
A TH EO R EM -PR O V IN G A PPR O A C H

TO

D A TA BA SE IN TEG R ITY

Fariba Sadri

A thesis submitted to the University of London for the degree of Doctor

of Philosophy

Department of Computing

Imperial College of Science and Technology

June 1988

1

ABSTRACT

This thesis describes the theory, application and implementation of a

new method, called the Consistency method, for checking integrity

constraints in deductive databases. It also describes a new proof

procedure that has been developed for this application.

The Consistency method is suitable for general range-restricted

deductive databases where the constraints can be arbitrary formulae of

first order predicate logic, and the transactions consist of one or more

updates. Each update is an addition, deletion or modification of a

database fact or non-atomic rule, or an addition or deletion of an

integrity constraint.

The Consistency method is based on general purpose theorem-proving

techniques. The new proof procedure is an extension of SLDNF,

which is the underlying proof procedure of Prolog. This new proof

procedure allows forward as well as backward reasoning, and

incorporates the negation as failure rule, as well as additional inference

rules for reasoning about implicit deletions.

Backward reasoning is particularly suited to query evaluation, where

the database is static but the queries change. Forward reasoning, on the

other hand, is particularly suited to knowledge assimilation, one

component of which is integrity checking, where the database changes,

and it is necessary to investigate the consequences of these changes.

2

In the Consistency method we reason forward from the updates, and

thus focus on the effects of the updates and ignore what remains

unchanged. This can increase the efficiency of the integrity checking

significantly by avoiding redundant evaluation of those constraints that

are satisfied in the database prior to the updates and which are not

affected by the updates.

The Consistency method and the new proof procedure have been

implemented in Prolog.

The method approximates the algorithms of Decker, Lloyd, Topor, et

al, Martens and Bruynooghe, and Bry et al, which are the major

existing algorithms for checking integrity of deductive databases.

3

ACKNOWLEDGEMENTS

I am indebted to my supervisor, Bob Kowalski, without whose

patience, guidance and encouragement this thesis would not have been

possible.

I am also grateful to Hendrik Decker, Kave Eshghi, Jean Marie

Nicolas, Rodney Topor and Paul Soper for many helpful discussions.

Kave Eshghi, in particular, has given me invaluable advice particularly

on the implementation issues. Thanks are also due to John Lloyd for

his thorough reading of the thesis, and for his helpful suggestions for

improving it.

I acknowledge with gratitude my two week stay at ECRC in Munich in

the summer of 1985, during which time the ideas presented in this

thesis began to take shape.

Thanks are also due to Cheryl Anderson and Dania Kowalska for

typing part of the thesis. I am very grateful to Cheryl Anderson for

teaching me to use the Macintosh, on which this thesis was produced.

This work was supported by the Science and Engineering Research

Council, and in part by an ORS award, and by an award from the

Department of Computing at Imperial College, for all of which I am

very grateful.

4

CONTENTS

CHAPTER 1. INTRODUCTION

CHAPTER 2. DEFINITIONS

2.1 Deductive Databases

2.2 Integrity Constraints

2.3 Constraint Satisfaction

CHAPTER 3. THE CONSISTENCY METHOD: SIMPLIFIED

CASE 1

3.1 The Proof Procedure

3.1.1 The SLD Proof Procedure

3.1.2 Our Proof Procedure

3.2 Examples

3.2.1 Adding Facts

3.2.2 Adding Non-Atomic Database Rules

3.2.3 Adding Integrity Constraints

3.2.4 Transactions With Multiple Updates

3.3 Comparison With SL

CHAPTER 4. THE CONSISTENCY METHOD: SIMPLIFIED

CASE 2

4.1 The Proof Procedure

4.1.1 The SLDNF Proof Procedure

4.1.2 Our Proof Procedure

5

4.2 Examples

4.2.1 Updates That Are Additions

4.2.2 Updates That Are Deletions

4.2.3 Transactions With Multiple Updates

4.2.4 Updates That Modify Database Rules

4.2.5 Updates That Require Additional Inference Rules

CHAPTER 5. FORMALISATION OF THE CONSISTENCY

METHOD IN THE GENERAL CASE

5.1 Formalisation Of The Simplified Proof Procedure

Described In 4.1.2

5.2 Formalisation Of The Rules For Implicit Deletions

5.2.1 The First Approach: The Metarule Version

5.2.2 The Second Approach: The Inference Rule Version

CHAPTER 6. IMPLEMENTATION

6.1 Parts Common To Both Versions

6.2 The First Approach: The Metarule Version

6.3 The Second Approach: The Inference Rule Version

6.4 An Alternative Implementation

CHAPTER 7. RELATED WORK

7.1 Comparison Of The Consistency Method With Decker’s

And The LT Algorithms

7.1.1 Decker's Algorithm

7.1.2 The LT Algorithm

6

7.2 Comparison Of The Consistency Method With The

Algorithms Of Martens And Bruynooghe, And Bry et al

7.2.1 The Algorithm Of Martens And Braynooghe

7.2.2 The Algorithm Of Bry et al

7.3 Other Integrity Checking Approaches For Deductive

Databases

7.3.1 Reiter's Modal Approach

7.3.2 Reiter's Type Checking

7.3.3 The Asirelli et al Approach

7.3.4 The Henschen et al Approach

CHAPTER 8. CORRECTNESS AND COMPLETENESS OF THE

CONSISTENCY METHOD

8.1 Correctness

8.2 Completeness

CHAPTER 9. CONCLUSION

REFERENCES

7

8

CHAPTER 1

INTRODUCTION

This thesis describes the theory, application and implementation of a

new method, based on theorem-proving techniques, for checking

integrity constraints in deductive databases. It also describes a new

proof procedure that has been developed for this application. The proof

procedure allows forward as well as backward reasoning, and can be

thought of as an extension of Prolog. Although the proof procedure has

been developed with integrity checking in mind, it, in fact, is suitable

for knowledge assimilation in general.

Our integrity checking method, called the Consistency method, for

reasons that will become clear in the next chapter, is designed for

range-restricted deductive databases (defined formally in the next

chapter), integrity constraints that are expressed as formulae of first

order predicate logic, and transactions that consist of one or more

updates. Each update may be an addition, deletion or modification of a

fact or non-atomic rule, or an addition or deletion of an integrity

constraint.

Deductive databases are extensions of relational databases. Relational

databases can be thought of as consisting only of facts. Deductive

databases may contain general rules as well as facts. Thus deductive

databases have more expressive power, and allow a better compaction

of information. A large part of the most recent British Nationality Act,

9

for example, has been formalised as a deductive database and

implemented in Prolog (Sergot, Sadri, et al [1986]). It would be very

difficult, and quite unnatural to represent complex information such as

legislation as a relational database.

Integrity constraints are conditions that the database is expected to

satisfy as it changes through time. They are intended to prevent

erroneous or undesirable information entering the database. If a

transaction violates the constraints, the integrity of the database can be

recovered in a number of different ways. One or more updates in the

transaction can be rejected, or alternatively, the database or even the

constraints can be modified. The recovery may be undertaken

autonomously by the database management system, or through

interaction with the user.

The following are some examples of integrity constraints expressed in

first order logic. Throughout the thesis we use the following notational

convention. Predicate and constant symbols start in the upper case, and

variable and function symbols start in the lower case. is the

implication sign, and can be replaced by "if'.

Example 1.1:

(1) A much quoted constraint is that "human beings are either male or

female", or more formally:

Vx [Male(x) orFemale(x) Human(x)].

(2) Functional dependencies are particularly common types of

10

constraints in relational databases. Here is an example: "Each student

has exactly one tutor", or more formally:

Vx 3y [Tutor(y x) <- Student(x)]

Vx Vy Vz [y=z <- Student(x) and Tutor(y x) and Tutor(z x)]

The first constraint states that each student has a tutor, and the second

states that each student has no more than one tutor.

(3) Type constraints specify the correct argument types. In relational

database terminology these constraints specify the domains of attribute

values. For example:

Vx Vy [Human(x) <- Salary(x y)]

Vx Vy [Real-num(y) Salary(x y)]

Vx [Animal(x) orPlant(x) <- Animate(x)]

(4) Many constraints can be naturally expressed as denials, which,

roughly speaking, are rules with no conclusions (denials are defined

formally in the next chapter). Consider, for example, the following

constraint:

"no secretary receives a salary higher than a manager".

This can be formalised as:

V x Vy V u Vv [<- Secretary (x) and Manager(y) and

Salary(x u) and Salary(y v) and u>v]

The above formula is equivalent to

V x Vy V u Vv [NOT (Secretary(x) and Manager(y) and

Salary(x u) and Salary(y v) and u>v)].

In general, a formula of the form

Vx [«-P(x) and Q(x)]

is equivalent to

11

Vx [NOT (P(x) and Q(x))],

and can be read as "it is not the case that P and Q are true together for

any x". □

All the examples have so far described static constraints, that is

constraints specified on a single (usually the current) state of the

database. It is also possible to specify dynamic constraints, that is

constraints that impose conditions on more than one state of the

database. For example, a temporal database that contains historical

information can have the following constraint: "salaries do not

decrease", or more formally:

Vx Vy VzVt Vt ' [<-Sal-at-time(x y t) and Sal-at-time(x z t')

and t<t' and z<y],

where "Sal-at-time(x y t)" expresses that x has salary y at time t. A

number of formalisms have been proposed for representing temporal

information in deductive databases. Sadri [1987] discusses and

compares three of the major formalisms.

Alternatively, if DO and D name the database before and after a

transaction, respectively, then the above dynamic constraint can be

formalised as follows:

Vx Vy Vz [<-Demo(D0 salary(x y)) and Demo(D salary(x z))

and z<y],

where "Demo(d p)" expresses that property p is provable in database

state d. "salary" is a metalevel function symbol naming the object level

predicate symbol "Salary". The constraint can be expressed more

generally by replacing the constants DO and D by variables, dO and d,

say, respectively, and adding an extra condition "Result(dO t d)" to

express that database d results from dO by transaction t.

12

Our integrity checking method allows any formula of first order logic as

integrity constraint. Thus it can deal with any kind of constraint which

is expressible as a first order formula. Note that the last formula,

above, is a first order formula. It is, in fact, a formula of amalgamated

logic incorporating object and metalevels (Bowen and Kowalski

[1982]). We have more to say about this in later chapters.

Since relational databases contain facts only, general rules have to be

expressed as integrity constraints. When the constraints are violated

they can be used to identify data whose addition to the database would

recover integrity. The absence of general rules in the database, although

limiting the expressive power, makes the checking of integrity relatively

easy in relational databases.

Deductive databases, on the other hand, allow general rules, as well as

facts. Nicolas and Gallaire [1978] propose some guidelines for

deciding what information should be described as database rules and

what should be described as integrity constraints. Intuitively, there is a

difference between database rules and integrity constraints. Database

rules are statements about the world that is modelled by the database,

whereas integrity constraints are statements about the database.

Consider the information that "all vicars are men", or more formally:

Vx [Man(x) <- Vicar(x)].

If this is a database rule, then it allows us to infer that an individual x

is a man, given that he is a vicar. On the other hand, if it is an integrity

constraint, then it states that if for some individual x, it is possible to

prove that x is a vicar, then it is also possible to prove that x is a man.

13

Alternatively, as a constraint the formula can be interpreted as stating

that integrity is violated if for some individual x it is possible to prove

that x is a vicar, but it is not possible to prove that x is a man.

It can be argued that since database rules and integrity constraints have

different intended meanings, then they should also be distinguished

syntactically. Reiter [1988], for example, proposes the use of modal

formulae for constraints, and Eshghi and Kowalski [1988] propose the

use of metalevel formulae that express provability explicitly. Similar

approaches have also been proposed by Noel [1988] and Small [1988].

We have our own way of distinguishing between constraints and

database rules, as we will describe in later chapters.

The presence of general rules in deductive databases makes the

checking of integrity more difficult than in relational databases, because

in deductive databases it is necessary to determine how the updates

interact with the existing database, and what new information can be

deduced from them.

A simple way of checking integrity constraints is to use a backward

reasoning system such as Prolog. The constraints can be set as queries

to be checked in the database. This approach, however, can be very

inefficient, because it may result in redundant computations, rechecking

constraints which are satisfied prior to the transaction and which are not

affected by the transaction.

Our method is particularly designed to avoid this inefficiency, and to

exploit the assumption that the constraints are satisfied prior to the

14

transaction. We take advantage of this assumption by reasoning

forward from the updates. Intuitively, if the database satisfies its

constraints before the transaction, then any violation of the constraints

after the transaction must be due to the updates. Forward reasoning

from the updates has the effect of focusing attention only on parts of the

database and the constraints that are affected by the transaction, and

ignoring what remains unchanged.

In general, backward (or goal oriented) reasoning, such as the

reasoning allowed by Prolog, is most suited to query evaluation in a

fixed database. Forward reasoning, on the other hand, is better suited

to knowledge assimilation, where the database evolves through time,

and the updates have to be assimilated into the database. In this case, it

is important to determine how the new knowledge interacts with the old

database and its integrity constraints. Integrity checking is only one

aspect of knowledge assimilation. It determines if the new knowledge

is inconsistent with the old database, or if it violates the constraints. In

addition to this, the new knowledge can be related to the old database in

a number of different ways (Kowalski [1979]). The new knowledge

might, for example, imply part of the old database, in which case a

revision of the database might improve the efficiency of query

evaluation and save space as well. Alternatively, the new knowledge

might be implied by the old database, in which case the new knowledge

might simply just be ignored, or it might strengthen confidence in the

old knowledge. Finally, the new knowledge might be independent of

the old database, that is it might be consistent with the database, but not

implied by it, nor might the new knowledge imply any part of the

database. In this case the new knowledge might just simply be

accepted, or some explanation might be sought for it.

15

In this thesis we only address the integrity checking component of

knowledge assimilation. However, the proof procedure that we have

developed for this application, is suitable for knowledge assimilation,

in general, because it allows focusing on the updates and exploring the

consequent changes. This new proof procedure is an extension of

SLDNF (Lloyd [1987]), which is the underlying proof procedure of

Prolog. Our proof procedure extends SLDNF by

• allowing forward as well as as backward reasoning,

• incorporating a generalised resolution step, which is needed
for reasoning forward from negated conclusions, and

• incorporating additional inference rules for reasoning about
implicit deletions caused by explicit and other implicit changes

to the database.

This proof procedure and the integrity checking method have been

implemented in Prolog. They have also been proved correct in general,

and complete in certain special cases.

There are a number of other integrity checking algorithms, often known

as simplification algorithms, that are designed to exploit the assumption

of the satisfaction of the constraints in the old database. Bernstein,

Blaustein and Clarke [1980], for example, propose such a method for

checking certain types of aggregate constraints in relational databases.

Nicolas [1982], in a very influential paper, proposes a logic-based

simplification method for checking general first order constraints in

relational databases. Most of the existing integrity checking methods for

deductive databases are extensions of Nicolas' method, amongst these

16

are the algorithms of Lloyd, Sonenberg and Topor [1986], Decker

[1986], Martens and Bruynooghe [1987], and Bry, Decker and

Manthey [1987].

Our method is also an extension of Nicolas' algorithm. Moreover, it is

also an approximation of these latter algorithms. We can, in fact,

simulate these algorithms by employing different literal selection and

search strategies in our proof procedure.

There are other ways of ensuring the integrity of the database, without

actually checking the constraints. Probably the most widely used

approach is to "compile" the integrity constraints into the database

rules. This is an approach that is used intuitively by almost all

programmers, who do not have access to integrity checking facilities.

Consider the following simple and informal database and integrity

constraint:

database: customer gets goods customer orders goods

constraint: customer gets goods and

customer in debt

The constraint states that it should not be allowed for a customer who is

in debt to receive goods.

Intuitively, a simple way of achieving roughly the same effect, without

the integrity constraint, is to rewrite the database rule as follows:

customer gets goods < - customer orders goods and

customer is not in debt,

and do away with integrity checking. The transformed rule ensures that

no customer who is in debt gets any goods. Other examples of this kind

17

of "compilation" of constraints in database rules can be found in logic-

based planning systems, for example in the situation calculus of

McCarthy and Hayes [1969].

This approach to database integrity has been investigated by Asirelli, De

Santis and Martelli [1985] for a restricted class of databases and

constraints. It is worth exploring this approach further, if only because

it is the approach that many programmers adopt quite intuitively, when

they need integrity checking, but do not want to employ a separate

integrity checking method. We have some on-going research in this

area, but this is not in the scope of the thesis. The thesis is concerned

with the first approach to database integrity, that is where the

constraints are specified explicitly and are checked after transactions.

The thesis is organised as follows. In Chapter 2 we formally define

what we mean by deductive databases, integrity constraints and

constraint satisfaction. In Chapters 3 and 4 we introduce our integrity

checking method by considering two simplified cases. In Chapter 5 we

formalise the method in the general case. In Chapter 6 we describe the

implementation of the method in Prolog, and propose an alternative and

more efficient implementation for a special case. In Chapter 7 we

compare our method with other integrity checking algorithms, and in

Chapter 8 we discuss the correctness and completeness of our method.

Chapter 9 concludes the thesis by a summary and a discussion of

further work.

Some of the material presented in this thesis has appeared in Sadri and

Kowalski [1988], Kowalski, Sadri and Soper [1987] and in Soper's

18

M.Sc. thesis (Soper [1986]).

19

CHAPTER 2

DEFINITIONS

In this chapter we formally define deductive databases, integrity

constraints and constraint satisfaction.

2.1 Deductive Databases

A deductive database is a finite set of deductive rules. which are closed

formulae of the form

A < - L \ and . . . and Ln, n >0,

where A is an atom, the Lj are literals (i.e. atoms or negated atoms),

and all the variables are assumed to be universally quantified in front of

the formula in which they occur. A is called the conclusion of the

rule and the Lj the conditions. If a condition is an atom then it is a

positive condition of the deductive rule. If a condition is a negated

atom then it is a negative condition. When n=0 the deductive rule is

also called a feet. When n>0 the deductive rule is said to be non-

atomic. If all the conditions of a rule are positive then the rule is also

called a definite clause. A definite database is a finite set of definite

clauses.

It is possible to transform more general formulae of the form "A<-W”

into a set of deductive rules. Here, A is an atom, W is an arbitrary first

order formula, and all the variables in A and all the free variables in W

20

are assumed to be universally quantified in front of the formula. Such

transformations are described by Lloyd and Topor [1984].

For our integrity checking method we assume that the database before

and after any updates is range-restricted (r-r). A database is r-r if and

only if all the rules in it are r-r. A deductive rule is r-r if and only if any

variable that occurs in it has an occurrence in a positive condition of the

rule. The motivation for this restriction, which is to avoid

"floundering", is discussed in Chapter 4.

Example 2.1:

The following rules are r-r:

P(x y) < - Q(x y) and NOT R(y)

M(x y z) <r- P(x x) and Q(y z)

N(x y) <- Q(x z) and R(y) and NOT S(z).

The following rules are not r-r:

P(x y) < - Q(x x) and NOT R(y)

M(x y z) P(x x) and Q(y y)

N(x y) <- Q(x y) and R(y) and NOT S(z). □

The r-r restriction corresponds exactly to Decker’s "range-restriction"

(Decker [1987]), and to the "allowed" condition of Lloyd and Topor

[1986] and Topor and Sonenberg [1988].

21

2.2 Integrity Constraints

Our integrity checking method deals directly with constraints of the

form

L \ and ... and Ln, n > 0,

where the Lf are literals and all variables are assumed to be universally

quantified in front of the constraint in which they occur. We call

formulae of this kind denials, or sometimes goals. If a literal in a denial

is an atom then it is a positive condition of the denial, and if a literal is a

negated atom then it is a negative condition. Denials that have positive

conditions only are called negation-free denials (goals), or n-f denials

(goals), for short.

Constraints must also be range-restricted, that is any variable that

occurs in a negative condition of a denial representing a constraint must

also have an occurrence in a positive condition of the denial.

It is also possible to deal with constraints that are in a more general

form than denials. Given an arbitrary closed first order formula W as a

constraint, we can replace it by a new constraint A", and add a

rule

A <-NOT W

to the database, where A is a nullary predicate symbol that does not

occur elsewhere in the database or the constraints. The rule

"A<-NOT W" can then be transformed to a set of deductive rules as

described by Lloyd and Topor [1984]. Because the resulting deductive

rules must be range-restricted, this imposes a corresponding range-

restriction on the form of the integrity constraint W. The restricted

22

quantification condition on the constraints proposed by Bry et al [1987]

is sufficient to ensure that the transformed rules are range-restricted. A

closed first order formula F satisfies this condition if and only if every

subformula of F is either of the form

3xi...3xn [Al and ... and Am and Q], m>l,
or of the form

Vxi...Vxn [Ai and ... and Am -> Q], m>l,
where the Aj are atoms, every variable xj occurs in at least one Aj, and

Q is a formula. Some or all of the x{ may be free in Q.

Example 2.2:

Consider the following integrity constraint on a database D:

"Each employee has a supervisor who is a manager".

This can be represented by the first order formula:

Vx [Employee(x) -> 3y [Supervisory x) and Manager(y)]].

We replace this by a new constraint " <-A", assuming that the nullary

predicate A does not occur in D or in any other integrity constraint on

D. We also add the rule

A<- NOT Vx[Employee(x) 3 y[Supervisory x) and

Manager(y)]]

to the database. This rule is then transformed, as described in Lloyd

and Topor [1984] into the following deductive rules:

A <- Employee(x) and NOT AUX(x)

AUX(x) <r- Supervisory x) and Manager(y),

where "AUX" is a new predicate symbol not occurring anywhere else

in the database or the constraints. □

23

If a constraint W is in non-Horn clausal form, that is in the form

Bj or ... or Bm <- Aj and ... and An, n > 0, m > 0,

where the A [and the Bj are atoms, then W can simply be rewritten

directly as the denial

<-Aj and ... and An and NOT B \ and ... and NOT Bm.

We show the correctness of these rewritings in Chapter 8.

Throughout this thesis we restrict our attention to sets of integrity

constraints which are mutually consistent. Thus we do not allow, for

example, both
A<r- and <—A

to belong to the same set of integrity constraints. Bry, Decker and

Manthey [1987], and Bry and Manthey [1986] present an algorithm for

checking the consistency (and finite satisfiability) of a set of integrity

constraints. (A set of formulae is finitely satisfiable if and only if it has

a finite model.) Their algorithm resembles the tableaux method

(Smullyan [1968]), and is based on the principle of constructively

interpreting the inductive definition of formula semantics. The

algorithm is complete for unsatisfiability (as well as for finite

satisfiability). Thus if the algorithm terminates successfully, then finite

satisfiability, and consequently the consistency, of the formulae is

shown. On the other hand, if the algorithm fails, then unsatisfiability,

and therefore inconsistency, is shown. In cases where all models of the

formulae are infinite the algorithm will not terminate. The algorithm has

been implemented by the authors in Prolog.

24

In the remainder of the thesis, without loss of generality, we assume

that constraints are of the form of denials, unless otherwise stated.

2.3 Constraint Satisfaction

The most commonly used definition of constraint satisfaction is that a

database D satisfies its constraints I, where I is a set of closed

formulae, if and only if the completion of D is consistent, and every

formula in I is a logical consequence of the completion of D. We call

this the theoremhood view of constraint satisfaction.

The completion of a database D, denoted Comp(D), consists essentially

of D together with the "only-if' versions of the rules in D and an

appropriate equality theory. For a more precise definition of

completion see Clark [1978] or Lloyd [1987]. Here it is sufficient for

us to give the following definition.

Comp(D) consists of the completed definitions (to be described below)

of all the relations that occur in D, together with an appropriate equality

theory. The equality theory states certain properties of the constants

and the function symbols in the language, for example

c 9̂ d,

for all pairs c, d of distinct constants,

f(xi ... xn) * c,

for each constant c and function f and any variables xj,..., xn, and
f(xi ... Xn) * g(yl ... ym),

for all pairs f and g of distinct functions and any variables x \ ,..., xn,

25

y 1 ym. 'V' denotes not equal.

The completed definitions of database relations are defined as follows.

Let P be a relation and

(1) P(ti ... t n) <- Lj and ... and Lm

be a deductive rule defining P in database D . The t { are terms, and the

Iq are literals. This definition is equivalent to the following database

rule:

(2) P(xi ... xn) <- xj=ti and ... and xn=tn

and h \ and ... and Lm,

where the x [are variables that do not appear in (1). Recall that all the

variables occurring in a deductive rule are assumed to be universally

quantified in front of the rule. Thus (2) is equivalent to

(3) P(xi ... xn)<-Hyi ...3yr

Dq=ti and ... and xn=tn

and Li and ... and Lm],

where y^,..., yr are the variables that occur in (1). Now let

P(xi ... xn)< - Ei

P(x 1 ...xn)<- Ek
be the transformed versions, as in (3), of all the rules in D that define

the relation P. Then the completed definition of P is the formula

Vxi ... Vxn [P(xi ... xn) E \ or ... or E^].

We assume that the completion of D contains a denial of

the form

<-Q(xi ... xn)
for every n-ary predicate Q in the underlying language, such that Q is

26

not defined in D (i.e. does not occur in the conclusion of any deductive

rule in D).

