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ABSTRACT

In this thesis, we consider response problems in Multiphoton 

Physics and Quantum Optics, partitioning the work into two main 

sections. Firstly, in chapters one to four, we study aspects of the 

photoexcitation of both a quasicontinuum (QC) of atomic or molecular 

levels and a structured continuum. Chapter five comprises the second 

section, and deals with quantum amplification.

In chapter one we review previous studies of the Bixon-Jortner 

model of a quasicontinuum, by way of setting the scene for the 

following three chapters.

Chapter two examines the interaction dynamics of a system in 

which a ground state is coupled to a QC of energy levels and to a true 

continuum, as a generalisation of the work in the previous chapter.

Chapter three is concerned with the photoexcitation of a 

structured continuum of states from a single ground state. We compare 

and contrast the results obtained with this model, with those of QC 

excitation.

In chapter four, we consider a system in which a ground state is 

coupled to a general QC of levels and to a true continuum. In the 

long-time limit the true continuum spectrum can exhibit zeros, the 

positions of which depend only on the energies of the QC levels. The 

initial conditions determine the existence of these zeros. We 

describe this phenomenon by studying dressed states for the complete 

system and in particular derive dressed states which are ground-state 

independent. We use these to explain the locations of the zeros and
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their dependence on the initial conditions.

Chapter five considers the derivation of some quantum 

statistical results for the 'inverted' harmonic oscillator, (one with 

negative kinetic and potential energies), which are equivalent to ones 

that exist for the more familiar simple harmonic oscillator. It is an 

object that is frequently employed in modelling amplifiers in Quantum 

Optics, but also arises in statistical and quantum mechanics and is of 

interest in its own right.

We summarise and discuss our findings in chapter six.
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CHAPTER ONE
INTRODUCTION

We present below a study of the photoexcitation of a dense set or 

'quasicontinuum' of states, by a pulse which is suddenly turned on, 

concentrating on population dynamics. The practical use of such 

physics [Zewail & Letokhov, 1980] relates to an understanding of 

problems in laser-induced chemical processes, such as the infrared 

laser-driven dissociation of polyatomic molecules in photochemistry 

which may have implications for laser isotope separation, laser 

purification of substances, as well as photobiochemistry and 

photomedicine. Physical chemists employ quasicontinuua in their 

modelling of vibrational levels in small polyatomic molecules.

The decay of a single excited quantum state into a background of 

states is a recurring theme in nature. Thus we now give a brief 

overview of the more important contributions to this field, relevant 

to our particular investigations.

The initial studies of the decay of an isolated, unstable 

initially populated energy level into an initially unoccupied 

background of energy levels, were undertaken by M. Bixon and J. 

Jortner [Bixon & Jortner, 1968] . They employed the model of 0. K. 

Rice [Rice, 1933] in their study of 'Radiationless Transitions', the 

reduction in the radiative lifetime of excited levels in a manifold of 

densely-spaced indistinguishable levels, caused by interference 

effects and the subsequent reduction in the emission yield per typical
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intramolecular recurrence time [Bixon et al., 1969b]. The 

Bixon-Jortner model (see Fig. 1.1) adopts the assumptions of 

equidistant quasicontinuum (QC) level spacing and equal strength 

coupling of the ground state to each QC level.

Although there are inherent difficulties in the mathematical 

modeling of any physical situation, and simplifications of the 

extraordinarily complex energy-level configurations of polyatomic 

molecules must be made, there do arise in polyatomic molecules 

relatively isolated discrete states coupled with sets of relatively 

densely packed yet nevertheless discrete states. In turn, the ground 

state/QC system is assumed to form an isolated group of molecular 

states, well separated from other molecular states. Moreover, the 

dipole selection rules often allow access to only a small fraction of 

the available states.

Yet this situation appears elsewhere, particularly in the limit
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of a continuum of background states. For example, the spontaneous 

emission of a photon [Ackerhalt et al. , 1973; Loudon, 1985], by say, 

an excited atom, where the initial state corresponds to the excited 

atoms and no photons, and the final state is the de-excited atom and 

photons of differing direction, polarization and energy. Then there 

is 'Autoionisation' [Knight, 1984] and ref. therein, of great 

importance in Quantum Optics where the electrostatic interaction of 

several excited electrons in an atom, whose total energy is larger 

than the ionization limit of the atom, cause the formation of an ion 

and an electron.

If we imagine an initially unstable energy level coupled to each 

of the energy levels comprising the QC, we have the Bixon- Jortner 

model. Davies employed this model in his study of the apparent 

'asymmetry of time', [Davies, 1977]. For although the laws at the 

quantum level are time reversal invariant (with the exception of 

neutral K-meson decay), processes are seen to be asymmetric in time or 

with respect to time because of the boundary conditions involved; 

initial conditions introduce the concept of a 'memory' into the 

evolution of the system.

Stey and Gibberd [1972] employed it, among other models, in 

studying the decay of the initial state in the limit of a background 

continuum of states. They noted the occurrence of quasi-periodicities 

in the time-evolution of the ground state. Lefebvre and Savolainen 

[1974] solved this and a generalised model, whereby the states in the 

QC are coupled to a true continuum, in addition to the couplings of 

the Bixon-Jortner model. Eberly et al. [1982], and Yeh et al. [1982] 

have given an 'interrupted coarse-grained theory' of QC
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photoexcitation. Their perturbative analysis displayed recurrences, 

quasiperiodicities, and piecewise exponential decay for the ground 

state evolution. Galbraith et al. [1983] among others applied the 

model to problems of interest in multiphoton dynamics.

Milonni et al. [1982] in their pedagogic account, discussed how 

quantum-mechanical spreading of probability over the QC states of the 

system is mainly restricted to those closest in energy to the initial 

state in the Bixon-Jortner model. They prove numerically that the 

population never gets very far from the initial state. They also 

showed how under certain (slowly varying envelope) assumptions, the 

model has a classical analogue of a harmonic oscillator coupled 

equally to a large set of background harmonic oscillators. (Any 

vibrational state in a molecule may be written in terms of harmonic 

oscillator energy eigenstates |n^,...,n^>, N being the number of 

vibrational degrees freedom.)

A further analogy is the retarded interaction of two dipole 

oscillators as derived by Milonni and Knight [1976]. There is 

remarkable similarity between the final solutions of this and the 

Bixon-Jortner model. In this respect, we note that the N+l level 

Bixon-Jortner system is actually solved, essentially by considering 

only one of the QC levels explicitly, that is a two- level system.

Makarov et al., [1978] provided solutions for the coherent- 

excitation dynamics of a ground state linked by dipole transitions 

into a set of equispaced levels whose oscillator strengths follow a 

Lorentzian contour. They found a non-exponential, segmented time 

dependence.



13

Kyrola [1984] has used a perturbative approach to show that in 

the weak-field limit, where the coupling constant is much smaller than 

the QC level spacing, that the recurrence dynamics in the 

Bixon-Jortner model resembles few-level dynamics. Kyrola and Eberly 

[1985] give a detailed study of a model wherein two discrete levels 

are coupled to a QC.

Javanainen and Kyrola [1985] show that for the long-time averages 

of populations in a discrete state/(flat) QC system, regardless of 

whether the QC is truncated or otherwise, the long-time and continuum 

limits are equivalent, if the coupling strength is much greater in 

magnitude than the level spacing. This is not surprising, since for 

very small level spacing, the QC 'looks' like a true continuum.

Throughout this work, we assume a suddenly switched-on 

interaction. Kyrola has given [1986a] an adiabatic approximation 

treatment of certain QC interactions. For a slower turn-on, the 

initial state population undergoes periodic oscillations. As field 

strength is increased, the population recurrences of the sudden 

approximation disappear, and eventually adiabatic population inversion 

becomes possible. More recently, Kyrola and Lindberg [1987] have 

shown how a unitary transformation can recast an arbitrary N-level 

Hamiltonian matrix in serial or parallel form. These latter are 

simpler in that the number of possible couplings is the smallest, and 

that their properties are relatively well-known. A supplementary 

historical survey is given in a paper by Shore [1983].

Several of the above studies have shown that the ground state 

population, instead of decreasing monotonically has reversals, during 

which part of the excited population returns to the ground level, i.e.
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'recurrence of ground state probability.' Moreover, in the limit as 

the level spacing tends to zero, the recurrence period, or Poincare 

Cycle [Davies, 1977; Gibbs, 1960; Wax, 1954] associated with the 

population dynamics gets ever larger, and becomes infinite when the QC 

becomes a true continuum, whence we obtain irreversible decay. 

Strictly we can only speak of a Poincare Cycle for a system, if the 

number of levels is finite.

Our model, to be solved below, the 'Extended Bixon-Jortner model' 

provides an extension of previous work on the subject [Radmore et al. , 

1987], in that we include the effects of decay in our model. The 

irreversible loss corresponds to photoionisation. Here, the initially 

occupied energy-level is connected not only to a QC of states but also 

to a true continuum. The discreteness of the distribution of energy 

levels is a hallmark of a quantal system. At the same time, classical 

physics presupposes a continuous energy spectrum for a system, 

possibly bounded only by extreme values peculiar to a specific model. 

Using our scheme we can study the transition between the two domains 

in a particular context. We thereby hope to examine the competition 

for population between the QC and the true continuum. After producing 

a closed form expression for the time evolution of the ground 

(initially occupied) level, we discuss the solutions using graphical 

output and limiting cases.
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CHAPTER TWO
THE EXTENDED BIXON-JORTNER MODEL

2.1 Introduction

In this chapter, we extend the traditional Bixon-Jortner model by 

the inclusion of a genuine continuum, whose states are labelled jf>, 

coupled only to state |0> by a second electromagnetic field.. We 

anticipate that the irreversible loss to the true continuum will damp 

out at rate 7 all QC coherences and modify the regular revivals and 

related features noted previously. We will analyze the dynamics of 

this model paying particular attention to the population in the 

initial state as a function of coupling strength, decay rate and 

detunings. We employ Schrodinger equations of motion for each state, 

working in the Interaction Picture, and use a Markov approximation for 

the decay channel.

2.2 The Model.
The scheme employed is pictured in Figure 2.1. Initially, at 

time t - 0, all of the population lies in the ground level, or initial 

state |0>, with associated probability amplitude cQ(t). The

background states of the QC are all coupled to a single, initially 

excited quantum state, but not directly to each other. There is an 

incoherent loss which takes the form of an induced 'decay' rate 7, due 

to photoionisation or dissociation to a true continuum. Note that we
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require a real continuum in order to use Markov Theory.

Figure 2.1. The Extended Bixon-Jortner Model.

Our primary task is to derive the population dynamics by finding 

an evolution equation for the the probability amplitude, and hence 

probability, of being in state |0>. The Interaction Picture is 

employed.

As noted above, we have an element of competition in our model, 

in that both the QC and the true continuum are vying for the 

population that was initially in the isolated discrete state |0>. A 

coherent electromagnetic field of frequency u> drives the |0> -*■ QC 

transition, while a laser field of frequency drives the 10> -*• 

continuum, {|f>} transition.
A

The explicit form of the interaction Hamiltonian V is

V -e
m p.A
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where the vector potential is A - A & + , with

2 w.V k

A ik ra e(k ) e + hermitian conjugateQ, “A

and similarly for A^. Here V is the quantisation volume, c(k^) is a 

polarization unit vector, k.e(k^) — 0 (A - 1,2), and /i - 1 — e .

We take the laser radiation fields to be quantised in number 

states |n>. If the initial population is all in |0>, and if we permit 

only energy-conserving transitions, we have that the essential states 

for the problem are

l°> - |E0> |na , nj>

|f> - lE^ |na, - 1>

" ÊQC> K  - 1 - V

where the suffix 'QC' labels the quasicontinuum of states. If the 

detunings are small, then these are almost degenerate.
A  A _J-

The laser fields, = e..(a - a ) (i — a,b), assumed

monochromatic have constant amplitudes detuned from resonance

frequencies wn “ w0 (n - 1,...,N) by detunings for an

N-level QC.

The wavefunction for the system is, in the Interaction Picture,

i
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c (t) e ±E0 t//n  i/> (r) + ) c_(t)o o — [_ f
f

N
. \  \ ~iE t/^ . , V+ ) c (t) e n ib (r)/_ n n -
n=l

-iE,.t/7z e f ' V>f(£)

where V»Q = |0>, ipf  - |f>, - |n>.

We have also adopted the rotating-wave approximation 

(R. W. A) for the time-dependent couplings, by ignoring all terms 

containing

+i(w j. + w. )t +i(w + u> )t- of b ' on a'e and e

This is equivalent to requiring energy conservation. For near

resonant excitation co ^ w and these terms oscillate aton a
approximately twice u> . This gives rise to a small shift [Bloch &cl
Siegert, 1940], and may be thought of as a small amplitude modulation 

superimposed on the more slowly oscillating term e ^ Won wa^.

We employ the Extended Bixon-Jortner Model with the following 

assumptions:-

(a) The QC states are equally spaced in energy,(uniform QC), with the 

level spacing given by A = (p) \  where p is the density of QC states.

(b) The QC states have constant and equal coupling (matrix elements)

to the initially occupied state, (flat QC), where the coupling

constants and widths are independent of the QC level index. Thus, for

example, V s<o|vln> = V s = v  » for all n. on 11 no
(c) The QC states are doubly infinite in number. Thus by extending
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the states to positive and negative detunings, we can obtain closed

form analytic expressions for cQ(t) and c^(t).

Throughout, the laser field excitation, between the discrete

levels is assumed coherent, (phase-preserving), and the field turn-on

is assumed sudden. We could also assume, for simplicity of

computation, that all matrix elements are real. These features of

preservation of coherence and reality (and positivity) of transition

dipole moments have been proved in the not dissimilar model of Shore

[1983] , who has the ground state coupled by a different laser

interaction with each QC level. Furthermore, we define A to be ano
energy-level detuning of the initial state from the closest background

state above the initial state. So, when A - 0, one of the closest QCo
levels is exactly resonant with |0>. This has the effect of producing

tha detuning of An — Aq + nA for the n QC state.

2.3 Ground-State Population
Our method of solution will be to use Laplace Transforms. We may 

suppose that there exists a 'f} ' such that,

c(t) dt

is defined (that is exists), with Re(s) > /?, where (3 is real.

More precisely, c(s) is holomorphic in this region if c(t) is 

piecewise continuous, and c(t) e p is bounded as t -*■ Also, 

s ~ u + i v , u > / ? .

In Appendix I, we outline a derivation of the general equations
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of motion, from which we arrive at the following dynamical equations 

for our problem

i c (t) - ^ V e *^Wno c (t)o' / o n  n v '
n

+ | d»f Vof e"i("fo "b)C cf(t) (2.3.1)

1 cf(t) - VfQ el(wfo “ “b )t: CQ (t) (2.3.2)

i cn(t) - Vno ei(“no “ c<j(t) (2.3.3)

We solve these equations by first eliminating the true continuum 

by writing the second of the equations in integral form as

cf(t) - cf(0) - i J Vfo co(f) e^f*' dt' (2.3.4)

where the continuum detuning 

initial conditions

ax . We will take for our o

c (t-0) - 1, c (t=0) =* 0 - c-(t-O) o n f (2.3.5)

This formal expression for the continuum amplitude c^(t) is then 

substituted into equation (2.3.1), to give
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i c  = V ) c (t) e ^ n t o l_ n
n

-i | dwf | VQf | 2 J cQ(t') dt' (2.3.6)

where the QG detuning A = to - t o  .n no a
Next we assume that the continuum states { | f>> are dense, and 

have matrix elements which vary sufficiently slowly with so

that we may invoke the Markov approximation. This process is dealt 

with in appendix II. We find as a result, that

i c = V ) c (t) e-1^  - i T c (t) (2.3.7)o l_ n o
n

where the complex decay rate T is given by

r = 7r 6 (t<)fo - «.b) - <?
tofo - w,

= 7 + i Aco . (2.3.8)o

The first term 7 represents the photoexcitation rate from |0> to

the continuum; the second (principal part) a Stark shift of the

initial state due to the electromagnetic field. The coupled set of

equations of motion for the amplitudes of the discrete states |0> and

|n> become, on using the substitution, b = c e 1̂ nt ,1 > 0  n n
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i c  — V ) b - i T c  (2.3.9)o {_ n o x '
n

i b  - A b + V c (2.3.10)n n n o

Solving these by Laplace Transforms, gives for the Laplace transform 

of the initial state amplitude,

3o(s) -

Following Davies [1977] , we take the eigenenergy of the n ^  QC 

state to lie in the range

E - L < E < E + L (2.3.12)o n o

-1
s + r + v (2.3.11)

n s + i An

where,

V <* L < E . (2.3.13)on o

The last inequalities mean that we may ignore contributions from E^ 

for which |E - E I > L.

(In all of these inequalities, we can absorb into Eq .)

