
treating only the hybridisation of the f level and the coulomb
interaction as perturbations. The Dyson equation which results must
describe the same quasi particle energies as equation (5.2.16).
Since the variational wavefunction of equation (5.3.32) can only
describe f electron states with k > k and E > E where k is theF F f
Fermi wavevector and E^ is the Fermi energy we write down this 
general diagrammatic expansion for an f particle propagator, that 
is with k > kp. The Dyson equation which results has exactly the 
form of equation (5.2.34) so that the calculated Dyson equation 
(5.2.34) is equivalent in form to that expected from the diagramatic 
expansion of equation (5.2.16).

The spin only model of Chapter 3 does not describe magnetic 
anisotropy and thus does not • support the definition of a realistic 
magnon. This limitation of the 'spin only' model means that in the 
spin only self energy of equation (3.2.18), which is analogous to 
the crystal field self energy of equation (5.2.37), we do not 
calculate the magnon dispersion self consistently but approximate it 
by a flat magnon dispersion. The approximation of a flat magnon 
dispersion is not unreasonable for CeSi^ (see Figure 5.1). The new 
crystal field model however can describe magnetic anisotropy 
provided Va * 0 or V^(k) * V2(k) (see equations (5.2.8) and
(5.2.9)). Therefore at this stage we could define and calculate a 
more realistic magnon dispersion which could then be compared with 
the measured magnon dispersion for a particular system to determine 
the hybridisation in this system. However in Section 5.3.1 we show 
that when a doublet band hybridises with either an s or p
conduction band in a lattice with inversion symmetry Va = 0 and 
Vj(k) = Vg(k) so that the model reduces to 'spin only'. Therefore 
this simple two band model cannot describe the magnetic anisotropy 
observed in the large cystal field system CeAs. CeAs has a cubic 
lattice and therefore inversion symmetry. It is also likely that 
the two band model is not sufficient to describe the magnetic 
excitation spectrum in systems where the lattice does not have 
inversion symmetry. Therefore we continue to search for a model 
which does not reduce to 'spin only' and can describe magnetic
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anisotropy.
In order to discuss the 'spin only' or non 'spin only' nature 

of a model the actual hybridisations between the doublet band and 
a conduction band must be calculated for a particular system. At 
this stage the prototype system CeSi^ is introduced.

5.2.4. The Prototype System CeSi^

The model of the previous section is completely general in that it 
can be applied to any system in which the crystal field is large and 
the only f states which are occupied in the ground state form a 
doublet. As in the spin only case of Chapter 3 the model predicts
the build up of HF behaviour as well as the breakdown of the
magnetic state with increasing hybridisation. In order to make any 
quantitive comparison with experiment it is necessary to calculate 
the hybridisation for a particular system. The HF system CeSi is

X

chosen for the calculation.
For 1.7 ^ x < 1.83 the system CeSi is magnetic while for 1.83

X

^ x i 2.0 it is non magnetic at least down to 0. IK. The electronic
specific heat of the non magnetic system is fairly large y =
0. lJ/molK2 for x = 2.0 and y = 0.2J/molK2 for x = 1.86. From
studies of the magnetic susceptibility and the magnetic part of the
resistivity the system is judged to be a dense Kondo lattice system
(M. Kohgi et al (1987)). The system undergoes a magnetic transition
for x < 1.83 at T = 10K. The saturation moment is much reducedc
from the moment expected by considering the crystal field effects

3  +for a Ce ion, as is the magnetic entropy. These measurements
suggest that the ferromagnetic state is also strongly affected by
the Kondo effect. The experimental facts indicate that CeSi is on

X

the boundary of a ferromagnetic instability caused at least partly 
by the competition between the Kondo effect and the exchange 
interactions. The HF system CeSi is an ideal candidate for

X

modelling since: it is heavy, it varies from magnetic, 1.7 s x <
1.83, to non magnetic, 1.83 3 x s 2.0, with increasing silicon 
concentration or hybridisation and in the ground state the lowest 
lying crystal field states form a T7 doublet.

In CeSi^ the multiplet J = 5/2, where J is the total angular
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momentum, of the Ce splits into three doublets in the tetragonal 
crystal field. These three doublets are the lowest lying crystal 
field states of the system and consist of a T7 doublet and a split 
rs quartet at higher energies. The splitting between the T7 doublet 
and the lowest of the higher energy states is 300K (Sato et al 
(Preprint) so that only the T7 has a non negligible occupation in 
the ground state. The states of the doublet are written:

r = a|±§> - b|+§> , (5.2.39)

where a and b are coefficients depending on the crystal field of the 
system. For CeSi^ x = 1.7 ( a magnetic system ) these
coefficients are calculated to be a = 0.472 and b = 0.882 (Sato et 
al (Preprint)). Also the same authors calculate a = 0.454 and b = 
0.981 for the non magnetic system with x = 1.86. These values for a 
and b are not much different from the cubic crystal field values of 
a = 0.408 and b = 0.913.

The states |±-> and |±-> of the T doublet all have total1 2 2 75angular momentum J = - and are quantised by their z components of
5 3angular momentum = ±- and = ±- respectively. The two states 

of the T doublet are written:7

ri7 = fti|V > = al+I> ' b|-^  (5.2.40)

r„  = fii|V > * al“ > - (5-2.41)

where |V> is the vacuum and i a site index. These states can be 
written as linear combinations of products of their orbital angular 
momentum and spin components weighted by Clebsch Gordan coefficients 
as:

3 +

J >=z >

= T. <L=3,S= -,m ,m J=-,J > L=3,m > S=-, m >,
u  2 L s' 2 z 1 L 1 2 Sm m
L 5

st. m +m = J
L S Z

(5.2.42)
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*

where L is the total orbital angular momentum which is three for f 
electrons, S the total spin of 1/2, m the z component of orbital

L iangular momentum and mg the z component of spin either ±- for spin
up or down.
<L=3,S=-,m , m |J=-,J >, as C2 L s 1 2 z m o

We write the Clebsch Gordan coefficients 
where or now serves the purpose of

m so that

f+.T .|V> = a V C11 u m ft. V> - b E C fl |V>,Id 1 " m o lm aft
m o l

L

m +<7 = 5 / 2

m <7 l
L

m +cr = - 3 / 2

(5.2.43)

f +. | V> = a V C  ft |V> - b V C  ft |V>,m o 2m a 1
m  17 L  L

m =-5/2

m o im
m  o L  L

L

m + ct=3/2L
(5.2.44)

where ft is an operator, obeying normal fermion anticommutationlm <r
L

relations, which creates an f electron with z component of orbital 
angular momentum m L and spin or on site i. At this stage it is 
useful to calculate the magnetic moments, fi of the T states. Then n7
magnetic moments are defined as:

H  = <r J +S r > n=l or 2,n n 7 1 z z 1 n7 (5.2.45)

where is the usual operator which measures z component of angular 
momentum in a state so that

J J , J >  = J J , J  >,z 1 z z 1 z (5.2.46)

and S measures the z component of spin

S I S = - , <r> = <r| S = - , or >.z 1 2 1 2 (5.2.47)

Here J, J^, S and m^ are as in equation (5.2.42). The magnetic 
moments for arbitrary a and b are therefore:

179



2 15
>

7
(5.2.48)

7

where we have substituted the values of the relevant Clebsch Gordan

other of the crystal field states is practically fully occupied. 
The magnetic moment expected by considering the crystal field
effects is n = - 0.523n if the T level is occupied or jn = 0.523n1 B 17 2 B
if the r is occupied. However the measured magnetisation for 
CeSi^ with Tc = 13K is strongly anisotropic with a saturation
moment for the Ce atom of around 0.45pB along the a axis. The
moment of the ferromagnetic ground state is therefore already much
reduced from its expected value of 0.523/ib for the strongly 
ferromagnetic ground state of zero r occupation. The Kondo effect 
must be competing with exchange so that there is some r occupation 
in the ground state.