The definition given above for completion is general and covers all

deductive rules. It can, however, be simplified in certain

circumstances. One useful simplification is as follows. Consider

definition (1), above, of the relation P. If in (1), for some q,

1< q < n, tq is a variable, x, say, then (2) can be simplified to

P(xi ... xn) <- xi=ti and ... and xq_i=tq_i andxq+i=tq+i and

... and xn=tn and L,

and (3) can be simplified to

P(xi ... xn)< - 3 y 2 ...3ys

[x 1 =ti and ... and x ^ t ^ and x q+1=tq+1

and ...and xn=tn and L],

where L is the conjunction "Lj and ... and Lm" in which the variable x

is systematically substituted by xq, and y ,̂..., y s are all the variables

in (1) apart from x.

Example 2.3:

Suppose relation Q is defined as follows:

Q(B C)

Q(A B).

Then the completed definition of Q is

Vx Vy [Q(x y) <-> [(x=B and y=C) or (x=A and y=B)]].

The equality theory will include the following inequalities:
B *C

27

A * B

A*C. □

Example 2.4:

Suppose relation P is defined as follows:

P(x A)

P(x y) <- Q(x y) and NOT R(y)

P(B y) <-S(y) and T(z y).

Then the completed definition of P is the following formula:

Vx Vy[P(x y) O [(y=A) or

(Q(x y) and NOT R(y)) or

3z(x=B and S(y) and T(z y))]]. □

Example 2.5:

Suppose relation T is defined as follows:

T(f(x) A) <-N(x)

T(x g(y)) <-M(y x) and NOT N(h(x)).

Then the complete definition of T is:

Vxi Vx2
[T(x i X2) **[3x (xi=f(x) and X2=A and N(x)) or

3y(x2=g(y) and M(y xj) and NOT N(h(xi)))]]. □

In practice, for convenience, only the database is represented explicitly

and reasoning with its completion is implemented through the negation

28

as finite failure rule (Clark [1978]), which is described in detail in

Chapter 4.

In our method we also appeal to the completion, but we use a definition

of constraint satisfaction which is slightly different from the

theoremhood view. According to our definition a database D satisfies

integrity constraints I if and only if the completion of D is consistent

with I. We call this the consistency view of constraint satisfaction.

Our method also uses negation as failure to implement reasoning with

the completion of the database.

The two definitions of constraint satisfaction are equivalent if the

completion of the database is consistent, and for any closed formula W

in the language of the database and the constraints, either W or its

negation is a logical consequence of the completion of the database.

The completion of such a database is said to be complete. The two

definitions can give different results when the database includes

recursive definitions.

Example 2.6:

Let database D consist of the following rule:

P<- P.

Consider the constraint

P.

This constraint is not a theorem of Comp(D), but it is consistent with

Comp(D). □

29

Notice that if the completion of the database is consistent then any

theorem of the completion is consistent with the completion. Thus if

such a database satisfies its constraints according to the theoremhood

view then it also satisfies them according to the consistency view.

We discuss the relationship between the two definitions further in

Proposition 4.1, in Subsection 4.1.1, where we show that, in the

context of a particular implementation of the two views, the difference

between them is greatly reduced.

A sufficient condition for the consistency of Comp(D) is that D be

stratified (Apt, Blair and Walker [1988]). A deductive database is

stratified if there is a mapping M from its set of predicate symbols to

natural numbers (the non-negated integers) such that for every database

rule R of the form "P(t \ ... tn)<-Conditions", where the ti are terms

and "Conditions" is a conjunction of literals

M(Q) < M(P) if Q is a predicate of a positive condition of R, and

M(S) < M(P) if S is a predicate of a negative condition of R.

Thus the stratification condition allows recursion but in a limited form.

It excludes rules such as "P <- NOT P". If this rule is the only

definition of P in a database D, then the completed definition of P

would be

PONOTP,

which logically implies

P and NOTP.

Thus Comp(D) would be inconsistent.

We have chosen the consistency view not because we believe it is

always superior to the theoremhood view, but because we believe it is

30

preferable to the theoremhood view in certain situations. For example,

the consistency view is needed for implementing abduction (see, for

example, Eshghi and Kowalski [1988], Cox and Pietrzykowski

[1986], or Poole [1987]). In a system which incorporates abduction,

during the deductive process, propositions may be assumed provided

that their addition to the database is consistent with the database and the

integrity constraints.

Abduction has been applied to such areas as default reasoning (Eshghi

and Kowalski [1988] and Poole [1987]), planning (Eshghi [1988]),

natural language understanding (Kakas [1987] and Charniak and

McDermott [1985]), and diagnosis (Cox and Pietrzykowski [1986] and

Goebel et al [1986]).

The consistency view is also appropriate in a deductive system which

incorporates query-the-user facilities, such as the expert system shell

APES (Hammond and Sergot [1984]). In such systems it is important

to check that the information volunteered by the user is consistent with

certain pre-specified integrity constraints and the rest of the database.

31

CHAPTER 3

THE CONSISTENCY METHOD: SIMPLIFIED CASE 1

In this chapter we describe the Consistency method in a simplified case

where the database is definite, the integrity constraints are negation-free

denials and the transactions consist of additions only. In this case the

Consistency method proof procedure is a form of input resolution

which allows any definite clause or negation-free denial as top clause

and employs an unrestricted literal selection strategy. This proof

procedure is not a special case of SL nor of SLD.

SL (Kowalski and Kuehner [1971]) is a linear proof procedure for

non-Horn clauses which allows any clause as top clause but which

imposes a last-in-first-out literal selection strategy. (Recall that a non-

Horn clause is a formula of the form

B i or ... or Bm <- A i and ... and An, n > 0, m > 0,

where the Aj and the are atoms.)

SLD (Apt and van Emden [1982]) (also called Lush resolution in Hill

[1974]) is an input proof procedure for definite clauses which allows an

unrestricted literal selection strategy (as liberal as ours) but which

allows only negation-free denials as top clauses. SLD is the underlying

proof procedure of Prolog without negation as failure. The difference

between input and linear proof procedures, and the relationship

between our proof procedure and SL and SLD will become more clear

as this chapter progresses.

32

Our proof procedure for this simplified case can be most easily

understood if it is viewed as an extension of SLD which retains SLD's

unrestricted literal selection, but which allows definite clauses as well

as negation-free denials as top clauses.

This chapter is divided into three sections. In 3.1 we describe our

proof procedure in this simplified case by first describing SLD and then

extending it. In 3.2 we illustrate the application of the Consistency

method through examples, and in 3.3 we compare our simplified proof

procedure with SL.

3.1 The Proof Procedure

3.1.1 The SLD Proof Procedure

SLD is an input proof procedure for definite clauses. A derivation in

SLD consists of a (possibly infinite) chain of resolvents as in the figure

below:

33

n-f Denial Input Clause 1

Figure 3.1: The form of an SLP derivation

The input clauses are the rules in the database. A selection function,

also called a computation rule in the sequel, selects an atom to be

resolved upon next in each resolvent in the chain. Each (i+l)th

resolvent is obtained by the resolution of the (i)th resolvent on its

selected atom with an input clause. This is the distinguishing

characteristic of every input proof procedure. We describe the SLD

proof procedure more formally in the rest of this subsection. Lloyd

[1987] presents an alternative approach.

A computation rule is a function from derivations to atoms. It selects an

atom from the last formula in the derivation.

Let S be a set of definite clauses, G a negation-free denial and R a

computation rule. An SLD derivation of Su{G}, where "u" denotes

set union, via R is a (possibly infinite) sequence Gq, Gj, G2 , such

that G=Gq and for each i, i >0, G [+ \ is obtained from Gj as follows.

Suppose R selects from Gj an atom occurrence A. Then Gj+j is the

resolvent on A of Gj and some clause in S which resolves with G [on

A. S is called the input set, and G is called the top clause. Each Gj,

34

for i>0, is either a negation-free denial or the empty clause.

A refutation of Su{G} via R is a derivation of Su{G } via R which

ends at the empty clause.

A negation-free goal G succeeds from S if and only if for some

computation rule R there is an SLD refutation of Su{G} via R.

A finitely failed derivation of Su {Gq} is a derivation Gq, G \ ,... , Gn>

n>0, such that Gn is not the empty clause, and Gn does not resolve on

its selected atom with any clause in S.

An SLD search space for S u {Gq} via R is the set of all SLD

derivations of Su {Gq} via R such that any finite derivation in the set is

either a refutation or a finitely failed derivation.

Notice that because of the definition of computation rule, for any two

derivations of the form

Go, G i , Gfc, Gk+ i, ...

Go, Gi, ..., Gj,-, G'k+i, ...
in a search space, the same literal is selected from G^. This is less

restrictive than having to select the same atom from any two identical

goals occurring on different derivations in the search space.

A finitely failed search space is a search space that consists entirely of

finitely failed derivations.

The SLD proof procedure is correct because the only inference rule it

35

uses is resolution, and resolution has been proved correct by Robinson

[1965]. SLD has been proved complete by Clark [1979] and Hill

[1974]. The proofs are also presented in Lloyd [1987]. The

correctness of SLD means that if for some computation rule R there is

an SLD refutation of Su{G} via R, then Su{G} is inconsistent. The

completeness of SLD means that if Su{G} is inconsistent, then for all

SLD computation rules R there is an SLD refutation of Su{G} via R.

By correctness of SLD, if a negation-free goal "f-W" succeeds from S

then "Bxj ... 3xn W" is a logical consequence of S, where the xj are all

the variables that occur in W.

Example 3.1:

Suppose goal G is ”<-P(A)" and input set S consists of the following

rules:

(1) P(x) 4- Q(x) and R(x y)

(2) P(x) 4- S(x y) and T(y)

(3) Q(x) <-T(x)

(4) T(A) (5) R(A B) (6) S(A B)

Then the following represents an SLD search space for Su{G }.

Throughout the thesis "[]" denotes the empty clause. Whenever more

than one literal is candidate for selection, the selected literal is

underlined. The numbers on the arcs denote input clauses that are used

for resolution.

36

<-Q[A) and R(A y) < - S (A y) and T(y)

(6)

<-T(B)

(4)

<-R(A y)

(5)

[]

(3)

<r-T (A) and R(A y)

Figure 3.2: An SLD search space for example 3.1

The search space consists of two derivations, a refutation on the left

and a finitely failed derivation on the right. The refutation proves that

"P(A)" is a logical consequence of S. □

37

3.1.2 Our Proof Procedure

As mentioned earlier, to exploit the assumption that the database

satisfies its constraints prior to the transaction, the Consistency method

reasons forward from the updates. Thus the underlying proof

procedure must allow as top clauses deductive rules (facts or non-

atomic rules) corresponding to updates that insert them into the

database, and denials corresponding to updates that add new integrity

constraints. In the more general case described in Chapter 4, the proof

procedure must also allow negated facts as top clauses. This is needed

to deal with deletions from the database, as will be seen later. When

the input set is definite and the top clause is a negation-free denial, our

proof procedure is identical to SLD. In all other cases our proof

procedure is an extension of SLD.

Below, we describe the simplified version of our proof procedure

needed for the simplified case discussed in this chapter. This proof

procedure extends SLD by allowing as top clauses definite clauses as

well as negation-free denials.

As in SLD, a computation rule in our proof procedure is a function

from derivations to atoms, such that it selects an atom from the last

formula in the derivation.

Let input set S consist of a set D of definite clauses and a set I of

negation-free denials. Let C be an element of D or I, and let R be a

computation rule. A derivation for S via R with top clause C in our

38

proof procedure is a (possibly infinite) sequence Cq, Cj, C2 , such

that C=Cq, and for all i, i > 0, C [+ \ is the resolvent of Cj, on the atom

occurrence selected by R, and a definite clause or a denial in S. Each

Cj is thus a definite clause, a negation-free denial, or the empty clause.

As in SLD, a refutation in our proof procedure is a derivation that ends

at the empty clause, and a negation-free goal G succeeds from S if and

only if for some computation rule R there is a refutation via R with G as

top clause and S as input set.

A finitely failed derivation via R is a derivation C q , C 1 , ..., Cn, via R

such that Cn is not the empty clause, and Cn does not resolve on its

selected atom with any definite clause or denial in the input set.

A search space for S via R with top clause Cq is the set of all

derivations for S via R with Cq as top clause, such that any finite

derivation in the set is either a refutation or a finitely failed derivation.

A finitely failed search space is a search space that consists entirely of

finitely failed derivations.

In Chapter 8 we prove that our proof procedure is correct and complete

for integrity checking in the special case discussed here, in the

following sense.

Let T name a transaction. Thus T consists of one or more updates,

where each update is an addition of a definite clause, or an integrity

constraint in the form of a negation-free denial. Suppose D and DT

39

name the database before and after the transaction, respectively, and let

I and IT name the set of constraints before and after the transaction,

respectively. We use this naming convention throughout the thesis.

The correctness of our method is defined as follows. If for some

computation rule there is a refutation of DTuIT with an update in T as

top clause, then Comp(DT)uIT is logically inconsistent, and thus the

transaction violates the constraints. Conversely, completeness is

defined as follows. If Comp(D) u l is consistent but Comp(DT)uIT is

not, then for all computation rules R and for some update C in T there

is a refutation of DTuIT via R with C as top clause. As a corollary to

completeness, if for all updates C in T there is a finitely failed search

space for DTuIT with C as top clause, via some computation rule,

then Comp(DT)uIT is consistent, and therefore the transaction satisfies

the constraints.

In our use of the terms "correctness" and "completeness" we have taken

a theorem proving point of view. From the integrity checking point of

view it is also important to consider the notion of "soundness", which

is the combination of correctness and the above corollary to

completeness.

In general, when a refutation is obtained it can be examined to identify

the clauses that contribute to the proof of inconsistency, and which are

therefore candidates for revision to restore integrity.

40

3.2 Examples

In this section we illustrate our method through a series of examples.

The method is described more generally in Chapter 5.

3.2.1 Adding Facts

Example 3.2:

In this example the transaction consists of a single insertion into the

database, and the database is relational, that is it consists entirely of

facts that contain no variables. "Rank(x y)" expresses that x has rank

y, and "Proj(x y)" expresses that x works on project y.

E*

(1) Rank(John Lect) (5) Proj(John LAW)

(2) Rank (Tom Prof) (6) Proj(Tom MMI)

(3) Rank(Mary Lect) (7) Proj(Mary PARLOG)

(4) Rank(Peter Reader) (8) Proj (Peter MMI)

(9) Proj(Jo MMI)

I:
(IC) < - Rank(x Lect) and Proj(x MMI)

The constraint states that no lecturer works on project MMI (man-

machine interface).

41

T:

Insert Rank(Jo Lect).

Let us assume (correctly) that D satisfies its constraint. To determine

whether the updated database, i.e. DT=Du{Rank(Jo Lect)}, still

satisfies the constraint we apply our proof procedure with DTuI as

input set and the update as top clause. We obtain the following search

space.

Rank(Jo Lect)

(IC)

<-Proj(Jo MMI)

(9)

[]
Figure 3.3: A search space for example 3.2 with the update as top

clause

The search space consists of a single refutation illustrating that the

transaction violates the integrity constraint.

The advantage of selecting the updates as top clauses is that it limits

attention to the relevant parts of the database and the relevant

instantiations of the integrity constraints.

If the completion of the database is consistent, then any inconsistency

must involve an integrity constraint. The completion of a relational

database is always consistent, since a relational database is stratified.

Thus in example 3.2, instead of the update we can choose the constraint

42

as top clause, while still using the updated database as input set. This

results in the following search space, given the literal selection rule

indicated by underlining. Because the top clause is a negation-free

denial the same search space is obtained by the SLD proof procedure as

well.

<-Rankfx Lect) and Proj(x MMI)

(9)

[]

Figure 3.4: A search space for example 3.2 with the constraint as top

clause

This search space consists of two finitely failed derivations and a

refutation. As the search space in figure 3.3, figure 3.4 also

demonstrates that the updated database violates the integrity constraint

(because of the correctness of our proof procedure, as shown in

Chapter 8, or alternatively because of the correctness of SLD).

However, it is larger than the previous search space, because it does

not take advantage of the assumption that the constraint is satisfied

before the transaction. The alternative literal selection strategy that

chooses the second literal of the constraint would also result in a search

43

space as large as figure 3.4, with two finitely failed derivations and one

refutation. □

Note that we have defined constraint satisfaction in terms of the

completion of the database. But we have described the correctness and

completeness results of the SLD proof procedure in terms of the

database, itself, and not its completion. This apparent incongruity is

resolved by the following proposition.

Proposition 3.1:

Let D be a set of definite clauses, and I a set of negation-free denials.

Then D u l is logically inconsistent if and only if Comp(D)uI is

logically inconsistent.

Proof:

(1) Suppose D ul is logically inconsistent. D is a logical consequence

of Comp(D) (Lloyd [1987]). Therefore Comp(D)uI is also logically

inconsistent.

(2) Suppose Comp(D)uI is inconsistent. Let I be the set of constraints

{<” C i , ...,< - Cn}, where each Q is a conjunction of atoms.

Comp(D)uI is inconsistent. So Comp(D) is inconsistent with

NOT 3x*i Ci and and NOT 3x*n Cn,

where each x*i is a vector of all the variables that occur in Ci. So

3x* iC i or.... or 3x*n Cn

is a logical consequence of Comp(D).

44

Now any positive sentence that is a consequence of Comp(D) is also a

consequence of D (Theorem 15 of Shepherdson [1988]). (A sentence is

positive if and only if it is built up using only the connectives "and" and

"or", and the quantifiers "V" and "3".) So

3x*i Ci or.... or 3x*n Cn

is a logical consequence of D. Therefore D ul is inconsistent. □

3.2.2 Adding Non-Atomic Database Rules

The insertion of non-atomic rules is treated exactly as the addition of

facts, as shown in the following example.

Example 3.3:

(The relations, below, are intended to have their intuitive meaning.)

D.

(1) Eligible(x SERC-grant) <- Student(x) and

Citizen(x UK)

(2) Eligible(x Brit-Council-award) < -

Student(x) and

Citizen(x y) and

Dependent-territoiy(y)

(3) Dependent-territory(Falkland-Islands)

(4) Student(Mary)

(5) Citizen(Mary Falkland-Islands)

(6) Student(Tom)

(7) Citizen(Tom UK)

45

(IC) <r- Eligible(x SERC-grant) and

Eligible(x Brit-Council-award)

The constraint states that no one is eligible for both an SERC grant and

a British Council award.

I:

T:

Insert Citizen(x UK) <r- Citizen(x Falkland-Islands).

As before we use the update as top clause and the updated database and

the constraint as input set. The following refutation shows that the

update violates the constraint.

46

Citizen(x UK) <- Citizenfx Falkland-Islands)

(5)

Citizen(Mary UK)

(1)

Eligible(Mary SERC-grant) StudentfMarv'}

(4)

Eligible(Mary SERC-grant)

(IQ

<- Eligible(Mary Brit-Council-award)

(2)

< - StudentrMarŷ and Citizen(Mary y) and
Dependent-territory(y)

(4)

< - Citizen (Mary v) and Dependent-territory(y)

(5)

< - Dependent-territory(Falkland-Islands)

(3)
[]

Figure 3.5: A refutation for example 3.3 with the update as top clause

47

The complete search space contains two other derivations that fail

finitely. □

3.2.3 Adding Integrity Constraints

This case is similar to the cases of adding facts and non-atomic rules.

Thus if a negation-free denial (IC) is to be added to the set of integrity

constraints then (IC) is selected as top clause for the proof procedure.

3.2.4 Transactions With Multiple Updates

In general, when a single transaction consists of several updates, each

update is a candidate top clause. The input set, as usual, consists of the

updated database and the updated set of integrity constraints. If an

update leads to a refutation then the transaction violates the integrity

constraints. (The proof of inconsistency can then be analysed to

determine which of the updates contribute to the inconsistency, and to

identify candidate database clauses or constraints for revision to restore

integrity.) If all the updates lead to finitely failed search spaces, and

our method is complete for the given case, then the transaction satisfies

the constraints.

48

Example 3.4:

In this example

On-sand(x)" means x is on a sandwich course,

Grad(x)" means x is a graduate,

Intro(x)" means x is an introductory course,

Prac(x)" means x is a practical course,

Takes(x y)" means x takes course y,

Adv(x)" means x is an advanced course,

Sponsored-by(x y)n means x is sponsored by y, and

Supervised-by(x y)" means x is supervised by y.

D:

(1) Grad(Alice)

(2) Grad(Tom)

(3) Grad(Dick)

(4) On-sand(John)

(5) On-sand(Mary)

(6) Sponsored-by(John BT)

(7) Intro(Cl) (10) Prac(Cl) (13) Adv(C5)

(8) Intro(C2) (11) Prac(C2) (14) Adv(C6)

(9) Intro(C3) (12) Prac(C5)

(15) Takes(x y) Prac(y) and On-sand(x) and Sponsored-by(x BT)

I:

(IC1) < - Intro(x) and Adv(x)

(IC2) <-Sponsored-by(x BT) and Supervised-by(x Prof-Smith)

49

T:

Insert {(IC3) <-Grad(x) and Takes(x y) and Intro(y)

(16) Adv(C7)

(17) Supervised-by(x Prof-Smith) < - Grad(x) and

Takes(x C6)}

D satisfies I. The transaction consists of three updates, two insertions

into the database and one insertion of a new integrity constraint. To

check if DT satisfies IT, each of the three updates must be considered

as top clause. In each case the input set consists of DTuIT, i.e.

Du{(16), (17)}uhj{(IC3)}. The three search spaces are shown

below. All three fail finitely. Our method is complete for this example,

as will be shown in Chapter 8. Therefore we can conclude that the

updated database satisfies its constraints.

<r- Grad(x) and Takesfx y) and Intro(y)

(15)

Grad(x) and Prac(y) and On-sand(x) and

Sponsored-bv(x BT) and Intro (y)

(6)

*-GradfJohh) and Prac(y) and On-sand(John) and Intro(y)

Figure 3.6: A search space for example 3.4 with an update as top

clause

50

Adv(C7)

(IC1)

<-Intro (C7)

Figure 3.7: A seach space for example 3.4 with an update as top

clause

Supervised-bvfx Prof-Smith') <-Grad(x) and Takes(x C6)

(IC2)

<-Grad(x) and Takes(x C6) and Sponsored-bvfx BT')

(6)

<“ Grad{John} and Takes(John C6)

Figure 3.8: A search space for example 3.4 with an update as top

clause □

Note that we are using the term "forward reasoning" rather loosely in

this thesis. Strictly speaking, forward (or bottom-up) reasoning uses

facts and non-atomic rules to derive new facts. For example, given a

fact

A and a rule

B <-A, we derive the fact

B by forward reasoning.

51

Backward (or top-down) reasoning uses denials and rules to derive

new denials. For example, given a denial

and B and a rule

B<-C and D, we derive the denial

A and C and D by backward reasoning.

Finally, middle-out reasoning uses non-atomic rules to derive new

rules. For example, given two rules

A<-B and

B<-C, we derive the rule

A<-C by middle-out reasoning.

A discussion of these three forms of reasoning can be found in

Kowalski [1979].

We use the expression "forward reasoning from the updates" to

emphasize the use of the updates as top clauses. The actual reasoning,

strictly speaking, can be any combination of forward, backward or

middle-out according to the above criteria. Nevertheless, even then the

Consistency method reasons forward in a more general sense of

deriving consequences from asserted information.

3.3 Comparison With SL

SL (Kowalski and Kuehner [1971]) is a linear proof procedure for

non-Horn clauses. It allows any non-Horn clause as top clause, and

insists on a last-in-first-out literal selection strategy. The name SL

52

stands for Linear resolution with Selection function.

A derivation in any linear proof procedure is a (possibly infinite)

sequence of clauses So, S \ , S2 , s u c h that So is the top clause, and

for all i, i > 0, S [+ i is obtained by the resolution of S | on its selected

literal

either (a) with an input clause,

or (b) with an Sj, for some j, j<i. The resolution in (b) is

called ancestor resolution.

In SL, as well as (a) and (b), above, two other operations, called

factoring and truncation, can be used to obtain the (i+l)th clause in the

derivation. These operations do not, however, play a part in the cases

we are considering in this chapter, and we therefore ignore them.

SL is more general than our proof procedure, because it caters for non-

Horn clauses. It, however, has one major disadvantage compared to

our proof procedure, and that is its insistence on a last-in-first-out

literal selection strategy. Suppose S [+ \ is a clause in an SL derivation,

obtained by the resolution of Sj, on its selected literal, with an input

clause B [. Then the selection function must choose from S [+ \ a literal

which is contributed by B; in preference to any contributed by S[.

Furthermore, in all subsequent steps no literal contributed by S [can be

selected until all those contributed by B j are resolved away.

This inflexibility in literal selection affects the efficiency of SL. In

general, in the cases that we are considering in this chapter, we can

simulate SL by our proof procedure. Therefore our procedure can be at

53

least as efficient as SL. However, there are cases where our procedure

allows much greater efficiency than SL. Example 3.4 illustrates such a

case. The SL search space corresponding to figure 3.6 with (IC3) as

top clause is shown below. To save space we have used to denote

the logical connective "and".

<-Grad(x), Takesfx y) . Intro(y)

(15)

<-Grad(x), Intro(y), Prac(y), On-sand(x), Sponsored-bvfx BT)

(6)

<-Grad(John), Intro(y), Prac(y), On-sandfJohn)

(4)

<-Grad(John), Intro(y), PracM

Intro(Cl) Intro(C2) Intro(C5)

Figure 3.9; An SL search space for example 3.4 with an update as

top clause

This search space is bigger than the corresponding one in figure 3.6,

because in figure 3.9 the literal "Grad(John)" cannot be selected until all

54

the literals contributed by input clause (15) in the first resolution step

are resolved away.

