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ABSTRACT

A theory of stopping times in a Von Neumann algebra is presented.
Stopping is discussed in both tracial and non-tracial settings.
Stopping processes, in particular stopping martingales, are studied,
where it is shown that for a certain class of martingales our
definition of stopping is equiva;ent to the usual definition (i.e. that
given in the commutative theory). It is shown that stopping preserves
the martingale property and we prove the Doob's optional stopping
theorem. It is also shown that stopping a L2-bounded martingale is
equivalent to applying a certain projection to the element closing
the martingale. We discuss certain algebraic relationships between
these projections and establish that stopping preserves L2-boundedness
for martingales. We further discuss stopping times that lie in the
commutant, where it is shown that these projections, mentioned above,
are indeed conditional expectations. As a concrete example of the
tracial case, we work in the Clifford algebra arising in quantum
statistical mechanics. Here we are interested in stopping increasing
Ll—processes associated with the Doob-Meyer decomposition of
Le—martingales. We also give a characterisation of these stopped
processes just as in the commutative theory.

For the non-tracial case, we prefer to work in the Canonical
Anticommutation Relations algebra. The main result here is the random
stopping time convergence theorem for martingales, thus extending the
existing result in the tracial setting.

The probability gauge space given by Lm(Q,E,P)Qg M2(C) is also

studied.  Here the Doob-Meyer decomposition for L2—bounded martingales



is obtained and stochastic integrals are constructed. Concrete
examples of stopping times are given and stopping processes is
discussed. The concept of local martingales is introduced, where
a Doob-Meyer type decomposition for a certain class of local
martingales is obtained. A stochastic integral with respect to a

local martingale is constructed.
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For Penny



"And time, that takes survey of

all the world, must have aq stop"

William Shakespeare
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CHAPTER ONE

INTRODUCTION

Ever since the initiating work of Dixmier in 1953 [20] and
Segal in 1956 [35] the theory of non-commutative probability has been
developing extensively (see for example [1,2,27] and references therein).
In particular in the last decade or so, there has been great interest
in the sub-branch: gquantum probability. This is partially due, on
the one hand, to the fact that the quantum theory is already a
probabilistic theory and hence it is natural to study probability
theory with quantum objects, (which are non-commuting in general).
Whilst on the other hand, like Dixmier in 1953 [20], it is natural,
at least mathematically, to extend the ideas of classical (or
commutative) probability theory to a non-commutative setting. Whilst
making this transition, the quantum theory is not only often a
motivation, but also presents several concrete non-commutative models
with desirable properties to work in. We may think of this as the
analogue of the classical theory, where probabilists often prefer to
establish their results in a concrete model furnished by the Brownian
motion process as opposed to developing their theorems in a general
arbvitary model directly. Indeed, the analogy between the model given
by the Brownian motion process in the classical theory and quantum
probability as an example of the non-commutative theory, is far deeper
than a mere coincidence in their desirable properties. Indeed a
result of Segal [36] says that we may identify the Brownian motion

process with a certain quantum mechanical process called the quantum

Brownian motion process [25].



Some of the recent contributions to non-commutative probability
have included constructing martingales with certain properties and
subsequently developing an integral with respect to them. In
particular when restricting to a concrete model from quantum theory
far-reaching analogies with the properties of the usual Ito integral
are observed. Indeed several results engendered by the model
generated by the Brownian motion process have had parallels in models
from the quantum theory [1,2,3,8,9,10,11,12,13,16,25,26]. However,
the greatest motivation for establishing the non-~commutative
probability theory as a generalisation of the classical theory is the
following simple observation:

The starting point for studying the classical theory of probability
is the triple (Q,Z,P), where Q is a sample space, L 1is a O-algebra

of subsets of § (the algebra of events) and P is a probability

measure on L so that we may assume that P(R) =1 . Objects of
interest are the random variables. These are precisely the
IZ-measurable functions on §2 and taking values in C . These random

variables form a *-algebra, of which the bounded ones form Lw(Q,Z,P) s
which is a commutative Von Neumann algebra of bounded operators in the
Hilbert space L2(Q,Z,P) . The action of Lw(Q,Z,P) on LZ(Q,Z,P)

is given by multiplication of course and the adjoint is simply the
complex conjugation. Now following Segal [35] we conclude that the
¥-algebra of random variables is precisely the ¥-algebra of measurable
operators over the Von Neumann algebra Lw(Q,Z,P) . That is each
random variable is a closed, densely defined operator on L2(Q,Z,P)
and affiliated with Lw(Q,Z,P) . Another important objects are the
elements of I , the algebra of events. Thus given a set E € L ,

we form the function X_ , which is I-measurable, bounded and

E

satisfies XpXg = Xg - That is, to every event E , we associate a

pad)
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projection operator Xg in Lw(Q,Z,P) . Conversely, every projection
in Lw(Q,Z,P) is of this form. Thus there is no loss in replacing
an event E by a projection XE . The expectation E , of

F € Lm(Q,Z,P). is given by:

j F(w)aP(w)
Q

and satisfies

(i) E: 17(0,z,P)" + [0,o]

(i) E(AF + uG) = AE(F) + pE(G)
(iii) E(Fc) = E(GF)

(iv) FeL(,%,P)" and E(F) =0 +then F =0

(v) (F,) CL7(2,2,P)"  ana F,4F , FE L7(2,L,P)

then E(Fa) + E(F)

Thus E is a faithful normal trace on Lm(Q,Z,P) which extends to

the ¥-algebra of measurable operators over Lw(Q,Z,P) [35] and is

equal to the usual expectation of a random variable [35]. For

1 <p<=®, the Lp—spaces over Lw(Q,Z,P) are then just the equivalent
classes of random variables equal P - a.e. and satisfying E(]Flp) < o,
These spaces are denoted by Lp(Q,Z,P) .

Now if I' 1is a sub-0-field of I then Lm(Q,Z',P) is a Von-
Neumann subalgebra of Lm(Q,Z,P) and conversely every Von Neumann
subalgebra of Lw(Q,Z,P) is of this form. The conditional expectation
of a random variable (operator!) F € Lm(Q,Z,P) with respect to Z'

is a I'-measurable bounded function E(F|Z') such that



I E(F|z')aP = J F QP
E E

for any E € &' That is (if and

E(E(F|z')P) = E(FP)

only if)

for any projection P in 17(Q,2',P) .

Furthermore the conditional expectation of I (=

E(HE(F|Z')G) = E(HFG) for any H ,
F €L(,2,P)

map from Lm(Q,Z,P)

onto L (Q,Z',P) with the above properties.

XQ) is I and

G in L7(Q,IZ',P) and

Thus we think of the conditional expectation as a

Then

the conditional expectation is a contraction, positive preserving,

faithful normal projection mapping of Lw(Q,Z,P)

onto Lw(Q,Z',P)

with the properties that E(HFG|Z') = HE(F|I')G for H,G € Lw(Q,Z',P)

and F € Lm(Q,Z',P) , and E(F|Z')*E(F|Z") f_E(F*FIZ') It is known

that this map extends to a positive faithful, linear contraction from

LP(Q,Z,P) onto LP(Q,Z',P) of norm one and satisfying

E(E(F|Z')6) = E(FE(G|Z')) where F € LP(Q,I,P) and & € 1%(2,2,P)

1 -1

with p_ +q =1. Thus we think of the conditional expectation

[eo] (o] . .
as a map from L (Q,Z,P) onto L (R,Z',P) satisfying

E(HE(F|Z')G) = E(HFG) for F € L7(R,Z,P) and H,G € L (R,I',P) and

E(Ziz') =1 .

Finally the commutative theory
on a filtration of sub-g-fields of
such a filtration then a stochastic
of random variables indexed by R+
Thus

is a Zt—measurable function.

of X, as a closed densely defined

t
L (2,Z,,P) .

12

of stochastic processes depends

Z,)

L. Thus 1if i) e gt 1S

(X )y e pe

such that for each t € R' s X

process is a family

t

in our formulation we may think

operator affiliated with



We now summarise the formulation of the classical theory at an

operator theoretical level.

{Bounded random variables} +“ L (2,Z,P)
{Random variables} + measurable operators over Lw(Q,Z,P)
Event *+ Projection P € Lm(Q,Z,P)
Expectation * Trace
ConditionalExpectation w.r.t. L' * a map from Lm(Q,Z,P) onto
m 3 . .
L (R,2',P) with certain properties
Stochastic process (Xt) e (Xt) : such that X_ is a measurable

o]
operator over L (Q,Zt,P)

It is now clear that the essential ingredients to study classical
probability theory are the Von Neumann algebra Lw(Q,Z,P) over the
Hilbert space L2(Q,Z,P) , & filtration of Von Neumann subalgebras
(LOD(Q,Zt,P))t cpt enda faithful normal trace E .

Thus a natural generalisation of the classical theory is to
consider a non-commutative Von Neumann algebra A over a Hilbert
space H , a filtration (At)t e g+ ©f Von Neumann subalgebras of
A and a finite faithful normal trace ¢ on A . We can now
construct the non-commutative LF-spaces associated with (A,¢) [38].
The random variables are then just the elements of the ¥-algebra of
measurable operators over A [35] and a stochastic process (Xt)t e R+
is a family of random variables such that for each t , Xt is a
measurable operator over At . Thus instead of thinking of a
stochastic base [28,30] (Q,Z,P,Et,R+) we think of (A,H,¢,At,R+) in
the non-commutative setting. The existence of the conditional
expectation denoted by Mo, Mo A - At for each t € R with the
properties Mt(yxz) = yMt(x)z where y,z € At , Xx EA and Mt(I) =1

is assured by Takesaki [37].

13



There exists yet another extension to the model discussed above.
This is to consider a Von Neumann algebra with only a faithful
normal state. Such models occur quite naturally in quantum
statistical mechanics [18]. Thus we are now not only concerned with
extending the ideas of classical probability theory to a finite Von
Neumann algebra (with a trace), but if we intend to solve quantum

.analogues, of say the Langevin equation, we have to extend our theory
to type III Von Neumann algebras. Indeed several notions and objects
of interest in the classical theory have now been extended to a non-
commutative setting to include both the tracial and the non-tracial
cases [13,26,31].

In this thesis we extend the notion of stopping time to a non-
commutative setting. In chapter two we study stopping times in a
finite Von Neumann algebra [14]. We define "stopping" for non-
commutative processes and show that our definition of stopping is
equivalent to the commutative one for a certain class of processes.

In particular we are interested in stopping martingales, where it is
shown that stopping preserves the martingale property. Certain
algebraic relations between stopping times are discussed and these

are used to prove the non-commutative analogue of the Doobs optional
stopping theoremn. We also consider a concrete model from quantum
theory, the Clifford algebra generated by the free Fermion fields over
the Hilbert space of square integrable functions on the positive reals.
Here we show how to stop increasing processes associated with Doob-
Meyer decomposition of certain martingales [8]. We also give a
characterisation of these stopped processes. In chapter three we
continue as in chapter two but here we do not require the existence

of a trace. We require only a faithful normal state [15]1. Once

again stopping is discussed, but here we prefer to work in the Hilbert



space given by the G.N.S. representation associated with the state.
Thus we obtain results about stopping operator valued martingales
whilst working at a Hilbert space level. We also look at a con-
crete model from quantum theory, the C.A.R. algebra. Here we prove
a random time convergence theorem analogues to the tracial case given
in [7]. In chapter four we work in the type I, Von Neumann
algebra: Loo(Q,Z,P) & M2(C) . Here certain objects such as
martingales, stochastic integrals etc. are briefly discussed and a
Doob-Meyer decomposition theorem is proved for L2—bounded martingales.
The main purpose of this chapter however is to give examples of non-
commutative local martingales and consequently develop a stochastic
integral with respect to them. This is achieved by defining stopping
in a slightly weaker sense than that given in chapter two.

There has been some development in non-commutative stopping
times. In [2L4] the strong Markov property of the Boson Brownian
motion is proved. However, there the stopping times are "Pre"
adapted and the Brownian motion "Future" adapted so that the two
commute. The Brownian motion is also a strongly continuous process
and there exists a total set in the underlying Hilbert space (Symmetric
Fock space) factorising the "pre" and the "future" algebras. In (3]
the Fermion strong Markov property is proved, again under similar
conditions to those in [24]. We shall follow the definition of
stopping as given in [T]. There a more abstract account of stopping
is given though most results are obtained in the Clifford algebra.
Inspired by [2L4] and using finite stopping times, a strong factorisation
of the Boson Fock space is given in the recent pre-print [34]. In the
pre-print [4], using the results of [24] and [3L4], certain cocycle
identities associated with a unitary processes satisfying a quantum

stochastic differential equation [25,26] have been obtained for finite



stopping times. Finally in [6] , concrete examples of stopping
times have been obtained. Necessary and sufficient conditions have
also been given for a process to be a stopping time in the gauge
space given by Lm(Q,Z,P) @MQ(C) .

Finally a point about notation: We shall often abbreviate a
family indexed by R* , such as, a filtration of Von Neumann algebras,
processes etc., as (At) , (X,) etc. instead of {At . ¢t € RY}

t

x, : t € R} ete.

t
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CHAPTER TWO

STOPPING TIMES IN A FINITE
VON NEUMANN ALGEBRA

2.1 Introduction

In this chapter we study stopping times in a finite non-
commutative Von Neumann algebra. First we reformulate stopping
times and stopping processes in the commutative probability theory.

Thus let (Q,Z,P,(Zt),R+) be a stochastic base and for
simplicity we assume that the filtration of sub-o-fields (Zt) of

. . . . +
L is right continuous. That is, for each t € R ,

A stopping time T 1is a I-measurable RY U {} (= R+) valued

function on  with the property that for each t € RT s
flwea: t(w) <tl el

In view of the right continuity of the filtration we can replace this

last condition by requiring that
weQ : 1(w) <t} € Zt .

We observe that T 1is a measurable operator over Lm(Q,Z,P)

[39.



Now, with T we can associate an increasing family of sets
in I and indexed by R' . That is, for each t € R* , we consider
the set {1 <t} . Then clearly {t <t} C{t <t} if s <t .
(We have written {1 <t} instead of {WE€Q : T(w) <t} as is
customary in literature.) Now {T < t} € L, by hypothesis, hence
the function w - X{T<t}(w) is Zt—measurable, an idempotent and
hence belongs to Lw(Q,Zt,P) . Thus we can associate with T , an

increasing projection valued process [28,29], T , glven by
)= Xy

Clearly ;(O) =0 and we set T(®) = I since {t <o} =0, Ve
observe that if T 1s bounded, say there is a T € R* such that
T(w) < T \{u)E Q , then clearly T(T) = I . Also if 0 is another
stopping time and o0 < T then clearly {1 < t} C {0 <t} for each

t € R* and hence 1(t) fia(t) . Moreover 0 , T and OV T are
stopping times given by w » o{w)A T(w) and w > o(w) \, T(w)
respectively. Now since {0 A T <t} ={o <t} VU {r <t} and
X{0<t}lJ{T<t} = X{0<t}\/ X{T<t} , the corresponding projection valued

. . . . N ~ ~
process associated with o A T 1is given by o A 1(t) = of(t)Vv T(t)

+ .. s ~ ~
for each t € R° . Similarly o wv t(t) = o(t) A T(t) for each
t €R . Also if 1(w) =t ,\f w €N , that is T is the deterministic

. . + .
time given by t € R . Then {T < s} =¢ if s <t and {t<s} =@

if s>t . Hence the projection valued process associated with T ,

-~ ~ ~

T, is given by 1(s) =0 if s <t and 1(s) =I if s >t .

On the other hand, given an increasing family of projections

) +
indexed by R, (X. ) and such that XE =0, X. =1 and for

. By 0 Feo
each t €R" XEt € Lw(Q,Zt,P) , We can associate a stopping time T

by setting



for each n€eN .

Another example is

Inf{t : Xg (w) = 1} if inf exists
t

T(w) =9

S otherwise .

—

Thus we may think of a stopping time as an increasing projection
valued process, starting with the zero-projection at +t = 0 and
finishing with the identity at t = o .

Before we go on to the discussion about stopping processes, we
recall one more definition from the commutative theory. Let ZT

denote the o-field of "events prior to T ". That is
+
= : N <
.={aezr:anf{rtrer Yeer'

Now let X = (Xt) be a Lo-bounded martingale, so that there is a

X € 1°(2,%,P) such that x, = E(x|z,) [5]. Let X_ denote the

stopped random variable defined by

(w)

w > X

T(w)
where T 1is a stopping time. We observe that if T is simple, say
T=12It; X; » then
i i



where Qt =V XE
i i 7

Now let 6 €P[0,o] - the space of partitions of [0,®] . Say

8 = {t ,...,tn} then

0
T(e) = Eti X{ti_li'r<ti}

defines a stopping time, hence

X =YX X
T(8) t, M, <<t ]

=1 Xti (X{T<ti} B X{T<ti_l})

E
Z (Xlxti)AQti

1

where Qt =X {1 < ti}

Writing Et(-) instead of E(-

Zt) we have that

>4
|

w(o) = L By (K)0Q

i 1 1
where ET(S)(‘) = z Et.(.)AQt.
i 1 1
It is not difficult to show that ET(G) is a self-adjoint projection

on Lg(Q,Z,P) and if ©' is another partition of [0,©] and 6' 26

vos o
(' is finer than ©) then ET(e,) E-ET(G) . Thus let

20



inf E
T 6 € Plo,]

m
i

(8)
Then ET leaves L2(Q,ZT,P) invariant, for let A € ZT . Then

ET(XA) = Lim ET(G)(XA)

6
= Lim ) E (X,)0Q,
8 6 1 i

Lim ) E, (X,AQ

)
0 ¢ 1 i

Lim § X,0Q,
8 ¢ i

since X,Q € Lm(Q,Z P)
i

t b
i

Indeed, it can be verified that ET is the conditional expectation
map of Lg(Q,Z,P) onto LZ(Q,ZT,P) .

Now, it is known that there exists an increasing sequence (Tn)
of partitions such that the corresponding stopping times T(Tn)
converges to T (a.s.) from above [28]. Since X, = Et(X) is also

right continuous we have that

X = Lim X a.s.
T T
n
= Lim XT(T ) a.s
n
= Lim ET(Tn)(X) a.s



That is ET(X) =X, and since IIET(n)(X)II2 f_"Xﬂg , we have that

)(X) - X

ET(Tn T

is the Le-norm. Thus given € > O there exists TN such that for

D
all T DT

IE )(X) - ET(X)II2 <€ .

T(TN

Now let 6 Dbe such that 6 2 TN then

IIXT - X HET(X) - Er(e)(x)“2

r(9)"2

"ET(TN)(ET(X) - ET(e)(X))Il2

| A

HET(X) - ET(TN)(X)"Z

Thus we have that

Y-S
X, =1 -Lin } X 8Q
8 ¢ 1 1

Likewise, a similar argument shows that if X = (Xt) is a uniformly

integrable Ll-martingale then [1k]

X =1l - Lin X, bQ

T t.

8 g 1 1

If T is a stopping time and (Xt) is a process then the process

stopped by T 1is defined as

22



(w)

W X (w) At

for each t € RY .
Now T At defines a stopping time and setting

Q, =X {t At <s},vehave that Q) =1 if s>t , thus T , t

A

is bounded. Now arguing as above we observe that if X = (Xt) is

a Le—bounded martingale then

2 . 1
X =1°-Lim ) X, A
TAt 5 ) 6, O %,
= 1° - Lin ] X, bq +x  (1-q ) .
6 t,<t i i ik i

But {t oAt <s}={t<s} if s <t . Hence

X, o =L°-Lin( § X aq +% (1-¢))
i i i+l i

T/\t 0 tifﬁ 1

We shall often write

o0

X = j X, daq
0
t
XTAt = J X, dq + X (1-Q)
0

Having briefly reviewed stopping in the commutative theory, we now

move onto a non-commutative setting.
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2.2 The Non-Commutative Setting

In this section we introduce the context in which we shall be
working and make some definitionms.
Let A be a finite Von Neumann algebra of bounded operators
on some Hilbert space K . Let ¢ be a faithful normal trace
on A, (At)t€5R+ be a filtration of sub Von Neumann algebra of A
with conditional expectations (Mt)tEER+ . That is Mt maps A
onto At with the properties that Mt(I) =1 and ¢(yMt(x)z) = ¢(yxz)

for all y,z € At and x € A [27]. Finally we suppose the family

(At) satisfies
(1) AL CA if s <t
(ii) N A = A
s >t s t
(iii) (VA" = A
t

For 1 <p<®, let LP(A) denote the non-commutative Lp—spaces
associated with A and ¢ [38]. Then it is known that the con-
ditional expectation can be extended to a positive linear faithful
map, which we again denote by Mt from LP(A) onto Lp(At) and

of norm one and satisfies Mt(Mt(X)Y) =M

t(XMt(Y)) for all

xetPA) ,vyeA [o7].

2.21 Definitions

(1) Let 1 <p <. Then an Lp—process is a family

{x, : t € R"} CIP(A) such that for each t € R, X, € IP(A,)

t t

(ii) An LP-process is called a martingale if (in addition to (i))

it satisfies

Ms(Xt) = Xs for all s <t

24



(iii) An Lp-martingale is L’-bounded if (in addition to (ii)) it

satisfies

sup IIx <

I
t CP
In this case it is known [5] that if 1 < p < = , there is

X € LP(A) such that

(a) X, = M (X) for all t € R*

(b) P - Lin X, =X

. 1 . .
(iv) An L -process 1is called weakly relatively compact or

uniformly integrable if it is Ll—bounded and satisfies
VYe>o0o JFs>0:reA, IRl <1, IRl <6

then lo(rx, )| < e for all}/ t € R*

2.22 Remark

If (Xt) is a LP-bounded martingale and 1 < p < ® so that

. +
X, = Mt(X) then we may regard (Xt) as a process indexed by R

since we can set X_=X.

