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ABSTRACT

During the last decade theoretical solid state physics has undergone 

rapid advances with the implementation of local density functional (LDF) theory. 

The advent of fast super-computers made possible the computation of total 

energies of solids to an accuracy of a few milli Ry which is of the order of 

structural energy differences. Despite being created more than sixty years ago 

quantum theory is only now being effective in predicting the relative structural 

stability of solids.

The LDF ab—initio calculations, however powerful, provide little direct 

information as to the physical mechanisms that are responsible for the bonding in 

the solid. To this end a simpler yet reliable theory is desired. In this thesis a 

two-centre orthogonal tight-binding model is used to compare directly the energy 

between two given structures. The hopping integrals are assumed to be 

transferable from structure to structure and to vary with the bond-length as in 

Harrison’s 1/R2 model. The comparison of the equilibrium energies of two 

structures involves taking into account the volume change due to the change in the 

environment as one goes from one structure to another. This is done with the use 

of Pettifor's structural energy difference theorem. This model is shown to be able 

to account for the observed experimental stability trends amongst the sp-bonded 

elements. It successfully separates between structures as different as a dimer and 

close packed fee. The model is also sufficiently simple to allow for a physical 

interpretation of the predicted trends in terms of local topology. The application to 

sp-bonded AB compounds is also shown to produce good structural separation 

amongst the most commonly found AB binary structures.
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CHAPTER 1: Introduction

A l&rge amount of information on crystal structures has been collected 

(Villars and Calvert 1985) since the discovery of X-ray diffraction in 1912 by 

Friedrich, Knipping and Laue. The ordering of this data within the so called 

structure maps started thirty years ago (Mooser and Pearson 1959) but still is an 

unfinished matter. The problem is to find an optimum set of coordinates that leads 

to a good separation scheme among the known structure types (Villars and Calvert 

op. cit.). Using a combination of s and p radii proposed by Simons and Bloch 

(1973), Zunger and Cohen (1978, 1979) were able to achieve a good separation 

among three basic structures (ZnS, NaCl and CsCl) of non-transition AB octet 

compounds. In a later work Zunger (1980) extended their work to include 

transition elements in the first attempt to order all the AB structure types.

Other coordinates have been proposed to achieve separation for a given 

stoichiometry AmBn, namely, the electronegativity difference, the atomic size 

difference and the average number of electrons per atom (Villars 1983, 1984 and

1985) thus leading to three dimensional structure maps. Despite the large number 

of two dimensional maps (sixteen altogether, one for each value of the average 

number of valence electrons) used to separate the stoichiometry AB, the structure 

of NiAs was not separated. Moreover the scheme does not separate the elements 

because both the electronegativity difference and the atomic size difference are 

equal to zero when A = B. The coordinate left, i.e., the valence, obviously is not 

enough to characterize uniquely the elements.

A phenomenological scale that assigns a unique value to each atomic 

element was proposed by Pettifor (1986a, 1986b and 1988). This single coordinate
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is obtained by running a string through the elements in the periodic table such 

that it leads to a good separation of the different binary systems in two 

dimensions. Such a scale is called the Mendeleev number by the author. A single 

two dimensional map is then shown to be necessary to give a good structural 

separation of all binary systems with a given stoichiometry AmBn.

In contrast with the phenomenological approach there are the first 

principle calculations performed within the density functional formalism 

(Hohenberg and Hohn 1964 and Kohn and Sham 1965). This theory implemented 

with the local density approximation (LDA) in order to handle the exchange and 

correlation contributions to the total energy, has shown to be able to account for 

thk small differences involved in the calculations of structural energy differences (of 

the order of a few milli Ry). Since the last decade it has been used in a 

considerable number of applications not only for elemental systems (see, e.g., Yin 

and Cohen 1980, 1981 and Chang and Cohen 1985) but also for binary compounds 

(e.g. Froyen and Cohen 1983, 1984 and Ho et al 1984). The theory seems to be able 

to cope successfully with metallic, covalent and ionic systems for which the charge 

density displays such different behaviours, i.e., slowly varying, directional along 

the bond and whole amount of charge being transferred to selected sites in the 

structural arrangement. These ab-initio calculations have no arbitrary parameters, 

needing only the atomic number of the constituent elements and the crystal 

structure as input. An one-electron Schrodinger equation governs the electronic 

motion and thus the results can be interpreted within a band framework.

The LDA approach is undoubtedly a very powerful tool for the 

calculation of the structural properties of solids. It is however time consuming and 

physical insight is difficult. The most stable arrangement out of a given set of 

crystal structures can be found but the reason as to the relative stability delivered
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by the theory is often hidden from the human mind. On the other hand the 

phenomenological structure maps can not provide any explanation as to the 

physical origins of the structural stability regions. Conclusions here are often cause 

of controversy. For example Zunger (1980) achieved a great success in separating 

transition element AB compounds using only s and p pseudo-potential radii as 

coordinates. Since no d pseudo-potential radii were used in the structure maps the 

conclusion was drawn that d orbitals were not relevant for structural stability. 

However these orbitals were shown to be necessary in quantum mechanical 

tight-binding calculations for the prediction of the relative structural stability 

amongst the pd-bonded AB compounds (Pettifor and Podloucky 1986, 1986).

This thesis is devoted to the study of relative structural stability 

amongst the sp-bonded elemental systems and AB compounds. To this end, a 

quantum mechanical tight-binding model of cohesion is employed to compare the 

binding energies of structures whose coordination range from 1 for the dimers, 

through 4 for the diamond lattice to 12 for the close packed arrangements. The 

hopping integrals (Slater and Koster 1954) are chosen to scale as the inverse of the 

square of the bond length (Harrison 1980) and the binding (or cohesive) energy Eb 

is written in accordance to the tight-binding bond model (TBB) of Sutton et al 

(1988). In this model Eb is written as a sum of three terms, namely, a bond term 

Ebondj a repulsive (sum of pair potentials) term Erep and a promotion energy 

term Epr (see also Ducastelle 1970). This can be justified within LDF theory by 

approximating the ground state charge density by a sum of overlapping atomic 

charge densities (Harris 1985 and Foulkes 1987).

The usual problem in comparing band energies directly is the 

determination of the volumes (or the bond lengths) at which the energies of the 

different arrangements are going to be evaluated. This problem can be
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circumvented in the case of the close packed structures like fee, hep and bcc. 

Because of the small change in volume among these arrangements the calculations 

cam be made at fixed volume (Pettifor 1983, MacMahan and Moriarty 1982 and 

Duthie and Pettifor 1977). However the relative stability of, say, the open 

tetrahedrally bonded diamond lattice and close packed fee can not be obtained by 

comparing their binding energy at fixed volume because there may be large 

changes in volume between them.

In this work the changes in volume are taken into account via the use of 

the structural energy difference theorem (Pettifor 1986b). According to this 

theorem the energy difference between two structures in equilibrium is given, to 

first order in AEb/Eb, by the difference in their bond energies provided that the 

volumes (or the bond lengths) have been prepared to show the same repulsive 

energy, i.e., AErep = 0. The binding energy difference is then given by the 

difference in the promotion plus bond energies for any two structures. In chapter 4 

it is shown that this can be written as a difference in the band energy provided 

that the atomic s and p energy levels are kept fixed as one goes from one structure 

to another.

This is the model that shall be used in the study of the sp-bonded 

systems referred to above. Special attention is paid to the elements for which the 

moments /in of the local density of states (Ducastelle and Cyrot-Lackmann 1970, 

1971) are used in the interpretation of the results. The /in can be written as a sum 

of all possible lattice paths of length n that start and finish at the site of interest,

i.e., fia =  < i|H n |i>  where i labels the site assuming only one orbital per site 

(Cyrot-Lackmann 1967). As we shall see, if the repulsive pair potentials vary as 

the square of the bond integrals, the condition AErep = 0 is equivalent to 

A/*2 =  Then, as long as the ratio between the hopping integrals are kept
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unchanged, the results delivered by the model Me fairly general and not dependent 

upon the particular R dependence of the hopping or bond integrals. This is shown 

in appendix III.

The calculation of the band energy and related quantities will be carried 

out in real space. This is in contrast with reciprocal space calculations upon which 

traditional electronic structure has been based. These require the use of Bloch’s 

theorem (Aschroft and Mermin 1976) with infinite lattice periodicity as a basic 

assumption. All geometric arrangements in this thesis are endowed with 

translational symmetry but k space calculations are not suitable for our purposes 

which will require a direct relation between the band energy and local topology. 

Due to the infinitely extended nature of the Bloch functions, the k space 

calculation of, say, the second moment of the local DOS involves summing over all 

atoms in the solid, or, in other words, over all points in the first Brillouin zone 

(Heine 1980). In real space this can easily be performed analyticaly.

The real space method used for the computation of the local densities of 

states in this thesis is the recursion method of Haydock et al (1972, 1975). This 

method generates an infinite continued fraction which is terminated after a certain 

number of levels. Both the method and the termination of the continued fraction 

used here are discussed in chapter 2. In chapter 3 the energies involved in the 

relative structural stability studies undertaken in this work are discussed along 

with the basics of the tight-binding method. The investigation on the structural 

trends amongst the sp-bonded elements is the subject of chapter 4. A total of ten 

structures is considered with a large range of coordination. In chapter 5 a physical 

explanation will be provided for the trends obtained in chapter 4. To this end the 

moments of the local density of states are used because of the immediate 

connection with local topology provided by these quantities. The sp-bonded AB
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binary compounds are considered in chapter 6. A straightforward extension of the 

model used for the elements is then employed. The theoretical predictions are 

compared with the experimental trends which are summarized in the structural 

maps drawn with the use of Pettifor's Mendeleev number (op.cit.). The model is 

shown to be capable of providing results which are in qualitative agreement with 

the observed experimental trends for these compounds. Some calculations are also 

performed for the transition metal elements which are presented in appendix XV.
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CHAPTER 2: Numerical Methods

This chapter presents the numerical techniques used throughout the rest 

of this work. Attention is focused on those aspects of the subject which are felt to 

be important for the development of subsequent chapters. The recursion method 

and the moments method are briefly reviewed along with two basic termination 

procedures for the reconstruction of the density of states from the calculated 

recursion coefficients. These are the const suit and the Turchi, Duscastelle and 

Treglia's (TDT) terminations (Turchi et al 1982). The constant or square root 

termination is appropriate to connected bands whereas the TDT termination is 

applicable when band gaps are present in the spectrum. In both cases the 

knowledge of the band edges (and gap edges, if applicable) is required. In this work 

such parameters are determined using the optimization procedures developed by 

Beer and Pettifor (Beer and Pettifor 1984, Beer 1985). The optimization procedure 

works well for the connected spectrum but its extension to the treatment of a 

single band gap presents a series of difficulties. We show that such complications 

can be smoothed out to a reasonable extent by ensuring that the recursion 

coefficients are kept within certain upper and lower bounds defined by the band 

and gap edges.
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§2.1 Introduction

The recursion method (Haydock et al 1972, 1975, 1980, Heine 1980 ) is a 

numerical technique generally used for calculating densities of states (DOS) 

projected on a chosen starting state, with the Hamiltonian being expressed in 

terms of a local orbital basis set. No assumptions about symmetry are required 

which makes the method useful not only in the description of crystalline materials 

but also in situations when there is little or no periodicity available. One must 

specify an initial-state vector |ia>  on whose projection the DOS is to be 

calculated. By means of a three-term recurrence relation the recursion method then 

sets up a new basis in terms of which the Hamiltonian has a tridiagonal 

representation Htd. The matrix elements of Htd are the so called recursion 

coefficients. Provided that |ia> remains the first orbital in the new basis (say 

|uo>), then via the use of the recurrence relation, extended orbitals (|ut>, |u2 >, •

• •) are generated which spread out (over the 1st, 2nd, ••• shells) further and 

further away from |uo>. Given Htd it is easy to construct Goo(E), the diagonal 

matrix element of the Green's function - formally the Green's function is defined as 

the operator (E -< #)_1 - whose imaginary part gives the projected DOS. In terms 

of the recursion coefficients Goo(E) is then expressed as a continued fraction 

which, for an infinite system, has an infinite number of levels resulting from the 

fact that the tridiagonal basis set have an infinite number of elements. The 

knowledge of an extra level in the continued fraction requires the addition of an 

extra level in the cluster, which becomes more and more expensive, 

computationally speaking, as higher and higher levels are involved. In a realistic 

calculation one is then limited by the finite size of the cluster. Typically a few 

thousands atoms allow about 10-20 recursion levels to be computed exactly -  but 

about 5 or 6 levels (Beer 1985) are enough for the convergence of integrated
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quantities over the density of states. A much larger number of levels may be 

needed (Anlage 1986, Woodruff 1987) if one is interested, say, in the fine details of 

the density of states. Limiting the infinite number of levels to a finite number, 

forces us to approximate the unknown infinite tail of the continued fraction. The 

simplest approach seems to consist in reproducing the asymptotic behaviour of 

that tail by an analytic expression - a terminator - which is introduced at the last 

known level in the continued fraction. The knowledge of the terminator together 

with its parameters completes the picture and allows the computation of the DOS.

In the next section we give a brief description on the recursion method 

for the computation of projected local densities of states (DOS). Much has already 

been said about this method (e.g. Pettifor and Weaire 1985), but a short review 

here is necessary as it is needed in other parts of this work. The interested reader 

should refer to Heine (1980) and Haydock (1980) for a more detailed and 

comprehensive review of the subject. The moments method is presented in section 

2.3. The problem of approximating the infinite tail of the continued fraction is the 

subject of section 2.4. Here both the square root (SQ) or constant termination, 

appropriate for the description of a connected spectra, and the Turchi, Ducastelle 

and Treglia (TDT) terminator, appropriate for dealing with the presence of gaps in 

the DOS, are discussed. In section 2.5 we conclude.
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§2.2 The Local Density of States and the Recursion Method

The starting point is the time independent Schrodinger equation

=  (2.1)

in which is the Hamiltonian, ^  is a member of a complete set of

orthonormal eigenfunctions { ^ }  with corresponding eigenvalues {En}. In the 

coordinate representation (e.g. Merzbacher 1970) the eigenstate Vb = ln> can 

expanded as /|x>dx<x|n> and we write ^b(x) =  <x|n>. Much of the 

information about the system is provided by the local density of states (LDOS or 

DOS for short)

n(E,x) =  £  |^ n( i ) |2« ( E - E n) , (2.2)
n

introduced by Friedel to study electronic structure in the absence of perfect 

periodicity (Friedel 1954). A given spin direction must be understood. Since we 

will always be working with spin degenerate states n(E,x) must be multiplied by 

2 at the end of the calculations. This expression involves the knowledge of the 

extended eigenstates of the Hamiltonian. One can avoid having to solve for the 

eigenfunctions of the Schrodinger equation by writing n(E,x) in terms of the 

Green function. If one writes the delta function as (Kittel 1985)

£ ( E - z )  = - - i -  lim  J m ------- --------  (2.3)
e*0 E -  z +  ie

the DOS can be written as
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n(E,x) = — J m  ^  < x |n > ------------------ <n|x>.
T "  E -  En +  ie

(2.4)

where the lim e-+0+ is assumed. Since the operator in an eigenvalue equation like 

Jf\n>  = En|n> can be written as

*  =  in> E" <ni (2.5)

the DOS can be finally put in its usual form

n(E,x) = — ]— Jm  <x 1
E — J t  “f- ie

x> ( 2.6)

Jm  G(x,x,E+ie) (2.7)

The Green function on the right hand side of this equation is generally expressed as 

G(x,xl,E) = <x|(E -<^)"1|xl> (Haydock et al 1972).

In this work we will be dealing exclusively with a tight-binding 

Hamiltonian. One considers a localized (atomic-like) set of basis functions 

y?iot(x) = <x |ia>  centred on sites i with orbital index a. The eigenstates Vh(x) 

are then expanded in terms of a linear combination of atomic-like orbitals 

(LCAO), i.e.,

W 1) = X  antia PiaW (2.8)

ia

or simply
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|n> =  V  |io><ia |n> . (2.9)

ia

Inserting ^ (x )  back into the Schrodinger equation and integrating over x after 

multiplying by (x) one has

S [ H j ( 3 i a - E nSjp J a o i a  =  0 (2.10a)

or simply

(H -  EnS) an =  0 . (2.10b)

The Hamiltonian is now given as a matrix whose elements are the on site energies 

and hopping integrals Hjp iot =  <j$<#|ia> (Slater and Koster 1954)

< j$H |ia>  = J  < j$ x >  <x|ia?> dx (2.11)

The entries in the column vector an are the amplitudes of the eigenfunctions 

^b(x) on the ia  basis, namely, an iot . The overlap matrix elements 

Sjf3?ia = < j$S |ia>  are given by

<j£|S|ia> =  j  < j$ x >  <x |ia>  dx (2.12)

and they appear because .ia  is not, in general an orthogonal basis. Nevertheless we 

shall always assume it to be so. In fact we will assume that < j#S |ia>  = 

which becomes the first approximation in our model. Should we carry on with the 

assumption of nonorthogonality, then the overlap matrix would have to be 

included in the definition of the Green’s function (Williams et al 1982; see also 

Bullett 1975, 1980). The recursion method can properly take nonorthogonality into

18



account as in Hay dock (1980).

In terms of the local basis, n(E,x) reads

n(E,x) =  £  8 (E-E0) a* ^  an )io p*p (x) <pia( i)  (2.13)

n , j 0 , i a

and therefore, assuming orthonormality, the total DOS n(E) = /  n(E,x)dx is

n(E) =  £  £  k  j ’ ^ E J  (2.14)

n ia

=  £  n ia(E ) (2-15)

n

The right hand side of this expression defines the local density of states niot in 

terms of the local basis ia. Following the same lines as before and using 

an iot = < ia |n >  we have

niot(E) = -  Jm  \  < ia |n > ------------------<n |ia>
^  E -  En +  ie

n

= — ~  J m < ia \-------- --------- |ia>  (2.16)
T E -  <# + ie

where the last equality follows from (2.6). Therefore

» ia (E ) =  - 4 -  ■*» G ia  ia (E*) (2 .17 )

where by E+ here is understood E +  ie and the limit e -♦ 0 is implied. Unless 

confusion may arise this limit will be understood but not explicitly written in the
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relevant equations involving the Green function. We shall also drop the plus sign 

in the argument. We then see that only the diagonal matrix element of (E - H ) '1 

corresponding to |ia>  is required for the calculation of the density of states.

The diagonal Green's function matrix element Gja ja (E) = 

< ia| ( E -H ) -1 |iar>, necessary for the calculation of the DOS, will be frequently 

called Giot (E) for short. The recursion method (Haydock et al 1972, 1975, 

Haydock 1980) is a technique developed for the computation of this quantity. It is 

ideally suited for the calculation of Green's function matrix elements between 

localized states close to each other in real space, as will become clear below. The 

basic idea is to construct an orthonormal basis set, { |un> }, n = 0,1,2, which is 

built up in an ordered fashion so that the Hamiltonian becomes tridiagonal. For 

the local density of states projected on the localized orbital |ia>  one takes the first 

vector in the new basis, |uo>, such that |uo> = |ia> . The Green's function 

element in (2.16) is then

G00(E) =  <u0|( E - H ) - i |u 0> (2.18)

and we shall call no(E) the corresponding local DOS. The other elements of the 

tridiagonal basis are obtained by describing the operation of the Hamiltonian on 

|un> via a three term recurrence relation, namely

HK >  =  anlun> +  bn*llun*1> +  b> n - l >  ( 2-19)

where {ao, a i ...} and {bo, b j ...} are numerical constants. The recurrence is then 

initialized by defining |u^>  =  0 and bj = < u0|u0>. From orthonormality one 

gets ao =  <uo|H|uo>. Therefore bi|ui> = (H -  ao)|uo> and use of the 

normalization condition, <ui|ui> = 1, gives bij = <uo|(H -  ao)t (H -  ao)|uo>, 

where (t) indicates adjoint operation. In this context in which the linear atomic

20



basis is assumed orthogonal, H is self-^adjoint and the adjoint operation is 

unnecessary. It would be necessary however if orthogonality had not been assumed 

from the outset, in which case the overlap matrix would also have to be included 

(Haydock, 1980). Taking bi as the positive square root of bij one finally gets the 

second vector in the new set, i.e.,

|u,> =  [(H -  a0)/b,]|u0>. (2.20)

The recurrence then proceeds by making use of the recurrence relation for n =  1. 

The other coefficients are obtained by orthogonalising |un+1> with respect to 

|un> and |un-i>. Adding the normalization condition <un|un> = 1, one gets

an = <unlHlun> 
and

V i  = <un*ilHK >

(2.21a)

(2.21b)

Therefore |un+1> is orthogonal to |un> and |un-i> by construction. Moreover, 

it can be shown that it is also orthogonal to all |um>, m = 0,1 • • • n-1 (Haydock

1980). The matrix representation of the Hamiltonian in the new basis is therefore a 

tridiagonal matrix (or Jacobi or J  matrix)

Htd =

a0 bi 0 0
bi ai b2 0
0 b2 *2 b.
0 0 *>3 a (2.22)

Before we go back to the calculation of the density of states let's say a few words



about the simple physical picture we have been led to by the change of basis. The 

Hamiltonian matrix above is easily seen to describe a semi-infinite chain system 

(the chain model) like the one in figure 2.1. The orbitals (i.e., the tridiagonal basis 

vectors) sit on the vertices of the chain and the a‘s and b's parameters represent 

the on-site energies and intersite couplings respectively. Following Haydock (1980, 

page 224) the system can be interpreted as having an initial state |uo>, other 

states being reached by hopping through the closest neighbouring sites. In this way 

|un> influences the central site more than |un+1>, and this more than |un+2>, 

and so on. This interpretation fits nicely within the concept of a local environment 

(Heine 1980) in which distant parts of the physical system contribute to local 

phenomena less than the nearer ones.

The Green function matrix element relevant to the DOS is the first 

element of the matrix (El -  Htd)"1* Using standard matrix algebra it can be 

expanded in terms of a continued fraction (Haydock et al 1975), i.e.,

H
Goo(E) = -------------------------- ----------- . (2.23)

N
E -  a0 ------------------------

E — a1 -  • • •

The leading numerator in this expression (i.e., bj) gives the area under the curve of 

the DOS, representing the total number of electrons associated with the orbital 

|uo> as shall be seen below. Notice that bo is dimensionless whilst the other 

parameters have the dimension of energy.

We have seen that |ui> depends essentially on the action of the 

Hamiltonian over |uo>. If this orbital is localized on, say, a central site of a given
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cluster of atoms (see figure 2.1), and connected to its near neighbour environment 

via the Hamiltonian, then |u*> is an orbital that spreads over these neighbours. 

Further iterations will generate orbitals reaching parts of the cluster more and 

more distant from the central atom. Since the local density of states on the central 

site is expected to depend less and less on the higher order iterations, the deep 

levels in the continued fraction are not expected to be important in the 

determination of the DOS. The nth level is the region of the cluster covered by 

|un> but not reached by |un-i>- The number of atoms in a given level depends 

both on the cluster and on the Hamiltonian. The atoms in the first level for 

instance, are the closest neighbours of the centred atom if only nearest neighbours 

hoppings axe allowed by H. But the second neighbours must also be counted if the 

Hamiltonian includes second neighbours couplings. A formal definition could be : " 

the nth level contains the atoms that can be reached by a minimum of n hops from 

the origin Naturally the "size" of the hop is defined by the Hamiltonian.

We have gone through a thorough definition of these concepts here 

because they will be important later on for interpreting the sp structural stability 

trends in terms of the local topology of the structures considered.

The recursion method has been referred to as a technique for the 

computation of diagonal elements of the Green's function. However one might also 

require the off-diagonal parts, as for the calculation of bond orders (Kelly 1980 

p302) or charge densities (Jones 1985). These can still be calculated within the 

recursion method in its original form, by starting off with symmetric and 

antisymmetric combinations of the vectors on the two neighbouring sites of 

interest. The Green's function element between the two sites can be shown to be 

proportional to G+(E) -  G-(E) where G±(E) are the diagonal elements 

corresponding to symmetric and antisymmetric combinations (Kelly op.cit, 

Glanville et al 1988). A matrix recursion algorithm allowing direct calculation of 

off diagonal Green's functions elements was developed by Jones and Lewis (1984)
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which is known as Block Recursion. In this approach the coefficients are given as 

matrices and the Hamiltonian is made block tridiagonal by the change of basis. As 

showed latter by Inoue and Ohta (1987), block recursion also corrects an anomaly 

in the (scalar) recursion method, namely the non-invariance of the Green function 

(if calculated to a few levels) to cluster rotation. We shall only be interested in the 

recursion method for calculating densities of states. Since we are not interested in 

the off diagonal elements of the Green function in this thesis, all we need is the 

traditional scalar algorithm with clusters accurate to about ten levels. Therefore 

there is no need to discuss block recursion any further and the interested reader is 

referred to the above references for further information.
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0  b1 Q  b2 Q  b3

l u0 >  l u 1 >  l u2 >

Figure 2.1
Mapping a given structure onto a semi-infinite chain. The 
central atom is mapped onto the starting atom in the chain, the 
atoms on the first level onto the 2nd atom in the chain, the 
atoms on the 2nd level onto the 3rd and so on. Notice the 
presence of 3rd neighbours among the atoms in the 2nd level.
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§2.3 The Method of the Moments

*

The problem of finding a bounded and nondecreasing function No(z) in 

the interval (- 0 0 , + 00) such that

ft, =  J  *n dN0(z), n =  0, 1, 2 • • • (2.24)
-00

for a given set {/in} is called the moments problem (Shohat and Tamarkin 1943, 

Wall 1948, Jones and Thron 1980). For a given sequence {/in}, a solution to this 

problem exists if and only if to an infinite continued fraction corresponds a power 

series expansion in descending powers of E in which the coefficients are given by 

/in, i.e.,

G
/*n

En+1
(2.26)

It also turns out (Wall 1948, chapter XVII) that the solutions are such that

Goo(E) =  f
+00

- 0 0

dN0(z ) 

E — z
(2.26)

is another form for the continued fraction. One can arrive at this form by 

considering the following expression for the matrix element of a function F(H) 

(Magnus 1986, Paxton 1987),

F W U  = /  F(E) Pm(E) Pm(E) dN0(E) (2.27)
£
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where £ is the set of points on the real axis such that No(E) is an increasing 

function of E (the support of No) and

*

N0(E) = f  n0(z)dz . (2.28)

where no(z) is the local density of states. The polynomials Pk(E) are such that 

|ujc> = Pic(H)|uo>, i.e., Po(H) =  1 (the unit matrix), Pi(H) =  (H-ao)/bi, etc. 

The expression above for Goo is obtained by taking F(E) =  (z-E)“1 and 

m=n=0.

The set of constants {/in} appearing in the moments problem are 

called moments, after Stieltjes (see, e.g., Shohat and Tamarkin 1943). In this 

context they are the moments of the local density of states (Ducastelle and 

Cyrot-Lackmann 1970, 1971) given by

ft, = / + ” En n0(E) dE . (2.29)
“ 00

In the local orbital basis the moments can be expressed in terms of the diagonal 

matrix elements of powers of the Hamiltonian (Cyrot-Lackmann 1967, Heine 1980 

page 80), i.e.,

C  = <iar|Hn|ia>  (2.30)

for the particular case of the orbited of type a  at site Hi. If one writes this 

expression as
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«
ia

/*n =  V  Y  <ia|H |i1al>  < i1a,|H |i2a2> < i2a2|H

* l a 1 * 2 ^

• H |ia>

(2.31)

it can be interpreted as a " sum over all possible paths of length n starting and 

finishing at (ior> The moments are therefore made up of paths on the cluster 

which are essentially hoppings from site to site (notice that on-site hoppings are 

also allowed). Only closed paths are seen to contribute. If one calls |uo> = |ia>  

as before and drop the superscript ia  in the notation of the moments, one notices 

that fio = <uo|uo>. This gives the area under the curve no(E) and is equal to

There is more than one way one can obtain the moments from the 

coefficients {an,b^} generated by the recursion method. The continued fraction 

can be expanded into a power series (Wall 1948 p203, Beer 1986 p22) in which the 

coefficients of the expansion are given in terms of the a's and b2's. Direct 

comparison with (2.25) then gives /in. One can also generate {an,b^} using the 

recursion algorithm with |uo> = |icr> and then use (2.30) to write

Pn =  [Hn]00 (2.32)

which is advantageous from the computational point of view. But perhaps the 

easiest way to get the first few moments in terms of the coefficients is to use the 

path counting procedure on the chain model. Apart from /xo which is given by 

the normalization factor b^ =  <uo|uo>, one can easily see that

/*o = bo

tH = ao

h. =  a? + bi (2.33)

tht =  ao +  2aobi + aib? •
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Coefficients can also be calculated from the moments. The conversion 

procedure involves the determinants of matrices constructed from the {/tn} 

(Gaspard and Lambin 1985). Unfortunately, however, it is numerically 

ill-conditioned if the number of levels involved is relatively large (Kelly 1980, 

Blumstein and Wheeler 1973). Multiple precision arithmetics is required to obtain 

coefficients for n typically larger than 15 (Gaspard and Lambin 1985). Beer (1985 

p23) used a recursive algorithm which allowed the calculation of about 20-25 pairs 

of coefficients (see also Gordon 1968). The root of the problem rests on the 

nonlinear character of the relationship between {/xn} and {an,b£} (cf (2.31) and 

(2.32)) aggravated by the rapid increase of fa  with n.

The numerical instability of the transformation {j*n} -♦ {an,bj} is the 

basic difficulty with the method of moments for the calculation of DOS. On the 

other hand if one tries to bypass the continued fraction stage one also runs into 

difficulties. The numerical computation of a density of states directly from the 

moments also requires too much computing accuracy and might also lead to 

hermiticity problems (Haydock 1980). One should mention that a generalized 

moments method has been proposed to make the transformation {//§} {an,bj} 

(g -♦ generalized) well defined. This however has been argued to be equivalent to 

going back to the recursion method (Haydock 1980 p290). For the generalized 

moments method see Gaspard and Lambin 1985.

In this work the recursion method will be the sole approach used for the 

calculation of densities of states. However, for explaining the predicted structural 

trends, the first few moments of the local DOS will be extensively used.

In the following chapters we will mention the number of exact moments 

used in the calculations. This is directly related to the size of the cluster used to 

simulate the bulk crystal. This so because the cluster must be of sufficient size to 

allow all possible paths contributing to a given fa  to be calculated. Unless stated
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otherwise, the Oth moment will always be included in the counting. Appendix I 

shows how the counting is made besides defining the terminology and notation 

(which varies from author to author) used hereafter.

Before we leave this section let us mention a simple but very useful 

exact result, now referred in the literature as Ducastelle and Cyrot—Lackmann'B 

theorem (1971). Let’s consider a function fo(x) which is non-zero and continuous 

in almost all the interval [a,b] with

f0(a) =  W  = o

and its moments being defined by

Pp = f  xPf0(x)dx
a

if Up = o for p = 0, 1, • • • n, then fo(x) has at least n + 1 zeros in the 

interval [a,b], distinct from the ones at a and b. Moreover, if

{q(x) =  / *  fq-l(x ') dx' 
a

then fq(x) has at least n + 1 -  q roots distinct from a and b. The case of 

interest to us is q = 2 when f2(x) represents the structural energy difference for 

a given fo(x) =  n*(x) - n 2(x), ni being the density of states of structure i. If

the two structures share the first n -f 1 moments (i.e., p =  0, p =  0, 1, • • *n) 

then f2(x) has at least n - 1  zeros in the interval of allowed energies.

#

30



§2.4 Finite and Infinite Continued Fractions

As described, the recursion method is an exact transformation from the 

local basis {|ia>} to the ordered basis {|un>}. The new basis is infinite for the 

bulk and so is the tridiagonal Hamiltonian. For real applications however, the size 

of the cluster that can be handled by the computer is finite and the recursion 

process has to be stopped at some stage. One is then left with a finite dimensional 

Jacobi matrix which, in the language of the chain model, corresponds to a finite 

chain. A truncated continued fraction is then generated which can be written as 

(see appendix I)

in00(E) = (-1) r
i»0

-b-1
E -  a.

(2.34)

It is important to note that orbitals not including surface atoms are not affected by 

the finiteness of the cluster. In other words if N levels are kept in the cluster, 

then the first N + l pairs of coefficients (see appendix I) will be unaffected the 

cluster's surface. Such bulk coefficients will be called exact.