We conveniently divide the energy range from Eq - L to Eq + L 

into 2N + 1 levels with equal spacing A, so as to use the 

equally-spaced level property of the Bixon-Jortner QC. Let us, for

the present, take the form of the detuning to be
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A — n A n (2.3.14)

where n - -N,-N+l,...,0,...,N-1,N.
2LSo there are 2N+1 - —  states in this truncated QC.
A

Later, we rectify this to include a non-vanishing Aq , as in 

Figures 1.1, and 2.1, but for now, we assume the initial state |0> to 

be on resonance with the QC level |n-0>.

1/A represents the density of states, for as N increases, A 

decreases. Condition (2.3.13) causes us to extend the range to 

infinity, to a good approximation.

Then,

5 (s + inA)
n— oo

N
Lim ) (s + inA)
N-co Ln— N

“ — Coth 
A

TC S
A

(2.3.15)

This is proved in Appendix Three. 

Therefore,

r TT2 '
7T Vs + T + Coth 7T S
A _ A _

(2.3.16)

It can be shown [Bocchieri & Loinger, 1957] for a closed system 

of bound states with discrete energy eigenvalues, for example the
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ordinary N-level Bixon-Jortner Model with finite N, that the amplitude 

will display Poincare Cycles [Gibbs, I960].

Hogg and Huberman [1983] have shown that a bounded quantal system 

with a time-periodic Hamiltonian, will reassemble itself infinitely 

often in the course of time. For a periodically kicked rotator, 

quantum interference effects suppress diffusive flow through phase 

space, leaving primarily quasiperiodic (regular) motion. Peres [1982] 

concludes that the recurrence argument against quantum chaos is of no 

practical concern unless there are a small number of incommensurate 

energy levels, and that recurrence times may simply be exceedingly 

large.

Indeed, this may be seen explicitly in the simple case of just 

two identical coupled systems (|0> an |n-0>, say) the behaviour of 

which is recovered from (2.3.16) by taking the limit A -*• «, if we 

ignore the effect of the continuum |[f}>.

In this limit,

oo(s) - Vs + r + —  
s

-1

(s - A) (s - B)

where,

A, B -r - ( r2 - 4 v2)1/2
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Therefore,

cQ(t)
At BtA e - B e
(A - B)

that is

co(t) -
-rt/2e / 
ft

ft cos ft t 
2

- T sin ft t 
2

Hence we obtain the familiar Rabi Oscillations between two levels,
2 2 1/2with Rabi Frequency ft given by ft - ( T - 4 V ) ' . In the absence of

the true continuum, c (t) — cos (|V It). As more and more states areo 1 on1
added, the density of states (1/A) increases and the Poincare cycles 

become larger. The opposite limit A -► 0, corresponds to N ■> «, that 

is an open system. In that case,

co(s) - s + r + 7T V -1

from which it follows that the probability of occupation of level |0> 
is

co (t) 2 -(r + 7t v2/A)t 2

_ e-(2r + 2tt V2/A)t

This result is the usual time asymmetric exponential decay of an
2 -1excited state, with the half-life (2T + 2n V /A) . In this limit of

an open system, the probability of the excitation returning to |0> in 

a Poincare fluctuation tends to zero. The Poincare cycles are just
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the Rabi nutational oscillations. Hence, the Poincare cycles die away 

too.

The problem remains to invert the Laplace Transform of equation 

(2.3.16). Let us redefine certain terms, for ease of manipulation

2r 7T
g ---•

A

Therefore,

co(s> s + r + r2 1 + e-2gs

1 - e-2gs

- (1 - e-2gs) -----------------------------------
(s + T) (1 - e“2gs) + r2 (1 + e-2gS)

(1 - e'2gs) 1 2s + r - r -2gs
(s + r + r2)

L — 2s + r + r
6

Given that we may take the real part of the Bromwich contour,

°o(t) 27ri
eSt c (s) ds, o

Br

to be as large (that is, as positive) as we wish, we choose it so that

r
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(s + T - r2) e-2gs 
(s + r + r2)

< 1

which in fact holds if Re(s) >0.

We can then legitimately use the expression

(1 - x) 1 - ^ xm (-1 < x < 1)
m-0

on the contour. Thus,

Thus,

c0<s>
(1 - e-2gs)_ \ (s + r - r )

0 L  o

2.m -2mgs

(s + r + r2) m-0 (s + r + r2)m

(1 - e-2®s) \  (s + r - r2)m 
L o .

(s + T + r2) m-1 (s + T + r2)m+^

Evaluating further,

co(s)
/n -2gsN v / . t. 2. m -2mgs(1 - e ° ) \ (s + T - r ) e &

(s + T + r2) m—1 (s + T + r^)m+^

+ e-2®s Y 

m-1

(s + T - r2)m 

(s + r + r2)m+1

e-2mgs

-2mgs
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<x - *~2gS> + (s + r  - r2) 5 isjLLr ̂  ̂
(s + r + r2) m-1 (s + r + r2)m+1

2 V ( S + r - r 2 ^ 1 e"2mgs - (s + r + r ) ' i s_ +_A--- ------ e
m-2 (s + T + r2)111+1

^  - e' 2SS> + (s + r - r2) 5 <* + r - r2)*'1 -_2mSS 
(s + r + r2) m-1 (s + r + r2)111+1

- (s + T + r2) \ (s + T - r2)*'1 e-2mgs +
-2gs

t „ . 2.m+lm—1 (s + r + r ) (s + T + r )

(1 - e~2Ss ) + e~2gs

(s + r + r2) (s + r + r2)

- 2r ^ (s +
_ 2. m-1 -2mgsT - r ) e &

t „ , 2.m+lm-1 (s + T + r )

- 2r2 V ( , + r - r2)m-1 e-2mgs

L(S + r + r2) m—1 (s + r + r2)m+1

Now we invert this expression.

Using L. T -1

(s + 8) n+l

n - S t  t e—  , we find that the first
n!

term is -(r + r2)te Then, using the formula [Magnus et al., 1949]
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L. T. [eAt t2" L^^Cat)] - + n + <? ~ * ~ »>"
L " J n! (s - A)n+ 2" +1

where Re(2/i + 1) >0, and L is a Generalised Laguerre Polynomial.

Taking n - m - 1, pt - 1/2, A - - ( r  + r2) , a - 2r2, we have

L. T.
/ i n 2. in 1 (s + r - r )
/ i -n i 2.m+1(s + T + r )

(m - 1) !
T(m + 1)!

_(r + r2>t ^  2t e u  + r )Z L .(2r t) n-1

Therefore,

c0(t) - ( r  + r ) t

-  5 2_ L
n

(1 )
T L - n n-1

n-1

92 r Tn e“ (r + r )Tn 0(T ) n

where T - t - 2ng, 9 is the Heaviside Step Function, and use has been 

made of the shifting property,

L {f(t - a) 9 ( t  - a)}- - e~aS L (f(t)} 

where a > 0.

This expression was previously derived in a different context, by 

Stey & Gibberd [1972], who were interested in general decay models. 

However whereas the F term in our model corresponds to the Markov 

approximated effect of the true continuum, they view it as simply a 

'complex energy', of the initial-state, with no physical 

interpretation beyond that. Lefebvre and Savolainen [1974], have used
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an iterative method, instead of transforms to obtain a very similar 

result; (not having used a Markov-type approximation they do not have 

level-shifts.) But like Stey & Gibberd, they do not examine the 

continuum coupling.

We now include the effect of an initial level detuning Aq into 

our solution for CQ(t), but using

A - A + nA (2.3.17)n o  v '

tilfor the detuning from resonance with |0> of the n QC state, as in 

Figures 1.1 and 2.1. Equation (2.3.11) becomes modified to

-1
co (S) - s + r + v

s + i(A + nA) n-*—°° o
(2.3.18)

The Laplace Inversion is taken over a suitable Bromwich Contour of 

this equation. With the definition s' - s + iAQ , c q (s ) may be written 

as,

2
s' + r - iA 4- —--- Coth 7T S'

i--
- 0 > A

Note that on shifting the complex s-plane parallel to the Im(s) 

axis by a distance Aq , we need shift our Bromwich contour accordingly. 

We can legitimately do this to obtain a new contour Br' , so long as 

the new contour encloses all the poles of the integrand, enabling us 

to use Cauchy's Residue Theorem. Then,



31

c0(t)
-iA t e o
2?ri c0 (s<)

Br1

s' t e ds' .

The argument now goes through, with the replacement T -*• T -  iAQ , 

and the extra factor e ^ o t .

Therefore, we arrive at

c0(t> e- ( r + r 2) t
GO

n-1
^  T e'lnAo2g n n

x i/ I [2r2T ] e (r+r )Tn 6 (T ) n-1 . n J ~n (2.3.19)

g “ >Tn “ t " 2ng

which is the requisite, modified solution, in close analogy, mutatis 

mutandis, with expressions obtained previously [Stey et al., 1972;

Lefebvre et al., 1974],

In turn, the A -*■ «> limit of c (t) is altered too

c0(t)
-(r + iA )t/2 e ______ o '

n

'
Q Cos 0 t - (r - iA ) Sin Q t

2 o 2

with modified Rabi Frequency, Q J(r - i ao)2 4 V2
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This is analogous to the two-level Rabi model result, equation 

(2.23) of Knight and Milonni [1980]. Also, since 2nl > 0, the step 

function vanishes initially, since then 6 ( t  - 2nl) has a negative 

argument. So the initial condition cq(0) - 1 is satisfied by our 

solution, equation (2.3.19).

We note that the Extended Bixon-Jortner model including a true 

continuum produces an initial state evolution closely resembling that 

of the original model but with the addition of damping and Stark 

shifts to the original detuning Aq . We illustrate these additions by

plotting the time-evolution of initial-state population, P (t) -
2|cQ(t)| , for various choices of the coupling V, the detuning Aq and 

the decay rate 7 and shift Acoq .

When the coupling to the true continuum is turned off, the

complex damping T is zero and the usual Bixon-Jortner results are

recovered. In Figure 2.2 we show the time-evolution of the initial
2

state population |cQ(t)| for the case V/A - 1/3, with one state 

exactly on resonance with |0>, as a function of scaled time Vt. The 

general features of this evolution are first, an exponential decay at 

a rate given by the Weisskopf-Wigner approximation 2tt|v | /A [Louisell, 

1973] in the first interval, from t - 0 to t - 27r/A, at the end of 

which the initial state sees the QC of state density proportional to 

1/A. Second, there is a recurrence of initial state population at t - 

2?r/A at which time the discrete nature of the QC is resolved. 

Thereafter, the dressed eigenfrequencies of the coupled QC beat to 

generate a complicated irregular time-evolution. When the decay rate 

T is turned on for the same resonant system (incorporating the shift 

Aw^ into the transition frequency), the recurrences are damped out.
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In Figure 2.3 we illustrate this with the choice of weak damping 

7 “ V/10, all other parameters being the same as Figure 2.2.

Figure 2.2. Initial state population evolution for T-0. V/A-l/3 A -0
o '

Figure 2.3. Initial state population evolution for 7 - V/10, 
V/A - 1/3, Aq - 0.
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Figure 2.4. Initial state population evolution for 7 - V/10,
V/A - 1/3, Aq - 1/3.

In Figure 2.4 ve relax the resonance condition and allow a detiming
Aq - V/3 and decay rate 7 - V/10. Note that the initial state

population does not collapse entirely to zero in this case (just as a
two-level Rabi model cannot be completely inverted by an off-resonance
pulse.) The effect of a non-zero initial state detuning Aq, is to
ensure that destructive interference in the contribution to c (t) fromo

, 2previous time intervals is now complete; in turn PQ(t) - |cQ(t)| does 
not reach zero. In Figure 2.5 we demonstrate how strong damping 
rapidly dissipates recurrences.

Many of the dynamical features result from the interplay between
the coupling and decay rate. For example, a ratio of V/7 - 0.1 gives
a marked exponential decay to zero for PQ(t). At the same time Au>Q

2has no perceptible effect on the time-evolution of |cQ(t)| .
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Figure 2.5. Initial state population evolution for 7 - V,
V/A - 1/3, Aq - V/3.

For very weak excitation, the evolution is entirely perturbative: 

in Figure 2.6a we plot initial state population versus Vt for V/A - 0.1 

weak damping 7 - V/10 and exact resonance Aq — 0 and observe a 

periodically interrupted damped two-state Rabi evolution. In Figure 

2.6b we expand the time-scale and display the short-time evolution. 

We note that the evolution consists of a sequence of arcs: had we 

ignored the decay, the corresponding evolution would consist of a 

sequence of steepening straight lines attributed [Eberly et al., 1982; 

Yeh et al. , 1982] to the interrupted coarse-graining. The regular

interruptions are caused by periodic reconstructions of background 

state amplitudes. The 'arc' feature corresponds to a Fermi Golden 

Rule approximation of pure exponential decay e by the zeroth and 

first order terms to give PQ(t) “

1977, p.1352].

1 - 7t [Cohen-Tannoudji et al.,
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Figure 2.6(a). Initial state population evolution for 7 - V/10, 
V/A - 1/10, Aq - 0.

vt

Figure 2.6(b). As in Figure 2.6(a), but on an extended scale.
When the detuning Aq is chosen to be A/2, that is maximum 

detuning, exactly midway between two states, the irregular recurrences 
are replaced by a zig-zag (or sawtooth) evolution [Kyrbla and Eberly,
1985]. In Figure 2.7 we display such an evolution when V/A - 1/200 
and 7 -O. The collapsing initial state population slightly deviates 
from exact straight lines. The saw-tooth behaviour arises because in 
the weak-field limit it is the discreteness of the QC rather than its 

continuum-like nature that is
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significant to the dynamics. In particular, if the field is detuned 
to be precisely midway between two QC levels, the population will 
attempt to emulate few-level behaviour, that is two-level dynamics, 
because on being transferred from |0> to the QC, it cannot decide 
which of the two (equally) closest levels to occupy. Although these 
appear to be straight line rates, they are in fact curves; this 
becomes apparent if we wait for a sufficiently long time. This is 
more clearly visible in Figure 2.8a where V/A - 1/tt, ,Aq - A/2 and 
7 - 0 . When damping is added to this case (Figure 2.8b) this
evolution is unchanged apart from a decaying envelope function.

Also, even if we are tuned midway between two QC levels, by 
increasing the laser from a weak field to a strong field, (increasing 
the ratio V/A), we regain recurrences. The explanation for this is 
that the zig-zags are purely a weak-field feature.

When the perturbation V increases, the power-broadening is 
sufficient to compensate for the detuning Aq and we recover the 
appearance of the resonant evolution.

Figure 2.7. Initial state population evolution for T - 0, 
V/A - 1/200, Aq - A/2.
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Figure 2.8(a). Initial state population evolution for r — 0,

Figure 2.8(b). Initial state population evolution for 7 — V/5,

V/A - l / i r , Aq - A/2

In general, then, we have noted the important effect that Aq has on 

cQ(t). However, this assumes that the power broadening associated with 

the couplings do not exceed the level spacing of the QC. For a finite 

QC when the power broadening from the QC levels exceeds the QC's 

spectral width, the QC is effectively a single level, and the dynamics 

is essentially that of a two-level system. Similarly, for strong 

fields, the QC width is smaller than the induced width, so there is a 

Rabi oscillation between |0> and the whole QC.
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2.4 Further Discussion

Below, we analyse our model in greater depth.

(A)Limiting Cases.
2 2As A -* 0, r g ■» « given that |V J remains constant. Then, the 

-r2te factor present in all terms in the solution for CQ(t) decays to

zero. Accordingly PQ(t) decays away exponentially. Alternatively,

since 2ng -► it becomes increasingly unlikely that t - 2ng > 0 (that

is, that 0(t - 2ng) - 1.) Effectively then, the terms including the

step functions do not contribute to cQ(t). Quite equivalently, even

without the true continuum, because we considered the number of QC

levels in a narrow energy range (-L,L) as we increase the number of QC

levels we approach an open system, and it is this that results in the

time-asymmetric exponential decay of an excited state, with half-life

A/ttIv  I2.1 on1
Our predictions that as A -*> «, the evolution of PQ(t) resembles 

ever more closely the Rabi nutational oscillations reminiscent of 

few-level, (that is two-level), dynamics were confirmed with computer 

plots.

(B)Recurrences of Initial-State Probability

For a finite QC level spacing, A, we expect recurrences of PQ(t). 

The retarded time functions 6 (t - 2ng), ensure that for any given time 

t, only a finite number of terms in the infinite summations will 

contribute. In particular, for 0 < t < 2g, the decay is strictly 

exponential.
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The '2g' represents a 'delay', which retards the interactions.

There is successive additive dipole dephasing and rephasing of the QC

states, which leads to population transfer from |0> to states {|n>},

back again to |0>, and so on. This phenomenon is yeferred to as

'recurrence' of probability. At each cycle, that is at each integral

multiple of 2'g, a further contribution is made to the overall

dynamics, from the next term in the summation over n.