2.23 Definition

. . ot . . .
(1) A process T = (Qt) indexed by R is called a stopping time
if 1(0) =0, (=) =1, 1(t) = Q is a projection in At for

+
each t € R and Q < Q forall s<t [7,1L].

1

(i1) Let T = (Qt) and 0 = (Qt) be stopping times. Then we

say T <0 1if and only if Qt 3.Q£ for all t € R .

25



P e e s . . + .
(iii) The deterministic time given by say t € R° 1is the process

~

t

t(s) =9 .

_

. . . . . . +
(iv) A stopping time T = (Qt) is bounded if there is a T € R

such that
T(s)=Qs=I for all s > T

(v) If 1 = (Qt) and 0 = (Qé) are stopping times then we define

the stopping times T, 0 and T , 0 by setting
Tvo(s) = Q A Q

T A0(s)

I
O
)
<
O

where A denotes the infimum and VvV the supremium of projections.

We observe that the stopping time T 4, t is given by:

T/\t(s) =<

L

hence T A t is bounded.

In the introduction to this chapter (2.1) we observed that
stopping a Lg—bounded martingale in the commutative theory is equivalent

to

26



L -  Lim Y X, A
o€ Pl g Ui %

where Qt = X{T<t} . That 1s

>
n

2 .
L~ - Lim E X, A Q
0 1 i

2 .
L - Lgm ET(G)(X)

It is now natural to ask if this limit can be extended to a non-

commutative setting. That is if

Li M, (+) A
6 € Plo,sl g by %,

exists in the non-commutative setting.
In the next section we show that the limit exists, thus giving

us a way of stopping, at least, L2—bounded martingales.

2.3 Time Projections in a Von Neumann Algebra

2.31 Definition

Let T = (Qt) be a stopping time and 6 = {t ...,tn} € Plo,«]

O’
we then define MT(G) by

n
M gy = izo Mti(')AQti

Indeed, Mr(e) 1s the non-commutative extension of ET(G)

We now have the following:
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2.32 Theorem (Properties of MT(G) ) [14]

Let T = (Qt) be a stopping time. Then

(i) MT(B) is a self-adjoint projection on L2(A) for any
6 € Plo,=]
.. c

(iii) If o < T then Mb( < MT(B) for any 6 € P[0,x]

8) —=

Proof [14]

We give a proof merely as a completion as we give a similar

proof for the non-tracial case in the next chapter.

(i) Let X € L2(A) and 6 € P[0,»] say 6 = {to,...,tn} .
Then
n
Megy(®) = 1 My (X)day
1=0 1 1
Hence

Mo (o) M () (X))

Mr(e)(z M, (X)AQ, )
i 1 1

L (Tw, (x)sqq )oq
J Jd4i 2 * J

DM, (I M (X)AQ 0Q. )  since Q €A,
S o

Y M (M, (X)AQ ) since 4Q 4Q. =0 if i #j
;1 07i i i 7]

) M (08,
1 1 1

= MT(B)(X)
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. . . 2
Hence MT(B) is a projection on L“(A) . To show that MT(G)
is self-adjoint we first note that the inner product in L2(A)

is given by

<X,Y> = ¢(X*Y) .
Thus

gy (X), 1> = 001 o) (X)%Y)

i

= ¢(Z b, M, (X)*Y)
i i
=] ¢laq, M, (X%)Y)
i 1 1
since Mt(X)* = Mt(X*)
=] o(m, (x*¥)vaq, )
3 i i
since ¢ 1s a trace

= Z ¢(X*Mt_(YAQt_))

i 1 1

from the property of Mt

= ] o(x#q, (¥)aq )
i i 1

o(x* ] u, (Y)aq, )
i 1 1

¢(X*MT(6)(Y))
= <X . MT(e)(Y)>

Hence MT(S) is self-adjoint on L2(A)



(ii)

and 82

We suppose that 62 = 61 Ud{y}. say Bl = {to,...,tn}

= {to,...,tr,y,tr+l,...,tn} . Let XELZ(A) . Then

MT(92)(X)M (6 )(x) = JE M, (e )(X))AQt

+M‘{(MT(8 ) X)) Q‘r)

' Mtr+1(MT(91)(X))(Qtr+1 ) QY)
n

+.Z ((e)())QtJ

n
SRR CNEEY

0 1 1 r
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Since AQt AQt =0 if 1 # j and the tower property of conditional
L7
expectation: MM, = M, for s <t . It is now clear that

(iii) Let t=(q) and o= (Q;) and 0 = {t .,t } € Plo,=) .

0’
Then
n n '
Yoo = § s =1
i=1 i i=1 1
+
and 0 < T means that Q% Z_Qt for each t € R . Let X € L2(A)

and consider

|
ll [a =]

y(x) = M, Z M, (X)AQt )AQt

a(8)° Mr(o o tsifot

J

Now consider

J-1
= ) !
Mt.(.b Mt.(X)AQt.)AQt.
J 1=0 1 1 J

n
F i (]om (009, a9
= 1 1 J

t. t. t.
ji=j i i J
since AQt AQ% =0 forall i< j -1
i 7
o 1
But My () M (X00Q )dqy
Jd 1=J 1 1 J
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1

-
u, (1M (X)8Q Jsay + My (X(I - Q, ,))6qy
ji=j i i B j j

n-1 n-1
- 1] - 1
=M, (] M (08Q )aq, + M (X(1 L 09 ))qy
J =) 1 1 J J k=0 k J
nel . . n-1 .
=M, (x ) Aq daeg + M (XA - My (X ] AQ )Aq
J 1= 1 J J J J k=) k J
since AQ, AQ =0 for all k < J-1
%, 0% <
- 1
- Mt.(X)AQt.
dJ J

n
Hence M (g)° MT(e)(X) = Z M, ('X)AQt.

= Mo(e)(x)

We have thus shown that if T 1is a stopping time then

{MT(G) : 8 Pl[0,9]} defines a decreasing net of self-adjoint
projections on L2(A) . Thus let
M = inf M
T gerlo (O
so that MT(Q) ¥ MT strongly. We call MT the time projection

(associated with T ) on LQ(A)

Now let X = (Xt) be a L°-bounded martingale, say X, = Mt(X)

and T be a stopping time. Let 6 € P[0,»] . Then

L X 0a, = LM (R0qy

9 1 i 6 1 i

It
=
—
(@v]
~
—
>3
~
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L2 - Lim M, .\ (X)

2 .
Thus Lc - Lgm %, hQ (0)
1 1

M ()

It is now natural to define the "stopped operator" associated
with (Xt) and a stopping time T analogous to the stopped random
variable in the commutative theory. To this end we make the

following definition.

2,33 Definition

s e e . s e e e s ot . S

be a L2—bounded martingale. Then define

X_ =1 - Lim Y X, A .
6 € Plo,] 4 Yy Q‘ti
We call XT is the stopped operator. Indeed this definition
coincides with that of the stopped random variable when we restrict
to the commutative setting.

Similarly we define the process stopped by T , (X ) by

TAt

2 .
X = L1°-Lim ) X, AR
At gePlol g ' %

+ . .. .
for each t € R° . Here (Rt) is the process giving the stopping
time T AL That 1s

[— QS s <t
R =< .
s
I s >t
We see that
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2 _ .
X =1°-Lim ) X Aq +X (I-¢q)
AL 6 t.,<t i A

Now since (X is L2-bounded martingale and hence right continuous,

+)

we have that

X = Lim Yxose, + X (I-Q)

TAY sePlotl g Ui T
hence X € L2(A )

TAt t7

Thus we have that

(i) X, = Lim ] X, AQ =M (X)
B 1 1
(ii) X =M (x)
TAt Tt
where MT ‘ is the time-projection corresponding to the stopping
A

time T A t .

We sometimes express stopping as an integral. Thus

©

XT = J XsdQs
0]
t

XTAt=J X 4Q + X (T - Q)
0
where £
JXdQ = 12- Lim VX AQ
s s T T
0 6 € P[O,t] g 1 1

for each t € [0,%]
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2.34 Remark

The stopped operator and the process stopped by T , as
described above should be thought of as the right-stopped operator
by T and the right-stopped process by T . The left-stopped
operator is defined as

X =12 - Lin § AQ, X
B

T 0 ti ti

and the left-stopped process by

X =1 - Lin Vaq, X, + (I -q)X
o epPlo,tl g Uiti R

Arguing as in our previous analysis for right-stopping, shows

that these limits exist: . In the integral form we have

o]
X = I dQ_X
0
t
‘rAtX = J aQ_X_ + (T - Q)X .
0

The following theorem gives some properties of these (stopping-
time) integrals,

2.35 Theorem

Let (Xt) and (Yt) be L°-bounded martingales and T = (Qt)

be a stopping time. Then
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t t t
(1) f (XS + Ys)dQs = [ X dQ  + [ Y dQ
0 0 0

for all t € R+

T t T
(i1) j X dq = J XsdQs + J XsdQs
0 0 t

for all O <t <T <o

£ t
(1i1) J x dq) = J aq_x;
0 0

for all t € R’

(iv) 1If XtQS =stt and Yth =QSYt forall s and t

in R* then

t t t

= d d

[ XsstQs J Xs Qs f Ys Qs

0 0 0
where the integral on the left is a Ll - Lim of Z Xt YJc AQt .

i1 1
Proof.
It is clear that all the integrals in (i)-(iii) exist. For

(i) consider

=] X, 0Q + ! Ty 0
a 1 1 e 1 1

Taking the Le—limit as 6 refines gives the result.
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(ii) Let 8 = {to NIRRT S TS SRR SR t =T}

then

DX s = ) X 8q + ] X 0Q
6 1 1

i t.<t i t.>t i 1
i— i

Taking the limit as 0 refines shows that

T t T

[ XSdQS = J XSdQS + J XsdQs
0 0 t

(iii) Let € > O then there is a 90 € Pl[0,t] such that for
o) :
all © __60

t

Iy x, se - f xaq I, <e
g 1 1 0

Hence [38]

|
~—
S——
P
0
fol]
O
n
N
*®
[\)—
A
™

Y aq X!
8 i1

Thus
t t

* -
[ o= (] %)
0 0

(iv) Let 6 € Plo,t] . Then

v =
- Xt.Yt.AQt. z XtiAQtthiAQti

5] 1 1 1

o ¥
D%, 08, - ¥, 80,
8 i 1 g J J

since AQt AQt =0 if 1 # ]
i 7]
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Now
t t
I Z Xt.AQt. Z Yt.AQt. - J XsdQs ' j stQs "l
0 1 16 J J 0 0
t
< U Yx g sl %Yt.AQt_ - J Y da, I,
B 1 1 J J 0
t t
+ DX, se "J Xgdeg Iy J Y ,aq, 1,
) 1 1 0 0
by [38].
The result now follows from a standard theorem of analysis.
That is
t t
1
L” -  Lim Y X, Y A =JXdQJYdQ
8 c P[O,t] e t. ti Qti S S S S
0 0
2.36__Corollary
We have that
*
el *
(i) (x)* = x
(i1) (X )* = X* for each t € R' .
So far we have managed to stop L2~bounded martingales. However

if T 1is bounded then we can stop any L2-martingale.

2.37 Theorem

Let T %be a bounded stopping time and (Xt) be a Le—martingale.

Then X_ and X exist for any t € R”
T TAt
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T~

Proof.

Suppose T(t) = I for all t > T and let 6 € P[0,»] and

we may suppose 6 contains the point T . Then
Vx. 80 = § X Mg +Xx, (I-4q,)
L
S ST RTR I

M, (X.)A X (I -q.,)
LM (X Qti * 6 &L

tiiT i

As 6 refines, our previous analysis shows that the first term on
T

the right converges in L2 to f XsdQS . For the second term
0

the right continuity of the L2—martingale gives XT(I - QT) . Thus
T

f
12 - Lim g X, 0q = J X dq + %(I - Q)
0

Similarly if t < T , we have that

t
XTA't = [ X dq + X (I - Q)
0
and for t > T
T
= + -
XTAt J XsdQs XT(I QT)
0

2.37__Theorem (Doobs optional stopping theorem)

e ot e e ot e e e o . o S

Let (Xt) be a L2—bounded martingale and 0 < T . Then
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Proof.

From 2.32(iii) we have that

M30) < Mo

for any 6 € P[0,»] . Hence M <M. Now

XT = MT(X)
hence
= Qo N
MO(XT) MO lIT(X)
=MU(X)
=X
o]

We now state some properties of the time projections.

2.38 Theorem

Let T = (Qt) and 0 = (Q;) be stopping times such that

QtQ% = Q%Qt for each t € R’ . Then

3 = MM
(i) ™ oMr B 111\10
(l 1 ) MO A MT =M

(iii) MO v AT =M
Proof.

The stopping time G A T 1is given by o A T(t) = Q v QL for

each t € R’ . Thus for § € Plo,l
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o AT(0) = g Mti( )A(Qtiv Qti)

6 i i i

Taking the limit as 0% we have

M =M +M -M
OA T g T ovT

Now 0 > 0 o T hence

= + -
MOMO AT Mo MGMT MoMo vT
M =M +MM -M
OAT o] 0T o
= MO'MT
1 ] = + -
Likewise MTMG,\ T MTMU M‘r MTMU v
i.e M = MM
OA T TO
Hence MTMO = MOMT = MO'A -

= + N - 2
Also MU\/ T MT 10 ’VIOA T
=M +M -~-MM
T 0] gT
=M \V4 :/IO_

41

IM (ale +Q - Q



2.39 Theorem

Let (Xt) be a L2-bounded martingale. Then (XT t) defines
A

a L2—bounded martingale.

Proof.
Say X, = Mt(X) . Then
Xt " M )
= MTMt(X)
= MtMT(X) from above.
Hence
Ms (XT,\ t) = MthMT(X)
= MSMT(X)
= MTAS(X)
:XTAS '

Thus (X ) is a L2~martingale, in particular X = MM (X)
TAL t T
= Mt(XT) .
So far we have discussed stopping for L2—martingales. Here

we defined the stopped operator XT as the L2 - Lim EXt AQt .
6 i i

Motivated by this we make the following definition,

2.310 Definition

. oF -
Let (Xt) be a L¥-process indexed by R° ~and let T = (Qt)

be a stopping time. We set X = ¥X, AQ for each 6 € P[0,*] ,
T(8) T gy
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If the LP-1imit as O refines of XT(G) exists, we call it the
stopped operator and denote it by XT . (Of course for L2—bounded
martingales this limit exists in the Le—norm as we have shown.)

Likewise the stopped process by T is defined by

= P _ 1

+ . .. .
for each t € R° (provided the limit exists!) where

T A t(s) =<

We have the following Lemma.

2.311 Lemma

Let (Xﬁ) be a right-continuous Lp—process. Then X% = Xt

for each t € R® where t is given in 2.23(iii).

Proof.

Since (Xt) is right continuous at t € R” . We have for all

€ >0 there exists § >0 :t<s<t+39

ﬂXt —Xt+(5"p < &

Now let 6, ={0,t+68/2,=}€Plo,ol. Then

t(eo) = X450 .
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Hence

- X~ <
IIXt Xt(eo)"p €

and this holds for any 6 2 6

0 *

2.312 Theorem

Let (Xt) be a LP-bounded martingale if 1 < p < @ (and weakly

relatively compact if p=1) . If X4 exists for each
A

t € [0,@] , then (X ) defines a LP-bounded martingale.

TAt

Proof.

We have that M, (X) = X, for some X € IP(A) [5]1. Let
t €R" and 6 € Plo,~l . We may suppose 8 contains the point
t (= tr) . Then

i
]

r
Taelo) T e M B

]

n
X Y X, A .
HORN R

Then

n
M (X (g)) = M izl hlti(X)AQti

;
X, AQ
=

+ Xt(I - Qt)

M (Exa + X (I-~q))
¢ =1 ti Qti tr+l. Qt

© XTAt(e)) '
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\Q

Now taking the 1P-1imit as 6 refines and observing that Mt is
Lp—continuous, we have

M (XT) = Mt(X )

t AL

Now all that remains to show is that XT £ e Lp(At) . To this

A

end consider

y
= L X, A + X I -
XT/\t(e) ti§P ti Qti ti+l( Qt)

We know that as 6 refines X > X . However the first
T At(6) TAL
term on the right lies in Lp(At) , whilst the right continuity of

. . B _ p
the martingale gives us that X (1 Qt) > Xt(I Qt) EL (At)

i+l
Hence
M (X = Xy
Again if XT and XT £ exist in the Lp—sense, we express them
A
as integrals:
XT = J XsdQS
0
t
XT,\t = f X 4Q, +Xt(I—Qt)
0
t
where J xdq = - Lin I %, dq
s s t. .
o 0 €Plo,tl g "1 i

for t e [0,

45



(V3

Then this integral has the following properties.

2.313 Theorem

Let (Xt) and (Y,) be Lp-process and suppose that both

t

t t

f XSdQS and J YSdQS

0 0

exist for all t[0,o] . Then
t t t
(1) [ (x, + ¥ )dqg = J X dq + f Y dQ

0 0 0

+
for al1 t €R .

T t T
(ii) f XsdQS = [ XSdQS + f XsdQs
0 0 t

for all Oli t <7 <@

t t

. *

(iii) f xaq} = ( dQX_
0 ‘o

for all t € R”

(iv) 1If (ZS) is a L3-process where p 1, q 121 ana

t ot
[ z,dq exists for all t €R and 2Q = Q.2, for all
o S s s s
s,t € R 5 &hen

t

f X Z 4Q exists as a

s's s
0

i ..
L - Lim z Xt.zt.AQt. and equals
) 11 1
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+
for all t €R .

Proof.
This is exactly same as that of theorem 2.35.
Before we leave this section and go on to look at stopping
times that lie in the commutant A' , we make some definitions and
prove a theorem related to local martingales. However we shall

discuss local martingales in chapter four.

2.314 Definition

Mmonotonic iNCYRAIING ( )
Let (Tn) be a, sequence of stopping times given by T = (Qtn ) .

Then we say T+ ® as n + o if for each t € R'
(n)
d)(Qt ) >0 as n >

. + .
That is for each t €R , for all € > O there exists N :

for all n z.N
¢(Qtn)) <e

2.315 Definition

An LP-process (Xt) is called a LP-local martingale if there
exists a sequence (Tn) of stopping times as in 2,314 such that

. + .
X exists for each t € R© and for each n (X ) defines
TnA t T At

a LP-bounded martingale.

2,316 Theorem

Let (Xt) be a uniformly bounded Ll right continuous local

Q
martingale. Then (Xt) isabounded A-valued martingale.
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Proof.

We have that XT At S Ll - Lim XT ~t(8) ° That is
n 6 n
t
- (n) (n)
X .4 = f X dQ +Xt(l_Qt )
n
0
1
€ L (At)
Now £
_ (n) _ (n)
k- %h = 1| xael® - ey
n
0
t
(n) (n)
< HJ X,49 l|l+l|XtQt Iy
0
t
(n) n)
< 1 xgaal™y v i, otal™)
0
t
(n) . (n)
Now JXdQ = Lim Y X, A
5 ° o€ Plo,t]l Ui Qti
Bt 0T x 2™ < Toax _nagt™
t. T, h b el 8Q T
e 1 1 1 1
< Mo( (n)) f
< Qt or all 6
where M = SuplIXtIIoo
t
Hence
t t
(n) n (n)
0l J X_dQg o< I X _dQ, - Y X, QN
0 0 6 *+ 2
+ M¢(Q£n)) for all ©
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[+9

Now let € > O be given and let N €N so that for all n >N

n) 3
o(a{™) < £ .
For each n >N let 6 € Plo,©] such that for all 6 C 6, :

t
[ a5
0 g 1 1

Thus for all n > N

t
(n) € L E _
||J xsdQs "1<§+'2"'€ .
0

Hence for all n > N

I x

-xll. <e+¢= .
T At X I <e+e=2e

Thus X + X in L:L as n + o , for each teR" . The
Tn/\t t

conditional expectation is Ll—continuous thus by hypothesis

= X

Ms(XT A t) Tn/\ S

gives

1t - Lim M (X ) = L' - Lin X

sTT At T AS
n n

i.e.

MS(Xt) = X
Hence (Xt) is a martingale. But (Xt) is uniformly bounded hence

- N

Xy -dt(X) for some X € A .
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2.4 Stopping Times in the Commutant

In this section we study stopping times that lie in the
commutant A' of A . Here we show that the time projections
MT is the conditional expectation map onto AT - the Von Neumann

algebra of "events prior to T ".

2.41 Definitiog

Let T be a stopping time (not necessarily in A' ). Then

the algebra of "events prior to T " is defined by

*
A ={REA:R=R = R, RQ, € A, for each t} .

2.42  Proposition

C
If o< T then AO ___AT .

Proof.

Let 0= (q) and T=1(Q) . Then 0< 7T gives Q >Q

for each t €RT . Let Re€ A, so that RQ €A . Then

R, = A9, = (R)Q € 4y

Hence A_CA
g— T

Now let 6 = {to

time. Then

T(8)(s) = } U Xy g, (8)

50
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defines a stopping time and T(6) > T , hence AT(B)‘2 AT .

2.43 _ Proposition

We have that

= N
A = Do)
Proof.
C
AT —-AT(G) for all 6 € Pl[0,~]
Hence
C
Ao S D)
Conversely suppose X € N AT(S) . Now it is known [7] that there

S

exists a sequence (Sn) of partitions such that T(Sn) ¥ T

pointwise strongly. Now X € AT(G ) for all n , hence
n
XT(en)(s) S As

But T(en)(s) + 1(s) strongly and AS is strongly closed. Hence

+

Xt(s) = xq € As for each s € R That is X € AT .

In the rest of this section we shall assume that T(s) € A!
+
for all s € R .

Let 6 = {t ""’tn} € P[0,=] , and recall that

0

Mgy = 1M ()AQ
) 1

1
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2.44  Proposition

MT(G) is the conditional expectation map of A onto AT(G) .