55

CHAPTER 4

THE CONSISTENCY METHOD: SIMPLIFIED CASE 2

In this chapter we extend our method to deal with deductive databases,

integrity constraints that are in the form of denials, with or without

negative conditions, and transactions that add, delete or modify

database rules, or add or delete constraints. We do not, however, cater

for implicit deletions here, although we discuss them briefly in

Subsection 4.2.5. In the next chapter, we extend our method to deal

with implicit deletions as well.

In general, a knowledge assimilation system contains at least two

stages. Suppose a user requests a change to the logical contents of the

database. Stage 1 determines what transactions consisting of explicit

(physical) insertions and deletions would satiafy the user's request.

There could be several such transactions. Once one of them has been

chosen, stage 2 then determines if the database that results from

performing the transaction satisfies the integrity constraints.

For example, suppose we have a database

D: A<-B

B<-C

E<-F

G<-F

F

and a user requests the logical addition of A and the logical deletion of

56

E. The user's request can be interpreted as requesting that the database

be updated so that A becomes a consequence of the completion of the

database, but E stops being a consequence of the completion. In

general, several alternative transactions will achieve the desired effect.

The choice can be made autonomously by the database management

system or by interaction with the user.

Two possible transactions g? physical updates that can be determined

by stage 1 are, for example,

{insert A, delete F} or

{insert C, delete E<-F}.

Given one of these, stage 2 attempts to determine if the new database

satisfies the integrity constraints.

This thesis only deals with this second stage, and does not address the

first stage at all. The term "implicit deletion" is not concerned with the

first stage. It is concerned with deletions that occur implicitly as

consequences of physical insertions and deletions. For example, G is

"implicitly deleted" in the above database as a consequence of the first

transaction. We describe "implicit deletions" in more detail and

exemplify them further in Subsection 4.2.5.

In this thesis, by an "update" we mean a physical insertion or a physical

deletion determined by stage 1, and by a "transaction" we mean a set of

such updates.

57

To deal with the simplified case of this chapter we extend the proof

procedure described earlier in 3.1.2 to cater for negative conditions and

explicit deletions. This extended proof procedure can probably be most

easily understood as an extension of the SLDNF proof procedure

(Lloyd [1987]), which, in turn, is an extension of SLD. SLDNF is the

underlying proof procedure of Prolog, and extends SLD by

incorporating the negation as failure rule. Similar to SLD, SLDNF only

allows denials as top clauses.

In general, when Comp(DT) is consistent, to check if Comp(DT)uIT is

consistent, the integrity constraints in IT can be used as top clauses

with the SLDNF proof procedure. Suppose the denial (IC) is a

constraint in IT. If there is an SLDNF refutation with (IC) as top clause

and DT as input set, then (IC) is violated in the database. But if there is

an SLDNF finitely failed derivation with (IC) as top clause, and

SLDNF is complete for the given case, then (IC) is satisfied. (SLDNF

refutation and derivation are described formally shortly.) However, as

argued earlier, using the constraints as top clauses can be very

inefficient, because it fails to exploit the assumption that the database

satisfies its constraints prior to the transaction. To reason forward from

the updates, and thus to avoid this inefficiency, our proof procedure

extends SLDNF by allowing as top clauses any deductive rules (facts

or non-atomic rules), as well as denials. In addition, a top clause can be

a negated fact representing an explicit deletion, as we shall see shortly.

This chapter is divided into two sections. In 4.1 we first describe

SLDNF, and then extend it to describe our proof procedure. In 4.2 we

58

illustrate the application of our method through a series of examples.

4.1 The Proof Procedure

4.1.1 The SLDNF Proof Procedure

A computation rule for SLDNF is a function from derivations to literals

such that it selects a literal from the last formula in the derivation. A

computation rule is safe if and only if it does not select negative

conditions unless they are ground, i.e. contain no variables.

Let input set S be a set of deductive rules, G a denial and R a safe

computation rule. An SLDNF derivation of Su{G} via R is a

(possibly infinite) sequence Go, Gi, G2 , such that Go=G, and for

all i, i >0, Gj+i is obtained from Gj by one of (a) or (b) as follows:

(a) Let Gi be "<-Li and ...and Ln", and suppose R selects a positive

condition Lfc from Gj. Then Gj+i is the resolvent on Lfc of G [and

some input clause in S.

Here, by "resolvent” we mean the obvious generalisation of the

standard notion of resolvent: Let C be a deductive rule

A < - L’i and ... and L’m

in input set S, such that A and L ̂unify with most general unifier (mgu)

<[). Then by "resolvent" of Gi and C on L ̂we mean the formula
<—(Lx and ... and L ^ i and L^+i and ... and Ln and

L'i and ... and L'm)(j).

(Note that this is a generalisation of resolution because the Li and the

59

L j can be positive (as in ordinary resolution) or negative.)

(b) Let G| be " and ...and Ln", and suppose R selects from Gi a

literalL^, which is a negated atom "NOT A". An attempt is made to

construct a finitely failed SLDNF search space for Su{<-A} via some

safe computation rule. If the attempt succeeds then Gj+i is G [with the

selected literal removed. If the attempt fails finitely then there is no

Gi+i . This step is the negation as finite failure step in SLDNF.

As in SLD, G is called the top clause. Each Gi, for i>0, is either a

denial or the empty clause.

Similarly to the definition of SLD, an SLDNF refutation is an SLDNF

derivation that ends at the empty clause, and a goal G succeeds if and

only if there is a refutation with G as top clause.

A finitely failed SLDNF derivation is an SLDNF derivation Go,

G i,..., Gn, n>0, such that Gn is not the empty clause, and it is not

possible to construct a derivation Go, G \ ,..., Gn, G n + \ . That is the

selected literal of Gn is either a negative condition "NOT A" and "<-A"

succeeds, or the selected literal is a positive condition and Gn has no

resolvent on this literal with any of the deductive rules in the input set.

SLDNF search spaces and finitely failed SLDNF search spaces are

defined exactly as their SLD counterparts.

The SLDNF proof procedure has been proved correct for any set of

deductive rules and goals (Clark [1978]), and complete for certain

60

restricted cases (Clark [1978], Jaffar, Lassez and Lloyd [1983],

Barbuti and Martelli [1986], Kunen [1987 and 1988], Cavedon and

Lloyd [1987], and Shepherdson [1988]). Correctness of SLDNF

means that if for some safe computation rule R, there is an SLDNF

refutation of Su{G } via R, then Comp(S)u{G} is inconsistent.

Completeness, in those cases where it applies, means that if

Comp(S)u{G} is inconsistent, then for all safe computation rules R

there is an SLDNF refutation of Su{G } via R. (This is an

oversimplification of the completeness result for SLDNF. We will give

the exact result in Chapter 8.)

By correctness of SLDNF, if a goal "4-W" succeeds from input set S

then "3xi...3xnW" is a logical consequence of Comp(S), where

x i ,..., xn are all the variables occurring in W.

Example 4.1:

Suppose we have the following database, transaction and integrity

constraint:

D

(1) P(x) 4- R(x)

(2) Q(B) 4- S(B x) and NOT T(x)

(3) R(A)

(4) R(B)

(5) Q(A)

(6) S(B A)

61

(IC) <-P(x) and NOT Q(x)

I:

T:

Insert R(C).

Then the following is an SLDNF search space for DTuI. Dotted

vertical lines denote subsidiary computations for the negation as failure

steps.

62

<-P£x) and NOT Q(x)

(1)

<-R£x) and NOTQ(X)

<-Q(A)
fails

which it does not

because of (5)

«-Q(B)
 ̂ fails
I
i if

<—SfB_z) and NOT T(z)
 ̂ failsI
i if

«-Q(C)
fails

[] which it

does

<-NOT T(A)

j fails

I if
^T (A)

succeeds

which it does not

Figure 4.1: An SLDNF search space for example 4.1 with the

constraint as top clause

The search space consists of three derivations, two of which fail

finitely. The third which is a refutation shows that Comp(DT)uI is

63

logically inconsistent, and that therefore the transaction violates the

integrity constraint.

Notice that the update contributes only to the rightmost derivation of the

search space. The other two derivations only use clauses from D ul,

that is the old database and the constraint. Thus these two derivations

are also derivations for D u l. In effect, they redundantly investigate

instances of the constraint that are not affected by the transaction. It is

to avoid such redundancies that the Consistency method uses the

updates as top clauses, thus concentrating only on what is affected by

the transaction, and ignoring what remains unchanged.

It is instructive to compare the search space in figure 4.1 with the

search space for proving that (IC) is a theorem of the completion of DT.

To prove the theoremhood of (IC) we have to negate it and use it as top

clause for an attempted SLDNF refutaton. The negation of (IC),

however, is

3x [P(x) and NOT Q(x)],

which is not in an appropriate form for SLDNF. We can overcome this

problem by defining a new relation "Constraint-satisfied" as follows:

(1) Constraint-satisfied <— NOT 3x [P(x) and NOT Q(x)],

and then using the goal

<—Constraint-satisfied

as top clause.

The definition of "Constraint-satisfied" can be transformed into

deductive rules, using transformation steps described in Lloyd and

Topor [1984], yielding the following rules that would be considered as

64

part of the database, both before and after the transaction:

(2) Constraint-satisfied <— NOT AUX

(3) AUX <- P(x) and NOT Q(x),

where "AUX" is a new nullary relation.

Now using Constraint-satisfied" as top clause we obtain the

following SLDNF search space.

65

<r- Constraint-satisfied

<-NOT AUX
Jsucceeds

lif
< - A U X

J fails

l if
<-P[x) and NOT Q(x)

 ̂fails

!if
<-R(x) and NOT Q(x)

fails if

<-NOTQ(A)
fails if

I
< -Q (A)

succeeds

which it does

<-NOTQ(B)
J fails if

J succeeds if

< - S (B z) and NOT T(z)

J succeeds if

NOTT(A)
I
I succeeds if

*-T(A)
fails, which it does

Figure 4.2; An SLDNF search space for example

prove the theoremhood of the constraint

<-j-NOT Q(C)
fails if

i<-Q(C)
succeeds

which it does not

4.1 attempting to

66

The search space fails finitely. Therefore, by Theorem 18.6 of Lloyd

[1987], the negation of (IC) is a theorem of Comp(DT). So (IC) is not

a theorem of Comp(DT), since Comp(DT) is consistent, because DT is

stratified.

Notice that except for the first three steps and the success/failure labels

figure 4.2 is identical to figure 4.1. Thus although the two views of

integrity satisfaction are conceptually different, operationally, the work

involved in checking consistency, with the constraints as top clauses, is

virtually the same as the work involved in attempting to prove

theoremhood of the constraints. □

In general we can prove the following:

Proposition 4.1:

Let S be a deductive database, and let" <-C" be an integrity constraint

on S, where C is a conjunction of literals. Then:

(i) there exists an SLDNF refutation of Su{<-C}, which shows that

the constraint is inconsistent with Comp(S), if and only if the attempt to

show by SLDNF that the constraint " <-C" is a theorem fails finitely,

and

(ii) there exists an SLDNF proof of the integrity constraint" <-C" as a

theorem if and only if the attempt to show that the constraint is

inconsistent fails finitely by SLDNF.

(This Proposition is part of problem 9, on page 138 of Lloyd [1987].)

67

Proof:

The proof is a direct generalisation of the preceding example.

(i) The "only if' half:

Suppose there is an SLDNF refutation of Su{<-C}. To attempt to

prove the theoremhood of "<-C", as in example 4.1, we introduce a

new relation, "Theorem", say, with the following definition:

Theorem < - NOT 3x* C,

where x* is a vector of all the variables that occur in C. The definition

of "Theorem" can be transformed into the following deductive rules, as

in example 4.1:

(1) Theorem < -NOT AUX

(2) AUX <- C,

where "AUX" is a new nullary relation.

Now using the goal Theorem" as top clause, we obtain the

following SLDNF search space. We show an incomplete search space

because we do not need to consider the details of the success of "<-C".

68

<—Theorem

<-NOT AUX

I succeeds
I
i rf

<-AUX
 ̂ fails
I

I *
<-C

fails

which it does not,

because there is an SLDNF refutation of Su{«-C}.

Figure 4.3: A finitely failed SLPNF search space

Thus the attempt to show the theoremhood of the constraint by SLDNF

fails finitely.

The "if half of (i) follows by a similar argument.

(ii) The "if half:

Suppose there is an SLDNF finitely failed search space for Su{<-C}.

Then the SLDNF search space with the goal Theorem" as top clause

is as follows. We show an incomplete search space because we do not

need to consider the details of the failure of C".

69

<—Theorem

<-NOT AUX
 ̂ succeeds

1 if
I

<-AUX
J fails

i
<-C

fails

[] which it does,

because there is a finitely failed SLDNF search space for Su{<-C}.

Figure 4.4: An SLDNF search space

Thus there is an SLDNF proof of the theoremhood of the constraint.

(Figure 4.4 shows that "Theorem" is a theorem of

Comp(Su{(l),(2)}). Then by Lemmas 3 and 1 of Lloyd and Topor

[1984], (IC) is a theorem of Comp(S).)

The "only if' half of (ii) follows by a similar argument. □

70

Proposition 4.2:

If Comp(S) is consistent and there is an SLDNF finitely failed search

space for Su{<-C}, then Comp(S)u{<-C} is consistent, and

therefore the constraint "4-C" is satisfied in S according to the

consistency view.

Proof:

The proof is trivial. By Clark's correctness result of negation as failure

(Clark [1978], also Theorem 15.4 of Lloyd [1987]), "<HC" is a

theorem of Comp(S). The Proposition follows, since any theorem of a

consistent theory is itself consistent with the theory. □

As we shall see shortly, our proof procedure is identical to SLDNF

when the top clause is a denial.

4.1.2 Our Proof Procedure

To deal with the general case considered in this chapter the Consistency

method proof procedure that was described in 3.1.2 needs to be

extended in three ways. It needs to incorporate the negation as failure

step for solving negative subgoals, it needs to allow reasoning forward

from updates that are deletions, and finally it needs to incorporate

additional inference rules for implicit deletions (to be described later).

71

To motivate our proof procedure, we first describe our scheme for

associating top clauses with updates, particularly with updates that are

deletions.

We assume that the transaction consists of a set, al, and a set, dl, of

deductive rules (and a set, ml, to be described later, specifying

modifications to existing rules) such that the rules in al are to be

explicitly added to the database, and such that all rules occurring

explicitly in the database that are variants of a rule in dl are to be

explicitly deleted from the database. (A clause C is a variant of a clause

C' if C is identical to C up to a renaming of variables.)

A fact F is explicit in a database D if F has an explicit occurrence in D.

F is implicit in D if it is a logical consequence of Comp(D'), where

D'=D-{F}.

An update of deleting a fact which is both explicit and implicit deletes

the explicit occurrence only.

We assume further that al does not contain any variants of rules in dl.

Thus, for example, a transaction cannot include the addition of a rule

"P(x) <-Q(x y)" and the deletion of a rule "P(z) <-Q(z x)".

If an update is a deletion of a fact A, which is not implicit in the updated

database, then we use the negated fact "NOT A" as top clause, and thus

in effect reason forward from the fact that A is not provable in the

updated database (or from the fact that the negation of A is a logical

consequence of the completion of the updated database). "NOT A" is

72

the tog clause associated with the update.

If an update is a deletion of a non-atomic deductive rule, then we first

determine what instances of the conclusion of this rule are deleted as a

result of the deletion of the rule, and then select as top clauses the

negation of these deleted instances. These negated facts are the top

clauses associated with the update.

If an update is a deletion of an integrity constraint, then it cannot

possibly cause an inconsistency, and therefore we do not need a top

clause associated with it.

We treat updates that are additions exactly as described in the last

chapter. That is if an update is the addition of a deductive rule or an

integrity constraint R, then we use R as top clause as it stands. R is the

top clause associated with the update. Of course, if R is a constraint

and it is not in the form of a denial, then it first has to be transformed

into the required form as described in Chapter 2.

Finally, updates that modify existing rules are treated as a combination

of additions and deletions.

Given this scheme for associating top clauses with updates, the proof

procedure has to allow as top clause any deductive rule, denial or

negated fact. In the rest of this thesis, for convenience, we use the term

"clause" loosely to refer to any of these types of formulae.

The resolution and negation as failure steps cater for reasoning forward

73

from deductive rules and denials. To deal with reasoning forward from

negated facts we incorporate in the proof procedure an "extended"

resolution step that allows the resolution of a negated fact

NOT A'

and a rule

B < - NOT A and C

on the underlined literals if the atoms A and A' unify. § is the most

general unifier (mgu) of "NOT A" and "NOT A'" if and only if it is the

mgu of A and A'. The resolvent is then

(B<-C)<|>.

This step is an "extended" resolution step only in the sense that it is not

incorporated in the SLDNF proof procedure. The step, however, is, in

fact, a standard resolution step, as shown by Proposition 8.2 in

Chapter 8.

Our proof procedure, without inference rules for implicit deletions, is

described as follows.

A computation rule, or literal selection strategy, in our proof procedure

is a function from derivations to literals such that it selects a literal from

the last clause in the derivation. Safe computation rules are defined as in

SLDNF.

Let input set S be a set of deductive rules and denials. Let Co be a

clause in S or a ground negated fact. C o is allowed to be a ground

negated fact "NOT A" if Su{"<“ A"} has a finitely failed SLDNF

search space. (This is formalised by rule (C2) in Chapter 5.) Let R be a

safe computation mle. A derivation for S via R with top clause C q is a

74

(possibly infinite) sequence Co, C such that for all i, i >_ 0,

Q+l is obtained from Q by one of (a) or (b) as follows:

(a) Suppose R selects from C { a literal L which is not a negative

condition of Q . Then Q +i is the resolvent on L of Q and some input

clause in S. We allow both the standard and the extended resolution

steps.

(b) Suppose R selects from C { a negative condition "NOT A". An

attempt is made to construct a finitely failed search space with "<-A" as

top clause and S as input set. If the attempt succeeds then Q +i is Cj

with the selected literal "NOT A" removed. If the attempt fails finitely

then there is no C { + \ . Either SLDNF or our proof procedure can be

used for this subsidiary computation. The two are identical whenever

the top clause is a denial. (In such a case all clauses Q in the derivation

are also denials.)

EachCi, for i>0, is thus a deductive rule or a denial, or the empty

clause.

Notes:

(1) Steps (a) and (b) above are extensions of steps (a) and (b),

respectively, in the description of SLDNF derivation.

(2) When a condition "NOT A" is selected the only operation that can

be performed is the negation as failure step. The resolution step is not

applicable here, because the input set does not contain any clauses with

75

negated conclusions. (Note that a top clause which is a negated fact is

not considered to be part of the input set.) On the other hand, when a

conclusion "NOT A" is selected the only operation that can be

performed is (extended) resolution with an input clause.

In this simplified version of the proof procedure, only the top clause

can have such a negated conclusion. Therefore the extended resolution

step can only be applied to obtain the second clause in a derivation from

the top clause. (In the general case, in the presence of implicit deletions,

the extended resolution step can be applied at later stages of a

derivation.)

(3) If a clause consists entirely of non-ground negative conditions,

then none of its literals can be selected by a safe computation rule. This

situation is called floundering (Clark [1978]), and applies to SLDNF,

as well as to our proof procedure. The range-restriction condition on

the database and the goals prevents floundering (Lloyd and Topor

[1986]).

The concepts of refutation, success of a goal, search space and finitely

failed search space for our proof procedure are defined similarly to

those for SLDNF. Finitely failed derivations are defined as obvious

extensions of such derivations in SLDNF. Thus a derivation Co,

Cl,..., Cn is a finitely failed one in our proof procedure if and only if

Cn is not the empty clause, and it is not possible to construct a

derivation Co, Ci,..., Cn, Cn+i by an application of step (a) or (b) of

our proof procedure.

76

In Chapter 8 we prove that this proof procedure is correct in general

and complete in certain special cases. Correctness means that if for

some safe computation rule R and for some clause C associated with an

update there is a refutation of DTuIT via R with C as top clause then

the transaction violates the constraints. Completeness means that if the

transaction violates the constraints then for every safe computation rule

R there is a refutation of DTuIT via R with a top clause associated with

one of the updates in the transaction. Thus, in those cases where the

proof procedure is complete, if for every update C in T there is a

finitely failed search space for DTuIT with C as top clause via some

safe computation rule, then Comp(DT)uIT is consistent, and therefore

the transaction satisfies the constraints.

4.2 Examples

4.2.1 Updates That Are Additions

Example 4.2:

Consider example 4.1, and assume (correctly) that D satisfies I prior to

the transaction. To check if DT satisfies I we use the update as top

clause with our proof procedure and with DTuI as input set. We

obtain the following search space showing that the transaction violates

the integrity constraint.

77

R(C)

(1)

P(C)

(IC)

<~NOT Q(C)
succeeds

I if
^Q(C)

fails

[] which it does

Figure 4.5: A search space for example 4.2 (and example 4.1) with

the update as top clause

Compare this search space with the one in figure 4.1. Both show a

violation of the constraint. But the one in figure 4.1 is much bigger

because it, in effect, irrelevantly explores two instantiations of the

integrity constraint, in addition to the one explored in figure 4.5. The

selection of the update as top clause avoids the inefficiency illustrated in

figure 4.1. □

78

The next example also concerns a case of adding a fact to a database.

This example illustrates why in our method integrity constraints have to

be rewritten as denials.

Example 4.3:

In this example "Acc(x y)" expresses that x has access to machine y.

E*
(1) Rank (J ohn Lect)

(2) Rank(Mary Prof)

(3) Proj(JohnPl)

(4) Proj(Mary P2)

(5) Acc(x VAX) <r- Proj(x PI)

I:
(IC) Rank(x Lect) Proj(x PI)

T:

Insert Proj (Tom P1).

The constraint states that anyone who works on project PI must have

rank lecturer.

Assume (correctly) that D satisfies the constraint. The integrity

constraint is not in the form required for our integrity checking method.

If we use the constraint as it stands, and select the update as top clause

79

we obtain the following search space.

Proj(Tom PI)

Acc(Tom VAX) Rank(Tom Lect)

Figure 4.6: A search space for example 4.3 with the update as top

clause

This search space fails to demonstrate any inconsistency. The

completion of the updated database, however, is inconsistent with the

integrity constraint because together they logically imply both

"Rank(Tom Lect)" and "NOT Rank(Tom Lect)".

To simulate reasoning with the completion of the database we rewrite

the constaint in the form

<-Proj(x PI) and NOT Rank(x Lect)

before applying our proof procedure.

The following search space, still with the update as top clause, but

using the rewritten form of (IC), demonstrates that the updated database

violates the integrity constraint.

80

Proj(Tom PI)

(IC) rewritten:

«-Proj(x PI) and

NOT Rank(x Lect)

Acc(Tom VAX) <-NOT Rank(Tom Lect)

succeeds

if

<-Rank (Tom Lect)

fails

[] which it does

Figure 4.7: A search space for example 4.3 with the update as top

clause, using the rewritten form of the integrity constraint

The search space consists of two derivations. The one on the left,

where the update is resolved with a deductive rule in the database, is a

finitely failed derivation. The one on the right, where the update is

resolved with the rewritten form of (IC), is a refutation and shows that

the constraint is violated. □

81

The insertion of non-atomic deductive rules and of integrity constraints

is treated exactly as the addition of facts.

Example 4.3 illustrates how we treat the integrity constraints differently

from the rules in the database. There are other approaches to treating

integrity constraints. Reiter [1988], for example, uses the modal

language of Levesque [1981] to distinguish between database rules and

constraints. In his formalisation the constraint in example 4.3 is

expressed by the modal formula

K Rank(x Lect) <- K Proj(x PI),

where K is a modal operator standing for "knows". Thus the constraint

states that for all x, if it is known that x works on project PI, then it is

also known that x has rank lecturer. This constraint is satisfied in DT if

and only if it is true in DT in the modal language of Levesque.

Eshghi and Kowalski [1988] propose a metalogical variant of both

Reiter's and our approaches. Under their metalogical interpretation the

above constraint becomes

Demo(d Rank(xLect)) <- Demo(d Proj(x PI)),

which states that for all database states d, if "Proj(x PI)" is provable

from d, for some x, then "Rank(x Lect)" is also provable from d. (For

simplicity we have not distinguished between sentences and their

names, in the above formula.)

Eshghi and Kowalski [1988] show that, under certain assumptions,

their formalisation of the constraints is equivalent to our treatment of

them as denials.

82

Noel [1988] and Small [1988] have also proposed similar

interpretations of integrity constraints.

4.2.2 Updates That Are Deletions

To illustrate our handling of deletions, we first consider

example of deleting a fact from a relational database.

Example 4.4:

D
(1) Rank(John Lect)

(2) Rank(Mary Lect)

(3) Rank(Tom Prof)

(4) Proj(JohnPl)

(5) Proj(Mary PI)

(6) Proj(Tom P2)

I:
(IC) Rank(x Lect) <- Proj(x PI)

which is rewritten as

<- Proj(x PI) and NOT Rank(x Lect).

