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ABSTRACT

Deformation processes in materials are largely controlled by defects of the 
crystalline structure. Consequently, applications of quantum mechanics to systems 
of pertinence to mechanical behaviour are confronted with complex structures 
at the limits of the capabilities of current computational techniques, forcing a 
compromise between faithfulness of the structural representation and the accuracy 
with which the electronic structure is determined.

This Thesis concerns the development and application of a new method for de
termining the self-consistent electronic structure of planar defects in metals which 
goes beyond current techniques. Adopting the language of multiple-scattering 
theory, the scattering properties of isolated atomic layers are determined by a 
Fourier transform, and subsequently combined using a recursive algorithm to as
semble the full structure of the solid. This approach alleviates the demands of 
three-dimensional periodicity imposed by traditional techniques, which force the 
adoption of artificial boundary conditions, leading to an elegant and computa
tionally efficient solution of the one-electron properties of the solid. In the case 
of structures where atomic planes are closely spaced, a combined plane-wave / 
partial-wave solution to the layer assembly algorithm is developed.

Applications are presented which demonstrate the capabilities of the method. 
These include a study of stacking faults in face-centred metals, exploring the mi
croscopic origins of the stacking fault energy, and with good agreement found 
between calculated and experimental energies. The modifying effects of small 
concentrations of impurities are also studied. The first self-consistent electronic 
structure calculation of an isolated transition metal is presented, with a study of 
the nickel E5 (210) / [100] tilt boundary. Sulfur is known to induce intergran
ular brittleness in nickel, and we study the effects of substitutional sulfur in the 
grain-boundary geometry. On the basis of the local density of states a possible 
mechanism is proposed.
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FIGURE CAPTIONS

Figure 1.1 T  point densities of states for various models of an intrinsic stacking 
fault in copper calculated with the LKKR technique. The density of states is 
evaluated about the atoms shaded in the diagrams, and structures included are an 
isolated fault, and supercells consisting of 5, 8 and 11 layers, for which adjacent 
faults are illustrated below.
Figure 2.1 Energy dependence of the atomic t-matrices for aluminium, nickel 
and niobium.
Figure 2.2 Schematic illustration of the assignment of atoms to plane, planes to 
layers and the left and right half spaces.
Figure 2.3 Illustration of the embedded layer problem.
Figure 2.4 Pictorial representation of the layer transmission and reflection matri
ces of equation (2.8.5), and those resulting from the composite scattering system 
of layer 1 + 2 . In all cases the origins of the expansions of the incident and 
scattered plane wave are indicated by the dark circle.
Figure 2.5 The structure discussed in the text which does not benefit from the 
partitioning of more planes to each layer.
Figure 2.6 The structure discussed in the text which does benefit from the parti
tioning of additional planes to each layer, due to the varying inter-layer separation, 
a). Each layer consisting of a single plane, and the shortest scattering path treated 
in the plane wave basis, b). Two planes assigned to each layer, and the resulting 
shortest scattering path to be treated in the plane wave basis.
Figure 2.7a). The embedded layer problem for the close-spaced layer case. b). 
The location of the origins of the half spaces (indicated by black circles) for the 
close-spaced layer case.
Figure 2.8 Schematic representation of the four right half space reflection matrices 
in the close-spaced layer problem. The black circles indicate the position of the 
origins, solid arrows incident waves and dashed arrows reflected waves. The plane 
wave basis is used for scattering paths more distant than one layer, so is positioned
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Figure 2.9 Schematic illustration of the 16 matrices entering the layer “tripling” 
algorithm. See caption to figure 2.8 for more details.
Figure 2.10 Possible partitioning of close-spaced layers to optimise the two basis 
sets. a), one ,b). two and c). three atomic planes assigned to each layer.
Figure 3.1 Irreducible Brillouin zone and sampling sets for the square (upper) 
and hexagonal (lower) two dimensional lattices. The high symmetry points are 
labeled in the hexagonal case.
Figure 3.2 Free electron density of states p(E, k||) evaluated at E=0.5Ha projected 
onto the two dimensional momentum space kx,ky > 0. The data are truncated; 
f?(E,k||) = min(g(E,k||),0.05).
Figure 3.3 Schematic illustration of the form of the energy integral in equation 
(3.3.3), and the quantities entering.
Figure 3.4 Contour used in evaluating equation (3.3.5a).
Figure 3.5 Muffin-tin density of states for the 2p core level in aluminium evalu
ated at various imaginary energies.
Figure 3.6 a). Valence band density of states for bulk copper evaluated at various 
imaginary energies. Real energies quoted with respect to the Fermi energy, b). 
Valence band density of states for bulk copper taken from Moruzzi, Janak and 
Williams (1978).
Figure 3.7 Muffin-tin density of states of nickel evaluated in the complex plane 
out to an imaginary energy 0.06Ha.
Figure 3.8 Energy contour used in evaluating the total charge density.
Figure 3.9 Density of states across the Brillouin zone for Ni (100) a).E = 0.1 + 
O.Olt b). E = 0.1 + O .li c). E = 0.25 + O .lt d).E = 0.25 + O.Olz. (all energies in 
Ha)
Figure 3.10a). Energy dependence of the diagonal elements of the Green function 
integrated over the muffin-tin sphere, evaluated with imaginary energy 0.03Ha.

to  th e  le ft  o f  th e  o r ig in , w h ils t  th e  sp h er ica l w a v e  b a s is  is u sed  for  s c a tte r in g
b e tw e e n  a d ja c e n t layers, a n d  so  is p o s it io n e d  b e tw e e n  th e  h a lf  sp a c e  a n d  th e  o r ig in .
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b). Muffin-tin density of states for nickel at imaginary energy 0.003Ha, obtained 
by extrapolation v ia  a rational polynomial fit, with the original data evaluated at 
0.03Ha. c. Muffin-tin density of states for bulk nickel taken from Moruzzi, Janak 
and Williams (1978).
Figure 3.11 a). Schematic illustration of the geometry as used in solving Pois
son’s equation, showing repeat lengths and expansion origins. The darker atoms 
are those whose potentials would be allowed to change during an interface calcu
lation. b). “Dressing ” the interface with bulk layers.
Figure 3.12 Lattice constant test for aluminium, with changes in energy and 
pressure monitored under a symmetry preserving scaling of the bulk unit cell.
Figure 3.13 Schematic illustration of the wavefields in the band structure prob
lem.
Figure 3.14 A small part of the nickel band structure calculated from the eigen
value problem (3.9.2).
Figure 3.15 Muffin-tin density of states evaluated at various constant ky between 
the T and K points of the irreducible Brillouin zone of the (111) face of aluminium, 
illustrating the projected band structure.
Figure 3.16 Convergence of the elements of the reflection matrix with the number 
of passes through the layer doubling algorithm for nickel. Continuous line E = 
0.1 + 0.0i (all energies in Ha) where extended states exist. Long dash E = 0.1 +1 x 
10“5t showing convergence. Short dash E = 0.2 + O.Oi where no extended states 
exist.
Figure 3.17 a) Two-dimensional projected band structure for Al(lll) evaluated 
by attempting to converge the bulk reflection matrix on the real energy axis. A 
square indicates the layer doubling procedure failed to converge at that (E,kj|). b). 
Two-dimensional projected band structure for Al(lll) from Caruthers, Kleinman 
and Alldredge (1974).
Figure 3.18 Localised states at the K point of a twin fault in copper appearing 
as singular peaks in the density of states at E=0.2193Ha and E=0.2365Ha.
Figure 3.19 Muffin-tin density of states for bulk copper evaluated with a plane 
wave basis set of 7, 13, and 19 g vectors.
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Figure 3.21 Relative calculation times using the plane wave (normal) and plane 
wave/ partial wave (close-spaced) codes along the (210) direction of nickel.
Figure 4.1 Atomic positions of AA’ (unshaded), BB’ (shaded) and CC’ (black) 
sites of the silicon lattice projected onto the (111) plane.
Figure 4.2 Bulk and stacking fault structures of the FCC and HCP lattices. The 
view is edge on to the (111) planes and taken in a [211] direction. Shaded atoms 
occupy positions one row back.
Figure 4.3 Muffin-tin density of states for bulk aluminium, and s, p  and d  de
composition.
Figure 4.4 Muffin-tin density of states for bulk copper, and s, p  and d  decompo
sition.
Figure 4.5 Muffin-tin density of states for bulk iridium, and s, p  and d  decom
position.
Figure 4.6 Twin fault structure as viewed in figure 4.2, with shading to indicate 
atoms whose potentials were allowed to relax.
Figure 4.7 Comparison of the muffin-tin density of states of the central two atoms 
at a twin fault in copper with the bulk.
Figure 4.8 Comparison of the muffin-tin density of states of the atom two layers 
from the twin fault plane in copper with the bulk.
Figure 4.9 The muffin-tin density of states within leV of the Fermi energy for 
the central atom in a twin fault in copper, and the bulk.
Figure 4.10 Comparison of the muffin-tin density of states of the central two 
atoms at a twin fault in aluminium with the bulk.
Figure 4.11 Comparison of the muffin-tin density of states of the atom four layers 
from the twin fault plane in aluminium with the bulk.

F ig u r e  3 .2 0  C onvergence o f th e d en sity  o f  s ta te s  w ith  th e  d im ension  o f th e  p lane
w ave basis. See te x t for exp lan ation  o f a ) - f ) .
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Figure 4.13 Comparison of the muffin-tin density of states of the central two 
atoms at a twin fault in iridium with the bulk.
Figure 4.14 Comparison of the muffin-tin density of states of the atom two layers 
from the twin fault plane in iridium with the bulk.
Figure 4.15 The muffin-tin density of states within leV of the Fermi energy for 
the central atom in a twin fault in iridium, and the bulk.
Figure 4.16 Muffin-tin density of states for copper, iridium and aluminium eval
uated in the HCP cystal structure using bulk FCC potentials (dotted line). The 
shaded region is the corresponding bulk FCC MTDOS.
Figure 4.17 Localised states visible in the MTDOS evaluated at the K point at 
the aluminium twin fault.
Figure 4.18 Structure and unit cell used in the impurity calculations.
Figure 4.19 Muffin-tin density of states for the aluminium stacking fault with 
magnesium impurity.
Figure 4.20 Muffin-tin density of states for the aluminium stacking fault with 
copper impurity.
Figure 5.1 Atomic structure of the E5 (210) / [001] symmetric tilt boundary used 
in the calculations, with the atoms closest to the fault labeled. The dotted line 
indicates the conventional face-centred cubic cell, with shaded atoms lying one 
plane back. Below. Plan view of the interface layer (labeled 0 in main diagram) 
with one of the two adjacent layers (shaded).
Figure 5.2 MTDOS near a Ni (210) / [001] symmetric tilt boundary (shaded), 
compared with the MTDOS of bulk Ni (dashed line).
Figure 5.3 Comparison of the MTDOS calculated at the Ni (210) / [001] sym
metric tilt boundary with the LKKR technique (dashed line), and a multiple- 
scattering X a  cluster calculation (shaded). The cluster results have been rescaled 
to the LKKR peak height. The inset shows the cluster geometry in cross-section.

F ig u r e  4 .1 2  T h e m u ffin -tin  d en sity  o f s ta te s  w ith in  le V  o f th e  Ferm i energy for
th e  central a to m  in a tw in  fau lt in a lum inium , and th e  bulk.
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Figure 5.5 MTDOS of the indicated atoms near a Ni (210) / [001] symmetric tilt 
boundary (shaded), with sulfur substituted for the atom 0. For comparison the 
associated MTDOS from figure 5.2 are given (dashed line), except for the sulfur 
atom, where the comparison is with bulk nickel.

F ig u r e  5 .4  N on  se lf-co n sisten t M T D O S  for th e  N i (210) /  [001] sym m etric  tilt
boundary.
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TABLE CAPTIONS
Table 2.1 Comparison of the basis vector attenuation at the adjacent layer for 
the FCC (ill) and FCC (210) directions for selected numbers of vectors, Ng.
Table 3.1 Allowed values of special k|| sampling points given by Cunningham’s 
algorithm for the square and hexagonal lattices.
Table 3.2 Convergence of energy integrals using the Gaussian integration tech
nique with the number of sampling points Ng, for core level and valence band 
muffin-tin charges. The core level calculations were performed with a contour 
of width O.OlHa centred on the real eigenvalue, and the valence band integral 
extended from -O.lOOHa to 0.314Ha relative to the muffin-tin zero.
Table 4.1 Selected interface energies qr (in ergs/cm2) for various metals (sf = 
stacking fault, gb = grain boundary and s = surface). Data taken from Appendix 
2 of Hirth and Lothe, 1982.
Table 4.2 Stacking fault energy of silver as determined in a variety of studies using 
the techniques listed (compiled from Gallagher, 1970). Energies in ergs/cm2.
Table 4.3 Estimates of the stacking fault energy (in ergs/cm2) of silicon.
Table 4.4 Calculated stacking fault energies and corresponding experimental val
ues, taken from Gallagher (1970) and Murr (1975) (ergs/cm2).
Table 4.5 The relative weights of the localised states at the twin fault in alu
minium on the atoms in the interface region.
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CHAPTER 1: INTRODUCTION

1.0 Introduction
Technological advances go hand in hand with the development of new materials, 
as new materials prompt new technologies ( t .g . high-temperature superconduc
tors) and advances in technology call for the development of materials with spec
ified properties (e .g . microelectronics). Mechanical properties are an important 
characteristic of any material, in applications both structurally orientated and in 
non-structural areas. Thus, the development of new light-weight ductile alloys 
with good high-temperature performance will greatly benefit the aircraft indus
try, whilst an understanding of, and the ability to control, the brittle behaviour of 
the new superconducting ceramics will considerably aid their incorporation into 
electronic devices. As for the latter, it is often the case that a material exists with 
desirable or novel characteristics, but whose exploitation is prevented by some 
other detrimental properties, like excessive brittleness, which prevents fabrication, 
or has side effects which cannot be tolerated, as would be the case for an engine 
component with a tendency to fracture. The modification of mechanical properties 
-  whilst retaining the desirable characteristics -  is therefore a goal in a wide range 
of industries.

There are numerous approaches to the modification of the mechanical be
haviour of crystals. Historically, this optimisation has been achieved by largely 
empirical techniques. However, increasingly powerful computers have in recent 
years enabled the application of quantum-mechanical theories to the study of 
realistic systems and suggest theory-assisted material design may one day be pos
sible. We consider a few of the areas in which theory has provided hints at a 
possible predictive capability.

Deformation behaviour of materials is largely governed by defects within the 
crystal structure. Most important are the line defects and in particular disloca
tions, small regions of deformation which move under applied loads, migrating or
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extending the deformation through the crystal. In real materials one finds disloca
tion loops, within which the material is slipped. Under stress, elastic forces result 
in the movement of the dislocations, contracting or expanding the slipped region, 
and in doing so altering the deformation energy stored in the loop. Dislocations 
also induce local elastic fields which interact with other dislocations, providing 
another mechanism for energy storage as well as a factor important to dislocation 
motion. Dislocation mobility is often a controlling factor in deformation pro
cesses, governing the extent to which stresses are relieved within the crystal, and 
is severely limited through interaction with other defects, not only neighbouring 
dislocations, but also, for example, voids, grain boundaries and stacking faults. Ac
curate quantum mechanical calculations are not yet possible on isolated dislocation 
structures, due their extended topological nature. However, continuum elasticity 
theory (Hirth and Lothe, 1982) may reasonably describe the interactions of dislo
cations, requiring as input such numbers as the stacking fault and grain-boundary 
energy. It is in the determination of these quantities, which depend fundamentally 
on atomic-scale interactions, that accurate electronic structure calculations are of 
utmost importance.

Microstructural design, where dislocation mobility is controlled through the 
variation of grain size and structures, has long been employed to alter the hardness 
and strength of metals. Work hardening, whereby dislocations are introduced into 
the metal to the extent that they greatly impede one another, was a phenomenon 
known, but presumably little understood, by the ancient Egyptians. More recently, 
microstructural design has progressed to the stage where optimisation of material 
properties is possible through the introduction of ceramic particles of c o n tro lle d  
shapes and sizes into an intermetallic matrix, with the morphology and composi
tion of the ceramic reinforcements allowing such properties as the fracture tough
ness, compressibility and failure modes to be manipulated (e .g . Christodoulou, 
Parrish and Crowe, 1988). An important factor in determining the influence of 
the reinforcement is the microchemistry at the metal-ceramic interface, the na
ture of the interface bond and abruptness of the interface, questions which may 
be answered through electronic structure calculations.

Alloying a material with additional elements can significantly alter its me
chanical properties, even in the limits of a few parts per million, and provides an 
alternative means of optimising behaviour. Solid-solution softening and hardening 
and ductility enhancement by this mechanism have recently attracted theoretical 
attention. Masadu-Jindo and Terakura (1989) performed total energy calculations 
on aluminium-based alloys and, from the corresponding bulk moduli, accounted
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for the experimentally observed changes in elastic moduli. Chubb, Papaconstan- 
topoulos and Klein (1988) considered TiAl, which has the Llo structure with c/a 
ratio of about 1.02. They argued that the ductility of TiAl could be enhanced by a 
reduction in c/a ratio to 1, at which point all slip planes would be equivalent. Total 
energy calculations with vanadium substituted for aluminum indicated a reduced 
value of c/a, due to the vanadium donating electrons into bonding orbitals directed 
along the c-axis. This work also highlights the importance of s tr u c tu r e - p r o p e r ty  
relationships, where particular structures have a tendency to exhibit certain prop
erties, such as the ductile behaviour of face-centred metals which is attributed to 
the large number of available slip systems. This behaviour has been utilised in an 
alternative approach to theoretical materials design, the use of “structure-maps” 
(Pettifor, 1986). Using a phenomenological ordering of the elements, structural 
separation of compounds with a given stoichiometry may be achieved, and so in 
reverse the appropriate stoichiometry of a binary compound with a given structure 
may be predicted.

Some solute atoms are found to segregate at defects such as stacking faults 
and anti-phase boundaries (APB’s), significantly altering the corresponding defect 
energy, and consequently affecting dislocation formation energies and mobilities. 
Hong and Freeman (1989) have studied the effect of ternary additions on the 
anti-phase boundary energy of NiAl, finding the addition of various transition 
metal atoms reduced the energy. However, as in the work of Masadu-Jindo and 
Terakura (1989) and Chubb e t a l. (1988) these first-principles calculations are 
extremely demanding computationally and, for reasons described in the following 
Sections, restrict calculations to a small number of unique atoms and consequently 
unphysically high solute densities.

More dramatic impurity effects are found with changes in grain-boundary 
stoichiometry, which in some cases strongly influence grain boundary chemistry 
and consequently cohesive properties. A classic example is the addition of boron 
to the intrinsically brittle polycrystalline material NiaAl, (Aoki and Izumi, 1979) 
which significantly increases ductility, and the addition of sulfur to nickel, which 
has the opposite effect, and in large concentrations results in grain boundary em
brittlement (Lassila and Bimbaum, 1987). Whilst a thermodynamic approach 
incorporating the interfacial energetics can account for the segregation behaviour 
of such alloying elements, the mechanisms for the intrinsic behaviour, and how the 
impurity-host bonding results in the macroscopically observed behaviour is still to 
be answered. On the basis of cluster calculations Eberhart and Vvedensky (1987) 
have suggested that intergranular fracture in polycrystalline materials may be
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associated with localised states near the Fermi energy and a more isotropic distri
bution of charge. This results in a softer region within which bond rearrangement 
is more easily achieved and consequently large dislocation core regions will result, 
inhibiting the crossing of the interface, and causing a local build up of strain. An 
alternative approach to the study of impurity effects at grain-boundaries was taken 
by Goodwin, Needs and Heine (1988) on the basis of pseudopotential calculations 
on simplified structures of aluminium grain boundaries with arsenic or germanium 
impurities. These results indicated increased cohesion in the presence of the impu
rity, and subsequent studies (Goodwin e t a/., 1989) indicated a decreased cleavage 
stress and increased ideal shear stress, favouring bond breaking but discouraging 
bond bending. These results are interesting in the light of continuum models of 
fracture due to Kelly, Tyson and Cottrell (1967), which emphasise the c o m p e ti
t io n  between cleavage and shear stress without providing the microscopic basis 
underlying the effect. Again, quantum mechanical calculations are being used to 
account for observed mechanical behaviour and offer a glimpse of future impact 
upon materials design.

In the remainder of this Chapter the foundations of our current approaches 
to the electronic structure of solids are outlined. Traditional techniques employed 
for the study of bulk solids will be briefly described, along with the difficulties 
in their use for the study of defect structures. The accuracy of these methods 
contrasts sharply with the alternative more approximate techniques which have 
been developed for the particular study of low symmetry defect systems, which will 
also be described. It will become clear that no technique addresses all aspects of the 
complex phenomena underlying the mechanical behaviour of materials. Against 
this background, the need for new methods such as that described in Chapters 
2 and 3 of this Thesis will be argued, and the benefits highlighted. Chapters 4 
and 5 describe applications of this new technique to stacking faults, including the 
calculation of twin fault energies, and the first self-consistent electronic structure 
calculation of an isolated grain-boundaries.
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1.1 Electronic structure calculations
Our understanding of the observable properties of solids are, in principle, deter
mined completely by quantum mechanics through the solutions of the many-body 
Schrodinger equation for the motion of the electrons and nuclei. Since the nuclear 
mass is considerable larger than the electron mass this equation may be consider
ably simplified through the Born-Oppenheimer approximation, which treats the 
electrons as moving in the potential arising from s ta t ic  nuclei. The result of this 
approximation is the separation of the electronic and nuclear coordinates, and we 
may focus on a reduced many-electron Schrodinger equation

- i i - V v 2 -  V  c Zy'2me “  Vj Iry  —3 33
0 ( r i , . . . , r n) =  

Eip(rL, . . . , r u)

(1.1.1)
where the ry and Ry are the electronic and nuclear coordinates, h is Planck’s con
stant, me is the electronic mass, e is the electronic charge and Zy is the atomic 
number of the y’th nucleus. The terms on the left-hand side of (1.1.1) are the 
electronic kinetic energy, the electron-nucleus potential energy and the electron- 
electron potential energy. The solution 0 (ri,...,r„ ) is the n-electron wavefunc- 
tion, which completely characterises the electron behaviour for the chosen nuclear 
configuration. The solution of (1.1.1) coupled with the Hellmann-Feynman theo- 
rum (Hellmann, 1937; Feynman, 1939) allows the determination of the forces on 
the nuclei which may then be moved accordingly, and the lowest energy nuclear 
configuration determined. Since the time scale of deformation of a material is 
considerably longer than the relaxation time of the electrons, the energy required 
for a particular deformation path may be in principle determined from a sequence 
of calculations with appropriate atomic coordinates. However, such a process re
quires huge computational resources and even determining the atomic structure 
of the initial configuration when, as is usually the case for defect structures, there 
is limited information, is a daunting task (see, however, the discussion of the 
embedded-atom method below).

Direct solution of (1.1.1) is impractical for a solid since there are typically 
of the order of 1023 electrons, each strongly interacting through a strong r-1 
Coulomb interaction. In fact even if a solution was possible, the tabulation of a 
function of 1023 vector variables would not be a convenient or accessible way of 
understanding the behaviour of the electrons. A more suitable approach which
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is almost universally employed in the field of solid state physics, particularly in 
the problems which concern the work in this thesis, is that known as density- 
functional theory (DFT). Formally justified through the work of Hohenberg and 
Kohn (1964), DFT is based upon the theorem that the ground state properties 
of the solid are functionals o n ly  of the charge density, g(r). Thus the energy 
corresponding to density q may be writtenB|«! - M,l+i / + i g

-Ea/ A (1'1,2)
where Eo [q] is the (known) energy of a system of noninteracting electrons with 
density q , the second, third and fourth terms on the left of (1 .1 .2) are the clas
sical electron-electron, nucleus-nucleus and electron-nucleus interaction energies 
respectively, and Excle] is the exchange-correlation contribution, arising from the 
quantum mechanical behaviour of the electrons. This latter contribution is actu
ally d e f in e d  to be the difference between the exact energy and sum of other terms 
on the left of the equation. Minimising this energy with respect to the density one 
obtains an effective one-electron Schrodinger equation (Kohn and Sham, 1965)

2rrv V2 + V(r) A(r) = Ei*(r) (1.1.3)
with

e(r) = e^|<fc(r)|2i (1.1.4)
and where the potential V(r) is the sum of the electron-electron repulsion and 
the Coulomb potential due to the nuclei, plus an additional exchange-correlation 
potential

Vxc(r) = ^Exc[g]
Sg(r)

(1.1.5)
The Ei in (1.1.3) enter as Lagrange multipliers and a p p e a r to play the role of 
single-electron eigenvalues. However, their correspondance to the quasi-particle 
excitation spectra is only approximate (Moruzzi, Janak and Williams, 1987). The 
only limitation of this theory is that the functional Exc[g] is not known exactly, 
and must be approximated. A particularly successful approach has been the local
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density approximation (LDA), where the exchange-correlation energy functional 
is written

Exc[e] = J  £xc(e(r))e(r)dr (1.1.6)
with £xc(e(r)), the exchange-correlation energy density, taken to be that due to 
a homogeneous electron gas of the same local density, and for which a number of 
expressions exist (e .g . Slater and Johnson, 1972; Hedin-Lundquist, 1971). The 
LDA is easily implemented and has been demonstrated to give (e .g . Moruzzi, 
Janak and Williams, 1978) accurate lattice constants, phonon frequencies, bulk 
moduli, cohesive energies and predicts pressure induced structural transformations 
(e .g . Needs and Martin, 1984). Even the one-electron eigenvalues correspond 
very well with experimental excitation spectra (Thiry e t a t., 1979). The LDA 
approaches the exact solution in the limit of slowly varying densities, and also in 
the limit of high densities, since the kinetic energy is given exactly by Eo[g]. Indeed, 
recent calculations going beyond the LDA suggest the largest errors contributing 
to calculated cohesive energies arise from the isolated atom energies, where the 
density is less smoothly varying. This might have important consequences for 
the calculation of defect energies, such as grain-boundary energies, where electron 
densities can also be considerably more anisotropic than in the bulk.

Even within the LDA, accurate solution of the Kohn-Sham equations (1.1.4- 
5) presents a formidable task. In this regard symmetry is an important property 
of the system being studied. For perfect crystals, defined by a lattice of vectors 
Rij'fc = tai + Ja 2 + &a 3 where i , j , k  are integers and a i,a 2 ,a3 map out a unit cell, 
the invariance of the crystal under any displacement Rj-y* restricts wavefunctions 
to the form

^K(r) = elKruK(r) (1.1.7)
where the function ur has the periodicity of the lattice, UR(r) = UK(r+R;yfc). K, 
the crystal momentum, labels the state. This result, Bloch’s theorem, is extremely 
powerful, reducing the problem of determining the wavefunctions of the solid to 
finding solutions within the unit cell, since the wavefunction outside this region 
may be constructed from (1.1.7). Further symmetry (e .g . , reflection, rotation, 
... ) may reduce the problem further. Bloch’s theorem also enables one to use 
a Fourier basis for the expansion of the wavefunctions or, alternatively, allows 
one to use a localised basis centred about each unique atom. Thus the effect of 
structure on the complexity of the calculation may be clearly seen, since the larger 
the unit cell or the more symmetrically-unique atoms, the larger the dimension 
of the localised basis and the larger the region of space over which the solution
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must be determined, since Bloch’s theorem is not applicable w ith in  the unit cell. 
Typically, the calculation time scales as the cube of the number of unique atoms, 
realistically restricting applications to structures with 1 0 -2 0  atoms in the unit cell.

Having adopted the LDA and invoked Bloch’s theorem, one must next attempt 
to solve equation (1.1.4) within the unit cell. In this respect the nature of the 
electrons in a solid strongly influence the method of solution. The lowest energy 
solutions of (1.1.4) are the “core states”, spatially localised around the nucleus, 
with no significant overlap with neighbouring atoms and which, to an excellent 
approximation, behave as though in an isolated atom, occupying ls,2s,2p,... levels 
and retaining spherically symmetric charge distributions. With increasing energy 
the wavefunctions become less localised, eventually interacting with electrons from 
neighbouring atoms to such an extent that the energy levels broaden into valence 
bands and the wavefunctions extend throughout the whole solid. It is with these 
two regimes that any electronic structure technique must come to terms.
1.2 First principles techniques
There have been a large number of methods developed for solving the one-electron 
Schrodinger equation from first-principles, the most important of which are briefly 
summarised here (for more details see the review by Koelling (1981)). The simplest 
basis for dealing with three-dimensional periodicity is the set of plane waves, but, 
due to the highly localised core states which induce rapid oscillation in the valence 
electrons (to maintain orthogonality), do not constitute a practical method, re
quiring many millions of plane waves. This difficulty may be overcome by replacing 
the actual crystal potential with a much weaker “pseudopotential” which traps no 
core levels and results in wavefunctions smoothly varying within the core region, 
but which match to the true solutions outside, thus permitting a representation 
with only a few plane waves. The pseudopotential method therefore focusses on 
the valence electrons, which are responsible for the binding of the solid and, by 
removing the core states from the picture, avoids many problems arising from their 
large energy contribution, which plays an unimportant role in determining struc
ture. The pseudopotential method (Cohen, 1985) has been extremely successful in 
applications on many of the lighter materials, such as Si, GaAs and Al, but appli
cations to transition-metals are inhibited by the large numbers of plane waves still 
required for the valence d-electrons, which retain some of their localised atomic 
character, and whose study is only now becoming feasible following advances in 
computational technology.

In close-packed solids, including many transition metals, the high coordina
tion found in the crystal structure has motivated the “muffin-tin” approximation
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to the potential, which forms the basis of the augmented plane wave (APW) 
(Loucks, 1967) and the Korringa-Kohn-Rostoker (KKR) (Ham and Segall, 1961) 
techniques. The solid is first divided into non-overlapping spheres centred upon 
the atomic sites, within which the potential is spherically-averaged. In the region 
between the spheres the potential is volume averaged. The Schrodinger equation 
is numerically integrated within the muffin-tin, where the wavefunction is strongly 
affected by the nuclear charge and retains much of its atomic character, and then 
matched to the solution in the interstitial regin. This matching leads to a secular 
equation, the solutions of which yield the one-electron energies and wavefunctions. 
The accuracy of the muffin-tin approximation increases with the isotropy of the 
atomic-site environment in the material, being most valid for close-packed metals 
and breaking down for covalently-bonded materials such as Si.

As mentioned above the calculation time for an electronic structure calculation 
scales with the cube of the number of unique atoms. For the APW and KKR 
methods the solution of the secular equation involves the location of the zeros of 
a large determinant as a function of energy, which are found by many evaluations 
at trial energies, due to the n o n - l in e a r  energy dependence and because there are 
no algorithms which can simultaneously yield all eigenvalues and eigenfunctions 
simultaneously. Andersen (1975) proposed a modification to the APW and KKR 
methods, introducing energy-independent basis functions at some reference energy 
which are then employed throughout a range of energies. Consequently the secular 
equation becomes a l in e a r  eigenvalue problem, with simultaneous evaluation of 
the eigenvalues and eigenfunctions at a given crystal momentum K. These new 
methods, the linear combination of muffin-tin-orbitals (LMTO) (Skriver, 1984) 
constructed from the KKR equations, and linearized APW (LAPW) (Koelling and 
Arbman, 1975), at the cost of slightly reduced accuracy, offer roughly an order of 
magnitude increase in computational efficiency and thus increase the complexity 
of system which may be studied. Recently both methods have been extended to 
include the full crystal potential (Wimmer, Krakauer, Weinert and Freeman, 1981; 
Weyrich, 1988), thus allowing the treatment of both semiconductors and transition 
metals within a common computational framework.

Having developed these techniques for solving Schrodinger’s equation for per
fect crystals, it is natural to ask whether thay can be employed in the study of 
defects. The answer, at least in principle, is yes. The major difficulty to be 
confronted is the reduced periodicity: a planar defect such as a stacking fault 
or grain boundary only has two-dimensional periodicity, whilst a dislocation has 
only one-dimensional periodicity. Thus, since Bloch’s theorem cannot be applied
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along the directions which lack translational symmetry, Schrodinger’s equation 
must be integrated over an effectively infinite unit cell. However, in metals, per
turbations in the electronic structure resulting from the presence of a defect are 
confined to within a few Angstroms because of screening by the electrons. Beyond 
the screening length the electronic distribution is essentially bulk-like. Thus, a 
regularly-repeated array of, say, coincident grain boundaries, will possess transla
tional periodicity in all three dimensions and, if the separation of adjacent defects 
is sufficiently large, each defect will behave as though isolated. This geometry 
is referred to as a supercell, and, because of the success and familiarity of work
ers with bulk electronic structure techniques, its use abounds in the literature of 
surface and interface calculations.
1.3 Approximate techniques
The computational demands of those techniques mentioned above which restrict 
their application to systems with but a few unique atoms are a direct consequence 
of the accuracy of the solutions produced. By allowing a more approximate so
lution of relevant equations, but without excluding the important physics, larger 
systems and more realistic structures may be studied. This approach to electronic 
structure and total energy calculations of reduced symmetry systems, rather than 
the extension and generalisation of the sophisticated band structure techniques, is 
desirable for a number of reasons:

• The development of even qualitative theories of complex phenomena such as 
mechanical behaviour requires many calculations, each of which may be time 
consuming if standard methods are used. One must therefore sacrifice some 
accuracy for computational feasibility. These initial calculations may act as 
a “fast screening” method, and once the trends have been identified more 
elaborate calculations may be used to develop further insight.