Proof.

Suppose X € AT(G) so that Xt(8)(s) € As for each s € R*

T(8)(s) = X (s) . N
° thi [t5,,,)°° "

n
I oM (x)0Q

M (X)
(8) iZo i i

[}
Il t~—113

Lo (xeay )
1=0 1 1

Since Q = T(e)(ti) for all i =1,...,n . Conversely let
i
X € A and consider MT(B)(X) . Then

MT(G)(X)T(G)(S) = gmti(x)Aqtir(e)(s) .

Suppose tk <s < tk+l then

MT(G)(X)T(G)(S) ) Mt'(X)AQti € Atk C A, .

1=1 i

Hence MT(G) : A AT(G) is onto. Clearly MT(G)(I) =1

z,Y
Now let Z,Y € AT(G) and Xe€eA . Then
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1

o(ZM_ (g (X)Y) g(b(ZMti(X)AQtiY)

y qb(ZAQt.Mt.(X)YAQt.)
e 1 1 1

y q)(ZAQt XYAQ, )
8 i i

) (b(ZXYAQt.)
e 1

¢(ZXY)

Since ZAQti € Ati and YAQti € At Hence MT(G) is the

i
conditional expectation map.

We now wish to show that the time projection MT is the

conditional expectation map of A onto AT .

2.45 Theorem

s e e g e g e e S g

We have that MT is the conditional expectation map of A

onto A_ .
T
Proof.
It is clear that M_ maps A into LQ(A) . Let X€ AT
and 6 € Plo,»] so that T(8) > 1 and XEA gy - Now

u_(X) = 12 - Lim M (g) ()

L2 - Lim X
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Hence MT(X) =X for all X € AT . Similarly MT(I) =1I.

Now let Y €A ( CA ) and consider

¢>(MT(X)Y)
Then
|60 (x)Y) - ¢(x¥)]
< L0,y 01) = oQLKIN)] + [0 4y (X)) = ¢(x1)]
= [0 5y ()Y - $(M (X))
since MT(G) is a conditional expectation
< MYl gy () - M), + 0 as 0t
Hence

p(M (X)Y) = ¢(xXY)
Thus all that remains to show is that

MT : A~ AT .

We first show if X € A , then M_ )(X) converges to MT(X)

(6
strongly. To this end, since ¢ 1is normal and faithfull , we may
assume that A acts in its G.N.S. space # (= L2(A)) with cyclic
and separating vector £ . Hence A'Q is dense in . Let
XeA.,

We know that MT(B) > M_E on L2(A) (=3 ). Consider

MT(G)(X) , then "MT(G)(X)"oo _<__||X||°o since MT( is the conditional

6)
expectation. Let Y' € A' then
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\3

(x)y'Q Y'MT(e)(X)Q

MT(G)

- Y'MT(X)Q

?
MT(X)Y Q

Thus MT(B)(X) converges strongly to MT(X) on a dense set.

i 1 . - M (X
But (MT(G)(X)) is uniformly bounded Hence MT(O)(X) T( )
strongly everywhere on J and thus MT(X) €A . Since

MT(G)(X) € AT(e) CA . Now MT(X)Qt iss

strong-Lim MT(Q)(X)Qt = strong-Lim ) Mt.(X)AQt.
5] ) tiit 1 i

€ At

Thus MT(X) € AT and M_ : A > AT is the conditional expectation.

2.46  Proposition

Let (Xt) be a A-valued process indexed by R+ and suppose
XT exists as a uniform limit of Xt(e) (see definition 2.310).

Then X_€A_ .
T T

Proof.

XT(S) > XT uniformly, hence XT(Q) > XT strongly and
XT(B)Qt -> XTQt strongly. But XT(G)Qt IS At for all 6 &€ Plo,x] ,
and At is strongly closed, hence X Q € At for each t € R .

Thus X € AT .
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+ . .
Now for each t €R , T A t denotes a stopping time and

AT £ denotes the algebra of events prior to =T AL For each
Il

t suppose XTAt exists as a uniform limit of XT,\ £(9) where
(Xt) is a A-valued process. We have then the theorem:

2.47 Theorem

(x ) is a martingale relative to (A,) and (M,) if
Tat t t
and only if it is a martingale relative to (A ) and (M_ -_) .
TAt TAT
Proof.
. <t .
Since X‘[AtEATAt we have that XT,\tEAt as T At<t
Thus (X ) 1is adapted to (A,) . Now suppose
TAt %
= <
Ms(XTAt) XT,\S for all s <t
Then
- Q
MTAS(XTAt) Moo MS(XTAt) by 2.38
=MT,\S(XT,\S)
=X
TAS
and (XTA‘t) is a martingale relative to (MTA't)'

Conversely suppose

M (x ) = X for all x < t
TAS Tat TA S -

To show that (XT t) is a martingale relative to (At) and (Mt) :
A

it is enough to show that
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o(x, ¢ B) = “’(Xr,\s R)

A§r°'3 . Thus let RE ASPI'OJ then R(1-Q) €A

AN

for any R €
AS

Now

(X )= olx, R +o(x, L R(I-Q))

TAt R A
= 6(x, , Fa) + o(X _R(I-Q))

Proj

Since R(1 -Q ) €A and (X ) is a martingale relative to
S TAS TAat
(AT;\t) and (MTA't) . Now consider
¢(XTA‘C(9) RQS) = ¢(XTAS(6) RQS)

As 6 refines we have that

o(x, ¢ Rg) = (X, RQ)

A

Hence

6, L B) =X _RQ) + (X R(I-Qq))

= d)(XTAS R)

That is (X ) 1is a martingale relative to (A_) and (M,) .
TAt t t
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2.48 Remark

We mention that in general the time projection MT need not
be a conditional expectation. We shall illustrate this fact in

the next section.

2.5 The Clifford Algebra

In this section we study stopping times in a concrete model
from the guantum theory. We shall look at the Clifford algebra.
Stopping has been studied in this model {7]. There the main interest
was in stopping L2—martingales. In the present section we shall
be interested in stopping the increasing process associated with the
Doob-Meyer decomposition of a L2-martingale. For a L2—martingale

(X,) , we give a characterisation of the stopped martingale (XT t) .
A

t)
First we give some preliminaries (taken from [8,11]).

. + .
Let J denote the Hilbert space L2(R ) and F the anti-

symmetric Fock space over J( . That is
F=CQXQ (KB _¥)B HQ ¥ )8 ...

where @ o, denotes the anti-symmetric tensor product. We abbreviate

F to

(RIRICRICH ...

FHE H® ...RQ I¥)
where H = & a & .
n—-times

For each u € #{ , let C(u) denote the creation operator on F

and C(u)* = A(u) be the annihilation operator on F . The free

58



fermion field is then defined as

P(u) = c(u) + A(w)
Then for u,v € ' we have [8]:
Pwp(v) + p(v)p(u) = 2<u,v>I .

Let C denote the Von Neumann algebra generated by {Y(u) : ue#} .
Thew C is called the weakly closed Clifford algebra of bounded

cperators on F and over ¥ . It is known that the Fock vacuum

vector I , that is
R=1600008 ...

is a faithful normal finite tracial vector on C and we let

¢(+) = <Q,*Q®> so that (C,$,F) is a regular probability gauge
space [35]. For each t € RT 1let Ct denote the Von Neumann
algebra generated by {y(u):u € L2(R+) and supp(u) C [0,t]} .
Then we have a filtration of Von Neumann algebra$ {Ct cteR} .
Let M, denote the conditional expectation map of C onto Ct

t
for each t € R+ so that M, extends to the conditional expectation

t
map of LP(C) onto Lp(Ct) for all 1 <p< e,
Now consider the family {w(x[o t]) 1t € R+} . Then for each
+ . +
t €ER, W(X[o,t]) € C, . Hence the family {w(x[o’t]) :t €R}

is a C-valued process. In fact it is shown in [8] that it is a

martingale with the properties that
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(1) o(vlxpg ) =0 for all t € R’
(ii) ¢(w(x[05t])w(x[0,s])) =5 .t
(1i1)  o((Xp ) = ¥Xpg g ))(w(x[o,r]) - w(xlo,q])))
= ¢0(Xpg 1) ~ V(X[ g1 N0 X g 1) - U’(X[o,q] ))
if 0<t<s<r<gq
Property (iii) says that the family (Y(X [0,1] )) has independent
increments. We call (Y(Xp, ,j)) the Clifford process.

Now let X = (Xt) be a LZ(C) valued process. That is for

each t € R’ » X, € L2(Ct) . Suppose X 1is simple, so that

and write b, = W(X[O t]) . Then the stochastic integral
b
t
[ X g
0

is defined as

r
oo Qo -v, ) +x (W -v, )
izl R L S Y R

where t € [tr,t ) . Then it is shown [8] that

r+l
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t

[ xapt2= 3 o(x, 120, + o(jx, [A)(t - t)
] ws 2~ L& ¢ t. i 'i-1 9 ty v
0 i=1 1i-1
t
_ 2
- j Ix 12 s
0

Let S

S([o,T] ,C) be the space of all simple processes on
[0,T] and let h = h([O,T],ds;Le(C)) be the space of L2(C)—valued
processes on [0,T] measurable and square integrable w.r.t. ds

Then h is a Hilbert space and for each f € h

t
f f(s)dwS
0
5 t
exists as a L° - Lim of [ fn(s)dws where (f ) CS . Then
0
t t
I 12 = | 2
J £(s)ay_I2 J £()12 as
0 0
and
t
{ J f(s)dws : s € [0,T]}
0
is a Lo-centred martingale [8]. Conversely given a L2—martingale

(Xt) , there is a unique process (Xs) € h such that

t
% = | Fa,
0
and
t
l 2 - > o2
1,12 f 1% 12 g
0
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t oo
Thus the function t =+ "Xsﬂg ds defines a Borel measure on
0

[0,T7] given by My

b
uX([a,b]) = j "isﬂg ds
a

t

If f €S then the stochastic integral [ f(s)dXg is defined
0

as before. DNow let K = K([O,T],ux) denote the closure of S

in the norm given by

T
Izl =J I£(s)12 au (s)
0

Now 1f f €S then

t t
uf £(s)ax_I2 < J 1£(s)1Z au (s)
0 0

and hence if f € K then there exists a sequence (fn) C S such

that
t
2 .
L° - Lim f (s)dx
n s
0
t
exists and we denote it by f f(s)dXs . Furthermore
0
t t
I e(s)ax 12 < | In(s)IZ au,(s)
s 2 — w My
0 0
and
t t
J f(s)dXS = f f(s)XsdlllS
0 0
(11].
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We now state two lemmas from [7].

2.51 Lemma [7]

Let f : [0,T] » C be a self-adjoint process such that there
exists a sequence (fn) of uniformly bounded self-adjoint processes
with f + f strongly ds - a.e. on [0,71 . Then if (Xt) is

aan—martingale with:

t
Xt = j Xsdws
0
we have
(i) fXE€h
t 1,2 t t 5
(ii) J £ax. > J fax = J X _dy
0 0 0

2.52 Lemma [7]

Let T:R >C bea stopping time. Then there exists a
sequence (Tn) of simple stopping times such that T, T strongly
ds - a.e. (Indeed T, = T(Gn) for some partition 6 = such
that 1(8 )(s) < (6 _,,)(s) < 1(s) .)

n+l

2.53 Proposition

Let (Xt) be a L2—martingale. Then

where the stochastic integral on the right is the "left" version

of that given in Lemma 2.51. T = (Qt) is a stopping time.
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Proof.

We have that

¢

for some (Xs) € h [8]. Hence using the parity operator B8 [11]

(This is the left version of the Ito-Clifford integral given in

[8,11].)
We know that X exists and equals
TAt
t
J X, aq_ + xt(:r - Qt)
0
Now
t
2 .
X dq_ =L - Lim y X, A
Io 5% 6 €Plo,tl g Ui %
=xQ -1°- Lim § AX
% t. %,
O o 1 7i-1
Hence
_ _ 2 L.
X =% - L L%.m y AXtiQti—l
Now
My 7 J ay_8(X )« q
1 1-1 i-1
Ati
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and since Q : L2(C) > L2(C) is a continuous operator by
i-1
multiplication. ,

AX = ay_B(X_)Q
t Qti—l Ai, s s tl—l
1
Thus
t
e = | ans@E)ee)e)
1 1-1 0
where
(8)(s) = X (s)
) g A LR

But we know from Lemma 2.51 and 2.52 that

t
[ av B )wts)
0

t ~
exists as a L° - Lim i deB(Xs)T(en)(S) .
0]
Now consider

t

V[ a8 o)) - w(s)iZ

0
t

- | ) aee) - o e
0
by the isometry property [8].
We know that given € > O there exists N(e) such that for

> )
all n > N(e) and hence 6 2 GN(E) we have
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t
J I8(% ) (r(8,)(s) - ()3 < €
0]

Thus let 6 2 8, ) so that t(s) > 1(8)(s) z_r(eN(E))(s) .

Then
t
[ 18E ) xto)s) - (o)1 as
0
t
= [ 18R ) x(ay )8 - TN (e - (a1 as
0]
t
<[ 18 (eloy o) - IS as
0]
< E
Hence
t
L - Lim } 8X, Q= J ay_B(X)ag
0 i i1 0
That is
t
XT At - Xt - J deB(XS)Qs
0]
t t .
= j deB(iS) - j deB(XS)QS
0 0
t
- [ apiE- e
0
t
= J ax (I - Q)
0

by 2.51 and 2.52.
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t .
If (X)) is enL°-martingale so that X, = f X 4y , then the
0

increasing process associated with (Xt) in the Doob-Meyer

decomposition is denoted by <X>t where

t
32
> =
<X>, J ]BXSI ds
0
[8.11].
We are now interested in finding the relationship between the

increasing processes associated with the stopped martingale (XT t)
A

In the commutative

) .

and the stopped increasing process, <X>T £
A

T T
<X >, = <X> =
theory we have that <X'> X Tt where X (XTAt

We first state a corollory of proposition 2.53.

2,54 Corollary

We have that

t
o, = j [(8(E0)(x - )|? as .
0

Proof.

This follows immediately from the definition of the increasing

process associated with the Ito-Clifford integral [8,11],

Our aim now is to stop the increasing process associated with

t .
Xt = fo Xsdws . We first show that
Lim Y <x>, A
6 € Plo,tl ¢ by Qti

. . 1
exists in the L -sense,
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2.55 Proposition

We have that

L~ - Lim Y <> A
ecPlo,tl g i %
t
> 2
- @, q - j |6%_|%q_as
0

Proof.

We first show that the integral on the right exists. To
show that the function s - IBisles is Lebesgue measurable, we

consider the case when the function s -+ IBXSI2 is elementary,

-~

say Xs = ﬁo for all s € [0,T] . By 2.52 there is a sequence T,

of stopplng times such that T, > T strongly ds - a.e. Now let
€ >0 then |B)~<0|2 =h+K vwhere h€C and K€ LY(C) with
HKHl < e . Then
T2
HIBXOI (1 (s) = (s < Inlr (s) - (s

+ HK(Tn(s) - ‘r(s))lll

< elnly + IKI_IT_(s) - t(s)l,

Hence the function s - IBXS]2QS is Lebesgue measurable.  Furthermore

> 2 ~ 2
Illsxsl ol = Il}exol I, <o
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Hence by the dominated convergence theorem | IBXslest exists
too.

as a L' - Lim of / IBXslzrn(s)ds , when (XS) is elementary.
0

For general (Xs) the result follows by linearity. Now

R
1 1

6 € Plo,t]

<X Q- Z A<X> iQt

i-1

= <X, Q - g ( J ds|B§S|2]Qti—l

At.
1

t
<X> Q- J |eis|21(e)(s>ds
0

Arguing as in the proof of proposition 2.53

t
= J |8X | (Qt - 1(8)(s))ds
0

We now wish to show that as 6 refines

t
CARCOEEIOIOIE
0

. 1
converges 1in L to

t

[ 18,12, - tsas

0

We know that
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t
IIJ IB;(SIE(Qt - T(Gn)(s))ds"l
0

ij 18%_|%(q, - t(6,)(s) ds

+ 0 as n + < by the dominated convergence theorem. Thus arguing

as in the proof of 2.53 it is easy to see that

t t
1! - Lin J IB%SIET(Q)(s)ds = J IBisngsds
o /4 o
Hence
1 :
L~ -  Lim Y <> A
6 € Plo,tl 5 Qti
t
> 2
=<, Q - J |8x_|“q ds
0
t
=[ |8%_|%(q, - q,)as
S S
0
2,56  Theorem
t
> 2
W= j lex |°(1 - q )as
0
Proof.
1
<> =1L~ - Lim z <X>. A + <X> (1-q)
TAt 6 t.<t i %, tiag

From proposition 2.55 and the right continuity of t + <X>, [8,11]

we have
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t

- _ 3 12
LEREE O ALY
0
t
= % 12(1 -
= J |8x, | (1 - q,)as
0

)

We now write <X>T to denote the process (<X>T

At

2.57__ Corollary

t
. T 312
> = - -
G) (0= [ -l |2 - o as
0
t
s W% _ _ 5 12
(ii) (<x>"), = I (T -Q))Bx |° as
o)
Ty _ T\ *
(iii) At(<X> ) = (<X> )T/\t
where <X> 1is left-stopping the process <X>_ .
T At t
Proof.

Left stopping is given by

t
_ _ ~ 2
<X> = J (I QS)IBXSI ds
0

At

arguing as in the right stopping case and the corollary follows.

71



2.58 Theorem

We have that

T T T ¥
X'> = (<x>") = (<x>7)
t At TAt
Proof.
t
. _ [ a3 ¢+ _ A v12
x> = I |8x (1 - Q)" ds
0
t
= | (1-q)8% |31 - q )as
s’ s S
0
*
= (<x>T) .
Tﬁ\t

t t -
. -~ 2 .
N = = -
ow 1f Xt fo Xsdws and Yt fo stws are L -martingales.

Then the pointed bracket process is defined as [11]:

t
R
<X,¥>, = J B(x_ ) B(Y_)ds
0
so that <X,X>t = <X>t . Hence by polarisation, it is easy to
see that
t
<X,Y> = (~ *
> = ] B(X) B(Y (I - 9 )ds
~ 0

In proposition 2.55 we showed that
t t

( d<X>SQS = J IBXSIQQSds

0 0]
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t .
exists as a L' - Lin of f IBXS|2T(6n)ds . By polarisation it is
0

easy to see that

t
J d<X’Y>st
0

exists.
t
In [11] it is shown that (/ dX_f(s)) is the unique centred
0

Lg—martingale (Z,) say such that

t

t
J d<X,Y>sf(s) = <Z,Y>_
0

for any L2—martingale (Yt) , and f 1is a C-valued process which

is ds - a.e. limit of uniformly bounded sequence in S . Now

using Lemma 2.51 (see [7]) we conclude that this result holds for

t t
f ax_t(s) (=j ay_BX (s) ) :
0 0]

Bearing this in mind, we have the following characterisation

We have that (XT ) 1is the unique centred Lz—martingale

AL

(x') such that

T
> = <X'Y>
<X’YT,\t XYt

for any L2-martingale (Yt) .
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Proof.

t
<XT,Y>t = <J dXs(I - Qs) -y
0
t
= j d<X,Y>s(I - QS) from [11]
0
= <X,

N

by polarisation of the result in proposition 2.55.
The uniqueness follows from the fact that [11] if
T T
XL = <BY>,

for any Le—martingale (Yt) . Then

for all t € [0,T] , and any Lg—martingale (Yt) . In particular
SRS A S
Hence
t
~ 5T, 2 _
[ 1t -0 - 6iljPas = o
0
for all t € [0,71 . That is sis(z -q) - giz =0 O§ — ae

74



-

> =T
. Hence XSB(I - Qs) -4, =0 ds—a.ce

i _ ST
e XSB(I - QS) = Z : .
Hence

t t

i _ ~T

[%m—%ms-Ja%

0 0
l.e.

_ T
Xr,\t =z, for each t € [0,T] .

Finally we prove the strong Markov property of the Clifford
process (wt) . The strong Markov property is one of the basic
properties of the Brownian motion process in the classical probability
theory. The gquantum analogue for the Boson Brownian motion is
established in [24] and that of the Fermion Brownian motion in [3].

We shall follow the description given in [3] to suit our needs.

2.510 _ Theorem

Let T be a finite stopping time.  Then wT+t exists strongly

.. .
for any t >0 and {wr+t -y tE R’} 1is a Clifford process.

Proof.

Since T is finite, we can assume 7tT(t) =1 for all t > T,

Hence by 2.37 we have that

T
be= | vgaa, + uglr - o)
0
=12 - Lin Mgy ) + Up(T = Q) :

-6 €plo,1l
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Now for f€F , IIMT(G)(wT)fII iz llMti(wT)AQtifII
1
iz IlMt.(wT)llwllAQt_fll
i 1 1

< Mgl § lagy £l
i 1

lygl e

A

gl el

Hence

"Mr(e)(wT)"w j_HwTHm

Thus from [27] MT(G)(wT) converges to MT(wT) strongly.

the integral

T

j b.dQ + Up(I - Qg
0

exists in the strong sense. Likewise

T

Voyp = f Ve Qg * Yyt (T - Q)
0

exists strongly. Now

T

Vsg ~ ¥ = J w(xls,t+sl)dQs * w(X(T,T+tl)(I - Qp)

0

and let §, = Then

v = Vrag T Vg o
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@th + @er =

T
(J V(g sl 199X pag) ) (T70g)) x
° T
" (f VX (s 51 199 X7, 14p ) (T0)
T 0
+ (J WX (g ras] VX (p pag) ) (T-0g)) X
° T
] Vs 001 189 ) ) (T-0))
0

+ . .
We now note that for each t € R , the antisymmetric Fock

space F decomposes as
_ t
F = Ft ®F

where Ft is the antisymmetric Fock space over Le([O,tl) and

F® is that over L2((t,®)) . If C, end ¢’ denote the

corresponding Clifford algebras over LE([O,t]) and Le((t,m))
respectively then C_ C B(F,)®I and ct CI® B(F®) [3].

