
University of London

THEORETICAL INVESTIGATIONS PROMPTED BY 

EXPERIMENTS WITH BAROCLINIC FLUIDS

Michael James Bell

Ph. D. Thesis

Imperial College, London

and

U. K. Meteorological Office, Bracknell

April 1989



ABSTRACT

The main part of this thesis presents analytical and numerical 
results which illuminate some aspects of the axisymmetric and 
regular wave regimes of laboratory experiments with rotating fluid 
annuli. The second part examines a method for the analysis of 
measurements of irregular waves.

The stability transition for simple baroclinic zonal flows with 
vertical and lateral shears and potential vorticity distributions 
similar to those of flows in differentially heated rotating annulus 
experiments is considered using the quasi-geostrophic equations. 
Neutral wave modes marking the transition are identified and the 
dependence of the transition on various features of the zonal flow 
investigated. The sensitivity of the transition's location to 
certain forms of lateral curvature is interpreted by an anti-cascade 
argument. Singular neutral modes found on laterally uniform flows 
subject to Ekman pumping and some very short wavelength trapped 
instabilities with similarities to tropospheric polar lows are also 
described.

The weakly non-linear development of waves near the transition is 
argued to depend crucially on the zonal flow's lateral shear. A 
model of a wave's development on a laterally sheared flow, involving 
a non-linear critical layer, is presented.

Numerical calculations of the stability of Rossby waves and other 
free modes in an f-plane channel show that waves of several 
azimuthal wavenumbers can be stable if the channel is long and 
narrow.

The justification for using the method of delays to reconstruct 
phase portraits of irregular low dimensional flows from experimental 
time series data is examined and the robustness and sensitivity of 
the method to various choices discussed.
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CHAPTER ONE

INTRODUCTION

The weather over the U.K. is dominated by the cyclones which 
develop in the westerly winds over the N. Atlantic. These and 
similar cyclones in other longitudes play major roles in the 
transport of heat from the equator to the poles and in the
maintenance of the mid-latitude westerly winds (Jeffreys 1926, 
Lorenz 1967). Their representation is consequently of primary 
importance both in weather forecasting and climate simulation.

It is fortunate that the essential dynamics of cyclones can be 
reproduced in the laboratory and studied there under a wide range of 
controlled conditions. This thesis is concerned with the
interpretation of some of the most fundamental and well known 
results from the laboratory experiments. The following elementary 
accounts of the experiments and of the basic dynamics of their flows 
lead onto a summary of the thesis.

Laboratory Experiments

Each experiment is concerned with the motions of a fluid (e.g. 
water) in a rotating container. The density of the fluid is 
arranged to vary within the container either by maintaining some 
walls of the container at different temperatures (Hide 1953, Hide & 
Mason 1975) or by using two immiscible fluids of different densities 
(Hart 1972). The simplest experimental configuration which 
thermally forced laboratory rigs are currently designed to reproduce 
is illustrated in fig. 1.1. The container is a cylindrical annulus 
with conducting inner and outer sidewalls. The inner wall is held 
at temperature TQ and the outer at TQ + AT; |AT| typically lies 
between 0.5°C and 10°C. The upper and lower lids of the annulus are 
rigid thermal insulators. Fluid (often water-glycerol) fills the 
annular cavity and the apparatus is rotated at a uniform rate of Q 
radians per second (typically 0.1 < S2 < 5 ).

8



T.+AT

/ . . / / / /

.n,

-4 - ./ V✓  x/  /  /  /  /

T0 T0

A

Te+AT

— -  -  - — — — —
H

-  -  -  - - - - - -

V
/ /  /  7  V

CLr

Figure 1.1
Cross-section illustrating the simplest configuration which laboratory (and 
numerical) experiments aim to reproduce. The cylindrical annulus of fluid is 
contained by rigid thermally insulating horizontal upper and lower boundaries and 
rigid conducting vertical side-walls. The whole of the inner wall is maintained at a 
uniform temperature Tg and the whole of the outer at Tg+AT. The annulus is rotated 
about its central axis at a constant rate of (2 rads The annulus to which figs.
1.2 - 1.4 apply has inner wall radius a=2.5cm, outer wall radius b=8.0cm and depth 
H=14.Ocm.
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a) Temperature F ig u re  1 .2

Height(z) / radius(r) cross-sections of (a) 
the temperature (°C) and (b) the zonal 
velocity (mms *) fields of an axisymmetric 
flow. The fields are taken from a numerical 
simulation which used the annulus geometry of 
fig. 1.1 with n=0.499rads * and AT=4.02°C. 
The numerical model (Hignett et al. 1985)
performs time integrations of the
non-hydrostatic Navier-Stokes equations for an 
incompressible fluid discretized onto a grid 
with enhanced resolution near the fluid 
boundaries. The steady state fields presented 
were obtained using a 2D grid of 32(radial) x 
32(vertical) points after 4900 seconds of 
evolution from a state of rest in thermal 
equilibrium. Tg was set at 18.01°C and the 
fluid had density p = 1.045 (1-0.000296(T-20)) 
gem and coefficients of kinematic viscosity 
v = 1.78 10-2 cm2s~* and diffusivity K = 1.29
10  ̂ cm2s~*. Points A, B and C are referred
to on p 17.



For a particular apparatus and fluid the flows which can be 
obtained depend chiefly on the temperature difference, AT, and 8. 
When AT/82 is large enough, the flow is symmetric about the axis of 
rotation; at smaller values of AT/82 non-axisymmetric waves are 
obtained.

An axisymmetric flow obtained in a numerical simulation with 
ATs4°C and 8=0.5rads-1 is illustrated in fig. 1.2. Fig. 1.2a 
presents a height-radius cross-section of the thermal field (units 
°C). It shows that at any given radius colder, denser fluid 
underlies warmer, lighter fluid (i.e. the flow is stably 
stratified) and that there are strong horizontal thermal gradients 
in the main body of the fluid particularly near mid-level. Fig 1.2b 
shows that the azimuthal velocity (units mms-1) has a strong 
vertical shear and changes sign (i.e. direction) near mid-level.

Fig. 1.3 illustrates a non-axisymmetric wavenumber three flow 
obtained in a similar numerical simulation with AT=4°C and 
8=1.0rads-1. The horizontal velocity field is shown at three 
horizontal levels: (a) 0.95 cm below the lid, (b) 5.73 cm above the 
base and (c) 0.95 cm above the base. It consists of an axisymmetric 
zonal flow which changes direction with height (as in fig. 1.2) and 
an azimuthally varying wave flow whose amplitude is relatively 
independent of height. Comparison of the orientation of the wave 
lobes in fig. 1.3 shows that the wave leans back slightly with 
height against the vertical shear of the axisymmetric flow.

The flow of fig. 1.3 is termed a steady wave (S) as its 
amplitude and shape do not change with time. Other flows with more 
complex temporal behaviour can also be obtained: the "amplitude" of 
some waves oscillates in a strictly periodic manner with time whilst 
the orientations of the troughs of other waves vary (though not with 
strict periodicity). These flows have been termed amplitude 
vacillations (AV) and shape vacillations (SV) respectively. It has 
also been found that several flows of different wavenumber or type 
can be obtained and retained for considerable periods under the same 
imposed conditions.
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Figure 1.3
Horizontal cross - sections 
illustrating the horizontal 
velocity field of a steady 
wavenumber three flow at (a) 
0.95 cm below the lid, (b) 
5.73 cm above the base and (c) 
0.95 cm above the base. The 
fields are taken from a 
numerical simulation using the 
annulus geometry of fig. 1.1 
with Ii=1.0rads~* and AT=4.0°C. 
The simulation used a 3D 
version of the model described 
in fig. 1.2 with a grid of 
64(azimuthal) x 16(radial) x 
16(vertical) points. The
fields were obtained after 
1000 seconds of evolution from 
an initial state containing a 
small thermal wavenumber three 
perturbation to a steady 
axisymmetric flow. This
simulation is the one used in 
the main comparison of Hignett 
et al. (1985); see that
paper for more details.
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Regime diagram for a water-glycerol solution in the annulus of fig. 1.1 taken from
2Hignett (1985). The thermal Rossby number, 0 = gaATH/(fl(b-a)) , and Taylor number, 

2 5 2Tas4ft (b-a) /(v H) are plotted on logarithmic scales. All flows which can be 
obtained and retained within the drawn regions are indicated: a denotes axisymmetric 
flow; w weak waves; S steady waves; AV amplitude vacillation; SV shape vacillation; 
and X irregular flows. Sharp transitions are indicated by continuous lines and 
transitions for which the precise location is in doubt by dashed lines. The mean of 
the side-wall temperatures was kept at 20°C throughout; the fluid has a coefficient 
of thermal expansion o=2.86.10 kinematic viscosity v=1.66.10 ^cm^s * and
thermal diffusivity K=1.27.10 ^cm^s * at this temperature.
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The flows which can be maintained in a particular experiment 
depend on AT and Q, on the fluid's properties (e.g. its density p, 
coefficient of thermal expansion a, kinematic viscosity v and 
conductivity K) and the container's geometry (depth H, inner radius 
a, and outer radius b). The flows have been found to depend chiefly 
on two non-dimensional combinations of these parameters; namely the 
thermal Rossby number

©  =  q <C AT H

JV1 lb-a}1
and the Taylor number

Ta «  4 (V> -  o l) S  (1.1.2)
*vl H

(Fowlis & Hide 1965). They also depend somewhat on the aspect ratio 
(b-a)/H and Prandtl number v/K (Jonas 1981).

The types of flow which can be obtained with a particular fluid 
and annulus geometry (Hignett 1985) over a wide range of thermal 
Rossby numbers and somewhat restricted range of (fairly high) Taylor 
numbers are summarised in the regime diagram of fig. 1.4. The flow 
is axisymmetric when 0 > 10 and axisymmetric except for "weak" waves 
of small amplitude ( = 0.01 AT) when 2 < 0 < 10. The transition
between weak waves and large amplitude waves, at high Taylor 
numbers, is referred to as the upper axisymmetric transition (UAT). 
Just below this transition only waves with one or two lobes can be 
obtained. Waves with more lobes can only be found at lower values 
of 0.

Within the regular regime (of steady waves and amplitude 
vacillations) any given steady wave is retained if 0 is reduced 
sufficiently slowly. If 0 is increased, however, at a certain 
"transitional" value the wave amplitude starts to vacillate; the 
amplitude of the vacillation increases as 0 is increased further 
until the vacillation becomes unstable and gives way to a steady 
flow of lower wavenumber.
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Elementary Geostrophic Dynamics

Fluid motions are governed by Newton's second law (in a form 
appropriate for a fluid) and the laws of thermodynamics and 
conservation of mass. Valuable accounts of the dynamics peculiar to 
fluids in (or on) rotating bodies are given by Greenspan (1968), 
Hide (1977), Pedlosky (1982a) and Gill (1982).

Let us consider Newton's law first for a fluid at rest relative 
to the rotating apparatus. A small "parcel" of fluid, distance r 
from the axis of rotation, accelerates inward in an inertial frame 
at rate Q* r . It is subject to the downward force of gravity 
(g=-gz) and also to pressure (p) forces from the fluid surrounding 
it (Batchelor 1967 § 1.3). Newton's law, written in cylindrical
co-ordinates, requires

'ty/'Yz, = ; "ty/br = ;  'ty/bfc s  0 y (1.1.3a)

where r, 0 and z are unit vectors and r points radially outward and 
0 anti-clockwise when viewed from above. (3a) may be simplified by 
re-defining the vertical direction to be opposite to that of 
apparent gravity g'=g + S2ar r. Using z' for this vertical ordinate 
(3a) becomes

- 0 • = 0. (l.l.3b)

A fluid whose pressure increases with depth as in (3b) is said to be 
in hydrostatic balance.

Moving fluid "parcels" suffer additional stresses due to the 
friction between oppositely moving fluid elements. The resulting 
viscous forces are important near the boundaries of the fluid but 
small in the fluid interior. The acceleration of a fluid parcel 
moving with velocity u = (vr, u0, wz) relative to the apparatus is 
the sum of its acceleration relative to the apparatus, Du/Dt, its 
centrifugal acceleration, -S2V r, and its Coriolis acceleration, 
2SMu, which results from changes in its position relative to the 
axis of rotation due to its relative velocity. The Coriolis
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acceleration has magnitude 2S2 (u2+v2)1* and a direction which is 
perpendicular to both the rotation axis and the direction of the 
horizontal motion.

The ratio of the magnitude of the "relative acceleration" (Du/Dt) 
to the Coriolis acceleration may be estimated in two ways. For a 
motion which is doubling in amplitude every Td seconds the ratio is 
Rd = ln2 P / (4ntd) where P is the period of rotation of the 
apparatus. The ratio for steady flows whose velocities vary by an 
amount U over distances of length L is approximately R# = U/(2S2L). 
Ra can be calculated to be 0.1 for the zonal flow in fig. 1.2 using 
U = 5mms-1, L = 50mm and S2 = 0.5rads_1. So the Coriolis
acceleration dominates the "relative acceleration" in disturbances 
on the axisymmetric flow of fig. 1.2 if they take at least one 
rotation period to double their amplitude. The same domination of 
the Coriolis acceleration characterises a large fraction of the 
motions in atmospheric cyclones.

Away from the boundaries of the fluid Newton's second law for the 
"horizontal" motions hence yields the following approximate balance 
between the pressure gradient forces and the Coriolis acceleration

1J\; ̂  U =s = -l/ « - . (1.1.4)

Flows satisfying (4) are said to be in geostrophic balance. The 
direction of their motion is parallel to the isobars (i.e. 
perpendicular to the pressure gradients). Differentiation of the 
first of equations (4) with respect to z' and use of (3b) shows that

2J\>pWvt.' *  ' V v ' H / W  -  - g ' d - i - 5 )

The vertical shear of the zonal flow in fig. 1.2 and the radial 
gradient of the fluid's thermal and density fields are related by 
(5). Vertical wind shears related to density gradients as in (5) 
are termed thermal wind shears.

Conservation of mass requires the net flux of mass through the 
surface of any volume to equal the increase of mass within it. In
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the rotating annulus experiments changes in a fluid parcel's density 
due to (conductive) diffusive heat fluxes are small enough for the 
fluid motion to be effectively incompressible;

*/r (rv] 4- Vr-W$ + 'Wl*' s 0. (1.1.6)

Using relation (4) (of geostrophic balance) in (6) (and neglecting 
the variations in p) one infers that

Integrating (7) with respect to height from the rigid horizontal 
lower boundary (at which w is small), shows that for flows in 
geostrophic balance the vertical motions are small compared to the 
horizontal geostrophic motions and are associated with small 
departures from geostrophic motion.

The vertical motions are nevertheless of vital importance in the 
waves in the annulus experiments. The waves gain energy principally 
by vertical motions which extract gravitational energy from the 
axisymmetric density distribution associated with the zonal flow. 
The process is illuminated by consideration of the gravitational 
energy released on or required for the interchange of fluid parcels 
of equal volumes between various points in the fluid. Consider 
exchanges between the points labelled A, B and C in fig. 1.2a. The 
fluid at C lies directly above that at A and being warmer is less 
dense. On interchanging parcels at A and C there would be a net 
upward transport of mass and gravitational energy would increase. 
The fluid at A is, however, both denser and higher than that at B; 
so gravitational energy is released on exchange between these 
points. Interchange between B and C clearly does not release energy 
so only interchanges along lines of sufficiently shallow slope 
release potential energy.

To determine the vertical motions and time evolution of the 
geostrophic flow more accurate approximations to the governing 
equations than (4) are required. The quasi-geostrophic set of 
approximations and equations are appropriate for theoretical

(1.1.7)
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investigations of annulus flows. They are summarised in section 2.1 
and used throughout chapters two to four.

A summary of the thesis

The transition between the axisymmetric and regular wave regimes 
is the easiest feature of the experimental regime diagram to analyse 
and (perhaps for this reason) its interpretation has been the most 
keenly disputed. The main point at issue is whether the upper 
transition can be interpreted in terms of inviscid quasi-geostrophic 
theory. Chapter two clarifies this issue somewhat by identifying 
several (related) types of axisymmetric flows which do possess 
inviscid transitions and have distributions of vertical shears and 
potential vorticity which are similar to those of the annulus flows 
in several important respects. Several examples illustrating the 
(sometimes sensitive) dependence of the transition on the 
distribution of the flow's vertical and lateral shears are also 
presented and various interpretations of the transitions discussed. 
The final section of chapter two presents a varied selection of 
normal mode growth rate curves. A more detailed summary of the 
chapter is provided in section 2.1.

The evolution and equilibration of small amplitude waves on 
baroclinic zonal flows has been the subject of intense analytical 
study (Hart 1979). One aim of this work has been to provide 
insights into the dynamics of amplitude vacillating and/or steady 
waves just below the upper axisymmetric transition. Strong reasons 
are advanced in section 3.1 for thinking that the lateral shear of 
the axisymmetric flow has a crucial impact on the self-interaction 
of such waves. A detailed analysis in sections 3.2 & 3.3 of the 
inviscid development of a small amplitude wave on a laterally 
sheared flow confirms that the advection of the flow's potential 
vorticity in a strongly non-linear critical layer can determine the 
wave's evolution. The self-consistency of the analysis is examined 
in section 3.4. The calculations suggest that diffusive fluxes play 
an important modifying role in waves near the axisymmetric 
transition at moderate Taylor numbers.

18



It is remarkable that several large amplitude stable waves of 
different azimuthal wavenumbers can be obtained under the same 
imposed conditions over a large fraction of the regular wave regime. 
It is natural to wonder whether simple accounts of these waves and 
their stability can be given and whether or not the stability of a 
wave flow depends crucially on diffusive effects, on the confining 
effects of the boundaries or on the strength of the zonal mean 
component of the flow. The numerical investigations of chapter four 
provide some insight into these matters. It is shown that 
barotropic Rossby waves of several azimuthal wavenumbers are stable 
against linear quasi-geostrophic perturbations in narrow periodic 
f-plane channels. Steady state combinations of zonal flows and 
Rossby waves (White 1986) can also be stable when the zonal flow 
component is not too strong. These results suggest that the 
boundaries play a crucial role in stabilizing the waves but that 
diffusive effects are not essential to the waves' stability and that 
the waves are stable despite (rather than because of) the zonal mean 
component of the flow.

Modern advances in the understanding of simple non-linear 
dynamical systems might provide a useful qualitative framework for 
the classification and interpretation of shape vacillating flows and 
the transition from regular to irregular flows. A method (Takens 
1981) for the investigation of a time series of experimental data 
generated by a simple (low dimensional) dynamical system is 
discussed in chapter five. The present author's interest in this 
method stemmed from problems encountered whilst trying to use it 
with experimental data. The discussion might be considered didactic 
but is included because experimenters have evidently found the 
method both difficult to understand and to implement soundly.
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CHAPTER TWO

THE STABILITY OF ZONAL FLOWS AND THE UPPER AXISYMMETRIC TRANSITION

Section 2.1 INTRODUCTION

The sharpness of the upper axisymmetric transition is due to a 
strong dependence of the stability of the axLsymmetric flow against 
small amplitude baroclinic waves on the imposed thermal Rossby 
number. Eady's (1949) theory gives a satisfying account of the 
transition , since it features a rapid transition between stability 
and healthy instability over Burger numbers consistent with the 
thermal Rossby number of the experimental transition.

The present work which explores similarly simplified but 
essentially realistic idealisations of the stability of zonal flows 
has two aims :

i) to clarify to which aspects of the zonal flow the transition 
is sensitive

ii) to improve understanding of the reasons for the existence of 
the transition.

The study was stimulated by the lack of solutions, other than Eady's 
and of two layer problems, which exhibit clear transitions and by 
two features of the axisymmetric flows found in wall heated rigid 
lid annulus experiments. These features are reproduced in numerical 
simulations of the flows using the Navier Stokes equations and 
illustrated in figure 2.1.

The first is the lack of a lateral thermal gradient in the zonal 
flow near the upper and lower boundaries (see fig. 2.1a). The 
vertical shear of the zonal flow (fig 2.1b) is also small at these 
boundaries as is consistent with the thermal wind relation.
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a) Temperature b) Zonal velocity c) Radial gradient of 
potential vorticity

y
of

Figure 2.1
Height(z) / radius(r) cross- 
sections of the fields of (a) 
temperature (°C), (b) zonal
velocity (mm/s) and (c) the 
quasi-geostrophic potential 
vorticity gradient qt
(0.2545cm_1s2 = 2fl/(b-a))
an axisymmetric flow. The 
fields were derived from a 2D 
numerical simulation (see 
caption of fig. 1.2) with 
AT=»4°C and n»0.7rad/s. in an 
annulus of inner radius
a=49.75cm, outer radius
ba>55.25cm and depth Hsl4cm.2 —2The fluid has vsl.29cm s ,
K=1.34.10-3 cm2s“1,
a=*2.77.10 

-3
-4 -1

gem
K " and psl.026 

at 22°C, the temperature
of the outer side-wall, q isy
constructed from the
horizontal velocity and
thermal fields using an
area-averaged static stability
at each level; the quantity 

flow presented is unstable toactually plotted is -3q/3r the cylindrical analogue of 3q/3y « qy . The
non—axisymmetric perturbations but similar in gross form to stable axisymmetric flows (see fig. 1.2)



Following Charney & Stern (1962) flows with no vertical shear at 
their boundaries will be termed internal baroclinic jets.

The second feature is that the potential vorticity gradient of 
the zonal flow, defined*(for constant N2) by

^ p *2?-Cl /'fcjj1 - FVm1* (2.1.1)

and illustrated in fig. 2.1c, is of the same sign as the zonal 
velocity field, u, throughout most of the annulus. The axisymmetric 
flow's distribution of 3q/3y is related to its internal jet
character which inclines its vertical shear, |3u/3z|, to be a
maximum at mid-level implying that 32u/3z2 and u have opposite signs 
over most of the flow. Also, at a given height, the zonal velocity 
takes its maximum value at mid-channel so that 32u/3y2 and u have 
opposite signs in most places. The combination of these points with
(1) and the zero value of 3 in the experiments explains the
distribution observed. This suggests that one study the idealised 
flows for which

T s =■ /  ( u > 0 (2.1.2)

(i.e. Ts is positive definite throughout the flow) for some 
constant velocity ug - which may be viewed as a Doppler shift 
velocity.

In sections 2.2 to 2.4 we examine the stability of flows which 
satisfy one or both of these idealisations. It is argued that such 
flows are stable to very short wave disturbances and that the short 
wave cut-off (SWC) to instability is marked by a neutral mode 
solution. Under some conditions the dependence of the neutral 
solution and hence of the SWC on the form of the zonal flow can be 
determined readily.

Section 2.2 presents an argument (adapted from Howard (1964)) 
concerning normal modes on internal baroclinic jets which satisfy
(2) . The argument establishes a Sturm Liouville problem for the 
neutral mode marking the SWC. This result is used to investigate

1 4*sU\» *5 the CorioU* parameter, lefa* p a w n N the I3nmt
VWfata A* ovdrbcu" indicates a  xtatdlj averaged jyicvxfcihj.
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the dependence of the SWC on the degree and form of the lateral 
shear of the zonal flow and the tightness of the cylindrical 
curvature of the domain. It is found that lateral shear can affect 
the position of the cut-off considerably.

Normal modes on flows which satisfy (2) but are not internal jets 
are considered in section 2.3. The arguments locating inviscid SWCs 
are less direct than those of section 2.2 and involve three steps. 
Firstly an upper bound on the wavenumber of unstable solutions is 
found by making use of two integral constraints on the flow. 
Secondly it is argued that any unstable solution at a given 
wavenumber is bordered by solutions at both larger and smaller 
wavenumbers. Thirdly the gravest neutral modes bordering unstable 
solutions are identified. The arguments are presented first for 
laterally uniform flows. They are then extended to domains with 
slightly sloping endwalls and to laterally sheared flows. Two 
examples illustrate the dependence of the SVC on the height of the 
3q/3y = 0 line for laterally uniform flows with thermal boundary 
gradients. Some, but not all, of the three steps outlined above 
apply to waves on laterally uniform flows in the presence of Ekman 
pumping; the neutral modes for most of these problems are shown to 
have a discontinuous thermal gradient at an internal critical level.

A three dimensional spectral model of internal jets is described 
in section 2.4. It is shown that the model has an anti-cascade 
property which applies at any truncation. This result provides an 
alternative interpretation of the sensitivity of the SWC to certain 
forms of lateral shear (found in section 2.2) and can be applied to 
flows which do not satisfy (2). It also forms the basis of the 
stability calculations for free modes reported in chapter four.

Section 2.5 provides a summary of the types of flows which 
possess SWCs and the arguments and interpretations of the cut-offs 
suggested by other authors.

The SWCs discussed in sections 2.2 to 2.5 are of primary 
importance for annulus flows only if they mark sharp transitions 
between stability and instability. Condition (2) is a judicious
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criterion in this regard because it does not allow feeble unstable 
solutions trapped near 3q/3y = 0 to determine the cut-off position. 
Shooting methods for calculating unstable normal modes on laterally 
uniform and some laterally sheared flows are described in section 
2.6 and some examples of their use presented in section 2.7. The 
first examples confirm that lateral shear can significantly affect 
the stability transition. An examination of a branch of solutions 
decaying under the influence of Ekman pumping follows. The chapter 
closes with two examples of flows with strongly unstable short 
waves. The first is Green's problem scaled in the manner most 
appropriate for annulus experiments. The second concerns vertically 
trapped jets similar to (but simpler than) those on which polar lows 
develop.

All of the studies reported in this and the following chapter are 
based on the quasi-geostrophic equations for an incompressible 
baroclinic fluid. These equations are particularly suited to
analytical investigation because they express all velocity and 
thermal fields, to an adequate approximation, in terms of a single 
scalar field, namely Y, the horizontal geostrophic velocity 
streamfunction;

\ i  =  £  A  V $  .  ( 2 . 1 . 3 )- a ~
The governing equation states that the quasi-geostrophic potential 
vorticity, which is related to the streamfunction by

Q a  f  +  ,  ( 2 . 1 . 4 )

is conserved following the geostrophic motion

Daa /t> t s **&/•»t  = o .  (2.i.5)

Equation (5) may be derived by a systematic scale analysis from the 
Navier - Stokes momentum and thermodynamic equations using two 
assumptions. First that the Coriolis accelerations dominate 
accelerations apparent in the rotating frame; this requires the 
Rossby number to be small;
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R „ S  U / ( * l A  «  \  o n d  $ T  »  l ,  ( 2 . 1 . 6 )

where U, L and T are representative of the velocity, length and time 
scales of the motion and f is the Coriolis parameter. The second 
assumption is that

Rl . Ro -  B /  R e  »  1 , (2.1.7)

where

Rl =  B 5  , (2.1.8)

Ri being the Richardson number, B the Burger number, N the Brunt 
Vaisala frequency and H a typical depth scale of the motions. This 
ensures that |w/H|«|v/L|, so that the horizontal flow is 
non-divergent (\7h.uh = 0) to a first approximation*, and that the
basic thermal stratification is larger than variations induced in it 
by the motions. Approximations (6) and (7) are appropriate for many 
flows in both rotating annulus experiments and the atmosphere at mid 
or high latitudes. The derivation also assumes that the basic 
thermal stratification depends only on height. Zonal flows with 
both lateral and vertical shear will not in general be strictly 
consistent with this assumption and thermal wind balance. It may be 
interesting to investigate the effect of the neglected terms on the 
linear stability analyses of this chapter.

The governing equation (5) has the merit of being an analogue of 
Ertel's conservation law for an inviscid, adiabatic fluid (Pedlosky 
1982a). It is just one of a set of approximations to F.rtel's 
result, some of which are coarser (Phillips 1963) and others finer 
(Hoskins 1975) approximations (White 1987).

Boundary conditions on the normal flow are required to solve (5) 
for Y. The upper and lower boundary conditions are fairly firmly 
established for annulus flows. The interior vertical velocity 
matches onto Ekman layers which pump vertical motion according to 
the vorticity at their outer edge (Pedlosky 1982a). At the upper 
and lower boundaries the vertical velocities are given by

* TV\e vta.-cVieJ VelociKj at -W\4 of Hu. geoStrofW interior must

bo. £or fchii to  be fcruo..



at 1\ \

+  'll (‘IV f - p y 1' at i  = 0

-'11 £ . ( 7 A s a\ a.t * (2.1.9)

These conditions assume that N2 H / g << 1 (White 1977).

The side boundary conditions are much less firmly established. 
The condition of no normal geostrophic flow, which seems reasonable, 
is commonly applied at the edge of a notional geostrophic interior;

h . a, = 0 (2.1.10)

Conditions on the zonal flow at the side boundary are subject to 
even greater uncertainty. One which is widely used because it 
ensures energy conservation is

»  o  ok 3=  o, l . (2. 1. 1D

Most of the calculations in this thesis are carried out in a 
periodic channel, rather than a cylindrical annulus, which has width 
L and height H. The x ordinate is chosen to be along the channel, y 
across it and z in the vertical direction. For reference we write 
out the equations for this domain in the non-dimensional notation 
used hereafter. The gap width L is used as the horizontal scale, H 
as the vertical and U as a velocity scale. Denoting dimensional 
variables with an asterisk superscript in the usual manner we take

u*= U a  , U v  } y* = L y y z* = tlz. (2.1.12a)

An appropriate non-dimensional time variable and streamfunction are

t,* =  U/L fc , E *  = U L  $  . (2.1.12b)

The non-dimensional form of the interior equation is then
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DjQAbt » - **£/*! ̂ />x = 0
(2.1.13)

d = -fL/U +* + '*S?/vjx ± ̂ 1 w(*te^5/«) .

Many of the calculations in this chapter concern small 
perturbations to a horizontal zonal flow, u(y,z) with no variation 
in the x direction, which are not subject to Ekman pumping. 
Perturbations with a streamfunction of normal mode form

ty* s  i \ c L x - - c £ ) (2.1.14)

are of particular (though not exclusive) interest. Such 
perturbations are governed by the set

(u.- c-X ̂  ̂ C ' l B ^ h x )  - K*̂ >) +• $ = 0 (2.1.15)

^  = V - Tfa/'kij1’ “ I S - l l z )  ;  i  -  } i l ? /V (2.1.16)

$ s 0 at y = 0/1 (2.1.17)

t u. - c,) - 'Vl/Vt f> s  O at x *  0/1 (2.1.18)

as may be verified readily using (9),(10),(12) and 
dealing with this set u and 3q/3y will be denoted by 
the overbar being superfluous.

(13). When 
u and 3q/3y,
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Section 2.2 BAROCLINIC INTERNAL JETS

This section concerns only inviscid normal mode perturbations to 
internal baroclinic jets with Tg > 0 (see (2.1.2)). So the
equations to be considered are

u* + = ° (2.2.1)J M-c,
(f> =r 0 at \j=0,\ • s 0 1=*0,\ (2.2.2)

( u - u * ^  # (2.2.3)

An argument adapted from an analysis of inviscid 2D disturbances 
to a parallel sheAr flow by Howard (1964) establishes that no 
unstable solutions of (1) - (3) have larger azimuthal wavenumbers 
than the neutral solution which is the gravest mode of the Sturm - 
Liouville problem defined by (4) and (5) below. The condition under 
which this neutral solution borders unstable ones and an expression 
for the growth rates of any bordering solutions are then 
established. The dependence of the SWC on the lateral shear of some 
separable velocity profiles is then discussed in some detail. The 
effect of cylindrical curvature on the SWC is also briefly noted. A 
discussion of the implications of these results for the 
interpretation of the UAT concludes the section.

HOWARD'S ARGUMENT

Consider the eigenvalue problem

L +  'fcU x  ( '/B  1 § h > r . )  + T ? f  = 0  ( 2 . 2 . 4 )

? = 0  ofc ;j = «>/» ;  = 0  a t  - 1 = 0 , 1  ( 2 . 2 . 5 )

and let its eigenvalues be denoted by X1,X2,>il... where Xx < X2 ^
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Result:
If k2 > -X there are no more than n - 1 linearly independent“ n
unstable (growing) solutions of the stability problem (1) to (3).

The eigenfunction of the first eigenvalue Xx is a neutral mode 
solution of the stability problem with phase speed c = ug and 
k2 = - Xx. This gravest neutral mode eigenfunction will be denoted 
by <f>g and its wavenumber by kg (k2 = -X1). The above result proves 
that it marks the SWC if it is bordered at marginally smaller k by 
unstable solutions (see below).

The proof of the result makes use of the fact* that for any n>l, 
X is the minimum value ofn

3̂ (f^ =  +  l/B I’&P/fczl* -  Tj ( 2 .2 .6 )

among complex-valued piecewise continuously differentiable functions 
satisfying (5) which are orthogonal to the eigenfunctions of 
X2 ,... Xn l and of "unit magnitude", i.e.

Io lo I f ̂  A»j At = 1 .

Assume that ($lf cx) and (<f>2, c2) are unstable solutions of the 
stability problem with the same azimuthal wavenumber k. Integration 
by parts and application of (1) for <f>2 shows that

X, =  M t h y  + '/6^/it.^i/ir + <k) <k.

Similar manipulation using (1) for $ gives

X\ - li X* (u.-u^/(u.-c*) <SyAt.

Hence writing

2  / 1 u. -  c,%) p ( 2 .2 .7 )

Couuronb l» V\i\\)ft.rt cViapHLr VI l *"3,

2<l



0 =  l i  Tj (u-uj1! (Ci - i f )

The imaginary part of the last equality implies that

0 = II T s (2.2.8)

Now assume that ($ , c1), (<t>2 ,c2),.. (^n,cn^ are n linearly
independent growing solutions of the stability problem at the same 
wavenumber k. Then there is a

i|l = £  •, n i t w i t  =1 (2.2.9)

which is orthogonal to the first n - 1 eigenfunctions of (4) and 
(5). Applying (1) for each $k the definition of \|/ implies that

it
+ 'bl'H.l'IZ'btyl'to) -fc2'!' = -  S, Tf U-U*) Ow

*J W*f

Simple rearrangement yields

+ Ts\)/-Kty = S  Fk .