Truncating the continued fraction as above leads to a density of states 

consisting of a discrete set of delta functions. This can be seen by writing the 

starting vector |uo> in terms of the eigenfunctions of the Hamiltonian, i.e.,

K >  = anln> (2-35)
n

The local density of states can then be written as
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(2.36)n„(E) =  £  |a n|2#(E-E„)
n ■ 0

where the En are the eigenvalues of Htd. An approximate (truncated) DOS can 

be defined by (Nex 1978)

N

n?(E)= £  | ^ | 25(E-en) . (2.37)

n ■ 0

where en are the eigenvalues of the truncated J-matrix. The eigenstates |n> in 

the subspace generated by Htd and |uo> can then be expanded in terms of the 

tridiagonal basis where the coefficients of the expansion are the polynomials 

Pm(E„) weighted by a function of En. Using the orthonormality of |n> and 

|un>, Nex (1978) showed that the weight on the nth ^-function is given by 

P  Pn( ci)l”1> where the sum extends up to N.

The truncated DOS expression given by (2.37) corresponds to 

expanding G® (E) into partial fractions, ie

G"0 0 (E) =  j
w.

E -
(2.38)

with coefficients wn =  |a j |2 and eigenvalues en. The 8 -functions appear when 

one takes the lim 8-* 0 (E + i£). From the representation of the DOS in terms of 

a discrete set of ^-functions one can write

N

J  (*»)” "i = Mn (2-39)

i ■ 0
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which can be used to calculate wi and ei (n =  0,1..2N-1). This method however 

is ill-conditioned for large values of N (Ducastelle and Cyrot-Lackmann 1973).

The discrete set of 6 -functions does not describe the bulk density of 

states which is known to consist of a continuum of states. This can only be 

achieved by allowing the continued fraction to be extended to infinity. Since this 

can not be done in practice, one must find a way of smoothing the set of 

6 -functions to a continuum curve. In getting a bulk density of states from a cluster 

calculation, one relies on the fact that the local DOS does not depend much on 

sites far from the central site of interest. Therefore the information for the 

smoothness process is, somehow, included in the cluster coefficients.

A most used smoothing procedure is the one known as the gaussian 

quadrature (GQ) method (Nex 1978). By deriving rigorous upper and lower bounds 

for the integrated density No(E), Nex obtains an expression for no(E) by taking 

the derivative of No(E). This method has been criticized by Beer and Pettifor

(1984) in that it does not preserve those moments which had been calculated 

exactly. Beer and Pettifor calculated the structural (band) energy as a function of 

band-filling, for a fee d-band using canonical parameters. A skew rectangular 

band, fitted to the first four fee moments, was used as reference. According to 

Ducastelle and Cyrot-Lackmann's theorem the resulting structural energy curve 

should have at least two zeros distinct from those at the bottom and top of the 

band. The curves presented by Beer and Pettifor (op. cit.) show that the method 

fails to achieve this requirement. It has been argued latter (Paxton 1987 p3.16) 

that the reason for this failure was due to the reference skew density which was not 

computed by gaussian quadrature to the same number of levels as the fee DOS. If 

this is done, then the errors are canceled in energy difference calculations. Paxton 

also presents some curves to back up his arguments together with giving a nice 

review on the GQ method. However, since we are interested in absolute
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convergence we will not use this method here.

An alternative to gaussian quadrature consists in appending a 

terminator which emulates the unknown infinite tail of the continued fraction. The 

basic difference is that a form for the asymptotic behaviour of the coefficients is 

now assumed. This is the method we have used which preserves the exact 

moments we have calculated and the one we describe next.

2.4.1 The Square Root Terminator

Since the early years of the recursion method it has been recognized 

that for a single band model (continuous or connected band), e.g., for transition 

metals the coefficients belonging to the deep levels in the continued fraction 

converge to constant values aw, b^ (Haydock et al 1975, Beer 1985 fig.2.2.2). If 

one then assumes that convergence has been achieved after, say, N calculated 

levels, one may write

G0 0(E) -

E -  a„ -
b?

(2.40)

E - ^  -  t(E)

where



t(E) = (2.41a)
b 1

E -  a
00

b2
00

or

‘(E ) =
b?

E -  a -  t(E)
(2.41b)

This is a quadratic equation that can be solved analytically for t(E), which 

therefore has a square root form. One rejects the plus solution in order to preserve 

the analytic character of the Green's function as E -* oo. Thus

-1 , ,2  , 2
t(E) =  2 E — a — a00 1 (E -  a j  -  4b„ (2.42)

or,in a  more symmetric way

t(E) =  2' 1

E -f Ei |--------------------------
E ----- i------- ( E - E t ) ( E - E b) (2.43)

where Et = a^ + 2b00 and Eb = aro -  2bw. One sees that a^ and b^ are the 

center and the half-width of the band respectively.

This termination is very convenient because the square root provides 

the necessary branch cut [Eb,Et] on the real axis with branch points Eb and Et- 

Along the cut the imaginary part of t(E) is finite leading to a band of states. 

Outside that interval Im t(E) = 0 thus confining the DOS to [Eb,Et]. Isolated 

£-functions can occur outside the cut if Re t(E) changes sign, which happens 

when the chosen interval [Eb,Ej is too small compared to the real one. Notice
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that poles are the only kind of singularities of the Green's function that are 

spotted by the truncated continued fraction. Branch points (giving rise to cuts 

corresponding to a band of allowed states) and essential singularities (van Hove's 

singularities) require bulk coefficients (Haydock et al 1975).

One is now left with the problem of determining (a^b^). If the band 

edges Eb and Et are not known a priori, a reasonable choice about the limiting 

values of the coefficients must be made. The two limiting cases are clearly when 

they are chosen so that the corresponding band width is either too narrow or too 

wide. In the first case delta functions split off at the edges and in the second 

spurious oscillations develop in the band (Heine 1984).

Beer and Pettifor (1984) treated ( a ^ b j  as adjustable parameters, 

calculated in a self-consistent way from the knowledge of the (exact) coefficients, 

which have been calculated from the cluster. The method consists in choosing the 

minimum bandwidth consistent with no loss of weight from the band, thus 

imposing that Goo diverges simultaneously at the top and bottom band edges. 

Therefore the minimum and maximum eigenvalues of the truncated tridiagonal 

matrix corresponding to Goo(a00 ± 2 bw), must be situated, simultaneously, at the 

bottom and top of the band respectively.

This optimised square root terminator has been shown (Beer and 

Pettifor 1984) to give structural energy curves that satisfy Ducastelle and Cyrot- 

Lackmann's theorem (1971). Preservation of the number of nodes is certainly an 

essential requirement in relative structural stability studies. It is directly linked to 

the preservation of the information contained in the moments used to calculate aw

and b .00

Due to the very nature of the method, Goo(E) diverges at the band 

extreme resulting in small spikes at the top and bottom of the band. In order to 

get rid of these one can increase the band width by a small amount, a few percent 

of the bandwidth. We have been experimenting with 1%, 2% • • • 5% and the
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results are shown in figures 2.2-2.5. For these figures a simple cubic cluster with 

one s-orbital per site was used with the diagonal (onsite) energy and hopping 

integral given by eB =  0 and bs<t = -1 respectively. Figure 2.2 shows the changes 

in the density of states with 5 levels computed exactly. Therefore 5 +  1 =  6  pairs 

of exact coefficients are used, i.e., (a^bg) • • • (a8 ,b|), which means that 2 * 6  =  1 2  

exact moments are kept {see appendix I). Figure 2.3 shows the corresponding 

changes in the structural energy /  E [n(E) -  nref(E)] dE as a function of the band 

filling. In this expression a reference DOS is used as a background in order to 

emphasize the energy differences. This corresponds to a skew rectangular density of 

states with the same first four moments as the simple cubic structure. It is not 

difficult to show that in this case with /i| =  /X3 =  0  the reference DOS is 

rectangular with height /*o/W where W = (12*jia/fio)^ is the bandwidth. 

Furthermore its corresponding band energy Eb =  /  E nref(E) dE is parabolic with 

respect to the band filling N, i.e., Eb(N) = • f r l  po)^ N(N-/*o)- With p0  =  2

and p% = 2 *6 *sso2 = 1 2  (here we have included spin degeneracy and 6  stands for 

the number of neighbours in the simple cubic structure) we have 0.24 and 8.49 

approximately for the height and the bandwidth respectively and

Eb (N =l) = -2.12 for the band energy at half bandfilling. These values should be 

compared with figures 2 . 2  and 2.3.

The inset in figure 2.3 shows the curves for the different corrections to 

the bandwidth in a reduced scale. In this case, in order to emphasize the energy 

differences even more, the background used was a cubic spline fitted to all the data 

points (we will see later that the spline will be very useful to separate the 

structural energy amongst different structures, due to the impossibility to fit a 

skew DOS for all possible values used for the parameters). A NAG (Numeric 

Algorithms Group) routine was used for this purpose. The routine fits cubic 

polynomials between knots and joins them together by imposing continuity of the
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Figure 2.2
Simple cubic s-band densities of states (es = 0, (ssa’) = —1, 5 
levels) as a function of the band edges. Beer and Pettifor 
termination was used with a few percent corrections for 
increasing the band—width. These are: 2.2a (0%), 2.2b (1%), • • • 
2 .2 f (5%).
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Figure 2.3
Structural energy as a function of the band-filling for the DOS 
in figure 2.2. The inset shows the curves in more detail with an 
spline chosen as the reference.
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Figure 2.4
The same as figure 2.2 but keeping 7 levels exact.
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Figure 2.5
Structural energy as a function of the band-filling for the DOS 
in figure 2.4. The inset shows the curves in more details.
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function and its first and second derivatives at the joining point (see NAG 

documentation for details). The knots used for this curve were 0.1, 0.2, 0.4, 0.8,

1.2, 1.6, 1.8, 1.9. Figures 2.4 and 2.6 are just the same as the previous two, but 

with the number of levels equal to 7.

As we will see in the next chapters, the differences in the structural 

energies of the different structures studied, are far much greater than the small 

deviations shown in figures 2.3 and 2.5. One is then free to increase the optimized 

(Beer and Pettifor) terminated band—width by, at least, ais much as 5%. Since 

3 % is enough to get rid of the spikes at the band edges, we decided to take this for 

the correction used in this work.

2.4.2 The Single Band-Gap Termination

The square root terminator is not suitable when one is deeding with 

gaps in the spectrum of energy since it gives rise to a single connected band. In the 

case of band gaps the coefficients do not have definite limits but rather oscillate 

with undamped amplitude between two asymptotic limit points (Gaspard and 

Cyrot-Lackmann 1973). Internal Van Hove singularities in the density of states 

also cause the recursion coefficients to oscillate but with decaying amplitude, the 

oscillations decaying with increasing recursion number. As pointed out by Gaspard 

and Cyrot-Lackmann, the damping and frequency of the oscillations are related to 

the nature and position of the singularity (see also Hodges 1977). In the presence of 

several kinds of singularities one must therefore use a suitable procedure for 

terminating the continued fraction. Sometimes a combination of two may be 

necessary (Woodruff et al 1987).

The influence of band gaps in the behaviour of the coefficients has been
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fully discussed by Turchi et al (1982). Their method is described in some detail in 

Appendix II where many of the expressions to be used below are derived. Here we 

shall be mostly interested in pointing out the problems found by Beer (1985) in 

extending his optimisation procedure from the connected spectrum to a single band 

gap. A simple prescription which sorts out most of these problems will be given.

Let us first introduce briefly the notation, which will follow that of 

Turchi et al (op.cit.) as closely as possible. Notice however that the counting index 

used by Turchi et al for the a’s, starts from 1 and not from 0 as in this work. 

Notice also that our sole concern here is the case of a band with a single gap. In 

this case the band and gap edges shall be represented by Ei < E2 < E 3 <  E 4 and 

some useful parameters are

W = 4 - ( E 4 - E 1) g  =  - j - ( E 3 - E2)

a = - j -  (E4 + E,) g =  - j -  (E, + E2)

(2.44)

With the nth level of recursion within the asymptotic regime, i.e., when 

the oscillations in the coefficients have settled down, one writes the last level as

E - a ^ - g ^ E )  . (2.45)

Two equivalent forms of the terminating function are then given by Turchi et al, 

which are to be used according to whether the last known pair of coefficients is 

(an-i,bn) or (an,bn). We will always be working with (an,bn) as the last pair. In 

this case gn(E) can be written as

2b£ (E  + A1 + a n )

g„(E) = ------------------------------------------------------  (2.46)
E2 + A ,E  + A 2 + 2 b 2 +  [X(E)J*
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♦

where

X(E) =  (E -  E,) (E -  E2) (E -  E3) (E -  E4) (2.47a)

A, = -  (g +  a) (2.47b)

A2 = g a - 4 - ( V V 2 +  G2) (2.47c)

The asymptotic coefficients are bounded, i.e.,

a -  G < an £ a *4* G (2.483.)

and
W - G  y W + G

2  i l " S ~

and satisfy some recurrence relations that can be obtained from the two forms for 

the terminating function referred to above (see Appendix II). If the asymptotic 

limit has been reached then one can use such recurrence relations to obtain the 

parameters that enter into gn(E). One should then generate the asymptotic 

coefficients to check whether they match well with the exact ones at the boundary. 

If, on the other hand, only a few levels are available so that the asymptotic

regime has not yet been firmly established, then one needs another procedure to

find the parameters. This was provided by Beer (1985) and is a natural extension of 

the same author's work on the connected band case.

In the single band gap case Beer's method imposes that the Green 

function diverges (simultaneously) not only at the bottom and top of the band as 

in the connected case, but also at the gap edges. Beer showed that the Green 

function at the band and gap edges is given by finite continued fractions, whose 

associated tridiagonal matrices HG(W) and H^(G), respectively, have energy 

eigenvalues which are responsible for the divergence of the Green function. The
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bottom and top of the band are given by the minimum (Amin) and maximum 

(Amax) eigenvalues of H ^G ) when simultaneous divergence is achieved, i.e., when 

Amax = -Amin- Similarly the bottom and top of the gap are given by eigen values of 

Hg(W) but now one has to give information as to which eigen values are to be 

used. This is taken from the tridiagonal matrix truncated at the last known level, 

by counting the number of its eigenvalues in the lower and upper bands. The 

scheme is carried out in a self-consistent manner between HQ(W) and HV(G). 

From an initial guess (ao,Wo,go,Go) one determines (ai,Wi) from H ^G ) and 

(g1}Gi) from H (W). The new set is then used in a second iteration to give 

(ai,Wi,gi,Gi) until self-consistency is achieved.

Sensible densities of states can then be computed, even when a small 

number of levels, say N = 8 , is available (Beer op.cit.). Our main interest lies, 

anyway, on integrated quantities which are known to show little sensitivity to 

termination parameters (see, for example, Turchi et al 1982, section 5.3).

Beer and Pettifor's procedure for the connected spectrum is fully 

automatic, thanks mainly to the simple form of the square root terminator at the 

band edges. Things are more difficult when a gap is present in the density of 

states, due to the more complicated form of the terminator at the band and gap 

edges. For example the generalised single band gap procedure requires, as input, 

initial guesses for the band and gap edges and the knowledge of the number of 

eigenvalues of the truncated tridiagonal Hamiltonian in each band. All these 

require prior studies of the coefficients and make the whole procedure 

non-automatic. But more important and more serious than this is an intrinsic 

error which arises if the initial positioning of the eigenvalues relative to the true 

(unknown) gap edges is poor. More specifically the method leads to loss of weights 

if an eigenvalue of the truncated continued fraction exists inside the gap (see 

Beer's thesis (1985) section 3.3.2). The weight associated with such states 

diminishes as the number of levels increases, but we are just interested in working

45



with a small number of levels. The way out is, then, to. restrict ourselves to only 

those number of levels for which no states exist in the gap. But since the true gap 

edges are not known a priori, one may not be able to tell for sure from, say, the 

spectrum of delta functions, whether a state close to one of the gap edges is inside 

the gap or within the band.

Beer studied the possible effects that incorrect choices would have on 

the results delivered by his method (Beer (1985) section 3.3.2). In some cases the 

results were such as to indicate that an incorrect choice had been made. In other 

cases, however, the results were well acceptable and the error could go on 

unnoticed. Several times we came across a haxdly noticeable negative portion of 

the density of states which developed in a small region close to one of the 

calculated gap edges (actually inside the true gap), as a result of such errors (see 

appendix II for the origin of negative DOS associated with Turchi's termination).

In what follows we make some suggestions as to how to improve the 

method and avoid the problems mentioned above. We will also show how to bring 

it closer to full automation. As will be seen, the addition of a simple prescription 

makes the method a much more reliable tool for the calculation of band and gap 

-edges.

2.4.2.1 Improvements to Beer's Method for a Single Band Gap

Let us list the steps necessary for using Beer's method to evaluate the band 

and gap edges :

i) decide whether or not a gap exists;

ii) estimate band and gap edges (initial guess) and consequently count 

number of eigenvalues of the truncated tridiagonal Hamiltonian in each
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sub-band; and

iii) compute self-consistent band and gap edges and check them against the 

initial values for reasonableness of the results.

gtep.i)

The decision as to the existence of the gap can be left to the user and in 

this sense this step is the least important of all three. However it would be 

interesting if a numeric implementation could be made so that the computing 

routines could make the decision without the user's intervention. It would 

certainly save a lot of time, for example, in our case in which one has to deal with 

a large number of structures, and parameters like the sp-splitting are varied, which 

can make the gap appear or disappear from the DOS. Unfortunately we have not 

been able to arrive to a totally automatic prescription to detect a gap out of a 

given set of coefficients. In the vast majority of the situations the presence or 

absence of the gap was sensed succesfully but we came across a few cases in which 

: some doubt wasxaised. Notice that we have been working with only a few pairs of 

coefficients, typically about ten levels. With more levels the results were much 

better as one should expect. We give below a brief description of the methods used, 

both because it is instructive and it is related to step ii. Several approaches were 

tried but only the two most releable methods will be described here.

One can tell about the existence of a gap from either the behaviour of 

the coefficients with the number of levels of recursion or from the square root 

terminated density of states. The first feature is useless if only a few levels (say 

less than ten) are available since in this case, in general, the asymptotic regime has 

not yet settled down. In using the second, one notices that, if a gap exists, the 

square root termination introduces oscillations in the DOS but 1 ) leaves band 

and gap edges reasonably well defined and 2 ) yields to a very low DOS inside the
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gap (Turchi et al 1982). These properties of the square root terminator are good 

probes in the search for gaps. Furthermore they get more pronounced as more 

levels are available, because in the limit of an infinite number of levels the DOS 

must be independent of the termination.

In taking advantage of 1) one must notice that the gap, if present, is 

situated between two of the eigenvalues of the truncated tridiagonal Hamiltonian. 

For a given number of levels N, one then searches for the two eigenvalues between 

which the square-root terminated DOS is minimum. Since the difference between 

such two eigenvalues is a good estimate of the gap width G(N), one ends up with a 

procedure that gives G(N) -  or its most probable candidate -  as a function of N (if 

an eigenvalue exists inside the gap, we will show later that it does not affect the 

argument). If there is no gap then, as N increases, there is nothing to prevent other 

eigenvalues from coming in and slicing up the energy interval where the gap was 

previously assumed to be. The estimated "gap-width" should then decrease with 

increasing N. On the other hand, if the gap does exist then the gap-width should 

remain practically constant (an eigen value may appear inside the gap for certain 

values oLN. but this state tends to disappear as N changes). If we then assume that 

G(N) depends on N as

G(N) =  A exp(-AN)

we should be able to tell whether or not a gap is present in the DOS according to 

the value of A. Taking the logarithm of both sides of this expression gives

Log G(N) =  Log A -  A N

which is a straight line in the plane Log G(N) vs N. In practice 

N = 4,5, • • • Nmax, where Nmax is the number of levels fixed by the user. We

48



«

start at N = 4 because the first few levels do not show any regularity at all (see 

for example Turchi et al, 1972). We now define 9 by A = tang $, and according 

to the arguments above, a low (large) value of 9 is indicative of the presence 

(absence) of a gap in the DOS. Generally we found that a low 0 is around 2 °and 

a large 6 is around 12? This method works satisfactorily in most cases but may be 

misleading in others, for example when the gap is too small. More precisely in 

some continuous spectra, the decaying in G(N) may be too slow to give clear 

evidence of the non-existence of the gap. This seems to be associated mainly with 

symmetric spectra. Naturally the procedure gets better if the number of levels 

available is relatively large (say greater than 13).

The second feature, namely that a square root terminated DOS is very 

low inside the gap, seems to be a more reliable approach. One can exploit this 

feature more fully by computing the integrated DOS in the intervals between each 

two neighbouring eigenvalues of the truncated Hamiltonian. It is better to leave 

out the minimum and maximum eigenvalues in order to avoid picking up a low 

density at those extrema. We got the best results by integrating over only 50% of 

each interval, i.e., leaving 25% off each side, thus avoiding including the peaks in 

the integration (see Turchi et ai 1982). Working with an average DOS over this 

interval (i.e. dividing the result of the integration by the size of the interval and by 

the total band filling) one gets normalised results, ideally independent of the size of 

the interval and of the total area under of the DOS curve.

Therefore, to each interval corresponds an average density of states 

which height we always found to be between 0 . 1  and 1 .0 , except in the gap 

interval where it was at least one order o f magnitude less. Again one does not claim 

this to be a totally fool-proof approach for detecting gaps in the DOS and for this 

reason we do not present more details here. However it made my life much easier, 

reducing to only a few the cases requiring my direct intervention. Moreover the 

idea does automate step ii, described in the following.
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Step ii)

If one has decided, by whatever means, that a single gap exists in the 

DOS then the number of levels in the lower and upper bands must be counted. We 

see that the previous step already has this information because it detects the gap 

between two eigen values. The initial input guesses for the band edges can then be 

taken as the minimum and maximum eigenvalues respectively; the gap edges are 

taken as the two eigenvalues between which the gap was detected. Naturally the 

procedure does not detect the presence of an eigenvalue inside the gap (it simply 

finds the interval over which the average DOS is minimum) nor is this its task. If 

an eigenvalue exists inside the gap for that particular value of Nmax, it will be 

included to either the upper or the lower band according to where the gap was 

detected to be. The third step, though, is the one that should tell us that 

something went wrong and a change in Nmax should then be adequate.

Step iii)

The computation of the self consistent parameters have already been 

extensively discussed by Beer (1985). Here we will only be interested in finding out 

a numerical procedure that analyses the reasonableness of the results. From the 

reasoning above (see also Beer 1985 section 3.3.2) one only has to worry about the 

presence of an eigenvalue inside the gap because this is the only source of errors in 

Beer's procedure.

If the eigenvalue is placed near the center of the gap and is included 

into, say, the upper (lower) band then the gap will generally jump over one or 

more eigenvalues into the lower (upper) band (Beer 1985). Since the number of 

eigenvalues in the lower (upper) band will change from the initial guess, this
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situation is easily detected numerically.

On the other hand, if the eigenvalue is close to one of the bands and is 

included into the band, then, provided that the number of eigenvalues in each band 

does not change from the input, the gap width delivered by Beer's technique is 

smaller than the true gap width. This is so because the routines will stretch the 

gap-edge towards the center of the gap, in order to accommodate an extra 

eigenvalue in the sub-band. This is the essential problem with the method, because 

the true gap width being not generally known, makes it difficult to detect the 

error. In order to study the error Beer carried out some tests by making deliberate 

incorrect choices for the gap position and analysing the corresponding effects on 

the results delivered by the computing routines (Beer 1986 pl22). His conclusions 

were that the results should give some indications that an input initial error had 

been made and an alternative choice should then be tried. This picture is clearly 

unsatisfactory, particularly if one is attempting to draw structural maps, when a 

massive number of different values for the parameters of theory must be tried.

The solution for this problem is, however, very simple and 

straightforward: i f  the gap is made too small the bounds in the coefficients {2.48) 

shall be violated This violation can be spotted provided that the number of exact 

levels is large enough so that the maximum amplitude of oscillation has already 

been reached by either the a's or the b's. Notice that this condition does not 

demand that the asymptotic region has been reached, but only that the maximum 

amplitude of oscillation is reasonably well defined. Therefore typically half the 

number of coefficients necessary to reach the asymptotic regime is needed here. 

Actually even less than this may be enough because if a gap eigenvalue (i.e., one 

that is in the gap) that is close to one of the bands is included in the band, then 

the gap-width delivered by Beer's routine is sensibly smaller than the true 

gap-width (Beer 1986 pl22). We have noticed that around six levels are enough in 

most of the situations.
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Due to the small gap-width the asymptotic coefficients oscillate with 

smaller amplitude than the exact coefficients. They almost certainly will not 

match at the boundary (Turchi et al 1982) which can lead to a negative density of 

states inside the true gap (see Appendix II).

More quantitatively let us take the asymmetric split rectangular band 

(figure 2.6) used by Beer (1985) and make intentional errors by including in the 

band eigenvalues known to be in the gap. The purpose of this exercise is to find out 

how the method copes with eventual incorrect choices introduced by the user. The 

proposital errors are the same as Beer's (op.cit. section 3.3.2) and as we will see, in 

all cases, the bounds shall be violated either for the a's or the b's or both. The 

coefficients were obtained from the moments by using the determinantal relations 

described in Shohat and Tamarkin (1943). We then compute the self consistent 

parameters and check if the bounds are in fact violated. If they are, we calculate, 

from the computed parameters, the following positive quantities as a measure of 

the amount of violation of the bounds

and

da± = MAX

►

a„ -  (a ± G) /(2G )

*

db± =  MAX b; . [ w ± 0 ] - / ( WG)

(2.49a)

(2.49b)

Here n = 4 • • • Nnax, where Nmax is the last known exact coefficient. Notice that 

the denominators are respectively the amplitude of the oscillation of the a's and 

b2 's, i.e.,
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2G =  ( a + G ) - ( a - G ) (2 .50a)

and

(2.50b)

We still have to justify starting the variation of the recursion level from 

4 in (2.49). For such we plot in figure 2.7 the phase space representation of the 

recurrence laws satisfied by the coefficients in the case of the band defined in figure

2.6 (see Appendix II this work and Turchi et al 1982 for details). Here the 

asymptotic coefficients lie on the continuous curve whereas the calculated ones are 

represented by other symbols. As expected the higher the recursion level the better 

the display of asymptotic behaviour from the part of the calculated coefficients. 

The first few pairs though, are seen not to lie in the asymptotic curve. They have 

no immediate information about the asymptotic regime and are therefore left out 

of the analysis. The fifth pair (i.e., the fourth level) is kept and so are all the pairs 

up to Nmax, the maximum number of exact levels available.

Table 2.1 summarizes the results. Notice that the violation of the 

bounds generally increases as the number of levels increases. This indicates that 

Beer's procedure gets more sensitive (the method gets more reliable) to initial 

input errors as the number of levels increases. Notice also that the bounds have 

been violated in every case in which a mistake was made, which shows that 

violation of the bounds is a good indication of bad initial positioning of the 

eigenvalues. Finally we found that the coefficients are within the bounds for every 

case for which the correct choice was made (we went up to 19 levels in this 

analysis).

In practice one can extend the allowed region for the coefficients by a
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factor of, say, 1% of its computed value. If a coefficient (from Nmin =  4 to 

Nmax) is spotted outside this stretched region, the situation will be interpreted as 

if an eigenvalue exists in the gap. We see that we could set a tolerance of nearly 

5% and yet spot the initial mistake.

We would like to stress that the last known pair of coefficients is solely 

used in the terminating function. They do not make any appearance in the 

tridiagonal matrix. More specifically from N +l pairs of exact coefficients 

available within N levels of recursion, the (N +l)th  one is to be used in the 

TDT's terminating function. Only the remaining N pairs are used to build up the 

tridiagonal matrix, which is therefore an N x N matrix.

Finally, notice that Beer's method places S -functions at the bottom 

and top of both sub-bands. In other words the method gives the minimum 

band-width and maximum gap-width consistent with no loss of weight from the 

band. Just as in the connected case, one can increase (decrease) the band-width 

(gap-width) in order to get rid of the spikes placed at the edges. However in this 

case one has to be slightly more careful because the bounds in (2.48) must be

respected. Also one must allow for different corrections for each of the two 

different sub-bands. Let's suppose that the band-width of the lower (upper) 

sub-band is Wi (W 2 ) and the gap width is Gg, the edges being defined by 

E1 <  E2 < E3 < E4 . We use parameters a  and for the corrections such that

$W, =  0.01* a* Wt 6Gi = 0.01-a-Gg

6W2 =  0.01 -p • W2 6G2 = 0.01 P  -Gg
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Figure 2.6
The asymmetric split rectangular band The parameters are the 
same used by Beer (1985 p93):

a = 0 W = 2.0 
g = 0 . 2  G = 0.5 

h2 =  1.5-hi

The total band-£lling being equal to 5 gives hi = 5.0/3.65.
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a's

Figure 2.7
Phase space representation of the asymptotic coefficients for the 
asymmetric split rectangular band of figure 2.6. The asymptotic 
curve was calculated from the exact band and gap edges. The 
triangles represent the first few coefficients and the pluses and 
stars represent the th ird  level and beyond.
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No. of 
1 evels

Eigen value 
posit ion

Inc1uded 
in to

da+ da_ db+ db_

7 -0.28 lower
band 0.08 0 . 0 2

1 0 0 . 6 8
upper
band 0.05 0.05

1 2 0.58 upper
band 0.57 0.57 0.30 0.30

14 0.43 upper
band 10.4 10.7 9.7 7.6

16 0.23 upper
band 1.04 1.07 1.27 0.85

16 0.23 lower
band 1.36 1.28 1.60 1.07

18 0 . 0 2
upper
band 1.50 1.52 1.81 1.30

18 0 . 0 2
lower
band 4.54 4.40 5.22 3.94

Table 2.1 Violation of the bounds for the coefficients resultant 
from proposital incorrect initial positioning of the eigenvalues.
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In other words a  corrects for the lower band edges and /? corrects for the upper 

band edges. Finally the changes in the edges are

E{ =  Ef -  tfWj/2 EJ = E2 +  MIN( W ^^G ^/2

E J = E4 + m 2/ 2 EJ = E3 -  MIN( 5W2,6G2)/2 .

Figure 2.8 shows how these corrections affect the sp density of states of a cubic 

diamond structure. Notice how the spikes disappear as the correction increases 

from 0% (a) to 6 % (f) in unity steps. Just as in the connected case the effects of 

these corrections on the structural energy are negligible, as can be seen from figure 

2.9. In this work we shall take a  =  p = 3 which was also the correction factor 

chosen for the connected band case. Figures 2.8 and 2.9 were obtained from a cubic 

diamond cluster with nine exact levels and sp-splitting equal to zero. The 

tight-binding hopping integrals were calculated with respect to ss<7- = -1, by 

using Harrison’s ratios (Harrison 1980), which are introduced in chapter 4. The 

value of ppx was taken as - 0 .3 3 *pp<7 though, and the reason for this is explained 

in chapter 4. As we did in the connected case, in figure 2.9a the structural 

energies were calculated relative to a skew density of states with the same first 

four moments as the cluster. In figure 2.9b a spline fitted to all the points was used 

as a background. In this case the knots were chosen at 1, 2, 3, 4, 5, 6  and 7.
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Figure 2.8
sp densities of states for a nine levels cubic diamond cluster 
snowing the effect of corrections to the edges. From a to f the 
corrections are a = p  =  0, 1 • • • 5. The sp-nsplitting was taken 
equal to zero, (ss<r) = - 1  and the other hopping integrals fixed 
using Harrison's ratios, except for (ppx) which was taken as 
-0.33 *(pp^).
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§2.5 Conclusions

In this chapter we briefly reviewed the recursion method which is the 

basic tool used for the calculation of the densities of states appearing in various 

other parts of this work. The moments method was also discussed and its numeric 

problems pointed out. Setting up the tridiagonal matrix corresponding to a given 

cluster of atoms was not the end of the story for the bulk and we therefore showed 

how the asymptotic tail of the continued fraction could be reasonably smoothed 

out to obtain a continuous band of states. The square root termination was then 

discussed as appropriate to the connected band case. The more complex single 

band gap case was also reviewed in connection with Turchi, Ducastelle and Treglia 

(1982) terminator. In both cases am optimised technique (Beer 1985) for the 

calculation of the relevant parameters waLS discussed. The case when two gaps exist 

in the spectrum is discussed in appendix IX.
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CHAPTER 3: Relevant Energy Expressions

*

In this chapter we discuss the energy expressions that shall be used in 

the subsequent chapters. The tight-binding model is presented and the importance 

of non-orthogonality contributions to sp systems is stressed. The basics of the 

chemical pseudopotential approach is also presented and how it can be used to 

provide a justification for the use of tight-binding in systems with non-localized 

orbitals.
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§3.1 Introduction

In chapter 2 we presented the recursion method for the computation of 

the local density of states associated with a given site in the assembly of atoms in 

the solid state. This quantity can be used for the calculation of the band structure 

energy (or band energy, or structural energy) of the solid which is an important 

paxt of its total energy. In this chapter we show how they are related to each other 

and also present the different terms contributing to the total energy. A short 

review on the tight-binding (TB) method for band structure calculation is also 

included here. The neglect of non-orthogonality contributions in this method can 

be shown to justified, in principle, with the use of a suitably chosen basis set which 

is derived from the Anderson-Bullett scheme (Anderson 1969 and Bullett 1975a, 

1975b).
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§3.2 Band and Bond Energies

We have seen in chapter 2 how to express the local density of states 

n(E,x) in terms of the Green's function, i.e.,

n(x,E) = Im G(i ,i ,E) (3.1)

More generally one can define

n(x,x',E) = Im G(x,x',E) (3.2)

which are the matrix elements of the spectral density operator in the 

x-representation (Finnis et al 1988). This quantity when integrated over E up to 

the Fermi level gives the elements of the density operator p , i.e. ,

<x|p |x, > = J  f n(x,x',E)dE (3.3a)

=  -=p- Im f  £f G (i,x ' ,E)dE . (3.3b)

In this representation (the coordinate or x-representation) the diagonal 

element <x|p|x> is the electronic charge density p(x). In the representation in 

which the basis functions are the eigen functions |n> of the energy operator the 

density operator is defined as (Kittel 1987, Cohen-Tannoudji et al 1977)

P =  £  ln> Pn <nl (3.4)
D

where the Fermi factor pn is the occupancy of the state |n>. At OK pn is given
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by 0 (e f - e n) where B is the heaviside or step function, i.e., 0(x) = 1 for x>0, 

and zero otherwise. In this case pn simply restricts the summation to the 

occupied states of the system.