5.2.5. The Mass Enhancment.

The model and variational treatment of Sections 5.2.1 to 5.2.3 are 
only good in the limit Va -> 0 where V is defined in equation 
(5.2.8) since only in this limit are the Hartree Fock exchange terms 
negligible (see Section 5.2.6). In Section 5.3.1 we show that for a 
band of doublet states hybridising with a single conduction band 
in any lattice with inversion symmetry the criteria for a 'spin 
only7 hamiltonian as defined in Section 5.2.1 are always satisfied. 
Therefore the magnetic anisotropy of the model is lost. However in 
real systems like CeSi there are deviations from complete inversion 
symmetry as the concentration of silicon is varied.

In the remainder of this section a brief mention is made of an 
initial mass enhancement calculation for CeSi in which it isl. 7
assumed that the off diagonal Hartree Fock terms are negligible but
V * 0. The hybridisation, V , of the crystal field state T with a <Tn n7
the conduction band state of spin <r, is assumed to be proportional 
to the amplitude of the spin <r, f in the state f . From equations

coefficients in equations (5.2.43) and (5.2.44). For the
ferromagnetic ground state of CeSi we expect that one or the
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(5.2.43) and (5.2.44) we find:

,, , 2—2 . 2—2 .1/2
V  “ <a c2t + b c_2t> (5.2.49)

v « (a2c“t + bV lt r (5.2.50)

v = V and V = V (5.2.51)

As for the spin only model, the mass enhancement is defined as the 
ratio of quasi particle band density of states over the unperturbed 
conduction band density of states. The states in the quasi particle 
bands are a mixture of f electrons of both spins. The band picture 
can no longer be split into up and down spin band parts as was the 
situation in the spin only case. Therefore mass enhancment is given 
by:

m* £ N (E)
b

- =' ------- , (5.2.52)
m N (E) e=oo

where N (E) is the density of states in quasi particle band b andb
N (E) is now the sum of the up and down spin conduction band densityO
of states.
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MASS ENHANCEMENT VERSUS HYBRIDISATION

Figure 5.4. The mass enhancement versus hybridisation. The
figure shows a plot of mass enhancement versus V = ( )wa
for e^= - 1.5eV, U = 7eV said unperturbed conduction band width W =
lOeV. Also a = 0.472, b = 0.882 (Sato et al (Preprint)) and the
magnon dispersion is taken to be flat with hw .= 0.002eV for allk - k
k-k'(Kohgi et al (1987)).

5.2.6. The Hartree Fock Ground State For U Finite.

When the calculation is extended to U finite it becomes clear that 
the U infinite limit of Section (5.2.2) is only strictly correct 
when the condition Va = 0 is satisfied and not for general
hybridisation as was assumed for the mass enhancement calculation. 
For general hybridisation the off diagonal Hartree Fock terms are 
non zero and, as the following calculation shows, are finite even 
for infinite U.

With U finite the operators which diagonalise the Hartree Fock 
hamiltonian are:

a 1k 1 E
n

f+ +A f 1 + V B cknl kn u  k<Tl k(T<r
V>, (5.2.53)
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where 1 is the band index and n = 1 or 2 labels the crystal field 
doublet states. The new Hartree Fock eigenstates are seen to be 
mixtures of both up and down conduction states as well as both f 
and f crystal field states. Also

H ° aT |V> = e a T|V>,CF k 1 kl kl
+ 1 (5.2.54)

where H ° is the U finite Hartree Fock hamiltonian and e . are the 
CF ^ kl

Hartree Fock eigenstate energies. To find H^° and we solve

[ “ 0, (5.2.55)

where the * is replaced by = when the Hartree Fock approximation is 
made to the coulomb interaction. To make the Hartree Fock 
approximation groups of operators in the coulomb interaction
contribution to equation (5.2.55) are replaced by the sum of the 
possible ways they can be written as number operators. The 
resulting Hartree Fock hamiltonian is:

«ih = v c c ■ cCF u  k k(T kO* k<r
f+y e f I f

u  fn nk nk kn
J+ fV (V (k)c1 f + h.c.

u  <Tn k(T kn nkO*

<n >f^12 kl fk2 + h. c. (5.2.56)

where

Gfl
ef2

g  + U<n > ,f 2
g  + U<n > ,f l

and

< n > =  V A A = < n >12 u  k l 1 k21 21k 1 occ

(5.2.57)

(5.2.58)

Here 1 labels the bands or the multiple solutions of equation
(5.2.54) and <n > and <n > are the exchange terms of Hartree Fock. 12 21
These terms reflect the fact that an f state can hop into the 
conduction band and then back to an f . In the previous sections 
this on-site hopping is assumed to be zero due to symmetry or at
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least to be small for U -» co. When we solve the Hartree Fock problem
for <n > we find:12

A Vk2 1 1 a

k 1occ (e - e M e  - e - U<n >) - Y. |V (k)k 1 k k 1 f 2 u  1 <Tn

<n > 12

1 + U £
IA r  (e - e )1 k21 1 kl k

klocc (e - e M e  - e - U<n >) - T V (k)kl k kl f 2 u  1 (Tn<r
(5.2.59)

so that <n > and hence <n > are zero when the lattice has
12  21

inversion symmetry and Va = 0. However when the lattice does not 
have inversion symmetry it is seen that even for large U <n12 > is 
finite. We let U to tend to infinity in equation (5.2.59) and
retain terms to leading order in U so that

12 
u -» oo

and since

E IA
klocc

k21

n
IA1 k21

1>B
CM

1

L
k 1occ (e -kl

u
1 - E

| A |21 k2 1 1
k 1

<n > 2

= <n > 2 t

the denominator in <n > tends 12

(5.2.60)

(5.2.61)

12
is finite even for U tends to infinity.
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5.3. MAGNETIC ANISOTROPY IN THE LARGE CRYSTAL FIELD LIMIT.

5.3.1. Symmetry Considerations.

In this section we study in more detail the symmetries of the 
momentum dependent hybridisation between a doublet and a single 
conduction band. We choose to study a T doublet since this is the

7

low lying doublet in CeSî , the prototype system. The hybridisation 
is calculated explicitly within tight binding to show that for any 
lattice with inversion symmetry the hybridisation between a band of 
T doublets and an s or p conduction band always satisfies the

7  x

criteria for reduction to a 'spin only' model (see Section 5.2.1).
Therefore the two band model of the previous sections cannot
describe the magnetic anisotropy seen in the large crystal field
system CeAs which has a cubic lattice and hence inversion symmetry.