Multiplying this equation by \J/*, integrating over the whole domain 
and using (8) reveals that

SI(- \ ^ / ^ \ x -  l/s + T* ix

" I I  ( a * - c * * ]  ttk prK F|*

=r 11 "1$, 5* (u$ — U — Uj 4 U$ - Cĵ } QVC A»J<3hL

= II  I £  a« r  iy Jk

>✓ 0 . (2.2.10)

Using the orthogonality of ^ to the first n - 1 minimising functions 
of (6) in (10) gives
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- n 1 >, nO vk/vjl1 + '/a M M 1 >, A* . (2 . 2 . 11)

Hence k2 < - X if there are n unstable solutions of the stability-  n
problem.

To prove the result it remains to exclude the possibility of n 
growing solutions being present when k2 = - Xn. In that case
equality must hold in (10) and

»\
T s  Za s  O  O ^  .> k«» *

Combining (1) with this equality shows that

Tx cxv( —c / 2̂** ■+ b|bx (l/S h’i) ~~ K-
-Tj (u.- vjl̂  ]ju 52 0 0 (2.2.12)

2  a *  <(>*' (2.2.13)IC=I ?
(12) may be re-expressed as

*blj/ +■ ’blVt ( VB ’bg/dx) - = 0

g satisfies the same boundary conditions, (2), as 
equation implies that

and g s 0 for 0 < y,z <1. ug - ck * 0, because ck has a positive 
imaginary part, so (13) implies that the set .. <J>n) is not
linearly independent. Hence, if k2 = -Xn there are less than n 
linearly independent unstable solutions of the stability problem and 
the proof of the result is complete.

0 $ ij,t S \ •

<f>, so the last

Defining

3 =
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Unstable modes bordering the gravest neutral mode

We confirm nov that the gravest neutral mode <f>s does border
unstable modes on its long wave side, provided that c = ug gives a
critical level within the flow domain at which T / 8u/9z is of

8

order 1. We explore solutions which border <f>g by substituting

= ^  + ) C =  Us + Sc , K.* = K s V t K 1- (2.2.14)

into (2.1.15), (2.1.17) and (2.1.18) and linearising with respect to 
the small perturbations

(2.2.15)
on ^ = 0 , \ * oh 7 - D / L

Use of (2.1.18) in place of the internal jet boundary condition at 
this point saves needless repetition in section 2.3. Appendix A 
shows that the necessary and sufficient condition for (15) to have a 
solution for 8<f> is that

o = . (2.2.16)u-c
Consider

T  2  r m l j  /Tg O ’ Aljdx .
U - - C

(2.2.17)

Providing that the critical level lies within the flow domain use of 
the standard substitution (Maslowe 1981) of v for the variable z

U  -  c r  =  A - a n  Y

enables one to deduce that

T  =  ~  “ft" Sl̂ yvC*c-0 ^ (  Tg /  U u l V t l  ) x = r^Aij # (2 .2 .1 8 )
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So (16) may be rewritten in the schematic form

( - 1  +• =  o

in which T, A and T are real constants and T and T are of order 1. 
Hence

=• (JL +- i l / f T 14 +• Jli1) . (2.2.19)

So there are unstable solutions on the long wave side of k8 (i.e. 
for 8k2 < 0) but not on the short wave side. It is worth noting 
that the gradient of the unstable branch dc£ / dk takes a finite 
value at these SWCs (at least when T / 3u/9z is of order 1 at the 
critical level) whereas the Eady growth rate curve has dcA/dk -» -® 
at its SWC.

Example 1: Sinusoidal Internal Jets

Let flows which satisfy

^  = cL^u 4- ^  (2.2.20)

for real constants a and 8, be termed sinusoidal flows, a will be 
referred to as the total wavenumber of the flow. These flows 
satisfy (2.1.2) since choosing

= -"i/cL1 (2.2.21)

and substituting (20) and (21) in (2.1.2) gives

T y  =  ( 2 . 2 . 2 2 )

According to Howard's argument sinusoidal flows which are also
baroclinic internal jets have no unstable modes at azimuthal 
wavenumbers k with k2 > - A, = k2, where k is the most positive 
eigenvalue of
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fit = Cj oa y - 0/ 1 • J = 0 e*\ i s 0;l . (2.2.23)

((23) is obtained from (4) and (5) by setting f = <J>g, Xx = - k2 ands
using (22) for Tg.) Furthermore, this neutral mode ($g, kg) marks 
the SWC provided ug lies within the flow domain. kg is particularly 
easy to calculate for sinusoidal internal jets when the 
stratification is independent of height and hence B a constant -

1̂ £ — oiKei = • (2.2.24)

One set of examples of sinusoidal internal jets is 

u  =  cosTTx # (2.2.25)

On an f plane these flows satisfy (20) with 5 = 0, whilst on a 3
plane 5 = y (see (2.1.16)). The parameter f|, which may take any 
real value, is a measure of the lateral curvature of the 
axisymmetric flow. When t| = 0 the flow is laterally uniform whilst 
when f| = 1 the flow has a half sine lateral structure and is zero at 
y = 0 and 1.

The SWC wavenumber kg is given by

k /  =  tr1 / s  + tr (2.2.26)

For a given value of B, the azimuthal wavenumber of the SWC clearly 
increases with t|. There is a SWC for any value of including 
values substantially greater than 1. The dependence on r| of the 
Burger number of the SWC, at a given fixed k = kj, which is relevant 
to the thermal Rossby number of the upper axisymmetric transition,
is entirely different as may be seen by re-arranging (26)

Bs =  "fl"1/ i K|1 + (2.2.27)

This shows that for t| < 1 there is a SWC corresponding to an upper 
axisymmetric transition and that Bg increases with t), but that 
Bg -> 00 as Jl2 H2 * it2 + k2. For larger values of t) the SWC wavenumber 
kg according to (26) is larger than whatever the value of B so 
that all values of B lie on the long wavelength side of the SWC.
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According to (27), the ratio of the Burger number at the SWC for 
a sinusoidal flow with half sine lateral shear (q = 1) to that with 
no lateral shear (q = 0) is

By (^ = 0  - # (2.2.28)
li (l = O') ^

From (2.1.12a) kx = k* L, where k* is the dimensional wavenumber of 
an azimuthal wavenumber one disturbance and L is the width of the 
channel, k* Lx = 2 ji where Lx is the repeat length of the channel. 
Modelling a cylindrical annulus with inner radius a and outer radius 
b by such a channel it is reasonable to take L = b - a and 
Lx = II (b + a). The "small annulus" investigated by Hignett (1985) 
and others has b + a « 2.(b - a). So

K. = K f u  = v f w  l / L x  *  2.TT~(b-a.) a  I .  (2.2.29)
ir(b+-<0

Combining (28) with (29) gives a Burger number for a flow with half 
sine lateral shear 11 times greater than that for a laterally 
uniform flow. The ratio (28) is clearly sensitive to Ss(b-a)/(b+a), 
being proportional to S-2 when S«it.

The major impact of the half sine lateral profile on the Burger 
number, Bg, of the transition makes it appropriate to consider the 
dependence of Bg on the ratio, R, of the zonal flow at the 
geostrophic side-boundary to that in mid-channel. For flows of the 
form (25)

R  S  *.(?•**; a s 1 ̂  =  tos 'W'tr/l (2.2.30)
u(x»l , y = '/O *

and Bg is given by (27). Figure 2.2 displays Bg plotted as a
function of R for 0<R<1 using kx = 1. Between R = 1 and R = 0.4, Bg 
varies by less than a factor of two, whilst for R < 0.4 Bg is very 
sensitive to R increasing rapidly as R decreases.

A second set of examples of sinusoidal internal jets is 

a  = “ l/l cosTCx si* ̂ 2 ( 2 . 2 . 3 1 )

for which kg is again given by (26). These flows resemble quite
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closely the axisymmetric flows found in internally heated annuli 
(Read 1985).

A final set of examples of sinusoidal flows is

U. ^  “ 'll cosTC*. co$k ^ TT . (2.2.32)

For these flows
a IT 1/6 - K 1* 5 irVs -TT1(l+-7t). (2.2.33)

The hyperbolic shear stabilises the flow resulting in SWCs at Smaller 
wavenumbers kg, or smaller Burger numbers Bg, as h is increased. 
The flows (32) have minimum values at mid-channel and maximum values 
at the geostrophic boundaries. White (198b ) has used them to 
represent the mean zonal flow obtained in the large amplitude wave 
regime (see chapter four).

An interpretation of the SWCs for the sinusoidal internal jets 
based on an anti-cascade argument is presented in section 2.4.

Example 2: Separable flows on an f plane

Consider axisymmetric flows which are separable in the sense that

Solutions of (4), (5) and (35) may be sought as linear combinations 
of separable solutions f = cx(y).X(z) for which

(2.2.34)

On an f plane the choice ug = 0 in (3) gives

Ts = -'/Cr Aij1 -  VH d/Jx O/edHMx) (2.2.35)

(2.2.36)At ijs o, \
and

d/«k o/e A-y/h\ - * / r Mti'it <w/<k) = o
JV /«U  = O afc x = 0 ,l

(2.2.37)

with
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V *  S (2.2.38)

(36) - (38) could be explored in some detail but we limit ourselves 
to two investigations into the influence of lateral curvature on the 
transition.

First let H(z) = - Vzcos nz and B2(z) = Bs2, as before, and

\ — a. 4* ol • (2.2.39)

Then k* = n2 / Bg + £ where £ is the first eigenvalue of (36) and 
(39). We have calculated Bs as a function of the ratio of the flow 
at the side to the middle, R = 1 - a, at fixed kg = 1 for comparison 
with fig. 2.2. The two curves are barely distinguishable, 
suggesting that fig. 2.2 is insensitive to the details of the 
lateral curvature assumed.

Further support for this suggestion derives from the second 
example in which we examine (36) for flows which vanish at the side 
boundaries

Gr -  O i j = 0  ̂\ (2.2.40a)

and have

Gr > o for o < y < \ • (2.2.40b)

Substitution of a = G and £ = 0 in (36) reveals this combination to 
be a solution of (36) for flows which satisfy (40a). a = G is the 
gravest mode solution when the flow satisfies (40b). So it is 
apparent that separable flows (34) with Tg > 0 which are zero only 
at the side boundary (40b) have SWCs at wavenumbers kg = l̂u, which 
do not depend on the details of the lateral structure of the zonal 
flow.
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Example 3: Laterally uniform flovs in cylindrical domains

The equations corresponding to (1) and (2) for a cylindrical 
domain with side boundaries at r*(= a r)= a, b are

lu.-rO(l/r'fch>r(r*f/fcr) +» fcin ( ^Ibl) -nty/r1 ) =

(2.2.41)
=  0  W l  r s  l ,  W f t .  /  =  o  6 * .  X e O / |

in which <f> and 3q /3r are related to rj/' and u(r,z) by 
\|/1 — (j) (f','0 Ua(& “ tt)

C2 2 42)
ĉ r s .  — ( Vr bfbr (r \ k ) )  — "blbX ( âaVtNaUl) I t t )  #

Howard's argument can be repeated for these equations without 
difficulty.

The SWC problem for the analogue of the laterally uniform 
sinusoidal internal jet

U =  -'/a. p cosTt (2.2.43)

with uniform stratification is
Vr 4A r ( r t y f IAr)  -  M ^ / r *  = -U 1* , f V / ( W * « 0

(2.2.44)cj> sr 6 at r * t>/a .
It is convenient to re-express (44) in terms of a normalised radial 
ordinate y, the ratio, g, of the gap width to the inner radius and 
the Burger number B:

- r-\ 9 = fe- ».,1H  H (2.2.45)

(2.2.46)

W<*

In these terms (44) is

Al<|>s / + (vj + /A\j - (y+'/jV* = Î

( j ) j s O  a t  »J =» O y  i •

The cross marks on figure 2.3 display the dependence of the SWC 
Burger number of wavenumber one (m=l) solutions of (46) over the 
range -1 < log g < 1. These results were derived using the shooting 
method described in section 2.6 with a 100 point resolution. The
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round marks on the same figure are the corresponding cut-off values 
for disturbances in a Cartesian channel of length n(b+a) and width 
b-a. The plotted values are inferred from (27) with h=0, (29) and 
(45)

8  =  TvVlTT'*- V,*) ; j t g / l g v l } .  (2.2.47)

The two curves correspond quite closely showing that the crude 
representation of the cylindrical annulus as a Cartesian channel 
does not introduce large errors in the calculation of the upper 
axisymmetric transition.

Implications for the interpretation of 
the Upper Axisymmetric Transition

The volume average of the Burger number of an axisymmetric flow 
is closely related to the imposed thermal Rossby number. The
relationship can be made precise by defining the volume average
value of 3T/3z to be az AT/H. az = 0.67 for many axisymmetric flows 
(Hide 1967). Then

6 = H*Ha/ ( ( ’l1) i  noC-cy, A.TH =  er.,,©/4 (2.2.48)
4

and 0 = 6B. The UAT for the jet u =-Hi cosnz thus occurs at 0 = 6.
This value is much larger than that of the UAT at moderate Taylor
numbers (see fig. 1.4) but in excellent agreement with the main 
transition at higher Taylor numbers according to figs. 4 & 10 of 
Hide & Mason (1978).

The main transition for u = -% cosnz sinrcy occurs for values of 
0 > 60, which is at loggerheads with experimental findings. The 
calculation for separable flows which vanish at the side boundary 
(see (40)) suggests that this high value of 0 is a feature of zonal 
flows which satisfy a no-slip condition at the side boundary.

The dependence of the cut-off Burger number, Bg, on the ratio, R, 
of the axisymmetric flow at the side to the middle of a supposed
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geostrophic region is illustrated by fig. 2.2. The fact that Bg is 
highly sensitive to R and "unrealistic" according to the experiments 
when R < 0.4 and insensitive and "realistic" when R > 0.4 suggests 
that R > 0.4 in the laboratory experiments. To substantiate this 
claim it would be necessary to understand the nesting of the side 
boundary layers of the wave perturbations and of the axisymmetric 
flow itself. This is not attempted here (though see p. 117).
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Section 2.3 FLOWS WITH BOUNDARY THERMAL GRADIENTS

The flows studied in this section have

'bu/H > 0  (2.3.1)

and Ts> 0 (see (2.1.2)) for some value of us within the flow domain. 
(1) ensures that there is no more than one steering level (where 
u=cr) within the flow. We have chosen 3u/3z > 0 for definiteness; 
any solution (<f>, c) of (2.1.15) - (2.1.18) for given fields of u and 
3q/3y implies a solution (<f>*, -c*) for the fields -u and -3q/3y. So 
flows satisfying 3u/3z < 0 everywhere and with Tb>0 for us within
the flow domain, may also be considered to belong to the class under 
consideration.

We establish first that laterally uniform flows with

T g >  0 £or  u (l» 0 ^  < Us < u(x=l^  ( 2 .3 . 2 )

have inviscid SWCs (i.e. finite upper bounds on the azimuthal 
wavenumber, k, of their unstable inviscid normal modes) marked by 
neutral modes. These flows also have large Burger number cut-offs 
to instability provided Bqy = By - 32u/3z2 is bounded as B->®. This 
last condition requires By to be bounded as B-»®, which must be the 
case if (2) is to be satisfied as B->®. The Burger number and 
azimuthal wavenumber cut-offs are found simultaneously by 
determining the cut-off value of the non-dimensional wavenumber, p;

Ip1 =  8  ( K 4 +- tr*) . (2.3.3)

Three steps replace the single argument presented in section 2.2. 
The first establishes a rigorous upper bound on the wavenumber (p) 
of unstable disturbances. It is argued in the second that any 
normal mode solution with no singular critical level at wavenumber 
p0, say, must be neighboured by solutions at p0 + Sp and p0-$p for 
some, sufficiently small, 6p. It would follow that any unstable
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Figure 2.4
Schematic depiction of solution branches in the wavenumber p, (3), growth rate (c^) 
plane. It is proved, in the second part of the main argument of section 2.3, that 
solution branches cannot turn in the manner of branch (b). Branches terminate, like 
(a), at neutral solutions (c^=0). Isolated solutions like (c) are argued to be rare.
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normal mode solution would be joined by an uninterrupted string of 
solutions in the (p, ci) plane to a neutral solution of larger 
wavenumber, as in curve (a) on figure 2.4, because there is a finite 
bound on the wavenumber of unstable modes. Furthermore strings of 
unstable or neutral solutions could only terminate at neutral 
solutions with critical levels within the flow domain. The third 
step establishes that the neutral solution with the largest 
azimuthal wavenumber is given by the gravest mode solution of

■tf’-y /'v t1 +  t  err* -  - y  = o <K<a,z.s\

(2 3 4)
— AuUt. V  = 0 t s O ; l ; ^ = > 0  on

These neutral modes are shown in section 2.2 to border marginally 
longer wavelength instabilities.

The argument submitted for the second step succeeds in proving 
that turning points like that on curve (b) of fig 2.4 are not 
possible but does not absolutely exclude isolated solutions like 
point (c) on fig 2.4. It does, however, establish that such 
isolated solutions can only occur for extremely rare flows (of 
infinite codimension).

Some examples of the dependence of the SWC on the proximity of 
the 3q/3y=0 level to boundary thermal gradients then follow. The 
key points involved in extending the arguments to domains with 
slightly sloping endwalls and the few laterally sheared flows which 
satisfy (2) are then indicated. The section concludes with a 
discussion of the problem of normal modes subject to Ekman pumping 
which is continued in section 2.7.

A bound on the wavenumber of unstable normal modes

Multiplication of (2.1.15) by B / (u-c) and use of the 
boundary conditions in integration by parts yields a complex 
integral constraint on unstable normal modes whose real and 
imaginary parts are presented overleaf. (6) expresses a well known 
constraint on the meridional flux of generalised potential vorticity 
(Bretherton 1966a and Eliassen 1983).
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(2.3.5)
U 3 6 \ ^ a l 1 + l ^ A x i 1 +

— S ,L (u-fcr̂  + L  r \̂l/vt(u.-&r̂  ltj>la~1 dki
I u - c\a L U-e.1* Jt,o

0 =  i xL  6<y, U l1 Au(k l [ W 3 k i J i l x] 1 <u . (2.3.6)
luu-c.^ L tu-cl1 3

(5) may be derived from a conservation theorem for the 
"quasi-energy" of a small (Andrews 1983) or finite amplitude 
(McIntyre & Shepherd 1987) disturbance to a steady flow.
Constraints similar to (5) and (6) are familiar from inviscid shear 
flow stability (Drazin & Reid 1981 section 22).

An upper bound on the wavenumber p of unstable normal modes on 
such flows can be derived using (5). By Poincare's inequality

L\».s. (1.3.5) ; X  = 1 +,a • (2.3.7)

All contributions to the first term on the r.h.s. of (5), other 
than those near the steering level, may be bounded by a finite 
multiple of I. The boundary terms on the r.h.s. of (5) may give a 
significant contribution if the steering level lies close to one of 
the horizontal boundaries. The key to this sub-section is that (6) 
may be used to bound the contributions to the r.h.s. of (5) from a 
region containing the steering level in terms of contributions well 
away from it. This point is made rigorously by (8) below. Not 
surprisingly, boundary terms in (5) which are not close to the 
steering level can be bounded by a finite multiple of I when p is 
large enough (see (13) & (17) below). The value of the upper bound 
on p hence established, (19) below, is not particularly significant, 
because the SWC is located precisely in the next Fub-$uti‘ofl) tightness 
of the bound has been sacrificed in favour of clarity of 
presentation.

To proceed with the proof we divide the flow domain into regions 
A„, Bn, D_ and , see fig. 2.5, whose boundaries lie on isotachs 
of the zonal flow - which are horizontal when the flow is laterally 
uniform. To abbreviate notation let uQ=u(z=0), u1=u(z=l),
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iL = lc r-us_ y

___ vR_ V

Figure 2.5
The division of the flow domain used to infer an upper bound on the wavenumber of
unstable normal modes (see inequalities (10) and (19)). Regions and BR , which are
separated by the isotach u=ug on which dq/dy=0, cover the whole of the flow domain
and its boundaries. Region A^ lies on the same side of u=ug as the steering level
u=c . Region D covers the part of A^ which lies between u=u and u*2c -u . Region r R R s r s
Er covers any part of AR left uncovered by DR .
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u ft=9u/9z(z=0), u 1=9u/9z(z=l) and u =u(z=z). For a given complex 
phase speed c, region DR extends between z = z g (where 9q/9y = 0) 
and the level where u = 2c - u . Region A_ contains region D_ and 
extends from zg to the lower boundary if cr< ug, or to the upper 
boundary if cr> us. Region BR is the complement of AR w.r.t. the
whole domain whilst region ER is the part of AR which is not in DR; 
if 2cr - us < uQ or 2cr - us > ux then region ER will be empty. 
Fig. 2.5 is drawn for a case with cr < ug and a non-empty region 
E_. In the above informal discussion, D_ is the region containing 
the steering level and BR and ER the regions in which the first term 
on the r.h.s. of (5) is easily bounded by a finite multiple of I.

The regions have been chosen so that

(i) all contributions to the r.h.s. of (6) from BR are of one sign 
and all from region AR, and hence DR, of the opposite sign

(ii) all contributions to the r.h.s. of (5) from BR are of one sign

( i i i )  |u-cr| i n  BR > |us-cr| > |u-cr| i n  DR .

Denoting the upper and lower boundaries of BR and DR by B ^ y  and 
Dfady> the following inequalities result from points (i) - (iii) and
(6)

(2.3.8)



The first inequality follows from (i)-(iii), the second from (6) & 
(i) and the third from (iii). So the contribution to the
r.h.s. of (5) from DR is less than that from BR . Contributions to 
the first terms on the r.h.s. of (5) from BR and ER are easily 
bounded i*i fen*& o£ X ;

( u -c -r l  fig*
' *  (2.3.9)

JI^ s«ya Ctt-crU4»\*AnAt * IIE< .
\ ix ** c|

Substitution of (7) - (9) in (5) shows that

\$ \x  XijAx $ Z +

(2.3.10)
C IjWfcxCu-CrUM1 Aj1Ei, + Z [ J^ufu

l u - c l *  ™  \u . -e . l l

To bound the horizontal boundary contributions by a finite 
multiple of I note first that region DR covers the boundary 
belonging to AR if 2cr - us < uQ or if 2cr - u > ux. So only lower 
boundary terms with cr > (ug + uQ)/2 and upper boundary terms with 
cr < (ug + u1)/2 need further consideration; boundary terms on the 
r.h.s. of (5) involving almost singular critical layer 
contributions will originate from DR and can be bounded by the 
contribution from region BR, as demonstrated above (see (8)).

Consider the lower boundary first. We will show that when p is 
large enough ((13) below) |<j>| does not decay rapidly with height 
near the boundary ((14) below) and hence that the lower boundary 
contribution is smaller than a certain constant times I ((17) 
below). From (2.1.18)

U/Axljl^^xao = ~Z(Ia L o
1 u-«.lx

/ f i l l  i ( 2 . 3 . 1 1 )^ ** *a*o llu I9I Au so uJnan cr>U.t>
cr -tt* 3  u

Addition of <|>*/(u-c) times (2.1.15) and <f>/(u-c*) times (2.1.15)*, 
integration from 0 to 1 w.r.t. y and from 0 to Z w.r.t. z yields

*  ^lo J3 (2 .3 .12)
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Let z f be the level of the isotach u = uQ + (us - u0)/4 and region 
Fr be confined by z = 0 and that isotach. When cr > (ug + u0)/2, 
3|u-cr| > |u-us | within FR and |Bqy(u-cr)|/ |u-c|2 < 3BTg. So the 
r.h.s. of (12) is positive within FR if

h1 > 3  M ojc 8T^ (2.3.13)
r

in which case

( d/Ai, Jo ^  Jo lt*6 (2.3.14)

and using (11)

I t  \ t H  » i  1 -  . <2-3-15>

By integration of (15) and manipulation of simple integration 
formulae one finds that

lie, >/ ' I t , (u,-«.V4ttteJ ( l 3 (2.3.16)

and hence

- ( ivj [ft
lu-c\x inV* (2.3.17)

W0 = 4 VA-tto / (us-UD) . NVfty ̂ V*F , 4Uxo/(u4-W*̂ J #

An entirely similar argument for cr < (ug + ux)/2 at the upper 
boundary yields

( L W v t k t r) l̂ l1̂  | * W { \\E
U - c l 1 ^  (2.3.18)

t i { s  4 ux , {  ‘/x ^  4ux, / U , - iO }

where zG is the level of the isotach u = ux + (ug - u1)/4. The same 
arguments repeated for the boundary terms of BR easily yield bounds 
corresponding to (17) and (18) in which HQ/2 and Hx/2 take the place 
of H0 and Hx. Finally, use of (10), (13) (17) and (18) and
elimination of the integral I shows that
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(2.3.19)p1 $ "3 Moot  ̂ +* W9 4* »

In conclusion, unstable modes on flows satisfying (1) and (2) 
must satisfy (19).

Solution branches do not terminate at unstable modes

Assume that $ is a solution of (2.1.15) - (2.1.18) with 
eigenvalue C at wavenumber k = K, which does not have a singular 
critical level. For convenience we look for neighbouring solutions 
at K2 + 5k2 with B unchanged. Setting

^ =  §  + ^4 , t = C + Se. , k 1 = B 1 * SK* (2.3.20)

and substituting into (2.1.15) - (2.1.18), without any linearisation 
one finds that

L t i  =  l fit a1  +  -  B 1  c u  / ( u - C )  ) ^
^  (2.3.21)

1=1 \u-U)
This equation must be solved subject to

= 0 o*v
(2.3.22)

(u-C) -%uUt. s ('bjj/'b*, + *̂ <j> Iyl) 0(\ **0,1 •

Posing a power series expansion for $<J> in terms of 5k2 and 5c

V̂C1 +• ** + —
(2.3.23)

— %if>t •+* ^1 +

and assuming that 5k2 and 5c are of the same order of magnitude, 
5^ must satisfy

Lty, = $ /U -c f  sW

(2.3.24)
= 0 ©a ijcO,! ' (u-C)b|̂ l(̂ i\ - onaaO/l,
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As shown in appendix A, the necessary and sufficient condition for 
there to be a solution for 6^ is that

U a  r f i W t  -  fu f  $ *<■ 1tl*t T' <Ja  “ c> (2.3.25)
B(u-O)

Substitution of (24) into (25) yields a condition for solution of 
the form

oC|t V = & (2 .3 .26)

in which a11 and a12 are complex valued constants which depend on $, 
C and p (but not on 6k2 or 6c). These constants will typically only 
be zero at isolated wavenumbers K on solution branches and will be 
non zero for all unstable modes for a generic subset of zonal flows. 
Unless ol11 = 0 a complex value 6c will satisfy (26) for any choice 
of 6k2 and solutions will neighbour $ on both long and short wave 
sides. So only cases with alx = 0 need further attention. For
these cases one must solve (21) and (22) to higher orders in 6k2 and
6c. Substituting 6^ given by (23) into the r.h.s of (21) and (22)
the condition for 6$x + 6<f>2 to have a solution is of the form

+ ( t i t 'V L 1 + 4- + tits = (2.3.27)

The condition for solution with 6<f>1 + 6<f>2 + .. 6<J>n may be written as a 
polynomial in 6c (of order < n) whose coefficients involve 6k2, o11, 
a12, etc. For any chosen (positive or negative) value of 6k2 this 
polynomial will have as many solutions for 6c as the order of the 
polynomial in 6c. The order will be non-zero provided at least one 
coefficient of a (non-zero) power of 6c is non zero. Hence 
quadratic turning points, like that on curve (b) of figure 2.4, 
which have no neighbours on the short wave side, are not possible on 
any zonal flow. Only isolated solutions and turning points like

Sit4 =  ( *<.*) (2.3.28)

are not ruled out.

Such turning points may be described as rare in a special sense. 
Let p be an independent parameter and (2(y,z;p), C(y)) be pairs of
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smooth functions involving non-singular phase velocities. axl may 
be viewed as a function of (2,C) and hence of y determined by (24) 
and (25);

a 11 may be differentiated w.r.t. y an arbitrary number of times. 
All the derivatives vanish together only for pairs of (2,C) of 
infinite codimension in an appropriate space of pairs of functions. 
So the exceptional points (28) are of infinite codimension in this 
sense. This formal description of the rareness of the isolated 
points is subject to the characteristic weakness of such arguments, 
namely that the function space considered is not confined to 
solutions of the problem (i.e. of (2.1.15) - (2.1.IS) in this 
case).

Comparison of neutral modes

Consider the value of the r.h.s. of (6) as a neutral solution, 
whose critical level lies within the fluid, is approached. The 
contribution from the critical layer becomes of order
(Qy I$12)(u=cr) / c£ as cA*> 0 If the critical level is near a
horizontal boundary the area integral and boundary contribution have 
the same sign there by assumptions (1) and (2). Furthermore since
3u/3z > 0 there is only one critical level. So (6) can only be
satisfied as cA -» 0, and by the neutral solution itself, if qy |<f>|2 = 
0 at the critical level.

The argument above is applicable only to neutral solutions which
are neighbours to unstable ones because (6) was derived on the
assumption that * 0. But Bretherton (1966a) has shown, by
consideration of the dispersion of fluid particles near the critical 
level, that qy |<J>|2 = 0 at the critical level of any neutral 
solution. Hence only three types of neutral modes are possible:

Type 1: modes with critical levels at 3q/3y » 0 (i.e. cr = u g )
Type 2: modes with steering levels outside the flow (cr < uQ or 

cr> u l as in external Rossby waves in Green's problem)
Type 3: modes with <f> = 0 at the critical level.
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Let the gravest mode solution of type 1 be Xs with p = pg. To 
prove that there are no neutral modes of types 2 or 3 with 
wavenumber m > ps let us assume that ^ is such a solution of type 2 
or 3 with real phase velocity cr

=o &$zi\
(2.3.29)

(u. -  C r ^ A x  -  'W v t = 0  ©tv. TL»0,l • l|)sO OA VJ= .

We choose the phases of \p and Xg so that both are real, multiply 
(29) by X8, subtract \J/ multiplied by (4) (with X = XB and p2 = p2) 
and integrate from z = zx to z = z2 using qy = Ta(u-ug) to obtain

L ‘Y^vl//,ta. —  in**— +  BTs (us-cA J Jx. (2.3.30)
' l u - tr)

For neutral modes of type 2, Tg(ug-cr)/(u-cr) > 0 for 0<z<l and
the factor multiplying Xs^ in the integrand on the r.h.s. of (30)
is positive. If \J/ is of one sign throughout 0<z<l we take zx=0,
z2=l and choose \|/ and Xg to be positive so that the r.h.s. of (30)
is positive. The l.h.s. of (30) is then

- t y W s f a z Jo = [ W*>x (2.3.31)L (u.-cr)( u-a4) Jo
which, for solutions of type 2 (cr<uQ or cr>ux), is negative. If \|/ 
changes sign within the flow domain we integrate from z = 0 to the 
first level at which \J/ changes sign. Then the r.h.s. of (30) is 
still positive and the l.h.s. is

-ftti/vj.1 = %»)/*•l|ti - (^^Ax-fi14/w)ii0>(2.3.32)

d\p/dz < 0 at z=zx so the l.h.s. of (30) is again negative. We must 
conclude that the sought solutions of type 2 with m > pg cannot 
satisfy (30) and so do not exist.

For neutral modes of type 3, Tg(ug-cr)/(u-cr) > 0 either (a)
above u=c if u > c or (b) below u=c if u < c . Taking case (a) 
first, consider (30) with z2 = 1 and z 1 at the highest level at 
which ^ changes sign. Since u(zx) > cr and Xs and ^ may be taken to 
be positive in the chosen interval the r.h.s. of (30) is positive.
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On the other hand the upper boundary term on the l.h.s. of (30) is 
negative (by (31)) as is the lower boundary term - Xs(z1) 3\|//9z(z1). 
For case (b) setting z1 = 0 and z2 at the lowest level where \f/

changes sign results in another contradiction.

In conclusion, neutral modes of types 2 and 3 above with 
wavenumber m > ps are not possible and the gravest mode solution of 
(A) must be the shortest wave neutral mode solution of (2.1.15) 
(2.1.18).

SWCs of laterally uniform flows with boundary thermal gradients

The location of the SWC of internal jets with Tg> 0 is shown in 
section 2.2 and fig. 2.2 to be sensitive to the lateral curvature 
of the zonal flow. The following examples show that the cut-off 
location is also sensitive to the separation of the 3q/3y=0 contour 
from a boundary with a thermal gradient.

