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ABSTRACT

A theory of stopping times in a Von Neumann algebra is presented.

Stopping is discussed in both tracial and non-tracial settings.

S t o p p i n g  p r o cesses, in p a r t i c u l a r  s t o p p i n g  martin g a l e s ,  are studied,

where it is shown that for a certain class of martingales our

definition of stopping is equivalent to the usual definition (i.e. that

given in the commutative theory). It is shown that stopping preserves

the martingale property and we prove the Doob's optional stopping
2theorem. It is also shown that stopping a L -bounded martingale is

equivalent to applying a certain projection to the element closing

the martingale. We discuss certain algebraic relationships between
2these projections and establish that stopping preserves L -boundedness 

for mairtingales. We further discuss stopping times that lie in the 

commutant, where it is shown that these projections, mentioned above, 

are indeed conditional expectations. As a concrete example of the 

tracial case, we work in the Clifford algebra arising in quantum 

statistical mechanics. Here we are interested in stopping increasing

L^-processes associated with the Doob-Meyer decomposition of
2 . .L -martingales. We also give a characterisation of these stopped

processes just as in the commutative theory.

For the non-tracial case, we prefer to work in the Canonical 

Anticommutation Relations algebra. The main result here is the random 

stopping time convergence theorem for martingales, thus extending the 

existing result in the tracial setting.
00

The probability gauge space given by L (Q ,Z,P) 0 1̂ ,(0) is also
2studied. Here the Doob-Meyer decomposition for L -bounded martingales
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is obtained and stochastic integrals are constructed. Concrete 

examples of stopping times are given and stopping processes is 

discussed. The concept of local martingales is introduced, where 

a Doob-Meyer type decomposition for a certain class of local 

martingales is obtained. A stochastic integral with respect to a 

local martingale is constructed.
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far penny
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"And timej that takes survey of

a l l the world3 must have a stop"

William Shakespeare
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CHAPTER ONE

INTRODUCTION

Ever since the initiating -work of Dixmier in 1953 [20] and 

Segal in 1956 [35l the theory of non-commutative probability has been 

developing extensively (see for example [1,2,27] and references therein). 

In particular in the last decade or so, there has been great interest 

in the sub-branch: quantum probability. This is partially due, on

the one hand, to the fact that the quantum theory is already a 

probabilistic theory and hence it is natural to study probability 

theory with quantum objects, (which are non-commuting in general).

Whilst on the other hand, like Dixmier in 1953 [20], it is natural, 

at least mathematically, to extend the ideas of classical (or 

commutative) probability theory to a non-commutative setting. Whilst 

making this transition, the quantum theory is not only often a 

motivation, but also presents several concrete non-commutative models 

with desirable properties to work in. We may think of this as the 

analogue of the classical theory, where probabilists often prefer to 

establish their results in a concrete model furnished by the Brownian 

motion process as opposed to developing their theorems in a general 

arbitary model directly. Indeed, the analogy between the model given 

by the Brownian motion process in the classical theory and quantum 

probability as an example of the non-commutative theory, is far deeper 

than a mere coincidence in their desirable properties. Indeed a 

result of Segal [361 says that we may identify the Brownian motion 

process with a certain quantum mechanical process called the quantum 

Brownian motion process [25l .
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Some of the recent contributions to non-commutative probability- 

have included constructing martingales with certain properties and 

subsequently developing an integral with respect to them. In 

particular when restricting to a concrete model from quantum theory 

far-reaching analogies with the properties of the usual Ito integral 

are observed. Indeed several results engendered by the model 

generated by the Brownian motion process have had parallels in models 

from the quantum theory [1,2,3,8,9,10,11,12,13,16,25,26] . However, 

the greatest motivation for establishing the non-commutative 

probability theory as a generalisation of the classical theory is the 

following simple observation:

The starting point for studying the classical theory of probability 

is the triple (ft,Z,P), where 0, is a sample space, Z is a a-algebra 

of subsets of (the algebra of events) and P is a probability 

measure on Z so that we may assume that P(fi) = 1 . Objects of 

interest are the random variables. These are precisely the 

Z-measurable functions on Q and taking values in C . These random
CO

variables form a *-algebra, of which the bounded ones form L (ft,Z,P) , 

which is a commutative Von Neumann algebra of bounded operators in the 

Hilbert space L^(f2,Z,P) . The action of L (ft,Z,P) on L^(ft,Z,P) 

is given by multiplication of course and the adjoint is simply the 

complex conjugation. Now following Segal [35] we conclude that the 

*-algebra of random variables is precisely the ^-algebra of measurable
oo

oper a t o r s  over the V o n  N e u m a n n  a l g e b r a  L (fi,Z,P) . That is each
2random variable is a closed, densely defined operator on L (il,Z,P)

• • • 0°and affiliated with L ($7,Z,P) . Another important objects are the 

elements of Z , the algebra of events. Thus given a set E E Z , 

we form the function X , which is Z-measurable, bounded andZj

s a tisfies X^Xg ~  X F • That is, to every event E , w e  a s s o c i a t e  a
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C o n v e rsely, every p r o j e c t i o n• °°/ n \p r o j e c t i o n  o p e r a t o r  X E m  L (ft,Z,P) .
00

in L  (fi,Z,P) is of this form. Thus t h e r e  is no loss in r e p l a c i n g  

an event E  b y  a p r o j e c t i o n  X „  . The e x p e c t a t i o n  E , of
ilj

F  E  L (fi,Z,P)( is g iven by:

F(w)dP(w)

and satisfies

(i) E : l "(!!,J,P)+ M o H

(ii) E(AF + yG) = XE(F) + yE(G)

(iii) E(FG) = E(GF)

(iv) F E  L  (ft,Z,P)+ and E(F) = 0 t h e n  F = 0

(v) (Fa ) C  L°°(ft,Z,P) + and F ^  + F  , F E  L°°(ft,Z,P)

t h e n  E(F ) t E( f ) .a

Thus E is a f a i t h f u l  normal t r a c e  on L (£2,Z,P) w h i c h  extends to 

t h e  * - a l g e b r a  o f  m e a s u r a b l e  operators over L°°(ft,Z,P) [35) and is

equal to t h e  u s u a l  e x p e c tation of a r a n d o m  v a r i a b l e  [35] • Fo r  

1 <_ p < o° , t h e  L -spaces over L (ft,Z,P) are t h e n  just the equivalent 

classes of r a n d o m  variables equal P - a.e. an d  s a t i s f y i n g  E ( |F|^) < 00 . 

T h e s e  spaces ar e  den o t e d  b y  L^(ft,Z,P) .
00 . _ .

N o w  if Z' is a sub-u- f i e l d  of Z t h e n  L (fi,Z',P) is a Von-
00

N e u m a n n  s u b a l g e b r a  of L (fi,Z,P) and c o n v e r s e l y  every V o n  N e u m a n n
00 .

s u b a l g e b r a  o f  L (fi,Z,P) is of this form. T he c o n d i t i o n a l  e x pectation
00

of a r a n d o m  v a r i a b l e  (operator!) F E  L (ft,Z,P) w i t h  respect to Z ’ 

is a Z ’- m e a s u r a b l e  b o u n d e d  fu n c t i o n  E( f |Z’) such that



E(F|Z’)dP = F dP

for any E E  I' . That is (if a n d  o n l y  if)

E ( E ( f |Z')P) = E(FP)

00

for a ny p r o j e c t i o n  P in L (ft,Zf ,P) .

F u r t h e r m o r e  th e  con d i t i o n a l  e x p e c t a t i o n  of I (= X^) is I an d

E( h E( f |Z')G) = E(HFG) for any H  , G in L (ft,Z*,P) and 
0°

F E  L (ft,Z,P) . Thus w e  t h i n k  of t h e  c o n d i t i o n a l  e x p e c tation as a 
00 00

m a p  f r o m  L (ft,Z,P) onto L (ft,Z',P) w i t h  th e  a b ove properties. T h e n

t h e  c o n d i t i o n a l  e x p e c t a t i o n  is a contraction, p o s i t i v e  p r e s e rving,
00 00

f a i thful n o r m a l  p r o j e c t i o n  m a p p i n g  of L (fi,Z,P) onto L (£2,Z',P)

w i t h  t h e  p r o p e r t i e s  that E(HFG|Z') =  H E ( F | Z f)G for H, G  E  L (fi,Z',P)

and F  E  L (ft,Z',P) , and E(f |Z')*E( f |Z’ ) _< E (F * F J Z 1) . It is k n o w n

that this m a p  extends t o  a p o s i t i v e  faithful, line a r  c o n t r a c t i o n  f r o m

L^(ft,Z,P) o n t o  L^(fi,Zf ,P) of n o r m  one an d  sati s f y i n g

E(E( f | Z ’)G) = E( f E( g |Z*)) w h e r e  F  E  LP (fl,I,P) an d  G E  L q (S],Z,P)

w i t h  p ^ + q ^ =  1 . Thus w e  t h i n k  of t he c o n d i t i o n a l  e x p e c t a t i o n  
0°. _  . 00

as a m a p  f r o m  L  (ft,Z,P) onto L (ft,Z',P) sati s f y i n g  

E ( h E( f |Z')G) = E(HFG) for F E  L°°(ft,Z,P) and H , G  E  L°°(ft,Z' ,P) a n d  

E (1 1 Z f) = I .

F i n a l l y  t h e  com m u t a t i v e  t h e o r y  of stochastic p r ocesses depends

on a f i l t r a t i o n  o f  sub-a-fields of Z . Thus if (Z ) is

such a f i l t r a t i o n  t h e n  a stochastic process (X ) _ D+ is a f a m i l yt t E

of r a n d o m  v a r i a b l e s  indexed b y  R+ such that for each t E  R+ , 

is a Z - m e a s u r a b l e  function. Thus in our f o r m u l a t i o n  w e  m a y  t h i n k

of X^ as a c l o s e d  d ensely d e f i n e d  op e r a t o r  a f f i l i a t e d  wi t h
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W e  n ow summarise the f o r m u l a t i o n  o f  the classical t h e o r y  at an 

o p e r a t o r  the o r e t i c a l  level.

CO
{ B o u n d e d  random v a r iables} ^  L  (ft,Z,P)

{ R a n d o m  variables} +* m e a s u r a b l e  oper a t o r s  o v e r  L°°(ft,Z,P)

E v ent Pro j e c t i o n  P E L  (ft,E,P)

E x p e c t a t i o n  ^  Trace
00

ConditionaJExpectation w.r.t. Z* a m a p  from L (ft,Z,P) onto
00

L ( ^ , Z ’ ,P) w i t h  c e r t a i n  p r o p e r t i e s

S t o c h a s t i c  process (X^) +* (X^) : such that X^ is a m e a s u r a b l e
00

op e r a t o r  o v e r  L (ftjZ^jP)

It is n o w  clear that the e s s e n t i a l  ingredients to study class i c a l

p r o b a b i l i t y  t h e o r y  are t h e  V o n  N e u m a n n  algebra L (ft,Z,P) o v e r  the  
2

H i l b e r t  space L (ft,Z,P) , a f i l t r a t i o n  of Vo n  N e u m a n n  subalgebras  

(L (fi,Z^,P))^ e  a nd a fa i t h f u l  n o r m a l  trace E .

Thus a n a tural g e n e r a l i s a t i o n  of t h e  classical t h e o r y  is to 

c o n s i d e r  a non-com m u t a t i v e  V o n  N e u m a n n  alg e b r a  A o v e r  a H i l b e r t  

space H  , a filtration (Â ) ^  of V o n  N e u m a n n  s u b a l gebras of

A a n d  a finite faithful n o r m a l  t r a c e  <p on A . W e  can n o w  

c o n s t r u c t  the n o n - c o m m u t a t i v e  L ^ - s p a c e s  a s s o c i a t e d  w i t h  (A,(J)) [38] .

T h e  r a n d o m  variables are t h e n  just t he elements of th e  * - a l g e b r a  of 

m e a s u r a b l e  operators over A [35] a n d  a  stochastic process (X^)^ ^  

is a family of r a n d o m  v ariables such that for each t , X^ is a 

m e a s u r a b l e  operator over Â  . Th u s  i n s t e a d  of t h i n k i n g  o f  a 

sto c h a s t i c  base [28,30] (£2,E,P,E ,R+) we t h i n k  of ( A , H , ( p , A,R+) in

th e  n o n - c o m m u t a t i v e  setting. T h e  exist e n c e  of the c o n d i t i o n a l  

e x p e c t a t i o n  d e noted b y  M, , M  : A A for each t E  R+ w i t h  theu u "U

p r o p e r t i e s  M^(yxz) = y M ^ ( x ) z  w h e r e  y , z  E  A^ , x E  A and M^(l) = I 

is a s s u r e d  by Takes a k i  [37l .
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T h e r e  exists ye t  a n o t h e r  extension to th e  m o d e l  d i s c u s s e d  above. 

This is to c o n s i d e r  a V o n  N e u m a n n  alg e b r a  w i t h  only a f a i t h f u l  

n o r m a l  state. S u c h  m o d e l s  occur quite n a t u r a l l y  in q u a n t u m  

s t a t i s t i c a l  m e c h a n i c s  [18] . Thus we are n o w  n o t ' o n l y  c o n c e r n e d  w i t h  

e x t e n d i n g  th e  ideas of c l a s s i c a l  p r o b a b i l i t y  t h e o r y  t o  a fin i t e  Von 

N e u m a n n  a l g e b r a  (with a trace), but if w e  intend to s olve q u a n t u m  

analogues, of say th e  L a n g e v i n  equation, w e  have to e x t e n d  o u r  t h e o r y  

t o  t y p e  III V o n  N e u m a n n  algebras. I n d e e d  several n o t i o n s  a n d  objects 

of interest in t he c l a s s i c a l  t h e o r y  have n o w  b e e n  e x t e n d e d  to a non- 

commut a t i v e  setting to in c l u d e  b o t h  the t r a c i a l  a n d  t he n o n - t r a c i a l  

cases [13,26,31].

In this thesis w e  e x t e n d  the n o t i o n  of stopping t i m e  to a non- 

c o m m u tative setting. In cha p t e r  two w e  study s t o p p i n g  t i m e s  in a 

finite V o n  N e u m a n n  a l g e b r a  [lU]. We def i n e  "stopping" for non- 

com m u t a t i v e  proc e s s e s  a n d  s h o w  that our d e f i n i t i o n  of s t o p p i n g  is 

equivalent to t h e  c o m m u t a t i v e  one for a c e rtain class o f  processes.

In p a r t i c u l a r  w e  are i n t e r e s t e d  in stopping m a r t i n g a l e s ,  w h e r e  it is 

s h own that st o p p i n g  p r e s e r v e s  the m a r t i n g a l e  property. C e r t a i n  

a l gebraic relations b e t w e e n  stopping times are d i s c u s s e d  a n d  these 

are u s e d  to p r o v e  the n o n - c o m m u t a t i v e  analo g u e  o f  the D o o b s  optional 

st o p p i n g  theorem. W e  also consider a concr e t e  m o d e l  f r o m  q u a n t u m  

theory, the C l i f f o r d  a l g e b r a  g e nerated b y  the free F e r m i o n  fields over 

the H i lbert space of squ a r e  integrable functions on t h e  p o s i t i v e  reals. 

Here w e  show h o w  to s top increasing proc e s s e s  a s s o c i a t e d  w i t h  Doob- 

M e y e r  d e c o m p o s i t i o n  of c e r t a i n  m a r t i n g a l e s  [8] . We also g i v e  a 

c h a r a c t e r i s a t i o n  of t h e s e  s t opped processes. In c h a p t e r  t h r e e  we 

continue as in chapter t w o  but here we do not r e quire the existence  

o f  a trace. W e  req u i r e  only a faithful normal state [l5l . Once 

again stopping is discussed, but here w e  p r e f e r  to w o r k  in the Hilbert
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space given by the G.N.S. representation associated with the state.

Thus we obtain results about stopping operator valued martingales 

whilst working at a Hilbert space level. We also look at a con

crete model from quantum theory, the C.A.R. algebra. Here we prove 

a random time convergence theorem analogues to the tracial case given 

in [7] . In chapter four we work in the type Von Neumann

algebra: L (^,E,P)0M2(C) . Here certain objects such as

martingales, stochastic integrals etc. are briefly discussed and a
2Doob-Meyer decomposition theorem is proved for L -bounded martingales. 

The main purpose of this chapter however is to give examples of non- 

commutative local martingales and consequently develop a stochastic 

integral with respect to them. This is achieved by defining stopping 

in a slightly weaker sense than that given in chapter two.

There has been some development in non-commutative stopping 

times. In [2k] the strong Markov property of the Boson Brownian 

motion is proved. However, there the stopping times are MPreM 

adapted and the Brownian motion "Future" adapted so that the two 

commute. The Brownian motion is also a strongly continuous process 

and there exists a total set in the underlying Hilbert space (Symmetric 

Fock space) factorising the "pre" and the "future" algebras. In [3] 

the Fermion strong Markov property is proved, again under similar 

conditions to those in [2H1 . We shall follow the definition of 

stopping as given in [7l • There a more abstract account of stopping 

is given though most results are obtained in the Clifford algebra. 

Inspired by [2U] and using finite stopping times, a strong factorisation 

of the Boson Fock space is given in the recent pre-print [3M . In the 

pre-print [HI, using the results of [2U] and [3HI , certain cocycle 

identities associated with a unitary processes satisfying a quantum 

stochastic differential equation [25,26] have been obtained for finite
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s t o p p i n g  times. Fin a l l y  in [6] , c o n c r e t e  examples of s t o p p i n g  

t i mes ha v e  b e e n  obtained. N e c e s s a r y  a n d  sufficient conditions h a v e  

a l s o  b e e n  g i v e n  for a process to b e  a stopping ti m e  in the gauge 

s p ace g i v e n  b y  L  0  M 2 (C) .

F i n a l l y  a p o int about notation: W e  shall o f t e n  a b b r e v i a t e  a

f a m i l y  i n d e x e d  b y  R+ , such a s , a f i l t r a t i o n  of V o n  N e u m a n n  a l g e b r a s , 

p r o c e s s e s  etc., as (A^) , (X^) etc. in s t e a d  of {A : t E  R+ }

{Xt : t 6  R+ } etc.
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CHAPTER TWO

STOPPING TIMES IN A FINITE 

VON NEUMANN ALGEBRA

2.1 Introduction

In this chapter we study stopping times in a finite non- 

commutative Von Neumann algebra. First we reformulate stopping 

times and stopping processes in the commutative probability theory.

Thus let (f2,E,P, (Ê ) ,R+) be a stochastic base and for 

simplicity we assume that the filtration of sub-a-fields (Z^) of 

E is right continuous. That is, for each t 6 R+ ,

n  V  = st  .
S > t

A stopping time T is a E-measurable R+ U {°°} (= R+) valued 

function on 12 with the property that for each t E R+ ,

(to £ ft : t (03) _< t} e 2

In view of the right continuity of the filtration we can replace this 

last condition by requiring that

(u) E Q : t (03) < t} E 2

•  001 n  \We observe that t is a measurable operator over L (f2,I,P)

[35] .
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Now, with x we can associate an increasing family of sets

in £ and indexed by R+ . That is, for each t G R+ , we consider

the set {t < t} . Then clearly {t < t} £ {t < t} if s <_ t .

(We have written {t < t} instead of (a) G ft : x(to) < t} as is

customary in literature.) Now {t < t} G £ by hypothesis, hence

the function U) is -measurable, an idempotent and
00

hence belongs to L ,P) . Thus we can associate with x , an

increasing projection valued process [28,29], T , given by

T(t) = X{x<t}

Clearly t (0) = 0 and we set t (°°) = I since {x < °°} = Q . We

observe that if x is bounded, say there is a T G R+ such that

t (w ) <_ T \/ a) G ft , then clearly t (T) = I . Also if a is another 

stopping time and a <_ T then clearly {t < t} C {a<_t} for each 

t G R+ and hence x(t) <_ a(t) . Moreover a ̂  x and a V  t are 

stopping times given by a) **■ a(w) a  t (oj) and w + a(w) v t (oj)

respectively. Now since {a yy T < t} = {a < t} U {x < t} and

X{a<t}u{x<t} “ X{a<t} V  X{T<t} ’ the corresP°nding projection valued 

process associated with a ̂  t is given by a ̂  x(t) = a(t)V x(t)

for each t G R+ . Similarly a v  t(t) = a(t) a  x(t) for each

t G R+ . Also if t (o)) = t , w G 0, , that is x is the deterministic

time given by t G R+ . Then {x < s} = (£ if s < t and {x < s} = 0,

if s > t . Hence the projection valued process associated with x ,

T , is given by x ( s ) = 0  if s <_ t and t (s ) = I if s > t .

On the other hand, given an increasing family of projections 

indexed by R+ , ) and such that X^ = 0 , X™ = I and for
Eco

each t G R , X^ E L°°(ft,2: P) , we can associate a stopping time x̂
t

by setting

18



Tn I  i < x Ek=l 2 _k_
„n

X * )Vi
for each n E N .

Another example is

t ( co) =  e

Inf{t : Xv (u) = 1}
-&4-

if inf exists

otherwise

Thus we may think of a stopping time as an increasing projection 

valued process, starting with the zero-projection at t = 0 and 

finishing with the identity at t = 00 .

Before we go on to the discussion about stopping processes, we 

recall one more definition from the commutative theory. Let E^ 

denote the a-field of "events prior to T That is

Zt = {A G Z : A H {x<t} E Zt \/t E R+}

2
Now let X = (X ) be a L -bounded martingale, so that there is a

X E L^(£2,X,P) such that X = E(x|Z, ) [5] . Let X denote the
"t « T

stopped random variable defined by

CO -  XT (u )(co)

where t is a stopping time. We observe that if t is simple, say

t = Z t^ X£ , then 
i 1
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where ^  = V XE
i j<i j

Now let 0 EP[0,°°] - the space of partitions of [0,°°] . Say

6 = (t0 > • • • »tn} then

x(e) - It. x{ti_1<T<ti )

defines a stopping time, hence

XT(0)  ̂Xt. X{t. <T<t. }1 1 - 1—  1

= E Xt. (X{T<ti} ' X{T<ti_1)]

= l E(x|Z. )AQ.

where = X {t < t^}
i

Writing E^(*) instead of E(*|Z^) we have that

XT(0) = Z Et.(X)A«t. 
i 1 1

=  E t (6) (X)

where E (0)(-) = l  Et  ( ' ) &%. _
i 1 1

It is not difficult to show that ^t (q ) is a self-adjoint projection

on L^(fl,E,P) and if 0' is another p a r t i t i o n  of [0,°°] and 0' D  0

(0* is finer than 0) then E fr, t s < E . Thus letT ( 0 ' ) —  T(0)
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inf
e g  P[o,°°] *t (0)

Then E leaves L (£1,1 ,P) invariant, for let A 6 E . Then T T T

W  = Lgm Et (e)( xa  >

Lim l  Et (XA )AQt 
0 0 i i

Li m l  Et.(xAAQt.)0 0 1 i

Lim l
0 0 1

since G L°°(£3,Zt ,P)

= XA

Indeed, it can he verified that E^ is the conditional expectation 

map of L2(£},E,P) onto L^(^,Z^.,P) .

Now, it is known that there exists an increasing sequence (T^) 

of partitions such that the corresponding stopping times t CT^) 

converges to T (a.s.) from above [28] . Since X = E (X) is also 

right continuous we have that

XT Lim X a.s.
Tn

Lim Xt (T a.s.
n

Lim Et (T a,s*
n 7

et (x )
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That is E (X) = X , and since HE , x(X)IL < HXlL , we have that T T T(nj 2 —  2

E v(X) X 
T (T n r  T

is the L -norm. Thus given e > 0 there exists T^ such that for

all T D T.t n —  N

IEt (Tn )(X) - Et (X)II2 < E

Now let 9 be such that 0 3 T^ then

IIXT - Xt (0)"2= IIEt (X) - Et (0)(X)II2

!Et (V (Et (X)- Et (0)(X))"2

IEt (6)(Et (X) - Et (Tk)<X^'2

1  ,IEt (X) - Et (Tn )(X)II2

< £

Thus we have that

Xt = IT - Lim l  X A 
T 0 0 i  i

Likewise, a similar argument shows that if X = (X^) is a uniformly

integrable L -martingale then [lU]

XT = L1 - Lim l  Xt A Qt
0 0 i i

If T is a stopping time and (X^) is a process then the process 
stopped by t is defined as
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-n

X Q

w + X't (oj) A t M

for each t G R+ .