The system is modelled by the hamiltonian Hb given by equationCF I
(5.2.1) but with the conduction state operators written as c', c

r  k<r k<r
where the superscript b labels the type of conduction band, that is 
s or p^ and so on. The hybridisation term of the hamiltonian HbF is 
written:

H = £ (hyb u  knO*
Vbf(k) C n<r k orb+ fkn h.C. ), (5.3.1)

so that

Vbf(k) = < V I cb Hb f^ I V >. (5.3.2)n O' 1 k(T CF kn 1

In order to remain in keeping with the notation of Slater and Koster 
(1954) the hybridisation is rewritten as:

Vbf(k) = < 0b I Hb I 0f >, (5.3.3)n<T *k<T 1 CF 1 kn

where now I il(b > is a b conduction wavefuction of momentum k and1 k(T ,
spin cr equivalent to c ' |V> and I 0 > is an f wavefunction ofkcr 1 I 1 kn
momentum k in equivalent to f ' |V>. From the standard tight binding 
theory (Slater and Koster (1954)):
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p

< ip* I Hb IkO* 1 rp ICF
,f . « ik.(R - R )
Kn > = Z E ‘ 'N R R

i J

S <t> ( r - R ) H b 0 (r-R )dv^b<T i CF^fn j
(5.3.4)

where the sum is over the N unit cells of the system. R t ranges 
over the positions on which the f orbitals, <b , are located whilefn
Rj ranges over the positions of the atoms on which the conduction 
orbitals, <b , are located. The orbitals 6 and 6 are not atomic

d O* in bO*
orbitals because Bloch sums of atomic orbitals are not orthogonal, 
rather they are orthogonal linear combinations of atomic orbitals 
called Lowdin functions. The Lowdin functions show similar symmetry 
to the atomic orbitals from which they sire derived (Slater and
Koster (1954)). In equation (5.3.4) the sum over R̂  can be
eliminated by letting R̂  fix the position of a specific atom on 
which a 6 orbital is located. The sum over R then amounts tofn i
summing over all the neighbours, on which the orbitals 0 exist, of 
this central atom. Therefore if the position of this central atom 
is taken as the origin then:

< i/tb I Hb Ik(T 1 1CF /  > = - E elk‘R E (R),kn .. b<T fnN R
(f to b)

(5.3.5)

where R is the vector to the b orbital sites and

Ek„, (R) = J>* (r-R)Hj’0, (r)di>.bO*fn btr CF fn (5.3.6)

In Appendix B it is shown that for any lattice in which a T7 band 
hybridises with a single conduction band that

E (R) = - E (R),
b ^ f i  b ^ f 2

(5.3.7)

E _ (R) = E . (R).bi.fi b̂ fa (5.3.8)

Also for b = s or p :
X
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(5.3.9)E
SCTfn

( R ) E (-R),safn

and

E (R) = E „ (-R), (5.3.10)p CTfn p afn
X X

so that it is easily shown (see Appendix B) that the hybridisations
between a T band and an s or p conduction band in a7 x
inversion symmetry satisfy the relations:

lattice with

v;[(k) = v^*(k), (5.3.11)

V®[(k) = - V^*(k), (5.3.12)

and

v?[(k) = - vj'*(k), (5.3.13)

< 0 0  = < * (k ). (5.3.14)

From the arguments of Section 5.2.1 these hybridisations 
criterion for a 'spin only' hamiltonian namely:

satisfy the

V* = V^(k)V^*(k) + V^(k)V^*(k) = 0, (5.3.15),

and

V*f(k) = V*f(k), (5.3.16)

where

vr tk) = /  e I ' O ’ i2-<r
(5.3.17)

and b = s or p (see equations 5.2.8 and 5.2.9). Therefore thereX I
exist linear combinations, c ' |V>, of the up and down conduction

k n  1 I I

states such that within the new basis c ', c , f ' , f , n = 1 or
k n  k n  k n  k n
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2, each of the crystal field states f ' |V> hybridises with only one+ kn
|V> wherekn 1

cb+ =
E Y

bf
(Tn (k)cb+

k <r

/ e IV^Oc) I2
<r

(5.3.18)

We can easily remind ourselves of how the 'spin only' nature of the
hamiltonian in the new basis comes about by transforming to the new
basis where the hamitonian Hb becomes:CF

HbCF = E
kb /nn

bek

z vbr(k) vbf;(k)<Tn <Tn
C b-l- b 'ckn kn

+ E
kb /nn

E Vbf(k) Vbf*(k)<Tn (Tn<r + h. c.

J

+ E
kn

f +  f
f kn kn E u f f f. f t f.J  i 1 11 12 12

(5.3.19)

where b = s or p and n, n' = 1 or 2. Now since
X

CTn crn
V1* for n * n'

OL

E |vbf(k)I2 for n = n'v. "  ' o*n 1or

(5.3.20)

then
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HCF = J ^ C ^ C 1 + V e f+ f + E (Vbf(lc)cb+f + h.c. )
u  kn kn kn u  fn nk nk “  n kn knk n b  kn knb

where

+ V U f't f . f't f . ,21 11 12 22
(5.3.21)

b b be = e = ekl k2 k (5.3.22)

,bfand V (k) sire given by equation (5.3.17) with b = s and p . Withinn x
the new basis we can easily identify a set of low energy collective 
magnetic excitations with creation operator:

§- = y cH" c + y f i f
k - k '  ^  C ( p - k / )8 ( p - k ) i  ^  ( p - k ' ) a  ( p - k ) i

(5.3.23)

which result in a single 'pseudo' spin flip and which cost no energy 
when they have zero momentum since

Hb , S" ] =CF q = 0
b be - ek2 kl

z
k

Vbf (k) - Vbf(k)l cb+f +2 1 k2 kl

b-f- bC !C +k2 kl

hr* hr*Vbf (k) - Vbf (k) 2 1 f+ obk2 kl

= 0
(5.3.24)

These 'pseudo' magnons are analogous to the magnon excitations of 
the spin only model. Therefore the observed gap in the magnetic 
excitation spectrum at q = 0 which indicates that the magnetic 
excitation with zero momentum has finite energy remains unexplained. 
The observed finite energy of the real zero momentum magnetic 
excitation is due to magnetic anisotropy which is not included in 
the two band model contrary to the results of Thayamballi and Cooper 
(1985).

The development of a model for systems like CeSi^ and CeAs 
which exhibit magnetic anisotropy and have a large crystal field, so 
that only the doublet has a non negligible occupation in the
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ground state, remains a problem. The origin of the magnetic
anisotropy in these systems is discussed in the following sections.

5.3.2. A Three Band Hamiltonian.

In the previous section it is shown that the two band periodic 
Anderson model of a flat f band of r crystal field states 
hybridising with a single conduction band cannot describe the 
magnetic anisotropy seen in systems like CeSi^ and CeAl. The 
problem of building magnetic anisotropy into the Anderson model 
remains.

The rare earth systems are usually studied using localised 
models and assuming that all the crystal field states (not just the 
T7 as is assumed in the previous sections) are involved in the 
ground state. However in systems like CeSi^ and CeAl where the 
crystal field is large it cannot be a bad approximation to assume 
that only the T is involved in the ground state (see Section 
5.2.4). In these large crystal field systems we propose that the 
magnetic anisotropy is due to the interaction of the f band with all 
of the conduction bands and cannot be described using an idealised 
two band model.

Consider now a first improvement over the two band model, that 
is a three band model of one f band, again a T band, and two 
conduction bands. In the following it is shown that addition of a 
second conduction band introduces an extra degree of freedom which 
allows the system to respond in different ways to different moment 
orientations even when the lattice has inversion symmetry.
The three band hamiltonian is written:

s p < =  „  e „ ,
C F  U  k 1 kerb

cb + V e f'1 fkO* u  fn kn kn kn
+ E (vbfCk)c'<Tn 1knO*b

i f . f't f . + e 11 11 12 12 u (Vspx(k)cs+cp + k<r k<r

b+f +kO* kn h. C. )

k<r
(5.3.25)

where the superscript b labels the type of conduction band orbitals, 
which are taken to be s and p . The conduction bands of the model
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calculation are chosen as s and since in CeSi^, the prototype 
system, the basic structure is approximated as tetragonal (see 
Figure C.l) and in a tetragonal lattice the remaining four p bands 
may be at much higher energies than the p̂ . Therefore restricting 
the conduction bands to just an s and p^ is not unreasonable for 
CeSi .X