Consider first

u. = -‘la cx>s*Tx ; ‘ll < * $ 1 , tfwD. (2.3.33)

When a=l the flow is an internal jet with 3q/3y=0 at midlevel (z=%). 
As a is decreased, 3u/3z at z=l becomes increasingly positive and 
the 3q/3y=0 level moves up towards the upper boundary. For 
arbitrary a, however, ug=0, Tg=a2it2 and 3u/3z=0 at z=0, so the SWC 
solutions of (A) have

^  =  cjosV \ ^ t  y =  -flC ir-W crTT • ( 2 . 3 . 3A)

When a=l, the solution of (3A) has q=0 and p= it, in agreement with 
previous solutions. According to (3A) as a ■* % from above, q -* 00. 
The values of log(p2) for the SWC as a function of a are marked by 
crosses on fig. 2.6. The amplitude of the streamfunction as a 
function of height, normalised so that <f>=l at z=l, is also displayed 
by crosses on fig. 2.7 for two values of a. The neutral modes with 
large values of p obtained with a close to 0.5 are trapped at the 
upper boundary.
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A code named WAVENO which solves (A) by the shooting method has 
been checked against these analytical results and used, with a 
resolution of 100 points in the vertical, to investigate several 
other flows . The SWC wavenumber p and streamfunction structure 
for

U « sih.oc*XC(i-ll O  ; 0 < ot £ I , (2.3.35)
cClT

are plotted as circles on figs. 2.6 & 2.7 respectively for
comparison with the results for (33). Apart from an arbitrary scale 
factor, the flow (35) is identical with (33) when ot=l in both 
formulae, but the 3q/3y=0 level remains at z=Yz independent of a in 
(35) and the Eady flow u=z is obtained in the limit as a -* 0. It is 
clear from figs. 2.6 & 2.7 that for flow (35) the SWC is relatively 
insensitive to a and that the neutral modes are symmetric about 
mid-level and not trapped near the boundaries.

Fig. 2. 8 displays the dependence of the wavenumber of the SWC 
on y for

a  ~ Z  -  ooslTx , 0 .< \ i\  <  -VCZ (2.3.36)

When y=0, 3q/3y=0 lies at mid-level, but as y increases to Ji2, 
3q/3y=0 moves down to reach the lower boundary where there is a 
boundary thermal gradient which provides a generalised potential 
vorticity gradient of the opposite sign to the gradient in the bulk 
of the interior. The limiting behaviour of flows (33) and (36) is 
consonant with the lack of SWCs when boundary thermal gradients 
provide generalised potential vorticity gradients opposite in sign 
to those in the interior, which was anticipated by Bretherton 
(1966a) and partly confirmed by McIntyre (1970). The growth rates 
near the SWCs with large wavenumbers, which could be studied using
the codes developed for section 2.7, might be of some interest but
have not been investigated.
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Slightly sloping boundaries

An important variant on the standard annulus experiments is 
obtained by sloping the upper and/or lower boundaries of the 
container (Mason 1975). (2.1.15) - (2.1.17) are still applicable 
and when the slope is shallow (2.1.18) can be adapted to capture the 
vertical motion of a fluid parcel sliding along the sloping 
boundary; the appropriate boundary condition is

for upper and lower boundaries lying on z = h(y,0) and z = 1 + 
h(y,l) respectively with Ro denoting the Rossby number (2.1.6). The 
SWC argument given in this section can be repeated if

(9u/3z)' determines the sign of the "effective" potential vorticity 
gradient on the boundaries. In the horizontal wall experiments 
3u/3z is small at the boundaries. If dh/dy > 0 and 3u/3z = 0 then 
the generalised potential vorticity gradient on the boundary would 
be of the opposite sign to that by the boundary in the interior. 
This would almost certainly result in short wavelength trapped 
instabilities resembling those found by Green (1960) (see also 
Bretherton 1966a and equation (5.5) of McIntyre 1970). These 
instabilities would not appear in Eady's problem augmented by 
sloping boundaries because u = z has no interior potential vorticity 
gradients. Short wave instabilities were not reported by Mason
(1975); perhaps 3u/3z near the boundary is affected by the boundary 
slope, or (38) only holds for very shallow slopes, or the waves 
eluded detection by the thermocouple array.

There are two points that make the baroclinic stability problem 
considerably more difficult for zonal flows with vertical and 
lateral shear than for the laterally uniform flows considered thus 
far.

(^>u/YtV —  ^u /Vl - B dWd\j > 0 • (2.3.38)

Zonal flows with lateral shear
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Firstly laterally uniform flows which satisfy (2) as B-*» have By 
bounded as B-»°°. So their stability depends chiefly on p; the 
dependence of the growth rates on B at constant k (which is relevant 
to the interpretation of the rotating annulus experiments) and on k 
at constant B can be considered simultaneously. This is no longer 
the case for laterally sheared flows. For the SWC argument the most 
serious aspect of this difference is that

8 ^  -  /v*.1 (2.3.39)

does not remain bounded as Bt® if 32u/3y2 * 0 or if y rather than By 
is held constant as B varies. The argument that the equality (5) 
cannot be satisfied at large values of B is hence difficult. So the 
argument of section 2 is repeated here only for problems with k 
variable and B fixed. In practice, however, the results can be used 
to retrieve information about the Burger number of the SWC at fixed 
azimuthal wavenumber for given flows, by making use of evaluations 
of the azimuthal wavenumber of the SWC at fixed Burger number 
performed over a wide range of Burger numbers. Plotting the locus 
of the SWC on a phase diagram (see Bell & White 1988a section 5) in 
which B k is plotted on the abscissa and B n on the ordinate enables 
the Burger number of the SWC for a chosen k to be deduced.

Secondly whereas laterally uniform flows have horizontal and 
hence parallel isotachs and contours of 3q/3y in the meridional 
plane, isotachs and 3q/3y contours of most laterally sheared flows 
intersect each other. The arguments using (5) and (6) require the 
3q/3y = 0 contour to be coincident with an isotach. Only a minority 
(non-generic subset) of zonal flows satisfy this condition. 
Nevertheless it seems worth extending the arguments already 
presented to flows of this type. We will show that a laterally and 
vertically sheared zonal flow u(y,z) has a SWC if

(a) yx $ s< iA. > (2.3.40)

and (b) > 0  m  0 $ I “tor a (2.3.41)

$ucV\ Wvafc May. u(\j,x=^ < U$ < 5  •
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u = u s

•U = Cj,

x=Z
x=0

Figure 2.9
Re-definition of the regions of figure 2.5 for a laterally sheared flow. As before
A^ and BR are separated by the isotach u=ug and together cover the whole domain. A^
again lies on the same side of u=ug as the steering level, u=c^. The previous
definition of D_, that it cover all of A„ in which 2c -u <u<u (assuming c <u ), R R p s~ ~ s ’ p s
suffers from the fact that for some values of c (as in the figure) D„ would coverp ’ R
some but not all of the lower boundary. DR and ER are re-defined so that either i) 
D covers all of the lower boundary or ii) E_ covers a region 0<z<Z (where Z is 
independent of y).
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Furthermore if the gravest mode solution <J> with eigenvalue k of8 8

+-8*4/*)*+ 8(t s - k 1) 4 = o (2 3 42)
^ = 0 ow y=rO, l*  —‘fcu/Vt^-O on x»07l

is of one sign throughout 0< y,z <1 the cutoff is marked by the 
neutral mode <f> = <f>g with wavenumber ks and phase speed c = ug. The 
proof of these statements requires three amendments to the arguments 
already given.

1) The definitions of the boundaries of regions A_ to E_ need a 
little adjustment. The problem, see figure 2.9, is that for some 
phase speeds, such as c = cp in the figure, region DR covers some of 
the (lower) boundary but not all of it. The contribution to the 
r.h.s. of (5) from the portion of the boundary not covered by DR is 
not easy to bound using (12) which involves an area integral over a 
rectangle in the y,z plane between y=0 and y=l and z=0 and some 
value Z. One way out of this difficulty is to extend region DR so 
that it covers the whole of the (lower) boundary. Let 
u q = Min u(y,z=0). If for some finite P

P 1 us - 1 > l u0l4 - u5 l
then re-defining D_ to cover all of region A_ we find that

R R

P\u-cy\ 8r Plu5-C|,l ^ \ u. - 1 w  Dr
and, repeating the derivation of (8), that the contribution to the 
r.h.s. of (5) from DR is less than P times that from BR. An 
alternative treatment may be applied when the real phase speed is 
larger than uQx = max(u(y,z=0)) (as is cp in figure 2.9). Then for 
some finite Q,

Q  l uex - e-j, l ^ l - a, 1 .
Denoting by Z the height for which

= U.X + c*)/2,
Er can be defined to be the rectangular region between z=0 and Z. 
In this region 2 Q | u - c p | > | u - u g | and when
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p2 > 2 Q MaxE(BTs) (cf (13)), (14) can be derived and the
contribution to the r.h.s. of (5) from the lower boundary bounded 
much as before.

One or other of these treatments will be possible for any phase 
speed provided there is a cp < us, and also a cp > ug, for which 
both treatments are possible. This will clearly be the case given 
(40) and (41). The bound on k (which we do not give in detail) will 
be very large in some cases but, as before, it is not the size of 
the bound but the fact that there is one which is important.

2) The discussion of the continuity of solution branches needs
some amendment because flows with lateral shear may have more than
one solution of (2.1.15) - (2.1.18) with the same wavenumber k and
complex phase speed c. This is not possible for the 1-dimensional 
problem which arises for laterally uniform flows. If there are N 
solutions ^ , l<i<N one must search for solutions of the form

N
<j> = E, a i f i  + ; t = C  + Sc ; Kl = R *  + ^

cf (20). The solutions must satisfy N solvability conditions (one 
for each i i ) so at each order the condition for solution may be 
written as a matrix equation

A y  a ;  = & (2.3.43)

in which the elements Ai;j of the N by N square matrix A are
polynomials in 6c. (43) has solutions if and only if det(A) = 0, so
the condition for solution is again a polynomial in 6c and the 
conclusions reached concerning the continuity of solution
branches are also valid for laterally sheared flows.

3) If the gravest mode solution <J>s of (42) is of one sign 
throughout the domain the comparison arguments with other neutral 
modes are easily repeated. The only new feature arises when the 
neutral modes to be compared with <|>s are not of the same sign for 
all y (0<y<l) at a given value of z. Integration as in (30) over 
any area, 9 say, in which \J/>0 and on whose boundaries ij/ = 0 yields
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( 2 . 3 . 4 4 )

+ L̂ 'W ^  ,v't "’ + ~c^ $
lu-Cr)

If yx(z) = 0, \Kyx) = $ (yx) = 0 and the yx boundary contribution to 
(44) is zero. Otherwise at the boundary of S3, \J/=0 and 3^/9y(y1)>0, 
so the y boundary terms make a null or positive contribution to the 
r.h.s. of (44). The y2 boundary terms are similarly non-negative 
and the comparison arguments may be repeated without difficulty.

The arguments given above fail for laterally sheared flows which 
satisfy (41) well above and well below the 3q/3y=0 curve but not in 
its vicinity. But even if contributions to (5) were dominated by 
the vicinity of a near critical steering level, (5) would still 
imply that

in which qyc is the maximum value of qy on any isotach which is 
touched by the qy=0 line. Hence the maximum growth rate kci 
associated with a critical layer could be no larger than qyc / k at 
large wavenumbers. Arguments which apply to baroclinic internal 
jets of this type are presented in section 2.4.

Ekman pumping and singular neutral solutions

The influence of viscosity on the stability of zonal flows is of 
considerable interest; most annulus experiments, for example, are 
performed at moderate Taylor numbers for which diffusive effects on 
the waves are not entirely negligible; diffusive transports are, of 
course, of primary importance in the determination of the zonal flow 
at all Taylor numbers. The main influence of viscosity on the 
stability problem is expected to appear first in the upper and lower 
boundary layers through which it induces vertical motion at the edge 
of the geostrophic interior. The side boundary layers are believed 
to be relatively passive and less important. Zonal flows with 
lateral curvature require axisymmetric vertical motions in the

(2.3.45)
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geostrophic interior to match the Ekman pumping at the boundaries 
implied by (2.1.9). It would be interesting to attempt to use the 
quasi-geostrophic potential vorticity conservation equation to 
assess the linear stability of a basic flow (u, w) with 9w/9z = 0.

The effect of Ekman pumping on laterally uniform flows can be 
investigated using (2.1.15) - (2.1.17) supplemented by

“ W 3 t  ^ =0 on 1.6,1 (2.3.46)

X = E,/V ( H I U  . E = -»/
* (2.3.47)

£, = | on -x S 0 , e  i? -I on ~L- J

which may be derived using (2.1.9). Repeating the derivation of (6) 
but using (46) in place of (2.1.18) yields

0 ®  IxL 6 M x. J J j ^ u D z  - t(u-cr)|>>X}| Ja.(2.3.48) 
lu-cl1 Su-cl* 01

The extra term in (48) becomes unbounded as c£ -> 0. It foils
attempts to bound the contribution to the constraint corresponding 
to (5) from region DR in terms of that from region BR . This 
difficulty highlights the special relationship between constraints 
(5) and (6) which enabled the inequalities leading to (8) to be 
deduced; the Ekman pumping's realignment of the phase of the 
streamfunction degrades the relationship. So the upper bound on 
unstable wavenumbers (19) need not apply to problems involving Ekman 
pumping. The comparisons of neutral modes also fail because
Bretherton's argument that 9q/9y |$|2 = 0 at the critical level of 
any neutral solution does not hold in the presence of Ekman pumping; 
the boundary term in (48) can annul a singular meridional flux of 
potential vorticity at the critical level.

As demonstrated in appendix A, however, the arguments concerning 
the continuity of solution branches continue to apply when Ekman 
pumping is present. Furthermore one may consider perturbations to 
the Ekman parameter, X, rather than the wavenumber, k2, and search 
for the conditions on 6c for neighbouring solutions to exist. The
conclusions found for perturbations of k2 apply mutatis mutandis for 
perturbations of X when p is finite; except for flows of infinite
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A

A schematic depiction 
solid curve represents 
dashed curve depicts a 
arrowed lines indicate

Figure 2.10
of the dependence of solution branches on Ekman pumping. The
a branch of inviscid (X=0) solutions in the (p,c^) plane. Theupossible branch of solutions for X=E /(kRQ )=Xg. The vertical 
how the XA branch could evolve from the inviscid solutions.
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co-dimension, solution branches in the (X, cA) plane only terminate 
at neutral solutions with interior critical levels. Our knowledge 
of the inviscid solutions limits the possibilities when Ekman 
pumping is present as shown on fig. 2.10. Solutions for X = 0 are 
indicated by continuous lines and solutions for an X = XQ > 0 by 
dashed lines. The vertical lines and arrows represent the paths of 
the solutions as X is increased from zero to XQ ( whilst p is held 
constant). Values of p with solutions at X = Xfl but no solution at 
X = 0 (or vice versa) must have neutral solutions (with interior
critical levels) at intermediate values of X. Note that it is 
possible that there are short wave solutions when X = XQ, but if 
there are any they must originate from neutral modes for 0 < X < XQ.

The main issues which merit attention are
(a) the effect of Ekman pumping on the most unstable inviscid branch 

and its terminating neutral mode
(b) whether singular neutral modes can occur
(c) whether growing or decaying solution branches exist beyond the 
inviscid SVC.

Some insight into points (a) and (b) can be gained by studying 
the neutral solutions possessed by the sinusoidal internal jet

U = “ l/l cosTTt, (2.3.49)

on a 3 plane. When 3 = 0  there are non-singular solutions, with 
cr = 0, of the form

= {, cosS(x-'M +• yA sinS (x-'/i) ] (2.3.50)

which satisfy (2.1.15) - (2.1.17) and (46) when

f  s j J S ; V  = ty** • (2.3.51)
It is clear from (51) that y2 = 1 and hence that | <f>s |2 = sin2ny, 
independent of height. The solutions tend to the inviscid solution 
marking the SVC as X 0 and satisfy (48) with c L -» 0 since the 
boundary terms in (48) are of equal magnitude and opposite sign. 
When 3 * 0  the corresponding neutral solutions are singular for most
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values of X (as may be confirmed by searching for non-singular 
solutions). The solutions may be found by solving the equations 
with cA -* 0. For (49)

$ c u / t u - e / )  =  TT1 ( u -v = tT1 ■+• W1 (_C4LBV/1T*) (2 .3 .52 )
*** a - t \A - G

Integrating (2.1.15) across a critical level zf, u(zr) = cr, one 
finds that in the limit as c£ -» 0

[ itys/H1 Jt
 ̂ f 2^

=  -  TT1 ( Cr + Bl!/It2) 4>(tr) ) Ir-  il/U-c.)

= — 1T1(cr '.8V/'r1)iJ(lrV‘B'sijnt'»0 /  (2 .3 .53 )

Denoting the neutral mode below zr by <f> and above zr by \J/, it must 
satisfy

-OlH-CrW/W. 1*6 (2.3.54)

below the critical level,

('/t-CrW+Ax = ot**'
•fti/yt* 3 - i r ‘ lcr+BV/ir, ) /( i i - t r )}4/ , X r * * * 1

above the critical level, and

4> s at t**tr
■ty/it -T^/ix + *0

across the critical layer.

(2.3.56)
at i-Z r

The following iterative method has been used to search for 
solutions of (54) - (56) with a specified value of By and X by 
iterative adjustments to p and cr. The error in the trial solution, 
with a resolution of N points, for trial values of cr and p is 
calculated as follows. zr is calculated from cr and a uniform grid 
with N1 = NINT(N.zr) points set up below the critical level (NINT 
means the nearest integer). The grid's N1th point is arranged to be 
at height zr and the grid straddles the lower boundary with its 0th 
point at -Az/2 where Az = zr/(N1+%). Setting <#>=1 at the 0th point, 
(54) is integrated, using the standard finite difference formulae
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The dependence of the phase speed 
(cf) and wavenumber (p) of some 
singular neutral normal modes on the 
Ekman parameter. The modes are 
calculated for the Internal jet
us-l/2cosrtz on a beta plane ( y **1)« 

Growing solutions (kc^lO) are
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described in section 2.6, to give <f>(N1) as an estimate of <J> at zr. 
An estimate of 9<f>/9z at z~ is afforded by {<f>(N1 )-<f»(N1-l)} / Az. A 
similar grid with N2 = NINT{ N.(l-zr)} points is used to make a 
similar estimate of and 9\J//9z at zr+. Retaining $ = 1 at z = 0, ^ 
at z = 1 may be determined by the condition that <J> = \J/ at zr. The 
value of the l.h.s. of (56b) is viewed as the error in the solution 
for given values of p and cr. The dependence of the error on p and 
cr is determined by repeating the process with slightly different 
values of p and cr. Iteration by linear extrapolation as described 
in section 2.6 is used to search for solutions.

Program NEUSING which performs these calculations has been 
checked against the non-singular solution (51) for X = 0.1. The 
code yields p = 2.748 using + N2 = 100 and p=2.750 for Nx+N2 
200 in acceptable agreement with the analytic value of p = 2.7523. 
Solutions for By = 1.0 and 0.0 < X <0.15 produced by NEUSING using 
N2 + N2 = 100 are shown in figure 2.11. Both p and cr are presented 
for solutions with c. i 0 and c£ t 0. Solutions with N1 + N2 = 200
differ from those presented by only 0.1 %. The figure shows that 
the neutral mode marking the inviscid SWC moves to lower wavenumbers 
as X is increased; there are examples in which the cut-off moves to 
slightly higher wavenumbers when Ekman pumping is introduced 
(Holopainen 1961). The phase speeds of the modes with c L > 0 tend 
to differ from -By / n2 (= -0.101) by smaller amounts than those of 
the "decaying" neutral modes with c i <0. It appears that there is 
a non-singular neutral mode with X=0.1 at which the two solution 
branches cross. Unfortunately it is difficult to follow the ci<0 
modes beyond X=0.11 using NEUSING. These results nevertheless 
establish that singular neutral modes are possible on laterally 
uniform flows in the presence of Ekman pumping and suggest that only 
neutral modes with special symmetries (as in (50)) or at isolated 
Ekman mumbers (as in fig. 2.11) will be non-singular.
Investigations of neutral and decaying solutions beyond the inviscid 
SWC (point (c) above) are discussed in section 2.7.
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Section 2.4 A SPECTRAL MODEL OF BAROCLINIC INTERNAL JETS

Numerical simulations (using finite difference approximations to 
the Navier-Stokes equations) produce axisymmetric, steady wave and 
amplitude vacillating flows which are almost isothermal at the upper 
and lower boundaries (Hignett et. al. 1985, White 1986). This
fact leads one to define internal baroclinic jets, more broadly than 
in section 2.1, as flows which satisfy

/ Vl »  0 oa. 0,1. (2.4.1)

This boundary condition is consistent with the inviscid boundary 
condition of no normal motion, see (2.1.9), and implies that 
3u/3z = 0 at the boundaries.

At the side boundaries the condition of no normal flow in a 
Cartesian channel is

/ ^ 7*. =  0 an g s  0,1. (2.4.2)

This is trivially satisfied by the axisymmetric flow which must be 
constrained by an auxiliary condition. It is difficult to satisfy 
the energy conserving boundary condition (2.1.11) in a spectral 
model without requiring ug = 0 or Y = 0 at the sides. This is
undesirable since it results in an unrealistic estimate of the upper 
axisymmetric transition (see section 2.2). A convenient, though ad 
hoc, condition on the the axisymmetric part of the streamfunction, 
Y, is given by

^  +• =  Q ©<i \J rs 0/ I ( 2 . 4 . 3 )

in which f| is independent of both time and height (a less severe 
restriction is noted in (9) below). This Sturm - Liouville (S-L)

stuj section 4.8 1979) has merit in that it
allows Y to be expanded in terms of the eigenfunctions of the 
potential vorticity operator P which satisfy the S-L type boundary 
conditions (1) - (3);

type condition (knzu
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> (2.4.4)$ £•>=» <U 'K

Pi|/- = V«|»l / ‘i*.1 +■ ^ 'l 'i/4 ‘11 +• (2.4.5)

=  - <pi
^chx = o a=<>/' ; l»i = o o»i|=c!,i (2.a.6)
ty;/4x = 0 on.  ̂ ^(x-s^/x) = )f>; tx  * l.«/L / g / * ) «

The final condition above, that ^  be periodic in x, takes the 
channel's dimensional length to be Lx. The approach to be outlined 
can be used with B(z) and in cylindrical geometry, but we will use 
Cartesian geometry and B(z) = BQ. The vertical dependence of the 
eigenfunctions is then cos muz, the lateral dependence of the wave 
components sin lity and the azimuthal dependence cos rnkx or sin rnkx 
where k,l and m are integers and r = 2 L / Lx. When y * 0 the
cos rknx and sin rknx functions with the same vertical and lateral
structure are best handled in pairs. If a ^  is one of a pair let 
b£ be the other. The alternative notation which uses exp irknx
as the azimuthal dependence of the basis functions has some 
advantages (see (15) below).

The S-L nature of (5) - (6) ensures that the basis functions ^  
are orthogonal in the sense that

< <v-. t  j > <  p i  p : > (2.4.7)

The rather severe restriction that X] be independent of height in (3) 
can be alleviated by allowing X] to depend on the vertical 
wavenumber. When B(z) = BQ, for example, the vertical 
eigenfunctions are cos mnz and Y may be expressed as

l 51 cos mTx .rw (2.4.8)

The choice of X] = t|,m> may be made separately for each vertical 
wavenumber (of form cos muz )

on ij» 0,1 . (2.4.9)

The orthogonality of the basis functions (7) can be proved using (9)
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in place of (6b).

Inserting (4) into (2.1.13) and using (5) one finds that
ti N

a j a K T ( t 4 ' ,/ v )

+ % V '6̂ 1'bx. (2.4.10)

where J(a,b) = 3a/3x 3b/3y - 3a/3y 3b/3x. Multiplication of (10) by 
\pif integration over all x,y and z and use of (7) yields

li Jfti => - 0.; av: < ,v|/K  ̂>
At Ks'

+ 'i \>i < ^ at> •
(2.4.11)

Conservation Laws and an Anti-cascade property

For arbitrary ^ , i//2, i//3 integration by parts and use of the 
b.c.s shows that

^  ̂= 'I'l AxAjAx;

=  5-xtj -  I J J ,

- ijjtt " Jilt '('i fi

+JxljI* U|<li + StU +»'fî +5

=  < f i  > .  (2 .4 .1 2 )

Furthermore, J(a,b) = -J(b,a), so < ^  J(\J>2, \l>3 ) > has the same 
associative properties as the triple vector product a.(bAc ). (12)
is useful for establishing that analogues of the energy and 
enstrophy are conserved by interactions between an arbitrary "triad" 
of components. First using (11) and (12) one finds that

s  i l i k  ' ll t  'l l  A? <t-l
S dtcLl d5 1 l \<i~

+ (̂ » ~ ̂  < ̂ 3 Tl^w tyt) > 1 +
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■V (2.4.13)
3
l W a: bi < if; lu> ,

So Ea is conserved by interactions within any triad of components 
when y = 0 and EA is conserved amongst any triad of pairs <|>i)
when y *  0. Similarly

iP. l i t  -  iJAt ' l l  1* tsl
=  I k Si a; k; < .  (2 .4 .1 4 )

IS. I

So Fa is conserved by interactions within any triad when y = 0 or
within any triad of pairs when y  ? 0.

When the complex representation exp irknx is used EA and FA are 
expressed by

F/ = '/i£ U;l1«l'*4';> (2.4.15)

in which c£ is the complex amplitude of the complex basis function 
^ . E^ and F^ are conserved within any triads.

Let e L = V2Xi |Ci|2 and consider changes AeA which conserve E^ and

Fi

A£a/ =  71 b i i  s G • = 0  , (2.4.16)\s\ 1=1
For definiteness let \  < X2 < . Assume first that

Ae1 > 0, Ae2 > 0 and Ae2 + Ae2 > 0.
Then Ae3 < 0 and writing a32 = X2 + %(X3 - X^, Z (X. - a32) Ae. < 0 
which contradicts the conservation of F'. A similar contradictionA
results if one assumes that

Aex < 0, Ae2 < 0 and Aex + Ae2 < 0.
So Ae1 and Ae2 must have opposite signs or both be zero. Similarly 
Ae3 and Ae2 must have opposite signs or both be zero. Consequently 
Ae1 and Ae3 are of the same sign or zero. Energy can only cascade 
from mode ^2 to both ^  and \|>3 or to from both ^  and ^3; it 
cannot cascade only to modes with lower total wavenumbers or only to 
modes with higher total wavenumbers. (11) only depends on the
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amplitudes ai and not on their rates of change so the instantaneous 
energy transfer is simply the linear superposition of each of the 
triad interactions. So if energy flows to higher wavenumbers it 
must also flow to lower wavenumbers. This anti-cascade argument was 
suggested by that for barotropic flows due to Fjertoft (1953). A 
similar result for 3D quasi-geostrophic flow was derived by Charney 
(1971 & 1973).

Fa is the truncated system's analogue of the total enstrophy F of 
the flow

F  = ‘la. Jy ( Q  -  f. - JV. (2.4.17)

On truncation of (17) one obtains

F = ‘It \v S  ^  I j  f j  iV

=  */t l !  ( 2 .4 .1 8 )
•SI

dFA /dt = 0 is the analogue of the full conservation law. EA is 
less strictly related to E, the total kinetic and available 
potential energy of the flow;

E = %  I y ( C v  ( i f  / ly f  4-

+ Vi U [ b«| $ Xj,® A*At

+• V i I It  A*A»j "" 7llv J ( (btj1 2.4.19)

On truncation E reduces to
N _ _ ,

E = XhYx \\  a* ^ i ^ i  > + Vl l U S  A*At. (2.4.20)
in  3

So dE/dt is related to dEA/dt by

AE/At =• A^A/At - I I  S  £  fli Aaj/Afc [  4>j /4j 3«j- 6 A%At.

When t| has the same value at y = 0 and y = 1 the axisymmetric modes 
are either symmetric or anti-symmetric about mid-channel. Only 
axisymmetric modes with the same vertical structure and opposite
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lateral symmetries give rise to differences between dE/dt and 
dE /dt.A

Linear stability and the anti-cascade argument

The anti-cascade argument implies that a zonal flow containing 
only modes with total wavenumbers smaller than that of the gravest 
wave mode is not subject to exponentially or algebraically growing 
instabilities. The absence of normal mode instabilities may be 
proved by considering the exchange of energy between a small 
amplitude normal mode wave and the zonal flow to second order in the 
wave's amplitude, a. Corrections of 0(a2) to the amplitude of the 
zonal flow due to the wave are included in the energetics but not of 
course in the linear stability analysis; their neglect in the linear 
stability analysis results in neglected contributions to the energy 
and enstrophy budget of 0(a4). Corrections to the shape of the 
zonal flow are neglected because they also give energy contributions 
of 0(a4).

Let { w£, 1< i<N) be the complex amplitudes of the components of 
a normal mode when it is of unit amplitude and W be its amplitude. 
Then

E w = Vl* £  W V *  J W 2 fw (2.4.22)1=1 *=•
Similarly let Z be the amplitude of the zonal flow and ez, fz be the 
energy and enstrophy of the zonal flow when of unit amplitude. 
Changes to the shape of the zonal flow are neglected (see above). 
Denoting amplitudes at t=0 by WQ, ZQ and at t=l by , Z1, energy 
and enstrophy conservation imply

W o •■w =  W , 4- Z , \ t

Wo fw V z.4 f* u * 4- Z 4 ft .

( w f - w J )  -  e%/ew U o * -! ,1) -  t x k w  • • I W f - t f )  * (2 .4 .24 )
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But e /f < e /f when the zonal modes all have smaller totalw w z z
wavenumber than any of the wave modes. So WQ = ; any normal mode
disturbance on the zonal flow must be neutrally stable.

The linear stability problem may be written as a real valued 
linear dynamical system

Jai / At » Xij ftj (2.4.25)

in which a i are the real valued amplitudes of all the wave modes 
included in the truncation and Xij are the elements of a real square 
matrix X. All the purely real eigenvalues of X have at least one 
eigenvector and are zero by the above argument. The real parts of 
the complex eigenvalues are also zero since the argument just given 
can be applied to them using t=0 and t=2n/Xi with X£ the imaginary 
part of the eigenvalue. Any generalised eigenvectors would 
nevertheless be algebraically unstable. We show next that they 
would violate the energy and enstrophy conservation laws.

Let x be any unit eigenvector of X with X=0 and y the first unit 
generalised eigenvector related to x by

(X  - U l j j  . ** } (X - A l l  { = 0 . (2.4.26)

Consider the evolution of a wave w = xx + yy

J W A t  = i/it l *. s * y 3 } * t>a £ • (2.4.27)

So y(t) = y(t=0) = y0 and x(t) = xQ + p y0 t. It is convenient to 
let xQ = 0, to denote the components of x by xA and of y by yi and 
to set

C-x. = X; ) £i©j — K

and similarly for f , f and f . Thenx x y y

Ew + £ t 5 x1 e*. + txy +• +• tXc-t
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~  ̂t5̂ ̂  + ^  *■ f  ̂ + X1 fx .
From energy and enstrophy conservation

d/dt (xl ) -  "  t* ( C.x/e.1 +

which implies that

f V(ex/ft% - fc/f*)k + (2.4.28)

e /e t  f  / f  as before so (28) cannot hold for more than one value 
of t unless yj p - 0. Hence p = 0 and we conclude that the energy 
and enstrophy conservation laws imply that there are no generalised 
eigenvectors with X=0. A somewhat similar treatment of the 
generalised eigenvectors with pure imaginary eigenvalues (see Hirsch 
& Smale 1974) yields the same conclusion.

Non-linear stability

The arguments of the previous sub-section do not imply that 
energy cannot be extracted at all by small amplitude waves. The 
modes with pure imaginary eigenvalues need not be orthogonal so the 
total energy of a small amplitude wave containing two or more 
eigenvectors may fluctuate in a quasi-periodic manner with time. 
Fluctuations in the energy and enstrophy of large amplitude 
disturbances are also not covered by the preceding arguments. An 
upper bound on the fractional increase in enstrophy of large 
amplitude disturbances to an unperturbed flow containing amplitude 
in only the gravest mode of the system may, however, be deduced from 
the anti-cascade and conservation properties by considering the 
maximum amount of energy which could be extracted from the gravest 
mode. For any initial configuration the maximum amount is achieved 
by cascades which transfer all the perturbation's energy to the 
second gravest mode; any other state could still extract energy from 
the gravest mode. Let E and F be the initial energy and enstrophy 
of the disturbance , E2 and X2E2 the final energy and enstrophy of 
the second gravest mode and AE1 and \ A E X the change in energy and 
enstrophy of the gravest mode. Then
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E i  - E = &E, ; ^E t- F » i.fcE, •
Elimination of E2 reveals that

&£i - ( ^ ■“ £ )/ •
This places a clear bound on the largest possible fractional 
increase in the enstrophy of the disturbance;

(McIntyre & Shepherd (1987) have given a very different proof of a 
somewhat similar result). Note that the bound on the fractional 
increase becomes very large when X2 - Xt becomes small. For 
sinusoidal zonal flows (see next sub-section) X2 = Xx at the SWC to 
unstable normal modes.

The above argument cannot be used when the unperturbed flow 
contains modes other than gravest modes; this is true even when the 
basic flow is zonal because wave-wave interactions could excite 
zonal perturbations with wavenumbers smaller than some components of 
the basic flow.

An interpretation of the SWC of sinusoidal flows

The sinusoidal flows defined by (2.2.20) have axisymmetric 
streamfunctions which are eigenfunctions of P (see (5)) with total 
wavenumber X = a2. Any sinusoidal internal jet may be reproduced as 
a single axisymmetric mode in the spectral model by appropriate 
choice of h in (6). In a Cartesian channel the gravest lateral 
structure of a wave subject to the no-normal flow condition at the 
sides is sin ity. When B=B0 the internal jet boundary condition (1) 
allows the wave to have no vertical variation with depth. The 
argument given in the last sub-section hence shows that there are no 
unstable normal mode waves of azimuthal wavenumber k on a5
sinusoidal flow when

The analysis of section 2.2 ( see (2.2.14) - (2.2.24)) shows that

(2.4.29)

dP - TT2. (2.4.30)
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this value of kB marks the SWC to normal mode disturbances, 
providing 3q/3y changes sign within the flow domain. The analysis 
given here makes the importance of the no-normal flow condition for 
the Burger number of the SWC particularly clear. It also clarifies 
the sensitivity of the cut-off to the lateral curvature of the zonal 
flow for domains with ks2 «  Jt2. For writing a2 = aj + aj with 
the contribution to a from the vertical curvature and that from 
lateral curvature (30) implies that

-  f°r toktoWj* (2 .4 .3 1 )

When the zonal flow has no lateral shear = 0 and the requirement 
for instability is oĉ 2 > k 2 +n2, whilst when the zonal flow has 
half sine lateral curvature = n and instability requires >  ks.