Now t ̂  t defines a stopping time and setting

q ' = X {t * t < s} , we have that Q1 = I if s > t , thus T ^ t

is bounded. Now arguing as above we observe that if X = (X ) is 
2a L -bounded martingale then

X , = L - Lim y X A q ! 
T A t  0 *i ^ i

=  L - L i m  l  Xt A + Xt (1 - )
0 t.<t i i i+1 i

l —

But { T A t < s } = { T < s }  if s < t . Henc<

Xx.t = l2 - Lim ( l xt.A + X (1  -  a  ) )
A 0 0 t.<t °i °i i+1 i

l —

We shall often write

X =
T

X dQ s s

X J Xs dQs + Xt (l - V

Having briefly reviewed stopping in the commutative theory, we now 

move onto a non-commutative setting.
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2.2 The Non-Commutative Setting

In this section we introduce the context in which we shall be 

working and make some definitions.

Let A be a finite Vo.n Neumann algebra of bounded operators 

on some Hilbert space K . Let (p be a faithful normal trace 

on A , (Â ) be a filtration of sub Von Neumann algebra of A

with conditional expectations ^ t ^ t £ R + * That is M̂ . maps A 

onto A with the properties that M^(l) = I and <£(yM^(x)z) = <p(yxz)

for all y,z £ Â  and x £ A [27] • Finally we suppose the family

(At ) satisfies

(i) A C A if s < ts —  t

(ii) 11<C
s > t 3

t

(iii) ( U A  )" =
t p

A

For 1 < p < 00 , let LP (A) denote the non-commutative LP-spaces

associated with A and (p [38] . Then it is known that the con

ditional expectation can be extended to a positive linear faithful 

map, which we again denote by from LP (A) onto LP (A^) and

of norm one and satisfies M.(M,(X)Y) = M,(XM,(Y)) for allt t t t
X £ LP (A) , Y E a [27].

2^21_Definitions

(i) Let 1 <_ p <_ 00 . Then an LP-process is a family

{X : t £ R+) C lP (A) such that for each t £ R+ , X E LP (A ) . z z z

(ii) An LP-process is called a martingale if (in addition to (i)) 

it satisfies

M (X,) = X for all s < ts t s —
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(iii) An LP-martingale is LP-bounded if (in addition to (ii)) it 

satisfies

Sup IIX. II < 00 
t  t  P

In this case it is known [5] that if 1 < p <_ 00 , there is 

X E LP(A) such that

(a) X t =  M (X) for all t E R+

(b) LP - Lim X = X

(iv) An L^-process is called weakly relatively compact or 

uniformly integrable if it is L^-bounded and satisfies

V £ > 0 3 (5>0:RGA’ , |R ,I 00 1 1 » ,,R,I1 < 6
t h e n  14>(RX ) | < £ for all \/ t E R+

2^22__ Remark

If (X^) is a LP-hounded martingale and 1 < p < 00 so that

X^ = M^(X) t h e n  w e  m a y  regard (X^) as a process i ndexed by R +

since we can set X = X .
00

2.23 Definition

(i) A process t = (Q^) indexed by R+ is called a stopping time

if T (0) = 0 , t (») = I , x(t) = ^ is a projection in A for

each t E R+ and Qg < for all s < t [7,1^1 •

(ii) Let T = (Qt ) and a - (Q^) be stopping times. Then we

say t < a if and only if for all t E R+ .
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(iii) The deterministic time given "by say t E R+ is the process 

t :

0

t (s) = <

s < t

s > t

(iv) A stopping time T = (Q^) is "bounded if there is a T 6  R+ 

such that

T(s) = Qs = I for all s > T

(v) If T = (Qj.) 

the stopping times

and a = (Q^) are stopping times then we define 

T v G and T A a by setting

T V  cr(s) = Qs A Qg

t A cr(s) = Qs v  Qg

where a  denotes the infimum and V  the supremium of projections. 

We observe that the stopping time T A t is given by:

«s
T A  t(s) = <

S < t

s > t

hence t a  t is bounded.

In the introduction to this chapter (2.1) we observed that
2 .stopping a L -bounded martingale m  the commutative theory is equivalent

to
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L2 - Lim l  X A O.
0 e P[o,«°] 0 ti i

where = X{T<<tj. . That is

X = L2 - Lim l  X A Cl 
T Q t  • u .

0 1 1

= L2 - Lim Et (0)U )

where X̂. = E^(X) .

It is now natural to ask if this limit can he extended to a non- 

commutative setting. That is if

Lim l  M (•) A 
0 E P[o,°°] Q i i

exists in the non-commutative setting.

In the next section we show that the limit exists, thus giving
2us a way of stopping, at least, L -bounded martingales.

2.3 Time Projections in a Von Neumann Algebra

2.31 Definition

Let t == (O^) be a stopping time and 0 = {t^, • ,tn) E P [ 0 H

we then define by

M
t ( 6 )  "  J o

Indeed, ^t (q ) is the non-commutative extension of E 

We now have the following:
t (0)
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2.32 Theorem (Properties of M^g^ ) [14]

Let t = (Q^) be a stopping time. Then

(i) Mt(Q) is a self-adjoint projection on 

0 6 P[0,»] .

(ii) If e1 C e2 then m t(02) < mt(9i) .

(iii) If a x then Ma (Q) MT(0) for any

L2(A) for any

0 E P[0,«] .

Proof [14]

We give a proof merely as a completion as we give a similar 

proof for the non-tracial case in the next chapter.

(i) Let X E L2(A) and 0 E P[0,°°] say 0 = {t ,... ,tn} .

Then

Mx ( 0 ) (X) I Mt (XjA^
i=0 i

Hence

Mx(e)(MT(e)(x))

i 1 1

= l  Mt (J Mt (XjAQj. JAQj. 
j 0 i i 1 j

= l Mt _(J Mt _ (XjAQ^AQj. ) since E 
j j i 1 i j

= l (M^ (X)AQt ) since AQ^ AQ^ = 0  if i ± j
i i i i i j

= l  Mt _(X)AQt>

= Mx ( 0 ) (X)
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To show that M2Hence m t (q ) a Projection on L (A) . 

is self-adjoint we first note that the inner product in
t ( 6 )  

L2(A)

is given by

<X,Y> = <j>(X*Y)

Thus

<m t (9)(x ),y> = 4,(m t (0)(x )*y )

= Mt (X)*Y)
i i i

= l  tft(AQj_ Mt (X*)Y)
i 1 1

since M^.(X)* = M^.(X*) 

= l  <|>(Mt (X*)YAQ't )
i i i

since (f) is a trace

= l  <t>(X*Mt  (YAQt  ) )  

i 1 1

from the property of 

= l  <j)(X*Mt (Y)AQt )
i i i

= 4>(X* l  Mt (Y)AQt ) 
i i i

= <Mx *m t (6j(y ))

■ <X • Mt (9)(Y)>

Hence ^T(g) is self-adjoint on L^(A) .
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and
(ii) We suppose that = ^1 ^ * Say ®1 ”

02 = {t0 ,...,tr ,Y,tr + 1 ,...,tn > . Let X £ L2(A) . Then

MT (6 2 ) (X )M T ( e i ) (X ) l Mt . (Mx ( e J (X))A\

+ MY (Mt ( 0 1 ) ( X ) ) S  -  V

+ Mt r+1 (Mx(e1) ( x ) ) ( \ +1 - S )

+ l Mt . (MT(e i )(X))aQt.
j= r + 2  J 1 J

r n
= l  M ( l  M (X)AQt  )AQ% 

j=0 j i=0 i i

n
M ( £ M (X)AQ^ ) ( 0  -  Qr ) 
Y i=0 i i Y

+ M, 
V + l

( l  M (X)AQt  )(<Zt  
i=0 1 l r+T

n n
+ V M ( Y Mt  ( X j A ^  )A§t  

j=r+2 j i=0 i i

= I  Mt  (X)AQ^ + M (X ) (Q  -  Qr )
j= o  j  j  y Y

+ M
r + l

(x) (q .
r+l

+ l  24 (X)AQt  
j= r + 2  j  j

= Mt (02 ) (X)
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Since AQ̂ _ AQ^ = 0  if i ^ j and the tower property of conditional
i  j

expectation: M for s <_ t . It is now clear that

MT(6l) i  Mt (62 ) for any ®2 —  ^1 '

(iii) Let t = COLj.) and a = (Q^) and 0 = {tQ ,—  ,t } E P[0,°°)

Then

n n
I  K t  =  ̂ AQt .  =  1i=l i i=l i

and a <_ T means that Q̂. _> Q̂. for each t G R+ . 

and consider

Let X G L (A)

n n
Ma(9)° Mt (0)(x) = Mt.( £ Mt.(x)A(\ . K .j=0 J 1=0 i i J

Now consider

Mt  ( V Mt  ( X j A ^  ) A( ^  
j i=0 i i i

j ; 1= Mt ( V M (X)A(^ )AQ^ 
j i=0 i i j

+ Mt  ( l  Mt  (Xj AC^ )AQ^ 
j i=j i i o

n
Mt ( l  Mt (X)AQt )AQ^

j i=j i i j

since AQ^ AQ^ = 0 for all i <_ j - 1 .

But

i  J 

n
Mt ( l  Mt (XMQ^ )AQ^ 

j i=j i i j
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n-1
= M t . U .  M t . (X)A« t . K .  + M t . (X(l -

0 1=J 1 1 0  0

n-1 n-1
M t . ( J .  M t . (X)AQt . ,AQt. + M t " I A S; J^A Q tJ i=J 1 1 J J k - 0  k j

n-1 n-1
=  Mt  (X  l  AQj. )AQ^ + M (X )A Q ^ -  Mt  (X  J AE^ )AQ^

j i=j i j j j j k=j k j

since AQ^ AQ^. = 0 for all k  <_ j - 1 
k  J ~~

=  m  ( x ) a q ^ 
j j

H ence M a ( e ) o  M t (0 ) (X) =  I M t W A Q g
J  v  J  J

=  Ma ( 0 ) ( x >

We have thus s h o w n  that if t  is a s t o p p i n g  time then

{Mt (0 ) : 0 £  P  [ O,00] } defines a d e c r e a s i n g  net of self-adjoint

p r o j e c t i o n s  on L  (A) . Thus let

M  =  inf M  , n}
0 G  P[0,«] W

so that ^ t (q ) ^ strongly. W e  call th e  time p r o j e c t i o n
2(associated w i t h  t  ) on L (A) .

2
N o w  let X  =  ( X , ) be a L - b o u n d e d  m a r t i n g a l e ,  say X  =  M  (X) 

and t  be a s t o p p i n g  time. Let 0 G  P[0,°°] . Then

l  Xt  A ^  =  l Mt  ( X J A ^
0 i i 0 i i

=  MT ( e ) ( x )
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Thus L2 - Lim T X. AQ. = L2 - Lira M ,Q>(X)
8 h  0 T ( 0 )

=  m t (x )

It is now n a tural to defi n e  t h e  " s t o p p e d  operator" a s s o c i a t e d  

w i t h  (X^_) and a st o p p i n g  t i m e  t  analogous to the sto p p e d  r a n d o m  

v a r i a b l e  in the c o m m u tative theory. To this end we m a k e  the 

f o l l o w i n g  definition.

2^33__D e f i n i t i on

2Let (X^) be a L - b o u n d e d  mar t i n g a l e .  T h e n  define

X  = L 2 - L i m  T X  ACL 
6 G  P[0,»] e t i l

W e  call X̂ . is t he s t o p p ed operator. Indeed this d e f i n i t i o n  

coincides with that of th e  s t o p p e d  r a n d o m  variable w h e n  we re s t r i c t  

to the c ommutative setting.

S i milarly we define the p r o c e s s  sto p p e d  b y  t  , (X ) b y
T A t

X = L2 - Lim y X. AR.
T*  8 € P[0,»] 0 i ti

for each t G  R+ . Here (R^.) is t h e  process giving the st o p p i n g

t i m e  T * t . That is A

Qs s < t

R =  «£s

I s > t

W e  see that
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x i A t  = L -  L^m t L  xt . i Q t .  + x t . + 1 ( i - vA  0 t.<t 1 1 l+ll —

N o v  since (X, ) is L - b o u n d e d  m a r t i n g a l e  and h e n c e  r i ght continuous,

w e  h a v e  that

X  = L i m
0 E  p[o,t:

h e n c e •p
<O
J

Thus we have that

(i) X  =  L i m  l I
0 0 1

(ii) IX

> c+
II

v . ™

L i m  J X  + X  (I - Qj.)

w h e r e  M  is the t i m e - p r o j e c t i o n  c o r r e s p o n d i n g  to the stopping
t a  t

time T  A  t .

W e  sometimes express stopping as an integral. Thus

X  =
T

X d Q  s s

x A t j X sd Q s + X t (l " V

w h e r e

X dQ  s s L 2 - L i m  J X  A Q +
0 E  P[0,t] Q i °i

for each t E  [O,00! .
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2.34 Remark

The stopped operator and the process stopped by t , as 

described above should be thought of as the right-stopped operator 

by t and the right-stopped process by t . The left-stopped 

operator is defined as

X = L2 - Lim y AQ, X,T q u t • t •0 0 1 1

and the left-stopped process by

T A t
X = L - Lim l  AQ, X + (I - Q, )X. 

9 £ F[0,t] 0 i i

Arguing as in our previous analysis for right-stopping, shows 

that these limits exist; . In the integral form we have

X = dQ X s s

T A t
X = dQsXs + ( I  -  Qt )Xt

The following theorem gives some properties of these (stopping

time) integrals,

2^35_Theorem

2
Let (X^) and (Y^) be L -bounded martingales and T = (Q̂ .) 

be a stopping time. Then
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t
(i) (X + Y )dQ = X dQ + 

S S S f s  s
Y dQ s s

for all t e R

T
(ii) X dQ = s s X dQ + s s X dQ s s

for all 0 < t < T < 00

t  t* r
(iii) ( XsdQj = dQ X s s

for all t 6 R

(iv) If X, Q = Q X and Y.Q = Q Y, for all s and t
" t S  S " t  " C S  S " t

in R+ then

t
'

4

0

X Y dQ s s s

t
Y dQ s s

0

1 rwhere the integral on the left is a L - Lim of l  X^ Y AQ̂ _
i i i

Proof.

It is clear that all the integrals in (i)-(iii) exist. For

(i) consider

y (X +  Y. )AQ. 
0 E P[0,t] i i

= I  Xt .AQt . + I
0 1 1 0 1 1

2 . . .Taking the L -limit as 0 refines gives the result.
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u

(ii) Let 0 = {t^ < t < ... t = t < t t = T}0 1 r r+1 n

then

I  xt . AQt .  =  t  l  x t . AQt .  + t  l  x t . AQt .Q i l t_. <t i i t.>t l ll —

Taking the limit as 0 refines shows that

T T
X dQ = s s X dQ + s s X dQ s s

(iii) Let e > 0 then there is a 0q E P[0,t] such that for

all 0 2  0O

» l  x t . AQt .
0 i i

t
X dQ IL < e s s 2

0

Hence [38]

11 l  AQt . x * .
0 i i

( X d Q j  ». < £

Thus

dQ X*s s = ( XsdQs)

(iv) Let 0 E P[0,t] . Then

l  = l  xt.A\ . Yt.AQt.
0 i i i 0 i i i i

= l  xt.AQt. ' I  Yt.AV
0 i i 0 J J 

since AQfc AQt = 0  if i # j .
i j
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Now

11 l  x t . AV  I  Yt . A\ .  - ,e i i e j z
X dQ s s YsdQs 111

1  11 l  Xt.AV " 2  11 I Yt.AQt. -
f i l l  y 0 0 J

Y dQ II _ s s 2

+ “ l  x t . A\ .  -e i i ' " 2 11 W  112

by [38].

The result now follows from a standard theorem of analysis. 

That is

L1 - Lim I X. Y. AQ,
0 E P[0,t] 0 i i i

X dQ s s Y dQ s s

2^36_Corollary

We have that

(i) (Xj* = X*
T  T

(ii) (X )* = ,X* for each t E R+ .
T A t  ' ^ A t

2So far we have managed to stop L -bounded martingales. However
2if T  is bounded then we can stop any L -martingale.

2̂ _37_Theorem

2Let T be a bounded stopping time and (X ) be a L -martingale.U

Then X and X exist for any t E R+ .
T T
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Proof.

Suppose x(t) = I for all t > T and let 0 E P[0,°°] and 

we may suppose 0 contains the point T . Then

Ixt.AV = t l xt.AQt. +xt. V0 i i  t^<T l l l+l

I  M ( X ^ A Q ^  + X ( I  -  Q j )  
t^<T i i i+1

As 0 refines, our previous analysis shows that the first term on
2 Tthe right converges in L to / X^dC^ • For the second term

0
the right continuity of the L -martingale gives X^(l - Q^) . Thus

T
L2 - Liza I X A<^ = f  X dQ + y i  -  C^)

6 e 1 1 o

Similarly if t < T , we have that

X XsdQs + Xt (I - V

and for t > T

X
T A t

XsdQs + XT ( I  -  ^

2^37_Theorem (Doobs optional stopping theorem)

Let (X,) he a L -bounded martingale and 0 < T . Then

M (X ) = X .a t a
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Proof.

From 2.32(iii) we have that

Ma(e) -  Mx(e)

for any 0 E P[0, ° ° ]  . Hence M < M . Nowa —  t

hence

X = M (X) 
T T

M (X ) = M o M (X) a t ' a x

= M (X)
a

= X

We now state some properties of the time projections

2.38 Theorem

Let t — (Qj.) and a — (Q̂ .) be stopping times such that
» ~ T

^ t S ;  \ Qt
for each t £ R . Then

Ci) ^  M  M  T 0

Cii) M  A M  —  M0  A t  a A x

Ciii) M q v M  ^  M  i a v i

Proof.

The stopping time a a  t is given by a A  x(t) - v  Q-J 

each t G R+ . Thus for 9 E P[0,°°1 :

for
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M
a A  t ( 0 )

= I  M ( )A (Q t  v
0 i i

= K . (  ) A( Qt .  + < .
0 i  1 1

Taking the limit as 0t we have

M = M + M - MTOT  G V T

Now a _> a A x hence

M M  = M + M M  - M M  a a A x a a t  a a v  t

M - M + M M - M 
t  a a t  a

= M Ma t

Likewise M M
t  a A  t

M M  + M - M M  
T  a T  T  OvT

i. e M
a A t

M M 
t  a

Hence

Also

M M^ t a

M
O v  T

=  M M - M a t

— M + M - M
t  a a a t

— M + M - M M  
t  a a t

- M v M
t  a
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2.39 Theorem

Let (X ) be a L -bounded martingale. Then (X t T
2a L -bounded martingale.

Proof.

Say Xt = Mt (X) Then

XT A t = MT A t «

Hence

= M M. (X) i t

= M M (X) from above, 
X  X

=  W t ( X )

= a n d )
S T

-= X
T  A S

Thus CX ) is a L -martingale, in particular X — T a t T a  t
- W  •

2So far we have discussed stopping for L -martingales, 

we defined the stopped operator X as the - Lim ^X
T e h

Motivated by this we make the following definition.

2.310 Definition

Let (X^) be a L^-process indexed by R ana let T

be a stopping time. We set Xt (q ) ~ for each
0 i  l

) defines0

M, M (X) t T

Here

=

e e P[o,“l ,
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If the L^-limit as 0 refines of ^t (q ) exists, we call it the
2

stopped operator and denote it by X . (Of course for L -bounded
2

martingales this limit exists in the L -norm as we have shown.) 

Likewise the stopped process by x is defined by

xx A t = lP ' XTAt(e)

for each t E R (provided the limit exists J) where

x A t(s) =<"

s < t

s > t

We have the following Lemma.

2^311_Lemma

Let (X^) be a right-continuous L^-process. Then X£ - X^ 

for each t E R+ where t is given in 2.23(iii).

Proof.

Since (X^) is right continuous at t £ R+ , We have for all 

e > 0 there exists 6 > 0 : t < s < t + 6

IlX. - X^JI < e t t+o p

Now let 0Q - {0 , t + 6/2 , 00 } E P[0,°°1 . Then

"t(0j = X0' t+672

43



Hence

"xt - xt~(e0)"p £

an d  this holds for any 0 ^  0^ .

2 ^ 3 1 2__T h e o r e m

Let (X^.) he a LP - b o u n d e d  m a r t i n g a l e  if 1 < p £  °° (and w e a k l y

r e l a t i v e l y  compact if p =  1) . If X  exists for each
Ta t

t G  [O,00] , th e n  (X ) d e f i n e s  a L P - b o u n d e d  martingale.
t  a  t

P r o o f .

W e  have that M t (X) =  X t for some X  G  LP (A) [ 5 l  . Let

t G  R+ and 0 G  P[0,°°1 . W e  m a y  suppose 0 contains th e  p o i n t

t (■= t ) . Then r

tee)
r

-  I *
i— 1 t . AV

1 1
+  X

■ t + 1 ( I - Vr+1.

Xt ( 6 )  “ l
i=l

T h e n

M t (X
t C0)

) ■= M t l M t (X)AtL 
i-1 i

*  .1  x t . AV  + x t ( I  -  Vi-l 1 1

^ Mt  U ,  x t . AQt .  + x t  , (I -
1—1 1 1 r+1

" Mt ^ x x A t C e ] )
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■ a

Now taking the L^-limit as 0 refines and observing that is
PL -continuous, we have

W  -  V x T A t }

Now all that remains to show is that 

end consider

E IS
' < V

To this

x  = . L x  a a  + x  ( i  -  a  ) TAt(e) t.<t \  ^ti ti+1 "t

We know that as 0 refines XT A t (0) Xt a  t However the first

term on the right lies in L^(A^) , whilst the right continuity of

the martingale gives us that X^ (l-Q^)-*-X^.(l-Q^)E L^CA^) .
i + 1

Hence

V V  =  x r A t

Again if X^ and X^ ^ exist in the L^-sense, we express them 

as integrals:

X X dQ s s

T/Vt = \  XSdQS + Xt (I - V

where X dQ = LP - Lim £ X AQ,
S S 0 E P[o,tl 0 i i

for t G [0,°°] .
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Then this integral has the following properties.

2.313 Theorem

Let (X^) and (Y^) ^-process and suppose that both

X dQ s s and Y dQ s s
0 0 

exist for all t[0,°°l . Then

M  (Xs + Y s)dQs = 
0

X dQ + s s Y dQ s s

for all t G R 

T T
(ii) X dQ = s s X dQ + s s X dQ s s

0 0 

for all 0 < t < T < 00

(iii) ( ( XsdQs}*
*

dQ X s s
0

for all t G R

(iv) If (Z ) is a L^-process where p d + q d = 1 and s
t —
/ ZgdQg exists for all t G R and ZSQ̂- = ^or a11

j
s,t G R ‘ > then 

t
X Z dQ s s s exists as a

0

1 _ .L - Lim i  X Z AQ^ and equalsQ t. -t.
i l l

X dQ s s Z dQ s s
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1/

for all t G R+ .

Proof.

This is exactly same as that of theorem 2.35.

Before we leave this section and go on to look at stopping 

times that lie in the commutant A' , we make some definitions and 

prove a theorem related to local martingales. However we shall 

discuss local martingales in chapter four.

2^314 Definition
iao* o4o.i .-c.

Let (in) he a^sequence of stopping times given by = (Q̂ . ) .

Then we say Tn t 00 as n t 00 if for each t E R+

<K0^n )̂ ^ 0 as n -> 00

That is for each t G R+ , for all e > 0 there exists N :

for all n _> N

<Ko£n ^) < e

2^315___Definition

An L^-process (X ) is called a L^-local martingale if there 

exists a sequence (t ) of stopping times as in 2.314 such that 

X , exists for each t G R+ and for each n (X , ) defines
T  A  t  t  a  tn n

a L^-bounded martingale.

2^316___

Let (X.j.) he a uniformly bounded L^ right continuous local 

martingale. Then (X^) is bounded A-valued martingale.
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Proof.

We have that X , = - Lim ./Q\ •
T  A  A T ^ U \ 0 yn 0 n

That is

XI a t n
X dQ^n) + X (1 - Q^n))

S S o o

L ^ A t )

Now

"XT * t  “ V l  = " f XSdQsn) - Xt ^ D)|' ln J

XsdQsn)|ll + llxt ^ n)|il

XSdQsn)"l + ,Xt Boo

Now X d Q ^  = Lim l  X,
S S 0 £  P[0,t] *i \

But II l Xt AQ^II <_ l IIXt IIJlAQ̂ II.
0 i i i i

<_ M<j>(o[n )̂ for all

where M = Sup IIXt 00

Hence

X dQ^II, <11 X dQn - T X. Aq } n ̂ II .. s s 1 —  s s  ̂ t. x. 1
« f i l l

(n)

M$(Q^n ^) for all 0
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Now let £ > 0 be given and let N E N so that for all n >_ N

x/n(nh . £
* (Qt } < 2M *

For each n > N let 6 E P[0,°°] such that for all 0 C 0 :n ’ —  n

t
II

•
x d Q ^  - ys s L v » 4 ? V f  ■«

0 0 1 1

Thus for all n _> N

t
II X d Q ^ I L  < s s 1

£ . £
2 2 £

0

Hence for all n > N

II X - X, II < e + e = 2eT A  t t 1n

Thus X , -► X in as n + 00 , for each t E R+ . The
T  A  t  tn

conditional expectation is L^-continuous thus by hypothesis

M (X ) = X
S T  A  t  T  A  Sn n

gives

L1 - Lim M (X , ) = L1 - Lim X
S T  A  t  T  A  sn n

l .e.