Thus Ct and ct commute. Thus by 2.35(iv)

T T

J w(X(S,t+Sl)dQS f w(X(S,r+sl)dQs

0 0
T

- J w(x(s,t+sl )w(x(s,r+sl )dQs
0

and

77



T T

J w(x(s,r+s])dQs y f w(X(S’t+S])dQS
0 0

T

- J w(x(s,r+s])w(x(s,t+s])dQs
0

On adding and using the canonical anticommutation relationship of

(wt) stated at the beginning of Section 2.5, we get

T

J <X(s,t+s]’x(s,r+s]>dQs
0]
T
=J (t , r)dq
0]
= (£, r)Qg . (2.510a)
Likewise

w(X(T,T+tl)(I—QT)W(X(T,T+rl)(I_QT) +

YOz, prr] VT 0 VX g ) (T70)

=t . r(I - Q) . (2.510p)
Finally, the "cross" terms are all zero. For example
T
J w(x(s,t+sl)dQs . w(X(T,T+r])(I - QT)
0
T

- fo W(X(S,t+sl)dQs - (T QT)w(X(TaT+r1)

=0
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We end this chapter with an example to illustrate that the

time-projections are not in general conditional expectations.

2,511 Example (MT is not a Conditional Expectation)

We work in the Clifford algebra. Let @Q be a projection

in Ct and let T be the stopping time:

T(s) =ﬁ Q s >t .

Then if M Lt > Ll is a conditional expectation we have

¥ = *
M_(X) M_(X*) .
In particular if X = X* , we have that

X(I-9)+M X=X+ (I-Q)X

[, ()0 = [x,0l

for any projection Q € Ct .

Now let s >t and X= ws . Then [wt,Ql = [wS,Ql and
wt
consider — , which is a self-adjoint unitary. Hence there is a
vVt

projection P € Ct such that;

Yy
Vt

- 2P'"l v
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1
Welet Q = =(—+1) . Then
2(/1; )
] V]
1 t 1 t
=[y, ,—+11 = =[yp ,—+1]
277 T 2778 Tk

Hence [wt,wsl =0 forall s>t , i.e.

[wt,wt+w(x(t,s])1 =0
Hence

(v, W(x(y g1 =0
That is

V¥ X(y 61 )~ ¥ Xy, Wy = O
Also from the C.A.R., we have that
bV g1t + V(g 51 Wy = O
Thus adding we get
(g, ) = O
Multiplying (2.511lc) to (2,511h) gives
b X(g o WX (5,61 g = O

Hence
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wt(s-t)elwt =0
Hence

te(s—t)eI =0
That 1is

£2(s-t)° = 0

for all t <s . We have a contradiction and MT is not a

conditional expectation map.
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CHAPTER THREE

STOPPING TIMES IN A VON NEUMANN
ALGEBRA WITH A STATE

3.0 Introduction

In this chapter we study stopping times in a Von Neumann
algebra with a faithful normal state. This is a natural extension
of the tracial case studied in the last chapter to include certain
type III factors [18]. Once again our work here is motivated by

examples from quantum mechanics [18].

3.1 Preliminaries

Let K be a complex Hilbert space, B(K) the bounded linear
operators on K and A C B(K) be a Von Neumann algebra with a
faithful normal state w . For each non-negative real t , let

A, be a Von Neumann subalgebra of A and suppose the family

{At : t € R} satisfies;

+ )
t2 €R and t, < t. then At is a

(i) if t
1272 1

l’
Von Neumann subalgebra of At
2

(ii) the Von Neumann algebra A is generated by U At
>0

(iii) N A, =A
t>s t s

]
(iv) U A = A ,
7 ( s<t S }> t
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. . . +
Finally suppose there exists a family {M, : t €R } of

conditional expectations:

M% : A~ At
such that:
(1) woM_ =u for all t € R
(ii) M, (AXB) = AM, (X)B for all A,BEA , XEA
(ii1) M_(a) = A for AE€A, .

Since w is faithful, we may, without loss of generality,
assume that A and for each t € R* > At act in their G.N.S.
spaces # and m% respectively. Here, (JN,Q) 1is the G.N.S.
triple associated with (A,w) and for each t € RT R (ﬂ%,H,Q)
is that associated with (A ,u) . For each t € R’ , let P,
denote the orthogonal projection of ¥ onto ﬂ% , the subspace

generated by AtQ . The following straight forward Lemmas will

be used subsequently,

3.11 Lemma

o . o e G, o ey

For A € A, we have that

PAQ = M, (A)Q for all t €RT .

Proof.

Let B E At , SO that Mi(B) =B . Now consider
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<BQ,PtAQ> SBR,AR>

w(B*A)

w(Mt (B*A))

w(@1, (4)

= <BQ My (A)> .
Since AtQ is dense in ﬂ% , the result follows.

3.12 Lemma

o g o o oy o

+ . .
For each t € R" , P_ 1lies in the commutant of At .

t

Proof,
Let BeAt , A€ A ., Then
PtBA.Q = Mt(BA)Q
= BMtCA)Q
= BPtAQ

Since AQ is dense in I, the result follows.

3.13 Theorem

We have that the map s > Ps is strongly continuous.

Proof.
We first establish the left continuity of the map s ~ P .

We wish to show that PSXQ > PtXQ as s+t ,XEA . TNow since
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U As is strongly dense in At , we have that: given € > 0 ,
s<t

there isa Z€ U A [ say Z€A , s <+t , such that
s<t S g 0

HMt(X)Q—ZQ" = HPtXQ—PSOZQ" < g/2

Now for t > s z_so s We have

Ip, x0-p xQ1 < 1P x0-z0ll + lzo-P xQl
t s — 't s

£

> + P _z0-pP P, xQl since PP, =P
] st S

£
2

| A

+ Ip_ll_Iz2-p x5l

A
nfm
'
™

and the left continuity is established.

To show the right continuity, it is enough to show 1) ﬂ% =3

t>s
Now let P, = AP, . Then PH=H Cp H£= N H . To show
s+ t ] s — s+ t
t>s t>s
the reverse inclusion, let h &€ N AtQ , then there is A € A such
t>s
that h =P _AQ for all t > s . (Since A_Q=A_Q =h gives
t tl t2
A, =A since @ 1is separating) and h =P_ _AQ . Now,
tl t2 s+

PtAQ = Mf(A)Q by 3.11 and "Mt(A)H < Al for all t > s , hence
the family 4{Mt(A) : t>s} is weakly relatively compact in A .
Thus we can find a subnet such that Mt (A) converges to Y weakly

o
as t ¥ s, Thus we have,
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<M, (4)Q,BR> + <YQ,BO> = <P_YQ2,B0> .
a

Also,

Mta(A)Q = PtaAQ > PS+A9 =h

strongly (hence weakly), Hence

<h,BO> = <PSY§2,BQ>

and h = PSYQ . Hence he€e ﬁ; .
Now if h€&€ N th , then given € > 0 , there is A€ A
t>s
such that
"hth(A)Qﬂ <€ for all t > s

since AQ 1is dense in ¥ so that there is A € A such that

lh-AQl < ¢ and hence
Hhth(A)Qﬂ.z "Pth"PtAQ" ﬁ.ﬂh«AQ" < ¢ .

Hence arguing as above shows that there is a Y € As such that

-yl < € and hence h € ﬂg .

3,2 Stopping Times

Before we define stopping times in this model, we define vector

and operator valued martingales in this model.
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3.21 Definition

An A-valued martingale with respect to the filtration

{A, : t€R"} is a family '{At . t € RT} with AL € At for each

t
t € R* and Ms(At) = As if 0<s <t . Likewise, an #-valued
martingale with respect to the filtration {ﬂ% :t €R'} is a

family {n, :t € R’} with n €J and Pn =n_ if 0<s <t .
An J-valued martingale is called simple if it is of the form
n, = P,n for some n €.

3.22 Remark

L e L

It is evident that given amA-valued martingale (At) we can
construct an ¥#-valued martingale (at) by defining

o, = A0 for each t € R+

Conversely, given a J~valued martingale, the following prescription
shows how to construct an operator valued martingale [31].
First define the vector spaces Un and Un(t) as follows:

U {RnA: Q€ Domain (R)}

n

Un(t) =1{RrR n At : Domain (R) = Aéﬂ}

where n means affiliation, That is R n A ® A' Domain (R) C
Domain (R) and A'R C RA' for all A' € A!
We observe that since A' CAl for all t € RY Uﬂ(t) - U,

The conditional expectation is now extended to Un by
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N\

Mt(R)TQ = TP R

1
where T € At , RE Un .
Thus given an #~valued martingale (at) say, we define a

Un—valued martingale (Xt) by:
XtTQ = Tat

where T € A; . Then for s <t ,

MS (Xt )RQ2 RPSX_tQ

= RPsat

= Ra
]

= X RQ
S

where R € Aé .

Thus MS(Xt) = XS on a dense set and the fact that X € Un(t)
is clear. Furthermore if (Xt) is a A-valued process and (at)

is the corresponding #~yalued process:

X TR = To TeA,é

gives
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vy

To, = TX, Q

X, 10 .

-~

Hence Xt and Xt agree on a dense set and hence are equal.
As in the tracial case in the last chapter we make the following

definitions about stopping times [T].

3.23 Definitions

(i) A stopping time, T , is an increasing family of
. . +
projections (Qt) such that T(t) = Q € At for each t € R ,

t(0) =0 and T() =TI,

(ii) Let P denote the set of finite partitions of [0,«]
Then for 6 € P , say 8= {to,tl,...,tn} we define an operator

P‘E(G) on ¥ as:

n
P = Y (@ -4 )P
T(0) T g ey T % Ty
n
= Z hQy Py .
1=1 171
(iii) 1If T = (Qt) and o = (Q%) are two stopping times then

. . +
we say 0 > T if and only if Q. z_Q% for each t €R .

The following theorem is the analogue of stopping L2—bounded
martingales with simple stopping times in the commutative theory,

and is an extension of theorem 2.32 to the non-tracial case.
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3.24 Theorem

Let T be a stopping time. Then

(i) PT(S) is a self-adjoint projection on # for any
B EP.
(i1) 1rf 6, » 62€P with 62 finer then 6, then
P > P .
(iii) If o 1is another stopping time with o > T then

Pc(e) iPT(B) for any 86 € P .

Proof,
Let T = (Qt) , EE€EH and 6 = {to,tl,...,tn} EP.
Then
y y
(o) Prig)(8) = 2 AQt.Pt.(.: Aq, Py &)
71 Jd J 1=1 1
=) )0 P 0q P ¢
J 1 d J 11
=L 1P 0q dq P g by 3.12
Ji 73 Y3 "ici
=1 Py 00 &
i 171
= PT(G)g ’
since AQtiAQtj =0 for i# j . Thus PT(G) is an idempotent.
Now let £ , ne€ i, Then
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<PT(e)n,£> = g <AQtiPtin,g>

=) <n.py 8 &
1 1 1

y <n,4Q, P, &> by 3.12
i it

<n,2}AQt Pt £>
1 171

= <n,PT(e)£>

Hence PT( is self-adjoint and (i) is established.

9)

. o = U’ = .
(ii) sSuppose 6, =6, {q} where 6, = {t .,tn} with

O,oo

t. < t. and gq € (tr,t ) ,r+1<n. Then for § €,

1 i+l r+l

n
Pr(e) Fr(e,) ) = 2

r
v
AQt.Pt.(.i AQt.Pt.(E))
J=1 J J 1i=1 1 1

n
+ Y Aq P (Q-q )P (E)
ST

n
+ Yaq Po(q -@)p. (&)
=1 %5 % e T e

n n
+ yaq P () Aq P, (&)
TR S

Using 3.12 and the orthogonality of AQt and AQt for 1 #Jj we
i J
get
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Pitey) Pato,)®) - jzlAQtiPti(g) + (@, - )2 (&)
SRR NG
+ J-g+2AQ_t P
PT(GQ)(E)
Hence P_(o > P oy for 0,26 . The result for arbitrary

5 .
82__ 61 1s now clear.
(iii) Given 0> T , let o= (Q)) sothat @ <@Q for

each t €ER' . Let 6 €P be as in 3.23(ii) say. Then

rElAczt= AQ;

i=1 i 1—1

Now,
n n

Pr(e) Pole) = 4,0% Py () 09 By )
But

R
1 =1 i1 7

ig=1
!
by 3.12 and observing that AQt is orthogonal to AQ,t for

J i
J<i-1. Hence
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n

Pr(e) Po(e) = .1 ) 29 Py AQt

i=l j=i

n n-1

n-1
Z(ZAQ,GP AQt +AQtP I—KZIAQK))

1=l j=1

n
= 2 AQg Py
i=1 11
Pr(e)

flence Fr(0)2 Fo(o)

3.25 Remark

—— s o s o o g e o

We think of P ( as the "time-Projection" corresponding to

1(8)

the simple time

X

tim1 &)

() = ZP .
i=1 i-1°71

In the last chapter this was defined as MT(G) . Here we work
with PT(G) because we choose to work on the Hilbert space I

whilst establishing results about A (or Uﬂ) ~valued martingales.

3,26 Definitions

(i) For a stopping time T = (Qt) we define the time projection

at T , PT by

PT = eiéfp PT(G)
C = inf Y A P )
BEPI Qt
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(ii) For any J-valued martingale (Et) , we define the

"martingale stopped by T " as:

£ =1Lim ) AQ &
T Sy

3.27 Theorem

Let (Et) be a simple ¥-valued martingale. Then ET =P (&) .

Proof.
Since (Et) is simple. Et = Pt(g) for some £ € . Now

let 6 E€P

yaq & =) Aq P o(E)
§ i i1

0

= Pr(e)®)

Thus on taking the limit over P , we get
£ =P (£) .

As before the deterministic times are given by t :

t(s) = (3.27a)

94



then we have the following consistency lemma.

3.28 Lemma

Let (Et) be any right continuous H-valued process. Then
5y = &
Proof.

Let 6 = {0,t,t+e,#»} . Then &7 =g .  Hence as 8

t(8)

refines, the right continuity gives the result.

t+e

3.29 Theorem

Let T and O be stopping times with ¢ > T and let

(£,) be a simple #~valued martingale. Then
t

P(E) = &

Proof,

Since (it) is a simple martingale,

£, = P, (E)

for some £ € #, From 3.24(iii) we have that

Prie) 2 Foe)

for any 6 € P . Hence PSP, . DNow,
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PT o POE

P (£ )

Theorem 3.28 is known as Doobs optional stopping theorem in

commutative probability.

3,210 Definition

If T and 0 are stopping times we define the stopping times

OvT and 0 A, T as:

o v t(s) o(s) A T(s) s €R

GAT(S) o(s) v 1(s) s €R .

3,211 Theorem

If T and 0 commute pointwise then we have

(1i) Pcv . 5 .

h
g
<
g

Proof.

Let T = (Qt) and 0 = (Qt). Then

' -q.4q

GAT(S):QS+QS s s

for each s € R} .
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-4

Let 6 E€P and E£€H . Then

PoAﬂeﬂE)=zMQn +Q - tﬁ%JR%(D

1 1 1

= PT(e)(g) + Po(e)(g) - P (E)

Ov T(e)

Hence
o, 1(8) T Fr(e) T Fo(e) T Fov (o)

for any 6 € P , and taking the infimum over P , we get

= + - . PR .
P . PT PO P (3.211a)

o ovT

Now applying P0 on both sides and using theorem 3.29 we get

and (i) is established.
We observe that applying P_ on both sides of (3.21la) we

get

hence
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From (3.21la) we get

J
1
'_‘*U
+

Q"U
I

d

Ov T

and (ii) is shown.
Observing that the deterministic times commute with any

stopping time we have:

3.212 Theorem

If (St) is a simple #~valued martingale, then (& )

Tat

defines a simple #~valued martingale for any stopping time T .

Proof.

We consider "t" and "s" as stopping times given in (3.27a).

Let gt = Pt(g) for some & € H . Then
br ot =P, £ (&)

=P _o P, (£§) by 3.26 and 3.210

Thus for s f_t
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p(g ) =P o P (E)

P o P o PT(E)

P o PT(E)

=p_ (&)

TAS

1
)
w
—~~
A
~

Theorem 3.211 is the analogue of the result which says that the
process obtained by stopping a martingale with time T , t gives

a martingale.

As in the last chapter PT(E) can be written in the integral

oo}

n
form as fo QP (£) and since P (o) = iZlAQtiPti + (I-Q )P,

where 6 = {t ,tn=t,t+€} €EP. As e-~+0,

LR

(I_Qt)Pt+e > (I-Qt)Pt since s > P_ is continuous, hence we have

t
PTAt = J dq_ P, + (I - )P,
0
That is for & € ¥,
t
P 8) = | agp @)+ (- a e ()
0
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3.214 Theorem

We have that

t t

(i) [ dQsPS(a&;) = a J dQsPs(g)
0 0

for a€l,ged |
t t t

G [ agpen = [ aag )+ | aeten
0 0 0

for £, &' €,

t t t

0
) [ ap® = [ wp @] ag®
0 0 ty
for 0<ty<t,gedl.
Procf.
t
(i) J aQ_?_(g§) = ( 1Inf Y} s, P, )(E)
o o ° 6 € Plo,tl Qti £y
) /
Now AQ, P converges strongly to daqQ P as 6
o €Plo,g]l 1% o °°8

refines in P[0,t] and z AQt P, (ag) = aZAQt P, (£) hence the
8 i1 11

result follows.

(i1) Let 9 € P[0,t] then

é AQtiPti(g+£') = AQ‘t.Pt.(S) ) AQt.Pt.(‘E')
8 101 9 i1
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Taking the limit over P[O,t] gives:

t t t
f aQ P (&+E") = J aQ_P_(&) +f aQ_P_(&")
0 0 0

(iii) Let 0<t, <t and 0 € P[0,t] be such that

0
8 = {to,tl,...,tr=to,tr+l=to+€,tr+2,...,tn}
r n

) aq Py (&) = P aQy Py (8) + ) aq, Py (€)

5} 1 1 1=1 i 1 i=r+l 1 1
Taking the limit over P[0,t] gives

t to t

[ ap@ = [ ap @] ae

0 0 to

We saw in the last chapter that the Clifford algebra furnishes
an example of a "tracial case" in quantum statistical mechanics [8].
We study the C.A.R. algebra (Canonical Anti Commutation Relations
algebra) in the next section to illustrate yet another example from
the quantum theory. It is worth mentioning that all the resulﬁs
obtained in the present chapter apply equally to the C.A.R. model,
however, due to certain desirable properties we are further able to

prove a "random stopping theorem" for a certain class of martingales.

3.3 The C.A.R. Algebra [18]

Let K denote the complex Hilbert space L2(R+) and A be

the unital C¥-algebra generated by {b*(f),b(f):f € K} satisfying:
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b(f)v*(g) + b*(g)b(f) = <f,g>1
b(£)b(g) + b(g)b(f) =0
b*(Af+g) = Ab*(f) + b¥*(g)

To*(£) = lo(e)l = gy

for all f,g€ K and A E€C .

Let R € B(K) with O <R <1 and w be the gauge invariant
quasi-free state on A determined by w(b*(f)b(g)) = <f,Rg> [18].
Let (I,7,2) be the G.N.S. triple associated with (A,w) and for
each t € R" (JCt,Tr,Q) be that associated with (At,w) where At
is the C.A.R. algebra over Kt = L2([O,t]) . Then there exists a
family of conditional expectations (Mt) satisfying the properties
listed in section 3.1 and ' constructed as in [23]. Here
M A~ At is given by the equation:

Mt = eto YJ_G

where 0, 1is the completely positive map from At 8 B(J(t) onto

At given by St(A ® B) = A<Q,BQ> and Yy A~ At ® B(J(t) is

an injective ¥-homomorphism determined by
¥, (D) = v, (b(z, © £°))
=b(r,) 8T + IB NG

where (ﬁt,ﬂ',ﬂ) is the G,N,.S. triple of the C.A.R. algebra over

t_ 200 o _ t :
K*=17((t,»)) and £, Xlo,51F » £ = X(g,mf « T is the
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unitary operator on # satisfying TQ = Q and 7(B(x)) = Fﬂ(x)F—l
where B 1is the ¥*-automorphism of A determined by R(b*(f)) =
= -b*(f) . [23].

Since R >0 , m 1is faithful, hence we may suppose A acts

on . ©Now, let £ €K then
= *
Xg = AP Xpg g1 T) + A(Xpg )

defines a A-valued martingale for Al’AE € C . Thus we can define
stochastic integrals with respect to (Xs) [13]. Thus if (h(s))
is a simple process, that is for each s € R+ , h(s) € As and

h(s) takes the form
h(s) = } h._.X (s)
S g i-1 [ti_l,ti) S

Then

J n(s)ax, = Z hi_lAXtiQ
1

Then the integral obeys the isometry property [13]:

o] 2]

uf h(s)d.XSﬂz j Ih(s)ol%au(s) i ... (3.3a)
0 0]

where du(s) = (Illlz(l—p(s))+|A212p(s))|f(s)|2d§ and p is the
multiplication operator on K corresponding to R € B(K) .

As usual the stochastic integral is extended to all processes
that lie in the Hilbert space completion h , of simple A-valued

processes with respect to the norm
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©

lgh® = J lg(s)2l2au(s)
0
where g : R"> A is a simple process.