From our solution for c (t), we see that all the terms containo
2 -1exponentials damped in a time of the order of [V + (7r V /A) ]

Alongside this, the evolution of CQ(t) will be ever increasing in

complexity, with each time interval 2g, because of the monomial terms

(t - 2ng)^, which increase in order, as more terms in the 'n' and

Laguerre polynomial sums are included. So it is to be expected when n

is large enough, that successive recurrences will interfere.

As the recurrence time is increased, there is for a given

interval, less contribution from previous intervals. Also, P (t)o
becomes smaller with successive cycles, but will remain non-zero if we 

turn-off the true continuum and there is no longer as irreversible 

loss mechanism.

Note that (t - 2ng) is always non-negative, for otherwise
til0 ( t  - 2ng) will ensure that the whole expression in the n interval 

and subsequent intervals, in the summand, vanishes so does not need to 

be considered. Therefore, the factor e ^nS) £n the retarded

term has the expected attenuation effect, regardless of the relative 

magnitude of 7 and A.
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The Bixon-Jortner model may describe polyatomic molecules, where 

relatively isolated states are coupled to a manifold of vibronic 

(electronic and vibrational) states. Because bound states cause the 

relaxation mechanism there is a 'period' of 2g associated with the 

dynamics.

The 'kicking', which repopulates 10> is due to phased dipole 

interactions. This 5-function kicking is more apparent in the model 

of Milonni et al. [1982] where taking QC detunings as - Aq + nA 

enables use of the Poisson Sum Rule,

As has been previously argued, [Grempel et al., 1984], the recurrence 

of probability P (t) could be said to be quantum- mechanical 

localization of the relevant wavefunction. This is not at variance 

with the studies of Casati et al. [1979] which show that a periodic 

"5-kicked rotator" leads to quantum mechanical localization in regions 

where the classically analogous model is chaotic.

Ackerhalt et al. [1986] , and ref. therein, have considered a 

classical model for multiple photon excitation (M. P. E.) of molecular 

vibrations by infra-red laser fields. There, a pumped mode is coupled 

to a background of harmonic modes. They explain the dependence of the 

M. P. E. process on the laser fluence (that is, the time integral of 

intensity) in terms of decaying correlations associated with chaotic 

time-evolution of the pumped-mode amplitude. It is not yet
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known whether chaos will likewise be displayed in the analogous 

quantal system.

It has also been discovered, for two-state systems [Pomeau et 

al. , 1986; Milonni et al., 1987] that when there are two

incommensurate irrational kicking frequencies assumed for the 

quasiperiodic force, chaotic evolution, in a precisely defined sense, 

is observed for the erratically driven probability amplitudes. Here, 

quantum chaos is defined by

(a) decaying autocorrelation function of the state vector,

(b) broadband power spectrum of the state vector,

and (c)ergodic motion on the Bloch sphere, (see Appendix V.)

More recently, Cerdeira & Huberman [1987] examined the

time-evolution of observables for bounded quantum systems subjected to 

time-periodic fields, and for which the number of energy-levels N is 

finite. They showed that in spite of their recurrent, almost periodic 

behaviour, the distribution of values produced by the evolution of the 

observables becomes Gaussian in the large-N limit. The process 

remains nondiffusive even though the observable may appear to be 

random. Thus, since the energy does not grow in time, the dynamics 

does not remain chaotic. They suggest that only a Fourier transform 

would display the non-random behaviour.

(C)Interpretation

In our model, the laser field induces a dipole moment, that 

couples the system to the field. The polarization density is the 

dipole moment per unit volume of the molecules comprising

"Bixon-Jortner" type subsystems among their energy levels. The
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polarization will include terms in the molecular or atomic density,

(which can be set to unity if we are only considering one molecule, 
*say), cn (t), cQ(t), and the component of the dipole operator parallel 

to the electric field. The largest coupling (square of the relevant 

off-diagonal Hamiltonian matrix element) is that between |0> and the 

centermost QC level. The strength drops off as we approach the edges 

of the manifold. Now the dissipative mechanism will alter the time 

evolution of the amplitudes c^ and cq , and hence could be said to give 

rise to the dephasing effect of the true continuum, through the term
_rte . A quite similar situation arises in the classical theory of 

Resonance Optics, [Allen & Eberly, 1975].

H. A. Lorentz imagined an electron-ion pair to act like a simple 

harmonic oscillator,its electric dipole moment coupling it to the 

electromagnetic field. (The electron is at the end of a spring, 

attached to the nucleus, which is the equilibrium position, and is 

driven to oscillate by the electric field of the wave.) It is 

Inhomogeneous Broadening which causes dipole dephasing. An electric 

pulse transfers energy to the dipoles, which then oscillate in phase 

at the field frequency . When the pulse is switched-off, the dipoles 

return to oscillate at their natural frequencies. For the collection 

of dipoles, with inhomogeneous spectral line halfwidth , there is a 

decay factor e ^I*" in the expression for the macroscopic polarization 

density, P(t), associated with the dipoles. (Note that from the 

Maxwell Equation

3z“
1_ cT_

2 2c at
E(t,z) 4 7T a

2 P(t,z)
at
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for wave propagation, that P(t) causes the radiation.) The factor 

e ' V  represents the interference of all of the dipoles, whose 

frequencies comprise the inhomogeneous line. By the time that the 

inhomogeneous lifetime is reached, the dipoles are completely mutually 

out of phase and P(t) is damped away, almost to zero.

In conclusion, then, each dipole moment monochromatically damps 

in amplitude, at the same time that it is dephasing and rephasing 

along with the other dipoles. The magnitude of the total dipole 

moment decreases to zero, whence all of the population is lost to the 

true continuum. This compares favourably with, for example, the 

analogous situation which arises in the theory of 'photon echoes’, 

[Allen & Eberly, 1975, p.215] .

(D)Finite Number of Backgound States
For greater physical accuracy, we would require a finite QC, but 

this rules out the possibility of a closed analytic solution. As we 

increase the number of QC levels, (to an infinite number,) the precise 

time-evolution of cQ(t) diminishes rapidly with detuning from the 

"center" of the QC. Energy non-conserving states (large detuning with 

a>o - w^), then, are weakly non-perturbative. It has been previously 

noted [Milonni et al. , 1982] that the n - 15 state QC is already in 

excellent agreement with the infinite state QC, in the ordinary 

Bixon-Jortner model. This relates to the finding [Milonni et al., 

1982] that population never gets very far from the initial state.

Even with a relatively small number of QC levels, if their 

density is large, exponential decay is an excellent approximation, 

crudely because with a large density of QC states, the "lifetime" of
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the decaying state is shorter, and so contributions from different 

intervals do not appreciably overlap. That is, a densely spaced QC 

approximates a true continuum very well.

(E) Deviations from Exponential Decay
Robiscoe & Hermanson [1972, 1973] developed a model of 

exponential decay with a memory, which yields pure exponential decay 

in the limit of zero memory time. They suggest that finite memory 

times may yield non-Lorentzian lineshapes [Winter, 1979]. Pietenpol 

[1967] has discussed the decay of a discrete state to a continuum via 

a Lorentzian coupling. A weak coupling to the continuum corresponds 

to a short memory time in the model of Robiscoe & Hermanson.

For pure exponential decay, we require a decay energy spectrum 

that is continuous and unbounded from both above and below. The 

latter condition is a consequence of the Paley-Wiener Theorem [Fonda & 

Ghirardi, 1972], Thus in realistic physical models, which require a 

lower bound in the energy spectrum of the unstable quantum system on 

physical grounds, exact decay is merely an approximation, and there 

are deviations at very short times, just after the formation of the 

unstable state, and at very large times, after many mean lives have 

elapsed [Winter, 1979]. Nevertheless, because these extreme domains 

are so difficult to access in practice, no deviation from exponential 

decay has been reported for quantum systems.

Fonda & Ghirardi interpreted the deviations from exponential 

decay as being due to the already-decayed states, which because of the 

evolution of the system, can partially reconstruct the initial 

unstable state; hence a regenerative process.
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(F)Energy-Level Degeneracy

If the QC energy levels are degenerate [Lefebvre et al. , 1974, 

p.2515; Bixon et al. , 1969, p.3284], with degeneracy d, all other 

factors remaining constant, we can derive the modified form of cQ(t). 

In our previous analysis, we were led to

co(s)

-1

s + r + v
n— co s + iAn

(2.3.11)

(which for our model reduced to

= — Coth 
A

7T S
A

.)

It follows for the case in hand, that the only change will be
2 2 2 that V becomes dV . Hence the coupling r is in turn modified and we

arrive at

r
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c (t) - e o
-(r + r2)t e o-inA 21

-(r+r2)(t - 2nl) 6(t - 2nl)

where,

A

2
on

A

d is the degree of degeneracy.

These modifications are physically reasonable; the degeneracy 

ought not to affect the delay (or interval or fundamental period) of

ought to be affected through a decrease in the recurrence period; in 

other words, recurrence effects affect the dynamics.

This phenomenon is important, where an appropriate substitution 

would destroy the symmetry in a highly symmetrical small molecule 

thereby lengthening the initial rate, while retaining the same 

recurrence period.

In what Bixon and Jortner call the "Resonance Limit" in their 

theory of electronic relaxation in polyatomic molecules for the study 

of unusually long radiative lifetimes of small molecules, they state

2the evolution, whereas the initial decay constant, {Re (T + r )}
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[Bixon & Jortner, 1969a] that "when the energy levels are coarsely 

spaced, a small number of degenerate or quasidegenerate zero-order 

levels may be split by the intrinsic or by external perturbations."

The degenerate, equidistant QC may be employed in producing a 

reasonable model of Landau levels [Blakemore, 1974; Ziman, 1972] 

although modifications would be required, such as truncating the QC 

because of the cut-off in Landau levels. The connection is 

particularly clear, if we follow Ziman's derivation [Ziman, 1972 

p.319] of Landau levels, which uses the Poisson summation formula.

2.5 Quasicontinuum Properties
In order to derive the probability amplitude c^(t), for a typical 

QC level |p>, great care must be exercised to ensure that the effect 

of the true continuum is properly accounted for in the Interaction 

Picture. We follow the method of Radmore and Knight [1982, appendix], 

employing the equations,

(2.5.1)
n

i c (t) - V e""1̂ nt c (t) n no o (2.5.2)

FtLetting bQ(t) - CQ(t) e , with T » 7 + i Aa>o as before, gives,

n
(2.5.3)
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Rather than proceed naively with equation (2.5.2), equation

(2.5.3) indicates, on comparison with the continuum-free version of

(2.5.1), that the dynamics is altered by the continuum so as to
Ttrequire the replacement c^(t) c (t) e , for all n.

So equation (2.5.2) becomes, for a specific QC level p,

d_
dt

cP (t) e
rt -i V e po

iA t P co(t).

That is,

cp (t) -rte (-1 V ) po'

•t
iA t , s a e p c (r) dr r oJo

(2.5.4)

as compared to (2.5.2).

We defer the calculation to Appendix IV, merely quoting our 

answer as

-i Vpo
I (iA  - r - r 2 ) tLe p

(iA - T - r2) 
L P

-rte

- e
2 "  2 n_1 - ( r + r  )T'  1n—1 k—0

n

n-l-k
<-2r2)k .-i.nA.2s -------  e o

k!

, 1 A  _ r .  y  (T ) k+1 q ( - l ) q ( k + 1 ) !
x e(iAp r)t ) — 2— -----------------  fi(T ) (2.5.5)

A. 9 a+1 nq—0 (iAp-r-r^)q X (k+l-q)!
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The population in QC level |p>, at time t, is given by P^(t) = 

Cp(t)| . Note that the ground-state is shifted due to its coupling 

to the true continuum. In turn each QC level is shifted. Hence in 

equation (2.5.5) each detuning comes attached to a 'T' . Clearly, 

the initial condition c (0) = 0 is satisfied. Also, c (t 0,p p
_Ftbecause of the presence of the e term, which together with 

co(t -> co) -> 0, gives

P~(t -+ co) ~ 1 - P (t -*• a>) - ) P (t -* oo) f O l_ n
n

-> 1.

Hence with our choice of initial conditions, there is no population 

trapping between the discrete states 10> and |{n)> in our Extended 

Bixon-Jortner model.

Radmore [1982] has studied a similar■system, but with the ground 

state in the Extended Bixon-Jortner model being coupled to an extra 

discrete level, and with arbitrary QC level spacings. He found that 

if population was initially placed in this extra level, instead of 

|0>, then in the long time limit, some population is trapped in a 

noninteracting superposition state, comprising this initially 

populated level and that QC level with which it is two-photon 

resonant. This arises because dipole cancellations are such that this 

'dressed' superposition state decouples itself from the system 

dynamics, and retains its initial population.
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2.6 Summary

The work in this chapter uncovered aspects of the dynamical 

behaviour in the Extended Bixon-Jortner model. Primarily, and as 

predicted, the continuum was found to modulate the recurrences, that 

were predicted by previous studies of the ordinary Bixon-Jortner 

scheme, by causing transient behaviour. This latter arose in much the
—Xsame way that multiplying sin(x) by e , causes the former to die away 

inside an envelope created by e , as x approaches infinity, whilst 

retaining its sinusoidal feature.

Our examinations included studying the effects of limiting cases, 

and strong and weak-field approximations. We noted that when the 

population was initially carried by one of the QC levels, there was 

trapping of population within the discrete levels, in the long-time 

limit, and not all of the population decayed into the true continuum.

By way of an addendum, we draw special attention to the 

semi-perturbative theory for general QC, proposed by Radmore et al. 

[1987]; see also Kyr'dla [1984].

Radmore ignored the true continuum and resonantly coupled the 

initially populated state to a particular QC level. These two states 

were treated as an exact two-level system. The other QC levels, each 

detuned from resonance with|0>, were treated perturbative using a 

weak-field approximation; these act to perturb the two-state 

evolution.

When applied to the Bixon-Jortner model, the weak-field results 

of the non-perturbative model were reproduced; for example, 

straight-line 'rates' were found to be superimposed on an underlying 

oscillatory evolution of PQ (t), i.e., the Rabi oscillations were
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periodically interrupted by the background states. The 

method was further applied to a Rydberg series QC.

theoretical
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CHAPTER THREE
PHOTO-EXCITATION OF A STRUCTURED CONTINUUM: 

A SOLUBLE MODEL

3.1 Introduction
In chapter two we studied the excitation of a single ground-state 

to a QC of levels [Radmore et al., 1987 and ref. therein]. In 

particular the Bixon-Jortner model [Bixon and Jortner, 1968], 

consisting of the excitation from the ground-state to an 

equally-spaced QC, has received much attention [Radmore et al. , 1987 

and ref. therein]. The dynamics of the population of the ground-state 

exhibits an initial Weisskopf-Wigner exponential decay, followed by a 

revival and a complicated time-evolution which receives periodic 

interruptions or 'kicks'.

In the present chapter, we consider the excitation of the 

initially-occupied state to a structured continuum having dipole 

matrix elements which vary periodically between zero and a maximum 

value [Radmore and Tarzi, 1987]. Such a continuum could result from 

the embedding of a QC in a true continuum [KyrSla, 1986b] and a full 

diagonalisation of this in the manner of the 'dressed resonance 

representation' of Agassi and Eberly [1986] . Our idealised model has 

the advantage of being analytically soluble allowing straightforward 

calculation of the ground-state occupation probability. We consider 

the ground-state to be coupled to an arbitrary position in the 

structured continuum, thus allowing tuning from a position of maximum 

coupling, where an evolution of the Bixon-Jortner type is seen in 

certain cases, to a position of zero coupling where population
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trapping is observed. The evolution posseses kicks due to the 
periodic nature of the structured continuum, although these are damped 
out significantly. The final-state spectrum exhibits splitting of the 
main resonance peak for sufficiently strong coupling and subsequent 
narrowing of resonance peaks as they approach zeros in the spectrum.