SWCs for more complex flows

The anti-cascade stability argument applied to

U, s cosTTx ( sin IK} +• sinTlTij) (2.4.32)

shows that the flow has no unstable normal modes with

K*1 > 8 TT1 + irV S  ( 2 .4 .3 3 )

This flow has a SWC azimuthal wavenumber at all values of y (the 
non-dimensional beta parameter) despite the fact that for some 
values of y the 3q/3y=0 contour lies within the domain and cuts 
across isotachs; for these values of y (2.1.2) is not satisfied by 
any choice of ug. From (2.2.29) any Cartesian model of a
cylindrical annulus will have kx < 2 so (33) is not stringent enough 
to determine a SWC Burger number corresponding to an upper
axisymmetric transition.

The spectral model may be used to represent any zonal flow to any 
degree of accuracy if (9) is used as the side-boundary condition. 
The addition of extra modes with higher wavenumber pushes the upper 
bound on the SWC azimuthal wavenumber out to increasingly high
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values where it is of little interest. The upper bound is
definitely a gross over-estimate in many cases; for example the
discussion centred on (2.2.AO) shows that (32) has ks2 = n2/B (which 
is to be contrasted with (33)) when y=0 and -1/27 < as <1/9.

Some insight into this may be gleaned from the spectral model by 
considering perturbations to axisymmetric modes

=• tosITx cosTUj / ” tos'Kx (2.4.34)

with amplitudes a1, a2 and total wavenumbers Ax, A2 respectively, 
consisting of a mode ip3 with total wavenumber < A2 and one (or 
more) mode(s) \f/4 with \4 > A2. The key point is that if I2 s 
< J(Y2, ^4) > is non zero then Ix =  < \J>3 J(Y3, Y4) > will also be
non zero. So if energy can cascade from Y2 into \p3 and \p4 it can
also cascade from 3̂ into ^  and \p4, or in the opposite direction
from Y and Y4 into Y3 • When |a1 | »  |a2 | the cascade from a3 or a4 
into Yx will shut down the instability. Let us assume that it is a3 
rather than a4 which decays in the presence of Yx. Then from (11)
the cascade into Y3 from Y2 and Y4 gives

d a , /At = ( A.t -  I 4 )  l a 5t a« (2.4.35)

whilst that from iJ/3 into Yx gives

=  ( Jlx - X*) X, 5, 0 4  . (2.4.36)

|Ai - \l > |A2 - X4 1 and I x and I2 are of the same order of 
magnitude so the decay of a3 would be greater than its growth 
irrespective of the amplitude of a4. The growth of a4 which is 
proportional to a3 will cease as a3 is decreased to zero.

The anti-cascade property can be applied to show that some large 
amplitude wavenumber one free modes (White 1986) are stable to all 
small amplitude wave disturbances. The free modes consist of a
barotropic wave, Y , with the gravest horizontal variation
commensurate with the channel boundary conditions
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Figure 2.12
Estimates of the normal mode growth 
rate curve for u=-4cosnz on an 
f-plane. The non-dimensional growth 
rate G=pc^ is plotted as a function 
of wavenumber p (2.3.3). The curve 
of widely spaced heavy dots was 
calculated using the shooting method 
with a 100 level discretization. 
The small closely spaced dots mark 
the growth rates according to a 
three mode spectral truncation
((38) — (40)) . The straight dashed
line indicates the gradient of the
growth rate curve at the SWC (p=n) 
calculated analytically from
(2.2.16)-(2.2.18 ) . The continuous 
line is the Eady growth rate curve.
___)
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c©S r  IT* s i*  ‘H j (2.4.37)$

and a single axisymmetric flow component Y0 with the same total 
wavenumber as . Investigations of the stability of barotropic 
waves and some free modes with higher azimuthal wavenumbers using a 
numerical code which implements the spectral model are presented in 
chapter 4. Some interesting patterns in the truncation dependence 
and reliability of coarse truncations described in chapter 4 are 
also apparent in the stability of zonal flows to which we now turn.

Linear growth rates of heavily truncated models

The simplest representation of the stability of the zonal flow

a  » “7Z cojjTTx  j  ~  ^  ( 2 . 4 . 3 8 )

uses a three mode truncation involving YQ and

=  c o s  r k lT x  SmTTij ; =  S m rk T x  ccsITx. . ( 2 . 4 . 3 9 )

The linear growth rate of and Y2 in this model is found to be 
given by

($'.'? = Mtf-r*) J ^ * i r 26(r^4- I). (2 i i0)
8

Figure 2.12 displays p.c£ as a function of p according to this 
formula (small closely spaced dots) and as calculated using a 
numerical method with fine resolution described in section 2.6 
(widely spaced heavy dots). The agreement of the two growth rate 
curves is remarkable. The SWCs agree exactly and the curves are 
almost coincident at small values of p.

The agreement at small p is readily explained. The three mode 
truncation only neglects the amplitudes of modes with higher 
vertical wavenumbers; only one aziumuthal wavenumber enters the 
linear calculation and since the zonal flow has no lateral shear 
different lateral wavenumbers are decoupled. Some amplitude will 
cascade down into Y3 = cosrknx sinny cos2rtz and Y4 =
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sinrknx sinity cos3itz etc. To assess the importance of \J>3 we neglect 
the amplitude in ip4 and compare the growth rates of ^  and \p2 due to 
the decay of the zonal flow mode with the decay of ip2 into Y0 and 
vj>3. To do this note that BAQ = Jl2, BA1 = p2, B\2 = Jt2 + p2, B\3 = 
4.it2 + p2 and , writing I s < 1 Q J(iJ/3, \J/2) >, that < J ( ^ l t  \J>2) > 
= 21. For the first triad

&(KX I At -
(2.4.41)

< Vi (n * *  = «■ ( 'W4 -V1) X  S0 a ,

whilst for the (YQ, \p2 , ty3 ) triad

< 4'i >  Cvr*-* \ * )  JlQt/it =  - (Sir1*  $ • )  I S 6 aj
(2.4.42)

< ^ 3  +*> Aftj/it =  t>l I  o 6 an .

From (41b) and (42a) the ratio of the decay of a2 to its growth is 
about 3/2 a3 /ax. Looking for normal mode solutions we let 
da3/dt / dax/dt = a3 / a1 and find from (41a) and (42b) that a3/a1 = 
p2 / 4n2. Hence the neglect of \J/3 gives a relative error in a2 of 
order p2/it2 and the three mode truncation gives growth rates with a 
fractional error of order (p/n)2. The effect of vJ/4 is to drain some 
amplitude from \J>3 so this estimate is likely to be an upper bound.

The omission of modes vJ/3, vj/4 is an inaccurate approximation for 
p j i . (2.2.19) shows that the gradient of the growth rate curve on 
the long wave side of the cut off is finite whereas the three mode 
truncation, (40), gives an unbounded gradient. Truncations at 
cosMitz with even values of M actually tend to misplace the SWC; with 
M = 2 the cut off occurs at p /n « 0.717. This can be ascribed to 
the fact that these even truncations overestimate the amplitudes in 
the cos muz modes with even m; the energy dammed up at the last mode 
in the truncation weakens the mode next to it resulting in a slight 
strengthening of the cos(M-2)itz mode. It is possible to show that 
truncations with M odd all locate the SWC correctly at p = it. But 
when y *  0 the equivalent of the three term truncation, which uses 
two pairs of wave modes, also mislocates the SWC (Bell & White 
1988a).
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The linear stability calculation for the three mode truncation 
with

U = -'|SL tosTt SwflR) ; Oo$b = £r ft°sUx ; V * 0 (2.4.43)

and wave modes as in (39) gives

» JL s1 (sbfLM Ll^qir1
r1 k1 

T + r‘k‘
(2.4.44)

This formula is a useful complement to the results of more accurate 
estimates of the growth rate curve; see section 2.7 and Bell & White 
(1988a).
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Section 2.5 A SUMMARY AND DISCUSSION OF SWC RESULTS

Many authors have discussed short wavelength disturbances to 
baroclinic zonal flows, but unfortunately a clear resulting 
consensus of opinion has not been firmly established. To make the 
facts of the matter as clear as possible the types of zonal flows 
which are i) known and ii) expected to possess SWCs are summarised 
at the start of this section. A critical discussion of the most 
important arguments presented by previous authors follows.

Baroclinic zonal flows store available potential energy (APE) 
which, as far as parcel exchange arguments are concerned, may be 
extracted by symmetric disturbances or wave-like disturbances of any 
wavelength. Interpretations of SWC arguments naturally focus on the 
constraints on short waves which prevent them from extracting the 
APE. Of course, the waves are constrained in more than one way and 
it need not be possible to separate the influences of the various 
constraints. Different arguments and constraints may be regarded as 
illuminating the same process from different angles and should be 
thought of as complementary rather than competing.

Summary of SWC results

In the interest of clarity only zonal flows with uniformly 
positive thermal wind shear (3u/3z > 0) will be addressed (see 
section 2.2 paragraph 1 for 3u/3z < 0). Consider first the problem 
for (quasi-geostrophic) inviscid normal modes; i.e. solutions of
(2.1.15) - (2.1.18). Flows with

isotachs coincident with each 3q/3y=0 level
and

3q/3y<0 adjacent to the lower boundary,
3q/3y>0 adjacent to the upper boundary

have SWCs. That is they have no unstable normal modes of

(2.5.1)

(2.5.2)
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sufficiently large azimuthal wavenumber k; but they may nevertheless 
support instabilities at arbitrarily large Burger numbers (see 
section 2.2). Any baroclinic internal jet which can be described by 
a finite number of eigenfunctions of the potential vorticity 
operator, P, (see (2.4.5)) also has a SWC.

It is probable that all flows with boundary thermal gradients 
(9u/3z>0 at both upper and lower boundaries) and 3q/9y>0 adjacent to 
the lower boundary or 3q/3y<0 adjacent to the upper do not have 
SWCs. The SWC result for baroclinic internal jets and the tendency 
for short waves to be shallow suggest that any flow which is 
dominated by a finite number of eigenfunctions of P will possess a 
SWC if it is a baroclinic internal jet or if it satisfies (2) and 
its 3q/3y=0 levels are not close to the horizontal boundaries.

Baroclinic internal jets which are the gravest modes consistent 
with the boundary conditions also enjoy Lyapunov stability to large 
amplitude disturbances.

Critical assessment of arguments by other authors

Bretherton's (1966a) discussion of short waves is important in 
that it focussed attention on the constraints imposed on a wave by 
the requirement that it make no net meridional transport of 
generalised potential vorticity. This constraint explains why only 
one of the two short wave Eady modes forms an unstable mode in 
Green's problem with small 0 (Bretherton 1966a p333). The argument 
led McIntyre (1970) to prove that flows close to Eady's but 
containing small interior potential vorticity gradients support 
unstable short waves if 9q/3y>0 adjacent to the lower boundary or 
9q/3y<0 by the upper (his equation (5.5)).

Bretherton also argued (p332) from the no net flux constraint 
that neutral normal modes with interior critical levels must be very 
rare. It is true (and important) that such solutions only occur on 
laterally uniform flows at isolated wavenumbers, but less clear that 
this is true for laterally sheared flows; the condition that 3q/3y 
should not assume different signs for different values of y on the
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critical level does not seem to be as restrictive as he asserts. 
Bretherton concluded that stability must be very rare. The absence 
of neutral normal modes does not, however, imply the existence of 
unstable normal modes or any other instabilities and Bretherton's 
conclusion is wrong. Unfortunately this error, which has stood 
uncorrected for 20 years, has had considerable influence and caused 
needless misinterpretation of Bretherton's (and also McIntyre's) 
work.

A very general approach to the stability of steady flows stems 
from the work of Arnol'd (1965, 1966). The basic idea is that the 
local conservation of potential vorticity can be used to construct a 
rather general class of integrals which are conserved by the motion. 
From the general form a specific integral(s) is constructed which is 
stationary w.r.t. any perturbation of the streamfunction 
(satisfying the boundary conditions) about the steady flow. Basic 
flows for which the integral is a maximum or minimum must clearly be 
stable in a strong sense. Blumen (1968) gives a clear account of 
the method for small amplitude disturbances and Holm et. al. 
(1985) and McIntyre & Shepherd (1987) consider large amplitude 
disturbances. McIntyre & Shepherd, for instance, establish that an 
internal jet with 0<a<Tg<A ( for a, A positive constants) has 
Lyapunov stability if it is the gravest mode of the problem (see 
section 4.4). A very similar result is deduced using a truncated 
spectral model in section 2.4.

A qualitative discussion of short waves is given by Fjortoft 
(1951) (see also Hide (1969) and Bell & White (1988a)). He 
calculates the horizontal divergence of a wave according to 
reasonable scaling arguments and infers the size of the vertical 
motions thus induced assuming the disturbance to have a depth 
comparable with that of the fluid. The inferred slope of the 
motions in the meridional plane for sufficiently short waves is 
found to exceed the slope of the isotherms associated with the 
baroclinic shear through the thermal wind relation. Deep short wave 
disturbances are hence unable to release the flow's APE and are 
stable. In combination with the constraint on the net meridional 
flux of generalised potential vorticity this argument provides a
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straightforward interpretation of the conditions under which SWCs 
occur ( see (1) and (2) above).

Bretherton(1966b) proposed a second qualitative description of 
baroclinic instability in two layer models; Hoskins et al. (1985) 
(p921) discuss the application of the description to continuously 
stratified fluids. The baroclinic wave is viewed as being comprised 
of two Rossby waves, one above the 3q/3y=0 level and the other below 
it. The upper Rossby wave lies in a 3q/3y>0 background and must 
advect itself upstream against the flow (u - ug > 0). The lower
wave lies in a background 3q/3y<0 and must advect itself against the 
upstream flow (u - ug < 0). When the two waves have an appropriate 
phase shift (the wave as a whole leans back with height) the lower 
wave can amplify the upper and vice versa. According to the Rossby 
wave formulay

c r  S o. - ILS (L1 + wMfe) , (2.5.3)

short wave disturbances (k»l) are unable to advect themselves 
against the zonal flow sufficiently strongly (when Ts=3q/3y/(u-us) 
is finite); the vertical shear of the zonal flow tears the two 
halves apart and short wave normal modes are not possible.
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Section 2.6 A NUMERICAL METHOD FOR THE CALCULATION
OF GROWTH RATES

This section describes the methods employed in the calculations 
of normal mode growth rate curves presented in the next section. 
All the calculations use a finite difference formulation of vertical

streamfunction structure at the lower boundary are integrated to the 
upper boundary to ascertain whether they satisfy the boundary 
condition there. Further trials establish the dependence of the 
error at the upper boundary on alterations to the phase velocity or 
streamfunction structure and enable interpolation towards accurate 
solutions. Three codes have been used to calculate growth rate 
curves. The first applies only to laterally uniform flows. The 
second treats laterally sheared flows which are symmetric about 
mid-channel. It could reproduce all the results obtained from the 
first. The third code applies only to flows on an f plane which are 
anti-symmetric about mid-level and symmetric about mid-channel. It 
was developed to combat difficulties encountered in the calculations 
for example 1 of section 2.7. Its formulation is described at the 
end of the section. The method for laterally uniform flows is
similar to that of Green (1960). Its extension to laterally sheared 
flows has not (to the best of my knowledge) been used before.

Vertical Integration 

The methods use (2.1.15) re-arranged as

<f> is represented only at discrete levels on a uniform grid as in 
fig. 2.13. The grid is arranged to straddle the boundaries and has 
N points in the interior spaced at intervals of length 1/N. The 
codes have taken B(z) = BQ and represent 92<f>/9z2 by the standard 
second order accurate scheme

derivatives. Trial combinations of phase velocity and

( 2 . 6 . 1)
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Z  =  1

z*»o

nsK+i

n.=N

r\=N-2,

a-3
i\~2
a-v
t\ »*0

F i g u r e  2 .1 3

The v e r t i c a l  g r i d  u s e d  i n  the  s h o o t i n g  m ethod. G r i d  p o i n t s  a r e  m arked  by  c r o s s e s  and  

t h e  b o u n d a r i e s  a t  z=0 and  z = l  by h o r i z o n t a l  l i n e s .  The g r i d  s p a c i n g  i s  u n i f o r m  

( A z = l / N )  and  the  g r i d  s t r a d d l e s  the  b o u n d a ry .
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U* i h+1 *■ £«-l } ( 2 . 6 . 2 )/Vi
Hence

■ u  = + « / « . (2-6-3)
u - c

For laterally uniform flows <f> = X(z) sininy, where l is a 
positive integer. The horizontal wavenumbers k and only appear in 
(3) in the combination k2 + i2n2. For notational convenience we set 
1=1 so that B(k2 + £ 2ji2) = p2. From (2.1.16), 9q/9y =
Y - 1/B 92u /9z 2, so

=  l+K - 4 n ;  +• */M**C V1 - H *  (2.6.4)
Un - c

and $ can be integrated from a pair of initial values 4>0 and $ to 
give <frN and <(>N+1.

With laterally sheared flows the lateral structure of <f> varies 
with height. We represent <{>n by a half range sine expansion, which 
satisfies the side boundary conditions, truncated at wavenumber M;

M
A =  £  SiA iwTTu . (2.6.5)

Clearly the main task is to determine the coefficients of the half 
range expansion of 9q/9y $ / (u - c) from the coefficients <f>". The 
method actually used assumes that u(y,z) is even about mid-channel

ml(j-'/i.x) = U (’/l-IJ ,-*) (2.6.6)
and that u(y,z) is a known function of y and z. Details of its 
formulation are given in appendix B. A less complicated approach 
would be to take a half range sine transform of to find <f> on an n
lateral grid, calculate 9q/9y $ / (u - c) on the grid and transform
back. This approach does not require any symmetries in u(y,z) and 
does not appear to have any drawbacks; the present author overlooked 
it when devising the code.
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Upper and lover boundary conditions

The simplest horizontal b.c. is that for an internal jet;

I f / l x  -  0 *= 0 ,  I . (2 .6 .7 )

The grid is arranged so that

<j>( *  * o  for L aterally  uniform p/otOS ( 2 .6 . 8 )

"  §om lafenxllij sh e a re d  flow**

are good representations of this condition at z=0. The error in the 
solution at the upper boundary may reasonably represented by

o r
m u+\ - in • (2.6.9)

A trial solution is viewed as acceptable if |E| or the r.m.s. of 
the Em is smaller than a given "tolerance" value.

The most general form of the boundary conditions which has been 
used for laterally uniform flows is

(u-fc^ - *WVl. + i c J > a X ^ - 0  *sO,l
( 2 . 6 . 10)

£  = * \ ftt x s 0  ; e  = " I ftt 1 * 1  J

where X is defined by (2.3.47). When 9u/3z * 0 it has been applied 
at the lower boundary with

= ** (iw+O &  i 'W/vx(t = ̂  +*
(2 .6.11)

[%-&) Kl (̂ |“"
Substitution of (11) into (10) and rearrangement yields

<b (ue - C  + ) (2.6.12)

A reasonable expression for the error at the upper boundary is then 

E  = (u„-e. - ] $-+| - (uM* , - c + \ ^ X ] ^ H , (2.6.13)
IN aM
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Inviscid solutions for laterally sheared flows with 9u/3z * 0 have 
been obtained by applying formulae (12) and (13), with X = 0, at 
each point of a P point grid with points at y = j/(P+l) , 1 < j < P. 
The trial vector is specified in spectral form, so a half range 
sine transform of is used to represent <f>0 on the P point grid. 
<J>X calculated using (12) is transformed back into spectral component 
form. A similar process involving two transforms is used at the 
upper boundary to produce a spectral representation of E.

The values, <P, of <f> on the P point grid just mentioned may be 
found, when P > M, by setting = 0 for M < m < P, extending by
setting

^ m fP j. P- m  . - .
f  s  -  -for (2.6.14)

and calculating by FFT
2 M

A'* =  J _  51 f  Si" 2.fcir ’n . (2 .6 .1 5 )
JtP n*° 2P

is transformed back to spectral form by by setting <J>P+P = - <|>p-p,
1 < p < P-1 and calculating

l ? - \

§ m  =  ‘ L  f Swt (2.6.16)
J i P

Iteration Procedure

i p

For laterally uniform flows one may set 4>0 = 1. At a given
wavenumber p the only undetermined variable is the complex phase
velocity. Starting from a given value of c one may calculate the
complex error E = Er + i E. given by (9). One can also try
c = c + Acr to find the change AR = ARr + i ARi in the error and try 
c = c + i Ac£ to find the error change AI = AIr + i AIi. If the 
error function is roughly linear in arbitrary small variations 5cr 
and 5c ̂

4- (2.6.17)
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so a better estimate of c is given by c + 8cr + i Scj with 

• [Er\ —  (Aftr/Afcr A X r / A t ;  ](^Cr\ (2.6.18)
\E i /  l  M l i / i c f  ^ 1 ; /  A f, / •

Clearly a good initial estimate of c helps the iteration to converge 
rapidly. The codes increment (or decrement) p in steps of chosen 
size and use the previous solution as the first guess.

For laterally sheared flows it is permissible to set = 1 if
one is looking for solutions with some sin sny structure. The 
amplitudes of the other M-l spectral components in (5) must be 
determined. Let Em, a complex vector of length M, be the error of a 
first guess solution, with = F]J and c = C; E” be the error at the 
upper boundary when <f>0 = sin pny; and AE™ be the change in the error 
from the first guess when a small increment Ac is added to the trial 
phase speed c. Then a better estimate of the solution, if linear 
interpolation is a guide, is = F]J + && with c = C + 8c where 8$** 
and 8c are the solutions of

1 m * 0 AEp 4- AE” Se. (2.6.19)
Ac

and 8$® = 0. The inversion of this set of M complex linear
simultaneous 
packages.

equations is performed by calling standard NAG

Checks on coding

Two types of check were made on the code for laterally sheared 
flows. Firstly solutions for flows with no lateral shear were 
compared with results from well established code. Secondly neutral 
solutions for

u, s cos ( a SvnUy +• gi*\'3Trtj}

were computed using very poor vertical resolution (N=3). The 
neutral solutions have no vertical dependence and the same lateral 
dependence as the flow itself (see section 2.2). The second check 
is complementary to the first and the combination is quite a strict 
test of the entire code.
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Frailties of the method

The method is unreliable for values of cf smaller than the 
typical difference between zonal flow velocities at adjacent grid 
levels covering a steering level (u=cr) with qy * 0. For then the 
simulated meridional transports of potential vorticity are sensitive 
to the distance between the steering level and the nearest 
gridpoint. The transport is overestimated, for a given cA, when the 
steering level is close to a gridpoint and underestimated when it is 
midway between gridpoints. In Green's problem the steering level of 
the unstable solution moves down towards the lower boundary as p is 
increased. This causes spurious maxima and minima in the growth 
rate curve as the steering level moves past successive gridpoints on 
its way towards the boundary (Bell & White 1988b).

A second problem concerns the growth of modes with large lateral 
wavenumber. For these modes 32<f>/3y2 dominates 3q/3y <J> / (u - c) in 
(1). To an adequate approximation a mode dominated by sin Mny 
lateral structure has

<J> ^ 4- bwty-cjt.) smMWij • of* fct^TT1. (2.6.20)

For large values of B and M in (5) this creates a serious obstacle 
to numerical methods. Very small errors in the posited structure of 
<{>0 will excite a small error in the exp(gz) mode which will "blow
up". When B = 1 and M = 9, for example, g = 9n and exp(g) =
2. 1012. Hence double or quadruple precision calculations become
necessary for modest truncations well within the range of Burger
numbers of interest. It appears that this problem will affect any 
numerical method which attempts to solve the stability problem
(2.1.15) - (2.1.18) directly.

To combat this difficulty and produce the results of example 1 in 
section 2.7 a third code was written for inviscid internal jets on 
an f plane which are symmetric about mid-channel and anti-symmetric 
about mid-level;

u C v j - 'J ljX )  »  u (‘h .-ij ,%) ; -  -  u (y , '/ l-x ) .  (2.6.21)
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For these flows 3q/3y is also anti-symmetric about mid-level. If 
(<Ky>z-%)>c) is a solution of the stability problem then so are 
(<Ky,%-z),-c) and (<f>*(y,%-z),-c*). Howard's theorem shows that no 
more than one unstable solution breaks off from each neutral 
solution so the unstable solutions must be linearly dependent

= A$(<J,X-'Jl} ; lAl = l , e r « 0 .  (2.6.22)

Solutions with A = exp(ia) when multiplied by exp(-ia/Jt) produce 
solutions with A = 1. So A is essentially arbitrary and we choose A 
= 1. Then the solutions must consist of linear combinations of real 
valued functions which are even about mid-level and pure imaginary 
solutions which are odd about mid-level. It is easiest to use a 
grid similar to that drawn in figure 2.13 but with z = rather 
than z=0, lying between levels 0 and 1. For truncation at 
wavenumber M, as in (5), <(>n is then represented by

M
£  ̂ sin mlT^ V

Se
 ct ■ 
»

with

§ :  - ;  * r  - - $ r •

(2.6.23)

(2.6.24)

Expressing the complex error vector as a real vector of length 2.M, 
linear interpolation may be accomplished by solving a set of 2.M 
real valued simultaneous equations.
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Section 2.7 SOME GROWTH RATE CURVES

The non dimensional growth rate most relevant to annulus 
experiments may be inferred from the thermal wind relation for 
fluids with p = p 0 ( 1  - e(T - TQ)),

and the definition of the Brunt Vaisala frequency; N2 = -g/p 3p/3z = 
ge3T/3z. Denoting the slope of the isotherms by 0 (0 = 
-3T/3y / 3T/3z) one finds that

Many annulus experiments take the imposed temperature difference to 
be a constant and vary only the rotation rate. For these 
experiments rpc£ is a good measure of the growth rate, since N0 will 
suffer only small indirect variations with rotation rate, and p is 
proportional to the square root of the imposed thermal Rossby 
number.

1. Flows with lateral curvature

The main motivation for the development of the codes for the 
calculation of the growth rates of disturbances to laterally sheared 
flows was to explore the adequacy of the three term truncation 
result (2.4.44). This result suggests that, in geometry 
representative of laboratory experiments, the laterally sheared flow

£ Avx / y\ - 9/f j = -gt'fcTAij »

rbcj, ~  ̂H
£L

(2.7.1)

VJL = COS IT* = 0 (2.7.2)

could support rapid growth rates at considerably greater wavenumbers 
(and hence thermal Rossby numbers) than a laterally uniform internal 
baroclinic jet.
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The cut-off wavenumber pg for (2) is given by

( ) ,  *  1 f / r  ; r a  s  \LX/  ( W1 + IT1 ) ( 2 .7 .3 )

(see (2.2.25) and (2.2.26)). According to (2.2.29) k = 1 is
representative of annulus experiments. So ideally solutions with r 
= 1/3 and ps = 3n would be investigated. The code BUR4, which used 
double precision but did not take advantage of the solution's 
symmetries was unable to deliver reliable solutions with more than 
10 points in the vertical (N=10) and 7 lateral wavenumbers (M=7) for 
p > 1.2 n. The code SYM4 which does use the symmetries noted in 
(2.6.22) was able to produce solutions up to p = 2 n for resolutions 
with M=9 and N=10 or M=5 and N=40; N being the implied number of 
points between z=0 and z=l.

The dependence of solutions with r2 = 0.25 on lateral resolution 
(M) is presented in fig. 2.14a and the dependence on vertical 
resolution (N) in fig. 2.14b. The three term truncation result 
(2.4.44) is also plotted on fig. 2.14a for comparison. For p > n 
the growth rates are insensitive to the lateral truncation and the 
amplitudes of the streamfunction components decrease rapidly with 
lateral wavenumber. The growth rates are much more sensitive to the 
vertical resolution. The gradient of the growth rate curve at the 
SWC is plotted on both figs. 2.14; it is clear that inadequate 
vertical resolution (with an even number of gridpoints) results in 
an over-estimation of the growth rates near the cut-off.

Near p=n the growth rate reaches a maximum which depends little 
on the variations in truncation covered by figs. 2.14. For smaller 
values of p, in particular p s n/5, the growth rates are sensitive 
to both vertical and lateral truncation and the lateral structure is 
rich.

The results of fig. 2.14a suggest that higher lateral modes may 
play little part in solutions with high wavenumber p and that severe 
lateral truncations for p2 »  1 may be accurate. Following this 
hypothesis fig. 2.15 displays growth rates for flow (2) with 
r2 =0.1 obtained using SYM4 with poor lateral resolution and
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relatively high vertical resolution. The three term truncation 
result is again displayed for intercomparison. The features noted 
for fig. 2.14b apply also to fig. 2.15.

The codes BUR4 and SYM4 are particularly effective at small
values of p where they can be used at relatively high resolution 
without difficulty. Some results for the stability of the
hyperbolically sheared flow (2.2.25) on an f-plane with r2 = 1/17 
are displayed in fig. 2.16; the calculations used SYM4 with N=40 
and M=5. The movement of the SWC to lower wavenumbers, p, as the 
ratio R of the flow at the sides to the middle is increased is 
clearly evident as is the similar movement of the growth rate 
maximum.

The codes which have been developed could be used to investigate
flows with boundary thermal gradients on beta planes, provided the
flow were symmetric about mid-channel. A simplification of the code 
outlined after (2.6.6) would enable flows without the mid-channel 
symmetry to be studied. The stabilising effect of a barotropic 
lateral shear anti-symmetric about mid-channel (James 1987) is 
particularly worthy of investigation.

2. Decaying branches in the presence of Ekman pumping

Not all the decaying normal modes on the flow

a =5 cosTTx ; V » 0
are connected to the non-singular normal modes which develop from 
the neutral normal modes of the inviscid problem as the Ekman number 
is increased. Numerical investigation of one set of normal modes 
showed them to decay more rapidly as the wavenumber p increased. 
The arguments presented in section 2.3, concerning the continuity of 
solution branches with both p and X, raised questions about the 
neutral modes from which these solutions originate. The structure 
of the rapidly decaying modes at large wavenumbers also called for 
elucidation.
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Starting from a decaying solution with X=0.08 and p=3.3 connected 
solutions were found by small variations of X or p. Fig. 2.17 
shows some of the connected solutions obtained at four values of X, 
namely 0.025, 0.05, 0.1 and 0.2, using a 100 level resolution. The 
figure displays both the decay rate pc£ and the real phase speed cr 
of these solutions as functions of p. For all solutions the decay 
rate increases as p increases and the phase velocity tends to the 
zonal flow velocity at the (lower) boundary. In these respects the 
solutions resemble those found by Barcilon (1964) and illustrated in 
fig. 14 of Hide & Mason (1975). The structure of the solutions 
clearly depends crucially on the Ekman pumping at the lower boundary 
and its contribution to the generalised potential vorticity flux 
since the solutions are not present in the absence of Ekman pumping.

The solution branches terminate in singular neutral modes. The 
neutral solution with c i t 0 for X=0.1 has been investigated using 
NEUSING (see section 2.3). With 50 level resolution the solution 
has p=2.71 and cr=-0.22; with 100 levels p=2.747 and cr=-0.203; and 
with 140 levels p=2.755 and cr=-0.201. No solutions were found for 
X=0.05, but for X=0.049 solutions with 100 level resolution (p=3.32, 
cr=-0.355) and 50 levels (p=3.26, cr=-0.338) were detected. Tracing 
branches of neutral solutions by varying X proved to be 
unprofitable. It may nevertheless be confidently asserted, on the 
basis of the continuity arguments, that the neutral solutions form a 
single branch in the (X, p) plane with p t 00 as X 1 0.

Some light was shed on the difficulties in finding singular 
solutions by searching for solutions with fixed values of N2 and N2 
(the number of levels in the grid below and above the critical 
level) rather than calculating N1 and N2 as a function of cr. 
Convergence was greatly improved but the solutions found to be very 
sensitive to N1/N2. Future work would need to make the grid 
separation exactly equal on each side of the critical level so that 
the treatment of the logarithmic singularity in 9i|//3z is identical 
on each side.

Fig. 2.17 shows that the X=0.2 decaying solution branch has a 
bifurcation point at p * pB = 2.5, c i = -0.35. The branch of
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solutions (<|>(z), c) with p > pB and cr < 0 has a mirror branch 
($*(-z), -c*). These two branches meet at pB. Below pB there are 
two sets of solutions with cr=0 which decay at different rates. The 
structure of the neutral solution branches in the range 0.1< X < 0.2 
has not been fully explored; the branch of singular neutral 
solutions with X < 0.1 might simply intersect the branch of
non-singular solutions (with cr=0) between X=0.1 and X=0.2, but 
another branch of singular neutral solutions, which appears to 
extend from X=0.1 (p =2.747, cr=-0.2035 for N=100) to X=0.2 
(p=1.995, cr=-0.3105 for N=100), might complicate matters.

3. Green's problem

Green (1960) examined the stability of a flow with uniform 
baroclinic shear on a beta plane. He found that the flow had no SWC 
(see section 2.5). The unstable short wavelength normal modes he 
found are trapped near the lower boundary. The arguments of 
sections 2.3 and 2.5 suggest that such short wave boundary
instabilities should not occur in annulus experiments because of the 
absence of vertical shear at the boundaries and/or the particular 
distribution of the potential vorticity of the zonal flow. Jonas 
(1980), however, has presented some convincing experimental evidence 
that at least some of the weak waves obtained at high Taylor numbers 
are trapped near the lower boundary. It is not clear how to 
reconcile these theoretical and experimental results but it may be 
that the distributions of the shears of the zonal flow at high 
Taylor numbers just above the UAT are significantly different from 
those presented in fig. 2.1.