• Simplified approaches with a judicious choice of approximations may more 
easily clarify the essential underlying physics, identifying the fundamental 
parameters of the problem, and thus providing an important first step in the 
development of a more general theory.

Among the many approximate techniques used for studies of direct relevance to 
mechanical properties, the most important have been the tight-binding, cluster 
and embedded-atom methods.

Tight-binding. The tight-binding (TB) scheme was originally proposed by 
Slater and Koster (1954) as a means of obtaining solutions of Schrodinger’s equa
tion in solids away from the high symmetry directions of the Brillouin zone which,

-23-



at the time, were the only feasible calculations. Taking the results of accurate 
band structure calculations, bonding integrals (see below) could be determined 
empirically by some sort of fit, and the solutions along other directions of K could 
then be calculated. With the development of more powerful calculations, the need 
for such a scheme diminished and the method was largely discarded. However, the 
TB method has been revived recently (Bullett, 1980) in applications for crystal 
defects, where conventional techniques are often too computationally demanding.

Within the TB approximation the one-electron wavefunction is expanded as 
a sum of localised orbitals <f>a (r — Ry) expressed about the atom at site j .  When 
applied to perfect crystalline materials this may be written as a Bloch sum of 
localised orbitals <j>£ (r) centered about each atom (3 in the unit cell at lattice site 
3 ‘

V-K(r) = Y .  °a (K )^ (r  -  Ry)e<K R> (1.3.1)
a P j

where the (K) are K-dependent expansion coefficients. Substituting this wave- 
function into Schrodinger’s equation results in a linear eigenvalue problem (since 
the basis is energy independent) whose solutions yield the band structure E(K):

[H(K) -  E(K)S(K)] C(K) = 0 (1.3.2)
where C is the vector with entries C^(K), and H and S are matrices with entries

Ha'f,(K) = £>* K R> J  ^ :*(r)H (r)^(r -  Ry)dr (1.3.3)
3

S ^(K ) = E eiK R) /  -  Ry)dr (1.3.4)
3

The elements in (1.3.3) are the “hopping” or “bonding” integrals, and those in 
(1.3.4) the overlap integrals. Further simplification is possible if the orbitals (f>̂  
are represented as linear combinations of functions which are orthogonal when 
centred on different lattice sites. The problem then reduces to evaluating a few 
matrix elements in (1.3.3), by fitting to accurate band structures produced by first- 
principle techniques. Normally, terms no more distant than the second neighbour 
shell are included, hence the name tight-binding.

The total energy in the TB approximation may be written in terms of the band 
structure energy Ebs, the ion-ion interaction energy En and the electron-electron 
interaction energy Eee:

E = Ebs + En — Eee (1.3.5)
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In many applications Eb6 provides the major contribution to the energy differences 
between different structures, particularly when there is no change in atomic volume 
(Pettifor, 1986). Thus by determining Ebs from the density of states g(E) (Ef is 
the Fermi energy)

Ebs =/Ef Eg(E)dE (1.3.6)
and, where necessary, modelling Eu — Eee v ia  some sort of short-ranged force- 
constant model, questions concerning the cohesive energy and structure of solids 
may be addressed (Pettifor, 1986).

An additional attractive feature of the TB method is the application of the 
r e c u r s io n  m e th o d  (Haydock, 1980), in which the density of states is evaluated 
by means of a continued fraction, the elements of which are found by repeated 
operation of the Hamiltonian on some starting vector. Each application of the 
Hamiltonian may be viewed as coupling the initial state vector to successively more 
distant sites through the hopping elements, with the importance to the density of 
states diminishing as the n-th iterated state spreads out. The simplicity of the 
recursion method allows the study of arrangements of many thousands of atoms 
with no assumption as to the underlying periodicity.

The major difficulty within the tight-binding framework centres around the 
choice of values for the bonding integrals. When a first principles calculation exists 
these may be obtained by fitting (Papaconstantopoulos, 1986), though for many 
situations such calculations do not exist, and some assumption must be made 
about the “portability” of the bonding integrals from one environment to another. 
Even in those cases where first-principles results do exist, some assumptions must 
be made concerning the dependence of hopping integrals on bond length and bond 
angle if they are to be used to model defects, where such quantities can take quite 
different values for those of the perfect crystal. Despite these uncertainties there 
are many problems for which TB represents one of the few viable approaches 
currently available (e .g . the studies of grain boundaries in silicon by Paxton and 
Sutton (1988)).

Clusters. As mentioned above, there is a play off between the accuracy 
with which the electronic structure is calculated and the faithfulness of the struc
tural representation of the system being modelled. Whereas the tight-binding ap
proach, in conjunction with the recursion method, may be used to study systems 
containing of the order of one thousand atoms, including realistic geometries of 
grain-boundaries or crack tips, an alternative approach which some workers have 
adopted is to study clusters of 1 0 -1 0 0  atoms in representative geometries, but 
for which accurate self-consistent solutions of Schrodinger’s equation are found.
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Since many features of electronic structure, particularly those involving defects 
or impurities, are spatially localised, the electronic structure of small clusters has 
achieved considerable popularity as a first step toward more detailed studies (e.gr., 
Briant and Messmer, 1980; Eberhart and Vvedensky, 1987; Painter and Averill, 
1987, 1989). The benefits of cluster calculations are manifold, including

• the freedom from underlying translational symmetry, which permits any man
ner of deformation to be considered without significant increase in computa
tional demand,

• the large number of calculations which may be performed, allowing the iden
tification of gross trends,

• any first-principles method which employs a localised basis may be imple
mented within a cluster framework. Furthermore, alternative techniques 
from the field of quantum chemistry, such as the method of configuration- 
interaction, and which determine the solution of (1 .1.1) without invoking the 
LDA, can be applied due to the small number of electrons. Thus there is the 
possibility of a large number of calculations making different approximations, 
which will help identify the essential components of any general theory.

Approaches based upon clusters have their drawbacks, such as the neglect of long 
range influences and the limited ability to check the effects of free boundaries. 
Consequently, subtle effects such as the small differences in total energy arising 
from small structural modifications are probably inaccessible to cluster calcula
tions. However, gross features of the electronic structure can certainly be cal
culated with less effort than conventional methods, and chemical effects due to 
isolated impurities correctly identified. Used in conjunction with more elaborate 
methods, they are particularly useful as a “fast screening” method.

Embedded-atom. The embedded atom method (EAM) has recently been 
developed (Daw and Baskes, 1983, 1984) for the simulation of realistic problems 
of mechanical behaviour, and has largely superceded traditional methods, such as 
pair potentials and alternative phenomenological approaches, which suffer from 
a number of shortcomings. Pair potentials, describing the interaction energy be
tween pairs of atoms, do not account well for elastic properties of metals without 
the addition of volume dependent corrections (for example, in order to satisfy the 
Cauchy discrepancy C12 7  ̂ C44) and neglect directionality in chemical bonding. 
Therefore in the case of defect structures, such as surfaces or grain boundaries, 
the question arises: how does one partition the volume and hence determine the 
volume-dependent energy term? Phenomenological approaches, such as those con
sidering the interactions between larger entities like layers or dislocations, suffer
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from the difficulties in determining interaction laws, are not good for alloy or 
impurity problems, and introduce many unknown parameters into the problem.

The major feature of the EAM is the introduction of an embedding energy, de
pendent only upon the charge density of the surrounding atoms. This justification 
follows from the work of N0rskov and Lang (1980) and Stott and Zaremba (1980), 
who showed the embedding energy of an isolated impurity in a homogeneous elec
tron gas is dependent, to first order, upon the density of the gas at the position of 
the nucleus. This idea is generalised in the EAM by writing the cohesive energy 
of the solid as

Ecoi, =  x > *  E  ef (R<y) + \ E  (*«) (1-3.7)i J *J
that is, as an embedding energy and a pair interaction energy, the latter describing 
the electrostatic interaction of the atoms. The embedding energy, given by the 
embedding function F*, is determined by the assumption that each atom inter
acts with a locally homogeneous electron gas, as in effective medium theory, and 
the density of which is determined by atomic charge densities centred upon each 
atomic site. This term provides a volume dependence which ensures the Cauchy 
discrepancy is satisfied. Once the energy is known, the EAM can be coupled with 
Monte Carlo or Molecular Dynamics techniques to simulate finite temperature 
dynamical systems or determine equilibrium structures.

Recently Daw (1989) has provided a formal justification of the EAM by de
riving equation (1.3.7) from density-functional theory. In doing so, the underlying 
approximations were clarified, and in particular the method is shown to neglect 
Fermi surface/band structure effects and d - d  hybridisation, which implies its use 
should be restricted to simple and early/late transition metals, and not used for 
BCC or more covalently bonded materials. However, the embedding functions Daw 
derived were of a restricted form. In practice these functions are parameterised, 
the basic form being dictated by qualitative behaviour and the requirement that 
the universal binding energy relation (Banerjea and Smith, 1988) be exactly sat
isfied, and with unknowns determined by a fitting procedure incorporating many 
experimentally determined properties of the material (Foiles, 1989). Consequently 
band structure effects and some degree of directionality may be indirectly incor
porated. Applications to BCC metals have suggested reasonable accuracy (Adams 
and Foiles 1989), but should perhaps be treated with caution at present. Applica
tions to FCC metals and alloys have demonstrated the accuracy of this technique
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for a wide range of structures and problems, including surfaces (Daw, 1986), grain- 
boundaries (Foiles, 1988), phonons (Daw and Hatcher, 1985), crack propagation 
and fracture (Daw, Baskes, Bisson and Wolfer, 1985). However, some questions 
which are not well addressed are chemical effects, since the superposition of atomic 
charge densities neglects the response of the material to the embedded atom, and 
also absolute defect energies, which are sensitive to the potential cut-off radius. 
For example, in studying dislocations, the stacking fault energy m u s t be one of 
the properties to which the embedding function is fitted, in order for the results 
to be realistic (Baskes, 1989).
1.4 Future directions -  the LKKR method
It is evident from the above discussion of the techniques used in the study of 
questions of direct relevance to mechanical behaviour of materials, that no single 
approach incorporates and addresses all the important physical aspects of the 
problems. These factors may be broadly catagorised as

• Chemistry The assumptions underlying both the EAM and TB methods 
mean many questions concerning, for example, chemical effects at grain- 
boundaries and other defects cannot be addressed. Such questions require 
self-consistent solutions of the one-electron Schrodinger equation.

• Structure Cluster techniques and the use of first-principle electronic struc
ture methods working within the slab or supercell approximation rely upon 
idealised and simplified representations of the atomic structure of complex 
defects.

• Energy Only the EAM, TB and pseudopotential methods have demonstrated 
the ability to determine the energetics of defects including deformation pro
cesses, and calculating corresponding stresses and fracture energies.

• Temperature The EAM is the only technique for which the temperature 
plays a role. All others assume 0°K.

In this respect the development of new techniques which may be employed to 
study realistic systems and which extend the bounds currently present will play 
an important role in future progress of our understanding of the underlying mech
anisms responsible for mechanical behaviour. One such advance recently made is 
the novel approach of Carr and Parinello (1985), in which the electronic and nu
clear coordinates of the solid are simultaneously relaxed. Introducing a fictitious 
Lagrangean and temperature, classical equations of motion for the wavefunctions 
and nuclear coordinates are derived which may be integrated in time, whilst si
multaneously the temperature removed from the system (simulated annealing).
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Thus, time-consuming matrix diagonalisation is avoided, and the one-electron 
Kohn-Sham equations only solved exactly once, when, at T=0, the equilibrium 
structure has been determined. The numerous solutions at non-equilibrium struc
tures performed with energy minimisation v ia  the Hellmann-Feynman theorem 
are thus avoided, and computational costs significantly reduced. The power of 
the technique has been demonstrated with several applications, including a twist 
boundary in germanium (Payne, Bristowe and Joannopoulos, 1987).

Another development is the concern of this Thesis, the layer KKR (LKKR) 
technique for the calculation of the self-consistent electronic structure of systems 
characterised by only two-dimensional periodicity, including such defects as stack
ing faults and grain boundaries, the primary motivation of this work, but also 
surfaces and interfaces in general, and in some cases complex bulk systems. In the 
discussion above, much was made of the compromise which must be made between 
accuracy and structural realism. As a consequence of the calculation time scal
ing with the cube of the number of unique atoms in the unit cell, first-principles 
techniques have been severely restricted in their applications to defects such as 
grain boundaries. Indeed there have been no studies of transition metal grain 
boundaries by “a b - in i t io ” methods. In the case of the LKKR method, however, 
atoms of the system are assigned to layers. Within the layers multiple scattering 
ideas similar to those employed in the three-dimensional KKR method (Ham and 
Segall, 1961) are used, whilst a recursive algorithm is employed to assemble the 
layers into the full crystal. This algorithm requires the perturbations induced by 
the defect to be localised, as is the case as a consequence of screening, so that 
beyond a certain distance from the fault the p o te n t ia l is bulk-like. A number of 
important points concern the method

• Calculation times scale as n?, where the n» is the number of atoms in the 
unit cell for layer i . Thus the time scales linearly with the number of layers, 
ideal for the study of intrinsically planar problems.

• Only the perturbations in the potential are truncated beyond some distance. 
The charge density is evaluated for the infinite system without truncation.

• The use of the supercell geometry is dispensed with and the correct boundary 
conditions placed upon the solutions.

• There is no need to perform troublesome convergence tests with respect to 
supercell dimension, although the size of the interface region must be checked. 
However, the correct boundary conditions reduce the number of atoms which 
must be explicitly considered, as compared to the corresponding supercell
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which would be required, since there is no problem with adjacent defects 
interacting.

These last three points are clearly illustrated in figure 1.1, which displays the one
dimensional density of states evaluated at the T  point for an intrinsic stacking fault 
in copper, the density of states being evaluated on the atom closest to the fault 
and all potentials taken to be bulk-like (more details concerning the quantities 
and structure may be found in the following Chapters). The four different results 
correspond to an isolated fault, requiring one unique atom in the calculation, and 
the corresponding results for 5, 8 and 11 atom supercells, all determined by the 
LKKR method. It is evident from these curves that, while the supercell results are 
converging to the isolated fault results, they do so slowly, with the 11 layer supercell 
displaying distinct differences. Furthermore, two localised states at about 0.208 Ha 
and 0.256 Ha, which appear as singular peaks in the density of states, are clearly 
split in the 5 layer supercell results due to interaction between adjacent faults. 
These particular states are d-like in character, and hence more strongly localised 
than similar states in free-electron-like metals, such as aluminium, which would 
require significantly larger supercells. Of course the effects of boundary conditions 
can be overstated, and integrated quantities such as the full density of states and 
total energy are significantly less sensitive than these K resolved density of states. 
For example, consider the case of a free electron gas of density n  in a box or a 
sphere, both of which have the same Fermi energy and energy density, yet which 
have completely different eigenfunctions. However, such trust in the convergence 
with supercell dimensions should be supported by considerable testing, and, for 
magnetic systems, or those where localised states are close to the Fermi energy, 
much care must be taken. Stacking faults in face-centred crystals represent rather 
minor structural perturbations, and similar results as those shown in figure (1.1) 
for grain boundary geometries (Gonis, 1989) display even larger differences and 
poorer convergence between supercell and isolated fault calculations.

Thus the LKKR technique has features which allow the study of complex 
defect systems such as grain boundaries, providing results of similar accuracy to 
the standard bulk KKR electronic structure method. These results not only allow 
the possibility of judging the accuracy of more approximate techniques such as 
clusters or TB, and thereby provide justification for the approximations made, but 
also enable accurate studies of grain boundary electronic structure and chemistry. 
The technique is still, of course, more demanding computationally than TB or the 
EAM, and, for example, in the case of energy minimisation at grain boundaries 
it is envisaged that in the near future these more approximate techniques will
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Figure 1.1 T point densities of states for various models of an intrinsic stacking 
fault in copper calculated with the LKKR technique. The density of states is 
evaluated about the atoms shaded in the diagrams, and structures included are an 
isolated fault, and supercells consisting of 5, 8 and 11 layers, for which adjacent 
faults are illustrated below.
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probably provide coordinates for subsequent studies of the electronic structure by 
the LKKR method. Such an approach was taken for the study of a twist boundary 
in silicon by DiVincenzo, Alerhand, Schluter and Wilkins (1986), and illustrates 
how the various approaches to the energetics and electronic structure of defects 
can complement one another.
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CHAPTER 2. LAYER KKR THEORY

2.0 Introduction
Beyond the application of conventional “bulk” techniques in the supercell 

or slab approach, there have been a number of techniques developed in the past 
for the study of isolated interfaces. This is particularly true for the case of sur
face electronic structure, where experimental results are more readily available for 
comparison to confirm the validity of model theories and new theoretical methods, 
and also to stimulate theoretical studies. Thus experimental techniques such as 
angle-resolved photoemission (Feuerbacher, Fitton and Willis, 1978), X-ray pho
toemission (Brennan, Stohr, Jaeger and Rowe, 1980) and field emission (Plummer 
and Gadzuk, 1970) may provide direct evidence of the surface electronic structure 
through the identification of transition states or of the surface potential through 
energy loss analysis. Low energy electron diffraction (Pendry, 1974) can be used 
to determine surface atomic structure, both providing input to theoretical calcu
lations and challenging theory to explain the observed reconstructions and relax
ations. Only recently have experiments begun to probe the structure of internal 
interfaces with similar accuracy (Fitzsimmons and Sass, 1988,1989; Taylor, Majid, 
Bristowe and Balluffi, 1989; Majid, Bristowe and Balluffi, 1989).

The overriding difficulty to be overcome in theoretical calculations is the re
duction in translational symmetry incurred by the interface. However, as a conse
quence of electronic screening, the distance over which the effective potential differs 
significantly from the bulk is usually small (typically a few atomic layers within 
a metal), and a number of approaches have taken advantage of this behaviour. 
In this Chapter the theory behind the layer KKR method for determining the 
electronic structure of systems characterised by two dimensional periodicity, such 
as isolated grain boundaries, surfaces, and stacking faults, will be presented.
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Wavefunction matching was originally employed by Lang and Kohn (1970) 
in studies of the jellium surface. The crystal potential was replaced by a posi
tive uniform background potential truncated at the surface and the free electron 
wavefunctions matched to vacuum solutions integrated through a self-consistently 
determined surface barrier. Various electron densities were studied as models for 
the simple metals and perturbation theory used to include the weak pseudopoten
tials. In their alternative wavefunction matching method Appelbaum and Hamann 
(1972) took proper account of the crystal potential using pseudopotential theory, 
matching the bulk Bloch states in amplitude and derivative at some plane within 
the solid to states integrated through the surface region and into the vacuum. This 
approach was also self-consistent, but neglected the presence of surface states and 
evanescent waves. Difficulties have been noted with this method (Wachutka, 1987; 
Inglesfield and Benesh, 1988) from the need to match an infinite number of Bloch 
states within the 2-d surface Brillouin zone. A similar wavefunction matching was 
followed by Holzwarth and Lee (1978a,b) with their spherical wave approach, ca
pable of studying transition metals, where the coefficients of the spherical wave 
expansion were determined by requiring wavefunction and derivative to be every
where continuous, matching to the normal modes within the solid. This method 
was not made self-consistent and is prone to the same difficulties as that of Ap
pelbaum and Hamann.

Ultimately wavefunction matching is not a suitable basis for the study of 
surface and interfacial electronic structure due to the highly sensitive nature of the 
wavefunction to the crystal potential and boundary conditions and since it actually 
contains more information than is usually needed (Heine, 1980; Inglesfield, 1982). 
In this respect the Green function, being directly related to the local density of 
states, is a far more suitable quantity, and has been the focus of many studies.

A basis of localised orbitals has an advantage in the study of defects in that 
the matrix elements connecting sites have a natural cutoff with distance, limiting 
the effects of the defect to a small subspace of the Hamiltonian. A number of 
techniques have taken advantage of this, particularly for surface studies. Mele and 
Joannopoulos (1978) formulated a general solution to this problem for the case of a 
surface and demonstated its application within an empirical tight binding model of 
GaAs. Within the approach presented by Lee and Joannopoulos (1981a), match
ing of wavefunction across atomic layers is achieved through a transfer matrix, 
from which the electronic structure may be determined. The tight binding formu
lation was also adapted to give the Green function (Lee and Joannopoulos, 1981b). 
Pollmann and Pantelides (1978) and Schmeits, Mazur and Pollmann (1983) have
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developed scattering theoretical Green-function-based methods for tight bind
ing models of semiconductors. Also closely related to these latter approaches is 
the tight-binding muffin-tin orbital approach of Lambrecht and Andersen (1986), 
whilst a Green function-transfer matrix method for transition metals has been de
veloped by Falicov and Yndurain (1975a,b) and used in a number of studies such 
as the magnetisation of Ni surfaces and interfaces with Cu (Tersoff and Falicov, 
1982). The Green function may also be determined directly by the method of mo
ments (Cyrot-Lackmann, 1969) and the recursion method (Haydock, 1980; Heine, 
1980) without recourse to the wavefunction. However, none of these approaches 
are self consistent in a satisfactory way, as well as suffering from the usual problems 
of tight-binding studies of the choice of suitable matrix elements.

Inglesfield (1971,1978,1981) and Garcfa-Moliner and Rubio (1969) have de
veloped a method by which the Green function for a composite system Ga+b is 
obtained from those of the isolated parts Ga and Gb v ia  some matching conditions 
upon the plane separating A and B. Thus the Green function for a surface may 
be determined from that of the solid and the free space Green function. These 
ideas are independent of the basis set chosen, and Inglesfield and Benesh (1984; 
also Benesh and Inglesfield, 1984) have chosen to implement this method within 
the linearised augmented plane wave basis, enabling the full crystal potential to 
be incorporated, and where an energy-dependent, complex, non-local potential is 
added to the Hamiltonian for the surface region. This embedding correction takes 
the form of the bulk Green function evaluated on the surface separating the sub
strate from the surface region. Applications of this fully self-consistent method to 
Al(00l) and Ni(00l), where the embedding plane is taken to be one or two atomic 
layers from the vacuum, have illustated the benefits of correctly incorporating the 
surface boundary conditions.

Finally, two other defect calculations demonstrate the power of Greens func
tion in studies of isolated defects. In studies of magnetic impurities (Podloucky, 
Zeller and Dederichs, 1980 and references therein) a KKR-based muffin-tin model 
has proven especially successful for studing 3d impurites in metal hosts, with the 
embedding Green function determined from the host atom scattering properties 
and structural Green function, which need only be determined once. This is im
portant in terms of self-consistency, since for each subsequent iteration the defect 
Green function and charge density may be rapidly determined, and likewise when 
studying different impurities in the same host. Finally, Feibelman (1985) has pre
sented a method for the study of isolated impurities adsorbed upon a substrate 
surface employing a localised basis coupling to the clean surface Green function.
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The approach taken in this work is related to the multiple scattering theory 
of low energy electron diffraction (Pendry, 1974), a technique used for the deter
mination of surface structure, where electron states within the solid are matched 
to an incident plane wave and the resultant scattered wavefield compared with ex
periment. The application of the technique in the area of electronic structure has 
previously been noted for determining band structures (Wood and Pendry, 1973) 
and studies of surface states (Gurman and Pendry, 1973). Green function multi
ple scattering formulations have been given by Noguerra, Spanjaard and Jepsen 
(1978) for the interstitial region at surfaces and Maca and Scheffler (1985) also for 
surfaces, but neither approach has included self-consistency nor been applied to 
the general interface problem. The formulation of Wachutka (1987) also has some 
similarities too with the layer theory presented here.

We consider in this Chapter the evaluation of the one-electron Green function 
for systems characterised by two-dimensional translational periodicity. Chapter 3 
deals explicitly with the determination of the electronic structure from the Green 
function.
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2.1 Notation
The following notation and conventions are observed in the remainder of this thesis. 
Atomic units are employed in which

h2 =  me =  e2 =  1 (2 .1 .1)

The units of energy are, unless stated, the Hartree (Ha) and of length the atomic 
unit (au) (Bohr radius)

lHa = 27.2116 eV 1 au = 0.529177A (2.1.2)
The energy variable E is assumed to be complex and it is convenient to introduce
k  = \/2E.

Vectors are denoted in bold: r = (r, 0 , <f>) = (r, fi) with the volume element 
dr = r2drsin0d$d<£. Two dimensional vectors are further indicated with the 
parallel subscript , e.g. k||, where confusion may arise. Lattice vectors Rn may 
refer to a two or three dimensional lattice.

Y l ( i *) = Yl(M ) is a complex spherical harmonic (Condon and Shortley 
phase — see Pendry, 1974) of order L = ( t ,  m )  where t  is the principle and m  the 
magnetic quantum number. The complex conjugate of the harmonic is denoted 
Y£(r) but should always be determined v ia  Y£(r) = (—l)mY^_m(r). j (̂z) (n (̂z)) 
is a spherical bessel (neumann) function and h^(z) = j (̂z) + m (̂z) a spherical 
hankel function of the first kind. An undertilda denotes a matrix in the angular 
momentum representation which, for operator A(r,r'), is defined by

Al l ' =  - 2 t /c  J  Y £(r)j*(/<T )A (r,r')j£'(/cr')Y L '(r')drdr' (2.1.3)

The L label is also used to denote the partial wave basis which is (£, m, n) with n 
a site label. The free space propagator Go(r',r;E), the solution of

( - |v 2 -  E)Go(r',r;E) = -*(r' -  r) (2.1.4)
has the angular momentum expansion

G0(r',r;E) = G0(r' -  r;E) = - 2 i ‘/ c ^  Y L (r, )j£(/cr<)h[1)(/cr> )Y L (r) (2 .1 .5)
L
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where r< = min(r,r') ,r> = max(r,r') and the angular momentum representation 
of the translation operator G(R) satisfies

-  R))YL(r -  R) = £  GLL.(R)j£,(/cr)YL.(r)L'
Gll-(R) = 4 ^ ^ t J- £' - ,!"h(;..(KR)Y£„(-R) / Y L(n)Y£,(n)YL..(n)dn t2-1-6)

for R > r. Unit cell volumes are denoted by t  and the volume of the interstitial 
region outide the muffin-tin spheres is denoted by rint. The volume of the Brillouin 
zone is denoted by in three dimension and area f22bs in two. The area of the 
two dimensional unit cell is represented by A.
2.2 Muffin-tin approximation
As in the original formulation of KKR theory this work adopts a simplification 
almost universally employed within multiple scattering theories, the muffin-tin 
(MT) approximation. In this approximation the crystal volume is partitioned 
into non-overlapping spheres, usually centred upon the atomic sites. In the case 
of elemental solids the radius of the sphere would normally be half the nearest 
neighbour distance, whilst for materials with many atom types, the choice of sphere 
radii is more arbritrary, and usually chosen to maximise the occupied volume or 
charge within them. Within the spheres the potential is replaced by its spherical 
average, and in the interstitial region by its volume average. Energies are defined 
with respect to this to constant, which is thus taken to be zero.

Scattering by a bounded potential region may be characterised by scatter
ing phaseshifts, or a transition matrix, which for the general (non-relativistic) 
case may be determined from the solution of the (£niax + l)2 coupled 2nd order 
differential equations (Evans and Keller, 1971).

_l_d_
r2 dr

1 ( 1 + 1 ) -  k 2 <I>lW + 2Voo(r) <Mr) =
_  2 (1 -  6l"oo) CLrL"VL''(r)<£L/(r)

L 'L "
(2.2.1)
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(2.2.2)

V(r) =  £ > L(r)YL(r)
L

$ (r) =  H ^ LWYL(r)
L

C l -l "  =  /  Y£YL,YL.-dn

Within the MT approximation the coupling term on the right of (2.2.1) is zero and 
the scattering properties may be determined from just £max +1 uncoupled differen
tial equations, a considerable simplification and correspondingly faster proposition 
than the full solution of (2.2.1). Despite the discontinuity in the potential within 
the MT approximation it may be shown that the wavefunctions and hence the 
charge density are continuous throughout all space (Treusch and Sandrock, 1966).

Constraints upon expansions of the free space translation operator (see equa
tion 2.1.6 for example), lead to difficulties when attempting to generalise multiple 
scattering theories to full cell potentials, that is, those in which the potential takes 
its correct form throughout the unit cell. A number of studies (see Molenaar, 
1988, and references therein) have attempted to address this point and formulate 
the solution to this problem, and there is some dispute as to whether or not such 
extensions retain the benefits of MT KKR theory, with a separation of potential 
and structure, or whether so called “near field corrections” exist when the bound
ing spheres of the full cell potential overlap. Recent work (Molenaar, 1988; Gonis, 
1986, Gonis, Zhang and Nicholson, 1988) has swung the balance of opinion to
ward the absence of these corrections, and at the very least they have never been 
observed within the accuracy of current calculations. In the context of this work, 
the absence or negligible contribution from near-field corrections imply that the 
substitution for the atomic scattering operators t of non-diagonal cell t-matrices 
would effect a full potential solution to the interface Green function. The use of 
a non diagonal t-matrix but which only included any non-sphericity within the 
muffin-tin potential would not involve these uncertainties, but the largest error 
within the muffin-tin approximation arises from the poor treatment of the inter
stitial region (Williams and Morgan, 1974; Koelling, Freeman and Mueller, 1970).

The justification for the muffin-tin approximation lies with the accuracy of 
the results obtained with it. Fortunately the development of techniques incorpo
rating the full crystal potential enable us to make this judgement without making 
recourse to experimental data, and we make make the comparison purely on the 
basis of the solution of the local density equations. It is clear from these com
parisons that, as might be expected, the muffin-tin approximation is best for
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materials where the crystal structure is close-packed and hence most isotropic. 
Thus for FCC, HCP and, to a slightly lesser degree, BCC the essential physics 
is captured with the muffin-tin approximation. For more open crystal structures 
such as the diamond structure the approximation is clearly inadequate. In the case 
of Si there is no band gap within the muffin-tin approximation, although for more 
heteropolar materials with a similarly open lattice structure such as ZnS and ZnTe 
the agreement of calculated band structures with those of full potential determina
tions is surprisingly good (Eckelt, 1967). However it is unlikely that total energy 
calculations employing the muffin-tin approximation would be sufficiently good for 
such materials since first order perturbation theory suggests shift of the order of 
(0| AV|̂ >) in the energy eigenvalues resulting from the interstitial region. A simple 
scheme for reducing the size of the interstitial region is to use “empty” spheres, 
not centred upon an atomic site, but since the overriding philisophy behind the 
LKKR method is the correct treatment of the boundary conditions for accuracy 
and reduced computation, this represents a largely unsatisfactory procedure. The 
calculation time scales rapidly with the number of empty spheres.
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2.3 A single scattering centre
One of the useful features of multiple scattering theory is the ability to build the 
Green function for an arbitrary collection of atoms from the scattering properties 
of the isolated atoms. We start therefore by considering the Green function for an 
isolated muffin-tin potential. The atomic Green function Ga(r',r;E) satisfies the 
inhomogeneous Schrodinger equation for the muffin-tin potential v(r)

( - | v2 + v(r) -  E)Ga(r',r; E) = - 6 ( r ‘ -  r) (2.3.1)
which may also be cast in integral form

Ga(r',r;E) = G0(r',r;E) + J  Go(r',ri;E)v(n)Ga(ri,r;E)dri (2.3.2a) 
=G0(r',r;E) + J  Go(r,,ri;E )t(r1,r2)Go(r2 ,r;E)dr1dr2 (2.3.2b) 

t(r,r') is the t-matrix defined by
t(r,r') = v(r)6(r — r;) + v(r) J  G0(r,ri; E)t(ri,r')dri (2.3.3)

and w e n ote  tj ,L • =  W l l ' is a consequence of th e  spherically  sym m etric p o ten tia l.
Noting that from (2.3.3) t(r, r#) is zero unless both arguments lie within the 

bounds of the potential, initially considering the domain r > r' > Rmt in (2.3.2b) 
and then using continuity statements found by twice integrating the radial equation 
from (2.3.1), it is easily shown that the atomic Green function may be written

Ga(r',r;E) = -4t/c £  Y^(r')Z?(r<; E)Sf(r>; E) YL(r) (2.3.4)
L

w here Zi  (S^) is th e  regular (irregular) radial w avefunction  m atch ing  sm o o th ly  up  
to  first derivative at th e m u ffin -tin  radius R m t  to  th e  free sp ace so lu tion

Zf(r; E) =j£ ( k t )  + tchj,11 (/cr) (2.3.5)S*(r;E) =h^(/cr)
A spin degeneracy factor of two is included in (2.3.4). It should also be noted that 
these equations apply to the non-relativistic Schrodinger equation. Relativistic 
corrections, important for the heavier elements, may be conveniently included 
by the method of Koelling and Harmon (1977) in which the Dirac equation is 
reduced by performing a j  average over the radial equation ( j  is the total angular 
momentum). The spin-orbit interaction is thus omitted, but all other relativistic
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kinematic effects are included, and shifts and band widths correctly modified. The 
inclusion of relativistic corrections, which were used for the calculations on iridium 
presented in Chapter 4, only has the effect of modifying the quantities t i  above. 
These quantities are the (energy dependent) elements of the atomic t-matrix and 
are most conveniently found from the scattering phase shifts Si:

11 = i  sin S ie t6t (2.3.6)
These may be determined from the logarithmic derivative of the wavefunction 
R (̂r) found by outward numerical integration of the radial Schrodinger equation 
for the muffin-tin potential.

e2 i s t _ h f 'M  -  Lg(r)hj.2|(>cr)

L,W .  g g  (2-“ )
The prime denotes the derivative taken with respect to r. The definitions (2.3.5) 
differ slightly from those of other workers which usually include a phase resulting 
in real wavefunctions at real energies. As will be shown later it is both desirable 
and necessary that complex energies are employed within the layer formalism.