T:

Delete Rank(John Lect).

a simple

83

Before applying our method to this example, we show, below, the

search space with the integrity constraint as top clause and the updated

database, that is D-{Rank(John Lect)}, as input set, where denotes

set difference. This search space shows clearly that the integrity

constraint is violated in the updated database because the proof of

"Rank(John Lect)" fails. The search space is obtained both by our

proof procedure and by SLDNF.

<-Proj(x PH and NOT Rank(x Lect)

x=Mary (5) (4) x=John

*-NOT Rank(Mary Lect)
succeeds

<-NOT Rank(John Lect)
succeeds

<-Rank(Mary Lect)
fails

which it does not,

because of (2)

1 if
I

<-Rank(John Lect)
fails

[] which it does,

because of the transaction

Figure 4.8: A search space for example 4.4 with the constraint as top

clause

In our approach, to achieve the same effect by reasoning forward from

the update, we use as top clause the negated fact

"NOT Rank(John Lect)",

which represents the update. The search space below, with this

negated fact as top clause, shows that the update violates the integrity

84

constraint. Note that the updated database, and therefore the input set,

do not explicitly contain the negated fact "NOT Rank(John Lect)".

NOT Rank(John Lect)

(IC) rewritten

<-Proj(John PI)

(4)

[]

Figure 4.9; A search space for example 4.4 with the update as top

clause

The first step in the search space is an extended resolution step between

the negated fact

NOT RankfJohn Lecf)

and the integrity constraint

<-Proj(x PI) and NOT Rank(x Lect)

on the underlined literals.

Note that in this example the database is relational and therefore the fact

that is to be deleted by the transaction can only be explicit in the

database. In general, however, in a deductive database, facts can be

85

implicit as well as explicit. In such a database, given a transaction

including an update of deleting a fact A we need to ensure that A is not

provable in the updated database (or, more precisely, that "NOT A" is a

theorem of the completion of the updated database), before reasoning

forward from "NOT A". (We can use the SLDNF proof procedure to

check if A is provable in the updated database.) If A is still provable in

the updated database, then the update, which only deletes the explicit

occurrence of A, does not alter the logical content of the database, and

there is, therefore, no need to consider the update as a top clause for

integrity checking. Moreover, in this case, it would be incorrect to

reason forward from "NOT A", as the following example illustrates:

D: P<-NOTQ

Q<-R

R

Q

Suppose the update is the deletion of the explicit occurrence of Q.

Choosing "NOT Q" as top clause in this case would allow us to derive

P which is incorrect, because P is not a consequence of the completion

of the updated database.

Compare the search spaces in figures 4.8 and 4.9. Intuitively, 4.9

corresponds to the right branch of 4.8, showing a violation of integrity

because "Proj(John PI)" is provable, but "Rank(John Lect)" is not.

The left branch of 4.8 is redundant for integrity checking, because it

considers an instantiation of the constraint which is not affected by the

transaction. □

86

Because of the possible presence of negative conditions in the deductive

rules, deletion of facts can implicitly add new facts to the database.

Using the extended resolution rule to reason forward from negated

conclusions is also crucial for dealing with such cases, as illustrated in

the following example.

Example 4.5:

In this example nTeaches(x y)" means x teaches course y.

D
(1) Teaches(John Databases)

(2) Rank(John Lect)

(3) Rank(Mary Lect)

(4) Proj(John PI)

(5) Proj(Mary PI)

(6) Academic-visitor(x) <-

Teaches(x Databases) and

NOT Rank(x Lect)

I:
(IC) Proj(x PI) and Academic-visitor(x)

T:

Delete Rank(John Lect)

Here the update leads to an inconsistency. This is because the deletion

87

of a fact results in the addition of a fact, which violates the integrity

constraint, as shown in the following search space.

NOT Rank(John Lect)

(6)

Academic-visitor(John) <- Teaches (John Databases)

(1)

Academic-v isitor(J ohn)

(IC)

<-Proj(John PI)

(4)
[]

Figure 4.10: A search space for example 4.5 with the update as top

clause □

4.2.3 Transactions With Multiple Updates

The principles are as described in 3.2.4. Thus each update in the

transaction is a candidate top clause. The input set in each case consists

of the updated database and the updated set of integrity constraints. A

refutation implies violation of constraints. On the other hand, if all the

updates lead to finitely failed search spaces, and our method is complete

for the given case, then the transaction satisfies the constraints.

88

We believe that our method is as complete as SLDNF. We will discuss

this point later in Chapter 8. SLDNF has been proved complete for

several restricted classes of databases (Clark [1978], Jaffar, Lassez and

Lloyd [1983], Barbuti and Martelli [1986], Kunen [1987] and [1988],

Cavedon and Lloyd [1987] and Shepherdson [1988]), which include

hierarchical databases such as those before and after the update in the

following example. Roughly speaking, a database is hierarchical if it

contains no recursion. More precisely, a deductive database D is

hierarchical if and only if there is a mapping M from the predicate

symbols that occur in D to the natural numbers, such that for every rule

"Head<-Conditions" in D

M(P) > M(Q) if P is the predicate symbol that occurs in the

Head, and Q is a predicate symbol that

occurs in the Conditions.

Thus a hierarchical database is also stratified, but not vice versa.

Hierarchical databases are less general than stratified ones because

hierarchical databases allow no recursion at all. An alternative definition

of hierarchical databases can be found in Clark [1978].

Example 4.6:

D.

(1) Employed(Tom)

(2) Self-employed(Tom)

(3) Lecturer(Dick)

89

(4) Lecturer(Harry)

(5) Lecturer(Bill)

(6) Eligible-for-state-pension(Dick)

(7) Eligible-for-state-pension(Harry)

(8) Eligible-for-state-pension(B ill)

I:
(IC) Eligible-for-state-pension(x) <- Lecturer(x)

which is rewritten as

<-Lecturer(x) and NOT Eligible-for-state-pension(x)

T:

{Insert (9) Lecturer(Tom)

(10) Eligible-for-.state-pension(x) <-Employed(x) and

NOT Self-employed(x)

Delete Self-employ ed(Tom)}

Assume (correctly) that D satisfies the constraint. The transaction

consists of three updates. To check if DT satisfies the constraint, each

of the three updates must be considered as top clause. In each case the

input set consists of the constraint and the updated database, that is

(Du{(9), (10)})-{(2)}.

It is not difficult to see, intuitively, that the updated database satisfies

the constraint. The transaction could violate the constraint only if it

added a new lecturer who was not eligible for state pension, or if it

deleted the eligibility of some continuing lecturer. The second case

does not arise because the transaction adds more ways of concluding

90

eligibility rather than deleting the existing ways. The first case does not

arise because, although the transaction adds Tom as a lecturer, it also

implicitly adds Tom's eligibility for state pension.

Below, we show the three search spaces that result from taking each of

the updates in the transaction as top clause. All three search spaces fail

finitely. Thus, assuming that our method is complete in this example,

we can conclude that the transaction satisfies the constraint. (We have

not, however, proved our method complete for this case.)

In the search spaces we have abbreviated the predicate symbol

"Eligible-for-state-pension" to "E-f-s-p". Each of the three search

spaces consists of a single derivation. The second search space

consists only of the top clause, and the third consists of two clauses.

91

Lecturer(Tom)

(IC) rewritten

<-NOT E-f-s-p(Tom)

succeeds

I if

<-E-f-s-p(Tom)

fails

I if

<-Emploved(Tom) and NOT Self-employed(Tom)

| fails

I if

<“ NOT Self-employed(Tom)

I fails

I if
I

<-Self-employed(Tom)

succeeds

which it does not.

Figure 4.11: A search space for example 4.6 with an update as top

clause

92

E-f-s-pfx) Employed(x) and

NOT Self-employed(x)

Figure 4.12: A search space for example 4.6 with an update as top

clause

NOT Self-employed(Tom)
(10)

E-f-s-pfTom) < - Employed(Tom)

Figure 4.13; A search space for example 4.6 with an update as top

clause □

4.2.4 Updates That Modify Database Rules

Suppose an update requests the modification of a database rule (fact or

non-atomic rule) R to R’. Then the database management system must

check to see if a variant of R exists in the database. If it does not, then

the management system can either inform the user, or simply ignore the

update. If a variant exists, then the update can be treated as two

updates, the deletion of the existing variant of R, and the addition of

R’. These two updates are then treated as explained already.

Modifying integrity constraints involves more work, because of the

transformations that are performed on constraints to convert them into

93

denials and deductive rules. To modify a constraint W to W' we need to

trace all the deductive rules and the denial which resulted from the

transformations performed on W. This can be done by keeping a record

of such information. The thesis will not, however, address this issue.

We assume that "modify" updates only request modifications to the

database rules.

4.2.5 Updates That Require Additional Inference Rules

In deductive databases the deletion of explicitly present facts can cause

the deletion of other implicit facts. Consider the following very simple

propositional database, for example:

D: A

B A.

Fact B is provable in this database. However, if fact A were deleted B

would no longer be provable. The deletion of A would implicitly delete

B. To check integrity of deductive databases it is necessary to detect

such implicit deletions. This requires the addition of a new inference

rule, as illustrated in the following example.

Example 4.7:

In this example "Sup(x y)" expresses that x supports project y, and

"Alloc(x y)" expresses that project x is allocated machine y.

94

D.

Sup(SERC PI)

Sup(BP P2)

Sup(MOD P3)

Alloc(x VAX) 4- Sup(SERC x)

Alloc(x IBM) <- Sup(BP x)

Alloc(x SUN) 4- Sup (MOD x)

I:
(IC) Alloc(Pl VAX) or Alloc(Pl SUN)

which states that project PI is allocated either the VAX or the SUN.

(IC) is rewritten as

4-NOT Alloc(Pl VAX) and NOT Alloc(Pl SUN).

T:

Delete Sup(SERCPl).

The fact "Sup(SERC PI)" is only explicit in D and thus it is not

provable in the updated database.

Intuitively speaking, the deletion of the fact "Sup(SERC PI)" also

"deletes" the previously derivable fact "Alloc(Pl VAX)". More

formally, "4-Alloc(Pl VAX)" is a logical consequence of the

completion of the updated database D-{Sup(SERC PI)}. Since

"<-Alloc(Pl SUN)" is also a logical consequence of this completion,

the update violates the integrity constraint.

One way to deduce that "Alloc(Pl VAX)" is deleted from the updated

95

database is to reason as follows:

(Rl)

because inDT "NOT Sup(SERC PI)" holds

and we have "Alloc(x VAX)^Sup(SERC x)"

and we have no other way of showing " Alloc(Pl VAX)"

and "Alloc(Pl VAX)" was provable in D

then "Alloc(Pl VAX)" is deleted.

Thus "NOT Alloc(Pl VAX)" holds in DT.

Such a rule, in part, allows us to reason with the completion of the

updated database without having to represent the completion of the

database explicitly. It can also be thought of as a rule that allows us to

reason forward from negated conclusions. We will formalise and

generalise the reasoning in (Rl), in the next chapter. Assuming for

now that we have such a formalisation, the following incomplete

refutation shows that the updated database violates the integrity

constraint. The refutation is incomplete because we have ignored the

details of (Rl).

96

NOT Sup(SERCPl)

(R l)

NOT Alloc(Pl VAX)

(IC) rewritten

NOT Alloc(Pl SUN)

succeeds

if

<- Alloc(Pl SUN)

| fails

if

< - Sup(MOD PI)

fails

[] which it does

Figure 4.14: A refutation for example 4.7 with the update as top

clause □

97

Because of the presence of negative conditions in the deductive rules an

addition can also cause implicit deletions. We need another inference

rule to cater for such a case, as illustrated in the following example.

Example 4.8:

D:

(1) Overseas-student(x) < - Student(x) and NOT Resident(x UK)

(2) Student(Jim)

(3) Eligible(Jim Brit-Council-award)

I:

(IC) Overseas-student(x) Eligible(x Brit-Council-award)

which is rewritten in the form

<-Eligible(x Brit-Council-award) and NOT Overseas-student(x)

T:

Insert Resident(Jim UK).

Intuitively speaking, the insertion of the fact "Resident(Jim UK)"

"deletes" the previously derivable fact "Overseas-student(Jim)", and

thus violates the integrity constraint. To deduce this implicit deletion

we need to reason that

98

(R2)

because in DT "Resident(Jim UK)" holds

and we have "Overseas-student(x)<-Student(x) and

NOT Residents UK)"

and we have no other way of showing "Overseas-student(Jim)"

and "Overseas-student(Jim)" was provable in D

then "Overseas-student(Jim)" is deleted.

Thus "NOT Overseas-student(Jim)" holds in DT.

In the next chapter we will show how this reasoning can be formalised

in general. Assuming that we have the required formalisation, the

following incomplete refutation shows that the update violates the

integrity constraint. The refutation is incomplete because the details of

(R2) are ignored.

99

Resident Jim UK)

(R2)

NOT Overseas-student(Jim)

(IC) rewritten

< - Eligible(Jim Brit-Council-award)

(3)

[]

Figure 4.15: A refutation for example 4.8 with the update as top

clause □

This discussion completes the case of the updates that require additional

inference rules.

100

CHAPTER 5

FORMALISATION OF THE CONSISTENCY METHOD IN

THE GENERAL CASE

In this chapter we describe the general case of our method. The general

proof procedure extends the simplified one described in 4.1.2, by

incorporating additional inference rules to deal with implicit deletions.

(Note that the simplified procedure in 4.1.2 already caters for implicit

additions due to other additions and deletions.)

We present the general method by a logical formalisation of it, using

logic as metalanguage. Although our formalisation is intended as an

abstract and general description, it is actually runnable in Prolog, and

has in fact been implemented in Prolog without much modification, as

described in the next chapter.

This chapter is in two sections. In 5.1 we formalise the simplified proof

procedure that was described in 4.1.2. In 5.2 we extend this to include

the necessary rules for implicit deletions.

101

5.1 Formalisation Of The Simplified Proof Procedure

Described In 4.1.2

The proof procedure without inference rules for implicit deletions

consists of two rules of inference, negation as failure and resolution

(standard and extended). We formalise these in this section.

In general, we formalise our proof procedure by defining a relation

"Inconsistent". "Inconsistent(s c)" holds if and only if there is a

refutation with top clause named by c and input set named by s, by

means of our proof procedure.

Note that in order to define our proof procedure, it is necessary to name

object level sentences and other expressions by metalevel terms. This

can be accomplished in a number of ways, and we do not concern

ourselves with the details in this thesis.

Suppose "Demo" is the SLDNF provability relation, that is

"Demo(d g)" is true when it can be shown that there is an SLDNF

refutation of d'u{<— g'}, where d names a set d' of deductive rules and

g names a conjunction g' of literals, and all the variables in g' are

assumed to be existentially quantified over the whole of g\ Then the

following relationship holds between the relations "Demo" and

"Inconsistent":

Demo(d g) <-> Inconsistent^ <-g).

This relationship is a consequence of the fact that our proof procedure

is identical to SLDNF when the top clause is a denial. The symbol "<-"

is a metalevel function symbol representing the object level implication

102

symbol

In the rest of this thesis we ignore the distinction made above between

object level expressions and their names, where context makes the

intended meaning clear.

The base case for "Inconsistent” is defined by:

(11) Inconsistent^ [])

(As before,"[]" denotes the empty clause.)

Rule (12) formalises the standard and extended resolution rules, and

(13) formalises the negation as failure rule.

(12) Inconsistent^ c) <—

Select-literal (1 c a) and

In(e s) and

Resolvent(e c 1 a r) and

Inconsistent^ r)

"Select-literal(l c a)" means literal 1 is selected from the a-side

(Condition or Conclusion) of clause c. This relation must describe a

safe computation rule. "In(e s)M means clause e is in input set s, and

"Resolvent(e c 1 a r)" means r is the resolvent of clauses e and c on the

literal 1 occurring on the a-side of c. As will become clear in Section

5.2, where we discuss inference rules for implicit deletions,

"Resolvent" must be defined in such a way that it deals appropriately

103

with clauses c that have negated conclusions and zero or more

conditions. The a-side parameter is necessary to ensure that the

negation as failure rule is only applied to negative conditions and not to

negated conclusions.

(13) Inconsistent^ c) <—

Select-literal (not(p) c Condition) and

NOT Inconsistent^ <-p) and

Remove-literal (c not(p) Condition c') and

Inconsistent^ c')

"Remove-literal(c 1 a c')" expresses that c’ is clause c with literal 1

removed from its a-side. "not" is a metalevel prefix function symbol

naming the negation symbol "NOT".

(II), (12) and (13), together with the subsidiary definitions needed for

them, formalise the proof procedure as described in 4.1.2. We can

vary the literal selection strategy (or computation rule) by using

different definitions for the relation "Select-literal".

Recall that computation rules are functions from derivations to literals.

For the sake of simplicity, however, we have ignored this in the

relation "Select-literal", and ultimately in the definition of

"Inconsistent". As the relations stand at the moment, "Select-literal"

selects a literal from any clause, without any information about the

derivation in which the clause appears. It is possible to modify these

relations to conform to our definition of computation rules. This can be

done by changing the relations "Inconsistent" and "Select-literal" so that

104

their second parameters denote the entire derivation ending at clause c.

Suppose "Inconsistent*" and "Select-literal*" are the modified relations

corresponding to "Inconsistent" and "Select-literal".

"Inconsistent* (s d)" expresses that derivation d can be extended to

form a refutation, with input set s, according to our proof procedure.

"Select-literal *(1 d a)" expresses that literal 1 is selected from the a-side

of the last clause in derivation d. Suppose further that the term "d.r"

denotes the derivation which consists of the derivation d extended by

clause r. Rules (II) and (12) can now be modified as follows:

(11) ' Inconsistent*(s d.[])

(12) ' Inconsistent* (s d.c) <—

Select-literal*(1 d.c a) and

In(e s) and

Resolvent(e c 1 a r) and

Inconsistent *(s d.c.r)

(13) can also be similarly modified. (For a Prolog implementation it

would be better to represent derivations backwards in a list. Thus a

derivation Co, C C2 , for example, would be represented as

(C2 C1 Co).) As can be seen these modifications are quite trivial, and

in the remainder of this thesis, for the sake of simplicity of notation, we

shall ignore them and concentrate on the original rules (I1)-(I3).

To consider automatically all top clauses associated with the updates in

the transaction we use rules (C1)-(C3), below. (Cl) allows us to

105

consider as top clause each of the deductive rules and the integrity

constraints that are added by the transaction. (C2) allows us to

consider as top clause the negation of each fact which is either explicitly

deleted by the transaction, or which is a deleted ground instance of the

conclusion of a non-atomic rule which is explicitly deleted. (C3) caters

for updates that modify database rules. Mtransact(al dl ml)" is a term

that represents the transaction T which consists of a set of additions al,

a set of deletions dl, and a set of modifications ml. Each element of ml

is of the form (r r') which is interpreted as an update that modifies a

database rule r to r’.

(C l) IC-Violated(DTuIT transact(al dl ml)) <—

In(c al) and

Inconsistent(DTuIT c)

(C2) IC-Violated(DTuIT transact(al dl ml)) <—

In(f<-b dl) and

In(f<-b D) and

Demo(D f) and

NOT Demo(DT f) and

Inconsistent(DTuIT not(f))

(C3) IC-Violated(DTuIT transact(al dl ml)) <-

In((r r') ml) and
In (r D) and

IC-Violated(DTuIT transactor’) (r) ()))

106

(C3) simply ignores an update that requests modifications to a database

rule no variant of which is present in D. Another metalevel clause can

be added to (C1)-(C3) to alert the user in such cases, if desired.

In (C2) the variable b stands for a (possibly empty) conjunction of

literals. Thus (C2) caters for both deletion of facts and deletion of non-

atomic rules. It correctly ignores the integrity constraints that are deleted

by the transaction. It also ignores updates that request the deletion of

rules no variants of which are present in D. In the symmetric case of

additions, we can add an extra condition

"NOT In(c D)" to (Cl) to avoid reasoning forward from clauses that are

to be added, but which are already present in the database.

We can replace the "Demo" and "NOT Demo" conditions in (C2) by

their equivalents "Inconsistent(D <-f)" and

"NOT Inconsistent(DT <-f)", repectively.

Notice that (C2) and (C3) do not treat unification explicitly. The

required unification steps would automatically be performed if the rules

were executed by a Prolog-like system. Alternatively, unification can be

defined explicitly. In this case , in (C2), for example, an extra argument

would be added to "Demo" to denote the appropriate instantiation, and

an extra condition would be added to compute the resulting instantiated

formula. Thus (C2) modified to incorporate explicit unification and

substitution can be as follows:

107

IC-Violated(DTuIT transact(al dl ml))

In(f<-b dl) and
In(g<-e D) and

Variant(f<-b g<-e) and

SDemo(D g sub) and

Apply-substitution(g sub g') and

NOT Demo(DT g') and

Inconsistent(DTuIT not(g')),

where

g and f name object level atoms, and e and b name object level

(possibly empty) conjunctions of atoms,

Variance c') means the clause named by c is a variant of the clause

named by c’,

SDemo(d g s) means the fact named by g is provable (by SLDNF) from

the database named by d with substitution named by s, and

Apply-substitution(g s g') means g' names the fact that results from

applying the substitution named by s to the fact named by g.

Further discussion of the explicit treatment of unification can be found

in Kowalski [1979].

(C1)-(C3) are not considered as part of the proof procedure, but are

part of the database management system. To check the satisfaction of

integrity constraints IT in database DT obtained from I and D,

repectively, by a transaction consisting of a set of additions, al, a set of

deletions, dl, and a set of modifications, ml, we evaluate the query

<-IC-Violated(DTuIT transact(al dl ml)).

108

If the query succeeds then the constraints are violated. If it fails finitely,

and our method is complete for the given case, then the constraints are

satisfied.

Given our present scheme we can easily handle conditional updates as

well. Such an update may request a transaction T of additions, deletions

or modifications of rules in D, provided that D satisfies certain

conditions, F, say. In this case we have to check the conditions F in D,

and if they succeed we deal with transaction T as explained already. We

will not, however, pursue the case of conditional updates any further in

this thesis.

To complete the definition of the Consistency method proof procedure

we have to augment it with inference rules for implicit deletions.

5.2 Formalisation Of The Rules For Implicit Deletions

There are at least two different ways of formalising the inference rules

that we need for reasoning about implicit deletions. The first way, to

be discussed in 5.2.1, is to formalise the inference rules as metalevel

rules which are included in the input set. The second way, to be

discussed in 5.2.2, is to formalise the inference rules as part of the

proof procedure. The first approach is probably easier to understand.

But the second approach is better for reasons we will explain later.

109

5.2.1 The First Approach: The Metarule Version

Let "Deleted(DT D f)" express that fact f is deleted in DT, in the sense

that f is a logical consequence of Comp(D), but not of Comp(DT).

This can be formalised by a metarule:

(MR) Deleted(DT D f) <- Demo(D f) and NOT Demo(DT f).

We could write this rule more generally using variables for the first two

arguments of "Deleted", and adding a condition "Result(d t dt)" to

express that dt is the database that results from d by means of a

transaction t. This would be necessary if we were to embed our

integrity checking method into a more general knowledge assimilation

system which processes a stream of transactions. In the context of this

thesis, however, such generality makes the notation more cumbersome

without providing any benefits.

The use of (MR) as it stands, would give rise to a blind and very

inefficient search to find out what facts are deleted from the database as

a result of the transaction. We can improve efficiency by adding to

(MR) extra conditions to reduce the search. (MR1) and (MR2),

below, both result from adding extra conditions to (MR). (MR1) is a

general rule corresponding to (Rl) in example 4.7. (MR2)

corresponds to (R2) in example 4.8. The improved efficiency is due

to the fact that, in effect, the extra conditions make the rules focus on

the effects of the updates. This point will become more clear shortly.

The formulae (MR1) and (MR2) are not well-formed, because in both

110

formulae p is intended as a metalevel variable ranging over object level

facts, although it occupies the place of a metalevel atom. This problem

is discussed further in note (3), below, where a solution is proposed.

(MR1) Deleted(DTDf)<-

NOT p and

In(f<-b DT) and

On(p b) and

Demo(D f) and

NOTDemo(DTf)

"On(p b)" means literal p occurs in b which is a conjunction of literals.

(MR2) Deleted(DT D f) <-

p and

In(f<-b DT) and

On(not(p) b) and

Demo(D f) and

NOT Demo(DT f)

The relationship between "Deleted" and negation as failure can be

described by the rule:

(MR3) NOT f Deleted(DT D f)

Note that DT, the updated database, is explicit in the condition of

(MR3), but implicit in the conclusion. This is to conform with the

simplified syntax of negation as failure. Essentially, (MR1)-(MR3)

111

together formalise a correct but partial definition of negation by failure

as unprovability. Their purpose is to allow us to determine what facts

are deleted (i.e. have become unprovable) as a result of the updates.

Since the metarules give a partial definition of negation as failure, for

the sake of efficiency, they should only be used forward. Otherwise, if

used backward, they would only duplicate the effect of normal negation

as failure rule. This restriction, and the use of updates as top clauses,

ensure that (MR1) and (MR2) are "entered" only through their first

conditions. In fact, these metarules are always resolved on their first

conditions, with an update or with a clause which is a consequence of

an update. Thus these rules, in practice, compute the implicit deletions

resulting from the transaction.

Notes:

(1) As in (C2) in Section 5.1, metarules (MR1) and (MR2) do not

treat unification explicitly. Again a Prolog-like system would

automatically perform the required unification steps. Alternatively we

could add extra conditions to these metarules to compute the required

mgu’s and the resulting instantiated formulae.