3.2 A Soluble Model
We consider a ground-state |0> coupled to a structured continuum 

of states {|f>} by a monochromatic field detuned by a particular 
continuum state |f>. The continuum is taken to be infinite in extent
and to have dipole matrix elements between states |0> and |f> such

2that |Vq |̂ varies periodically (Figure 3.1).

structured continuum.
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The equations of motion for the state amplitudes are then

co (3.2.1a)

. „ iA_t c_ = -l V_ e f c f fo o (3.2.1b)

Putting exp(-iA^t) transforms these to

- - ‘J., v _ b_ o .1 ̂  of f (3.2.2a)

b_ = -iA_ b, - i V, c f f f fo o (3.2.2b)

We now take the Laplace transform of equations (3.2.2) with 

initial conditions CQ(t) = 1, b^(0) = 0, giving

- 4
sc - 1 = -i I V _ b_ o 1̂  of f (3.2.3a)

sb_ = -iA_ b_ - iV_ c f f f fo o (3.2.3b)

where the tilde denotes Laplace transform with variable s. Solving 

equations (3.2.3) for c q gives the familiar result

CQ = [s + I(s)l-1 (3.2.4)

where
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1(8)
s + iA-. 

f

(3.2.5)

We now take the following model of the structured continuum: 

I(s) in equation (3.2.5) is evaluated by choosing

(3.2.6)

so that the matrix elements have a periodic structure with separation 

A between peaks. We have chosen to use A^ as the dummy variable of 

integration in what follows and use the 'phase' <p to allow tuning of 

the laser field: choosing <p — 0 makes |0> resonant with the position 

of maximum coupling while choosing cp - 7r/2 makes |0> resonant with a 

position of zero coupling. This is therefore related to the 

Bixon-Jortner model [Bixon & Jortner,1968] where the QC levels have 

constant separation A. Then

2COS (7TA-/A +  <p)
_______ ________  dAf (3.2.7)

s + iA^

where we have chosen the proportionality constant to give the familiar 

Weisskopf-Wigner result when A becomes small (the cosine squared 

averaging to 1/2.) We then find that I(s) can be evaluated, for 

example by contour integration, to give
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I(s) - 7T V - 2i<p -2?rs/A1 + e ^ e ' (3.2.8)

If we formally let A become small, we obtain the Weisskopf-
2Wigner result, I(s) ~ tt V /A.

To find cQ(t), we use equations (3.2.4) and (3.2.8), writing the

inversion as

°0(t)
27ri

st
ds (3.2.9)

, t72/t . 2i (p -27rs/A.+ 7rV(l + e e ' )

Br

This expression can be simplified somewhat by the substitutions 

T = At/27r, z - (s + ttV^/A) 2tt/A and

0 2„2 ..2 7 2i<p7 — 2tt V /A , a — 7 e e (3.2.10)

giving
-1

co(T) - T 1^ / , -zN-l(z + a e ) (3.2.11)

-1
where L̂ , denotes the Laplace inversion with variable T. Before

inverting this we note that in the case cp - 7r/2, then a - -7 e ^ and

we see from equation (3.2.11) that the function of z to be inverted
7Thas a pole at z - 7. This generates a term proportional to e in the

—-yTinversion and the cancelling of this with the factor e leads to

population trapping. The residue at this pole is (1 + 7) ^ and hence
_2

we expect population in the state |0> equal to (1 + 7) It is not
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difficult to show that, as expected, all the other roots of z + ae 

lie in the left-hand half-plane.
—z —1To invert equation (3.2.11), we express (z + ae ) as a sum and 

proceed in a similar way to the method used for Bixon-Jortner studies 

[Milonni et al., 1982; Radmore et al., 1987];

-1 / , -z.-l (z + ae )
-i

- 4

r- 00
\  (_a)n e_nz/zn+1

- - n-0

CO

n-0
(-a)n (T - n)n H(T - n) 

n"i
(3.2.12)

(see [Abramowitz & Stegun, 1972] for example) where H is the unit 

step-function. Hence c (T) can be written

c q (T) .-yT
U
n-0

-a)n (T - n)n H(T - n) 
— (3.2.13)

Note that in the early stages of the evolution (0 <r T < 1) ,
-•yTc q (T) — e in agreement with the Weisskopf-Wigner result and the 

time-development will possess 'kicks' at each integer value of T as in 

the Bixon-Jortner model. "We argued in chapter two that this feature 

is due to the periodicity of the continuum; in QC excitation it is 

absent when the Bixon-Jortner QC is replaced by a Rydberg series 

[Radmore et al., 1987].
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3.3 Ground—State Population.

In Figure 3.2 we plot the ground-state population P (T)o2
|co(T)I from equation (3.3.13) as a function of T with 7 - 0.2 for 

<p - 0, 0.3?r, and n / 2 .

T

Figure 3.2. The ground-state population as a function of T with

7 - 0.2, for <p — 0 (—  - - —  - -) , (p - 0.3* (-------- )

and cp - tt/2 (-------- ). The curves coincide in the

interval 0 < T < 1.

All three curves have the same initial exponential decay in the

interval 0 < T < 1, as expected. After this the <p - 7r/2 case rises to
_2approach its trapped value of (1 + 7) - 0.694. Note that there will

always be this rise since the inequality e > 1 + 7  for 7 > 0 ensures

that the value of P at T - 1, that is e , is always less than the
_2trapped value (1 + 7) . Some population therefore always returns to

the ground-state after the initial exponential decay into the 

continuum. For the other values of <p the population ultimately decays 

to zero. Only the first kick at T - 1 is appreciable. As the value

' l
CLO \

\\
W
\ \

10
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of 7 is increased then, although the decay rate is increased, so is 

the coupling between the ground-state and the continuum. We might 

expect therefore to see evidence of oscillatory behaviour in Pq (T) for 

sufficiently large 7. We illustrate that this is the case in Figures 

3.3, 3.4 and 3.5. For the same three values of <p as in Figure 3.2, we 

plot Pq (T) against T with 7 - 2.

Figure 3.3. The ground-state population as a function of T with 

7 - 2  and cp - 0 .

Figure 3.4. As in Figure 3.3 but with <p - 0 .3 n .
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Figure 3.5. As in Figure 3.3 but with <p - w/2.

After the initial decay, the oscillations are clearly visible. 

For <p - tt/2 the trapped value is now 0.111.

To obtain some indication of the value of y for which we may 

expect oscillations, we concentrate on the case <p - 0 for which 

a — 7 e . The behaviour of the solution for c q (T) is governed by the 

complex roots of the equation F ( z ) - z + a e  - 0  (see equation 

(3.2.11)), the dominant behaviour after the initial decay being due to 

those roots with the smallest negative real parts (and hence the 

smallest decay rates). Putting z - x + iy and taking real and 

imaginary parts in F(z) - 0 leads to

—Xx + a e cos(y) - 0 (3.3.14a)
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Hence it is possible to have a root with y - 0 provided there is 

an x (<0) for which -x e /a - 1. The curve of -x e /a is highly 

peaked for x < 0 with maximum value M - (ae)  ̂ - 7”^ e"~^ + ^ . If 

M>1, then there are two real negative roots of F(z) - 0 (in addition 

to an infinite number of complex roots) and these roots are those with 

the smallest negative real parts (a plot of equations (3.3.14) will 

show this). The dominant behaviour is then exponential decay. If 

however M < 1, then there are no real roots and the dominant behaviour 

will exhibit oscillations due to the imaginary parts of the dominant

roots. The limiting case is therefore M - 1 for which 7 “ 0.279. To
2

further demonstrate this we plot |c q (T)J against T for <p - 0 with 

7 - 0.02 (Figure 3.6) and 7 - 5  (figure 3.7). Note the absence of 

oscillations in the first and the greater number of oscillations in 

the second when compared with the case 7 - 2  (Figure 3.3).

y - a e x sin(y) - 0 (3.3.14b)

Figure 3.6. The ground-state population as a function of T with <p - 0 

and 7 - 0.02
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Figure 3.7. As Figure 3.6 but with 7 - 5. For clarity we have

expanded the vertical scale. The evolution in the 

interval 0 < T ^ 1 begins at unity and follows the 

usual Weisskopf-Wigner decay.

In order to compare the above results with those for a 

Bixon-Jortner model, we consider the corresponding ground-state 

occupation amplitude for that case. From eqn.(2.3.19) of chapter two, 

and Radmore et al. [1987] this amplitude can be written

GO

c®J (T) - e~(" + A)T (1 - ^ 2A (T - n) l/_^[2A (T-n) ]
n-1

en(a  + A) H(T _ n) ^n} (3 . 3 . 15)

where L ^ i s  the generalized Laguerre Polynomial. Here the 
P

ground-state is coupled (with constant matrix elements K) to each of 

the levels of the QC of spacing A and is resonant with one of them.
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Additionaly it is coupled to a true continuum giving a decay rate r.
2 2 2In equation (3.2.5) A - 2ir k /A and a - 2ir r/A. The most obvious 

comparison between the models can be made if we choose a — A — 7/2 so 

that equation (3.3.15) becomes

(T) -7 T 1 - ]} 7 eny (T - n) 
n-1

(1)
Ln_t[7(T - n)] H(T-n)/n (3.3.16)

In fact this expression is identical to the corresponding result 

for the structured continuum (equation (3.3.13) with cp - 0) not only 

in the initial interval, 0 < T ^ 1, but also in the interval
r»r

1 <1 T <t 2. This can be seen in Figure 3.8 where we plot | c q (T) | 

from equation (3.3.16) against T for 7 - 5.

Figure 3.8. The ground-state population as a function of T for the 

Bixon-Jortner model with decay from the ground-state. 

We use (3.3.16) with 7 - 5 and plot as in Fig.3.7.
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This evolution is to be compared with Figure 3.7: the initial 

decay and first oscillation are identical after which the difference 

in the structures of the continua is apparent in the evolution. For 

the Bixon-Jortner case the oscillations rapidly dephase. The 

essential difference between the two models is the nature of the 

irreversible decay. In our Bixon-Jortner model this is simply loss 

from the ground-state (see the previous chapter and [Radmore et al., 

1987]). For the structured continuum, viewed as equally-spaced levels 

embedded in a true continuum, the decay is indirect.

3.4 Final-State Spectrum
From equations (3.2.3b) and (3.2.4) we have that

-iVfo
(s + iAf) (s +  I(s))

(3.4.17)

For all values of <p except ?r/2 (the population trapping case), 

all the zeros of the denominator of this expression, apart from 

s - -iA^, have negative real parts. Hence the only term on the 

inversion of b^ which is not exponentially small at large times is 

that arising from the pole at s - -iA^, giving

bf (°°)
-i Vfo

ste

(s + I(s)) s— iA^
(3.4.18)

Alternatively one could derive this from use of the final-value
2

theorem for Laplace transforms. The A^-dependence of |b^(«)| is
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therefore, using equations (3.2.6) and (3.2.8),

S(x) a cos (x + <p)
-.2 (3.4.19)

x-_ sin2(x + cp) 
• 2

^ +^cos2(x + cp) 
L 2 1

where x = ttA^/A. We now plot S(x) from equation (3.4.19) against x, 

ignoring any x-independent multiplicative factor so that the vertical 

scale is arbitrary. In Figure 3.9, we have chosen cp = 0 and 7 - 0.3. 

The symmetric spectrum has a major central peak (where resonance with 

the ground-state occurs), that accompanies a smooth monotonic leakage 

of population from |0> to the structured continuum, and has zeros 

where the dipole matrix elements vanish.

-5 0 x 5

Figure 3.9. The dependence of the final-state spectrum on 

x = 7r A^/A for (p = 0 and 7 = 0.3.
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In Figure 3.10, we put <p — 0 and 7 — 2. The increased coupling 

has caused the Autler-Townes splitting (see Appendix V) of the central 

peak, due to the creation of a coherent superposition of ground-state 

and continuum peak resonance [Makarov et al.,1978]. Note that a 

"continuum peak resonance" [i.e. a bump, here] is equivalent to a 

discrete state. For this case of <p — 0, it is straightforward to 

calculate the value of 7 above which splitting of the central peak

occurs, as follows. From equation (3.4.19) we evaluate W -
2 2 d S/dx K 1 0 If W is negative then x — 0 is a maximum and we have a

single central peak, whereas if W is positive then x - 0 is a minimum 

between two peaks which have split on either side of x - 0. We find
—4

that W — 2(27 - 1) 7 so that if 7 < 0.5, we have a single peak and 

if 7 > 0.5 we have splitting. As 7 is increased, the two central 

peaks are pushed apart and move towards the first positions of zero 

matrix element. Subsidiary peaks move towards successive zeros.

Figure 3.10. As Figure 3.9 but with 7 — 2.
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X
CO

-5 0 x 5

Figure 3.11. As Figure 3.9 but with 7 - 10.

X
CO

I

-5 0 x 5

Figure 3.12. The dependence of the final-state spectrum on 

x = 7r A^/A for <p = 0.2n and 7 = 0.3.

The peaks become narrower and their coincidence with the zeros in 

the manner of a multiple 'confluence' [Rzazewski & Eberly, 1981; ibid, 

1983; Deng & Eberly, 1984b] (see also Appendix V), is asymptotic as 

7 -* by expanding S(x) in equation (3.4.19) with cp — 0 about, say 

x = 7t/2 (the first zero), we find that a maximum of S(x) occurs less 

than and within 0(7 )̂ of n /2 . We illustrate this by plotting
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S(x) for <p •= 0 and 7 = 10 in Figure 3.11. For large enough 7, the 

second peak of S(x) near x = 3 n /2 is found to be higher than the first 

peak; increasing 7 still further causes the highest peak to occur near 

successive zeros of S(x).

In Figures 3.12 and 3.13, we plot S(x) for 7 = 0.3 and 2 

respectively with <p = 0.2ir to show similar behaviour for an 

asymmetrical case. Our Figure 3.13 closely resembles the final-state 

spectrum obtained recently for a double Fano system [Leonski et al. 

1987] in which two states are embedded in a flat continuum leading, on 

diagonalisation, to a structured continuum with two peaks and two 

zeros.

Figure 3.13. As Figure 3.12 but with 7 =■ 2.

This would be expected since for modest field strengths only the 

structured continuum states in our model close to the position of 

resonance are appreciably populated and contribute significantly to 

the final-state spectrum. In the double Fano system, narrowing of the 

right-hand Autler-Townes peak occurs as confluence is approached but 

the left-hand peak is relatively unaltered. This is reflected in our
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model also: the left-hand peak moves more slowly towards confluence

than does the right-hand peak. The q-reversal effect discovered by 

Connerade and others [Connerade et al.,1985; Connerade and Lane, 1987] 

(see also Appendix V), is also observed in our spectra.

In the case <p - ff/2, for which population trapping occurs, the 

expression for b^ in equation (3.4.17) has two poles with zero real 

parts. One is at s - -iÂ . as before and in addition there is the pole 

at s - 0 which gives rise to the trapping (1(0) - 0 for <p - w/2). 

Hence we cannot use a straightforward application of the final value 

theorem which would involve calculating the limit of (s + iA^)b^ 

as s -*■ -iA^. Instead

bf(») - -iVf0
-iA_t e f (3.4.20)

-iAf + I(-iAf) iAf (1 + 7)

the first term arising from the residue at s - -iA^, the second from

that at s - 0 (we have used dl/ds 7.) In this case there is no
s—0

time-independent limit of |b^| as t *+ «>, its dependence on x and T 

being

S(x,T) . 2a sin x
-2ixTe

, . ,1 2ix.x + 17 (1 - e )/2
1

x (1 + 7)
(3.4.21)

For large T, the population at a general position x in the structured

continuum will exhibit rapid oscillations with T as population is

continually redistributed amongst the continuum states via the
2ground-state, although the integral of |b̂ (°o)| over all continuum
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2
states yields the value 1 — lc0(°°)| , the 'untrapped' population.

Oscillations with T are observed in

fL(T) - | S(x,T) dx

for finite L and these decrease in amplitude as L is increased,fT (T)L
tending to a constant as L -no.

3.5 Summary

We have studied a simple analytically soluble model of a 

periodically structured continuum. The population dynamics has a 

number of features in common with the Bixon-Jortner model, for example 

the interruptions caused by the strictly periodic nature of the 

continuum in question. We emphasize the use of such simple models to 

investigate the origin of properties which may be apparent in more 

complicated systems. In particular, the behaviour of confluences of 

coherence in the final-state spectrum and the corresponding dressed 

states for the system are of current interest.
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CHAPTER FOUR
DRESSED STATES AND SPECTRA 
IN QUASICONTINUUM EXCITATION

4.1 Introduction
In this chapter, the system we consider consists of a ground 

state coupled to a general QC of levels and to a true continuum. We 

examine the spectrum of final states in the true continuum. This 

spectrum can exhibit zeros, the positions of which are determined by 

the energies of the QC levels and the existence of which is determined 

by initial conditions. We obtain a general expression (for any QC) of 

the true continuum spectrum and consider the special cases of first a 

Bixon-Jortner QC and second, a Rydberg series. We then study the 

dressed states [Agassi & Eberly, 1986; Fano, 1961; Coleman & Knight, 

1982] for the whole system and derive 'sparse' dressed states which 

contain few continuum levels and, more importantly, no contribution 

from the ground state. We show that the initial population in one of 

these sparse dressed states determines the existence of the 

corresponding zero in the spectrum. This is a similar mechanism to 

population trapping in certain systems [Radmore, 1982; Radmore & 

Knight, 1982] where population initially in a dressed state is immune 

to photoionisation. In section 4.2 we derive a general expression for 

the spectrum. Section 4.3 discusses the special cases with particular 

reference to the initial conditions. The two-photon ionisation
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problem discussed by Knight [1979] is also seen as a special case of 

our general treatment. In section 4.4 we discuss the total dressed 

states and explain the observed features using the sparse dressed 

states.

4.2 Basic Equations
The system under consideration is that shown in Figure 4.1 where 

a single discrete state |0> is coupled to both a true continuum of 

discrete states {|f>) and a quasicontinuum of discrete states {}b>).