The t-matrix (2.3.6) characterises the scattering by the muffin-tin poten
tial, and provides a natural truncation of the localised partial wave basis. Figure
2.1 illustrates the magnitude of the t-matrix at band energies for various metals 
determined from self-consistent bulk potentials. In each case it is evident that 
the magnitude drops rapidly beyond i  = 2. For aluminium, typically considered 
a free-electron metal, the largest contribution arises in the s and p  scattering 
channels, although l  = 2 becomes increasingly important as the energy rises. In 
nickel we see the dominant contribution is due to the i  = 2 electrons with a sharp 
resonance, typical of the transition metals, at about 0.275 Ha, and a significant 
contribution form the s  scattering. Finally BCC niobium displays a much broader 
resonance in the d  channel and has significant contributions from both s and p  
electrons. For all three metals it is sufficient (and necessary) to include s, p  and 
d  electrons in the computations to capture all the essential physics, that is, to 
be able to understand the origin of structural and electronic properties, although

(2.3.7)
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Figure 2.1 Energy dependence of the atomic t-matrices for aluminium, nickel 
and niobium.

the wavefunctions and charge density require larger values of £, maybe 4-7, to be 
continuous throughout the unit cell.

We now derive a general expression for the Green function of an arbritrary 
collection of muffin-tin scatterers, and which will be employed within the layer 
formalism. As in the atomic case the Green function is defined by the integral 
equation

G(r',r;E) = G0(r',r;E) + J  Go(r',ri; E)v(n)G(r!,r; E)dri (2.3.9)
but the potential now comprises a sum of non overlapping muffin-tin potentials 
v(r) = X3nvll(lrnl) centred at the points Rn. We define r„ = r — R„. We are 
interested primarily in so called “single site” properties such as the local density 
of states, as against non-site-diagonal properties which arise in alloy theory such 
as the successful Coherent Potential Approximation (CPA) (Faulkner and Stocks, 
1980; Temmerman and Szotek, 1987), and we will restrict our attention to an 
expansion of G(r',r; E) where both r,r' are centred upon some site a. We start by 
introducing the scattering path, operators which play a central role in the layer 
KKR theory and provide a convenient formalism for manipulating the multitude 
of scattering paths throughout the crystal. In much of the following we suppress 
the energy label for clarity.
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2.4 The scattering path operator
The original idea to partition the scattering events v ia  the scattering path operator 
can be traced to the work by Beeby (1968), although it was Gyorffy (Gyorffy and 
Stott, 1973; Gyorffy, 1972) who generalised the concept to the single site-operators 
used here, and we start by outlining the properties of these operators.

Adopting formal operator notation for clarity we may rewrite what may be 
taken as the defining equation for the atomic t-matrix (2.4.3) of site n as

tn = vn + vnG0tn = [1 -  vnG0]_1vn (2.4.1)
and by direct analogy the t-matrix for the multi-centred scattering cluster may be 
written

T = V + VG0T V = £ v “ (2.4.2)
11

It follows from (2.4.1) and (2.4.2) that we may express T as a sum over site 
operators rmn in the following manner:

T = E v” + E  v'' GSPjj>m = 5 > I,<5'"'>+ v“ E  Go,prpm] = E  r"m (2-4-3)
ii iipm  nm  p m n

Gq1111 denotes Go(rn,rm;E) and Gj}n = Go- The rnm operators introduced here are 
referred to as scattering path operators (SPO) and may be expressed completely 
in terms of the atomic t-matrices and the free particle propagator:

r“  = v " 6 nm +  v" GgPrpm
P

_,.n  r  i , riir^ n n _ m n  . ,_n \  '  p n p  pm
= V  0lun +  V  G 0 T +  V  2_̂  ^ 0  7

P ^ n

=[1 -  vuGg',]“ lvn(5nnl + [1 -  v”GS“j-1vn Y l  G{Jprpm
P5^n

=t,,5nm + t" E  Go’P’-P,“ (2.4.4a)
P ^ n

This equation has a simple interpretation within the scattering formalism. rnm is 
the operator which transforms a wave incident upon site n into an outgoing wave 
from site m, including all possible scattering paths in between. Equation (2.4.4a) 
is then simply a self-consistency requirement, that waves scattered from n to m 
are those scattered from p to m following scattering at n, plus a single scattering 
at n when n = m. Propagation between scattering events is given by Go, the free 
particle propagator. An alternative form for (2.4.4a) which may be obtained by
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repeated iteration and resummation and which is also useful in multiple scattering 
manipulations is

r111,1 = t11̂ ,,, + ^ 2  r“pGgmtm (2.4.4b)
These two equations (2.4.4a,b) are commonly referred to as the equations of motion 
(EOM) of the SPO’s.

In the presence of translational symmetry (in one, two or three dimensions) 
the site labels designating the positions of scatterers may be relabelled Nn with 
N labeling the unit cell and n the atom within it. This atom is then located at 
Rnu with the unit cell origin at Rn. It is clearly the case that the SPO rN,,Mm 
must depend only upon the relative difference of its unit cell labels N and M, since 
a displacement of both by some lattice vector results in an identical situation, 
and hence we may define a lattice Fourier transform and corresponding inverse 
transform

=  —  f  rnm(K)e4‘K(RN~RM)dK 
n b i  J Q bz

(2.4.5)
^  7.N nM m e - iK - ( R N - R M )  
NM

(2.4.6)
where we use K as a generic variable to designate the appropriate reciprocal space 
variable for one (k), two (k||) or three (K) dimensions. The EOM (2.4.4a) may 
then be Fourier transformed, yielding

r1,m (K) = t”5nm + tn^  g"P (K) rpm (K) (2.4.7)
P

with gmn (K) the Bloch Green function given by
g“m(K) = £  (1 -  W „m ) G°”M“e<KR» (2.4.8)

M

We now consider the situation where the scattering sites may be partitioned 
into sub-spaces within which the scattering paths may themselves be summed. 
The situation we have in mind may be, for example, two layers whose scattering 
properties as isolated entities are known and which we wish to combine, thus form
ing a composite layer whose scattering properties we wish to know. We therefore 
relabel the sites ij to indicate site i in subspace J, and assume Ni sites in subspace 
I. The EOM becomes

ri,ij = + t1' £ ( 1  -  «ik5IK)Gj)'kKrk«" (2.4.9)
kK
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w h e r e  for  e a ch  su b sp a ce

r l =  Tn n  = t%  +  t1' ^ ( 1  -  <5ik)G‘'k'rk'i' = ([(tj)"1 -  G"] i y  (2.4.10)
k

with (tj)1 = t11 and
[GS, )» = (1-^,4,)Gid* (2.4.11)

Then if rIJ is a sub-block of the full transition matrix of the composite system 
whose site dimensions are Nj by Nj we have

[i-l j ]y =  ( t i ) 1̂  +  ( t i ) ! 5 3 ( 1  -  ^ k ) G i,k ,j-k iij
k + (ti)1 E  Go'kKrkKjj

kK*I
([l -  ^Gq1] r I J ) 1 = (tiJ^ij^j + (ti GqKrKJ)lj (2.4.12)

K Î
and hence we find that the subspace scattering path operators obey an identical 
equation of motion to the site SPO with the replacement of the site transition 
matrices with the isolated subspace SPO and the introduction of new propagators.

Tu =  n S u  +  r, 53 GjKrKJ (2.4.13)K Î
Finally we will find it useful in the course of this Chapter to also use the 

SPO’s introduced by Beeby which we may write as
rm = 5 3 Tnm (2.4.14)

11

and which may be viewed as an operator which sum all scattering paths ending 
with a scattering event at site m. One can simply show from (2.4.4a) that the 
EOM for this operator is

rlu = f" + tm 53 Gq"11 r„ (2.4.15)
111̂11

In the presence of translational symmetry both (2.4.14) and (2.4.15) may be 
Fourier transformed along the lines of (2.4.5-8) to yield K-resolved EOM’s.
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2.5 Full Green function
We now use the SPO formalism of Section 2.4 to obtain an expression for the 
Green function of an arbritrary collection of scatterers. In particular, we wish to 
solve

G = Go + GoTGo (2.5.1)
and find an expansion of G valid about the site a .  Manipulating T in terms of the 
SPO and introducing

T““ = 52 rDm (2.5.n^a m?£a
we obtain

E 7.11111 _ E Tnm  + 5 2 Tna + 52 ram + Ta amu n?£a n T̂a ni9£am^a
rpaa + E 7.11111Ggiata + E t“G g n r nm + ta + t a E  GoPpP“n^a 119̂  a P 9̂ «tn?£arpaa + rpaaG0ta + taG0Taa + ta +  t a G 0 T a a G 0 t a

=ttt + (1 + taG0)Taot(l + G0ta) (2.5.3)
Thus, combining (2.5.2) and (2.5.3) and identifying Go H- GotaG0 as the atomic 
Greens function for the muffin-tin potential at site a  we arrive at

G = Ga + GttTautGa (2.5.4)
A final expression convenient for calculating the Greens function can now be ob
tained using the the EOM’s (2.5.4a,b) to express T**" in terms of the site diagonal 
elements of the SPO’s.

52 Tam  =  t“ 52 Gjprpn’ raa =  t“ +  52 r“pGgat“ (2.5.5)
m?£<x n i# a  p ^ ap̂ a

and hence
G0T“aG0 = (tar l 52 romG” a = (ta)_1 [Taa -  ta] (t“)_1 (2.5.6)m^a

We thus obtain the following expression for the Green function (including a spin 
degeneracy factor of 2)

G(r,r';E) =  -  4 ^ 5 2  Y£(r)Z?(r)S?(r')YL(r')

-  4««52 Y£(r)Zf (r)r£L,Z?(r')YL,(r') ^
L L '
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w ith  th e  m a tr ix  e le m e n ts

raL L ' (2.5.8)
This expression corresponds to equation 2.18 of Faulkner and Stocks (1980) with 
the differing definitions of wavefunctions and atomic t-matrix. The form of (2.5.7) 
makes it evident that Schrodingers equation is satisfied, whilst the presence of the 
atomic Green function evidently satisfies the additional requirements of the source 
term in the defining equation (2.3.1). The determination of the Green function is 
now reduced to evaluating raot, the site diagonal SPO.
2.6 Site diagonal elements of the scattering path operator
Manipulation of the EOM’s (2.4.4a,b) yields an expression for the SPO in the form

_ am T (2.6 .1)

T = «1 - S *] g)“  (2.6.2)
However, this matrix, which needs to be inverted, has the dimensions Ns(4nax+1)2 
by Ns(̂ m«a: + l)2 which quickly becomes unmanageable for more than a few sites 
Ns, even after allowing for the use of symmetry to reduce its size. Hence this 
can only be used for small clusters of atoms (Durham, Pendry and Hodges, 1982), 
typically 10-20 depending upon the degree of symmetry present.

For bulk systems we can use instead the K resolved EOM (2.4.7) and (2.4.6) 
to obtain Taac since the site dimension is restriced to the number of atoms within 
the unit cell.

r «

nni

ra“(K )d K -l
bz

( r ) - i
(2.6.3)

(2.6.4)
This represents the complete solution in the presence of three dimensional period
icity.

The problem we have set out to solve is more demanding however. We have 
translational periodicity in two dimensions and so we may use the Fourier trans
formed EOM, but in the third dimension we have two semi-infinite half spaces and 
so the site dimension of the matrix to be inverted is still infinite. We will now 
obtain the solution to this problem by determining the site diagonal elements of 
the SPO for an embedded layer.
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Figure 2.2 Schematic illustration of the assignment of atoms to planes, planes to 
layers and the left and right half spaces.

plane layer left half space right half space

We consider the solid to be made up of parallel atomic planes, the plane 
passing through the centre of those atoms assigned to it. A layer, illustrated in 
figure 2.2, is a collection of one or more atomic planes which it is convenient to 
group together (and hence may include two or more symmetrically unique atoms). 
The scattering by a single layer may be determined from the Fourier transformed 
equation of motion (2.4.7) which may be solved immediately to give

I ,  = [(t)-l - g ( k | |) p  (2.6.5)
where the matrix elements of g(k||) are given by (see equations (2.1.6) and (2.4.8)) 

[g(k||)]^', = 4jr ^ 2  (1 -  <5j<Am) t<-<'-<"hJ»(/c|R0n -  Rim|)x
L" j

Y£„(R0„ - R im)C^„e<k"RJ«

(2.6.6)
The summation over j is over unit cells within the layer. These matirx elements are 
closely related to the two dimensional analogs of the three dimensional structure 
constants of bulk KKR theory. As written this expression converges too slowly to 
be of practical use at band energies. More suitable expressions are given in Kambe 
(1967a,b;1968;1969) and Pendry (1974), where an Ewald split is used, partitioning 
the sum into two, one in real space and one in reciprocal space.
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The embedded layer problem is such a layer sandwiched between two semi
infinite half spaces whose scattering properties as isolated objects may be deter
mined (Figure 2.3). The matrices characterising these scattering properties are 
referred to as reflectivities, as they determine the reflected wave arising from the 
scattering of an initially incident wave. These half spaces themselves are assumed 
to be made up layers of atoms, and their scattering properties determined from 
the subspace equation of motion (2.4.13) where the individual layers acting as the 
subspaces. In the first instance we assume their scattering properties are known, 
and only after obtaining an expression for the scattering path operator we will 
proceed to determine them explicitly. Finally, from the SPO we may determine 
r a v ia

r  = f ( r ) _ 1 nbl  £a" ( k ii)dkii - 1L **2ba J n 7hz ( T )
-1 (2.6.7)

For clarity we omit the kii label from the operators in the subsequent Sections.

Figure 2.3 Illustration of the embedded layer problem.
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2.7 The embedded layer problem
To derive an expression for site diagonal elements of the SPO in the embedded layer 
problem we find it most convenient to introduce new scattering path operators, 
more in the spirit of those originally used by Beeby (2.4.14). We write the full 
transition matrix

T = tl ~ 1 + ri + rR+1 (2-7.1)
where 7̂ sums those paths which end with a scattering event within layer I and 
rL_1 (rR+1) sums those which end with a scattering event within the left (right) 
half space, defined as layers —oo .. .I  — 1 (I + 1... oo). This is clearly equivalent 
to (2.4.3) as it accounts for all the scattering paths through the crystal. The SPO 
for the isolated layer I is denoted Ti and that of the individually isolated half 
spaces LI_1 and RI+1. Subsequent Sections will detail the determination of the 
scattering matrices.

We may write out the EOM for the new SPO explicitly as
Tl ~ 1 =[i + ng +  j£+1g]L1-1 (2.7.2a)

n =[7L- l g + 1 + 7R+1e]'r i (2.7.2b)
*i+1 = [rL-1g + ng + i]RI+1 (2.7.2c)

where we denote all propagators by g for clarity, their exact form dependent upon 
the SPO’s between which they appear. Equation (2.7.2a) states that all paths 
which end with a scattering in the left half space comprise those which are wholly 
contained in it plus those which scatter there having scattered previously in layer 
I or the right half space.

These relations may be manipulated to give
^ - ‘ [1 -  gTigL1-1] = [l +  4 +1g](l +  Tig]LI_1 7
r'+1[l -  gTIgRI+l] =[1 +  r'-'gH l +  Tig]RI+1

which, noting that SPO’s for the isolated half spaces with and without layer I are 
related v ia  the coupling equations to be derived in the following Section

L1 =Tj + [1 + Tig]LI-1[l -  gTigLI-1]-1[l + gT,] 
R1 =Tj + [1 + TIg]RI+1[l -  gT,gRI+1]-1[l + gTij
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w e c a n  o b ta in  th e  fo llo w in g  ex p r e ss io n s  for th e  n ew  h a lf  sp a c e  S P O ’s .

.1-1

rI+1rR.

=  [1 +  Tig] [l +  [1 -  RI+1gTig] 1 RI+lg 
=  [1 +  TIg] [l +  [1 -  LI-1gTig]-1 LI-1g

[1 +  Tig]] LI_1 [l — gR'gL1-1] 
[1 +  Tjg]] RI+1 [1 -  gLIgRI+1]-1

- 1

(2.7.5)
Putting together the relations (2.7.1), (2.7.2b) and (2.7.5) we can thus write the 
full transition matrix for the system comprising a layer embedded between two 
semi infinite half spaces as

T =  Tj +  (1 +  Tig]R*ff [1 +  gTi] (2.7.6)

where we define the effective “reflectivity” of the medium surrounding layer I as
Refi = [l + [1 -  RI+lgTjg]_1 RI+1g [1 + Tjg]] L1- 1 [1 -  gR'gL1" 1]-1

+ [ l +  [ l - L I- 1gTig]"1LI- Ig [l +  Tig]]RI+1 [ l - g L ’g R ^ 1] -1 (2-7J )

(Note this actually includes the scattering matrix of layer I, and so is not strictly 
speaking a reflection operator). The first term in (2.7.6) is the solution for an 
isolated layer (the solution for the usual slab problem), whilst the second term 
represents the correction for embedding in half spaces.

The final step is to identify those elements of the full transition matrix which 
correspond to the site diagonal elements of the SPO Taa appearing in the ex
pression for the full Green function, and where a  represents an atom within the 
embedded layer I. This SPO takes a wave incident upon site a  and transforms it 
into a wave leaving site a, including all possible paths throughout the crystal. It 
thus starts and ends with a scattering event at atom a, and we can quickly identify 
this from (2.7.6) as the site diagonal block

r““ = [Tj + TjgR^gTi] ”  (2.7.8)
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2.8 Half space reflectivities
We now consider the evaluation of the half space reflectivities and subsequent 
evaluation of the effective reflectivity R*ff. Starting with the scattering of a single 
layer, I, which treated in isolation may be obtained directly from the EOM

£ ( kn ) = t e r i -« (kn))"1 {2 .8 .1 )

we can determine the scattering for the composite system of the two (different) 
layers I and I — 1 v ia  the relation (2.4.13). We may then view the resultant SPO 
as describing scattering by a single layer and again employ (2.4.13) to incorpo
rate another layer 1 — 2 into our composite system. Repeated application of this 
algorithm will serve to assemble a slab any number of layers thick and upon the 
assumption that more distant scattering paths are of diminishing importance to 
the electronic properties, we may expect this procedure to converge in the sense 
that the matrix elements of the reflection matrix are affected less and less by the 
addition of subsequent (more distant) layers.

There are some points of note with respect to this procedure. The first con
cerns the dimensions of the reflection matrix, which grow with the number of 
layers in a multicentre basis such as the angular momentum basis centred upon 
each atomic site. Clearly it is impractical to stack hundreds of layers with this sort 
of behaviour. We can get round this by adopting the techniques familiar from the 
standard theory of low energy electron diffraction (Pendry, 1974), transforming 
the localised angular momentum basis within each layer into a plane wave basis 
to treat scattering between the layers. Thus, the reflection matrix R*ff becomes 
an operator transforming an outgoing plane wave from layer I into one incident 
after including all possible scattering by the layers of the system. The number of 
origins is then independent of the number of layers within the stack. Defining the 
plane wave basis vectors as eiK jr
where

Kb =k|| + g ±  ^//c2-  I k|| + g  |a z 
=k|| + g ±  i J | k|| + g  |2 - k?  z

and the ± refers to the direction of propagation, so that the forward travelling 
wave between layers I and 1+1 may be written as

«,+ = ]T aIg+eiKi'-,r-c,> (2.8.4)
g

(2.8.2)

k2 > | k|| + g |2 
/c2 < I kii + g I2 (2.8.3)
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with Ci the origin of layer I, we can define for each layer four scattering operators 
illustrated schematically in figure 2.4

[Tr +]gg- =
[ T n gg, = [r sL lirL- J gg,

[Ti++L ' = [ 1 +  r ^ ' + J gg,
[Ti " ] « - = [ 1 + r i2 « r u ] „ ,  (2-8‘5)

Figure 2.4 Pictorial representation of the layer transmission and reflection matri
ces of equation (2.8.5), and those resulting from the composite scattering system of 
layer 1 + 2. In all cases the origins of the expansions of the incident and scattered 
plane wave are indicated by the dark circle.

♦z

¥
>

T’+4/+

^ ............► ~ * r  t ¥
T+-xp-
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where r^L converts from the plane wave to the partial wave basis, and T̂ g converts 
from the partial wave to plane wave basis:

[r± ]EL „= 4,r,VKj'R0"YL(Kt)
. - , K ? R ,

*A(Kg)i Yl(K^) (2 .8.6)

Ron corresponds to the displacement of site n in the origin at the unit cell. In 
terms of these matrices the layer coupling relation becomes the following four 
equations for the resultant scattering matrices of the composite layer 1 + 2:

=T J+ [1 -  PjhT j - P^1T+] -1 PJT++

=1 7 -  [i -  p rT r+p+T+ - ] _1 p : t 2”
? t .2  =t +  + t ++p +t j -  [ i - p r T 7 +p+T+-]_ Ip rT r"
T rJ =TJ+ + TJ-P-T7+ [1 -  P+T+-P7T7+]_1 P+T++

where the propagators P* are the plane wave matrix elements of the Bloch Green 
function transfering between the origins ci and Ci+i of the plane wave basis be
tween layers I and I + 1.

(c,+1_c,) (2 -8 .8)

Rather importantly, this propagator is diagonal. The reflection matrix T+_ trans
forms an incident plane wave travelling in the + direction into an outgoing plane 
wave travelling in the — direction, and thus has a single origin on the left most 
layer. Similarly T h has a single origin on the right-most layer and reflects an 
incident plane wave travelling in the — direction into an outgoing plane wave 
traveling in the + direction. The transmission matrices T++ and T have two 
origins on the outer layers.

At first sight it might appear that one could implement the above procedure, 
that is, employing a single origin for all incident waves and all outgoing waves, 
entirely within the angular momentum basis. Consequently, the site dimensions 
would not increase when the layer coupling algorithm is performed, as at most only 
a shift in the origin occurs to the last layer added. However, by iterative analysis, 
we can see that repeated application of the layer coupling equations (2.8.7) in
troduces the product of propagators which, in the case of the angular momentum 
basis, are not diagonal (see 2.1.6) and hence troublesome internal summations 
must be performed. Thus the dimension of the partial wave basis is no longer
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determined by the scattering properties of the atoms but more by the geometri
cal structure, since the convergence of the internal summation is dependent upon 
the arguments, which are the vectors connecting origins. Although the site di
mensions do not increase as the iterative layer coupling is performed, the actual 
angular momentum variable must range over larger values, and consequently the 
matrices become unpractically large. Such a formulation would be very difficult to 
implement, and the convergence problems associated with the angular momentum 
basis in a single site representation have been noted in other multiple scattering 
problems. Geometrical propagators requiring up to t  = 14 are needed at band 
energies within cluster codes (Durham, Pendry and Hodges, 1982) and chain scat
tering codes (Pinkava, 1989). In the case of the plane wave basis the propagator 
is diagonal and consequently no internal summations need be performed.

Having therefore developed a practical scheme for coupling the scattering 
properties of the layers, the reflectivity may be determined by repeated applica
tion of (2.8.7), the calculation being accelerated by the layer doubling algorithm. 
First the repeat unit of layers in the half space is assembled by individually cou
pling the layers v ia  (2.8.7), and then this matrix is coupled to itself, or “doubled”, 
a number of times, each time both T ^  and Tlf± in (2.8.7) being set to the matrix 
Tf  *  from the previous “double”. Hence n applications of the procedure stacks 
211 layers rather than n by direct application to the individual layers. This proce
dure is essential for the practical implementation of the method and imposes the 
restriction upon the geometry of the systems which may be studied by the layer 
KKR technique that they possess semi-infinite periodicity, i.e. some repeat unit 
within each half space which enables the layer doubling algorithm to be applied. 
Of course once the reflectivity of this semi-infinite stack has been determined ad
ditional layers may then be coupled v ia  (2.8.7) so that in the vicinity of the atom 
of interest one is free to incorporate any structure desired (with two dimensional 
periodicity). Again this is essential if we are to allow the relaxation of the po
tentials self-consistently in the vicinity of some internal interface, for example. 
Finally, we note that the layer doubling procedure does not necessarily converge 
at real energies since a contribution may arise from the last layer added when the 
scattering path involves propagation to the last layer v ia  a Bloch state, a scat
tering event and propagation back v ia  another Bloch state. Hence it is necessary 
to add a small but finite imaginary contribution to the energy. In the following 
Chapter use will be made of this non-convergent behaviour of the layer doubling 
procedure to determine the 2-dimensional band structure, and the properties of 
the Green function in the complex plane utilised in order to improve the efficiency 
of the calculations.
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Returning to the reflectivity, if represents the scattering matrix for the 
stack of layers I to J, then the reflectivities of the left and right half spaces in
(2.7.7) are given by

L1 = T I+ ,! R1 = T+- (2.8.9)
and from (2.8.7) we see that

L1 = T f+ + T f  Pf.jL1-1 [l -  P(lL1TI+ -Pf_1LI- 
R1 =Tj~ + Tj++P+RI+1 [l -  PI"T f+Pj+RI+l]_l p fx  r (2.8.10)

which are the plane wave analogs of the formal expressions (2.7.4) presented in the 
previous Section. The effective reflectivity matrix (2.7.7) is given by the following 
expression whose origin is within the layer I

-I a fi  _
[ t t e f f - I I I '  —

r u - + r k

P f - i i L 1 ' 1  [ l

r+
i L g +  r L g

- l

gL (2 .8 .11)

P^RI+1 [l -  Pf LIPJhRI+1] 1 Pfr~L-1*0
-ILL '

so that
r™ = T: [1 + R^Tjp (2-8.12)

which completes the derivation of a practical expression for the Green function for 
the layer embedded in semi-infinite half-spaces (MacLaren, Crampin, Vvedensky 
and Pendry, 1989). The following Section details a difficulty with the use of 
this expression which calls for the use of more sophisticated algorithm for the 
determination of the half space reflectivities and embedded layer problem in the 
case of closely spaced atomic planes, such as high-Miller-index planes.
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2.9 Close spaced layers
The plane wave basis used within the interstitial region (constant potential) to cou
ple layers together generally consists of 10-30 beams. As g increases in magnitude 
the z component of the momentum of the basis vector, given by

Kg • z = ±î /| k|| + g I2 - K ?  k 2 <| k|| + g |2 (2.9.1)

has an increasing imaginary component which results in the amplitude of the basis 
vector on the adjacent layer becoming less significant, approaching exp(—cag) for 
large |g| where ca is the z displacement between adjacent layers.

When dealing with closely-spaced layers, however, two factors conspire to 
make the size of the plane wave basis set impractically large. Firstly the z spacing 
between adjacent planes is significantly reduced, so the exponential decay of the 
basis vectors is not so effective. Secondly, for high-Miller-index directions in crys
tals, the reduced spacing between atomic planes is accompanied by an increase in 
the size of the unit cell within the planes (consider, for example, that in elemental 
crystals the volume per atom is constant for all directions), and consequently the 
magnitude of the reciprocal space basis vectors is reduced. Thus the magnitude of 
the nth reciprocal lattice vector (when arranged in order of their sizes) is smaller 
the closer the atomic planes, again conspiring to make the decay to the next atomic 
plane less effective.

We can see this very clearly by contrasting the (111) and (210) direction in the 
FCC crystal structure. For this structure the (111) direction has the most widely 
spaced planes and consequently the layer unit cell has the smallest area. The layer 
unit cell basis vectors may be taken to be a/\/2(l,0) , a/\/2(l/2, \/3/2) where a 
is the length of the cubic face, and the z separation of adjacent layers is a/\/3. 
For the (210) direction which corresponds to the £5 grain boundary which will be 
described later, the basis vectors are a/2(\/5,1), a/2(\/5, —1) with a z separation 
of a/(2\/5). In table 2.1 the quantity exp(—cagxnax) is given for various basis set 
sizes. It is evident that while a basis set of 13 or 19 vectors may be sufficient 
in the case of the the (111) direction (as numerical evidence will illustrate in the 
following Chapter) this increases to near 100 for the (210) direction, and is even 
worse for (310) and other high miller index directions if a comparable degree of 
convergence is demanded. In fact, while the quantity exp(—gmaxCB) provides some 
measure of the basis set necessary, for a direction such as the (210) even more 
vectors, of the order of 500, are actually needed to converge the scattering, due to 
the increasing number of vectors contributing (the number of vectors of length |g|
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Table 2.1
Comparison of the basis vector attenuation at the adjacent layer for the FCC (111) 
and FCC (210) directions for selected numbers of vectors, Ng.

Ng
FCC (111)

Sniax/ (27T/ a) GXp( gmax̂ a) Ng
FCC (210)

Sniax/ (27r/a) exp(-gmaxCa)
1 0 1.00 x 10+° 1 0 1.00 x 10+°
7 Vs/Vs 2.67 x 10"3 3 2/Vs 2.84 x 10“ 1
13 Vs 3.50 x 10-5 7 Ve/s/5 2.15 x 10“ 1
19 2\/8/\/3 7.16 x 10-6 11 V u /V s 9.53 x 10-2
31 2V 14/V 3 1.56 x 10“7 15 2 6.02 x 10“2
37 2>/6 1.91 x 10“8 27 6/\/5 2.31 x 10“2
43 4\/2 1.22 x 10“9 57 v /m /v ^ 6.94 x 10“4
55 2 y /2 6 0.53 x 10"9 103 6\/l4/\/5 7.48 x 10~7

scales as g). More numerical evidence for this behaviour will be presented in the 
next Chapter.

The layer doubling equations (2.8.6) involve matrix inversions and so the cal
culation time to determine the reflectivities and hence Tgi/ (2.5.8) scales approx
imately with the cube of the number of plane wave basis vectors. An alternative 
approach which can reduce the size of this basis set can therefore extend the cal
culations which may be performed. Indeed it is in no way practical to look at 
structures such as grain boundaries with the conventional technique. One might 
naively assume that by assigning more planes to each layer, one can increase the 
distance between scattering events performed within the plane wave basis. Thus 
at the cost of a larger partial wave basis one can reduce the dimensions of the plane 
wave basis set. In figure 2.5 for example we have a situation in which all planes are 
identical. The simplest partitioning is to assign one plane to each layer, so that 
the distance between adjacent plane wave origins in the z direction is z • Rab- In
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the event that this results in a plane wave basis too large to be practical, we could 
instead assign two planes to each layer, doubling the z distance between plane wave 
origins to z-Rac> and hence the basis set vectors will decay further. However, this 
is not the case, because we must consider the actual propagation of the partial 
wave from B to C. This is given by the product r J gP+r J / and the exponential 
factors in the T’s exactly cancel the benefits of this increased separation.

r + p+r+ ~ e-*Kj.RBAe*Kj.(ci+i-ci)
Lg gL

~  e * K + . R CB

where Rba is the vector to site B from A, and (cj+i — Cj) = Rca* There is no 
benefit in assigning two planes to one layer in the form of a decrease in the required 
size of the plane wave basis; in fact, a consequence is the increased partial wave 
basis which significantly increases the time for the evaluation of the intralayer 
scattering matrix T.