M (X.) = Xos t s

Hence (X ) is a martingale. But (X ) is uniformly bounded hence

X^ ^M^.(X) for some X E A .
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2.4 Stopping Times in the Commutant

In this section ve study stopping times that lie in the 

commutant A* of A . Here we show that the time projections 

is the conditional expectation map onto A^ - the Von Neumann 

algebra of "events prior to t M.

2^41___Definition

Let t be a stopping time (not necessarily in A ’ ). Then 

the algebra of "events prior to x " is defined by

A = {R G A : R = r ' = R* RQt A. for each t)

2_.42___Proposition

If a < x then An ^ A . —  a —  x

Proof.

for

Let a — CO^) and x - (Q^) , Then o <_ x gives Q̂. >_ 

each t G R+ . Let H E A so that G A^ . Then

RQt =  -  ( R Q X  6  At

Hence A ^ A a — x

Nov let 0 - {t^,...,^} G P[0s°°l and T “ C^.) "be a stopping 

time. Then

x(0)(s) Cs)
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defines a stopping time and t (0) >_ T , hence A ^ qj p  A^ •

2^43___Proposition

We have that

A
T

n a
0

T ( 0 )

Proof.

A C A for all 0 E P[05°°]
T — T ( 0 j

Hence

A c HA , Qst -  0 t (0)

Conversely suppose X E H A ^ ^  • Nov it is known [Tl that there
0

exists a sequence (0 ) of partitions such that t (0 ) ^ T

pointwise strongly. Now X E A /~ x for all n , hence
',0n '

Xx(0 )(s) E Aq n s

But x(0n )(s) -* t ( s )  strongly and Ag is strongly closed. Hence

Xt (s ) = XQ E A for each s E R+ . That is X E A s s T

In the rest of this section we shall assume that t (s ) E A’ 

for all s E R+ .

Let 0 - {tQ,...,tn} E P[0,°°1 , and recall that

Mt (0) = l Mt.( )AQt.
0 1 1
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2^44__ Proposition.

M is the conditional expectation map of A onto ^t(q)

Proof.

Suppose X G A^gj s o  that Xt (0)(s ) G A^ for each s E R 

t ( 6 ) ( s )  =  J a  Xi+ + \(s) . How

Mt(e)(x) = .1 Mt . (x)AQt1=0 i

=  l  M (XA<^ ) 
i=0 i i

= X

Since = x(0)(t^) for all i = l,...,n . Conversely
i

X G A and consider M /Q\(X) . Thent (0)

let

M (es(X)T(0)(s) = l  Mt (X)Aq^ T(0)(s)
\ J i i i

Suppose tk <_ s < tk+1 then

Mt (6)(X)t ( 6 K s ) ■= J  Mt _(X)AQt_
1=1 i

A. C A
s

Hence M f a \ : A A
T v o ) T(0) is onto. Clearly m t ^q )Cl) = I

Now let Z,Y G A and X G A . Thenx(0 )
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(j>(ZMx(0)(X)Y) = l  <f>(ZMt (X)AQt Y)
9 1 i

= l  ( f i tZ A ^  Mt  ( X j Y A ^  )

=  l  ^(ZAC^ X Y A ^  )

6 i  i

= l  (KZXYAQ^ )

0 i

= (j>(ZXY)

Since ZAQ̂ . 6 and YAQ^ E Â _ . Hence M
i i i i

conditional expectation map.

We now wish to show that the time projection

conditional expectation map of A onto Â  .

t (0)
is the

is the

2^45___Theorem

We have that M is the conditional expectation map of A 

onto A
T

Proof.
2It is clear that maps A into L (A) . Let X E A

and 0 E P[0,°°1 so that l(0) > T  and X £ A^g| . Now

Mt (X) = L2 - Lim Mt (0)(X)

=  L 2 -  Lim X

= X
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Now let Y G A ( C A ) and consider 
x —

Hence M̂ .(X) = X for all X G A . Similarly M^(l) = I .

Then

Hence

<t>(Mx (X)Y)

U(Mt (X)Y) -  <f»{XY) I

< l4>(MxCej(X)Y) -  <MMt (X )Y )|  + l<f>(Mx ( e ) (X)Y) -  <|>(XY)|

= i<KMT / e ) ( x ) Y )  -  4>(mt ( x ) y ) I

since i-s a conditional expectation

< IlYlljM , 0 ) (X) -  Mt (X )»2 -*■  0 as e t

4>(Mt (X)Y) = 4>(xx)

Thus all that remains to show is that

M : A A
T  T

We first show if X G A , then M ^ ^ ( X )  converges to M^(X) 

strongly. To this end, since <p is normal and faithfull , we may 

assume that A acts in its G.N.S. space 5C (= L (A)) with cyclic 

and separating vector ft . Hence A'ft is dense in 5C . Let 

X E A .
p

We know that Hj. on L (A) (= 3{ ). Consider

M \ Cx) , then IIM /Qx(X)ll < llxll since M /r,s is the conditional t [0) 5 t (0) 00 —  00 t (0)
expectation. Let Y ’ G A ’ then
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set.

MT(0)(X)y,ft = Y,Mt(0)(X)̂
Y'M (X)ft 

=  Mx ( X ) Y ffi

Thus Mx ^q j(x ) converges strongly to M^(X) on a dense 

But (Mx ^ ( X ) )  is uniformly bounded. Hence Mx^ ( X )  ■* Mx (X) 

strongly everywhere on 3C and thus M^CX) G A . Since 

Mt (9)(X) e At(0) c a . Now MT(X)Qt is;

strong-Lim (0) ®  = strong-Lim £ M (X)AQ,
0 0 t^<t i i

e A t  .

Thus M^CX) G and : A -► A^ is the conditional expectation.

2^46___Proposition

Let (X̂ ) be a A-valued process indexed by R+ and suppose

X^ exists as a uniform limit of (see definition 2.310).

Then X G A 
T T

Proof.

X f a \ x uniformly, hence X , N X strongly and T x^b; t

Xt (0)S; strongly. But X ^ ^  G A^ for all 0 G P[0,°°] ,

and A^ is strongly closed, hence X

Thus X G At .T T

Q, G A for each t G R
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Now for each t E R , T t denotes a stopping time and

^ denotes the algebra of events prior to T A  t . For

t suppose Xt A t exists as a uniform limit of X t(0)

each 

where

(xt ) is a A-valued process. We have then the theorem:

2^47__ theorem

(X̂  is a martingale relative to (Â ) and (M̂ ) if

and only if it is a martingale relative to (A ) and (M ) .T a t T/v t

Proof.

Since X . E A . w e  have that X , 6  A, as x A t < t i A t x A t x A t t A -
Thus (X ) is adapted to (A ) . Now supposeT A t t

Then

M (X J  = X for all s < tsv t a t t a s -

M (X , ) - M ° M (X JT a SV T A t' T A S S T a  t'

= M (X )T A  s' T A  s'

- XT a S

by 2.38

and (X ) is a martingale relative to (M ) . T a t T a  t
Conversely suppose

M (X ) = X for all x < tT A S T a  t T a  s —

To show that (X , ) is a martingale relative to (A ) and (M, )
I  A “ "C "C

it is enough to show that
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J
\x

for any

4>(x R) = *(X R)
1 A  k L A 5

R e APro  ̂ . Thus let R 6 APr0J then R(l - Q ) 6 As s s T A s
Now

<f>(XT ̂  t R) = <|>(X RQs) + <J)(XT ̂  t R(I - Qa ))

= -MX. RQ ) + 4>(X R(I - Q ))
L A   ̂ s T a s  s

Since R(l - Q ) G APr0J and (X ) is a martingale relative to s T A s T a t

( A T „ t >
and (M ) . Now considerT A  t

<(>(XT A t ( 0 )  R V  =  « X t a s ( 6 )  E tJ s >

As 0 refines we have that

* ( XT A t RV  =  ^ A 8 B« 8 )

Hence

That is

<t>(\ R) = *(X RQ ) + 4>(x R(I - Q ))
T A Ti T / \ , S S  T  a s  s

= 4>(X R)l a  S

(X^ is a martingale relative to (A^) and (M^) .
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2._48___Remark

We mention that in general the time projection need not

be a conditional expectation. We shall illustrate this fact in 

the next section.

2.5 The Clifford Algebra

In this section we study stopping times in a concrete model

from the quantum theory. We shall look at the Clifford algebra.

Stopping has been studied in this model [7] . There the main interest 
2was m  stopping L -martingales. In the present section we shall 

be interested in stopping the increasing process associated with the
. . 2 2Doob-Meyer decomposition of a L -martingale. For a L -martingale

(X ) 5 we give a characterisation of the stopped martingale (X ) . 
z T A z

First we give some preliminaries (taken from [8,lll).

Let 3C denote the Hilbert space L (R ) and F the anti

symmetric Fock space over 3C . That is

F - C ©  ft© (3C® ft) © ( f t ®  ?C® 5C) @ . . .■ a a a

where ®  denotes the anti-symmetric tensor product. We abbreviate£L

F to

c o j f e ^ o T e 3 © . . .

where
(JC® K  ®  ... ®  JC )a a

n-times

For each u E ? let C(u) denote the creation operator on F 

and C(u)* — A(u) be the annihilation operator on F . The free
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fermion field is then defined as

ip(u) =  C(u) + A(u)

T h e n  for u , v  E  3C w e  h a v e  [8] :

iJ;(u)iKv) + (̂v) \p(u) = 2<u,v>I

Let C d e n o t e  t h e  V o n  N e u m a n n  algebra g e n e r a t e d  b y  {^(u) : u  E 3C } . 

The|\ C is c a l l e d  t h e  w e a k l y  closed C l i f f o r d  a l g e b r a  o f  b o u n d e d  

operators on F a n d  ov e r  7C . It is k n o w n  t h a t  t h e  F o c k  v a c u u m  

vec t o r  ft , th a t  is

f t - =  1 0  0  0  0  0  . . .

is a f a i t h f u l  n o r m a l  fin i t e  tr a c i a l  vec t o r  o n  C a n d  w e  let

(}>(•) = <ft,*ft> so that (C,cj),F) is a r e g u l a r  p r o b a b i l i t y  gauge

space [35] • F o r  each t E  R+ let d e n o t e  t he V o n  Neu m a n n

a l g e b r a  g e n e r a t e d  b y  (i|;(u) :u E L (R ) a n d  supp(u) C  [o,t] } .

Then we have a filtration of Von Neumann algebra^ {C : t E R+ } .

Let M, denote the conditional expectation map of C onto C 
t  "t

for each t E R + so t hat extends t o  t h e  c o n d i t i o n a l  e x p e c tation

m a p  of i P  (C) o n t o  L^(C ) for all 1 <_ p <_ «> .

N o w  c o n s i d e r  t h e  family {i|)(X[q  t ] ) : t E  R + } . T h e n  for each 

t E  R + , ^ ( X j 0 t j ) E  Ct . Hence the fami l y  W X [ Q t j ) : t E  R+ }

is a C - v a l u e d  process. In fact it is s h o w n  in [8] t h a t  it is a 

m a r t i n g a l e  w i t h  the properties that
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(i) <t>(i|<(XjQ tj )) = 0  for all t e R+

( i i )  <M'Kx[0) t ] )<J’( x [0 jS])) = s A t 

( i i i )  <M(<Hx[05t]) - ^ (x [oaSi ))('*'(X[0 j r ] ) - ^ [ o . q ] ))}

= <t’(')'(X[0,t] ) " l('(x[0,s] 5 “ ^ (X[0,q]

if 0 < t < s < r < q

Property (iii) says that the family (iK X j-q )) has independent

increments. We call (i|̂ (Xjq )) the Clifford process.
2

Now let X = (X̂ .) he a L (C) valued process. That is for 
+ 2each t E R , X E L (C ) . Suppose X is simple, so that

X X

=  I x  Xi. t ,(t)
1 - 1  1 i - l ’ V

and write ^  = ^(Xjq ) • Then the stochastic integral 

t
X dib s s

0

is defined as

i  x t .  > .  -  v  > + V " *  ■ Vi - i  i - i  i  i - i  r  t

where t E [t ,t . Then it is shown [81 that r 5 r+1
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xsd̂ s»2 = l $(|xt |2)(-t1- t i _1 ) + ^([x^ |2 )(t -  t .̂)
i=l i-1 **

IIX IIS? ds s 2
0

Let S = S([0,T],C) be the space of all simple processes on 

[0,T] and let k = fo([0,T] ,ds;L^(C)) be the space of L^(C)-valued 

processes on [0,T] measurable and square integrable w.r.t. ds . 

Then h is a Hilbert space and for each f E k

f (s) dip

2exists as a L - Lim of / f (s)dlb where (f ) C 3 . Thenn rs n —

f ( s )d i | ; s ll2 II f (s ) II ̂  ds

and

f (s) dip : s E [0,T] } s

2 . 2 is a L -centred martingale [81 . Conversely given a L -martingale

(X,) , there is a unique process (X ) E k such that « s

t
■ ^

x t  =
X dtf) s s

and

IIXt»2 IIX II ds s 2
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measure onThus the function t f Hx II _ ds defines a Borel
o s 2

[0,T] given by yx :

yx(ta,b] ) = llx \ \  ds s 2

If f E  S then the stochastic integral / f(s)dXs is defined
0

as before. Now let K = K ([0,T] ,yx ) denote the closure of S 

in the norm given by

Ilf II =
T

0

Ilf(s) dyx(s)

Now if f E  S then

f(s)dX lip <
S 2  —

n f ( s ) n ‘  a y x ( s )

and hence if f  E  K then there exists a sequence (f ) £  5 such 

that

L - Lim f (s)dX n s

exists and we denote it by / f(s)dX . Furthermore
0

f(s)dX \\Z < s 2 — II h (s) II ̂  dyY (s)
00 A.

and

f (s )dX =s f(s)X dip s s

[111.
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We now state two lemmas from m .

2.51 Lemma [7]

Let f : [0,T] -► C be a self-adjoint process such that there

exists a sequence (f ) of uniformly bounded self-adjoint processes

with f f strongly ds - a.e. on [0,T] . Then if (X, ) is n u
2anL -martingale with:

x t  = X dip s rs

we have

(i) fX  E  h

(ii)
f  L2 t

f dX -> fdXJ n s s J
0 0

fX dip s rs

2^52___ Lemma__[7l

Let T : R+ ■+ C be a stopping time. Then there exists a

sequence (t ) of simple stopping times such that Tn ^ T strongly

ds - a.e. (indeed Tn = t (0 ) for some partition 0n such

that t (0 )(s ) < t (0 ,t )(s ) < t (s ) .) n —  n+1 —

2^53__El2222iii22

Let (xt ) be a L -martingale. Then

X
T A t -  x.

t*
dX Q s s

0

w h e r e  t h e  stochastic integral on t h e  r i ght is the "left" v e r s i o n  

of that g i v e n  in L e mma 2.51. T —  ((1 ) is a stopp i n g  time.
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Proof.

We have that

X dip s rs

for some (X ) £ h [8] . Hence using the parity operator 8 [ 111s

xt  =
d ^ S ( X s )

(This is the left version of the Ito-Clifford integral given in

[ 8 , 1 1 ] . )

We know that X exists and equals
t a  t

t
*

Xs dQg + Xt ( l  -
J

0

Now

Now

X dQ s s L2 - Lim l  X AQ.
0 G P[0,tl Q i i

Hence

XA  - L2 - Lim l  AX
0 0 1  i-1

X
T A t Xt ' L Lim l  AX, Q,

6 i  i - l

i  i - i
d ^ 8 U s ) • ^

At.
i

i - I
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2 2and since Q, : L (C) + L (C) is a continuous operator by
V i

multiplication. ,

M t A .  ,
l  l - l

d ^ 6 ( Xs )Qt _

At.
l

l - l

Thus

l  l - l

d t | j  8 ( X  ) t ( 0 )  ( s )s s

where

t ( 6 ) ( s ) l %  x 
e i - i

[ t i-1 ’V
(s)

But we know from Lemma 2.51 and 2.52 that 

t
d i | i  8 ( X  ) t ( s )s s

J

0

2 t
exists as a IT  -  Lim / dtyg$(Xs)T(9n )(s) . 

Now consider

t
II diJ;g3(Xg )(t (0)(s ) - T (s )) II g 

0
t

0

II6(x ) ( t ( 0 ) ( s )  - t (s ))IÎ  ds s 2

by the isometry property [81.

We know that given z > 0 there exists N(e) such that for

all n > N(e) and hence 0 2) 0 , we have—  n —  N(e)
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2 tIf (X, ) is a*L -martingale so that X. = J X dip , then the "t "t q s s
increasing process associated with (X^) in the Doob-Meyer 

decomposition is denoted by <X>^ where

<X>t

[8 .11].

We are now interested in finding the relationship between the 

increasing processes associated with the stopped martingale (X )
T  A

and the stopped increasing process, <X> . In the commutative
t a  z

theory we have that <XT> = <X> where XT = (X ) .
t  T  T  A  U

We first state a corollory of proposition 2.53.

2^54__ Corollary

We have that

<XT>J
t

|(B(X ))(I - Q.)|2 ds
j  S 5

0

Proof.

This follows immediately from the definition of the increasing 

process associated with the Ito-Clifford integral [8,111.

Our aim now is to stop the increasing process associated with

=  1 X dip s rs We first show that

Lim £ <X> AQ, 
0 G  P[0,tl e i

exists in the L^-sense,
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2^55__ Proposition

We have that

L1 - Lim l  <X>
0 € P[0,t] Q i i

= <x>t lex | 2Q ds 1 s 1 s

P r o o f .

We first show that the integral on the right exists. To
•v 2

show that the function s -»■ 1 |  Qg is Lebesgue measurable, we
-w 2

co n s i d e r  t he case w h e n  the f u n c t i o n  s 1$X | is elementary,s
say Xg = Xq for all s G [o,Tl . By 2.52 there is a sequence Tn 

of stopping times such that Tn T strongly ds - a.e. Now let

£ > 0 then |0Xq |̂  = h + K where h G C and K G L^(C) with 

IIK II < £ . Then

II | 3X J 2(t (s ) - t (s ))IL < II h (  t ( s )  - t (s ))IL 1 0 1 n 1 —  n 1

+ Uk (t (s) - t (s ))IL n 1

< 2IIhII+ IIKil IIt (s) - t (s )||,
— 1 oo n 1

■+ 0 as n ds - a.e.

'v 2
Hence the function s -+ 13X j Q is Lebesgue measurable. Furthermores s

ii|ax |2q ii. < ii|ex_|2il < oo1 s1 s 1 —  1 O' 1
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u -  2
Hence by the dominated convergence theorem / |3X | Q ds exists. _ s s

1 t  ~ 2 0 as a L - Lim of / 13X | T (s)ds , when (X ) is elementary.0 s n s
For general (Xg ) the result follows by linearity. Now

l  <x>+
0 G P[0,t] i i

= <X>t  ^  -  l  A<X>t _Qt _
0 l  l - l

= <x>t " H  j *>lfKs l2K . _
At.

l

= <x>t  \ BX |2x(6)(s)dsS 1

Arguing as in the proof of proposition 2.53

|6Xs |2(at - T(e)(s))ds

We now wish to show that as 0 refines

BX.!2 ^  - x(0) (s) )ds

converges in L to

b x J 2 ^  -  T ( s ) )d s

We know that
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II |BXs 12(0t - T(8n)(s))dsl1
0

t

< IlBX.!2^  - t O h H s ) ^  ds

■+ 0 as n -+ 00 by the dominated convergence theorem. Thus arguing 

as in the proof of 2.53 it is easy to see that

L - Lim
0

g x l 2T ( e ) ( s ) d s

t
| e x s | 2QsdS

0

Hence

Lim I <X> ACL
e g p [o ,tl i  ^

t

= <x>t |6Xs |2Qsds

t

0

l e x j 2 ^  -  Qs )d S

2.56 Theorem

<X>T At J
BXsr(I - Qs )ds

Proof.

<X>_ , = L - Lim l  <X> AQ + <X> (l - 0 )
0 t.<t i i i+l

l —

From proposition 2.55 and the right continuity of t -* <X>
L

we have

[8,ill

70



t
<x> A = <x>.

T  *  t  t
|BXs | 2Qs ds

0

t

0

| B X s | 2 ( I  -  Q s ) d s

W e  n ow w r i t e <X> to d e n o t e  t h e  process

2^57___Corollary

(i) T A t ( < x > T )

t

(I - q s )|b x s |2(i - Qs)ds
0

(ii)

t

(i - q s )|b xs |2 ds
0

(iii) (<X>T ) =  (<X>T )*
T A ̂  T A ̂

w h e r e <X> is l e f t - s t o p p i n g  t he p r ocess <X> .w

P r o o f .

Left stopping is g i v e n  b y

T

t

( I  -  Q S ) | B X J 2  d s

0

a r g u i n g  as in th e  right s t o p p i n g  case and the corollqry follows.
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2.58 Theorem

We have that

<XT>t = T t (<X>T ) = (<X>T)
A T A t

Proof.

<XT>t = | e x s ( l  -  Qs ) |  ds

(I - Qs)|6Xs |d(l - Qs)ds

= (<X>T )
T A t

t t ^
Now if X =  J X dijj and Y, =  / Y difj are L -martingales

z  o s s  t  o s s
Then the pointed bracket process is defined as [ll]:

<X’Y>t = B(X ) 6(Y )dss s

so that <X,X> = <X> . Hence by polarisation, it is easy to
"C w

see that

<X,Y>
T A t  J

6(Xs) e(Ys)(l - Qs)ds

In proposition 2.55 we showed that

[ d<xy i s =  l e x s l \ d s

0 0
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exists as a - Lim of / | $X | (0 )ds . By polarisation it is0 s n
easy to see that

~ i 2

d<X,Y> Q ’ s s

exists.
t

In [ll] it is shown that (/ dX f(s)) is the unique centred
2 0 S L -martingale (Z^) say such that

d<X,Y> f(s) = <Z,Y>5 s 3 s

for any L -martingale (Y^) , and f is a C-yalued process which 

is ds - a.e. limit of uniformly bounded sequence in S . Now 

using Lemma 2.51 (see [Tl) we conclude that this result holds for

ax=x(s) ( = dipsBXsx (s ) }

Bearing this in mind, we have the following characterisation

of (X, J  .
't a  t

2.59 Theorem

We have that (X ) is the unique centred L -martingale 
T a t

(X ) such that

<X,Y> . = <XY>
T A t t

for any L -martingale (Y,) .
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Proof.

<X ,Y> = <u “ s*1 - V  - Y>t

a<x,i> ( i V from [ll]

= <X,Y>
t a t

by polarisation of the result in proposition 2.55.

The uniqueness follows from the fact that [ll] if

<XT ,Y>t = <ZT ,Y>t

for any L -martingale (Y^) Then

<XT-ZT ,Y>t = 0

for all t E [0,T] and any L -martingale (V In particular

T x x x <X - Z , X - z > = ou

Hence

t
|6 XS ( I  -  Qs ) -  B Z ^ I2 ds =  0

0

for all t E [0,Tl . That is $X (i - Q ) - 8ZT = 0 ? s ^s s
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Hence X 0(l - Q ) - ZT = 0 <& S —s s s

*s6(l - V  = K
4 s - * - 9-

Hence
t t

X 3(1 -  Q )d\jjs s s
0 0

i.e.

for each t E [OjT]

Finally we prove the strong Markov property of the Clifford

process (ty ) . The strong Markov property is one of the basic"G
properties of the Brownian motion process in the classical probability 

theory. The quantum analogue for the Boson Brownian motion is 

established in [2k] and that of the Fermion Brownian motion in [3l .

We shall follow the description given in [3] to suit our needs.

2_.510___Theorem

Let t be a finite stopping time. Then ip exists stronglyT
for any t _> 0 and {i|; - ip : t E R+} is a Clifford process.

Since t is finite, we can assume i(t) — I for all t > T . 

Hence by 2.37 we have that

Proof.