Figure 4.1. The level scheme with the ground state coupled 

to an arbitrary QC and to a true continuum.

For simplicity we take the matrix element between |0> and any state 

| f> to be Vq (independent of f); that between 10> and state |b> is 

denoted . A special case is the extended Bixon-Jortner model which 

we have studied in chapter two [Radmore et al., 1987]. The equations 

of motion for the probability amplitudes co(t), c^(t) and c^(t)
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corresponding to states |0>, |f> and |b> are, in R. W. A.

. „ -lA , tc — -1 E V, c, e ob o , b bb - ‘ji| Vq cf e“lAoft (4.2.1)

... lA , tc, = -iv, c e ob b b o (4.2.2)

lA J tc _ = -iV c e of f o o (4.2.3)

where Aq^ and Aq^ are the detunings between |0> and |b> and between 

|0> and | f> respectively. We now put

-iA , t -iA _tc^ e ob — a^ , c^ e of — â (4.2.4)

so that (4.2.l)-(4.2.3) become

c ■ -i S V. a. - i V a o , b 1) o I, fb J f
(4.2.5)

%  “ ~iAob %  " iVb °o (4.2.6)

a _ - -iA _ a_ - iV_ c f of f f o (4.2.7)

To solve these equations, we Laplace transform (with variable s) 

and take general initial conditions for the discrete states:

CQ(0) = A , a^O) b , af(0) - 0. (4.2.8)
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Equations (4.2.5)-(4.2.7) become

s50 - A - -IS Vb - iVo af

<S + “ «*> =b - "b - -1Vo So

(s + iA _) a_ - -iV cof f o o

(4.2.9)

(4.2.10)

(4.2.11)

where tilde denotes the Laplace transform. Using the final-value 

theorem in (4.2.11) gives

a_(«) - -iV c (s - -iA _) (4.2.12)f o o of v

so that we require c q to find the final-state spectrum. Substituting 

for a^ and a^ in (4.2.9) using (4.2.10) and (4.2.11) gives

sc - A o -iS V. (B, - iV,c ) / (s + iA . ) , b b b o '  ob

-V^ c [ (s + iA _) o o Jf of'
-1 (4.2.13)

Assuming the states {|f>) form a true infinite continuum of density 

1 / 6 , then

J. (s + iAof)-1 7x/6 (4.3.14)

Using (4.2.14) and rearranging in (4.2.13) to find c , we have
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A ~ 1 ? \  Bb / (s + iAob)

2
s + 7 + 2 Vb/ ( s  + iA 0b)

(4.2.15)

2where 7 = n Vq/5. From (4.2.15) the final-value theorem result 

(4.2.12) can be written

-i V
af(°°) =

A + 2 V, B, / (A . - A , ) , b b ' of ob' b

-i Aof + 7 + i S  Vb / (Aof - Aob) 
b

so that the spectrum of true continuum final states is

(4.2.16)

M « ) | 2 -
Vo [ A + l  \  Bb / <Aof - Aon>]

*  + [ Aof - l  Vb / (Aof ' AobJ2 b

(4.2.17)

In the next section we shall examine particular quasicontinua 

and their associated spectra using the general result above.

4.3 Specific Quasicontinua

(a) The Bixon-Jortner Quasicontinuum

In this case we assume that one of the levels |b> is resonantly 

coupled to 10> and that AQb = b A where b is an integer [Bixon & 

Jortner, 1968], -00 < b < « and V, = V- (constant). Then

5 (Aof - Aob) — cot 
A

7T Aof
A

(4.3.18)
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initial conditions:

(i) Cq (0) - 1, c^(0) - 0 (so that A - 1, - 0).

From (4.2.17) we have

af(«)

72 +

V

A _ - * V? cot
of S 1

*  A

(4.3.19)

and for convenience put
2 2 2  2 2 2  2 2

F -  *  V A ' G -  ir 7 /A . H -  w V ^ A  ( 4 .3 . 2 0 )

and x - 7T Aq^/A. The resulting spectrum is

St(x)------------—  BinJx)-----------  (4.3.21)
(x sin(x) - H cos(x))^ + G sin^(x)

Figure 4.2. The spectrum S^(x) from equation (4.3.21) for

V - V - - 7 - A - I  (Bixon-Jortner QC.) o 1
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In Figure 4.2 we plot this spectrum as a function of x for

Vq - V ^ - 7 - A - 1. The spectrum has zeros corresponding to the

positions of the energies of the Bixon-Jortner levels. This may be

thought of as a 'multiple hole' in the same manner as that studied by

Knight [1979] in two-photon ionisation. His results can, of course,

be retrieved by replacing the QC by a single level. The origin of

these zeros (or holes) can be described by reference to dressed states

for the whole system which we discuss in section 4.4.

In Figure 4.3 we plot S. (x) from (4.3.21) as a function of x for V -l o
7 - A - 1 as before but with V^- 0.1, so that the Bixon-Jortner levels 

non-resonant with |0> are only weakly coupled.

1

Figure 4.3. The spectrum S^(x) from equation (4.3.21) for 

V - 7 - A - 1, - 0.1 (Bixon-Jortner QC).

The spectrum has an underlying Lorentzian structure (a single state is 

strongly coupled to the true continuum) with a narrow hole at x - 0, 

as would be expected from the calculations of Knight [1979]; in
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addition there are the zeros at the energy positions of the 

Bixon-Jortner levels and the approach to multiple confluences 

[Rz^zewski & Eberly, 1981; ibid, 1983; Deng & Eberly, 1984b]. We note 

here that the peaks all have the same height for the spectrum S^(x) in 

(4.3.21) since they occur where x sin(x) - H cos(x) and S^(x) then has 

value F/G (- 1 in Figures 4.2 & 4.3).

(ii) c q (0) - 0, cb_N(0) - 1, cby<N(0) - 0 (so that A - 0, BN - 1,

V n -°->
Here we begin with all the population in one of the Bixon-Jortner 

levels b-N, where N - 0, +1, +2,....  In this case

l af(®)I

2 2
o v v72 o 1 (4.3.22)

(Aof - NA)2 +CM?- 2A - - 7T V. cot of 1 7T A _ of
2

L A L A J

so that using the same notation as before, in (4.2.20),

S2(x )----------------- F H.s-n x----------------------  (4.3.23)
(x - Ntt)^ [ (x sin(x) - H cos(x))^ + G sin^xj

Note that the existence of population initially in level |b - N>
2of the QC generates a factor (x - Ntt) which will cancel the

2corresponding zero (of the factor sin x at x - N7r) at the position of 

this Bixon-Jortner level in the same manner as at a confluence 

[Rzazewski & Eberly, 1981; ibid, 1983; Deng & Eberly, 1984b]. We 

shall describe this feature again in section 4.4. In Figure 4.4, we 

plot S2(x) against x for Vq - - 7 - A - 1 and N - 0.
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t

Figure 4.4. The spectrum S ^ ( k ) from equation (4.3.23) for 

Vq - V ^ - 7 - A - 1, N - 0  (Bixon-Jortner QC).

Figure 4.5. The spectrum S^i'X-) from equation (4.3.23) for

Vq - - A - 1, N - 1 & 7 - 4 (Bixon-Jortner QC).

The zero at x - 0 has been removed and the spectrum retains the pair 

of central peaks from Figure 4.2, arising from the strongly coupled 

states |0> and |b-0>. If we decrease the coupling or increase 7, we 

should see the two peaks merge into a single central peak. To
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illustrate the effect of large 7, we plot S^Cx) against x for Vq - 

- A — 1, N - 0 and 7 - 4 in Figure 4.5. A single peak is observed,

but note that the other zeros persist. In Figure 4.6 we again choose 

V - — A - 1, but put N - 1 to show an asymmetric spectrum. Now

the zero corresponding to x - ir at the energy position |b-l> has been 

removed.

t

Figure 4.6. The spectrum S^Cx) from equation (4.3.23) for 

V - V 1 - A - 7 - N - I  (Bixon-Jortner QC).

(b) Rydberg Series

We take {|b>) to be the levels of a Rydberg series |n> with the 

level Jn-N> resonantly coupled to the discrete state |0>. The

detunings are

Aon 1 - (4.3.24)

and the initial conditions c (0) - 1, c (0) - 0 and c~(0) - 0 to begino n  r
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with. Hence in (4.2.17), A — 1 and - 0 and the spectrum is

sn (y)
Q + y - 9 (y)j

(4.3.25)

where

and

2 2 2 2 2 2P - * VZ / DZ , Q - 7T 7 / DZ , y — Aof/D (4.3.26)

*(y)
w Vn

2 2 2 D n-1 y - 1 + (N /n )
(4.3.27)

Taking the matrix elements to be

2 2 3V - V /n n '
we may write (4.3.27) as

(4.3.28)

*(y) - R
n-1 n£ n^(y-l) + j

where
2 2R - 7T V / D

(4.3.29)

(4.3.30)

The function 9 (y) can be evaluated in closed form in terms of 

digamma functions [Abramowitz & Stegun, 1972]. We plot S^(y) from 

(4.3.25) against y in Figure 4.7 for P — Q - R - N - l .



Figure 4.7. The spectrum S^(y) from equation (4.3.25) for 

P - Q - R - N - l  (Rydberg QC).

Note that there is a zero in the spectrum at each position of a
_2Rydberg level (y - 1 - n - 0, 3/4, 8/9, 15/16.... ). The zeros end

at y - 1 which corresponds to the upper limit of the Rydberg series 

and crowd together as y tends to 1 from below as expected [Connerade 

et al., 1985; Connerade & Lane, 1987].

t
s/y )

P - Q - R - l ,  N - 2  (Rydberg QC).
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In Figure 4.8 we plot S^(y) against y with P - Q - R - 1 but
_o

choose N — 2 (and note that the zeros now occur at y - 1 - (4n )

- -3, 0, 5/9, 3/4, 21/25, 8/9,.... ).

The zeros of S^(y) in (4.2.25) originate from the divergences in 0(y) 

at the positions of the Rydberg levels. We can see from (4.2.17) that 

if initial conditions were chosen with all the population in one 

Rydberg level N (A - 0, - 1), then the divergence in the

denominator of (4.2.17) at that place is matched by that of the single 

term in the numerator. Hence the zero in the spectrum corresponding 

to the populated Rydberg level is removed and the y-dependence of the 

spectrum is for N - 1

s 2(y) a [y2 [q + y -  * (y ) j2] j ” 1 (4.3.31)

Figure 4.9. The spectrum S^(y) from equation (4.3.31) for 

Q - R - N - 1 normalised to unit height 

(Rydberg QC).
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We illustrate this in Figure 4.9 by plotting this spectrum normalised 

to unit height with Q — R — N — 1. Note the absence of the zero at 

y " 0 corresponding to the n - 1 Rydberg level.

It is also instructive to consider a Rydberg-like series where the 

detunings are as above (4.3.24), but the matrix elements are taken to 

be
2 2 2- V /n (4.3.32)

instead of (4.3.28). With this choice

H y ) - R ) ----- --------  (4.3.33)£ 2 2 n-1 n (y -1) + N
This series can be summed analytically in terms of the coth function 

but we So not specifically need the expression here. With 0(y) as in 

(4.3.33), we plot S^(y) from (4.3.25) in Figure 4.10 with P - Q - R - 

N - 1  and compare this with Figure 4.7.

fs/yJ

Figure 4.10. The spectrum S^(y) from equation (4.3.25) with

0 (y ) given by (4.3.33) and P — Q - R - N — 1 (Rydberg 

-like QC). This is to be compared with Figure 4.7.
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The two spectra are very similar: the zeros occur at the same

positions in both. The particular form of the matrix elements does 

not affect these zeros but the peaks differ slightly in position and 

shape in the two figures. Again, a particular zero can be removed by 

initially populating the corresponding QC level.

In the next section we discuss the dressed states for the total 

system with a general QC and explain the above features in the 

spectra.

4.4 Dressed States

We now discuss the dressed states for the whole system in Figure

4.1 in order to more fully account for the features in the spectra of

section 4.3. With labels 0 and 1 to denote the fields driving the |0>

to {|f>} and zero to {|b>} transitions respectively, with photon

numbers n and n-, we write o 1

The states have energies, say, E^, E^, and E^. We wish to find 

eigenstates of the total Hamiltonian

U >  “ 1°. n0 > * 1 *

|k> - |f, nQ-l, nx> 

|l> - |b, nQ, n^-l>

(4.4.34)

(4.4.35)

(4.4.36)

A A A A

(4.4.37)

A

where Hq | i> = E^ |i>, and similarly for |k> and |l>. The sums 

represent the possible couplings between | i> and any of the states
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|l>, in the case of V^, and between | i> and any of the states |k>, in
A  A

the case of W^k> We require | e> where H | e> — e |c>, and expand | e> 

in terms of the basis states (4.4.34)-(4.4.36):

|«> - P(«)|i> + S Qx(«) |1> + J dk ck(0 k> (4.4.38)

The procedure is similar to that adopted by Fano and by Coleman et al. 

[Fano, 1961; Coleman & Knight, 1982; Coleman et al., 1982]: taking 

matrix elements of the eigenvalue equation for | c> with each of 

(4.4.34) to (4.4.36) in turn gives

(E. - e)P(e) + 2 Q1( O V il + f dk ck (e) Wik - 0 
1 J

(4.4.39)

(Ex - e) Qx( 0  + P(e) - 0 (4.4.40)

(Ek - «) ck (c) + P(e) Wik - 0 (4.4.41)

The sensitivity of the zeros in the spectra to initial conditions 

arises because of the existence of special dressed states, namely 

states which contain no contribution from |i>, so that if all atomic 

population begins in |i>, then these dressed states are initially 

unpopulated. We first find these states. For them to exist, there 

must be values of 6, e say, such that P(e) - 0 (see (4.4.38)). Hence 

from (4.4.40) we have

(Ex - c) Qx(0 - 0 (4.4.42)
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Note that (4.4.42) is a set of equations, one for each 1. Now not all

the Q^(c) are zero (otherwise the dressed state contains no continuum 

states) so the only possibility is that e equals one particular and 

that the corresponding Q^(c) is the only non-zero one. We therefore 

have a set of possible solutions for e , namely any of the energies of 

the QC levels (the positions where the zeros appear in the spectra). 

We conclude that there are as many of these 'sparse' dressed states 

containing no contribution from | i> as there are QC levels and that 

their energies are those of QC levels. To find these states,we first 

use (4.4.40)

Qx(0 v u  p < * >

€ -E„
(4.4.43)

From (4.4.41), since E^ is a continuous variable [Fano, 1961; Coleman 

& Knight, 1982; Coleman et al., 1982],

ck C O  - PtO wik Q 1 + R C O  S O  -
e -  E,

(4.4.44)

where &  denotes the principal part and R(e) must be found self- 

consistently. Substituting (4.4.43) and (4.4.44) into (4.4.39) gives

(E. - €)P(€) + Vil P(£) 
1  6 -  E 1

dk P(e) W ^V (V> + R C O  S O - Ej )
€  -  E.L k J

- 0 (4.4.45)
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This must be true for all e, so that cancelling P(e) gives

E, - € +
Vil

i £ - Ei
. 9

w
dk — =£—  + R(c) IT 

6 - E, l€
- 0 (4.4.46)

where W. means that value of W.. such that E, equals the chosen e ie ik k n
Hence

R ( « )
W
1_
2
ie

V
€  - E. -l

il1
, € - E. ,

W
dk ik

e - E,
(4.4.47)

From (4.4.44), we find that

ck(e - Ex) - Lim W.k P(e) R(e) 6(e - Efc) 
£"Ei

(4.4.48)

Combining (4.4.47) and (4.4.48), we notice that as e -*■ E^, P(e) tends 

to zero whereas R(e) diverges. The only term which contributes 

therefore is

ck (e V
Hik 5(Ei V

H2Wil
Lim
€-*-E.

-  P ( e )
Vil1

1,€ El(
(4.4.49)

where means W^k for that value of k such that Ek - E^. Again only 

one term in the sum in (4.4.49) will contribute

ck(£ V
-W.k «(EX

H2Wil

- V Lim
e->E,

P(e)
€ - E,

(4.4.50)
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Substituting for P(c)/(e - E^) in (4.4.50) using (4.4.43), we find 

finally

-W
ck (e V ik

W v il V ‘ -Efe) (4.4.51)
il

The dressed state |e-E^> is therefore, from (4.4.38)

|« - Ex> - Q1(E1)|1> + J dk ck (e - E1)|k>
Q1(E1 ) 1> - |Sl>

Wil
(4.4.52)

where |s^> means that continuum state |k> with energy equal to the 

chosen QC energy E^. We therefore have a set of sparse dressed

states, as many as there are QC states, each of which contains 

contributions only from a particular QC state and the true continuum 

state that is two-photon resonant with that QC state. This is a 

similar situation to that encountered in other systems with two-photon 

resonance, for example three-level systems and other multi-level

systems [Radmore & Knight, 1982; Radmore, 1982], where population 

trapping results. In the present system, if the population is

initially in |i>, then the sparse dressed states are unpopulated

initially; zeros appear in the spectrum at places corresponding to the 

energies of these |i>-independent states. If however we populate one 

of these states initially then the corresponding zero is removed.
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Hence we anticipate that the population in the true continuum states 

at the special positions should contain a non-vanishing term for long 

times that is proportional to the initial sparse dressed state 

population. We now show that this is the case.