(2) The "Demo" and "NOT Demo" conditions in the metarules can

be solved either by running metalevel definitions of "Demo" and "NOT

Demo", or by using reflection as in FOL (Weyhrauch [1980]) or in

amalgamation logic (Bowen and Kowalski [1982]). To solve

"Demo(D f)" by reflection we show that the goal named f can be solved

by SLDNF (or our proof procedure) in the database named D. To

solve "NOT Demo(DT f)" by reflection we show that the goal named f

112

fails finitely by SLDNF (or our proof procedure) in the database named

DT. The reflection rule approach can be formalised by adding two extra

rules to the definition of the relation "Inconsistent" as follows.

(14) Inconsistent^ c) <-

Select-literal(demo(d g) c Condition) and

Inconsistent^ <-g) and

Remove-literal(c demo(d g) Condition c') and

Inconsistent^ c')

(15) Inconsistent^ c) < -

Select-literal(not(demo(d g)) c Condition) and

NOT Inconsistent(d <-g) and

Remove-literal(c not(demo(d g)) Condition c') and

Inconsistent(s c')

"demo" is a function symbol naming the metalevel relation "Demo".

(3) The symbols p in (MR1) and (MR2) and f in (MR3) are

variables, and are supposed to range over object level facts. These

variables, however, do not occur everywhere as arguments of

metalevel relations or functions in these rules. Thus our metarules

(MR1), (MR2) and (MR3) are not strictly well-formed (although, in

practice, they work when using a Prolog-like execution

mechanism) .This problem can be avoided by replacing the occurrences

of p in the first conditions of (MR1) and (MR2) and the occurrence of f

in the conclusion of (MR3) by well-formed atoms "Demo(DT p)"

and "Demo(DT f)", respectively. This, however, introduces other

complications, because it requires additional reflection rules and

113

modifications to the extended resolution step.

(4) Note that (MR1)-(MR3), together with the standard and the

extended resolution rules cater for the propagation of the effects of

initial additions and deletions through chains of database rules.

In this version of our method metarules (MR1), (MR2) and (MR3) are

part of the input set. The proof procedure is defined by rules (I1)-(I5)

and the subsidiary definitions required by these. The database

management system would include rules (Cl), (C2) and (C3). All

occurrences of DTuIT in (C1)-(C3) would have to be replaced by

DTulTu{(MRl), (MR2), (MR3)} to include the metarules in the input

set.

Notice that the proof procedure needs to to allow in derivations,

formulae of the form

NOT A<- L \ and ... and Ln, n > l ,

where A is an atom and the L [are literals. Such formulae can be

obtained in derivations by the resolution of a clause in the derivation

with metarule (MR1) or (MR2), and the resolution of the resulting

resolvent with (MR3).

The inclusion of such formulae in derivations is catered for in the

definition of the proof procedure given in 5.1. We extend the term

"clause” to include formulae of the above form.

The inclusion of the metarules in the input set is not entirely satisfactory

from a methodological point of view. The metarules would have to be

114

distinguished from the other input clauses. As well as requiring

special control restrictions to ensure that they are used forward only,

the metarules must be protected against modification by user updates.

These problems and the naming problem, described in note (3) above,

can be avoided by formalising (MR1)-(MR3) as inference rules in the

definition of the proof procedure, as described in the remainder of this

chapter.

5.2.2 The Second Approach: The Inference Rule Version

In this approach we formalise the rules for implicit deletions as part of

the proof procedure simply by adding extra definitions for the relation

"Inconsistent". Inference rules (16) and (17), below, correspond to

(MR1) and (MR2), repectively, and incorporate (MR3) as well.

(16) Inconsistent(DTuIT not(p)<-c) < -

Select-literal(not(p) not(p)<-c Conclusion) and

In(f<-b DT) and

On(p b) and

Demo(D f) and

NOT Demo(DT f) and

Inconsistent(DTuIT not(f)<-c)

115

(17) Inconsistent(DTuIT p<-c) < -

Select-literal(p p<-c Conclusion) and
f

In(f<-b DT) and

On(not(p) b) and

Demo(D f) and

NOT Demo(DT f) and

Inconsistent(DTuIT not(f)<-c)

As in the case of (C2) in 5.1, we can replace the MDemoM and "NOT

Demo" conditions in these rules by appropriate "Inconsistent" and

"NOT Inconsistent" conditions, and in fact have done so in the

implementation. As before, we have not treated unification explicitly in

these rules.

In this scheme the input set consists only of the updated database and

the updated set of integrity constraints. The proof procedure is defined

by rules (I1)-(I3) and (I6)-(I7), and the subsidiary definitions required

by them. The database management system includes rules (Cl), (C2)

and (C3).

The inference rule approach has a number of advantages over the

metarule approach described in the previous subsection. The inference

rules are part of the proof procedure and not the input set. They,

therefore, cannot be modified by user updates. For the sake of

efficiency the metarules should be used forward only, unlike the other

deductive rules in the input set that can be used backward as well as

forward. This is an undesirable and ad hoc restriction, which is

116

avoided in the inference rule approach. Furthermore, the inference

rules are well-formed, whereas the metarules are not.

The metarule and the inference rule approaches have both been

implemented in Prolog.

117

CHAPTER 6

IMPLEMENTATION

Both versions of the Consistency method, that is the metarule and the

inference rule versions, have been implemented by Soper [1986], as an

M.Sc. project, in Sigma-Prolog on the SUN III. A summary of the

implementation has been reported in Kowalski, Sadri and Soper

[1987].

In effect, our proof procedure is built as a meta-interpreter on top of

Prolog. The implementation is very close to the formalisation presented

in the last chapter, and consists essentially of the clauses for

"Inconsistent" and "IC-Violated" and the necessary subsidiary

definitions. In this chapter we first discuss the part of the

implementation that is common to both versions, and then consider the

extensions that are necessary to implement each approach. Finally we

propose an alternative and more efficient implementation for a special

case.

6.1 Parts Common To Both Versions

As explained in the previous chapter, common to both versions of the

Consistency method are rules (I1)-(I3) (and the subsidiary definitions

required by them), and rules (C1)-(C3) (with minor modifications for

the metarule version as explained in 5.2.1) for generating candidate top

118

clauses for the proof procedure. In this section we concentrate on the

implementation of these rules.

The main features of this implementation are:

(1) the representation of the input clauses, that is the databases and

the integrity constraints,

(2) the implementation of reasoning with the two databases D and DT

required for rules (C2) and (C3) (and also for (MR1)-(MR2), and (16)-

(17)), and

(3) the use of indexing information about input clauses to guide

selection of candidate clauses for resolution, thus providing a

reasonably efficient search control.

We discuss each one of these, in turn.

(1):

Input clauses are represented as terms in the metalanguage. They are

represented as lists of "literals", where each "literal" is a list of the form

(side sign predicate | arguments).

"|" is Prolog's list construction operator, "side" is either "Cone"

indicating that the literal is the conclusion of the clause, or it is "Cond"

indicating that the literal is in the conditions. Thus all the literals in an

integrity constraint have "Cond" for "side", "sign" is either "+" for

atoms or"-" for negated atoms.

119

Example 6.1:

(1) The clause

P(x y) <- Q(x y) and NOT R(x)

is represented by the term

((Cone + P x y) (Cond + Q x y) (Cond - R x)).

(2) The clause

NOTP(AB)

is represented as

((Cone -P A B)). □

For the sake of notational simplicity, we have not distinguished

between sentences and their names in the above example. As mentioned

earlier, we will continue this practice where context makes the

distinction clear. Strictly speaking, however, object level predicate

symbols and variables should be represented at the metalevel by

function symbols and constants, respectively (Bowen and Kowalski

[1982]).

(2):

The Consistency method requires reasoning with two databases D and

DT and with the updated input set DTulT (as well as

DTuITu{(MRl), (MR2), (MR3)} in the metarule version; we will

postpone discussing this latter case until the next section). It is in fact

sufficient to represent only two sets to correspond to D and DTulT,

without distinguishing the set DT on its own. This is because, in our

120

formalisation, DT occurs on its own only in conditions of the form

(i) NOT Demo(DT f),

(ii) In(f<-b DT), and

(iii) Deleted(DT D f),

and in conclusions of the form

(iv) Deleted(DT D f),

where f is a fact.

The replacement of DT by DTuIT in all cases (i)-(iv) makes no logical

difference, as shown below.

Case (i): In SLDNF, and in our proof procedure, to prove a fact f

from DT, the denial " < -f" is used as top clause. In this case all the

subsequent clauses in the search space will also be denials or the emtpy

clause. Thus no clause in any derivation can possibly resolve against

another denial. Thus it makes no difference if the input set is augmented

by the set of denials IT; these denials will never be used.

Case (ii): The replacement of DT in the "In" conditions mqkes no

difference, either. This is because "In(f<-b DTuIT)M is true if and only

if the first parameter is a deductive rule which is a member of DTuIT,

and this, in turn, is true if and only if the first parameter is a deductive

rule in DT, since IT consists of denials only.

Cases (iii) and (iv): If a fact f is deleted in DT, it is also deleted in

DTuIT, and vice versa. So the replacement of the first argument of

"Deleted" by DTuIT makes no difference.

The sets D and DTuIT are represented by clauses of the form

121

((Member set clause-name clause))

signifying that "clause" belongs to the set named "set" and is given the

name "clause-name". The reason for introducing "clause-name" will

become clear shortly when we discuss selection of candidate clauses for

resolution, "set" is either "OLD", or "NEW", or a variable. Clauses

identified by "OLD" belong to D-DT. Clauses identified by "NEW"

belong to (DT-D)uIT, and those identified by a variable belong to both

databases D and DT. Thus, using Prolog’s unification, we use the

identifier "OLD" to access clauses in D, and the identifier "NEW" to

access clauses in DTuIT. This scheme avoids the duplication of those

clauses that are common to both D and DT. With this convention the

top-level Sigma-Prolog goal, in the inference rule version, for integrity

checking, for example, is

?((IC-Violated NEW (transact al dl ml))).

(In the metarule version the set "NEW" in this goal would have to be

replaced by a set label denoting DTuITu{(MRl), (MR2), (MR3)}.

We will discuss this in the next section.)

The following simple example should make the set labelling scheme

more clear.

Example 6.2:

Suppose D consists of the following clauses:

(CL1) P

(CL2) Q.

Let T be a transaction that deletes (CL1) and adds

(CL3) R.

122

Thus DT consists of:

(CL2) Q

(CL3) R.

Then clause (CL1) has label "OLD",

clause (CL2) has a variable label, and

clause (CL3) has label "NEW".

The databases are represented by the following "Member" assertions:

((Member OLD CL1 ((Cone + P))))

((Member x CL2 ((Cone + Q))))

((Member NEW CL3 ((Cone+ R)))). □

The set labelling is done automatically by another Prolog program that

preprocesses the initial input set and the transaction.

(3):
One potential source of inefficiency in the proof procedure is the search

involved in (12) for an input clause that can be resolved with a clause in

the derivation on its selected literal. In SLDNF all selected literals are

condition literals, and therefore SLDNF only needs to search the input

set to find conclusions which unify with the selected literal. In the

Consistency method proof procedure, however, selected literals can

come from the conclusion as well as from the condition of clauses.

This requires a larger search over all literal occurrences in the input set,

looking for unifying conditions as well as conclusions. The

implementation uses a form of indexing, similar to Kowalski's

connection graphs (Kowalski [1975]), to reduce this search as follows.

For each predicate occurrence "predicate" in each clause in the input set

123

we include an assertion of the form

((Possible-resolve input-set clause-name i (side sign predicate))),

in the metalevel database. This assertion means that the input clause

identified by "input-set clause-name" can potentially resolve (apart from

unification of arguments) on its i-th literal with a clause whose selected

literal is represented by (side sign predicate | arguments). (The

"Possible-resolve" assertions can be refined to take the unification of

the arguments into account as well.) These assertions are generated

automatically by another Prolog program, given the two databases and

the constraints. There are as many "Possible-resolve" assertions as

there are literal occurrences in the databases and the constraints.

Without the "Possible-resolve" assertions, to find a candidate clause for

resolution, we have to access each input clause, in turn, and traverse its

literals in the search for a match. The "Possible-resolve" assertions

provide a more direct access to matching literals. Although there can be

more "Possible-resolve" assertions than "Member" assertions, the use

of the former has the advantage of doing away with the list processing

involved in traversing the literals of clauses.

Example 6.3:

Suppose the following clause is in set "NEW" and is given name CL1:

P(x) < - Q(x y) and NOT R(x).

Then there is a "Member" assertion:

((Member NEW CL1

((Cone + P x y) (Cond + Q x y)

(Cond-Rx)))).

124

The corresponding "Possible-resolve" assertions for this clause are:

((Possible-resolve NEW CL1 1 (Cond + P)))

((Possible-resolve NEW CL1 2 (Cone + Q)))

((Possible-resolve NEW CL1 3 (Cone - R))). □

Rule (12) in 5.1 can be rewritten as follows, to use the "Possible-

resolve" assertions:

(PI2)

((Inconsistent input-set clause)

(Select-literal (side sign predicate | arguments) clause side)

(Possible-resolve input-set clause-name i (side sign predicate))

(Member input-set clause-name input-clause)

(Resolve-i input-clause i clause (side sign predicate | arguments)

side resolvent)

(Inconsistent input-set resolvent))

For simplicity, throughout this chapter, we ignore the Sigma-Prolog

convention of starting variables with a We keep our earlier

convention of starting variables and function symbols in the lower case,

and constant and predicate symbols in the upper case.

"Resolvent-i", as compared to "Resolvent" in (12), has an extra

argument i which allows fast retrieval of the unifying literal in the input

clause. Note that with our representation of input clauses the "side"

parameters in "Select-literal" and in "Resolvent-i" are now redundant

and can be removed.

125

Inference rules (16) and (17) can also be rewritten to exploit the

"Possible-resolve" assertions.

A simple implementation for "Select-literal" is a strategy that selects

literals in left to right order, delaying the non-ground negative

conditions until they become ground, or more simply delaying all the

negative conditions until after the positive ones have been selected.

Rule (13) for the negation as failure step is implemented using Prolog's

built-in predicate "NOT" for negation as failure, as follows:

(PI3) ((Inconsistent s c)

(Select-literal (Cond - predicate | arguments) c)

(NOT Inconsistent s ((Cond + predicate | arguments)))

(Remove-literal c (Cond - predicate | arguments) c')

(Inconsistent s c’))

Note that in the "Select-literal" and "Remove-literal" conditions of (PI3)

we have left out the "Condition" parameters (which were present in

(13)). These parameters are now redundant as explained above.

The relation "Remove-literal" is defined simply by the following rules:

((Remove-literal (x|y) x y))

((Remove-literal (x|y) z (x|yl))

(Remove-literal y z yl)).

126

The implementation of rules (C1)-(C3) is straightforward and does not

require any significant extensions to what has already been described.

The "Demo" and "NOT Demo" conditions in these mles are replaced by

"Inconsistent" and "NOT Inconsistent" conditions, as was explained in

Section 5.1.

We can add another rule to the definition of the relation "Inconsistent"

to cater for selected literals that are system, that is built-in Prolog,

predicates, as follows:

(PSYS) ((Inconsistent s c)

(Select-literal (Cond + | atom) c)

(SYS atom)

atom).

"SYS" is a built-in Prolog primitive such that

(SYS (predicate | arguments))

succeeds if "predicate" is a Prolog built-in predicate.

This concludes the discussion of that part of the implementation that is

common to both versions of the Consistency method. We next

consider each of the two approaches to the formalisation of the rules for

implicit deletions.

6.2 The First Approach: The Metarule Version

To implement the metarule version, in addition to what has already been

127

described in Section 6.1, we need to implement metarules (MR1),

(MR2) and (MR3) as part of the input set, and to augment the proof

procedure with reflection rules of inference (14) and (15). The

representation of the metarules is straightforward (although somewhat

messy!). (MR1), for example, is represented by the following Sigma-

Prolog term:

((Cone + Deleted NEW OLD (Cone + | atoml))

(Cond - 1 atom)

(Cond + Member NEW clause-name

((Cone + | atoml) | x))

(Cond + On (Cond + | atom) x)

(Cond + Demo OLD (Cone + | atoml))

(Cond - Demo NEW (Cone + | atoml)))

The details of the above term are not important. Note only that the

relation "Member" implements the relation "In", which occurs in the

second condition of (MR1). Note also that whenever we have used the

set DT in (MR1) we use the set NEW, which represents DTuIT, in the

above term. We justified this in detail in Section 6.1.

The metarules must be included as part of the updated input set. We

give them a set label "META", and replace all occurrences of "NEW" in

the implementation of (C1)-(C3) by a new set label "NEWnMETA"

which represents DTuITu{(MRl), (MR2), (MR3)}. We need the

following two rules to describe the set "NEWnMETA":

((Member NEWnMETA x y) (Member NEW x y))

((Member NEWnMETA x y) (Member META x y)).

128

The top level Sigma-Prolog goal for integrity checking is

?((IC-Violated NEWnMETA (transact al dl ml))).

The relation "On” is a Prolog built-in predicate and is dealt with by rule

(PSYS). To deal with the "Demo" and "NOT Demo" conditions of the

metarules we need reflection rules (14) and (15), which are implemented

in the same way as (I1)-(I3).

As mentioned in the last chapter for the sake of efficiency, the metarules

should be used forward only. To implement this restriction we simply

avoid generating any "Possible-resolve" assertions for the conclusions

of the metarules. In fact, as explained in Subsection 5.2.1, the forward

restriction and the choice of top clauses associated with the updates

have the effect that metarules (MR1) and (MR2) are only "entered"

through their first conditions, and it is therefore sufficient to generate

"Possible-resolve" assertions only for these conditions, as well as for

the condition of (MR3).

There are many ways of preventing the deletion of metarules by user

updates. One way is for the database management system to

preprocess the updates and reject those that delete the metarules.

Another way is to maintain the "META" set label of the metarules after

every transaction, and to modify rule (C2) to simply ignore those

updates that attempt to delete the metarules. Such a modification can

take the following form:

129

(C2)'

IC-Violated(DTuITu{(MR 1), (MR2), (MR3)} transact(al dl ml)) * -

In(f<-b dl) and

NOT EQ(f deleted(x y z)) and

NOT EQ(f not(a)) and

Demo(D f) and

NOT Demo(DT f) and

Inconsistent(DTuITu{(MRl), (MR2), (MR3)} not(f)),

where "deleted" is a function symbol naming the predicate symbol

"Deleted", and "EQ" is a built-in predicate in Prolog expressing

identity.

6.3 The Second Approach: The Inference Rule Version

To implement the inference rule version, in addition to what was

described in Section 6.1, we need to implement inference rules (16) and

(17) for implicit deletions. This, however, is straightforward and does

not require any new features from what has already been described in

6.1 and 6.2. This version does not require the reflection rules (14) and

(15). Furthermore, since we do not have the metarules in the database,

it is not necessary to restrict the "Possible-resolve" assertions.

130

6.4 An Alternative Implementation

In this section we propose an alternative and more efficient

implementation for the special case where the database is definite, the

updates are additions only, and the constraints are denials with or

without negative conditions. In such a case there are no implicit

deletions. Thus there is no need for inference rules for implicit

deletions. Moreover, there is no need for the extended resolution step.

The major overhead of the implementation as described earlier in this

chapter is the need for a meta-interpreter. Without the inference rules

for implicit deletions, however, the proof procedure relies entirely on

negation as failure and input resolution. In this form it might be viewed

as a fairly minor extension of Prolog's SLDNF proof procedure that

allows forward as well as backward reasoning. Thus one expects that,

in this special case, it should be possible to implement the Consistency

method proof procedure with efficiencies comparable to Prolog. This

can, in fact, be done by a transformation of the input clauses that

would make a meta-interpreter unnecessary. The transformation

would, in effect, allow us to use Prolog's backward reasoning strategy

to reason forward as well as backward.

In Prolog, because it is solely a backward chaining system, the input

set needs only be searched for a conclusion that unifies with the

selected literal. However, to allow both forward and backward

reasoning the input set has to be searched for matching conditions as

well. Earlier, in 6.1, we showed how this bigger space can be

131

searched reasonably efficiently by an indexing method, implemented by

the "Possible-resolve" assertions. A more effective alternative is to

retain Prolog’s restriction of only resolving on the conclusion literals of

input clauses, and to replace each database clause by as many copies as

there are literal occurrences in the clause, with each literal as the

conclusion of one of the copies. An extra argument can be added to

each literal in these copies to indicate whether it comes from the

conclusion or the conditions of the original clause. A "+" argument

signifies that the literal is on the same side of as in the original

clause; a "-" argument signifies that it has changed side.

Example 6.4:

Database clause

M(x y) <-N(x y) and K(y)

is replaced by

M(+ x y) <- N(+ x y) and K(+ y)

N(- x y) <- M(- x y) and K(+ y)

K(- y) <r- M(- x y) and N(+ x y). □

The transformation of the integrity constraints is slightly different, since

there is no need to generate copies of the constraints for all the literals

that occur in them, but only for the positive literals, as illustrated in the

following example.

132

Example 6.5:

The constraint

<-P(x) and NOT Q(x)

is replaced by the single rule

P(- x) NOT Q(+ x). □

We call each formula resulting from the transformation of a clause C, a

backward rule associated with C.

We must also transform all top clauses into denials. Consider an

update of adding a rule "P(x)<-Q(x)". This update adds the following

two transformed rules:

P(+ x) <- Q(+ x)

Q(- X) <- P(- X).

The transformed top clause associated with this update, however, is the

denial

<-P(- x) and Q(+ x).

An update of adding a constraint ”<-P(x) and Q(x)" adds the following

two transformed rules to the input set:

P(- x) < - Q(+ x)

Q(-x)<-P(+ x).

The transformed top clause associated with it, however, is the denial

<-P(+ x) and Q(+ x).

Let C' be the transformed top clause associated with a clause C. We

call C' the backward denial version of C. Thus "<-P(- A)", for

133

example, is the backward denial version of "P(A)M.

The following example illustrates how these transformations allow us

to simulate forward reasoning by backward reasoning.

Example 6.6:

n

(Rl) R(x y) 4- P(x) and Q(y)

(R2) Q(A)

(R3) Q(B)

(R4) T(A)

I:
(IC) < - NOT T(y) and R(x y)

T: Insert P(A).

D, (IC) and T are transformed to:

D’:

(Rl.l) R(+ x y) < - P(+ x) and Q(+ y)

(R1.2) P(- x) < - R(- x y) and Q(+ y)

(R1.3) Q(-y) < - P(+x) and R(-x y)

(R2.1) Q(+ A)

(R3.1) Q(+ B)

(R4.1) T(+ A)

134

(IC.l) R (-xy)<- NOTT(+ y)

T': Insert P(+ A).

Using "<-P(- A)" as top clause with Prolog’s backward reasoning

strategy, and left to right literal selection strategy (with a safety

condition on the literal selection), we obtain the following search space.

I’:

135

*-P(- A)

(R1.2)

<-Rf- A v) and Q(+ y)

(IC.l)

NOT T(+ y) and Q (+ y)

<-T(+ A) <-T(+ B)
fails fails

which it does not [] which it does

Figure 6.1: A Prolog seach space (via a safe computation rule") for

the transformed version of example 6.6

Using an analogous literal selection strategy but reasoning forward

from T with DTuIT as input set we obtain a search space with a similar

structure, as is shown below.

136

P(A)

(Rl)

-R.(A y) <- Q(y)

(IC)

<-NOT T(y) and_Q(y)

Figure 6.2: A search space for example 6.6 by means of our proof

procedure □

In the above example we insisted on a safe computation rule. However,

not all implementations of Prolog have safe computation rules. With a

minor modification of our transformation scheme we can use the

common Prolog left to right computation rule without a safety

restriction. The modification necessary is simply to put the negative

conditions of the constraints after all the positive ones in the

137

conditions of the constraints after all the positive ones in the

transformed versions. This ensures that when the negative conditions

are selected they are ground. In the rest of this section , when we refer

to Prolog, we assume that either it has a safe computation rule, or that

the constraints are transformed as just explained.

In general, for the case we are considering in this section, backward

reasoning from the transformed version of the updates using the

transformed version of the input set simulates forward reasoning from

the original updates using the original input set. That is, given a search

space in our proof procedure for the original database, constraints and

update, we can construct an isomorphic SLDNF search space for the

transformed database, constraints and update, and vice versa. We prove

this in the following theorem.

Theorem 6.1:

Let S be a set of definite clauses and denials. Let S' be the set of all

backward rules associated with the clauses in S. Let C \ be a clause in

S, and let C i' be the backward denial version of C \.

There is a derivation C \ , C2 ,.., Cn for S by means of our proof

procedure, without rules for implicit deletions and without the extended

resolution step, with top clause C 1 , if and only if there is an SLDNF

derivationC1 ', C2',..., Cn' of S'u{Ci'}, such that each Cj' is the

backward denial version of Q .

138

Proof:

We will only prove the " only if' half of the theorem. The "if half can

be proved by a similar argument.

The "only if' half:

Let C i ,..., Cn be a derivation for S via a safe computation rule R by

means of our proof procedure. We show that there is a safe

computation rule R' such that there is the required derivation

Ci',...,Cn' via R'. This proof is by induction on n:

The base case:

n=l: C i ' is known to be the backward denial version of C \ .