T

T
0

- L'2 Lim
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Now for f e F , IlM^gjCthpJfll £  £ iMj. (l(Vj,) AQ̂ . fll

< I  llMt _(U-T ) I I J i q t  fll

< I  l l A ^  fll

= l iy jlc i j f l l

< IItil IIfll
__  rfJ' 00

Hence

,IMt (0) (̂ T)[t«> —  " V ‘

Thus from [Z j\ converges to strongly. Thus

the integral

T

% *.%  +  V 1 -  v

exists in the strong sense. Likewise

T+t *t+sdQs + V t (I " V

exists strongly. Now

]b -  \b — 
yT+t yT '^[s.t+sl ,dQs + ^ (X(TaT+-fcl 5 (I ” V

and let $. = ip , ,  - . Thent rT+t T
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<f> a + $ $ =t r r t

(J ^ ( x ( s , t + s ] )d V * ( X ( T , T +t ] ) ( l - V )  X

(j ^(x(s ,r+s] )dV * (x(T,T+r] )(I“V )

^ X (s,r+s] d^s+t̂  X(T,T+r] 1 ) X
0

T

X (J * ( X ( s , t ^ ] K ^ ( % , T + t ] ) ( I " V )
0

We now note that for each t E R , the antisymmetric Fock 

space F decomposes as

F  =  F t  0  F 1

2where F^ is the antisymmetric Fock space over L ([0,tl ) and

F^ is that over L^((t,°°)) . If C and denote the
2 2corresponding Clifford algebras over L ([0,tl) and L ((t j00)) 

respectively then C C B(F^) 0  I and C i @  B(F^) [ 3] ,

Thus C and commute. Thus by 2.35(iv)

* (x(s,t+sl)dQs J *(x(s,r+sl)dQS

M x (s,t+s] ̂ ^(s,r+sl )dQs

and
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«
0

T
*(x(s,r+s] )dQs

f
T

J
0

*(X(s,t+s] )dQs

T*

0
^ ( s . r + s l ^ t s . t + s l K

On adding and using the canonical anticommutation relationship of 

(^) stated at the beginning of Section 2.5, we get

T

<^(s,t+s] ’̂ (s ,r+s] >d<̂ s
0

T*

0

(tA r)dQs

= a r ) Qr (2.510a)

Likewise

^ X ( T , T + t l  ^ I_<^ T ^ ^ ( T , T + r l  ^  +

^ X( T , T + r ]   ̂^I - S r ^ X ( T , T + t l

= t A r(l - Q̂ ,) (2.510b)

Finally, the cross terms are all zero. For example

^ X(s,t+sl ̂d% * ^^(TjT+rl^ 1 “ ^

]P[XCs,t+sl^d<̂ s * ft ^T^ft(T,T+rl^

-  0
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We end this chapter with an example to illustrate that the 

time-projections are not in general conditional expectations.

2^511___Example (M is not a Conditional Expectation)

We work in the Clifford algebra. Let Q be a projection 

in C^ and let t  be the stopping time:

0

t ( s )  Q

s < t 

s > t 

s — 00

Then if M L1 -> is a conditional expectation we have

M (X)* = M (X*) 
T T

In particular if X — X* , we have that

X(I - Q) + M^(X)Q — QMt CX) + (i - Q)X

i. e.

[Mt ( X ) , Q l  =  [X ,Q l

— [ ip . Ql and 

Hence there is a

Vt

for any projection Q E ,

Now let s > t and X — \p , Then [i|J+?Qls "C

hconsider —  , which is a self-adjoint unitary.
/t

projection P E C  such that;
Tj
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We let Q = \  ( —  + l) . Then
2  A

1
, - * ■  +  1 ]

2  t  A
1 \
|  [' I '  . —  + 1 ]
2  3  A

Hence [i|; ,ip ] = 0 for all s > t , i.e.u S “•

[ f t , * t * C ( x ( t  b 1 )1 =  o

Hence

I V <’( X ( t , s ] )1 =  0

That is

V ^ C t . a l 1 "  ♦ t y t . s l ^ t  =  0
(2.5Ha)

Also from the C.A.R., we have that

V ^ c t . s i 1 +  ^ Cxt t , si ^ t  =  0
( 2 , 5 1 1 b )

Thus adding we get

(2.511o)

Multiplying (2.511c) to (2,511h) giyes

V ^ s L ^ C t . s l ^  0

Hence
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( s —t  ) 2 Itpt  =  0

Hence

t2(s-t)2I = 0

That is

t2(s-t)2 = 0

for all t < s . We have a contradiction and M is not a —  x

conditional expectation map.
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CHAPTER THREE

STOPPING TIMES IN A VON NEUMANN 

ALGEBRA WITH A STATE

3.0 Introduction

In this chapter we study stopping times in a Von Neumann 

algebra with a faithful normal state. This is a natural extension 

of the tracial case studied in the last chapter to include certain 

type III factors [l81. Once again our work here is motivated by 

examples from quantum mechanics [l81,

3.1 Preliminaries

Let K be a complex Hilbert space, B (K ) the bounded linear 

operators on K and A C B(K) be a Von Neumann algebra with a 

faithful normal state u) . For each non-negative real t , let 

At be a Von Neumann subalgebra of A and suppose the family 

{A^ : t E R+} satisfies;

(i) if ^ and- ^1 —  ^2 ^hen a

Von Neumann subalgebra of A,
Z2

Ci i ) the Von Neumann algebra A is generated by U A,
t>0

C iii)

Ctrl

t>s
A. - At s

{  u  As }  -  A,
S<t
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Finally suppose there exists a family {M̂ . : t E R+) of 

conditional expectations:

Mt : A - At

such that:

(i) go o ■= oj for all t £ R+

(ii) M (AXB) = AM (X)B for all A,B £  At , X E A

(iii) Mt (A) = A for A E At

Since 03 is faithful, we may, without loss of generality, 

assume that A and for each t E R+ , A^ act in their G.N.S. 

spaces ?C and respectively. Here, (3C,JI,S2) is the G.N.S.

triple associated with (A,03) and for each t E R+ , (JC ,11,ft) 

is that associated with (A.,to) . For each t E R+ , let P
X  X

denote the orthogonal projection of JC onto , the suhspace 

generated hy Â ft . The following straight forward Lemmas will 

be used subsequently,

3^11 ^Lemma

For A E A , we have that

P.Aft = M (A) ft for all t E R+
X  X

Proof.

Let B E A^ , so that M^(B) — B . Now consider
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Aft> - <Bft,Aft>*c

= u>(B#A)

-= toOlt CB*A))

^  wCB*Mt CA))

-  <Bft,M, (A)fl>
"C

Since Â .ft is dense in 3C 9 the result follows.

3.12_ Lemma

For each t e R* lies in the commutant of A^ .

Proof.

Let B E A^ , A E A . Then 

PtBA^ - Mt (BA)ft

■= BM (A)fi 

- BPtAfi

Since AQ is dense in , the result follows.

3^13_Theorem

We have that the map s ■* Pg is strongly continuous.

Proof.

We first establish the left continuity of the map s -+ Ps .

We wish to show that P XQ -> P,X£2 as s t t , X 6 A . Now sinces t
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U A is strongly dense in A , we have that: given e > 0 ,
s<t s 1
there is a Z E  U A , say Z G A , s. < t , such thats ’ s_ 0s<t 0

Hm . (x)fi-znii = Hp̂ xft-p zno < e/2
t t s0

Now for t _> s _> Sq , we have

llp^xft-p xqII < Opxxn-zfill + llzn-p xnllt s —  t s

< -I + IIP Zft-P PxXftll since P P  = P2 s s t s t s

< -I + lip II lizn-p.xnll—  2 s 00 t

<

=  e

and the left continuity is established.

To show the right continuity, it is enough to show H dFC = 3C.. t s t>s
Now let P ^ - A P, . Then P3f=Jf  C p  = H Jf , To show 

s+ t>s t 3 3 -  s+ t>s *
the reverse inclusion, let h E D A ft , then there is A G A such

t>s
that h — P, Aft for all t > s . (Since A ft = A ft = h gives t t2
A. ■= A since ft is separating) and h = P Aft . Now,

" 1̂ ^2  s
P̂ Aft — M^CAjft by 3.11 and llM̂_ (A) II <_ IIAll for all t > s , hence

the family {M^CA) ; t>s) is weakly relatively compact in A .

Thus we can find a subnet such that M (A) converges to Y weakly
a

as t I s , Thus we have,
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Also,

<M (A )Q ,m >  +  <Y Q ,m > = <P YQ,BQ>
s

M, (A)fi = P, Afi -> P Aft = h t t s+a a

strongly (hence weakly). Hence

<h,Bft> = <P Yft,Bft> 
7 s -7

and h -= P Yft , Hence h £ Jf .s s
Now if h E D 3f , then given £ > 0 , there is A E A 

t>s X

such that

Bh-M (A)ftB < £ for all t > s

since Aft is dense in "K  so that there is A E A such that 

Uh-AftH < £ and hence

Bh.-Mt (A)nB - Bpth«P AfiB < IIh-AftII < e

Hence arguing as above shows that there is a Y E Ag such that

Ilh-Yftll < £ and hence h E JC ,s

3,2 Stopping Times

Before we define stopping times in this model, we define vector 

and operator valued martingales in this model.
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3.21 Definition

An A-valued martingale with respect to the filtration 

{A^ : t E R+} is a family {Â . : t E R+} with A^ E A^ for each 

t E R+ and M (A, ) = A if 0 < s < t .  Likewise, an 3C-valued

martingale with respect to the filtration {3C : t E R+} is a 

family (p : t E R+} with n. E K  and P n. = p if 0 < s < tu o "C S u S
An 7C-valued martingale is called simple if it is of the form 

nt = P^p for some n E  K  .

3^22_Remark

It is evident that given anA-valued martingale (A^) we can 

construct an 7C-valued martingale (a^) by defining

for each t E R+at =  V

Conversely, given a ^-valued martingale, the following prescription

shows how to construct an operator valued martingale [3l].

First define the vector spaces U and U (t) as follows:
n n

-= {R r| A : ft E Domain (R)}

U Ct) —  {R p A : Domain (R) - A ’ft}T| 0 u

where p means 

Domain (R) and 

We observe 

The conditional

affiliation. That is R p A A' Domain (R) C 

A fR C RA» for all A' E A’ . 

that since A 1 C A' for all t E R+ , U (t) C u 

expectation is now extended to U by :
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Mt (R)Tfl = TPtR^

where T G A ' , R G  U t 5 n
Thus given an 3C-valued martingale (a^) say, we define a

U -valued martingale (X ) by: 
r) t;

XtTfl = Tat

where T G A ’ . Then for s < t ,

M (X. )RQ = RP X M  s t s t

= RP a, s t

— Ras

=  I R H  s

where R G A' .s
Thus M (X, ) — X on a dense set and the fact that X, G U  (t) s t s t n

is clear. Furthermore if (X̂ .) is a A-valued process and (a^) 

is the corresponding ^valued process:

-  \ a

Then defining (X̂ .) by

X T U  -= Tct, T G A't t t

gives
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Tat  = TXt ft 

= Xt Tfi

are equal, 

t h e  f o llowing

Hence X^ an d  X^ agree on a d e n s e  set an d  h e n c e  

As in the t r a c i a l  case in the last c h a p t e r  w e  m a k e  

definitions a b out stopping times [7] .

3.23 D e f i n i t i o n s

(i) A  s t o p p i n g  time, x 

projections (Q^) such that 

x(0) -  0 a nd x(°°) -  I .

, is an i n c r e a s i n g  fam i l y  of 

T ( t ) =  G  A  fo r  each t G  R+ 5

Cii) Let P  denote the set of finite partitions of [O,00] . 

Then for 0 £  P , say 0 =  { t Q , t ^ , . . .jt^} w e  an operator

PxC0)  on ^  a s :

= J l X
- 9t. >pt. 

1 - 1  1

n

-  Z AQt . pt .i=l 1 1

(iii) If x =  (Q^) and a = (Q^) are tw o  s t o p p i n g  times then

Q̂ . for each t E  R+ .

2The f o l l o w i n g  t h e o r e m  is th e  analo g u e  of s t o p p i n g  L -bounded  

m a r t i ngales w i t h  simple stopping times in the c o m m u t a t i v e  theory, 

and is an e x t e n s i o n  of t h e o r e m  2.32 to the n o n - t r a c i a l  case.

we say a _> x if and only if Cl _>
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3.24 Theorem

Let t  be a stopping time. Then

(i) is a self-adjoint projection on

0 E P .

(ii) If 0  ̂ , 0  ̂ G P with 0 finer then 0^

PT(d1 ) -  Pt ( 0 2 ) *

(iii) If a is another stopping time with a _>

PaC6) 1  Pt C0) for any e e p  ■

Proof,

Let t - , E, E  3C and 0 = {tQ ,...

Then

P t ( 6 )  P t C 9 ) ( « -  h i« t Pt.(J iaQt.Pt.«)
J=1 J J 1=1 1 1

l  l  AQt Pt.A\ . Pt.5J 1 J J 1 1

 ̂ l  Pt  . ^ t . Pt . ^J 1 J J 1 1

Pt . A\ . ^
I l l

P t ( 0 ) 5

since AQ^ AQ^ - 0 for i ^ j . Thus P , Is
i j T

Now let £ , p E 5C , Then

for any

then

T  t h e n

E P .

b y  3 . 1 2

an idempotent.
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<PT(e)n,?> = l  <aqt.pt.n,5>
1 1 1

= I  <n,Pt - AQt - 5>
1 1

=  I < n , A Q t _Pt _5> b y  3.12
1 1

< 1 p  £>
i l l

=  < n ’ PT ( e ) ^ >

Hence p t ^q ) self-adjoint and (i) is established.

with(ii) Suppose ®2 ~ ^1 U where 0^ = {tg,... ,tn} vi

t . < t. and q E (t ,t .. ) , r + 1 < n . Then for E, G K  l i+I ^ r r+1

Pt C61)' Pt (02)(5) , ^ iQ t . pt . ( . s A\ . pt . ( 5 ) )J=1 J J 1=1 1 1

+ . 1- * * t * t . \ S  5V 5 )j=l j j r

+ £ A\ . pt A  “ V pt  J ?)J=1 J j r+1 * r+1

+  I P t ( l A Q t Pt (5))
j-1 j j i=r+2 i i

Using 3.12 and the orthogonality of AQ and AQ̂ . for i # j
i  j

get

we
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W )  PT(e,)(5) = ? A\ . pt.(5) +
1 2 ,1=1 l i

(?)

+ (q. - a )p (?)
% + l  11 tr+l

n
+ £ P ( ? )

j=r+2 j j

PT(0g)(5)

Hence pT(g ) >_ P^g ) for ®2 —  ^1 ’ T 1̂6 resu /̂t for arbitrary

^ 0^ is now clear.

(iii) Given a  >_ t , let a = (Q̂ .) so that <_ Q̂. for 

each t 0  R+ , Let 0 6 F he as in 3 . 2 3 (ii) say. Then

n n
i =  1 =  I  K

i=l i i=l i

Now,

But

PT(0) PCT(0) =
1=1 1 1 J=1 J J

A\ . pt. I A< . pt. = J .  Av pt.A< .1 1 J=1 J J J=1 1 1 J

hy 3.12 and observing that AQ̂ . is orthogonal to AQ^ for
j i

j < i - 1 . Hence
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n
t ( 6 )  a ( 0 ) = l  1

i=l «j=i A\ . pt
1 1

. A\ .

=  j / j X . p t A . +A\ . pt . ( i  -  X  a\ )]1=1 J=i 1 1  j 1 1  K=1

= P
t ( 0 )

Hence
P t ( 0 ) -  P a C 6 )

3.25 Remark

We think of ^T(0) as the ”time-Projectionn corresponding to 

the simple time

T t e )  =  X  pt .  > .  l f t . )i = l  i - l  l - l  i

In the last chapter this was defined as ^t (q ) • Here we work 

with "because we choose to work on the Hilbert space 3C

whilst establishing results about A (or U ) -valued martingales

3,26 Definitions

Ci) For a stopping time x = (Q̂ .) we define the time projection 

at x , Pt by

P -= inf P , , 
T 0 G P T(-0J

C ^  inf V AO P ) 
0 G P i X i i
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(ii) For any 3C-valued martingale (£ ) , we define the 

"martingale stopped by T " as:

3^27_Theorem

Let (£ ) be a simple 3C-valued martingale. Then £ = P (£)w L L

Proof.

Since is simple. ^  — P^(£) for some £ E  3C . Now

let 6 E  P

5 =  L im  I
P 1 1 1

Pt ( 0 ) ^

Thus on taking the limit oyer P , we get

As before the deterministic times are given by t :

0 s < t

t Cs ] = < (3.27a)

I s > t
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then we have the following consistency lemma.

3^28__Lemma

Let (£+ ) h e  any right continuous 5t-valued process.

^ t  =  ^ t  *

P r o o f .

Let 0 —  {0,t,t+£,°°} . T h e n  ^ ( 9) =  ^t+£ * H e nce 

refines, the right c o n t i n u i t y  gives t h e  result.

3_j_29__Th eorem

Let t and a  h e  st o p p i n g  times w i t h  o  >_ T an d  let 

( ^ )  be a simple iHLvalued martingale. Th e n

W  =

P r o o f .

Since (£, ) is a simple m a r t i n g a l e ,

^ t  Pt ^

for some £ E "K , From 3.2U(iii) we have that

Pt C0) — PaC0)

for any 0 E P . Hence P < P . Now, 
* t —  a

T h e n

as 0
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Doobs o p t i o n a l  st o p p i n g  t h e o r e m  in

=  p  (£ ) 
t  a

T h e o r e m  3. 2 8  is k n o w n  as

c o m m u t a t i v e  probability.

3 ^ 2 1 0 __

If t a nd a  are stopping t i mes w e  d e f i n e  t h e  stopp i n g  t i m e s  

a v  t a n d  a A t a s :

a v  t Cs ) = a(s) A t(s) s G  R+

a A t Cs ) ■= aCs) v  t (s ) s G  R

3 . 2 1 1  T h e o r e m

If T and a commute pointwise then we have

Proof.

Let t —  C ^ )  and a =  (Q̂.) , T h e n

fo r  each s G  R* ,
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L

Let 0 E  P and £ E  K  . T h e n

V x ( e ) ( 5 )  =  +  Qt .  -  % . K . K . U )1 1  1 1 1 1

Pt ( 0 ) ^  +  Pa ( 0 ) ^  "  Pq v t ( 0 ) ^

H e n c e

Pa a x ( 0 ) Pt (0 ) + Pa ( 0 )  Pa v T ( 0 )

for any 0 E  P  , and t a k i n g  t h e  i n f i m u m  over P , we get

P =  P  +  P  - P a A x t a o v t
(:

N o w  apply i n g  P on b o t h  sides a n d  u s i n g  t h e o r e m  3.29 w e  get

P„ , = P o pa A t a T

a n d  (i) is established.

W e  observe that apply i n g  P  on b o t h  sides of (3.211a) we

get

P  =  P o Pa A t t a

h e n c e

P ° P =  P ° P t a a t

.211a)
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From (3.211a) ■we get

P
O s /  T

=  p
T

+ Pa

= P
T + Pa

=  P  V  p t a

- Pa *  t

- P o P^ t a

and (ii) is shown.

O b s e r v i n g  t h a t  t h e  d e t e r m i n i s t i c  times c o mmute w i t h  any- 

stopping t i m e  w e  have:

3̂ ,212_Theorem

If (£, ) is a simple ?C-valued m a r t i ngale, t h e n  (£ , )t “
defines a sim p l e  3£-valued m a r t i n g a l e  for an y  s t o p p i n g  t i m e  T .

P r o o f .

We co n s i d e r  " t ” an d  "s" as s t o pping times g i v e n  in (3.27a). 

Let £ -= P^(C) T or some £ E  . T h e n

t
=  P

t ( € )

-  P T °  Pt ( g )
by 3.26 and 3.210

Thus for s < t
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Ps(?xA t> = p © p A s T a t

= P 0 P, o s t

= P O p (£)S T

=  P (S )T a

= P u  )S T

pt (5)

(5)

Theorem 3.211 is the analogue of the result which says that the 

process obtained by stopping a martingale with time T A t gives 

a martingale.

As in the last chapter P (£)

OO

form as f  dQ P (£) and since P 
0 s s T

where 0 = {t^,t^,...,tn=t,t+e} E P 

(l-Qfc)Pt +  (l-Qfc)Pt since s + P

can be written in the integral

A t o )  =  + ( i _ Q t )pt + £1=1 1 1
As £ -*■ 0 ,

is continuous, hence we have s

PT

t
dQ p + (I - Qt)Pt

J
0

That is for £ E K  ,

P
^ A

t
dQsPs ( £ )  + ( I  -

0
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We have that

1.214 Theorem

(i)

for

(ii)

(iii)

d Q P  (a?) =s s a
t

dQsPs(5)
0 0

a E C , £ E JC 9

t• t*
dQ P (S+SM ; dQ P (?) +s sJ

0 0

’ e x  ,

t•
fto

•

dQsPs(5) = dQsPs(S) + _
0 0

s s

dQsps ( 0

for 0 <_ t^ < t 9 ^ E  JC .

Proof.

(i) c L Q  P  U )5 S ( Inf I Aa P )(C) 
0 E P[0,tl 1 1

Nov y AQ̂ . P, converges strongly to / dQ P as 0
0 E  P[0,tl bi 0 3 3

refines in P[0,t] and £ AQ̂ _ P^ (a£) = aVAQ̂ . P^ (£) hence the
0 i  i  i  i

result follows.

(ii) Let 0 E P[0,tl then

l P t  U + 5 ’ )  =  l  A C L  p  ( 5 )  +  I  A C L  P t  ( C )
6 i  i 0 i i 0 i i
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Taking the limit over P[0,t] gives:

t

dQsPs(?+5')
0

t
dQsps ( 5 )  +

0

t

a V s ( ? '>  
'o

(iii) Let 0 <_ tQ < t and 0 G P[0,t] "be such that

e = {t0 ,t1 ,...,tr=t0 ,tr+1=t0+e,tr+2,...,tn}

l  Pt _(S) = Pt (?) + l  AQt_Pt (?)
0 i i i=l i i i=r+l i i

Taking the limit over 

t
dQ P (C) s s

0

P[0,tl gives

A )
dQ P (£) +s s

We saw in the last chapter that the Clifford algebra furnishes 

an example of a "tracial case” in quantum statistical mechanics [8]. 

We study the C.A.R. algebra (Canonical Anti Commutation Relations 

algebra) in the next section to illustrate yet another example from 

the quantum theory. It is worth mentioning that all the results 

obtained in the present chapter apply equally to the C.A.R. model, 

however, due to certain desirable properties we are further able to 

prove a "random stopping theorem" for a certain class of martingales

3.3 The C.A.R. Algebra [i81

Let K. denote the complex Hilbert space L (R ) and A  be 

the unital C*-algebra generated by {b*(f),b(f):f G K} satisfying:
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b(f)b*(g) + b*(g)b(f) = <f,g>I

b(f)b(g) + b(g)b(f) = 0 

b*(Af+g) = Ab*(f) + b*(g)

Ilb*(f) II = llb(f) II = Ilf II

for all f ,g E K and A E C .

Let R E B(f() with 0 < R <_ 1 and w be the gauge invariant

quasi-free state on A determined by u)(b*(f )b(g)) = <f,Rg> [l8] .

Let (5C,7T9f2) be the G.N.S. triple associated with (A,u)) and for

each t E R+ be that associated with (A^,oj) where A^
2

is the C.A.R. algebra over K — L ([09tl) . Then there exists a 

family of conditional expectations (M^) satisfying the properties 

listed in section 3.1 and * constructed as in [2 3] . Here 

: A -*■ A^ is given by the equation:

Mt ^ 6t° ^

where 0^ is the completely positive map from A^ 0 B(?f) onto 

At given by 0^(A 0  B) = A<ft,Bft> and y^ : A -»■ A^ 0  B(?^) is 

an injective *-homomorphism determined by

rt Ct(f)) = Yt CtCft @  f*))

= b(ft ) 0  r + 1 0  nCbCf'6))

where is the G.N.S. triple of the C.A.R. algebra over

K* ^ L2(.(t,«=)) and ft - X[Q tjf , f* = X (t>eo)f . T is the
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unitary operator on 5C satisfying rft = ft and tt($(x )) = r7r(x)r ^ 

where 3 is the ^-automorphism of A determined by 3(b*(f)) =

= -b*(f) . [23] .

Since R > 0 , tt is faithful, hence we may suppose A acts 

on 7C . Now, let f E K then

Xs = Xlb*(X[0,s]f) + X 2b(X[0,s]f)

defines a A-valued martingale for ^ C . Thus we can define

stochastic integrals with respect to (Xs) [13] . Thus if (h(s)) 

is a simple process, that is for each s E R+ , h(s) E Ag and 

h(s) takes the form

h(s) = l  
t

Then

h(s)dX l  h. AXS 1 a. U •

Then the integral obeys the isometry property [13] :

00 00

II f h(s )dX II2S llh(s)fill 2dy(s) (3.3a)
0 0

where dy(s) = (|A^|2(l-p(s))+|A^l2p(s))|f(s)|2d§) and p is the 

multiplication operator on K corresponding to R E B(K) .