The major advantage in using the density operator concept is in the 

calculation of expectation values of operators in quantum mechanics. For instance 

given an operator 0  one can calculate its expectation value summed over all 

occupied states as

<0> = Pn <n|0|n>

which in the x-representation gives

<&> = ^  f f  d x d x ' p^ < n |x '>  < x '|^ |x>  <x|n>
n

= y  f f  d x d x ' <x|n> p^ < n |x '>  < x '|^ |x >
n

= jfjf d x d x ' <x|/>|x'> < x '|^ |x>

= Tr [PC] . (3.5)

This form, although derived in the coordinate representation, is actually basis 

independent because of the invariance of the trace under a change of basis.

We can use the density operator concept to write down an expression 

for the band energy (also called structured energy) of a material. This is the sum 

over the occupied states of the eigen values of en = <n|<Jf|n> of the Hamiltonian, 

namely,
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<n|<#|n> (3.6a)

e (3.6b)
n

r is given by Trfc<#). Notice that this 

one-electron energy sum is not the total electronic energy of the solid (Heine 1980 

p92). The Coulomb repulsion of the ion cores has not been taken into account, the 

Coulomb energy of the electron charge density has been counted twice and one also 

has to consider the exchange and correlation energy. Furthermore Schrodinger's 

equation must be iterated to self consistency so that the eigen vectors give a charge 

density that is consistent with the effective potential used in the Hamiltonian.

The band energy can be written in terms of the density of states by

E = Tr<#> (3.7)
band

♦

E
band

OCC

- s

OCC

- x

which in terms of the density operate

= jfjf d x d x ' <x|<#|x '>  <x'|/>|x>

-1 J* f dE jfjf dx dx' Im <x '|G (E )|x>

= J* f dE jfjf d x d x ' < x |^ |x '>  <x '|n (E )|x>

where we made use of 2.2. Now since < x / |n(E)|x> = E  < x '|n > < n |x > £ (E -E n)
n

we can write
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Eband =  / '  f dE Jfjfdx  dx' <x|^T |x'> < x '|n >  <n |x> £(E -E n)
n

and making use of /  | x 'X x ' |  = 1 and <#|n>=En we get

Eband = f  f dE J  dx En <x|n> <n |x> £(E -E n) .
n

Finally, since £ En • • • 5(E-En) = £ E • • • 6 (E-En) we have
n n

Eband = / '  f E dE f  dx n(z,E) (3.8)

=  J  f E n (E )d E  (3.9)

which writes the band energy in terms of the density of states. A shorter way of 

deriving (3.8) and (3.9) from (3.7) is by making use of the equation satisfied by the 

Green’s function, namely

(E - «#)G(x,x',E) = £(x -  x ')  (3.10)

which is in accordance with

G(x,x ',E ) = y  - a ------D-------- ( 3 .1 1 )
•-* E -  E
n n

from chapter II (see Heine 1980 pl7-18). From (3.10) we Bee that 

Im<x|^T|x/ > < x / |G(E)|x> = Im <x|E |x/ > < x '|G (E )|x>  which could have been 

used a couple of steps after (3.7) to write Im Tr(<#G) =  Im Tr(EG) and make
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the connection with the density of states in a more economic way (Finnis et al 

1988).

Similar expressions can be written down relevant to the localized basis set 

|ia>  (orthogonal by assumption) as we did in chapter II. In this case the elements 

of the spectral density operator, whose diagonal part is the local density of states 

are

"ia j0(E) =  ~ lm < iQ,l \ifr>
’ T E -  X

= ^ - l ® G ioy E )  (3.12)

where we remind the reader that the lim e-+0 (E+ie) must be taken in the Green's 

function. As before, when integrated up to the fermi energy, niot jp(E) gives the 

matrix elements of the density operator (Paxton 1987 p2.8) namely

Pi<xj$ = f  f dE nioi ^j^(E) (3.13a)

= n r Im/ £f dE Gi«,jp(E) • (3.13b)

Here pia = <iar|p|j$> which from (3.4) can also be written as

occ

= X  <ialn> <nli^> (3.14a)
n

occ

= X aV “ a*,iP (3' 14b)
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where we assume that one is working at OK. The a's are the coefficients of the 

expansion of the eigen states |n> in the |ia>  basis (see chapter II). In this 

representation the diagonal element <ia|/?|ia> is the number of electrons (with 

both spins) occupying the orbital a  on atom i and the off diagonal element 

<ia\p\)p> represents the order of the bond between the a-orbital on atom i and 

the ^-orbital on atom j. Since the off diagonal Green's function matrix element 

can be written as a difference between the diagonal Green's function elements 

corresponding to symmetric and antisymmetric combinations of the orbitals |ior> 

and |j$> (chapter II or Kelly 1980), <io|p|j/5> can be seen to be related to the 

difference between the occupation of the bonding orbital |ia>  + |j/?> and the 

antibonding orbital |ia>  -  |j/J>. It therefore measures the strength of the bond 

between the two orbitals and is also called partial bond order to contrast with the 

total bond order (or simply bond order) which is the sum of <io^p\]p> over or and 

/?(Finnis 1987, Coulson 1939).

The band energy is given by Tr p X  as before, i.e.,

I  " . . » • * » , > .  <315>
i « , j P

and like we did in the coordinate representation it can be expressed in terms of the 

local density of states nia(E) = nia ia(E), namely

E bSnd =  I / ' , E n i<»(E ) dE (3 .16 )



The off diagonal matrix elements of the Hamiltonian in (3.15) are the 

tight-binding hopping integrals (Slater and Koster 1954) and the diagonal ones are 

the on-site energies eia =  Hia ia which can be identified with the atomic energy 

levels. The hopping integrals are also called bond or transfer or resonance integrals. 

It is usual to split Eband into two parts involving the diagonal and off-diagonal 

elements of X  in order to identify Ebond? the covalent bond energy of the solid,

i.e.,

E
band -  51 ^ , iot *  € i a ^ i a 9ia

i«,jP ia

(3.17a)

- “ I
ia

(3.17b)

E bond +  X  €‘aPia,la
Iff

(3.17c)

id jP t t
Here E ’ =  2 p- <Xq ia is the energy due to the bond between orbitals a

and p on sites i and j respectively and the factor 1/2 in (3.17b) accounts for the

double counting of each bond. Therefore E is given as a sum of the covalent
bond

bond energies of all bonds and we assumed that the only

contribution to the on-site energy comes from orbitals of the same type. In terms 

of the density of states one can write (Allan 1970)

E bond= X  /  f ( £ - ei > i « ( £) de (3.17)

ia
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which gives the bond energy as a sum over sites as opposed to a sum over bonds. 

This expression is very useful for the calculation of bond energies since it only 

involves the knowledge of one matrix element of the Green's function. The 

corresponding expression from (3.17) on the other hand requires the calculation of 

all matrix elements of G(E). However it gives information on all the individual 

bonds and plays an important role in the tight binding bond model (TBB) of 

Sutton et al (1988). Up to now we have omitted any consideration about the 

electron spin. This can be amended by multiplying these energy expressions (and 

in fact any sum over states like, say, (3.14)) by a factor of two in order to account 

for spin degeneracy.
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§3.3 The Tight-Binding Approximation

In this section we shall illustrate the basics of the tight-binding method 

which is used for the calculation of band energies in the following chapter (e.g., 

Callaway 1964, 1974). For simplicity we will assume that there is only one atom in 

the unit cell. The TB approach is ideally suitable when the overlap of atomic wave 

functions requires corrections to the free atoms system but in such a way that 

some features of the atomic picture still remains in the solid. One assumes that in 

the immediate neighbourhood of a lattice site the full crystal Hamiltonian can 

be approximated by the atomic Hamiltonian Hat and that the atomic wave 

functions are well localized. Let us write

Hat Ua(r) =  £® ua(r) (3.18)

for.the atomic system where ua(r) represents an atomic orbital. When the 

. atomic sites are well separated so that the lattice constant is large compared to the 

range of ua(r) these orbitals will be a good approximation to the states of the full 

crystal Hamiltonian <#. As the atoms are brought closer to each other one can 

think of as being given by the atomic Hamiltonian plus a small perturbation 

U(r) which accounts for the corrections to the atomic potential in order to account 

for the presence of the other atoms. Thus

where

<#= Hat +  U(r) (3.19a)

U(r) =  £  Vtr-R;) (3.19b)

ifO
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and the prime means that i =  0 (which stands for Ri =  0) must be excluded 

from the summation over lattice vectors Ri. One now constructs linear 

combinations of the ua(r) that preserve Bloch's description, i.e.,

^ak(r) =  —V  X  exP(ik R-i) ua(r"Ri) (3-20)
i

chosen to preserve Bloch's theorem, i.e., ^ak(r+R) = exp(ik.R) ^ ^ r ) ,  from 

which the Bloch wave functions are constructed, namely,

^nkW = ^  anp(k) ^3k(r) (3-21)
P

where n is the band index. Schrodinger's equation

X  W r) =  E„(k)^nk(r ) (3.22a)

•  )|c
can then.be multiplied from the left by ^ak(r) and integrated over all r to give

X  M k) /  ^pk(r ) dr
P

=  E n(k) ^  aap(k ) f  tZ k t1) < W r) dr (3 .22b)

P

The matrix elements in this expression can be written in terms of the ua(r) using 

(3.20), i.e.,

f * U  0  dr = e*k'(Ri~Rp)/ ua(r-Rp) <«fup(r-Ri)dr
jY



=  J e ±  R i/ u*(r) ^ Ue (r- R j)dr (3-23)

j

where we called r - R p  =  r1 and then r - R i  =  r 1 - (R i  -Rp) =  r1 -R j and used 

the fact that the Hamiltonian is invariant with respect to a displacement by a 

lattice vector. Similarly the integral in the right hand side of (3.22b) can be 

written

/  4>tk(r) «Wr) dr = £  e'k Ri/  U*W Ug(r- R))dr
j

= £  e * '11) S ^ R j )  (3.24)

j

where S ^ R j)  represents the overlap integral between the a orbital at the origin 

and the f} orbital on atom j. We can now use the explicit form of the 

Hamiltonian which we assumed to be given by (3.19) in (3.23). This gives

/  O r) *  ̂ k ( r) dr =

J  eik Ri k  S * (R ,) + £  / u*(r) V(r-Ri) u ^ r - fy d r l  (3.25) 

i i^O

which can also be written as

/  & ( r )  dr =  £  e* * *  S ^ B , )

i
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+  £  / u*(r) V(r-Ei) up(r) dr (j = 0 term)

i*0

+ ^  eik Ri f  u*(r) V(r-Rj) up(r-Rj)dr (i =  j term)

j*0

+ eik R) ^  f  u*(r) V(r-Ri) up(r-R j)dr (3.26)

j#> î O, j

The matrix element in the second line represents the effect of the potential of all 

other sites on the central atom and is called the crystal field term K ^ R i) .  The 

term in the third and fourth lines represent the two-centre hopping integral 

Ho^(Rj) and the three-centre integral H ^ R ^ R j)  respectively. Inserting (3.26) 

and (3.24) back into (3.22b) gives

2 ^ )
0

■a S ^ R j)
i

+

j K ^ R i )  +  £ e ik'Ri H ^ R i)  +  £  eik Ri £  Hap(Ri,Rj ) 

i#0 i#0 i#0 j#0,i

= 0

(3.27)

In the T 6 approximation this expression can be simplified to a large extent. One 

can start by neglecting three-center terms and assuming that two center terms are 

negligible if Ri is larger than the nearest neighbour (nn) distance. The overlap 

integral can be simplified by assuming that the basis functions are orthogonal and 

if by crystal symmetry K ^ R i)  = Kaot( R i ) ^  we get the secular equation
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nn

det £ + £ K aa( R i ) - E n(k)] +  £  H ^ R i )

i*0 i^O

= 0 (3.28)

whose eigenvalues En(k) correspond to the bandstructure of the material.

In the case of a single s-band for example, the TB band structure is 

easily found to be given by

nn

Es(k) = Cs +  ^  elk R > ssa (3.29)

i*0

in which the ss<7- hopping integral is not dependent on the direction of the vector 

Ri but only on its magnitude and es corresponds to the diagonal energy corrected 

by the crystal field effects. For the simple cubic lattice it then follows that the 

bottom (k = (0,0,0), i.e., the center of the Brillouin zone) and the top 

(k =  (x /a )(l,l,l) , i.e., the zone boundary) of the s-band have the energies 

Eb =  es -6*)ss(7| and Et = es + 6* |ss0 -| respectively. Thus the band width of 

the simple cubic single s-band within TB is given by 12*|ssor|. In the next 

chapter we shall be scaling our energy calculations in terms of this band-width.
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§3.4 The Chemical Pseudopotential Method

The tight-binding approximations are acceptable in the case of fairly 

localized orbitals like the transition metal systems which are characterized by a 

well localized d-band. It is more difficult to accept those approximations when the 

overlap between neighbouring orbitals is appreciable like in the case of sp-bonded 

systems. The non-orthogonality contributions play a very important part in 

systems where the atomic orbitals are not well localized. In fact these terms have 

been shown to be the largest one in total energy calculations for H2 (Skinner and 

Pettifor) and sp-bonded materials (Majewski and Vogl 1987). However it is 

possible, in principle, to include overlap and three-center terms within the TB 

formalism by working with a basis of chemical pseudopotential orbitals (Anderson 

1969, Bullett 1975a 1975b). In the Anderson-Bullett scheme one thinks of the 

system of N atoms as being divided into N atomic subsystems each of which is 

assigned to a Hamiltonian Ha. The term subsystem allows room for 

generalizations but, in particular, they can always be identified with isolated 

atomic systems. The Hamiltonian of the whole system is then written as

H =  H ,+  J v b (3.30)

b^a

where Ha =  T +  Va is the Hamiltonian of the isolated atom A, T being the 

kinetic energy. A set of localized orbitals s  |a>  are defined by Anderson 

(op.cit.) by

(T +  V .+  2 ( V b - | b x b |V b))|a>  = «m|a> . (3.31)

b*a
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This represents a set of N equations which once solved (self-consistently) gives the 

set which can be used to expand the Hamiltonian eigen functions \ifrn> given 

by the Schrodinger equation

HI V'0> =  En | f a> . (3.32)

Thus writing

IV,n> = ^ cnala> (3 -3 3 )
a

and inserting this into (3.32) and using (3.31) one gets the secular determinant 

(Anderson 1969)

det((ea - E n)*ab +  < a |V a |b > ( l - * ab)) = 0  • (3.34)

From (3.31) we also see that

ea = < a |T  +  Va | a > + £ < a | V b |a>  +  £ < a | b x b | V b |a>  . (3.36)

b^a bjta

Expression (3.34) should be compared with (3.28) obtained by making the TB 

approximations. The off-diagonal elements in (3.34) are of the two-center type 

although no approximations were made to achieve this result. The overlapping 

termB neglected in (3.28) appear in the diagonal elements e& as can be seen from 

the third term in (3.35). Therefore the chemical pseudopotential method has 

provided a basis for the justification of the use of TB binding in the study of 

sp-bonded systems.
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§3.5 The Total and the Binding Energies

In the next chapter we will be studying the relative stability amongst 

several different crystal structures by comparing their binding energies. Let us then 

discuss briefly the energies involved in the total energy Etot of the solid. It can be 

written as

Etot = E« + Eei + Eu (3.36)

thus separating the contributions from the electron-electron (ee), electron-ion (ei) 

and ion-ion (ii) interaction energies. The electron-electron term includes the 

kinetic energy, the interelectronic Coulomb energy (Hartree term) and the 

exchange and correlation energy EXc[/>]* More explicitly we have

Etot = Ekin + Eh + Exc + Eei + Eii * (3.37)

This total energy expression can be written in terms of the band energy Eband- 

Within density functional theory (Hohenberg and Kohn 1964, Kohn and Sham 

1965) Eband can be obtained by summing the eigenvalues of the one-electron 

equation

' ^ V 2 + VKSK r)]h j(r) = Ej^(r) (3.38)
12m J

over all the occupied states (see (3.6)). In this expression the Kohn-Sham potential 

has the form

V„Wr)] = Vttt(r) + VHW r)] + ftjrfr)]
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=  V Mt(r) +  e = / d r ' - £ ^ + - ^ l £ L  (3 .39)
|r  -  r I 6p( r)

where V ^ ^ r)  represents the external potential produced by the atoms' core 

(which gives rise to Eei in (3 .36 )) and the other two terms represent the Coulomb 

and exchange-correlation potentials respectively. Expression (3 .38) must be solved 

self-consistently for the charge density p(r) =  E| <£j(r)|2 and the unknown xc 

potentials are usually treated in the local density approximation (LDA)

Exc[p] 2 f  dr p(i) exc[p(r)] (3.40)

where exc[p(r)] is the xc energy per electron of a uniform electron gas of density 

p. When self-consistency is reached the kinetic energy can be evaluated by

E ki„ = £ < ^ | E j - V KSW | ^ >  (3 .41 )

j

Inserting this back into (3 .37) and using (3 .39) gives

Etot =  £ E j ^ W r ) ]  dr +  Exc +  Ei; (3.42)
j 2

where S Ej =  Eband- For simplicity of notation let us group together the 

electrostatic and xc terms which we call Edc (the double-counting term). Then

E tot =  Eband +  Edc +  E ii • (3 .43)

In the Harris-Foulkes (Harris 1986, Foulkes 1987) approximation to 

density functional theory the Kohn-Sham equation (3 .38) is not iterated to
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self-consistency but solved only once for the charge density starting with an input 

charge density pf. This is given by a superposition of atomic charge densities and 

an approximate pout to the true self consistent ground state charge density is 

obtained as a result of a sole iteration. Within the Harris-Foulkes scheme an 

approximate expression for the total energy of the solid can then be written as

E tot =  E band +  Edc +  E ii (S-44)

where Eband and Edc are evaluated using pout and respectively. This 

expression is valid in first order in the charge densities differences (psc - pout) and 

(psc-p{)- Sutton et al (1988) showed that, if non-orthogonality is neglected, the 

binding energy (i.e., the total energy minus the energy of the isolated atoms) can 

be written to first order as

Eb = Ebond +  Epr +  AEre + AEXC . (3.45)

where Epr is the promotion energy. The last two terms represent the change in 

the electrostatic and exchange and correlation energies respectively in going from 

the system of isolated atoms to a solid state system consisting of overlapping 

atomic charge densities. These can be approximated by a sum of pair potentials. 

Therefore

E b =  E bond +  E pr +  E rep (3 .46)

The inclusion of non-orthogonality leads from equation (3.35) to an 

additional repulsive pairwise contribution, which is very important in sp-bonded 

systems (see for example Majewski and Vogl (1987), Skinner and Pettifor).
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§3.6 Conclusions

In this chapter we presented the basic constituents of the total energy of 

the solid. The TB approximation for extended systems was shown to be justifiable, 

in principle, with the use of a suitably chosen basis set within the 

Anderson-Bullett chemical pseudopotential approach. An expression for the 

binding energy was presented which will be basic in the study of relative structural 

stability that is undertaken in the next section. The binding energy expression was 

shown to be backed up by a first order approximation within density functional 

theory. Therefore the grounds are firm for the next step to follow, namely the 

application of the ideas described so far in a real situation which is taken to be the 

study of the relative stability of sp-bonded systems.
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CHAPTER 4: Structural Stability of the sp-Bonded Elements

In this Chapter the relative stability of the most common sp-bonded 

elemental systems is investigated using a tight-binding model for cohesion. The 

structures considered range from coordination one for the dimers through 

coordination four for the diamond lattices to coordination twelve for the close 

packed fee and hep systems. A simple tight-binding model is used to determine the 

sp-band energy of the different structures. The bond-lengths are "prepared" in 

accordance with the structural energy difference theorem and Harrison's R-2 

scaling model is used to set the relevant hopping integrals. The model shows a 

good agreement with the observed structural trends across the periodic table.
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§4.1 Introduction

♦

Our main interest in this chapter is to develop a theory that explains 

the global trends observed in the periodic table for the relative stability of the sp 

elements (Wyckoff 1963, Donohue 1974). For example as one departs from the far 

left side of the table one goes from the close-packed metals like Na and Mg 

through the four-fold coordinated semiconductors Si and Ge to the group VII 

elements whose tendency is to form molecular crystals in which the basic entities 

are molecules (dimers) which are bound together by a covalent bonding. At the 

bottom of group IV one finds metallic Pb which crystallizes in the fee structure. It 

has been shown that this close-packed arrangement for lead is due to relativistic 

shifts which widen the sp-splitting and makes Pb metallic (Christensen et al 1986). 

The solid noble gases at the extreme right of the table crystallize in monatomic fee 

lattices (except for He). The very stable closed shells remain so in the solid which 

is held together by weak van der Vaals forces. Therefore these elements will be left 

out of this discussion. In table 4.1 we list the sp-bonded elements along with their 

low temperature structural phase (Donohue 1974).

In attempting to reproduce these trends we will be aiming at developing 

a model that incorporates both simplicity and predictive power as basic 

ingredients. Accurate calculations such as those from ab—initio local density 

functional theory (e.g. Yin and Cohen 1980, 1981) rely on heavy computing and do 

not provide easy physical insight. The use of adjustable parameters within semi 

empirical calculations on the other hand is also unsatisfactory because different 

parameters would have to be used for different structures and interpretation of the 

results would be difficult. We shall rather concentrate on the physics of the
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Table 4.1

IA IIA IIIB IVB VB VIB VIIB

H (dim)

Li(hep) Be(hep) B (compl) C (gra) N (dim) 0  (dim) F (dim)

Na (hep) Mg (hep) A1 (fee) Si (dia) P (compl) S (chain) Cl (dim)

K (bcc) Ca (fee) Ga (compl) Ge (dia) As (lay) Se (chain) Br (dim)

Rb (bcc) Sr (fee) In (tetr) Sn (dia) Sb (lay) Te (chain) I (dim)

Cs (bcc) Ba (bcc) Th (hep) Pb (fee) Bi (lay) Po (sc) As (dim)

Ft (• • •) Ra (bcc)

Table 4 1  The sp-bonded elements and their structural arrangements: dim 
dimer, hep hexagonal close packed, bcc body centred cubic, fee face 
centred cubic, compl complex, tetr tetragonal, gra graphite, dia 
diamond, lay, chain and dimers are for structures made up from 
puckered layers, helical chains and dimers, respectively.



problem and work with a model which is as simple and universal as possible. The 

tight-binding (TB) bond model (Pettifor 1986, Sutton et al 1988 and chapter 2 

this work) will be used with the hopping integrals following Harrison's (1980) 

1/R2 decaying law. Our calculations are made within the two centre orthogonal 

approximation and the TB hopping integrals are assumed to be transferable from 

one structure to another. Local densities of states are calculated using the real 

space recursion method (Haydock et al 1972, 1975) reviewed in chapter 3. These 

TB real space calculations are particularly useful because they make contact with 

the local atomic environment of each site. This access to the local topology of the 

lattice is of great importance in our study and will be fully exploited in the next 

chapter to provide a simple physical understanding of the predicted trends.
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§4.2 The Model

The binding energy Eb of a system of atoms is defined as the total 

energy of the system minus the energy of the free atoms, i.e., when infinitely 

separated. In the tight-binding bond model of Sutton et al (1988) Eb is given by 

(3.46) which we rewrite here

E b =  E bond +  E pr +  E rep * C4 *1 )

Epr is the promotion energy, i.e., the change in energy due to the differences in

individual orbital occupation when going from the infinitely separated atoms to the 

solid state system. E^p is a repulsive energy difference arising from the change in 

the electrostatic and exchange-correlation energies as the atoms are brought

together to form the final system. Its electrostatic part involves the ion-ion,

electron-ion and electron-electron electrostatic energies. Sutton et al showed that 

the repulsive term can be approximated as a sum of pair potentials (see also 

Bucastelle 1970).

In the tight-binding bond model the exact ground state charge density 

is approximated by the sum of overlapping atomic charge densities following Harris

(1985) and Foulkes (1987). The Kohn-Sham equations (Kohn and Sham 1965, 

Hohenberg and Kohn 1964) are not iterated to self-consistency, the Hamiltonian 

being the result of a single iteration which produces an output charge density pout. 

The error involved in this approximation has been shown (Harris op.cit.) to be of 

second order in the difference pout -  pf where is the superposition of atomic 

charge densities used as an input. The approximated single particle Hamiltonian 

H and the corresponding charge density pout(r) give the band energy (Sutton et 

al op.cit.), namely,
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= Tr poat H (4.2a)Eband

= Tr(/>out- f t)H  + Tr pfH . (4.2b)

In the atomic orbital representation the first term in this equation represents 

Ebond + Epr (Sutton et al 1988) which can be seen by separating the on-site and 

inter-site contributions to the trace. Therefore

E bond +  E pr =  E band “  Tr

If we assume that the on site matrix elements of the crystal Hamiltonian are 

diagonal with respect to the different orbitals, i.e., E ja j ^ = 0 for a f f i  the 

reference energy can be written as

Tr p f l  =  V  ( p ) e (4.4)
t lo t ia l a)ia

where we stress that the matrix elements of the density are free atomic quantities 

whereas the energy values are the free atomic diagonal Hamiltonian matrix 

elements corrected by the crystal field terms in the solid state.

In order to find out the relative stability of two given structures one has 

to compare their binding energies. This calculation has to be done at the 

equilibrium volume Veq (or equilibrium bond length) of each structure. The 

immediate difficulty is that different structures crystallize at different and 

unknown values of Veq. The volume changes can be neglected in the case of 

close-packed elemental metals because there is little volume difference between one



phase and another. Their relative stability can then be correctly predicted by 

comparing their band energies at fixed volumes (Jones 1937, Pettifor 1983). 

However there may be large volume changes between two structures like, say, 

diamond and fee and therefore their energy difference can not be obtained by 

comparing Eb at fixed atomic volume. Notice also that experimental assessment 

to this quantity is impossible for any structure other than the actual observed 

equilibrium one. On the other hand the ab-initio determination of Eb versus 

Volume curves generally involves heavy computing (Yin and Cohen 1980,1981) 

which would have to be done for every structure and element of interest.

The structural energy difference theorem (Pettifor 1986) allows one to 

prepare the relative volumes of two given structures at which AEb can be 

computed within an approximation that is exact to first order in AEb/Eb- Let us 

see this. Consider structures 1 and 2 with equilibrium volumes Vi and V2 

respectively. Then AEb is given by

AEb =  Eb2(V2) - E bl(V1) . (4.5)

Expanding Eb2(V) around the equilibrium volume V2 gives

Bb2 (V) =  Eb2(V2) + — (V -  V2 ) 2
2

d2Eb, , 

dV2 V=V,

m + ~  f9 l
V - V 2 I 2Eb2(v 2) + ^  I r  v 2 

2  1 v 2 J
V2-

d2Eb;
dV2 V=V,

=Eb2(V2) +  J - B 2 V2 f V ~  V21 
2 >■ V2 J
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where the first derivative is equal to zero when taken at V2 and B2 is the bulk 

modulus of structure 2. Let us call V2 the volume at which structure 2 displays 

the same repulsive energy as structure 1, i.e.,

Erep2(V2) =  E «p1(Vi) . (4.6)

Since the expression above for Eb2(V) holds for any value of V we can evaluate it 

for V = V2 which gives

Eb2(V2) = Eb2(V2) - - B 2 V2 ~ Vi!P  . (4.7)

One can show (Pettifor 1986) that the second term in this expression is of second 

order in AEb/Eb. Therefore from (4.5) and (4.7) we see that the energy 

difference between two structures in equilibrium is given to first order in AEb/Eb

by (AEb)AErep=0 •

Using the structural energy difference theorem one can calculate the 

energy difference between two structures by

(A Eb)^Erep_Q -  A(Ebond + Epr) (4.8)

which follows from (4.1). From (4.3) we see that this is also equal to 

A(Eband -  Tr/?fH) and using (4.4) we can write

A(Tr,fH) = Ns [;<2> -  ;««»] +  Np [i<2’ -  i<1’] (4.9)

and we see that A(Tr/pfH) = 0 if Aes = Aep = 0. This condition means that the 

change in the atomic energy levels is the same for both environments 1 and 2.
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Therefore we can write the difference in the binding energy in (4.8) as

AEb =  A(Eband)A£s =Q (4.10)
S,P

where we dropped the tilde in the notation for the energy levels.

This tight binding model of cohesion strictly applies to covalent bonded 

systems only. We will see however that the nearly free electron close packed metals 

like Na, Mg and A1 will also be neatly separated. That the nearly free electron 

band structure can be described within a localized atomic functions framework can 

be seen from the work of Singhal and Callaway (1977) on Al.
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§4.3 Structures Considered

As explained before the basic question we seek to answer is what 

happens when infinitely separated elemental sp atoms are brought together to form 

a solid. More specifically our interest resides in determining what kind of structure 

will be preferred by the atoms or, in other words, which geometric environment 

will correspond to the minimum of the equilibrium binding energies out of the 

several structures considered. We focus attention on several possible arrangements 

corresponding to a wide range of the coordination number this being the 

number of first neighbours of a given atomic site. The structures considered here, 

together with their coordination, are the following:

STRUCTURE COORDIN

dimer 1

zig-zag chain 2

honey comb 3

cubic diamond 4

hexagonal diamond 4

simple cubic 6

simple hexagonal 8

bcc 8 + 6

fee 12

hep 12

Let us discuss the low dimensioned structures first. The lowest possible 

coordinated arrangement is the dimer which is a simple diatomic molecule like,
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e.g., H2 . The one dimensioned representative, namely the zig-zag chain, was chosen 

to resemble the observed structures for the group VI elements S, Se and Te 

(Harrison 1980 p93). This is a chain that coils up along the [111] direction in a 

simple cubic structure, e.g., starting in the [100] direction along a cube edge, then 

going along [010] , then in the [001] and then restarting again in the [100] direction, 

and so on (figure 4.1). The actual observed structure is a collection of interacting 

distorted zig-zag chains with a bond angle of 105* each. The inter chain 

interaction is small though non-negligible. Here we will only take into account the 

intra chain bonding with the bond angle equal to 90*. The three fold coordinated 

honey comb lattice is the familiar non Bravais planar structure (e.g. Aschroft and 

Mermin 1976) that fills up the plane with hexagons. The three dimensional 

structure of graphite is made up of carbon atoms in this two dimensional structure 

with the distance between successive planes (these are stacked one above the other 

and displaced laterally) being more than twice the nearest neighbour distance in 

the plane (Harrison op.cit. p90).