The inductive case:

Suppose Cn_i' is the backward denial version of Cn_i. Cn_i is of the

form

ln, n>0,

such that a is an atom and the l[are literals, and a may be absent. We

use "," to denote the connective "and".

Cn-1' is of the form

l l [+]>•••> lnM> n>0,
where "a[-]" denotes the atom a with a "-" added as its first argument,

and "li[+]" denotes the literal l[with a "+" added as its first argument.

There are three cases:

139

(1) R selects a positive condition lj from Cn_i. Then Cn, if it exists, is

obtained by the resolution on lj of Cn_i and some input clause

r: f<-bi,..., bm, m>0,

with mgu (|). Thus Cn is

[(a)̂ - li,..., lj_i, lj+i,..., ln> bi,..., bm]cf>.

In this case let R’ select from Cn>i' the positive condition lj[+], and

obtain Cn' by the resolution on lj[+] of Cn_i' and the backward rule

associated with r which is of the form

f[+]*~bi bm[+],

where "f[+]" and the ”bi[+]" are f and the bi, respectively, with a "+"

added as their first argument. The mgu of this resolution step is (j), and

Cn is
[“̂ (a[-]), l i l j - l [+] j lj+1 [+]>•••» lnM>

bi[+],.--> bmM]<!>>
which is the backward denial version of Cn.

(2) R selects the conclusion a of Cn_i (if a is present). Then Cn, if it

exists, is obtained by the resolution on a of Cn_i and some condition k[

of an input clause

s: (h)«-ki, ..., kp

with mgu a. (If s is a constraint then h is absent, and the kj are literals.

If s is a database rule then h is present and the kj are atoms.) Thus Cn

is

[(h)< 11, ..., ln, ki, ..., ki_i, ki+i, ..., kp]g.

Let R' select the condition a[-] of Cn_i', and obtain Cn' by the

140

resolution on a[-] of Cn_i' and the backward rule associated with s

which is of the form

kiH ^ (h[-]),k i[+], ki_i[+], ki+i [+], kp[+].

Cn' is then

[<-(h[-]), li[+], ln[+L ki[+], ki_i[+],ki+i[+], ..., kp[+]]a,
which is the backward denial version of Cn.

(3) R selects a negative condition 1̂ of Cn_i. Suppose this condition is

"NOTP(t*)M, where t* is a vector of ground terms. Then Cn, if it

exists, is Cn_i with this condition removed.

Let R' select the negative condition lk[+] from Cn_i'. lk[+] is the literal

"NOT P(+ t*)".

To prove that Cn' is the backward denial version of Cn, it is sufficient

to prove that if there is a finitely failed search space for S u{<-P(t*)}

by means of our proof procedure with "<-P(t*)" as top clause, then

there is an SLDNF finitely failed search space for S’u{<-P(+ t*)}. We

show this below:

Let F be a finitely failed search space for Su{<-P(t*)} by means of our

proof procedure with "<-P(t*)M as top clause. Our proof procedure is

identical to SLDNF when the top clause is a denial. So F is an SLDNF

finitely failed search space for Su{<-P(t*)}. Since F is an SLDNF

search space, only the definite clauses in S could have contributed to it.

So F is an SLDNF finitely failed search space for D u{<-P(t*)}, where

D is the set of all definite clauses in S. Now let F' be F with a "+"

added as first argument to every relation that occurs in F. F' is an

141

SLDNF finitely failed search space for D"u{<-P(+ t*)}, where D" is

the set of all definite clauses in D with a "+" added as first argument of

every literal that occurs in them. Thus D" is a subset of S'. Now F is

also an SLDNF finitely failed search space for

S 'u{<-P(+ t*)}. This is because a positive condition of a denial which

has a "+" as first argument can only be resolved with a rule in D", and

the resolution can only introduce more positive conditions with a "+" as

their first arguments. □

Prolog is a special case of SLDNF. Thus any Prolog search space is

also an SLDNF search space. Therefore by Theorem 6.1, given a

Prolog search space for the transformed version of the update and the

transformed version of the input set, there is an analogous search space

in our proof procedure with the original update and input set. This

shows the correctness of the Prolog simulation of our integrity

checking method for definite databases, and in the absence of (explicit

and implicit) deletions.

This simulation, however, is not complete, in the sense that there might

be a search space in our proof procedure which cannot be simulated by

Prolog. This is because of Prolog’s left to right literal selection rule, as

illustrated in the following simple example.

142

Example 6.7:

D: R(x) <- R(x)

I:
(IC) <“ P(x) and R(x) and Q(x)

T: Insert P(A).

The following is a finitely failed search space in our proof procedure

for this example.

P(A)

<-R(A) and O (A)

Figure 6.3: A search space for example 6.7 by means of our proof

procedure

The analogous finitely failed SLDNF search space is as follows.

<-P(- A)

transformed version of (IC)

<-R(+ A) and Of+ A)

Figure 6.4: An SLDNF finitely failed search space for the

transformed version of example 6.7

143

The Prolog search space is infinite, however:

<-P(- A)

<—Rf+ A) and Q(+ A)

<r-R (+ A) and Q(+ A)

Figure 6.5: A Prolog search space for the transformed version of

example 6.7 □

144

CHAPTER 7

RELATED WORK

There is a substantial body of literature concerning integrity constraints

in databases. Some of this work focuses on relational databases only,

but in recent years a number of new papers have emerged addressing

the problem of constraints in deductive databases, and even more

generally in clausal databases, that is in databases that contain non-

Horn clauses with disjunctive conclusions.

In relational databases the dominant approach has been to devise special

purpose procedures to deal with specific kinds of integrity constraints

and updates (see Ullman [1983], for example). One paper, however,

proposes a general method for checking integrity of relational

databases. This is the influential paper of Nicolas [1982]. He chooses a

logical view of the database and of constraint satisfaction, and allows

any closed domain independent formula of first order predicate logic as

integrity constraint. Moreover, he proposes a simplification method

which exploits the assumption that the constraints are satisfied in the

database prior to the transaction. Given a transaction T, and a set I of

integrity constraints, Nicolas uses the updates in T to construct from I a

simplified set of constraints I', according to certain syntactic criteria,

such that to check the satisfaction of I it is sufficient to check the

satisfaction of I'. The formulae in I' are typically simpler and further

instantiated than those in I, and therefore it involves less work to check

the satisfaction of I' than I.

145

Most of the general integrity checking algorithms for deductive

databases are extensions of Nicolas' algorithm. The earliest such

algorithms are Lloyd, Topor, et al's (Lloyd, et al [1986], Lloyd and

Topor [1985], Topor, et al [1985]), and Decker's (Decker [1986]). Our

Consistency method is also an extension of Nicolas' algorithm. Other

descendants of Nicolas' work, proposed after the Consistency method

are the algorithms of Martens and Bruynooghe [1987], and Bry,

Decker and Manthey [1987].

The features required for our method, such as rules for deriving implicit

deletions, can be incorporated in proof procedures which are not input

procedures. The choice of an input proof procedure, however,

facilitates the comparison of our method with other algorithms for

integrity checking. It is possible to obtain different algorithms from our

method by adopting different strategies for literal selection and for

searching the resulting search space. Two such strategies allow us to

approximate these other four simplification algorithms for deductive

databases.

There are other methods for integrity checking in deductive and non-

Horn clausal databases that are not descendants of Nicolas' algorithm.

Reiter [1988], for example, proposes a modal approach to describing

and checking integrity constraints. In an earlier paper, Reiter [1981]

presents an algorithm for checking type constraints in non-Horn clausal

databases. Finally, Asirelli, et al [1985] also propose an integrity

checking algorithm for deductive databases. Henschen, McCune and

Naqvi [1984] present an interesting method for preprocessing update

146

schemas and integrity constraints to generate tests that are carried out

when actual updates are requested. Their method caters for relational

databases only. However, as it combines theorem-proving techniques

and a simplification method for integrity checking, it merits a review in

this chapter.

We describe these latter methods in more detail in Section 7.3. Before

that we compare our method with the algorithms of Lloyd, Topor, et al

and Decker in Section 7.1, and with the algorithms of Martens and

Bruynooghe and Bry, et al in Section 7.2.

Note:

Lloyd and Topor [1985] first described a simplification algorithm for

checking integrity constraints in definite databases. They and their

collaborators (Topor, Keddis and Wright [1985], and Lloyd,

Sonenberg and Topor [1986]) then extended this algorithm to deductive

databases. For simplicity, in the sequel, we call this more general

algorithm the LT algorithm. The LT algorithm and all its related results

also appear in Lloyd [1987].

7.1 Comparison Of The Consistency Method With

Decker's And The LT Algorithms

Both the LT and Decker algorithms cater for first order formulae of

predicate logic as integrity constraints. To avoid floundering they

impose restrictions identical to ours on variable occurrences in database

147

rules and integrity constraints. Both algorithms are based on the

theoremhood view of constraint satisfaction. Another common feature

of the two algorithms is that they each consist of three, possibly

interleaved stages. The first stage reasons forward from the updates to

compute the facts that are (potentially, in the LT case) added or deleted

as a result of the transaction. The second stage uses these facts to

simplify the constraints. Finally, the third stage evaluates the simplified

constraints. Lloyd, Topor, et al and Decker use special purpose

procedures for the first two stages, and SLDNF or a similar proof

procedure for the third.

There are no completeness or correctness results available for Decker's

algorithm. Lloyd, Sonenberg and Topor [1986], however, have proved

the LT algorithm sound for stratified databases . On the whole, their

soundness result is more general than our correctness and completeness

results which we prove in Chapter 8. We give their result in more

detail after the description of their algorithm in Subsection 7.1.2.

7.1.1 Decker’s Algorithm

Decker caters for function free range-restricted deductive databases, and

function free range-restricted first order formulae as integrity

constraints. The function free restriction does not appear to be

necessary for correctness (although there are no correctness results

available for Decker's algorithm). The restriction seems to be imposed

for simplicity. If function symbols are present then the database might

need to include an equality theory. Also the presence of function

symbols in conjunction with recursion could cause infinite

148

computations. The Consistency method would also suffer similar

disadvantages in the presence of function symbols. However, the

method is correct in general, even with function symbols, as will be

proved in the next chapter.

Decker's transactions consist of additions and deletions of facts and

non-atomic rules. His algorithm has been implemented in Prolog.

We illustrate his algorithm and compare it with ours and the LT

algorithm by the following example, chosen to illustrate the differences

between the three approaches.

Example 7.1:

D
(1) K(x) < - P(x) and L(x)

(2) R(x y) <- P(x) and Q(y)

(3) M(A) <r- NOT V(A)

(4) H(x) <-K(x)

(5) N(x) < - T(x)

(6) E(x) G(x)

(7) S(x) E(x)

(8) Q(B)

(9) Q(C)

(10) J(A)

(11) T(A)

149

I:
(IC1)
(IC2)

W(x) <- S(x)

<-H(x) and J(x)

T: { insert P(A)

insert V(A)

insert G(A)

delete T(A) }

In general, to check if DT satisfies the constraints, Decker considers

each update in T in turn. For each update he incrementally computes the

facts added and deleted as a result of the update, simplifies the

constraints according to syntactic criteria similar to Nicolas, and

evaluates the simplified constraints. As soon as a violation of integrity

is detected the algorithm terminates. According to Decker [1986], if the

processing of the updates finishes and no violation is detected then the

transaction does not violate the constraints (Decker does not, however,

give a proof of this). If the database contains no recursion before and

after the transaction, then the algorithm will always terminate. The

added and deleted facts are computed in a specific order. To facilitate

their computation, Decker keeps track of the dependencies in the

database, in a way similar to our use of the "Possible-resolve"

assertions described in Chapter 6. For each database rule

Head<-Conds,

Decker maintains a set of facts of the form

Occurs-negative(l Head<-Conds)

for all negative conditions 1 of the rule, and a set of facts of the form

Occurs-positive(k Head<-Conds)

150

for all the positive conditions k.

Furthermore, he precompiles the integrity constraints into "update

constraints" which are then used at the constraint simplification stage of

the algorithm. (IC1), for example, is precompiled into the following:

insert S(x) only-if W(x)

delete W(x) only-if NOT S(x).

The effect of using the precompiled constraints in Decker's algorithm

can be simulated by rewriting the constraints as denials, in the way we

do in our method, and using resolution, as will be shown shortly.

Decker gives an English description of his algorithm which is lengthy

and difficult to summarise here. We, therefore, do not give a precise

characterisation of his algorithm in the general case, and only describe it

in the context of example 7.1.

Assuming that the updates are considered in the order they are written,

Decker first considers the insertion of "P(A)". This does not match any

of the constraints. Decker, then, considers each of the facts added by

the insertion of "P(A)", in turn. These facts are "R(A B)" and

"R(A C)", and neither of them match any of the constraints, and no

facts are deleted as a result of their insertion, or as a result of the

insertion of "P(A)M. So Decker moves to the next update, the insertion

of "V(A)M. This does not match the constraints. It results in the

(implicit) deletion of "M(A)", because of rule (3), but this deletion does

not match the constraints, either. The third update, the addition of

"G(A)", does not match the constraints. It results in the addition of

"E(A)", which, in turn, results in the addition of "S(A)". Each is

151

considered in turn. The fact "S(A)" matches the condition of the first

constraint. The simplified constraint "W(A)" is then evaluated by

attempting to prove that it is a theorem of the completion of the updated

database. The attempt fails finitely, showing a violation of the

constraint. The fourth update is not considered at all. (The fact that

"W(A)M is not a theorem follows from the correctness of SLDNF

(Clark [1978]) and the consistency of Comp(DT): the SLDNF search

space for DTu{<-W(A)} fails finitely. Therefore by correctness of

SLDNF "NOT W(A)" is a theorem of Comp(DT), where "NOT" is

interpreted as classical negation. DT is stratified, and therefore

Comp(DT) is consistent. So "W(A)" cannot be a theorem of

Comp(DT).)

We can simulate Decker's algorithm, in general, by using our proof

procedure, with the updates as top clauses, and employing the literal

selection strategy that always selects a condition of a clause in

preference to the conclusion, if there is one. Depth first search of the

resulting search spaces then corresponds to Decker's interleaving of the

three stages of his algorithm. Adopting these strategies in example 7.1,

we obtain the following three search spaces, each with one of the

updates as top clauses.

152

1 P(A)

Figure 7.1: A search space for example 7.1 simulating Decker's

algorithm

4 V(A)

(3) inference rule (17)

5 NOT M(A)

Figure 7.2: A search space for example 7.1 simulating Decker’s

algorithm

153

(6)
7E(A)

(7)
8S(A)

(IC1) rewritten:

<-S(x) and NOTW(x)

9<-NOTW(A)

6 G(A)

I succeeds

ltf
10 <-W(A)

fails

11 [] which it does

Figure 7.3: A search space for example 7.1 simulating Decker’s

algorithm

The strategy that searches these search spaces in the order indicated by

the numbers at the clauses simulates Decker’s algorithm almost exactly.

Where two clauses have the same number the order in which they are

investigated does not matter.

The computations involved in figure 7.1 correspond to Decker's

evaluation of the facts added as a result of the first update. The

computations in figure 7.2 correspond to Decker's evaluation of the fact

deleted as a result of the second update, and the computations in figure

7.3 correspond to his evaluation of the facts added as a result of the

154

third update, and the simplification and evaluation of (IC1).

The main difference between Decker's algorithm and our approximation

of it, in general, is that he checks if a fact derivable as a consequence of

an update is provable in the database prior to the transaction, and

reasons forward from the fact only if it is not. We reason forward from

all facts that are consequences of the updates. In the symmetric case of

facts not derivable from the updated database, however, we, similar to

Decker, ensure that the facts are indeed provable before but not after the

transaction, before we treat them as deletions.

We can simulate Decker's algorithm exactly by modifying inference

rules (12) and (13), and the database management rule (Cl), so that we

reason forward from facts derivable from the updated database only if

they are not derivable from the old database. (Cl), for example, can be

replaced by the following two rules:

IC-Violated(DTuIT transact(al dl ml)) < -

In(c al) and

Fact(c) and

NOT Demo(D c) and

Inconsistent(DTuIT c)

IC-Violated(DTuIT transact(al dl ml)) «-

In(c al) and
NOT Fact(c) and

Inconsistent(DTuIT c),

155

where "fact(c)" expresses that c is a fact. (12) and (13) can be modified

in a similar way. This "redundancy check" can sometimes result in

better efficiency, and sometimes in worse, depending on the example.

7.1.2 The LT Algorithm

The LT Algorithm is similar to Decker's. The main difference is that to

find appropriate instantiations for the integrity constraints, Lloyd,

Topor, et al only process the non-atomic rules in the database, and not

the facts. Avoiding access to database facts in the first stage of the

algorithm can have advantages in organising storage (Lloyd and Topor

[1985]) in order to minimise access to secondary storage. As far as

overall efficiency is concerned, however, it can be advantageous or

disadvantageous depending on individual cases.

Another, less important difference between the LT algorithm and

Decker's, is that the former does not do either of the redundancy checks

mentioned at the end of the last subsection. Similar to Decker’s, the LT

algorithm caters for updates that add or delete deductive rules.

The LT algorithm has been implemented in Prolog by students of the

University of Melbourne.

Below, we present a brief description of the LT algorithm in the general

case , and illustrate its application to example 7.1. Our description of

the algorithm is close to that given in Lloyd, Sonenberg and Topor

[1986] and in Lloyd [1987]. The only difference is that they describe

156

the first two stages of their algorithm for closed first order formulae as

constraints, and databases that consist of rules of the form

A<-W,

where W is a first order formula. We present a slightly simplified

description of their algorithm for deductive databases, and constraints

written as non-Horn clauses.

Let D and DT be databases and T a transaction whose application to D

produces DT. Suppose that the application of the deletions in T

produces the intermediate database D". Thus D" is a subset of both D

and DT.

The first stage of the LT algorithm is the computation of four sets,

p ° s D" negjy pp P0SD" DT anc* ne§D" DT* InformaUy> the second
and the third sets are the sets of facts that are potentially added to the

database as a result of the transaction, and the first and the fourth are

the sets of facts that are potentially deleted.

These sets are computed as follows. Let E and E' be two databases

such that E is a subset of E'. Then the sets pos^ g. and negg £. are

defined as follows: (for convenience, we drop the subscripts E,E' in

the following.)

P°s=un>0 Posn
neg=un>0 negn, where

posO={a: a<—c o n d s is in E'-E}

neg°={ }

157

pOSn+l =

{ a(|): a<- conds is in E, and 1 is a positive condition in

conds, and 1' is in posn, and cj) is the mgu of 1 and l'}u

{ a(J): a.<- conds is in E, and 1 is a negative condition in
conds, and Y is in negn, and $ is the mgu of 1 and 1'}

negn+l=

{ a(J>: a<-conds is in E, and 1 is a positive condition in

conds, and 1' is in negn, and $ is the mgu of 1 and l'}u

{ a(j): a*- conds is in E, and 1 is a negative condition in

conds, and 1' is in posn, and § is the mgu of 1 and 1'}

Thus in example 7.1:

PosD",D = {^(A), N(A)}

ne^ D " ,D = n

posD" DT={p(A)> V(A)> G(A), E(A), S(A), K(A), R(A y), H(A)}

ne^D",DT ={M(A)}.

If the database contains no recursion, then the computation of the pos

and neg sets will terminate. In general, however, the computation may

be infinite. Lloyd and Topor [1985] and Lloyd, Sonenberg and Topor

[1986] propose certain stopping criteria that can sometimes ensure the

termination of this computation.

The next stage of the algorithm is the instantiation of the integrity

constraints. Suppose the clause

B i or ... or Bm <- A i and ... and An, m,n >0,

158

is an integrity constraint. Then it is sufficient to evaluate this constraint

for all instantiations § such that

there is an atom 1 in pos^y. and <j) is the mgu of 1 and

some Ai, or

there is an atom 1 in neg jy jyp and (j) is the mgu of 1 and

some B i, or

there is an atom 1 in pos^y. ^ and $ is the mgu of 1 and some B j,

or

there is an atom 1 in negjy. £> and (j) is the mgu of 1 and some Aj.

Thus in example 7.1 the following instances of the constraints have to

be evaluated:

(IC1)* W(A)<—S(A)

(IC2)* <-H(A) and J(A).

The last stage of the algorithm consists of the evaluation of the

constraints by SLDNF. We will just show the evaluation of (IC1)*. It

will illustrate a feature of the LT algorithm which we will discuss later.

To evalute (IC1)* we introduce a new relation "Constraint-satisfied",

with the definition

Constraint-satisfied <- [NOT S(A) or W(A)],

which can be converted into two deductive rules

Constraint-satisfied <- NOT S(A)

Constraint-satisfied <- W(A).

Now we use the SLDNF proof procedure with

Constraint-satisfied" as top clause. We obtain the following search

space, which shows that the constraint is not satisfied. (The fact that the

159

finitely failed search space shows the violation of the constraint follows

by a similar argument to that presented in the paragraph immediately

following Figure 4.2 in Chapter 4, where we argued that Figure 4.2

showed that the constraint was not a theorem of the completion of the

updated database.)

<- Constraint-satisfied

<yS(A)

. fails

<-E(A)

 ̂ fails

* if
I

<“ G(A)

fails

which it does not

Figure 7.4: An SLDNF search space for example 7.1 showing that

flCl) is not a theorem of the completion of the updated database

One of the inefficiencies of the LT algorithm is that some of the

information obtained during the computation of the pos and neg sets

may be thrown away and have to be recomputed when evaluating the

instantiated constraints. This redundancy is avoided in our simulation

of their algorithm.

160

The LT algorithm has been proved correct for stratified deductive

databases (Lloyd, Sonenberg and Topor [1986]). They define the

correctness of their method roughly as follows. Let (IC) be a constraint

satisfied in database D, and let DT be the updated database. Let (IC) be

the set of all the instantiated constraints resulting from (IC) after the

processing of the transaction. Then DT satisfies (IC) if and only if DT

satisfies (IC). They further conclude (easily by the consistency of the

completions of stratified databases, and SLDNF results) that: (i) if there

is an SLDNF proof of the theoremhood of all the constraints in (IC),

then DT satisfies (IC), and (ii) if SLDNF fails finitely to prove the

theoremhood of some constraint in (IC), then DT violates (IC).

We can approximate the LT algorithm by using our proof procedure

with a literal selection strategy that selects conclusions in preference to

conditions. Adopting this strategy we obtain the following four search

spaces.

161

1 P(A)

4 JCAI and LCAI

(10)

5 <-L(A)

Figure 7.5: A search space for example 7.1 simulating the LT

algorithm

1 V(A)

(3) inference rule (17)

2 NOT M(A)

provided Demo(D M(A)) and

NOT Demo(DT M(A))

Figure 7.6: A search space for example 7.1 simulating the LT

algorithm

162

1 G(A)

(6)

2 E(A)

(7)
3 S(A)

(IC1) rewritten

4 <-NOT W(A)

■ succeeds

I if
5 <-W(A)

fails

6 [] which it does

Figure 7.7: A search space for example 7.1 simulating the LT

algorithm

1 NOT T(A)

(5) inference rule (16)

2 NOT N(A)

provided Demo(D N(A)) and

NOT Demo(DT N(A))

Figure 7.8: A search space for example 7.1 simulating the LT

algorithm

The search startegy indicated by the numbers at the clauses allows us to

163

approximate the LT algorithm. As before, where two clauses have the

same number the order in which they are investigated does not matter.

The database rules considered and the mgu's computed at clauses

numbered 1, 2 and 3 in figures 7.5 and 7.7 correspond exactly to those

needed for constructing the sets posjy. and negjy The

computations involved in figures 7.6 and 7.8 correspond exactly to

those needed for constructing the sets posjy. ^ and negjy. jyp The

computations involved in the rest of the derivations in figures 7.5 and

7.7 correspond to the instantiation and evaluation of the integrity

constraints in the LT algorithm. Notice that in figure 7.7, the work

involved from the clause numbered 5 down to the clause numbered 6

corresponds to the right branch of figure 7.4. The left branch of 7.4

duplicates some of the work done in the construction of the set

P0SD" DT *n This inefficiency is avoided in our
approach and Decker's, and also in our approximation of the LT

algorithm.

This is probably the main difference between the LT algorithm and our

simulation of it. Another difference, in general, is the redundancy check

that we, like Decker, perform for deleted facts. To avoid this check, our

rules for implicit deletions would become quite complex. Consider, for

example, rules (16) and (17) for implicit deletions described in Chapter

5. The "Demo(D f)" condition in those rules serves two purposes. It

checks if "f' is provable in D. Its evaluation also results in instantiating

"f", so that the next "NOT Demo" condition becomes ground. If the

"Demo" condition were to be removed then some other means of

instantiating "f" should be added, and it is this that makes the

164

modification complicated.

Notice that the "Demo" and "NOT Demo" conditions in the derivations

in figures 7.6 and 7.8 are not strictly part of the object level derivation.

They are metalevel conditions coming from applications of inference

rules (16) and (17). To simulate the LT algorithm the selection of these

two conditions has been deferred. As an alternative, these metalevel

conditions can be amalgamated into the object level, and can be

activated by the object level selection rule. This effect can be obtained

by replacing (17), for example, by the following:

Inconsistent(DTuIT p<-c) <—

Select-literal(p p<-c Conclusion) and

In(f<-b DT) and

On(not(p) b) and

Inconsistent(DTuIT not(f)<-(c and demo(D f) a n d

not(demo(DT f)))).