Again, it was observed in [13] that the Hilbert space h 1is
isomorphic to the subspace of U - a.e. adapted elements of
L2(R+,du;ﬁ3 . Hence, for F € L2(R+,du;JC) and adapted, the
stochastic integral desF(s) can be defined as desf(s) where
f €h corresponds to F in the isomorphism. The right stochastic

integral is defined as [F(s)aX, = [aX_TF(s) . Then the family
t

(J F(s)dXs)t c gt defines a H-valued martingale.
0

We are now in the position to state the main theorem of this

section.

3.31 Theorem (A random stopping theorem)

t
Let & = I F(s)dXS define a ¥~valued martingale, where
0
Fe L2(R+,u,ﬂ3 and adapted to (ﬁ%) . Let T, = (QE) be a

sequence of stopping times converging pointwise strongly to the
stopping time T = (Qt) . Then iTn > E .

Before we prove the theorem we need the following results,

3.32__Proposition

Let (gt) be as in the theorem. Then &, = Pt(ém) .
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Proof.

o0
Since F € L2(R+,u,3f), ! HF(s)Qﬂedu(s) < o ., Hence we set
’ 0
&, = [ F(s)dXS
0

and the stochastic integral exists.

3.33 Lemma [7]

If 1= (Qt) is a stopping time, there exists a sequence (Tn)

of stopping times such that
(i) T, is simple for all n €N

(ii) T2 Ty for all n €N

(iii) Tn(s) + T(s) strongly for all s € R

Explicitly, there exists an increasing sequence (8, ) of partitions

of [0,°] such that

T (s) = E Q X ny(s)
? 5 ti-1 [e2_;5t9)

6

We write T = (an) , SO that for each s € RT .

0

an = Tn(s) > 1(s)

strongly as n > «© ,
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3.34___Proposition

Let (Et) be as in the statement of the theorem and T = (Qt)

be any stopping time. Then

(1) fQSF(s)dXs is a well defined stochastic integral

(ii) Let 6 € Pl0o,©] , then

co

= - 0
ET(@) - Pr(e)(g) - J (I"QS)F(S)G.X
0

S

9 n
>t} then Q2 =

07t iy %l )

i-1°71

where if 6 = {t X[

© (o]

(i) By, [ GmoRelax, = [ (- )R(s)an,
(iv) & = f (I-Q,)F(s)ax

Proof.

(i) Let h : RY > X be given by h(s) = QSF(S) . Then from

3.12 and the fact that F is adapted we have:

Psh(S) PSQSF(S)

QSPSF(S)

QSF(S)

h(s) .
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Hence h is adapted. We now want to show that h € L2(R+,u;3CL
To show that h is measurable with respect to u , it is enough to
consider F elementary. The general case follows by linearity
and continuity. Now suppose F(s) = FO and (Tn) be a sequence

of stopping times approximating T as in 3.33. Then

[ HTn(s)FO - T(s)Foﬂzdu(s)
0
i en 2
= [ 16,7 - q ) Paue)
0
But
en 2
H(Qs - QS)FOH + 0 as n > ®

8
since an - QS strongly and

5]
1@ - o )F,I° < MIF,I°

. . + - . ..
F is in LQ(R ,du,9) and furthermore du is a finite measure.
Hence the dominated convergence theorem is applicable [22] and we

have

Tn(s)Fo > T(s)FO

in ¥ pointwise. Thus there is a sequence of simple processes,

(TnFo)n c N converging to TF pointwise in # . Hence the #~valued

function s = 1(s)F(s) 1is measurable [22]. Moreover
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[oe)

f HQSF(S)Hedu(s)
0]

Ini?

o0

J IF(s)12an(s)
0]

| A

Hence the process s = h(s) 1lies in L2(R+,du,Jf) and the

©

stochastic integral [ h(s)ax_ is well defined [13].
0]

(ii) since & exists (Et) is a simple #~valued martingale,

i.e. £ = Pt«‘,'oo [s]. Thus for 8 €P

£r(0) = Fr(o)5

n
() aq P, )E,
i=1 i1

(1 - a2, e,
izl Qti—l Y

G t.
n i
=[ F(s)ax_ - 1o J F(s)ax .
0 1=1 1-1 :
i-1
Now,
— > n
Qt‘-l J F(s)dXs =Q ) Lim Z AX_ TF (Sj—l) cor (3.332)
1 At. 1= n J J
i
Here (F") is a sequence of simple ¥~valued processes converging

n €N
to F in the norm given by (3.3a).
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Now, Q, is continuous and linear, hence (3.33a) becomes
i-1

. n
Lim Z Qt.—lAijTF (sj-l)

s n
= Lim | AX_TQ  F (55 by [13]
n ; J 11

But Qti_an > Qti-l

U-measurable from (i) , hence (3.33a) becomes

F in the norm given by (3.3a) and Qt F is
i-1

I ’ Q. F(s)dXs

Thus

= 0
Se(o) = J (1-q )7 (s )ax,
.

(iii) Let 2z = fo (I-q)F(s)dX_ . Then

[ee]

PT(e)Z = f (I—QS)(I-QS)F(s)dXS
0

from (ii). But by construction if 6 = {t se++5t } then

0

Q. = X (s)
s iZl R LR
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Thus QS <Q, for all s € R' and hence (I—QS)(I-QS) =I-Qq .

Thus PT(G)Z =27 .

(iv) Let 6, and 6 be any partitions of [0,9] with 6,

coarser than 6 , so that

Fr(0)° Fr(e)) T Fr(e) oy 3.2k,

and

2 _ 2
"Z - PT(G)EOOH = "PT(O)(Z - P‘L‘(en)g“’)” by (lll)

| A

17 - B, \EI°
(6,)

3 en 2
u[ (q, - o M)F(s)ax |
0

o0}

en 2
f "(Qs - Q. )F(s)I%au(s)
0

by the isometry property [13l.
Now let (en) be a sequence of partitions given in the

approximation of T in lemma 3.33. That is

1 (s) = Y U Xg. )(S)
£ . )

i-1 " 7i-1771

0

0
and an > Q, strongly. Thus "(QS - an)F(s)"2

-+ O for each
+ en 2 .
s €ER" and H(Qs - Qs JF(s)I© < L4lip(s)l . Hence the dominated

convergence theorem is applicable:
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co

6n 2
J H(QS - Qg )F(s)l%ap(s) + 0
0

as n >, That is given € > O there is a N(g) € N such that

for all n > N(e)

[} o0 e
nf (1 - o )F(s)ax, - f (1 - o P)(s)ax 12
0 0

[o<]

en 2
=j I(q, - ")F(s)1%au(s) <
0

Now set 0 = GN(E) € P , then for any partition ©6' finer than 6 ,

we have
2 2
lz - ?T(S')Ew" < lz - ?T(e)gmﬂ <E

Hence

Z=PE,

j (1 - QS)F(s)dXS .
0

Proof of theorem 3.31

From the proposition above we know that

co

[ a-artsrax,
0

oy
]

and

[ee]

r = J (I - QQ)F(s)ax
0
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Thus

g - 12 - J (o, - Q2)R(s)1%au(s)
n
0]

As QIS1 -> Q‘n strongly and ||(QS - Q];l)li‘(s)"2 < ).J,||F(s)||2 , the

dominated convergence theorem is applicable and the result follows.
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CHAPTER FOUR
A PROBABILITY GAUGE SPACE

4.0 Introduction

In this chapter we study probability theory in the gauge space
- w - - -
given by L (2,Z,P) ® MQ(C) . The purpose of this is to give examples
of non-commutative local martingales and hence develop a stochastic
integration theory with respect to those processes. We shall first
develop the necessary theory which is of interest in its own right

and open to exploitations but we shall not pursue this here.

4.1 Preliminaries

Let (Q,Z,P,ZQ,R+) be a stochastic base and Lw(Q,Z,P) be the
space of equivalence classes of bounded measurable complex valued
functions over the probability space (Q,Z,P) . Then, as mentioned
earlier, Lm(Q,Z,P) is a commutative Von Neumann algebra of bounded
operators on LE(Q,Z,P) , wvhere for © > p > 0 , LP(Q,Z,P) is the
space of measurable functions over (Q,Z,P) with élflp P < =,
and the action of Lm(Q,Z,P) on LQ(Q,Z,P) is given by multiplication.

Let Lm(Q,Z,P)lg M2(C) denote the tensor product of Lm(Q,Z,P)
and M2(C) , the space of 2 X 2 matrices with entries in C [21]

Then L”(@ M2 is a finite Von Neumann algebra with normalised trace

given by ¢ :

p(FRN) =3 f FaP « (N(1,1) + N(2,2))
Q
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where F €L (Q,Z,P) and N = (N(i,j)) €M,y(C) . We shall abbreviate
Lw(Q,Z,P) to L and M2(C) to M, . It is now clear that
» =E@® T where E is the usual expectation on L~ and T the

normalised trace on M2 .

4.2 The Probability Gauge Space "R M,y 0)

In this section we study the gauge space [35] given by Lm@ M,
and ¢ . We first identify the Von Neumann algebra Lm® M2 with
Mg(Lm) , the space of 2 x 2 matrices with entries from L” . The
elements of MQ(LOO) are clearly bounded operators on the Hilbert
space LQ(Q,Z,P) 0] L2(Q,Z,P) , which is isomorphic to LE(Q,Z,P) ® c° s
the Hilbert space on which the tensor product Lm ® M2 act [21]. We
contract Lp(Q,Z,P) to LF , where 1 <p<e,

f

Now let denote an element of L° @ 12 , then the norm
g
f
of is given by:
g
2
2 2
= | l
fll2 + lg"2
&2

where the norms on the right hand side are the usual norms on L

We have that MQ(LOO) is a Von Neumann algebra of bounded

operators on 12 @ 12 .
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Proof.

It is clear that ME(Lm) is a unital *-algebra of bounded

operators on 12 C) 12 with

A(1,1) A(2,2)
A¥ =
A(1,2) A(2,2)
where
A(1,1) A(1,2)
A =
A(2,1) A(2,2)

- - ©o . .
and A(i,j) el ,i=1,2;j=1,2.

Now all that remains to show is that M (Lm) is strongly

2
closed. To this end let (Aa) be a net in Me(Lm) converging
strongly to A , a bounded operator on Le(a 1° . Then EA B
belongs to M2(Lw) and converges strongly to ElAEl where El is
the 2 X 2 matrix whose top left entry is the identity (XQ or I)

and the rest zero. Then (ElAaEl) is a strongly Cauchy net.

That is
bl
“ (nlAaEl - ElABEl) ’, > 0
y/ 2
* 2 5.2
as o and B increases for all in L@ 1L° . Hence
b
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ll(Aa(l,l) - As(l,l))xﬂe >0

as o and B increases for all x € 12 . Thus (Aa(l,l)) is

a strongly Cauchy net in L , and there exists A(1,1) € L

which is a strong limit of Aa(l,l) . Likewise considering

EiAan ,1i=1,2; j=1,2 where E2 is the 2 X 2 matrix whose
bottom right entry is the identity and others zero, we get the strong
convergence of each Aa(i,j) to A(i,j) . DNow let A denote

the 2 x 2 matrix given by A(i,j) i =1,2 ; j =1,2 and consider

~ X
(A - A)
I
| X - bl
< | (ay - a) + | (A, - A)
I/lle /e

The first term on the right of the inequelity sign tends to zero as

0 increases, whilst the second term squared is dominated by

I(a (1,1) - A(,1)x5 + 1(a_(1,8) - A(1,2))y13
F e (2,1) - A(2,1))xl12 + 1(a_(2,2) - 4(2,2))y13

which again tends to zero as o increases. Thus A = (A(i,j)) .

©

That is M2(Lm) is strongly closed. Hence M2(L ) is a

Von Neumann algebra.

4,22 Corollary

Let (Aa) S‘M2(Lm) te a net. Then A  converges strongly to

A as o 1increases if and only if Aa(i’j) converges strongly to
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A(i,j) for each i =1,2 ; j =1,2
Proof.
X pd X
Suppose Aa > A for all
y y J

particular, setting y = 0 , gives

Aa(l,l)x A(1,1)x
A, (2,1)x A(2,1)x
for all x € 12 .
Aa(2,l) + A(2,1) strongly.
the other entries converge strongly.

The converse follows from Lemma 4.21.

The next result says that we may identify L x M2

S L2@L2. In

Hence Aa(l,l) + A(1,1) strongly and

Likewise, setting x = O , shows that

4.23 _Proposition

Let L~ x M2 denote the algebraic tensor product of L” and
M, [21] .  Then there is a strongly continuous ¥-isomorphism from
* x M ( *
L M, onto M,(L )
Proof.

co oo .
Let I : L xM,> Mz(L ) be given by

nyx N
11( F,.ON,) = Y F_ N
ST k=1 &K

eM, K=

(o]
where FK eL |, NK 5

1,2,...,8 and

Then 1t is clear that I

The strong continuity of II follows from:
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is a linear, *-preserving isomorphism.

. o]
with M2(L ) .



I(F ® N) = (FRU)(x® el) +(FRIN(y® e2)||2

where {el,ez} is the usual basis for C° .

4.24 Corollory

We have that L ® M2 is a Von Neumann algebra.

Proof.

[eo]
Let (Toz) CL ®M2 converge strongly to T , a bounded
operator on 12 ® 2 (=12 &) 12) . Then by 4.21 and k.23, n(Ta)

converges to S € Me(Lm) . Now,

I(rH(s) - T) (2 © 21,
-1
< Mm=(s) -t )E® 2, + (T, - T)(£ 8 2)l,
where f®Z€L2®C2 .
The second term on the right tends to zero as o increases,

whilst the first term on the right is

(S - W(Ta)) s

which tends to zero. Here we have set Z = Zlel + 22e2 . Thus

_l .
™ (8) =T and L & M2 28 the Von Neumann algebra L ® MQ .
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. . . L] . o
It is now clear that we may identify L & M2 with M2(L )

with trace, which we again denote by ¢ , given by

o(a) = 2 J (A(1,1) + A(2,2))aP ,
Q

. - 3 . @ - -
where A = (A(i,j)) , A(i,j)eLlL ,i=1,2; j=1,2.
We now proceed to identify the measurable operators and the

. P . . ©
non-commutative L°-spaces associated with (L X M, ¢) [38].

4.25 Definition [35]

Let A be a finite Von Neumann algebra of bounded operators
on a Hilbert space 4. Then a (possibly unbounded) operator T

on J is said to be measurable with respect to A if:

(1) T 1is closed
(ii) T has a strongly dense domain

(iii) TU = UT for all U€EA' . .
unitary

We denote the algebra of measurable operators over A by M(A) .

4.26 Theorem

We have that
HOL(LT)) = M (ML) :

That is the algebra of measurable operators over M (Lm) is same

2
as the algebra of 2 X 2 matrices whose entries are equivalence

classes of measurable functions over (2,Z,P)
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Before we prove theorem 4.26, we need a lemma:

Let E@F be dense in 12 8 L2 . Then both E and F

. 2
are dense 1n L

Proof.
2 T 2 2
Let £ €L , so that €L ® L° . By hypothesis, there exists
T
T
a sequence C E® F such that
€n
hig f 2
n| _ > 0
g, &l
That is

2 2
llfn - fll2 + llgn - f"2 - 0

and the result follows.

Proof of L.26.

Let TE M2(M (7)) so that T = (T(i,j)) and T(i,j) € M ) .

If D (i,j) denotes the strongly dense domain of T(i,j) , we set
D =(D(1,1) NnD(1,2)) ® (D (2,1) ND(2,2))

It is known that the intersection of two strongly dense domains is

strongly dense [35], hence D is strongly dense in 12 €)L2 .
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Now let n be a sequence in U and suppose
g n €N
n
4
fn t T h
> and N L
8y 8 g, K

as n > ® ., Then

T(1,1)fn + T(l,2)gn h

T(e,l)fn + T(2,2)gn K

But f -+ £ in L° and hence in measure, and T(1,1)f - T(1,1)f
n n

in measure. By passing to a subsequence, we may assume

T(1,1)fn + T(1,1)f (a.s.). Similarly T(l,2)gn > T(1,2)g (a.s.)

hence T(1,1)f + T(l,2)gn + T(1,1)f + T(1,2)g (a.s.). Thus

T(1,1)f + T(1,2)g = h and similarly T(2,1)f + T(2,2)g =K . Ve
f h

now have T = ( ) and T is closed.
g K

Now let U be a unitary operator in the commutant of M2(Lm) .

Then
u 0]
u =
0 u
) .
where u €L with ]ul =1.
f b
Let SI)) and consider TU

g

o
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bl uf

This is well defined since u? (i,j) € D (i,j) . Now

uf T(1,1)uf + T(1,2)ug
T =
ug T(2,1)uf + T(2,2)ug
uT(1,1)f + uT(1,2)g
uT(2,1)f + uT(2,2)g
b
= UT
g
We have used the fact that T(i,j) is measurable. We have
(M (L) C M (1) .
Conversely, suppose that T € M (M2(L°°)) . We want to show
T=(7(i,5)) i=1,2; j=1,2 and T(i,j) € M (L") . Now since

M (ME(LOO)) is an algebra [35], EiTEj is in M (M2(L°°)) .
(Note, that we take strong products here [35].) Let Vl and V2

be maps from 1?2 to L° O] 12 defined by:

T
v, (£) =
. 0
0
v . (f) =
2 (f)

Then if E@ F 1is the domain of EiTEj , we have from Lemma L4.27

that both V;(E @ F) and V;(E ® F) are dense in 12 . Ve now
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define T(i,j) on v;(E@F) by
.. "
T(i,j)f = ViEiTEjVj(f)
Then T(i,j) is densely defined.
To show that T(i,j) is closed, suppose (fn) C V;(E(S F) ,

£, > f and T(i,j)fn >y . That is,

*
ViEiTEjVj(fn) >y )
hence
EiTEjVj(fn) * V. (y)
Now, EiTEJ. is measurable and VJ.(fn) - Vj(f) , it follows that
EiTEjVj(f) = Vi(y) .
That 1is

* -
VIE;TEV.(£) = ¥

and T(i,j) is closed.

oo . %
Now let u € L with |u] =1, and fEVj(E@F). Then

.. _ ¥ <
T(i,j)uf = ViEiTEj Vjuf

V*E.TE.V. (uf)
1 1 J J

ViEilEj (u® I)ij

*
Vi(u® I)E.TE.V.f
177573

since u® I € M2(Lm)'
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= w¥E.TE.V.f
171770

. - - - - m - . .
Hence T(J.,,)) 1s affiliated to L [35] . Hence T(i,j) 1is
measurable operator with respect to L° . That is T(i,j) € M (™)
Hence there is a measurable function t(i,j) on (2,Z,P) such

that
(T(1,3)E) (w) = t(i,3) (w)f(w)

where f € V;(E ®F) [35].

Now set

[ £(1,1) £(1,2)

t(2,1) t(2,2)

then the domain of T, is E@®F and

f £(1,1)f + t(1,2)g

g t(2,1)g + t(2,2)g

* *
VlElTElVl(f) + VlElTEgVE(E,)

* *
V2E2TElVl(f) + V2E2TE2V2(5)

= Y'ET @ VET

0
0Q

1]
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Thus T = (¢(i,j)) i =1,2; j =1,2 and T(i,j) € M (L") and
the result follows.

We are now in a position to define the non-commutative Lp-spaces

associated with M2(Lm) [38].

4.28 Definition

Let (Tn) be a sequence in h{(Me(Lm)) and T be in
M(MZ(Lm)) . Wesay T converges to T metrically nearly
everywhere (m.n.e.) if for each € > O , there is projections

{En : n € N} such that
E 4T, NI -TEN,<e and ¢(I-E) >0

4.29 Definition

We say that T € Al(Mg(Lm)) is integrable if there is a sequence

(Tn) - Mz(Lm) such that Tn converges to T m.n.e. and

¢(|Tn - Tm]) -0 as m,n > . The space of all integrable operators
. © . 1 © . 1
in ﬁ‘(Mz(L )) is denoted by L (M2(L )) (or simply L~ +when

. . 1 . .
there is no confusion). The trace of T E€ L 1s glven by

¢(T) = Lim ¢(T))
e

4.210 Definition

Let 1 <p < ® , define

(1) 1P0i,(L)) = {T € MOLLT) : o(|2®) <=}

(ii) Il = o(|7|P)/P where T € Lp(Mg(Lw))

We shall abbreviate Lp(ME(Lm)) to LY .
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4.211 Lemma

The extension of ¢ to Ll is given by

5(T) = 3 j (2(1,1) + T(2,2))aP
Q

where T=(T(i,j)) i=1,2; j=1,2.

Proof.

1 1 . .
Let TEL then EiTEj €L for i=1,2; j=1,2 [38].

Now
T(1,1) 0
E.TE, =
11 5 o
and T(1,1) € M(L") . Thus if T(1,1) = w|T(1,1)| be the polar

decomposition of T(1,1) and

|T(1,1)] = f AdE
0

A

be the spectral decomposition of |T(1,1)| then

(u) 0 (lT(l,l)l 0
E.TE, =
1L 0 0 0 0
and
® E 0
- _ A
|E, TE, | j Ad
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Now,

—
B E, O
6(|E,TE,|) = Lim ¢ J Ad
1771 |
n>e 0 0
0
n ]
[ haE, 0
= Lim ¢ 0
e 0 0
= 3 I |T(1,1)]an
Q
1
Hence T(1,1) € L' (Q,Z,P) . Also
w 0} (" E, 0
Tn = f Ad
0 0] 0 0 0
converges m.n.e. to ElTEl and is Cauchy in Ll . It follows
that

6(E,T8,) = Lin 4(T,)

n->-o
o -
w [ AdE, 0
= Lim ¢ 0
n>o 0 0
=3 [ T(1,1)aP
Q
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) =3 f T(2,2)aP and ¢(E,TE,) = ¢(E,TE;) =0 ,
Q

Likewise ¢(E2TE2

it follows that

o(T) = 3 f (T(1,1) + T(2,2))dP
Q

4.212 Theorem

For 1 < p <, we have that

(M, (L7(2,2,P)) = My(LP(2,2,P))

th ths-

That is the LY space assoclated with M2(Lm) is same as_space of
A

2 X 2 matrices with entries from LP(Q,Z,P) .

Proof.