The Hamiltonian Hspx contains two conduction bands eachCF
hybridising with the f band of states and also with one another. 
Suppose now that we are modelling a system in which the lattice has 
inversion symmetry. As illustrated in Section 5.3.1. there exist 
linear combinations of the up and down conduction states in each of 
the two separate bands, cb^|o> given by equation (5.3.18) with b = s 
or px> which hybridise with only one of the degenerate f bands. 
Within the new basis cb ,̂ cb , f"t* , f , b = s or p and n = 1 or 2,kn kn kn kn x
the hamiltonian is written:

Hsp*= E eb cb+ cb + E e ft f + £ (Vbf(k)cb+f + h.c.)CF . "  kn kn kn ^  fn nk nk u  n kn knknb kn knb

+ E U ft f . ft f . + E (Vsp;(k)cs+cp\  + h.c. ) ,11 11 12 12 u  , nn' kn kn' ’1 nn
(5.3.26)

where eb = eb = eb (see equation (5.3.22)) and Vbf(k) = Vbf(k) are kn kn k 1 2
given in equation (5.3.17) with b = s or p . AlsoX

Vsp;tk) = Vsp“(k)nn

V*f*(k)V?xf(k)1 n 1 n V*f*(k)Vpxf(k)'‘'n ^n
1 ✓ 2 ✓ 2

E | v > )| * E |vp“f(k)|21 <Tn 1<r <r

(5.3.27)

Therefore provided the hybridisation matrix Vspx(k) is non zero thennn
there remains some interaction between the new conduction bands 
which destroys the 'spin only' nature of the model. It can be shown 
that because of the presence of this interaction between the two 
conduction bands, the three band model is sensitive to different 
orientations of the magnetic moment. In the following the existence



of magnetic anisotropy in the three band model is shown for the case 
of s and conduction bands hybridising with an f band of states
in a simple body centred cubic and tetragonal body centred lattice, 
both of which have inversion symmetry.

The new basis wavefuctions c ^ |  V> and f | V> possess a pseudo 
spin analogous to the straightforward spin of the spin only case 
(see Chapter 3). As in the spin only case we can identify a set of 
low energy collective magnetic excitations which we term pseudo 
magnons and which are directly analogous to the magnons of the spin 
only case. As in the spin only case the zero momentum pseudo magnon 
with creation operator:

Sq = 0 E c
pb

4P2 bCPl + E f 'f ,pa pi b = s or p
X

(5.3.28)

corresponds to a simple twisting of the pseudo moment and in the 
absence of magnetic anisotropy costs no energy.

In order, then, to illustrate the presence of magnetic 
anisotropy in the model it is sufficient to show that the zero 
momentum pseudo magnon has non zero energy or:

[ HspCF S" ] * 0.q=0 (5.3.29)

where H8£x is given by equation (5.3.26). In the absence of the
hybridisation Vspx(k) between the two conduction bands thenn
hamiltonian HspxCF reduces to ' spin only'. However when this 
hybridisation is non zero the 'spin only' nature of the model is
destroyed. The new pseudo magnon creation operator, S , commutesq = 0
with the first four terms of Hspx since eb = eb = eb and Vbf(k) =CF kl k2 k 1
Vbf(k) (see equation (5.3.24)) so that

[ Hsp X CF S" J  =q=0

E [ ( Vsp<(k) - Vsp,,(k)) Cs+Cpx + ( Vsp”*(k) -Vsp“*(k)) Cp,+Cs 1-  [ 22 1 1  kz ki 22 1 1  k2 ki J

L.C j ,+ V Vspx(k) [ c8+cpx - c"lc*'" + h.12 kl kllr L*
•S+Cpx'k2k2

(5.3.30)
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where we have used the relation Vspx(k) = Vspx (k) in a lattice with
1 2 2 1

inversion symmetry. Therefore the model describes magnetic
anisotropy provided

( V®px(k) - V®px(k)) * 0, (5.3.31)

and, or

Vspx(k) * 0 (5.3.32)12

or when equations (5.3.31) and (5.3.32) are rewritten using the 
relations between the hybridisations for a lattice with inversion 
symmetry (see equations (5.3.11) to (5.3.14)) we say that for a 
lattice with inversion symmetry the three band hamiltonian contains 
magnetic anisotropy provided:

Vspx(k) * 0, (5.3.33)

and

E (<r)Vsf (k) Vpxf(k) + c.c—m  ero * o, (5.3.34)

or

E * °. (5.3.35)0*1 0*2 <r

where (̂ ) = 1 and (̂ ) = -1. In Appendix C we show that the criteria 
for magnetic anisotropy are satisfied for both the simple bcc and
tetragonal lattices. Therefore we conclude that in systems with 
large crystal fields where only a low lying f doublet is occupied in 
the ground state the interaction of the low lying doublet states
with all the different conduction bands of the system is the origin 
of magnetic anisotropy.

In a proper multiband treatment the three p bands should be
included for completeness. However since the main advantage of a
multiband model, magnetic anisotropy, is achieved by including just
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the band the rest can be neglected for a first round attempt at 
the problem. Also there is some justification for the inclusion of 
just an s and a p band since in a tetragonal lattice the remainder 
of the p bands can be at much higher energies than the p and can beX
assumed unoccupied in the ground state.

5.3.3. A Self Consistent Magnon Within the Three Band Hamiltonian.

In the spin only model of Chapter 3 and the impurity model of 
Chapter 4 as well as the preceding sections of the present chapter 
the magnon creation operators are approximations to the creation 
operator of the real low energy magnetic excitation. Therefore the 
magnon energies of the various models are also approximations. The 
success of these approximations and the accuracy of the calculated 
magnon energy depends on how close these creation operators and 
ground state are to the real situation. Within the three band model 
a variational wavefunction for the self consistent magnon is
proposed:

k - k 7 |v> = E D - a "f" . a -1 V>,pll (p-k7 ) 1 (p-k)l 1
pi 1

(5.3.36)

where a,' . and a, - are the creation and destruction
( p - k  ) 1 (p -k ) 1

operators of the one electron eigenfunctions in the Hartree Fock 
ground state. Equation (5.3.36) is a variational wavefunction for 
the magnon which has energy hw^ , given by:

(ho>k-k + E )<0o k . *
s , o>k - k 7 1 =  <0 S+ , k - k 7 Hspx S'CF | o > ,k - k

(5.3.37)

Here E is the energy of the new three band Hartree Fock groundO
state, |0>. When the energy hw^ , is minimised with respect to the
coefficients D - in the variational wavefuction we arrive at anpll
expression for the magnon energy which is in agreement with that of 
the R. P.A. calculation of Muniz and Edwards (1985).