Here "demo" is a prefix function symbol naming the relation "Demo",

and "and" is an infix function symbol naming the connective "and".

An extra level of reflection rules is needed to execute the "demo" and

"not demo" conditions when they are selected. Similar modifications

can be made to inference rule (16).

Our simulation of the algorithms of Decker and Lloyd, Topor, et al

provides a good basis for comparing them with one another. In

example 7.1, figures 7.1-7.3 simulate Decker's algorithm, and figures

7.5-7.8 simulate the LT algorithm. Figures 7.3 and 7.7, where the

165

update ”G(A)" is top clause, are identical. Now consider figures 7.1

and 7.5, where "P(A)" is top clause. The left derivation of 7.1 involves

less work than the left derivation of 7.5. The right derivation of 7.1,

however, involves more work than the right derivation of 7.5. Figures

7.2 and 7.6 both have "V(A)" as top clause. The work involved in 7.2,

simulating Decker, is greater than the work involved in 7.5, simulating

LT, because Decker, in effect evaluates the "Demo" and "NOT Demo"

conditions, but the LT algorithm does not. Finally, Decker does not

need to consider the last update, that is the deletion of "T(A)", as top

clause, but the LT algorithm reasons forward from this update as well,

as illustrated in figure 7.8. In general, Decker’s algorithm is more

efficient than the LT algorithm in some cases, and vice versa in others.

We believe that it is an advantage of our method that it is not confined

to any built-in strategies, and that we can dynamically employ suitable

selection and search strategies to obtain the best performance.

We have chosen to embed our method for checking integrity within an

input resolution proof procedure in order to facilitate comparison with

the other integrity checking algorithms. As a consequence, our proof

procedure inherits the inefficiencies of input proof procedures, which

are documented in Kowalski [1975], for example. One such

inefficiency is illustrated by the following example.

166

Example 7.2:

D:

(1) N(x) <- P(x)

(2) R(x y) <- P(x) and Q(y)

(3) Q(B)

(4) M(A)

I:
(IC) <-N(x) and R(x y) and M(y)

T:

Insert P(A).

Using our method, with the literal selection strategy that simulates the

LT algorithm, we can obtain the following search space showing that

the updated database satisfies the constraints. (Our method is complete

for this example, as will be shown in the next chapter.) We use to

denote the connective "and".

167

P(A)

N(A)

(IC)

<-RfAv). M(y)

(2)

R(A v)<-Q(y)

(IC)

<-N(A). Q(y), M(y)

(1)

^E(Ai, Q(y), M(y)

(update)

M(y)

(3)

<-M(B)

Q(y), M(y)
(update)

<-QC>4, M(y)

(3)

<-M(B)

Figure 7.9: A Search Space For Example 7.2 Showing An

Inefficiency Of Our Proof Procedure

Notice the duplication of work on the last three clauses of the two

derivations. This inefficiency is avoided in the LT algorithm, because

of their use of sets, and their method of simplifying constraints only by

instantiation. We can also avoid this and other inefficiencies by

employing better theorem-proving techniques, such as the connection

graph proof procedure (Kowalski [1975]), in our method. □

168

7.2 Comparison Of The Consistency Method With The

Algorithms Of Martens And Bruynooghe, And Bry et al

We have already discussed the relationship between the Consistency

method and the algorithms of Decker and Lloyd, Topor, et al. Thus to

compare our method with the algorithms of Martens and Bruynooghe,

and Bry et al, it is sufficient to compare these last two algorithms with

the Decker and LT algorithms.

7.2.1 The Algorithm Of Martens And Bruynooghe

Martens and Bruynooghe [1987] cater for first order formulae as

constraints, and function free, range-restricted stratified deductive

databases. They impose the function free condition to reduce the

possibility of infinite computations. Similar to our method, they adopt

the consistency view of constraint satisfaction.

Their method combines an extension of Nicolas' simplification

algorithm (Nicolas [1982]), and a modification of Ullman's rule/goal

graphs and capture rules for query evaluation (Ullman [1985]). The

resulting algorithm is almost identical to Decker's. It involves the same

three stages of computation, and exactly the same interleaving of the

three stages. It also includes redundancy checks for both added and

deleted facts, exactly as in Decker's algorithm. In fact, Martens and

Bruynooghe's algorithm can be viewed as a different implementation of

Decker’s algorithm, where Decker's "Occurs-positive" and "Occurs-

negative" facts, and update constraints are described graphically in the

169

»

modified rule/goal graph of Ullman's.

There are no correctness or completeness results available for the

algorithm of Martens and Bruynooghe. The algorithm has not been

implemented yet.

7.2.2 The Algorithm Of Bry et al

Bry, Decker and Manthey [1987] cater for function free, range-

restricted deductive databases. Their constraints are function free,

closed first order formulae that satisfy the restricted quantification

condition described in Section 2.2 of this thesis. They only consider

updates that add or delete a single ground fact. More general updates

are treated by Bry [1987].

Their algorithm, in effect, combines features from both the LT and

Decker algorithms. Like these two algorithms, the algorithm of Bry, et

al consists of three stages. The first stage is identical to LT’s: they

compute all the facts that are potentially added or deleted as a result of

the update. In this stage they only use the update and the non-atomic

rules in the database. The second stage is the simplification of the

constraints. At this stage they generate "update constraints" which

incorporate Decker’s redundancy checks for added and deleted facts.

The third stage consists of the evaluation of the "update constraints".

The algorithm has been implemented in Prolog. The following simple

example helps illustrate the relationship between the three algorithms.

170

Example 7.3:

Suppose D contains the following rule:

R(x y) <- P(x) and Q(y).

Let the following be a constraint on D:

(IC) S(x y) < - R(x y),

and suppose the update is the addition of "P(A)".

To check if DT satisfies (IC),

Decker will proceed as follows:

stage 1: All instantiations ([) are computed such that

"Demo(DT [R(A y)](]))” and "NOT Demo(D [R(A y)](j))" are true,

stage 2: (IC) is simplified to the form [S(A y)](j) for each <j) computed,

stage 3: All simplified constraints are evaluated.

Lloyd, Topor, et al will proceed as follows:

stage 1: "R(A y)" is computed as a potential addition,

stage 2: (IC) is simplified to "S(A y)<-R(A y)".

stage 3: The simplified constraint is evaluated.

Bry, et al will proceed as follows:

stage 1: As Lloyd, Topor et al.

171

stage 2: The following "update constraint" is generated

S(A y) <- Demo(DT R(A y)) and NOT Demo(D R(A y)).

stage 3: The "update constraint" is evaluated. □

Thus the main differnce between Bry, et al's and Lloyd, et al's

algorithms is the redundancy check that the former does but the latter

does not. The main differences between Bry, et al's and Decker's

algorithms are firstly that the former does not access the database facts

in stage 1, but the latter does, and secondly that the former does the

redundancy check in stage 3, but the latter does the check in stage 1.

Bry, et al's algorithm shares with the LT algorithm the disadvantage of

duplicating in stage 3 some of the work already done in stage 1.

We can approximate Bry, et al's algorithm by our proof procedure with

the same literal selection and search strategies that approximate the LT

algorithm, while employing the modified versions of inference rules

(12) and (13), and the modified version of the database management rule

(Cl), to perform redundancy checks for added facts, as was described

in Subsection 7.1.1.

Bry, et al [1987] present a sketch of a proof of the soundness of their

method in the case where each transaction consists of the addition or the

deletion of a single ground fact. In this case soundness of their method

is defined as follows. Let I be a set of constraints on a database D. Let

u be an update on D, and let I' be the set of the "update constraints" that

result from the processing of u. Then I is satisfied in the updated

database DT if and only if I is satisfied in D and I' is satisfied in DT.

172

7.3 Other Integrity Checking Approaches For Deductive

Databases

In this section we present a brief review of the major integrity checking

methods that are not descendants of Nicolas' method.

7.3.1 Reiter’s Modal Approach

Reiter [1988] concentrates on theoretical rather than practical aspects of

integrity constraints. He argues that constraints are statements about the

database, not about the world that is modelled by the database. To

formalise this notion he uses a first order modal language called

KFOPCE, which is due to Levesque [1981]. This is a function free

language with equality, with a single modal operator K, that stands for

"knows". The database is assumed to consist of function free first order

formulae. As an example of the use of KFOPCE consider the

constraint, "every employee known to the database must have a known

social security number". This is formalised as follows:

Vx K[Emp(x)] -> 3y K[Ss(x y)].

If, on the other hand, it is only required that every known employee

must be known to have a social security number, without the actual

number necessarily being known, we will have the following

constraint:

Vx K[Emp(x)] -> K[3y Ss(x y)].

A similar notion of constraints has been presented by Eshghi and

Kowalski [1988] who use first order predicate logic and the metalevel

173

provability relation "Demo" instead of the modal operator "K". In their

paper, Eshghi and Kowalski discuss the relationship between their

treatment of constraints and ours. Noel [1988] and Small [1988] have

also proposed similar approaches to formalising constraints.

In Reiter's approach, a database D satisfies an integrity constraint if the

constraint is true in D in the KFOPCE language. To check constraints,

Reiter appeals to Levesque's query evaluation in KFOPCE.

Reiter's integrity checking method does not incorporate any

simplification, that is it does not exploit the assumption that the

database satisfies the constraints prior to the update.

7.3.2 Reiter's Type Checking

In an earlier paper (Reiter [1981]) Reiter proposes a method for

checking type constraints in clausal typed databases. In this paper,

Reiter remains within first order predicate logic. He considers type

constraints of the form

R(xi ... xn) -> Typei(xi) and ... and Typen(xn)

for every relation R in the database. For example:

Father(x y) -> Human(x) and Human(y) and Male(x).

In addition to the database and the constraints, there is a type database

that contains information about the types of the constants in the

language, and information about relationships between types, for

example

174

<-Male(x) and Female(x).

Given an update, Reiter uses the type database and constraints, and

certain syntactic criteria to transform it into a "reduced type normal

form", and then decides whether to accept or reject it according to

certain guidelines. It is unnecessary to consider the details here. We

only present a simple example.

Example 7.4:

(This is a simplified version of an example given in Reiter [1981].)

Consider the update

(x/Human)(x/Male) [Sister(x) <- Brother(x)],

which states that for all x which is human and male, if x is a brother

then x is a sister. Assume the intuitive argument types for "Brother"

and "Sister", namely

(IC1) Brother(x) -> Human(x) and Male(x)

(IC2) Sister(x) -» Human(x) and Female(x).

Then the update is transformed into the following:

(ul) (x/Human)(x/Male)(x/Female) [Sister(x)<-Brother(x)]

(u2) (x/Human)(x/Male)(NOT x/Female) [<-Brother(x)].

Very roughly, the idea is that the transformed version of the update

represents all the different typings that the update implies. (u2) states

that for all x which is of type human and male and which is not of type

female, x is not a brother.

175

Now if we assume that no-one can be both male and female, then (ul)

has inconsistent typing. Furthermore, the predicate "Sister" does not

occur in (u2). In this case Reiter rejects the update.

The intuition behind the rejection of (u2) is not clear. Reiter reasons that

in this case the predicate "Sister" is irrelevant to the original update, and

he interprets this as an integrity violation. At best, he argues, there is

something questionable about the update. □

In general an update u is rejected if and only if it is inconsistent with the

type database (TD) and the type constraints (TC), or if there is a literal 1

in u which does not occur in any of the formulae of the reduced type

normal form of u with consistent typing, or if together with TD and

TC, u implies a new type relationship which is not inconsistent with,

nor a theorem of TDuTC, and the user rejects the new type

relationship.

It might be of interest to explore the relationship between Reiter's

method and a resolution based one. For instance, the following is a

derivation in our proof procedure for the above example, with the

update as top clause. The input set consists of (IC1), (IC2), the update

and the denial

(TD 1) <-Male(x) and Female(x).

176

Sisterf xK-Brotherfxl

one half of (IC2)

FemalefxK- B rother(x)

(TD1)

<-Brother(x) and Malefxl
one half of (IC1)

<-Brother(x) and Brother(x)

Figure 7.10: A derivation for example 7.4 in our proof procedure

The derivation shows that the update is subsumed by a consequence of

it together with the type database and constraints. Notice that in this

derivation we have adopted a literal selection strategy that prefers

conclusions and type literals to others. We conjecture that such a

strategy allows us to simulate Reiter's type checking algorithm, in

general.

7.3.3 The Asirelli et al Approach

Another integrity checking method proposed is the algorithm of

Asirelli, De santis and Martelli [1985]. They consider definite databases

only, with restricted forms of integrity constraints. They argue

(unconvincingly) that integrity constraints are really the "only if'

version of the rules in the database. It is not clear from their paper

exactly what class of formulae they allow as constraints.

To check integrity they propose the use of the SLD proof procedure.

For example, to check if a constraint

177

Q(x)<-P(x)

is satisfied in D, they suggest that SLD could generate all substitutions

(|) such that [P(x)]<|> is provable in D, and then SLD could be used again
to attempt to prove [Q(x)](j), for all such <j). This approach is equivalent

to using SLDNF (or our proof procedure with the constraints as top

clauses) to prove the theoremhood of the constraints, and does not

incorporate any form of simplification.

7.3.4 The Henschen et al Approach

The last approach we will consider in this chapter is that of Henschen,

McCune and Naqvi [1984]. They propose a method based on theorem­

proving to preprocess update schemas (to be described shortly) and

integrity constraints, to generate tests that are carried out at run-time

when updates are actually requested. They cater for relational databases

and transactions consisting of single updates. However, as well as

additions and deletions of single facts, updates can have more complex

forms, such as "delete all facts R(x y) for x=A", or "change all facts

R(x y z) for x=A to R(x y B)". For example the update "change all facts

Employee(Toy x y) to Employee(Toy x 10000)" requests changing the

salaries of all employees in the toy department to 10000. The

constraints can be any closed formulae of first order predicate logic

expressed in clausal form.

Although their approach is a simplification approach that exploits the

satisfaction of the constraints in the database prior to the update, it

differs from Nicolas' simplification method in a number of ways. In

178

Henschen, et al's method the simplification and test generation can be

done at the time the database is designed, but in Nicolas' the

simplification is done when actual updates are requested. Furthermore,

Henschen et al, unlike Nicolas, can deal with updates of the complex

form exemplified in the last paragraph. Finally, in Henschen et al's

method the assumption of the satisfaction of the constraints in the old

database is made explicit by an axiom, which is used in the resolution

process. Similar to Nicolas, Henschen et al require the constraints to be

domain independent.

The basic idea of Henschen et al's method is as follows. An update

schema is an update form rather than an actual update. For example,

suppose that "S(x y)" means company x supplies item y. Then the

schema "delete S(A x)" describes the class of updates that delete all the

"S" facts for a given company. Here, "A" is a dummy constant. An

actual update conforming to this schema will provide an actual value in

the place of "A".

For each update schema and each constraint, Henschen et al formulate a

collection of clauses consisting of the assertion of the satisfaction of the

constraint in the old database, a description of the new database in

terms of the old one and the update schema, and the denial of the

satisfaction of the constraint in the new database. These clauses are then

processed by a highly selective process of resolution, paramodulation

(Chang and Lee [1973]) and elimination of subsumed clauses. If a

contradiction is generated then no update of the form of the schema can

possibly violate the constraint. If no contradiction is generated then

tests are extracted from the final set of resolvents. These tests would

179

then have to be verified when updates of the form of the schema are

actually requested.

Example 7.5:

(This example has been taken from Henschen et al [1984].)

Suppose "S(x y)" means company x supplies item y. Let (IC) be the

constraint

S(x Bolts) < - S(x Nuts).

Consider the update schema "change S(A Nuts) to S(B Nuts)", which

is intended to change one of the suppliers of nuts to a different supplier.

"A" and "5" are dummy constants. An actual update conforming to

this schema will provide actual values in their places.

Suppose "Sold" expresses the "S" relation in the old database, and

"Snew" expresses the "S" relation in the new database. Then the set of

clauses formed in this example will include the following:

Sold(x Bolts) <-Sold(x Nuts),

which expresses the satisfaction of (IC) in the old database. The set of

clauses will also include clauses such as the following which express

the new "S" relation in terms of the old one:

Snew(x y) or x=A <r- Sold(x y)

Snew(x y) or y=Nuts <- Sold(x y)

Sold(x y) or x=B <- Snew(x y),

etc.

Finally, the set will include the denial of the satisfaction of the

constraint in the new database, expressed as follows:

180

Snew(^T Nuts)

< -S n e w (K Bolts),

where " K ” is a Skolem constant (Chang and Lee [1973]). The last

clause simply asserts that some company supplies nuts, but not bolts.

The resolution process reduces the set of clauses thus formed to a set
consisting of four clauses:

(1) Sold(x Bolts) <- Sold(x Nuts)

(2) <- Sold(£ Bolts)

(3) <- Sold(£ Nuts)

(4) Sold(A Nuts)

(1) is assumed to hold, so it is ignored. For actual companies replacing

"A" and "5", if any of clauses (2)-(4) can be resolved away a

contradiction will be found which will indicate the satisfaction of the

constraint after the update. So these clauses are the tests generated in

this example. Clause (2), for example, yields the test of checking if

"B" is already known to supply Bolts. If it is then the constraint

continues to be satisfied. Clause (4) yields the test of checking whether

"A" was not known in the old database to supply nuts. If it was not

then the update would be ineffective and the constraint continues to be

satisfied. □

The preprocessing of update schemas has the obvious attraction of

reducing the work needed for integrity checking when actual updates

are requested. It would be interesting to see how our method can be

extended to incorporate such preprocessing. We conjecture that this can

be done through symbolic processing.

181

CHAPTER 8

CORRECTNESS AND COMPLETENESS OF THE

CONSISTENCY METHOD

Recall that, according to our definition of constraint satisfaction,

database D satisfies constraints I if and only if Comp(D)uI is

consistent. In this chapter we discuss the correctness and completeness

of our integrity checking method (as formalised by the inference rules

in Sections 5.1 and 5.2.2) relative to this specification.

Recall also, that our proof procedure is identical to SLDNF whenever

the top clause is a denial. Therefore it is as correct and as complete as

SLDNF when the integrity constraints are chosen as top clauses.

SLDNF has been proved correct in general by Clark [1978]. It has been

proved complete in a number of special cases (Clark [1978], Jaffar,

Lassez and Lloyd [1983], Barbuti and Martelli [1986], Kunen [1987]

and [1988], Cavedon and Lloyd [1987] and Shepherdson [1988]).

Clark [1978], for example, has proved SLDNF complete for

hierarchical databases and "allowed" goals. A goal is allowed if and

only if every variable that occurs in a negative condition of the goal,

also occurs in a positive condition, such that the positive condition

generates candidate ground substitutions for the variable. (Note that this

is Clark's definition of "allowed" goals, and is slightly different from

the "allowed" condition of Lloyd and Topor [1986] and Topor and

Sonenberg [1988].)

182

Jaffar, Lassez and Lloyd [1983] have proved the following result for

the completeness of the negation as failure rule:

Let D be a definite database and G a negation-free goal. If G is a logical

consequence of Comp(D), then for all "fair" computation rules R, there

is a finitely failed SLD search space for Du{G} via R. A computation

rule is fair (Lassez and Maher [1984]) if in each infinite derivation

every literal in the goal is eventually selected.

Shepherdson [1988] has slightly extended these results to prove

SLDNF complete for

(i) definite databases and ground goals, for all fair

computation rules, and

(ii) range-restricted hierarchical databases and range-

restricted goals, for all computation rules.

A very similar result to (ii), above, was proved earlier by Lloyd and

Topor [1986].

Shepherdson [1988] has also proved SLDNF (j)-complete for definite

databases and allowed goals, for all fair computation rules. SLDNF is

^-complete for a goal G if whenever for a substitution <|>, [G](j) is
logically inconsistent with Comp(D), there is an SLDNF refutation of

Du{G} (with answer including <))).

Note that when the database is definite and range-restricted, every

range-restricted goal is an allowed goal, because:

(i) in a range-restricted goal, by definition of range-restriction, every

variable that occurs in a negative condition also occurs in a positive

183

one, and

(ii) when the database is definite and range-restricted, if a goal is

resolved on a positive condition, P, say, then any variable of P which

is not grounded in the resolution step will occur in a positive condition

in the resolvent.

Finally, by Proposition 4.2, if Comp(DT) is consistent and for all

constraints (IC) in IT there is a finitely failed search space with (IC) as

top clause, then Comp(DT)uIT is consistent and therefore database

DT satisfies IT.

The discussion so far addresses the correctness and completeness of

our proof procedure with denials as top clauses, and thus the

correctness and completeness of the Consistency method when the

updates are integrity constraints.

In the remainder of this chapter, we concentrate on the more

complicated case where the top clauses are not denials. This

corresponds to the cases where the updates are additions, deletions or

modifications of database rules. Recall that ’'modification” updates are

treated as combinations of additions and deletions. So without loss of

generality, in the rest of this chapter, we assume that transaction T

consists of a set, al, of additions, and a set, dl, of deletions of

deductive rules, unless otherwise stated.

184

8.1 Correctness

Proposition 8.1: (Correctness of the simplified proof procedure

described in Subsection 3.1.2)

Let S be the union of a set DT of definite clauses and a set IT of

negation-free denials. Let Co be a clause in DT. If there is a refutation

by means of our proof procedure with S as input set and Co as top

clause, then Comp(DT)uIT is logically inconsistent.

Proof:

The theorem follows from the more general fact that if Co, C \ ,..., Cn

is a derivation, then Cn, for all n>0, is a logical consequence of

Comp(DT)uIT. This, in turn, follows from the fact that each Cf+i is

obtained from C [and an input clause by resolution, and resolution is

correct (Robinson [1965]). □

To prove the correctness of our proof procedure in the general case we

first need to prove the correctness of the extended resolution step.

Proposition 8.2: (Correctness of the extended resolution step)

Let clauses

Ci: NOT P(t*1 Condsl

and C£ (L)<-NOTP£r*} and Conds2
be logical consequences of Comp(DT)uIT. Condsl and Conds2 are

(possibly empty) conjunctions of literals, L is a literal which may or

185

may not be present, t* and r* are vectors of terms, and P is any

predicate symbol. Let C be obtained by the extended resolution of C \

and C2 on their underlined literals. Then C is a logical consequence of

Comp(DT)uIT.

Proof:

C is the clause

[(L)<-Condsl and Conds2](j)

where (j) is the mgu of P(t*) and P(r*).

Ci and C2 are equivalent to

Ci': <-Condsl andP(t*}

C2*: P(r*) or (L) <-Conds2.

Now C is the resolvent, by the standard resolution step, of Ci' and C2*

on their underlined literals. Since standard resolution is correct

(Robinson [1965]), C is a logical consequence of Comp(DT)uIT. □

Theorem 8.1: (Correctness of the general proof procedure -the

inference rule version- formalised in Sections 5.1

and 5.2.2)

Let S be the union of a set DT of deductive rules and a set IT of denials.

Let Co be either a clause in S or the negation of a fact that fails finitely

from DT by SLDNF. If there is a refutation by means of our proof

procedure with Co as top clause and S as input set, then

Comp(DT)uIT is inconsistent.

186

We prove more generally, by induction on n, that if Co, C \ , Cn is

a derivation by means of our proof procedure, then Cn is a logical

consequence of Comp(DT)uIT.

The base case:

Co is obviously a consequence of Comp(DT)uIT if Co is a clause in S.

By the correctness of SLDNF, Co is also a consequence of Comp(DT),

and therefore of Comp(DT) uIT, if it is the negation of a fact that fails

finitely from DT.

The inductive case:

Suppose Cn_i is a logical consequence of Comp(DT)uIT. Then if Cn

exists, it is obtained from Cn_i by one of the following rules (the rule

names refer to their names in Chapter 5):

(1) standard resolution, (12),

(2) extended resolution, (12),

(3) negation by failure, (13),

(4) inference rules for implicit deletions, (16) and (17).

In cases (l)-(3) Cn is clearly a logical consequence of Comp(DT)uIT,

because each of these steps for deriving Cn from Cn_i is logically

correct: standard resolution is correct (Robinson [1965]), extended

resolution is correct (Proposition 8.2), and the negation as failure step

is correct (by correctness of SLDNF (Clark [1978])).

P ro o f:

187

It remains to show that if Cn is obtained from Cn_i by (16) or (17),

then Cn is a logical consequence of Comp(DT)ulT. In both cases Cn

has the form

NOT f <- c

for some fact f, and some conjunction of literals c, such that the

condition

NOTDemo(DTf)

holds. But this condition holds if and only if f fails finitely from DT.

But then, by the correctness of negation as failure, "NOT f ' is a logical

consequence of Comp(DT)uIT and therefore so is "NOT f < - c". □

In this argument we have assumed that the condition

"NOT Demo(DT f)" is evaluated before the clause "NOT f <-c" is

derived, as it would be if the conditions in (16) and (17) were executed

in Prolog order. But the logical content of these inference rules is

independent of the choice of safe computation rules for evaluating their

conditions. The above proof therefore implies the correctness of the

method for any safe computation rule, such as that employed in our

simulation of the LT algorithm in example 7.1.