This discrepancy breathes new life into the question of whether 
short wave instabilities could be virulent enough to prevent a sharp 
upper axisymmetric transition on zonal flows with shears markedly 
different from those of fig. 2.1. Suppose, for the sake of 
argument, that the zonal flow was of the form

u. S  s irt ir/ fc fx -V fc ) c,osk • (2.7.4)

At large values of B, the lateral shear of the flow would dominate
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contributions to 3q/3y in (2.1.15). We can model the trapped 
unstable short waves of such flows near one of the boundaries by 
taking u=z and using an effective beta parameter representative of 
the flow near that boundary; y = 0 L2 / Au = h2 for h defined by 
(4). The stability problem is then

(a -cJ^A£/Ax - Au/AX <j> = 0

In most annulus experiments p2 = B (k2 + it2) * B n2 so By = (p/Ji)2y.

Most investigations of Green's problem have taken By to be a 
constant. The growth rate curve marked by crosses on fig. 2.17 is 
an example with By = 1/2. For this curve it is plausible to suppose 
that Ekman pumping would stabilize the weakly unstable short wave 
tail and leave a sharp transition between stability and instability. 
The curve marked by small circles on fig. 2.18 has By = 2 (p/3)2. 
The short waves are clearly very unstable in this case. Ekman 
pumping would probably stabilize the very short wave disturbances 
but such a cut-off would be rather sensitive to the Taylor number.

4. Flows trapped near a boundary: Polar lows

Short wavelength boundary instabilities require strong zonal flow 
shears at a horizontal boundary and strong (interior) potential 
vorticity gradients next to it. Flows which decay exponentially 
with height

satisfy both requirements. The growth rate curves for s=2 
(crosses), s=4 (circles) and s=6 (triangles) are displayed on fig. 
2.19 (the calculations used a 100 level resolution). For each curve 
Au was chosen so that the APE of all the flows was the same by 
setting

/ Ax1 - ~SX^/(u - c.) 1
(2.7.5)

(2.7.6)

(2.7.7)
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The wavenumber of maximum instability clearly increases as the flow 
becomes more trapped, as does the growth rate maximum.

Polar lows are small shallow disturbances which develop in 
shallow but intense baroclinic regions created by polar airstreams 
flowing southward over a relatively warm sea (Reed (1987) gives a 
review). Harrold & Browning (1969) and Mansfield (1974) give 
accounts of these disturbances by modelling the low level inversion 
which often caps the baroclinic layer as a rigid lid and applying 
Eady's theory. Growth rates in the Eady model depend only on 
p = N H K / f ,  K being the disturbance's total horizontal 
wavenumber. The small height H of the capping inversion compared 
with the tropopause and/or low values of the static stability 
account for the short wavelength of the polar lows.

Polar lows are thought to be strongly modified by various 
processes such as latent heat release. An ingredient which has been 
neglected but the above results suggest may be important is the 
potential vorticity gradients associated with the trapped vertical 
shear of the zonal flow. These gradients may be coarsely modelled 
by a shallow layer of baroclinic shear overlaid by a deep barotropic 
layer (cf the semi-internal jet discussed by Bell & White (1988a)). 
Such a coarse model might well be quite successful in modelling 
rapidly growing disturbances.
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CHAPTER THREE

THE EVOLUTION OF A SMALL AMPLITUDE WAVE 
ON A LATERALLY SHEARED BAROCLINIC JET

Section 3.1 INTRODUCTION

The stability of baroclinic zonal flows against wave 
perturbations of infinitesimal amplitude and the thermal Rossby 
number of the transition between stability and instability have been 
discussed in some detail in the previous cKapber. Those 
investigations attempt to account for the stability of the 
axisymmetric state at high thermal Rossby number (0) and the 
location of the upper axisymmetric transition found in laboratory 
experiments.

The interaction and equilibration of waves in the wave-regime is 
a more difficult and less well developed theoretical subject. One 
profitable approach to it, pioneered for plane parallel shear flows 
by Stuart (1960) and Watson (1960), is to restrict attention to 
small amplitude waves close to the stability transition in which the 
advection by the axisymmetric flow remains dominant but the non
linear advection is sufficient to counteract the weak linear growth. 
The aim of these analyses is to provide insight into the mechanisms 
which govern the wave evolution and equilibration. The hope is that 
the mechanisms uncovered will be important for waves of small to 
moderate amplitude.

The growth, saturation and decay (i.e. life cycle) of synoptic 
scale baroclinic eddies in the atmosphere is clearly a crucial 
process for the forecasting and understanding of the weather. The 
atmosphere itself is a hostile environment in which to test ideas of 
wave evolution since it is subject to complicated boundary 
conditions and forcing processes. Numerical models which can be
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operated with chosen boundary conditions, selected physical 
processes and under controlled conditions are more promising test 
beds (Simmons & Hoskins 1980). The most thoroughly explored testing 
grounds, however, are the laboratory experiments with rotating 
annuli of stably stratified fluid.

The experiments driven by thermal forcing in the annulus depicted 
in fig. 1.1 (a=2.5cm, b=8.0cm, H=14.0cm) display transitions, at 
moderate and high Taylor numbers, from an axisymmetric flow at high 
0, through amplitude vacillating flows, to steady waves at low 0. 
At lower Taylor numbers the transition is directly from an 
axisymmetric flow to a steady wave. Many details of the structure 
of amplitude vacillations have been investigated. Hignett (1985) 
reports that the waves grow more rapidly than they decay and that 
both the period of the vacillation and the ratio of the maximum to 
the minimum amplitude increase with the rotation period. More 
recently, Johnson (private communication) has found that at the 
small amplitude (growth) stage the mean zonal flow has its maximum 
at mid-channel whilst in the decay phase its minimum is at 
mid-channel. Finally Jonas (1981) found the areas of the regime 
diagram occupied by amplitude vacillation to be sensitive to the 
fluid's Prandtl number.

According to the results of example 1 in section 2.2 the zonal 
flow during the decay phase is more stable to linear disturbances 
than that during the growth phase. So the amplitude vacillation 
could be interpreted as involving a linear growth stage by the end 
of which the wave-mean flow interaction has reshaped the zonal flow 
enough to make it sub-critical. Wave-mean flow interactions are the 
principal non-linear interactions in Drazin's (1970) inviscid WNL 
analysis (and also in Pedlosky's (1970) two layer analysis), but 
Drazin's analysis neglects interior potential vorticity gradients, 
so detailed comparisons would be inappropriate.

Experiments with two-layer systems driven by a rotating lid give 
a different sequence of transitions from those found in the thermal 
annuli (White 1988). As the Burger number (inverse Froude number) 
decreases the two layer system passes from axisymmetric flow through
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steady waves to amplitude modulated waves (Hart 1979 fig 5). 
Clearly it is important to account for this difference. One 
possibility is that the amplitude vacillation found in the thermal 
experiments is related to the relaxation response of the 
axisymmetric flow to thermal forcing.

We explore an alternative possibility here by considering the 
transports which appear at lowest order in a weakly non-linear 
expansion of the quasi - geostrophic equations about a marginally 
stable mode. Consider first the continuous equations relevant to 
the thermal annuli. The neutral mode (\J/Q ■ $0. cos kx with phase 
speed cQ and potential vorticity q0) satisfies

ICL-cJfl^ +- ^  = 0 (3.1.1)

( u -  c„) ^ e/^x -  'fcu/bx 4o = ( 3 1 2 )

= E'Vfkfto} ; c = l om x*o , € =-l w t s l .
The lowest order non-linear interactions possible are provided by 
the advection of the neutral mode's potential vorticity field by its 
own streamfunction in the interior and the advection of the neutral 
mode's thermal field by its own streamfunction at the boundaries. 
Using (1) the first of these may be expressed as

1 . (3.i.3)

This self-advection is zero for laterally uniform flows and non-zero 
for most laterally sheared flows. The advection of the thermal 
field at the boundary may be expressed, after using (2), as

R-Ca J
(3.1.4)

If the flow is inviscid the thermal advection is zero both for 
laterally uniform flows and internal baroclinic jets. In the 
presence of Ekman pumping the thermal advection can induce both a 
zonal mean and a first (azimuthal) harmonic thermal correction.
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The above analysis shows that inviscid neutral waves on most 
laterally sheared flows will generate their own harmonics and that 
the lateral curvature of a zonal flow should not be neglected in 
weakly non-linear analyses; WNL analyses for purely baroclinic 
inviscid flows will apply only to flows for which qy/(u-c) is very 
nearly independent of y. This point might give some insight into 
the conclusion of Simmons & Hoskins (1980) that alterations to the 
lateral shear of a zonal flow can significantly alter the maximum 
amplitude achieved by normal mode disturbances of similar linear 
growth rates.

The neutral mode marking the axisymmetric transition, being a 
gravest mode, has relatively little vertical variation (see sections 
2.2 - 2.4). For example, the Jacobian J(\J/Q, q0) for u = f(y).cos nz 
is independent of height. Near the wave's steering level (i.e. 
where u=cQ) the advection of q0 by the zonal flow does not dominate 
that of the wave itself. In this critical layer all azimuthal 
harmonics of the wave will be excited at the order of the square of 
the amplitude of the neutral mode.

The development of a small amplitude inviscid wave on the zonal 
flow

U. •= ( \ - as +• <x$, smTVij) sinTx ; (3.1.5)

is analysed in section 3.2. The mathematical problem which results 
is similar to that of a Rossby wave impinging on a critical layer, 
as studied by Warn & Warn (1978), Stewartson (1978) and Killworth & 
McIntyre (1985). Maslowe (1986) presents a useful review of
non-linear critical layers. Numerical solutions for the present 
problem are reported in section 3.3 and various deficiencies of the 
solution indicated and discussed in section 3.4.

The effect of lateral shear on inviscid WNL evolution in 
two-layer analyses is easier to describe. The advection of the 
normal mode's potential vorticity by itself again induces a harmonic 
of the neutral mode. The zonal flow advection dominates the wave 
advection in both layers (they are not critical layers usually,
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though see Pedlosky (1982h)) so complications in a critical layer do 
not arise. The neutral mode's advection of the harmonic results in 
a modification of the streamfunction in the principal wavenumber. 
The amplitude equation is hence of Landau's type,

= cAfl^A - j u - A 5 . ( 3 . 1 . 6 )

. V-VrtL. A cUinot£.s. the, cumplikule-, t bitvifc, AB =  8 0 ~ B  fcVuo-
supercritical value of the Burger number and c, co*t&hwtt
nea\ vtotWaA coefficientj* The solutions evolve monotonically towards 
steady waves of amplitude (gAd /pS » provided tjy x  >0.

The lateral structure of the experimental two-layer flows has 
been investigated by Hart (1972). He argues that each layer's depth 
independent axisymmetric zonal flow is arrested by a Stewartson type 

layer (E being the Ekman number as defined in (2.3.47)) whilst 
the zonal motions of wave perturbations are halted by a viscous 
Stokes layer. The latter is thinner than the Stewartson layer in 
most experiments so that much of the axisymmetric flow's lateral 
shear in its side boundary layer should probably be viewed as being 
within the inviscid domain of the perturbation field. The two-layer 
zonal flow's lateral shear is neglected principally for analytical 
convenience. WNL theories making this assumption do so without due 
regard for its effect on the dynamics.

In summary, a laterally sheared two layer flow, with
8{qy/(u-c0))/9y * 0 may be expected to give a transition (at high 
Taylor number) from axisymmetric flow to steady waves governed by 
Landau's equation. The evolution of inviscid waves on a continuous 
zonal flow with 8{qy/(u-cQ)}/8y t  0 involves a non-linear critical 
layer and is discussed in the next three sections.

Ll*\QjClT  rate, us t o  W - ^royovKowaJ A S

(txvVWr than A?) •
»/*
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Section 3.2 AN ANALYSIS OF A NON-LINEAR
BAROCLINIC CRITICAL LAYER

Problem Definition

The quasi-geostrophic equations for an f plane

(Beyj +• T ( 4 / , 8 a )  = 0  0<3<1 (3.2.1)

8 ^  =  B  ( ? D +  (3.2.2)

*  T  ( »  "ty/Vl) * 0 x=t'/2 (3.2.3)

^ / i>x. = 0 a*\A ) ? — 0 on jjs  U, l  (3.2.4)

will be assumed to govern the motion: (1) represents conservation
of the quasi-geostrophic potential vorticity (2) following the 
geostrophic motion; (3) represents conservation of potential
temperature at the rigid (no normal flow) horizontal boundaries and 
(4) no normal flow and energy conserving conditions at the side 
boundaries. The stratification is assumed to be independent of 
height (see (2)) and the channel is taken to be periodic in x with
repeat length L /L . The zonal flow is assumed to be be of the formx y

a  =  */2, sinTTz. ( \ -  +  a* sinfTij) , (3.2.5)

This internal baroclinic jet has a non-singular critical level at 
z=0 and 9/3y{qy/u) * 0 (see (3.1.3)). The flow is studied at a
Burger number slightly smaller than that of the SWC. The evolution 
of the only unstable weakly growing normal mode is traced as it 
grows from a very small initial amplitude.

The form of the neutral normal mode and the appropriate scalings 
are summarised first. The outer solutions (i.e. those outside the 
critical layer) are then developed and the jump conditions across 
the critical layer established. Presentations of the inner solution 
and the matching of the inner solution with the jump in the outer
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thermal field across the critical layer follow. Formulae for the 
unstable normal mode which serves as the initial condition conclude 
the section. A summary of the key formulae is given at the start of 
the next section.

Neutral mode solution

Tg is well defined for (5), and independent of height;

8 T S =  = TT1 + BTta q.i.st«lK| # (3.2.6)
V — a $ +■ a s vritlij

The results of section 2.2 show that the SWC for (5) is marked by a 
non-singular neutral mode

t y o  ~  co* rT:K- j r a 2Ltj/Lx (3.2.7)

which is independent of height. P0(y) in (7) is the gravest mode 
eigenfunction of

/ Ay* 4- f T̂ cu  ̂ ss 0
I \ - cXj +  flijSirtTUj J (3.2.8)

 ̂— O OVV S 0;1
and BQ, the Burger number at the SWC, is related to the gravest 
eigenvalue, XQ, by

8c, =  It* . (3.2.9)
+ r'lr1

Scaling considerations

The Burger number is assumed to be just less than its SWC value

8  =  8 0 -  A 8  . (3.2.io)

The normal mode growth rate is then of order AB (see section 2.2 or 
(42) & (46) below) so we introduce an appropriate slow time i
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X  * (3.2.11)A f c t .

The generation of harmonics and non-linear corrections to the 
dominant wave mode are argued in section 3.1 to be of the order of 
the square of the wave amplitude, A, (when 3/3y{3q/3y/u} * 0) so the 
non-linear terms can arrest the linear growth if

K = Afc aW  (3.2.12)

- a(x) being of order 1 when linear growth and non-linear advection
become comparable. Within the critical layer the zonal velocity u 
of (5) is of the order nz/2 providing as (see (5)) is of 0(AB°)
rather than 0(AB1). The critical layer hence has a depth of 0(AB); 
for z »  AB zonal flow advection dominates. So the vertical 
co-ordinate C,

X  = Aft t (3.2.13)

will be used within the critical layer. The inner solution has
domain -®<C<+®. The inner solution for C + ±°° is matched to the 
outer solutions with z -» 0*.

Outer solutions

Two outer solutions are required; one above and one below the 
critical layer. The equations governing the two are very similar 
and for the most part they will not be painstakingly distinguished. 
We pose the perturbation expansion for the streamfunction suggested 
by (12)

*  A8 i|/, + A8*4>a +.... (3.2.14)

in which rpQ i s  the streamfunction of the zonal flow (5).
Substituting into (1) and (3) and using (10) one obtains at order AB

LoV^ihx =  ( B»V« *■ •#/*%*) H k *  -*/i (1,1k
» 0 (3.2.15)

/ >* ■&* = 0 on T.a ±'1%, .
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So the outer solution to first order is proportional to the gravest 
mode solution

{ a(-0 ccsrTTic 4* bt“C)sinrTTx | • (3.2.16)

Strictly speaking the most general outer solutions should be matched 
across the critical layer to reach this conclusion; but the depth 
independent solution (16) does satisfy the inner equations at lowest 
order as will become apparent. An undetermined axisymmetric 
perturbation should also be retained at this point but examination 
of the problem at the next order ((17) below) shows that it is not 
excited at this order.

At order AB2 (1) divided by u and (2) yield

The l.h.s of (17a) involves an elliptic operator (defined in (15)) 
on 3^2/3x and the r.h.s. of (17a) terms -BQ3q1/3T / u and 
-J(^1,BQq1) / u which are singular at z=0 on the edge of the two 
domains. The forcing terms on the r.h.s. of (17a) do not induce 
any axisymmetric motions as anticipated in (16). (17) becomes a 
well defined problem if jump conditions on \|/2 and 3xp2/3z across z=0 
are specified

H(x,y) and I(x,y) are understood to depend on the inner solution. 
One way to solve (17), (18) for the non-axisymmetric part of \f/2 is 
to expand the inhomogeneous (forcing) terms on the r.h.s of (17a) 
and (18) in terms of the eigenfunctions of ;

Lo’fctya/W ^ /VC -Vu (̂4*1 > 40
+• Vl&eu} tfuJ&X1

V " V  = 0 tm

(3.2.17)

(3.2.18)

(3.2.19)

(17), (18) then reduce to equations of the form
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(3.2.20)

*'ln * x + fzK'1 * iKtu)

r ^  ■ * * * ? / * £  -  * M

d $*'1/ dt s 0 .« *.*•&,

t|>4 = £  (O pk,t tXfi-rWfftt .

Note that akfl > 0, except for the gravest solution - which is the 
neutral normal mode pQ. When a’4'1 > 0 the complementary solutions 
of (20a) enable solutions to be found whatever fk,1(z), Hkfl and 
ik'1. So it is adequate to consider only the projections of the 
r.h.s. of (17), (18) into P0(y) to find the condition for (17),(18) 
to have a solution. This projection results in the following 
problem

c ^ Y /d * 1 = E  /  sinTl t  p

d Y / d t  = o *t x . x ' / l

C Y 3 r  = ? , C d Y /d t.] .-

(3.2.21)

R
in which P and ft are to be determined from the interior solution and 
X, E and F are given by

y  =  U
E  = -fcB. |J f M  txyVrx V h H , / v c  <kdj (3.2.22)

1 - if + aj tinifij
p = - tv1/®, il fo(jj) WpirlTiC "bfyl'bx •

Integrating (21) once yields

i -y/ i t  = E/it {InI  w i f t / l l  - J n l W « f e | J  +*lx-'h), t > 0  

= E f t r {  Ik \ w<r*/il - lbmTTM 11 , t < o

and hence

[dY/dx]^ F & x -  \)
- p &S t l  ( (3.2.23)

122



This condition on the jump in potential temperature across the 
critical layer provides a relationship between the inner and outer 
solutions which must be satisfied if the solution sought is to be 
valid. It is the only consistency condition at this order because 
the complementary solution X = const, can accommodate any jump R in 
the streamfunction. For reference we note the time derivative of 
(23) (obtained by differentiating w.r.t. x and using (22))

0ttfirl!5c (3.2.24)

as ziO .8*

Inner Solution

From (2) and (13) the potential vorticity in the critical layer, 
Q, is related to the streamfunction, Y, by

+  ' / t a 1 * $ 1 1 ?  +  8 f o  . (3.2.25)

The conservation of potential vorticity, (1), is expressed by

A.8 S  *fcO/VC *  ® 0 . (3.2.26)

We pose a series expansion for Y in powers of AB;

#  *  AS #, +  A S 2 #* + A S 3 #, ¥ ---  # (3.2.27)

For C ■> ±°°, Y must match to the outer solution with z -> 0± which is 
given to O(AB) by

* AS { -rcSJl -  As7l (^sFft + t)(&S4)}{-(\-0s^ *
(3.2.28)

+ AS l aW coirlRt + ifr) sinrlTV) +• 0(AB*) .

The terms of 0(AB3) in (28) describe the initial zonal mean flow to 
0(AB3). They are included for reference in the derivation of (34) 
below.
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At 0(AB°), (26) is

V'f./'bi'it: +  T( »  0 .  (3.2.29)

A (barotropic wave) solution which matches to the outer is

® = - s S t o  -  — a^cosHlj} + ^  ( ott)«©>r1Gc+b(t)sihflx]#(3.2.30)
Z>

The mean flow in the outer is time independent so = 0.

At 0(AB1), (26) is

+ T($, , = 0 .

The partial solution

+ 2  u M  coirlflT* + A y  tinrlfifit} (3.2.31)

is in fact adequate. Solutions with 32Y2/3C2 non-zero would require 
potential vorticity gradients of order 1 which cannot develop for C 
of order 1 since Q is conserved by the horizontal geostrophic 
motion. (Such solutions are probably important in the development 
of flows with singular critical levels.) Wave solutions directly 
proportional to C are not required because the 0(AB) outer
streamfunction (16) is barotropic (i.e. S^/Sz = 0).

At 0(AB2), the highest order considered here, (26) is

W / V C  +  T ( ^ ,  , W )  ®  0 (3.2.32)

for W defined by

W  2  +• f i j / l t 1 .  (3.2.33)

(32) and (33) assert that the 0(AB) potential vorticity, W, is
conserved following the 0(AB) geostrophic motion. Using (28) one
finds that the zonal flow by itself initially has
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W =• 3T3S t (l-a*^\i - (I +% *) a» tosTTq] . (3.2.34)
l j IT

The inviscid boundary conditions (4) imply that YJ = 0 on y = 0,1
and (30) with (8) implies that V?Y' = 0 on y = 0,1 so

H X

U ' = o C* 0,1 . (3.2.35)

Furthermore 32Y1/3y3T = 0 and 32Y3/3y3x = 0 on y = 0,1. For a pure 
wave perturbation Y3 = 0 at time x = 0 so using (34)

=  I 3 S ( l - « 0  on . (3.2.36)

Matching conditions

The streamfunctions of the inner and outer solutions may be 
matched together using the asymptotic matching principle (van Dyke 
1975):

expansion to 0(ABm) in C of the outer solution in z to 0(ABn)
= expansion to 0(ABn) in z of the inner solution in C to 0(ABm)

(3.2.37)

It is adequate here to match only the jump in 3X/3z given in the 
outer solution by (23). Because of the lack of vertical derivatives 
in Y ', Y2' and ', the first condition imposed by (37) is obtained 
with m=3 and n=2;

r n-j /h ].-1. = Cab
1

/ *$* *£ •
(3.2.38)

So from (24) and (38) the matching condition (37) implies the 
following solvability condition.

O Bo ft
(3.2.39)
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Initial conditions

An appropriate expression for the linearly unstable normal mode 
initial condition may be found by linearising (1) about the zonal 
flow (5),

*• a  * 0 (3.2.40)

and letting B = B0 - AB and

\ l  ' =  Kt { «J> irTT(x-ct) J . (3.2.41)

Posing an expansion for <f> in powers of AB based on the neutral 
normal mode <f>0 marking the SVC ̂

4> =  AS 4- AS44 i + .... ; c »  A S t , (3.2.42)

t i V i f  - = 0  , ^ « 0  «t , (3.2.43)

at order AB2 one finds that

U oVh + ̂  fal* » ■" ““ ©
u - c  (3.2.44)

The Fredholm condition for (44) to have a solution (appendix A) is 
that the free (complementary) solution pQ be orthogonal to the 
forcing of ^ . This condition determines the dependence of c on AB. 
Standard manipulations (described in more detail in section 2.2) 
show that Cj is pure imaginary and

SI £  tt' / S .  A j Ai  = g  . ( 3 . 2 . 4 5 )
u-c

So

C) = ift ; %
2Bjt

j p *
i  ^^j/u jn-os + û smlTii) 'jj

(3.2.46)

The ratio R = Bn when a = 0  and is not far from 1 for a =0.5.u s  s
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Manipulation of (32) using (33), (30), (6) and (8) shows that
32Y'/3C2 for this normal mode satisfies

fa - 0  ** fj / ** * Bb (fo 15 ) ‘H/ / W  . (3.2.47)

So the normal mode with an initial outer streamfunction of small 
amplitude e

=s £ coSr.TTtf (3.2.48)

has accompanying vertical variation

in which

i Ufccsrlft 4- u.lc\ smrlRc} (3.2.49)
U - c l *

JUBt, ; a  = A6]CS ( l -  a* + a, sirrtCjj) # (3.2.50)
1
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Section 3.3 A NUMERICAL STUDY OF THE
NON-LINEAR EVOLUTION

Summary of analysis

The previous section presents an analysis of the development of a 
wave on a baroclinic zonal flow, (3.2.5), which has qy = u = 0 on 
z=0, starting from a pure unstable normal mode disturbance of small 
amplitude. The analysis is set at a Burger number, BQ-AB, slightly 
below the SVC value BQ, where there is only one linearly unstable 
normal mode and its evolution is slow. The wave amplitude is argued 
to become of order AB and to be governed by the evolution in a 
critical layer with a depth of order AB. The wave's streamfunction 
to order AB is barotropic and the same inside as outside the 
critical layer (see (3.2.30) and (3.2.16)). It has the same spatial 
form as the neutral normal mode (3.2.7). The 0(AB) potential 
vorticity within the critical layer, V defined by (3.2.33), is 
conserved following the 0(AB) geostrophic motion (3.2.32); the 
boundary conditions on V are provided by (3.2.35) and (3.2.36). The 
amplitudes a(x) and b(x) of the 0(AB) wave streamfunction are 
determined by the constraint (3.2.39) which ensures that the rate of 
change of the jump in the thermal field across the critical layer 
(caused by potential vorticity advection within it) does not 
resonantly force the neutral normal mode outside the critical layer. 
Expressing 93Y3/9t 9£2 in (3.2.39) in terms of J(H'1, W) and using 
(3.2.32) and (3.2.33) and then using (3.2.30), yields

Thus the evolution is determined by (3.2.32) with Y given by 
(3.2.30) which must be solved subject to (3.2.35), (3.2.36) and (1). 
These equations are solved numerically by representing V at a given 
time step on a discrete uniform 3D grid and using standard finite

IE.1 crs rTTx + "feb/Vc
’O (3.3.1)

128



difference expressions for J(Ylt V) and the boundary conditions. 
The time derivatives of W, a(x) and b(x) calculated from (3.2.32) 
and (1) are used in a leapfrog scheme to infer W, a and b at the 
next time step. Integrations commence with a normal mode wave 
perturbation of amplitude a(x=0) = e (b(0) = 0) for which W is given
by (3.2.33), (3.2.34) and (3.2.48) - (3.2.50).

Details of numerical method

The grid on which W is stored has IXPTS along the channel with
the ith x ordinate, x. = L /L i/IXPTS; IYPTS across the channelx x y

with y^ = (j-0.5)/IYPTS; and IZPTS in the vertical arranged 
symmetrically about C=0 with a uniform level spacing AC. The 
boundary conditions (3.2.35) and (3.2.36) are applied by setting

Wl^Tyw.,1 = "  Wl3l^  + + H5 $ ( \ - a t\/(2. WPT5)
which is accurate to second order in Ay. J(YX, W) is calculated 
using Arakawa's energy and enstrophy conserving form (Haltiner & 
Williams 1980 ppl75-6). The l.h.s. of (1) is calculated by simple 
summation over all the grid points. The integrals multiplying 3a/3x 
and 3b/3x in (1) are depth independent and found by simple summation 
across the channel using the values of pQ and (qy/u) on the grid; pQ 
is calculated prior to the integration by a second order finite 
difference approximation to (8) on the model's lateral grid and 
normalised by setting its maximum value to 1. Excitation of the 
computational mode during the course of the integrations is avoided 
by using Miyakoda's method for leapfrogging from a small initial 
forward time step to the standard time step (Hoskins & Simmons 1975) 
and employing a weak Robert filter (Haltiner & Williams (1980) 
pl47).

The time step must be chosen so as to satisfy the CFL criterion 
(U Ax < Ax) at the top and bottom levels and the depth of the layer 
(AC . IZPTS) needs to be large enough and the vertical resolution 
(AC) fine enough to give a fair representation of the critical layer 
integral

(3.3.2)
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xltO =  c*) js * z b a t 1 . (3.3.3)

The initial amplitude of the wave should be chosen to ensure that W 
has no closed contours within the critical layer initially. These 
form first (as e is increased) near the sidewall. Comparison of the 
initial fields of 3V/3y and 3W'/3y shows that |3W/3y| > |3W'/3y| and 
hence there are no closed contours when

£ < C \ afc y 0, I . (3.3.4)

Finally the grid must be be symmetric about C=0 to avoid 
misrepresentation of the integral on the l.h.s. of (1), which has 
an antisymmetric logarithmic dependence on C (see the discussion of 
matching in section 3.4).

Numerical results

The presentation here is limited to results for the flow (3.2.5) 
with a =0.5 in a channel with L = 2itL . This value of a is midway 
between the special values as=0 and as=l for which J(Ylt W)=0 (see
(3.1.3) and (3.2.6)). The slow growth rate for this value, c 1 = 0.2 
(see (3.2.46)), implies that F(h)sl(h)/I(°°), the fraction of the 
critical layer integral (3) contributed within depth h of the 
critical layer, is 0.75 for h=0.5 and 0.87 for h=1.0. Three 
integrations (A, B and C) with AC=0.1 have been investigated. The 
grids used were

run A IXPTS = IYPTS = 20 
run B IXPTS = IYPTS = 20 
run C IXPTS = IYPTS = 40

IZPTS = 21 
IZPTS = 11 
IZPTS = 11

The time step At = 0.015 is sufficiently short to avoid numerical 
instability and was used in all the integrations as was the initial 
amplitude e = 0.02 which avoids closed contours (see (4)).

Fig. 3.1 presents the evolution of the amplitude a(x) over the 
30 slow time units of each integration (A full line, B dashed line,
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C circles). The evolution is qualitatively similar in all three 
cases. Over the first 10 slow time units, a(x) grows approximately 
exponentially, doubling its amplitude every 4 time units. It 
reaches its peak amplitude between t = 15 and 20. The maximum 
amplitude and growth rate of run A are smaller than those of runs B 
and C probably because run A covers a greater depth of the critical 
layer than runs B and C; the amplitudes in fig. 3.1 are probably 
overestimates of the true values.

The amplitude b(x) was found to remain very close to zero 
throughout all integrations. This feature may be understood by 
consideration of solutions of the form

V/ =* Yx t nU  ̂ Sifc2.nrTTx *  «*(l*»-0 r-IT* ]

w < (3.3.5)
*  W  V J*  ^  c o ilA rir*  J

in which o is an odd function of C and e an even function and f ,n n n

gn, hn and j are arbitrary functions of y. Investigation of 
(3.2.32) using (3.2.30) reveals that when b(*c) = 0, a solution W
which has the form (5) initially maintains it. When W is given by 
(5) it contains no amplitude in an even function of C with sin ritx 
dependence so from (1) 3b/3t = 0 for solutions of this form. The 
initial condition (3.2.48) - (3.2.50) is also of this form so b(x) = 
0 and W maintains the symmetries of (5).

The potential vorticity of the zonal flow is zero on the critical 
level. Since W is conservatively advected by horizontal motions it 
remains zero on C=0 for all t ; that the initial state does have W=0 
on C=0 may be verified from (3.2.48) - (3.2.50). The initial field 
V(T=0) and the streamfunction Y (with b(x)=0) at all times T also 
have the following symmetry

W (  - *  +  Uy/Uj) , y,-S,T»o) a  - W( X, g , X  = C>)
p, ( -y * L* /2Uj, «j, "8 /1

Substitution of these expressions in (3.2.32) shows that

*W/Vc(-X + U/lLj ,«j ,-S,-c-0) = ->W/'J(c{x^3ll,T=6).
Consequently
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- the potential vorticity field, W, above the critical level may be 
used to infer W below the critical level.

Fields of W from run C on the horizontal section £ = 0.1 are
presented in fig. 3.2 for times a) x = 0, b) x = 9, c) x = 15,
d) x = 18 and e) x = 21. Horizontal sections of W from the same run 
at a) C — -0.1, b) C = 0.2 and c) C = 0.4 for x = 15 are presented 
in fig. 3.3. From fig. 3.2.a it is clear that the initial 
potential vorticity distribution contains a small amplitude wave 
perturbation of the zonal flow field. The wave has reached a large 
amplitude at |C| = 0.1 by x = 9 (fig. 3.2.b) and by x = 15 (fig.
3.2.c) the effects of the wave's self advection are unmistakable;
the main lobe has been wrapped round on itself and strongly sheared 
regions are becoming apparent. Around x=0.25 L / L , ys=0.1 and
x=0.75 L /L , y=0.9 the advecting flow has the characteristics of a
deformation field. The sharp corners of W which develop in these 
regions by x = 15 appear to generate the grid scale wave
disturbances which contaminate the solutions at times x=18 (fig. 
3.2d) and x=21 (fig. 3.2e). It is argued in section 3.4 that these 
are not numerical representations of real small scale instabilities. 
The formation between x=9 and x=15 and narrowing between x=15 and 
x=18 of a tail of high potential vorticity fluid (W>1.2) around 
x=0.25 L /L , y=0.5 appears to be well represented though the W=1.2
contour is lost from the tail by x=21. The emergence of W=1.4
contours by x=18 and x=21 is further evidence of non-conservation of 
W within the integration. Figure 3.3 shows that the rolling up of 
the potential vorticity field has also progressed considerably at 
C=0.2 (fig 3.3b) and begun at C=0.4 (fig. 3.3c) by x=15. The 
wrapping clearly proceeds most rapidly in the layers closest to the 
critical level. The symmetry of the solution about the critical 
level, expressed by (6), is evident at x=15 from fig 3.3a for C=-0.1 
and fig. 3.2c for C=0.1.