First suppose T = (T(i,j)) € M2(Lp) (we have abbreviated

M, (17(2,5,P))  to M2(Lp) ). Then

HTHP f_HT(l,l)Hp + HT(2,2)HP + llT(l,2)llp + IIT(2,l)|Ip

and
T € P, (1))
Conversely, suppose T € Lp(Mz(Lw)) . Then ETE, € LP(MQ(Lm))
Hence |E TE [P € L7(M,(L7)) . That is,
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@]

|T(1,1)[® 1w
€ L (M(L)) ,

= > ¢(|E T8, |?) = } j |T(1,1)|® aP
Q
Thus T(1,1) € LP(Q,Z,P) . Likewise, considering EiTEj
i=1,2; j=1,2 we get T(i,j) € LP(Q,Z,P) and the result
follows.
We now wish to identify the Von Neumann subalgebras of
L7(2,2,P) . To this end, let I' be a sub-o-field of I and

let L7(Q,I',P) denote the space of bounded, L'-measurable

functions. Let Eg, denote the conditional expectation from
LP(Q,Z,P) onto LP(Q,Z',P) for 1< p<®., Then it is known
that EZ' is weakly continuous. Now, the kernel of the map

I-E, L7(Q,Z,P) »~ Lw(Q,Z’,P) is precisely L (2,I',P) and the
weak continuity of I - EX’ gives the weak closedness of
Lm(Q,Z',P) and hence it is a Von Neumann algebra.

Conversely if B C Lw(Q,Z,P) is a Von Neumann subalgebra,
then set L' ={AEZ : X, € B} . Hence L (Q,I',P) CB . Also
since B 1is a Von Neumann algebra, x{f<l} € B for any self-adjoint
f€B and A ER . Hence {f<A} € L' and B = Lw(Q,Z',P) . We

have:

4,213 Theorem

Let B8 C Lm(Q,Z,P) . Then B 1is a Von Neumann subalgebra of
L*(Q,z,p) if and only if B = L®(q,5',p) for some sub-0-field I

of T .
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4.214 Theorem

We have that
LP(ME(LOO(Q,Z',P))) = ME(LP(Q,Z',P)) ,
for 1 < p <> and any sub-g-field L' of I .

Proof.

This is similar to the proof of 4.212 after observing that

L”(Q,2,P) CLO(Q,5',P)" .

We now define the conditional expectation Mg, from
MQ(LP(Q,Z,P)) onto M2(LP(Q,Z',P)) for 1 <p<w=®,

Let E denote the conditional expectation from L°(Q,5,P)

Z'
onto Lw(Q,Z',P) I28].  Then,

J gEZ,(f)dP = J grdP s
G G

for all f e L7(Q,Z,P) , g€ L(Q,2',P) and GE L'

4.215 Proposition

The linear map E, ®I from Lm(Q,Z,P) ® ME(C) onto

L(Q,51,P) B M,(C)  given by

B, ®I(rB W) = E,(£) BN

is the conditional expectation map.
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Proof.

It is clear that MZ' = EZ,(B I preserves the identity and a

straight forward calculation shows that

dp((e®RI(FQ®N)(h®T))

= ¢((g ® R)My (£ ®M(nBT))

for all g®R,h@®TEL(R,Z',P) and f®N € L(Q,L,P)

It follows from [27] that My, is the conditional expectation

map of M, (L7(Q,Z,P)) onto M2(L°°(Q,Z',P))

2

We now wish to construct an increasing filtration of Von
Neumann algebras. To this end, let (Q,Z,P,Za,R+) be a stochastic
base and assume that the family of o-fields {Za: a €R*} s right

continuous:

Nz =z .
B>a B8 o
© + . . . -
Then {L (Q,Za,P) : « €ER'} gives an increasing family of Von Neumann
+ . . . .
algebras and {Mg(Lm(Q,Za,P)) : « € R’} gives an increasing family
of non-commutative Von Neumann algebras, i.e.
(e} e o] [e o]
N C ¥ Writi N
JQ(L (Q,ZB,P)) - lig(L (Q,Za,P)) for 8 <a . Writing 1/12(La)
for M2(Lm(Q,Za,P)) let Ma be the conditional expectation from
M, (L) (L) That 1
ﬁ2 onto M2 0 at is

M

L(H(1,3)) = (EN(i,5)) i=1,2, j=1,2

where Ea is the conditional expectation from Lw(Q,Z,P) onto
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L (Q,):a,P) .

We are now in a position to define stochastic processes and do

some constructions with them.

4.3 Stochastic Processes

4.31_ Definition

A stochastic process X is a family {Xa : « € R"} such that
for each a € R > X, € ME(M (L:)) . That is the entries of the
matrix given by Xa are measurable functions with respect to
(Q,Za,P) .

We call a stochastic process X a Lp—process if for each
a€R", x, € My(1F) . s usual X is called a IP-martingale if
X 1is a LP-process and Mu(XB) =X, forall a<B ,X is called

LP-vounded martingale if X is a Lp—martingale and

Sup Ix I < l1<p<w
o € Rt

Note that as usual we shall denote a family X by (Xa) instead

of {Xa:aeR+} :

4.32_ Proposition

Let X = (Xa) be a Lp-process. Then X 1is a martingale if

and only if the entries of X form martingales.
Proof.

This follows directly from the definition of the conditional

expectation.
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4.33 Definition

An Lp—process A= (Au) is called:

. L. . +
(i) Positive if Aa >0 for all a€R

(ii) Increasing if Aa 2_AB for all o >8 .
The inequality here is in the sense of operators.

4.34 Definition

A LP-process A = (Aa) is called natural [16], if for any
B >a >0 and any sequence (Gn) of partitions of [a,B] such

that mesh(6_) >0 as n > ® , we have
n

oM (D =4 ) > o(tlag - 4))

o o o o
T J*l J

co
§or any Y € MZ(L ) .

The main theorem we wish to prove in this section is the Doob-

Meyer decomposition of Lg—bounded martingales [28,29].

4.35__Theorem

Let X = (Xa) be a L°~bounded martingale.  Then

x |2 = u + &
a a a

where U = (Ua) is a Llfmartingale and A = (4_) 1is a positive,

. . 1
increasing natural L -process.
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Before we prove this theorem, we shall need some results about
commutative (complex) processes. Thus in the next four propositions
we shall assume that x = (Xa) , Y = (ya) and z = (Za) are

L2~bounded martingales in LQ(Q,Z,P) .

4.36__Proposition

Let x C LE(Q,Z,P) be a L°-bounded martingale. Then

2 _
lxal = u, + oa

where u = (ua) is a Il-martingale and a = (au) is a positive,

. . 1
natural increasing L -process.

Proof.

X +x (X - X )
_ o o o o
Xu = + 1
2 21
= + 3 .
Ra lTa say

Then (Ra) and (Ta) are clearly R-valued L2-bounded martingales
hence have a Doob-Meyer decomposition:
l2

|R
Q

l
[}
¢
0

|7 |?
a

1 .
where (mu) and (na) are I -martingales and (ba) and (Cu) are

positive natural increasing L -process.  Thus
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x|

]
G)
R
+
=]
+
—~
o'
Q
+
0
Q

since the sum of two natural processes is natural. We shall often

write <x>_ to denote the increasing part a

t t

4.37  Proposition

Let x = (xa) and y = (ya) be L°-bounded martingales in

LQ(Q,Z,P) . Then there exists a Ll-process <x,y> such that

*
X - <xX,y>
oo 2

. 1 .
defines a L -martingale,

Proof.
Note that:
*

2 . . 2
Xy, = lxg Fy |t Fdlx, iy

= ¥

- |x 2. ilx - iy l2
o a o )

Hence from k.36 we have:
X'y = <x,y> +u
oo 2 o

where <x,y> = <x+y> + i<xtiy> - <x-y> - i<x-iy> and (u

. 1 .
1s a L —martingale.

135



4.38 Proposition

We have that:

(1) <x,y+z>a <X’y>a + <X’Z>a

(ii) <xty,z> <X‘Zc>x +<y,z>a

i]

.« e+ - >
(iii) <Ax,y>, A<X,y a

[t}

(iv) <x Ay>, = A,y .

) , z=(z)

For all L°-bounded martingales x = (Xa) ,y = (y o

a
and r€C .

4,39 Proposition

We have that

2
<X’y>al < < <y

for any L2~bounded martingales x = (Xt) and y = (ya) .

Proof.

+
Let AE€C , a€R , then <xtAy>,>20. P - a.s.

Hence,

<X+Ay , X*Ay>a >0 .
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That is,

— 2
<x> + A<y x> + A<x,y> + <> >0 .

If either <X>a 0 or <y>a = 0 then there is nothing to prove.

Suppose  <y>_ # 0 and set

<yLx>

<y >
J a

and the result follows.

Proof of L4.35

Xa ya
Let X = where x = (xa),...,w = (wa) are
z W
a a
2 . . .. 2
L -bounded martingales. That is they lie in L°(Q,Z,P) . Then
2 2 - -
|2 Ixal * 'Za, xaya * 20
X =
| @ vy X +wz ly |2 + |w |2
o o o o o a

Now from 4.36 and L.37 we get |X |2 =U, + A vhere U= (Ua) is

6

a Ll—martingale and Au is given by

<x> + <z> <X,y>_  + <z,w>
Q. a o o

<y . X> o+ <y.z> <>+ <yw>
MRS 227y, y o a
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We now need to show that

(i) Aa_>_0 for all o € R
i3 > >
(ii) Aa > AB for all o > B

(iii) (Aa) is natural.

To show (i), we consider A, as a densely defined operator on
f
12 6 ° . Let belong to the domain of Aa . Then

= J {<X>O‘f + <Z>af + <x,y>ag + <z,w>ag}fdP
Q2

+ J {<y’X>af + <W,Z>af + <y>ag + <w>ag}gdP
Q
= {<x> If|2 + <y> ]g|2 + 2Re<x,y> gf}dP
a a o

Q

' f {<z> |1|% + <w>_|g|? + 2Re<w,2>7ghap
Q

| v

2 2 3 eus?
J ta> |2+ <> [g]® - 2<wi<y>?lel|]}aP
Q

2 2 1 1
+ J {<Z>alf| + <W>a|g| - 2<w>é<z>;]g| |£]}aP by 4.39
£
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| v

2 3 112 1 1 a2
lal]r] - <y> lel}aP + | {<2>l]z| - <w>a|g|} apP
Q Q

>0

+
Hence for each a € R* , Aa >0.
To show (ii), we make use of the faet that if x = (Xa) and

y = (ya) are L2-bounded martingales in Le(Q,Z,P) then

|<x:y>a = <X’y>8| A (<X>a - <X>B)(<y>ot - <Y>B)

for all o > 8 . This follows directly from 4.39, and the proof of
(ii) follows along the same lines as that of (i).

To show (iii), that is (Aa) is natural, let o > 0 and (Sn)
be a sequence of partitions of [0,0]l such that mesh(Bn) + 0

[oe]
as n->® and GE M2(L ) . Then

o a6 (A  -a))

Q- o

= %E{Z (8 , (e(1,1))(ax> =+ 8<z> )+
% 3+1 %341

E n(g(l,E))(A<y,x> .t A<w, z> 0 )}

%5 %41 @541

(E n (g(2,1))(A<x,y> a7 A<z w> N ) +

aj O‘J'+1 OLj+1

E (g(2,2)) (A<y> g <> )}

&j aj+l aj+l
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Taking the limit as n + © and using 4.36 and 4.37 we get

%E{Ea(g(l,l))(<x>a + <Z>a) + Ea(g(l’2))(<y’X>a + <W’Z>a)}

*3E(E (e(2,1)) (<x,y> + <zyw> ) + E (g(2,2)) (<> + <> )}

oM (G)A )

¢(GAa) .

Hence (A is natural and the theorem is proved.

»

4.310_ Corollary

The Doob-Meyer decomposition given in theorem 4.35 is unique.

Proof.

2
= <4 =
Suppose IXQI U, * A, =V, + B, wvhere <Ua) and (Va) are

Ll-martingales and (At) and (B,) are positive natural increasing

t
processes. Hence Aa - Ba defines a martingale which is also a
natural process. Thus for any o > O we have that ¢(G(Au - Ba)) =0
for all G € M,(L7) .

Now since M2(Lw) is the dual of M2(Ll) , it follows that
A -B =0 for each o € R+ . Hence A =B and the result is
o o o) o
now clear.

Again writing <X>a instead of Aa we have:
Let (Xa) and (Yu) be Le—martingales. Then there exists an
Ll—martingale (Ua) and an Ll—process (<X,Y>a) such that

XY = U+ <X,Y> .
a o a a
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4.4 Stochastic Integrals

In this section we shall define stochastic integrals of the
t

form | FAX_ , where X = (XS) is a L?-bounded martingale, whose
0

matrix entries have right continuous paths and F = (FS) is a

process with some desirable properties so that the family of

stochastic integrals:
t
. +
{J FdX :t€R}

0

is a Le-bounded martingale.

4.41 Commutative Stochastic Integrals

We first review the construction of the commutative stochastic
integral.

Let (Q,Z,P,ZG,R+) be a stochastic base with (Za) being
right continuous. Let R denote the collection of all sets of the
form {0} x FO and (s,t] X F where F € Zs for s <t and

Fy €L, . The o-field P generated by R is called the predictable

o-field. A function f : RT xQ + C is called predictable if both
Re(f) and Im(f) are P-measurable.

Now let A € R , then XA(t,-) is I, measurable for any

t

+ .
t € R and hence XA,(t,') is I, measurable where A' =Q -4 .

Thus it follows that XA(t,') is I, measurable for any A in

t

the field generated by R , and by a monotone class argument

XA(t,') is L, measurable for any A in P . Thus for any A

in P, (XA(t,')) is a process. Now, any P-measurable function

f , is the limit of linear cowbinations of elementary functions of

sets in P , it follows that f(t,*) 1is Zt measurable and hence

(£(t,*)) 1is a process. Such a process is called = predictable

process.
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Let x = (xt) be a L2—bounded right continuous martingale and
f be simple predictable function (or process!). Suppose

£=) X (g then the stochastic integral [fdx is

; n-1°53%R5 1

defined as

Then

MeaxlS = Ef|z|facx> . (%.41a)

It is known that if f is a predictable function such that

E j |£(s,)|Pa<>, < = (4.41b)
R-}-

where the integral is understood in the sense of Lebesgue-Stieltjes,
then there exists a sequence of simple predictable processes (fn(t,-))

such that
E J lfn(t,-) - f(t,°)|2d<x> =0
+ s
R
and we set

[rax = 1° - Lim[f%ax :

For f as above the stochastic integral:
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the
is same as
F S

J'fX[o,t] x ¥ :

Now if Lz(x) denotes the Hilbert space of all predictable processes

f such that

EJ |£ |2d<x> < ®
+ S s
R

then the stochastic integral ffdx is defined as the image of f
under the isometry given by equation 4.4la, from L2(x) into
L2(Q,2,P) .

Another equivalent way of looking at the construction of
stochastic integral is to employ the method of Bartle [1T]. Thus

let Ux be the vector valued measure on R :

)X

ux((s,t]XA) = (Xt - x )X,

Ve extend M to be a finitely additive measure on the ring

generated by R by defining

n
n (a) = izl n (&)

where A =

= Cs

Ai and Ai are disjoint sets in R . Then it is
known that 1 extends to a measure on P [32], with semi-variation

given by the function

d.

I PR

.“SV(UX) :
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where

"E"SV(UX) = Sup H§ AiuX(Ei)H2

where the supremum is taken over all finite partitions of E in
P and (ki) CC with Ikil <1 . Then the semi-variation

. .. . +
is finite. For, consider R x @ and let (E.) be
sv(u,) i

.. +
a partition of R x Q@ over R then

HZAiux(Ei)Hg

U] %R (o, = <o, )
i i i i-1

1
SLTE, (oo, -, )
i 1 1 1-1

+
= Hux(R X Q)Il2 < o .

Since R generates P , the result follows for any finite partition

in P . Then the stochastic integral is just the Bartle integral
[171:

ffdxs = ffaux
of a predictable function f with respect to M - (The class of

predictable functions for which the Bartle integral exists is given

in [301. It is precisely the predictable functions for which
t
4.41b holds.) The stochastic integral f fsdxs is just the Bartle
. 0
L £ . i { ictable function
integral f X[O,thQdux Now if f 1s any predictable functio
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which is bounded then it is a pointwise limit of simple predictable
functions and hence it is Mo measurable for any L2—bounded

martingale x = (xt) . Since f 1s bounded it is clear that
2
Ef|£]%d<x> < =

hence the Bartle integral ffdux exists.

We now proceed to extend the definition of the stochastic
integral to a non-commutative setting.

Let X = (X_) bea L2-bounded centred martingale, i.e.

t
X, €M.(1%) , #(X.) =0 and SuplX . <o , and let F be
t 2 t " t 2
: + .. +
Me(C)-valued function on R X © such that each F(i,j) : R" xQ~>C
are predictable functions i =1,2 ; j =1,2. Then F defines a
process whose matrix entries are predictable processes. Suppose

F=(F is a simple process:

.t)
F,=V}F X (t)

Then the entries of F are simple predictable processes, we define

the stochastic integral:

J FoaXg =1 F (5 -x )
0

= (J Fs(i,k)dXs(k,j));=l’g;j=1,2

We have then the following.
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4.42_  Proposition

(1) [OF +po) ax = A[F ax_ + ufo_ax_

1
o

(i1) o(fr ax))

(1ii) WfF_ax 15 = o(|F_|%a<e ) )

For all simple processes F and G whose entries are predictable

functions and A,u € C .

Proof.

(i) Suppose F(t) = F)([_b & )(t) and G(t) = GXrg s )(t)
1’72 1°72

with x. < tl < 82 < t2 . Then
(F+3G), = (F +G)X + GX + FYX
and
JF+0e)ax = (F+0)(X, -X )+G6(X -X )+FX -X
s s 52 tl tl s1 t2 s
=F(X, -X )+6x -XxX)
ty % So 1

It

[rax_ + [eax_

The result for a general simple process follows likewise.
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(ii)  [r_ax,

- ofr,ax,)

.o 2
(1ii) llstdXsH2

For i # J , suppose

Hence the contribution

2
IfF ax 15

i<

1
©
—

=
ct
=

1
0~
©-
=
e
=

then

of the non-diagonal terms is zero and

2 *
= o(S|F, |°Ax, ax¥)
i ti—l ti ti
= o(Qlr, 120X 12 - 1% 1)
i i-1 i 1-1
2 * *
= ¢(3|F, (x>, - <X )
b1 b3 i1

i

= ¢(lesl2d<x*>s)
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We have used the Doob-Meyer decomposition given in 4.35.
We now extend the stochastic integral to include more general

integrands. Let F = (F_) be a process such that its entries form

t
predictable processes. Suppose furthermore that each Ft(i,j) is

bounded, i.e. Sup lFt(i,j)(w)I < @ , Then we know that given any
(t,w

L2-bounded martingale (Xt(j,k)) E§L2(Q,E,P) the stochastic integral
[F,(1,3)8x, (§,k)

exists and is the L2—limit of
[F(i,3)ax, (5,k)

where Fg(i,j) are bounded predictable simple functions.

Now let X = (Xt) be a L2-bounded martingale then the entries
of X, X(i,j) = (Xt(i,j)) form L2—bounded martingales in
12(,1,P)

n n,. . n,. . .
Now set F = (F(i,j)) , where F (i,j) are the simple

predictable functions converging to F(i,j) in W, -measure for any

L®-bounded martingale x S,LQ(Q,Z,P) . Then

[rlax = (an(i,k)dx(k,j))i ;

2

and
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n m._ .2
IfFiax - [raxig

= 1f(F-F)(1,1)ax(1,1) + [(F-F")(2,2)ax(2,1)15

2

+ If(F-F)(1,1)ax(1,2) + j(Fn-Fm)(l,e)dx(e,z)ll2

2

+ [ (F%-F")(2,1)ax(1,1) + [(F°-F")(2,2)ax(2,1) 13

+ If(F7-F")(2,1)ax(1,2) + f(Fn-f’”)(e,adx(e,e)ug

It is now clear that (andX) is a Cauchy sequence in L2

n €N

since the right hand side of equation L4.l42a converges to zero as
m,n->oo.
We have
2 . n
[FaX = L - Lim [F ax

It 1s now clear that

Jrax = (JF(L,k)ax(k,3)) 0y 5.5 5

4.43 Definition

t
For t > 0 we define f FSdXs by fF(X[O . ]xﬂlg I)dax
O 5

4,44 Theorem

———— ey o e et e o o G

t
The family of stochastic integrals {f FaX :te R+} is
0 S S

Lg—bounded centred martingale.
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Proof.

First suppose F 1is a simple process: F IF X
t t. _Mt. ..t
i-1 " 1-1°71

and t € [t,_;»t,) Then
Jt kel
Fax = Y F AX, + F (X, - X )
o o ° i1 Fia1 Y Ttk v

t
Taking expectations on both sides shows that ¢(f FSdXS) = 0 from
0

L.b2(ii). Now let r <t say r€ [tj_l,tj) . Then

M() F, &x +F (X -X_ )
rii=1 Y- B fk-1 B

=| Fda&X_+ ) MrF, (X - X )
fo S S k_>_i>j ti"‘l tAti tat 3-1

We wish to show Mr Ft. (Xtat. - XtAt- ) =0.
1-1 1 1-1

Let G € Mg(Li) then
oleM(F, (X, . -% . )

i-1 by i-1

¢(GFt. (Xtht. - X, )
1-1 1 1

- X ))
¢(GF M (X ) )
i tatia i

t
Hence (fo FqdX.) is a martingale for a simple process (F,)
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Now for X € M2(L2) we have

+
IIMS(X)II2 f_llel2 for all s €R
Hence
r t
HJ F dXs - M. J FSdXsﬂ2
0 0
r T r t
< HJ Flax - f Fax Il + HJ Flax - M J Foax |
- S s s s 2 s s r s s 2
0 0 0 0
t t
+ M I FodX - M j F_axl
r s s r S 2
0 0

where (Fn)n is a sequence of simple processes satisfying equation
L. Lob.