The total wavefunction would be

(4.4.53)

so that

c (e) dc 
si

(4.4.54)

Now

c («) - P(e) W.
1

re _i + R(e) «(£ - E..) (4.4.55)
1

Using the expression for R(e) , (4.4.47) in (4.4.55),

p(o wn  <? — ^
i

«(e -  Ej )̂

(4.4.56)

Substituting (4.4.56) into (4.4.54) we find



92

<s1 |^> “ WiX ^  f° - (e .̂A(c) e ict de
J _*- € - E..— co 1

- —  A(E ) e iE1C Lim P-^) (4.4.57)
Mil e"El e - E1

Again using the expression for P(E)/(e - E^) from (4.4.40) in (4.4.57) 

and taking modulus squared, we have the population in the true 

continuum state |s^> is

A(EX) Q1(E1)
Vil
Wil

oo 2
Q1(e) A(e) e"1€t de (4.4.48)

-GO

rt
If |'ir(t-0)> - J i> then A(E^) — 0 and we know that |<s^ 11&>| -*• 0 as 

t -> co. if |^r(t-0)> - |l'> then A(E^,) * 0 and the first term on the 

right-hand side of (4.4.58) is non-zero. At long times the expression 

tends to a constant and the zero in the spectrum is removed.

il iE.. t --- e 1
Vil

4.5 Conclusions

We have shown how sparse dressed states containing contributions 

from a limited number of continuum levels are responsible for the 

appearance of zeros in our model QC problem. The existence of the 

zeros is determined by the initial populations in these sparse dressed 

states. We stress that the treatment is valid for a general QC so 

that the positions of the zeros follow the distribution of QC levels.



93

In the Rydberg example, this results in a successively narrower gap 

between adjacent zeros as the Rydberg levels crowd together at the top 

of the series. The matrix elements in the case of the Rydberg-like 

series we considered do not therefore affect the positions of the 

zeros. Note that we assumed the continuum to have no threshold, so as 

a result there is no Stark shift to the ground state; (however an 

energy-varying continuum with no threshold does give a shift.) These 

calculations indicate how clear the features of certain resonantly 

coupled multi-level problems may become when a dressed treatment is 

adopted. The consideration of Rydberg-like series was instructive, 

because it gave a closed-form analytical solution, and highlighted the 

fact that the zeros are independent of the matrix elements so long as 

the relevant sum (eqn. (4.3.33)) converges.
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CHAPTER FIVE
THE INVERTED HARMONIC OSCILLATOR: 

SOME STATISTICAL PROPERTIES.

5.1 Introduction
There has been much recent interest in optical amplification. 

Early hopes of cloning photons by stimulated emission were confounded, 

when it was shown that the amplifier instead acts as a source of 

noise, statistically independent of the input field [Wootters & 

Zurek,1983; Heidmann & Reynaud, 1984]. It was shown that both linear 

amplification and linear damping in a quantal system coexist with 

external noise fluctuations; (see [Caves,1982; Stenholm, 1986a] and 

references therein.) Both coherence and correlation properties of the 

output light have been researched [Chyba & Abraham, 1985; Friberg & 

Mandel, 1983; Woger et al. , 1986]. There have also been studies of 

minimum limits for the noise that accompanies amplification [Ley & 

Loudon, 1985], as well as many derivations [Hong et al. , 1985;

Stenholm, 1986b] of limits for squeezing-preserving intensity gains of 

squeezed output from linear light amplifiers, with subsequent attempts 

[Pegg & Vaccaro, 1987; Vaccaro & Pegg, 1987; Dupertuis et al., 1987] 

to overcome the latter bounds for atomic amplifiers. In particular, 

inverted oscillator light amplifiers have been the subject of much 

investigation, where such objects have been used to discuss 

fundamental problems in the quantum theory of measurement [Glauber,
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1986], the short-time behaviour in superfluorescence [Glauber, 1978], 

and of a spin magnetic moment in a magnetic field [Glauber, 1985].

Below, we briefly outline some properties of the inverted 

harmonic oscillator which are analogues of important relations obeyed 

by the familiar 'upright' harmonic oscillator, in terms of which modes 

of the electromagnetic field are described. We adopt Glauber's model 

of an inverted oscillator [Glauber, 1986] for the quantum amplifier, 

which assumes the following Hamiltonian,

H  |p2 +  w 2q 2j -  - h  a> (c+ c +  1/2)

so that the annihilation operator evolves as c(t) — c(0) e^Wt. The 
tiln stationary state |n> obeys

c |n> - Jn jn-l>

c+c |n> ■= n |n> - -fi to (n + 1/2)

We can obtain our inverted oscillator from the usual simple 

harmonic oscillator, described by operators a, a+ by the substitutions 

to -*■ -to and a -*■ c+ , as in Fig. 5.1. Important differences between the 

models of Figs. 5.2 and 5.3 have been found; see for example [Glauber, 

1986] and ref. therein. Physically, Fig. 5.3 represents a collection 

of atoms (the inverted oscillator), losing their energy to a bath of 

cavity field modes; the atoms may have all their 'input' modes 

occupied, but only one mode is amplified.

+
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directionA  °f
lincreasing

energy

Figure 5.1. Harmonic & Inverted oscillator potentials and 

stationary states.

Figure 5.2. Harmonic oscillator coupled to a heat bath of oscillators.
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Figure 5.3. Inverted oscillator coupled to a heat bath of oscillators.

5.2 The Fluctuation Amplification Theorem
In this section, we derive a connection between amplification and 

quantum (vacuum) fluctuations for an inverted oscillator coupled to a 

heat bath of oscillators. We follow the method of Louisell [1973] who 

obtains the well-known Fluctuation-Dissipation Theorem for an 

'upright' oscillator coupled to a reservoir. Let c and [b^} be the 

annihilation operators for the inverted oscillator and bath oscillator 

modes respectively. The oscillator-bath system is described by the 

Hamiltonian

Ht - -h  u>c (c c + 1/2) + ft
Y -j (b> j

+ 1/2) + Hj (5.2.1a)

where contains the linear couplings and is given by

Hj - h (/Cj bj c + c+ b^) (5.2.1b)
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and {/ĉ } are a set of coupling constants. Henceforth, we omit the 

zero-point energies, and set ft - 1. Only in the limit as j -* «, can 

we strictly expect truly irreversible behaviour.

We proceed by deriving the Heisenberg equations of motion for the 

annihilation operator 'c', and in doing so adopt the Weisskopf-Wigner 

approximation to produce a true dissipative subsystem (the reservoir) 

and a Langevin approach whereby the fluctuations in the system arise 

from the inclusion of random forces as driving terms. These latter 

are chosen to have properties which ensure equal-time commutation 

relations are obeyed. This in turn ensures that the time-evolution 

preserves unitarity; probabilities relevant to the problem sum to 

unity. Working in the Heisenberg Picture, we find the following 

equations of motion:-

b.(t) - -i w. b. - i/c. c+ (5.2.2)
3 3 3 3

c (t) - iwc c + S  |/c. |2 f c(t') elaj (t_t,)dt' + G (5.2.3a)
c Z. J J o c

J
where

„ * ,+/AN iw.tG - -l ) k . b .(0) e lc  L 2 3 J (5.2.3b)

Note that b̂. (0) and bj(0) are in the Schrodinger Picture.
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We now transform to the Interaction Picture, by removing the 

freely-rotating high-frequency part of the evolution of c, by making 

the substitution

d(t) - c(t) e^c** (5.2.4)

Then we find that

d(t) = S  |/c. |2 [ d(t') el(wj Wc)(t t#)dt' + G (5.2.5a)
.  ̂  ̂oJ

where

^ A  * , + /r.. i(u>.—to )t /c 0 N- -l) Kj b^ (0) e j c (5.2.5b)
j

Now, we define the Laplace Transform of f(t) by

f(s) f(t) dt.

Then, in Laplace Transform space, equation (5.2.5) becomes

d(s)
c(0) + Gd (s)

(5.2.6a)

where

i s - i(w.-a> ) J J c
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Gd(s) i
5

V 01
s - i (co. - co )

j c
(5.2.6b)

Under the Weisskopf-Wigner approximation, the system is only 

weakly perturbed so the pole in (5.2.6a) is close to zero, and we can 

make the approximation

k .
_JL

( c o . — CO )J c' -  I S

Lim -i 
s-*0+ -(co. — co ) — is 

J c'
j

*=* — - i <5co 
2

where

7 -  2tt g (w c ) |/c(wc )  |2

(5.2.7)

Sco
g(o>.) | «(o> ) | 2 
---J------ J---  d co . .

CO. -  CO ^J C

Here g(cô ) is the density of states, 7 is the amplification rate 

and 6co is a frequency shift. We have assumed that the heat-bath modes 

are numerous enough to form a continuum, with the central oscillator 

frequency embedded in it.
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Substituting (5.2.6b) and (5.2.7) into (5.2.6a), and inverting 

the transformation d(s) over an appropriate Bromwich contour in the 

complex plane gives,

c(t) - u(t) c(0) + ^ v^(t) bj(°)
j

where

u(t) - exp [(7/2) + i(^c - 6w)]t
and

-** [l - - "c + 5“)t: e7t/2]
v ( t ) ----1---------------------------------------
J (w. - « ) + 8u> +  ( i y / 2 )

J c

Hence, ignoring negligible frequency shifts, we have 

d(t) - — d + G,(t)
2 d

and

Gd( t )---i) /ĉ b^(0) e j c
j

Here, G^ is the quantum mechanical Langevin force, which is a random 

operator, acting as a noise source, adding fluctuations to the system. 

The term (y/2)d(t) signifies the mean drift motion. If the reservoir 

is initially in thermal equilibrium, at temperature T, then its 

density matrix is

(5.2.9)

(5.2.10)

(5.2.8)

(5.2.8a)

(5.2.8b)

f*“R
'o<R>

Tr e K
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where is that part of the total Hamiltonian that describes the 

reservoir. Therefore, the Langevin force operator has zero 

expectation value

<Gd(t)>R " TrR 'o<R > Gd(t)

- 0

since we are tracing over the initial, or time independent states of 

the bath. For a bath with a large number of degrees of freedom, it 

takes little time for the bath correlations to decay and so the system 

can be assumed Markovian.

Thus, we obtain

—  <d(t)>- - * <d(t)>„ (5.2.11)
dt R 2 R

so that,

<d(t)>R - e7t/2 c(0) (5.2.12)

By inspection of equation (5.2.12), we see that we can feel justified 

in calling '7', the 'amplification constant.' 

that the autocorrelation function vanishes

Kdd<ci - V <Gd (tl> Gd (t2)>«

Further, it follows
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- 0.

Similar expectation values hold for G (t) and K (t. - t0).
d+ d V  1 2

The cross-correlation function is likewise given by

K
d+d

(t. V  = < G ,+(tl)G, (t2)>R d d

* /ns i+/nw i(w.-CJ )to-i(0J1-C(J )t.
k . Cb.. (0) b.(0)>_, e i c 2 1 c lJ 1 J R J

j.l

g(Wj) |«(Wj)|2

ei(»j-Uc)(t2-t1

(n(u>. )+l)

du>.
J

(5.2.13)

“ + thwhere n(w.) - <b.(0) b.(0)> is the mean photon number in the j 
J 3 J R

oscillator, and we have gone to the continuum limit, in j, the bath 

variables.

Also, we have that,

K
d d+(ti ~ V <G (t-) 

d G + (t2)>R d
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g(“j)
■ 2 -

«(Wj)| n(u>j)

du).
3

(5.2.14)

Clearly, these functions depend only on time differences, and not on 

absolute values of time. Hence they describe stationary Markovian 

(random) processes. From Langevin theory [Haken, 1981], we know that 

as the time difference approaches infinity such expectation values 

approach zero, due to decorrelation of the Langevin forces G^(t).

We may associate with the dynamics, a correlation time t , of the 

forces, which is a minimum time in which the Langevin force changes 

significantly. We choose a time interval At, such that

r < At < 7 c (5.2.15)

Next, we define the "Diffusion Coefficient", by

2 <D " “  dd R At

t+At
dt̂

t

rt+At
dt2 <G (t^) G + (t2)>R (5.2.16)

d d

We again assume that the integrand attains its peak value when 

enabling us to extend the lower limit to so that we can perform

the time integrals. The assumption that S(wj) |«.(<*>.)| n(tô .) is a 

slowly varying function of cô. enables us to perform the integration
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over Wj. Using this latter in (5.2.14) and (5.2.16) respectively 

yields

K + (tl “ t2) " ? n S ^ i  ~ V  (5.2.17)dd

and

2 <D 7 n (5.2.18)

In correspondence with classical Brownian motion, the reservoir 

is assumed to become uncorrelated early in the evolution of the 

system, so that subsequent evolution is Markovian. Integration of 

both sides of (5.2.17) now gives

7 1
n

-0 0

<G (r) G .(0)>„ dr. 
d d+ R—oo

(5.2.19)

This takes the form of a "Fluctuation-Amplification Theorem", wherein 

the system amplification rate 7 and the reservoir fluctuating forces 

which introduce fluctuations into the system are inter-related.

An alternative, but equally valid expression is

7 1
(n + 1)

r°°
<G (r) G (0)> dr 

d+ d R—00
(5.2.20)

evaluated from
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K + (t1 - t2) - 7 (n + 1) 5(tt - t2)
d d

(5.2.20a)

2 <D + >R - 7 (n + 1) 
d d

(5.2.20b)

The vanishing of auto-correlation functions, and thus 'auto-diffusion

coefficients' <D >D and <D : ,  is a sign of energy-conservation
dd R d V  R

within the bath modes, at t — 0.

5.3 The Einstein Relation and Spectra

In similar fashion, we can derive a Langevin equation for the 

photon number in our inverted oscillator (see also [Stenholm, 1986a].) 

We find, under the Markov approximation, that,

—  d+d - 7 d+d + 7  (n + 1) + G 
dt

(5.3.21)

where the relevant Langevin force is

G (t) - d+(t ) G (t) + G (t) d(t ) 
c d d+ C

(5.3.22)

and t is a time such that c

0 < t < t - t < 7c c
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It follows that

dt
d+d>R 7 <d+ (t) d(t)>R + 7  (n + 1 ) (5.3.23)

requiring the property

<G (t)> - 0.
d+a R

From equations (5.2.9) and (5.3.21), and conditions (5.3.15), we may 
write,

Ad(t) - 2  d(t) + __1 
At 2 At

rt+At
G.(s) ds d

t
(5.3.24a)

Adjd(t)
At

7 d+d + 7  (n + 1 ) +
rt+At

t
G (s') ds' 
d+d

(5.3.24b)

where

Ad - d(t + At) - d(t) (5.3.25a)

Ad+d - d+(t + At) d(t + At) - d+(t) d(t) (5.3.25b)

Now,
„ Ad+d  ̂ Ad . Ad+d . Ad+Ad  ̂ (5.3.26)< ---- > - < d (t) —  + ----  + -----  >R

At At At At

I
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To prevent the system from developing memory, we must ensure 

decorrelation of the system operators and reservoir Langevin forces 

over our working time interval (s - t).

Further, on substituting (5.3.24) in (5.3.25) and in the limit 

At -* 0,

d <d+ d> = 7 <d+ d> K R
dt

(5.3.27)

Finally, (5.2.9) and (5.2.20a) give

2 <D + >R — —- <d+d>R - ^ <d+d>R - X <d+d>R 
d d dt 2 2

—  <d+d>D - < d+ 
dt R

d_d - G 
dt ( R

- < d_d+ - G+ 
dt d R (5.3.28)

which is the Einstein Relation for the diffusion coefficient.

For example, for our problem, using (5.2.9), (5.2.15) and

(5.3.21),

2 <D + >R - 7 (n + 1). 
d d

That is, the diffusion constant is given in terms of the drift 

terms, which determine the mean, underlying motion of a system. We 

can derive a Generalised Einstein Relation, using perturbation theory,
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as in Sargent III [1974], This has the same form as (5.3.28) but the 

drift terms can, for example, include spin-flip operators describing 

two-level atoms, or oscillators which obey Fermi-Dirac Statistics.