Wl - X + W/1L, , ») , v )  a - W ( x , i j , S , T }  (3.3.6)
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Figure 3.2
The e v o l u t i o n  o f  t h e  p o t e n t i a l  v o r t i c i t y  d i s t r i b u t i o n  j u s t  above  t h e  s t e e r i n g  l e v e l .  

The h o r i z o n t a l  c r o s s - s e c t i o n s  p r e s e n t  W, th e  O (A B )  p o t e n t i a l  v o r t i c i t y  o f  t h e  i n n e r  

s o l u t i o n ,  ( 3 . 2 . 3 3 ) ,  o b t a i n e d  i n  run C a t  C =0.1  a t  t im e s  ( a )  t = 0 . 0 ,  ( b )  x = 9 . 0 ,  ( c )

x = 1 5 .0 ,  (d )  t = 1 8 . 0 ,  ( e )  t = 2 1 . 0 .
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Section 3.4 DISCUSSION

The simulation described above exhibits several features of the 
irreversible deformation of the potential vorticity field within a 
critical layer suggested to be of importance in stratospheric 
dynamics by McIntyre & Palmer (1983, 1984, 1985). But since it 
produces a flow with monotonically increasing small scale structure 
it appears to be unable to give a proper description of the 
perfectly periodic phenomenon of amplitude vacillation found in 
rotating annulus experiments. Since the aim of this work is to
illuminate amplitude vacillation near the UAT it is important to 
discuss aspects of the model's formulation which may be unsound or 
unrealistic and responsible for this qualitative difference from the 
laboratory flows.

Validity of Matching

The initial condition (3.2.49) for 32Y'/3C2 involves a term which 
is essentially proportional to 1 / C sin rnx. Hence

J, W fcXJ>irTx ^  AnZ. ,

It is crucial for the validity of the solutions presented that these 
logarithmic terms are antisymmetric in C so that

Wueplrtr* VJ ^  l/Z «

Furthermore the solution is not developed far enough in section 3.2 
to provide confirmation that matching is proceeding satisfactorily. 
Some confidence concerning these points may be gained by a 
comparison of the equations governing the outer solution for small z 
with that of the inner for large |C|• One can only hope to achieve 
matching if there is an intermediate range of values of z ( AB «  z 
«  1) for which the inner and outer equations are both valid.

Writing
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+ TT1!, (3.4.1)A  =

it is possible to reduce (3.2.32) to

■5>JWvc -  ■*£,'/« +• ,  -tfcfj/tt$,') = () (3.4.2)

by using relations (3.2.6) and (3.2.7). For large C, J(^1, Q) 
dominates (2). Given suitable starting conditions Q^will decay with 
1/C so that the principal source terms for s/in (2) are

t£8.|0 ^/a. +  A8 x l $ , ‘ , &$„/«. $,') ,  (3.4.3)u. u
(3S2/3x)/u and (J('FJ,S))/u being comparatively negligible. The 
principal source terms in (3) are hence the same as those for small 
z in (3.2.17). The presence of those singular terms suggests that 
Lq 3i|/2/3x will be dominated by vertical derivatives for small z in 
which case (3.2.17) is, for small z, approximated by

•>|w ^ / v t *  45 - J- (3.4.4)
u. *

So the equation governing the outer solution for small z is the same 
as that governing the inner for large C. (3) shows that at large C, 
S2 = 0(1/C) is strictly antisymmetric in C; 52 will involve symmetric 
terms only of order 1/C2* So the convergence of integrals of Q 
calculated symmetrically in C will not cause serious error. This
point is consistent with the cancellation of the logarithmic terms 
in the derivation of (3.2.23).

Stability

Fig. 3.2 demonstrates that strong horizontal gradients of 
potential vorticity develop within the critical layer as a result of 
advection by the streamfunction Y . There are regions where the 
gradients are approximately perpendicular to the streamfunction 
contours and of opposite sign above and below the critical layer 
(i.e. at C = +0.1 and -0.1). Killworth & McIntyre (1985) and 
Haynes (1985) have demonstrated that Stewartson's analytical 
solution for the development of a forced barotropic Rossby wave
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impinging on a critical layer, which develops similar reversals in Q 
gradients, is unstable. So it is important to establish whether the 
solution presented here is subject to similar instabilities. The 
first point worth noting is that any solution of (3.2.32) subject to 
(3.2.39) excludes such instabilities because the advecting 
streamfunction is forced to be of the form (3.2.30). Linear 
perturbations to waves (other than the gravest mode) are
conservatively advected by (3.2.32). Instabilities of azimuthal 
wavenumber k > 1 require a perturbation streamfunction SYJ of 
wavenumber k within the critical layer. Now &ij/' will have 
hyperbolic dependence on z outside the critical layer

£ 4/ /  2s a  cosV
(3.4.5)

2; a cjosVi ocK'* (i+'/f) x<0.

Hence 92/9C2(6Y') within the critical layer would need to be 
non-zero to match to the outer solution. As noted after (3.2.31), 
this quantity and even 92/9C2 ( )  are zero within a non-singular 
critical layer. So it appears that the first order streamfunction 
in the critical layer is forced to be proportional to that of the 
neutral normal mode and that instabilities involving other azimuthal 
wavenumbers are only possible in higher order solutions.

Singular critical layers

Figs. 2.1b and 2.1c suggest that the 3q/3y = 0 contour of the 
zonal flow slants strongly across isotach contours. These figures 
may be misleading in this regard since 3q/3y is likely to be 
sensitive to the choice of vertical ordinate and calculations using 
(x,y,T) coordinates (T being temperature) could well produce 
contours of 3q/3y much more closely parallel to isotachs. It would 
be remarkable, however, if the axisymmetric flow had a 3q/3y = 0
level strictly coincident with an isotach. Unfortunately an 
analysis of the evolution of a singular normal mode in such a 
critical layer may well be quite different from that just presented 
and considerably more difficult. A preliminary obstacle to such an 
analysis is the lack of explicit solutions for singular neutral
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modes on laterally sheared flows. It is quite conceivable that 
instabilities associated with neutral modes with singular critical 
levels could be present at higher Burger numbers than those 
resulting from non-singular normal modes. So it may be helpful to 
think of non-singular neutral modes as the markers of the main UAT 
and instabilities arising from singular neutral modes (with 3q/3y 
small where u = cr) as responsible for the weak waves found above 
the main transition. The analysis of section 3.2 is offered as a 
model of amplitude vacillation just below the UAT on the assumption 
that departures of isotachs from the 3q/3y = 0 contour whilst
important in very small amplitude waves can be neglected in waves of 
moderate amplitude.

Vertical advection within the critical layer

The restriction of the model to waves of moderate amplitude also 
emerges from an examination of the conditions under which the 
solution satisfies the quasi-geostrophic equations. The neglect of 
the ageostrophic horizontal velocities requires Ro «  AB. It is 
plausible that no qualitative errors would arise from their neglect 
but as we now show the neglect of vertical velocity advection also 
requires Ro «  BQAB. Let w

W  «  ( U j W * ) /  (  VJ W)  ( 3 . 4 . 6 )

be the non-dimensional form of the vertical velocity w* and other 
non-dimensional quantities be defined as in (2.1.12). Then 
according to quasi-geostrophic theory (see (2.1.9))

W  *  - fic /6 . 1>3/W; 14 /vi (3.4.7)

In the critical layer

SO

W 'ilVi. (3.4.81
* w *  e

and vertical velocity advection can only be neglected if Ro «  BQAB.
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Influences of d if fu s iv e  transports

Diffusive transports have been deliberately neglected to this 
point in an attempt to establish whether inviscid processes can 
describe amplitude vacillation successfully. The largest diffusive 
transports will be confined to the Ekman and side boundary layers. 
The lateral shear of the zonal flow at the boundaries will, however, 
cause Ekman pumping of axisymmetric vertical motion which will 
affect the whole of the flow. The stability of such a zonal flow 
with its meridional circulation is a major problem in its own right.

Diffusion can, of course, play a dominant role in the critical 
layer (Drazin & Reid 1981 p421). Conditions under which advection 
dominates diffusion may be found by inserting the scaling used in 
section 3.2 into the diffusive version of the potential vorticity 
equation, which in dimensional form is

o* e  ( ^ V i 1 + * * £ 1 £  \ V j V  . (3.4.9)
0 y H* *z#t

At order (AB2) in the critical layer one obtains

AS* X>. W A>t = JO? +- d€(*+ vBU1 1 V n ' i

4- A S  (3.4.10)

wlWre. V  w } * M.*/ I'H'} •

In typical laboratory experiments L/H=l/3, u*/K*=10 (for water
glycerol solutions) and^near the UAT^ B=1 . In these conditions the 
inviscid WNL critical layer theory requires

'KL1/(AS'!H ' W M  V & / A S  « > .  (3.4.11)

Taking K * = l.3.10”3 cm2s-1, L=5cm, H=15cm, U=0.5cm/s and u=10K, the 
conditions in (11) reduce to

A S 3 »  >t>"4 , AS »  r. »t>'3
which are satisfied moderately well when AB >0.2.
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The generation of sharp gradients of V within the critical layer 
makes dissipative processes important even when AB is large enough 
for them to be formally small according to the above scaling 
arguments. Diffusive transports will control the total enstrophy 
within the critical layer and dissipate the strongest gradients of 
W. Vertical diffusion may act to re-establish the potential 
vorticity gradient of the zonal flow within the critical layer, if 
it becomes depleted by horizontal diffusion. Horizontal diffusion 
can also control the roughness which develops in the inviscid 
integrations as the following, somewhat ad hoc, integration shows.

Horizontal diffusion is represented qualitatively by replacing 
(3.2.32) with

W / V C  = 4- Z  { (U/Ugt tf/w1 (3.4.12)

and -J(Y,V) in the l.h.s. of (3.3.1) with the r.h.s. of (12). In 
the numerical code the r.h.s. of (12) is calculated at time step n 
using values of W at step n in J(iJ/,W) and values of V at step n-1 in 
the diffusive term. This method is stable when

4 v  ( u l l ^ f  At /  Ax* < \

(Roache 1976 p61). Horizontal sections of V at C=0.1 for a) t=9, b) 
x=18 and c) t=27 from an integration using the same grid and initial 
conditions as in figs. 3.2 and 3.3 and V  = 2 . 10"4 are presented 
in fig. 3.4. It is clear that even such a small horizontal 
diffusion coefficient has a significant impact on the integration, 
controlling grid scale roughness and opposing the tightening of W 
contours.

Values of D  representative of Hignett's experiments can be found 
by comparing the second term of the r.h.s. of (10) with the l.h.s. 
of (10);

v  *  ( *  +  • iZ C lv D /b b  fc k >"3 / A 6 .
** -

Clearly values of V >10 are appropriate. Unfortunately the 
initial evolution of the amplitude of the wave modelled by (12) is
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The e v o l u t i o n  o f  th e  p o t e n t i a l  v o r t i c i t y  when s u b j e c t  t o  d i s s i p a t i o n .  The  

c r o s s - s e c t i o n s  o f  W a r e  t a k e n  a t  C=0 .1  a t  t im e s  ( a )  t - 9 ,  ( b )  t «1 8 ,  ( c ) t = 2 7 .  The  

f i e l d s  were o b t a i n e d  u s i n g  th e  same r e s o l u t i o n  a n d  i n i t i a l  c o n d i t i o n s  a s  r u n  C b u t  

w i t h  a h o r i z o n t a l  d i f f u s i o n  c o e f f i c i e n t  v = 2 . 1 0 -  ̂ ( s e e  ( 3 . 4 . 1 2 ) ) .
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severely retarded when y  > 10~3; the inviscid normal mode analysis 
is inapplicable for such values of V . The results of figs. 3.2 & 
3.4 by themselves, however, make it clear that the level of 
dissipation present in Hignett's experiments would strongly 
influence the critical layer's evolution and suggest that amplitude 
vacillations may become less regular as u and K are decreased.
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CHAPTER FOUR

THE STABILITY OF ROSSBY WAVES AND OTHER FREE MODES 
IN A BOUNDED f-PLANE CHANNEL

Section 4.1 INTRODUCTION

The 3D spectral model introduced in section 2.4 is able to 
simulate some exact finite amplitude steady state solutions of the 
inviscid quasi-geostrophic equations on an f-plane. The simplest 
solutions have streamfunctions which contain only one eigenfunction 
of the potential vorticity operator. These Rossby waves are
accurately represented in the spectral model by amplitude vectors 
with a single non-zero component. They are solutions irrespective 
of the Burger number or the aspect ratio of channel width to length. 
Combinations of Rossby waves with the same total wavenumbers (2.4.5) 
are also steady state solutions; the ratios of the amplitudes of the 
components of these solutions are arbitrary, but for fixed boundary 
conditions and channel aspect ratios they only occur at fixed 
(isolated) Burger numbers.

Streamfunctions of the form

v£ - Aj su\k ooirtvj-1/!) costTz + A  sinTfij (4.1.1)

are inviscid steady state solutions provided

*/8 ~  oC* +  +- | # (4.1.2)

White (1986) suggests that such solutions may give significant 
insight into the large amplitude steady waves which feature in 
rotating annulus experiments.

Combinations of Rossby waves with total wavenumber XQ, say, are
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F i g u r e  4 .1

The " l i n e "  o f  p e r t u r b a t i o n  n o d e s  i n v o l v e d  i n  t h e  l i n e a r  s t a b i l i t y  o f  a p l a n e  wave  

4>Q sexp i( k ^ x + l ^ y ).  The n o d e s  a re  r e p r e s e n t e d  by  p o i n t s  on t h e  h o r i z o n t a l  wavenumber  

p l a n e  ( k , l ) .  Mode ^  h a s  wavenumber k Q . I t s  l i n e a r  s t a b i l i t y  t o  a p e r t u r b a t i o n  

b a s e d  on  a node  t ^ e x p i ( k x + l y ) w i t h  wavenumber k i s  a t  i s s u e .  The a d v e c t i o n  o f  th e  

p o t e n t i a l  v o r t i c i t y  o f  b y  *  and  t h a t  o f  by  o n l y  i n d u c e s  n o d e s  a n d  The

i n t e r a c t i o n  o f  t h e s e  a n d  s u b s e q u e n t  n od e s  w i t h  ^  i n d u c e s  o n l y  t h e  n o d e s  l y i n g  on th e  

l i n e  o f  wavenumbers i l l u s t r a t e d .
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also constant amplitude uniformly drifting solutions of the q-g 
equations on a 3-plane. Their drift rates follow from Rossby's 
celebrated formula;

-* / *o . (4.1.3)

Uniformly drifting (including steady state) waves or wave 
combinations which are solutions irrespective of their amplitudes 
will be referred to as free modes.

The stability of Rossby waves is of considerable interest. 
Lorenz (1972) investigated the stability of plane barotropic waves

on an infinite 3-plane and found that, for the types of normal mode 
disturbance he permitted, a wave of velocity amplitude U and 
horizontal wavenumber K was stabilised when the ratio M s  (U K2)/3 
lay below a certain value. Gill (1974) extended Lorenz's work, 
considering the limits of small and large M particularly carefully. 
He showed that at small M only wave perturbations which satisfy a 
resonance condition (defined below) are unstable and that coarsely 
truncated representations of the stability are reliable. At large M 
a wider range of waves is unstable at the coarsest truncation but 
the truncation is less reliable; it is not valid asymptotically (for 
1/M ->• 0).

The Jacobian advection of a wave

by wave of (4) induces waves with streamfunctions exp i(0±0o), so 
the linear stability of wave \ft0 to a perturbation based on \p 

involves only a "line" of waves (see fig. 4.1) with streamfunctions 
exp i(0+n0Q). A wave perturbation is said to satisfy the (second 
order) resonance condition if the linear drift rates, according to 
(3), of and \l>+ = exp i(0 + 0Q) or \p_ s exp i(0 - 0Q) are the same 
as those of the main wave . When M << 1 wave perturbations which

vVo —  tCKeX + Utp s GXp CQt> (4.1.4)

(4.1.5)
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do not satisfy the resonance condition will tend to drift relative 
to each other; unable to maintain a constant shape they cannot be 
normal mode perturbations. As the main wave amplitude and hence M 
is increased it may advect the perturbation so as to combat the 
Rossby drift; the unstable normal mode solutions found by Gill at 
small M which almost satisfy the resonance condition are of this 
type.

The stability of Rossby waves in a finite domain differs from 
that in an infinite domain in at least two important respects. 
Firstly the disturbances to the main wave must satisfy the imposed 
boundary conditions; these greatly restrict permissible 
disturbances. Secondly the main wave, whose stability is in 
question, cannot be represented by a single plane wave; it is rather 
a combination of two plane waves

<[j =  » r  KTT* S tn  fljj

(4.1.6)
= i It uiy l(rKirjc -TUj} ~ #

As a result the perturbations are not confined to a line of 
eigenmodes as in fig. 4.1 but explore a net of eigenmodes such as 
that of fig. 4.2 (pl58).

Hoskins (1973) and Baines (1976) have investigated the stability 
of barotropic Rossby waves on a sphere

tyn *  J = -n(«‘* 0 4 ’n (4.1.7)

using truncated spectral representations of the barotropic vorticity 
equation. Hoskins considered the waves' stability to perturbations 
including only zonal flows and azimuthal harmonics (i.e. azimuthal 
wavenumbers 0, 1, 21,...). Baines also considered the stability to 
waves including other azimuthal wavenumbers (such as sideband 
instabilities). Baines noted that wave modes , vj/J, 1 contain
the three components of the fluid's angular momentum. Their 
amplitudes are hence constants of the inviscid motion. The five 
wave modes with n=2, which cannot interchange energy amongst 
themselves, must be stable to small amplitude disturbances by
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Fjortoft's anti-cascade property because they cannot transfer energy 
to modes (n=0 or n=l) with lower total wavenumbers. Baines found 
all waves with n > 2 to be unstable when their amplitudes were 
sufficiently large. Baines and Hoskins found that certain very 
coarse truncations could give moderately accurate representations of 
the amplitudes of marginal stability and Baines reported that 
convergence of the solutions was achieved using 30 perturbation 
modes.

Hoskins (1973 appendix) and Plumb (1977) have considered the 
stability of barotropic Rossby waves (6) (of gravest meridional 
structure) in a Cartesian channel of width L and infinite length on 
a 0-plane. Hoskins showed that a resonant triad instability 
involving a zonal perturbation and harmonics can only occur when 
rk > 2. The truncation used by Hoskins is only valid when M is 
small. Plumb, studying the case M«l, found that there were no 
(second order) resonant triad instabilities on waves with 
rk < 0.681. These waves, however, were shown to be unstable to 
(weaker) side-band instabilities. Plumb (1976) has also discussed 
the stability of small amplitude waves in finite periodic channels 
for which there are, in general, no precisely resonant triad 
instabilities.

The stability of Rossby waves of the form (6) in a bounded 
zonally periodic Cartesian channel on an f-plane appears to have 
escaped attention. This may be in part because the concept of triad 
resonances breaks down on an f-plane; all Rossby waves have zero 
phase velocity and hence all triads are resonant so the resonance 
criterion does not pick out a small subset of interacting modes. 
Perhaps investigators have also been deterred by numerical problems 
in achieving adequate resolution of the instabilities or considered 
the problem to be of minor importance compared to that on the 
sphere.

Numerical results presented in section A.3 suggest that waves (6) 
with k<4 are linearly stable to normal mode disturbances providing 
that ^  = exp iritx sin 2ny has a larger total wavenumber than (6);
i.e. that
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r* ( K1 - \ ) i ? (4.1.8)

Hence there are stable vaves of more than one azimuthal wavenumber 
in long narrow channels and satisfaction of the Fjortoft 
anti-cascade condition is not sufficient for a wave to be unstable 
to normal modes. The results also show that extremely fine spectral 
truncations are required to resolve normal mode perturbations to the 
waves and that in coarse truncations the stability depends 
substantially on whether the truncation is "even" or "odd". The 
formulation and tests of the code used to obtain these results are 
described briefly in section 4.2. The code implements the 3D 
spectral model introduced in section 2.4. Different versions of the 
code can be used to perform non-linear time integrations, linearised 
time integrations or matrix eigenvalue problems.

Section 4.3 also reports results on the stability of two free 
modes each of which contains an axisymmetric mode and a wave mode. 
The first free mode is barotropic; the second is baroclinic and 
hence of particular interest for annulus flows. Approximate values 
of the amplitude ratios of the free mode components at marginal 
stability are established from the numerical results.

Contending interpretations and techniques for the proof of the 
Rossby waves' stability are surveyed in section 4.4. A qualitative 
analytical study of singularities imposed on a neutral mode at 
values of r bordering those defined by (8) is also presented because 
it is not entirely clear from the numerical results that (8) marks 
the stability transition. Some suggestions and criticisms 
concerning the interpretation of large amplitude steady waves in 
rotating annulus experiments in terms of free modes conclude the 
discussion.
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Section 4.2 DESCRIPTION OF THE NUMERICAL SPECTRAL MODEL

The formulation, testing and documentation of a numerical model 
is an exacting and lengthy task; more detailed descriptions of the 
model can be obtained from the author on request.

There are three versions of the model. The one developed first 
performs time integrations of the full (non-linear) equations. It 
allows investigation of almost any truncation but is only 
respectably efficient for coarse truncations. It may be used to 
study the evolution of waves subject to dissipation on axisymmetric 
flows tending to relax to non-zero amplitudes. The second version 
performs time integrations for linear perturbations to a single 
large amplitude wave mode and/or a single axisymmetric mode. The 
third version finds the normal modes of such linearised problems by 
formulating a matrix eigenvalue problem.

All versions of the model use the same subroutines to specify the 
modes included in the calculation, to determine the non-zero overlap 
integrals and to calculate their values. Descriptions of these 
shared elements of the model are followed by notes on the time 
integration and the matrix formulation and solution. Summaries of 
the methodical tests of the model conclude the section.

Non-dimensionalisation and mode definition

The non-dimensionalisation used in the model is the same as that 
used in section 2.1 and defined by (2.1.12), except that in place of 
x* = L x, L being the channel gap width, we use

X *  =  l * / l  . X f  (4.2.1)

Lx being the channel's periodic repeat length; the domain extends 
from x = 0 to x = 2  as a result. The model assumes that N2 is 
independent of z so the wave modes are given by simple trigonometric 
functions
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=. sinllltfij cojMfTx , (4.2.2)

Their total wavenumbers are

♦- ls* v rv»;V6 ) T (4.2.3)

in which

r  =  l u / U  & «  N V / ( ^ L 4 ) . (4.2.4)

r will be referred to as the gap width ratio. It is small for long 
narrow channels. The axisymmetric modes are of the form

s  to&MvTTt. £;(\^ . (4.2.5)

The functions fA(y) are, of course, eigenfunctions of d2/dy2 •
9

a* J ; / i f  • *1 h

The gravest cross stream mode is 
following forms;

•

allowed to take any of the

f. =  8i,' T 3 cVoit«. A

= Suital^-VO , et>0 ; fi" 3 " * ^  Aeicft. ft
(4.2.6)

Choice A is used to investigate the stability of barotropic Rossby 
waves. Choice B produces axisymmetric flows (u=-3^/3y) which are 
symmetric about mid-channel. Choice of one of these forms and a 
value of a implies a choice of the Sturm - Liouville b.c. 
coefficients

a J; + t = 0 (4.2.7)

This ratio is taken to be the same for all axisymmetric modes; no 
provision is made to allow different values for different vertical 
wavenumbers. The structure and lateral wavenumber of the higher 
lateral wavenumbers is hence determined. The modes are of the form
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(4.2.8)
ss cos «Cn anA $■* = Sin If'li) cWtA-B

Basic model equation and truncations

The present model formulation is for an f plane only. It can be 
vised to investigate truncations consisting of arbitrary finite 
combinations of wave and axisymmetric modes. Extension of the model 
to the 0 plane would require a mode sin kiitx cos minz sin liiiy to be 
included in a truncation if and only if cos k̂ Jtx cos minz sin lilty 
were included. A straightforward adaptation of the model for use on 
a 0 plane has been devised but not implemented. For a truncation 
with N modes,

The second term on the r.h.s. of (10) represents diffusive 
dissipation of waves and forcing of the axisymmetric flow; a£ is 
zero for wave modes but may be chosen to be non-zero for each 
axisymmetric mode. There is some freedom of choice in the
dependence of yi on \L, kA, 1£ and m. and the constants of
proportionality, ui, for axisymmetric modes and wave modes are 
chosen separately.

Calculation of overlap coefficients

The overlaps < to J(to> to,) > are calculated using selection 
rules and formulae for the non-zero integrals. The interactions 
between one axisymmetric mode and two wave modes are calculated by 
one subroutine and interactions between three wave modes by a

$  S Z. a; to ,i=\ (4.2.9)

the model equations are ( cf (2.4.11))

(4.2.10)

( a; - a;) <to*Vi>.
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second. Each overlap involving an axisymmetric mode <f>0 and wave 
modes ^  and may be deduced from

< V i  = lit H t h *  (kiiyfc. (4.2.11)

using the triple product relation. This integral splits naturally 
into the product of three integrals over x, y and z respectively. 
The vertical integral

~ J0 coSrti,Tr% cosm ilTx cosiWolTx Jt,
(4.2.12)

— 0 mi a nij ■*•»#© or »vtx B*nt +w, o r  w6 =

Expressions for the integrals and combinations involved in the 
overlap sums are written down in the model documentation. The 
selection rules limiting interactions between modes, which are used 
in the construction of the truncations in the next section, are 
stated below. They are easily inferred from simple symmetries and 
trigonometric formulae.

i) wave - wave overlap <vj/1 J(^2, )> is zero unless

kl = k2 + k3 or k2 = k3 + ki or k3 n ** i-* + k

= 12 + or *2 = *3 + or *3 ■ \ + 1

= m2 + m3 or m2 = m3 + or m3 = raj + m.
& the overlap contains an even number of cos kx modes

ii) axisymmetric(mode 0) - wave (modes 1 and 2) interactions 
are zero unless

one wave mode * cos kxx and the other wave « sin k1x
& m1 = m2 + m3 or m2 = m3 + mi or m3 = mx + m2
& for choice A axisymm. modes

li ■ h + i3 or 12 = i, + ii or 13 ■ i i + 1,
or for choice B axisymm. modes

11+12 is even(odd) if the axisymmetric mode is even(odd) 
about mid-channel

The self overlaps < ^ , ^  > are determined similarly (and more 
easily).
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Time integration

Initial values of the mode amplitudes are specified as the modes 
are chosen for inclusion. The non-zero overlap integrals are, of 
course, selected and evaluated once and for all before integration 
begins. The rate of change of each amplitude at each time step is 
found by summation of overlaps multiplied by mode amplitudes and 
integration achieved by a simple leapfrog scheme. A Robert filter 
can be used to enhance numerical stability. The integration is 
started by Miyakoda's method of a short forward step followed by 
leapfrog steps up to the chosen time step. For numerical stability 
it seems to be sufficient to satisfy K U At «  1 , K being the 
largest azimuthal wavenumber, U the maximum flow velocity and At the 
time step length.

With Nw and NA denoting the number of wave modes and axisymmetric 
modes respectively, the number of wave-wave overlaps is < 8 Nw2, 
whilst the number of wave-axisymmetric overlaps is < Nw .NA . Time 
stepping by summation of wave-wave interactions becomes uneconomical 
in non-linear integrations when more than about 160 wave modes are 
present. Wave-wave overlaps at finer resolutions would be more 
efficiently calculated by transforming the wave fields of ip and 
q = V2 \p onto a uniform spatial grid, calculating J(^, q) on the grid 
and transforming back to spectral space. The wave-axisymmetric 
interactions could continue to be calculated using the overlap 
summations since NA «  Nw at fine truncations (when K is 
appropriately large). Time integrations linearised about a Rossby 
wave or free mode are as efficient as they would be with a mixed 
spectral gridpoint model. Code to allow more than one large 
amplitude wave mode and/or axisymmetric mode has been devised but 
not implemented.

Eigenvalue analysis

On setting d/dt(XA aA) = T (XA aA), (10) reduces to an eigenvalue 
problem which may be written in the form

l a - r x l  v> = o (4.2.13)
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A being an N x N unsymmetric square matrix vith real coefficients 
and b the vector vith elements bA = \  a£. When N »  L , L being 
the number of large amplitude modes, A is a sparse matrix. No 
advantage of this fact is taken by the NAG routines which are used 
to find the eigenvalues and eigenvectors. (The eigenvalues are 
determined by reducing the matrix A first to upper Hessenberg form 
by elementary Householder similarity transformations and then to 
triangular form by the Francis QR algorithm.) The code assumes that 
the fluid is inviscid, a restriction which could be alleviated 
relatively easily.

Tests of the models

After the first version of the model was built a systematic test 
of the selection rules and evaluations of the overlap summations was 
undertaken. The success of this test gives considerable confidence 
that the code calculates these overlaps according to the formulae 
established in the documentation. Checks of the total rate of 
change of "energy" (2.A.13) and enstrophy (2.A.14) show the double 
precision version of the model to conserve these quantities to very 
high accuracy (consistent with the precision of the calculations) in 
runs which include all axisymmetric - wave overlaps of type B and 
all types of wave-wave overlaps. This check is a valuable 
cross-check on the formulae established in the model documentation. 
After type A axisymmetric modes were introduced and the second and 
third versions of the model completed, intercomparisons were made. 
The non-linear model continued to conserve "energy" and enstrophy 
and for linear perturbations (of amplitude 10-10) to a two component 
free mode, containing a wave and axisymmetric components, produced 
results in acceptable agreement with the linearised time stepping 
model. The most unstable eigenvalue of the matrix analysis agreed 
to within 0.1% with that inferred from the linear time stepping 
integration after AO non-dimensional time units.
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Section 4.3 THE STABILITY OF BAROTROPIC ROSSBY WAVES
AND OTHER FREE MODES: NUMERICAL RESULTS

This section commences with results, obtained with the numerical 
model described in the previous section, concerning the stability of 
barotropic Rossby waves,

= JL CAS WlTx , (4 .3 .1 )
IT

in periodic f-plane Cartesian channels against normal mode 
disturbances. Only waves Y0 with k =2,3 and 4 are discussed. 
These are amongst the modes (which satisfy the boundary conditions) 
with the smallest total wavenumbers . According to the anti-cascade 
argument unstable perturbations must include at least one mode of 
smaller total wavenumber than the main wave; Y0 with k=2, for 
example, can only be unstable to perturbations which include 

= expinx sinny or = sirnty. We shall say that a perturbation is 
based on the gravest mode contained in it. Results are presented 
first for perturbations based on wave modes and then for 
perturbations based on the axisymmetric mode ^ = sinny. Results for 
a barotropic free mode and then a baroclinic free mode follow. 
Suggestions for future work conclude the section.

Definition (4.2.1) for x will be used in this and the following 
section so streamfunctions will have cos knx (rather than cos rkitx) 
dependence. Note also that the velocity field of the Rossby wave 
(1) is

( « * ,  = ( ~  tjtskTTx tocTTvj , -rW siy\V(̂ V sî TTij (4 .3 .2 )

So if rk < 1 then the maximum velocity of the Rossby wave is 1,
which is a convenient value for the assessment of growth rates, but
if rk > 1 then the maximum value of |v I = rk > 1.I g i
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Figure 4.2
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Figure 4.3
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Perturbations to Rossby waves based on wave modes

The interaction of a small amplitude mode, \f/ = cosmnx sinity, with 
Y = cosknx sinny induces small amplitude modes sin(k±m)itx sin2ny. 
The interaction of these with coskltx sinity induces further modes. 
The net of modes induced is illustrated by fig. 4.2, which applies 
to a perturbation to cos3nx sinity based on cositx sinity. The net 
extends up to arbitrarily large wavenumbers and must be truncated 
for the purposes of numerical calculations. The "square" truncation 
which has been used includes at level N all modes with lateral 
wavenumber <N and azimuthal wavenumber <kN (e.g. <3N in fig. 4.2).
The truncation at level N includes N2 perturbation modes.

It is not immediately clear that perturbations to cosknx sinity 
based on sinmitx sinity will yield the same eigenvalues as those based 
on cosmitx sinity. Comparison of the overlap sums for the two cases, 
however, reveals a symmetry between them and they do have the same 
eigenvalues. Pairs and quartets of normal mode solutions of the 
stability problem under consideration, namely,

T V 4* + T ( &  , ) = 0
(4.3.3)

\|/ =s 0 o* V j=0,l ; p trio itt. t* y , 0 SXSZ)

in which T is the eigenvalue and Tr the growth rate, are also 
related. If (Y(x,y-%), T) is a solution of (3) then so are (vj/*, T*) 
and (\J/(-x,-y+%), - D . So stability transitions occur either by 
exchange of instabilities (Chandrasekhar 1961) with a pair of 
conjugate imaginary eigenvalues passing through zero and yielding 
two real eigenvalues of opposite sign; or by a pair of unstable 
solutions with conjugate eigenvalues appearing with a similar pair 
of decaying solutions.

Table 4.1 displays the most unstable eigenvalues of normal mode 
perturbations to YQ = 1/n c o s 2 jix sin ny based on i|/ = cositx sinny for 
two values of the aspect ratio, r, (4.2.4). At both these aspect 
ratios all truncations with odd values of N have no unstable modes 
and the instability found with even truncations decreases rapidly in
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Table 4.1

r = 1/3 r = 1
Truncation Growth Truncation Growth
level (N) rate level (N) rate

2 1.51.10-1 2 7.55.1CT1
3 S 3 S
4 1.85.1CT2 4 9.80.10T2
5 s 5 S
8 6.39.10-4 8 4.47.1(T3
9 S 9 S

12 1.75.10"4
13 S

Truncation dependence of the growth rate of the most unstable perturbation based on 
= cosjk sinity to YQ = 1/Jl cos2nx sinity for r=l/3 and r=l. "S" indicates that all 

normal modes are (neutrally) stable.