Figure 2.5 The structure discussed in 
the text which does not benefit from 
the partitioning of more planes to each 
layer.
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In some cases the assignment of more planes to a layer is beneficial, when not 
all layer spacings are small. In this case those planes which are closely spaced may 
be assigned to a single layer and the shortest scattering performed within the plane 
wave basis will be across a layer spacing which is reasonably large. Hence in the 
situation illustrated in figure 2.6, assigning two planes to one layer is beneficial due 
to the increased plane wave scattering path. However, when all spacings are close 
such as the (210) direction of an fee crystal, the non-coplanar layers or combined 
space methods (Van Hove and Tong, 1979) are not sufficient.

Figure 2.6 The structure discussed in the text which does benefit from the parti
tioning of additional planes to each layer, due to the varying inter-layer separation,
a). Each layer consisting of a single plane, and the shortest scattering path treated 
in the plane wave basis b). Two planes assigned to each layer, and the resulting 
shortest scattering path to be treated in the plane wave basis.

a) b)

The solution to this problem presented below (MacLaren, Crampin and Vve
densky, 1989) is very simple in philosophy, although it will be evident that in 
practice the solution is somewhat complex. The plane wave basis is significantly 
reduced so that, for example, only 5 vectors are typically needed for the BCC (100) 
direction (previously about 30) and 15 for FCC (210) (previously about 500), and 
consequently an overall increase in efficiency in achieved. The fundamental idea 
is to treat scattering between adjacent layers within the localised partial wave ba
sis and between more distant scatterers in the single site plane wave basis. This 
avoids any problems with uncontrolled internal summations within the angular
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momentum basis since scattering paths across layers are assembled with a diago
nal propagator.

As in the presentation of the conventional approach we first consider the 
embedded layer problem and then determine the reflectivities.
2.10 The embedded layer problem for close spaced layers
We first derive an expression for the site diagonal elements of the k|j resolved 
SPO about some atom embedded between semi-infinite half spaces. Once again 
we assume that we know the reflectivities characterising these half spaces, and 
leave the details of their calculation to subsequent Sections. However, we assume 
for convenience that the origin of the reflection matrix RI+1 which describes the
reflectivity of the stack of layers 1 + 1 ,1 + 2 ,........,oo is upon layer I, as is that
of the reflection matrix L1-1 of the stack of layers —oo,........ ,1— 2,1—1 (figure
2.7). This results in a considerable simplification of notation.

Figure 2.7 a). The embedded layer problem for the close-spaced layer case. b). 
The location of the origins of the half spaces (indicated by black circles) for the 
close-spaced layer case.
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Previously the reflection matrices acted upon plane wave states, for exam
ple a wave leaving layer I £  agetK« lp-Cl) was reflected into an incoming wave 
Eg V * K| *P"CI' by the right half space, where bg = a>gfPĴ [RI+1]ggfP^f. 
We now include the additional possibility that the reflection matrix may convert an 
outgoing plane wave into a incoming partial wave, and v ice  v e rsa . Consequently, 
we introduce the notation, that the operator Als acts to the left on a partial wave 
basis and to the right on a plane wave basis, and it should be noted that the 
subscripts L and g refer not to specific matrix elements but to the actual form of 
the operator. There are now four reflection matrices, illustrated schematically in 
figure 2.8.

Figure 2.8 Schematic representation of the four right half space reflection matrices 
in the close-spaced layer problem. The black circles indicate the position of the 
origins, solid arrows incident waves and dashed arrows reflected waves. The plane 
wave basis is used for scattering paths more distant than one layer, so is positioned 
to the left of the origin, whilst the spherical wave basis is used for scattering 
between adjacent layers, and so is positioned between the half space and the origin.
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Using this new notation, we may solve the EOM for the three SPO’s as in 
Section (2.7) v ia  the formal expressions

r£-l =  [i +  n +  4 + l]L 1- 1 (2.10.1a)
n =  [tI~1 + 1 +  t£+1] Ti (2.10.1b)

rR+1 =  [rL_1 +  n + ! ] Rl+1 (2.10.1c)

Rather than following the previous procedure for the solution of these coupled 
EOM, an alternative route turns out to more transparent, and computationally 
more convenient. This is due to the need to explicitly separate scattering paths 
between adjacent and more distant scatterers so that they may be treated within 
the correct basis set. Manipulating (2.10.1a,c) we obtain

= [l + n + [f£-1 + n + i] Rl+1] L1-1
= [1 + n \  [l + RI+1] LI_l [l -  RI+1LI_11 1

L j  L J (2 10 2 )  7-I+1 = [ l  +  n] [l +  LI-l]RI+1 [l — LI_1RI+1] 1 '

which may be used with (2.10.1b) to obtain for ri

n  = 1 + [1 + n ]  [l + RI+1] LI_1 [l -  RI+1LI_l] 1 +
[l + n] [l + LI_1] RI+1 [ i - L I_1RI+1] 1 Ti

=  (l +  [l +  7IjX]TI
= [1 + X] Ti [1 — XTi]-1

(2.10.3)

where we introduce X, which sums scattering by the composite system in the 
a b se n c e  of layer I

X = RI+1 + LI_1+LI_l [l + RI+1LI_1] [RI+1 + R1+1LI_1] +
RI+1 [l + LI - lRI+1] [LI_l + LI- lRI+l] (2.10.4)

Remembering that T * a sums scattering paths both beginning and ending with a 
scattering event at site a  in layer I and noting that no paths in X have an initial
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scattering within layer I, we obtain the diagonal element of the scattering path 
operator as

rTaa = Ti [1 — XTi]-1] (2.10.5)
We now take matrix elements with the philosophy that no scattering between 
adjacent scattering planes may be permitted within the plane wave basis set and 
obtain the following expression

- I / - K l 1 +  I i

L^ 1 + L^ lRS 1] Ii]
a a (2 .10.6)

The initial scattering event occurs within the layer, and Tx sums all possible scat
tering paths within the layer before emerging from the layer as a partial wave. Now 
consider the term within the outer square brackets. The outgoing partial wave will 
next scatter within one of the two half-spaces. The first term [Rjj1 + L ^ 1] Tx 
sums paths in which this wave scatters within each half-space and returns immedi
ately to layer I. This scattering is performed in the partial wave basis as it occurs
between adjacent scatterers. The next term, L̂ ” 1........Tj sums paths which first
scatter within the left half-space, and then undergoes multiple scattering between 
the right and left half-spaces. The initial scattering in performed in the partial 
wave basis, as layer I is adjacent to the left half-space, but the waves leaving the 
left half-space emerge in the plane wave basis, as they will next scatter within the 
right half-space which is more distant. The multiple scattering between these two 
is likewise performed in the plane wave basis. Following the half-space multiple 
scattering the waves are re-incident upon layer I, and the terms + ^gg-^gL1 
ensure the final scattering from each half-space results in partial waves incident 
upon the layer, within which the final scattering occurs, since again the next scat
tering is between adjacent scatterers. The next term in (2.10.6) is the same as 
the last, but with the first scattering after leaving layer I in the right half space. 
Finally, taking the inverse ensures m u ltip le  scattering between layer I and the two 
half spaces, in the usual way.
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2.11 Half space reflectivities for close spaced layers
In order to determine the reflectivities we consider initially the problem of adding 
an additional layer to an already assembled stack, and then present a similarly 
motivated procedure as the layer doubling algorithm for a more rapid assembly
than this linear stacking technique. We need initially to obtain expressions for
the single layer scattering matrices, coupling incident plane or partial waves to 
outgoing partial waves. In terms of the layer transition matrix T these are

T?g+ =P+ r£ T r+  p+ T t i  =P+ rgLlr LgP~
Tgg =P Tgg+ =PTg_L i r + p +
T+l+ =P+r+TG+ T+iT =p+r+TG -
TgiT = P T g-LTG- Tg-L+ = p - r ;LTG+
T++ =G+Tr+P+ T+- =G+Tr-gP- (2.11.1)
T-g- = G - T T Z S V - TC+ =G-Tr+gP+
T++ =G+TG+ T+- =G+TG_
T£l =G-TG- t ll =G-TG+

schematically illustrated in figure 2.9. The propagators G± appearing in (2.11.1) 
are the angular momentum Bloch free space propagator given by

[ ^ ( k l l ^ L n L ' m  =  ( ^ ( R o m  “ R j n  +  C j  -  Ci + 1 ) )  etk" Rj (2.11.2)
J

where the summation ranges over layer unit cells. Note that the definition of the 
matrices (2.11.1) are such that those coupling to partial waves have site dimensions 
of the number of atoms within the adjacent layer. As in the case of the intralayer 
structure constants more suitable expressions for their evaluation may be obtained 
by Ewald split techniques.

The formal solution to the stacking problem is simply that of the two centre 
scattering problem, and is most conveniently expressed as

R1 = RI+1 + [l + RI+1] [l -  TiRI+1]-1 Ti [l + Ri+1] (2.11.3)
We consider here the determination of the right half-space reflectivity only; that 
of the left half space follows in an exactly analogous manner. Considering the 
various possibilities appearing in (2.11.3) for the basis sets between which the
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Figure 2.9 Schematic illustration of the 16 matrices entering the layer “tripling” 
algorithm. See caption to figure 2.8 for more details.
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reflection matrix transforms, we obtain the following four equations which describe 
the relationship between the reflectivity with and without layer I.

K s  =pi+- X r pf-i + pi+- i  [pgL + R’£‘] x
[1 -T .R Lt1]"1! ,  [ r ^  + Rft1] Pf

=p£gp£-iRg£ lpr-i + [g£ + r + p + .R ft1] x
[1- TiR it1] -1 Ti fa . + *IV] pr

=?U Rg£lpf-irSL + PI- p£l + Kt\
[i- T rR L tT 1I i [Gr + RL+glprpg"L

__p +  p +  p l + l p -
~ 1 Lgr I - l n 'gg r I-- t p gL + [g+ + r+ p+

[i- I i R l t T 1Ti K *L+glp r r gL

(2.11.4a)

(2.11.4b)

(2.11.4c)

(2.11.4d)

Taking (2.11.4c) as an example, we have the first term which sums all paths which 
do not scatter within the added layer. R^L reflects an incident plane wave into a 
partial wave, and hence assumes the incident wave is more distant than one layer 
spacing. Thus this first term scatters in the plane wave basis, with the resultjprojected into the spherical wave basis. In the other term the initial scattering

accounts for all scattering paths initially incident uponevent Pi-i r- + RI+11 sL + ^gLthe additional layer, so counts the direct path or those after scattering off the half
space behind, for which we return in the partial wave basis as the next scattering 
is on an adjacent layer, [l — TjRl^1] Tj counts the multiple scattering between

iial wave basis as the objects 
considers all possible paths

the added layer and half-space, performed in the par 
are adjacent, and the final factor G* + RL^Pj^TgL 
out of the composite half-space, either directly off the layer in which case the 
propagation is performed in the angular momentum basis, or with a final scattering 
on the half-space, when the propagation is across the layer and hence achieved 
in the plane wave basis. This reflectivity illustrates the important property of 
this solution to the close-spaced layer problem: that all occurences of the angular 
momentum propagator G* are between layer scattering matrices T and products
of the form GG do not occur. Thus the angular momentum basis is truncated by 
the scattering properties of the atoms of the system and not through the need to 
converge internal summations.

These four coupled equations may be used to determine the half-space re
flectivity by initially starting with R, the reflection matrix of a single layer, and 
repeatedly adding one more. However this procedure is too slow converging to be
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of practical use. An alternative method would be to treat equations (2.11.4a-d) as 
a self-consistency relation by setting Rgg = R**1 etc, which defines the reflectivity 
of the half-spaces, and solving the equations by standard matrix techniques, such 
as Newton-Raphson or a simple damped substitution (mixing) procedure. How
ever, experience with layer doubling has demonstrated its usefulness as a technique 
for evaluating the reflectivities, and so we choose to develop a new layer doubling 
algorithm, outlined in the next Section.
2.12 Layer “tripling”
In the normal layer doubling algorithm the reflection and transmission matrices of 
two stacks of n layers are combined to determine the reflection and transmission 
matrices of the composite stack of 2n layers. Between the two stacks the scattering 
paths are summed within the plane wave basis used for all interlayer scattering.

In this new formulation we are assembling layers such that scattering between 
adjacent layers is performed in the partial wave basis, whilst that between more 
distant scatterers is taken into account with the plane wave basis. As a conse
quence we cannot use the same algorithm and stack two layers since, although the 
scattering between the two stacks may be performed in the angular momentum 
basis, we do not explicitly treat in a plane wave basis those scattering paths across 
the two stacks where a scattering event did not occur in one of innermost layers of 
the stacks. Hence we would be using products of angular momentum propagators 
to assemble scattering paths of significant length within our assembled stack, and 
the poor convergence of this basis would prevent accurate determination of the 
reflectivities.

To overcome this problem we assemble the scattering matrices of the half
spaces by repeatedly assembling a stack made from two copies of the previous stack 
sandwiching a single basic unit of the half-space. We may then treat explicitly 
those scattering paths between the half-spaces which include a scattering event in 
the sandwiched layer in the partial wave basis, whilst those across the layer not 
including a scattering event in the layer are treated in a plane wave basis.

The reflection and transmission matrices of the assembled stack are given by 
the general solution of the three-centre scattering problem. We wish to obtain 
various matrix elements of the transition matrix T = t l  + t\ +  t r . where the
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scattering path operators are subscripted by the last object in which a scattering 
event occurred in, and which obey the usual EOM:

Th = [1 + Tj + 7ft] L
n  = [rL + 1 + rR] t  

t r  =  [t l  + n  + 1] R (2.12.1)

L denotes the scattering matrix of the left stack, and R that of the right. In 
the actual tripling algorithm these two scatterers will be the same, but it is more 
transparent to distinguish between them for the accounting of scattering paths. A 
convenient procedure for the solution of these equations is to first determine the 
possible routes by which a wave incident upon the stack scatters and leaves (as 
a partial wave) with a scattering upon the central layer. We will then sum the 
possible paths by which this emmitted wave leaves the stack. We have in general 
two directions of incidence and the possibility of an originally incident plane wave 
or partial wave, so there are four such matrices.

The formal solution for this problem is
n  =  [1 + X]T[l -  XT]"1 (2.12.2)

where X is the operator representing the scattering of waves by the two outer 
stacks in the absence of the central layer, and which occurred in Section 2.11.

X = R + L + L[1 -  RL]_1[R + RL] + R[l -  LR]_1[L + LR] (2.12.3)
The form of X transforming an outgoing spherical wave from layer I into an incident 
spherical wave after scattering between the outer stacks is

X l l  =  R £  +  L l  + t1 -
Rf«"[1 - Lw+Rw ] " 1

RsL + kgL+
L-l+ + L-+R+l-

+
+ (2.12.4)

Thus the scattering paths connecting a plane wave incident from the right to an 
outgoing spherical wave from layer I is

rsL = R gg~ [1 -  L g + R S f ] " 1 [LgL+  +  L - + R j r ]  +

P-L~+ [1 -  R ^ f L ^ r 1 [R+- + R+-L
I  [1 -X x.lt]-1

- T  ~  +gL +

P " L J l+  + R gL_  + P “ r J L

(2.12.5a)
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that summing the scattering paths connecting a spherical wave incident from the 
right to an outgoing spherical wave from layer I is

rL L  — Rl;  [i -  K z + K s T l + l- +r +l-] + 
r Lgp_LgS+ [i -  K i K s T 1 [r ST + +
P L g P  ^ S L+  +  R L L  +  P L g P  P g L T [1 — XllT]- l

(2.12.5b)

that summing the scattering paths connecting a plane wave incident from the left 
to an outgoing spherical wave from layer I is

Tt  = P+R£f [1 -  L-g+R+T1 L-+ + L-+R+- +

Lg+g+ [i -  R?g-Lg-g+] K c + +

p+R^r + LgL+ + p+pgL T [1 -X LLT]-1
(2.12.5c)

and that summing the scattering paths connecting a spherical wave incident from 
the right to an outgoing spherical wave from layer I is

tl l  = p ? g p + R r  [1 -  Lg“g+ R g+g 1 _ 1  [ L gL+  +  L g- + R + - ]  +  

L?g+  [1 -  R ?g-Lg-g+ ] _ 1  [R giT  +  R sg 'L g L + '

l?l+ + r?gp+RgL" + pL*p+r;L S r  1 g L I  [1 -  XLLT]-1
(2.12.5d)

Finally, we now modify these waves leaving the central layer to include all possible 
scattering paths out of the system. We have from (2.12.1) that the full transition 
matrix is given by

T = 7* + [1 + n] X (2.12.6)
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so the sixteen matrices (2 directions of incidence/emergence and the possibility of 
plane wave or spherical) are explicitly

Tg+g+ =  ^ r J BP + - P + P + +
Wg+ +  p + ] [ 1 - R?g-Lg-g+ ] " 1 [R?g+ +  p + ] +

r g+L RJg+ + LLg+ + RLg“ Lg"g+] [i -  RJ r Lg“g+] ' - 1 R ?g+ + p + ; (2.12.7a)
T “ “gg -  Tg L P L g P - p - p - +
[RgT +  p 1 [ 1 - Lgg+Rg+g 1 _1 [LgT +  p 1  +

rgL LlT  + R fg " + L Lg+ R i “ ] [1 -  Lgg+ R? g T 1 [LgT + p - ] (2.12.7b)
Tg'g+ =  V r ?gP+ Rgg [Rgg • + P - ]  [1 T —I- pH— 1 “gg gg J 1 L gg+ K ,+ + P + ] +
r gL R ?g+  + ,LLg+ + R?g-Lg"g+] [1 -  R?g" Lg'gT Rgg+ + p + ; (2.12.7c)
T +-gg = r5+LPLgP “ +  LgV  [L++ +  p + ] [1 - Rgg'' ^ T l R gg_ + P - ] +

L Lg + n ; [ i - L g ' g ^ g T _Lgg + p - ] (2.12.7d)
T+L+ =  ^ r L g P + r gL "  P + P + r gL +
K g + +  P + ] [ 1 - pH—T “ “H 1gg gg J K t  +  P + r gL +

f Lg r ?l+ + R Lg“ L g'g+  +  L l s+ [! -  R g V Lg"g+ ] '
-1

R S,+ + p + p g i J ] (2.12.7e)
gL “  r gL r L g P  P gL P  P  P gL +

[ R e s~ +  P-] [1 -  K e + X - t i T 1  [L g T  +  p " r i ]  +

l£l + [Lu+R?g- + R ?r] [1 -L -+ R + -]-1 [ h ; h-  + p - r - J ]
+ LgL~ +

'L g

T gL “  r i P L g P  P gL

IL ?g+  +  P + ] [ i - R g g ' L g V ] ' 1 ^ -

< l  [L l l  +  [L Lg+ R ?g~ +  R ? g~ ]  [1 -  L g'g + R ? g 1 [ L g Y  +  P T g ' J ]  (2 .12 .7g)
TgL+ = rg_Lr ?gP+rgL + RgL+ +
[R g T + p 1  [ i - L g'g+ R ?g_ ] ' l L

L gL +  P  P gL I +J

gg R?l+ + p +p?l +
gL r ll+  +  [R ?g 'L g ‘ g+  + L : S+ ] [1 -  R ?g‘ L - K+ ] _ 1 RgL+ + P+PgL]]

T Lg+  =  TL L r L g P +  ~  r J s P + P +  +

[ i #  +  r L g P + ] [1 -  R ? g 'L g_g+ ] " 1 [R ?g+  +  P + ] +

Thh [R£g+ +  [LLg+ + R?g-Lg"g+] [1 -  P gg- ĝg+] -1 [R?g+ +  P+]]
T Lg — r L L P L g P  P L g P  P  +

(2.12.7f)

(2.12.7h)

(2.12.7i)
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(2.12.7j)
[rl; + r LSp_] [i -  Lg-g+R« r]_1 (L.T  + p1  +
■ll [k ;  + K “ + Llk+ r ^ ]  [i -  Lss+R? r ] _1 [lrT + Rl ]

T ' i ;  =  n+,r r „ p -  + L+:+'L L ALg

[L1+ + r Lgp+] [i -  RsVLg1+]_1 K i  [l«  + p1  +
tl l  [lLT  + [R?g- + LC+R+-] [1 -  L-+R+-]"1 [L-- + P-]] (2.12.7k)
T L E+  =  r L L r L g P +  +  R L E+  +

RCg- + r£gp -] [1 -  L -+ R + -]L -+  [Ree+ + P+] +
'll [RLg+ +  [L1+ +  R?g-Rg"g+] [1 -  Rgg"̂ gg+ ]_1 [Rg+g+ +  pl ]  (2-12.71)
p ll” = rLLr?EP+ri  -  r+gp+p+r+L+

L 1 +  +  r L g P + ] [1 -  R i ' L ? g + ] ' 1 [ r el+  +  P + 1 l ] +

+ [h£l+ + [r? “ L-+ + L^+] [1 -  R +-L-+]-1 [r ++ + P+r+]] (2.12.7m)
gL

[1 - L;g+Ri 1 ' 1 [L;
Lll + [Lle+ r^  + R?g_] [1 -  Lee+r+ 1 _1 [le-l-  + P - r - J ]  (2.12.7n)

LL +

P LL — r L L P L g P  P gL — P L g P  P  P -T .+

RLg" +  PLgP 'gL + P Psl-] +
'LL
>+LLt +- = r+ r r .P T j ,  + l+-L L A L g A A gL
L1+ + P1 P+] [ l-R + -L -+ ]-1R+ L gL +  p  p el ]  +

'LL LZl + [lcX Y  +  RY ]  [1 -  LEg+RE1 1_T — 1 LET  + p ' p-L]] (2.12.7o)
T ll+  =  r L L r L g P + r gL +  r l l T +

R Lg + r L g P ] [1 -  Ls1+Rg g 1 '1 Lee+ [RgL+ +  P+PEl] +
'LL RY + [ RY LY  + LLe+ [1 -  R?g"Lg"g+ ] “ * [ R gL+  +  p + P gL ] ] (2.12.7P)

Unlike the corresponding plane wave transmission matrices, the direct path 
through the assembled scatterers is excluded from these relations.

This formulation is clearly a good deal more complicated than the traditional 
plane wave/layer doubling formulation but greatly extends the range of problems 
which may be treated within the layer KKR approach. It allows an optimisation of 
the two basis sets (plane waves/partial waves) since the partitioning of the atomic 
planes into layers may be accomplished in many ways. For example, when the 
plane wave basis becomes significantly larger than the partial wave basis, another
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plane may be added to the layer to increase the layer-layer separation, increasing cR 
and hence reducing the plane wave basis at the expense of an increased partial wave 
basis. Using the example of the (210) direction in the FCC crystal, which consists 
of identically spaced atomic planes schematically illustrated in figure 2.10, the 
use of the close-spaced layer algorithm in the simplest partitioning of one plane to 
each layer results in the shortest scattering path performed in the plane wave basis 
shown in figure 2.11a, which is already twice as long as would occur with the purely 
plane wave formulation. Thus, with 27 g vectors (exp(—gmaxct) c* 5.33xl0“4), 
27-57 beams may suffice. However, the partial wave basis with atomic scattering 
up to i  = 2 included has dimension (2 -I-1)2 = 9. We may make the dimensions 
more nearly equal by assigning two planes to each layer, as in figure 2.11b, so 
again with atomic scattering included up to i  = 2 the partial wave basis size 
is 2 x (2 l)2 = 18. Having so partitioned the structure, we have increased the
minimum z separation between successive scattering events in the plane wave basis 
by 3, and from table (2.1) we may determine that a plane wave basis set of as few as 
15 beams gives (exp(—gmaxcz) — 2.18 x 10“4), which is a reasonable attenuation. 
The further addition of a third plane to the layer (figure 2.11c) results in a partial 
wave basis of dimension 27, which greatly exceeds the plane wave dimension. Thus 
for the (210) direction two planes per layer is the optimal choice.
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Figure 2.10 Possible partitioning of close-spaced layers to optimise the two basis 
sets. a), one, b). two and c). three atomic planes assigned to each layer.

2.13 Real-space multiple scattering theory
The theory of the Sections 2.10-2.12 have described a practical method for evalu
ating the matrix elements of the scattering path operator necessary in evaluating 
the one-electron Green function in systems characterised by two dimensional peri
odicity, and where the layer-layer separation is sufficiently close that the use of the 
plane wave solution is not feasible. Using the partial wave basis to sum scattering 
paths between adjacent scattering units stacked along the z-direction significantly 
reduces the dimensions of the plane wave basis, and in fact the dimension of the 
two basis sets may be optimised via structural considerations.

There still remains a variety of systems for which the close-spaced solution 
will be demanding on computational resources, since extremely close layers will 
require a significant number of planes to be assigned to each layer before the 
dimensions of the two basis sets are comparable. Some recent developments in 
multiple scattering theory which have appeared in the literature provide a third 
method for evaluating the Green function in the embedded layer problem, and 
which could be most efficient in this regime of systems.
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Zhang and Gonis (1989) have presented a real space multiple scattering the
ory for the electronic structure of systems with full or reduced symmetry which 
unifies the treatment of bulk systems, surfaces, grain boundaries and systems with 
impurities and substitutional disorder. The method is based upon the concepts 
of semi-infinite periodicity (SIP) and removal invariance, setting out to determine 
the Green function for the system of interest by partitioning the scatterers into 
subspaces characterised by SIP. These may be the left and right half spaces in the 
interface problem, for example, or chains of atoms at a dislocation.

The scattering properties of these subspaces are determined by utilising the re
moval invariance: the scattering properties of the system being invariant to within 
a phase (translation) under the removal of one of the scattering units whose repe
tition constructs the subspace. This statement may be formulated mathematically 
and used to obtain the scattering path operator of the subspace.

Finally the various subspace scattering operators are combined, along with 
those of any scatterers which cannot be assigned to regions of SIP, and the tran
sition matrix for the whole system determined. This last step resembles a huge 
cluster calculation, but with various scatters, those representing regions of SIP, 
“dressed” to simulate the embedding medium.

Within the context of an interface calculation this formulation of the multiple 
scattering problem has many similarities with the theory presented in this Chap
ter. The concept of removal invariance, which within the theory of Zhang and 
Gonis is employed in the angular momentum basis, may be used to determine the 
reflectivities of the half-spaces through the solution of the self consistency relation

£ = ( A  8(c)) (I)"1-S(-c) (2.13.1)
where T is the scattering operator of the repeat unit of the half-space, G the Bloch 
propagator connecting adjacent repeat units separated by c and g the translation 
operator. The centre matrix appearing on the right hand side of (2.13.1) is simply 
the multi-centre scattering path operator (see equations (2.4.10) and (2.4.11)) for 
the combined repeat unit/half-space system, and the outer matrices fold in to a 
single centre representation which must be equal to the half-space scattering path 
operator itself.

This equation may be solved by iteration or some other numerical technique 
(Zhang, Gonis and MacLaren, 1989), and is directly analogous to the plane wave 
layer doubling problem and the plane wave/partial wave problem layer tripling
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problem. The scattering path operator needed in (2.5.8) for the Green function of 
the embedded layer problem is then given by the expression

(  (a) -S(c) -S(2cn' = -S(-e) (ir1 —6(c)V-G(-2c) -G (-c) (tr) - 1 /
(2.13.2)

for the case of a single layer sandwiched between the half-spaces. This is the 
angular momentum space solution of the three centre scattering problem solved 
in Section 2.12 (where is the equivalent of r here).

There are some technical details concerned with the implementation of this 
method (MacLaren, Zhang, Gonis and Crampin, 1989) which appear to enable an 
exact summation of the scattering paths despite the exclusive use of the angular 
momentum basis, in the sense that no uncontrolled internal summations occur; 
they are all truncated by the atomic scattering factors (t-matrices). In particular 
the method has been shown to give identical results to the plane wave method 
for the density of states of an copper atom at an ideal truncated surface. Since 
the method is carried out entirely in real space the dimensions of the matrices 
involved are not affected by the separation of atomic layers and hence in the case 
of very close layers can provide a more efficient alternative to the plane wave or 
plane wave/partial wave methods.
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2.14 Summary
To conclude, an outline of the implementation of the theory presented in this 
Chapter is given.

For a given system the atoms are partitioned into suitable layers. For each 
(E,k||) the scattering properties of each isolated layer are determined, v ia  equa
tions (2.6.5), along with the necessary propagators, (2.8.8) or (2.11.2). These layer 
scattering operators are then combined using equations (2.8.7), or (2.11.4a-d) to 
determine the half-space reflectivities relative to each layer. In the case of a bulk 
calculation this involves layer doubling/tripling the layers within the unit cell to 
convergence, and then the individual layers added successively to obtain the cor
rect termination of the half-space for use in the embedded layer problem for each 
layer. In an interface calculation the half-space reflectivities are determined by 
layer doubling/tripling the layers which comprise the relevant half-space unit cell, 
and then adding the individual layers within the interface region to obtain the 
necessary half-space reflectivities for the embedded layer calculation. In this case 
the “bare” reflectivity, comprising just those layers within the bulk half-space, are 
independent of the potentials of the interface region and may be stored, to avoid 
re-calculation. This leads to large time savings in the context of self-consistent 
calculations. The propagators, being structural in nature and hence independent 
of the potentials, may likewise be stored for future use. Finally the embedded 
layer problem is solved for each layer within the bulk unit cell/interface region by 
combining the relevant layer and half-space scattering matrices.

The choice of which method to employ for solving the problem, be it the plane 
wave, plane wave/partial wave or purely angular momentum based solution may be 
decided through an analysis based upon the basis attenuation factor illustrated in 
Section 2.9 for the (210) direction, and some knowledge of the relative overheads for 
each approach. It is perhaps worth adding the comment that if rough calculations 
are being performed to look for gross trends, then the plane wave basis set can 
be reduced more easily than the angular momentum basis. The latter cannot, 
for example, be reduced below t  = 2 for transition metals, whilst as few as 5- 
9 g vectors along the (100) direction of the fee structure will give a reasonable 
description of the electronic structure. Thus the plane wave/plane wave-partial 
wave techniques have a certain advantage in this respect.

The theory within this Chapter has been presented from the viewpoint of an 
interface calculation. In the case of a surface calculation, one half-space becomes 
a vacuum region with a surface barrier characterised by a scattering matrix. A 
restricted theory for such a barrier has been given by Blake (1984) but has not yet
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been implemented. The calculation time to determine the scattering properties of 
each layer scales as the cube of the number of atoms within it, whilst the time 
to combine layers is linear. Hence for some bulk systems this method may offer 
speed advantages when compared to other traditional codes, where the time scales 
typically with the cube of the total number of atoms within the system. Beyond 
the most obvious uses of mirror symmetry the code as developed has not, for want 
of generality, been symmetrised. Such a step could also offer significant savings of 
future computing resources.
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CHAPTER 3. ELECTRONIC STRUCTURE FROM THE LKKR 
GREEN FUNCTION

3.0 Introduction
In this Chapter details concerning the evaluation of the electronic structure from 
the Green function calculated using the theory of Chapter 2 are outline. In doing 
so, the results of calculations on a variety of systems will be given, demonstrating 
the accuracy and convergence properties of the LKKR technique.

The quantity most directly related to the Green function, the charge density, 
is initially considered, as well as schemes for determining the full charge density 
which involves integrals over energy and momentum. For the former, the use 
of complex energies as a means of more efficient computations is demonstrated. 
The solution of Poisson’s equation, an essential element of the self-consistent field 
approach defined by the Kohn-Sham equations (1.1.3-4) is described.

From the self-consistent charge densities we may evaluate total energies, and 
for bulk system a combination of Bloch’s theorem and the multiple scattering 
equations allows the band structure to be determined. For interface problems the 
projected band structure is the two-dimensional analogue, and it’s calculation by 
a variety of mathods is described and discussed, along with means of locating 
localised states permitted by the reduced periodicity.

Finally, convergence of the plane wave basis set is considered, and numeri
cal evidence supporting the statements made in the previous Chapter concerning 
close-spaced layers presented.
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3.1 Brillouin zone integration
The Fourier transform of the equations of motion for the scattering path operator 
introduced an integral over the Brillouin zone in the definition of r a , equation
(2.6.7). The method we use for the Brillouin zone integration is that of special 
points given by Cunningham’s algorithm (Cunningham, 1974), which is a modifi
cation to two dimensions of the method of Chadi and Cohen (1973). Expanding 
a periodic function f(ky) as

f(k||) — fo + fmAm(k||)m=l
Am(k,|)= £  e*kH'R

|R |= C m

(3.1.1a)
(3.1.1b)

where the sum in (3.1.1b) is over those vectors of equal length, Cm, Cunningham’s 
algorithm presents a systematic procedure for generating a set of points kjji and 
weights cq which can best estimate fo, the average which we wish to calculate. 
The points generated by this algorithm satisfy

^ a iA m(k||i) = 0 m = 1,2,........N

=  1
i

where N is the number of functions Am satisfying (3.1.2a), and hence
oo

fo = ^  ̂«jf(k||i) ~ 'y  ̂ fm y  ̂ftjAmfeni) (3.1.3)
i m > N  i

The idea is to determine those sets of points and weights which maximise N, the 
lowest index of the Fourier series not included, since one may expect that for 
smoothly varying functions the coefficients fm will decrease in magnitude with 
increasing m. Hence we approximate T  in equation (2.6.7) with

r “(E) =  ^ ttir(E;k||i) (3.1.4)

(3.1.2a)
(3.1.2b)
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Figure 3.1 Irreducible Brillouin zone and sampling sets for the square (upper) 
and hexagonal (lower) two dimensional lattices. The high symmetry points are 
labeled in the hexagonal case.