Next, we define the fluctuation, intensity and photon number 

spectra (unnormalised), for our example, respectively by

1^ — j e <c+(t) c(0)> dt 
—00

(5.3.29a)

rw  __oI2 “ I 6 1Wt <c+(0> c+(t> c(°>> dt (5.3.29b)
—00

I3 - [ e lwt <c+(t) c(t) c+ (0) c(0)> dt (5.3.29c)
J — co

Evaluating these equations using (5.2.9) and (5.3.21), we find

that

- 7 <c+ (0) c(0)>
I1 - ------------------- (5.3.30a)

(w + «.)2 + (7/2)2

+2 2 1 <c (O)c'(0)> + (n+l)<c (0)c(0)>

- 2tt (n+1) <c+ (0)c(0)> S(u>) (5.3.30b)

I - I -----^ --- <c+ (0) c(0)> (5.3.30c)
2 , 27 + w

The positivity of the spectra is born out, since c c represents a
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de-excitation, that is a negative energy, on the absolute energy 

scale. This arises because of the even powers of operators in their 

definitions (5.3.29), so positive definiteness is assured. For 

comparison, the corresponding expression for 1^ for the model of 

Fig.5.2 is

7 <a+ (0) a(0)>
I^(a,a+)---------------------.

<» - «c)2 + (7/2)2

5.4 Relevance of the Quantum Regression 
Theorem and the Kubo Formula

Because we have been dealing with a Markovian evolution, the 

Quantum Regression Theorem (Q. R. T.) will be of relevance. In our 

case, we can use it to find an expression for 7. A statement of the 

Q. R. T. is that if

then

<A(t + r)> - ^ ai('r) <Ai(t)> 
i

<B(t) A(t + r) C(t)> = 5
A  A  A

oi(r) <B(t) A± ( t )  C(t)>.

In other words, the theorem helps us to write two-time operator

correlation functions in terms of one-time correlation functions. We

need to evaluate the term <G (r) G (0)> , which arises in the
d d+ R
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expression for the fluctuation-amplification rate, of equation

(5.2.19).

Now,

^ \ * ,+/ns i(«. - c*> )tGd( t ) ---1 / bj<°) e J c •

Hence, by the Q. R. T.,

<Gd (t + r)> - ^ ttj(r) <G VJ/(t)>,(j) 
d

(5.4.31)

where <*.(r) - -i /c* e ^ wj Wc ^ t + and G ^ \ t )  ■ b*(0). 
3 J d J

Temporarily assuming 7 to be time-dependent,

7(t)
n

<Gd(t + r) Gd (t)>R dr

■ M <  G<J) (t) G+(t) >J
n t

a^ ( r ) dr

“I" 5 < bj (<>) 1 5 *1 bln .J

. x , / n\ -i(td,-W )ti ) /c„ b, (0) e j c
L 1

R

. * i(w.-w )(t+r)-i/c. e v i c dr
J J

(5.4.32)

If the reservoir is in thermal equilibrium, then <bt(0)b^(0)>R “
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6^  n. . After setting t - 0, we find that

2*7 ---3
n

(5.4.33)

function of w. , we can convert the sum to be an integral, to give as 

before,

where g(a>c) is a density of states, about the most prominent frequency

The latter is densely surrounded by the frequencies of the other 

oscillator % which then effectively function as a heat bath. 

Therefore, we have reduced (5.2.19) to the usual dissipation or 

amplification rate, familiar from time-dependent first order

perturbation Fermi Golden Rule Theory. It is interesting to note that 

(5.2.19) takes the form of a 'Kubo equation', [Ziman, 1980], giving 

the response of a system to an oscillating perturbation.

We now outline the connection, with a precis of Callen's 

derivation of the Kubo formula [Callen, 1962].

Imagine the relevant Hamiltonian takes the form

7 - 2 7T g(wc) |/c(u>c ) |2 , (5.4.34)

l sg (5.4.35)
i
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generator (driving system) and
i

signal generator applies a set of forces { )  to the driven system, 

creating fluctuations in the system. and depend on the

coordinates and the momenta of, respectively, the generator and the 

dissipative system. Since the signal generator has a few degrees of 

freedom and moreover is highly excited to large quantum numbers, we 

can take the functions F.(t) = f.(t) to be classical. Hence,

H - Hq + 2 fj/t) Q r  (5.4.36)
i

The response <Q^(t)> to the applied 'forces' f^(t) is,

<Qi(t)> - Tr Q. p(t) (5.4.37)

where p(t) is the requisite density matrix, obeying the Schrodinger

Picture equation of motion ih  p — [H , p ].

Using the equilibrium density matrix, this can be solved by 

iteration to find a first order approximation for p, which is linear 

in the applied forces. We find that

■t
—  <[Q.(t'), Q (t)]>(o)dt- (5.4.38)

—co

where <. . .>^°^ is an ensemble average for the system in equilibrium. 

Simply noting the following identifications,

<Qi(t)>(1) - Y

FiQi is the interaction term. The
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Hsg “ "ft“c (c+c + 1/2)’

) “ L (btb. + 1/2) , (5.4.39)
i

CQ±) - (bi),

our problem clearly reduces to a special case of this general 

formalism.

We observe that the integrand of (5.4.38) has no classical 

analogue, a confirmation that the link between fluctuations and 

dissipative/amplificative behaviour is purely quantum mechanical.

To be more precise, although, for example, classical Brownian motion 

has an equivalent fluctuation-dissipation theorem associated with it 

[Haken, 1981], quantum phenomena require quantum Langevin theory in 

order to identify this theorem.

5.5 Discussion.

It is a general result in statistical mechanics, that all 

dissipative processes may be thought of as being induced by 

spontaneous fluctuations in the dissipative system. This general 

result is called Nyquist's Theorem [Callen, 1962; Callen & Welton, 

1951; Jackson, 1952; Reif, 1985], and relates the generalised 

resistance (an irreversible process,) to the fluctuations of the 

generalised forces in linear dissipative systems.
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Thus, spontaneous (i.e. vacuum stimulated) transitions may be 

considered as arising from the random fluctuations of the 

electromagnetic field in the vacuum state (the dissipative system,) 

acting as an excited atom [Milonni, 1984], Nyquist relations 

correlate the fluctuations of a system in equilibrium with an 

irreversible process.

A physical explanation for the fluctuation-decay theorem, for a 

damped 'upright' harmonic oscillator may take the following form. The 

harmonic oscillator has a simple structure, and is excited to high 

energy-levels, with its large energy coherently associated with one or 

a very few degrees of freedom. The reservoir has a more complex 

structure. On coupling, the reservoir acts as a dissipative system, 

destroying the coherence of the oscillator. It is the random 

fluctuations generated by the dissipative system which creates a loss 

of energy and coherence within the harmonic oscillator, leaving the 

latter with only the random disordered thermal equilibrium energy. 

Nyquist fluctuations manifest themselves as macroscopic dissipations. 

The same mechanism can be used to explain the fluctuation- 

amplification theorem, however the energy loss is exponentially 

increasing.

Note that we do not necessarily require a reservoir within our 

system, in order to achieve amplification. A simpler model of a 

parametric amplifier (paramp) is an oscillator coupled to an inverted 

oscillator. As we move down the ladder of states in the latter, by 

creating quanta of 'negative' energy, positive energy is lost to the 

upright oscillator, whose mode is thus amplified, by creation of 

quanta, and movement up the ladder of energy levels. Our above model
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comprises a field of modes being amplified. In addition, there is a 

stage where our analogy with the fluctuation-dissipation theorem 

breaks down. For whereas our dissipator decays to zero in the 

long-time limit, amplification proceeds ad infinitum, requiring an 

unrestricted energy source. This would explain why our amplification 

models do not occur in nature, but are as yet merely approximations to 

physical situations.

We conclude this section by noting the difference in structure of 

the Langevin equations of motion for harmonic and inverted oscillators 

respectively,

—  (t) - - 2 f(t) + G (t) 
dt 2

Gf(t) - -i ^ bj (0) e_i("j _ “c)<:
j

and

— d(C) - 1  f(t) + G (t) 
dt 2

„ \ * ,+/n, iO. - <J> )tGd( t ) ---i ) Kj bj(°) e J c
j

where f(t) - a(t) e^wt.

Nevertheless, the dissipation width
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< G (r) G (0) > dr f+ f R
>

is identical with the fluctuation width of (5.2.19), as we have shown 

above using the Q. R. T. , or as can be proved by direct substitution.

5.6 Conclusions

We have discussed the exponentially increasing energy loss of an 

inverted harmonic oscillator by its linear coupling to a collection of 

harmonic oscillators from a statistical viewpoint. It was found that, 

just as for the equivalent linear damping problem, the central 

oscillator lost its energy to the bath, which in turn returned part of 

that energy in a random fashion, back to the primary oscillator

The operation of a quantum linear amplifier adds Langevin noise 

to the emitted signal, thus degrading the efficiency of the output by 

decreasing the signal-to-noise ratio. In going from attenuator 

problems to the analogous amplifier problems with which we have dealt 

above, we have found that the replacements w -»■ -w and a -*■ c+ in the 

formalism have the same effect as the naive substitutions

-7 -*■ 7 and n «—*■ n + 1.

The first of these changes is perhaps to be expected; the factor 

of unity in the second is an intrinsic spontaneous emission term, 

essential for the elucidation of quantum amplification. The Langevin 

equation (5.3.21) for the photon number, is a good example of how both 

input photons and zero-point photons initially present are amplified.

17 _ - 
n
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Prudence is necessary in fashioning the time-evolution of physical 

systems comprising the inverted oscillator; for large enough times, 

the evolution becomes nonlinear and the model breaks down.
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CHAPTER SIX
DISCUSSION & CONCLUSIONS

In this thesis, we have been primarily concerned with the 

dynamical evolution of population in two models. In chapter five, we 

looked at some quantum statistical properties of the inverted 

oscillator.

Firstly, in chapter two, we developed a theoretical analysis of 

the interaction of a closely-spaced manifold of energy levels, the 

quasicontinuum (QC), with a relatively isolated discrete level, which 

is in turn dissipating its population to a true continuum. The latter 

was treated through the Markov approximation, and for definiteness we 

assumed constant coupling to equally spaced levels comprising the QC. 

We named this scheme, the Extended Bixon-Jortner model.

We found that when all of the population was chosen to reside in 

the isolated state, there was initial decay as though to a true 

continuum. Then, 'kicks' were administered at integer values of 

normalised time, which created recurrence in ground-state population 

as discrete spectra was resolved. The long-time evolution became more 

complicated. The true continuum wins the competition for population 

in the steady-state limit, because loss to the QC is reversible,
it-.whereas that to the continuum is reversible. The overall dynamics was 

a superposition of recurrence of initial-state probability and 

exponential decay.
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Then followed a discussion of limiting and special cases 

including that of energy-level degeneracy.

Finally, we looked at the QC population dynamics, noting the 

possibilities of initial condition-dependent population trapping, in 

the long time limit.

In chapter three, we investigated an analytically soluble model, 

which we called the 'Structured Continuum', in which the dipole matrix 

elements between the ground-state and the continuum vary sinusoidally 

between zero and a maximum. The time-evolution of the ground-state 

population still exhibited the periodic disruption observed in the 

Bixon-Jortner model, although much reduced. We allowed the 

ground-state to be resonant with an arbitrary place in the continuum; 

population trapping was observed in the case of resonance with a zero 

in the continuum.

In chapter four, we dealt with dressed states and spectra in QC 

excitation for arbitrary quasicontinva. We found that, if the 

population was initially placed in |0>, then at long times the true 

continuum spectrum exhibited zeros at the frequencies of the QC 

levels. Zeros could be removed by placing population initially in 

corresponding QC levels. In particular, these features were present 

when the QC levels were chosen to be equally spaced (the Bixon-Jortner 

model) or those of a Rydberg series, and we illustrated each of these.

In order to study these features, we investigated the dressed 

states for the total system. We proved the existence of dressed 

states |s^>, which contain no contribution from the ground state (plus 

appropriate photon numbers), regardless of the QC chosen. These 

dressed states are each formed from one QC level and an isolated state
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of the true continuum having the same energy as the QC level. 

Calculating the populations at positions in the true continuum 

spectrum corresponding to the energies of the QC levels, we found both 

a constant term and a transient. The constant is proportional to the 

population initially in Js^>. If the states Js^> were initially 

unpopulated, zeros in the spectrum were produced. Conversely, these 

could be removed by initially populating one or more of the |s^>.

The approximations made in our studies yielded analytically 

closed-form expressions for the time evolution, which have the 

advantage over numerical solutions of offering insight into our 

understanding of the processes involved.

Little has been said in this thesis about empirical verification 

of the models in real systems. Certainly, the region below 

dissociation threshold where molecular vibrational levels are dense 

but not continuous, is identified as a QC. Ultimately the 

justification for our juggling with idealisations, is that this is a 

thesis dealing with theoretical, as opposed to experimental Quantum 

Optics.

Moreover, with relatively simple models, we have succeeded in 

revealing many of the features that would normally only transpire from 

more complex treatments of similar systems; for example, the 

final-state spectra studies of our Structured Continuum displayed 

asymptotic confluences and q-reversals, which would normally show up 

only on utilizing the autoionisation theory of Fano.

We expect that this work will have important practical 

implications for multiphoton dissociation of polyatomic molecules.
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In chapter five, perhaps the main message is that, for linear 

systems, dissipation and amplification can be regarded in a sense as 

different manifestations of the same phenomenon of response to within 

the approximations that we have employed. This conclusion is 

independently born out by the research of Dupertuis et al. [1987]. 

They go on to show that one can 'rig' the reservoir response, which 

for an attenuator can produce a squeezed output, irrespective of its 

input, and for an amplifier can provide a squeezed output for an 

arbitrary gain, thus beating the photon-cloning limit of two. Similar 

conclusions are reached by Vaccaro and Pegg [1987], using single-stage 

and multi-stage squeezed atomic light amplifiers instead of a suitably 

rigged reservoir.

We hope that this account may help to elucidate the role of the 

inverted oscillator as a potential amplifier.

Perhaps the most striking underlying feature of our work is the 

generality of the models presented. It is clearly to be expected that 

such themes will arise in other areas of physics, outside the strict 

domains of Multiphoton Physics or Quantum Optics. Some of these have 

been mentioned above for example, the study of time-reversal 

asymmetry, Landau levels or quantum measurement theory. Others 

undoubtedly exist, although specific features of our analysis will 

have to be altered to suit the idiosyncrasies of the problems of 

interest.

We hope that our models will serve as a stepping-stone toward 

understanding more physically interesting schemes.
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APPENDIX I

In this appendix, we derive the general equation of motion which 

is used in the text. We write the time-dependent Schrodinger Equation 

as,

i h d *(r,t)
d t

H $ (H(o) + H') ( 1 . 1)

A

In the absence of H' ,

i h - H (o)x 
d t

where the wavefunction y can be written y — ) a y , where theZ n n 
n

stationary states of an atom are y - u e , with H^°^u - E un n n n n
(X “ Xn -  Xn (£,t).)

When the field is weak, for example, obeys Beer's absorption law, 

then the interaction can be considered as a perturbation to the 

Hamiltonian Hq , and the unperturbed atomic eigenstates still provide 

an adequate set of basis states under irradiation. Thus,

tf(r,t) - ^ an (t) *n (r,t) 
n

V . . . . -iE t/h= ) a (t) u (r) e n /_ n n —
n
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and by the Superposition Principle, (a postulate of Quantum 

Mechanics), the general solution is a linear superposition of the 

particular solutions and the summation strictly includes integration 

over all continuum states. If the perturbation of the system is 

time-dependent, then the weighting functions an (t) will be time 

dependent.

When tf(r,t) is normalised, then the a (t) e can be- n
interpreted as the probability amplitudes, whose modulus square is the 

probability of being in the state |n>. The interaction between the 

'atom' (through its dipole moment, d ), and the field (through the 

polarization e), is given by H — Hq - d.E.

Substituting into equation 1.1, gives,

i h a (t) n un
-iE t / h  e n ' + n a (t) n

-lE t / h  u e n n
n n

Hence,

(H(o) + H' ) a (t) n un
-iE t / h  e n

ih ) a (t) u e ^ n t/̂  = ) H' a (t) u (r) [_ n n J_ n n -
n n

-iE t / h  e n

Premultiplying both sides by u^, integrating over all space, and 

using the orthonormality condition

I u (r) u (r) dr *= S n - m - - nm
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gives,

where,

i fi *k(t)
e-iEkt/ft

n
-iE t / h  e n

A f * A
«kn — J uk H'Un dH ’

which is the matrix element of the matrix representing the quantum
A

mechanical operator H'. Generally, matrix elements of the form H^Ct) 

are zero since the dipole moment is only non-zero between states of 

opposite parity.