Within the Hartree Fock approximation the Hspx is approximated
A  x Ip ̂

as H^px which is diagonalised by the operators a^J where:
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Hspx sH” |V> = e â "CF k 1 kl kl V> ,

and

l + = r E A f + + E Bb c+
k l  u  k n l  k n u  k(Tl k(T

n bo*
|v> #

(5.3.38)

(5.3.39)

Here the subscript, 1, labels the six bands of energy e of the 
Hartree Fock ground state, b = s or labels the type of
conduction band and n = 1 or 2 the crystal field states. The 
Hartree Fock eigenstates are mixtures of both crystal field states 
and up and down spin conduction states from both the s and p^ bands. 
Within the Hartree Fock approximation the coulomb interaction term 
of the hamiltonian Hspx is treated as follows:CF

U Y. f̂ " f A  fk l  k + q l  k 2 k -q 2k k1 2

T <n >A  f + V <n >f+ f -T U<n >f ̂ f + h.c.
u  2 kl kl u  1 k2 k2 £  12 kl k2k k *cL

(5.3.40)

with

<n > = V A A 
1 2  u  k l 1k 1 o cc

= <n >k21 21 (5.3.41)

so that the band energies e as well as the conduction state
~b ~amplitudes B and crystal field state amplitudes i in any

eigenstate are given by:
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' E - csk 0 Vspx*(k) 0 -VsP (k) -VPf(k) 1 2t
D T? 3E - ek 0 Vspx*(k) -v3/  (k) -Vsf(k)

Vspx(k) 0 E - cpxk 0 -Vpxf(k) -Vpxf(k) 
2^

0 vspx(k) 0 E - ep x
k -Vpxf(k) -Vpxf(k)

2^
/*f*(k) -v°f*(k) -vpxf*(k) _vpxf*(k) E - cf 2 <n > 12
/*f*(k) -Vpxf*(k) _vPxf*(k) <n > E - e
2t 2j. 2t

T

21 f iJ

X BSk̂. Bs Bpx kj, k Bpx At k^ kl Ak2 0

(5.3.42)

where e ,fn n = 1 or 2, are defined in equation (5.2. 57). Once
again even the Hartree Fock problem is non trivial because of the 
presence of the off diagonal Hartree Fock exchange terms. When 
equation (5.3.42) is solved for <ni2> we find that for any lattice 
with inversion symmetry these Hartree Fock exchange terms are zero 
provided:

Vspx(k) = - Vspx*(k). (5.3.43)

From standard tight binding ((Slater and Koster (1954)) and Appendix 
C) we find that for a lattice with inversion symmetry

Vspx (k) = £ e "ik,R(sp<r)l = £ e ik’R(spcr) (-1) = - Vspx(k),
R R( S t o p x )  ( S t o p x )

(5.3.44)

, where il,m,n) are the direction cosines of the vectore R. 
Therefore the off diagonal Hartree Fock terms, <ni2> are zero and 
equation (5.3.42) can be easily solved.

After lengthy algebra to minimise the energy hoi , we find:k- k

1 + r - (hw , )w„ )1 = o ,pn£;n k-k J (5.3.45)
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where

rp7r&i
krr

A ^ A A A ^
( k - k ) £ r  ( k - k 7 ) fir ( k - k ' ) p r (k-k)TTr

ho> , + e ~ - e ~ ,
k - k  ( k - k ) r  ( k - k  ) r

(5.3.46)

and all W,. = 0  except for$HVT)

W = W = - U,
1122 2211

(5.3.47)

W = W
1212 2121

= U . (5.3.48)

The next stage in the calculation is the solution of equation 
(5.3.45) for the magnetic excitation energies hu>k , and ultimately 
the comparison of these excitation energies with the magnetic 
excitation spectrum in CeSi . However this calculation must be left

X

to future work.

5.3.4. Conclusions and Further Work.

It is found that the magnetic anisotropy observed in the large 
crystal field systems such as CeSi and CeAs cannot be described by a

X

periodic Anderson model in which a T doublet band hybridises with a 
single s or p^ conduction band. This result suggests that the 
magnetic anisotropy found by Thayamballi and Cooper (1985) is due to 
some numerical error. In fact, these authors remark that their 
calculated magnetic excitation dispersion is 'spin only7.

It is maintained that in these large crystal field systems only 
the low lying doublet has non negligible occupation and that the 
magnetic anisotropy is due to the hybridisation of this band with 
all of the conduction bands. The magnetic anisotropy is shown to 
exist for a periodic Anderson model in which a T band hybridises 
with two conduction bands (s and p ), even in a lattice with

X

inversion symmetry.
Now that we have finally achieved a model which does not reduce



to 'spin only7, the stage is set for a calculation of the magnetic 
excitation spectrum. It is proposed that the calculation be made 
computationally, including all p bands in order to make a realistic 
comparison with the observed magnetic excitation dispersion in 
CeSi .X
It should be noted that the anisotropy discussed above is exchange 
anisotropy which causes the interaction between two atomic moments 
to depend on the direction of the line joining the moments. The 
possible anisotropy of the g tensor describing the coupling of the 
system to a magnetic field has not been discussed.
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APPENDIX A.

The system is modelled by the spin degenerate periodic Anderson 
hamiltonian with added exchange interaction of equation (3.4.12). 
The variational wavefuction for a down spin f electron introduced 
into the system is proposed as:

|0 >' = d ' f "h +lc k4. F xchk k* + T] G , a^, /k S /
u  k  i k  k - k

k '  i > k

0>, (A. 1)

where the superscripts I distinguish this wavefunction from that of 
the spin only calculation without the exchange interaction. Here 
f̂ j, creates an f electron in a state of momentum k and energy e , 
c ^  creates a conducton electron in a state of momentum k and energy 
e i of equation (3.4.25) and a^f creates an electron in the up spink ^  k i
eigenstate of momentumn k' and energy e ^  of equation (3.2.6) with 
e replaced by e * and e by e a .k k 1 f f1

To solve for the coefficients F^, G^, ̂ we left multiply the
Schrodinger equation:

>I= (A-2)

by each of the constituent elements of the variational wavefuction 
to find three equations for the three coefficients. The equations 
are written:

D 1 Ml + F 1 M2 + V G'^Ck.k') = go', (A.3)k k , k i kk i > k

D 1 M2 + F 1 M4(k) + V G\M5(k') = € f \ (A.4)
k  k  . * “* k  i k

k  i > k



D 1 M3(k7k77) + F 1 M5(k77) + G ^ M B  (k77)k k k i d i ag

+ l G^MBCk.k'.k77) = SGlktl<o\sl_k,ts-k_kt\o>,

(A. 5)
k  i > k

and

Ml = E + e + U<n *> + - JV<n >,o f fT 0 u  C o2 <r
(A. 6)

M2 = V + JC,e* (A. 7)

M3(k,k') = - U<n *>A , - JC(1 - A , )B ,
r 1 k  i

i 2
k 7 i '  k '  i

- J V B 12 A*, <0| n (1-n - ) |0>,
( p - k )  r k  1 ' ( p - k ) r  ( p - k  *

(A. 8)

M4(k) = E + e , ,

M5(k7) = -J<n *>BX,^ rT k  i
T_ . 1 _  i 2JCA , B , ,
«  k  i k  z

(A. 9) 

(A.10)

M6(k,k7,k7 7) = M6 (k,k77)5 , ,, + M6(k,k7,k77),d 1 ag k k (A. 11)

M6 (k,k") = ( E + hu * e , , )<0|S* ,S' |0>,dlag o k-k k i 1 k-k k-k 1
(A.12)
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M6(k,k',k") = U A’, B*, ,B^ , t<n.t>
2

+ - E2 rps
A1, A1,, b2z

k  i k  i ( p - k )

<o|n (1-n # 4,) (1-n ,, 4,) |o>
1 ( p - k ) *  ( p - k  ) c'*' ( p - k  ) c'*' 1

- E2 puv
X

V B, U , . A x(p-k'+k7 7
+ A1, B \ , A 1 Bk7 1 k77 >M1a

-  B 1, B T, ,  A 1k71 k7 7 1 (p

/ . - / /

- AJ, A T,, B,T % B,x , ,, %
k 7 1 k  1 ( p - k ) v  ( p - k 7 + k 7 7 - k )

B" , ,, B 1 <0 1 ( 1 - n  , ,) |o>
( p - k / + k /  - k ) u  ( p - k ) v  I ( p - k  ) =  ^  '

^  ( p - k 7 + k 7 7 - k ) ( p - k )

<0 n / // n, o>
' ( p - k  + k 7 - k )  “ ( p - k ) » I

+ J Eex ̂  ps L
B X, A  x/f B x A t + A x, B 1,, A ;  x B / %k 1 k 1 ( p - k ) *  (p - k ) *  k 1 k 1 (p - k ) *  (p-k)