Now we come to the three dimensional arrangements. Figures will be 

shown in the more general case of the AB binary compounds in chapter 6. Let us 

start with the close packed structures. It is interesting to note that the densest 

possible periodic sphere packing in three dimensions corresponds to the 12-fold 

coordinated face-centered cubic (fee) arrangement (Zangwill and Bruinsma 1987). 

This structure along with the hexagonal close-packed (hep) -  which fills up space 

equally efficiently -  and the body-centered cubic (bcc) structures is the crystalline 

arrangement preferred by nearly 75% of the elements of the periodic table at room 

temperature and atmospheric pressure. The fee bravais lattice can be seen as a 

stacking sequence of identical spheres in which the different layers correspond to 

planar close packed triangular lattices arranged in a • • *ABCABCABC • • •
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Figure 4.1
The zig-zag chain considered in the text (after Harrison 1980 
p93). The cnain coils up along a [111] direction as shown in the 
figure. The actual structure of Se is a distorted variant of this 
one with bond angles equal to 105 degrees and intrachain atom 
distances being larger than interchain distances.
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fashion as explained in most text books. Each atom has therefore six neighbours in 

the plane plus three in the plane above and other three in the plane below. The 

non-Bravais hep structure is generated in much the same way by the stacking 

sequence • • *ABABAB • • •, which add an extra degree of complexity to the 

arrangement due the absence of the C planes. The c/a ratio (where c/2 is the 

distance between consecutive planes) is taken as the ideal one namely 

c/a = (8/3)^. The bcc bravais lattice is best seen as the simple cubic structure 

with an atom in the centre of each cube. Although more loosely packed than fee 

and hep, this structure is also normally seen as a close-packed arrangement. It has 

eight first neighbours each one in the corner of a cube but its six second neighbours 

are only about 15% away and have usually to be taken into account. The 8-fold 

simple hexagonal lattice corresponds to the sequence • • *AAAA* • *. For a given 

atom there are six near neighbours in the same layer and two in different layers, 

one above and one below. Finally, the four-fold coordinated cubic (hexagonal) 

diamond structure is constructed from the fee (hep) arrangement by inserting 

another plane between each two, directly above the one below, at three quarters of 

.the distance between them. Cubic diamond is a special case of the zincblende 

structure in-which'the • • *ABCABCABC • • • sites (i.e., the fee sites) are occupied 

by zinc atoms whereas the new layers inserted between the planes are occupied by 

sulfur atoms. It is much the same thing for hexagonal diamond now with respect to 

the wurtzite structure. In this case one type of atom occupies the underlying hep 

sites whilst a second atom species is inserted between each two of the close—packed 

planes just as in zincblende. It is not difficult to see that both in cubic and 

hexagonal diamond each atom lies in the centre of a regular tetrahedron whose 

base is perpendicular to the z axis (i.e. the c-direction).
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§4.4 Calculation^ Details

For the calculation of the band energy we employ a TB model in the 

two centre approximation as described in the section 4.2. The band energy then 

depends on the TB hopping integrals (Slater and Koster 1954) (sso-), (sp^),

(pp<r) and (ppx) which are assumed to obey Harrison's semi-empirical 1/R2 law 

(see Harrison 1980 and references therein). This behaviour was obtained by fitting 

band energies obtained from LCAO and free-electron theory. Selected energy 

differences obtained in these two limits were equated which gave the power law 

dependence above because the free-electron energy is proportional to R"2. The 

corresponding coefficients once adjusted to fit the bands of Silicon and Germanium 

give the following ratios

(ss0-):(sp<7):(pp0-):(ppx)::-1.4O:1.84:3.24:-O.81 (4.11)

which gives -0.25 for the ratio (ppx)/(pp(r). As we shall see later this ratio 

turns out to be too small to describe correctly the stability trend at the most 

bonding part of the spectra (i.e., at Nsp = 1). These ratios are dependent only 

upon the crystal structure. We shall however, for the sake of the simplicity (or 

universality) of the model, assume that they are universal and totally transferable 

parameters.

The "preparation" of the volumes at which the energies are to be 

compared is implicitly given by the equation AErep = 0, as prescribed by the 

structural energy difference theorem. If the hopping integrals have the same R 

dependence through some function F(R) as given above and if we further assume 

that the pair potentials hpp depend on the bond length as hpp ~ [F(R)]2, it is 

easy to show that AErep = 0 is equivalent to impose that there is no change in
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the second moment of the density of states, i.e.,

A/*2 =  0 . (4.12)

A same type of power law dependence for the pair potentials was used by Pettifor 

and Podloucky (1986) in the study of the pd-bonded AB compounds. This 

condition for is independent of the particular form of F(R) if only first

neighbours are considered. However if second neighbours are also taken into 

account (e.g. for the bcc lattice) then the explicit form of F(R) has to be given. All 

this is discussed in appendix III.

Given the hopping integrals the band energy can be calculated as a 

function of the atomic level difference esp = es -  ep and the total number of 

valence electrons. The relative energies of the different structures are then 

compared for different choices of esp as a function of the band filling. The centre 

of gravity of the bands are fixed to the zero of energy, i.e., es +  3ep = 0. This 

condition along with the value of es -  ep gives the values of each of the s and p 

atomic energies. The local density of states is computed using the recursion 

^method in which the continued fraction is terminated with either the square root 

(continuum spectrum) or Turchi's termination (single band gap). The band edges 

for the continuum DOS are calculated using Beer and Pettifor (1984) optimized 

prescription. The single band gap edges are determined using Beer's (1985) 

generalized procedure with the safety device presented in chapter 2 .

A reference structure has to be given from which the volumes (or the 

bond-lengths) of the other structures are calculated. (This reference for volume 

calculation should not be confused with the reference for the energy calculation, 

usually chosen as a skew DOS or a cubic spline) The reference we chose is the 

simple cubic Bravais lattice. Since we are only interested in relative energy 

calculations we can fix one of the interatomic matrix elements to a given value, say
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(s8 <7)sc = -1, and calculate the others using Harrison's ratios. The corresponding 

values of the hopping integrals for the other structures are then determined 

imposing = 0 with /ij being given by

Ih = $  [(ss<r)2 + ^ P 0’)2 + (pp<r)2 + 2(ppt )2] (4-13)

where g  is the coordination. The values of esp will be chosen to scale with the 

band-width of the simple cubic s band which is given by 12|(ss(r)sc|. More 

specifically

Up =  12|(ss£r)sc| tan(n*/10) (4.14)

with n = ±1, ±2, ±3, ±4 and ±5. For n =  ±5 we have esp = ±oo meaning that the 

sand p orbitals are very far apart. Thus the band filling at the bonding part of the 

spectrum starts either with s-electrons (esp = -oo) or with p-electrons 

(fsp =  + “ )•

All energies in this work will be calculated with respect to the value 

chosen for (ss<7), namely (sse-) = -1. We will be only interested in energy 

differences and therefore the absolute scale is not relevant.

4.4.1 Convergence with the Number of Levels

Let us check for the number of exact levels in the continued fraction 

necessary to achieve a suitable accuracy for detecting the structural energy 

differences. We show here the results for the honey-comb { f =  3), simple cubic
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(^ =  6) and fee {g — 12) lattices but we have checked that similar results hold for 

all the other structures.

Figure 4.2a shows the structural energy for the case when only one 

s-orbital occupies the lattice sites, the atomic level eB made equal to zero. We 

keep the plots in the same scale for comparison. As we did in chapter 2 a reference 

DOS consisting of a skew density of states sharing the same first four moments 

(i.e., Afin = 0, n = 0, 1, 2, and 3) as the simple cubic structure was subtracted to 

make the energy differences more dramatic. A reference chosen in this way 

incorporates the gross features of the DOS of the real structures and therefore its 

structural energy versus band filling curve follows closely the parabolic-like 

behaviour of the read curves thereby emphasizing the differences. Notice that in 

this scale (which is the one used for reading the relative energy differences) 

convergence is practically achieved for a cluster with around six exact shells (or 

levels). This result agrees with Beer (1985) studies for the close packed fee, bcc and 

hep transition metals DOS. Figure 4.2b shows the same plots on a magnified scale.

Here a cubic spline fitted to all data points (except the dimer) was chosen as the 

reference with respect to which the structured energies were calculated (as 

explained in chapter 3 a spline is chosen as the reference either when a more 

dramatic separation of the energy curves is needed or when the fitting of a skew 

DOS is not possible). The corresponding knots (see chapter 2) were chosen as 0.5,

1.0 and 1.5. We notice that as the number of exact levels increases, the structural 

energy curves oscillate more and more around the curve with 10 exact levels. This 

is in accordance with Ducastelle and Cyrot-Lackmann theorem (1971 and chapter 

3, this work) since increasing the number of levels means increasing the number of 

exact moments common to the two clusters which increases the number of zeros in
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Figure 4.2
a) Single s-band (es=0) structural energy versus band filling 
curves showing the convergence with the number of levels, b] 
The same as a) but in a magnified scale.

100



ST
RU

CT
UR

AL
 E

NE
RG

Y 
ST

RU
CT

UR
AL

 E
NE

RG
Y 

ST
RU

CT
UR

AL
 E

NE
RG

Y

Figure 4.3
a) and b): The same as in figure 4.2 but for the pure p case
(ep= 0 ) .
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Figure 4.4
a) and b): The same as in figure 4.2 but for the sp case (eSp= 0).
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the difference curve. When eventually the number of shared exact moments goes to 

infinite the number of zeros in the difference also becomes infinity meaning that 

the two curves have become identical to each other.

Figure 4.3 shows similar results for the pure p case. The on-site 

Hamiltonian matrix element, namely the atomic level ep, has been taken equal to 

zero. Finally in figure 4.4 the corresponding results for the sp case are shown. Here 

the es and ep atomic levels were chosen to give a zero sp-splitting, i.e., esp =  0. 

The results shown by these curves are essentially the same as for the pure s band. 

For the actual calculations we shall keep around ten exact levels which, judging by 

these curves, should be enough to give the correct structural stability separation. 

In figures 4.3a and 4.4a the reference was a skew DOS as for figure 4.2a. In figures 

4.3b and 4.4b a cubic spline was used as reference with the following knots: 1, 2 

• • • 5 for the pure p case and 1, 2 • • • 7 for the esp = 0 case.

4.4.2 The ppx/pp<r ratio

The use of Harrison's adjusted parameters to determine the hopping 

integrals (as given by (4.11)) does not lead, within our model, to a good separation 

for the relative stability of the close packed and dimer structures at low values of 

the band filling. More specifically when the band filling is equal to one the 

expected result is either the dimer as the most stable structure if the s and p 

orbitals are very far apart (as for H2 ) or the close packed structures (as for Li and 

Na) if a considerable degree of sp hybridization exists. As seen in figure 4.5, the 

structural energy versus band filling curves using the adjusted parameters,
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correctly predict the dimer as the most stable structure when only one s-orbital is 

present (i.e., esp =  -oo). However as the s and p orbitals are hybridized we find that 

the close packed structures are unable to overcame the dimer stability as shown in 

figures 4.5 and 4.6. One might argue that this is a failure of the model rather than 

an indication that Harrison's parameters are unsuitable in this region and for these 

particular structures. However the correct prediction about the relative stability of 

two such different structures is a rather difficult question to ask to a simple model 

that relies on a single set of parameters to separate so many elements and 

geometric arrangements. Furthermore, rephrasing Harrison (1980 p46), in the 

choice of the set of parameters " a trade-off must be made between simplicity (or 

universality) of the choice and accuracy of the predictions (•••)  Notice that 

Harrison's parameters have been adjusted to fit the energy bands of silicon and 

germanium and therefore some bias towards tetrahedral structures should be 

expected.

In trying to get the correct trend when N = 1, we notice that we can 

increase the stability of all structures in the bonding part of the spectrum if we 

.increase the ratio |(ppir)/(pp0)| (i.e., the T.a ratio) by a small amount. At

eSp =  0, however, the dimer structural energy at that band filling, is not dependent 

upon the value of (ppx) (see appendix V). This provides us with a procedure to 

push down all curves with respect to the dimer in the region around N = 1. 

Consulting Table 2-1 p49 of Harrison (1980) we notice that the t.u ratio is given 

by |-1.23/3.70|, i.e.,

(PPT) ~ -0.33 (4.15)
(pp<r)

if 'the simple cubic TB band structure is fitted to the nearly free electron bands. 

The corresponding value adjusted for silicon and germanium bands is -0.25. We 

found that the changes in the relative stability of the other structures is minimum.
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Figure 4.5
Structural energy versus band filling curves, a) the pure s and b) 
eSp = 0 cases. Harrison's parameters have been used and a skew 
DOS was taken as a reference.
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Figure 4.6
The same as in figure 4.5, now for a) esp =  -12* tan (T /10 ), and
b) esp =  -12*tan(2 t/1 0 ).
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Therefore the bonding integrals will be calculated using Harrison's adjusted values 

as given in (4.11) except for (ppx) which will be calculated using the ratio above.

4.4.3 The Second Neighbours in the bcc Lattice

In the bcc structure the second to first neighbours ratio is given by 

a/(3^*a/2) 2  1.15 where a is the lattice constant. This ratio is too small (in fee, 

for example, the ratio is 2^ s  1.41) and considering also that there are six second 

neighbours in the bcc lattice the importance of these can not be neglected and 

must be incorporated in the calculations. In trying to keep the theory as simple 

and general as possible, we will look towards rescaling (ss<r) for the more distant 

neighbours but keeping the other parameters ratios with respect to (ss<r) the same 

as for the first neighbours. Figures 4.7a and 4.7b show the behaviour of the bcc 

structural stability curve for various choices of (ss<7-)2/(ss<7)i, where 2 (1) stands 

for second (first) neighbours. The single s-orbital case is shown in figure 4.7a and 

the eSp = 0 case in figure 4.7b, the fee structural energy curve being also shown. 

The first nonzero ratio is 0.33 which corresponds to Andersen's (1984) first 

principles value for this quantity in the bcc lattice. We go up to 

(ss^)2/(ss<7’)i =  0.75 which is the ratio given by a power law of the R"2 type. The 

low temperature structures expected at the low values of the band filling are close 

packed of the fee and hep type and we see that Andersen's ratio fulfill this 

requirement. We will therefore keep the second neighbours in the bcc structure and 

the corresponding tight-binding parameters will be calculated in the same as for 

the first neighbours but with respect to (ss<r) 2  =  0.33*(ss<7)i .
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Figure 4.7
Relevance of the second neighbours in the BCC lattice, a) single 
s-band case and b) esp = 0 case.
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§4.5 Results

♦

For the Final results shown in this section the number of exact levels 

kept in the continued fraction is not fixed because the calculation of the band and 

gap edges for any number of levels may not be possible in Beer's method as 

explained in chapter 2. This is so because an eigen value of the truncated 

Hamiltonian may exist inside the gap which requires increasing (or decreasing) the 

number of levels used in the calculations. Whenever possible the computation is 

carried out with eighteen exact moments (nine levels) which, as indicated in 

figures 4.2-4.4, is enough to predict the correct relative structural stability 

behaviour amongst the different structures. Two exceptions are the dimer and the 

zig-zag chain. The dimer results are exact (see appendix IV) in all cases whereas 

the zig-zag chain is calculated exactly for the pure s case only (see appendix VI). 

For the other cases the zig-zag chain has two (sometimes three) gaps in the DOS 

which consists of very narrow sub-bands. The determination of the band and gap 

edges in these cases is difficult as discussed in the previous chapter. We therefore 

show a plot for the zig-zag DOS only in the pure p and esp = 0 cases, where the 

edges were simply read from the square root terminated DOS. Twenty two exact 

moments (eleven levels) are kept in the continued fraction which is terminated 

with Turchi Ducastelle and Treglia (1982) termination as suitable for a double 

band gap (see previous chapter). However the zig-zag chain integrated quantities 

were computed using the optimized square root terminator of Beer and Pettifor 

(1984) while keeping twenty eight exact moments (fourteen levels) in the 

continued fraction. Although this treats the double band gap DOS as a continuum 

spectrum, it is well known that the integrated quantities converge much faster 

than the DOS itself. As we show in figure 4.8 (see Turchi et al (op.cit.) for the
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Figure 4.8
Local densities of states and structural energies for the esp =  0 
zig-zag chain. The DOS were terminated with 15 exact levels of 
recursion with the square root (a) and Turchi's terminators (b). 
In the latter case the edges chosen were: -6.9, -4.1, -1.0,1.0, 4.1 
and 6.9.
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single band gap) the structural energy has already converged with about nine exact 

levels of recursion. In this figure the n a  ratio is (ppx)/(pp<r) =  -0.25 and the 

structural energies are drawn with respect to a skew DOS as explained in section

4.4.1.

Figure 4.9 shows the local densities of states for the single s-orbital 

case. As explained before, the energy scale is taken with reference to the value of 

ss0 - chosen to be equal to -1. The absolute scale is not important because only 

relative energies are used here. The integrated densities of states are also shown 

(except for the dimer) but in a different scale, the vertical axis needing to be 

multiplied by five. The dimer energy levels were taken from the exact solution 

shown in appendix IV and then drawn by the computer by adding a small 

imaginary part (Ei=0.01) to the energy in order to broaden the £-functions. The 

scale in the vertical axis is dependent on Ei and on the weight of the £-function 

(i.e., the number of spin degenerate states that can be accommodated in each 

level) which is equal to one. The zig-zag chain DOS is the same as the pure s 

linear, chain DOS due to the bond-angle independence of the s-orbitals. For the 

otheT structures the number of exact moments retained in the continued fraction 

was eighteen as explained above and the band widths were corrected by a factor of 

3% (B ee  previous chapter). It is interesting to notice that for the bond angle 

independent pure s case the fee and the dia(c) structures are identical to their 

hexagonal analog hep and dia(h) structures respectively (Burdett and Lee 1985b).

In figure 4.10 the pure p DOS are shown for all ten structures which 

now assume their individual identity due to the bond angle dependence of the 

p-orbitals. The remarks here are essentially the same as for figure 4.9 except that 

the zig-zag chain DOS is now computed within eleven exact recursion levels and 

terminated using Turchi's termination (see chapter 2). The (exact) dimer levels 

now show also the doubly degenerate x-states and a gap starts to form at the
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middle of the band in the tetrahedral structures. Notice that the fee and hep 

densities of states are very similar which should be expected because their 

structures are much alike. Also, the bcc DOS follows hep very closely but lacking 

the antibonding peaks at the top of the spectrum.

The sp hybridized DOS for different values of the sp-splitting esp are 

shown in figures 4.11 to 4.15. The corresponding values of esp are

esp =  “12|(ss0-)| *tan(niT/10), with ni = 0, 1, 2, 3 and 4 respectively. Let us list 

the values of the nondimensional quantity represented by the sp-splitting divided 

by the simple cubic band-width for the different values of ni.

ni
e
SD

12|(sscr)|

0 0

1 -0.32

2 -0.73

3 -1.38

4 -3.08

5 -oo

See table 4.2 for the parameters used in figures 4.14 and 4.15. The alpha and beta 

entries were discussed in the previous chapter.
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Figure 4.9
Single s band DOS terminated within nine exact levels of 
recursion except for the dimer and zig-zag chain which are 
exact.



DE
NS

IT
Y 

O
F 

ST
AT

ES
 

DE
NS

IT
Y 

OF
 S

TA
TE

S

ENERGY

Figure 4.10
DOS for the pure p case. The dimer is exact and nine exact 
levels were used for the other structures (except the zig-zag 
chain for which eleven levels were kept).
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fsp = 0. Nine exact levels were 
corrected by 3%.
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Figure 4.12
Local densities of states for eSp = —12*tan(x/10). Eight exact 
levels kept for dia(c) and dia(h) lattices and nine tor the others. 
Band widths corrected by 3%.
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Figure 4.13
Local densities of states for esp =  —1 2 •tan (2x /10 ). Nine exact
levels kept for all structures and band widths corrected by 3%.

117



D
EN

SI
TY

 
O

F 
ST

A
TE

S 
D

EN
SI

TY
 

O
F 

ST
A

TE
S 

D
EN

SI
TY

 O
F 

ST
A

TE
S 

D
EN

SI
TY

 O
F 

ST
A

TE
S

Figure 4.14
Local densities of states for esp =  -12*tan(3jr/10). See table
4.2 for band-w idth corrections and number ot levels.
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Figure 4.15
Local densities of sta tes for eSp =  -1 2 * ta n (4 x /1 0 ). See table
4.2 for band-w idth corrections and number 01 levels.
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Table 4.2

levels

n = 3 i
alpha beta levels

n =  4 i
alpha beta

s.cubic 8 3.0 3.0 8 3.0 3.0

h.comb 8 3.0 3.0 8 3.0 3.0

dia(c) 8 3.0 3.0 9 1.5 3.0

dia(h) 8 3.0 3.0 8 3.0 3.0

hex 8 3.0 3.0 8 3.0 3.0

bcc 9 3.0 3.0 9 3.0 3.0

fee 9 2.4 3.0 7 3.0 3.0

hep 9 2.8 3.0 7 3.0 3.0

Table 4.2 Parameters used for the DOS in figures 4.14 and 4.15.
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The structural energy versus band filling curves corresponding to figures

4.9 to 4.15 are shown in figures 4.16-4.18. These energies were drawn with respect 

to a skew DOS fitted to the first four moments of the simple cubic structure as 

explained before, except for figure 4.18. In this figure a cubic spline with nine knots 

namely 1, 2, 2, 2, 3, 4, 5, 6 and 7 was used to define the reference (see previous 

chapter and NAG documentation). The treble 2 (a knot of multiplicity three) is 

here to impose continuity only in the fitted function (not in its derivatives) at that 

value of the band filling. This is needed when the data points have a cusp (first 

derivative not continuous). The reason for changing to a cubic spline is because it 

is not always possible to fit a skew DOS for large values of the sp splitting. This is 

so because the corresponding increase in the second and third moments (which 

control the band-width and the skewness respectively) may not be consistent with 

the fixed value of the area under the DOS (given by the zeroth moment).

For the drawing of these curves the natural procedure would be to 

calculate the.Fermi energy for a fixed value of the band filling and then proceed to 

the calculation cJihe-structural (band) energy. However, a less expensive way is to 

compute the structural energy and the band filling at the values of the energy 

varied from the bottom to the top of the band. Only two integrations per point are 

done in this way as opposed to typically a few tens (depending on the accuracy) 

required for Fermi energy calculations. In this way the computing time can be cut 

down by a factor as large as twenty per each curve. The price to pay is that if the 

DOS is rapidly varying in a certain range of energy values only a few points are 

picked up in that region. This will reduce the effective number of points in the 

final plot against the band filling which can lead to a misinterpretation of the 

results. However this can be properly cured by improving the mesh (i.e., 

diminishing the energy step) if such a region is detected. This can be implemented
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............  HCP

Figure 4.16
Structural energy versus band filling for the pure s (a), pure p 
(b) and esp = 0 (c) cases. The energies were computed with 
reference to a skew DOS.



S.CUBIC ______ H.COMB
DIA(CUB) ______ HEX

_____  D1A(HEX) _____  BCC
..........  FCC ______ ZIG-ZAG
............  HCP DIMER

Figure 4.17
Structural energy versus band filling for esp = -12*tan(niT/10) 
with ni =  1 (a) and 2 (b). A skew DOS was used as reference.
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Figure 4.18
Structured energy versus band filling for eSp = -12*tan(niT/10) 
for ni = 3 (a) and 4 (b). A cubic spline was used as reference.

124



in the computing routines so that it is automatically taken care of.

For a given value of the band filling we can now read the most stable 

structure which is the one with the minimum value of the structural energy. 

Whenever two structures are too close so that separation is difficult to be spotted 

via these plots, their structure energies can be drawn alone with a reference cubic 

spline fitted to their data points. In this way the two curves can be usually well 

separated and the most stable structure identified. If still there is any doubt then 

Fermi energy calculations are necessary so that the structure energies can be 

evaluated at the same value of the band filling to allow a numeric separation. This 

procedure is still much more economic than calculating the Fermi energy for all 

points.

The final result can be drawn as a structural map shown in figure 4.19 

which separates out the different regions of stability derived from figures 4.16-4.18. 

The vertical axis is a function of the sp-splitting and the horizontal axis is the 

band filling which is associated with the different groups of elements in the 

periodic table. Representing the electronegativity, the vertical axis separates the 

elements down a given group at fixed band filling. Notice that at the bottom of the 

.scale €g-€p -oo meaning that the s and p orbitals are very far apart. In figure 

4.20 the corresponding experimental map is drawn. The data used for the drawing 

of this map is given in appendix VII.

We see that the most important structural trends are reproduced by the 

theoretical structural map. The first thing to be noticed is that the close packed 

regions lie at left hand side as for the Li and Be groups. Hydrogen with its large sp 

separation lie below Li and Na and the predicted narrow dimer stability region at 

band filling equal to one accounts for this fact. We see that hep Be and Mg are also 

very well predicted. As for group IIIB the structure of A1 is seen to lie on a honey 

comb region. If it were not for the honey comb structure, fee aluminum would lie 

on the border of a laxge fee region and a very small island of hexagonal stability
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(see structural stability curves for ni = —1) which would be very acceptable. We 

can attempt to an explanation by noticing that there may be large differences in 

volume between the two dimensional honey comb (coordination equal to three) and 

close packed fee (coordination equal to twelve) lattices which could be only poorly 

accounted for by the structural energy difference theorem. However hep thallium is 

seen to be correctly situated within the theoretical map. Carrying on to the right 

hand side of the map we leave the close packed regions and ingress into the 

tetrahedral regions of the group IVB elements. These are very nicely situated in a 

cubic diamond domain giving an excellent agreement with their observed

structures. The fee arrangement lead however is not predicted correctly.
1

Nevertheless the model reproduces the right trend: going down the structural map 

at band filling equal to four we find the expected fee structure. As for the dimer 

structures represented by nitrogen and oxygen we do not find a good agreement 

with experiment. Group VIB elements sulfur, selenium and tellurium are 

represented in our model by zig-zag chains and we see that the agreement with 

experiment is excellent. Polonium assumes a simple cubic crystalline form which is 

not predicted correctly but notice that the simple cubic structure comes second in 

stability (after the zig-zag chain) in that region (see structural energy curves). 

Finally the halogens represented by dimers are also predicted correctly by the 

model.

In figure 4.21 we show the structural map with the sp splitting esp 

extended up to +oo. The structural energy versus band filling curves and the 

corresponding densities of states are shown in figures 4.22-23 and 4.24-4.27 

respectively. The eSp>0 region is unphysical because the atomic s orbital always 

lies below the p orbital. However one thing we learn from this map is that the 

essential trends (say close packed, four-fold coordinated and low dimensional 

structures as we go from the left to the right in the structural map) are not strictly 

dependent on the sign of esp.
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s r u m r : H r n u n
DIA(CUB) HFY

______  DIA(HEX)
............ FCC
.............  HCP

______  BCC
_______ZIG-ZAG

......  DIMER

Figure 4.22
Structured energy versus band filling curves for the cases 
eSp = 12*tan(nix/10) with ni = 1 (top) and 2 (bottom). A skew 
DOS was used as reference.
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S.CUBIC ______  H.COMB
______  DIA(CUB) ______  HEX
______  DIA(HEX) ______  BCC
...........  FCC _______ZIG-ZAG
.............  HOP DIMER

Figure 4.23
Structural energy versus band filling curves for the cases 
esp = 12‘tan(niT/10) with ni = 3 (top) and 4 (bottom). A 
cubic spline was used as reference with knots equal to 1, 2, 3, 4,
5, 6, 6, 6, and 7.
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Figure 4.24
Densities of states for esp = 12*taji(j/10).



Figure 4.25
Densities of states for esp =  12*tan(2T/10).
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Figure 4.26
Densities of states for e8p = 12*tan(3x/10).
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§4.6 Conclusions

The predictions made by the model are very good. In fact it is amazing 

that such a simple theory can account for the relative stability of such different 

structures like the dimer and the close packed arrangements. The degree of success 

is very encouraging for us to take one step further towards the description of more 

complicated materials, namely the AB alloys. First, however, we attempt to a 

explanation as to the physical origins of the different regions of stability observed 

in the structural map. This is done in the next chapter.
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CHAPTER 5: Interpretation in Terms of the Moments

In the last chapter a tight binding model was developed which proved 

to be a reliable tool for the prediction of the structural trends amongst the 

sp-bonded elements. In this chapter we provide a physical explanation to these 

theoretical results in terms of the local topology. The interpretation will be given 

in terms of the moments of the density of states because they provide an 

immediate contact with the local lattice topology. Only up to five moments are 

shown to be necessary to reproduce the fundamental trends. We will see that the 

fourth moment plays a fundamental role in the structural separation amongst the 

open structures. A physical interpretation is then given in terms of number of 

paths and the associated weight.
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The successful prediction of the sp structural trends as derived in the 

last chapter did not provide an explanation as to the origin of the domains in the 

structural map. We try to give an answer to this question in this chapter. Only the 

pure s, pure p and esp = 0 cases will be considered here. The main reason for 

choosing these cases is because the on-site energies are then zero which removes all 

contributions from seif-tracing paths (see chapter 2) and thus simplifies the 

analysis. These limiting cases (notice that esp = -at is given by the pure cases) 

will be sufficient to give a general feeling as to the important parameters governing 

structural stability. In order to reach our goal, we use the moments of the local 

density of states as a main tool. The usefulness of these quantities in studies about 

structural behaviour has been early recognized by the French school (Ducastelle 

and Cyrot-Lackmann 1970, 1971) so that the ideas have been around for about 

twenty years. Since the moments directly probe the lattice geometry, they 

constitute a sensible and natural starting point for our discussion. As discussed in 

chapter 2 the Tecumim m et hod and the moments method are entirely equivalent in 

> the sense that they possess the same information about the system. However, while 

the former is advantageous from the quantitative point of view the latter has in 

general a greater qualitative appeal. In fact I often find myself going back to the 

moments when it comes to the interpretation of results.

Only the basic trends between different coordinations will be discussed 

here so that we will not attempt to separate very similar structures like the close 

packed fee, hep and bcc or the four-fold coordinated cubic and hexagonal diamond 

lattices. The reason for this lies upon the fact that the more similar the structures 

the more the minimum number of moments necessary to achieve a good separation. 

This would complicate the analysis and simplicity would be lost.

§5.1 Introduction
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§5.2 Structural Stability and Moments

Let us determine the minimum number of moments necessary to 

reproduce the basic structural trends observed amongst the sp elements. Notice 

that in our model all the moments up to fa (inclusive) are kept the same for all 

structures. We therefore expect the relative stability between two given structures 

to be primarily dependent on the difference between their 3rd moments. In order to 

find out how far we have to go from the central site to get the correct relative 

stability we studied the variation in the structural map (pure s, pure p and 

esp = 0 cases only) as a function of the number of exact moments. The structural 

energy versus band filling curves are shown in figures 5.1-5.2 (pure s), 5.3-^5.4 

(pure p) and 5.•><».(> t t sp = 0) in which all the moments up to fa  are exact with 

n = 3, 4, 5 and 6 (the result for n = 18 was shown in chapter 4). For these figures 

a reference skew D O S  was used which was fixed to the first four moments of the 

simple cubic structure as described in the previous chapters. The continued 

fractions were terminated using the optimized Beer and Pettifor's square root 

terminator determined far the bulk, corresponding to a cluster with eighteen exact 

moments. The.resulting terminating function was then appended to the continued 

fraction with the right number of coefficients to account for the required number of 

exact moments. The dimer is an exception because the density of states consists in 

a set of levels which corresponds to a truncation of the continued fraction. In 

appendix VII we show how the approximation in terms of number of moments was 

implemented to the dimer structure.
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F ig u re  5 .1
S tru c tu ra l en ergy  v ersu s  b a n d  f il lin g  cu rv es  for th e  p u re s ca se  w ith  ex a c t
m o m e n ts  up to  /in, w ith  n = 3  a n d  n = 4 .
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F ig u re  5 .2
S tru c tu ra l en ergy  v ersu s  b an d  f il l in g  c u r v e s  for th e  pure s  ca se  w ith  ex a c t
m o m e n ts  up to  /in, w ith  n = 5  an d  n = 6 .
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F ig u r e  5 .4
S tru ctu ra l en ergy  v ersu s  b an d  f il lin g  cu rv es  for th e  pure p ca se  w ith  ex a c t
m o m e n ts  up to  /in, w ith  n = 5  an d  n = 6 .
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S tru c tu ra l en erg y  v ersu s  b an d  f il l in g  cu rv es  for th e  esp =  0  case  w ith  e x a c t
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Figure 5.6
Structural energy versus band filling curves for the esp =  0 case with exact
m om ents up to  /in, with n = 5  and n= 6 .
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The convergence of the structural trends with the number of exact 

moments is summarized in figures 5.7 (pure s), 5.8 (pure p) and 5.9 (esp = 0). For 

the pure s case we see that the stability trend from left to right is given by

Pure s

n = 18: fcc/hcp —4 z.zag —4 dimer —4 z.zag —4 s.cub.

n = 4: fcc/hcp —4 hex —4 z.zag —4 dimer —4 z.zag —4 dia(c/h)-4 sc

where dia(c/h) stands for diamond lattice (either cubic or hexagonal), fcc/hcp 

means either one of these two arrangements and n means that all moments up to 

fin are exact. The corresponding pure p and esp = 0 trends are, respectively,

Pure p

n =  18: fee—4 licp —4 fee —4 dia(h) —4 dia(c) —► z.zag —4 sc —4 dimer-4 sc

nr— 4: bcc—4 hep—4 fee—► dia(c/h) - 4  z.zag —¥ h.comb —4 sc —► dimer—► sc

and

CSJ> =  0

n = 18: fee —4 hep -4  fee —4 hex —4 h.comb -4  dia(c) —4 dia(h) —4 dia(c) —4

h.comb -4 sc —4 z.zag —4 dimer

n = 4: bcc -4  hep —4 fee —4 hex —4 dia(c/h) —4 h.comb —4 sc —4 z.zag —4 dimer.