As usual the stochastic integral is extended to all processes 

that lie in the Hilbert space completion k , of simple A-valued 

processes with respect to the norm
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00

||g(s)ftll 2dy(s)i l g l l 2  =

0

w h e r e  g : R+ -*■ A is a s i m p l e  process.

Again, it was observed in [13] that the Hilbert space k is

isomorphic to the subspace of y - a.e. adapted elements of

L2(R+ ,dy;?Q . Hence, for F G L2(R+ ,dy;?C) and adapted, the

stochastic integral JdX F(s) can be defined as /dX f(s) where

f E h  corresponds to F in the isomorphism. The right stochastic

integral is defined as /F(s)dXs = /dX^Fts) . Then the family 
t

( F(s)dXs )̂  £ p+ defines a 3C-valued martingale.
0

We are now in the position to state the main theorem of this 

section.

3^31_Theorem (A random stopping theorem)

Let St
t

F(s)dXs define a 7C-valued martingale, where
0

F G L2(R+ ,y,?C) and adapted to (3C.) . Let Tn = (q£) be a

sequence of stopping times converging pointwise strongly to the

stopping time t -= (Q̂ .) . Then £ -*■ £ .
n

Before we prove the theorem we need the following results.

3_.32_Proposition

Let (£ ) be as in the theorem. Then £ = P ) ,"t t t 00
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Proof.

Since F G L 2 (R+ ,y,?0, / llF(s)ftll̂ dy(s) < 00 . Hence we set
'o

00S» = f F̂)axs
0

and the stochastic integral exists.

3^33_Lemma__[ 7]_

If t = (Q^) is a stopping time, there exists a sequence (xn ) 

of stopping times such that

(i) Tn is simple for all n G N

(ii) Tn —  Tn+1 for all n G N

(iii) Tn(s) "*■ t (s ) strongly for all s G R+

Explicitly, there exists an increasing sequence (0n ) of partitions 

of [0 ,°°1 such that

TnCs) ~ 2 Qt° X [ «  t?)(s)e i-i i-i’ i

We write t = (Q n) , so that for each s G R+ :

0
Q n = (s) -*■ t (s ) s n

strongly as n 00



3^34___Proposition

Let (C^) be as in the statement of the theorem and x = (Q̂ .) 

be any stopping time. Then

(i) /Q F(s)ax is a well defined stochastic integrals s

(ii) Let 9 E P[0,°°] , then

5t (6) Pt (0)(5) (l-Q®)F(s)dX
0

0 = {tQ9...jt^} then
f l  n

%  = J .  % .1=1 I'

(iii) P
x(9)

(l-Qs)F(s)dXs = ( I - Q j F ( s ) a Xs s

(iv) = (i-QjF(s)dX
0

T J * VS' ' ' S

Proof.

(i) Let h : R+ -> 7C be given by h(s) = QgF(s) . Then from 

3.12 and the fact that F is adapted we have:

P h(s) - P Q F(s)
S O w

-= Q P F(s) s s

-  qsfCs)

-  hCs)
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Hence h is adapted. We now want to show that h E L ( R  ,y;3C).

To show that h is measurable with respect to y , it is enough to 

consider F elementary. The general case follows by linearity 

and continuity. Now suppose F(s) = Fq and (x ) be a sequence 

of stopping times approximating x as in 3.33. Then

2 +

»

DTn(s)FQ “ t ( s ) F 0 ll2dy(s)
0

00
»

0

-  Qs )F0 »2ay(s)

But
®n 2

il (Q= -  Q j F J I  ->■ o
S  S O

e
since Q -*■ Q strongly and s s

as n 00

(Q.n -  Q= )F II2 < l)llF ll:s s o  —  0

2 +F is in L ( R  ,dy,3C) and furthermore dy is a finite measure. 

Hence the dominated convergence theorem is applicable [22] and we 

have

Tn(s)F0 + T(s)F0

in K  pointwise. Thus there is a sequence of simple processes, 

(TnFo)n E N  converginS to tF pointwise in 5C . Hence the 5C-valued 

function s x(s)F(s) is measurable [22l. Moreover
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CO

iihn2 llQsF(s)H2du(s)
J

0

< llF(s)H2dy(s)
0

< 00

2 , n+Hence the process s -*■ h(s) lies in L (R ,dy,5C) and the
OO

stochastic integral f h(s)dX is veil defined [13] .
0

(ii) Since £ exists (£, ) is a simple 5C-valued martingale, o° Xi

i.e. £, = P E, [5l . Thus for 0 E

( 6 )  PT ( 0 )

A^ . Pt . ) 5 e
1 - 1  1 1

n
( I  -  . 1 * t .l— l l-l 1

F(s)dXs - l
i=l i-1

t .
1

Vi
F(s)dX

Nov,

'i-1
F(s)dX = 0  Lim Y AX rFn( s . J  ... (3.33a)s X  . „ “ S . ,1-1

At. 1
i - l  n .1 J

Here (F ) ^  ̂ is a sequence of simple 5C-valued processes converging

to F in the norm given by (3.3a).
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Now is continuous and linear, hence (3.33a) becomes

L im  l Qj. AXs r r n ( s .  x )
n 3 i-1 j

= Lim l  AX TQj. Fn(s. 1 ) by [13] .
n j  s j  i - 1

But F11 -* Qj. F in the norm given by (3.3a) and F is
i-1 l-l l-l

y-measurable from (i) , hence (3.33a) becomes

Thus

t .r 1

ti-1
F ( s ) dXs

l-l

n
1

i-1 i-1
F(s)dX

'i-1

Q? F(s)dX s s
0

and

^t ( 0 )
0

(l-Q0)F(s)dX s s

(iii) Let Z = f (i-Q }Fts)dX , Then 
0 3 3

00

PT(e)z = j (i-Qs9)Ci-Qs)F (s)dXs
0

from (ii). But by construction if 0 = {t^,...,^} then

Q
0
s J  V  x i t .  t . ) ( s )i=l i-l l - l 9 l
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Thus Q9 < Q for all s E R+ and hence (l-Q9)(l-Q ) = I - QS ““ S S S £
Thus P /QvZ = Z .

(iv) Let ©n and 0 he any partitions of [O,00] with 0^

coarser than 0 , so that

Pt (9)° PT(en) Pt (6) by 3 . 2 k

and

112 - Pt (0)5»"2 = I|PT(0)(Z - PT(0 )5- )l2 by (iii)n

1  “z  -  Px ( 9  ) « o
n

(Q - Q n)F(s)dX II2s s

IICQ_ - Q n )F(s)H ay(s)S o

by the isometry property [l3l .

Now let (0n ) he a sequence of partitions given in the 

approximation of x in lemma 3.33. That is

T (s) n l  V  x [ t .  . , t . ) ( s )0 l - l  l - l  ln

0
=  Q,

n

9n 9n 2and Q -► Q strongly. Thus II (Q - Q )F(s )IÎ  -► 0 for each s s s s
Q

s G R and II (Q ~ Q n )F(s)ll2 < UHF(s)H . Hence the dominated s s _

convergence theorem is applicable;



00

(Q - Q n )F(s)ll2du(s) + 0 s s

as n -> 00 . That is given e > 0 there is a N(e) E N such that 

for all n > N(e)

(I - Q )F(s)dX - s s
0

(I - Qsn )F(s)dXsll‘

(Q. - Q n)F(s)U ay(s) < eo S

Now set 0 = 0„T/_\ E F , then for any partition 0f finer than 0 ,N(e)
we have

Hz - P  ,n t .E II2 < Hz - P  II2 < e T(0 * -  t (0)S°°

Hence

Z = P £1  c

Cl - Q )F(s)dX s s

Proof of theorem 3.31

From the proposition above we know that

« T -
(I - Q )F(s)£X s s

and

n t i  -  Q“ ) F C s ) a x c ̂ s
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Thus

-  CT l|2 = f 11 (Qs -  Q^)F(s)ll2dy(s) 
n 0

As Qg -► Qr strongly and II(Qg - Q̂ )F(s)ll̂  <_ UIf (s )H2 , the 

dominated convergence theorem is applicable and the result follows.
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CHAPTER FOUR

A PROBABILITY GAUGE SPACE

4.0 Introduction

In this chapter we study probability theory in the gauge space 
00

given by L (£2,E,P) 0  MgCC) . The purpose of this is to give examples 

of non-commutative local martingales and hence develop a stochastic 

integration theory with respect to those processes. We shall first 

develop the necessary theory which is of interest in its own right 

and open to exploitations but we shall not pursue this here.

4.1 Preliminaries

Let (£2,1,P ,Ia,R+) be a stochastic base and L (£2,1,P) be the

space of equivalence classes of bounded measurable complex valued

functions over the probability space (£2,L,P) . Then, as mentioned 
00

earlier, L (£2,Z,P) is a commutative Von Neumann algebra of bounded 

operators on L (£2,L,P) , where for 00 > p > 0 , Lp(£2,Z,P) is the 

space of measurable functions over (£2,Z,P) with /|fp dP < 00 , 

and the action of L (£2,I,P) on L (£2,L,P) is given by multiplication.

Let L (£2,I,P) 0  M^CC) denote the tensor product of L (£2,£,P) 

and M^CC) , the space of 2 x 2  matrices with entries in C [2l] .

Then L 0  is a finite Von Neumann algebra with normalised trace 

given by <J> :

<|>(F 0  N) = \ FdP
J
£2

(N(l,l) + N(2,2))

113



where FEL°°(ft,Z,P) and N = (N(i,j)) E M^C) . We shall abbreviate 
00 00

L (f2,Z,P) to L and M^C) to • It is now clear that
00

<J> = E 0  t where E is the usual expectation on L and t the 

normalised trace on .

4.2 The Probability Gauge Space (L @  u , (j))

In this section we study the gauge space [35l given by L 0
• 00 and (j) . We first identify the Von Neumann algebra L 0 M ^  with

. 0° . . 00 
M^CL ) j the space of 2 x 2  matrices with entries from L . The

, 00 \elements of M^CL ) are clearly bounded operators on the Hilbert 

space L^(ft,Z,P) @  L^(£2,Z5P) , which is isomorphic to L^(ft,Z,P) @  ,
OO -  _ _

the Hilbert space on which the tensor product L 0  act [21]. 

contract L^(fisZ,P) to , where 1 < p < 00 . 

f
Now let 2 2denote an element of L @  L 3 then the norm

We

of is given by;

/

= I l f"® + »g»2

where the norms on the right hand side are the usual norms on L

4^21_Lemma

We have that M^CL ) is a Von Neumann algebra of bounded 
2 2operators on L @  L
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Proof.
• / 00 \ • oIt is clear that M^(L ) is a unital *-algebra of hounded 

2 2operators on L @  L with

A(l,1) A(2,2)

A* =

A(l,2) A(2,2)

where

A

/  A ( l , l ) A(l,2) \

\  A ( 2 , l ) A ( 2 , 2 W

i  =  1 , 2 ; j  =  1 , 2  •

Now all that remains to show is that ) is strongly

closed. To this en-d let (A^) be a net in M^(L ) converging
2 2strongly to A , a bounded operator on L 0  L . Then E^A^E^

, °° .belongs to M^IL ) and converges strongly to E^AE^ where E^ is 

the 2 x 2  matrix whose top left entry is the identity (X^ or I) 

and the rest zero. Then (E^A E^) is a strongly Cauchy net.

That is

E,A E, - E, A qE, 1 a 1 1 3  1

x\

w -»■ 0

as a and 3 increases for all in L2 ©  L2 . Hence
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ll(Aa ( l , l )  -  Ag ( l , l ) ) x l l 2 -  0

as a and 3 increases for all x G L . Thus (A (l,l)) is
. 00 , . °oa strongly Cauchy net m  L , and there exists A(l,l) G L

which is a strong limit of A (l,l) . Likewise considering

E-A E. , i = 1,2 ; j = 1,2 where E0 is the 2><2 matrix whose

bottom right entry is the identity and others zero, we get the strong

convergence of each to A(i,j) . Now let A denote

the 2 x 2  matrix given by A(i,j) i = 1,2 ; j = 1,2 and consider

2

(A - A)
y 2

< ( A fx l(Aa - A) + (A - A)OL
yl 2 yl

The first term on the right of the inequality sign tends to zero as 

a increases, whilst the second term squared is dominated by

ll(Aa(l,l) - A(l,l))xll2 + ||(Aa(l,s) - A(l,2))yll2

+ ll(Aa(2,l) - A(2,l))xll2 + ll(Aa(2,2) - A(2,2))yll2

which again tends to zero as a increases. Thus A = (A(i,j)) . 

That is M^iL ) is strongly closed. Hence M^(L ) is a 

Von Neumann algebra.

4.22 Corollcxry

Let (A ) C m o(L ) be a net. a —  2
A as a increases if and only if

1 16

Then A^ converges strongly to 

A (i,j) converges strongly to



A(i,j) for each i = 1,2 ; j = 1,2 . 

Proof.

Suppose A
id M r x ̂

-* A for all
\yj yl

E L2 ©  L2

particular, setting y = 0 , gives

In

A (l,l)xA 
a  9

A (2,l)x \ a 5

fA ( l , l ) x

t A(2,l)x

2
for all x E L . Hence A (l,l) A(l,l) strongly and 

Aa(2,l) ■+ A(2,l) strongly. Likewise, setting x = 0 , shows that 

the other entries converge strongly.

The converse follows from Lemma 4.21.
• • 00 • / 00 \ The next result says that we may identify L x Mg with Mg(L )

4^23_Proposition

OO . 00
Let L x Mg denote the algebraic tensor product of L and 

Mg [2l]. Then there is a strongly continuous ^-isomorphism from 

L x Mg onto Mg(L ) .

Proof.
0° 00

Let II : L x Mg M (L ) be given by

N
n (  Y

K=1
Fk  0  Nk )

N

l
K=1 K NK

where F E L°° , H E M K = 1,2,...,N and F • N = (FN(i, j)) .iv is. d

Then it is clear that II is a linear, ^-preserving isomorphism. 

The strong continuity of II follows from:
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= II (F 0  N ) ( x  0  e1 ) + (F 0  N ) ( y  0  ) II2
2

2where {e^e^} is the usual basis for C

4^24__Co rollor^

00

We have that L ®  is a Von Neumann algebra.

n (F 0  N)
'x'

\ y i

P r o o f .

00
Let (T ) C l  0  c o n verge stron g l y  to T , a b o u n d e d

o p e r a t o r  on 0  (= 1 ?  @  L^) . T h e n  b y  4.21 an d  4.23, 7t(T )

converges to S 6  M ^ I L  J . Now,

II (tt_ 1 (S) - T ) ( f  0  Z) IÎ

< II(tT 1 (S) - TQ )(f 0  Z)|l2 +  ll(Ta  - T ) ( f  0  Z)!l£ 

w h e r e  f ®  Z £  0  .

T he second t e r m  on th e  right tends to zero as a  increases, 

whi l s t  the first t e r m  on th e  right is

Cs - ?r(T )) ' zi f
a Z 0f

\ 2

which tends to zero. Here we have set Z -= Z^e^ + Z^e^ . Thus 

tt 1 (S) ■= T and L 0  i-S the Von Neumann algebra L 0  11 .
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• • • 00 . . 00. It is now clear that we may identify L 0  with M^CL )

with trace, which we again denote by <J) , given by

♦ (A) =  J (A(l,l) +  A ( 2 , 2 ) ) d P
£2

5

where A = (A(i,j)) , A(i,j) G L°° , i = 1,2 ; j = 1,2 .

We now proceed to identify the measurable operators and the 

non-commutative L^-spaces associated with (L x , <p) [38] .

4^25_Definition [35]

Let A be a finite Von Neumann algebra of bounded operators 

on a Hilbert space X  . Then a (possibly unbounded) operator T 

on X is said to be measurable with respect to A if:

(i) T is closed

(ii) T has a strongly dense domain

(iii) TU = UT for all U G A' .,unitary

We denote the algebra of measurable operators over A by M(A) .

4^26_Theorem

We have that

M(M2(l")) = M2(M( l"))

That is the algebra of measurable operators over M^(L ) is same 

as the algebra of 2 x 2  matrices whose entries are equivalence 

classes of measurable functions over (il,E,P) .
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4 . 27 L e m m a

o p
Let E ©  F  be dense in L ©  L  . T h e n  bo t h  E and F 

are d e nse in .

Before we prove theorem k.26, we need a lemma:

Proof.

Let f G  L , so that

a seque n c e
f  'n

\ S n /

2 2£  L  0  L  . By hypothesis, there exists

£  E  ©  F  such that

(fn f

[Snj U
+  0

That is

!fn - fill + llgn - fl| -  0

an d  t h e  result f o l l o w s .

P r o o f  of U . 2 6 .
oo 00

Let T G  M ^ C M  (L )) so that T =  (T(i,j)) and T(i,j) G  M  (L ) . 

If V (i,j) denotes the strongly d e n s e  d o m a i n  of T(i,j) , we set

V = {V ( 1 , 1 )  D P  (.1,2 ) )  ©  CP ( 2 , 1 )  O P ( 2 , 2 ) )

It is k n o w n  that the inters e c t i o n  of t w o  st r o n g l y  dense domains is

2 2s t r o n g l y  dense [ 3 5 l , hence V is s t r o n g l y  dense in L ©  L
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Now let
\ I f  \VI  n \  

S n G N
be a sequence in V and suppose

n

/

I f ]
and T

' s / i

f f

n

h

K

as n 00 . Then

^T(l,l)fn + T(l,2)g\ / h 1

T(2,l)fn + T(2,2)gn \ K ,

But f -► f in L and hence in measure, and T(l,l)f*n + T(l,l)f

in measure. By passing to a subsequence, we may assume

T(l,l)f + T(l,l)f (a.s.). Similarly T(l,2)g T(l,2)g (a.s,

hence T(l,l)fn + T(l,2)gn -> T(l,l)f + T(l,2)g (a.s.). Thus

T(l,l)f + T(l,2)g = h and similarly T(2,l)f + T(2,2)g = K . We 
If \ h

now have T and T is closed.
K

• • / \Now let U be a unitary operator m  the commutant of MQ(L ;

Then

u 0 \
u =

u

oo
where u G L with J u J = 1  .

Let / f
G V and consider TU
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T U ( f \

i g y

T
u f

ug

This is w e l l  d e f i n e d  since m V (i,j) £  V (i,j) • N o w

T
ru f  \ fT(l,l)uf + Ttl^ug1

Ug J T(2,l)uf + T(2,2)ug ,/

uT(l,l)f + uT(1,2)g

LuT(2,l)f + uT(2,2)g i

=  UT

We have u s e d  t he fact that T(i,j) is measurable. We have

m 2 ( M  ( l 00) )  c  m ( m 2 ( l °° ) )  .

00

Conversely, s u ppose that T E  M  (M2 (L )) . W e  want t o  show
00

T =  (T(i,j)) i -  1,2; j -  1, 2  and T(i,j) E  M  (L ) . N o w  since

M  (Mp (L )) is an a l g e b r a  [35 l  , E.TE. is in M  (M (L )) .

(Note, that w e  t a k e  strong products here [35l .) Let and

2 2 2 .b e  m a p s  from L to L ©  L d e f i n e d  by:

V 1 Cf)
\°l

y2Cf)
°  \  

f ■

T h e n  if E ©  F is t h e  d o m a i n  of E^TE. ? w e  have f r o m  L e m m a  *+.27 

that b o t h  V * ( E  @  F) and V * ( E  ©  F) are dense in 1 ?  . We now
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define T(i,j) on V?(E @  F) byJ

T(i,j)f = V*E.TE.V.(f)50 i i J J

Then T(i,j) is densely defined.

To show that T(i,j) is closed, suppose (f ) C V*(E @  F) ,
^ J

f f and T(i,j)f v . That is, n 50 n ' 5

V*E.TE.V.(f ) -*■ Yi i J J n '

hence

E.TE.V.(f ) -> V. (y )i J J n' iM

Now, E.TE. is measurable and V.(f ) -*■ V.(f) , it follows that l J J n J
E.TE.V.(f) = V.(y) .i J J i '

That is

V*E.TE.V.(f) = Y i 1 <3 0 1

and T(i,j) is closed.

Now let u G L with |u| = 1  , and f G V*(E @  F) . Then
J

T(i,j)uf = V.E.TE.V.uf i i J J

= y?E.TE.V.(uf) 1 i J J

= V?E.TE.(u 0  i)v.f
J-  ̂ J  J

-  V - ( u  0  I )E .T E .V .f 1 1 0 0

since u 0  I / °°\ tM2(L )
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= u V ? E . T E . V . f  
i i J J

H e n c e  T(i,j) is a f f i l i a t e d  to L [35]. Hence T(i,j) is

m e a s u r a b l e  o p e r a t o r  w i t h  r e spect t o  L . That is E  M  (L )

H e n c e  t h e r e  is a m e a s u r a b l e  f u n c t i o n  t(i,j) on (Q,Z,P) such  

that

(T(i,j)f)(w) =  t ( i , j ) (w)f (w)

w h e r e  f £ V  ( E 0 F )  [35].

N o w  set

t h e n  th e  d o m a i n  of

t(l,l) t ( l , 2 )  \

t(2,l) t ( 2 , 2 )  ,

TQ is E @  F  and

/ f '

s)

t ( l , l ) f  +  t ( l , 2 ) g \

( t ( 2 ,l)g +  t ( 2 , 2 ) g

V ^ T E ^ t f )

V ^ T E ^ f )

+ V ^ T E ^ f g )  

+ V*E 2TE2V2 (g )

V1E1T
/ f

S/

/ f  i
@  v *e 2t

g /

f
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Thus T = (t (i, j )) i = 1,2; j = 1,2 and T (i, j ) G M (L ) and 

the result follows.

We are now in a position to define the non-commutative LP-spaces 
00

associated with M2(L ) [38] .

4^28_Definition

Let (Tn ) he a sequence in M (M^(L )) and T he in

M (M^CL )) . We say Tn converges to T metrically nearly

everywhere (m.n.e.) if for each e > 0 , there is projections

{E : n G N} such that n

En t I , II (Tn - T)Enlloo < e and <J)(l - En ) 0 

4.29 Definition

We say that T G M (M^CL )) is integrahle if there is a sequence

(T ) C M_(L ) such that T converges to T m.n.e. andn — d n
<J)(|T - T |) -*■ 0 as m,n 00 . The space of all integrahle operators

in M (M2(L )) is denoted by )) (or simply L"̂  when

there is no confusion). The trace of T G L"'” is given hy

<J>(T) = Lim <J>(T )
m-x30

4^210_Definition

Let 1 <_ p < 00 , define

(i) LP(M2(L°°)) -= {T G M(M2(L°°)) : <j>( |T|P ) < °°}

(ii) IITII = 4>(|T|P )1>rp where T G LP (M2(L°°)) .

We shall abbreviate LP (M2(L )) to LP .
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4.211 Lemma

The extension of (f) to L is given by

4>(T) = i (T(l,l) + T (2,2)) dP
SI

where T = (T(i,j)) i = 1,2 ; j = 1,2

Proof.
1 1 r n,Let T E L  then E^TE. E L  for i = 1,2 ; j = 1,2 [38]

Now

E ' l ^ l  =
T(l,l) 0

0 0 /
and T(l,l) G M(L ) . Thus if T(l,l) = w|T(l,l)| be the polar 

decomposition of T(l,l) and

uu

|t (1,1)I = [ XdE,

be the spectral decomposition of ]T (1,1)| then

E1 TE1 =
/at 0 1 / |t(x ,i ) 1 o\
i 0 0 j ( 0 ° ,

and

E1TE1| = j Ad
Ex 0

0 0
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Now

4. ( | E1TE1 1 }

1

L i m  (j)

n
f

Ad
f 1

0\

n-x» *0 i ° i

=  L i m  (j) 
n-*50

/ n
// AdE.. 

0 A

0

o'

°l

1
2 |T(l,l)|dfl

Q

Hence T(l,l) E  ,P) A l s o

T n

c o nverges m . n . e

i u 0 \ rn / e a
0 '

Ad
0 0 ) J

0 1 0 0 j

to Ei TEi and is C a u c h y 1m  L It follows

that

(KE j TE.^ =  L i m  <(>(T ) 
i r "

I n
o 1OJ / AdE,

0 AL i m  9
n-*»

-
0 0 /

1
2 T(l,l)dP
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Likewise ^(E^TE^) = 

it follows that

T(2,2)dP and (j>(E TE ) = (fj^TE.^ = 0 ,

<f)(T) = i j (T(l,l) + T(2,2))dP
Q

4^212_Theorem

For 1 _< p <_ 00 , we have that

LP(M2(L°(f!,I,P)) = M2(LP (n,Z,P))

bVa tW *P • . t °°\ .That .is the L space associated with M„(L ) is same as space of
d A A

2 x 2  matrices with entries from LP (ft,Z,P) .