Table 3.1
Allowed values of special ky sampling points given by Cunningham’s algorithm for 
the square and hexagonal lattices.

Square Hexagonal
1 1
3 3
10 6
36 18
136 45
528 135

378

- 8 2 -



In figure 3.1 and table 3.1 are illustrated the first few sets of points for the 
square lattice (e .g . as used for the FCC (100) and BCC (100) directions) and 
the hexagonal lattice (e .g . FCC (ill) ). Typically only the third or fourth sets, 
with 10-20 sampling points have been found necessary to converge “integrated” 
quantities such as the Fermi level or total energies to approximately O.OOlHa. 
Densities of states, however, are more sensitive, particularly regions of energy 
characterised by s - p  bonding. In this case the resulting parabolic bands resemble 
strongly the free electron bands, for which the density of states projected onto the 
two dimensional momentum space is given by

e(E>kll) fl(2E -  |k|, |2)
2jrV2E-jk|||2 (3.1.5)

which is illustrated in figure 3.2 (see also figure 3.9 later for a corresponding 
example taken from nickel). The difficulties in averaging this quantity may be 
seen by considering the position of the square root singularity at |k|||2 = 2E as a 
function of energy. As E increases this ridge moves out in the Brillouin zone and 
when it just passes over a new sampling point within the set there will result a 
significant increase in the density of states if the weight of that point is high, that 
is, if only a small number of sampling points are used. As the energy increases 
further, the contribution diminishes before another sampling point is passed over. 
These erroneous oscillations can obscure true features of the density of states, and 
make it hard to distinguish contributions from localised states or resonances in 
interface or surface structures (see for example the density of states presented by 
Wang, Freeman, Krakauer and Posternak (1981) for their thin film calculation 
modelling the surface electronic structure for Al(lll) for an example of this).

The flatter nature of d-bands across the Brillouin zone means the Brillouin 
zone sampling is slightly easier than for regions characteristic of s - p  bonding ( c f  
core states which require only 1 sampling point). However, localised states with 
d character present in a confined region of the two dimensional zone will not be 
treated correctly without sufficient sampling points.

The number of points in the sampling sets given by the Cunningham algorithm 
rapidly increase. It will be demonstrated later that the use of complex energies 
can considerably increase the efficiency of the averaging and lead to large savings 
in computational resources.
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Figure 3.2 Free electron density of states g(E,k||) evaluated at E=0.5Ha projected 
onto the two dimensional momentum space kx,ky > 0. The data are truncated; 
0 (E,k||) = min(e(E,k||),0.05).

3.2 Charge density
We obtain the charge density in an expansion about each atomic from (2.5.7) and 
the standard relation ga(r;E) = — l / 7rImG(r,r;E) (Harrison, 1970)

e“ (r; E) = Jim  i ,c £  Y £ (r) Zf (r) S? (r) YL (r)* L
+  ^Im *K £Y £(r)Z ?(r)r£L.Z?,(r)YL,(r) C3'2'1)* tv

This may be conveniently expanded as
e“ (r;E) = £e£(r;E )Y L(r) where e Z (r; E) = /  Y£ (r) e a (r; E) (3.2.2)

L J

- 84-



(Yi,(r) is assumed to be a spherical harmonic, but may also be chosen to be a 
symmetrised linear combination, such as a cubic harmonic, with minor alteration 
to the subsequent equations) and hence

Bl (r; E) = 1  J  Y£(r)Rt *£Y £,(r)Z g(r)S ?(r)Y i..(r)+
L L '

+ * E  Y£,(r)Z?,(r)r£,L„Z?„(r')YL.,(r')
L 'L "

= ^ E C L L < R e[« :Z ? , ( r ) S ? , ( r ) ]
*  v

+ — ^  (c£ L. + CL") Re [/cZ?,(r)rg,L„Z?,(r)]
L 'L "

+ — ^  (Cll' ~  Cli/ / )  Im[/cZJ(r)rL/L"Z?/(r)]

(3.2.3)

L 'L '

The real coefficients C ^ , ^ ,  = f  Y£Yi/YL"df2 are related to the Gaunt coefficients, 
and satisfy

Cl'l" = 0 unless
l  + l ' + t"  even 

< m = m' + m" (3.2.4)
\ i  — t n \ <  i f <  i  + t n and cyclic

which is of benefit in actual calculation (Pendry, 1974). The muffin-tin density of 
states, the spherically symmetric contribution, is given by

£mt (r? E) 2oo (r » E )

(2£ + l)Re [/cZ?(r)S?(r)] + Re *(Z?(r) ?  E
m =  — t

(3.2.5)
from which we find the total charge within the muffin-tin sphere at energy E, 
denoted the muffin-tin density of states (MTDOS), to be

£mt(e ) = /  e“(r)dr =  4 n  I  r2d r ^ x
J  s a Jo ( r ) (3.2.6)

where Sa is the volume of the sphere a .  The total charge density involves an 
energy integral over the occupied energies, which we now consider.
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3.3 Energy integration
The total charge density is related to the energy resolved charge density of the 
previous Section v i a  g(r, E) as

g(r,E)dE (3.3.1)

where the Fermi level Ef is defined in a bulk calculation by charge neutrality:
(3.3.2)

Za is the atomic number (nuclear charge) of the atom at site a  and the sum ranges 
over the atoms within the unit cell.

In evaluating (3.3.1) we replace the full energy integral with a sum over the 
tightly bound core levels and an integral over the valence band. The core levels are 
those for which negligible dispersion occurs across the band, and we may determine 
their contribution to the charge density by direct integration of Schrodinger’s 
equation for the isolated muffin-tin potential; negligible dispersion implies that the 
electrons behave as though they move in an isolated potential, not experiencing 
neighbouring atoms. Consequently the core charge density is necessarily spherical. 
Thus e

e(r ) = ^ 2  X] (r) + f e ( r ,  E)dE (3.3.3)
a ca

where the lower limit Emin lies between the highest lying core level and the bottom 
of the valence band. This is illustrated schematically in figure 3.3. ca labels the 
core levels for atom a .  It may be the case that some higher lying core levels do 
display dispersion across the Brillouin zone which needs to be included for total 
energies or other properties. In this case the valence band integral may be split 
into several bands each treated as in the case of the single band considered here.

We now consider an important analytic property of the Green function which 
enables a very rapid evaluation of this energy integral. This is the use of complex 
energies. In fact, the perturbation scheme used to determine the reflectivities of 
the two embedding half-spaces, the layer doubling algorithm, is not guaranteed to 
converge on the real energy axis and we are forced to introduce a small imaginary 
component, T, into the energy. In practice this is not a significant restriction, 
since T  may be chosen to be arbitrarily small, and indeed numerical rounding 
errors probably act as a finite imaginary component but cannot be relied upon to
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F i g u r e  3 .3  S ch e m a tic  illu s tr a t io n  o f  th e  fo rm  o f  th e  en erg y  in teg ra l in  e q u a tio n
(3 .3 .3 ) ,  a n d  th e  q u a n tit ie s  en ter in g .

converge the reflection matrices. However, there are beneficial reasons for including 
a significant imaginary component in the energies, as are now illustrated.

The causal Green function at energy E, G+(E), may be defined formally as

G+(E) = E - H ^ ib+ = P E ^H  -  -  H) <3-3-4)
with H the Hamiltonian operator and P  the principle part. From this we see 
G+ is analytic in the upper half-plane of complex energies. Hence considering 
f = E + iT, T > 0 we see immediately from Cauchy’s theorem that

/ G* w
- i  r7T J-<

.z -  £
r

(e  -  E')2 +  r 2

---- — dzz -  C*.

G+(E')dE/
(3.3.5a)
(3.3.5b)

where the semi-circular contour in (3.3.5a), illustrated in figure 3.4, extends over 
the whole upper half plane and encloses the point Z = £ but not Z = £*. Hence we 
deduce that the charge density evaluated at complex energy T  is related to that 
evaluated at real energies by
fi(r;E + .T) = —~ImG+(r,r; E+tT) = \  _ *  +  g(r; E')dE' (3.3.6)
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F i g u r e  3 .4  C o n to u r  u se d  in  e v a lu a tin g  e q u a tio n  (3 .3 .5 a ) .

and consequently the density of states g(E -f tT) is given by the convolution of 
the real energy density of states and a Lorentzian of half width T, the dissipative 
component of the energy. Structural features smaller than T are lost.

This effect is illustrated in figures 3.5 and 3.6. In figure 3.5 the muffin-tin 
density of states for the 2p core level of aluminium is plotted for various imaginary 
components of the energy. This level is very nearly a delta function with less than 
0.01% of the weight of the electron wavefunction outside the muffin-tin. Thus we 
may expect the profile for various imaginary components T  to appear Lorentzian

0(E + if) i  r
7T (E -  Eo)2 + r 2 (3.3.7)

where Eo is the real eigenvalue, and this is clearly the case. In figure 3.6a the 
muffin-tin density of states for bulk copper is plotted for various imaginary com- 
ponants of the energy. For Im(E)=0.010Ha (0.272eV) the MTDOS is reminiscent 
of density of states profiles given by photoemission experiments (Mehta and Fadley, 
1977). It is largely structureless, with the bottom of the valence band extending 
down to about -10.0 eV (all energies relative to the Fermi level) and the narrow d- 
band lying between about -6.0eV and -l.OeV. Reducing the imaginary componant 
to 0.005Ha (0.136eV) reveals much more structure, the shoulder at -4.0eV clearly 
discernible along with a few peaks between -3.5eV and -2.0eV. The band minimum 
has risen to about -9.5eV. Finally, at an imaginary energy of O.OOlHa (0.0272eV)
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Figure 3.5 Muffin-tin density of states for the 2p core level in aluminium evalu
ated at various imaginary energies.

Figure 3.6 a). Valence band density of states for bulk copper evaluated at various 
imaginary energies. Real energies are quoted with respect to the Fermi energy, 
b). Valence band density of states for bulk copper taken from Moruzzi, Janak and 
Williams (1978).

ENERGY RELATIVE TO FERMI ENERGY (EVI
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all important features of the density of states may be identified. The band mini
mum is still at -9.5eV, and the shoulder at -4.0eV is sharpened and accompanied 
by a second at slightly lower energy. Three main peaks are distinguishable within 
the d-band, which now comes down sharply at -1.75eV. The correspondance of 
the features and their positions with those in the density of states of copper pre
sented by Moruzzi, Janak and Williams (1978), displayed in figure 3.6b for means 
of comparison, is excellent, their results being determined at zero imaginary en
ergy. The differences in magnitude arise primarily from the results of Moruzzi 
e t  al. being the full cell density of states, which are necessarily larger than the 
muffin-tin density of states. Figure 3.7 illustrates the smoother behaviour of the 
muffin-tin density of states of Ni as a continuous function of the imaginary energy
r.

Figure 3.7 Muffin-tin density of states of nickel evaluated in the complex plane 
out to an imaginary energy 0.06Ha.
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We now use the analytic behaviour of G in the upper half plane to deform 
the energy integral ocurring in equation (3.3.3) into the complex plane where its 
evaluation may be accomplished far more efficiently. From Cauchy’s theorem, 
evaluating the integral along any contour connecting Emi„ and Ef in the upper 
half plane will give the same answer. In particular, for the the contour shown in 
figure 3.8 we may write

/  f f?(r,E)dE = f  e ( r;Z)dZ*'Em[u •'C1+C3
= J  f(t)dt (3.3.8a)

where

f(t) = (Eo — Enii„ + l’Ei) Q (r, (Eo — Emin + lEf) t + Eo + iEi) t < 0 
(Ef — Eo — 1E1) q (r, (Ef — Eo -  1E1) t + Eo + 1E1) t > 0

(3.3.8b)
and this may be approximated using Gaussian integration

/  e(r,E)dE = ^ w if(ti)
^  Emin (3.3.9)

where the weights Wj and sampling points ti may be taken from the tables of 
Abramowitz and Stegun (1970). As mentioned above, any higher lying cores hav
ing significant dispersion are best treated as separate bands, using (3.3.8,9), with 
Emin and Ef corresponding to energies straddling the mini-band.

Gaussian integration is by no means the only numerical technique which may 
be used for the integration, but has been found to be the most suited. When 
searching for the Fermi level in a bulk calculation the triangular contour has the 
benefit that the contribution from the upward section ci is independent of the 
endpoint, Ef, and hence need only be evaluated once, while the downward leg 
is repeated for different end points till the Fermi level has been located to the 
required precision. In the case of a semi-circular contour, the complete set of 
points must be re-evaluated. An alternative contour chosen by some workers for 
similar integrations is along the line Ef + ir, 0 < T  <  00 . For large imaginary 
components the Green function may be treated analytically, and matched closer to 
the real energy axis to the numerically determined function. This has advantages 
for certain alloy models, such as the CPA (Temmerman and Szotek, 1987), which 
become considerable simpler in the large T limit.
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F ig u r e  3 .8  Energy contour used  in evaluating  th e  to ta l charge density.

In table 3.2 the convergence of the energy integral is demonstrated for two 
different situations. In the first column the number of sampling points used in 
(3.3.9) are given. The second and third columns are integrals of the muffin-tin 
charge for the Ni 3s and 3p core levels respectively, using a contour between 
Eo ± 0.005 Ha, Eo being the the real eigenvalue. The integral converges rapidly, 
especially for the 3s level. Deviations from an integral number of electrons within 
the muffin-tin are indicative of a small amount of dispersion. The last column 
tabulates the valence band charge within the muffin-tin between -O.lOOHa and 
0.314 Ha for copper. The convergence in this case is even more marked than for 
the core levels since the density of states across the band is rather more uniform, 
and thus more amenable to the Gaussian integration method.

The smoother behaviour of the density of states also allows a more rapid de
termination of the Brillouin zone integrations. Typical examples of the behaviour 
of the density of states as a function of the momenta k|| are illustrated in fig
ure 3.9a-d, for the particular case of the Ni (100) direction. Although the actual 
averaging is performed upon r(k||) (2.6.7), this is a complex function and so dif
ficult to illustrate. For the muffin-tin potentials both the atomic wavefunctions 
Z (̂r), S/;(r) and transition matrix 11 are independent of k|| and hence the variations 
in g(E + ir;k||) are directly related to physically important variations in r(k||). 
Figure 3.9a and 3.9b are evaluated at the real energy E=0.0lHa, an energy at 
which the states are largely s-p like and without significant d  hybridisation. The

- 9 2 -



Table 3.2
Convergence of energy integrals using the Gaussian integration technique with the 
number of sampling points Ne , for core level and valence band muffin-tin charges. 
The core level calculations were performed with a contour of width O.OlHa centred 
on the real eigenvalue, and the valence band integral extended from -O.lOOHa to 
0.314Ha relative to the muffin-tin zero.

Ne Ni 3s core
muffin tin charge 

Ni 3p core Cu valence band
8 2.00361 6.00443 10.36535
16 2.00076 5.99726 10.36349
32 2.00003 5.99541 10.36356
64 1.99993 5.99497 10.36357

similarity of figure 3.9a with the free-electron density of states illustrated in figure
3.2 is marked, the only significant differences arising from the finite imaginary 
energy component I\ The difficulties in evaluating the Brillouin zone average is 
obvious. This is in sharp contrast with the analogous quantity evaluated at 0.1 
Ha above the real energy axis. The Lorentzian broadening has produced a much 
more smoothly varying function across the Brillouin zone, and one which may be 
determined much more accurately with fewer sampling points. Figures 3.9c-d re
iterate this behaviour, at the real energy E=0.25Ha, where significant d  character 
is present.

We can conclude from these observations that quantities which involve inte
grations over energy, such as the charge density, Fermi level and total energies, 
when evaluated along contours which move out into the complex plane, are signif
icantly more accurate than if the same quantities were evaluated at real energies 
with an identical number of E and ky sampling points. Indeed, the number of k 
points may be varied as a function of the dissipative component of the energy to 
achieve maximum accuracy for minimum resources, far more being employed near 
to the real energy axis.
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Figure 3.9 Density of states across the Brillouin zone for Ni (100) a).E = 0.1 -f 
O.Oli b). E = 0.1 + O .li c). E = 0.25 + O .lt d).E = 0.25 + O.Olt. (all energies in 
Ha)
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An additional consequence is that not only may one determine integrated 
quantities more efficiently with complex energies, but one may evaluate the den
sity of states in the complex plane and extrapolate closer to the real real energy axis 
(Hass, Velicky and Ehrenreich, 1984; Eschrig, Richter and Velicky, 1986). Fitting 
the density of states evaluated at the imaginary energy Ti to a complex rational 
function we may determine the corresponding density of states at the imaginary 
energy T 2 by extrapolation (Press, Flannery, Teukolsky and Vetterling, 1986); a 
rational function has the distinct advantage over a simple polynomial of being 
capable of reproducing the singular pole structure typical of Green functions near 
the real energy axis. In figure 3.10a are illustrated the real and imaginary com
ponents of the diagonal elements of the Green function evaluated at T  = 0.003Ha 
integrated throughout the muffin-tin sphere

/
R-mt rr2dr J  dnG(r,r; E) (3.3.10)

so —Im G(E)/tt is the normal muffin-tin density of states. The function is largely 
structureless, and typical of the resonant behaviour of the density of states within 
the d  band. In figure 3.10b the muffin-tin density of states resulting from a high 
order rational extrapolation of this data to just 0.003Ha above the real energy axis 
is given, along with the original curve. At this imaginary energy all significant fea
tures of the T = 0 density of states as calculated by Moruzzi Janak and Williams 
(1978), and shown in figure 3.10c, may be identified. The benefit of this approach 
in calculating the density of states is that only 45 Brillouin zone sampling points 
were required in the evaluation of the results in figure 3.10a, which is an order 
of magnitude fewer than are normally required at 0.003Ha. Of course, the larger 
imaginary component of the energy has the effect that at any given energy the 
electron “experiences” less of the crystal structure, particularly long-range struc
ture, since the wavefunction will decay with distance. Thus, typically more energy 
points are required if the extrapolation is to be accurate and not contain spurious 
details. Since the number of sampling points in the sets generated by Cunning
ham’s algorithm escalate very rapidly, though, the play-off between more energy 
points and fewer k y  points usually leads to more rapid calculations. As a general 
rule if AE is the (real) separation of energy points in the original calculation, one 
should not extrapolate closer than AE to the real energy axis.

- 9 5 -



Figure 3.10 a). Energy dependence of the diagonal elements of the Green 
function integrated over the muffin-tin sphere, evaluated with imaginary energy 
0.03Ha. b). Muffin-tin density of states for nickel at imaginary energy 0.003Ha, 
obtained by extrapolation v ia  a rational polynomial fit, with the original data 
evaluated at 0.03Ha. c). Muffin-tin density of states for bulk nickel taken from 
Moruzzi, Janak and Williams (1978).
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3.4 Solution of Poisson’s equation for the muffin-tin potential 
The charge within the muffin-tin sphere is given by

_at f f ^ M T= / ea (r)dr = 4vr / ^d reg^r) (3.4.1)
J  S “  Jo

The determination of the Fermi level requires an integral over the unit cell of the 
full charge density (3.3.2). Partitioning this volume into Wigner-Seitz polyhedra 
rws centred upon each atomic site and consisting of the set of points closer to the 
atomic site than any other, we have qtotal = qa and

qa f  ga(r)dr
J r aw s/*R-max t
Y  r2dreg(r)w2(r) w£(r) =  / YL(r)0(r € rfts )dn(r)T Jo J O

(3.4.2)

R«iax represents the largest radii within the polyhedra. The integral for the weight 
function w£(r) is over the solid angle for which r is within the Wigner-Seitz 
polyhedra. It may be evaluated by sampling many directions (Pindor, Temmerman 
and Gyorffy, 1983) and since it is purely structural, need only be determined once 
for each system. For close-packed materials, and also in many other cases, the 
atomic sphere approximation may be made in which the full cell integral (3.4.2) 
is replaced by one over the Wigner-Seitz sphere

q“ « Qws = /  r2d r ^ T(r) (3.4.3)
Jo

The Wigner-Seitz radii are chosen so that all volume is occupied
T ~  g71- (Rws)3 (3.4.4)a

which is a unique prescription for elemental solids (1 unique atom) but not for poly
atomic crystals, in which case the Wigner-Seitz radii may be chosen in proportion 
to the muffin-tin radii. The accuracy of this approximation for close-packed crys
tals may be judged by comparison of the self-consistent results of Moruzzi, Janak 
and Williams (1978), in which a full cell integral was effected, and those given in 
this thesis (e .g . figures 3.6a,b), which used the Wigner Seitz sphere approxima
tion. In particular, the position of the Fermi level may be expected to reflect any 
inaccuracy in this approximation.
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—V2V(r) = 4 n g ( r )  (3.4.5)

T h e  e le c tr o s ta t ic  p o te n t ia l  a r is in g  fro m  th e  ch a rg e  d e n s ity  g (r )  is g iv en  by
th e  so lu t io n  o f  P o is s o n ’s e q u a tio n

The spherically-symmetric solution, when expanded about site a, is thus deter
mined by the one dimensional problem

_1 d_
r2 dr (3.4.6)

which has the general solution

V“(r) = — +  ~  [  r'20MT(r')dr' + 4tt /  r'egtT(r')<ir' + C“ (3.4.7) r r J Q J T

The first term arises from the nucleus, atomic number Za. The second is due to 
the charge within the sphere of radius r, and the third from the spherical charge 
distribution within the muffin-tin but outside radius r. The last constant is a 
boundary condition on the potential within the sphere, and which depends upon 
the other atoms of the system. Two methods have been used for the determination 
of this constant in the work presented in this thesis.
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Atoms within the system are assigned to the three regions illustrated in figure 
3.11a; bulk+ and bulk—, within which the atoms display semi-infinite periodicity 
(in position and charge), and an interface region of sufficient dimension to be 
charge neutral. Extending the bulk half-space charge densities through all space 
we have the Fourier expansions

e± (z ,r ||) =  - ^ X > ± (G ± )ei * 'r|le ''s f(‘ =FL)

3.5 Fourier solution

(3.5.1)
G ±

with G* = (g*,g), g* = n = 0,±1,±2,... and likewise for the interface
region extended a d  i n f i n i t u m

e0M l)  = ^ £ e ±(G0)e<er"e<E?’ (3.5.2)
G°

with G° = (g°,g), g? = ^7r , n = 0, ±1,±2,__ The origins of the bulk-t- and
bulk— Fourier expansions are assumed to be at z = +L and z = —L, respectively, 
whilst the interface Fourier expansion has origin at z = 0. a* and a 0 are the 
repeat z spacings of the respective unit cells. A Fourier representation of the 
charge density, which possesses two-dimensional periodicity,

/oo dzg(z,g)
- O Omay be found using the step function

>0° dk eikx0(x) = lim fJ-< 27ri k — i s
along with the convolution theorem

to extend the contributions from the three regions over all space. Hence we may 
write the full expansions as g(kf,,g) = f?+(ka,g) + 5°(ka,g) + g“ (ka,g) where

,g)e-<kl‘ (3.5.3)

1  1 x > 0 
\  0 x < 0 (3.5.4)

dk£ f(k . -  k)g(k), I n (3.5.5)

r  oo rookz,g) = / dzg+(z,g)etk** = / dz0(z — L)g+(z,g)< 
J L J — oo

—»kz s

—ie—t k zL
E e+(G+)

+ k* -  g t  -  i s

- - i E i r r S ra x i-s?
i k , L

k* -  g” -  i s
e t ( g z° - k z )L _  e “ * ( g z —k z )L (3.5.6)

e-(k ,)g) = ^ £ fi-(G-)
^  ka -  gz + i s
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Figure 3.11 a). Schematic illustration of the geometry as used in solving Pois
son’s equation, showing repeat lengths and expansion origins. The darker atoms 
are those whose potentials would be allowed to change during a self-consistent 
interface calculation, b). “Dressing” the interface with bulk layers.
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V(r) _  _1 f  dka g(ka,g)e*kzae*g,rn 
47r n 7 2tt "  (k2 + g2)

T h e  p o te n t ia l  fo llo w s im m e d ia te ly  fro m  P o is s o n ’s e q u a tio n

Substituting in the contributions from the three regions we obtain v ia  contour 
integration the following solution valid within the interface region —L < z < L. 
Writing V(r) =  V+ (r) +  V°(r) +  V “ (r), we have

V+(r)
47r

V°(r)
47T

V ( r )
47T

= Eg*.g
- Egi«K
= £

e+(G+) eg(s-L)e»g.P||
a+n [ 2 g ( g - i g t  +  e ) m 

Q°( G°) e*Sz*
(GO)5

g z  - g

a°n
g " ( G " )

a_n l.2g(g + i g Z  + e).

e -* g z L e - g ( s + L )  e *gzLe g ( a - L )+ a* g - r ll2g(g + *g0 -  e) 2g(g -  *g0 + er)
e-g(i+L)eig.P||

(3.5.8)
We choose the muffin-tin zero to be defined such that the average interstitial 
potential is zero as z —► +oo. The potential in this limit is given by the bulk 
solution for the atoms in the + half space and in this region may be shown to be

Vfr) =  —  V  g+(G +) c»G r - fg,L U  ^  (G+)2 (3.5.9)
Thus the constant added to the potential in all space is given by

v - - = - i / „ v w d t
4w  y '  e+(G+) 47r(R£,T)2ji(G+R{JtT) <G+ R _iK>L

~ n ^  (g +)3 ~  e e+ rint (3.5.10)
G + ,< aTr

The sum is over all atoms a, located at Ra (relative to an origin at z = L) 
within the bulk+ unit cell. Using equation (3.5.8) and expanding the solution 
about atomic site a  within the interface region in an angular momentum basis, 
and evaluating the spherically symmetric term at the muffin-tin radius we get

47T
v oo =  ~n £  [x£ (*) +  x„ (g)]

e0(G0)e*'G° r'47T
+ _n E i r r ° T i a  'g ^  ) eJoi'J ^ m tJ a°(G0)2Go

+  v.n it a
(3.5.11)
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w ith

x i  = E (G±)
2ga±(g T «gf) - E

g0(G°)e±»g°L 
2ga°(g T i g ° )

e-g(L:Faa)e*g.Rc (3.5.12)

This is to be compared with equation (3.4.7) evaluated at the muffin-tin radius, 
and thus

Ca=V0a0 + p a
% T

pa
% T

(3.5.13)
The solution represented by equation (3.5.8) is a generalised full-potential 

solution of Poisson’s equation in the interface/surface geometry with two dimen
sional translational periodicity (MacLaren, Vvedensky and Crampin, 1989). Using 
the ideas of Weinert (1981) the true charge density within each muffin-tin sphere 
is replaced by a smoother pseudocharge density, possessing a much more rapidly 
convergent Fourier expansion but which is characterised by the same multipole 
moments

_ a9l
r̂ MT r

- L  ■ ’ * /r2dr / df]Y£(n)r^gtt(r) (3.5.14)
This latter property ensures the solution of Poisson’s equation within the interface 
region is the same as for the true charge density (Jackson, 1975), and this then acts 
as a boundary condition upon the surface of the muffin-tin, within which Poisson’s 
equation may be easily solved for numerically using the true charge density. Hence 
the full solution is obtained over all space.

The muffin-tin components of the pseudo charge density required for evalu
ating (3.5.11-12) are given by (Weinert, 1981)

g(G) = (2n +l G l ! £ ) - S y&T)<& e' <Q'B“ {3'5'15)
where the sum extends over those atoms within the relevant half space unit cell 
or interface region and n is an arbritrary integer which controls the rate of con
vergence (5 has been found suitable).
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3.6 Green function solution
The potential due to a spherical charge distribution is the same outside the region 
of charge as that of a point charge located at the centre, the value of the charge 
that of the total charge within the sphere. Hence, in the interstitial region, the 
muffin-tin solution to Poisson’s equation is the same as that given by the Ewald 
problem (Ewald, 1921) with a background charge density {q) and point charges

te) “  7i£t tZa ”  qMTl
a

qa = Z“ — + - tt(Rmt)3(2)

The spherically symmetric solution to this problem expanded about site a  has 
been given by Slater and DeCicco (1963)

Va (r) = —— — ^7r(g)r2 + A“ (3.6.2)r o
In the interface problem we take the interstitial charge density to be that of the 
system as z —> +oo. The charge density for the whole system (in the Ewald 
problem) may be expanded as

so that
e(g,k1) = £ q ae-ik' IV i*-R“

a
The potential may then be determined from

v (r) = f  / dk* £ &(St ks) ei‘g.retkzs
g2 + k l

(3.6.3)

(3.6.4)

(3.6.5)

When g #  0 this expression may be evaluated by contour integration to give
Vi(r) =  ^  ^ ^ q “e<e (r- R“te-sl‘-^ l

g7*0 a
(3.6.6)

which may be evaluated in real space or by the usual Ewald split techniques when 
the convergence factor is small. The g = 0 solution can be determined from the 
differential equation

(3.6.7)
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w h e r e  q(z) is th e  g  =  0  F ou rier  co e ffic ien t o f  th e  ch a rg e  d en s ity . T h e  g en era l
so lu t io n  o f  th e  e q u a tio n  is

z — z‘ — 0(g) ——|- Az + B
S t

(3.6.8)

where the summation is only over the interfacial atoms, and where A and B are 
constants fixed by the boundary conditions which we take to be that the solution 
evaluated on the atoms in the layers on either side of the interface are bulk like. 
The constant A a in (3.6.2) then follows by taking the limit r  —► Ra in (3.6.6) and
(3.6.8) (MacLaren, 1989), and then matching (3.6.2) and (3.4.7) we have

Ca = Za
• p a t^MT

9mt
pat% T UMT — ^ ( ^ ( R mt)2 + (3.6.9)

The bulk solution may be obtained for matching by this method. The Ewald 
solution averages to zero over the unit cell and so the constant, Vmt6, added to 
the solution to make the average interstitial potential zero can be shown to be

Vjntz; — 2 n
3rint E ^(^MT)2<la + 5 (Rmt)5 (2) + 2 (RJ|it)3A< (3.6.10)

For the bulk problem periodicity allows us to solve for V2 (z) (MacLaren,
(z - z a )2 — 2 |z — za | + -

1989)

(3.6.11)

with c the repeat z spacing of unit cells.
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Both solutions have been found to give reasonable answers in a variety of inter
face problems. The two solutions differ slightly, in that the boundary condition 
upon the interface atoms within the Fourier solution are found by matching to 
bulk values at ±oo, whilst the Green function solution matches to bulk values on 
the first bulk atoms outside the chosen interfacial region. The Fourier solution 
is much more cumbersome to evaluate, with the convergence of the many nested 
summations awkward to monitor, whilst the Green function solution is much more 
rapid. Largely for this reason, and because the interfacial region for the solution 
of Poisson’s equation may always be “dressed” by several bulk layers so the dif
ference between matching at infinity or just outside the interface region is largely 
immaterial (figure 3.11b), the Green function solution is preferred.

A second point worthy of comment is the necessity of charge neutrality within 
the interface region. An implicit assumption within the two solutions is that the 
G = 0 Fourier coefficient for the interface region is zero, which is equivalent to 
the statement that the net charge of the interface region, given by

dq = £  [Z“ -  <1mt] -  ( e ) r int (3.7.1)
a

is zero. In an interface calculation between similar materials (stacking fault, grain 
boundary), the Fermi energy is pinned to the value of the bulk half spaces, and 
charge neutrality is not guaranteed. Experience has shown that the solution of 
Poisson’s equation is stable under small charge excess/deficit, and indeed the 
potential appears to move toward neutralising any charge imbalance. Within a 
muffin-tin formulation true charge neutrality is difficult to obtain since it requires 
the interstitial charge density for both the interface region and the two bulk half 
spaces to be identical, in general an unlikely event. Consequently it is necessary 
to ensure that the interfacial region is sufficiently large for dq to be reasonably 
small, and in the case of calculations in which there is a large increase in the inter
stitial volume (e .g . grain-boundary or cleavage problem) it is probably advisable 
to include empty spheres (muffin-tin spheres without a nucleus at the centre) to 
redress the balance. A measure of the required charge neutrality within the con
text of total energy calculations can be judged by considering the product of the 
charge imbalance and the Fermi energy, dq x Ef, which is approximately the error 
to the band contribution to the total energy assuming the excess/deficit of states 
are taken from near the Fermi level. If this quantity is significant in relation to the

3.7 D iscussion
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energy differences within the problem, then care must be taken in the interpreta
tion of results. Two possible schemes to account for the lack of charge neutrality 
are to scale the charge density uniformly to remove the charge imbalance

e6caled(r) = e(r) x | ^ > “/

which re-distributes states across the whole valence band, or alternatively to 
“float” the Fermi level within the interface region to ensure charge neutrality 
by the manipulation of the states at the Fermi level. Both methods are somewhat 
unsatisfactory, and at present it is not possible to state which gives the best re
sults. The development of a full potential version of the layer code will hopefully 
go some way to removing any such problems.