Notice that for integer values of the band filling the correct relative stability of the



bulk can be obtained if all the moments up to m  are known. The only exception 

is for the pure p case with band filling equal to four (see figure 5.8). Since however 

this is a theoretical limiting case which should actually hybridize with an s state, 

we regard this as a minor drawback (the energy differences are actually very small 

as can be seen from figure 5 .3 ) and take /X4 as the bottom limit above which the 

systems can be well separated. Naturally, closely similar structures can not be 

separated with so little information. The close packed fee and hep structures for 

example can only be separated if /15 is also known (see Beer 1985 for transition 

metals). Also the four fold coordinated cubic and hexagonal diamond lattices are 

exactly similax up to /15 and require /i$ for the separation to occur. Apart from 

these cases, however, the knowledge of the first five moments (i.e., up to /in, 

n = 0, 1, •••4) is enough to provide the basic trends observed in the structural 

maps discussed in the last chapter.

In order to find the dependence of the structural energy versus band 

filling curves on the number of exact moments one can derive an expression for the 

moments of the band energy in terms of the moments of the density of states. One 

starts-with the band (or structural) energy Eb(x) as a function of the Fermi 

energy, i.e.,

Eb(x) =  f X E p(E) dE . (5.1)

where p(E) is the DOS. Notice that in general if t p(t) dt =  0 and 

p{t) > 0 then t p(t) d(t) < 0 for all x. The proof is trivial for x < 0 while
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for x > 0 we notice that

0 = J  t /?(t) dt
-00

= f  M O d t  + f  t p(t) dt
-0 0  X

Since x > 0 the second term in the left hand side in this expression is greater 

than zero and therefore t yo(t) d(t) < 0 which completes the proof. Therefore 

provided that the first moment of the density of states (i.e., the center of gravity 

of the band) is made equal to zero the band energy will always be negative.

The idea now is to work with moments of the band energy rather than 

with moments of the density of states (Turchi and Ducastelle 1985, Burdett and 

Lee 1985a, 1985b). For example one can define the moments of Eb(x), i.e., 

^„(Eb) by

/*n(Eb) Eb(x) dx

which can be integrated by parts to give

(5.2)

/*n(E b) =
n +  1

In the same way that the sequence /*n(/>) can be used to reconstruct the density of 

states, the sequence /*n(Eb) can be used to reconstruct the band energy. However 

we would like to reconstruct the band energy difference AEb between two given 

structures. This difference can be computed either at the same value of the Fermi 

energy or at the same value of the band filling. In accordance to what we have
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been doing so far we shall work with AEb at constant band filling. In appendix 

XI we show how to obtain an expression for AEb(x) =  Eb2(x2) -  Ebj(xi) at 

constant band filling which is valid to first order in the Fermi energy difference 

X2 - x i  (see Turchi and Ducastelle 1985). It is given by (XI.5) and reads

AEb(x) = - J *  de f  A /<t)dt

where x = xi or x2 for structures 1 and 2. In this case an approximate 

expression for /in(AEb), similar to the one above for pn(Eb), can be written 

down (see appendix XI and Turchi and Ducastelle op.cit.), namely,

/^n(AEb) = ;-------— ------ - /» „ « (  A/>) • (5-3)
(n + 1) (n *f 2)

In order to see how the reconstruction of the AEb curve works let us consider two 

structures with densities of states p\ and p2 such that

/»n(Pl) = /*„(#>) for n = 0, 1, • • •, m-1 (5.4)

and suppose first that m=3 with < /^(pj)- From (5.3) we have

/^(Ebi) = *>(Eb2) (5.5)

which means that the area under the curves Eb<j(x) and Eb2(x) is the same. 

However, since /^ f t )  < p^/fcj) we see from (5.3) that p ,(E ^) > Pj(Eb2) and 

therefore the center of gravity of the two curves are displaced with respect to each 

other. Since Ebj and Eb2 are always negative the relative positions of these 

curves when the difference pg(Ap) is large is as shown schematically in figure
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Figure 5.10
Band energy as a function of the Fermi energy assuming fin(Ap) = 0 for 
n = 0, 1, • • -,m-l: a) and b) m = 3, pz(pi) < Ps{p2)\ c) and d) m = 4,
ihM  < mip*)-
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5.10a. Notice that the largest /i,(Eb) goes to the left because the curve is always 

below the energy axis. The corresponding AEb versus Fermi energy curve is 

shown in figure 5.10b.

Similarly if m = 4 we have pn(pi) = Pa(p2) f°r n = 0, 1, 2 and 3 and 

the differences between the two structures start in the fourth moment. In this case

assuming that p (/>j) < /i4(/?2) and that the /j4(A/?) is large so that the band
4

energy is largely governed by the fourth moment (see Burdett 1985a for details), 

the curves should look like the ones shown in figures 5.10c and 5.10d.

Notice that the curves in figure 5.10 are given in terms of the Fermi 

energy rather than the band filling. However since the band filling is a 

nondecreasing function of the Fermi energy, the Eb(N) curves are expected to 

have the same form. Another remark we would like to make is that in drawing 

these curves only information up to the first nonzero difference in the moments is 

being used. Therefore the influence of other moments is being implicitly neglected 

which can be an over simplification if / ^ ( A p) is important compared with 

pJ^Ap). Burdett and Lee's approach can take this into account in a quantitative 

way. Here, however, we are not interested in separating too similar structures and 

therefore the level of detail presented above is enough for our purposes. v

In Tables 5.1 to 5.3 we list the values of the first few moments (pn, 

n = 0 to 6) for the cases we analyze in the next sections, namely the pure s, pure p 

and e5p =  0. The moments are given in a normalized (nondimensional) form which 

makes them assume values around 1. The number of different paths are also given, 

on-site paths not contributing since in the three cases considered es =  ep = 0.
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Structures

(w =

PURE S
2, = 0 and

Mn/(W)"^2

= 12)

(No. of paths)

n = 3 n = 4 n =  5 n =  6

Zig-Zag 0 0.7500 0 0.6250
(0) (6) (0) (20)

H.Comb 0 0.8333 0 0.8611
(0) (15) (0) (93)

Dia 0 0.8750 0 1.0000
(0) (28) (0) (256)

S.Cubic 0 1.2500 0 2.1528
(0) (90) (0) (I860)

Hexagonal -0.3750 1.3125 -1.1719 2.5879
(12) (168) (600) (5300)

fee -0.8165 1.8750 -3.0619 6.1111
(48) (540) (4320) (42240)

Table 5.1 - Moments values for the single s orbited case. The
moments are listed in a normalized nondimensional form 
and the number of paths is given in brackets. The first 
three moments are the same for all structures.
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Structures

if*) = 6,
PU REP 

fii = 0 and /i2 = 78.2692) 

(No. of paths)

n = 3 n = 4 n = 5 n = 6

Zig-Zag 0 0.2500 0 0.0637
(0) (6) (0) (20)

H.Comb 0 0.3075 0 0.1184
(0) (15) (0) (93)

Dia (cub) 0 0.2470 0 0.06889
(0) (28) (0) (256)

Dia (hex) 0 0.2470 0 0.0725
(0) (28) (0) (256)

S.Cubic 0 0.3274 0 0.1394
(0) (90) (0) (I860)

Hexagonal -0.1131 0.3048 -0.0833 0.1225
(12) (168) (600) (5300)

fee -0.2462 0.3163 -0.1584 0.1431
(48) (540) (4320) (42240)

hep -0.2462 0.3200 -0.1574 0.1416
(48) (540) (4320)

Table 5.2 -  Moments values for the pure p orbital case. The moments 
are listed in a normalized nondimensional form and the 
number of paths is given in brackets. The first three 
moments are the same for all structures.
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Structures

o II OO

£.p  =  °

f t  =  0 and f t

/W (/‘2)"/'2

=  131.7256) 

(No. of paths)

n = 3 n = 4 n = 5 n =  6

Zig-Zag 0 0.2662 0 0.0795
(0) (6) (0) (20)

H.Comb 0 0.1753 0 0.0363
(0) (15) (0) (93)

Dia (cub) 0 0.1502 0 0.0256
(0) (28) (0) (256)

Dia (hex) 0 0.1502 0 0.0258
(0) (28) 0 (256)

S. Cubic 0 0.2190 0 0.05785
■ (0) (90) 0 (I860)

Hexagonal -0.2503 0.2205 -0.0692 0.0612
(12) (168) (600) (5300)

fee -0.3273 0.2926 -0.1633 0.1159
(48) (540) (4320) (42240)

hep -0.3273 0.2958 -0.1632 0.1163
(48) (540) (4320)

Table 5.3 — Moments values for the eSp =  0 case. The moments axe 
listed in a normalized nondimensional form and the 
number of paths is given in brackets. The first three 
moments are the same for all structures.
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§5.3 Stability of the Close Packed Structures

The relative structural stability between close packed structures (fee, 

hep and bcc) on one side and the other structures on the other side is expected to 

depend mainly on the third moment since it is here that the first nonzero moments 

difference occurs (see tables 5.1 to 5.3). We notice that these close packed 

structures appear in the structural maps only in the region of low band filling (the 

region we call the most bonding part of the spectrum). It is not difficult to 

understand this behaviour in terms of the geometry of the structures involved if we 

notice that the sole contribution to the third moment comes from triangular paths 

(on-site paths also contribute but they do not exist when es = ep = 0). These 

areabsent in the lower coordinated structures (here we mean coordination up to 

£  — 6, i.e., simple cubic) but they do show up in the close packed environments, 

where they are more likely to occur. Among the structures considered in this thesis 

the ones with this kind of path are the fee, hep, hexagonal and bcc lattices 

(actually one has to go to second neighbours in a bcc lattice in order to find 

triangular paths).

As we have shown in the previous section if the first nonzero moments 

difference between two structures happens to occur for the third moment the 

structural energy difference versus band filling curve is expected to have the form 

given in figure 5.10b. The structure with the minimum value for the third moment 

is then expected to be more stable at low values of the band filling which is indeed 

the type of behaviour we find if we look at the curves 4.16-13 shown in the 

previous chapter. The structures with nonzero /ig are always stabilized at the 

bonding part of the spectrum. We therefore conclude that the structural stability 

of the close packed structures for low values of the band filling is essentially due to 

the presence of triangular paths in these lattices.
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These arguments can also be used to give a qualitative explanation for 

the behaviour of second neighbours hoppings in bcc as shown in figure 4.7. We see 

that if we totally neglect the presence of second neighbours the result is the long 

dashed curve which is less stable than all the others in the low band filling region. 

This is so because triangular paths are suppressed in the bcc lattice if second 

neighbours hoppings are not allowed. However a3 these couplings are turned on, 

the lobe in the bonding region is pushed down thus increasing stability. The net 

result in this case is then: the more important the second neighbours in bcc the 

greater the importance of triangular paths and therefore the more (less) stable the 

lattice becomes in the low (high) band filling region. Notice also that Ducastelle 

and Cyrot-Lackmann theorem (1971) is also obeyed in figure 4.7. The moments /zn 

are the same for n = 0, 1, and p, where p = 2, and therefore the number of nodes 

is at least p - 1 = 1.
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§5.4 Stability  am ongst the Open Structures

By open structures we mean the ones without triangular paths in the 

geometric environment. This excludes the hexagonal, fee, hep and bcc lattices from 

the study we undertake in this section (they will be included in the discussion 

when we feel that they are illuminating for general arguments). Therefore A/Xg =  0 

and the relative stability is expected to be dependent on /x4. No attempt will be 

made to separate the four fold coordinated cubic and hexagonal diamond lattices 

(for which A/i4 = 0). Unless otherwise stated we shall refer to both these 

structures as diamond.

Let's keep'in mind that if two structures 1 and 2 are such that 

(/Xh)., = (/xn)2 for n = 1, 2 and 3, and (/x4)1 < (/x4)2 , then in a first 

approximation the relative structural energy curve will look like figure 5.10d with 

(^4)4 being more stable than (/x4)2 for half filled band.

We focus attention in the half filled band region where the dimer is 

found more stable than the other structures for the case of pure s symmetry 

whereas diamond is favoured in the case of sp symmetry. If we understand this 

region the others can also be understood by extrapolation, following the curve in 

figure 5.10d. From now on when we mention the term stability, unless stated 

otherwise, we will be referring to the half filled band region of the spectrum.

First of all let us separate out the contributions of the different paths 

to the 4th moment for a given structure, i.e. ,

N4

Pi =  ^  n i h i (5-6)

i »1
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where,

h j : weight of ith type of path;

nA: no. of paths with weight h^ and

N4 : no. of topologically different paths contributing to /*4.

For a given lattice, i runs over all topologically different paths 

contributing to the fourth moment. Notice that nj depends on the local topology, 

one of its parameters being the coordination y  Also, in our model, all the 

structures have the same second moment and therefore hj is dependent on g  

through 1 jg1. This can be easily seen by noticing that for a given structure a 

with coordination the fixing of the same second moment as, say, the simple 

cubic lattice gives ^ sc*ss<t̂ c = ^ a *ss^. Therefore ss«ra a and since the

weights defined in (5.6) are with respect to the fourth moment we have hi a ss<r* 

which gives hi a 1 /g2.

One cam write (5.6) in such a way to emphasize the different 

contributions , to the-fourth moment. With the second moment written as 

where h* stands for the weight corresponding to a hopping to one of 

the nearest neighbours in the calculation of /^, we divide (5.6) by which 

gives

/*4

A
(5.7)

As remarked above the implicit dependence of hi on is carried out 

through the hopping integrals which are also present in h* with the same powers. 

Therefore hi/h4 is not dependent on the coordination (and, as a bonus, is 

nondimensionad) which is the factor that rescales the hopping integrads from one
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structure to another. This means that, in these units, topologically equivalent 

paths have the same weight being therefore structure independent, or perhaps more 

appropriately, volume (or bond length) independent. Therefore they can be used to 

compare directly between two given structures to find out which factor is 

responsible for stability: whether it is the weight itself, or a combination of the 

weight with the number of paths or yet the volume rescaling factor 1 /g2. This 

separation of effects is a direct consequence of the structure energy difference 

theorem.

The normalized moments in (5.7) can still be used to compare among

the different structures because within our model the second moment is the same

for all structures, as following from the structure energy difference theorem. Notice

that in accordance with this theorem the only assumption for A = 0 is that the

repulsive pair potentials are proportional to the square of the hopping integrals, 
2

i.e., hpp a hbond (as long as one does not need the explicit form of hbond to fix 

any hopping integrals ratio like, say, the second neighbours in the bcc lattice) as 

explained in appendix III. For different forms of hpp, even though Afa = 0 does 

' ■not hold, i t  i&.stilFpossible to write an expression similar to (5.7). If, say, hi 

depends on the coordination through 1 ̂ n, then ^ n *hi is not dependent on 

One can then divide both sides of (5.6) by ^ n*hi (which is independent on the 

coordination) and work with the £  independent weights hi/hi. Notice that one 

could not divide (5.6) by hi alone because it is dependent on the coordination and 

is thus different, in general, for different structures.

For a given lattice, the effective contribution of hi depends on the 

symmetry of the orbitals being considered. For instance all paths contribute 

equally to the pure s symmetry case whereas this is not true in the case of angular 

dependent symmetries. We therefore split up the discussion into the pure s, pure p 

and eSp =  0 cases. In what follows we will always take the First weight hi to 

represent the contribution of a "dimer-like" path, i.e., corresponding to one step
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length hoppings, back and forth, to one of the neighbours. We will also be working 

with units such that hi = 1. In this case we have

which can also be written as

n4

^  =  + £ njKi ]
* i « 2

where

K;= hj/h,

= ^ K g \ )

(5.8)

We shall be referring to £4 and as renormalized fourth moment and weights 

respectively.

5.4.1 The Single s-Orbital Case

In this case the weights are independent of the paths, i.e., hi =  hi (thus 

= 1) for all i, and the discussion is straightforward. From (5.6) we see that the 

two important parameters in the evaluation of the moments are the total number 

of paths, say n, and the strength of the interaction which is represented here by the 

weights hi. As remarked above hi <x l /^ 2 and therefore, as g  increases, the 

number of paths and the weights represent competing effects acting on the fourth 

moment: whilst the former attempts to increase the latter attempts to decrease
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the value of |t4. Therefore if we were to forget the influence of the number of 

paths the dimer (g =  1) would have the highest moment of all the structures. 

Actually it happens that this situation is completely reversed by the effect of the 

number of paths which grows up faster than g 2 as one can see from table 5.4. 

Thus ny^2 is an increasing function of ^  as shown in figure 5.11, which accounts 

for the dimer stability in the half filled band region (see also figure 4.16a) when 

only one s orbital is present.

5.4.2 The Pure p Case

We will now divide the discussion into two parts. In part a we give am 

overview of the subject while in part b we become more specific. We will also be 

including amother structure, namely the two dimensional square lattice (because of 

its four-fold coordination like in diamond), when useful for the discussion.

a) In this case there is no spherical symmetry and the weights are 

expected to depend on the particular paths. The largest weight is hi which is the 

straight path we are referring to as a dimer-like path (see Turchi and Ducastelle

1985). The other paths diminish in importance as one can see by compairing tables

5.5 and 5.4 which indicates a drop in the fourth moment relatively to the single s 

case.
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Pure s

Path contribution
Structure f No.Paths

(»)

Dimer-like 

( = / / " )

Others

Dimer 1 1 1 1.0 100% 0%
Zig-Zag 2 4 6 1.5 33% 67%
H.Comb 3 9 15 1.67 20% 80%

Dia 4 16 28 1.75 14% 86%
S.Cub 6 36 90 2.5 7% 93%
Hex. 8 .64 168 2.63 5% 95%
Fee 12 144 540 3.75 2% 98%
Hep 12 144 540 3.75 2% 98%

Table 5.4 Path contribution to the fourth moment in the pure s
case. Notice that the dimer-like contribution is given by 

[^hi / / 2i/[nhi / / 2]] = //" •
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Fourth moment (in the nondimensional form ^ l l ^ )  for the structures shown
in the horizontal line, in the single s orbital case. The key for the Structures 
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Figure 5.12 shows Jl4 versus g  with the two dimensional square lattice 

included. We see that the number of paths is now unable to overcome the decrease 

in the fourth moment (caused by the factor 1 as in the single s case but now 

also due to the uneven distribution of the weights) as g  ranges from the dimer to 

the higher coordinated structures. We also see from this figure that (apart from the 

zig-zag chain, the square la tt ic e  and the simple cubic structures) J*4 decreases 

monotonically up to £  — 4 and then increases, monotonically, in the direction of 

the more compact structures. This behaviour is due to the fact that for the more 

compact structures the number of paths is so big that they are able to reverse the 

situation once again, causing /14 to increase with g  as in the previous case 

(compare the contribution columns in tables 5.4 and 5.5). For g  — 6 , for

instance, there is a good "recovery" with the "other paths" reaching a contribution 

of 82% (it was 93% in the pure s case) and this is why the simple cubic structure 

is pushed up relatively to the zig-zag chain, the honey comb and the diamond 

structures. The same type of argument applies to the more compact structures. 

The dissimilar behaviour of the zig-zag chain, the square lattice and the simple 

cubic structure with respect to the other structures in figure 5.12 can be 

understood by. .noticing that in these cases the p-orbitals lie along the bond 

lengths. We will come back to this point in part b where the contribution of each 

path will be considered in detail.

b) In this part we attempt to understand the role played by the structured 

local topology in the behaviour described in part a. General conclusions will be 

given in the sp case. The units will be as indicated by expression (5.8), which 

renormalizes /i4 in terms of the coordination independent quantity
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Structure /

Pure p 

No. paths
Path Contribution 

Dimer-like Others

Dimer 1 1 100% 0%
Zig-Zag 2 6 69% 31%
H.Comb 3 15 37% 63%
Diamond 4 28 35% 65%
S.Cubic 6 90

ssCOr-H 82%
Hexagonal 8 168 14% 86%

Fee . 12 540 9% 91%
Hep 12 540 9% 91%

Table 5.5 Path contribution to the fourth moment in the pure p 
symmetry case.
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Figure 5.12
Fourth moment (the renormalized one) for the structures in the horizontal 
line for the pure p case. The 2D square lattice is also shown. The key for the 
structures as a function of the coordination is the same as for figure 5.11.

169



Table 5.6 summarizes the paths present in the structures under 

investigation with coordination up to six. We notice that the minimum weight is 

associated to the path present in the zig-zag chain which also appears in the square 

lattice and simple cubic structures. On the other hand the maximum weight (other 

than the one corresponding to the dimer-like path) is associated to straight paths 

(present in the square lattice and simple cubic structure) and is equal to the 

dimer-like weight. These points account for the dissimilar behaviour observed for 

the fourth moment of these structures as pointed out in part a and shown in figure

5.12.

In figure 5.13 we are plotting the fourth moment corresponding to 

planar paths like the ones in the zig-zag chain, as a function of the bond angle (0) 

as derived in appendix X. It is not difficult to show (see appendix X) that the 

weight in this case (let us call it h2 ) is given by

h2 =  pp^jV ppo2 +  ( l -Z ^ p p ^ j  +

ppr^l-Z^ppo2 + Z W ]  + ppi4 (5.9)

where 1= cos0. For 0 = 0  this expression gives the weight corresponding to the 

dimer-like path for the pure p case, i.e., hi = p p - f  2 ‘ppx4. We see from figure 

5.13 (here it is K2 =  h2/h1 that we are plotting) that the weight is minimum for 

0 =  90 degrees (the path in the zig-zag chain) and is maximum for 0 = 0  or 180 

degrees (the dimer-like and the straight line paths respectively). Notice that the 

zig-zag chain stability region (as for the structures of S, Se and Te for which the 

bond angle is 105 degrees -  Harrison 1980, p93) that one finds in the structure
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Table 5.6 Types of paths and respective weights (p-orbitals) present 
in the structures with coordinations ranging from 1 to 6. 
The bond angle 9 in the diamond path, is given by 
sen(0/2) =  (2/3)^.
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Figure 5.13
Renormalized fourth moment versus bond angle 9 for a planar path like the 
one in the zig-sag chain (see appendix X). The minimum occurs for 9 = 90 
degrees. The dashed (solid) line is for the pure p (esp = 0) case.
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maps (see chapter 4 ) by going down towards esp -» -oo , has much to do with the 

small weight associated to this path. In fact there is not such a stability region for 

an ordinary linear chain, as prior studies of the sp stability problem led to.

5.4.3 The Hybrid sp Case (esp = 0)

In table 5.7 we are listing the contributions of both the dimer-like and 

the other paths to the fourth moment for the case of sp-symmetry. We see that 

there is a sensible drop in the contribution of the other paths for the zig-zag chain, 

the honey comb lattice and the diamond structures, relatively to the single s 

orbital case. Notice also the drops in the last two structures relatively to the 

previous case. These drops cause severe changes in the stability curve £ 4  versus £  

which is shown in figure 5.14. We see from this figure that hybridization with an s 

orbital disfavours the zig-zag chain stability (compare with figure 5.12).

: Notker that in our units the weight of dimer-like paths is K1 =  1 

independently of the case (say, pure p or sp) and therefore the relative structural 

stability between two structures (at half band filling) as one goes from one case to 

another is only dependent on the "other" paths. From table 5.5 we see that the 

contribution of other paths in the pure p case was 31/65 = 0.48 for the zig-zag 

chain relatively to the diamond lattice, whereas from table 5.7 the same ratio for 

the sp case is 25/34 = 0.74. This pushes up the fourth moment of the zig-zag 

chain relatively to the diamond lattice and therefore reduces the chain stability at 

half band filling. In table 5.8 we show the different paths contributing to the fourth 

moment along with the corresponding weights. We see that the second zig-zag 

chain weight increased considerably relatively to the diamond structure from the 

pure p to the sp case. In the former the ratio is 0.224/0.311 =  0.72 whereas in the
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latter it is 0.167/0.084 =  2.0.

We also see from figures 5.12 and 5.14 that the square lattice and 

simple cubic stabilities are improved from the pure p to the sp case. This is mainly 

due to the weight associated to straight paths which decrease considerably when 

the s orbital is included (they were as large as the dimer-like path in the previous 

case).

These points can be made more clear if we look back to figure 5.13. The 

solid line represents the weight of a path like the one in the zig-zag chain as a 

function of the bond angle for the sp ( eBp =  0) case. The dashed line is for the 

pure p case. There are two main differences between these two curves, namely ») 

that the minimum has been dislocated towards 117 degrees and ii) that a straight 

path is no longer equal to the dimer-like path as mentioned before. The 

displacement of the minimum is related to the bond angle observed in the chains 

for the structures of S, Se and Te. The fact that we obtained 117 degrees for 

eBp = 0 and 90 degrees for the pure p case (i.e., eBp -» -oo) is totally consistent 

with the observed angle of 105 degrees which lies in between those two limiting 

 ̂values. The second of these points is easily understood by noticing that with the 

presence, of a  s  orbital i t  does mahe difference if one goes forth or backwards along 

.the bond.

In figure 5.15a we show a bar graph displaying Ki versus g  (esp = 0 

and hi left out) in order to find out which structure is most favoured by the weight 

alone. We see from this figure that the non-linear paths of both the honey comb 

(g = 3) and diamond (g =  4) structures are very effective in reducing the weight.
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Figure 5.14
Renormalized fourth moment for the several structures whose coordination 
are shown in the horizontal axis for the sp (esp = 0) case. The key for the 
structures as a function of the coordination is the same as for figure 5.11.
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Structure /

Csp — 0 

No. paths
Contribution

Dimer-like Others

Dimer 1 1 100% 0%
Zig-Zag 2 6 75% 25%
H.Comb 3 15 76% 24%
Diamond 4 28 66% 34%
S.Cubic 6 90 30% 70%

Hexagonal 8 168 23% 77%
Fee 12 540 11% 89%
Hep 12 540 11% 89%

Table 5.7 Path contribution to the fourth moment in the sp 
symmetry case.



Figure 5.15b represents a stacked version of figure 5.15a, now with Ki 

included and the weights multiplied by the corresponding number of paths, i.e., we 

are plotting EniKi versus $  (but not yet multiplied by 1 I f 2). Both figures 

break down the fourth moment into the contribution of each different path. Since 

the diamond lattice and the Bquare lattice share the same coordination number, 

their relative stability will not change with the inclusion of the factor 1 jg1. As 

expected the coordination is very important in determining the structural stability 

since otherwise the dimer would be more stable at half band filling.

Figure 5.16a also shows a stacked version of figure 5.15a, this time 

multiplied by 1 ̂ 2 (first weight left out and number of paths not taken into 

account). We see that both the weight (from figure 5.15a) and the coordination 

(from this figure) are very much in favour of the diamond structure for stability. 

Speaking of coordination, the higher the better. But a too large coordination also 

means an increase in the number of paths, which acts against half band filling sp 

stability and can just as well be more important than the decrease in caused 

by the factor l /^ 2. This is what happens to the simple cubic structure, which is 

unfavourednot^imiyTfor its large weights (which after divided by ^ 2 are not at all 

that l>ig-:as w e  see:from figure 5.16a) but mainly for its large number of different 

paths.

In figure 5.16b both the volume rescaling factor and number of paths 

are present. This is the same as figure 5.14 (except that g  goes up to 12 in figure 

5.14) but we are now showing the contribution of each path to the fourth moment.
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.Table 5.6 Types of paths and respective weights (sp symmetry) 
present in the structures with coordination ranging from 1 
to 6.
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Figure 5.15
a) Renormalized weights for the structures whose coordinations are indicated 
in the horizontal axis (see figure 5.11 for the key -  the square lattice is 
indicated by sq) for eSp = 0. Notice that the third and fourth weights axe 
zero for g  = 2, 3 and 4 (dia) and that the first weight (equal to unity for all 
structures) is not shown; b) the same as a) but now multiplying the weights 
by the corresponding number of paths.
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Figure 5.16
a) Renormalized weights divided by the square of the coordination (eSp = 0 ) 
for the severed structures in the horizontal axis; b) renormalized fourth 
moments broken down into the contributions of the different paths. The key 
for the structures as a function of the coordination is the same as for figure 
5.11 (the square lattice is indicated by sq).



An interesting point that we would like to discuss is the role played by 

space dimensionality (d) in half band filling sp structural stability. When one 

tries to increase stability by increasing coordination, one should also keep the 

corresponding increase in the number of paths down to a minimum. One way to 

accomplish this is by increasing the dimensionality of the space. This is what is 

done when one goes from the dimer, which can be thought of as having space 

dimensionality equal to zero, to the diamond structure with the stability being 

increased in this process. From this point on, one has already reached d =  3 and 

the dimension of the space cannot be increased anymore. This accounts for the 

next lattice in order of increasing coordination, namely the simple cubic structure, 

being less stable than the diamond structure. Notice that if one tries to "squeeze" a 

fourfold coordinated structure in two dimensions (see the square lattice in figure 

5.16b) the result is a less stable structure if compared to the equally coordinated 

diamond structure. Obviously the weights should be taken into account in this 

discussion as one could think of choosing suitable paths with small weights so that 

these xould account for the increase in the number of paths with coordination. 

- Nevertheless this-qualitative argument remains valid when one compares 

. / . structures with the same.kind of local topology (so that there are no bias in the 

" choice of the paths) but with different space dimensionalities. We do this in figure 

5.17 where the fourth moments of the dimer, the ordinary linear chain, the zig-zag 

chain, the square lattice and the simple cubic structures are compared. The result 

is an increase in stability as both the coordination and the dimensionality of the 

space increase. Notice that the zigzag chain is more stable than the ordinary chain 

because of its non-linear path, which weights less than the straight paths present 

in the ordinary linear chain (this structure has four paths of the type 

besides the dimer-like one), which can be seen, for example, from table 5.8.
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Figure 5.17b shows a stacked bar version of figure 5.17a, exhibiting the individual 

contributions of the different paths. Notice that these remarks are only applicable 

to the sp case and are also highly dependent on the orbited symmetry. In the pure 

s case, for instance, there is no decrease in the fourth moment as both £  and d 

increase which is obviously caused by the uniform distribution of the weights (due 

the spherical symmetry associated to the s orbital).
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Figure 5.17
a) Renormalized fourth moments for the structures indicated in the figure 
(* = 1 is the dimer and £  — 6 is the simple cubic lattice); b) same as a) but 
breaking down into the contributions of the different paths.
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§5.5 Conclusions

These concluding remarks are mainly directed towards the sp case. The 

predicted relative stability as the esp =  0 band is filled up with electrons is

fee —► hep —► fee —¥ hex —► h.comb —► dia —► h.comb —► sc —► z.zag —► dimer .

We have shown that the basic characteristics of this trend can be understood in 

terms of the moments of the local density of states. For example the diamond 

structure is more stable than the lesser coordinated structures at half band filling 

for several reasons: it has a relatively small weight, the largest coordination, the 

same number of topologically different paths (i.e., N4 = 2) as those structures 

and its number of paths corresponding to K2 is not that big. It is also more stable 

than its equally coordinated counterpart, namely the square lattice, because both 

the weights and the number of paths (representing several different weights) are 

larger in this lattice. Finally it is more stable than the simple cubic structure 

mainly because of the large number of paths present in this structure, which 

overcomes the decrease in the weights caused by the volume rescaling factor (one 

increases coordination but the lattice space dimensionality can not be increased 

anymore).