Proof.

First suppose T = (T(i,j)) E M2(LP ) (we have abbreviated 

M2(LP (ft,Z,P)) to M2(LP ) ). Then

II Til < IIT (l ,l) II + IIT ( 2,2) II + IIT (1,2) || + ||T(2,l)ll p — P P P P

and

T E LP(M2(L°°))

Conversely, suppose T E LP(M2(L )) . Then E^TE^ E LP(M2(L )) . 

Hence jE-̂ TÊ |P E LP(M2(L )) . That is,
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and

|t (i ,i )|p 0

° ° l

J

°° > (()(|e1t e1 |p ) 1 |t (i ,i )|P dP

Thus T(l,l) E L^(ft,E,P) . Likewise, considering Ê TÊ . 

i = 1,2; j = 1,2 we get T(i,j) E L^C^jZjP) and the result 

follows.

We now wish to identify the Von Neumann subalgebras of
00

L (ft,E,P) . To this end, let E' be a sub-a-field of E and 
00

let L (ft,E?,P) denote the space of bounded, E1-measurable

functions. Let Ê ,, denote the conditional expectation from

L^(ft,E,P) onto L^(fi,E’,P) for 1 <_ p <_ 00 . Then it is known

that E^f is weakly continuous. Now, the kernel of the map

I - Ej, : L°°(^,E,P) -► L (fi,Ef,P) is precisely L (fl,E',P) and the

weak continuity of I - Ê ,f gives the weak closedness of 
00

L (fi,ZT,P) and hence it is a Von Neumann algebra.

Conversely if B C L (fi,E,P) is a Von Neumann subalgebra, 

then set E’ = {A E E : E B} . Hence L (f2,Z’,P) C 8 . Also

since 3 is a Von Neumann algebra, ^ ^ for an^ self“aci,i0int

f E 3 and A E R . Hence {f<A} E Z' and B = L ($7,Z',P) . We

have:

4^213__Theorem

00

Let 3 C L (ft,Z,P) . Then 3 is a Von Neumann subalgebra of 

L°°Ĉ  sZ 3 p ) if end only if 3 - L°°(^,£f,p) for some sub-onfield E 1 

of E .
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4.214 Theorem

We have that

LP (M2 (l” (S2,Z',P))) = M2(LP (n,Z',P)) 

for 1 <_ p <_ 00 and any sub-a-field Z ’ of Z .

Proof.

This is similar to the proof of 4.212 after observing that 

L°°(ft ,Z ,P) C L°°(f2,Z' ,P) ’ .

We now define the conditional expectation , from 

iM2(LP (ft,Z,P)) onto M2(LP (fi,Z',P)) for 1 £  p <_ 00 .

Let E^, denote the conditional expectation from L (ft,Z,P) 

onto L (fljZ'jP) »r23] . Then,

g E ^ , ( f ) d P
J
G

gfdPJ
G

5

for all f E L°°(ft,Z,P) , g E L°°(ft,Z’,P) and G E Z f .

4^215_Proposition

The linear map S^, 0  I from L (ft,Z,P) 0  M 2 (C) onto 

L^fijZ'jP) 0  M2(C) given by

Ez , 0 I(f 0 N )  = E^Cf) 0 N

is the conditional expectation map.
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Proof.

It is clear that , = E^, 0  I p r e s e r v e s  the identity a n d  a 

straight for w a r d  calcul a t i o n  shows t h a t

<M(g 0 R)(f 0 N ) ( h  0  T))

=  0((g 0 R ) M Z , (f 0 N ) ( h  0 T))

for all g 0  R 9 h  0  T  G i T ^ j Z *  ,P) a n d  f 0  N G L°°(£2,Z ,P) .

It follows from [27] that M ^ f is the conditional e x p e c t a t i o n  

m a p  of M  (L°°(fi,Z9P)) onto M 2 (L°°(ft ,1' , P )) .

W e  n o w  w i s h  to construct an i n c r e a s i n g  filtration of V o n  

N e u m a n n  algebras. To this end, let (£3,I,P,Ia ,R+ ) be a stochastic

b a s e  a n d  assume that the family of a - f i e l d s  {I : a  G R + } is right 

c o n t i n u o u s :

fl £ =  E
3>a 8 a

T h e n  {L (ft9Z 9P) ; a G  R+ } gives an i n c r e a s i n g  family of V o n  N e u m a n n  

a l g ebras and {M2 (L (ft9Z ,P)) : a G  R } gives an i n c r e a s i n g  family 

of n o n - c o m m u t a t i v e  Von N e u m a n n  a l g e b r a s ,  i.e.

M 2 (L (ft,E P)) C  m 2 (L (fi9Za ,P)) for 6 <_ a . W r i t i n g  M ^ L ^ )

for M 2 (L ,P)) let b e  t h e  con d i t i o n a l  exp e c t a t i o n  f r o m

M n (L ) onto M „ ( L  ) . That is 
2 2 a

M a (N(i,j)) =  (Ea H(i,j)) i = 1 , 2 ;  j =  1 , 2

• • • . 00 . _ . w h e r e  is th e  c onditional e x p e c t a t i o n  from L (Q,I,P) onto
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W e  are no w  in a p o s i t i o n  t o  d e f i n e  stochastic processes a nd do 

some constructions with them.

4.3 Stochastic Processes

4^31__De f i n i t i o n

A  stochastic process X  is a f a m i l y  {X^ : a  £  R+} such that

for each a  E R+ , X  E M _ ( M  (L )) . That is the entries of thea 2 a

m a t r i x  given b y  X ^  are m e a s u r a b l e  functions w i t h  respect to

(Si,za,P) .

We call a stochastic p r o c e s s  X  a LP -process if for each

a  £  R+ j X ^  £  . As u s u a l  X  is called a LP -marti n g a l e  if

X  is a LP -orocess and M  (Xn ) =  X  for all a  < 3 , X  is call e da 3 a  —  *
L P - b o u n d e d  m a r t i n g a l e  if X  is a L P - m a r t i n g a l e  and

Sun IIX II < co 1 < p < 00
a £ R +  a p

N o t e  that as usual we shall d e n o t e  a  f a m i l y  X  b y  (X^) i n s t e a d  

o f  (Xa  : a  £  R+} .

4^32__P r o p o s i t i o n

Let X  = (X ) be a LP - process. T h e n  X  is a m a r t i n g a l e  if 

and only if the entries of X  f o r m  m a r tingales.

Proof.

This follows directly f r o m  t h e  d e f i n i t i o n  of the condit i o n a l  

expectation.
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4.33 Definition

A n  L ^ - p r o c e s s  A  = (A^) is called:

(i) P o s i t i v e  if A  > 0 for all a £  R+a  —

(ii) I n c r e a s i n g  if A  > A 0 for all a  > 3a —  p  —

The ine q u a l i t y  h e r e  is in t h e  sense of operators.

4^34__D e f i n i t i o n

A  L ^ - p r o c e s s  A  =  (A ) is called natural [l6] ,

8 > a  >_ 0 a nd a n y  se q u e n c e  (0 ) of partitions o f  [

that m e s h ( 0  ) 0 as n  ■+ 00 , w e  have
n ’

(p(l M  (Y) (A - A  )) r L n n n4 a. a.., a.
J 0 j + 1  j

4>(Y ( Ag -  A« ) )

j o r  any I £  M ^ L  ) .

The m a i n  t h e o r e m  w e  w i s h  to prove in this s e c t i o n
2

M e y e r  d e c o m p o s i t i o n  of L - h o u n d e d  m artingales [28,291.

4.35 T h e o r e m

Let X  ■= (X ) he a L - h o u n d e d  martingale. T h e n

X.a 1 =  U  + Aa a

where U  —  (U ) is a L - m a r t i n g a l e  and A  =  (A. ) is i 
C6 o

i n c r easing n a t u r a l  L^"-process.

if for any 

a,8l such

is t h e  Dooh-

p o s i t i v e ,
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c o m m u t a t i v e  (complex) processes. Thus in the next four propositions

w e  shall ass u m e  t h a t  x  =  (x ) , y  = (y ) and z = (z ) are
cl 9 *  a

2 . 2 L - b o u n d e d  m a r t i n g a l e s  in L (ft,I,P) .

Before we prove this theorem, we shall need some results about

4^36_Proposition

Let x C L 2 (S],E,F) b e  a L - b o u n d e d  martingale. T h e n

x a
2 u  +a aa

w h e r e  u  = (u^) is a L^-ma r t i n g a l e  a n d  a =  (a^) is a positive,
1n a t u r a l  i n c r e a s i n g  L  -process.

Proof.

x  -=a
a + x a (x -a

2i

x  ) 
a

=  R + iT saya  a J

2
T h e n  (R ) an d  (T ) are clearly R - v a l u e d  L - b o u n d e d  mar t i n g a l e s  

h e n c e  have a D o o b - M e y e r  decomposition:

R  12 =  m  + ba 1 a a

T 12 -  n + ca 1 a a

w h e r e  (mn ) and (n ) are L - m a r t i n g a l e s  and (b ) and (c ) are
Ut UC LX Ct

1
p o s i t i v e  n a t u r a l  i n c r e a s i n g  L -process. Thus
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a
X |2 - (m + n ) + (b + c ) a a a a

u  + aa a

since t h e  sum of two n a t u r a l  p r o c e s s e s  is natural. We shall o f t e n  

w r i t e  <x>^ to denote the i n c r e a s i n g  pa r t  a^ .

4_. 37__Pr o p o s i t i o n

Let x = (x^) an d  y  = (y ) be L - b o u n d e d  mar t i n g a l e s  in

2 . 1 L (fi,Z3P) . Then there exists a L - p r o c e s s  <x,y> such that

x y  - <x,y> or a a

defines a L - m a r t i n g a l e .

Proof.

N o t e  t h a t :

2 2 x * y  -= i x  + y I + i 1 x  + i y  cr a 'a J a1 'a ''a1 lx - y l ^ - i l x  - iy I ̂  1 a 1 a ^a1

Hence f r o m  4.36 we have:

x  y =  <x.y> + uora ’ a a

w h e r e  <x,y> =  <x+y> + i<x+iy> - <x-y> - i<x-iy> and (u )
9J cl a  ̂a a J a a

is a L ^ - m a r t i n g a l e .
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4^38_Proposition

We have that:

(i) <x,y+z> = <x,y> + <x,z>\ a  ™  a  a

(ii) <x+y.z> = <x5z> + <y,z>' J s a  a  J ’ a

(iii) <Ax,y>a = \ < x sy > a

(iv) <x,Ay>a = A<x,y>a

2
For all L -bounded martingales x = (x ) , y = (y^) , z = (z^) 

and A G C .

4^39_Proposition

We have that

<x,y>J < <x> <y> —  a  ^ a

for any L -bounded martingales x  = u t ) and y = Cya )

Proof.

Let A 6 C , a G R+ , then <x+Ay>a 0 • P - a.s.

Hence,

<;x+Ay , x *X y > _> 0
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That is,

<x> + A<y,x> + A<x,y> + a <y> > 0a J 5 a a 11 J a —

If either <x>a = 0 or <y> = 0 then there is nothing to prove.

Suppose <y>a ^ 0 and set

<y,x>
A = - a

<y>a

and the result follows.

Proof of U.35

Let Xa
X ya
z wa a

where x = (x ),.. . ,w = (w ) are a 9 a

L -bounded martingales. That is they lie in L . Then

X.
x |2 + |z |2 a1 1 a1

y x + w z Ja a a a

x y + z w \a a a a
>y |2 + |w |2 v a‘ 1 a1

Now from ^.36 and U.37 we get lx I = U + A where U = (U ) is& 1 a1 a a a
a L^*-martingale and is given by

Aa

<x> + <z>a a
<y,x> + <w,z> ̂5 a 5 a

<x,y> + <z,w>a 5 a
<v> + <w>J a a
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We now need to show that

(i) A > 0  for all a E R a —

(ii) A > A d for all a > 3 a —  6 —

(iii) (A ) is natural.a

L2 ©  L2

To show (i), we
f '

Let

consider A^ as a densely defined operator on

helong to the domain of A . Thena

<Aa
f f 

S ,

>

r

J
ft

{<x> f + <z> f + <x,y> g + <z,w> g}fdP a a a& a

{<y,x>af + <w,z>af + <y>ag + <w>ag}gdP
ft

IfI 2 + <y>a |g|2 + 2Re<x,y>agf}dP
ft

+ I {<z> |f|^ + <w> |g|^ + 2Re<w,z>fg}dP i a i i a 1 1 ®
ft

i l P i P 1 1{<x> f + <y> g - 2<x>2 <y>2 g IfI}dP a 1 1 a 101 a J  a '&l 1 1
ft

+
j
ft

{<z> If a 1 + <w>a
2 2

2<w >2<z>2 j g | |f|}dP a a 1 1 1 1 by ^.39
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«x>*|f| " +
n

(<z>2|f| - <w>2|gj}2dP 
a '  1 a

> 0

Hence for each a E R , A > 0 .5 a —
To show (ii), we make use of the faot that if x = (x ) and

a
2 . 2y = (y ) are L -bounded martingales in L (f2,E,P) then

|<x,y>a - <x5y>^| < (<x>a - <x>e)(<y>a " <^>3)

for all a _> 3 . This follows directly from 4.395 and the proof of

(ii) follows along the same lines as that of (i).

To show (iii), that is (A ) is natural, let a > 0 and (0 )
a  n

be a sequence of partitions of [0,al such that mesh(0n) -*■ 0 

as n 00 and G G M^(L ) . Then

4>(I M n (G) (A n - A n ))
n a. a.., a.J J  J + 1  J

-  jE{V (e (g(l,l))(A<x > + A<z> ) + ̂ n ® ’ n n
° J + 1  a j + lj  “ j

E n(g(l,2))(A<y,x> + A<w,z> )}
a. a. , a . nJ J+1 J+1

+ (E n (g(2,l))(A<x,y> ^ + A<z,w> ^ ) +
i a. a.., a1?,,
J J j + 1  j + 1

E n (g(2,2))(A<y> n + A<w> n )} 
a- a.., a . nj  j + 1  j+ 1
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T a k i n g  the l i mit as n -+• 00 an d  u s ing 4.36 an d  4.37 w e  get

sE{Ea (g(l,l))(<x>a + < z > q )  + Ea (g(l,2))(<y,x>a + < w , z > a )}

+ sE{Ea (g(2,l))(<x,y>a + <z,w>a ) + Ea (g(2,2))(<y>a + <W>C()} 

= * (M a (G )A a )

= ^(GAa )

Hence (A^) is n a tural a nd the t h e o r e m  is proved.

4_.310_Corollary

The D o o b - M e y e r  d e c o m p o s i t i o n  given in t h e o r e m  4.35 is unique.

Proof.

Suppose IX I -= U  + A  -= V  + B w h e r e  (U ) an d  (V ) are ^  1 a 1 a  a  a a a  a
L^-mart i n g a l e s  and (A^) an d  (B ) are po s i t i v e  n a t u r a l  i n c r e a s i n g 

processes. H e n c e  A ^  - B ^  defines a m a r t i n g a l e  w h i c h  is also a 

n a tural process. Thus for any a  > 0 we have that 4)(G(A^ - B )) =  0 

for all G G  M 2 (L ) .

N o w  since M g ( L  ) is th e  dual of , it follows that

A  - B = 0  for each a G R a a
now clear.

Hence A  =  B an d  th e  result is a a

A g a i n  w r i t i n g  <X> instead of A  we have:a a
4^311__C o r o l l a r y

Let (X ) and (Y ) b e  L -martingales. T h e n  t h e r e  exists an a a &
L 1 -ma r t i n g a l e  (U^) an d  an L^-process (<X,Y>a ) such that

X* Y  = U  + <X,Y> .a a  a  a
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4.4 Stochastic Integrals

In this section we shall define stochastic integrals of the
t ^

form / F dX , where X = (X ) is a L -bounded martingale, whose 0 s s s
matrix entries have right continuous paths and F = (F ) is a 

process with some desirable properties so that the family of 

stochastic integrals:

F dX : t G R } s s

is a L -bounded martingale.

4^41_Commutative_Stochastic__Integrals

We first review the construction of the commutative -stochastic 

integral.

Let (^,Z,P,Z ,R+ ) be a stochastic base with (Z ) being
Ot 0£>

right continuous. Let R denote the collection of all sets of the

form {o} x Fn and (s,tl x F where F G Z for s < t and 0 s
Fq G Zq . The a-field P generated by R is called the predictable 

a-field. A function f : R+ x $7 C is called predictable if both 

Re(f) and Im(f) are P-measurable.

Now let A G P ,  then Xa(t,*) is Z measurable for any 

t G R+ and hence X^,(t,*) is Z measurable where A ’ = Q - A . 

Thus it follows that is Z^ measurable for any A in

the field generated by R , and by a monotone class argument 

xA( t ,.)  is Z^ measurable for any A in P . Thus for any A 

in P , (X^(t,*)) is a process. Now, any P-measurable function

f , is the limit of linear combinations of elementary functions of 

sets in P , it follows that f(t,») is Z measurable and hence 

(f(t,*)) is a process. Such a process is called a predictable 

process.
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Let x = (x,) be a L -bounded right continuous martingale and 
0

f be simple predictable function (or process!). Suppose

f = £ A.X/ \ . t h e n  t he s t o chastic integral / f d x  is
j J U m-l*sj;XAj-l

d e f i n e d  as

2

y A.x. (x - XL j A. _ s. s . j J“1 J J-l

Then

II/fdx H g = E / | f | 2 d<x> (U.Ula)

It is known that if f is a predictable function such that

|f(s ,•)j d<x> < (k.klb)

where the integral is understood in the sense of Lebesgue-Stieltjes, 

then there exists a sequence of simple predictable processes (fn(t,')) 

such that

E fn(t,*) - f(t ,*)|2d<x>s -* 0

and we set

/fdx -= L - Lim/fndx

For f as above the stochastic integral

f dx s s
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tv *
is same as

2Now if L (x) denotes the Hilbert space of all predictable processes 

f such that

E If |2d<x> 's' s < 00

then the stochastic integral Jfdx is defined as the image of f 
under the isometry given by equation 4.4la, from L (x) into 
L2(ft,Z,P) .

Another equivalent way of looking at the construction of

stochastic integral is to employ the method of Bartle [iTl. Thus

let u b e  the v e c t o r  v a l u e d  m e a s u r e  on R : x

Px ((s,tlxA) = (xt - *S)XA

We extend to be a finitely additive measure on the ring

generated by R by defining

yx (A ) =  i .  ^ (A i }
1 = 1

n
where A = U A. and A. are disjoint sets in R . Then it is1 l  l

known that y^ extends to a measure on P [32l , with semi-variation 

given by the function

s v (y x )
P -> R+
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where

ilEllsv(u ) = Sup "S AiPx(Ei)ll2 
x i

where the supremum is taken over all finite partitions of E in

P and (X.) C C with I A-I < 1 . Then the semi-variation

11*11 ( \ is finite. For, consider R+ x and let (E. ) hes n y x ; i

a partition of R+ x Q over R then

\

IlEA.y (E. )IL
i x  i  2

=  {  I  l x i | 2E(XA . ( <x>t .
• T T

< X > ,  ) P  
l - l

< { y E(XA i(<x>t - <x>t ))}*
i i i l-l

= lly (R+ x ft)IL < 00 
x  2

Since R generates P , the result follows for any finite partition 

in P . Then the stochastic integral is just the Bartle integral 

[171:

/fdxs = Jfdux

of a oredictable function f with resoect to u . (The class ofx
predictable functions for which the Bartle integral exists is given 

in [30l. It is precisely the predictable functions for which

4.4lb holds.) The stochastic integral 

integral /fX[ojtjxfidyx . Now if f

t
/ f dx is just the Bartle 0 s s

is any predictable function

144



which is hounded then it is a pointwise limit of simple predictable
2functions and hence it is y^ measurable for any L -bounded 

martingale x = (x^) . Since f is bounded it is clear that

E/|f|2d<x> < 00

hence the Bartle integral /f dy^ exists.

We now proceed to extend the definition of the stochastic 

integral to a non-commutative setting.

Let X = (X ) be a L -bounded centred martingale, i.e.

X G M (L2) , <j>(X ) = 0 and SupIIX II < °° , and let F beX c . X X c .

M^CJ-valued function on R+ x ft such that each F(i,j) : R+ x Q -»■ C 

are predictable functions i = 1,2 ; j = 1,2 . Then F defines a

process whose matrix entries are predictable processes. Suppose 

F = (F^) is a simple process:

Ft ( t )

Then the entries of F are simple predictable processes, we define 

the stochastic integral;

f ax s I f . (x. -  x. )S S  L t . n t . t . '
1 - 1  1 1 - 1

-  ( Fs(i,k)dXs(k,j ))i=lj2;j=l92

We have then the following.
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4^42_Proposition

(i) /(AF + yG)saxs = X/Fsaxs + y/Gsaxs 

(ii) <p(fF dX ) = 0 

(iii) II/F d X = <f>( |F |2a<x> )S S S o

For all simple processes F and G whose entries are predictable 

functions and A,y E C .

Proof.

(i) Suppose F(t) = FXjt t ^(t) and G(t) = GXjg g )(t) 

with x < t^ < s^ < t^ . Then

(F + G)t = (F + G)X [t. ,s2 ) + GX
[ s i ’ V  +

FX
Is2 ’t2)

and

/CF + G) dX = (F + G)(X - X , ) + G(X. - X ) + F(X. - X ) 
3 3 S2 tl tl S1 t2 s2

F(X. - X. ) + G(X - X 
t 2 * 1  S2 31

= /F&X + f a dX

The result for a general simple process follows likewise.
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(ii) /F ax = l * t  AXt _
1 - 1  1

=• ax ) = <t>dF AX )
i-1 i

= I+tMt. Ft . AXt _ 
£  1-1  1-1  1

)

= IH  Ft _ Mt AX ) 
£ 1-1  1-1  1

= 0

(iii) ll/FsdXsl|2 = *( J F ^  Ft _ AX AX*_)
1,J 1-1 J-l J 1

For i ^ j , suppose i < j then

*(Ft. A. “tX.’ - *(Ft. A. A. /A.K.)
l - l  J - l  J  l  l - l  J - l  J - l  J  1

=  0

Hence the contribution of the non-diagonal terms is zero and

ll/F dX $(S|Ft _ |2AXt AX* ) 
■? i-1 i i

= *(X|Ft |2(|X* |2 - |X *_  |2))
i i-1 i i-1

= < H l | F t  | 2 (< X *> t  -  < X *> t  ) )
i i-1 i l-l

= 4>(/|Fs | 2a<x*>s )
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We have used the Doob-Meyer decomposition given in k .35>

We now extend the stochastic integral to include more general

integrands. Let F = (F ) be a process such that its entries form

predictable processes. Suppose furthermore that each F (i,j) is

bounded, i.e. Sup |F,(i,j)(w)| < 00 . Then we know that given any 
(t,w)

2 2 L -bounded martingale (X^(j,k)) C l (£2,Z,P) the stochastic integral

/Ft (i,j)dXt(j,k)

2 . .exists and is the L -limit of

where F^(i,j) are bounded predictable simple functions.
2

Now let X = (X ) be a L -bounded martingale then the entries
2

of X , X(i,j) = (X (i,j)) form L -bounded martingales in 

L2(ft,Z,P) .

Now set Fn = (Fn(i,j)) , where Fn(i,j) are the simple

predictable functions converging to F(i,j) in p^-measure for any
2 2 L -bounded martingale x £  L (ft,Z,P) . Then

/FndX = (/Fn(i,k)dX(k,j)). .
1 J J

and
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lljV 'ax -  / f”1dxllg

= #/(Fn-Fm )(l,l)<H(l,l) + /(Fn-Fm )(l,2)dX(2,l)ll2

+ l l/(Fn-FIn) ( l , l ) a x ( l , 2 )  + / ( F n-Fm) ( l , 2 ) a X ( 2 , 2 ) l l 2

+ II /  (Fn-Fm) ( 2 , l ) d X ( l , l )  + / ( F n-Fm) ( 2 , 2 ) d X ( 2 , l ) l l 2

+ ll/(Fn-Fm) ( 2 , l ) d X ( l , 2 )  + / ( F n-Fm)(2 ,2 )dX (2 ,2 ) l l2

It is no w  clear that (jFndX)n ^  ^ is a Cauchy se q u e n c e  in 

since the right h a n d  side of e q u a t i o n  4 . 42a converges t o  zero as 

m , n  -► 00 .