It is now clear that each term on the right converges to zero

as n > @ , and the martingale property is established. Now consider
t
lcb(f Fax )|
0
t t
n n
< - +
<ot = hax)] + Jal| x|
0 0
t
n .
f_HJ (F, - F)&X I, +0 by b.bk2(ii)
0
-0
t +
as n > . Hence the martingale {f Fa&_ :t€ R’} is centred.
O >
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t
: +
The L2~bounded ness of {f Fsts :t €R'} follows from the fact

0
that
o t
M J F X = J F dx
t s s s
0 0
and
(o]
F aX_ € M, (1°) [5]
s s 2 ‘
0
We now give a characterisation of the stochastic integral. To

this end, we define a vector valued measure on P by:

([s,8) x &) = (<X, >, - <x,v>_) (X, © 1)

U<X,Y>

where X and Y are L2 bounded martingales, whose entries have

right continuous paths. The semivariation of Moy > is given by,
2

for E€P,

Izl = Sup"ZZiu (Ei)lll

SV(U<X,Y>) <X,Y>

where the supremum is taken over all finite partitions {Ei} of
E and all finite collections of {Zi}i - MQ(C)‘
From proposition 4.37 we have

3
1El < ¥ =zl

( ) ( y <7
SVAHX ¥ ! ™ k=0 SVAH x4iKY>

where u is the measure on P given by:

<X+1Y>
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U ([s,t] x &) = (<x+iv>, - <x#iv> ) + (X, ® 1) .

<xX+iy>

We let deu denote the Bartle integral of a process F whose

<X, Y
entries are bounded predictable processes F(i,j) i =1,2; j =1,2.
It is clear that this Bartle integral will exist since there is a
sequence of simple processes F , converging pointwise to F and
hence F is u<X,Y> measurable, being bounded. F is integrable
too; and we have

1 . n _
L™ - LinfF du<X,Y> = Iqu<X,Y> >

where the integral on the left is defined as

n
ZFt (<X, %>, - <XY> )

i-1 1 i-1
where
n n
F, = JF, X (t) .
E t1—1 [ti—l’tl)
Likewlse
t t
J Fsd“<x,y>S = J F(X[O,t] x Q ® I)d“<:>c,Y>
0 o]

and we denote the integral on the left by

t
j F a<X,¥> .
S S
0
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4.45 Theorem

t
* - -
The stochastic integral f F dX_ is the unique L2—bounded
0
martingale such that
i t

o(<t| @) = o rase))

0 0

(¥, )

For any L2—bounded martingale +

Proof.
Suppose F is a simple process:
F, = )F_ X (t)
. . t.
v Y51 [tl-l’ 1)
Then
t k-1
J Faayry = ) By (st
1= 1-1 1
0
+ F (X,y>, -
tk—l t
where we assuze t € [t,_ ,t,) Now,
¢ k-1
df reaw) s oo, 1,
0 1=1 1-1 1
+ ¢(F (x,y, -
eyt
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where we have used the fact that X:Yt = Ut + <X,Y>  as in proposition

4.37, where U, 1is a Ll—martingale. Now

£
* *
¢(F (x; ¥, -X Y ))
R R R R o
=o(M, (F, X¥7v)) - oM (F. X¥ 1))
B H T Pig Y %t
_ *
= o(F, ~ AX] Y,)
-1 1
Hence
t t
*
¢(J Fsd<X,Y>S) = ¢(J Fax_ - Yt)
0 0

¢(<(J Fax)t , v)
0

Since ¢(<A,B>t) = ¢(A§Bt) for L2-bounded martingales (At) , (Bt) .
Now suppose (Ft) 1s a process whose entries are bounded
predictable processes. Hence there is a sequence (F') of bounded

predictable simple processes such that

t t
1 . n
F d<X,Y> =1 - Lim F d<X,Y>
S S S
0 0
Now,
t t
"j (F~Fo)ax] - v, < uf (F_-Fhax I Iy 1, » o
s s’ s te-— s s/ g2t Tgl2
Y 0
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as n > by 4L.4U2b. Hence

t 1 t

Pat .y > F ax'y

s s t s st ’
0 0
hence
t t
n * *

¢(j F_dX_ Yt) -+ ¢(J F_dX_ Yt)

0 0

But the left hand side here is:

¢(jF§d<X,Y>S)

t
which converges to ¢(j Fsd<X,Y>S) and we have

0
t .

CD(J FA<X,Y>_) = ¢>(<(I Fsdx:)* ) .
0 0 :

To show the uniqueness property, suppose there is another
L®~bounded martingale 2 = (Zt) such that

o(<(] B @)™, vy = slarvy)

0
2 t *
for all L°-bounded martingales (Y,) . Then, o(f F_dX_
0
= ¢(Zth) . That is
t
* -
¢((J Fax' - 2,)Y.) = 0
0

Hence
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* _ 2
¢((J FaX_ zt)y) =0 for all Y € M2(Lt)
0
Hence
t
*
J FdX =12 for each t
s S t
0

4,46 Theorem

Let (F_) and (G,) be processes whose entries are bounded

t t
predictable processes. Then
t t
J GdY = j G F dX
s s s's s
0] 0
t
where Y = f F&X
t s s
0
Proof.

If G = Gx[a,Bl(t) say, then

t
f Gay, = G(YB -Y)
0
B
=G f F_daX
S
a

Now G € M2(Lm) (since its entries are bounded functions) and
multiplication by such operator is a continuous map on MQ(LZ)

hence
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By linearity the result follows for a simple process (Gt) . Now

for (Gt) as in the statement of the theorem there exists a

sequence (Gn) whose entries are bounded predictable simple functions

such that
t
2 . n
[ G dy = L - Lim J G dy
s s s s
0
Now
t t
”J Gdes - J GstdXs"2
0 0
t t t t
< u[ G dy - j Ghay Il + uj Ghay - j G F ax |
- s s s s 2 S s s's s 2
0 0 0 0

The first term tends to zero as n > © , and the se¢sad term 1is

t
5E{J F(x,1)(@(i,k)-G(i,k))(G"(i,e)-G(i,e))F(e,P)d<x>(P,1)}
0

t
+ %E{J Fk,2) (G (i,k)-G(i,k))(G (i,e)-G(i,e))F(e,P)a<x>(P,2)}
0

where we sum over repeated indices, k , i , e , P =1, 2. Let

us consider an arbitrary term in the above sum, say

t
'E(j F(x,1)(G"(i,k)-G(i,k)) (G (i,e)-G(i,e))F(e,B)a<x>(P,1)
0

Then this is of the form
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t

IEJ flf2(g; - gl)(gg - g2)d<x,y>| (4.46a)
0

where fi > 8 g? i = 1,2 , are bounded predictable processes

and (g?) is a sequence of simple bounded processes converging to
g; pointwise on R" x q .

Now 4.46a is dominated by

t
., n n _
EH flIQ(gl gl)(g2 82)d<x,y>
0
t
n n _
"[ flfe(gl gl)(g2 gz)d<x,y>||l
0

t
ZMHJ‘ (g5 ~ g,)a<x,y>1, (4.46b)
0

| A

where

M= Sup |flf

R+x§2

Byl <

since each £ 5 f2 and g, are bounded and hence (g?) is a

uniformly bounded sequence, and

fg2d<X,Y> = L' - Lim J g

hence L4.U46b converges to zero as n + «© .
Note that we could have used the bounded convergence theorem

[22] to show
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t &
L2—LimJ G°F ax =JGFd.X
S S S S S S

0 0

4.5 Stopping Times

Recall that a stopping time is a projection values process

T , such that T(0) =0, T(») =1 and 1t(s) < 1(t) for s <t .

. +
(We denote T by (Ps) , i.e. T(s) = Ps for each s € R .)

4.51 Examples of Stopping Times

. + . . .
(i) Let T * Q@ + R be a stopping time relative to

(Q,Z,P,ZG,R+) . Then for each t €R' ,
{r, <t ez,
hence

X{To<t} €L (2,Z,P)

Now set Pt = X{To<t} and define T as

Then T defines a M2(Lm) valued stopping time.
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.. + . .
(i1) Let Gy + 2~ R" be another stopping time and set

Qt = X{Oo<t} then

P 0
+
¢ t €R
© %
T(t) =<
L I t =
defines a M2(Lm) valued stopping time.
(iii) More generally let f : RY [0,1) and
u: R > {zeC: |z| = 1} be Borel measurable functions. Let

Ty ¢ Q-+ R bea stopping time relative to (Q,E,P,ZQ,R+) and

i +
set Ps = X{To<s} . Then for t € R

t t
| et [ u)ete)-s®iar,
0] 0
t(t) =
t t
J u(s)(£(s)-1(s)?)ap j (1-£(s))ap,
0 0

and T(®) = I defines a ME(LW) valued stopping time. The integrals
in the matrix are the usual spectral integrals relative to the spectral

family {PS}S c Rt -

Recall that if X = (Xt) is a right . continuous LP-process then

we define the stopped operator XT by
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where 6 1is a finite partition of [0,®] , and if

B = {tl,...,tn} say, then

Likewise the stopped process is defined as

X = P - Lim X

TAt 5 TAt(6)

+ . . .
for each t € R° , where T , t is the stopping time:

A

T A t(s) =59

where T = (PS) .

4.52  Proposition

Let X = (Xt) be a right continuous LP-process. If

X exists for any stopping time T and ¢(XT) =0 then (X )

t

is a centred martingale.

Proof.

Let X = . Then the stopping time t

given by
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ct?
—
9]
~—

|

n

gives X; = X, , hence by hypothesis ¢(XE) = ¢(Xt) =0 . That is

X 1is a centred process, or

E(x

Lt ) =0 for all t €RT . (4.52a)

+ . . . .
Now let t €R be given, and let P , Q@ be projections 1n

Lw(Q,Zt,P) and set

0] 0 <s f_t
[P 0
(s) =5 T>s >t
0 Q
I s >T

where T > t .

Then since (Xt) is LP-right continuous, we have

and ¢(XT) =0 gives
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E(xtP + x(I-P)) #+ EGw,Q + v (I-Q)) = 0
Taking Q = 0 , gives
E((xt - xT)P) + E(xT + WT) =0

That is E((xt - XT)P) =0 by 4.52a for all projections

P e Lm(Q,Zt,P) . Hence

E((Xt - Et(xT))P) =0

. . [o0]
for any projection P E€ L (Q,Zt,P) . Hence
Et(XT) = x, for all T >t
Similarly taking P = 0 gives
Et(wT) =W, for all T >t

and hence (xt) and (Wt) are martingales.
Now let P be a projection in Lw(Q,Zt,P) for some t > 0 .

Lima
Define the stopping A0 by:

<

a(s)

h

LLVIEY
ot
A
w
| A
3
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Then

\ /- _ P
x, v\ [P P X Yp\ /173
X, = 3 +
Z P P z -k
Y t s T 2
Now ¢(XO) = 0 gives, using 4.52a and the fact that (xt) and

are martingales,
0= E(((y, +2.) - (yp *+ 24))P)

for all projections P € Lm(Q,Zt,P) . Hence
0=E(y, +2z - E(ygp+ 2p))P)

and it follows that
Et(yT + ZT)

e ¥ 24 for all T > ¢t

That is (yt + Zt) is a martingale. Now defining o by :

0 0<s <t

i
yA .

8(5)

i
ct
N
1]

| A
=]

-iP P

gives
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P / Y ,’I_g i
/ 1 e SRS YA T
} 1\ + I

‘\zt W \fiP P \

(zT - yT))P)

0

Et(zT - ¥p) =

Z

Since P is an arbitrary projection in Lw(Q,Zt,P) we conclude that
v~ Yt

for all T >t
Hence (zt - yt) is a martingale. Thus it is now clear that all
(Xt), (yt) s (Zt) s (Wt) are martingales and hence (Xt) 1s a
martingale.
4.53__Proposition
Let X = (Xt) be a LP-bounded centred martingale. Then
¢(XT) = 0 for any stopping time T
Proof.
Let T = (Ps) and O be a partition of [O,ml . Then
Xo(ey = My (0P
1 b
since X is LP-bounded. Hence
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(X (gy) = Z¢(Mti(x)APti)

Z¢(XAPt.)
1

6(X) =0

since X 1s centred. Now

|o(x_)|

| A

T IMXT - Xr(e)” * |¢(XT(6))I

Choosing 6 fine enough, we can make right hand side as small as

we like. Hence ¢(XT) =0 .

Let X = (Xt) be a Lp~process. Then X 1is a centred
martingale if and only if ¢(XT) = 0 for any finite stopping time

T .

We now define stopping in a slightly different sense than that
given in the earlier chapter and in the last section. First we give

some preliminaries.

4,56 Definition

—— o s B S e S i e G G e e

Let A be a finite Von Neumann algebra with trace ¢ . Then

a sequence (Xn ) € Jy(A) converges in measure to X € M (A) if
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for all € > O there exists N : for all n > N X -X€ N(e) ,

where

N(e) = {T & M(A) : there exists a projection P € A ,

s.t. ITPI_< e and ¢(I-P) < e} .

It is known that if (Tn) and (Sn) are sequences in M (A)

converging to T and S in measure respectively then we have [33]:

m
(i) T, +5, > T+S8
m
(ii) XT > XT for all X € M (A)
m
(i11) T X > TX for all X € M (A)
. * m *
(iv) Tn > T

where m above the arrow indicates convergence is in measure.
(Sometimes we write m-Lim .)
It is worth mentioning that the definition of convergence given

in 4.56 is equivalent to the "usual" definition of convergence in

measure when A = Lw(Q,Z,P) . Indeed let (Xn) C A4(Lw(Q,Z,P))
w -

converge to X € M (L (R2,Z,P)) in measure. Then for all € > O

there exists N : for all n>0N

P{w : ]Xn(w) - X(w)| > e}t <e

That 1is
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E(X{ |Xn“X|Z€}) <€

Let
P = X{Ix -x|>€} .
n —
Then
I(x, - X)Pl, <e
and

- = <
E(z P) E(X{!Xn—x‘iE}) € .
Thus the "usual" definition of convergence implies definition 4.56.
Conversely given definition 4.56, that is for all € > 0O
there exists N : for all n>N X -X¢€ N(e) . Thus there
exists B € & such that
) < € .

II(Xn - X)XB”°° < g and E(I - X

Let P = X{lxn-X|<€} then

Hence I - XB >I-P. That 1is

E(I -P)<e

The equivalence of the two definitions is now established.
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4.57_ Definition [27]

Convergence in measure is equivalent to:
for all ¢ >0 , ¢(e[€,m] |xn -x[)=>o0

where e[e,w]lxn - X| is the spectral projection of |Xn - X|

corresponding to [g,®]

4.58__Lemma
t 0 -
Let T = , t€ MM (L)) . Then
2
0 0
ekltl 0]
eAITI = .
0 I
Proof.

eAITI is the orthogonal projection onto the null space

N(Tl3) ot
713 = (2] - D)7

It is clear that

+

BN

2l? =

170



Hence N(IT[;) = N(|t]

n
o
>
ot
=
n
@
=
N

That is
e, 7] (2% @ 1°) = e, t]1° @ 1°

From the uniqueness of the orthogonal projection, it follows that

eA|t| 0
exITl =
0 I
4.59 Corollary
0 0 I 0
(1) 1If s = then eAISI =
0 s 0 eklsl
0 r ' I O
(ii) If R = then e)\lR] =
o 0 o gyl
wl
© O} then e lw| = %! O)
(iii) 1If w = A 1
w O 0 /

where s , r ,w&€ MM, (L)) .
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4.510 Theorem

Let (X)) C hl(Me(L )) and X € A4(A2(L )) . Then X
converges to X 1in measure if and only if Xn(i,j) converges 1in

measure to X(i,j) i =1,2; j=1,2.

Proof.
We may take X = 0 . First suppose each Xn(i,j) converges

to zero in measure. For all € > O there exists W : for all

n>N X_(i,j) € NC%) for all i=1,2; j=1,2 . That is

there exist projections Pn(i,j) € 17(Q,Z,P) such that

X, (1,3)P°(5,9)1,, < g

and
E(T - P(1,3)) < 3
Let Po= A P(i,j) and set
0 ._
1=1,2
j=1,2
n
] P, 0
P =
n
0 Py
Then for n 2_N
n
Xn(l,l) Xn(l,2) Py 0 .
i < §-< 1>
Xn(Z,l) xn(e,z) 0 Py
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2 m
and (I - P") < Y E(I-P%i,§)) <§< €. Hence X >0 .
1,j=1

m m
Conversely suppose X > O . Then E, X E, >0 by 4.56.

That is for all € > O :

¢(e[€’aﬂlEanEl|) -0

i.e
o(I - e E\X E ) >0
e |x (1,1)] 0
i.e. o(I - ) > 0O by Lemma 4.58.
0 I
That is
E(e[E’m]IXn(l,l)I) + 0
) m
hence Xn(l,l) converges to O in measure. Likewise Xn(l,j) +0
follows.

4.511 Remark

For the gauge space (Mg(Lm),¢) , we observe that (Xn) - AA(Mg(Lm))
converges to X € AA(M2(Lw)) in measure is equivalent to : for all
€ >0 there exists N : for all n > N there exists a projection

Pn in the commutant of M2(Lw) such that
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ll(xn - ,c):PnIlco <€ and o(1 - Pn) <€

It is clear that if this condition is satisfied then Xn > X by
definition 4.56. Conversely suppose Xn 5 X. Wetake X =0
for simplicity. Now Xn(i,j) > O for all i,j =1,2 . Hence
for all € > O there exists N for all n > N there exist

projections Pg(i,j) S Lm(Q,Z,P) such that

. oay50rs €
I, (1,5)P (1,3)l, < 5
and
O/. . € =
E(T - Pn(l,J)) <3 for all i =1,2; J
For each n > N , set
//
; 0,. .
;A Pn(l,J) 0
/ i=1,2
[ J=1,2
P =
n
0 A Pg(i,j)
i=1,2
j=1,2

i,j=1
and
g 0 £
o(I-P )< ) ET-P(i,§)) <z
- 5 n 2
1,J-1
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Hence the equivalence is established.

4,512 Lemma

m
Let 1<p<e®, (X)CIP(A) and X X, X €LP(A)

If {IXHIP : n €N} is uniformly integrable, then X > X in ® .

Proof.

We may suppose X =0 . Since {Ianp : n €N} is uniformly
integrable, we have: for all € > O there exists & > 0 s.t.
. D €
it AeA, lal <1 and lAl; <8 then [o(|X |FA)] <5 for
all n. Let € >0 and define

P =e (x_1)

n €1/
[0, (§)1/P)

n

Then
Ix 00 = o(|x [Pp ) + o(]x [P(1 - )
€ b
<5+ ¢(|Xn| (1 - Pn))

By hypothesis and 4.57 o&(I - Pn) + 0 . Hence there exists N ,

for all n > N : o¢(I - Pn) < § . Hence

o(jx |P(x -2 )) <

| m

That is for all n > N ilxnlli <S+Z=¢c, and the result follows.
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4.5A  Stopping Processes

We now give a discussion on stopping processes in the gauge
space (Mg(Lm),¢) . Throughout the rest of this chapter we shall

follow stopping in the sense given in the definition below.

4.514 Definition

Let X = (Xt) C A4(M2(Lw)) be a process and T = (PS) be a
M2(Lm)-valued stopping time. Then for each n € N set
[eo]
X = Yy x, (P, -P_.)
7(n) oy X g% knl
2 2 2

If the limit as n > ® of XT(n) exists in measure, we denote it
by XT and call it the stopped operator. Likewise the stopped

process [28,29] is defined as

+
for each t €R .

4.515 Remark

We note that if x = (x,) C M(LT(@Q,2,P)) , is a right continuous

t

+ . . . .
process and TO : Q>R 1s a stopplng time relative to

(Q,:,P,R*,zu) then
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k
(n) = ) —X _
=1 2" {—n>vc3k—ni
2 2
Tk
= ) = - )
=1 2" {T<£n} {T<-k?l-
2 2
converges from above to T a.s. and hence in measure. Now
[ee]
X =} X, (p, -P_.)
T(n) =1 _kH % knl
2 2 2
where Pi = X{T<i} . Since (xt) 1s right contlnuous and

T(n) ¥+ T (a.s.) it follows that Xi(n) T *1 in measure. It is
also clear that X{Tn<t} converges to X{T<t} 1n measure. Thus
the definition of stopped operator in 4.51L4 is equivalent to that of

the stopped random variables for a certain class of processes.

4,516 Definition

Just as for convergence in measure, we say that a process
. . . + .
X = (Xt) C A4(M2(Lw)) is continuous in measure at t € R if
for 811 € > O there exists &6 > O such that

|t—s|<6=>Xt—Xs€N(s) .

The right continuity in measure 1s defined similarly.
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4.517 Theorem

Let X = (X)) C ".M(ME(LOO)) . Then (X)) is(right)
continuous in measure if and only if (Xt(i,j)) is (right)
continuous in measure for all i,j = 1,2 . (That is (Xt(i,j))

have, in measure, (right) continuous paths.)

Proof.

This is similar to 4.510.