To be added to the Coulomb potential found from the solution of Poisson’s 
equation is the exchange-correlation potential (equation (1.1.5)) for which the 
Slater Xa approximation and the Hedin-Lundquist (Hedin and Lundquist, 1971) 
forms have been used. The new potential may not be directly used as input to the 
following iteration, the strong Coulomb forces tending to overcorrect for charge 
imbalance and leading to huge charge oscillations and numerical instability if such 
a philosophy is followed. Instead, a simple mixing scheme is employed,

V new (r) =  V0id(r)(l -  /?) + jSVcaicM (3.7.3)
where Vcaic is the calculated potential, and V0u (Vnew) the previous (next) po
tentials used to determine the charge density. /? is a mixing parameter of the order 
of 30-50% for bulk systems but 1%  or even lower for interface calculations, where 
charge neutrality is not guaranteed. It is noted that more elaborate schemes have 
been proposed for the acceleration of the self-consistent convergence cycle (e.g .  
Srivastava, 1984, and references therein), which, although requiring the storage 
of several previously generated potentials or charge densities and thus increasing 
memory requirements, offer the possibility of significant savings in run time.

I g(r)dr (3.7.2)
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3.8 Total energy
The total energy of the solid consisting of interacting electons and (frozen) ions is 
given by

E = T + U + Exc (3.8.1)
where

T=YlJ ̂ ( r) ( “ 5Vr) <Mr)dr (3.8.2a)

u -  /  /  f ^ r ‘irdr' -  W  i r n r ' +  £  ^*  1 1 R  1 1 R .R ' 1 1R*R'
EXc = J  e(r)e:xc(e(r))dr (3.8.2c)

The sum over levels in (3.8.2a) is over the occupied states; the integrals extend 
over all space and the summations in (3.8.2b) over atomic sites. The local density 
approximation has been used in (3.8.2c), the exchange correlation energy, which is 
actually d e f i n e d  as the difference between the exact energy and the sum of (3.8.2a) 
and (3.8.2b).

Within the muffin-tin model and the atomic sphere approximation these terms 
may be evaluated from (Janak, 1974; Skriver, 1984)

/ lif rEg(E)dE -  / V(r)g(r)dr
-  O O  j  T

+  /  G (r - r ' ; E i ) d r « }
« L c„ i *• J r «  >

r̂ MT 1- 4  n j  r ^ T(r)V*(r)dr (3.8.3a)

U = [(4,r)2 f Q { f?MT (r) dr'r'2ê !T(r') J- rdr
/“̂ MT 1-  4*Z“ Jf (r) dr -  -  (Z“ -  qg,T) C“

___r  /*r m tExc = 5 Z 47r /  5MT(r)£:xc(e(r))r2dr + n mt(e)e:xc((e))» Jo

(3.8.3b)

(3.8.3c)
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whilst the pressure, P, may be evaluated from (Janak, 1974)

3rP = 2 ~ “ iL , I™ | Wi J  G(r<r' iEi)dTa J _ 4 ,r /  dr T e ^ T r  (r2V(r))

-  2 (z“ _ <imt) c a -  3r in ( s ) [£xc«e)) -  fec((e»]
—  47r(R£IT )3g(RjJIT) [ e x c  (g(R£fT)) ~  Mxc (£(Rm t ))1

(3.8.4)
Qv ( t )  is the muffin-tin radial charge density due to the valence electrons.

Figure 3.12 shows the variation of energy and pressure under a symmetry- 
preserving expansion/contraction of the face-centred cubic lattice for aluminium, 
and is typical of a variety of lattice-constant tests which have been performed 
on face-centred cubic metals to monitor the accuracy of the LKKR code. This 
calculation used 13 g vectors in the plane wave basis set, phase shifts up to i  = 2 
and the muffin-tin radii were scaled to touch in each calculation. These parameters 
are the same as those used in the stacking fault calculations presented in Chapter
4. In this particular case the energy is minimised when 2 x Rmt = 5.36 au, in 
very good agreement with the bulk KKR result of Moruzzi, Janak and Williams 
(1978), who get a result of 5.37. The pressure at this lattice constant is about - 
9Kbar, reasonable close to zero. This level of agreement, considering very different 
expressions for the energy and pressure, is very encouraging, illustrating that the 
LKKR technique is as accurate as the bulk counterpart.
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Figure 3.12 Lattice constant test for aluminium, with changes in energy and 
pressure monitored under a symmetry preserving scaling of the bulk unit cell.

lattice constant test - al lattice constant test - al

3.9 Band structure
Partitioning the system into layers provides a natural method for the calculation of 
the bulk band structure K(E) both on the real K axis of conventional calculations 
a n d  into the complex plane, where information regarding the nature of localised 
states may be found (Heine, 1963).

The band structure is determined by applying the Bloch condition across 
the repeat unit of the system. If T±:fc represents the (plane wave) scattering 
matrices of the repeat unit, formed from the scattering matrices of the atomic 
layers v i a  repeated use of the layer coupling equations (2.8.7), then we may write 
the following two conditions relating the amplitudes of the wavefunctions across 
the ith unit (figure 3.13)

S'h-i =^+p+T++ + S'" 1T -+
$r- = ’$+p+T+-p r  + ^f+1T'"Pr (3.9.1)

with ’i'; (r) = exp tK* • (r — c,), the plane wave expansion valid in the
interstitial region. Applying the Bloch condition to relate and the fol- 
lowing generalised eigenvalue problem may be formulated, where c is the repeat
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Figure 3.13 Schematic illustration of the wavefields in the band structure prob
lem.

vp+1 'i fM+l
i) il U

%

layer i i+1 i+2

vector across the repeat unit of scatterers, and from which the band structure 
K(E) may be determined (Wood and Pendry, 1973)
(^+ # " ) p + ,p++ — P+ T**—P' (¥ + * - ) 1

_ T - +0 1 ) e*Kc('*,+ * )(_ T-+ x--p-)
(3.9.2)

Unlike conventional calculations, the problem is solved at fixed E,k|| and the re
sulting kj, evaluated. The conventional band structure is given by the real ka 
solutions. At a planar defect, states within the interface region will be matched to 
the complete set of states within the bulk half spaces with the same E,k||. The ka 
will in general be complex, and correspond to the solutions of the eigenvalue prob
lem, (3.9.2). The analytic structure of the real-energy bands has been discussed in 
some detail by Heine (1963). Of particular note is the observation that the spatial 
decay of the wavefunction when no real ka solutions exist will be governed by the 
magnitude of the the imaginary component of the complex kt eigenvalues.

As well as providing important information with regard to the electronic struc
ture of bulk and interface systems, the band structure provides a stringent test 
of the calculation of the layer scattering matrices. Figure 3.14 illustrates a small 
section of the band structure for Ni calculated using the equations above.
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F i g u r e  3 .1 4  A  sm a ll p a r t o f  th e  n ick e l b a n d  s tr u c tu r e  c a lc u la te d  fro m  th e  e ig e n 
v a lu e  p ro b lem  (3 .9 .2 ) .

3.10 Projected band structure
For systems of reduced symmetry, for which the layer KKR approach has been 
developed, the normal band structure becomes projected onto a two-dimensional 
analogue, with the effectively infinite repeat distance in the z direction resulting 
in a Brillouin zone with no kt dimension. This projected band structure is, like 
the conventional band structure, normally illustrated by displaying the projected 
bands along high symmetry lines within the irreducible two dimensional Brillouin 
zone. Its importance for the electronic description of both surfaces and interfaces 
lies in the possibility of the identification of regions of E-K space where extended 
states exist and hence pointing out pockets where localised states may be present. 
It is an intrinsic property of the bulk material.
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Within the formalism presented here this projected band structure may be 
obtained by solving the eigenvalue problem stated above for various E, k|| through
out the two dimensional Brillouin zone and searching for any Bloch solutions with 
a real ka component, corresponding to extended electron states. Regions where 
only complex ka exist are regions of (E,k||) space where electrons within an in
terface or at a surface will be unable to couple to solutions in the bulk half space 
which extend over any great distance. Any such electrons will be localised, the 
wavefunction amplitude decaying off with distance. In fact, even within regions 
where extended states do exist electron states may be localised due to the surface 
or interface, if they correspond to a different symmetry than the extended states 
and hence are unable to couple. An example is the Ai surface state found on 
the (100) face of molybdenum, which occurs in the hybridisation gap where only 
states of A2 , A2' and A5 symmetry exist (Inglesfield, 1982). Localised states may 
extend into regions of (E,k|j) space where extended states exist, and still show 
up strongly as resonances. The symmetrised projected band structure may be ob
tained by classifying the wavefunctions corresponding to the extended states with 
real k*. determined from the eigenvalue problem by their point groups within the 
two dimensional Brillouin zone.

An alternative method of determining the projected band structure is to eval
uate the density of states for the bulk crystal along lines of constant k|| on the 
faces of the irreducible Brillouin zone. The absence of extended states implies zero 
density of states in the bulk problem. In order to resolve the band edges sharply 
only a small imaginary component is used (typically 1 x 10- 5Ha; zero imaginary 
energy cannot be used with the layer doubling algorithm), since the imaginary 
energy will broaden the states into regions forbidden on the real energy axis. As 
there is no Brillouin zone sampling the projected band structure may be deter
mined rapidly. Figure 3.15 illustrates the density of states so determined for the 
T — K face of the irreducible Brillouin zone of the (111) crystal orientation of Al. 
The symmetrised band structure may be determined by decomposing the density 
of states into its irreducible components.

Both methods outlined above may be used to evaluate the projected band 
structure, but a third method has been found most rapid. The perturbation 
scheme used to evaluate the reflectivities does not converge on the real energy 
axis in the presence of extended states, since an incident wavefield may be de
composed into a “travelling” component, linear combinations of the eigenstates 
of the bulk repeat system of layers with real ka, and a “decaying” component, 
containing the rest. For any finite slab of layers the travelling componant will pass
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Figure 3.15 Muffin-tin density of states evaluated at various constant k|| between 
the T and K points of the irreducible Brillouin zone of the (ill) face of aluminium,

through undamped, and hence may scatter off any additional layers on the far 
side into a travelling wave with opposite ka which then propagate back. Thus the 
contribution from this furthest layer is non zero and the reflectivity of the finite 
slab is not independent of the last layer added, which is the condition used for its 
determination. The convergence of the layer doubling or “tripling” algorithm may 
be monitored by evaluating the largest relative change in the matrix elements of 
the reflection matrix after each pass. For example, for the plane wave case we may 
monitor

Sn = max p  11 p  n — iK_, -  Kgg,
' g g '

p n — 1 (3.10.1)
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Figure 3.16 Convergence of the elements of the reflection matrix with the number 
of passes through the layer doubling algorithm for nickel. Continuous line E = 
0.1 + 0.0i (all energies in Ha) where extended states exist. Long dash E = 0.1 +1 x 
10“5i showing convergence. Short dash E = 0.2 + O.Oi where no extended states 
exist.

Number of doubles

where Rn is the reflection matrix after n doublings. Figure 3.16 charts this quantity 
for the (ill) face of Ni, at the T  point of the two dimensional Brillouin zone with 
k|| = (0,0). The short dashed line is log Sn evaluated at E = 0.2+0.0tHa, an energy 
at which no extended states exist. The reflection matrix has converged after only 5 
doubles, or when 32 layer have been stacked. The solid dashed line is evaluated at 
E = 0.1 + O.OiHa. Extended states occur at this energy, and it is evident that the 
reflection matrix is not converging. Even after 21 doubles or 2 x 106 layers there is 
no indication of convergence starting. However, adding a small imaginary part so 
E = 0.1 + 1 x 10”5tHa results in the reflection matrix converging after 18 passes 
through the doubling algorithm. The number of doubles that will be required in 
the presence of extended states may be determined approximately by assuming 
the wavefunction decays as exp — (rnAz), with T  the dissipative component of the 
energy, Az the layer-layer z separation and n the number of layers.
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We may therefore determine the projected band structure by attempting to 
converge the half space reflection matrices on the real energy axis, those energies at 
which S„ falls to zero corresponding to gaps in the projected band structure. The 
symmetrised band structure may be determined by checking linear combinations 
of the elements of the reflection matrix transforming as the various irreducible 
representations of the full point group.

In figure 3.17a the projected band structure determined for the (ill) face 
of aluminium by this method is illustrated. This is is excellent agreement with 
various other calculations which have presented this information, such as that 
taken from Caruthers, Kleinman and Alldredge (1974) in figure 3.17b.
3.11 Localised states
The existence of regions of (E,k||) space within which no extended states of a 
given symmetry exist allows for the presence of localised states which decay with 
distance into the bulk half spaces. Surface states have been found to be a common 
occurrence, and the agreement between theory and experiment in their location 
and description provides strong support for the validity of theoretical calculations 
of surface electronic structure. Their importance in determining the structural 
properties of the surface has been emphasized by various authors. Interfacial 
states have been less well studied both theoretically and experimentally, although 
their importance to electronic and mechanical properties have also been noted.

The presence of interface states within the layer KKR formalism may be 
identified by searching (E,k||) space till the following condition is satisfied

det [l -  RI+1LI_1] = 0 (3.11.1)
which is obtained by requiring a non trivial solution of the self-consistent require
ment

<jr+ =  tfj-L1-1 =  >I'I+ RI+1 (3.11.2)
(all propagators have been ignored) which must be satisfied by the wavefunction of 
the localised state within the interface region. A similar line of argument may be 
used to obtain the condition for surface states (Pendry, 1974). Equation (3.11.1) 
is a complex determinantal equation, the zeros of which are difficult to locate. An 
alternative method which has proved more suitable for determining the presence of 
localised states is to evaluate the density of states within the gap of the projected 
band structure, first with a reasonably large dissipative component so that the 
localised states are not missed with the energy grid used, and then with a smaller 
imaginary energy to more precisly determine their location. The localised state
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Figure 3.17 a). Two dimensional projected band structure for Al(lll) evaluated 
by attempting to converge the bulk reflection matrix on the real energy axis. A 
square indicates the layer doubling procedure failed to converge at that (E,k||). b). 
Two-dimensional projected band structure for Al(lll) from Caruthers, Kleinman, 
and Alldredge, 1974.

-E(Ry)
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is characterised by a very sharp peak in the density of states, illustrated in figure 
3.18. This shows the muffin-tin density of states at the K point of the Brillouin 
zone (figure 3.1) of a copper twin fault (see next Chapter for the structure) and 
contains two localised states at E=0.2193Ha and E=0.2365Ha, within gaps in the 
bulk density of states. Figure 1.1 also illustrates localised states for an intrinsic 
fault in copper, the locations of all these states corresponding well in re la tiv e  
position with those found for similar faults in nickel by Grise, Kleinman and 
Mednick (1980). The imaginary energy necessary to resolve the presence of the 
state for a given grid of energy points may be estimated by assuming the state is 
broadened in a similar fashion to the core level in figure 3.5.

Figure 3.18 Localised states at the K point of a twin fault in copper appearing 
as singular peaks in the density of states at E=0.2193Ha and E=0.2365Ha.

600
a
x
D-

O
Q
H
£

400

200

Energy (Ha)

-117-



3.11 Basis set convergence
Of crucial importance in the practical use of the layer KKR formalism is the 
question of the basis set convergence, and in particular the size of the plane wave 
basis set necessary, since the angular momentum basis in both the plane wave and 
combined plane wave/partial wave formulations of Chapter 2 is truncated by the 
atomic scattering properties of the muffin-tin potential. This convergence is now 
illustrated, and numerical data demonstrating the need for the close spaced layer 
formulation.

For a given choice of crystal direction in which the stacking of layers is per
formed, we have a set of reciprocal lattice vectors {g} which forms the plane wave 
basis through the interlayer expansion vectors exp t'Kj • r. In solving the band 
structure problem, to preserve symmetry (eigenvalue degeneracy) it is necessary 
that the basis set chosen contain complete sets of symmetry related g vectors. 
This is also true for the determining the charge density, and since the basis set at
tenuation depends upon |g| it is consistent to include all g vectors with |g| < gluax, 
gmax being the cutoff used. Thus for the (111) direction in FCC crystals we are 
restricted to a choice of basis set sizes 1,7,13,19,31,..., and for FCC or BCC (100) 
the sizes 1,5,9,13,17,21,25,...

Figure 3.19 Muffin-tin density of states for bulk copper evaluated with a plane 
wave basis set of 7, 13 and 19 g vectors.
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In practice a remarkably small number of vectors are required. Using just the 
g = (0 ,0) component is not practical since, being rotationally invariant, coupling 
with the intralayer basis is severely restricted. However, as illustrated in figure 
3.19, the density of states for Cu evaluated with the layers stacked along the (111) 
direction shows only minor differences when calculated with 7 and 13 g vectors, 
slightly different structure being present at about -4.0eV and the peak at the top 
of the d band, at -1.75eV, being shifted and as a consequence of a fairly course 
energy grid appears much sharper with 7 g vectors. The agreement between 13 
and 19 g vectors is excellent.

Figure 3.20 displays the convergence of particular values of the density of 
states as a function of plane wave basis set size, the values being plotted as the 
ratio to the value calculated with the largest basis set size. Figures 3.20a and 3.20b 
were determined along the FCC (111) direction where the z spacing of adjacent 
layers is large, and the purely plane wave basis suitable for treating the interlayer 
scattering. 13 g vectors have converged the density of states to about 0.1%. 
Figures 3.20c and 3.20d are likewise calculated with the plane wave formulation, 
but correspond to the FCC (210) direction which comes under the classification 
of close-spaced. As many as 47 g vectors are insufficient to converge the density 
of states, and which shows no sign of converging. This is the behaviour alluded 
to in the previous Chapter. To be contrasted with this are the results shown in 
3.20e and 3.20f, which are calculated using the close-spaced formulation for the 
same structure. We now find the density of states is sufficiently converged with 
only 15-20 g vectors in the plane wave basis.

To accompany the density of states results, figure 3.21 contrasts the relative 
calculation time for the two codes as the plane wave basis set dimensions increase. 
Although the close-spaced theory takes significantly longer than the purely plane 
wave treatment for a given number of plane wave vectors, the important point to 
note is that the time taken with 15-20 g vectors for the converged close-spaced 
solution is comparable to the calculation time using 30-35 g vectors with the plane 
wave solution, and which is clearly an inadequate number from the results shown 
in figure 3.20. Hence the close spaced formulation has greatly increased the ability 
to study systems with closely spaced layers.

A final comment is required with regard to the calculation of interface energies 
by the layer KKR method, which depends upon a large cancellation of errors. The 
absolute energies determined for a given system contain errors from a variety of 
sources, including the local density approximation, the muffin-tin approximation, 
Brillouin zone integrals and basis set truncation. In general it is to be expected
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Figure 3.21 Relative calculation times using the plane wave (normal) and plane 
wave/ partial wave (close-spaced) codes along the (210) direction of nickel.

Number of g vectors

that in absolute terms these errors exceed structural energy differences. However, 
we may hope that relative differences in energy between two calculations will be 
accurate if the same approximations are made in performing them, that is, if the 
same approximation is made to the exchange-correlation functional, correspond
ing points in the Brillouin zone sampling used and the same size basis set chosen. 
A similar philosophy has been applied to the calculation of cohesive energies (e.g. 
Moruzzi, Janak and Williams, 1978) and structural phase diagrams (e.g. Chang 
and Cohen, 1986), with a success suggesting the belief in the cancellation of errors 
is well-placed. Of the various errors entering the calculations, all but the local 
density approximation may be corrected systematically; the muffin-tin approxi
mation may be checked by perturbation theory, or through the use of full-potential 
techniques (e.g. Wimmer, Krakauer, Weinert and Freeman, 1981).

In this respect, it should be noted that the self consistent bulk-potentials 
generated by the layer KKR method and subsequently to be used in the bulk 
half spaces of an interface calculation must be determined along corresponding 
directions with the same basis set, Brillouin zone sampling and energy ordinates.
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CHAPTER 4: STACKING FAULTS IN FCC METALS

4.0 Introduction
A regular crystal may be considered as a stacking of atomic planes, the actual 
composition of the planes and the relative displacements determining the precise 
structure. Stacking faults may be viewed as an interruption to the regular stacking 
sequence of the atomic planes. As a geometrical exercise any number of possible 
stacking faults may be visualised, but with each fault there is an associated en
ergy, and the actual occurrence of each fault depends crucially upon this energy. 
The energy itself depends upon many properties of the host material, such as the 
types of atoms and the nature of the bonding, and also upon structural factors. 
The retention of normal coordination and bond lengths has, as may be expected, 
been found to crucially affect the energy and subsequent occurrence of the stacking 
faults (Saada, 1966). Only faults in the stacking sequence along the [ill] direc
tion have been observed in FCC crystals, being the only ones preserving nearest 
neighbour relations, whilst direct observation of stacking faults in the BCC crys
tal structure, for which no faults exist which retain nearest neighbour bond length 
and coordination, are speculative and at best rare (Saada, 1966). In comparison 
with surface and grain boundary energies, those for stacking faults are typically 
an order of magnitude smaller (see table 4.1), again a consequence of the retention 
of nearest neighbour coordination and bond lengths.

Interest in stacking faults rests primarily in their influence upon the mechan
ical properties of materials. For example, in the FCC crystal the dissociation of 
a perfect dislocation £[101] into an extended dislocation results in two Shockley 
partial dislocations  ̂[112] and £[211] bounding a stacking fault. The energy re
quired for the formation of this fault affects the ease by which the dislocation 
splits into partials and consequently the dislocation mobility. Materials with low 
stacking fault energies are characterised by planar slip and twin formation, whilst
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Table 4.1
Selected interface energies 7  (in ergs/cm2) for various metals (sf = stacking fault, 
gb = grain boundary and s = surface). Data taken from Appendix 2 of Hirth and 
Lothe, 1982.

Metal I s i 7gb I s

Ag 16 790 1140
Au 32 364 1485
Ni 125 866 2280
Pt 322 1000 3000

those with high stacking fault enegies are characterised by more homogeneous de
formation and dislocation cell formation due to easy cross slip. Dislocations split 
into partials are restricted to a single glide plane and can cross slip only if they 
recombine, and with the equilibrium separation of the partials going as the in
verse of the stacking fault energy, cross slip is increasingly difficult as the energy 
decreases. Stacking faults also provide barriers to the movement of dislocations, 
and the energy 7  plays a role in the physics of a variety of other defect structure 
(Hirth and Lothe, 1982).

On a wider front, stacking faults are of interest to the question of phase sta
bility, and polytypes in general (Zangwill and Bruinsma, 1987). Again considering 
the FCC crystal, the local atomic environment in the vicinity of a stacking fault 
is HCP, and indeed the “hard-ball” central forces model predicts the twin fault 
energy to be equal to the FCC-HCP transformation energy per layer (note, how
ever, the variation in c/a ratios for HCP crystals points to certain inadequacies of 
the central force model). The accumulation of solute atoms at a stacking fault re
sulting in a decrease in the interfacial energy is a phenomena predicted by Suzuki 
(1952, 1962) and provides a means for controlling the plastic properties of metals. 
Furthermore, those segregants tending to reduce the stacking fault energy would 
also promote the FCC-HCP phase transition, and modify the elastic properties of 
the crystal. Finally, stacking faults have been shown to contribute to electrical
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resistivity (Howie, 1960; Cotterill, 1961) and corrosion, when the faults extend to 
the surface.

In this Chapter experimental studies are outlined, and previous theoretical 
studies on silicon and metals described, to put into context the new results pre
sented on twin faults in copper, aluminium and iridium. Finally, preliminary re
sults looking at the possible mechanisms by which impurities modify the properites 
of the stacking fault are presented.
4.1 Experimental results
The experimental determination of the stacking fault energy in FCC metals and al
loys has been reviewed by Gallagher (1970), who concludes that no single method 
of determination combines all the desirable attributes such as a wide range of 
applicability, and a direct and preferably strong dependence of the energy upon 
the experimental measurement. Of the many techniques used, the extended node 
method is close to being ideal when applicable. This technique looks at the equilib
rium structure of dislocation arrays; the material between the partials is a stacking 
fault and so the magnitude of the fault energy controls the dislocation separation, 
and the radius of curvature, R, of the faulted area in triple nodes (Saada, 1966). 
Simple analysis gives 7  a  R-1  and so only in materials with low stacking fault en
ergies (typically < 30 ergs/cm2; note 1 erg/cm2 = 1 mJ/m2) may nodes be resolved 
and hence the energy determined. The agreement between various determinations 
of the fault energy using the method of extended nodes is remarkably good, es
pecially comparied to the general standard of agreement between determinations 
by other techniques, which reflects to some degree the difficulty in performing 
the experiments and the problems in applying linear continuum elasticity theory 
to describe the atomic scale changes (table 4.2). However, other than silver, the 
elemental FCC metals have stacking fault energies too high for the use of the ex
tended nodes method for their determination, and consequently their energies are 
more uncertain.

Since most real applications of metals are at room temperature or higher, 
and theoretical calculations are performed at T = 0 , the temperature dependence 
of the stacking fault energy is of great importance. Again Gallagher (1970) has 
reviewed the published investigations of this dependence, and concluded that the 
variation in stacking fault energy with temperature is weak, with a number of 
additional influences, such as changes in segregation behaviour, change in elastic 
constants and a reduction in the solute pinning forces on the dislocations, also 
affecting the size of the faulted areas, usually taken to be indicative of a change
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Table 4.2
Stacking fault energy of silver as determined in a variety of studies using the 
techniques listed (compiled from Gallagher, 1970). Energies in ergs/cm2.

Method Energy determined
Extended nodes 21,20 ± 7,21.9 ± 3.5,27 ± 7,22.8 ± 4
Faulted dipoles 30.7, < 21 ± 6
7-3 , stress at onset of 43,65 ±8,-40,15 ±3
dynamical recovery
tetrahedra stability < 43,17 ±4,15.4

in stacking fault energy. For copper and aluminium, the stacking fault energy is 
estimated to change by only about -0.04ergs/cm2/°C.

The conclusions drawn by Gallagher in his review of experimental studies of 
the FCC metals and alloys are applicable to metals in general. The uncertainties in 
experimental values for the HCP metals have been addressed by Fleischer (1986), 
and similar factors affect the antiphase boundary energies in ordered alloys (Murr, 
1975). Overall, the conclusion to be drawn from the experimental studies is that 
accurate theoretical determinations of the energy are very useful and can greatly 
aid experiment.
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4.2 Theoretical studies of stacking faults in silicon
Silicon is probably the most studied and best understood material, both because of 
its importance to the electronics industry, and because its electronic properties may 
be well represented within the local pseudopotential approximation. The latter 
has enabled the material to be comprehensively studied by the self-consistent 
pseudopotential, which is fast and accurate even to the extent of allowing the 
validity of the local density approximation and the nature of the one-electron 
states to be considered in some detail (Godby and Needs, 1989). A huge amount 
of time has been devoted to understanding a whole spectrum of properties, and in 
particular a large number of studies have been directed toward the characterisation 
of the silicon stacking fault. Much can be learned from these investigations when 
studying stacking faults in metals, such as accuracy of calculation techniques, 
relaxation effects and the nature of localised states.

Figure 4.1 Atomic positions of AA’ (unshaded), BB’ (shaded) and CC’ (black) 
sites of the silicon lattice projected onto the (ill) plane.
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The silicon lattice has the diamond structure, which may be viewed as two 
inter-penetrating FCC lattices displaced relative to one another by one-quarter 
of the cube diagonal. Along the [ill] direction of the cubic lattice the stacking se
quence of (ill) hexagonal planes for the perfect crystal follow a ... AA'BB'CC'AA' 
BB'CC'... pattern, with the plane A’ (B’ or C’) directly above A (B or C), the 
separation being the nearest neighbour distance,. A’ and B (B’ and C or C’ and A) 
are separated by one-third the nearest neighbour distance, and with an in-plane 
shift of one-third the usual hexagonal lattice basis vectors (figure 4.1). Three 
stacking faults are known to occur. The intrinsic stacking fault (ISF) results when 
a double plane AA’ is removed from the sequence, and the extrinsic faults (ESF) 
may be viewed as the addition of an extra double plane. The twin fault is a 
complete reversal of the stacking sequence.

ISF .. .AA’BB’CC’BB’CC’AA’BB’. ..
ESF .. .AA’BB’CC’BB’AA’BB’CC’. ..
TSF .. .AA’BB’CC’AA’CC’BB’AA’. ..

Theoretical studies have focussed upon determining the stacking fault energy 
and the presence of localised states induced by the disruption to the symmetry. 
Guiding and prompting these investigations are experimental studies which have 
determined the stacking fault energy to be 50-70 ergs/cm2 by a variety of tech
niques, such as the separation of partials (e.g. Ray and Cockayne, 1970), the radii 
of curvature in extended nodes of dislocation networks (e.g. Ray and Cockayne, 
1971) and the width of double ribbons (Foil and Carter, 1979). Furthermore, there 
have been reports of localised states O.leV below the conduction band, found by 
Kimmerling, Leamy and Patel (1977) using charge collection scanning electron 
microscopy, and 0.15eV above the valence band maximum observed by Weber and 
Alexander (1983) by photoluminescence spectra.

Chen and Falicov (1974), using pseudopotential theory and the second or
der perturbation theory developed by Hodges (1967), obtained an energy of 55 
ergs/cm2 for the ISF. This calculation used empirically fitted form factors, and is 
surprisingly accurate in light of the approximations made (Krause, 1976), including 
neglect of self-consistency and exchange-correlation effects, and the use of pertur
bation theory. Indeed second order perturbation theory predicts the stable phase 
of silicon to be HCP (Harrison, 1965). Weigel, Alexander and Corbett (1975) used 
the semi-empirical extended Huckel theory (EHT) within the slab approximation 
to look at all three faults, the energies being determined by comparison with a
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slab of perfect crystal to remove the effects of the free surfaces. The EHT param
eters gave a good band structure and reasonable elastic properties, and gave fault 
energies 7isf = 86.0 ergs/cm2, 7esf = 85.5 ergs/cm2 and 7t sf  = 43.0 ergs/cm2. 
These energies and inspection of the charge distributions suggested the ISF and 
ESF could be regarded to some degree as a superposition of twin faults, separated 
by one double plane in the ISF and two in the ESF. Thus, at least for the silicon 
stacking faults, the connection between the stacking fault energy and phase sta
bility appears strong. Altmann, Lapiccirella, Lodge and Tomassini (1982) used a 
valence force field model beyond the harmonic approximation fitted to experimen
tal phonon dispersion data and obtained 7isf = 44 ergs/cm2.

Marklund (1981) examined the electron energy levels using supercells of 10- 
20 atomic planes with an empirical local pseudopotential scheme and predicted 
the localised level O.lleV above the valence band maxima found experimentally 
by Weber and Alexander (1983). The same level was found by Mattheiss and 
Patel (1981) using a non-orthogonal tight-binding method with parameters de
termined v ia  a non-linear least squares fit to an accurate non-local pseudopotential 
band structure. They also employed supercells and located localised states by ob
servation of the charge distribution of the eigenfunctions. Other defect states 
were found, but none below the conduction band minimum which would corre
spond to that observed by Kimmerling, Leamy and Patel (1977), and which could 
therefore to be due to either impurities or disorder arising from the surround
ing dislocation. Mattheiss and Patel (1981) determined the fault energies and 
minimised them by allowing relaxation in the interplanar spacing. The energies, 
7 isf  = 64 ergs/cm2, 7esf  = 44 ergs/cm2 and 7tsf  = 19 ergs/cm2, were approxi
mately halved through the inclusion of relaxation, which involved changes of the 
order of 1%  in the interplanar spacings. Qualitative agreement with these results 
was given by Sanchez-Dehesa, Verges and Tejedor (1981) using generalised Wan- 
nier functions. They determined relaxations of up to 4 %  in interplanar spacings 
and energies 7isf = 145 ± 30 ergs/cm2 and 7esf = 50 ± 30 ergs/cm2, but their 
method involved large cancellations of absolute energies.