W e  have

J*FdX =  L2 -  Lim jFndX

It is no w  clear that

/FdX = (/F(i,k)dX(k,j))
1

4.43 Definition

Fo r  t > 0 w e  define
t
/

0
F dX s s / F(x[o,t l x n ®  I)dX '

4.44_Theorem

The family of st ochastic integrals

2L -h o u n d e d  c e ntred martingale.

t
{/ F dX 

0 s s
t E R+} is a

(4.42a)

(4.42b)

149



P r o o f .

First suppose F is a simple process: F, = ZF Xr, , \
t ti-l 1 i-l’V

and t G . Then

(t)

Fs“ s = X Ft. “ t. + \  <Xt - \  >1=1 i-l i k-1 k-1

Taking expectations on both sides shows that <p(f F dX ) =  0 froms s
U.^2(ii). Now let r <_ t say r G [ t , t .) . Then

J i  J

M r( Y  Ft AXt + F (Xt - X )) 
r 1=1 i-l i k-1 k-1

FsdXs + I Mr Pt> (Xu t _
k>i>j l-l i xt , t . n } 

l - l

We wish to show M F, (X, - X. , ) = 0 .
2? t  • -  UA "C • tA  t)  • «

1 - 1  1 1 - 1

Let G G M0(L ) then d r

$(GMr ( F ^  (X t ^  - X t A t _ ) ) )  
1 - 1  1 1 -1

= *(GFt. ,(xut. - xt.t. »
1 - 1  1 1 - 1

( X . . „ ) )

=  0

Hence C/ FsdXs) is a martingale for a simple process (F̂
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Nov for X 6  M 2 (L2 ) ve have

IlM (X) II < oxis d —  d for all s G R+

Hence

F dX - M„ s s r F dX |L s s 2

< II
•

FndX -
•

F dX IL + ||
► f

FndX - M
. s s s s 2 s s r
0

t

0

t

0
FndX II. s s 2

+ IlM n .F dX - M  F dXlL s s r s 2

where (Fn )n is a sequence of simple processes satisfying equation 

U.l+2b.

It is now clear that each term on the right converges to zero 

as n 00 , and the martingale property is established. Now consider

|<j>( F sdXs ) |

t t
1  l<K (Fs -  F^)dXs )I + |d>([ F °axs )

(F - F )dX IL + 0 s s s 2 by Ll+2(ii)

+  0

as n ■+ 00
t

Hence the martingale {/ F dX
0 s 3

R+ } is centred.
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o u
The L -hounded ness of {/ F dX

0 5 S
that

t s  R+} follows from the fact

and

M, F dX s s F dX s s

p
F <DC € M„(Ij )S S d

0
[ 5]

We now give a characterisation of the stochastic integral. To 

this end, we define a vector valued measure on P by:

>([s,t) X A) = (<X,Y>t - <x ,y>s )(xa  ©  1)

2where X and Y are L 

right continuous paths, 

for E E P ,

hounded martingales, whose entries have

The semivariation of  ̂ is given hy,<x,y> 0 *

I .GjII f \
sv ^<X,Y> Sup II , Y> (Ei) * 1

where the supremum is taken over all finite partitions {E^} of 

E and all finite collections of {Z^K C M^CC) .

From proposition U.37 we have

IIEIIsvCp<X Y>
3

1  l
k=0

II Ellsv(y<x+ik.Y>) <  00

where lJ<;x+iY> measure on P given by:
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P<X+iy>([s,tl * A) = (<X+iY>t - <X+iY>g) • (XA 0I) .

We let /Fd|i denote the Bartle integral of a process F whose
jL^

entries are bounded predictable processes F(i,j) i = 1,2 ; j = 1,2 

It is clear that this Bartle integral will exist since there is a 

sequence of simple processes Fn , converging pointwise to F and 

hence F is y> measurable, being bounded. F is integrable

too; and we have

L 1 -  L im /F ndu<x>Y> =  /F d y <x>Y>

where the integral on the left is defined as

If" (<x,*>t - <x ,y> 
i-1 i V i

where

t V i ’ V
( t )

Likewise

FsdU<X,Y> F X̂ [0,t] x n ®  I d̂y<X ,Y>

and we denote the integral on the left by 

t
F d<X,Y>J 3 s 

0
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4.45 Theorem

The stochastic integral / FsdX
t *

s
martingale such that

is the unique L

+ ( < ( Fs< ) * , Y > t ) = *( F sd<X , Y > s )

For any L -bounded martingale (Y^) .

Proof.

Suppose F is a simple process:

Then

t
Fsd<X,Y>s

0

k-1
I Ft. (<X ’Y>t . " ^ . Y ^

1—1 1 - 1  1

+ F, (<X,Y>. - <X,Y> )
\ - l  t \ - l

where we assume t E [t^_^9t ) . Now,

* ( [  V < X *y > 8 ) =  X ̂Ft .  A; ~ 1=1 1 - 1  1 1 1 -1

^ ( F  ( V t  A  nk-1 k-1 k -1

-bounded

)

) )
i-1

) )
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£
where we have used the fact that X^Y^ = U + <X,Y>^ as m  proposition

U.3T, where U, is a L^-martingale. Now
x»

*<Ft .  <xt * A .  - xt .  A .  »
1 - 1  1 1 1 - 1  1 - 1

= * (Mt . (F t .  -  *< Mt .  / Ft .  x t .  A »1 1-1 1 1-1 1-1 l-l

= * (F t .  “ t . V
l - l  l

Hence

♦ ( F d<X.Y> ) = $(s ’ s F dX • Y.) s s t

= <H<( FsdX*)* , Y>t )

# 2Since (J)(<A,B>̂ ) = 0(A^B^.) for L -hounded martingales (A^) , (B^) . 

Now suppose (F ) is a process whose entries are houndedu

predictable processes. Hence there is a sequence (Fn) of hounded 

predictable simple processes such that

t
F d<X,Y> = L1 J s s

0

Lim
t

Fnd<X,Y>s
0

Now,

.t
II (F -Fn )dX* J s s s

0
( V Fs)dX8,2,Xt,2 °

155



as n 00 by U.l+2b. Hence

1

FndX* • Y -> s s t F dX*Y, s s t

hence

o>( FndX* • Y.) ■ * <j)( s s t T F dX • Y, ) s s t

But the left hand side here is:

<f>( F d<X,Y> ) s 9 s

which converges to $( 

t

F d<X,Y> ) and we have s 5 s

4>( F d<X,Y> ) = <f>(<(s s F dX ) • Y>.)s s t
0

To show the uniqueness property, suppose there is another

L -bounded martingale Z -= (Z^) such that

4> ( < (
.

0

*  *F dX ) s s Y>t ) = 4>(<Z*,Y>t )

2
for all L -bounded martingales (Y ) . 

= cf> (Z Y ) . That is
u 0

t
Then, <p(f F dX* • Y ) 0 s s t

F dX* - Z j Y  s s t t 0

Hence
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for all Y E M2(L^)<M( F dX - Z)Y) = 0 s s t

Hence

F dX = Z. s s t for each t

4.46 Theorem

Let (F ) and (G ) "be processes whose entries are bounded 
u "G

predictable processes. Then

G dY = s s G F dX s s s

where Y^ = F dX s s

Proof.

If Gt = GX^a gj(t) say, then

G dY = G(Y0 - Y ) s s 3 a

= G F dX s s
a

Now G E M2(L ) (since its entries are bounded functions) and
2multiplication by such operator is a continuous map on M2(L ) 

hence

G dY = s s G F dX s s s
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By linearity the result follows for a simple process (G^) • Now

for (G ) as in the statement of the theorem there exists a 

sequence (Gn ) whose entries are hounded predictable simple functions 

such that

t
'

G dYJ s
0

L - Lim GndYs s

Now

t t• ■
G dY - G F dX ILs s s s s 2

0 0

t t t
■ f n r t

< II G dY G dY IL + II GndY -
« S £ J 3 s 2 J s s

0 0 0

G F dX s s s 2

The first term tends to zero as n 00 , and the seQBiUterm is

i u

t
f _

F(ksl)(Gn (i,k)-G(isk))(Gil(i}e)-G(i,e))F(eJP)d<x>(P,l)}. n , .

+ IE{ F(k,2) (G^Ci ,k)-G(i 9k)) (G11(i,e)-G(i,e) )F(e,P)d<x>(P,2)}.n,.

where we sum over repeated indices, k , i , e , P = 1 , 2 . Let 

us consider an arbitraiy term in the above sum, say

tf

0

F(k,l)(Gn (i,k)-G(i,k))(?(i,e)-G(i,E))F(£,E)d<x>(P,l)

Then this is of the form
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t

|E f i f 2^ gl  "  ~ ^ d<x,y> (k.k6a)

w h e r e  f. , g. , g. i = 1,2 , are b o u n d e d  p r e d i c t a b l e  processes

a n d  (g^) is a sequence of simp l e  b o u n d e d  processes c o n verging to  

g^ p o i n t w i s e  on R+ x ft .

N o w  k . k 6 a  is d om inated by

fl f 2^sl “ si ^§2 “ g 2 )d<x,y>

f i f 2^s i  “ ^1 ) ( g2 "  g 2 ) d < x ’ y >l!l

< 2Mll (g2 ' g 2 )d<x,y>ll (k.k6b)

w h e r e

M  =  Sup | | < »
r+ x a

s i n c e  each f^ , and g^ are b o u n d e d  a n d  hence (g^) is a 

u n i f o r m l y  b o u n d e d  sequence, and

/ g2a<x,Y> L'

t»
Lim

0

g ^ d < X , y >

h e n c e  U.l+6b converges to zero as n -> 00 .

N o t e  that w e  could have u s e d  t h e  b o u n d e d  convergence t h e o r e m  

[22] to show

159



L - L i m G n F dX s s s

*

G  F dX J s s :
0

t

4.5 Stopping Times

Rec a l l  that a s t o p p i n g  t i m e  is a p r o j e c t i o n  v a l u e s  p r o c e s s

T , such that t (0) = 0  , t (°°) = 1 and t (s ) <_ x(t) for s <_ t .

(We denote T b y  ( P ) , i . e .  x(s) =  P  for each s E  R+ .)s s

4 ^ 5 1__E x a m g l e s _ o f _ S t o g £ i n g _ T i m e s

(i) Let X q  : ft R + b e  a st o p p i n g  time r e l a t i v e  to 

(ft,£,P,Za ,R+ ) . T h e n  for each t E  R+ ,

(x
0

h e n c e

X fx <t> e  L  (S2’2 >P)

N o w  set Pt =  X{ }

(t)

and def i n e

P. (At

0 p t
t G  R

t = 00
L

• / 00 \T h e n  x defines a M 0 CL } v a l u e d  stopp i n g  time.
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(ii) Let Gq : £2 -*■ R+ b e  a n other s t o p p i n g  t i m e  an d  set 

\  = X{aQ<t} then

x(t) =

pt 0 1

0
%

t G  R‘

t =

• t  \defines a M ^ I L  ) v a l u e d  stopping time.

(iii) M o r e  g e n e r a l l y  let f : R+ [0,1) and 

u  : R+ {z G C : |z| = 1 }  b e  B o r e l  m e a s u r a b l e  functions. Let

Tn : ft R+ b e  a s t o p p i n g  time r e l a t i v e  t o  (f2,ZjP,L ,R+) andor
set P = Xr ^ \ • T h e n  for t G  R s 1t 0 < s }

f(s)dP

x ( t ) =

u ( s ) ( f ( s ) - f ( s r ) d P

in the m a t r i x  are t h e  u s u a l  spectral i ntegrals r e l a t i v e  to the spectral 

family { P ^  £  R+ .

Rec a l l  that if X  = (X ) is a right • continuous L^-process then 

we define th e  s t o p p e d  opera t o r  X  b y

L^ - L i m  Xx(e)
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where 0 is a finite partition of [O,00] , and if

0 = {tlS...9t } say, then

XT(0) = l Xt.(Pt. - Pt. ’ 
1 = 1 1 1 1 - 1

Likewise the stopped process is defined as

X = I r  -  Lim XT A t(0)

for each t E R , where t . t is the stopping time

T A t(s) = €

S < t

s > t

where t = (P ) .s

4^52_Proposition

Let X = (X^) be a right continuous L^-process. If 

X exists for any stopping time x and (X ) = 0 then (X )X X w
is a centred martingale.

Proof.

Let X

given by

yt \
. Then the stopping time t
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t(s) =■

0 0 < s < t

s > t

gives X~ = , hence by hypothesis <f>(X~) = = 0 . That is

X is a centred process, or

E(xt + wt ) = 0 for all t £ R (U.52a)

Nov let t E R be given, and let P , Q be projections in 

L (ft,E ,P) and set
X-

t ( s )

0

p 0̂ |

0 Q

I

0 < s < t

T > s > t

s > T

where T > t .

Then since (X ) is L^-right continuous, we have
X

X
y t \ / p ° \  / * t  - p  0

\ zt  wt /  \ °  Q /  \ wT /  \  0 I - J

and cf) (X ) = 0 gives
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E(xtP + x^I-P)) + E(wtQ + wt (I-Q)) = 0

Taking Q = 0 , gives

E((xt - xT )P) + E(xt + wT ) = 0

That is E((x^ “ x̂ ,)P) = 0 by k . 5 2 a for all projections 

P G L (ft,E ,P )  . Hence
X

E ( ( x t  - Et (xT ))P) = 0

00.  .
for any projection P G L ,P) . Hence

Et (x T ) x t for all T > t

Similarly taking P -= 0 gives

Et ( V  = wt for all T > t

and hence (x ) and (w ) are martingales.
X  X

• • • 00, _ n  xNow let P be a projection in  L 5P) for some t > 0 .

Define the stopping a by:

0 0 < s < t

P p\
t < s < T

P P

I s > T
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Then

Now <j>(X ) = 0 gives, using U.52a and the fact that (x )o n

are martingales,

0 = E(((yt + zt ) - (yT + zT ))P)

for all projections
OO .  ̂v

P E L  («,Z ,P) . Hence

0 = E((yt + zt - Et(yT + zT ))P)

and it follows that

Et ( y T + zT ) =  y t  + zt for all T > t

That is (y + z ) is a martingale. Now defining a by
u X»

0 < s < t

aCs) = <
p iP̂

-iP
F l

t < s < T

s > T

gives

and (w^)
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i p \ \

x~a
_ ^

z.

yt \ /

wt /  V ip

/ *T y T \ / I -

P /  \  z w,T T A . ,
V v  2

-  i p
2 ‘

I  -

and <J>(X~) = 0 gives

E((zt - yt - (zT - yT ))P) = 0

Since P is an arbitrary projection in L (Q ,T .^ ,P ) we conclude that

Et (ZT “ y T ) = zt " y t f'or all T _> t

H e n c e  (z^ - y^) is a martingale. Thus it is n o w  clear that all 

(x^), (y ) , (z^) , (w^) are m a r t i n g a l e s  an d  h e n c e  (X^) is a 

m a r t i ngale.

4_. 53_Proposition

Let X = (X^) be a L^-bounded centred martingale. Then 

4>(X ) = 0 for any stopping time t .

Proof.

Let T = (p ) and 0 be a partition of [0,°°1 . Then

Xt (6) = K . (X)APt.

• • Psince X is L -bounded. Hence

166

ro
p'

d



<MXt{0)) = I<j)(Mt _(X)APt _ )

= 2>(XAPt  )
i

= <f>(x) = o

since X  is centred. N o w

|<J>(xT)| < |<Mxt - xt(0))| + |<f>(xx(e))|

< llxT -  x ,0 J—  T l(0) p

C h o osing 0 fine e n o u g h 3 w e  can m a k e  right hand side as small as 

w e  like. H e n c e  cj)(X^) =  0 .

4^54_Corollary

Let X  •= (X ) be a L^-process. Then X  is a c e n t r e d

m a r t i n g a l e  if and only if cf>(X̂ _) = 0 for any f i n i t e  s t o p p i n g  time 

T .

4 ^ 5 5__S t o g p i n g _ a s _ a _ l i m i t _ o f _ c o n v e r g e n c e  in_measure

We now define stopping in a sl i g h t l y  different sense t h a n  that 

g iven in the earlier c h apter and in the last section. First w e  give 

some preliminaries.

4_.56__Defi n i t i o n

Let A be a finite V o n  N e u m a n n  a l gebra w i t h  t r a c e  (p , T h e n

a sequence (Xn ) C  (A) c o n v e r g e s  in mea s u r e  to X  E  M (A) if
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for all e > 0 there exists N : for all n > N X - X G N(e) ,—  n ’
where

N(e) = {T G M (A) : there exists a projection P E A ,  

s.t. II TP II ̂  < e and (I—P ) < e ]

It is known that if (T ) and (S ) are sequences in M (A)

converging to T and S in measure respectively then we have [33]

m
(i) T • n + S -> T + S n

m
(ii) XTn -> XT for all X E M (A)

m
(iii) T X n TX for all X E M (A)

(iv) T*n
m-+ T*

where m above the arrow indicates convergence is in measure. 

(Sometimes we write m-Lim .)

It is worth mentioning that the definition of convergence given 

in h . 5 6  is equivalent to the ’’usual” definition of convergence in 

measure when A = L . Indeed let (X ) C M (L°°(Q,I,P))

converge to X E M (L (ft,I,P)) in measure. Then for all e > 0 

there exists N : for all n >_ N

P{w : |X (w) - X(w)I > £} < £1 n 1 —

That is
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E(X{|xn-x|>£> ) < e

Let

P X t lx n- x ^ -e}

Then

“ (x n "  X )P |I»  < e

and

E ( I - P )  = E ( X { |x . x | > e } ) < e

Thus the ’’usual" definition of convergence implies definition U.56.

Conversely given definition ^.56, that is for all £ > 0

there exists N  : for all n > N  X - X G 11(e) . Thus there—  n
exists B E Z such that

II (Xn - X)XBII00 < e and E(l - Xg) < £

Let P = X{|xn-x|<£} then

XB i P

Hence I - X-d > I ~ P • That isn —

E(I - P) < e

The equivalence of the two definitions is now established.

169



4.57 Definition [27l

Convergence in measure is equivalent to:

for all £ > 0 , d)(er i lx  - x| ) -► 0r l£s°°J 1 n 1

■where |Xn - xj is the spectral projection of |x^ - X

corresponding to [e,00! .

4.58 Lemma

Let T =
I t  0

0 0
, t E M (M^(L )) . Then

/  e i I*!

eJT| =

Proof.

e^|T| is the orthogonal projection onto the null space

n (|t |^) of

M *  5 (|T| - >J)+

It is clear that

/ M  + 0 \

=

\ 0 0 /
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H e n c e  N ( | t |*) =  N ( | t | x ) @  L 2

= ex | -t | L2 ©  L 2

That is

ex |T| (L2 0  L 2 ) =  eA |-t|L2 0  L 2

F r o m  t h e  u n i q ueness of t he o r t h o g o n a l  projection, it follows that

|t |

4^59__Coro l l a r y

/ eA N

(i) If S =

(ii) If R =

( i i i ) If W  =

0 0

0 s

0

0 0 /

0 0 

w  0

t h e n  e^|S

t h e n  e^|R| =

t h e n  e, |w| =

\
0 eA |s I

I o

°

o \

® : 7

w h e r e  s , r , w  E  M (M^(L )) .
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4.510 Theorem

Let (Xn ) £  M(M (L°°)) and X 6 M(M(L°°)) . Then Xn 

converges to X in measure if and only if X (i,j) converges in

measure to X(i,j) i = 1,2 j j = 1,2 .

Proof.

We may take X = 0 . First suppose each X (i,j) converges

to zero in measure. For all e > 0 there exists N : for all

n _> N Xn(i,j) £ N(-g-) for all i = 1,2 ; j = 1,2 . That is
n oo .there exist projections? (i,j) £ L such that

and

E(I - Pn(i, j)) < |

Let Pq = A and set

P'n

Then for n > N

00
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^ in
and <f)(l - Pn ) <_ £ E ( l - P n(i,j))<-|-<£. Hence Xn -► 0 .

i»j=l
m m

Conversely suppose -> 0 . Then E-^X^E^ 0 by 4 . 5 6 .

That is for all £ > 0 :

cf)(er n |E,X En | ) -> 0 Le,00] 1 1 n l 1

l. e.

<|>(I - elE-.X E, I ) -*• 0 T £ 1 1 n 1 1

i.e. <j>(l
e

e X (1,1)n 5

\  0

0 by Lemma k .58.

That is

E(e
[e ,°°]

xn( i , i ) | ) + 0

m
hence Xn (l,l) converges to 0 in measure. Likewise Xn(i,j) -*■ 0 

follows.

4^511_Remark
00 00

For the gauge space (M^(L ),(j)) , we observe that (Xn) C M(M^(L ))
OO

converges to X E M(M^(L )) in measure is equivalent to : for all

£ > 0 there exists N : for all n > N there exists a projection
, ° ° \P m  the commutant of M_(L ) such that n 2
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II (X - X)P II < e and <f>(l - P ) < e n n » n

m
It is clear that if this condition is satisfied then X + X byn ^

m
definition h .^ 6 . Conversely suppose X -► X . We take X = 0

m
for simplicity. Now X (i,j) 0 for all i,j = 1,2 . Hence

for all e > 0 there exists N for all n _> N there exist 

projections P^(i,j) G L such that

and

E(! - P°(i5j)) < for all i = 1,2 ; j = 1,2

For each n > N , set

Pn

/  ° ° \so that P G M_(L )' and n 2

_£
2

and

i  j j “ i
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Hence the equivalence is established.

4.512 Lemma

m
Let 1 _< p < 00 , (Xn ) C LP (A) and + X , X G L^(A) .

If {|Xn P  : n G  il} is uniformly integrable, then X^ -> X in LP

Proof.

We may suppose X -= 0 . Since {| X |P : n E M} is uniformly

integrablej we have: for all e > 0 there exists 6 > 0 s.t.

if A E A , IIAII ̂  <_ 1 and IIAll< 6 then I |Xn j PA) | < —  for 

all n . Let e > 0 and define

Then

P = e _ , (|X I )
n [ 0 , ( f ) 1 / p ) n '

llxnllp = * ( K | p P j  + < J> ( |x„ | p ( in 1 n P )) n

< f  + 4>(|xn | p ( i  -  Pn ) )

By hypothesis and 4.57 4>(l ~ P ) 0 . Hence there exists N ,

for all n > N : cf>(l — P ) < <5 Hence —  Y n

4>(|x |p(i - P )) < =r1 n 1 n 2

That is for all n > N IIX llP <—  n p 2 2 = £ , and the result follows
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4.5A Stopping Processes

We now give a discussion on stopping processes in the gauge 

space (M^(L ),<£) . Throughout the rest of this chapter we shall 

follow stopping in the sense given in the definition below.

4^514_

Let X = (X, ) C ^ (M (L )) be a process and T = (P ) be a
"0 c. S

M ^ L  )-valued stopping time. Then for each n E N set

Xx(n) X  X k  ( p k  -  V l >k=l —  —  ---
2 n  2n 2n

If the limit as n 00 of X , N exists in measure, we denote itx(n) 5
by X^ and call it the stopped operator. Likewise the stopped 

process [28,291 is defined as

m - Lim X , , \ x A t(n) t

for each t E R+

4^515_Remark

We note that if x = (x^) C ^ (l (£2,Z,P))) , is a right continuous 

process and -*• R+ is a stopping time relative to

(Q ,Z,P,R+ ,Za ) then
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(n )  = I
k=l 2 {J L >  T > k i }

2n 2n

- l A *k=l 2 {T < -^}
- X r „ k - l - i  IT < — },n

converges from above to T a.s. and hence in measure. Now

( /  \ =  y x , ( p -  p )
T n k=l k k k-1

2n 2n 2n

where . Since (x^) is right continuous and

x(n) 1 T (a.s.) it follows that x , \ -+ x in measure. It isT(n) T
also clear that X^T converges to X^^j. in measure. Thus

n
the definition of stopped operator in 4.514 is equivalent to that of 

the stopped random variables for a certain class of processes.

4^516__Definition

Just as for convergence in measure, we say that a process 

X -= (X^) C M (M^CL )) is continuous in measure at t 6 R+ if 

for all e > 0 there exists 6 > 0 such that

|t - s| < <5 =► X - X G N(e)T> S

The right continuity in measure is defined similarly.
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4.517 Theorem

Let X =  (Xt ) C M(M2(L°°)) . Then (Xt ) is (right) 

continuous in measure if and only if (X^(i,j)) is (right) 

continuous in measure for all i,j = 1,2 . (That is (X^(i,j)) 

have, in measure, (right) continuous paths.)

Proof.

This is similar to U.510.