Table 4.2

Azim. wavenos.
k m r r r.

r 1

2 1 1.000 0.0 0.0
2 1 1.005 0.116 0.0
3 1 0.77 0.0 0.077
3 1 0.78 0.065 0.0
3 2 0.610 0.0 0.087
3 2 0.615 0.091 0.0
4 1 0.585 0.0 0.003
4 1 0.59 0.195 0.0
4 3 0.44 0.0 0.153
4 3 0.45 0.097 0.0

Determination of the aspect ratio (r) of marginal stability for wave perturbations 
based on Y = cosmnx sin Tty to a large amplitude wave YQ = 1/n cosknx sin Tty. The 
truncation level is It 13 in all cases; I* is the perturbation's growth rate.
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strength as N increases. We conclude that the main wave is stable 
to this wave perturbation at both aspect ratios. The significant 
difference between coarse even and odd truncations is a 
characteristic of all results presented here. It is somewhat
reminiscent of the results for truncated spectral representations of 
the stability of the u = -%cosnz internal jet flow (section 2.4). 
There stability transitions were reproduced exactly by perturbations 
with an even number of modes and with gross error by coarse ’’odd" 
truncations.

Stability transitions, according to truncations with N=13, for Y0 
with k=2, 3 and 4 are tabulated in table 4.2. The wavenumber 2 main 
wave is evidently marginally stable at r = 1.0. At this aspect
ratio, sinnx sin 2ny, a prominent member in the net of perturbation 
modes, has the same total wavenumber as the main wave. Some of the 
interactions with other modes and the corresponding terms in the 
stability matrix will change sign at this critical aspect ratio. At 
higher aspect ratios than the critical two modes will have smaller 
total wavenumber than the main wave so energy cascades will have 
more freedom. The wavenumber 3 main wave has a smaller critical 
aspect ratio for perturbations based on cos2nx sinny than c o sjix  

sinny. The net of modes based on the former includes sinnx sin2ny, 
which has a lower total wavenumber than its counterpart sin2nx 
sin2ny in the c o sjix  sinny net. sinnx sin2ny has the same total 
wavenumber as the main wave when ( 9 - l ) r 2 =3;i.e. r = 0.6124,
whilst sin2nx sin2ny has the same total wavenumber as the main wave 
when (9 - 4)r2 = 3; i.e. r = 0.7746. Inspection of table 4.2 shows 
that the transitions for N=13 must be very close to these values if 
not identical with them. These results suggest that

a net of perturbation modes for an odd truncation
allows instability if and only if two modes in it have (4.3.4)
smaller total wavenumber than the main wave itself.

This "hypothesis" also agrees with table 4.2 for k=4 and m=3 
((16-l)r2 = 3  * r = 0.4472). The transition for k=4 and m=l,
however, does not agree with (4). (4) predicts that the transition 
will occur when (16-9)r2 =3 i.e. r=0.6547, whilst the numerical
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Table 4.3

r N=3 N=5 N=13 N=12

1.000 S S S 1.8.10-4
1.001 0.088 0.070
1.005 0.156 0.116 0.060
1.01 0.279 0.220 0.163 0.081
..1 0.887 0.685 0.467 0.141
.2 1.205 0.891 0.478 0.262
3 1.299 0.863 S 0.307
4 1.036 0.047 S S
5 S S

Si the truncation level N and the aspect ratio r of the growth rate, T

i most unstable normal mode perturbation based on v|/ = cosnx sinny to a large
:ude wave YQ = 1/n cos2nx sinity. "S" indicates that all modes are stable.

r

Table 4.4

= 0.3 r = 0.6

Truncation Growth Truncation Growth
level (N) rate level (N) rate

2 1.81.10-1 2 4.24.10-1
4 2.87.10T2 4 1.92.10-1
6 1.09.10T2 6 1.17.10T1
8 1.54.10T3 8 8.28.10-2
10 3.03.10T4 10 6.11.10-2
12 8.65.10T5 12 4.33.10-2

Truncation dependence of the growth rate of the most unstable perturbation based on 
\l> = cos2nx sinity to Y0 = 1/n cos3nx sinjy for r=0.3 and r=0.6.
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results locate the transition within the range 0.585< r< 0.59. This 
transition is quite a strong one (much stronger for instance than 
the k=3, m=l transition) and cannot be ignored. The reason why it 
does not conform to (4) is not clear. Certainly (4) cannot be 
correct as it stands but the present author has been unable to 
formulate appropriate qualifications to it to make it valid.

The results in table 4.3 show that the transition for the 
wavenumber 2 flow is located exactly at r = 1.0 by both N=3 and N=5 
truncations, but that the growth rate in the unstable region near 
the transition is over-estimated by these coarse truncations (as is 
the case for the zonal jet in section 2.4). The transition to 
healthy instability is remarkably sharp even for the N=13 case. 
Indeed the eigenvalue appears to depend on the square root of the 
supercriticality of the aspect ratio (i.e. on (r-1)1*). Table 4.3 
also reveals that the instability does not increase monotonically 
with r; the N=13 truncation shows a return to stability for
1.2 < r < 1.3. Similar returns to stability for the N=3 and N=5 
truncations occur for 1.4 < r < 1.5 and for the N=12 truncation for
1.3 < r < 1.4. Unfortunately, however, the aspect ratio at which 
stability returns and also the maximum growth rate for the 
continuous (untruncated) problem cannot be inferred from table 4.3 
with tolerable reliability. Higher values of r have not been 
investigated thoroughly but it appears that instability recurs at 
higher values of r.

"Odd" truncations with N=3 and N=5 have also been found to locate 
the stability transition according to (4) for perturbations to 
1/it cos3nx sinity based on cos2nx sinny. An indication of the 
convergence of even truncations of this perturbation is presented in 
table 4.4. As in table 4.1 one column of table 4.4 has r well below 
the critical value (r=0.6124) according to (4) and the other has r 
only slightly sub-critical. The convergence of the first column to 
zero is rapid but that of the second is at best very slow and much 
worse than that of table 4.1.
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Table 4.5

r = 1/3 r = 1

Truncation Stability Truncation Stability
level (N) level (N)

3 S 3 S
4 5.16.10r2 4 1.56
5 S 5 S
6 5.04. KT3 6 1.05
9 S 9 S
10 1.82. HT4 10 0.532
15 S 15 S
16 5.36.KT7 16 0.224

Truncation dependence of the growth rate of the most unstable perturbation based on 
i|/ = sin tty to = 1/it cos2tix sinny for r=l/3 and r=l. "S" indicates that all normal 
modes are (neutrally) stable.

Table 4.6

k r N=5 N=7 N=13

2 1.14 (0,0.373)
2 1.145 (0.052,0)

2 1.160 (0,0.111)
2 1.165 (0.384,0)

2 1.170 (0,0.330)
2 1.175 (0.250,0)

The eigenvalues (T , T) of the most unstable normal mode perturbation to 
Y0 = 1 / ji coskJK siniy based on ^ = sinity as a function of aspect ratio 
r and truncation level N.
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Perturbations to Rossby waves based on axisymmetric modes

These instabilities are based on the sinny mode which on 
interaction with the cosknx sinity mode induces a sinknx sin2lty mode. 
The net of modes excited by further interactions is illustrated by 
fig. 4.3 (pl58). A "square" truncation of level N is defined to 
include all of these modes with lateral wavenumbers <N and azimuthal 
wavenumbers < k(N-l). Note that all perturbation modes in fig. 4.3 
have azimuthal wavenumbers directly proportional to k; the 
perturbation itself has azimuthal wavenumber k. So waves 
cosknx sinny at aspect ratio rQ have the same stability properties 
as cosnx sinny at aspect ratio krQ.

Table 4.5 displays the dependence of the stability of 
Y0 = 1/n cos2nx sinny on the level of truncation for aspect ratios 
r=l/3 and r=l. All "odd" truncations are stable and the instability 
in even truncations with r=l/3 decreases in magnitude rapidly as the 
truncation level increases. At r=l the convergence to stability for 
even truncations is extremely slow (cf tables 4.1 and 4.4). One 
expects convergence to occur so that very fine even and odd 
truncations agree closely.

The aspect ratio of the stability transition for odd truncations 
depends on the truncation level as may be seen from table 4.6; this 
behaviour is in contrast to the exact location of the transition by 
coarse odd truncations of wave perturbations. It seems likely that 
the perturbations to cos2nx sinny become unstable for r > 1.1. If 
this is so, then the wave based perturbations involving sinnx sin2ny 
to large amplitude waves cosknx sinny with k=2, 3 or 4 break out at 
smaller aspect ratios than the axisymmetric based ones; this would 
be qualitatively similar to the findings of Baines (1976) concerning 
the stability of Rossby waves on the sphere. ^ = cosnx sinny is 
stable to all wave based perturbations but unstable to axisymmetric 
based ones when r > 2.2.
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Table 4.7a

N stable unstable

2 unstable
3 0.39 0.40
4 unstable
5 0.26 0.27
6 unstable

8 0.28 0.29
9 0.29 0.30

Table 4.7b

ao
N stable unstable

6 0.080 0.079
8 0.014 0.013
10 0.010 0.009

The dependence on the truncation level N of the lower and upper bounds on 
the amplitude ratio a0 at which the barotropic free mode (4.3.5) becomes 
unstable to perturbations based on a) ^ nx sinity and b) ^ = sinny.
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Perturbations to a barotropic free mode 

Barotropic streamfunctions of the form

s  flip 2̂ *11 ^ \  “~  A q (4 .3 .5 )
IT ” TT

have been investigated with r=<j3/2. For this value of r, Y0 is a
free mode. The net of modes used for the wave perturbation based on
55\ itx sinity with truncation level N includes all wave modes with 
odd azimuthal wavenumber < 2N-1 and lateral wavenumber < N. The N 
level truncation hence involves 2 N2 modes. The dependence of the 
stability of the free mode on the amplitude ratio aQ and the 
truncation level N is indicated in table 4.7a. With odd truncations 
the free mode is stable provided aQ is smaller than a critical value 
which is bounded by the values in the table. At coarse "even”
truncations the free mode was unstable at all values of aQ 
investigated (a0 = 0, 0.25, 0.5, 0.75, 1.), but the finest even and 
odd truncations investigated, namely N=8 and N=9, show good 
agreement in the location of the transition. It appears that the 
free mode is stable to these wave perturbations if aQ < 0.28. In
qualitative terms, the presence of the zonal flow could be said to
destabilize the wave or the wave to stabilize the zonal wave.

The net of modes used for the perturbation based on \J/ = sin ity at 
level N includes all modes

. cos 
y  — sin TT (even) X Siv\ LcAA) 'R'tj

t. _  e-GS +  -  sin T  («1<0 X sin Uvar?) Tij

with azimuthal wavenumber < 2(N-1) and lateral wavenumber < N. From 
the results of table 4.5 (for the stability of Y0 = 1/n cos2nx sinity 
to perturbations based on sinny) odd truncations are stable when 
aQ = 0 and even truncations unstable. The N=9 truncation was found 
to be stable for aQ = 0, 0.25, 0.5, 0.75 and 1. Table 4.7b shows 
that the "spurious" instability of coarse even truncations of the 
zonal flow streamfunction sinTty is stabilised by relatively small 
additions of the streamfunction sin2ny. So the free mode appears to 
be stable to streamfunction perturbations based on sinity at all
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TABLE 4.8a
MMAX=2

N a‘
0.1 0.15 0.2 0.25 0.3 0.5

4 6.51.10-4 3.53.10“4 3.22.10"2 7.43.10“2 0.108 0.234
5 8.22.io~5 1.07.10"4 1.16.10-3 5.06.10“2 7.32.10“2 0.235
8 5.54.10"6 5.27.10“5 1.17.10-4 1.73.10-2 9.51.10“2 0.239
9 S 4.71.10-5 S 1.87.10"2 8.86.10“2 0.240

TABLE 4.8b
N=5

aoMHAX
0.1 0.15 0.2 0.25 0.3 0.5

2 8.22.10“5 1.07.10“4 1.16.10“3 5.06.10“2 7.32.10“2 0.235
3 3.82.10“5 2.23.10“4 7.94.10“4 S 4.34.10
4 7.38.10“5 1.44.10“4 7.07.10“3 3.41.10“2 6.44.10“2 0.171
5 6.29.10“5 1.15.10“4 6.67.10“4 8.31.10"3 0.147
6 7.38.10“5 1.51.10“4 5.48.10“3 2.97.10“2 5.31.10-2 0.160

The maximum growth rates of perturbations based on \p=cosnx s inny to the baroclinic free 
mode (4.3.7) - (4.3.9). (a) displays the dependence on the amplitude ratio aQ and the 
horizontal truncation level N for a vertical truncation MMAX=2. (b) displays the dependence 
on aQ and MMAX for N=5.



values of a,o *

In conclusion, the barotropic free mode is probably stable to all 
normal modes when aQ <0.28.

Perturbations to a baroclinic free mode based on wave modes

The streamfunction

—  fit© CasTTx 4* ) -  * t> t o s lT T *  * tn T u  ( 4 . 3 . 7 )

TT IT
with an aspect ratio, r, and a zonal meridional flow profile 
reasonably representative of steady waves in differentially heated 
annuli

r = '|3 ; a 1
is a free mode when

ll6 = ( f L / M v O a = i t A r 1

The linear stability of this flow has been investigated using a 
perturbation net based on ip = cositx sinny. The 3D net at each 
cos(even)nz level is the same and may be generated from 
*J/ = c o s h x  sinny cos(even)nz using ipQ = c o s 2 h x  sinny alone (see fig. 
4.2). The net at each cos(odd)nz level starts from
sinnx sinny cos(odd)nz and may also be generated using only 
\pQ = cos2nx sinny. Square horizontal truncations with vertical 
truncations at cos (MMAX-1)jiz have been used; an N by MMAX truncation 
contains MMAX.N2 modes. The dependence of the stability of (7) on 
the amplitude aQ is presented in table 4.8; 4.8a provides the 
dependence on N for the minimum baroclinic truncation (MMAX=2) and 
4.8b the dependence on MMAX for the fixed horizontal truncation N=5.

The results with MMAX=2 for N=8 and N=9 agree well, with the main 
stability transition occurring near to aQ = 0.25. Both coarser 
truncations (N=4 & 5) in table 4.8a give transitions at lower values 
of aQ. In table 4.8b the MMAX = 2 truncation has a sharper
transition than those of MMAX = 4 and 6, which agree quite well.

(4.3.8)

*  2 * 4  . (4.3.9)

169



The MMAX = 3 and 5 truncations have larger critical values of aQ 
than the even MMAX transitions and there is no quantitative 
agreement between the even and odd MMAX truncations. Whilst the 
above results are not conclusive they do suggest that the free mode 
may be stable to these wave based perturbations when aQ <0.25.

Suggestions for future work

Most of the quantities tabulated in this section converge only 
slowly as the spectral truncation is relaxed. Indeed investigations 
with improved truncation are required to answer several questions 
raised in the text. The maximum growth rate and aspect ratio of the 
return to stability of wave perturbations to Y0=1 /it cos2itx sinny, 
for instance, cannot be inferred from table 4.3. Examination of the 
maximum growth rates of finer even truncations than those presented 
in tables 4.4 and 4.5 is also desirable since the convergence to 
stability assumed in the text is very slow and the growth rates with 
the finest truncations presented are quite substantial. Pinpointing 
the aspect ratio of the stability transition for harmonic 
disturbances (table 4.6) by enhancing the resolution is another 
important task. Finally the results of tables 4.7 and 4.8 would 
clearly benefit from extension to finer truncations.

Calculation of the eigenvalues and eigenvectors of a wave 
perturbation with an N=13 truncation takes an IBM3081 about 30 
seconds. The time required for these eigenvalue calculations is 
approximately proportional to N6. So whilst eigenvalue calculations 
with N=25 are feasible (though expensive) calculations with N=49 are 
not. It appears that time integrations of the linearised problem, 
for which the calculation time is proportional to N3, are more 
appropriate for such fine truncations. Investigations of 
alternatives to the square truncations used throughout this section 
may also shed light on the convergence problems.

The spatial structures of the most unstable normal modes, 
particularly those near stability transitions, is of considerable 
interest. Maps of the contours of the streamfunctions could be 
produced with relatively little effort. These would complement the
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calculations concerning incipient instabilities presented in section 
4.4 (see (4.4.13) - (4.4.22)) and might illuminate the reasons for 
the different behaviour of even and odd truncations. Maps of the 
incipient k=4, m=l instability (see table 4.2), which does not 
conform to "hypothesis" (4), might also be valuable.

The dependence of the stability of Rossby waves in periodic 
3-plane channels on MbUK2/3 could also be investigated. For small M 
a Rossby wave will be stable except in (the minority) of channels 
which support almost resonant triads. It would be interesting to 
see whether or not waves always become more stable as M is decreased 
from its infinite value on an f-plane. This study would complement 
those of the stability of (5) and (7) which suggest that zonal flows 
destabilize barotropic Rossby waves in f-plane channels.
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Section 4 .4 DISCUSSION

The numerical results of the previous section suggest that there 
are some Rossby waves in narrow f plane Cartesian channels, other 
than the channel's gravest modes, that are stable against normal 
mode perturbations. The results do not prove this, however, and 
certainly require further interpretation. Analytical studies are 
needed to explore the senses in which the waves are stable and the 
location and nature of the stability transitions.

The most enticing approach is to seek conservation relations 
which account for the stability in the spirit of Fjortoft's argument 
or angular momentum conservation (see section 4.1). It is worth 
noting that if there is such a conservation relation it cannot be 
satisfied by even truncations of the spectral model (see table 4.1). 
Furthermore the stability of wave modes other than gravest modes 
cannot be inferred from the criterion based on local potential 
vorticity conservation derived by McIntyre & Shepherd (1987). This 
point is most easily made by considering the integral discussed by 
Blumen (1968) for the case of an internal baroclinic jet

T  s  +  (‘ty/fcj)1 +- %  m h z ] 1 (4.4.1)

I is a constant of the motion for any (multi-valued) function H of q 
with well defined local horizontal derivatives ( VhH = 9H/3q Vhq). 
The dependence of I on small perturbations to the streamfunction 
Y.(q) of a free mode may be investigated by setting \|/ = +5v|/.
Blumen shows that on choosing

(4.4.2)

I - I reduces tos

i - i s = Jv ( • » ! » * +

McIntyre & Shepherd (1987) show that if
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and

iv v '16 ’t y i u * ) *  *  * ?  L  W M l+ (tt/ fcj) + ‘l& f tX k t jW iA .A .5 )

far Kc-t on ^

then I is a maximum at Is (for arbitrary perturbation fields Sq) if 
c kJ > 1. Andrews (1984) has shown that severe restrictions on the 
applicability of similar results for containers with azimuthal 
symmetry can be found by considering the effect on I of the 
perturbations resulting from zonal displacements of the field Y . 
By (1), I is clearly unchanged by such displacements. Writing 
co = 3Yg/3x one finds that (3), (4) and (5) imply that

Jv U(4|t«)l + (fculjihjf' + 'M lw w 'jv ' = /Vj,(VK\o +V6^‘*j/ixt ) W

>, 4 Iv (VKl u> •/$ iV

>, C ^ 0X ( 4 ^ M 1 + - W J 3)l+ y * M l t ) t<«V'. (4.4.6)

Hence free mode internal jet flows with non-axisymmetric components 
can only be proved to be stable by these methods if c kJ = 1 and 
3Yg/3x includes only the gravest mode(s) of the container (and 
c = -3Yg/3q where 3Yg/3x t  0).

A second avenue of approach involves investigation of the 
structure of the determinants of the matrices of various spectral 
truncations. It is possible to investigate extremely coarse
truncations involving only four or five triad interactions 
analytically but the task is tedious and probably of little value. 
Numerical investigation of alternatives to the square truncations 
used in section 4.3 may be more rewarding. The importance of the 
structure of the perturbation net can be illuminated by analytical 
studies, however, as the following proof of a restriction inherent 
in normal modes involving only a single line of perturbation modes 
shows. Consider the linear perturbation net of fig 4.4. Let
\  ^  and \ L > Xj for i>2 and consider the case when AQ, the total

^  C  > 0  tkfou^Lou}” JLomiaM. (4 . 4 . 4 )
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+ ,  i 'o ' ' l  4's
s

1 totaO - waveno.

Xo ^3 Axis

> s<

Figure 4.4
A  l i n e  o f  m odes c o n s id e r e d  i n  th e  l i n e a r  s t a b i l i t y  o f  mode Y ^ .  The t o t a l  w avenum ber  

Ag o f  Y q i s  c o n s id e r e d  t o  be l a r g e r  th a n  t h a t  o f  o n ly  one mode i n  th e  l i n e  n a m e ly  4/ 
an d  o n ly  j u s t  s m a l l e r  th a n  t h a t  o f  th e  se c o n d  mode
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wavenumber of the main wave Y0, is just less than X2. We will show 
that providing the other \L are not close to AQ all even truncations 
of the perturbation net have an unstable mode. This shows, for 
example, that a perturbation based on cosnx sinny to cos2nx sinny 
which includes only a line of modes as in fig. 4.1 will be unstable 
for values of r just smaller than the critical value of r according 
to (4.3.4).

Let us denote the mode amplitudes by aA, the interaction 
coefficients feeding energy from ai+1 into a£ by ai and those 
feeding energy from ai_1 into by bi_1. Then

— & \ i

***

and

ai * < +; T($e , 4u«^> (A.-'lu, } 1
(4.4.8)

Vi * * ' <  tui (Jl.-i;) J

(4.4.7)
>1

Looking for normal modes with growth rate T, (7) implies that

M
-r

-r
0

0
b,

- V

0 ( 4 . 4 . 9 )

The lower right hand nxn determinant in (9), Dn, is determined 
inductively by

= -  V

o* = T 1 -  a ,  b, (4.4.10)

D* *• ** "T D„_, -  bn-1 . 1 } ^ ^ ^ 1
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Note that when Art = X,, and T = 0, a, = 0  and D, = 0  for all n>l; 
all even truncations have a neutral mode with r = 0 when A0 = X2. 
Consider now the case when AQ is just less than X2 by setting 
X2 - A Q = e  (s > 0 and e «  1). Then ax and b2 are 0(e) from (8) 
and from the triple product nature of the overlap integrals

Assuming that all other interaction coefficients a£ and bA are 0(1), 
and that T2 is of 0(e) one may prove by induction from (10) that

with const, of 0(1). So that all even truncations have a positive 
(unstable) eigenvalue with T2 * a1.b1 for X2 - AQ = e. This 
eigenvalue appears to depend little on the level of even truncation. 
So either the even and odd truncations do not converge as the number 
of modes included increases or (4.3.4) can only be true for 
perturbations involving 2D (or 3D) perturbation nets.

When r2.(k2-l) = 3, t = cos nx sin 2ity is a neutral mode on 
î0 = cos knx sin ny. The instability springing from this mode as r 
is increased is not captured satisfactorily by the numerical 
experiments (table 4.3) so a perturbation analysis about the neutral 
mode comparable with that in section 2.1 for the zonal flow is 
clearly desirable. The following analysis suggests that the 
singularity associated with the emerging instability involves areas 
surrounding the stagnation points of the main Rossby wave. Let r = 
rQ + 5r and T again denote the growth rate eigenvalue. The 
numerical results suggest that T2 = 0(5r). Adopting this scaling we 
set

^  »  o o s 'f lx  s in  f 1 4 t  ¥  •  •  •

a b, > 0 (4.4.11)

(4.4.12)

(4.4.13)
=■ cosVClCx S\v\
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Linearising the potential vorticity equation about one finds that

L t y  =  V = 0 . (4.4.14)

The boundary conditions for a r e

= 0  o n ^ * 0 ; l • pon&ckc »n X % (4.4.15)

Integration by parts shows that the adjoint operator for LS\J/ is

Tty.ft) (4.4.16)

with Sx satisfying the same boundary conditions as 6\J/.

One suspects that r\7h2Sij/will play an important role in the 
solution of (14) near the stagnation points of the streamfunction Y0 
(i.e. where 3Y0/3x = 3Y0/3y = 0). The series solution (13) is 
likely to be improved by retaining this term even when it is 
formally negligible. To order T , (14) then yields

*  “V k (tc&1R*iiWi|)j(4.4.17)

in which we have retained H ^ 2^  for the reasons just indicated. On 
the expectation (which is re-evaluated below) that |V2 ^  | »  | |
in the region of the stagnation points one may replace T 

where

+  V J ( r * K * +  l ) H t  . (4.4.18)

The l.h.s. of (17) then reduces to 

L ? <  5  T ( $ 0 , *■ r ?| (4.4.19)

and the perturbation expansion to a series of problems of the form 

I/O* =  <*•«(<,Jj) (4.4.20)

in which an is a known function of $ ,... $ x. Solutions of the
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first order partial differential equation (20) are well known 
(Courant & Hilbert 1962 vol II, ch. I §5 and ch. II §1). The 
solutions may be found by integrating

Ax/At =• Ajj/At = t --"FfiA + tfA. (4.4.21)

In words, following the flow defined by the streamfunction Y0, pn 
tends to decay exponentially at the rate T and is forced by the
source term a . Solution fields for p must suffer no net change on
being integrated once round a circuit. So if an is non-zero at a
stagnation point the solution pn must have pn = an/r over a wide 
neighbourhood surrounding the stagnation point. The r.h.s. of (17) 
is zero at the stagnation points so p1 is zero there. But ^  need 
not be zero at the stagnation points and appears in the forcing of

P2

(4.4.22)
+ TT1 0<l>i .

The dependence of T on Sr, which is contained in rx2 (see (13)), is 
determined by the requirement that the r.h.s. of (22) be orthogonal 
to the null solutions of the adjoint problem. Similar analysis to 
that presented above shows that some of the null solutions of the 
adjoint problem also contain singularities (for T 0) much like 
those of pn of (21) with an * 0. These singularities are probably 
responsible for the sensitive dependence of T on 8r in the odd 
spectral truncations (table 4.3). But explicit calculation of this 
dependence through equations (17) and (22) appears a discouragingly 
heavy task.

It is apparent from the fact that px=0 at the stagnation point 
that 1^1 there is comparable with Since neither are
large, however, (20) for n=l is formally valid. Whether 
| <f>2 | «  l^h2<f>2 l and r|<f>2 |«1 is less clear. It seems that explicit 
calculations would be necessary to establish whether the proposed 
series solution would be of any value (e.g. asymptotically valid).
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Baroclinic free modes of the form

V$0 - Qe CcsTVz. awVt rtTTfij-1/!} + tesWflV
^  ^  (4.A.23)

l/fc* = r^W1 + l ■*• at1

(cf. (4.3.7) - (4.3.9)) are convenient for stability studies but 
have some deficiencies as representations of the steady waves found 
in the differentially heated rotating annulus experiments; the wave 
component of (23) being barotropic has a null thermal field and 
fails to lean back with height in a realistic manner (see Hignett 
et. al. 1985 fig. 7). There are some difficulties also in 
constructing free modes with reasonable meridional profiles for the 
zonal flow at the smaller values of the Burger number typical of 
much of the steady wave regime. For with (f L / N H)2 = 10, 
r2 =0.1 and k <6, (23) yields a2 > 5.4 so that cosh ail/2 > 19; the 
zonal flow is 19 times as strong at the sidewalls as at mid-channel. 
This last calculation is very sensitive to the assumed width of the 
geostrophic interior. If 4L/5 is taken to be appropriate, for 
example, repeating the above calculation one finds that a2>3.1 and 
coshan/2.5 > 4.6, whilst if 3L/5 is taken to be appropriate 
wavenumber 2 states (k=2) are found to have a2=2.5 and 
cosh 0.3aJt = 2.3.

At the moderate Burger number = 0.4 used in section 4.3, (4.3.9), 
the meridional variation of the zonal flow is less intense but of 
some importance in assessing values of aQ representative of steady 
waves in the laboratory. The ratio of the maximum zonal velocity of 
the wave to the zonal flow for (23) is

XttwcA £lou> mavq. 
v*ax. . ?l©v»

5  \  " f t c

a0 cosU«tn7t (4.4.24)

For a=l, as in (4.3.8), cosh<xJt/2 = 2.5, so the maximum axisymmetric 
flow at upper levels is larger than that of the zonal flow of the 
wave field when aQ > 0.28. So baroclinic modes of the form (23) 
have realistically strong wave components when aQ is as small as 
0.25. The restriction of the stable free modes to those with aQ < 
0.25 (section 4.3) evidently does not render the free mode
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The spectral model of section 4.2 could be used to look, for 
steady wave solutions subject to weak Newtonian dissipation on zonal 
flows tending to relax to non-zero values. Such waves would need to 
extract energy from the zonal flow and would lean back with height
(if they fed off the APE rather than the KE of the zonal flow). The
sensitivity of the waves to their dissipation and the forcing of the 
zonal flow could give some insight into the importance of
dissipative processes in the waves in the laboratory systems. The 
sensitivity of the waves' stability to dissipation is also of 
interest because dissipation will tend to damp higher wavenumbers 
preferentially and presumably reduce the level of truncation
required to resolve instabilities properly.

sim ulation of the laboratory flows to ta lly  u n r e a lis t ic .
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CHAPTER FIVE

THE METHOD OF DELAYS

Introduction

In a celebrated paper Ruelle & Takens (1971) argued that the 
onset of unpredictable (turbulent) motions in fluids could be 
governed by the same types of transitions as occur in simple 
non-linear deterministic systems such as ordinary differential 
equations (o.d.e.s) and maps of the plane and the circle. A 
considerable body of knowledge concerning the routes to chaos in 
such simple systems - the standard types of transitions (or series 
of transitions) which generate the unpredictable motions - has built 
up since the early 1960s. Useful introductions to the subject, 
listed in order of increasing notational complexity, are given by 
Abraham & Shaw (1984), Sparrow (1982) and Guckenheimer & Holmes
(1983). Some very carefully controlled Rayleigh-Benard and 
Taylor-Couette experiments have been found to exhibit such 
transitions and the unpredictable flows near the transitions to 
explore only low dimensional manifolds ("surfaces") in phase space 
(see the reviews by Swinney (1983) and Guckenheimer (1986)).

The belief that the dynamics of o.d.e.s are relevant to such 
experiments has been strengthened by some relatively recent 
investigations of a few dissipative ID partial differential 
equations (p.d.e.s) including the complex Ginzburg-Landau equation 
(Doering e£ al. 1988). All possible initial conditions for these 
equations have been shown to be attracted onto a finite dimensional 
Lipschitz manifold on which high wavenumber Fourier modes are slaved 
to low wavenumber Fourier modes. The long time dynamics of these 
equations are hence governed by sets of o.d.e.s on finite 
dimensional manifolds which have been called inertial manifolds (see 
Constantin et al. (1988a) for a review). All initial states of
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the 2D Navier-Stokes equations subject to arbitrary forcing have 
also been shown to be attracted into a subset in the Hilbert phase 
space which has a finite upper bound on its fractal and Hausdorf 
dimensions proportional to G2/3 (1 + log G)1/3, G being the Grashof 
number (Constantin et al. (1988b) and Temam 1988).

Recent experimental investigations of baroclinic flows 
(Guckenheimer & Buzyna (1983) and Hart(1985)) have sought to uncover 
low dimensional behaviour in the irregular wave regime similar to 
that found in the Taylor-Couette and Rayleigh-Benard cells.

The main technique (Broomhead & King 1986) for the reconstruction 
from experimental measurements of trajectories on the manifold in 
phase space (to which the flow is assumed to be confined) relies on 
a method suggested by Ruelle (Guckenheimer 1986) called the method 
of delays. Results justifying the use of the method have been given 
by Takens (1981) and Mane (1981) (see also Eckmann & Ruelle 1985). 
Its use has unfortunately been hampered by several factors;
i) uncertainty over its conditions of validity
ii) lack of insight into the result of applying the method to a 

flow to which the theorem does not apply
iii) the fact that the method is purely qualitative; no quantitative 

estimates of errors in the final construction due to original 
measurement errors are available

iv) a lack of methods for verifying that trajectories lie on 
manifolds of moderate dimension (i.e. greater than 3 and 
smaller than 10).

The aim of this chapter is to provide explicit proofs of a 
statement of the method of delays similar to that given by Takens 
and of a related method and to discuss the result of injudicious 
application of the methods to low dimensional flows. The 
definitions of the terms and theorems (C.l to C.5) used in the 
proofs are presented in appendix C.

182



An Explanation of the Method of Delays

The method of delays may be used to reconstruct a trajectory, 
restricted to a compact manifold H of dimension m in phase space, 
from a single series of (scalar) measurements f(t) of the trajectory 
by combining measurements at times t, t+x, t+2x,..,, t+2mx , where t 
is a variable time and x a constant period, into a (2m+l)
dimensional vector f(t);

f i t )  =  {  t l b ) ,  U t + - C ) ,  . . .  f t t + Z m - c )  ) .  ( 5 .1 . 1 )

Takens' theorem establishes conditions under which this trajectory 
lies on a manifold M* in (2m+l) dimensional Euclidean space which is
diffeomorphic to M in the original phase space (i.e. related to M
by a smooth coordinate transformation with a smooth inverse). M* is 
said to be an embedding of M. The method is argued to be reliable 
for most measurement functions, f, vector fields, X, which generate 
the flow in phase space and time delays, x, because the conditions 
on f, X and x are satisfied by most (a generic subset of) 
combinations of f, X and x. The other method discussed here
requires a time series of 2m+l simultaneous independent measurements 
{fi, l<i<2m+l). The trajectory vector

f i t )  =  ( f ,( t ) ,  f  lmtt It) ) ( 5 . 1 . 2 )

is proved to lie on a manifold M* in 2m+l dimensional space which is 
diffeomorphic to M in phase space for most (a dense and open subset) 
set of measurement functions {fi}.