<o In „ (1-n . . .)|o>1 (p - k )» ( p - k / / )c^ I
(A.13)

where E is the ground state energy, ha>̂  ,, the magnon energy 
defined by:
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Eo + hu>k - k / /
<o|s+ ,,hAi s" //|o>1 k - k ' ' latt k - k ' ' 1

<0 S S ,, |0>1 k - k  k -k 1

(A.14)

and <nf^> and <n are the up spin f occupation and spin <r 
conduction occupation in the ground state respectively. Also

< 0 S  ,,S ,1 k-k' k-k |°> = <V > ♦ £ <0|n t(l-n _P-k' ' ) ;4,)|0>,
(A.15)

where

n — c c(p-k)cO* (p-k)O* (p-k)O* *

and

c = E
k r

A B <0 n 0> ,kr kr 1 k r I

(A.16)

(A.17)

so that C is of the order of the up spin f amplitude in the states 
of band 1 at the Fermi wavevector. To arrive at equation (3.4.29)
of the main text we take the limit of small hybridisation and work 
to order V (the f weight in band 1 at the Fermi level).
Also since we want to study the competition between exchange and 
hybridisation when is of the order of 2V /|ef |̂ we work to order 
Jex /\e^\. In this limit of small hybridisation the up spin f 
weight above the Fermi level is approximated by its value at the 
Fermi level for both bands 1 and 2 so that:

k> k
F

V

GfT

F

(A.18)

(A.19)
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B » 1 -k i
k>k 2 I e

(A.20)

Bka
k> k

(A. 21)

and also

V2 Tp*
<nfi‘> = 1 -

wl v l ( M  + Tp^ 3
TPt = Tp - - <n *>

2
(A.22)

and Tp is the top of the conduction band. Also

E <r<n > = _
C<7 . .<r W

V2 Tp*
- <n *> +
2 wIVtl< IV tl + tPt )

(A.23)

and

C * - E A Bu k i k i
k> k F F

Tp* V

Wlc
(A.24)

Within these approximations, equations (A. 3) to (A. 5) can be solved 
for the Dyson equation:
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E - e - U<n ,> - — V <n > - Z .(k,E) r f4, _ u ca fr4'

4»Sff*(k’E)
V -

U Ak i

J ^ ff4>(k,E)
E - e

U A i 2 k i

= 0
(A.25)

where

Sff4.(k,E)

E
k' i >k F

u2a 12k <n *>fT

(E - e , - ho> ,)k i k - k

u a ,! +k i J B 12C* k 1

E
k 7 i > k (E " ct/ , " ht*> ,/ )k i k - k

(A.26)
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APPENDIX B.

The systems under investigation are those in which the crystal field 
splitting is large and the lowest lying f electron states form a r 
doublet. It is assumed that in the ground state only the crystal
field states sire occupied so that others do not feature in the 
hamiltonian. The hamiltonian is given by

„b r b bf b xH = v e c 'c +CF u  k k<r k<rk<T kn kn knE  erf 1 f  + E (Vbf(k)<T nkO*n
cb+f +kO* kn h. C )

+ E u ft f . ft f , ,-* 1 1 ii i2 i2

(B. 1)

where n = 1 or 2 labels the states of the T doublet, as in the main7
text, and b labels the type of conduction band, that is, s, p, d and 
so on. In the following, the possibility of an s or p^ conduction 
band is considered. From standard tight binding theory the 
hybridisation is written:

vbf(k) = E eJk B E , (R), (B.2)CTn bafnR(f to b)

where the superscript b labels the type of conduction band, either s 
or p , R is the vector from the f orbital site to the b orbital site

X

and

K  „ (R) = J* K  (f-R)Hb d. (r)di>, (B.3)bcffn b o CF f n

where <f> (r), n = 1 or 2, is the wavefunction of the crystal fieldI n
orbital V on a site at the origin and <f> (r-*R) is the product of an7 b g
conduction band b orbital and spin function <r on a site at R. 
Therefore
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(B. 4)4>r (r) = ff |V>,f» In'

where site i is at the origin. To evaluate the energy integrals 
E (R) we express the wavef unctions 0 (r) as products ofbfff n fn
spherical harmonics and spin functions and use the Slater and Koster
tables of f energy integrals (Takegahara et al (1980)). We use the
mapping

f+ I V> = Y I<r> , (B. 5)m (T1 3 m  1
L L

where Y is the spherical harmonic of orbital angular momentum3m
L

three and z component of orbital angular momentum mL and |<r> is the 
spin function, to rewrite the doublet states of equations
(5.2.43) and (5.2.44) as

r i = a C i Y 8 + C a Y a
L 3'*' 33 2 1 32

- b C * Y a + C-2t 3-2 i x t -1* 3-1
(B. 6)

and

0 (r) = afa C * Y a + C i Y 3-3T 3-3 -2* 3-2

- b C I Y 3 + C Y a-2* 32 2T 31
(B. 7)

where C are the Clebsch Gordan coefficients, a and 3 are the up m <rL
and down spin functions respectively and a and b are coefficients 
which depend on the crystal field of the system (see equations 
5.2.43 and 5.2.44). When we substitute equation (B.6) and (B.7) 
into equation (B.3) and remember that the energy integrals and hence 
the hybridisation is only non zero between states of the same spin 
we find:
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E. _ (R) =b/Kf i

E (R) =b.if i

E (R) =b/sf 2

E r (R) =b i f a

- 4 1 -a E (R) + bi/s E (R) 1
V7 1 bY 3 a bY 3 - 2 J

= - l ay's E (R) - b/2" E (R) 1
Vi 1 bY 3 3 bY 3 - 1 J

- ± \ -â e E (R) + hV2 E (R)
Vi 1 bY 3 - 3 bY 3 1

= - l a E (R) - bVs Ew„ (R) 1 ,
Vi 1

bY 3 - 2 bY32 J

(B. 8)

(B. 9)

(B.10)

(B.11)

where we have inserted the relevant Clebsch Gordan coefficients and

E (R) = J* 0*(r-R) Hb 0 (r)di>,bY 3■ J *b CF rfm (B.12)

In equation (B. 12) 0 (r) is an f orbital with z component off n
L

angular momentum m on the f electron site at the origin and 0 (r-R)L b
is a conduction electron b orbital function on the site at R.

In order to use the Slater and Koster tables of f energy
integrals (Takegahara et al (1980)) we must express the spherical

2harmonics in terms of the cartesian coordinate functions xyz, x(5x 
- 3r2 ) and x(y2 - z2 ). So that

3±1

3±2

3±3

= cf [ ? i  5̂z2 ” p2^ x ± iy) j »

1 5 / 2  (x ± i y ) 2z j ,

Cf [ ? £ ^5(x ± iy)3 ] *

(B.13)

(B.14)

(B.15)

(Lendi (1980)) and in terms of the functions xyz, x(5x2 - 3r2 ),
2 2x(y - z ) and all those new functions acheived by cyclic 

permutation of x, y and z,

c r
r -  + - f  r
3±1 A L

V3 ( x(5x - 3r2) ± iy(5y2- 3r2) )

2 2+ Vs ( V'isxty - z ) + iVis y(z 2- X 2))],
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(B.16)

y3+2 = Zf [ V'iszCx2 - y2) ± i2Vis xyz 1 , (B. 17)
V2 L J

C r
Y3±3 = + - f 1̂ Vs ( x(5x2- 3r2) + iy(5y2- 3r2) )

-  V3 ( V i s  x(y2- z2) ± i V is y(z2- x 2)) j .
(B.18)