The only first-principles calculation of the stacking fault electronic structure 
of silicon is due to Chou, Cohen and Louie (1985). Using norm-conserving pseu
dopotentials within the self-consistent supercell approach they determined the 
fault energies to be 7isf = 33 ergs/cm2 and 7esf = 26 ergs/cm2, with an uncer
tainty of about 20%. Interestingly, the ratio of energies 7 is f /7 e s f > which may be 
expected to be more accurate experimentally than the individual energies, since 
it applies to a particular sample and avoids systematic uncertainties, agrees very
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well (Foil and Carter, 1979). Localised states were observed, in agreement with 
the previous theoretical calculations, and the authors suggest a possible reason for 
the absence of the state observed by Kimmerling, Leamy and Patel (1977) may 
be the local density approximation, which significantly under-estimates the band 
gap in silicon. Thus, features in the vicinity of the conduction band may be in 
error. In support of this, localised states were identified that were pulled from 
the conduction band, but not below the absolute minimum. Structural relax
ations, which were determined v ia  the Hellmann-Feynman forces (Heilman, 1937; 
Feynman, 1939; Slater, 1972) as they were found to contain less noise than the 
energy, revealed an expansion of the order of 1%  in the interplanar spacing. The 
resulting energy change was less than the 2 0 %  calculation uncertainty. Table 4.3 
summarises some of the theoretical determinations of the stacking fault energy in 
silicon.
4.3 Theoretical studies of stacking faults in metals
Low energy stacking faults (due to the preserving of nearest neighbour coordi
nation, and thus likely to exist) have been found in the close-packed FCC and 
HCP crystal structures. Viewed as a stacking of (111) hexagonal planes along the 
[111] direction, the stacking sequence in the FCC structure is analogous to the 
diamond crystal but with single and not double planes. The intrinsic, extrinsic 
and twin faults may likewise be viewed (Hirth and Lothe, 1982) as resulting from 
the subtraction, addition and reversal of the stacking sequence (figure 4.2).

FCC
ISF ...ABCBCAB.
ESF .. .ABCBABC.
TSF .. .ABCACBA.

The HCP lattice is given by the stacking sequence .. .ABABABAB... of hexagonal 
planes, and the possible faults are two intrinsic (Ii and I2) and an extrinsic fault 
(Hirth and Lothe, 1982) (figure 4.2).

HCP
IiSF .. .ABABACACACA... 
I2SF .. .ABABABCACAC... 
ESF .. .ABABACBABAB...
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Table 4.3
Estimates of the stacking fault energy (in ergs/cm2) of silicon.

Energy Method (reference)
ISF ESF TSF

33 ± 20%26 ± 20% ab — initio pseudopotential theory

86.0 85.5 43.0
(Chou e t a l , 1985) 
extended Huckel theory

145 ±  30 50 ±30
(Weigel e t al> 1975) 
generalised Wannier functions

64 44 19
(Sanchez — Dehesa e t a l , 1981) 
non — orthogonal tight binding

44
(Mattheiss and Patel, 1981) 
valence force field

55
(Altmann e t a l , 1982)
2nd order perturbation theory

50-70 50-70
(Chen and Falicov, 1974) 
experiment
(see text)

The perturbation method within the pseudopotential theory used by Chen and 
Falicov (1974) on silicon was originally developed by Hodges (1967) to study the 
stacking fault energies of various close-packed metals. His results demonstrated 
the trends in the energies (A1 high, Pb low) but were not accurate. Indeed, Pb and 
Zn were found to have negative stacking fault energies, indicating instability to 
fault formation and thus predicting the wrong crystal structure. Simon (1979) has 
reviewed subsequent applications of the pair-potential approach (derived from 
pseudopotential theory or orthogonalised plane wave methods). He notes that 
applications to noble metals have not achieved much success, and concludes that, in 
the case of normal metals, the energies derived are very sensitive to the actual form 
of the interionic potential, but are of the correct order of magnitude. Despite the
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Figure 4.2 Bulk and stacking fault structures of the FCC and HCP lattices. The 
view is edge on to the (111) planes and taken in a [211] direction. Shaded atoms 
occupy positions one row back.

FCC

bulk twin

intrinsic extrinsic

HCP

bulk intrinsic II

intrinsic 12 extrinsic
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presence of long-range terms in the energy expressions, the stacking fault energies 
are generally proportional to the number of faults, 7 t s f  ~  7 i s f / 2  ~  7 e s f  / 2, with 
the intrinsic fault systematically higher (by ~ 16 %) in energy than the extrinsic 
fault. These conclusions supported the studies of Beissner (1973) who used the 
real space summation technique of Blandin, Friedel and Saada (1966) to compare 
a variety of model potentials. In polyvalent metals, trends and phase stability 
were well described, but in monovalent metals there was tremendous sensitivity to 
small changes in energy-wave number characteristics of the potential; in general 
energies were lower than found in experiment. Beissner also noted that exchange- 
correlation effects were not so important as in the case of other defect calculations. 
This could be due to the rather smaller changes in charge distribution and volume 
(as compared to surface, grain-boundary or dislocations), which might alter the 
validity of the application of the local density approximation when compared to the 
perfect crystal. Beissner also noted a systematic underestimation of the theoretical 
energies when compared to experiment.

Harrison (1973) has employed the pair potential formalism to aluminium and 
examined the effects of lattice relaxations. Using 10 atomic layers and constant 
total volume, his results (using an empirical pseudopotential) indicated lattice 
displacements of the order of 2%, analogous to those found in silicon, and accom
panying reduction in the fault energies of up to 10%.

Calculations probing the electronic structure at stacking faults have primarily 
focussed upon nickel. Yndurain and Falicov (1976) applied their transfer matrix 
approach (Falicov and Yndurain, 1975b) to the intrinsic and extrinsic faults of the 
FCC lattice, using tight-binding parameters determined by fitting to established 
band-structures. Evaluating the density of states p (E, k||) at high symmetry points 
within the two-dimensional Brillouin zone they identified the presence of localised 
states throughout the Brillouin zone, including one at the T  point in both the ISF 
and ESF about leV below the Fermi energy, between the bulk bands of t2g and eg 
symmetry. Pointing out the absence of surface states in this vicinity of (E, k) space, 
and noting that the state is well removed from the bulk bands, so should be eas
ily resolved by photoemission, they suggested experimental verification should be 
possible. Grise, Kleinman and Mednick (1980) disputed this possibility, their cal
culation using the linear-combination-of-atomic-orbitals method applied to large 
supercells containing ISF’s, ESF’s or TSF’s, which revealed many more localised 
states, including those of Yndurain and Falicov (1976). These states, however, oc- 
cured largely in gaps which were also predicted to include surface states (Dempsey, 
Grise and Kleinman 1978), although experimentally these have not been found,
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possibly due to resolution problems, as the gaps in which they reside are rather 
narrow. Furthermore, studies of the density of states and charge distributions (and 
magnetisation) at the various faults indicated relatively small deviations from bulk 
behaviour, offering little hope that experimental probes may be able to resolve the 
effects of the stacking faults. The need for the stacking fault to be located near 
the surface (within 5-10 atomic planes), in order that electronic probes may ex
perience it and the subsequent scattered electrons to escape, would also introduce 
a surface-stacking fault interaction which would have to be taken into account; 
Grise, Kleinman and Mednick determined the localised electrons to reside largely 
within 1-2 atomic planes of the fault, although some present within narrow gaps 
were rather more de-localised.
4.4 Twin faults in aluminium, copper, and iridium
Results are now presented for the electronic structure of twin faults in the FCC 
metals aluminium, copper and iridium. As discussed in the introduction to this 
Chapter and as supported by both experimental data and theoretical calculations, 
the twin fault may be viewed to some degree as the fundamental building block 
of the intrinsic and extrinsic stacking faults, and so the results obtained in these 
studies should also be applicable to those faults. The stacking fault structure is 
an ideal problem to be studied by the layer KKR method. The perturbations 
induced by the structural changes are evidently small and subtle, and may be 
poorly represented by supercell calculations (see figure 1.1). The materials studied 
here are well described by the muffin-tin approximation to the crystal potential, 
being close packed, and at the fault area itself the change in structure retains this 
packing. As a first approximation the stacking sequence of the atomic planes is 
simply reversed and relaxation of the interplanar spacings have been neglected. 
Such relaxations would alter the interstitial volume and it is not certain that the 
muffin-tin approximation, with its sharp distinction between the interstitial and 
intrasphere regions, can accurately describe relaxation effects of such a nature.

The three metals studied have distinctly different electronic structure. In fig
ure 4.3-5 the muffin-tin density of states (MTDOS) for the bulk structures are 
displayed. Figure 4.3 is for aluminium, evaluated by the layer KKR method with 
partial waves included up to i  = 2, Ng = 13, 378 special k|| sampling points in the 
one-twelfth irreducible Brillouin zone and an imaginary offset to the energy con
tour of 0.0025Ha (~0.068eV). The self-consistent potential was calculated with 
6 Brillouin zone sampling points and 8 energy points on the triangular energy 
contour. The profile is in excellent agreement with other muffin-tin calculations
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(Moruzzi, Janak and Williams, 1978), and also full potential pseudopotential re
sults (Ashcroft, 1979). Below about -4.0eV (all energies are quoted relative to 
the Fermi energy) the MTDOS has a parabolic E1/2 free-electron like profile, the 
slight rippling being an artifact of the finite number of Brillouin zone sampling 
points used, as descibed in Chapter 3. Moving up in energy the MTDOS deviates 
from the free-electron like profile and displays a number of peaks and troughs 
associated with critical points in the band structure and which occur as a result of 
backscattering and subsequent constructive/destructive interference off the prin
ciple planes of the crystal lattice. These features have been examined in detail by 
Ashcroft (1979). Aluminium is trivalent and the Fermi energy passes through a 
region where there is significant hybridisation and where bands meeting the zone 
boundaries. From the s,p, and d  decomposition of the MTDOS also given in fig
ure 4.3 it is clear that the d  contribution is significant and must be included for 
accurate calculations. The stacking fault energy for aluminium is high, about 166 
ergs/cm2 (Murr, 1975), and consequently experimentally only indirect methods 
may be used for its determination.

Figure 4.3 Muffin-tin density of states for bulk aluminium, and s, p  and d  de
composition.

aluminium
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Figure 4.4 Muffin-tin density of states for bulk copper, and s, p  and d  decompo
sition.

copper

Figure 4.5 Muffin-tin density of states for bulk iridium, and s, p  and d  decom
position.

iridium

Energy (eV)
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In figure 4.4 the MTDOS for the noble metal copper is plotted, calculated 
with the same parameters as were used for aluminium. Again there is excellent 
agreement with other muffin-tin calculations (Moruzzi, Janak and Williams, 1978), 
taking into account the Lorentzian broadening due to the finite imaginary energy. 
The copper MTDOS is dominated by the d-band extending approximately from 
-5.5eV to -1.75eV within the s - p  band and results in significant hybridisation of 
the states within this region. Copper has 29 electrons, 11 of which are present 
in the valence band. Of these, approximately 10 occupy the d-band and the 
remaining electrons fill up the s - p  band so that the Fermi energy lies approximately 
1.75eV above the top of the d-band, in a region characterised by isotropic bonding. 
Consequently copper is an extremely ductile metal. Its stacking fault energy is 
lower than aluminium, with experimental determinations falling in the range 40- 
80 ergs/cm2 (Gallagher, 1970; Murr, 1975; Carter and Ray, 1977), but which is 
still to be considered relatively high by comparison with some alloys.

In figure 4.5 the corresponding MTDOS for iridium is presented. For iridium, 
atomic number 77, relativistic effects are important and were included v ia  the 
method of Koelling and Harmon (1977) described in Chapter 2 . The effect on the 
valence band of treating the electrons relativistically is to broaden the s p  band 
and lower it with respect to the d band. Thus the lowest peak in the MTDOS, due 
to strong s p - d  hybridisation, is significantly reduced in amplitude in comparison 
with, for example, rhodium, which is one row above iridium in the periodic table 
in the same column. However, changes in the vicinity of the Fermi level are small. 
Parameters identical to those used for aluminum were employed in the calculation 
of the MTDOS and self-consistent potentials for iridium. The agreement with 
the results of Noffke and Fritsche (1982) is good. They employed partial waves 
up to i  = 3 in their calculations but the /-component of the density of states 
is minimal and has been neglected here. The atomic 4/ electrons were treated 
as core levels as described in Chapter 3, for which scattering phase shifts are 
not required. The iridium MTDOS is dominated by an extremely wide d-band 
(about lOeV wide compared to 4eV for copper). There are 9 electrons available 
for occupying the valence band states, and the Fermi level lies within the d-band 
near a minimum of the MTDOS. The very wide d-band of iridium is indicative 
of directional bonding with strong orbital overlap, and has been suggested to be 
the cause of its anomolous mechanical behaviour (Hecker, Rohr and Stein, 1978; 
Rohr, Murr and Hecker, 1979) — iridium is known to fail by brittle cleavage 
in single crystals and in polycrystalline form has a tendency to fail by brittle 
intergranulare fracture, both properties being intrinsic and not due to impurities
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(Reid and Roubort, 1972). This behaviour is in contrast to the usual properties 
of FCC crystals which fail in a ductile manner as a result of the large number 
of slip systems available. In this respect copper is a classic FCC material. The 
directionality of the bonding in iridium is also evidenced by its elastic constants, 
with a negative Cauchy discrepancy, C12 — C44 < 0 , atypical of FCC materials 
but in line with BCC metals, which are usually associated with more covalent 
bonding (Johnson, 1989). The stacking fault energy of iridium is in some dispute 
(Darling 1973). Ahlers (1970) quotes a value of 2960 ± 560ergs/cm2 whilst Murr 
(1975) gives 300ergs/cm2 and reports the observation of deformation twinning, 
which favours a lower value.

Figure 4.6 Twin fault structure as viewed in figure 4.2, with shading to indicate 
atoms whose potentials were allowed to relax.

The twin faults in these materials were modelled with a nine layer symmetric 
interface region illustrated in figure 4.6, which also contains the notation used to 
label the atoms within the various atomic planes. Only those potentials within this 
9 layer region were permitted to relax. In comparison with bulk calculations, in 
going to self-consistency only a small amount of the new potential may be mixed in 
with the old to generate a new starting potential, to retain stability of the iterative 
procedure, and for the stacking fault calculations a mixing parameter of the order 
of 5% was found to be best. The potentials were iterated till fractional changes in
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the charge density were less than 10“5, which required 10-15 iterations — most 
of the induced changes are purely a consequence of the structural modifications, 
and do not involve great rearrangement of charge, as will be seen below.

In figures 4.7-9 are summarised the density of states obtained for various 
atoms in the vicinity of the copper fault. Figure 4.7 compares the MTDOS of the 
central fault atom, 5/, and that of the atom in the adjacent atomic plane s f m l , with 
that of a bulk copper atom. The changes induced by the reversal of the stacking 
sequence are evidently small, and reside primarily within the narrow d-band. The 
minor peak at between -2 and -3eV is absent on the central atom and greatly 
diminished on the adjacent atom. The peak between -3 and -4eV is split on atom s f  
and there is a slight change in structure below about -4eV. Particularly noticeable 
is the retention of the d-band width. Within a tight binding picture this width is 
determined to a first approximation by the nearest neighbour coordination, and 
the HCP structure also has the 12-fold coordination of the FCC lattice but with 
an angular redistribution of nearest neighbour atoms. There is a similar number 
of second nearest neighbours, at the same distance, and the first difference appears 
with the introduction of 2 atoms half way between second and third FCC nearest 
neighbours. Thus the band width remains. The range of the induced perturbations 
is small for copper. Figure 4.8 compares the MTDOS of an atom two atomic layers 
from the fault plane (labelled s fm 2  in figure 4.6) with a bulk atom. The deviations 
from the bulk-like MTDOS are small for this atom, and even more so for the two 
other atoms included in the interface region. Thus the interface region is clearly 
large enough in size. Finally figure 4.9 highlights the energy region within leV 
on either side of the Fermi level. As mentioned above, the bonding in this energy 
range is isotropic, with spatially diffuse s and p  contributions and which are largely 
unaffected by the changes in local structure.

Figures 4.10-12 show the corresponding results for aluminium. The perturba
tions induced upon atoms within the two central planes of the fault, s f  and s f m l , 
are visible in the comparison with the bulk MTDOS presented in figure 4.10. These 
changes occur predominantly around the Fermi energy. Below -4eV the MTDOS 
of the fault atoms displays the free-electron like E1/2 parabolic behaviour. The 
first deviations occur at about -3eV, when the energy bands begin to experience 
the edges of the Brillouin zone and therefore begin to experience the crystal struc
ture. The conditions for Bragg scattering, constructive/destructive scattering off 
the principle planes of the crystal lattice, are upset by the presence of the twin 
fault and consequently the peaks and troughs in the density of states are greatly 
diminished — the MTDOS of the atom s f  displays a much more free-electron like
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F i g u r e  4 . 7  C o m p a r iso n  o f  th e  m u ff in -t in  d e n s ity  o f  s ta te s  o f  th e  ce n tr a l tw o  a to m s
a t a  tw in  fa u lt  in  co p p er  w ith  th e  b u lk .

copper twin fault

profile than do the bulk atoms. The perturbations decay with distance from the 
fault, being largest upon the atom sf. Aluminium is a weak scatterer of electrons, 
resulting in a longer electron mean free path, and consequently the perturbations 
induced by the fault are less localised than for copper, where the d  levels are more 
effective at screening the perturbations. Figure 4.11 compares the MTDOS of the 
atom s fm 4 , the most distant atom from the fault included in the interface region, 
with that of the bulk. There are still small differences between the two curves, but 
they are of little significance. Finally, figure 4.12 focusses on the changes in the 
MTDOS near the Fermi energy. The perturbations are clearly more significant 
than for copper, with the Fermi energy in aluminium in a region of energy where 
the energy bands meet the zone boundaries.

Finally, figures 4.13-15 summarise the corresponding results for iridium. In 
figure 4.13 are plotted the MTDOS for the two central atoms at the twin fault 
and for comparison that of a bulk atom. The changes induced are significantly 
larger than for copper and aluminium, extending across the d-band. There is some 
redistribution of states between -8 and -6eV and the major peak centred on -4eV
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F i g u r e  4 . 8  C o m p a r iso n  o f  th e  m u ff in - t in  d e n s ity  o f  s ta te s  o f  th e  a to m  tw o  layers
fro m  th e  tw in  fa u lt  p la n e  in  co p p er  w ith  th e  b u lk .

Figure 4.9 The muffin-tin density of states within leV of the Fermi energy for 
the central atom in a twin fault in copper, and the bulk.

copper twin fault
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F i g u r e  4 . 1 0  C o m p a r iso n  o f  th e  m u ff in -t in  d e n s ity  o f  s ta te s  o f  th e  cen tra l tw o
a to m s  a t  a  tw in  fa u lt  in  a lu m in iu m  w ith  th e  b u lk .

aluminium twin fault

Energy (eV)

is split on atom s/, but not on atom s f m l  one layer out. Again on the central atom 
there is a complete loss of the peak at -2eV, with atom s f m l  recovering about half 
the loss of weight. In the minimum between the peaks at -2eV and +leV there 
is an enhancement in the density of states which decays with distance from the 
fault plane. On the next layer out, s fm 2 , there is a deficit of states in this region 
(figure 4.14), but almost all structure is recovered, and on atom s fm S  the MTDOS 
is virtually indistinguishable from bulk. Figure 4.15 highlights the changes in the 
vicinity of the fermi energy, where the central fault plane has an enhancement of 
about 0.07 states/eV, or approximately 7%  .

The changes induced by the stacking fault in iridium mirror those found 
in copper, taking into account the much broader d-band, and support the idea 
that the changes are largely structural in origin arising from the modification in 
symmetry at the twin fault. In figure 4.16 are the MTDOS corresponding to 
the three metals but evaluated for the HOP structure, using self-consistent bulk 
potentials from the FCC lattice. Features in the curves for copper and iridium 
are immediately identifiable as those occuring on the twin fault atom, illustrating 
how the local atomic environment determines the MTDOS. The peak just above
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F i g u r e  4 . 1 1  C o m p a r iso n  o f  th e  m u ff in -t in  d e n s ity  o f  s t a t e s  o f  th e  a to m  fo u r  layers
fro m  th e  tw in  fa u lt  p la n e  in  a lu m in iu m  w ith  th e  b u lk .

aluminium twin fault

Energy (eV)

Figure 4.12 The muffin-tin density of states within leV of the Fermi energy for 
the central atom in a twin fault in aluminium, and the bulk.

aluminium twin fault

Energy (eV)
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F i g u r e  4 . 1 3  C o m p a r iso n  o f  th e  m u ff in -t in  d e n s ity  o f  s ta te s  o f  th e  cen tra l tw o
a to m s  a t a  tw in  fa u lt  in  ir id iu m  w ith  th e  b u lk .

iridium twin fault

Energy (eV)

-4eV in iridium is split into two and for both copper and iridium there is no sign 
of the small peak between the two main ones. An atomic d  level is split in a 
cubic environment into t2g ( x y , x z , y z )  and eg (3z 2 — r2,x2 — y2) components, 
whilst in the HCP lattice it is split into e2g ( x 2 — y2,xy), eig ( x z ,  y z )  and aig 
(3z 2 — r2) components. Thus the reduced symmetry of the HCP lattice results 
in changes in band ordering and hybridisation splitting and removing structure 
in the MTDOS. A “local-environment” point of view is significantly more useful 
for transition metals with their short-ranged d-bands than for free-electron like 
aluminium, and although it appears that in the HCP structure there is significantly 
less structure in the MTDOS in the vicinity of the Fermi energy, as was found for 
the twin fault, there also appears the typical signature of a Van Hove singularity 
at about -4eV, which was not present in the twin fault MTDOS, and which is 
clearly due to the long range coherent scattering off the lattice planes and thus 
specific to the HCP crystal.
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F i g u r e  4 . 1 4  C o m p a r iso n  o f  th e  m u ff in -t in  d e n s ity  o f  s ta te s  o f  th e  a to m  tw o  layers
fro m  th e  tw in  fa u lt  p la n e  in  ir id iu m  w ith  th e  b u lk .

iridium twin fault

Energy (eV)

Figure 4.15 The muffin-tin density of states within leV of the Fermi energy for 
the central atom in a twin fault in iridium, and the bulk.

iridium twin fault

Energy (eV)
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F i g u r e  4 . 1 6  M u ff in -t in  d e n s ity  o f  s ta te s  for c o p p e r , ir id iu m  an d  a lu m in iu m  ev a l
u a te d  in  th e  H C P  c y s ta l  s tr u c tu r e  u s in g  b u lk  F C C  p o te n t ia ls  (d o t te d  lin e ) . T h e
sh a d e d  r eg io n  is th e  c o r r e sp o n d in g  b u lk  F C C  M T D O S .

iridium

Energy (eV)

aluminium

Energy (eV)
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The twin fault energies were calculated (MacLaren, Crampin, Vvedensky and 
Eberhart, 1989) by evaluating the total energy of the atoms in the interface region 
using equation (3.8.3) and subtracting off the energy of a similar sized region of 
bulk crystal. Implicit in this procedure is the assumption that both the interface 
region is large enough in size and that the parameters used in the numerical de
terminations are sufficient. These requirements have not been fully checked, but 
from the density of states it is fairly apparent that the major changes are well 
localised within the interface region, and from other calculations the parameters 
have been found to give good results. The energies are given in table 4.4 and the 
twin fault values have been doubled for comparison with the experimentally deter
mined energies which are applicable to the intrinsic fault. There is good agreement 
between the calculated and experimental values, in particular the ordering Ir > 
A1 > Cu, and considering the uncertainty that exists for the experimental values, 
the use of the muffin-tin approximation and neglect of structural relaxations the 
results are encouraging. The findings in the calculations of stacking faults in sili
con and Harrison’s (1973) pair-potentials calculations on aluminium would imply 
the relaxation effects are minimal. The trend in values mirrors to some degree 
the perturbations induced in the vicinity of the Fermi energy, which are largest 
in iridium and smallest in copper, and which are a consequence of the degree 
to which the change in symmetry at the twin fault affects the hybridisation of 
electrons at those energies. On the whole the re-arrangement of electron states 
averages out to zero over the valence band, as witnessed by the relative charges 
upon the atoms in the fault region which are found to retain their bulk values 
very closely (as also reported in the calculations of Weigel, Alexander and Corbett 
(1975) and Grise, Kleinman and Mednick (1980)), and thus changes at the Fermi 
level are most significant in determining any band contribution to the energy. This 
is in some way supported by tight-binding calculations using full d-bands which 
give negligible energies for the faults (Pei, 1978; Ducastelle and Cyrot-Lackmann, 
1970,1971), and for several other close-packed metals one may understand the 
relative stacking fault energies by considering the hybridisation in the vicinity of 
the Fermi energy. Thus in silver, 7  ^  16 ergs/cm2 and the Fermi energy is several 
eV above the d-band and characterised by free-electron like states, whilst for both 
nickel, 7  cz 125ergs/cm2 and rhodium 7  ~ 300 ergs/cm2 with the Fermi energy 
passing through the d-band a high value for the fault energy results. However, 
as witnessed by the reasonably high fault energy in copper, where there are no 
changes in the vicinity of the Fermi energy, the band energy is not responsible 
for the total fault energy, nor necessarily dominant. It is hoped in the future to 
calculate the fault energies of other FCC and HCP metals, and also APB energies 
in ordered alloys.
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Table 4.4
Calculated stacking fault energies and corresponding experimental values, taken 
from Gallagher (1970) and Murr (1975) (in ergs/cm2)

Metal Calculated Experiment
Cu 58 40-80
A1 118 166
Ir 341 300

4.5 Localised states
Localised states were looked for at selected values of ky within the two-dimensional 
Brillouin zone for both the copper and aluminium twin faults. In the case of copper 
the states found agreed very closely in location (in terms of relative position with 
respect to the projected band edges) with those found for the nickel twin fault 
by Grise, Kleinman and Mednick (1980). Figure 3.18 is typical. For aluminum 
we find states in both gaps of the projected band structure occuring below 0.4Ha 
(relative to the muffin-tin zero; the Fermi energy is at 0.309Ha) at the K point of 
the Brillouin zone. These may be seen in figure 4.17, and are the first stacking fault 
states found in a non-transition metal. As in the case of surface states, it therefore 
appears that with the exception of the monovalent metals (Li, Na, ...), which do 
not have any gaps in the projected band structure below the Fermi energy, occupied 
stacking fault states will be present in all metals. The lower gap between 0.205Ha 
and 0.220Ha has two states, at 0.2085Ha and 0.2154Ha, clearly visible as almost 
singular peaks between the two band edges, and there are also two states in the 
higher gap, also shown in figure 4.17, at energies 0.2854Ha and 0.3103Ha, the latter 
interestingly very close to the Fermi level. Table 4.5 contains the relative weight 
of each state upon the various atoms within the interface region and moving away 
from the fault, the weight taken to be equal to the relative MTDOS’s obtained for 
each atom. Due to the Lorentzian broadening the absolute values of the MTDOS 
depend upon the imaginary energy used in the evaluation, which in this case was 
10“5 Ha, and so for convenience the central atom is given a weight of 1.0 and all 
others expressed relative to this. To be perfectly correct one should integrate over 
the lineshape for each atom, but the relative magnitudes at the peak energy should 
not differ significantly. It is apparent from this table that all the localised states
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extend many atomic planes into the crystal on either side of the fault, and that the 
amplitude oscillates to some degree with distance. This behaviour is consistent 
with the surface states found on the (111) face of the aluminium crystal (Mednick 
and Kleinman, 1984), which are observed at both the T  and K points below the 
Fermi energy, and which decay in some cases by less than 10% in the centre of an 
18 layer thin film. This weak localisation also explains the insensitivity of the fault 
states to the self-consistency process, that is, they may also be detected in almost 
identical positions using bulk potentials in the interface region. This is presumably 
because such a large fraction of the wavefunction is moving in regions where the 
potential is negligibly altered by self-consistency. Although the extended nature 
of the localised stacking fault states would suggest that they might be detected 
by some surface probe, the very fact that localised surface states also occur in 
the same energy region would present difficulties in interpreting the experimental 
results. The dispersion of these states across the Brillouin zone has not been 
studied, and no states were found in the band gaps below the Fermi energy at 
either the T or M points of the two-dimensional Brillouin zone.

Table 4.5
The relative weights of the localised states at the twin fault in aluminium on the 
atoms in the interface region.

Energy (Ha) sf sfml
atom
sfm2 sfm3 sfm4

0.3103 1.000 3.262 1.054 0.339 1.054
0.2854 1.000 0.331 0.480 0.283 0.095
0.2154 1.000 13.803 9.796 0.433 6.068
0.2085 1.000 0.310 0.154 0.476 0.147
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F i g u r e  4 . 1 7  L o c a lise d  s ta te s  v is ib le  in  th e  M T D O S  e v a lu a te d  a t  th e  K p o in t  a t
th e  a lu m in iu m  tw in  fa u lt .

al 1-d MT-DOS at K

Energy (Ha)

al 1-d MT-DOS at K

Energy (Ha)
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4.6 Impurities at stacking faults
The inhibition of the hybridisation of electron states at the twin fault as a con
sequence of the mirror symmetry introduced suggests a possible mechanism by 
which impurities may alter the stacking fault energy. First suggested by Suzuki 
(1952, 1962), experiment has shown that the addition of small concentrations of 
a secondary element can considerably modify 7 sf, and as a direct consequence 
the observed mechanical behaviour of the material (Murr, 1975). For example, 
in the case of aluminium, copper impurities significantly lower the fault energy 
(Gray, 1988a) whilst magnesium has little or no effect (Gray, 1988b). A reduction 
in the energy suggests segregation of the solute at the fault, whilst an increase 
in energy would favour desegregation. The effect of solute atoms upon stacking 
fault electronic structure has not been previously addressed, presumably due to 
the complexity of the calculations, and since chemical/band structure effects are 
likely to be important and hence invalidate pair-potential approaches. In these 
calculations (Crampin, Vvedensky, MacLaren and Eberhart, 1989a) an idealised 
geometry was chosen and rather than attempting to determine the change in en
ergy of the addition of an impurity atom, we look for possible mechanisms for the 
observed behaviour in the MTDOS. Determinations of the fault energy almost cer
tainly require the inclusion of relaxation effects, and also a search for the optimum 
site in the vicinity of the stacking fault.

Figure 4.18 Structure and unit cell used in the impurity calculations.
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In order to model the impurity at the twin fault we use a three layer interface 
region and within the fault plane employ the two-dimensional supercell geometry 
shown in figure 4.18. It should also be possible to perform truly isolated impurity 
calculations along the lines of the magnetic impurity calculations of Podloucky, 
Zeller and Dederichs (1980). In the present calculation we restrict the impurity 
to the central fault plane, so that each impurity atom is surrounded by a shell of 
aluminium atoms whose potentials are allowed to relax.

In figure 4.19 along with the bulk MTDOS are presented the correspond
ing results for the magnesium impurity and aluminium atoms in the central and 
adjacent planes, labelled All and A12 respectively. These were calculated at an 
imaginary offset of 0.005Ha (~ 0.136eV) and consequently the MTDOS contains 
rather less structure and the peaks and troughs are less pronounced. However, 
all important features may be resolved. The presence of the electronically similar 
magnesium atom clearly has little effect upon the aluminium atoms in the vicinity 
of the fault, which still possess the featureless profile found in the pure fault. This 
is in sharp contrast to the effect of copper seen in figure 4.20. Here we see the 
d  resonance strongly interacting with the higher lying aluminium states both in 
the plane and to a lesser degree with the aluminium in the adjacent layer. The 
position of this peak is slightly lower than that found in the KKR-Green function 
calculations of Deutz, Dederichs and Zeller (1981), and the line shape is slightly 
broader, probably indicative of a slight interaction between the copper atoms in 
adjacent supercells, although in their calculations Deutz e t al. did not allow for 
the relaxation of the surrounding aluminium potentials which may therefore ac
count for the former difference. The presence of the copper atoms at the fault 
clearly enhances the hybridisation of the aluminium states near and below the 
Fermi level and pushes weight from above to below the d  resonance on the central 
All atoms. This would be expected to lower the band contribution to the total 
energy. The reappearance of structure at the critical energies demonstrates that 
the copper atom is clearly able to provide more states to which the aluminium s 
and p  electrons can couple within the restrictions imposed by the mirror symme
try, hence enabling hybridisation more in line with that present in the bulk. It 
is tempting to suggest this apparent “relaxation” of the inhibited hybridisation 
accounts for the observed reduction in the fault energy, in which case the position 
of the d  resonance may be expected to play an important role in determining the 
influence of the solute. Further studies are intended to persue this question.
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Figure 4.19 Muffin-tin density of states for the aluminium stacking fault with 
magnesium impurity.

Aluminium Stacking Fault with Mg Impurity

Figure 4.20 Muffin-tin density of states for the aluminium stacking fault 
with copper impurity.