4.518 Proposition

- © . - 3
Let X = (Xt) be a process in hf(MQ(L )) , which is right
continuous in measure. Let 05504 ¢ Q - RT be stopping times

relative to (Q,Z,P,ZQ,R+) and define the stopping time T be

P 0
(s) = = P say,
0 Qg
where P, = X{Oo<s} and q = X{ao<s} . Then XT exists and
equals
/ X (1,1) x, (1,2)
o) 0
X (2,1) X (2,2)
0 0]
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Proof.

t(n) = 4

X

21'1
Xoo(n)(l’l) Xao(n)(z’l)
Xoo(n)(z’l) Xao(n)(g’z)

By 4.515 and 4.510, we have on taking the limit in measure

X (1,1) X (1,2)
% %

X_ (2,1) X (2,2)
0’o OLO

4.6 Local Martingales

In this section we shall develop a brief theory of local
martingales in the gauge space (Mg(Lw),¢) and hence construct

stochastic integrals with respect to them.
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4,61 Definition

For 1 < p < a mright continuous process X = (Xt) in

M2(LP) is called a local—Lp-martingale if and only if there exists
vxor\oU'\“‘- { ncrul\«g

a ssguence (Tn) of M2(Lm)—valued stopping times such that

A

+
T, 4 © and for each n € N XT & exists for all t € R and
A
n

(X ) + is a right continuous LP-bounded martingale.

TnAttGR

The sequence (Tn) is called a localising sequence for X .

+
By 1, 4+ © we mean that for each t € R :

Ve>o0 TIAn(et) N o(p (t)) <e

\f n > N(e,t) where Tn(s) = Pn(s) .

It is clear that if X is a right continuous IP-bounded martingale

then it is a local Lp—martingale. Simply take

0 s <n
=<
T (s)
I s >n
as the localising sequence. Sufficient conditions implying the

converse are given below:

Let X = (X,) be a m-right continuous local Lp—martingale with

localising sequence (Tn) given by

180



where, for each neN , {pn(s)}s c Rt and {qn(s)}s c pt from

. . . . +
the spectral projections of stopping times Tg : >R and

OO : Q> R+ .
n

If for each t.i 0O we have that

{|x | : neil}

T At
oA

is uniformly integrable then (X_ ) is a 1P-bounded martingale.

t
Proof.
From 4.518 we have
X (1,1) X, (1,2)
TnAt OHAt
XT At =
X (2,1) X (2,2)
TOAt O'OA't
n

which defines a LP-bounded martingale for each ne N . Since
T, * ® , Wwe may assume that Tg 4+ ® and Og 4~ a.s. (If

. +
necessary we may take a subsequence.) Hence for a fixed t € R |

each X , (1,i) and X 0 (2,i) converges to Xt(l,i) and

TnAt O'nAt
Xt(2,i) in measure as n > i =1,2 . By 4.510,
m
->
XT At Xt
n
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Now since {|XT & P . n €N} is uniformly integrals, we have
A
n

X > X is I® vy k.s512
Now since the conditional expectation is IP-continuous, we have

)

X =1L - Lim X P - LimM (X
T s T At

n

P _ .
MS(L Lim XT A't)

< .
Ms(Xt) for all s <t

Hence X = (Xt) is a LP-martingale. The fact that X is
Lp—bounded follows from looking at the entries of XT At "
n

4.63 Lemma

Let (Xt(i,j)) EELl(Q,Z,P) be local LP-martingales, m-right

continuous, for i =1,2 ; j = 1,2 . Then the M2(Ll)-valued
process (Xt) given by
Xt =
X, (2,1) X, (2,2)

defines a local Lp-martingale.
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Proof.

For each (i,j) , let (Tg(i,j))n be the sequence of

eN
stopping times localising Xt(i,j) i=1,23 j=1,2. Then

it is known that (Tg(l,l) A‘T2(2,l)) localises both

neN

(%,(1,1)) and (%,(2,)) [19]. Wmilst (19(2,2) ATO(1,2)) g

localises (Xt(2,2)) and (Xt(1.2)) . Setting

(]

o 2,1)<t}

X 0
{Tn(l,l),\'r

and

X

(t)
*n {Tg(2,2)A‘t2(2,2)<t}

and defining

Tn(t)

0 q (t)

Eives an increasing sequence of stopping times (Tn) such that

T, 4+ ® , Now from 4.518 we have:

X

o o (1,3) %, 0 (1,2)
Tn(l,l)A Tn(23l)At Tn(l,E)A Tn(2,2)ﬁy
X =
Tn/\t
X (2,1) X (2,2)
0 0 ? 0] 0] i
Tn(l,l)ATn(Z,l)At Tn(l,2)ATn(2,2)At
Each entry in the matrix above defines a 1P bounded martingale.  Hence

for each n€N , (X ) is a LP-bounded martingale.

T AL
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4.64 Lemma

Let X = (X,) be a m-right continuous L2—bounded martingale

t
and T be a stopping time such that 1(s) € M2(Lw)' for all

+
s €R . Then

(1) |XTAt,2 IX'iAt
(1) <® = <XT>t
where X' is the process (XT/\t)
Proof.

First note that since t(s) € M (L)' it must take the form:

2

/5, 0

\\\‘
|
|

-

where (ps) form a spectral resolution of a stopping time

T(s) =

T.:Q+R . For simplicity take

0
/ Xt yt\

Xt = i \ for all t

where (x,) and (yt) are L°-bounded martingales in LE(Q,Z,P)

t

From 4.518 we have, for each t ,
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The matrix entries form L2—bounded martingales [19,28] , hence

(XT t) is L2—bounded martingale. Now
N

) —_
b'q X v
lXTAtI -
Xy T, v, I
T At T At T At
2 —
B3 )
T At TAT
- 2
(X;Y) 0 IYI 0
T ,\t T /\t
2
|X|TAt by [28]

The identity <XT>t = <X>T & is proved similarly using 4.35
Val

and [28].

Lemma 4.65

Let (At) be any m-right continuous process and T be a

stopping time. Then

ATA't(I - Pt) = At(I - Pt)

+ .
for all t &R , where T = (PS)
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Proof.

AT,\t =m - Lim AT,\t(n)
Now,
[2;1;]
A = A. AP, +A (I -P ) .
Tat(n) k=1 = in [ 2%] +1 [2%¢]
2 2 2n 2n

(Wnhere [x] denotes the integral part of x .) Hence

A (I-Pp) = & (I-Pt) .

TAt(n) t [2%] +1
21‘1

Taking the limit in measure gives

since (At) is m-right continuous.

In Lemma 4.63 we showed how to construct examples of non-
commutative local martingales in the gauge space (M2(Lm),¢) . In
the rest of this chapter we shall look at local L2—martingales
constructed as in Lemma L4.63. Thus let (Xt(i,j)) be a.s. right
continuous local Le-martingales - relative to (Q,Z,P,ZQ,R+)
with localising sequence (og(i,j)) for each i =1,2; j=1,2.
Then Tg = i Oi(i’j) defines a sequence of stopping times

1,J=1
localising all (Xt(i,j)) i=1,2; j=1,2 [19,28]. ©Now

setting v _(t) = X

and defining
i {10<t}
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n
T, (t) = = p (%)
0 Pn(t)
+
say we get, for each t €R |
T AL T At
X =
TnAt
Xy (2,1) X, (2,2)
T At TnAt
from 4.518.  Thus (XT R t) is a L2-bounded martingale. That is,
n
Tn 2
the process, X = = (XT t> is a L -bounded martingales for each
A
n
n €N . That is:
0 0
Tn Th
X (1,1) X" (1,2)
Tn
X = 0 0
Th Tn
x " (2,1) X7 (2,2)
Th+l . . .
The process X is m-right continuous and using 4.518 we get
TO
+1
(1,1) X6, (1,2)
T T
X n+l -
fant T?1+1
(2,1) X0 (2,2)
TnA t
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X (1,1) X (1,2)
TOAt TOAt

X, (2,1) X, (2,2)
TnAt T At

Since
TO
n+l .. ..
Xo o (i) = X (i,3) = X
TnA‘t T AT, lA't
Hence
T
n+l _
XAt Xat >
n
l.e.
T
(XTnﬂ.) n = XTn
Thus,
T Tn T
n+l n
< > = < >
(x ) >y X ">y
hence
T T
n+l n
= < >
<X >Tn“ + X +

from Lemma 4.64, and from lemma L4.65 we have
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< Tn‘“l> (1 -P (t)) = Tn> (I -7 (t)) (4.65a)
X & N = <X £ Pnt . .65a

T

Now for each n € N and t € R' , <x . is in Mg(Ll) (more

t
precisely in M2(Ll(Q,Zt,P)) ) and hence has a strongly dense

domain D(Tn,t) say. Then

[oe]

N D(t_,t)
n=1 n

is a strongly dense domain [35], which we denote by:
Dy (1,t) . (4.65b)

Then

[o0]
D (t,t) N VU (I -p (t))
0 n
n=1
. . 2 a2
is strongly dense since I - Pn(t) +I as n~+>® ,and H=1°“@L° .
Writing

e}

D(t,t) = DO(T,t) N(Y (I -rpr (£))H)
n=1 n

. +
we define A for each t€ R , on D(1,t) by

t H

whenever y € (I - Pn(t))JC.

Then At is well defined, for Yy € (I - Pn+l(t))ﬂf too. But
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T T
n+l — n+l _
X TR o= <X T (T P (t))y
Tn
= X > (T -2 (t))y by (4.65a)
Tn
= <X >t1,() .

At is clearly densely defined.

We observe that equivalently At can be defined as

T
A b = Lim <X n>t¢
o
for each Y € D(t1,t) .

The limit exists since there exists N € N such that

Y e (I - PN(t))ﬂ‘ and for all n > N

TN Tn
<X >tw = <X >tw

T
by (L.65a). Hence Atw = <X N>tw .

—— s . . e et . e e i e e e e

The A, constructed above is a closed operator.

Proof.

Let (¥ ) CD(1,t) with Yoo v and AW >y say.

each y , there is r € N such that Y, € (1 - P, (£))¥ .

n

may take r, < I’n+l for al1 neN . Now

T
r

n
= [ >
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Hence for any K&e N |

Ty

(I - P.(t))<x ™

X >twn ~ (I -7P (t))y

K

. [o0]
since P (t) € M,(L)' we get

2

Tr

<X n>t(I = P(£))y, > (T - Pplt))y

Thus for r > K , we get using (k4.65a)

Tk
<X >t(1 - PK(t))wn > (I - PK(t))Y

T

Now <X K>,C is closed and (wn) SD(TK,t) hence

'k
<X > (T = Pele))y = (T - Pple))y

Now, taking the limit as K + ® gives

AV =Y

We have that

T

. n
- >
A + m Lim<X t

]
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Proof.
Let Y €D (1,8) then (I - Pp(t))y € (I - Pp(t))IC.

Hence
A (T - Pe(t))y = <X K> (T - P(t))y

Thus on a strongly dense domain

T

_ K
At(I - PK(t)) = <X >t(1 PK(t)) (4.672)
for all X €N .
Now ¢(PK(t)) +0 as K=o ., Hence for all € > 0 , there

. ' €
is K € N , such that for all K > K, ¢(PK(t)) < R

Now (4.6Ta) implies: For each X > K, there exists a
jecti € M, (L") h that ¢(I ) < £
projection QK 5 . suc at ¢ QK > and
(A (T - P(t)) - <X K>t(I = P(t)))Qll, =0 . That is
T : )
- K -— = : -
H(a, = <X 5N - Pe(8))Aqyll,, = 0 since I - Pp(t) € M(L)"

and
O(I = (I - Pplt)) A Q) < 0(Bple)) + (T - Q)

£ €
<= 4+ ==
5T E

T
Hence for all K > K, A - <X K>t € N(e) .

A, 1s m-right continuous at each t € R
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Proof.

T
By construction <X n>t is m-right continuous at each t .
Let t € R" be fixed and € > 0 be given. Then there exists N
T
€ . N . .
such that ¢(PN(t + to)) < 3 ty > 0 . Since <X "> is m-right

continuous, there is a § > 0 such that s -t <& (s > t)

implies

T T

N N €
X > - <X > =
X £ X SEN(3)

Let A = tO A 6 , then for t < s < A+t there is a projection

oo
R, € M2(L ) such that o¢(I - RS) < €/3 and

T T
N N €
I (<x >y <X >S)RSIIoo <-§

£

Also (L.67a) gives us a Projection Q, such that o(I - Qs) <3

and

Ty

Ha, - <x > (1 - pp(s))el, = o
Now set Z_ = Q A (T - PN(S)) AR so that o(I - zs) < ¢ and

Ia, - az_l,

T T T

< Moy, - <x S0zl + I<x B “
o

- t

T

N
+ (<X >, - AS)Z I <

S

wlm
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Thus we have shown that for any € > O , there exists a
A >0, such that for t <s <A+t , A - A € N(e) . That is
A, is m-right continuous.

t

4.69 Proposition

We have that

for all ne N .

Proof.
. . + . . .
First we observe that if T : 2 + R 1s a stopping time and

T, are approximations of T as given in Remark 4.515 then

X{Tn<t} - X{T<t} in measure. Now
A (1 - Pn(t)) = At(I - Pn(t)) by 4.65
T At
n
Tn
= <X >t(I - Pn(t)) by 4.67a

Now consider

A (-2 (%))
Tn/\ % n+l
= A {(z - Pn(t)) + (Pn(t) - Pn+l(t))}
Toa b
Tn
= <X >t(I - Pn(t)) + A A_t(Pn(t) - Pn+l(t))

n
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Now,

ATnA ((Bo(e) =P (%)) (4.69a)
=m - iig ATnA tbm)(Pn(t) e (8))
[2%¢] _ m
—m-tin ) oA, (B (5 -p (L) +a o (zp (B
me K=l -~ 2 2 [27t]+1 2
2 m
2
x (P (t) - P (%))
Now
[2%] n
P (/) =X m + X
n ' om (xr < [2 t]} {Tn<t}
2m
Hence (4.69a) equals
[ 2%]
. k
m-Lin §(hy (02,00) (1=t
2m
Now, using the fact that P_, (t) € Mz(Lm)' and (4.67a) we get

that (4.69a) is

[2%%] 1
n - ;i2< Kgl <X1ﬁ1>ji.APn(§%)> (T -P ()
2m
_ o Tntl +1 [2™¢]
= - §i2{<x "ty T T 4 (1P = NHI - P, (t)




Tn+l Tn+l
= <X >TnA (1B (6) - X >TnA't(I_Pn(t))(I—Pn+l(t))

by 4.65

<X n>t(I () - <x ™ (1 - P (t))

Pn+l t

Hence

T

— n .
Pn+l(t)) = <X >t(I P

(t))

A (I

T At
n

n+l
Thus for all m 2 n:

T
A (1 -7 (t)) =<x n>t(I - P ()
T At

n

Now I - Pm(t) 4 I as m~> © , hence on a dense domain

T
A =<x %
T t t
aA
4.89__Theorem
- 2 . 2 .
We have that Yt = ,th - At defines a local L -martingale.
Proof.
YT £ = X 2. A
n” T At T at
n n
T
= |X]2 - <X n>t
T At
n
by L.64 and 4.69. Since X is a L°-bounded martingale with
T At
n
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T

increasing process <X n?t , the result follows as in 4.35.

4.610 Proposition

We have that A_ 1is an increasing process. That is on a

t

dense domain

Proof.
D(t,s) ND(t,t) is strongly dense domain [35]. Let
belong to this common domain, then there is a N € N such that

is in (I - Pw(t))JC and hence in (I - P _(s))¥ , so that

N

A = <X >p

But <X > < <X N> on the common domain, hence result.

We note that (At) does not depend on the sequence of stopping

times localising X = (Xt) . If (On) C Mz(Lm)' , 1s another

sequence localising X then from our previous analysis:

TnAOnAt anTnAt
T o]
n n
1.e. XO % = XT N
n/\ n/\
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Hence

by 4.64.  Thus,

T g
<X n>,°(I—Pn(t)v Q (t)) = <x B> (1-P_(t)v q_(t))

and

co

Dy(T:2) 1 95(5,)) 0 (U (18, () v &, (£))7)

gives a dense domain on which

Thus we have shown:

4.612 Theorem (Doob-Meyer decomposition)

Let X = (X,) Dbe m-right continuous local martingale whose

t

. -2 . .
entries are local L -martingales. Then there exists a process

(a) C M (ME(LOO)) such that

(i) A_>A if t>s
t — s —
. 2 . .
(11) |th - A is a local martingale
(1i1) A, is m-right continuous.
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4.613 Proposition

Let (X be a local Lg—martingale as above. If

»
Sup ¢(At) < » ,  then X is a L°-bounded martingale.
t

- A is centred, we have:
o ) < o(a) < =

since At is increasing.

+
Thus for each t € R {XT g ¢ D € N} is L2—bounded.
A
n

The result now follows from L4.512.

4.7 Stochastic Integrals with respect to a Local Marfingale

In this section we shall define the stochastic integral for an
integrator which is a local Lg—martingale. Thus, let X = (Xt) be
a m-right continuous local L2—martingale as described in the last

section. We shall construct stochastic integrals of the form

[ e
S S

0

where (Fs) is a process, whose entries are bounded predictable
processes. We first state a result concerning stochastic integrals

with respect to a L2—bounded martingale.

Let X Dbe a L2—bounded martingale and T ©be a stopping time

(o)
such that 1t(s) € M2(L )' for all s . Let (FS) be a process as
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described above. Then

Proof.

In Section k.4 we showed that

t t

[ FstS = (f Fs(i,k)dXS(k,j))i,j .
0 0

From 4.518 and [28] the result follows.

4.72 Remark

In the last proposition, the restriction T(s) € M2(Lm)' is

not necessary. In fact T(s) can take the form
P 0
s
0 Q

where (Ps) and (Qs) form the spectral families of stopping times

TO’°5 Q>R

Now let X = (X be a m-right continuous local Lz—martingale

)

) is a L2-bounded martingale and the

then for each n €N , (X
TnAt

stechastic integral:
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exists for a class of integrands described at the beginning of

this section. For each n €N , let

Then Yn(t) € M2(L2) hence has a strongly dense domain D(t,n)

For m<n :

t
YH(TmAt) = J FSdXTnATmA . by L.71
0
As in Section 4.6, we get
t
Yn(Tm,\t) = J F X s
m
0
= v (s)
That is for all m < n
Y (o at) = ¥ (¢)
Hence
v (£)(1-p (£)) = ¥ (£)(1-P_(t)) by 4.65 ... (k.72a)
Let D(t) = N D(t,n) and H_=(I - Pn(t))JC
n=1
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@
For y € UanﬂD(t) we define
n=1

Y. ¢ = Lim Y _(t)y
t o n

This 1imit exists since there is a W E€ N such that P €I - PN(t)
and hence for n >N , Yn(t)w = YN(t)w from (4.72a). Hence

4.73__Proposition

We have that

m - Lim Yn(t) =X,

Proof.

For all n €N
Yn(t)(I—Pn(t)) = Yt(I—Pn(t))

Given € > O , there exists N : for all n >N , ¢(Pn(t)) <eg

and the result follows.

4,74 Definition
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t

The limit [ FAX  is called the stochastic integral of (F,)
0

with respect to the local L2—martingale (Xs)

4.75 Remark

The definition of (Yt) is independent of the localising
w - . .
sequence Tn(s) € ME(L )' . This assertion follows as in 4.611.
4.76  Theorem
For each t , Y, 1is m-right continuous. That is for all

t
€ > 0 there exists & > 0 such that t < s < § +t then

Xt - XS € li(e) .

Proof.

This follows just as in 4.68 after observing that Yn(t) is

. . +
m-right continuous at each t € R™ .

4.77 Theorem

e . e e ot e e e e e

Let T be a stopping time of the form

(s) =

where (P_) and (QS) form the spectral families of stopping times
o
+
0. : 2R . Then

T9°%

0

s Tat

—
v
&

1}
——
o
=
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Proof.

The sequence (Tn) localises XTAt , hence (XTA't) is a
local Le-martingale. Thus
t t
j F dX = m - Lim J F dX
5 TAtb TAT . AS
0 0
Tt
=m - Lim f FstTnA s by 4.71
0
Now
t t
J FSdXS(I—Pn(t)) = [ FsdenA (I—Pn(t))
0 0
hence
r r
j Fsd.Xs(I—Pn(t)) = J F dXTn" (I—Pn(t))
0 0
for all r € [0,t]
That is
Y (1-p (t)) =¥ (r)(I-P (t)) for all r € [0,t]
Now consider the stopping time T At 3 then
(Y t(m) ~ YalTAtm)(I-P (t))
=Y (r-p )(1-P_(t))
(2" +1 [+27] n
2™ 2"
m
+
~y 2l (e (0)
o [t2"]
o
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As m > o , left hand side converges to

(Y

TAt-ggrAtn(I-Pnh))

in measure. Whilst the right hand side converges to
Y, (I-2, )(I-P_(t)) - Y_(t)(1-B,)(I-P_(t))
=y, -y E)NT -P (£))(T-P) =0
Thus we have,

Yo I - P e)) =¥ (tat)(I - P (%))

Teking the limit in measure gives the result.

4.78 Theorem (Some properties of Y, .)

(1) The stochastic integral with respect to a local
Lg—martingale is linear.
t

(i1) Yy, = f F dX is a local L2—martingale.
t 0 S s

Proof.
(i) Let F and G be processes whose entries are bounded

predictable processes. Then
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j Fsts = m - Lim J F dXT s
A
0 70 n
t t
j GSdXS = m- Lim J G dXT S
A
0 ) n
Thus
t t
J F dX +J G dX
s s s
0 0]
t t
=m ~ Lim j F dX + m - Lim J G dX
0 Tn"s 0 TnAS
t
=m - Lim J (FS + Gs)dX by 4.42
0 TnAS
t
=J (FS+GS)dX
0
(ii) From L4.77,
Toat t
f F dXx = J F ax
s s ST TEAS
0 0
= Y (¢)

which is a Lz—bounded martingale,
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