In conclusion, structural stability results from a combination of several 

parameters and can not be thought of as being due to only an isolated one. The 

diamond structure combines a reasonably small number of paths and a  small 

weight, with a reasonably "large" coordination, which seems to be the best recipe 

towards half band filling sp stability.
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CHAPTER 6: The sp-Bonded AB Compounds

The tight-binding model developed in the previous chapters is now 

applied to the study of the sp-bonded AB binary compounds. The extra 

complication is essentially due to the existence of more than two parameters 

controlling structural stability which forbids the results to be cast into one single 

two dimensional structure map. The Mendeleev scale (Pettifor 1988) is used to 

draw a single two dimensional structure map with which our theoretical results are 

compared. The model is shown to be able to cope satisfactorily with the basic 

structural trends observed for the most important binary structures.
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§6.1 Introduction

Up to now we have been dealing exclusively with elemental systems,

i.e., systems in which the physical entities occupying the lattice sites were 

identically the same. In an alloy the lattice is populated by more than one type of 

atom and our interest here is in the case when the number of different atoms is 

two, i.e., a binary system, with stoichiometry AB. It has been shown that these 

systems can be well separated within a two dimensional map with the use of a 

single phenomenological coordinate (the Mendeleev number oK) associated with 

every atom in the periodic table (Pettifor 1986a, 1986b, 1988). Other

stoichiometries have also been well separated with this choice of coordinate system 

(Pettifor 1988). In table 6.1 we list the sp elements along with their corresponding 

Mendeleev number. Some elements have been excluded from this table like B, C, 

N, 0  and F in the first row because these elements behave in a !chemically distinct 

fashion due to the absence of p electrons in the core. Also Ca, Sr, Ba and Ra in the 

second column have been left out because hybridization with a d band is important 

for these elements and can not be neglected.

In the next section we make use of the tight-binding model for cohesion 

developed in the previous chapters in an attempt to account for the structural 

trends observed amongst the following AB structure types: NaCl, CsCl, 

Zincblende, Wurtzite, NiAs and NaTl. These trends are shown in figure 6.5 (this 

figure is so positioned in the text in order to allow easier comparison with the 

theoretical ones that will will come later) where the Mendeleev number is used to 

identify each element in the compound. Notice that there is a discontinuity in both
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Table 6.1

1A IIB IIIB IVB VB VIB VIIB

L i(12) Be (77)

Na (11) Mg (73) A1(80) S i(85) P (90) S (94) C l(99)

K (10) Zn (76) Ga (81) Ge (84) A s(89) Se (93) B r (98)

Rb (9) Cd (75) In (79) Sn (83) Sb (88) Te (92) I (97)

Cs (8) Hg (74) T1(78) Pb (82) B i(87) Po (91) As (96)

Fr (7)

Table 6.1 sp-bonded elements to be considered in the experimental AB 

structural map. The Mendeleev number is shown in brackets.



axeB (between 12 and 14) because only the sp elements are shown. The map is 

symmetric with respect to the dashed line that crosses its diagonal. This figure is a 

simplified version of figure 2 in Pettifor, 1988 (op. cit.) in which 52 AB compounds 

are shown. We shall see that our model gives good account to the main trends 

observed in this map.
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§6.2 Setting up the Problem

The presence of an extra kind of atom in the structure introduces an 

extra set of parameters that need to be considered in the model. The relevant sp 

parameters are shown schematically in figure 6.1 for the two isolated A and B 

atoms. We write the center of gravity Cg of the atomic levels of a given atom as 

Cg = (es + 3ep)/4, which is related to the first moment by Cg =  /ij/4. The 

relative positions of the energy levels are given by esp = es -  ep, esp =  es -  ep 

and A = -  /x®. Here A is a positive parameter characterizing the difference in

the center of gravity between the two bands. As we shall see later the structured 

trends are not too sensitive to the difference esp -  esp which can then be taken as 

equal to zero. Therefore one is left with two parameters, namely A and the sp 

splitting esp. Since we want to study the relative stability of the compounds for 

every value of the sp band filling our theoretical structure maps will also be given 

in terms of the number of electrons on each site, i.e., NA and Nfi. These maps 

are then given in the three-dimensional space defined by N , N and esp and 

we will plot two-dimensional cross sections corresponding to particular values of 

esp. Therefore esp is fixed within a given map and the structural trends can be 

followed as a function of the number of electrons on each site for the different 

values of A.

A natural extension from the elemental case to the binary compounds 

case consists in comparing the energies of two given structures at fixed values of 

the on-site energies, i.e., AeJ = Ae® = 0. Since these diagonal Hamiltonian 

matrix elements are not determined in such a way to keep local charge neutrality 

(Sutton et al 1988) there may be charge flow from one site to another. In this case
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Figure 6.1
Relevant parameters for the study of the relative stability of sp binary 
systems. Only the differences are important here, namely the sp—split ting for 
each atom and the difference between the center of gravity of the atomic 
energy levels.



there is a classical charge transfer electrostatic contribution to the binding energy, 

namely the Madelung energy. This term was found by Majewski and Vogl (1986, 

1987) to be important only to the absolute value of the binding energy. Relative 

phase stability (along with other structural properties) was found not to be 

governed by the charge transfer energy which played a minor role even in the case 

of strongly ionic crystals such as NaCl. Moreover the success achieved by Pettifor 

and Podloucky on the structural separation of the pd-bonded AB compounds 

(1984, 1986) also had the underlying assumption of local charge neutrality. We 

therefore neglect the effect of the Madelung term in our relative energy 

calculations.

The difference in the binding (or cohesive) energy Eb is thus taken as 

the difference in the band energy plus a sum of pairwise interactions Erep- In 

accordance with the structural energy difference theorem two given structures are 

compared at the volumes obtained by fixing AErep = 0. With these 

considerations AEb is given by an expression like (4.10), namely,

Ae®p = 0
AEb =  A(Eband) /

A < p  =  °>

where AErep = 0 is implicit and Ae* = 0 means 6^(2) -  6^(1) = 

fp(2) —6p( 1) = 0 for structures (1) and (2) and similarly for Ae® p = 0. The 

difference in energy between the two structures is then characterized by the atomic 

energy level difference esp (in the case e*p = 6sP =eSp)> difference in the 

center of gravity of the A and B bands A and the total number of valence 

electrons per formula unit N =  NA + Nfi. For a given choice of esp and A the 

individual site occupancies N and N will be obtained from, the TB local
A  B

densities of states on the A and B sites in the NaCl lattice.
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The calculations are carried out in much the same way as we did for the 

elements. A cluster of the structure of interest is set up in the computer and the 

recursion method is used to generate a continued fraction which is terminated with 

either the square root termination technique (connected spectrum) or the Turchi, 

Ducastelle and Treglia's (single band gap) terminator. The band edges are 

determined respectively by Beer and Pettifor's (1984) and Beer (1986) 

optimization techniques described previously. Once the DOS has been calculated 

for each of the A and B sites the band energy can be plotted as a function of 

N = N + N_ and the most stable structure can then be identified for a particular 

value of N. In the N(NaCl)  versus N(NaCl)  plane a point is thus definedA B
which is labelled by the symbol corresponding to the most stable structure at N.

6.2.1 Structure Types

Let us discuss in more detail the AB structure types we consider in 

this work. General references are Wyckoff 1963, Pearson 1972 and Evans 1966. The 

structures are all shown in figures 6.2 to 6.4. In the well known NaCl (rocksalt) 

structure the atoms are arranged in a cubic unit cell which is shown in the top of 

figure 6.2. Each sodium (chlorine) atom is symmetrically surrounded by six 

chlorine (sodium) neighbours and all the lattice sites are equivalent in this 

arrangement. Also shown is the co-ordinating polyhedra with the first neighbours 

placed at the corners of a regular octahedron.

The CsCl structure shown at the middle of figure 6.2 is also cubic and 

again there is no privileged position in the lattice. Each Cs (Cl) atom is 

surrounded by eight Cl (Cs) neighbours disposed at the corners of a cube which
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makes the coordination eightfold. If all the atoms were of the same type this would 

be the bcc arrangement. The second neighbours (not shown in the figure) are only 

15% away which is too close to be neglected. Just as we did in the study of the 

elemental systems these second neighbours will be considered in the recursion 

calculations with the second to first sscr ratio taken as ss<r2/ss<7i = 0.33 (see 

chapter 4).

Another cubic structure, namely the zincblende arrangement, is shown 

at the bottom of figure 6.2. It has a fourfold or tetrahedral coordination with each 

atom being symmetrically surrounded by four neighbours of the other type 

disposed at the corners of a regular tetrahedron. As implied in the figure the atoms 

represented by the open circles (say, the Zn atoms) form a cubic fee arrangement. 

The cubic zincblende structure is then obtained by placing S atoms (solid circles), 

along the [111] direction of the cube, directly above each existing Zn atom, a 

quarter of the cube's edge distance away.

At the top of figure 6.3 the hexagonal unit cell of wurtzite is shown. 

The AB  layers characteristic of the hexagonal close packed arrangement are 

indicated along with the distance between alternate layers which is denoted, as 

usual, by c. Let us suppose that the open circles represent Zn atoms which form, 

as indicated in the figure, a hexagonal close packed arrangement. In wurtzite, a 

layer of sulfur atoms is inserted between each layer of zinc atoms, each sulphur 

atom being placed directly above each zinc atom in the layer below, at three 

quarters of the distance between consecutive layers. The c/a ratio is taken as the 

ideal one, namely, (8/3)^ 2  1.63. At the bottom of this figure the structure of 

cubic zincblende is shown again, for comparison with the wurtzite arrangement, 

this time with the z-^axis along the direction of the diagonal of the cube drawn at 

the bottom of figure 6.2. There are now three types of layers which form a cubic 

close packed arrangement, i.e., the fee structure. Zincblende is formed by inserting
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Figure 6.2
The unit cell of the cubic structures of NaCI (top), CsCI (middle) and 
zincblende (bottom). The coordination polyhedra is shown for NaCI and 
zincblende.
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Figure 6.3
The unit cell of the hexagonal structure of wurtzite (top). Zincblende is also 
shown along the [111] direction for comparison.
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NaTI
o Na (or Tl) 

•  Tl (or Na)

Figure 6.4
The hexagonal unit cell of NiAs (top) and the cubic unit cell of NaTI 
(bottom. Notice that NaTI is reduced to the bcc arrangement if the atoms are 
all of the same type.
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sulfur layers between the existing zinc layers in the same way as explained above 

for wurtzite. These two structures cam therefore be represented as a stacking 

sequence of hexagonal planes of atoms of the same type, i.e.,

AaBbCcAaBbCcAaBbCc (zincblende) 

AaBbAaBbAaBbAaBbAa (wurtzite)

amd in this fashion wurtzite can be seen as the hexagonad amalog of cubic 

zincblende.

The structure of NiAs shown at the top of figure 6.4 may be seen as 

the hexagonal analog of cubic rocksalt (see Froyen amd Cohen 1983). Noticing from 

figure 6.2 (top left) that the structure of NaCl consists of two interpenetrating fee 

lattices we can represent this arrangement by a stacking sequence of hexagonal 

planes, i.e.,

AcBaCbAcBaCbAcBaCb (NaCl-cubic)

whereas nickel arsenide may be represented by

AcBcAcBcAcBcAcBcAc (NiAs -  hexagonal)

Unlike all other arrangements considered here, the sites in NiAs are 

noninterchamgeable. The atom in the metallic site (solid circles in figure 6.4 -  top) 

has six neighbours of the opposite type and two of its own type (slightly further 

away) as indicated in the figure. On the other hand the metalloid site is 

surrounded by six neighbours equally far apart. In MgPo the metallic site is 

occupied by magnesium with the c/a ratio being given by 0.7077/0.4345 = 1.629 

which justifies our use of the ideal ratio for the nickel arsenide structure. The first 

neighbour distance (Ni-As) is given by a(2)7/2 and the second neighbour distance
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(Ni-Ni) is a(2/3)^. This gives a second to first neighbour ratio equal to 

2/3^ 2  1.15 which is exactly the same as for the bcc structure.

Finally at the bottom of figure 6.4 we show the cubic unit cell of NaTl. 

The atomic positions are interchangeable and we notice that, like the CsCl 

arrangement, if the atoms were of the same type this structure would be the bcc 

Bravais lattice.

Therefore there are three structures for which second neighbours have 

to be considered, namely, CsCl, NiAs and NaTl. The second to first neighbour ssv 

ratio taken here is the same as the one used in the study of the sp elements, i.e., 

ssc^/ss*^ = 0.33. An interpolation formula has been given by Andersen and 

Jepsen (1984 -  see also Andersen et al 1986) which allows the calculation of the 

hopping integrals and is dependent on both on the distance and on the 

Wigner-Seitz radius. Here we keep the simplest possible approach which consists in 

using the same ratio for all structures (notice that the second to first neighbour 

distance is the same for all three structures above).

6.2.2 Parameters Involved

In the study of the elements we took the simple cubic structure as the 

reference lattice. Here we take the equivalent to that structure, i.e., the NaCl 

arrangement, as the reference for the study of the AB compounds.. As we did for 

the elements the value of sso" for this structure is taken as —1 (the units are not 

relevant because we are only interested in relative energy calculations) and the 

ratio of the other hopping integrals with respect to ss<r is also kept the same, i.e.,
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Table 6.2

Table 6.2 Atomic values of the diagonal matrix elements showing

values of the sp-splitting and the positive parameter A for 

three AB compounds in the structures of wurtzite (ZnS), 

NiAs (MgPo) and CsCl (MgTl). The data comes from 

Harrison (1980).
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1,84
-1.40

S S < 7S p < 7  =

and

ppo- 3.24
-1.40

ss a

ppx = -0.33 ppcr

(6.1)

Whenever second neighbours have to be considered the ratio ss^/sso'j will also be 

the same as for the elements, i.e., 0.33 as explained above. For a given structure 

the ratio between the hopping integrals among the second neighbours is taken as 

the same as the corresponding ratio among the first neighbours, just as we did for 

the bcc lattice in the elemental case. Therefore the simple model used in the study 

of the elements is being naturally extended to the study the AB compounds.

Let us find out the range over which the parameters A and eSp are to 

be varied in order to reproduce the experimental trends. We will be rescaling the 

experimental quantities by dividing energy values by 12 |ss0 ^ q | =  12. Let us 

consider three compounds namely ZnS, MgPo and MgTl which represent the 

structures of wurtzite (coordination Z = 4), nickel arsenide (Z = 4, 6) and cesium 

chloride (Z = 12) respectively. From table 6.2 we see that the values of -esp/12 

and A/12 can be taken as ranging from 0 to 1 and 0 to 6 respectively. From 

now on when we refer to these parameters we will be meaning their rescaled values 

unless explicitly stated otherwise.

As explained above the atomic positions in the nickel arsenide structure 

are not interchangeable. We therefore have to specify to which site will be assigned 

the atomic entity with, say, the highest center of gravity. In MgPo the metallic 

(nickel) site is occupied by the magnesium atom whose band is situated above that 

for polonium (see table 6.2). Accordingly we choose to assign the highest band to 

the nickel site which is the one with the highest coordination.

20 0



»

§6.3 Results for hpp oc hbond

In this section we present the results derived for the structural trends

assuming that the repulsive pair potentials vary as the square of the bonding

energy. As we did for the elements we make use of the structural energy difference

theorem to prepare the volumes at which the structures are to be compared. This

amounts to fixing the same repulsive energy for all the structures. As summarized
2

in appendix III, when hpp a hbond, AErep = 0 corresponds to comparing the 

structures at the volumes determined by imposing invariance in their second 

moments of the local density of states.

The NaTl structure is not being included in this preliminary study. As 

for NiAs we present the results both with and without the second neighbours. 

There are only two second neighbours in this structure (as opposed to six in CsCl 

and NaTl) but their inclusion is important to prevent its stabilization over its 

cubic analog namely the NaCl structure as will be seen below. Only the results 

for esp = esp = 0 are shown, which is enough to motivate a change in the 

behaviour of the repulsive energy with bond length. The difference in the center of 

gravity of the bands for the A and B sites given by A was taken as 0, 1, 2 and 3. 

In order to avoid messing up the text with too many curves we show the densities 

of states in appendix XII where the relevant information about the data used to 

draw them is also given. The structure maps are shown in figures 6.6 (only first 

neighbours for NiAs) and 6.7 (second neighbours included in NiAs). The 

corresponding structural energy versus band filling curves are shown in figures 6.8 

and 6.9 respectively.
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Experimental AB structure map tor the six sp-bonded structures listed in the 
figure. The Mendeleev number is used in both axis. Notice that there is a 
discontinuity between 12 and 74.
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Figure 6.6
• 2 a BTheoretical structure map for hpp a  h b o n d -  Here esp =  e°p = 0 and, from

right to left, A = 0, 1, 2 and 3. Only first neighbours were taken for NiAs.
Structure energy versus band filling curves are shown in figure 6.8.
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Figure 6.7
The same as figure 6.6 but with the second neighbours included for NiAs. 
Structure energy versus band filling curves are shown in figure 6.9.
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Figure 6.8
A B  2Structure energy versus band filling curves (esp = esp = 0 and hpp a hbond) 

used for drawing the map in figure 6.6. Second neighbours were left out of the 
calculations for the NiAs structure. The reference is a cubic spline with nine 
knots, namely, 2, 4, 6, 8, 8, 8, 10, 12 and 14. The corresponding DOS are 
shown in appendix XI.
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Figure 6.9
The same as figure 6.8 but now with the second neighbours included in NiAs. 
These curves were used for drawing the map shown in figure 6.7.
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Since this is the first time that an AB structure map is shown we will 

take this opportunity to discuss some general features associated with them. In 

these maps the occupancy of site A (B) is taken as the horizontal (vertical) axis. 

The atom sitting at site A is taken as the one with the highest center of gravity 

(which in NiAs is the nickel site as explained above). Site B being occupied by 

the atom with the lowest band has always a higher occupancy than site A which 

explains why the A =  constant curves are situated in the upper part of the figure 

relative to the diagonal passing through the origin.

Since = £gp, A = 0 corresponds to having the same type of atoms 

occupying the A and B sites in the compound. This situation is described in the 

diagonal curve in the structure map and corresponds to the elemental case 

considered in chapter 4. As A departs from 0 the other curves are obtained thus 

describing the situation in which the A and B atomic sites are occupied by 

different types of atoms. The octets (N + N = 8) lie on the diagonal line (not 

shown in the maps) linking the upper left and bottom right corners of the structure 

maps. Typical examples are I—VII and II—VI compounds like CsCl (NA = 1 

and N_ = 7) and NaCl (N =  2 and N = 6) respectively. We see from the 

maps in figures 6.6 and 6.7 that the theoretical model places tetrahedrally 

coordinated structures in the positions where these compounds should be (see also

the experimental map in figure 6.5). This failure of the model can be amended by
2

making the repulsion harder, i.e., instead of assuming that hpp a hbond (which in 

Harrison's (1980) hbond a 1/R2 model corresponds to hpp a 1/R4) one can 

assume that hpp a 1/R5 (Majewski and Vogl 1986, 1987). This is done in the next 

section. A stronger repulsive potential is known to favour stability towards more 

closely packed arrangements as for example in the closed shell noble systems 

formed by Ne, Ar and the other noble gases (except He).

Before we leave this section we would like to remark on the differences
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between these first two theoretical maps due to the second neighbours in NiAs. 

From figure 6.6 (first neighbours only) one notices that a large NiAs stability 

region develops in the super-octets (NA + N0 > 8) region. This region does not 

exist in the experimental map shown in figure 6.6 and given its size it is not likely 

to disappear as esp changes. On the other hand in the sub-octets region 

(N + N < 8) a small NiAs stability area pointing to the upper left corner is 

developed in figure 6.7 (second neighbours included). This is more in accordance 

with the position of the sole representative of the nickel arsenide structure 

(namely, MgPo) in the experimental map. Therefore we will keep the second 

neighbours in this structure in all the forthcoming calculations.
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§6.4 Results for hpp « 1/R5.

In this section we set a harder repulsive potential in order to attempt to 

improve the results along the upper part of the octets line. Details on the 

implementation of hpp a 1/R5 are given in appendix III. In particular we notice 

that use of the structural energy difference theorem does not lead anymore to 

A/i2 = 0 ( see appendix III). Also done in this section is the inclusion of the sodium 

thallium structure in the calculations. As for CsCl and NiAs the second 

neighbours in NaTl will be taken into account with the ratio between the second 

to first neighbours being given by s s ^ /s s ^  = 0.33.

The resulting theoretical structure maps are shown in figures 6.10, 

(*tp =  e! P = 0). 6.11 ( 4 P = fsp = -0-5) and 6.12 (e*p =  e®p =  -1) with the 

corresponding structural energy versus band filling curves being shown in figures

6.13, 6.14 and 6.15 respectively. The number of exact moments kept for each case 

varies because Beer's (1985) procedure for the calculation of band and gap edges 

does not work, in general, for any number of levels as explained before. In 

appendices XIII and XIV we list the number of exact moments used for each case 

and present some densities of states. Not all DOS are shown for esp ^ esp because 

as the sp-splitting and A are increased more than one gap may develop in the 

spectrum and a reliable calculation for the band and gap edges would require, 

typically, more than fifteen exact levels of recursion (Turchi et al 1982 and 

chapter 2 this work). In such cases the continued fraction was terminated with 

Beer and Pettifor's optimized square root terminator (Beer and Pettifor 1984, Beer 

1985), with eleven exact levels of recursion, for the calculation of integrated 

quantities. As shown in chapter 2 (see also Turchi et al op. cit.) the resulting
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Figure 6.10
Theoretical structure map for hpp a 1/R5, 4 P = e?p = 0 and A = 0, 0.5, 
1, 2, 3, 4 and 10. Structure energy versus band filling curves and DOS are 
shown in figure 6.13 and appendix XII respectively.
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Figure 6.11
A BTheoretical structure map for hpp a 1/R5, fsp = eSp = -0.5 and A = 0,

0.5, 1, 2, 3 and 4. Structure energy versus band filling curves axe shown in 
figure 6.14. DOS are shown in appendix XIII.
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Figure 6.12

Theoretical structure map for hpp a 1/R5. £sp = £sp = an<? ^
3, 4, 5 and 6. Structure energy versus band filling curves are shown m ngure
6.15.
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integrated quantities are accurate enough to predict structural energy differences 

reliably.

Let us now compare the theoretical results with the experimental map 

in figure 6.5. Notice that this map is symmetric with respect to the dashed line 

across its diagonal. We will therefore only pay attention to that part of the map 

above that line.

The first thing to notice in the hpp a 1/R5 structure maps is the 

improvement obtained in the I—VII and II—VI regions which ctre now dominated 

by NiAs (the hexagonal analog of NaCl) and CsCl arrangements (see figure

6.10, fgp = 6gp = 0) as opposed to tetrahedrally coordinated structures as in the 
2

hpp oc hbond case. Notice the similarity between the NiAs and NaCl densities of 

states shown in appendix XIII. If NiAs were left out those regions would be 

occupied by the NaCl structure (see structural energy versus band filling curves 

in figure 6.13. The stability region obtained for NiAs is not in disagreement with 

the position of MgPo in the experimental map in figure 6.5.

The stability region of NaCl at the top left corner of the experimental 

map is reproduced well by the theoretical maps shown in figures 6.11 and 6.12 

(esp = esp = -0 .5  and -1 respectively). The small CsCl island there is also 

obtained with all three theoretical maps. Another region in the experimental map 

that is reproduced by the theoretical results is the one in its bottom left corner 

which is shared by NaTl and CsCl structures. In the upper right corner of the 

experimental map there is a region of NaCl stability which is very well defined in 

all three theoretical maps. Finally the islands of tetrahedrally coordinated stability 

in the experimental map is obtained in the theoretical maps in figures 6.10 and

6.11.
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BAND FILLING

Figure 6.13
Structure energy versus band filling curves
(hpp oc 1/R6 and 4 p =  c?p =  0) used for 
drawing the map in figure 6.10. The 
reference was taken as a cubic spline with 
knots being given by 2, 4, 6, 8, 8, 8, 10, 12 
and 14. See appendix XII for DOS more 
details like number of exact I moments 
taken for each structure.
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BAND FILLING
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Figure 6.14
Structure energy versus band filling curves
(hpp a 1/R5 and e£p=£?p=-0.5) used for 
drawing the map in figure 6.11. See 
appendix XIII for DOS. Eleven exact 
levels were kept in the continued fraction 
which was terminated with the square 
root terminator. The reference was a cubic 
spline with the following knots: 2, 4, 6, 8, 
8, 8, 10, 12 and 14.
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Figure 6.15
Structure energy (hppa l/R 6, esp=e*P= 7 l)  
versus band filling curves used tor drawing 
the map shown in figure 6.12. Eleven 
exact levels were used and the termination 
was done with the square root terminator. 
The reference was a cubic spline with 
knots 2, 2, 2, 8, 8, 8, 10,10 and 10.



A  BLet us show some results for e*p £ esp. In figure 6.16 we show a 

theoretical map corresponding to 6*p =  0 and esp = -1 with the structural 

energy versus band filling curves being shown in figure 6.17. In the nickel arsenide 

calculations A is the nickel site and B is the arsenic site just as what happens in 

MgPo (magnesium is in the nickel site, has a smaller sp-splitting than polonium 

and the center of gravity of its band is above that for polonium). We see that the 

stability regions defined by this map are very similar to those displayed by the 

map in figure 6.10, i.e.,the one for which Cgp = 6gp = 0 (apart from the fact that 

the CsCl stability in this new map extends a bit further down towards the 

bottom left corner of the figure and the NiAs stability region for low values of A 

has disappeared in favour of NaTl). Figure 6.18 presents the structural energy 

versus band filling curves for the case esp = 0 and esp = -0.25, with A = 0 

and A = 3. Comparison of these curves with the corresponding ones for 

esp = esp = 0 (figure 6.13) shows no major difference between them. We see no 

reason to believe that anything different will come out from other values of A. 

The regions of structure stability seem to be insensitive to this small (0.25) change 

in the scale of this parameter.
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Figure 6.16
Theoretical structure map for hpp a 1/R5, 6sP = 0, e?p = -1 and A = 0, 
1, 2, 3 and 4. Structure energy versus band filling curves axe shown in figure 
6.17.
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Figure 6.17
Structure energy versus band Filling curves (hpP a 1/R5, e£p = 0, e?p = -1} 
used for drawing the map shown in figure 6.16. Eleven exact levels were usea 
and the termination was done with the square root terminator. The reference 
was taken as a cubic spline with knots 2, 2, 2, 8, 8, 8, 10, 10 and 10.
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Figure 6.18
A BStructure energy (hpp a 1/R5, esp = 0, esp = -0.25) versus band filling 

curves with A = 3 and A = 4. Eleven exact levels were used and the 
termination was done with the square root terminator. The reference was 
taken as a cubic spline with knots 2, 2, 2, 8, 8, 8, 10, 10 and 10.
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§6.5 Conclusions

A harder repulsive potential was postulated in order that the model 

could be able to account satisfactorily for the structural trends observed amongst 

the AB compounds. Use of the structural energy difference theorem then provided 

the means to proceed to the comparison among six common AB structure types, 

namely NaCl, CsCl, ZnS (cubic), ZnS (hexagonal), NiAs and NaTl. The 

non-interchangeable sites in NiAs were set up as observed in MgPo. The results 

were then expressed in terms of structure maps drawn for different values of 

eSp = fsp- The model was shown to be able to reproduce the main trends observed 

in the experimental structure map drawn with the use of the Mendeleev number. 

However, different values of the sp-splitting had to be used to achieve this, leading 

to more than one different theoretical map. This result should be contrasted with 

the simplicity of the result obtained for the elements in which a single map was 

shown to be sufficient to reproduce the observed structural trends.
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Appendix I: Levels, Moments and Notation

The notation used to label the coefficients in the recursion method has not 

been uniform in the literature. Let us define the one we shall use throughout this 

work. The matrix element of the Green function relevant to the calculation of the 

local density of states will be written as

Goo(E) = -------------------------------  (I-l)
_
E -  a0 -  ----------------

E -  a, -  ...

and this is all one needs to specify the notation. The correspondence with the tight-

binding matrix elements in the chain model is as shown in figure 2.1. The first few
2

moments can therefore be written as (remember that /z0 = <uo|uo> = bo)

f t  = bo

ft = ft (1.2)

/ij =  aj +  b?

f t  =  ^  +  2 f tbi +  f tb? •

The relationship between number of coefficients and correspondent number of 

exact moments is then easily figured out. We list the coefficients inside squares 

and in the upper-left corner of each square we place the corresponding number of 

exact moments as if only the coefficients up to that particular one were known.
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Coefficients No. of 
Dairs

No . o f exact 
moments

No. of 
1evels

2 aao 1 b2 1 2 0

4 a i 3 b2 2 4 1

6 as 5 b? 3 6 2

8 a3 7 b! 4 8 3

• • • • •

We see that for N known pairs of coefficients, a corresponding number of 2N 

moments is implicitly known. Notice that the Oth moment has been included in 

this counting. We will also be counting the number of levels. The nth level is the 

set of atoms that can be reached with a minimum of n hops from the origin. 

Therefore with only one level one can compute (exactly) all the moments up to /*2 

and with the inclusion of self-tracing (on-site) paths also /*3 can be evaluated. 

The fourth moment is the first to require a path that reaches the 2nd level and 

w ith the reasoning above, two levels allows us to compute a ll  the moments 

up to /ig. In general, given n levels ail the moments up to /*2n+i can be computed 

exactly.

The continued fraction in the form of (1.1) is a rather lengthy kind of 

notation. In most situations we shall instead prefer to adopt the following compact 

form

N 2

r r ®i i a °fV ' —
i«0 L f t J

Ao +
0 ?

• a 2 Tl

A,

(1-3)

2 2 7



for a finite (truncated continued fraction. Therefore (1.1) can be written as

G00(E)
00

( - 1) t
i = 0

(1.4)

We will also be defining a terminator t(E) in the continued fraction by

bj
Goo “

E -  ao -
»>?

b2N
E -  aN -  t(E)

( 1.5 )

in which we see that N levels (i.e., 2N + 1 moments) are being used.

228



♦

Appendix II: Turchi's Termination

Let us summarize some of Turchi's results (Turchi et al 1982) for the 

spectrum with a single gap. We will try to keep the notation as close as possible to 

Turchi's original notation. We will be mostly interested in writing explicitly the 

recursion relations for the coefficients and commenting about them. Such relations 

were already obtained in Turchi's work but we will derive them here again because 

it is instructive and illuminating for the comments. It is also interesting to see 

them being obtained straight from the terminating function.

Let us write the continued fraction first:

bo
G0 0 = . . (II.1 )

E -  a0 |

’ • bS-i

E - a n - i  - gn(E)

Notice that Turchi's notation does not include bj in gn(E) as we do. Notice also 

that, from the way we are defining our continued fraction, bf^ in Turchi's 

notation corresponds to b\ in our notation. The band and gap edges are 

represented by Ei < E2 < E3 < E 4 and some useful parameters are defined by

W = 4 - ( E 4 - E i ) G = 4 - ( E , - E 2) (II.2a)

a =  - j - ( E 4 +  E1) g =  - 2 - ( E 3 +  E2) . (II.2b)

Turchi et al (1982) have provided two equivalent analytic forms for the 

terminating function gn(E). The starting point is an ordered tight-binding infinite 

linear chain in which the coefficients play the role of tight-binding matrix
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elements. The semi-infinite linear chain is then obtained by suppressing the site 

n—1 or eliminating the bond between n—1 and n. The terminating function 

generated with the starting point at site n was then found to be

E2 +  A,E +  A2 +  2b2 -  [X(E)]* 

2(E + A, + an_,)

2 b 2 (E  + A, + a „ )

E2 + A ,E  +  A 2 + 2 b 2 +  [X(E)]*

(II.3)

where

X(E) = (E -  E,) (E -  E2) (E -  E3) (E -  E4) (II.4a)

A, = -  (g + a) (II.4b)

A5 = g a - ^ - ( W 2 +  G2) . (II.4c)
2

The asymptotic coefficients were found to be bounded, i.e.,

a -  G < an ^ a + G

and
W - G  i h a i  W + G

(II.5a)

(II.5b)

The first of these inequalities can be obtained simply by imposing that the DOS 

be positive. Let's see this. First notice that Im gn(E) must be negative in order 

that the DOS be greater than zero. Notice also that the complex square root in 

the denominator of gn(E) must be dealt with care. It must be such that (see

Turchi et al op.cit.) J X(E) /  J |X(E) | takes the following values in the real 

energy axis
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+1 +i +1

Therefore, in order that Im gn(E) <  0 , we see that the numerator must be 

negative in the lower band and positive in the upper band. If we write

E +  A, + a„ = E -  [(g + a) -  a0J

we see that this condition is fulfilled if (g +  a) -  an is inside the gap, i.e.,

g - G < ( g  +  a ) - a n < g  + G

which can easily be seen to lead straight back to (II.5a). This relation was 

obtained only for the last known coefficient an. But since an is assumed to be in 

the asymptotic region (Turchi et al 1982) it should hold for all asymptotic 

coefficients. For instance one could always generate one more pair of coefficients 

using the recurrence relations (see below) and choose to terminate the continued 

fraction one step later. Then the inequalities would hold for the next pair. With 

this reasoning one sees that it must hold for all coefficients provided that they are 

in the asymptotic region. An important consequence is that if the computed gap 

width is too small compared with the true gap width, and if the last known 

coefficient an is close to an extreme, then one can end up with a negative part in 

the DOS. This can be seen as a warning signal that tells us that something went 

wrong in the computation of the gap edges. This is a healthy check for the gap 

edges particularly important if one is working with only a few number (around ten)
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levels. However it can always be switched of, if required, by simply imposing that 

Im gn(E) < 0 in the computing routines.