Aluminium Stacking Fault with Cu Impurity
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CHAPTER 5: NICKEL E5 (210) GRAIN-BOUNDARY

5.0 Introduction
In this Chapter the results of the first self-consistent electronic structure calcula
tion on an isolated transition metal grain-boundary will be presented. It is not 
for lack of importance that the electronic structure of grain-boundaries have re
ceived, as of yet, little attention from a theoretical standpoint. They are known 
to play a fundamentally important role in the mechanical properties of materi
als, as well as influencing electronic, chemical and corrosion behaviour. Rather, 
their poorly characterised structure, reduced symmetry compared to the bulk and 
the major perturbations to the atomic and electronic structures have all inhibited 
the application of standard techniques which depend heavily upon symmetry and 
Bloch’s theorem to reduce the complexity of the problem to be solved. It has 
been established, experimentally both indirectly (Gleiter, 1971) and directly (e .g .  
Fitzsimmons and Sass, 1989) and also through atomistic computer simulation, that 
the atomic structure of many grain-boundaries is ordered, rather that amorphous, 
and consequently the LKKR technique represents a viable and efficient approach 
to the study of these defects.

Recently, the technological importance of grain-boundaries in their influence 
upon the mechanical properties of materials have prompted a number of investi
gations. The observations by Aoki and Izumi (1979) of the increased ductility 
of boron-doped polycrystalline NiaAl, a possible candidate material for high- 
temperature aerospace applications but for a tendancy to fail intergranularly in 
a brittle fashion, and subsequent studies on numerous intermetallic compounds 
(e .g . Takasugi and Izumi, 1985) and of the influence of ternary additions on their 
fracture behaviour (e .g . Takasugi, Izumi and Masahashi, 1985), have highlighted 
the beneficial consequences to material development that a complete and pre
dictive understanding of the underlying mechanisms responsible for intergranular
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embrittlement and ductility enhancement would provide. The first applications 
of quantum-mechanical calculations in this direction appeared in the pioneer
ing work of Briant and Messmer (1980, 1982a,b, 1984) and Messmer and Briant 
(1982), who applied the self-consistent multiple-scattering Xa cluster technique 
to small configurations of atoms in representative grain-boundary geometries. The 
phenomena of temper embrittlement of steel was studied by modeling a variety 
of metal-impurity ( M - I )  systems, with M  taken from Fe, Ni, Mn or Cr and I  
from P, S, Sb, B, or C. On the basis of these calculations, it was concluded that 
embrittlement was a consequence of the weakening of M - M  bonds following the 
withdrawl of charge to form strong M - I  bonds, and the degree to which a given 
element embrittled was related to the relative electronegativity of the impurity 
and metal. For the case of M  being nickel, the tendancy to withdraw charge from 
the M - M  bonds decreased a s S > P > C > B ,  with boron actually acting as a 
cohesive enhancer, by not withdrawing charge. This inferred decohesion results 
in metal fracture along a path winding along the grain-boundary, breaking M - M  
bonds weakened by adjacent M - I  interactions.

These results complemented suggestions by Losch (1979), who first proposed 
that a basis for understanding may exist in a local bonding picture, and who 
also emphasised the link between the problem of catalysis and grain-boundary 
embrittlement. He suggested a decohesion mechanism arising from weakened M -  
M  bonding, and also suggested the possibility of I - I  bonding weakening M - I  
bonding, leading to a weakened grain-boundary region. The importance of I - I  
interactions was addressed in work by Eberhart, Johnson and Latanision (1984), 
who noted that experimentally the brittleness of nickel was a complicated function 
of sulfur concentration. Low concentrations cause little change in ductility but 
above 60ppm bulk concentration there exist a direct relationship between sulfur 
concentration and the decrease in stress and strain to fracture (Loier and Boos, 
1981). Using the multiple-scattering Xa cluster method they deduced the sulfur- 
sulfur interaction to be covalent, interpreting the resulting anisotropy in local 
elasticity as the cause of the increasing propensity to brittle fracture as the sulfur 
concentration rises.

The in t r in s ic  brittleness of many polycrystalline materials has been addressed 
by Eberhart and Vvedensky (1987) in a model in which the existence of localised 
states at grain-boundaries is taken as a signature of brittle behaviour. In such 
materials the inability to enhance s hybridisation when deviations from bulk geom
etry introduce new bond angles was found to result in localised electronic states 
near the Fermi energy, significantly reducing the energy barriers to bond rear
rangement within the grain-boundary region. As a consequence this region may
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more easily accommodate strain than the surrounding metal, leading to strain 
build-up and subsequently to fracture. In ductile materials such localised states 
were not found. As a measure of the degree to which s hydridisation is achieved, 
the relative s orbital electronegativities of the constituent species were employed 
in a graphical plot which distinguished ductile from brittle materials (Vvedensky 
and Eberhart, 1987), giving an analogous partitioning as the structure-property 
maps using the Mendeleev numbers of Pettifor (1986). However, the orbital elec
tronegativities are environmentally specific, and in some cases the use of purely 
atomic parameters has been found to lead to an incorrect partitioning of ductile- 
brittle materials (Eberhart and Vvedensky, 1988a), whilst studying the e f fe c t iv e  
negativities in the solid-state environment gave correct behaviour. On the basis of 
electronegativities, ductility-enhancement by impurities could also be accounted 
for, and predicted (Eberhart and Vvedensky, 1988b). Another general explana
tion for embrittlement was proposed by Haydock (1981), who suggested the effect 
of segregated impurities was to introduce transgranular covalent bonds, thus lo
calising electrons, making bonds less mobile and consequently reducing ductility. 
Even though such bonds may increase the cohesive energy of the boundary, they 
reduce the available low-energy electronic excitations which are involved in charge 
rearrangement, and by inhibiting smooth transfer of bonds they will cause discon
tinuous response to stress.

None of these investigations considered the energetics of the systems being 
studied, but instead relied upon a local orbital picture, which has successfully ex
plained a variety of phenomena in the field of magnetism and catalysis, and which, 
indeed, underpins much of the theoretical chemistry performed today. Such as ap
proach is justifiable for the study of qualitative behaviour and trends, but unlikely 
to yield quantitative behaviour. However, the phenomenon of grain-boundary em
brittlement is general indeed, apparently independent upon the specifics of grain- 
boundary. There is some reason to believe, on the basis of atomistic studies (Foiles, 
1989) and simple energy models (Takasugi and Izumi, 1987), that a great deal of 
multiplicity exists in the atomic structure of the boundaries. That is, several 
structural configurations possess very similar energies, and, consequently, may be 
expected to co-exist. This, and the insensitivity of the embrittlement upon the 
actual grain-boundary (e .g . it appears not to matter whether it be E5, E3, tilt, 
or twist etc.) suggests the underlying mechanisms are general, and local, and 
hence probably accessible to cluster studies interpreted correctly. Some workers 
(see Chen, Srolovitz and Voter, 1988) have suggested that the behaviour of dislo
cations is a s in e  q u a  n o n  to an understanding of the embrittlement process. Thus,
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although ultimately these investigations must be supported by accurate calcula
tions capable of determining fracture energies, stresses and the like, they are very 
much at the limits of current capabilities and in many cases beyond. It is likely 
that for some time yet we will have to depend heavily upon the insight simplified 
treatments such as the cluster models provide.

Accurate total-energy calculations h a v e  actually been applied to a grain- 
boundary system of pertinence to mechanical properties. Embedded atom studies 
such as those of Chen, Srolovitz and Voter (1989) have yielded boundary energies in 
reasonable agreement with experiment, as well as Griffith cohesive energies, which 
ignore plastic deformation. Chen, Voter, Albers, Boring and Hay (1989) have 
employed the results of linearized muffin-tin-orbital calculations on a number of 
hypothetical nickel-boron and aluminium-boron compounds to determine embed
ded atom potentials for subsequent studies of segregated boron at nickel and Ni3 A1 
grain-boundaries, and likewise for segregated sulfur. Painter and Averill (1987) 
have combined the cluster approach for modelling low symmetry structures with 
total energy calculations in studying the binding-energy and forces within a nickel 
octahedra with and without a centrally located interstitial boron or sulfur atom. 
These results suggested the presence of boron in c re a se d  the sustainable strain at 
the grain-boundary, whilst sulfur in d u c e d  strain, thereby weakening bonds across 
the boundary, and could be interpreted in terms of the larger core size of the sul
fur atom. Experimentally, boron acts as a cohesive enhancer in nickel-rich alloys, 
whilst sulfur embrittles nickel, in agreement with the findings of Painter and Aver
ill. In a more recent paper (Painter and Averill, 1989), this approach has been 
applied to the study of lithium-row atoms in the same nickel octahedra. Quan
tum size effects were again deduced to be important, with the observed trends 
attributed to the competition between atomic size and impurity-host covalent 
bonding. Larger orbital radii were found to induce strain whilst affecting covalent 
bond formation, which was also influenced by the relative positions of the impu
rity s p  valence levels and d  band of the host. The Painter and Averill approach 
is necessarily incomplete, ignoring a number of important factors such as the role 
of impurity-impurity interactions, the effects of bond-angle distortions (they em
ployed a homogeneous deformation of the octahedral cluster), and the obvious 
fact that segregants will occupy preferential sites at grain-boundaries, including 
substitutional. Goodwin, Needs and Heine (1988) applied the self-consistent pseu
dopotential technique to a simplified grain-boundary model of aluminium, and 
considered the effects of impurity atoms arsenic and germanium. The drawback 
of the pseudopotential approach lies in the restricted materials to which it may
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be applied, preventing application to materials such as nickel. Indeed, experimen
tally, neither arsenic or germanium have been reported to induce intergranular 
brittleness in aluminium. Furthermore, the complexity of the problem required 
the adoption of a particularly simplified geometry, with the grain-boundary frac
ture modelled by simply cleaving (111) planes of the face-centered cubic crystal 
within a small supercell. However, as has been demonstrated in numerous calcu
lations, the pseudopotential technique is capable of an accurate and meaningful 
description of the energetics of solids. These studies indicated the effect of the 
impurity was to in c re a se  the fracture energy, both for fracture adjacent to the 
layer of impurities and also for fracture one layer further into the solid (between 
aluminium-aluminium layers with the impurity one layer from one of the resulting 
surfaces). Thus, unlike other models such as Briant and Messmer (1980), the ef
fect of the impurity was increased cohesion. The question of embrittlement in this 
system was further addressed by Goodwin e t al. (1989) when the grain-boundary 
model with impurity arsenic atoms was distorted to determine the ideal cleavage 
stress, and hence the implications for fracture examined within the model of Kelly, 
Tyson and Cottrell (1967). The results suggested the effect of the impurity was to 
slightly reduce the cleavage stress, whilst greatly increasing the ideal shear stress. 
These were deduced to be a consequence of the arsenic atoms forming directional 
covalent bonds with the aluminium host producing local rigidity, encouraging bond 
breaking but making bond rearrangement less favourable (Haydock, 1981). The 
choice of materials, simplified geometry (no volume mismatch, unlike real grain- 
boundaries) and deformations studied prevent the adoption of these results to 
other systems p e r  se, but give direction to subsequent studies. Both the studies 
of Goodwin e t al. and Painter and Averill highlight the numerous complications 
and imposing problems inherent to the accurate and realistic modelling of grain- 
boundary electronic structure, including the tremendous difficulties of extending 
the calculations as they stand. In the case of the cluster calculations, for exam
ple, the application of an inhomogeneous deformation to the octahedral cluster, to 
mimic bond-angle strain, would be likely to worsen to realism of the cluster as a 
model for grain-boundary environment, more poorly representing the coordination 
typical within a solid.

The following sections report a calculation of the electronic structure of the 
E5 (210) grain-boundary in nickel, and the effects of segregated sulfur. This study 
employs the layer KKR theory of Chapters 2 and 3, and considers an isolated fault 
embedded in an infinite crystal. The calculations do not include total-energies, 
since the muffin-tin approximation at present used within the method cannot be
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expected to give accurate results for situations of volume mismatch typical of 
grain-boundary geometries. Instead, the effects of changes in the local density 
of states are understood as consequences of the change in local environment, and 
features of the electronic structure of the boundary with segregated sulfur which 
might bear upon the sulfur-induced embrittlement of nickel are identified. The 
importance of self-consistency and embedding are examined. We start by con
sidering the choice of grain-boundary structure, of importance to any calculation 
which does not determine the minimum energy atomic structure.
5.1 Grain-boundary structure
The atomic structure in the vicinity of grain-boundaries is not easily accessible to 
experimental probes and, consequently, detailed information regarding the loca
tion of atoms is not readily available. This is in sharp contrast to surface structure 
determination, where a number of techniques, most notably low-energy electron 
diffraction (LEED), have been used to characterise the relaxations, reconstruc
tions and adsorbate sites of numerous crystal faces (MacLaren e t a l., 1987). Re
cently, however, the availability of artificially fabricated bicrystal grain-boundaries 
and the application of new X-ray diffraction techniques have enabled the accu
rate structural determination of a few relatively simple metal grain-boundaries 
(Fitzsimmons and Sass, 1988,1989; Taylor, Majid, Bristowe and Balluffi, 1989), 
promising much for the future. These methods rely upon a cancellation of un
known factors by the observation of re la tiv e  intensities obtained from thin-film 
bicrystals containing an interface and the adjoining perfect crystal, and at present 
have a resolution of approximately 0.05A.

The recent structural determinations of simple grain-boundaries by X-ray 
diffraction techniques have enabled a direct assessment of the predictions of sim
ulations which have attempted to obtain the atomic coordinates of the grain- 
boundary v ia  energy-minimisation. Empirical pair-potentials have always strug
gled with grain-boundary geometries, due primarily to the neglect of volume- 
dependent contributions to the cohesive energy which are significant at metal
lic grain-boundaries, where the close-packing is disrupted and a resulting vol
ume expansion occurs. Attempts at constant-volume simulations to overcome 
the inherent deficiencies in the model are therefore physically unreasonable. The 
embedded-atom method (EAM) (Daw and Baskes, 1983, 1984) accounts for these 
volume-dependent contributions through the inclusion, of an electron-density de
pendent embedding function, usually fitted to reproduce experimentally known 
bulk and point-defect properties. The electron density varies with volume changes
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and consequently the EAM better accounts for variations in local environment as 
found at grain-boundaries. As an example, EAM simulations of [001] twist bound
aries in gold (Majid, Bristowe and Balluffi, 1989) and experimentally determined 
structures (Taylor, Majid, Bristowe and Balluffi, 1989) indicate an extremely sat
isfactory level of agreement, and suggest the EAM may usefully be employed in 
the future for the determination of relaxed atomic coordinates of metallic grain- 
boundaries to be subsequently used in first-principles electronic structure deter
minations.

For the current study we have not used the relaxed atomic coordinates, but 
generated the £5 (210) symmetric tilt boundary structure illustrated in figure 5.1 
in the following manner. Reflecting a half-crystal of stacked (210) planes of the 
face-centred cubic nickel crystal, the separation of the two grains was adjusted 
to prevent overlap of the atoms in layer 1 with those directly across the bound
ary. Secondly, the atoms within the central layer labelled 0 were relaxed within 
the plane parallel to the interface to maximise the number of nearest neighbours. 
This prescription yields a structure in good agreement with the results of simula
tions by Chen, Srolovitz and Voter (1989). Employing a “local volume” potential 
essentially identical to the EAM technique, they determined a potential for Ni 
by exactly fitting to the experimental cohesive energy, lattice constant and bulk 
modulus and optimising the agreement between predicted and known elastic con
stants, vacancy formation energy, diatomic molecule bond length and energy and 
phase stabilities. Similarly, a potential for aluminium was determined, and as well 
as surface and grain-boundary studies of these two metals, the potentials were 
employed in studies of NisAl, with surface rippling and relaxations found which 
corresponded with experiment. In the case of the Ni £5 (210) / [001] symmetric 
tilt boundary structure, they determined the layer spacing 0-1 to be 0.322ao (an 
the cubic lattice constant; normal layer-layer spacing ao/v^O = 0.224ao) and a 
very slight further expansion of more distant layers, whilst the above prescription 
yields ao/\/8 = 0.354ao with other expansions neglected. Chen, Srolovitz and 
Voter (1989) provide no information regarding lateral displacements, but their 
studies deduced a symmetric geometry with no relative displacement of the two 
grains parallel to the boundary, as employed in this study.
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Figure 5.1 Atomic structure of the £5 (210) / 
[001] symmetric tilt boundary used in the calcula
tions, with the atoms closest to the fault labeled. 
The dotted line indicates the conventional face- 
centred cubic cell, with shaded atoms lying one 
plane back. Below. Plan view of the interface 
layer (labeled 0 in main diagram) with one of the 
two adjacent layers (shaded).
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5.2 Calculation details
The small perpendicular displacement of the (210) planes in nickel require the use 
of the modified algorithm presented in Chapter 2 for the coupling of the layer 
scattering matrices, evaluation of the reflectivities and solution of the embedded 
layer problem. The (210) direction was chosen in Section 2.12 as an example to 
illustrate how the dimensions of the plane wave and partial wave basis sets may 
be optimised, and from which it was concluded that assigning two atomic planes 
to each layer with a resulting plane wave basis with Ng = 15 and partial wave 
basis of dimension 2 x ( t  + l)2 = 18 was optimal. These are the basis sets used 
in this calculation, with the central 3 planes of the boundary (containing atoms 
of type 0 and 1 as labeled in figure 5.1) assigned to a single layer. A significant 
number of iterations, of the order of 50, were required to converge the density 
of states, which forms the basis of our interpretation, to within 0.1%. This is 
significantly larger than may be required in a bulk calculation due to the small 
mixing parameter ((3 ~ 0.005 in equation (3.7.3)), which was necessary to prevent 
charge oscillations and numerical instabilities in the self-consistent iterations. The 
half space reflectivities, independent of the potential within the interface region, 
were written out after the first iteration and subsequently read when required, 
resulting in significant time savings.

The interface region within which the potentials were permitted to relax in
cluded a total of 11 atomic planes symmetrically placed about the fault. This 
size was determined by preliminary studies. The most distant atom treated self- 
consistently, labeled 5 in figure 5.1, has a full complement of first- and second- 
nearest neighbour nickel atoms at bulk distances. During the self-consistency 
cycle energy integrations were approximated by an eight-point Gaussian quadra
ture scheme along a triangular contour in the complex plane, and Brillouin zone 
averaging achieved with 4 special k points. Due to the use of complex energies, 
these parameters are found to suffice, as may be seens from the bulk muffin-tin 
density of states (MTDOS) profiles appearing in figure 5.2 which were evaluated 
from a potential generated with these parameters. The corresponding fully con
verged results of Moruzzi, Janak and Williams (1978) were given in figure 3.10c. 
The MTDOS was evaluated along a contour 0.027eV above the real energy axis 
with 32 k points.

An important consideration, when performing calculations within the muffin- 
tin approximation, is the degree to which the results are affected by the adoption 
of this form of the potential. No full-potential calculations on grain-boundary 
structures exist for means of comparison, and so in the present study the differences
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between calculations with and without “empty” spheres in the voids of the grain
boundary structure (figure 5.1) were considered. The resulting MTDOS were 
virtually indistinguishable, therefore providing some justification for the use of 
the muffin-tin approximation — at least in the present study, where energies are 
not calculated.
5.3 Nickel grain-boundary

Figure 5.2 illustrates the MTDOS obtained for the atoms in the vicinity of 
the E5 grain-boundary (Crampin, Vvedensky, MacLaren and Eberhart, 1989b), 
and are compared with that of bulk nickel. The zero of energy is taken to be the 
Fermi level. Most pronounced deviations from the bulk profile occur within the 
interface layer 0, where the largest differences in coordination and bond angles are 
found. The reduced coordination results in a significantly reduced band width, 
also a noticable effect on layers 1, 2 and slightly on 3. Layer 4 is the first to 
have a full complement of nearest neighbours (t.e., 12 as in bulk nickel) and the 
band width is fully recovered. By layer 5 all features of the MTDOS of bulk 
nickel are recovered, supporting the choice of 11 interface layers, although a slight 
enhancement of states between -3eV and -5eV is visible. Also, on layers 2-5, the 
peak in the MTDOS at the Fermi level is diminished. This peak is attributable to 
Van Hove singularities occuring where the top of the d-band meets Brillouin zone 
boundaries, and results from the long range periodicity of the lattice. Thus, it is 
not surprising that the structure is lost (cf. figure 3.18, where the disruption of 
long range order due to the presence of a twin fault results in a much smoother 
one-dimensional density of states). At about -leV the loss of resolution in the 
MTDOS of layer 0 (structure arising from states with e^-type symmetry) may be 
attributed to the absence of a full complement of second-nearest neighbours along 
the [100] directions of the cubic crystal. The contribution from nearest-neighbour 
bonding states (^y-type) is visible at -2eV, shifted slightly upward in energy, but 
below this energy the MTDOS is severely reduced, a consequence of there only 
being 4 surrounding atoms at bulk nearest-neighbour spacing.

The significantly enhanced density of states in the vicinity of the Fermi en
ergy may have several important consequences. Chemically, the grain-boundary 
may be more active, which might account for some segregation behaviour. Fur
thermore, it is to be expected that the magnetisation of the boundary layer will 
differ significantly from the bulk, which might be an experimentally observable 
property. Increased magnetic moments are traditionally associated with reduced 
coordination, when the atomic magnetisation is significantly greater than in the
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Figure 5.2 MTDOS near a Ni (210) / [001] symmetric tilt boundary (shaded), 
compared with the MTDOS of bulk Ni (dashed line).
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Figure 5.3 Comparison of the MTDOS calculated at the Ni (210) /  [001] sym
metric tilt boundary with the LKKR technique (dashed line), and a multiple- 
scattering Xa cluster calculation (shaded). The cluster results have been rescaled 
to the LKKR peak height. The inset shows the cluster geometry in cross-section.

Energy (eV)

bulk, and to a first approximation may be attributed to a reduced band width 
and thus increased Fermi level density of states (e .g . surface studies, such as Ni 
(100) by Jepsen, Madsen and Andersen (1982)). These are precisely the condi
tions found at the grain-boundary. It seems certain that an accurate study of the 
energy of a nickel grain-boundary must consider the magnetic contribution to the 
total energy. The magnetic properties of grain-boundaries would be an interest
ing research area on its own, with the possibility of magnetically induced atomic 
reconstructions and a different Curie temperature from the bulk. Experimentally 
there may be an observable temperature dependence in the fault energy arising 
from the magnetisation.
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One of the aims of performing LKKR calculations on grain-boundary struc
tures is that comparison with the results of more simplified treatments of the 
problem will allow the evaluation of their accuracy and the consequences of the 
approximations. Ultimately it is hoped that this will include the comparison of 
grain-boundary energies with, for example, the predictions of atomistic simula
tions such as the embedded-atom method. At present we may compare the MT- 
DOS of the true isolated grain-boundary embedded in an infinite crystal, with 
the corresponding results from cluster calculations. Figure 5.3 is just that, with 
the dotted line the MTDOS calculated with the LKKR method, for atom 0 in the 
grain-boundary structure illustrated in figure 5.1, whilst the shaded region is the 
MTDOS from a multiple-scattering Xa cluster calculation (Vvedensky, Crampin, 
Eberhart and MacLaren, 1989). The cluster used to represent the grain-boundary 
structure is also illustrated in figure 5.3 in cross-section. The cluster results have 
been Gaussian broadened and are rescaled so that the peak heights are similar. 
The correspondence between the results of these two calculations is very good, 
lending credence to the claims that calculations on small clusters may give insight 
into such problems. The most noticeable deviations occur in the lower energies, 
where features due more diffuse orbital behaviour, and therefore not well approx
imated within the cluster, occur.

We may also evaluate the importance of self-consistency to a description of 
the electronic structure of the grain-boundary. Figure 5.4 shows the MTDOS of 
atoms 0,1, and 5 calculated with bulk potentials at the atomic sites within the 
interface region, rather than those generated self-consistently. There are most no
table differences between these results and the self-consistent results of figure 5.2. 
On layer 0, the general features of the MTDOS resemble those of bulk nickel (not 
shown in the figure, but very similar to layer 5), but with a s y m m e tr ic  contraction 
of the d-band. In contrast, the self-consistent results show an a s y m m e tr ic  contrac
tion of the d-band, with an upward shift in the weight of states, particularly those 
at lower energies. This difference may easily be understood, reflecting the reduced 
effectiveness of the bonding in the grain-boundary geometry. As a consequence 
of the increased bond-lengths and reduced coordination, orbitals directed toward 
both nearest and second-nearest neighbours are less able to maximise overlap with 
those on nearby atoms, and consequently rise in energy. The ^-type states are 
most affected, with the nearest neighbour relations being perturbed most from the 
reference solid. The eg states in the bulk are directed into the interstitial volumes 
b e tw e e n  atoms, which in the boundary are roughly preserved. The self-consistency 
procedure allows the full consequences of the charge redistribution into the inter
stitial regions to be reflected in the potential. It is clear that non self-consistent
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F i g u r e  5 . 4  N o n  s e lf -c o n s is te n t  M T D O S  for th e  N i (2 1 0 ) /  [001] sy m m e tr ic  t i l t
b o u n d a ry .

■ ■ ■ 1-6 -4 -2 0
Energy (eV)

results of grain-boundary electronic structure [e .g . Zhang and Gonis, 1989; Sowa, 
1989) must be interpreted with great care.
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5.4 Effects o f segregated sulfur
The discussion at the start of this Chapter contained frequent reference to studies 
aimed at elucidating the mechanism for sulfur induced embrittlement of nickel. 
There are many features of the embrittlement which are unresolved, such as the 
importance of sulfur-sulfur interactions, the effects of combined impurities, and 
the favoured distribution of sulfur in the grain-boundary environment. Using the 
embedded-atom method, Chen, Voter, Albers, Boring and Hay (1989) determined 
the optimum site for sulfur at the E5 (210) grain-boundary was substitutional, 
which is also supported by the work of Painter and Averill (1987) showing inter
stitial sulfur induces significant strain due to its large core size and may therefore 
be considered unstable relative to the substitutional site. In the boundary struc
ture of figure 5.1, the largest interstitial region, without including the facility for 
atomic relaxation, may only support an atom of radius 1.67 au. A substitutional 
site, however, results in a nickel-sulfur bond length of 4.6 au, in agreement with 
those found in nickel-sulfur crystals (at surfaces, typically 4.2 au (MacLaren e t  
a l., 1987); NiS 4.5 au; NisS2 4.3 au; NiS2 4.3 au (all from Wyckoff, 1963)).

Actual concentrations of segregated impurities at grain-boundaries are dif
ficult to determine accurately, especially for sulfur due to a propensity for the 
occupation of surface sites which causes uncertainty in interpreting concentrations 
found on fracture surfaces. Experimentally, Loier and Boos (1981) have shown the 
embrittlement of nickel by sulfur depends sensitively upon the sulfur concentration. 
For bulk concentrations approaching 60ppm (corresponding to ~ 9 at% intergran
ular concentration), little change in ductility occurs compared to pure nickel. In 
a nickel alloy, below a sulfur content approaching 80ppm, the pure system was 
even found to be most brittle. However, above 60 ppm sulfur concentration in 
nickel, an increase in sulfur content is found to systematically decrease the stress 
and strain to fracture, increasing intergranular brittleness. There are also some 
suggestions that embrittlement by low concentrations of sulfur (< lOppm) are not 
just a consequence of the presence of sulfur.

We choose as our model the structure resulting from the substitution of nickel 
atoms labeled 0 in figure 5.1 with sulfur. The use of a monolayer of segregated 
sulfur enables the study of sulfur-sulfur interactions which, on the basis on the 
observed concentration dependence, appear to play a role in the embrittlement. 
The calculations were performed with the same parameters as the pure boundary 
results, and again the potentials were allowed to relax within an 11 layer interface 
region. Figure 5.5 displays the MTDOS of the sulfur atom and surrounding nickel 
atoms (Crampin, Vvedensky, MacLaren and Eberhart, 1989b). Noticeable is the
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Figure 5.5 MTDOS of the indicated atoms near a Ni (210) / [001] symmetric tilt 
boundary (shaded), with sulfur substituted for the atom 0. For comparison the 
associated MTDOS from figure 5.2 are given (dashed line), except for the sulfur 
atom, where the comparison is with bulk nickel.

Energy (eV) Energy (eV)
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formation of a band on the sulfur atom between -4 and -6 eV. The nickel atom 
labeled 1, and to a slightly lesser degree atom 2, are seen to suffer a depletion 
in bonding states at about -3eV, whilst there is a significant loss of states at the 
Fermi energy on the nickel adjacent to the sulfur (the energy sampling grid in 
the vicinity of the Fermi energy was refined to ensure this is a real phenomenon). 
The former effect is probably to be expected as a consequence of the nickel atom 
having one of its nickel neighbours replaced by sulfur, whilst the latter is an effect 
also observed on transition metal surfaces, where sulfur is known to act as a 
poison to certain types of chemical reactions (e .g . MacLaren, Vvedensky, Pendry 
and Joyner, 1987). This highlights the correspondance between the problems of 
catalysis and embrittlement pointed out by Losch (1979) and Haydock (1980). 
Perturbations to the MTDOS of the nickel atoms are primarily restricted to these 
two atoms, although minor changes are found on atoms 3 and 4 which are more 
distant but still see the sulfur atom directly. This also agrees with the behaviour 
of sulfur on nickel surfaces found by MacLaren, Pendry and Joyner (1986) using a 
non self-consistent cluster technique, where the effects induced in the nickel atoms 
by the presence of sulfur extend little beyond nearest neighbours. The MTDOS 
of atom 5 is practically indistinguishable from the clean boundary, this particular 
atom being completely screened from the sulfur by its neighbours. There is rather 
less structure within the d-bands of the nickel atoms surrounding the sulfur than 
for the pure nickel boundary.

The energetics of this system have not been considered, for reasons accounted 
above, and so it is not possible to say anything definite with regard to the effects 
of the segregated sulfur upon the cohesive energy and fracture properties of the 
boundary. Indeed, a calculation of the cohesive energy of the boundary would 
involve the determination of the energetically favoured sulfur site and would not 
be meaningful without including local relaxations of the nickel atoms. However, 
there are certain features of these results which may have a bearing upon the sul
fur induced embrittlement of nickel. The presence of neighbouring sulfur atoms 
in the grain-boundary is clearly seen to result in significant sulfur-sulfur cova
lent bonding. Note there appears to be little contribution from this bond on 
the neighbouring nickel atom. The sulfur p  orbitals have drawn charge from the 
nickel bonding states and rehybridised nickel states down from the Fermi energy. 
Eberhart, Johnson and Latanision (1984) have commented upon the importance 
of nickel mediated sulfur-sulfur bonding, and these results confirm their cluster 
calculations, and despite an absence of calculated energies allow conjecture as to 
the possible origin of sulfur induced embrittlement of nickel. Within the model
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of Kelly, Tyson and Cottrell (1967) the distinction between brittle and ductile 
fracture arises from a competition between cohesive and shear stresses at a crack 
tip, with ductility a result of the spontaneous blunting of the crack through shear 
at the tip. This shear process in the case of a crack propagating along the grain- 
boundary, as is expected from the reduced cohesion compared to bulk arising 
from the volume expansion, involves the breaking of bonds and re-formation of 
n e w  bonds. The bonds broken will be strong sulfur-sulfur bonds, whilst those 
formed will be weaker sulfur-nickel bonds. Hence compared to the clean grain- 
boundary, the effect of sulfur is to increase the shear stress and possibly decrease 
the cohesive stress, thus increasing the tendancy for brittle fracture.

There is also an alternative explanation for the sulfur induced embrittlement 
of nickel. It is clear that within this model for the sulfided grain-boundary, the 
strong sulfur-sulfur bonding p a ra lle l to the boundary and concomitant weakening 
of the nickel-nickel bonds a c ro ss the boundary will effect a significant modification 
in the elastic properties, introducing considerable anisotropy. Covalent crystals are 
typically hard and brittle, with localised orbitals producing rigid bonds inhibiting 
atomic rearrangment during deformation. The removal of Fermi level states from 
the first layer nickel will also significantly inhibit charge polarisation and conse
quently bond mobility will be severely reduced. The presence of interacting sulfur 
atoms may therefore be expected to hinder the progress of dislocations through the 
boundary region, the resulting pileup causing a localisation of strain and subse
quent fracture. It is perhaps worth mentioning that no first-principles technique 
is currently capable of providing a description of the interaction between dislo
cations and grain-boundaries. Furthermore, it is possible, and even likely, that 
embrittlement is a result of two or more underlying mechanisms.

A full explanation of the effects of impurities at grain boundaries will require 
many more calculations, varying structure and geometry, and drawing correlations 
with well characterised systems. These will include the effects of more dilute con
centrations and also combined impurity effects, studying grain boundary chemistry 
and its influence upon fracture behaviour. Extension of the layer KKR technique 
to full potential will allow a realistic calculation of cohesive energies, cleavage and 
shear stresses and fracture energies, whilst magnetic studies may allow a direct 
experimental verification of the results of calculations. It is hoped in the near 
future to apply the layer KKR technique for calculating the electronic properties 
of relaxed grain-boundary structures as determined with atomistic simulation by 
the embedded-atom, and answer some of the overriding questions which remain.
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