The proofs of these results are essentially transversality
arguments. Given p independent N-l dimensional surfaces in N
dimensional space (p<N) the set of points common to all surfaces 
will usually lie on surfaces of dimension N-p (i.e. of codimension 
p). At a typical point x on an m dimensional manifold M the value 
of an m dimensional function f will usually be identical with 
f(x')(i.e. f evaluated at other points) only for isolated points 
x'. To reduce the surfaces whose points share their value of f with 
different points to codimension p, a function of m + p independent
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components will be required in general. For a function with 2m+l 
components all points will usually have unique values of f. The 
transversality theorem (see appendix C) is a subtle and rigorous 
formulation of these simple ideas. In the case of the method of 
delays points which are advected by the flow (i.e. not stationary) 
sample the same function at different points. Denoting the position 
on M of x after advection for time x by <j>(x) one may view ^(^(x), 
l<i<2m+l) as independent measurement functions at such moving 
points. (1) will provide an embedding provided there is only a 
finite number of fixed points of the flow.

The conditions on f for which (2) provides an embedding are 
presented first (result 1). Most of this result follows from the 
proof of Whitney's theorem (C.3) (Hirsch 1976 p35). The proof is 
included because it forms a good introduction to the proof of result 
2 which establishes conditions on f for which (1) provides an 
embedding, given certain assumptions about X and T. The set of 
vector fields X and times T for which these assumptions hold is 
stated directly after the second result.

Result 1

Denote the set of all Cr (r>l) smooth maps f : M -» tRp of a 
compact m-dimensional manifold M into !RP by Pr and for points x in 
M write

... . (5.1.3)

A dense and open subset of maps in Pr embed all of M in f^p 
if p > 2m + 1.

Proof

It is sufficient to prove that the sets of maps for which
(A) f(x) * f(y) if |x — y| > s, for any e > 0
(B) f is immersive

are open and dense in Pr if p>2m+l. Since, according to the local 
immersion theorem (C.5), a map which is immersive at any point x is
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injective for all points, y, within some finite neighbourhood of x 
and the intersection of two sets which are both open and dense is 
itself both open and dense, the set of embeddings will hence be both 
open and dense in Pr.

Part A; f(x) * f(y) if |x - y| > e, for any e > 0 

Consider g : H x M ■> defined by

f fails to be injective at any different points {x , y in M : x*y) 
where g(x,y)=0. By the theorem of common zeros (C.l)^ the set of 
such points is a manifold of dimension 2 m - p for p < 2m, or an
empty set for p > 2m + 1, if at each point in g_1(0), excepting
those where x=y, g is submersive.

g is submersive at each point in the pre-image of 0 (i.e.
g-1(0)) if and only if g is transversal to the origin in IRP. By 
the homotopy stability of transversal intersections (theorem C.2) 
the set of maps for which g is transversal to the origin in IRP is 
open in Pr.

To complete part A of the proof we prove that for a dense set of 
maps f in Pr, g is submersive at all points (x, y) if x and y are
not arbitrarily close together. We need the following additional
notation. Let ix ,i2 »**i2in+i be 2m+l mutually orthogonal axes
in tR2m+1. Denote by (2<j<2m+l) the "rotation" matrix which maps
ij to - and î  to ix and leaves the other basis vectors unchanged 
and by 01 the identity matrix. Also let h

map M diffeomorphically onto its image in tR2m+1. There must be 
such a map available by Whitney's theorem (theorem C.3) . For each 
pair (x, y), x ?! y in M x M, at least one of the vectors 

[ h(x) - h(y) ], l<j<2m+l, call it z, will have a non zero

(5.1.4)

h = ( ,V»», —  ; h : w  ®,2»w+l (5.1.5)

projection on axis i1. {0j z , 1<j <p) will form a set of p vectors
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which span [Rp. We apply the transversality theorem (C.4) to the 
map

= Sti.jg) - ) fr'.MxMxB (5.1.6)

defined using

F i U , \ )  = f.-(s') 4 tjV Oit ojl hBU\ (5.1.7)

in which 0 ^  are the elements of the matrix 0J, the summation 
convention is employed for repeated indices and b belongs to B4m+2, 
the open unit ball in fil4n,+2. G is a submersion for all different 
points x, y because, for fixed different values of x and y , the 
Jacobian derivative of G with respect to b is

One of the vectors 0k [ h(x) - h(y) ] will have non zero projection 
on the axis ix for each x and y so the Jacobian will be of rank p.

Direct application of the transversality theorem shows that gb is 
a submersion for almost every b in the 4m+2 dimensional open unit 
sphere and hence that g is submersive at all points where |x-y| > s 
for a dense set of maps f in Pr.

Part B: f is immersive

To be immersive at x the linear map T f : T(M) -* f a p

I  Hs.v;} = ; t e. (5-1-9)

must be injective at x. Any linear map L(y) is injective if and 
only if L(v) = 0 implies v = 0. Hence by theorem C.l the set of
points (x,v) in T(M) at which f is not immersive is a manifold of 
codimension p, if at each point in (Tf)_1(0), with |v| = 1, Tf is 
submersive. By theorem C.2 the set of maps which satisfy the latter 
condition are open in Pr. Use of the '’homotopy"
T F : T(M) x B4n+2 -» ^ p
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I  ?(x.^ = lf %W  , v & T XIM) (5.1.10)

in which F is defined by (7), in the same manner as for part A,

If f is not immersive at (x,v) in T(M) it will not be immersive 
at (x, tv) in T(M) for all real values of t. Hence f cannot fail to 
be immersive on a submanifold of T(M) of codimension 2m (i.e. at an 
isolated point).

The proof for result 2 is similar to that for result 1 except 
that a new function is sought to apply the transversal!ty theorem in 
place of (7).

Let M be a compact m dimensional manifold, X a vector field on M 
with only a finite number of hyperbolic fixed points and <J> a map of 
M, given by the flow generated by X applied for a fixed time t , 
which has no orbits of period less than or equal to 2m+l (i.e. if 
$j(x) = x for any x in M and l<j<2m+l then X(x) = 0) and for which 
all the eigenvalues of the map linearised about all the fixed points 
are different. Denote the set of all Cr (r>l) smooth maps 
f : M -»IR by Tr and for points x in M write

An open and dense subset of Tr generate maps f+(x) which embed all 
of M in IKp if p>2m + 1.

Part A: f+(x) * f+(y) if |x — y| > s, for any s > 0

Let the distance function p be a metric for the manifold. We 
consider first whether f+ is injective (f+(x) * £+(y)) points 
z=(x,y) in a set S of restricted areas of M x M. The restrictions,

completes the proof (because h is an immersion of M in R 2m+1).

Result 2

(5.1.11)

Proof

187



namely (12), (13) and (16), are expressed in terms of a distance s
which is assumed to be finite but allowed to become arbitrarily 
small later in the argument. For each z in S the points x and y 
must be at least distance s apart and <f>q(x) must be at least 
distance s from <{>q(y) for each q, 0<q<p-l;

f H x )  , ) > S W  (5.1.12)

The images of each point x under p-1 iterations of <{> must also be at 
least distance s apart and the same condition is required on each 
point y;

£ ( j ̂  s tutWss <y=t (5.1.13a)

p ( $ V (u}; ) > S  fcr U » W  <J,at. (5.1.13b)

For finite s, since M is compact, it may be covered by a finite 
number, n, of overlapping m dimensional submanifolds each of 
which is connected and lies within some m dimensional sphere of 
radius

S  =  S / 4 .  (5.1.14)

The overlap between the manifolds must be greater than f| and smaller 
than v at all points on the submanifold boundaries (t| < v). The 
distance q can be made as small as one chooses. Let { 0i, l<i<n ) 
be a set of smooth functions with

6;, = 0  o u W J a  K; (5.1.15a)

6^ = 1  i d e .  Ni  diiUinot ><Y (5.1.15b)

Let U., V. be the set of manifolds N. for which 0,(z) * 0 for 
z = (x) and for z = ^ _1(y) respectively. The final restriction
on S concerns the interlocking of these manifolds and their images 
after one application of <f>;
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A  ^  ft»r l  6  6  j  S \ (5.1.16a)

+  (.V^ A Vtf = 6  for U « « j $ } > .  (5.1.16b)

This restriction requires ^(x) not to belong to Ux for l<j<p.

When s is sufficiently small and p<2m+l, since $ has no orbits of
period < 2m+l, all of M x M other than small neighbourhoods of
i) x=y, ii) fixed points x (for any y) and iii) fixed points y (for
any x) will satisfy all these conditions ( (12), (13) and (16)).

By construction

A v j -  0 ' * j s \> (5.1.17)

A Ov a o \ i  y unW j - W (5.1.18a)

A V v = 0  U j . u * } . imWa j  = k\ (5.1.18b)

(17)
and

follows from (12) and (18) from (13). 
(16)

Furthermore from (13)

K u , . . . . 1  ^ ^ > • • • • 1 f°r (5.1.19)

i .e. the manifolds NA visited by the image of x under a selection
of diffeomorphisms formed by iterating <f> up to p-1 times, is not 
identical with the set visited by y under the same selection of 
maps.

Let
v\

f  ( n , M  = f(x) +• Z  (5.1.20)

where b belongs to Bn, and construct G(x,b) by (6) as before. 
Consider the Jacobian derivative of G, for fixed x and y, with 
respect to b

"iCt.-Mj • (5.1.21)
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Take a fixed value of x and y and to simplify notation let $i-1(x) 
have 0i=l for l<i<p. Then all the diagonal elements of the first p 
rows of 3G/9b are equal to 1 (by (17)). By (18) each of the rows 
and columns of the Jacobian contain at most 2 elements ( +1 on the 
diagonal and a negative off diagonal element). The first p rows of 
the Jacobian can then only be linearly dependent if some subset of 
non zero off diagonal elements {gi;j} has the same set of row 
subscripts as column subscripts ( as in {g25, g53» g34, g42) for 
which both row and columns have subscripts 2,3,4 and 5). (19) 
ensures that the first p rows can be chosen so that this is not the 
case and hence that 9G/9b is of rank p.

If y lies in the neighbourhood of a fixed point ( i.e. <|>(y) = y) 
but x does not the only alteration to the above argument that is 
required is that conditions (13b) and (16b) be dropped and replaced 
by

k $ . (5.1.22)

A similar argument applies if x is a fixed point but y is not.

Let { ^ , 1<i<1) denote the finite set of fixed points. Then the 
set of functions with

f  (5.1.23)

is also open and dense. Part A of the proof is completed by showing 
that f̂  with p=2m+l is injective when confined to sufficiently small 
neighbourhoods of all the fixed points at the end of part B.

Part B: f. is immersive -------

The following transversality function can be used to show that 
f.(x) of (11) with p=2m+l is immersive (from which it follows that 
it is locally injective) for an open and dense subset of Tr provided 
that x is not a fixed point.

F
ft wi
z  z ij. h • (5.1.24)
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Here h(x) is an embedding of M in tfl2m+1 , { i^, l<j<2m+l } a
mutually orthogonal set of vectors in flL2m+1 (as in the proof of the 
first result) and Ik : $ 2m+1 -» tFt2m+1 is the identity matrix
inside the image of Nk and the zero matrix outside it

Xw - 0 tn J}
(5.1.25)

s X  ̂ AiWicfc >  ̂ frw bl»̂

To prove that f+ is immersive at a fixed point, xx, when p>m+l, 
we infer from

<Mf* (V) = 0 (5.1.26)

that z=0. Let Lz represent d<{>(z) at xx. By assumption L has m 
different eigenvalues and eigenvectors (Xjt e^). Writing z = z^ ê  
and dfljlsSf/Se^ xj , (26) implies that

m
E
i-'

= 0 for 0 i i $ t*. . (5.1.27)

(27) may be written as

' \ i .. 1 \
p s ? = V. \ l  . .  

• • *
/te t “h f

• - e (5.1.28)
A t* 4IH
i A\ , • \zl

•

The determinant of P is zero if XA=X^ for any i*j. Indeed

jet p = .. (ic — 11 ̂

so det P is non zero given that the XA are all different. For an 
open and dense subset of Tr, 9f/9e..7K) for l<j<m, so z=0 and f+ is 
immersive at each fixed point. The local immersion theorem (C.5) 
then implies that f̂  is injective within a sufficiently small but 
finite neighbourhood of each fixed point.
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To show that is injective in a neighbourhood of all fixed 
points when p=2m+l consider points x+Xj and y+x2 in the
neighbourhood of fixed points xx and x2 respectively and let 
Af = f(x2)-f(x1). f+ is injective unless

$  ~  (5.1.29)

where (X^, e^) and (t|j> c^) are the eigenvalues and vectors of d<j> 
linearised about xx and x2 respectively. Subtraction of (29) with 
i=l from (29) for each of i, l<i<2m, yields

/ 1, -I ... «|,-i

U r - »  i r - i

For hyperbolic fixed points with different eigenvalues (Xi^hj) and 
3f/3ei*0, 3f/3ci^O, (30) implies that x=y=0. Then (29) for i=0 
implies that Af = 0. So by (23) f+ is injective for an open and
dense subset of Tr.

The requirements on X and t specified in the statement of
result 2 are satisfied by open and dense subsets of vector fields 
and finite time delays for a natural topology on the space of smooth 
vector fields on a compact manifold (Palis & de Melo (1982), 
hereafter PM, ch. 1 § 2). The subset of vector fields, X, with only 
a finite number of fixed points is open and dense (PM ch. 2, § 3, 
proposition 3.3) and the subset for which the linearised flows about 
all the fixed points have different eigenvalues is also open and 
dense. The subset of vector fields with only a finite number of
closed (periodic) orbits of period < T (where T is any finite 
number) is also open and dense (PM ch. 3, § 2). So any t from an 
open and dense subset of real numbers on the interval 0<t<T will 
provide a map with no periodic points of period < 2m+l other than 
the fixed points of X.

• ^ -I
= 0 . (5.1.30)
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Discussion

The proof of result 2 is very similar to that given by Takens 
(1981), the main difference being the length of presentation. There 
are only four substantial points of comparison worth noting. 
Takens' theorem 2 asserts that the method of delays provides an 
embedding only for a generic choice of vector field, measurement 
function and delay time. It appears from result 2 and the theorems 
of Palis & de Melo (1982) that the method of delays applies to open 
and dense subsets of vector fields, finite delay times and 
measurement functions. Secondly the text of Takens proof contains a 
typing error in the specification of conditions on the open subsets 
covering M. Condition (ii) of Takens (p370) should read "for each 
i,j=l,..N and k,1=0,1,. .2m, *"k(U.)f\ U. * 0 and '$"l (Ui) f\ V. t  0" 
(i.e. not $^). Thirdly Takens' statement of the conditions on 
the covering sets is simpler than that given above. Finally Takens' 
proof that f̂  is injective in the joint neighbourhood of two fixed 
points is inexplicit.

As mentioned in the introduction, proofs of the method of delays 
provide no indication of how measurement errors may amplify and 
corrupt the embedding. Indeed since no measurement process strictly 
provides a function (i.e. a unique value according to position in 
phase space) let alone a smooth function the value of the theorem 
for real measurements is open to question. Furthermore as the 
justification of the technique does not claim to distinguish 
mountains from mole-hills its practical value is unclear. Concern 
over these points is heightened by the almost arbitrarily flexible 
nature of the function f used in the proof. A partial response to 
the first criticism is provided by the formulation of the 
sub-manifolds NA and the sets of points (x,y) in M x M for which f+ 
is injective in terms of a variable distance s. To capture the main 
features of the manifold it is essential that widely separated 
points should be widely separated in the embedding space. This will 
depend largely on two things; i) the size of the submanifolds, N., 
which can be chosen for a given minimal separation of points x and y 
and ii) the "articulation" of the measurement function f. A poor 
choice of time delay (close to a small multiple of a natural period)
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could lead to <{>(x) being close to x (for some j, l<j< p) for a large 
fraction of the points on the attractor. This would result in the 
size of the manifolds NA which are adequate for any separation being 
significantly reduced. But it seems plausible that a mapping will 
embed a given scale of features if a representative variation in f 
between neighbouring manifolds N£ of an adequate set (for that 
scale) considerably exceeds the noise level. So given that one 
chooses a suitable time delay, in which ’'spurious" nearly periodic 
orbits are avoided, one can reasonably expect some or many features 
of the attractor to be revealed according to the signal to noise 
ratio of the measurements.

There has been considerable speculation over the restrictions on 
the time delay which should be employed partly because in practice 
the method of delays is disconcertingly sensitive to it. If x is 
chosen equal to the period of an orbit, all points x on the orbit 
will be liable to have f+(x)=f+(y) for some other point on the 
orbit. If thrice the delay time equals the period of an orbit, 
however, f+ is unlikely to fail to be injective, when confined to 
the orbit itself (assuming it to be isolated). Nevertheless f+ will 
probably fail to be immersive on the orbit; whilst one can derive an 
expression somewhat similar to (28) for any point on the orbit, one 
cannot infer that z=0 because 3f/8ei will vanish for some point on 
the orbit for too large a set of functions f.

The proofs of the method of delays show that if t  is extremely 
short or i.x , l<i<2m+l, is close to an orbit's period the size of 
the manifolds NA required to make f+ an embedding for most points 
may be considerably reduced and hence the method ineffective. If x 
is very long then divergence of nearby points in phase space could 
also reduce the size of the manifolds N. and produce poor results 
(Ruelle 1977). It is not clear, however, that these points account 
entirely for the perceived sensitivity to x. Certainly felicitous 
choices of x could give rise to embeddings being achieved in smaller 
dimensions than 2m+l. The conditions for such felicitous choices 
must not be confused with the conditions for the validity of the 
method.
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As suggested in the introduction the method of delays will 
provide an embedding for most points on M if m+l<p<2m+l. This is 
important because most visual Poincare sections are produced using 
p<2m+l. The dimension of the "surfaces" on M x H at which
f^(x) = ff(y) for x*y and on T(M) at which f+ fails to be immersive 
in M are of dimension 2m-p. The typical shapes of the surfaces in M 
or 1RP on which the embedding fails may be worth investigation.

Many recent investigations have used the method of delays to 
reconstruct phase portraits because the quality of a single 
measurement time series was significantly superior to that of
combined measurements of several quantities. Where joint
measurements of comparable quality are available it is probably 
better to use them as in equation (2). This method avoids the 
various symmetries imposed on the phase space by the method of 
delays (such as the confinement of fixed points to the diagonal in 
(Rp) and the problems of sensitivity to the time delay. A

combination of the two methods using a delay time and several 
measurements could be used if the number of joint measurements were 
less than 2m+l. Combinations of measurements using unrelated delay

(Eckmann & Ruelle 1985) may also be more effective than use of 
related delays (i.e. Tn = Tn). This method can be justified using 
arguments similar to those given above.

(5.1.31)
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APPENDIX A

FREDHOLM'S SOLVABILITY CONDITION

We present here a brief statement of Fredholm's criterion for a 
linear partial differential equation to be soluble and the
manipulations used to derive the solvability condition, (2.2.16),
for (2.2.15).

Continuous functions, <f> and ij/, with continuous derivatives 
defined on the interval 0<y,z<l may be viewed as the elements of a 
Hilbert space in which the scalar product <$fifr> is defined by

<tj>; <j>* Ip tllj . (A. 1)

Let L be a linear differential operator, such as

L\p =■ 4* blvt t'te -btybx) + (A.2)

and F a linear operator which supplies appropriate homogeneous 
boundary conditions for L such as

lr = vV = 0  on ^ - 0 f I
(A.3)

V t y  — ( u  -  * b 'V /V t ~  (feu/Vt -  = D or\ X -f t;  1 •

Then the adjoint of L subject to F, which we call M subject to G, is 
defined implicitly by the requirement that

< 4 , L\|/ > =  < , i|» > (A.4)

for all \J/ satisfying the homogeneous boundary condtions (A.3) in F 
and all <J> satisfying homogeneous boundary conditions in G. For a 
given function W in the Hilbert space. Fredholm's necessary and 
sufficient condition (Courant & Hilbert 1953) for there to be a 
solution (belonging to the Hilbert space) of

Lty =  W ,  (A.5)
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subject to (A.3), is that W be orthogonal to all members of the 
kernel of the adjoint problem;

; W  > - 0 a\l ^ such Hudr M(J> =.6 tund = 0. (A. 6)

The adjoint problem to (A.2) and (A.3) is found by integrating 
<<f>, L\j/> by parts:

< $ , L > = ItIij 4^f - **4 *■ } A] AxU-C
= -VC1̂  -v*&l&i0te*4An) Al

+• \t £ 4* * 4 / ^ 3 At + 1« [I(Wfci + *̂V*gX\4 -  (u-t*Mfoxl!jL ]e Ah
filu-C)

from which it is clear that the adjoint problem is

H(f> = -ity/fcj1 + * M V S > 4 M  + ̂ / ( u - c ’l

4 = 0 ow y * 0̂  \
Gr4> = (u- - ('b\khx +■ s0 °* *t80,l •
It is readily verified that <f>0 is a member of the kernel of M 
subject to G (i.e. M <f>0 = 0) if and only if \p = 4* is a member of 
the kernel of L subject to F.

Equation (2.2.15) is not of the form (A.5) because ij/ = $<f> in
(2.2.15) does not satisfy the homogeneous boundary condition (A.3). 
To find the condition for there to be a solution of

s W  ;  ̂a 0 on 0, l • Pp - V  ©* x* 0, \ (A. 9)

it is useful to let g be some element in the Hilbert space for which

2 = 0 OA 2s k; l j  = V" OV\ 0; \ • (A. 10)

Then \J/ s p - g satisfies (A.3), and (A.9) has a solution if and only 
if

(A.7) 

(A.8)
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l«t ̂  'Vo tW - Lg\ Ay ix  = 0 for fcuck t|>e suck Hiat Ltyo»0 &T\)/0 s 0 ( (A. 11)

As noted by McIntyre (1970), < \f/*, Lg > may be calculated by
integration by parts

ItSy A\j<k - £Jjj (t\Vô gd\jJx +• <kj

=  ijC'Ve'// B(u-tlJo d«J. (A.12)

Hence (A.9) has a solution if and only if

Sjij V^Wc^ix -  Jij t  ^©V/fctu-CiJ^JJ
fer *Ot\v svuUtWvt M>6 = & ^  t=̂ * ° *
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APPENDIX B

VERTICAL INTEGRATION COEFFICIENTS

This appendix summarises the method used to find the spectral 
coefficients of R s 3q/3y <J>n / (u-c) from the coefficients in the 
calculations of the growth rates of normal modes on laterally 
sheared flows described in sections 2.6 and 2.7. The method assumes 
that u is symmetric about mid-channel (see (2.6.6) and the last 
paragraph of example 1 in section 2.7).

Any flow which is even about mid-channel has fields of 3q/3y and

which are also even about mid-channel. Sn(y) (i.e. S at level n) 
can be expanded as a half range cosine expansion on the interval 
1/2 < y < 3/2

The P used here takes the same value in the code as the P in 
(2.6.14). The well known formulae for the ap aren

These may be reduced to standard FFT form by using a variable t| with 
n = 0 at y = 1/2 and X] = 1 at y = 3/2

Representing S' at 2P points on the interval 0 < X] < 1, and writing 
S;-(j) = S'(j / 2P) the FFT forms of (B.3) are

(u.-C.r)t+ Ci*
(B.l)

(B. 2)

____ fV3fl
= J-yx (B.3)

lij S J + 'll ;

OP-1

(B.4)
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To calculate the half range transform coefficients of R = S . <f>w n n n

it is convenient to re-express (B.2) as
ep/i} _ , C(P-')h] k ,k,1

>/EP{E (t̂4-0TTt| (B. 5)

where [A] is the largest integer smaller than or equal to A. The 
coefficient RJJ of the lateral spectral expansion of Rn is given by

t\ M
R j  »  2  So sintjjfy S*(^ $'AM<n3 ^  • (B.6)

Tedious manipulati ons show that when q[,m and p are positive

3 1 i: Sin cyTTij cftsljjTHj sin mTTij Jij

r= 'll -

1 rJo >ir3 sinmTfij

- £ Ci*>+0** if fy + m iS OVi-IL
tr

— 0 if is c M

where <C — + 1 +  w  ^ - ■1-1 - iw.

So the integration formula for laterally sheared flows is

§* = i#2r -$£, (KV^yteJ-aSII <b.9>

in which RjJ is given by

M CW] c<p-rf/»7
X ^ M + <b . i o >
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APPENDIX C

METRIC SETS, MAPS AND MANIFOLDS

This appendix defines the terms and states the theorems used in 
chapter 5. The definitions are grouped into three sets under the 
titles; sets in metric spaces, maps and manifolds, and stable 
mappings and intersections. A reader completely unfamiliar with the 
concepts behind these definitions will find them developed (and the 
proofs of all the theorems) in § §1 - 19, §21 and §24 of Kolmogorov 
and Fomin (1957) and chapter 1 and §§1 - 3 of chapter 2 of Guillemin 
and Pollack (1974). The definitions given here follow the 
conventions of those authors closely. Dieudonne (1960) chs. 1 - 7
and Abraham et. al. (1983) chs. 1 - 3  provide alternative 
accounts of the material.

Sets in metric spaces

1. Metric spaces

A metric space R is a set T of elements, x, called points, 
together with a distance function (i.e. a single-valued 
non-negative real function) p(x,y), which for all points x and y in 
T satisfies three conditions:

a) p(x,y) = 0 if and only if x = y.
b) P(x,y) = p(y,x)
c) p(x,y) + p(y,z) > p(x,z)

An example of a metric space is Euclidean n - space (Rn for which T 
is the set of ordered n-tuples of real numbers x = (x: ,x2 ,..,xn) 
and the distance function is

v\
=

2. Open sets

An open t  neighbourhood of the point xQ (in R) is an open sphere 
of radius e and centre xQ (i.e. it consists of all points x which 
satisfy p(x,xQ )<e, e>0). A set P is defined to be open if each of 
its points has an open neighbourhood contained entirely within P.
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3. Closed and dense sets

A point x (in R) is called a contact point of a set P if every 
neighbourhood of x contains at least one point of P. The set of all 
contact points of P is called the closure of P. P is defined to be 
closed if it coincides with its closure. If the closure of P 
coincides with the whole space then P is said to be dense in R.

4. Generic sets

If P and Q are open and dense in R then so is PnQ. To see this 
note that all and only sets which are dense in R have non zero 
intersection with every non-empty open set in R. Now if P and Q are 
open and dense subsets of R and S is any non-empty open set then PCS 
is a non-empty open set and so is Qn(PnS) = (QHP)nS. Hence QClP is 
dense (and of course open) in R. If P is the intersection of a 
countable number of sets which are both open and dense in R, it is 
said to be generic in R.

5. Compact sets

A set P in R is compact if every infinite sequence of elements in 
P contains a subsequence which converges to some x in R. It can be 
shown that any subset of Euclidean n-space (n being finite) which 
can be enclosed within a sufficiently large cube (whose edges are of 
finite length) is compact. [Some subsets of infinite dimensional 
spaces are compact. In fact a subset P of a complete metric space R 
is compact if and only if P is totally bounded (§13 and §16 of 
Kolmogorov and Fomin).] Furthermore any collection of open sets {Ua} 
which covers a compact set in a metric space contains a finite 
sub-collection which covers the compact set (Kolmogorov & Fomin 
§18).

Maps and manifolds

1. Maps

A mapping f which assigns to each element in a set P an element 
in a set Q will be denoted by f s P -> Q. A map from an open set U 
in ft n into IRm is said to be Cr smooth if it has continuous partial
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derivatives at all orders <r. For a point q in Q the pre-image of 
q, f-1(q), is the set of all points p in P for which f(p) = q.

2. Diffeomorphisms

f : P -> Q is said to be one-one (or injective) if no more than 
one element in P is mapped by f onto any one element of Q. On the 
other hand f : P -> Q is onto (or surjective) if it assigns to each
element of Q at least one element of P. A Cr smooth map f : P -> Q
which is both one-one and onto and whose inverse f-1 : Q -> P is Cr
smooth is a Cr diffeomorpism.

3. Manifolds

Suppose that X is a subset of a large ’'ambient’' Euclidean space 
[or some Banach space]. X is a k-dimensional manifold if each point 
x in X has a neighbourhood V within X which is diffeomorphic to an 
open set U of & k. (This definition is somewhat simpler than that 
adopted by most authors eg Hirsch (1976), Arnol'd (1978).) The 
letters X and Y are reserved to denote manifolds in this appendix.

4. Derivative maps, tangent spaces and tangent bundles

Let U be an open set of tRk and W a subset of W*m and consider a
map f : U -> W. Take any vector h in & k and let t belong to IR.1.
The derivative of f in the direction h, taken at the point x within 
U, is defined to be

h  }

Consider a neighbourhood V of a point x within a k-dimensional 
manifold X (which itself lies in IRN) and a (i.e. any) 
diffeomorphism <j> : U -> V, U being an open set in |Jtk. Assume for
convenience that <j>(0) = x. The best linear approximation to <j>:U -* V 
at 0 is

u  A r  S .  %  + •

The tangent space of X at x is defined to be the image of the map 
dio : R k * «t". It has dimension k and is denoted by Tx(X). The
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tangent bundle T(X) of a manifold X in IR.N is defined by

T U I  = i (l,*\ «  i e T x ( X l } .
It may be shown (Guillemin & Pollack pp 50-51) that the tangent 
bundle of a manifold is a manifold and that dim T(X) = 2 dim X.

5. Open sets of functions

Let U and V be open sets in lRk and respectively, and Tr be
the set of all Cr smooth functions f : U -» V. A natural definition
of an open e neighbourhood of fQ in Tr is the set of functions f for 
which

l\ / f i x )  -  / £ „ ( * )  11 < « -for oH * iiU (uJ OiKsr ,

<||A|| denotes the norm of A); f and fQ are close only if f(x) and 
fQ(x) and their first r derivatives are close at all x in U. A 
similar definition of open neighbourhoods is easily given for maps 
on compact manifolds.

Stable maps and intersections

1. Immersions and Submersions

Let X and Y be manifolds with dim X < dim Y and f : X -» Y. If
dfx : Tx(X) -» Ty(Y) is injective (i.e. one-one) f is said to be 
immersive at x. If f is immersive at all points x in X it is called 
an immersion.

Suppose instead that dim X > dim Y. If dfx : Tx(X) -> T (Y) is
surjective (i.e. onto) f is submersive at x. If f is submersive at 
all points x in X it is a submersion.

2. Embeddings

A map f : P -> Q is said to be proper if the pre-image of any 
compact set in Q is compact in P. Any map from a compact manifold 
is obviously proper. An embedding is an immersion that is injective 
and proper. The main theorem for embeddings is that any embedding 
f : X -> Y maps X diffeomorphically onto its image in Y. [The
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definition of embeddings varies between authors but because of this 
theorem all definitions are equivalent.]

3. Transversal intersections and codimension

Consider two manifolds X and Y, a third manifold Z lying within Y 
(i.e. a submanifold of Y), and a smooth map f : X -» Y. f and Z 
are said to be transversal if at any point x in X whose image, y, 
under f, lies within Z, the image in Ty(Y) of the tangent map of f 
at x (i.e. dfx : Tx(X) -> Ty(Y) ) and the tangent space to Z at y,
Ty(Z), together span Ty(Y).

Two manifolds X and Z lying within Y are said to intersect 
transversally if the identity map i : X -» Y ( i(x) = x) and Z are 
transversal. A manifold X within Y is said to have codimension p 
within Y if at each point x in X the smallest number of vectors 
required in addition to those in Tx(X) to span Tx(Y) is p.

4. Homotopies and stability

Let fQ : X -> Y and fx : X -> Y be smooth maps and I denote the 
closed unit interval [0,1] in (ft1. fQ and are said to be
homotopic if there is a smooth map F : X x I -» Y with F(x,0) = fQ(x) 
and F(x,l) = ^(x).

A property of a map is said to be stable if whenever fQ : X *> Y
possesses the property and fx : X ■> Y is a (i.e. any) homotopy of 
fQ then for some s > 0 each f with 0 < t < e also possesses the 
property.

Theorems

Theorem C.l : Theorem of common zeros 

If the map g

a- = ( a- - !!«■»••• ;  »••
of a manifold X into k dimensional Euclidean space is submersive at 
each point x in X where g(x) = (0,0,... 0) then the set Z of common
zeros (i.e. g-1(0) ) is a submanifold of X of codimension k.
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Theorem C.2 : Homotopy stability of transversal intersections

The property of being transversal to any specified closed 
submanifold Z of Y is stable for Cr (r>l) smooth maps f : X ■» Y of
a compact manifold X into a manifold Y.

Theorem C.3 : Whitney embedding theorem

Every k dimensional manifold admits a Cr (r>l) one-one immersion 
in » 2k + 1.

Theorem C.4 : Transversality theorem

Let
i) X, S and Y be manifolds, X x S be the Cartesian product of X 

and S and Z be a submanifold of Y
ii) F : X x S •> Y be a smooth map
iii) fs : X -> Y be defined by fg(x) = F(x,s) for all points

s in S and x in X.
If F is transversal to Z then, for almost every s in S, f is
transversal to Z. ( Almost every s in S means for all points in S
other than some set of measure zero.)

Theorem C.5 : Local immersion theorem

If X is a k dimensional manifold, f : X -» Y an immersion at x,
and y = f(x), then there is a set of local coordinates around x and 
y in which f(xx, ..., xk) = (xir... xk, 0,..0).
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