As mentioned, asymptotic coefficients are linked by recurrence 

relations. These can be obtained from the two forms given above for gn(E). From 

(II.3) one sees that

[e 2 +  A,E +  As +  2b2 ] 2  -  X(E) =

= 4b2 [E -  a n] [E -  an_J (II.6 )

where an = (g + a) -  an. Setting E =  an one gets

i

2bn =  "  [<^ +  Al“n +  As] * [XK ) J

= “  [an + A1an +  A2  ̂ ± [X(g + a “  an)] * (IL7)

Notice that in the tight-binding linear chain we have

bn

for the neighbourhood of site n. Starting from this site, if one chooses to go to the 

right one gets (an,b£+1) as one pair of asymptotic coefficients whereas the other 

direction gives (an,bj). In fact for a given value of an in (II.7), one sign 

provides, say, b j+1 and the other bj. We have the freedom to make the choice.
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Notice also that if (an,b2+1) satisfy (II.7) so does ( a ^ jb 2), i.e., any pair of 

neighbouring coefficients in the linear chain satisfies (II.7). If one denotes one such 

pair by (x,y) one gets

x̂2 + AjX + A2 + 2yj = X(g + a -  x) . (II.8 )

In what follows we write this equation more explicitly. For such we 

make use of the following equation which was introduced by Turchi et al (op.cit.)

i X(E) — 
E 00

E2 1 + A ^E + ... + At

and is used to define Ai, A2 , A3 and A4 . If we take the square of both sides we 

get

X (E )--------- ► E 4 + 2AtEs + (2A2 + A2)E2 + (2A3 +  2A1A2)E +
E -* 00

(2A4 + 2A1A3 + A2) . (II.9)

Now using (II.4a) one can compare equal powers of E to arrive to an expression for 

the A's. A1 and A2 have already been given in (II.4b) and (II.4c) 

respectively. The expressions for A3 and A4 were also obtained by Turchi et al 

(1982) and are given by

A3 =  ( g - a )  (W 2 -  G2) /  2

= - j - ( g - a )  (aW 2 -  gG2) - 4 "  [w 2 -  G2] 2

We can now write the right hand side of (II.8 ), i.e.,
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X(g+a-x) =  X(-Ai-x) as

Xf-Aj-x) = (-Ar x ) 4 + Sjf-A ^x ) 3 +  S2(-A 1- x) 2 +

in which the S's are the coefficients in (II.9). Collecting together the same 

powers of x gives

XC-A^x) = x4 + 2 A4x 3 + (2AS + Aj)x2 +

(-2 A 3 + 2A1A2)x + (2A4 + Al) (11.10)

The left-hand side of (II.8 ) can be expanded to give

4yx2 + (4A1y + 2A3)x + (4y2 + 4A2y -  2A4) = 0 (11.11)

which is of second order in either x or y, i.e.,

A A
x2 + (An + — “ )x + (A2+ y ----- —) = 0 (II.12a)

2 y 2 y
or

y2 + (A2 + Atx + x2)y + (AjX -  A4)/2 =  0 (II. 12b)

We can now write down the recurrence relations. For fixed y, say y = b2, we 

have x = an-i or x = an. Therefore

A3

an.i + a„ = - ( A , + — — ) (II.13a)
2 bJ

and
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a 4
*0 -1*1, = A 2 + bn --- (II. 13b)

which corresponds to

an-1 aD

bn

Similarly for fixed x, say an, we have either y = or y =  b„+1, i.e.,

bn + bn+l = “ (A2 + A.,an + a£) (II.14a)

K  b; . , =  (-^3an “ ^ 4 ) /2 ■ (II.14b)

which corresponds to

an

Equations (11.13) or (11.14) can be used to evaluate Ai, A2, A3 and 

A4 that enter into the terminating function, as explained in Turchi et al (1982). In 

(11.14) for example one can plot the left-hand-side as a function of aR. 

Provided one is in the asymptotic regime a straight line is produced which gives 

estimates for the A's. On the other hand if the band and gap edges are already
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known then equations (11.13) and (11.14) may be used for generating coefficients. 

Suppose that the last known pair of coefficients is (an,bj). Then one may use 

(II.14a) to compute b j+1 and then (II.13a) with n -» n+1, i.e.,

As
^  + an+1 = '(A1 + —TT")

to compute an+i and so on and so forth.

One may also want to check that exact and asymptotic coefficients 

match at the boundary. Then with the known value of an one evaluates the 

(asymptotic) values of b£ and b£ +1 -  with the freedom of choosing which one is 

which -  from (11.14) and compare the exact and asymptotic values of bj.
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Appendix III: Assumptions for the sp Model

In this appendix we summarize the assumptions for the sp model 

presented in chapters 4 (elements) and 6  (binary compounds).

III.l Elements

We consider first neighbours now and include second neighbours next. 

Let us write ssa as a function of R, i.e.,

sscr = aF (R ) (III.1)

where a  is a constant and the R dependence is carried out by F(R). If we assume 

that the repulsive pair potentials hpp are such that

2

hpp . .  p [p(R)j (III.2)

• » ' • • A Bwith P being a constant, then imposing EJep =  Erep for two given sites in 

structures A and B, i.e.,

2 2

/ t W R f ) ]  = /?  /3[f(R®)] (III.3)

we get
2 2

A  W ]  = A  M  • (ni-4)
A BHere (gA) stands for the number of first neighbours of the selected site of 

structure A (B). If one takes structure A as the reference one can use this
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equation to calculate ssa for structure B. Therefore equation (III.4) fixes the 

bond lengths -  or the volumes -  at which the two structures are to be compared. 

Notice that the second moment of the local density of states at a given site is given

by

f4 = / l  [ ( * ^ ) 2 +  ( W ) 2 +  (PP^ * ) 2 +  2 (ppxi)2]

= / !  (33^)2 1 + '(sE sfll2

( s s ^ )
+  . . .

where i = A or B. Therefore we see that as long as the ratios appearing in this 

expression are kept the same for both structures, i.e.,

A
BP <7 

A
S8<7

3P<7

SS

and so on, then equation (III.4) implies that the second moment of the local 

density of states is the same for structures A and B, i.e.,

A B
H  = / * 2 (III.5)

Notice that the form of F(R) was not important for this result. The model is 

fairly general the only assumption being given by equation (III.2). We will see 

below that the explicit form of F(R) has to be given if second neighbours are to 

be considered.

If the second neighbours are to be taken into account for, say, structure 

B then equation (III.3) reads
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A (III.6 )

in which we are assuming that (III.2) remains valid for the second neighbours with 

the same constant and the same R dependence. One is then led to the 

generalization of (III.4) namely

A 1 (III.7)

B Bin which we have made use of equation (III.l). If we call St = s s ^ / s s ^  for 

structure B we can write

SStf'.j =

1 1 / 2

A A Si
SSOr 4 (III.8 )

As before we can recast this result in terms of the 2 nd moments if we notice that 

ft® is written as

A

"
(sp^)i 12

1 + +  ...

.(sscOl .
+

, B/  B\ 2
+ / 2 (ss<7 2 )

“
( s p ^ ) a  I 2

1 + +  •••
. ( s S * ) ? .

If the ratios among the hopping integrals for the 2nd neighbours are kept the same 

as for the 1 st neighbours then
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A = |#?(^?)2 +/M )2
(spo-)l -I 2

1  +
.( 88<T) l .

+  . . .
-

A Band we see that (III.8 ) is the same as imposing /i1 =  /x2 as before. However we 

now have another parameter, namely that demands the knowledge of F(R)

for its calculation. In Andersen and Jepsen's (1984) scheme the hopping integrals 

decay exponentially with distance which gives 3t~ 1/3.

III.2 Binary Compounds

In order to get the NaCl stability region in the right place in the 

structure map a stronger R dependence for hpp has to be assumed which 

replaces the one given in equation (III.2). We take

hpp = P [f(R)]"/2 . (III.9)

We will keep this notation with general n but in the calculations (see text) it will 

be made equal to 5. Notice that in Harrison's scheme F(R) ~ 1/R2 and we have 

hpp ~ 1/R5 which was Majewski & Vogl's (1986, 1987) choice for the repulsive 

non-orthogonality corrections in their toted energy calculations.

Let's go straight to the second neighbours case. The generalization of 

equation (III.6 ) is

A  0[F(Rt)]”/2 = A  />[f (R?)]"/2 + A  ^[f(R?)]”/2 (III.10)

which leads to
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SS0-4 =

- i2 /n

A + / ; a n/2 ssA

and is no longer expressed simply in terms of the second moment of the density of 

states.
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Appendix IV: LCAO Solution for the Dimer (Pure s, Pure p and sp)

In this appendix we calculate the structural energy of a dimer, i.e., a 

homopolar molecule, using a linear combination of atomic orbitals (LCAO). This is 

a simple task but since the results are used elsewhere in this work we show here 

how they have been obtained. The general reference is Harrison (1980).

IV.1 One s-orbital per site

Let us calculate the recursion coefficients corresponding to this 

structure. We take the zero of energy as the energy of the s-orbital of the isolated 

atom, i.e., es = 0. There are two atoms, 1 and 2, and we choose the starting vector 

(see chapter 2) as an s-orbital on site 1, i.e., |s (1)>. The recurrence relation

writes

H|v0> =  bn|vn.,>  + an|v„> + bn+l|vn+1> (IV.l)

where |v_i>=0. Due to the orthonormality of the basis vectors |vn> this 

expression gives

=  <v„|H|vn> (IV.2 )

Choosing |vo> =  |s (1)>  the first iteration gives

H|v0> =  H |s(1)>

=  E < s <n»|s, , , >  |s"*>>
m

=  h « m 2 | s " “» >  ( I V .3 )
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where h = ssa. From (IV.2) and (IV.3) we have ao = 0. Since (IV .l) with n = 0, 

gives H|vq> = ao|vo> + bi|vi> =  bi|vi> we can write

or, assuming bj real,

which gives

and

b1 |v1> = h |s ‘2>> 

c v .m m v ^  = < s(2) |h h |s(2) > 

b2 = h2 

| v1> =  |s(2) >

(IV.4a) 

(IV.4b)

The second iteration gives

H|V1> = H |s(2) >

= h |s(1) > (IV.5)

and as before from (IV.2) and (IV.5) ai = 0. From (IV.l) now with n = l we have 

H|vi> =  bi|vo> + b2 |v2 >. Using (IV.5) for the left hand side and 

bi|vo> = h |s(1)> we see that b2 |v2 > = 0 or b2 = 0. This gives for the resolvent 

G(E) the following expression

G(E) = ------ 1-------  (IV.6 )
E — t L

E

i.e., a truncated continued fraction. This result was expected because the 

Hamiltonian being a 2x2 matrix could be tridiagonalized by a basis containing 

only two state vectors. Actually the Hamiltonian matrix is given by
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H =
0  ss<r

SSfT 0

(IV.7)

which is already tridiagonal with ao = aj = 0 and b\ = ss<7 and so the 

calculation above was unnecessary. It is however the simplest possible application 

of Haydock's recursion, but enough to illustrate the operational details of the 

method. Continuing from (IV.6 ) we see that it can be written as

G(E) = E
E2 -  h2

= 1 / 2  + 1 / 2

E + h E -  h

Therefore the "density of states" n(E) = (-2/x)lim rj-*0 Im G(E+ijy) where the 

factor 2  is due to spin degeneracy, is given by

n ( E )= * (E -h )+ * (E  + h) (IV.8 )

where we have used lim (x-a+iq) = -*£(x-a). The bonding and antibonding 

combinations (es -|ss<7| and es + |ss<r|, respectively, if we had taken es ^ 0 ) are 

very clear in this expression. The structural (or band) energy as a function of band 

filling N < 2 is then given by

f N(-|h|) for N <  1

k (-|h |) 4 - (N -l)|h | for N >  1
( I V .9 )
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IV.2 Pure p-orbitals case

As before we fix the atomic p-orbital to zero, i.e., ep = 0. We could 

follow the same lines as in the previous case, now in three parts one for each of the 

three possible orbitals px, Py and pz. Since there are no matrix elements of the 

Hamiltonian between any of these orbitals the results will be just like before with h 

representing the adequate matrix element. The Hamiltonian matrix is tridiagonal 

as before with bi =  pp<7, b2 = ba= ppx. The x-orbitals are degenerate sharing 

the same eigenvalue ppx. Choosing the molecular axis in the z-direction, the final 

result is

(IV. 10a)

(IV.10b)

Taken into account the spin degeneracy, the density of states becomes

n(E) =£(E  -  |ppcr|) + £(E  + |ppcr|)

+ £ (E -|P P x |) +6( E +  |ppx|)

+ S (E -  |ppx|) + £(E + |ppxj) (IV .ll)

which gives the structured energy (note that |ppx| < |pp«x|)

®band=

-N|ppcr| N < 1
“(N -l ) |ppx| -  |pp<r| 1 < N < 3
(N-3) |ppx| -  |ppcr| -  2|ppx| 3 < N < 5 (IV. 12)
(N -5) Ippoj - |pp<r| -  2 |ppx| + 2|ppx| 5 < N < 6
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IV.2 sp-orbitals case

In this case there are four valence states for each atom and s and p 

states are hybridized in the molecule. With the molecular axis in the z-direction 

the px and py orbitals are coupled only to themselves and form bonding 

(ep -  |ppx|) and antibonding (ep -  |ppx|) combinations just as the s-orbitals in 

the pure s case. The ^--states resulting from the s and pz combinations give a 4x4 

block that looks like

H
sp2

s s < r 0 S p (7

SS (J - s p t f 0

0 —S p  (7
e P

P P (7

Sp<7 0 PP *

(IV.13)

where the hybridization is carried out by spa- which connects the otherwise 

independent s and pz blocks. Diagonalizing this block is easy if we write bonding 

and antibonding combinations of s and pz orbitals. The bonding combinations 

are

'(|s( , ,> + |s(2>>) +  (|pz<1> > — |pz(2> >) 

,(|s<1’> + |3<2> > ) -  (|Pj (1)> - | Pz(2>>)
(IV.14a)

and the antibonding are

' ( | s '« > -!»<*>>)+ ( |pz(1>> +  |p*,2’>)

,-(|s(1,> - | s <2)>) +  (|pz(1)> + |pz(2)>)
. (IV .14b)
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Since are no matrix elements between these bonding and antibonding combinations 

(Harrison 1980), the matrix U whose columns are the coefficients of these 

combinations block diagonalizes Hsp through the transformation U_1HSp U. 

More specifically the matrix U is given by

1 1 1 - 1 '

1 1 - 1 1

1 - 1 1 1

- 1 1 1 1 ,

(IV. 15)

and its inverse is easily found to be U_1 =  U. Let us call and the 

bonding energies es -  |ss<r| and ep -  |pp<r| respectively, and Ea and Ea the 

antibonding energies es + |ss<r| and ep + |ppcr|. Despite pp<r > 0  we are using 

the absolute value so that no confusion may arise. It is then easy to see that

u -‘h (IV.16)

1
2

Eb+E^-2(sp<r) Eb-E£
0

Eb-E£ Eb+ E b+2(spo-)

Ej +E^ + 2 ( sp<r) —E*+Ej

- E ‘ +E^ e '+ E  j - 2 ( sp<r)

The resultant quadratic equations can then be solved and the final eigenvalues are
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of the molecular Hamiltonian are

Eb +  e £
i  spa2 +

E b - * £  "

<  + <
± -J sp o2 +

(IV. 17)

ep * PPT 

and

ep± ppT

where the last two sets correspond to bonding and antibonding combinations of the 

px and py orbitals. With these eigenvalues which give the position of the 

£-functions one can easily write an expression for the structural energy as we did in 

the pure cases.
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The LCAO molecular Hamiltonian of a homopolar molecule with s and 

d atomic orbitals per site is considered in this appendix. The 5 d-orbitals have the 

following symmetry (Pettifor 1983)

Appendix V: LCAO Solution for the Dimer (Pure d and sd)

Orbital Symmetry

1  xy

2  yz

3 zx (V.l)

4 (x2 -  y2)/2

5 (3z2 - r 2 )/(2-3*)

The procedure follows the same lines as in appendix IV for the sp-molecule. We 

start with d-orbitals only (the pure d case) and later allow sd hybridization to 

occur. The pure s case has already been considered in appendix IV.

IV.1 The pure d case

Taking the z^axis along the molecular bond the Hamiltonian matrix 

elements are of the form (Slater and Koster 1954): Hu = H44 =  dd£,

H22 = H33 =  ddx, and H55 = dd<r. There are no matrix elements between any 

other combination and therefore the molecular Hamiltonian is block diagonal with 

five independent 2 x2  blocks of the form

ed M
(V.2)
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where hi =  ddi and i =  o’, t ,  or 6. The 6  and t  blocks are seen to be doubly 

degenerate. The eigenvalues are then easily found to be Ei = ed * hi which 

immediately leads to the band energy (see appendix IV).

V.2 sd-orbitals case

There are now six valence states for each atom and a finite esd 

separation allows for sd hybridization. Fortunately only the <T-states are coupled, 

the S and ir states forming again 2x2 blocks as in the pure case. The coupled 

^-states form a 4x4 block as in the sp case, i.e.,

e s S S  (T 0 s d < r

S S < 7 e s s d f l r 0

0 s d < 7 C d d d ( r

s d < r 0 d d < 7 e d

(V.3)

where |dg> =  |3(z2 -  r2)>. In order to block diagonalise Hgd we write the
5

following bonding combinations (notice the difference in sign compared with the sp 

combinations)

( | s < 1 > >  +  | s < 2 > > )  - h  ( | d 5 ( 1 ) >  +  | d 5 ( 2 ) > )  

, ( | s < 1 ) >  +  | s « 2 > > ) -  ( | d 5 <1 > >  +  | d 6 < 2 > > )

(V.4a)

a n d  a n t i b o n d i n g  c o m b i n a t i o n s



(|b(1)> -  |s(2,> ) +  (|d 6 «, ’> - | d 6«2>>) 

(|s<1 » > - |s < 2» > ) -  (|dl ‘1 > > - |d » , , , > )
(V.4b)

As in the sp-case there are no matrix combinations between these combinations

and therefore the 4x4 block above is reduced to two 2x2 blocks through the

transformation U"1Hgd U where
5

1 1 1 1 ' 

1 1 - 1 - 1  

1 - 1  1 - 1  

1 - 1 - 1  1 '

(V.5)

It is easy to check that U"1 = U. As we did in appendix IV let us call Eb and 

Eb the bonding energies es -  | s s <j | and ea -  |dd<7| respectively, and Ea and Ea 

the antibonding energies es + |ss«r| and ea + |dd<r|. It is then easy to see that

u % > .u  = (V .6 )

E b + E b + 2 s P‘r Eb~E b 

E b—E b Eb+E£-2sp<r

\

0

El+Ea-28? 0, Ea—Ea

E '-E ^ E*+Ej + 2 sP(7

One can now solve the quadratic equations for the two blocks to get energy



eigenvalues with the same form as in the sp case, i.e.,

Eh +  E,
(sd<r) 2 + (V.7a)

s d
E„ + E„

(sd^ ) 2 + (V.7b)

ed ± ddx (doubly degenerate) (V.7c)

and

ed ± ddx (doubly degenerate) (V.7d)

where the last two sets correspond to bonding and antibonding combinations of the 

other orbitals. These molecular levels can now be filled with electrons and the band 

energy evaluation carried out as done in appendix IV for the sp molecule.

252



Appendix VI: LCAO Solution for the Linear Chain (Pure cases: b, p and d)

In this appendix we show how to calculate the structured energy of a 

linear chain for a single s-orbital on each site. The ID type of structure we 

consider is actually a zig-zag chain (see text) with bond angles equal to 90 degrees. 

Nevertheless since the interaction between s-states is angle independent these two 

structures are energetically equivalent if only s-orbitals are present. The 

generalization to the pure p and pure d cases is trivial and we indicate how this is 

done.

VI. 1 The pure s case

In the linear chain the equally spaced sites lie along a straight line like

• • • i  • • • • • • • • •
- 3 - 2 - 1 0 1 2 3

where we label 0 the central site of interest. Let us recall the basic recurrence 

relation

HlTn> =  bnlvn-1> +  aJ Tn> +  bn+ll%.1 > • (VI.l)

We shall be taking the zero of energy as the energy of the s-orbital of the isolated 

atom, i.e., es =  0  and the notation for a orbital on site n will be |s (n)>.

Starting with n =  0 (first iteration) equation (VI.l) becomes

H |v0>  =  ao|70>  +  (V I.2 )
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and we define the initial vector as

(VI.3)

which gives

H|v0> =  £  < s"”>|H|s(0>> |sln>>

and since

< s (m) |H|s{0) >
' h for m = 1  or m = - 1  

0  othe r w i se

where h = ss<r we have

H|v0> = h ( |s (-1)> + |s (1)>) . (VI.4)

Since an =  <vn|H|vn> we have, from (VI.3) and (VI.4), ao =  0 and from (V1.2)

H|v0> = (VI.5)

Therefore <vo|H*H|vo> =  b2 <vi|vi> = b\ and using (VI.4) assuming 

< s(n) |s(n)> = £ mn we get

b2 = 2 ‘h2 (VI.6 )

and from (VI.4) and (VI.5)
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|v,> =  — (|8 <-, »> +  |s«, »>) . (VI.7)
b i

For the next iteration (n = 1) we have to calculate H|vi>. This gives

H|v,> =  J _ ( h |s < - 2>> +  2h|s<0)> +  h|s<2>>) (VI.8 )
2 h

and therefore we get ai =  <vi|H |vi> =  0. But, from (VI. 1) with n =  1,

H l v ^ - b ^  =  b2 |v2> (VI.9)

and then, using (VI.8 ), (VI.6 ) and (VI.3) we have

b2 =  h2 (VI. 10)

and |v2> =  - i l L ( | s (-2 >> +  |s(2 )>  (VI.11)
bi V

A' third iteration is easily seen to give

b! =  h2 (VI.12)

and

|v3>  =  — - — (|3 (-S)> +  |s(S>> (VI. 13)
bib2b3

The symmetry of the problem then allows us to write



^  = h2 (VI.14)

and

lvn> =
hn

b1b2b 3 ‘ • 'bn
(|s<-n>> +  |s " » > ) (VI.15)

Thus the resolvent G(E) =  <vo|(E-H)“1 |vo> is

G(E) =
E - 2 h2

E - h2

E - h 2

(VI.16a)

1

E -  2t(E)
(VI. 16b)

where

t(E) = h2

E - h2

E - h2

h2

E -  t(E)

which gives gives a quadratic equation for t(E). Rejecting the plus solution on the 

basis that the resolvent preserve its analytic character of the form E"1 when 

E -♦ oo (see text) we have

‘(B) =
E - JE 2 -  4h2

2
(VI. 17)
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Therefore there is a band of allowed energies in the range -2|h| < E < 2|h| and 

inside this interval

*

G(E) = ~x -  
\ i h 2-  E2

Then local density of states n(E) = -(1 / t) Im G(E) is

n(E) = -§—  - -2|h| <  E <  2|h|
J4h2 -  E2

and the Fermi energy is determined by

N n(E)dE

== cos
EfW -]

+ 2

which gives

£f(N) = -2 |h |cos(^2 -)
2

The band energy is easily determined from

Eband = / Cf E n(E)d(E)
-2 |h |

= ̂ L\ 4h2 -  e2

or, using (VI.20),

(VI.18)

(VI.19)

(VI.20)
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E b an d (N ) =  r 4 [ h * sen ( ) (V I. 21)

which gives Eband as a function of band filling.

VI.2 The pure p case

When only p orbitals are present there are no matrix elements between 

states with the same symmetry, i.e., <i|H |j> = 0 if i£j, i,j = x, y or z. Therefore 

it is only a matter of starting with |vo> = |i> and follow the same steps as above 

for the pure s case. The local density of states is given by

n(E) = nx(E) + ny(E) + nz(E) (VI.22)

where

nx(B) = ny(E)

= -§- [4-pp^-E] (VI.23a)

and

nz(E) = [i -p p^ - e ] (VI.23b)

where we assumed that the chain is parallel to the z-axis.

VI.3 The pure d case

As in the previous case there are no matrix elements of the Hamiltonian 

between orbitals with different symmetry. Therefore
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n(E) =  S n ;(E ) (V I.24)

where i =  xy, yz, zx, (x2-y 2) and (3z2-r2) (see appendix V). With 

along the z-direction the partial densities of states are given by

nrv — n « 2

= — [ 4  -dd^2 -  e ]

nxz nzy

= 4 "  [4 -dd i» -E ]

and

V 2 r-2 3 z  * r
= [ 4  -ddcr2 -  e ]

_1
2

the chain

(VI.25a)

(VI. 25b) 

(VI.25c)
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Appendix VII: Experimental Tables

In order to compare the theoretical structural map with experimental 

results, we must use the same sort of scale in both diagrams. This amounts to 

determining esp/(12*ss(rgc) for all the elements whose stability behaviour is 

expected to be described by the model. In this expression ss<rgc is the value that 

this matrix element would take if the chemical element in question were 

crystalised in the simple cubic structure. In order to be consistent with the 

theoretical model we will calculate ss<rgc by assuming that the second moments 

are the same for both the real lattice and the simple cubic lattice. This gives

or

6 -ss<4  =  / • ss<&p

(VII.l)

where g  is the coordination of the real structure. The value of s s ^ p  is 

calculated from the observed equilibrium bond length d using Harrison's Rr2

(1980) scaling law, i.e.,

SS<7,exp -1.40 h 2

md2

* ,2  e 2 2a 
.1.40 _ 2 ------*------- 2.

me2 2aJ{ d2

If we use atomic units i.e., h =  1, Bohr's radius aH as the unit of length 

(aH = b2/me2 = lau) and the Rydberg as the unit of energy (lRyd =  e2/2aff) we 

get
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-2 .8 0 RydBS£Texp
(d/a„):

(VII.2)

where the equilibrium bond length d is measured in atomic units.

Expressions (VII.1) and (VII.2) allows us to determine eSp/12*ss<7sc 

from the equilibrium bond length and structure coordination. Another remark is 

about relativistic effects which are most important for the heavy elements and are 

known to increase sp separation (Christensen et al 1986). These enter into the esp 

calculation for the elements on the right hand side of the periodic table and are 

taken from Herman and Skillman (1968) tables. Those not listed by these tables 

are linearly interpolated within a given period. For example the increase in the sp 

separation for third period elements Ge and Se are 0.54 ev and 0.82 ev respectively. 

If we order the elements in this period from left to right as Ga, Ge, As, Se and Br 

a linear interpolation gives 0.4 ev, 0.68 ev and 0.96 ev for the sp-increase in Ga, As 

and Br respectively. We list below the relevant constants where only the sp 

elements with one of the structures considered in the theory are taken into 

account. In Groups IA and IIA only Li, Na, Be and Mg are taken because 

hybridization with d-bands may be too important for the other elements. The 

bond-lengths and stable structures are taken from Donohue (1974) and the es and 

ep values come from Harrison (1980). Li and Na ep values are not listed by 

Harrison and were therefore taken from Majewski and Vogl (1987). The value of 

ss<r for hydrogen was obtained from Slater (1963) table 4-2. Notice that our model 

seeks for a semi quantitative description of the relative structural trends and 

therefore the exact positioning of a given element in the structural map is not so 

important. In these tables Y =  [(eSp-6rel)/(12*ssirsc)] *10/x and the energy is 

given in electrons volts.

-2.80
d2

Ryd
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Group IA Group IIA

H Li Na Be Mg

—6s 13.6 5.48 5.13 8.17 6.86
—£n 3.4 1.04 0.53 4.15 2.99
J l 0.0 0.0 0.0 0.0 0.0
-SS<7sc 1.58 1.56 1.06 2.95 1.47
-Y 1.57 0.74 1.10 0.36 0.69

Table VII.1 -  Constants for groups IA and IIA used to draw the 
sp-structural map. Energies given in electron-volts.

Group IIIB Group VB

A1 T1 N

- e s 10.11 9.92 23.04
-fp 4.86 4.61 11.47
Crel 0.14 2.72 0.0
—SSCTsc 1.84 1.28 3.80
-Y 0.76 1.53 0.79

Table VII.2 -  Constants for groups IIIB and VB used in the 
sp-structural map. Energies given in electron-volts.

Group IVB

C Si Ge Sn Pb

-es 17.52 13.55 14.38 12.50 12.07
8.97 6.52 6.36 5.94 5.77

C r e l 0 . 0 0.14 0.54 1.09 3.13
—SS0BC 3.67 1.57 1.45 1.1 1.23
-Y 1.88 1.16 1.46 1.67 1.81

Table VII.3 -  Constants for group IVB used in the sp-structural map. 
Energies given in electron-volts.
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Group VIB

0 S Se Te Po

-es 29.14 20.80 20.32 17.11 16.21
-6p 14.13 10.27 9.53 8.59 8.19
C r e l 0 . 0 0.140 0.82 1.63 3.94

- S S ^ s c 3.29 1.46 1.09 0.77 0.94
-Y 1.16 1.74 2.31 2.65 2.59

Table VII.4 -  Constants for group VIB used in the sp-structural map. 
Energies given in electron-volts.

Group VIIB

F Cl Br I

- f s 35.80 24.63 23.35 19.42
“ ep 16.99 12.31 11.20 9.97
Crel 0 . 0 0.14 0.96 1.90
SS 0"<;c 1.96 1.11 0.84 0.59
-Y 2.15 2.39 2.91 3.22

Table VII.5 - Constants for group VIIB used in the sp-structural 
map. Energies given in electron-volts.
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In this appendix we show how to calculate the dimer levels 

approximated to a fixed number of exact moments of the density of states. We 

calculate the weights wj and ^-function positions Ai in the expansion

n (E )=  £  w ^ E - A i )  (VIII.l)

Appendix VIII: Dimer Approximated to a Fixed Number of Moments

from the tridiagonal hamiltonian suitably truncated to give only a fixed number of 

exact moments. The moments corresponding to n(E) are given by

na = f  E °n (E )dE

= £  wj XI (VIII.2)

where n =  0, 1, • • and the idea is to invert this linear system with respect of 

wi. Notice that both the moments and the £-function positions are known from 

the tridiagonal matrix. The former are given by /in =  Tr[ <&n ] and the later are 

the eigenvalues of the tridiagonal hamiltonian <AT.

VIII.l The solution for n =  4.

We consider the following system of equations
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A + B +  D +  G — (VIII.3a)

Aa +  Bb +  Dd +  Gg “ fH (VIII.3b)

Aa2 +  Bb2 +  Dd2 +  Gg2 = (VIII.3c)

Aa3 +  Bb3 +  Dd3 +  Gg3  = H (VIII.3d)

where the capital (lower) case play the role of the weights (eigenvalues).