4^518_Proposition

Let X = (X^) he a process in M (M2(L )) , which is right 

continuous in measure. Let 0.^ , 0 ^ : Q ■+ R+ be stopping times 

relative to (Q,E,P,Z^,R+ ) and define the stopping time t be

Ps say,

where ps = X ^ j  and ^  = X{o(o<s} . Then X exists and 
T

equals
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Proof.

x  / v = y X. A P 
T ( n )  _k_ _k_

2n 2n

(i,DA p*
2n 23 2n

\ (2’1)A ^ x k
2n 2n 2n

Xtt 10

)(2’l} x /

By 4.515 and 4.510, w e  have on t a k i n g  t h e  limit in m e a s u r e

X T

\ v 2>1’

X  (1,2)
CL

0

V 2,2)
4.6 Local Martingales

In this s e c t i o n  w e  shall develop a b r i e f  t h e o r y  of local  

m a r t i n g a l e s  in t h e  .gauge space (M^(L ),<£) and h ence construct 

s t o c hastic integrals w i t h  respect to them.
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4.61 Definition

For 1 <_ p <_ 00 a m-right continuous process X = (X^) in

is called a local-L^-martingale if and only if there exists

a sequence (t ) of M0(L )-valued stopping times such that a. n  d

T t 00 an d  for each n E N X , exists for all t E R + an d  n T A  tn
(X ) D+ is a right continuous L^-bounded martingale.T a t t E K n

The sequence (x ) is called a localising sequence for X .

By t t °o w e  m e a n  that for each t E R+ :J n

y  e > 0 3 N(e,t) e N : 4>(Pn(t)) < e

n > N ( s 9t) w h e r e  T (s) = P  (s)—  n n

It is clear that if X is a right continuous L^-bounded martingale
pthen it is a local L -martingale. Simply take

Tn(s) = =

s < n

s > n

as the localising sequence. Sufficient conditions implying the 

converse are given below:

4.62_ Proposition

Let X -= (X^) be a m-right continuous local L^-martingale with 

localising sequence (x ) given by
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p (s)
T j s )  =

o \

* n ( s ) J

where, for each n G iN , {p (s)} _ n+ and {q (s)} _ n+ fromn s G K  xi s G K
the spectral projections of stopping times R+ and

a° : ft -> R+ .n
If for each t > 0 we have that

{|XT t |P : n e N }

is uniformly integrable then (X^) is a L^-bounded martingale,

Proof.

From 1+. 518 we have

XT A  tn

X Q (2,1)
T A tn

which defines a L -bounded martingale for each n Since

x t 00 , we may assume that t 00 and t 00 a.s. (if n J n n
necessary we may take a subsequence.) Hence for a fixed t G R+ 

each X q (l,i) and X n (2,i) converges to X+ (l,i) and
T a t n

0 ,
a n . t

X (2,i) in measure as n + 00 , i = 1,2 . By I1.5IO,

m
X + +  X+T A t tn
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N o w  since { |X  |^ : n  G  N} is u n i f o r m l y  integrals, w e  ha v e
T A tn

X  + ^  X.T A t  tn
is It * b y  4.512

N o w  since t he c o n d i t i o n a l  expect a t i o n  is L  - c o n t i n u o u s , w e  h a v e

X  = LP  - L i m  X  =  i f  - L i m  M  (X . )S T a S S T A tn n
- TP

= M  (LP - L i m  X  . ) S T a  tn

= W f or all s < t

Henc e X  —  (X-j.) i s a  LP -mart i n g a l e . T h e  fact that X  is

LP - b o u n d e d  follows f r o m  l ooking at the entries of X T a t n

4.63 L e mma

Let (X (i ,j )) ^L^(f2,I,P) be local LP-martingales, m-right 

continuous, for i = 1,2 ; j = 1,2 . Then the Mp(l« )-valued 

process (X. ) given by

X t (l,l) X t (l,2)

X. =

X t (2,l) X t (2,2),

d efines a local L -martingale.
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Proof.

For each (i,j) , let (x^(i,j))n G  N be t l̂e seluence 

stopping times localising X (i,j) i = 1,2 ; j = 1,2 . Then
u

it is known that (t^(1,1) /\i^(2,l))n ^ localises both

(Xt (l,l)) and (Xt (2,l)) [191 • Whilst (t°(2,2) A  x°(l,2))Q g N

localises (X^.(2,2)) and (X^.(l.2)) . Setting

p„(t) = X
{T“(l,l)^T^(2,l)<t}

and

^ ( t )  == X
{x°(2,2)A x°(2,2)<t}

and defining

/ p n ( t )

xn ( t )  =

gives an increasing sequence of stopping times (t ) such that

T i  00 . Now from U. 518 we have: n

&
T°(lsl)A T°(2,l)At n 5 n 9 A

( 1 , 1 )  X

XT A t  n

T„(l,2)AT^(2,2)At
( 1 , 2 )

T°(l,l) A T ° ( 2 , l ) At n 5 n 5 A
(2,1) X

T„(l,2) A x„(2,2)At
(2 , 2 )

Each entry in the matrix above defines a L^-bounded martingale. Hence 

for each n £ N , (X ) is a L"-bounded martingale.T A t
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4.64 Lemma

Let X = (X ) be a m-right continuous L -bounded martingale 
"0

/ \ / 00 \and x be a stopping time such that x(s) E Mg(L )’ for all 

s E R+ . Then

( i )  |X , | 2 = |x| T A  t

Ui) <x>T A t  = <xT>t

where XT is the process (X )T a t

Proof.

First note that since t ( s )  E )' it must take the form:

/ : 0 \

t ( s )  =

where (pg) form a spectral resolution of a stopping time 

Tq : 9, -> R+ . For simplicity take

X, = i’or all t

2 . 2where (x ) and (y ) are L -bounded martingales in L 

From U.5l8 we have, for each t ,
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X

T a *

T°a t T0 a  t

The matrix entries form L -hounded martingales [19,28] , hence 
2

U  J  is L -hounded martingale. Now T A t

lxT a  t

(xy)
T°A t

T A t

=  X T a  t by [ 28]

The identity <X > = <X> is proved similarly using 4.35t T A t
and [28].

Lemma_4_165

Let (A ) he any m-right continuous process and t be a 

stopping time. Then

AT A t ( J -  Pt ) =  At d  -  V

for all t £ R+ , where I = (P„) .
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Proof.

A  , =  m  - L i m  A  \x A t x a  t (n)

Now,

[ 2 nt ]

AT A t ( n )  =  A_ k _ A P j L  +  A

2n 2n

(I - P  ) 
[ 2 \ ]  +1 [ 2nt]

(Where [ x] denotes t h e  integ r a l  part of x  .) H e n c e

= A n ( I  -  P+)  
[2nt ] + l  t

T a k i n g  the limit in m e a s u r e  gives

= At ( I - pt )

since (A ) is m - r i g h t  continuous.T>

In Lemma 1+.63 w e  showed h o w  to construct examples of non-

c o mmutative l o c a l  m a r t i n g a l e s  in th e  gauge space (M^(L ),0) . In

2th e  rest of this c h a p t e r  we shall lo o k  at local L - m a r t i n g a l e s  

con s t r u c t e d  as in L e m m a  U.63. Thus let (Xx (i,j)) h e  a.s. right
b

2 +
continuous local L -m arti n g a l e s  r e l a t i v e  to (£3,E,P,Z ,R )

w i t h  localising s e q uence (a^(i,j)) for each i = 1 ,2 ; 

defines a s e q uence of s t o p p i n g

j =
2

T h e n  = A n . . 
i>J=l

times

l o c a l i s i n g  all i =  1, 2  ; j = 1,2 [19,28]. N o w

s e tting to C t ) -= ~ n X  0 (x <t}
and d e f i n i n g
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0

T (t) n

p n ( t )

0 P (t)
n  j

P (t) n

from ^.518* Thus (X ,) is a L -bounded martingale.T A un
n 2the process, X = (X ,) is a L -bounded martingalesT a "Cn

n 6 N . That is:

0

X n (1,1)

0

X n (2,1)

n+1The process X is m-right continuous and using i+.5l8

(2,1)

0

X §+1t (1,2) 
n
0

Tn+i
X^0

na t

That is, 

for each

we get
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S i nce

H e n c e

x 0 (1,1)
T A tn

X  0 (2,1)

'n+1X  n (i,j) =  X
T° A  tn

0 0T A  T  ̂, A tn n + 1
(i,j) = X  A (i,j0 . T At n

/n+1
‘'T *  t  n

=  X T A tn

l. e.

T h u s ,

h e nce

T ,, n t
(X n + 1 ) =  x  n

T n n T
<(X n + 1 ) > = <X n >U U

<x n+1> =  <x n>,T A t tn

f r o m  L e m m a  and from l e mma k . 6 5 w e  have

[ 28] .
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(It.65a)<X n+1>.(I - P (t)) = <X n> (I - P (t))t n t n

+ Tn 1Nov for each n G N and t G R , <X is in M^(L ) (more

precisely in ,P)) ) and hence has a strongly dense

domain P(Tn ,t) say. Then

n  p ( x  , t )  n n 3 n=l

is a strongly dense domain [35l 5 which we denote by:

fl0 ( T , t ) ( k . 6 5 Z>)

Then

P0 (x,t) n u (i - Pn (t))JC
n=l

2 2is strongly dense since I - P (t) ■+ I as n -► 00 , and 3C = L ©  L 

Writing

p ( i , t )  -  P (T, t )  n ( u ( i  - Pn(t))K)
n=l

w e  define , for each t E R+ , on P(i,t) by

T
A  ip = <X n >t ip

whenever ip G (I - P (t))5C .

Then A, is well defined, for ip E  (I - P _(t))5C too. But t T n+1
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T
= <X n>t (i - Pn(t))i|) -by (It.65a)

= < x \ t^

A^ is clearly densely defined.

We observe that equivalently A, can be defined as
o

T
= Lim <X n> ip 

r r *30

for each ip E  V (T,t) .

The limit exists since there exists N E N such that 

E (I - P (t) W  and for all n >_ N

t.t tN n<X > ip = <X > \p
T> o

X
by (4.65a). Hence A^ip = <X ^ >^ip

4^66_Proposition

The A^ constructed above is a closed operator.

Proof.

Let (ip ) C D(t t) with ip -> ]p and A.\p -► v say. n —  n t n
each ip , there is r E N such that ip E  (I - P (t))?C . rn 9 n n rn
may take rR rn+i ^or a-^ n E N . Now

Tr
A.ip = <X n>,ip Y trn t n '

<X n+1>t 'i' = <x n+1>t ( l  -  Pn ( t ) ) i | i

F o r

We
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Hence for any K E N ,

r
(I - P K (t))<X n >t i|,n  ■* (I - PK (t))y

00

s i nce P^tt) ^  M p t L  ' w e  

Tr
<X n>t (l - PK (t))iJ)n -*■ (I - PK (t))y

Thus fo r  r^ _> K  , w e  get u s i n g  (4.65a)

<X >t (I - P K (t))^n +  (I - P K (t))y 

t KN o w  < X  >, is closed a nd (\b ) C  P ( t  ,t) hence t rn —  K

t tc
<X S t (l - P K (t))i|i =  (I - P K (t))y 

Now, t a k i n g  th e  limit as K  -+ 00 gives

V  = y

4.67_ Proposition

W e  have that

=  m  - Lim<X
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Proof.
Let ip E  V  (i,t) t h e n  (I - P K (t))i|; G  (I - PK (t))?C .

Hence

A t (l - P K (t))l|l =  <X ^ ( 1  - P K (t))l/i

Thus on a strongly dense domain

At (l - PK(t)) = <X K>t (l - PK(t)) (4.67a)

for all K £ N .

Now <f>(PK (t)) 0 as K -*■ 00 . Hence for all e > 0 , there

is Kq G N , such that for all K _> ^(P^t)) < .

Now (U.67a) implies; For each K > Kq there exists a 

projection G M^(L ) such that <f)(I - Q^) < —  and 

II(At (l - PK (t)) - <X ^ ( 1  - PK (t)))QKllm = 0 . That is 

l(At - <XTk>)(I - PK (t))AQKl„ = 0 since I - PK(t) € M2(LC°)' , 

and

4>(X - (I - p ^ C t )) A  Qk ) < 4>(PK (t)) + <(.(1 - Q jK'

^ £ £ _

2 2 £

Hence for all K  > <X ^  G N(e) .

4^68 p r o p o s i t i o n

is m- r i g h t  continuous at each t G  R
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Proof.
T

B y  c o n s t r u c t i o n  <X > is m - r i g h t  c o n tinuous at each t .

Let t E  R+ b e  f i x e d  and e > 0 b e  given. T h e n  t h e r e  exists N
c

such that (f)(P^(t + t^)) < —  , t^ > 0 . S i nce < X  >̂ _ is m-r i g h t

c o ntinuous, t h e r e  is a 6 > 0 such that s - t < 6 ( s > t )

implies

T TN N<X > - <X > G  N ©t s 3

Let A = t^ a  6 , t h e n  for t < s < A + t t h e r e  is a p r o j e c t i o n

R E  M _ ( L  ) such that d)(l - R  ) < e/3 ands 2 s

II (<X N > - <X N > )R II <t s s 00 3

A l s o  (^.67a) gives us a P r o j e c t i o n  such that (f>(I - Q ) <

and

ll(As - <X N > s )(l - PN (s))Qs lleo =  0

N o w  set Z =  Q A  (I - P„(s)) a R  s o  that < f > ( l - Z ) < e  and
S S 1M S S

(A, - A  )Z II t s s 00

T T T
< II (A, - <X N > )Z_ II + II (<X N > - <X N > )Z
—  t  t  S 00 t  3 S

+ II (<X 'N> - A  )Z ||
S S S <

£
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Thus w e  h a v e  s h own that for any £ > 0 , t h e r e  exists a

A > 0 , such that for t < s < A + t , A. - A E N(e ) . That is"C s
is m - r i g h t  continuous.

4^69__P r o p o s i t i o n

W e  have that

T
A = <X n>

W

for all n G  N .

P r o o f .

First w e  o b s e r v e  that if x : ft -*■ R+ is a stopp i n g  time and 

xn are appro x i m a t i o n s  of x as g i v e n  in R e m a r k  4.515 then

X{T <t} '* X{Kt} in measure- Hown

A (I - P (t)) = A (I - P (t)) by 1*.65, n u ii
T A *  n

x
=  <X n >t (l - P n ( t ) ) b y  4.67a

Now consider

A ( l - P n+1(t))X * t

= A {(I - Pn (t)) + (Pn (t) - P +1(t))}
xnA *

= <X >t (I - Pn(t)) * A t (Pn (t) - Pn+1(t))
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Now,

K  + (pn(t) - p ^ C t ) )T A t n n+1n
(U.69a)

m ~ Lim A t(ja)(?n M  ~ PQ+1(t))

-  m
[2 t] , , rpm 1

- L i m  y A, (P (— ) - P (— ) + A (I-P (■--— )A  k n „m n 2m [2mt]+1 n ^nr*30 K=1 —  2
2m

Now

X (Pn(t) - Pn+l (t))

mr pmtl
p„ ( ■ J ) = X r?m , + Xr ti
n 2m {x < - ^ 4  lTn tJ^

n g11

Hence (U.69a) equals

[ 2nt l
"  -  L im  l  ( A k (APn (— ) )  (  1

nr*30 K=1 —  2 - Pn+l (t))

Now, using the fact that P ^(t) G Mg(L )’ and (U.6Ta) we get 

that (J+.69a) is

[ 2mt] T . 1 , N
- Lim( J  <X > k APn( - ) )  (I - Pn+1(t))m

nr*30 K=1 —  2
2m

T T
= m - Lim«X - <X 'n+1>i^ M (I-Pn(I^L))}(I - Pn+1(t))

^m
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<X n + 1 > T t ^ 1 “ • <X n+1>T t (I - P n (t ))(I-P + 1 (t))T a t n+1 T a t n n+1n n

b y  4.65

=  < X \ (I - Pn +l (t)) <X n > (I - P (t))t n

H e nce

A  (I - P n + 1 (t)) =  < x \ ( l  - P n + 1 (t))
T A t 
n

Thus for all m  > n :

A  (I - P  (t)) = <X n > ^  
m tT a t

n

N o w  I - P (t) t I as i n - * 0 0 , h e n c e  on a dense doma i n  m

A  =  <X n >
T A t n

4.69 T h e o r e m

1 ,2 . 2We have that - |X | - A^ defines a l o c a l  L - m a r t i n g a l e

Proof.

\  . t  =  lx 1 ~ A  tn T a "t T a "t
n n

=  IX |2 - <X n >1
T A t 
n

b y  4.64 and 4.69. Since X  is a L - b o unded m a r t i n g a l e  w i t h
T a  t n
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T
increasing process <X > , the result follows as in 4.35.

4 ^6 1 0__P ro E P E i1- ! 0 !}

We have that is an increasing process. That is on a

dense domain

A, > A t —  s if t > s

Proof.

P(t ,s ) O P(x,t) is strongly dense domain [35l • Let ip

belong to this common domain, then there is a if G N such that \p

is in (I - P (t))5C and hence in (I - P (s))?C 5 so that xi In

TwA t il> = <X >tip 

t nA ip = <X ip s s

T TN NBut <X > < <X > on the common domain, hence result,s —  t 9

4^611__Remark

We note that (A ) does not depend on the sequence of stopping

times localising X = (X ) . If (a ) £  M_(L )’ , is anotherz n d

sequence localising X then from our previous analysis:

X
Tn A A t Tn A t

i . e . an A t n A t
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Hence

< x \ a a t n

a
<x n> t

by k . 6 k . Thus,

t a
<X n> (I-P (t)VQ (t)) = <X n> (I-P (t)v Q (t)) u ii n o n n

and

(P0(x,t) r)P0(<j,t)) n ( u (i-pn( t ) v Q ^ t ) ) ^
n=l

gives a dense domain on which

<xTn>.
a

<x n>.

Thus we have shown:

4J312_Theorem (Doob-Meyer decomposition)

Let X = (X^) continuous local martingale whose
2entries are local L -martingales. Then there exists a process 

(A ) £  M(Mg(L )) such that

(i) A > A if t > st —  s

(ii) | x J 2 - A t is a local martingale

(Hi) At is m-right continuous
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4^613__Proposition

Let (X^) be a local L - m a r t i n g a l e  as above. If

2Su p  (J)(A, ) < 00 , then X  is a L - b o u n d e d  martingale,  
t t

2

Proof.
2

S i n c e  |x | - A  is centred, w e  have:
T A  t T a  tn

IIX K  = cJ)(A ) < <j)(A ) <
XnA t XnA t

since A, is increasing.
U

+ ?Thus for each t E  R {X , : n E  N) is L  -bounded.

The result n o w  follows f r o m  k .512.

4.7 Stochastic Integrals with respect to a Local Martingale

In this section w e  shall d e f i n e  the stochastic integral fo r  an

2i n t e g r a t o r  w h i c h  is a local L -martingale. Thus, let X  =  (X ) be
2  . .a m - r i g h t  continuous local L - m a r t i n g a l e  as d e s c r i b e d  m  the last 

section. We shall construct s t o c h a s t i c  integrals of the form

t■
F dX J s s

0

w h e r e  (F ) is a process, w h o s e  entries are b o u n d e d  pre d i c t a b l e

processes. We first state a resu l t  c o n c e r n i n g  stochastic i n tegrals

2w i t h  re s p e c t  to a L -bounded m a r t i n g a l e .

4^71__

2Let X  be a L -boun d e d  m a r t i n g a l e  and t be a stopping time
CO

such that t (s ) E  M 0 (L )' for al l  s . Let (F ) be a process asd s
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described abo v e . Then

F dX s T x s

T A t

F dX s s

Proof.

In Section k . k we showed that

F dX = (s s F (i,k)dX (k,j)). ■S £> ±

From It.518 and [28] the result follows.

4.72 Remark

In the last proposition, the restriction t (s ) G Mg(L )f is 

not necessary. In fact t (s ) can take the form

where (P ) and (.Q ) form the spectral families of stopping times s s

V ^ o  : a +  R+ •
2Now let X = (X^) be a m-right continuous local L -martingale

t h e n  for each n E  N 

stochastic integral:

2
(X ,) is a L -bounded martingale and theT A tn

t

F dX s T A s
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exists for a class of integrands described at the beginning of

this section. For each n G N , let

Y (t) =n F dX s T a s n

Then Y^(t) E M^(L ) hence has a strongly dense domain P(t,n) 

For m < n :

Y ( t _ a  t )n m F dXs T A T A s 
n A m

by U.71

As in Section k . 6 , we get

Y ( T a  t ) =n m'' F dX s T A s mA

= m

That is for all m < n

Y (t  A t) n m Y (t) m

Hence

Y (t)(l-P (t)) = Y (t)(l-P Ct)) by U.65 ... (U.72a)n m m m J

Let V{t ) = H P(t,n) 
n=l

and ?Cn -(l - Pn (t))3f
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00
For ijj E  u J C ^ r i  V ( t )  we define 

n=l

Yt ip = Lim Y (t)ij;
n-x»

This limit exists since there is a if G M such that \p E  I  - P (t) 

and hence for n _> N , = Y^ (t ) ip from (4.72a). Hence

Y±ip = YN ( t ) ^  .

4^73_Proposition

We have that

m - Lim Y (t) = Y+ n t

Proof,

For all n E N

Y (t)Cl-P (t)) = Y (i-P (t))n n t  n

Given £ > 0 , there exists N : for all n > N , <f)(P (t)) < £

and the result follows.

4.74 Definition

For each t E R , we define:

Yt £
F dX = m - Lim s s F dX

s  V  3
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t
The limit / F dX is called the stochastic integral of 

°  3 S 2■with resnect to the local L -martingale (X ) .s

(Fs )

4.J75_Remark

The definition of (Y^) is independent of the localising
CO

sequence Tn(s) *= M^(L )f . This assertion follows as in 4.6ll.

4.J76__Theorem

For each t , Y^ is m-right continuous. That is for all

e > 0 there exists 6 > 0 such that t < s < 6 + t then

X - X G N(e) ."t s

Proof.

This follows just as in 4.68 after observing that Y (t) is 

m-right continuous at each t G R+ .

4.77 Theorem

Let t be a stopping time of the form

t (s )
Qr

where (P„) and (Q ) form the spectral families of stopping times 

Tq sOq : n ->■ R+ . Then

T A t
F dX s s F dX ,S T a t
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Proof.

The sequence (t ) localises X^ , , hence (Xt , ) is a n T A U T T,
2local L -martingale. Thus

F dX = m - LimS T A t F dXS T A T A S A n''

J a *
= m - Lim F axS T A S n

by it.71

N o w

F dX (I-P (t)) =s s n F dX ( i-P  (t))s T A s nn

hence

F dX (I-P (t)) =s s n
0

F dX ( I-P  (t))s Tn A s n

for all r E [0,t] .

That is

Yr(l-Pn(t)) = Yn(r)(l-Pn(t)) for all r G [0,t]

Now consider the stopping time T ^ t  ; then

(YT A t(m) - \(T-t(m)))(l-Pn(t))

Y m (I 
[t2ml+l

.m

P jn )U-Pn(t)) 
[t2“l n

_ Y ( t t 2 . -  p ) ( i - p „ ( t ) )
n 2m [t2iUl

^m
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As m -> 00 , left hand side converges to

(rx A t - rn(xA t))(i - p n(t))

in measure. W h i l s t  t he right h a n d  side converges to

• Y (I-P )(I-P (t)) - Y (t)(I-P.)(I-P (t))z u n n z n

= (Yt - Yn(t))(I - Pn (t))(l - Pt ) = 0

Thus w e  h a v e ,

YT A t ( l - V t ) )  =  V T - t ) ( I - Pn ( t ) )

T a k i n g  the limit in m e a s u r e  gives the result.

4^78__T h e o r e m  (Some properties of . )

(i) The stoc h a s t i c  integral w i t h  r e s p e c t  to a local
2 .L - m a r t i n g a l e  is linear.

t  ̂ 2
(ii) Y , =  J F  dX is a l o cal L -martingale.

o

P r o o f .

(i) Let F and G be processes w h o s e  entries are b o u n d e d  

p r e d i c t a b l e  processes. Then
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t
f  axs s hi - Lim 

ir*»

t

J
0

f ax
S Tn »s

t
G dXJ s  :

0

m - Lim 
n-*»

t
G ax s T A n

Thus

t

f  ax +J s s 
0

t

g axs s
0

= m - Lim f  axs
0 Tn 

t

+ m - Lim g axs

= m - Lim (F + G )dXs s

T A S
n

by h . k 2

0 T n A 3

t

J
0

(F + g )axs s

(ii) From ^.77,

f axs s

t
r

o

f axs a  s

= YK(t)

which is a L -boundea martingale.
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