When we substitute equations (B. 16) to (B. 18) into equation (B. 12) 
we find:

bY 3 ■ ■ H
^3 ( E . . (H) ± i  Et = (R) )b x(5x -3r ) b y(5y -3r )

+ Vs ( E  a 2 (R) + i E  2 2b x ( y - z )  b y ( z - x
(B.19)

(R) =  -  [ _bY3±2 J — l  b z(x-y)E  2 2 (R) ± i E  (R)b xyz ]■
(B.20)

bY 3a , ™  - . f [ v's ( E  2 a (R) ; i E  * 2 2 ( R ) )bx(5x-3r) by(5y -3r )

+ V̂ 3 ( E  2 2 (R) ± i Eb x ( y - z ) b y ( 2 2̂ 1 ’ ( z  - x  ) J
(B.21)

so that in general

E  (R) =bY 3 1 - E  (R),bY 3 - 1

E  (R) =bY 3 2 E (R),bY 3 - 2

E  (R) =bY 3 3 - E (R).bY 3 - 3

(B.22) 

(B.23) 

(B.24)

Also when equations (B.22) to (B.24) are used in equations (B.8) to 
(B. 11) we find that for the case of a T band hybridising with a 
single conduction band that:

*
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(B.25)E„t, <R > =b 1 f i - W (R)-

E . (R) = V r . (R)- (B.26)

The relationships between the f energy integrals in equations (B.25) 
and (B.26) are true for the case of a r7 band hybridiation with any 
type of conduction band. The actual values of the energy integrals 
E (R) depend on the type of conduction band and the type ofb Of n
lattice in the system.

For an s conduction band (Takegahara et al (1980))

sY 3:
1 ,r

il(5 i2-  3) ± -1 - Vs (
4 1L 2 2

V̂lS V'lS
+ Vs 1 a

* / 2 2% _ • l { m  -  n ) + i 2
2 ,2,

(B.27)

1 P v'is
sY 3+ (r ) = = r —

±2 vz L 2
n(l2 -  m2) ± i  V is lmn j (sfcr),

(B.28)

SY 3„<») - > -  [ Vs ( -1(512- 3) + - m(5m2 - 3) )2 2

_ V i s  V i s  -|
- v̂3 ( --- l{m2 - n2) ± i ---m(n2 -l2)) (sf<r),2 2 J

(B.29)

where (l,m,n) are the direction cosines of the vector R. It is seen 
that each of the functions E (R) of equations (B.27) to (B.29)sY 3 .L
is an odd function of R:

E (-R) = - E (R), (B.30)sY 3 ■ sY 3 ■
L L

and on substituting equation (B.30) into equation (B.8) to (B. 11)
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with b = s for this s conduction band it is found that

Eserf (-R) = - E „ (R).s<7f n

Also from equation (B.2)

vlf(k) = £ elk'R E .. (R)'1 S 1 f 1R
(f to s)

so that using equation (B.25)

v;[Ck> - - Z eJ,t R Ea; (R)p
(f to s)

E e' “ 'R W R)-R(f to S )

E elk'" Es ^ (-R)-R(f to s)

and provided the lattice has inversion symmetry we can 
(B.31) to show that

(f Rto

ik.Re
s)

ŝ fa(-R) ( k ) .

Therefore when a T doublet state, labelled by n 
hybridises with a spin or, s conduction state in a 
inversion symmetry then

Vsf (k) (k),

and similarly

Vsf'h (k) (k).

(B.31)

(B.32)

(B.33)

use equation

(B.34)

= 1 or 2,
lattice with

(B.35)

(B.36)
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Similar relations exist between the hybridisation of a T doublet 
band and a p conduction band. The f energy integrals for this p

X X

conduction band are (Takegahara et al (1980)):

__ V's
E (R) = v'is l2mn(pf<r) - —  (312- DmnCpfTr),
px xvz ^

(B.37)

Epx x ( S x* 2, (R) = j- 1 (512- 3) (pf<r) - —  (512- 1)(22- l)(pf7r)
_3r > 2 Vs

(B.38)

E a a (R) = - V̂ s l2(m2 - n2)(pf<r)x x ( y -z ) 2

- —  (3f-l) (m2-n2) (pftc).
(B.39)

where (l,m,n) are the direction cosines of R. All the other energy 
integrals which appear in equations (B. 19) with b = p^ to (B.21) can 
be obtained by cyclically permuting x,y, z and l,m,n of equations 
(B.37) to (B.39). We can easily see that each of these energy 
integrals is an even function of R so that:

Ep x Y 3 (R) = E (-R),p * Y 3 M
L

(B.40)

and on substituting equation (B.40) in equations (B.8) to (B. 11) 
with b = p for this p conduction band, then

X X

Ep x (jf n(-R) Ep X Of (R). (B.41)

Therefore when the steps used to get from equation (B. 32) to (B.35) 
are repeated it is found that in a lattice with inversion symmetry 
the hybridisations between the bard of doublets and a p
conduction band in a lattice with inversion symmetry satisfy:

v£*f (k) = - v j;f *(k) . (B.42)

Vj-Oc, = v?;f *(k) . (B.43)
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APPENDIX C.

In the main text it is shown that the hamiltonian Hspx of equationCF
(5.3.25) can describe magnetic anistropy provided

Vspx(k) * 0, (C.1)

and

( £ (o-)Vsf, (k)V^“f(k) + o.c ) * 0 ,  (C.2)
-0*1 <T2<r

or
£ Vsf*(k)Vpxf(k) * 0  (C.3)

0*1 <T2<r

where

Vsf(k) = 2 eik,R E „ (R), (C.4)0*n S o f nR
(f to s )

and R is the vector form the f orbital site at the origin to the s 
orbital sites. Also

Vp”f(k) = £ eIk‘R E (R), (C.5)0*n "  p x a f nR
( F to p x )

where R is the vector from the f orbital at the origin to the p 
orbital sites and

Vspx(k) = V elk,R E (R), (C.6)s p X
R

( S  t o  P  X )

where R is now the vector from a particular s orbital site to all p 
orbital sites. The energy integrals E (R) and E (R) areS<7fn pxfff n
given in equations (B.8) to (B. 11) with b = s or p^ and



Ik

E (R) = J* <t>* (r) Hspx 0 (r-R)di>. (C.7)spx s CF p*

where R is again the vector connecting the site on which the s
orbital, <f> (r), is located and the site on which the p orbital,

s  X

0 (r), is located. From the tables of tight binding energypx
integrals (Slater and Koster (1954)) we find:

Vsp“(k) = £ eik-R (spoOi, (C.8)
R

( S to p X )

where (l,m, n) are the direction cosines of the vector R which
locates the positions of all p^ orbital sites relative to a single s 
orbital site.

In the following the functions Vsf(k), Vpxf(k) and Vspx(k) are0* n 0*n
evaluated within the nearest neighbour approximation for a bcc and 
tetragonal lattice. The conditions for magnetic anisotropy are 
shown to be satisfied for both cases.

A Model Tetragonal Lattice.

In CeSi the f orbitals are located on the cerium atoms while the
X

conduction s and p orbitals are
X

nearest neighbours of any cerium 
simplified CeSi structure.

X

located on the silicon atoms. The 
atom are shown in Figure C. 1 for a

Figure C. 1. The nearest neighbour 
silicon atoms of a cerium atom in 
a model tetragonal lattice.