Multiplying the first of these equations by -a, -a 2 and -a 8 

(VIII.3b), (VIII.3c) and (VIII.d) respectively we get

and adding to

(b -  a)B + (d -a )D  +  (g -a )G  =  /i, - a/i0 (VIII.4a)

(b2-a 2)B + (d2-a2)D +  (g2-a2)G =  P j - a 2/^ (VIII.4b)

(b3-a3)B + (d3-a 3)D +  (g3-a 3)G =  / ^ - a  3(i0 (VIII.4c)

We now multiply (VIII.4a) first by -(b+a) and then by -(b 2+ab+a2) and add 

to (VIII.4b) and (VIII.4c) respectively. After some algebraic manipulations we get

(d-a)(d-b)D +  (g-a)(g-b)G =  H  -  a %  -  [ ( ^ 0)(b+a)] (VIII.5a)

(d+b+a)(d-a)(d-b)D + (g+b+a)(g-b)(g-a)G

= H  “  a3/*o “  [ ( ^ ^ o ) ( b2+ ab+ a2)l • (VIII.5b)

Proceeding in the same manner we now eliminate D from these equations. The 

final result is

p3 -  (d+b+a )/*2 + (bd+ad+ab)/*, -  (abd)fi0

(g-b)(g-a)(g-d)
(VIII.6 )

and the expressions for the other weights can be obtained by symmetry. For 

example A is given by (VIII.6 ) with the substitution g a, i.e.,
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/*3 -  (d+b+g )/* 2 +  (bd+gd+gb)/i, -  (gbd) /» 0 

(a-b ) ( a - g ) (a—d)
(V III.7)

and similarly for B and D.

VIII.2 The dimer solution up to fa for esp = 0.

Up to /X3 the tridiagonal hamiltonian is the 2x2 matrix (see 

appendix I)

ao bi 

bi ai

Since we fix the center of the gravity of the band to zero (i.e., es + 3ep = 0) we 

have es = ep = 0. Therefore, since there are no triangular paths in the dimer 

structure all the odd moments varnish which implies that ai = 0 for all i. The 

eigenvalues are then given by ±bj and the weights are determined by

A + B =  /x0 

Aa + Bb = ^

which gives

and

A /*1 -  bMo 
A = -------------

a - b

/*1 "  Vo

(VIII.8 a)

(VIII.8 b)

(VIII.9a)

b -  a
(VIII.9b)



which is a special case of the solution for the system (VIII.3). Since fiQ = 1 and 

pi = ao =  0, a = -bi and b = bi we have A = B = 1/2. Taking into account 

spin degeneracy we see the weights on each 8-function are equal to one. In the sp 

dimer there are four partial densities of states (one s and three p states) with the 

following values for bi (notice that ^  =  aj -f bj = b4) :

s-partial DOS b4 = sscr2 + spo^ (VUI.lOa)

z-partial DOS bi = pp a2 + sptf2 (VIII. 10b)

x-partial DOS b? = pp*2 (VIII.10c)

y-partial DOS cr
—̂

 NS II %> (VIII. lOd)

all of which with unity weight. In these expressions the z-axis was defined in the 

direction of the molecular bond.

VIII.3 The dimer solution up to and /ig for eSp = 0.

The dimer approximate solution keeping only the moments up to /i4 is 

the same as if we kept the moments up to /ig. This is so because the 3x3 

tridiagonal hamiltonian, namely,

a0 bt 0
bi ai b2
0 b2 a2

( v m .i l )
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involves a2 and the knowledge of this parameter implies the knowledge of /ig. 

The eigenvalues of this matrix with ai =  0 are given by

= 0 (VIII.12a)

A2 =  -A3 =  [ b? +  hi ]* . (VIII.12b)

The weights can be calculated in the same spirit as in the previous case using the 

solution of (VIII.3) for n =  3 which gives

1 ----------------(VIII.13a)
2 b] + bl

= w3 =  . (VIII.13b)
2 b  ̂ + bj

These expressions have to be multiplied by two for spin degeneracy. Notice that 

b] is given by (VIII. 10) and h\ is determined from /i4 by noticing that

/*4 =  b 1 +  b 1 b 2

from the chain model with ai =  0. Also notice that in the case of the

non-hybridized x and y states = ppx4 and therefore b  ̂= 0 (see

(VIII.10c,d) from which b\ = ppx2) which implies that there is no occupancy of 

the E = 0 level of the x-orbitals.
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VIII.4 The dimer solution up to /i6 for esp =  0.

Up to we add b3 as part of our knowledge about the system and, 

in order to have all the elements of the resulting 4x4 hamiltonian, a3 is also 

assumed to be known. Since, however, 4x4 is the dimension of the biggest block 

(the sp-block) of the exact hamiltonian, we are now provided with the full 

information about the system. The solution at this level is therefore exact and is 

derived in detail in appendix V.
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Appendix IX: T he Double Band Gap

In this appendix we give some details on how to compute the 

terminating function for a density of states with two gaps in the spectra, which 

will be used elsewhere in this work. The basic reference is Turchi et al (1982) to 

which we refer the interested reader for details. The fully specification of the 

terminator gn(E) using Turchi's approach is not difficult but rather messy and 

this is the main reason why we devote this appendix to it. Another reason is that 

we do present a double band gap DOS, namely the one for a one dimensional 

zig-sag chain (see chapter 4).

Notice that the first step towards appending a terminator in the 

continued fraction is the determination of the band and gap edges, i.e., Ei with 

i = 2*q + 2, where q is the number of gaps in the DOS. This can be done from the 

continued fraction coefficients provided that a sufficient number of pairs is given so 

that the asymptotic regime is well established. About ten exact levels are enough 

to describe a single gap but, as expected, a higher number is required to describe 

two gaps (typically more than 15 -  Turchi et al 1982). Beer's approach can be 

extended to allow the computation of the edges in the double band gap cause by 

imposing that the Green's function diverges simultaneously at all edges. However 

we decided not to undertake this task in the present work because it could get too 

involved and was not really necessary for our purposes.

Let's draw the general lines towards computing a double band gap DOS 

as suggested by Turchi et al (1982). We first define a set of parameters Ai, 

i= l, 2, •••6, which are linked to the gap edges Ei, i= l, 2, •••6 in a nonlinear 

fashion (as in appendix II for the single band gap). The function in the terminator 

whose B q u a r e  root gives rise to the relevant cuts in the real axis is now generalized 

to
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2q ♦ 2

X(E) =  l I  (E -B j) (IX .1 )

where q = 2 is the number of gaps. The Ai's are defined via

Jx(i)
E

E3(l +  A4/E  + • • • + Am/E “ +  • • • )
00

SO that

X(E)
E -» 00

E «(l + A , /E +  ••• )(1  +  A1/ E +  ••• )

= E« ((1 +  2A,/E +  (2A2+A?)/E2 + (2A3+2A1Aj) /E 3 +

(2A4+2A1A3+A^)/E4 + (2A5+2A1A4+2AjA3)/E 8 +

(2A6+2A1A6+2AjA4+A3)/E 6 +  0 (1 /E 7)) .

On the other hand

X(E) =  (E -  E4) (E -  E2) • . .  (E -  E6)

=  E6 +  [-1 E jE 3 +  [ l  E ^ E 4 + [- l  E ^ e J e 3 +
i< j i<j<k

[ l  E .E ^ eJ e4 + [- l  EiEjEfcE.EjE5 
i<j<k<l i<j<k<l<m

( l  E;EjEkEjEmEn]E 6 . 
i<j<k<l<m<n
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Identification of terms of the same order in the last two expressions gives

A2 = ( l  EjEj -  A2 ) /  2 
i<j

A, =  ( - J  EiEjEk -2 A 1Aa) / 2  
i<j<k

A4 = ( l  E iEjEkE ,-2 A 1A3- A | ) / 2  (IX.2)
i<j<k<l

A, = ( -  l  E jE jE A B ,. -  2A,A4 -  2A2A3) /  2 
i<j<k<l<m

A, -  ( l  E j E j E k E ,^  -  2A,A6 -  2A2A3 -  A2) 
i<j<k<l<m<n

which give the A's as a function of the band and gap edges.

Let us know turn to the terminating function itself. The appropriate 

terminator when the last known pair of exact coefficients is (an,bn) is given by

2 a n(E )
Sn(E) = -----------------= —  (IX.3)

»7m (E) + \  X(E)

where

^ (E )  =  (E -  4 )  ■ ■ ■ (E -  ag) . (IX.4)

The parameters a j and are given as the solutions of a set of two coupled 

equations which here axe put together into a single quadratic equation, i.e.,
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whose roots are either o£ or c%. In order to specify this equation completely one
2

has to give Ai, A2 and bnvi. These can be calculated from recurrence relations,

i.e.,

a n  +  2 a n ( b n  +  b n * l )  +  a n . 1 b n * 1  +  a n - l b n  +  A / a n  +  b n  +  b n * l )  +  A 2 a n  +  A S =  0  

2 b n - 1 b n b n+ 1 +  A 4 < a n - 1 a n  “  b n )  “  A s ( a n -1  +  a n )  +  A 6 =  0  ( I X -6 )

x 2 +  (A 1 +  a j x  +  (aj; +  b 2 +  b2t1 +  A ,an +  A 2) =  0 (IX .5 )

which involve exact coefficients in the asymptotic region. We still have to specify 

the polynomial z/n_.,(E’) appearing in the terminating function. This is given by

V ,(E) = E3 + A,E2 + A2E +  A3 + 2b2(E + ^  +  a„ +  A,) (IX.7)

The general idea for the computation of gn(E) as suggested by Turchi 

et al (op.cit.) is then the following: given enough (exact) coefficients (ai,bi), 

i=0, 1,* • *n, to characterize the asymptotic regime one can use (IX.6) to calculate 

the A's and therefore the band edges by inverting (IX.2). Since bn+i also follows 

from (IX.6) one can go back to (IX.5) and determine and which leads to 

the knowledge of <*n(E) in (IX.4). Also, given the coefficients and the A's, 

y ^ E )  is completely specified by (IX.7). Thus the terminating function is fully 

known and can therefore be inserted into the corresponding level in the continued 

fraction (see appendix II) which then allows the computation of the DOS. 

Unfortunately the method is difficult to be carried out in practice, particularly for 

the determination of the edges, which is aggravated if not enough coefficients are 

available.

However, the difficulty here is the determination of the band and gap

273



edges, which is inaccurate when the number of coefficients available is not enough 

to characterize the asymptotic region. Thus, provided that the Ei's are known a 

priori from some other source, there is no need to have a completely settled 

asymptotic regime and sensible densities of states can be computed with, say, 10 to 

15 levels of exact recursion. In chapter 4 we will come across a linear structure 

with two gaps in the spectrum of energy. In order to exhibit the plot of the 

corresponding DOS we appealed to a very naive and simple method for 

determining the gap and band edges: we simply read them from the plot of the 

square root terminated DOS. From our experience with the recursion method we 

realized that the error involved in doing this is quite small and provided one is not 

particularly interested in a accurate determination of the band gaps, it makes no 

real difference either’ to the overall shape of the DOS or to the integrated 

quantities.

Assuming that the band and gaps edges are known one can go along the 

following steps towards computing a double band gap DOS. First determine the 

A's from (IX.2) and bn+j from the first of equations (IX.6), i.e.,

K*t =  -
A 4(an-1an -  bn) ~  A 5( an-i +  an) +  A 6

2b’ - ib ’
(IX.8)

Therefore a£ and a j can be calculated as the roots of (IX.5) which inserted in 

(IX.4) gives arn(E) for q=2, i.e.,

an(E) = ( E - a J ) ( E - a 2n) . (IX.9)

Since i/n_1(E) is totally specified by giving the Ei's and the A's, the 

terminating function gn(E) is therefore completely known.
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Appendix X: Fourth Moment for Zig-Zag type of Path

In this appendix we evaluate the fourth moment corresponding to the 

following path in the xy-plane

with

y

x

as a function of the bond angle 9, for the case of pure p symmetry. The general 

form of the 4th moment is

= \  < la |H |2 0 >  <2jS |H |3t> <3t |H |4&> < 4 « |H |la >  (X .l)

where a, ft 7  and S represent the orbitals px, py and pz.

Since the sites are occupied only by p orbitals, we must have ft = a 

and S = a, otherwise the first and/or the last matrix elements in this expression 

would be zero. This means that the orbitals at sites 1, 2 and 4 (this site happens to 

be the same as site 2 for this kind of path) must be the same. Therefore one can 

write (X.l) as

< l< * |H |2a» 2 < 2o |H |37>2 (X.2)



We will now write the unity vector R that points from site 3 to site 2 

in terms of the bond angle, ie R =  /i -f m] where 1 =  cos0, m =  sen#, and i 

and j are the unity vectors in the direction of the x-axis and the y-axis 

respectively. If we now use Slater and Koster relations (Slater and Koster, 1954) or 

either simply decompose the orbitals in the directions parallel and perpendicular to 

R we can write down the several terms appearing in (X.2). They are

|x > ________  |x>

S '  =  ppo2 / 2pp<r +  (1—/ 2)ppxJl x>

lx> |x>

= pp a2 ppcr -  lm ppjrl
|y >

|y>_________ |y>

|y >
=  pp*2 £m2pp<7 +  ( l-m 2)pp*J

|y>_______ |y>

=  pp*2 pp<r -  Im ppxj|x >

and

I z> I z>
--------- 7
| Z> ^  = p p *4
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Putting all together we get

/i4 =  p p ^ l^ p p o 2 +  (l-J^pp r* ! +

p p ^ ^ l - i ^ p p ^  +  F p p r 2! +  ppT4

which is the expression we have been looking for.

(X.3)
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Appendix XI: M om ents o f A E band at Constant Band F illing

In this appendix we show how to derive a relation between the moments 

of the band energy difference between two structures at constant band filling and 

the moments of the difference in the density of states (see Turchi and Ducastelle 

1985). One starts with the band energy for structure i which is written as

Ebj(x) = f  t f t( t)d t  . (XI.l)

and look for an expression for AEb(xi,X2 ) = Eb2(x2) ”  Eb-|(xi) under the

constraint that the band filling is the same for structures 1 and 2 at the Fermi 

energies xi and X2 respectively, i.e.,

f ^ P i i  Od* =  (XI.2)

The band energy difference can be written as

AEb(xi,x2)
-x 2 /*X1

J  t p2( t) dt -  J  t pA(t) dt

-X2 Xi
= /  t Ap(t) dt -  J  t Pi(t) dt

X2

where Ap =  p2 -  p\> To first order in Ax =  X2 -  xi the second integral can be 

approximated by -x2/91(x2)Ax which gives

y*X2AEb(x1,x2) s  x 2 / ? 1 ( x 2 ) A x  + j  t A/<t) dt (XI.3)



*

In the same way one can write an approximate expression for the charge 

conservation expressed in (XI.2), namely,

0 2  ft(x2)Ax + f  Ap(t) dt

which can be inserted in (XI.3) to give

X  X

AEb(x) = /  t Ap(t) dt -  x j* Ap(t) dt (XI.4)

where x = Xi or X2 . The first integral can be done by parts which leads to

x .e
AEb(x) = - f d t f  Af ^t )  dt

— y* de AN(e) (XI.5)

where AN(e) is the difference in the number of electrons at energy e. 

The moments of the band energy are defined by

-+0°
ft,(Eb) =  /  t» Eb(t) dt 

-00
and then

/•+0°
/*„(AEb) =  /  t» AEb(t) dt

“00

This expression can be integrated by parts giving
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/t„(AEb) =  —  f * “ n  t"*1 -^{A E b(t)]
n+1 -oo

1
n+1

dt tn+1 J  Ap(x) dx

where we used (XI.5) for AEb(t), i.e., we are evaluating /*n(AEb) 

band filling. After another integration by parts we get

------ 2 -------- f  tn*2 A/j(t) dt
(n+1) (n+2) -oo

or

^ (A B b) -1
(n+1) (n+2)

l*a(&P)

which is the expression we were looking for.

constant

(XI.6)
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Appendix XII: DOS for the AB Compounds (e*p =  e®p =  0)

In this appendix we show the densities of states for the AB compounds 

corresponding to the case when the pair potentials are proportional to the square of 

the hopping integrals (hpp a h£ond) described in chapter 6. Here the parameters 

are given by e*p = e®p =  0 and A =  0, 1, 2 and 3. Connected spectra are 

terminated with the square root terminator and for single band gap DOS the 

termination of Turchi et al is used. In both cases Beer and Pettifor (Beer 1985) 

optimized technique is used for the calculation of band edges. The band-widths 

(band-gaps) have been increased (decreased) by factors a and (see chapter 2). 

These parameters along with the number of exact moments are given below. 

Whenever the DOS for both sites are shown, the top one corresponds to the A 

site (highest band), the middle one to the B site (lowest band) and the bottom 

DOS is the DOS per formula unit (i.e., for both sites). In this case the integrated 

DOS is also shown, with the readings in the vertical axis having to be multiplied
A la

by a factor of eight. Notice that for esp = esp and A = 0 there is no needing to 

show the DOS for each site as they are equal (except for NiAs).
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Table XII. 1 (A  =  0)

NaCl ZnS
(cub)

ZnS
(hex)

NiAs
(1 s t)

NiAs
(2nd)

CsCl

2L 18 (18) 18 (18) 18 (18) 18 (18) 18 (18) 18 (18)
a 3(3) 3(3) 3(3) 3(3) 3(3) 3(3)

p 3(3) 3(3) 3(3) 3(3) 3(3) 3(3)

Data for figure XII.l. The number in brackets corresponds to the B site 
and 2L stands for the number of exact moments. For NiAs the parameters are 
shown both for first neighbours only (1st) and first plus second neighbours (2nd).

Table XII.2 (A = 1)

NaCl ZnS
(cub)

ZnS
(hex)

NiAs
(1 s t)

NiAs 
(2nd)

CsCl

2L 20 (20) 18 (18) 18 (18) 18 (18) 18 (20) 18 (18)
a 3(3) 3(3) 3(3) 2.9 (3) 3(3) 3(3)
P 3(3) 3(3) 3(3) 3 (2.9) 3(3) 3(3)

Data for figure XII.2. Same remarks as for table XII.1.

Table XII.3 (A =  2)

NaCl ZnS
(cub)

ZnS
(hex)

NiAs
(1 s t)

NiAs 
(2nd)

CsCl

2L 20(20) 18 (18) 18 (18) 18 (18) 18 (20) 20(20)
a 3 (1.8) 3(3) 3(3) 1.0 (3) 3(3) 3(3)
P 1.8 (3) 3(3) 3(3) 3 (1.0) 3(3) 3(3)

Data for figure XII.3. Same remarks as for table XII.l.
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Table X II.4 (A  =  3)

NaCl ZnS
(cub)

ZnS
(hex)

NiAs
( 1 s t )

NiAs 
(2nd)

CsCl

2L 20(20) 18 (18) 18 (18) 18 (18) 18 (20) 16 (20)
a 3 (1.5) 3(3) 3(3) 0.8 (3) 3(3) 3(3)
e 1.5 (3) 3(3) 3(3) 3 (0.8) 3(3) 3(3)

Data for figure XII.4. Same remarks as for table XII.1.
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Figure XII. 1

Densities of states for the AB compounds with 
6$p — €gp — 0) A = 0 and hpp oc hbood* Nickel 
arsenide is shown both with and without second 
neighbours in the hamiltonian. The integrated DOS 
(dashed line) has to be read with the vertical scale 
multiplied by 8. See table XII. 1 in appendix XII for 
more details on the data used to draw these curves.
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Figure X II.2 (continue)
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Figure XII.2 (continuation )

Densities of states for the AB compounds with 
Csp = fsp =  0, A = 1 and hpp a htond* Nickel 
axsenide is shown both with and without second 
neighbours in the hamiltonian. The integrated DOS 
(dashed line) has to be read with the vertical scale 
multiplied by 8. See table XII.2 in appendix XII for 
more details data used to draw these curves.
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NiAs (1st + 2nd) CsCl

Figure X II.3 (continue)



3.0
ZnS (cub) ZnS ( hex)

Figure XII.3 (continuation )

Densities of states for the AB compounds with 
6gp — 6jp — 0) A =  2 and hpp ® hfoond* Nickel 
arsenide is shown both with and without second 
neighbours in the hamiltonian. The integrated DOS 
(dashed line) has to be read with the vertical scale 
multiplied by 8. See table XII.3 in appendix XII for 
more details on the data used to draw these curves.
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NaCI NiAs (1s t) NiAs (1sU2nd) CsCI

F ig u re  X II .4  (c o n t in u e )
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ZnS (cub) ZnS (hex)

Figure XII.4 (continuation )

Densities of states for the AB compounds with 
*sp =  esp =  0, A  =  3 and hpp a hbond- Nickel 
arsenide is shown both with and without second 
neighbours in the hamiltonian. The integrated DOS 
(dashed line) has to be read with the vertical scale 
multiplied by 8. See table XII.4 in appendix XII for 
more details on the data used to draw these curves.
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Appendix XIII: DOS for the AB Compounds ( egp =  egp =  -0.5)

In this appendix we show densities of states for the AB compounds 

corresponding to the case when the pair potentiads are proportional to the inverse 

of the bond-length to the fifth power, i.e., hpp a 1/R,5, described in chapter 6. 

Here the parameters are given by egp = egp = 0 and A =  0, 0.5, 1, 2 and 3. 

Connected spectra are terminated with the square root terminator and for single 

band gap DOS the termination of Turchi et al is used. In both cases Beer and 

Pettifor (Beer 1985) optimized technique is used for the calculation of band edges. 

The band-widths (band-gaps) have been increased (decreased) by factors a  and 

ft (see chapter 2). The values of these parameters along with the number of exact 

moments are given below. As explained in appendix XII whenever the DOS for 

both sites are shown, the top one corresponds to the A site (highest band), the 

middle one to the B site (lowest band) and the bottom DOS is the DOS per 

formula unit (i.e., for both sites). In this case the integrated DOS is also shown, 

with the readings in the vertical axis having to be multiplied by a factor of eight. 

Notice that for esp =  egp and A =  0 there is no needing to show the DOS for 

each site as they are equal (except for NiAs).
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Table X III.l (A  =  0)

NaCl ZnS
(cub)

ZnS
(hex)

NiAs CsCl NaTl

2L 18 (18) 21 (21) 21 (21) 20 (20) 20(20) 20(20)
a 3(3) 3(3) 3(3) 3(3) 3(3) 3(3)

0 3(3) 3(3) 3(3) 3(3) 3(3) 3(3)

Data for figure XIII.l corresponding to the A and B sites in the AB 
compound. Here 2L stands for the number of exact moments and the number in 
brackets corresponds to the B site.

Table XIII.2 (A = 0.5)

NaCl ZnS
(cub)

ZnS
(hex)

NiAs CsCl NaTl

2L 22(22) 22 (22) 22(22) 22 (22) 22(22) 20(20)
a 3(3) 3(3) 3(3) 3(3) 3(3) 3(3)
0 3(3) 3(3) 3(3) 3(3) 3(3) 3(3)

Data for figure XIII.2 corresponding to the A and B sites in the AB 
compound. Here 2L stands for the number of exact moments and the number in 
brackets corresponds to the B site.
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Table XIII.3 (A  =  1)

NaCl ZnS
(cub)

ZnS
(hex)

NiAs CsCl NaTl

2L 20(20) 22(22) 22 (22) 18 (20) 20(20) 20(20)
or 3(3) 3(3) 3(3) 3(3) 3(3) 3(3)

3(3) 3(3) 3(3) 3(3) 3(3) 3(3)

Data for figure XIII.3 corresponding to the A and B sites in the AB 
compound. Here 2L stands for the number of exact moments and the number in 
brackets corresponds to the B site.

Table XIII.4 (A = 2)

NaCl ZnS
(cub)

ZnS
(hex)

NiAs CsCl NaTl

2L 20(20) 22(22) 22(22) 22(20) 22 (20) 20(20)
a 3(1.5) 3(3) 3(3) 3(3) 3(3) 3(3)

0 1.5 (3) 3(3) 3(3) 1.5 (1.5) 3(3) 3(3)

Data for figure XIII.4 corresponding to the A and B sites in the AB 
compound. Here 2L stands for the number of exact moments and the number in 
brackets corresponds to the B site.
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Table XIII.5 (A = 3)

NaCl ZnS
(cub)

ZnS
(hex)

NiAs CsCl NaTl

2L 20 (20) 22(22) 22 (22) 22(20) 22(20) 22(22)
a 3 (1.5) 3(3) 3(3) 3(3) 3(3) 3(3)

p 1.5 (3) 3(3) 3(3) 3(3) 3(3) 3(3)

Data for figure XIII.5 corresponding to the A and B sites in the AB 
compound. Here 2L stands for the number of exact moments and the number in 
brackets corresponds to the B site.



DE
N

SI
TY

 O
F 

ST
AT

ES

t



NaCI NiAs

Figure XIII.2 (continue)
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Figure XIII.2 (continuation)

Densities of states for the AB compounds with 
fgp =  e?p = 0, A = 0.5 and hpp a 1/R5. The 
integrated DOS (dashed line) has to be read with the 
vertical scale multiplied by 8. See table XIII.2 in 
appendix XIII for more details on the data used for these
curves.
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Figure XIII.3 (continue)
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CsCl NaTI

Figure XIII.3 (continuation)

Densities of states for the AB compounds with 
fsp =  ^sp =  0, A =  1 and hpp a 1/R6. The integrated 
DOS (dashed line) has to be read with the vertical scale 
multiplied by 8. See table XIII.3 in appendix XIII for 
more details on the data used for these curves.
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i  Figure XIII.4 (continuation)

Densities of states for the AB compounds with 
tsP = cjp = 0, A = 2 and hpp « 1/R5. The integrated 
DOS (dashed line) has to be read with the vertical scale 
multiplied by 8. See table XIII.4 in appendix XIII for 
more details on the data used for these curves.
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NaCI NiAs

Figure X III.5 (continue)
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Figure XIII.5 (continuation )

Densities of states for the AB compounds with 
4 p  = fsp = 0, A =  3 and hpp oc 1/R5. The integrated 
DOS (dashed line) has to be read with the vertical scale 
multiplied by 8. See table XIII.5 in appendix XIII for 
more details on the data used for these curves.



Appendix XIV: DOS for the AB Compounds (egp =  e®p = - l )

In this appendix we show densities of states for the AB compounds 

corresponding to the case hpp a 1/R5 described in chapter 6. The sp-splittings are 

given by 6gp =  6gp = -0.5 and only the cases A = 0 and A = 0.5 are shown. 

This is because as A gets larger more than one gap starts to form in the DOS. 

The optimized square root termination of Beer and Pettifor (Beer 1985) was used 

and the band-widths have been increased by a factor a  = 3 (see chapter 2). The 

number of exact moments kept in the continued fraction was equal to 22 for all six 

structures. As explained in appendix XII whenever the DOS for both sites are 

shown, the top one corresponds to the A site (highest band), the middle one to 

the B site (lowest band) and the bottom DOS is the DOS per formula unit (i.e., 

for both sites). In this case the integrated DOS is also shown, with the readings in 

the vertical axis having to be multiplied by a factor of eight. Notice that for 

fsp = esp and A = 0 there is no needing to show the DOS for each site as they 

are equal (except for NiAs).
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Figure XIV.2. (continuation)

Densities of states (22 exact moments) for the AB 
compounds with esp = esp = -0.5, A = 0.5 and 
hpp a 1/R5. The integrated DOS (dashed line) has to be 
read with the vertical scale multiplied by 8. See 
appendix XIV for more details.



Appendix XV: R esults for the Transition M etals

In this appendix we report some results on the structural stability of the 

transition metcil elements, obtained with the application of the theoretical model 

presented in chapter 3. The computation is done in the same way as for the sp 

elements, namely, using the recursion method for the calculation of the densities of 

states and with the different structures being compared at the volumes prepared in 

accordance with the structural energy difference theorem (see chapter 3). The 

number of exact moments kept in the calculations varies between 16 and 20 and 

the continued fractions were terminated with either the square root terminator 

(connected spectrum) or the termination of Turchi et al 1982 (single band gap). 

The calculations are exact for the dimer as shown in appendix V.

XV. 1 Hopping integrals

In the pure d case, there are five d-orbitals, one for each value of the magnetic 

quantum number m. Within the atomic sphere approximation of Andersen (1973) 

canonical d bands may be obtained which are dependent neither on the particular 

transition metal nor on the lattice constant. The hopping integrals then obey the 

following ratio

dd<r: d d x : ddS :: -6 : 4 : -1 . (XV.l)

If sd hybridization is introduced the ratio ddir/ss#’ has to be known in order to 

perform the calculations. If one takes Harrison's (1980) expression, namely,
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ss0 - =  (-2.8/R2)*13.6 ev along with Andersen's (op. cit.) canonical one, i.e., 

dd<r = -6(4/R)5 ev (see Pettifor and Podloucky 1986) one can write

dd<7 _  -6(46) 1
ss<r (-2.8)13.6 R8

(XV.2)

In order to evaluate this ratio we take the bond length R as calculated from the 

Wigner-Seitz radius of fee Molybdenum, i.e., S = 2.92 atomic units. In terms of 

the nearest neighbour distance R, the volume of the fee primitive cell writes as 

Qfcc = (2*/2)R3. Therefore since Qicc = (4/3)x S3 we can evaluate the ratio in 

(XV.2) which gives

d d < 7  

S  S  <7

1.10 (XV.3)

Notice that had we evaluated this ratio using Harrison's expression for dd<7, 

namely dd<7 = (-32.4 r*j/R5) Ry (rd = 1.20/0.529 au), we would had got 

ddvfssa  = 0.92 which is very close to (XV.3).

XV.1 Results

Let us first present the results for the case when there is no

hybridization with an s band (i.e., the pure d case). The repulsive pair potentials
2

are chosen to depend on the bond length as hpp a hbond and since hbond « 1/R6 

we have hpp a 1/R10. We take dd<r =  -1.10 (the units are arbitrary since only 

relative stability is of interest) and use (XV.1) to evaluate ddx and ddS. The 

same ten structures considered in the study of the sp elements are taken into
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account here. For the bcc Bravais lattice the second neighbours are included with 

ss^/sso-i = 1/3 for the second to First neighbours hopping integrals ratio, just as 

we did for the sp elements. The structural energy against band filling curves are 

shown in figure XV.1 (top). We see that the predicted trend along the transition 

metal series is

f c c - h c p - f c c - b c c - h . c o m b - d i a ( h e x ) - d i a ( c u b ) - z . z a g - c l i m e r - B . c u b i c

where the honey comb stability starts for the band filling N around five. The 

stability of such open structures for N > 5 is unexpected because the transition 

metal structures are known to be close packed.

In an attempt to account for this uncomfortable result we have included

a hybridization with an s-band in which saa was taken as —1. Then we evaluated
1dd<7 using the ratio in (XV.3) and took sd<r as sd<7-= (ss^ d d ^ )7. The other 

hopping integrals were evaluated using (XV.l). The results for the structural 

energy are shown in figures XV.l (bottom) and XV.2 where the sd-splitting is 

given by esd =  12*tan(nx/10) for n =  0, -2 and -3 (this is the same kind of 

scale we used for esp). We see no improvements at all, with the close packed 

stability region being even reduced in the cases n = -2 and -3.

XV.3 Results for hpp « h j ^ d

Similarly as we did for the sp AB compounds we tried 

repulsive potential for the transition metals in an attempt to stabilize

a harder 

the close

310



packed arrangements with respect to the open ones. Notice that in the sp case we 

took hpp « h^ond which, due to the 1/R2 dependence of the sp bond integrals 

(Harrison 1980), led to hpp a 1/R5. Here since the d hopping integrals vary as 

1/R5 we have hpp a 1 /R 12*5. The results are shown in figure XV.3 for the pure d 

and e8d =  0 cases. The structures considered are indicated in the figure. We see a 

great improvement in these results with the close packed arrangements being more 

stable than the diamond structure for all values of the band filling. However, at 

about N = 8 and above the simple cubic structure takes over spoiling the result.

XV.4 Conclusion

The use of a harder repulsive potential improved the results by pushing 

up the cubic diamond stability curve relatively to the close packed ones. However 

the simple cubic lattice is still found as the most stable structure at the end of the 

series (figure XV.3). We have no major clue for these unexpected predictions as 

tight-binding calculations should give better results here than for the sp case, since 

the d-orbitals are more localized than these. Investigations towards understanding 

the source of these poor results and possible improvements are currently being 

carried out.
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Figure XV. 1

Structural energy versus band filling (hnp oc 1/R10) for the pure d case (top) 
and esd = 0 (bottom). Andersen's (19/5) canonical values are used for the 
hopping integrals, i.e., dd(7:ddT;da&:-6:4:-l and ss^ is fixed as for
Molybdenum.
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Figure XV.2

Structural energy versus band filling for the sd case. Here 
fsd = -12*tan(nx/10) with n =  2 and 3 and hpp a 1/R 10.
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BAND FILLING

Figure XV.3

Structural energy versus band filling curves for the pure d (a) and esd =  0 
cases (b). In these cases hpp a hb{nd which leads to hpp a 1/R12*5.
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