Defining - E^, we conclude that

i fi a^t) - ) H^n an (t) e V .  (1.2)
n

APPENDIX II

In this appendix, we evaluate the integral in equation (2.3.6),

(ft - 1),

co
IV \ -lA—  ) c (t) e nL n

-iV
fi n

/»t

|vo f l dt’ e lAf(t cQ(t') (II.1)
o
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treating the decay of the discrete state 10> to a continuum of final 

states, using the Markov approximation. We follow the treatment of 

Cohen-Tannoudji et al. [1977, p.1343 et sec.], and Radmore & Knight 

[1982, p.571].

c q here is non-Markovian, being dependent on the past history of

c , due to the integral term. We now make our approximation. If 
2

|Vq |̂ is a sufficiently broad function of f, then for large t-t', the 

exponential, whose period with respect to is 27i7i/(t-t' ) , undergoes 

many cycles of oscillation as f is varied and consequently averages to 

zero.

More precisely, if the values of t and t' are chosen such that
2

this period is very much smaller than the width of |Vq |̂ say h 8, (the

latter being interpreted as the range which covers most of the

variation of V^,) then the product e ^ f ^   ̂̂  undergoes

numerous oscillations when is varied and its integral over is

negligible. So the modulus of this latter integral is large for

t-t' - 0, & becomes negligible as soon as t-t' >  1 / 8 . This property

means that the only values of cQ(t') to enter significantly into the

right-hand side of II.1 are those which correspond to t' very close to

t (t-t' 1/5.) So the presence of the integral over practically

eliminates the contribution of c (t') as soon as t-t' >  1 / 8 .o

For any value of t, then, cQ(t) depends only on the values of c q 

at times immediately before t. This property enables us to transform 

the integro-differential equation II.1, into a differential equation.



127

If cQ(t) varies little over a time interval of the order of 1/5, we

take t-t' “ 0, so to within a small error, c (t') » c (t).o o
Now note that [Cohen-Tannoudji, 1977, p.1470]

Lim
t-*»

•t -j

-iA-r/fte f ' dr = a  

** 0
7T 5 (A^) - i 6^ i_

-Af-

The limiting procedure is not essential; it suffices that 

h / t  <  US, that is, t > 1/5.

Hence, given this validity condition, we have that

“ “
V J  ^  1 of1 7r 5 (A^) - i $ 1GUJ-.

£ a A,-L

s 7 + iAw , o

and the result in equation (2.3.7).

7 here is half of the first order perturbation theory, Fermi 

Golden Rule decay rate. (7 ^ is the decay lifetime of the 'atom' from 

its excited state.)

The 5-function ensures energy conservation, as required by the 

emission of real photons, whereas it is virtual photons that shift the 

energy level, since energy conservation is not called for.

The Principal Part ensures a non-divergent result if = 0. We 

recognize this second order in V quantity from stationary perturbation 

theory. Aw is then simply the sum of the shifts due to the various

continuum states.
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Note that to the order to which we are working, the Markov and 

Weisskopf-Wigner approximations are equivalent.

APPENDIX III

Here, we present a proof of equation (2.3.15), by application of 

a theorem of Residue Calculus [Spiegel, 1972, p.188]

(N +i)(-l + «)
V

C N (V + 4)d + f)

*
-1 -N -l -1 1 S N N + l

(V+P<-l-0 " (S + $)(1 - 0

Theorem

Let f(z) be a function of a complex variable such that along the 
i i Mpath cN , |f(z)| < ----, where 1 > 1 and M are constants independent

M 1
of N; (see figure above). Then,

) f(n)
n— oo

Res(7T Cot(7r z) f(z), a^) ,
n— «o

where a, (k - 1.... m) are poles of f(z). We assume that none of the
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finite poles of f is integer, i.e. the poles of tt Cot(7r z) and f(z) do 

not coincide.

For our example,

5 —  - -  5 —s + inA iA *- n + (s/iA)___rr> n _ __<n ' '

Take a - (s/iA) (a E C, and non-integer by assumption.)

Then f(z) = (z + a) ^ has a simple pole at z = -a, and a residue 

at '-a' of Res(-a) = 1.

Therefore,

Residues — -1.7r.Cot(7r z)
z=-a

-7T Cot(—7T a)

i 7T Coth(7rs / A)

Therefore,

5
n=-®

(s + inA)-1 — Coth 7T S

A A
QED.

APPENDIX IV
Here, we evaluate equation (2.5.4) for c^(t)
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Now,

c (t) = -i V P Po
-rt (iA -r-r )r ,e e p dr

+ i V e po
-rt 5 4

n=l

/*t
(iA -r-r2)r (1) , 2

rn 6 P Ln-1 2r rn]

•inA 2g . s o 9 ( t ) dr n
e(r+r )2ng (V-1)

where Tn =  T ~ 2ng. By definition of Generalised Laguerre Polynomial

(«)
Lj (X) =

j

k=0

j + a

J  -  K

(-x)k
k!

We concentrate on solving the second integral above, using
j  J

6(x) = —  6 (x) , or with x = r — 2ng, 6(r ) = —  9 ( t ). 
dx n dr n

Therefore this term becomes, on integration by parts,

* 2
, Nk+1 0(iAr,-r-r )T An-(r ) e n dr 9 (r )n n

-

d6 ( t ) dr —  n
dr

, .k+1 (lA -r-r )r(r ) e n n dr (V. 2)
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Also,

pX
(y- « /  e7? dy - (x ~ ^  - 2

7 7 (y - « /  1 e7y dy

(x - g /  e7X fi f r\^-l 7X(x - 5)^ e

03 ~ 1)
7 (y - 5)^ 2 e7y dy

(x - 6 )P e7X 0 (x - 5)^ 1 e7X 
7 2

£ (i9 - 1) 
7 (y - 8)P~2 e7^ dy

(x - 6 )P e7X _ 0 (x - S)^ 1 e7X + 103 - 1) (x - l /  2 e7X

, jg(i9 - 1)09 -2) . . . 1 (x - 6 )0 - 0
(y-5)^ ^ e7y dy

= e7X \ (x - q (-l)q 0

q_o 7q+1 - q)!

t 2
Therefore, | (r ^ r ^t 0 ( r ) d r  with 7 = iA - r - r 2I n n nJ o

x = r, 5 = 2ng, 0 = k+1 becomes,
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9 k+1
(iA -r-r )t V e n )

q=0

(rn)k+1-q (-l)q (k + 1)! 

(iAn-r-r2)q+1 (k+1—q)!

From __ 6 (r ) = $(r ), we see that the integral part of (V.2)
dr

vanishes. We can evaluate the integrated part of (V.2) by using the 

sum from the recurrence relation. So we have,

, Nk+1 (iA -r-r )r
(rn) e n 6(' Tn ) dr

'
, .k+1 (iA -r-r^)r (r ) e n 0(r )J n n

J o

Then, with 7 = iA - Y n
becomes,

2r , x r , 8 2ng, f) — k + 1, this

0 k+1 sk+l-q / nNq , nNf... 2. r (r )  ̂ (-1) (k + 1) !. . (lA -r-r ) r \  n \ \ /( O  e n ) ------
L. / 1  A  __

n q_Q (iAn - r2 - r2)q+1 (k + 1 - q)!

= e
2V. (T )k+1 q (-l)q (k + 1 ) !(iAn-r-r )t ^ 0(rn) (V.3)

q=0 (iAn - T - r ) (k + 1 - q)!

because if t = 0, then -2ng < 0 and so 6 (r ) = 0.n
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The first integral in V.l is,

pt m a  ~p 2. (iA -r-r2)t .(lA -T-r ) r  , e n  - 1e n '  dr - -----------------
(iA - T - r)2 n

(V.4)

Substituting (V.3) and (V.4), into (V.l) gives the result 

(2.5.5).

APPENDIX V

Below we elaborate on some of the terms used within the text of 

the thesis.

Bloch Sphere [Allen & Eberly, 1975] .

We can parameterize the interaction of a two-level atom in a 

steady field using three variables. The inversion 'w' or single atom 

population difference, which is proportional to the expectation of the 

atom's unperturbed energy, ft w  / 2 is one such variable (with w

being the level spacing.) The other two are the components of the 

atomic dipole moment in-phase and in-quadrature with the field, 'u' 

and '-v' respectively. The absorptive component of the dipole moment, 

v, is the component effective in coupling to the field to produce 

energy changes, while u is the dispersive component. Now, these three 

vector components are the result of a coordinate transformation of the 

expectation values of the original Pauli spin operators which defined 

the evolution. Because this transformation is merely a rotation,
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lengths of vectors are reserved. Hence conservation of probability 

requires that

u^(t) + v^(t) + w^(t) *=1.

This equation indicates that the dynamics of the interaction is 

plotted-out on a 'Bloch Sphere,' formed by the Bloch pseudo-vector 

components u, v and w.

Autler - Townes doublet splitting

The state vector tf(t) for a two-level atom (TLA) may be described 

in terms of two states J 1> and 12> which define the two levels. If 

the two levels are coupled via an atom-electromagnetic field 

interaction the system oscillates between 11> & 12> , and so these

states are no longer stationary states and are not eigenstates of the 

total Hamiltonian H. It is possible to find new eigenstates |+> and 

|-> with eigenvalues E+> E by diagonalising H. These two sets of 

states (|l>, 12>) and (|+>, |->) may be thought of as two different

sets of basis states in terms of which tf(t) can be expanded

*<t) - a1(t) e-1^  |1> + a2(t) e“lE2t 12>

or

tf(t) - A+ e~lE+t |+> + A_ e_lE-t |->

The states (|+>, |->) are linked to the states (|l>, 12>) by a

transformation matrix. The expansion coefficients a^(t) & a^(t) have 

been made time dependent because of the oscillation of the system 

between states 11> & 12>. The expansion coefficients A+ and A_ are
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time independent because |+> and |-> are stationary states and there
2

is no coupling between them. Because the probabilities | A + J and 
2|A_| are time independent, the basis set (|+>, |->) is a convenient

basis to work with.

The actual state of the system $(t) and the expectation value of 

the energy <tf(t) |H|tf(t)> are independent of the choice of basis, and 

depend only on the initial conditions.

Now assume the atom is in a field with a single highly occupied 

field mode. If the energy of the total system (atom and field) is 

taken into account, the Hamiltonian is not time-dependent as in the 

semi-classical case. The energy levels of the total system are 

accordingly |n,l> and |n-l,2>, separated by the detuning between the 

laser frequency and the resonance frequency of the atom. These states 

are termed undressed states. The eigenstates of the diagonalised 

Hamiltonian which are superpositions of |l,n> and |2,n-l> are termed 

dressed states because the atom is surrounded by and interacting with 

the photons, i.e. 'dressed' by the photons.

The energy spectrum of the total atom-single field mode system 

may be represented either by the undressed states (basis states in 

which the quantum of energy is either with the atom-excited atom, or 

in the field-mode excitation) or by the dressed states (basis states 

which are linear superpositions of states in which the quantum of 

energy is with and not with the atom.) Whereas in the undressed state 

representation the system is constantly oscillating between the two 

undressed states for a given field mode occupation number, n, in the 

dressed state representation, the system is in a state that is a 

linear superposition of the two dressed states. It has finite,
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unchanging (equal for zero detuning, A) probabilities of being in the 

dressed states.

The process of alternate stimulated absorption and stimulated 

emission between Jl,n> and |2,n-l> is called Rabi oscillation. The 

Rabi frequency of oscillation is also the dressed state separation, 

and for mode occupation number n is given by

CJn -  ( A2 + 4|v12|2n )1/2

For a highly occupied field mode i.e. large n we take the dressed 

state separations for different mode occupation numbers to be 

approximately equal i.e. 0^ =* °n-l “ °n 2 etc*

The Autler - Townes doublet splitting is a manifestation of the 

doublet nature of the dressed states in the dressed state energy 

spectrum. In order to observe this directly we introduce a third

level into the system. The atom now has three levels, two of which

are strongly coupled with Rabi oscillations between them . A weak 

laser probe field couples the third level to one of the other levels. 

As the probe frequency is varied, the absorption from the probe beam 

is greatest (as is the population of level 13>) , when the probe

frequency equals the resonance frequency between one of the dressed 

states and 13>. Therefore we expect to see a doublet structure

corresponding to the two dressed states in the absorption spectrum of 

the probe. Alternatively we may monitor the fluorescence from level 

|3> as a function of probe frequency. The fluorescence detected is a 

measure of the population of 13> ,P^(t) and the fluorescence spectrum 

will have two peaks associated with the peaks in population. The
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peaks are separated by the frequency separation between the two 

dressed states i.e. the Rabi frequency. The doublet structure will 

only be symmetrical if there is zero detuning for the first transition 

because the dressed states are equally populated only when this 

condition is satisfied. At the resonances, P^(t) peaks whilst there 

is a depletion in the |2,n-l> population.

A third level |3'> may be reached by spontaneous emission from 

one of the strongly coupled levels. The fluorescence spectrum that is 

obtained again has two peaks at the resonance frequencies between the 

dressed states and |3'>.

Confluence [Rzazewski & Eberly, 1981 and 1983].

To illustrate a 'confluence', we consider the following model, 

[Knight, 1984].

Autoionisation is caused by the embedding of a discrete state of 

one configuration in a continuum of another configuration via a
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Coulombic time-independent atomic perturbation, 'V' . This discrete 

state )K> (say describing both atom and field) is strongly mixed to 

the flat continuum E by V to produce a modified or dressed discrete 

state |<p>

\<p> = |K> + r. Vke 
€ - E

The Fano wavefunction |F(e)> of the close-coupled k — E system of 

energy e is the stationary state which characterizes the structured 

continuum. If H is the total Hamiltonian and e the energy of the 

dressed (interacting) system, then

H |F(e)> - e |F(e)>.

As the resonance condition e -  E -* 0 is approached, the mixing of the 

embedded state and the original continuum becomes pronounced, and the 

modified discrete state becomes dominant. The Fano q parameter 

represents the ratio of the transition amplitude to the dressed 

discrete state |<p> to that of the old continuum |e>.

The modification of the probe excitation of the continuum from j 

induced by the dressing is

_ |<F(e) | T | ,j > | 2 _ (q + e)2 
|<£|T|j>|2 (1 + e)2

where e is the detuning of the probe interaction, that is the energy 

mismatch between discrete and continuum states. If q is large, the
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channel via the discrete state dominates and a more-or-less symmetric 

resonance in R (versus e) is produced. If q is small, the direct 

channel to the continuum dominates and an asymmetric enhancement as a 

function of detuning is produced with a zero at q - -e, where the 

decay channel closes down. Here the two transition dipoles to the 

continuum cancel. When the probe field is increased in intensity, the 

distinction between dressing and probe lasers become artificial. 

Two-photon dressed states can become decoupled from the continuum, 

immune to photoionisation, giving the possibility of autoionising 

states.

Rabi population oscillations are the quantum beats in the 

evolution of the dressed states. One can argue heuristically that the 

autoionisation mechanism provides a channel by which electrons 

originally in level |j> can reach the continuum, and thus 

autoionisation acts as a probe of the Autler-Townes effect. However, 

with increasing laser power, as the Autler-Townes peak moves into the 

Fano minimum, the effectiveness of the radiative matrix element

decreases, reducing the throughput of the autoionisation channel. As 

the channel closes, the lifetime of the bound state increases 

dramatically, explaining the sharp narrowing in linewidth seen in the 

photoelectron spectrum (versus detuning.) Hence one of the dressed 

states couples to the continuum in a diminishing way, the other in an 

increasing way. At the critical "confluence point of coherences," one 

dressed state becomes stable and the Rabi oscillation quantum beats 

are altered (and disappear from the ion probability

PT/_.T(t) - 1 - P.(t) - P. (t) where P., P. are the discrete stateION j k j k
probabilities.) Ionisation time dependences reflect the trapping in
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the persistence of an un-ionised bound state population as t -*■ ». 

Hence, whenever a confluence occurs, the spectral peak is infinitely 

high and narrow, the lifetime of one excitation channel is infinite, 

and a definite fraction of the atomic electrons is trapped in |j>. 

The exact conditions for confluence are easily derived by requiring 

that the zero in the numerator of the expression for the photoelectron 

spectrum be counteracted by an identical zero in the denominator. The 

zero in Fano's original model indicates that quantum interference may, 

for an appropriate choice of detuning, shut off the ground state from 

both its ionisation channels (direct and indirect.) The confluence 

line narrowing shows that, regardless of the detuning, an appropriate 

choice of laser power leads to a conspiracy of interferences with the 

same effect: the ground state cannot be completely ionised.

q - reversal

The interaction between a Rydberg series of weakly autoionising 

states and an extra level with a large decay width has been studied by 

Connerade et al. [1985; 1987]. They modelled what they called the 'q 

- reversal' effect, whereby there is a reversal of the symmetry of the 

Fano profiles as the series passes through the point of maximum 

coupling with the broad level. The q - reversal is the result of a 

reversal in the sign of 'q', caused by the very broad interloping 

resonance, and occurs on either side of the maximum of the broad 

feature, between adjacent members of the Rydberg series. The sharper 

the interloper level, the more pronounced the q - reversals. 

q - reversal is the hallmark of weak mixing; all q - reversals
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disappear at large mixing strength. Thus q - reversal plays a 

fundamental role in assessing coupling strength from experimental 

data.
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