The z direction is taken along one of the a axis since the moment is 
quantised in the z direction and is known from experiment to lie
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along an a axis in CeSi .
X

To evaluate equations (C.4) and (C.5) for Vsf(k) and Vpxf(k) in
<Tn (Tn

the nearest neighbour approximation we sum over the vectors { R > 
where

{ R > = { (±|, ±|, ±a-) } , (C.9)

locate the eight nearest neighbour silicon atoms. The vectors { R > 
have direction cosines { (l,m, n) >, where

{ R > = { |R|(1, m, n ) }, (C.10)

so that for each of the eight vectors { R > locating the nearest 
neighbour sites the direction cosines satisfy:

m = n = i(l-l2). (C.11)

When we use- equation (C. 11) in equations (B.8) to (B. 11) for 
E (R) and E (R) we find that for a tetragonal lattice:SCTfn pxafn °

/l!
E ^ (R) = - ----- (sf<r) ns 1 f 1 „ /---2 y/1

£ (a - /5b) ( ^ l2 - i ) + i2(a + /sb)lmj,
(C.12)

Vb
E , (R) = ---Z (sfcr)
3 fl 8/7

(b - /sa)(51 - 3)1

im ^+ im a/s (1 - 71 ) - b(-3+51 )

(C.13)

and from equations (B.25) and (B.26)

E ^ (R) = E . (R)
s 1f  a s ^ f i

(C.14)
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E , (R)s^f a -E (R),sTf i (C.15)

Also

E ^ (R) = (-a + b/s )ln x
pxtfl 2

—  ( - i2 - i-)(pf<r) - -1 ( %?~)(pf7t)l
2 2 Vq

- i ( a + b/s )znn x

£ Vis J2(pf<r) -®(3I2- 1) (pf7T) j •

(C.16)

E . (R) = —px'l'fl
1

4/7 • (-a/e/s + b/e ) x

.2 r
- (512 -3) (pf<r) - -f. (512-  1 )(12-  1) (pf7T)
2 /a

— i f  — —
[ 2  2 2

J2 ) (pfcr) - -1 ( l2 )(pfit)l Jm
✓a 2 2 J

+ i (avW3 + b/2/1 5 ) In x

1/15 .1 3 .2 W „ ,(- - -1 ) (pf<r) -2 2 2 —5(3 (1 - -i2 )+ 2) (pfir)
✓a 2 2

(C. 17)
and from equations (B.26) and (B.25)

E (R) = E , (R),P xT f 2 fl (C.18)
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b
E
p 'fa(R) (C.19)

When we substitute equations (C. 12) and (C. 13) into equation and 
(C.4) and sum over the eight nearest neighbours using the relation:

E eikR = E
(f to s l--
n.n. only)

E
m

E
i  | R  | ( k * l+ k y * + k z n )

n

(C.20)

where

M
C / 2

lR
271 a  ✓  2

l»l
n a  /  2

lRl
CC.21)

we find that, in a tetragonal lattice

^15
V®*(k) = - 4 --- (sf<r) |n|

i(a -Vsb)(— l2 - — ) cos(kx—) cos(ky-)cosCkz-)2 2 2 2 2

+ 2(a + /sb) 111 |m| |n|sin(kx|) sin(ky-|)sin(kz-|) j
(C.22)

Ve
V®£(k) = —  (sf<r) ■

• 1 Vi

i(b - v^sa)(512 - 3) 12|sin(kx—)cos(ky-)cos(kz—)
11  2 2 2

in1 aVs (1 - 722) - b (-3 + 5J2 )jcos(kx|-)sin(ky|-)cos(kz^)

(C.23)
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sf
2*

2+

(k) = -Vjf(k), (C.24)

(k) = V°£*(k), (C.25)

Similarly when we use equation (C. 16) and (C. 17) in equation (C.5) 
we find that in a tetragonal lattice:

Vplf(k) = 4^15

♦

t-a +b/s)F ̂  ( | i2- L ) (pf<r) - —  ( | J2 --) (pfn)l
L 2 2 2 ✓ a

J||n| sin(kx-) cos(ky-) sin(kz- )

Vsi(a+bv̂ s) V'is 1 (pf<r) - (31* - l)(pf7t)
L V2

m||n|cos(kx-) sin(ky-) sin(kz—)

(C.26)

♦
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2
Vi

(-avWs + b/e ) x
i

f ^ (5i2 -3)(pfo*) - -1 (512- 1)(J2- 1)(pfir) 1
>■ 2 /a J

cos(kx—) cos(ky—) cos(kz—) 
2 2 2

* 1U ( - i. - % J2) (pfo-) 2 % i \ -  i j2,(,H  i1\ ml

sin(kx—) sin(ky—) cos(kz—)

- i (aVW3 + W 2V1 5) I i I Ini

^11 (L - |-f , (pfo-) -
2 2 2

-1(3 (*- -|-f ) + 2) (pfirll✓a 2 2 J
sin(kx—) cos(ky—) sin(kz—) 2 2 2

(C.27)

,p*f p x f  * ̂ (k) = v ;y  no.

V̂ lf(k) = -vp;f*(k),

(C.28)

(C.29)

To investgate the criteria for magnetic anisotropy we consider the 
particular case of a body centred cubic lattice where the 
hybridisation expressions are simpler.

The Body Centred Cubic Lattice.

For the particular case of a body centred cubic lattice the 
relations of the previous section are simplified by the fact that a 
= c so that the direction cosines of the eight nearest neighbour 
silicon atoms of a cerium atom are:
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to

{ (J,m, n) > = < — ( ±1, ±i, ±d >. (C.30)
V5

The hybridisations Vsf(k)0*n and Vp’'r(k)O' n for a bcc lattice sire obtained
from equations (C.22) to (C.25) and (C.26) to (C.29) respectively by

2substituting 1 = 1/3. Also we use the values of a and b for a
cubic lattice (Satoi et al (Preprint)):

a = - and (C.31)
VE Vs

to show that in a bcc lattice

V^f(k) = - 48 —  (sfcr) 11 |2sin(kx-)sin(ky-)sin(kz^) T 1 ,— 11  2 2 2
(C.32)

V°[(k) .= 0 (C.33)

Vfgtk) = 0 (C.34)

V^Ck) = V?[*(k) (C.35)

and

VpIf(k) = AVib ^  8 (pfo*)|l2 | sin(kx-) cos(ky|) sin(kz|)
VsVs

+ i 6V̂ - (pfoO|l|2 cos(kx|0 sin(ky|0 sin(kz|0
VE

(C.36)

i4  —  1 \2(VE + Vs) (pf7r)sin(kx-)cos(ky-)sin(kz-)
/----1 1 2 2 2V5B

(C.37)

Vp X f  

2^ (k) (k) , (C.38)
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V ^ f(k) = - V ^ f*(k). (C.39)

Also to calculate Vspx(k) from equation (C.8) we sum over the 
nearest neighbour silicon atoms of a silicon atom to find

Vspx(k) = i 2 a  sin(kxa)(spoO, (C.40)

therefore the first of the criteria for magnetic anisotropy, that is 
Vspx(k) * 0 (see equation (C. 1)) is satisfied. Also when we use 
equations (C.33) and (C.34) in equations (C.2) and (C.3), which give 
the second of the criteria for magnetic anisotropy, we find that in 
this bcc lattice the second criterion becomes:

v?[(k)vJ“f(k) + V ^ ’(k)vJ”f‘(k) * 0 , (C.41)

(from equation (C.2)) or

V^*(k)Vpxf (k) * 0 , (C. 42)

(from equation (C.3)). Also in a bcc lattice

V^(k) = V°[*(k) * 0 . (C.43)

(see equation (C.32)) so that the criterion for magnetic anisotropy 
of equation (C.41) becomes

Vpxf(k) * - Vjxf*(k) * 0 , (C.44)

which from equation (C.39) is obviously satisfied. Finally from
equations (C.32) and (C.38) we see that the criterion for magnetic 
anisotropy of equation (C.42) is also satisfied.
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