To end this section we prove the correctness of our rewriting of the

integrity constraints as described in Section 2.2. We consider two

cases:

(a) the simpler rewriting of constraints that are of the form

A \ or... or An < - B \ and ... and Bm,

where the Aj and the B{ are atoms, and

188

(b) the more complicated rewriting of constraints that are more general

formulae of first order predicate logic.

For case (a) we prove the following proposition:

Proposition 8.3:

Let (IC) be a constraint on DT of the form

A \ or... or An <- B \ and ... and Bm, m,n >0,

where the A [and the B[are atoms. Let (IC) be the rewritten version of

(IC):
(IC) < - B i and ... and Bm and NOT A \ and ... and NOT An.

Then if there is a refutation by means of our proof procedure with

DTu{(IC')} as input set, and a clause u associated with an update in T

as top clause, then Comp(DT)u{(IC)} is inconsistent.

Proof:

If such a refutation exists, then by correctness of our method (Theorem

8.1) Comp(DT)u{(IC')} is inconsistent. Thus Comp(DT)u{(IC)} is

inconsistent. □

To prove a correctness result for case (b) we need two results proved

by Lloyd and Topor [1984]. We give a specialised version of these

results necessary for our purposes.

Let DT" be a set of deductive rules, and let V be a closed first order

189

formula of predicate logic. Let DT'=DT"u{A<-V}, where A is a

nullary predicate symbol which does not occur anywhere in DTM or V.

Let DT be DT in which the rule "A<-V" is transformed into a set of

deductive rules, as described in Lloyd and Topor [1984], and

exemplified in Section 2.2 of this thesis. Suppose C is a closed formula

which contains predicate symbols that occur in DT' only. Then Lloyd

and Topor [1984] have proved the following:

(1) If C is a logical consequence of Comp(DT), then C is a logical

consequence of Comp(DT'). (Comp(DT') is defined as an extension of

the completion of a deductive database. The details need not concern

us.)

(2) A is a logical consequence of Comp(DT') if and only if V is a

logical consequence of Comp(DT').

We use (1) and (2) to prove the correctness of our rewriting of

constraints in case (b):

Proposition 8.4:

Let W be a closed first order formula, and let V=(NOT W). Let DT,

DT', DT" and A be as explained above. If there is a refutation by

means of our proof procedure with DTu{<-A} as input set and a

clause associated with an update in T as top clause, then

Comp(DT")u{W} is inconsistent.

190

If such a refutation exists then by correctness of our method (Theorem

8.1) Comp(DT)u{<-A} is inconsistent. So A is a logical consequence

of Comp(DT). By (1), above, A is a logical consequence of

Comp(DT'). Then by (2), above, "NOT W" is a logical consequence of

Comp(DT"). Therefore Comp(DT")u{W} is inconsistent. □

P ro o f:

8.2 Completeness

Recall that our method of integrity checking is based on the assumption

that D satisfies the constraints prior to the transaction. With this

assumption, we believe that our method is as complete as SLDNF.

That is, if there is an SLDNF refutation with an integrity constraint as

top clause then for all safe computation rules R (or all fair computation

rules R, whenever SLDNF requires fairness of computation rules) there

is a refutation via R by means of our proof procedure with a clause

associated with an update as top clause.

We shall prove the completeness of our method for the special, but

non-trivial case, discussed in Chapter 3, where the database is definite,

the integrity constraints are negation-free denials, and the transaction

consists only of additions. The proof procedure in this case is non­

trivial, because as shown earlier it is neither a special case of SL

(Kowalski and Kuehner [1971]), nor a special case of SLD (Apt and

van Emden [1982]). In Chapter 3 we showed how our proof procedure

extends both SL and SLD.

191

SLD has been proved complete by Clark [1979] and Hill [1974]. Thus

if DT is inconsistent with a constraint (IC) then for any computation

rule R there exists an SLD refutation of DTu{(IC)} via R. In this

section we prove the completeness of our method for this special case

by proving that the method is as complete as SLD.

Since Comp(D) is consistent with the constraints, any inconsistency

after the transaction must involve at least one of the updates.

Therefore, in any SLD refutation with a constraint as top clause,

showing the violation of the constraint in the updated database, one of

the input clauses contributing to the refutation must be an update. Thus

to prove the completeness of our method relative to SLD it is sufficient

to prove the following.

Theorem 8.2:

Let S be a set of definite clauses and negation-free denials, and let (IC)

be a negation-free denial in S. Suppose there is an SLD refutation F of

Su{(IC)}. Then, for every computation rule R and for every input

clause C contributing to the refutation, there is a refutation via R with

input set S by means of our proof procedure with C as top clause. (An

input clause C contributes to a derivation C o, C \ , ..., Cn if and

only if for some i, 0<i<n, Q+i is obtained by the resolution of C and

Q).

192

P ro o f:

The proof is obtained by the standard techniques of:

(1) first transforming F to a variable-free SLD refutation F' of

S 'u{(ICT)}, where (IC) is a ground instance of (IC), each clause in S'

is a ground instance of a clause in S, and a ground instance C' of C

contributes to F',

(2) transforming F to a ground refutation F" by means of our proof

procedure with C as top clause, and finally

(3) applying the Lifting Lemma (Chang and Lee [1973]) to obtain the

desired refutation F* (isomorphic to F") of Su{(IC)} with top clause

C.

Parts (1) and (3) are well known techniques, often employed in proofs

of (relative) completeness of resolution proof procedures. We will

discuss these parts briefly first, and then concentrate on part (2), which

is specific to Theorem 8.2.

Part (1):

F can be transformed to a variable-free refutation F as follows. First

apply the mgu's generated in F (that is the mgu's of the resolution steps

that construct F) to the clauses in F, and to the input clauses that

contribute to F. This gives a refutation (possibly containing variables)

which uses only propositional resolution (that is resolution steps that do

193

not involve any instantiation of variables). Now replace all remaining

variables systematically by distinct constants. A variable x must be

replaced by the same constant symbol wherever it appears in the

refutation and in the input clauses that contribute to the refutation.

Part (3):

The Lifting Lemma states that if C i ' and C2 ' are instances of C \ and

C2 , respectively, and if E' is a resolvent of Ci' and C 2', then there is a

resolvent E of C \ and C2 , such that E' is an instance of E.

So by this Lemma if F" is a refutation with input set S'u{(IC’)} and

top clause C, then, by inductively applying the Lifting Lemma, there is

a refutation F* with input set Su{(IC)} and top clause C.

Part (2):

First, transform F into the form of an and-tree TR: the top node of TR

is the denial (IC) with subtrees for every condition A [in (IC). These

subtrees are joined to the top node by arcs connecting the conditions A [

with the conclusions of the rules in S' with which they resolve in F'.

The top of TR then has the form

where the C [denote (possibly empty) conjunctions of literals. By an

194

induction argument the subtrees with top node can be

constructed similarly. Notice that the and-tree is actually a special form

of connection graph (Kowalski [1975]) linking occurrences of clauses

in S'u{(IC')}. The same clause can occur in different subtrees. Every

occurrence of an atom in TR is linked to only one other occurrence of

an atom. Thus every link represents a possible resolution between the

clauses.

The original SLD refutation F is one particular traversal of TR, starting

with the top node (IC). The desired refutation F" is just an alternative

traversal of TR starting with an occurrence of C instead.

F" can be constructed by course of values induction on the number of

arcs in TR: Suppose C occurs at a node N in TR of the form

Each atom in N is linked to exactly one other atom in a node in TR. N

may have zero or more conditions, and may or may not have any

conclusion. Suppose that computation rule R selects an occurrence of

an atom (conclusion or condition) in C and that B is the ground instance

of this atom occurrence in C'. Let C" be the resolvent on B of C with

the clause to which B is linked in TR. Replace the two parent nodes in

TR by the one node which is the resolvent, letting the resolvent inherit

all the unselected links from the parent clauses (exactly as in the

connection graph proof procedure (Kowalski [1975])). The resulting

tree TR? has exactly one less link than TR. By induction hypothesis for

every computation rule R' there exists a refutation F'" of S'u{(IC')}

(A) <r- B i and B2 and ... Bm.

195

*

with top clause C". Choose R' to be the computation rule that selects

from a clause C'n ending a derivation C'o, ..., C'n of S'u{(IC')} the

ground instance of the same atom occurrence that R selects from the

clause Cn ending a derivation C, Co, Cn of Su{(IC)}, where

C’o, C'n is the ground derivation isomorphic to Co, ..., Cn. The

desired refutation F" is then just C followed by F"\ □

It is possible to extend the proof of Theorem 8.2 to prove completeness

of our method relative to SLDNF for a more general case where the

database is still definite and all the updates are additions, but where

integrity constraints may have negative conditions.

Suppose there is an SLDNF refutation of DTu{(IC)}, for a constraint

(IC) in I. Since D satisfies the constraints, one of the updates in the

transaction must contribute to this refutation (that is, an update must be

an input clause used in the solution of a positive condition of (IC)). If

this were not the case then there would be some ground instance

"NOT A", say, of a negative condition of (IC) such that "NOT A" is

provable by SLDNF in DT, but not in D. Therefore there is a finitely

failed SLD search space for DTu{<-A}. But the search space for

DTu{<-A} includes the search space for D u{4-A } because DT

includes D and both consist of definite clauses. Therefore there must

be a finitely failed SLD search space for Du{*-A}, which implies that

D violates the constraint (IC) contrary to assumption. Thus to prove

our method as complete as SLDNF in this case it is sufficient to prove

the following.

196

Theorem 8.3:

Let S be a set of definite clauses and denials, and let (IC) be a denial in

S. Suppose there is an SLDNF refutation F of Su{(IC)}. Then for

every safe computation rule R and every input clause C contributing to

the refutation there is a refutation via R by means of our proof

procedure with C as top clause and S as input set, provided that we

employ a fair computation rule in the subproofs of negative conditions.

Proof:

The SLDNF refutation F without its auxiliary negation as failure

subproofs has the same structure as an SLD refutation, except for the

solution of negative conditions. If for every auxiliary subproof of a

ground negative condition "NOT A" in F we add a negative fact

"NOT A" to the database, and then rename such negated atoms

systematically by means of new and distinct positive ground atoms, we

transform F into a form to which Theorem 8.2 applies. Thus we can

construct a refutation via any computation rule by means of our proof

procedure with C as top clause. In particular, we can construct such a

refutation via any computation rule that selects the renamed conditions

only when they are ground. If we now undo the renaming and restore

the auxiliary negation as failure subproofs, we obtain the desired

refutation.

Moreover, we obtain proofs of the negative conditions via any fair

computation rule, for the following reason. Suppose there is an

SLDNF refutation of Su{<-NOT A}, where A is a ground atom. Then

197

there is an SLD finitely failed search space for S u{<-A}. Then, by (a

specialisation of) the correctness result of SLDNF (Clark [1978]),

"<-A" is a logical consequence of Comp(S). So, by the Jaffar, Lassez

and Lloyd [1983] result described in (b) at the beginning of this

chapter, for every fair computation rule there is a finitely failed SLD

search space for Su{<-A}, and thus there is an SLDNF refutation of

Su{<-NOT A}. Furthermore, as explained in Chapter 4, our proof

procedure is equivalent to SLDNF when the top clause is a denial.

□

As well as ensuring the completeness of the method, the special cases

covered in Theorems 8.2 and 8.3 have another major advantage. The

proof procedure in these cases can be implemented with efficiencies

comparable to that of Prolog implementations, as described in Chapter

6 .

We have not yet proved the analogue of Theorem 8.3 for the general

case. The main difficulty comes from the need to generalise the and-

tree in the proof of Theorem 8.2 to a tree including auxiliary proofs of

negation as failure. These auxiliary proofs are not simple and-trees but

include entire finitely failed search spaces. This suggests that we may

be able to deal with this case by converting finitely failed search spaces

into direct proofs of negative conditions using Comp(D) as in Clark's

proof of the correctness of SLDNF (Clark [1978]).

The correctness of our proof procedure justifies concluding that if we

obtain a refutation with our proof procedure then the updated database

violates the constraints. Completeness justifies concluding, as a

198

corollary, that if our proof procedure fails finitely with all the updates

as top clauses then integrity is maintained in the updated database.

199

CHAPTER 9

CONCLUSION

In this thesis we have described the Consistency method for checking

integrity of deductive databases, and a new underlying proof

procedure. The Consistency method exploits, for efficiency, the

assumption that the constraints are satisfied in the database prior to the

transaction. It reasons forward from the transaction, and thus

concentrates on the effects of the updates, and ignores what remains

unchanged. The new proof procedure is an extension of Prolog, and

allows forward as well as backward reasoning.

We described the proof procedure and the Consistency method first in

two simplified cases and then in the general case. We, then, presented a

logical formalisation of the proof procedure and the Consistency

method, and described an implementation in Prolog based on this

formalisation. We also described an alternative and more efficient

implementation for a special case.

The proof procedure was compared with the SL, SLD and SLDNF

proof procedures. It was shown to be extensions of the latter two. It

was also shown to differ from SL by adopting a more liberal literal

selection strategy. Thus although our proof procedure is not as general

as SL, it is not a special case of SL either.

The Consistency method was compared with other existing algorithms

200

for integrity checking in deductive databases. It was shown to

approximate the algorithms of Decker, Lloyd, Topor, et al, Martens and

Bruynooghe and Bry, et al. We discussed in detail the relationship

between the Consistency method and the first two algorithms, and that

between these algorithms and the latter two.

Finally, we proved our method correct in general, and complete in

certain special cases.

This work can be extended in the future in various directions, for

example:

(1) Neither we nor any other researchers in deductive database integrity

have yet adequately addressed the problem of dealing with constraints

involving aggregates. Heath [1988] has done some preliminary, but

promising, work on extending our method to deal with aggregate

constraints. The subject deserves to be further investigated. Consider,

for example, the following constraint:

"The maximum number of students is 100."

This can be formalised by the rule:

n<100 <- s={x: Student(x)} and Size(s n).

(The set construction can be implemented using Prolog’s "isall"

operator.)

Intuitively, this constraint must be evaluated when and only when a

new student is to be recorded in the database. Moreover, we should not

have to construct the complete set of all students every time we evaluate

the constraint. Forward reasoning, via resolution, from updates that

201

add new students does not achieve either of these requirements.

(2) There is scope for improving the efficiency of our implementation.

It would be interesting to see if the alternative implementation presented

in Section 6.4 can be extended to cover more general cases.

Furthermore, since our approach is based on general theorem-proving

techniques, it can benefit from existing approaches for improving the

efficiency of the underlying linear proof procedure (Kowalski [1975]).

(3) Eshghi and Kowalski [1988] propose the use of abduction to

replace reasoning with negation as failure. For example, a rule

A<-NOTB

can be rewritten as

A«-B',

together with a constraint

<~B and B’,

where B' is an abducible fact, that is a fact that can be assumed

provided its assumption does not cause any inconsistencies. Thus to

prove A, fact B' can be assumed provided B is not provable.

Abduction provides an interesting alternative to negation as failure, and

for implementing default reasoning in general. The consequences of

replacing negation as failure by abduction in our proof procedure are

worth investigating, especially since checking abductive assumptions

for consistency with constraints is an essential feature of the abductive

approach. On the one hand, replacing negation by failure by abduction

would influence our integrity checking method. On the other hand, to

be efficient, abduction needs an efficient integrity checking method.

202

(4) Finally, the identification of the largest class of problems for which

our method can be proved complete is an outstanding theoretical issue.

203

204

REFERENCES

Apt, K. B., Blair, H. and Walker, A. [1988]:

'Towards a Theory of Declarative Knowledge", in

"Foundations of Deductive Databases and Logic Programming",

Minker J. [Ed.], Morgan Kaufmann, 89-148.

Apt, K. R. and van Emden, M. H. [1982]:

"Contributions to the Theory of Logic Programming", JACM,

29, 3, (July), 841-862.

Asirelli, P., De Santis, M. and Martelli, M. [1985]:

"Integrity Constraints in Logic Databases", J. Logic

Programming, volume 2, number 3, 221-232.

Barbuti, R. and Martelli, M. [1986]:

"Completeness of the SLDNF-Resolution for a Class of Logic

Programs", Proc. 3rd International Conference on Logic

Programming, London, U.K., Springer-Verlag, 600-614.

Bernstein, P. A., Blaustein, B. T. and Clarke, E. M. [1980]:

"Fast Maintenance of Semantic Integrity Assertions Using

Redundant Aggregate Data", Proc. 6th VLDB, Montreal,

Canada, 126-136.

Bowen, K. A. and Kowalski, R. A. [1982]:

"Amalgamating Language and Metalanguage in Logic

Programming”, in "Logic Programming", Clark, K. L. and

Tamlund, S.-A. [Eds.], Academic Press, 153-172.

Bry, F. [1987]:

"Maintaining Integrity of Deductive Databases", Internal Report

KB-45, ECRC, Munich, July.

Bry, F., Decker, H. and Manthey, R. [1987]:

"A Uniform Approach to Constraint Satisfaction and Constraint

Satisfiability in Deductive Databases", Technical Report KB-16,

ECRC, Munich, October, 7.

Bry, F. and Manthey, R. [1986]:

"Checking Consistency of Database Constraints: a Logical

Basis", Proc. 12th VLDB, Kyoto, Japan, 13-20.

Cavedon, L. and Lloyd, J. W. [1987]:

"A Completeness Theorem for SLDNF-Resolution", Computer

Science Department, University of Bristol. To appear in J.

Logic Programming.

Chang, C. L. and Lee, R. C. T. [1973]:

"Symbolic Logic and Mechanical Theorem Proving", Academic

Press.

206

Chamiak, E. and McDermott, D. [1985]:

"Introduction to Artificial Intelligence", Addison-Wesley

Publication Company.

Clark, K. L. [1978]:

"Negation as failure", in "Logic and Data Bases", Gallaire, H.

and Minker, J. [Eds.], Plenum Press, 293-322.

Clark, K. L. [1979]:

"Predicate Logic as a Computational Formalism", Research

Report 79/59, Department of Computing, Imperial College of

Science and Technology, University of London.

Cox, P. T. and Pietrzykowski, T. [1986]:

"Causes for Events: Their Computation and Applications",

Proc. CADE-86, Siekmann, J. H. [Ed.], Springer-Verlag

Lecture Notes in Computer science, 608-621.

Decker, H. [1986]:

"Integrity Enforcement on Deductive Databases", Proc. EDS

86, Charleston, South Carolina, U.S.A., 271-285.

Decker, H. [1987]:

"The Range Form or How to Avoid Floundering", Internal

Report KB-26, ECRC, Munich.

Eshghi, K. [1988]:

"Abductive Planning with Event Calculus", Proc. 5th

207

*

International Conference on Logic Programming, Seattle,

U.S.A.

Eshghi, K. and Kowalski, R. A. [1988]:

"Abduction Through Deduction", Department of Computing,

Imperial College of Science and Technology, University of

London, March.

Goebel, R., Furukawa, K. and Poole, P. [1986]:

"Using Definite Clauses and Integrity Constraints as the Basis

for a Theory Formation Approach to Diagnostic

Reasoning", Proc. 3rd International Conference on Logic

Programming, London, U.K., Springer-Verlag, 211-222.

Hammond, P. and Sergot, M. [1984]:

"APES: Augmented Prolog for Expert Systems", Logic Based

Systems Ltd, Surrey.

Heath, A. [1988]:

Personal Communication.

Henschen, L. J., McCune, W. W. and Naqvi, S. A. [1984]:

"Compiling Constraint-Checking Programs from First-order

Formulas", in "Advances in Database Theory", volume 2,

Gallaire, H., Minker, J. and Nicolas, J. M. [Eds.], Plenum

Press, 145-169.

Hill, R. [1974]:

"LUSH-Resolution and its Completeness", DCL Memo 78,

208

Department of Artificial Intelligence, University of Edinburgh.

Jaffar, J. ,Lassez, J.- L. and Lloyd, J. W. [1983]:

"Completeness of the Negation as Failure Rule", IJCAI-83,

Karlsruhe, 500-506.

Kakas, A. C. [1987]:

"Knowledge Assimilation", M.Sc. Thesis, Department of

Computing, Imperial College of Science and Technology,

University of London.

Kowalski, R. A. [1975]:

"A Proof Procedure Using Connection Graphs", JACM, volume

22, number 4, 572-595.

Kowalski, R. A. [1979]:

"Logic for Problem Solving", Elsevier North Holland.

Kowalski, R. A. and Kuehner, D. [1971]:

"Linear Resolution with Selection Function", Artificial

Intelligence 2, 227-260.

Kowalski, R., Sadri, F. and Soper, P. [1987]:

"Integrity Checking in Deductive Databases", Proc. 13th

VLDB, Brighton, England, 61-69.

Kunen, K. [1987]:

"Negation in Logic Programming", J. Logic Programming,

209

volume 4, number 4, 289-308.

Kunen, K. [1988]:

"Signed Data Dependencies in Logic Programs", to appear in J.

Logic Programming.

Lassez, J.- L. and Maher, M. J. [1984]:

"Closures and Fairness in the Semantics of Programming

Logic", Theoretical Computer Science 29,167-184.

Levesque, H. J. [1981]:

"A Formal Treatment of Incomplete Knowledge Bases", Ph.D.

thesis, Department of Computer Science, University of

Toronto; also available as Technical Report, No. 3, Fairchild

Laboratory for Artificial Intelligence Research, Palo Alto,

California. A shorter version is available as "The Interaction

With Incomplete Knowledge Bases: A Formal Treatment",

IJCAI-81, Vancouver, Canada, volume 1, 240-245.

Lloyd, J. W. [1987]:

"Foundations of Logic Programming", Springer Verlag,

Symbolic Computation Series. This is the second extended

edition of the book that was published in 1984.

Lloyd, J. W., Sonenberg, E. A. and Topor, R. W. [1986]:

"Integrity Constraint Checking In Stratified Databases",

Technical Report 86/5, Department of Computer Science,

University of Melbourne.

210

»

Lloyd, J. W. and Topor, R. W. [1984]:

"Making Prolog More Expressive", J. Logic Programming,

volume 1, number 3, 225-240.

Lloyd, J. W. and Topor, R.W. [1985]:

"A Basis For Deductive Database Systems", J. Logic

Programming, volume 2, number 2, 93-109.

Lloyd, J. W. and Topor, R. W. [1986]:

"A Basis for Deductive Database Systems II", J. Logic

Programming, volume 3, number 1, 55-67.

Martens, B. and Bruynooghe, M. [1987]:

"Integrity Constraints in Deductive Databases Using a Rule/Goal

Graph", Department of Computer Science, Katholieke

Universiteit Leuven, Celestijnenlaan 200A, 3030 Heverlee,

Belgium. Also in Proc. EDS 88, Virginia, U.S.A., 297-310.

McCarthy, J. and Hayes, P. J. [1969]:

"Some Philosophical Problems from the Standpoint of Artificial

Intelligence", Machine Intelligence 4, Edinburgh University

Press, New York, 463-502.

Nicolas, J. M. [1982]:

"Logic For Improving Integrity Checking in Relational Data

Bases", Acta Informatica 18, 3, 227-253.

Nicolas, J. M. and Gallaire, H. [1978]:

211

»

"Data Base: Theory vs. Interpretation", in "Logic and Data

Bases", Gallaire, H. and Minker, J. [Eds.], Plenum Press, New

York, 33-54.

Noel, P. [1988]:

"Semantic Constraints in First Order Theories: a Definition and

its Applicability", Department of Computer Science, University

of Manchester.

Poole, D. L. [1987]:

"A Logical Framework for Default Reasoning", CS-87-59,

Department of Computer Science, University of Waterloo.

Reiter, R. [1981]:

"On the Integrity of Typed First Order Data Bases", in

"Advances in Database Theory", volume 1, Gallaire, H.,

Minker, J. and Nicolas, J. M. [Eds.], Plenum Press, 137-157.

Reiter, R. [1988]:

"On Integrity Constraints", Department of Computer Science,

University of Toronto, Toronto, Ontario, M5S 1A4, Canada.

To appear in "Theoretical Aspects of Reasoning about

Knowledge II, Asilomar, Ca., March 6-9.

Robinson, J. A. [1965]:

"A Machine-Oriented Logic Based on the Resolution Principle",

JACM, volume 12, number 1, 23-41.

212

Sadri, F. [1987]:

"Three Recent Approaches to Temporal Reasoning", in

"Temporal Logics and Their Applications", Galton, A. [Ed.],

Academic Press, 121-168.

Sadri, F. and Kowalski, R. A. [1988]:

"A Theorem-Proving Approach to Database Integrity", in

"Foundations of Deductive Databases and Logic Programming",

Minker, J. [Ed:], Morgan Kaufmann, 313-362.

Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond,

P. and Cory, H. T. [1986]:

"The British Nationality Act as a Logic Program", CACM,

volume 29, number 5, May 1986, 370-386.

Shepherdson, J. C. [1988]:

"Negation in Logic Programming", in "Foundations of

Deductive Databases and Logic Programming", Minker, J.

[Ed.], Morgan Kaufmann, 19-88.

Small, C. [1988]:

"Guarded Default Databases: an Approach to the Control of

Incomplete Information", Ph.D. Thesis, Birkbeck College,

University of London.

Smullyan, R. M. [1968]:

"First-Order Logic", Springer Verlag.

213

Soper, P. J. R. [1986]:

"Integrity Checking In Deductive Databases", M.Sc. Thesis,

Department of Computing, Imperial College of Science and

Technology, University of London.

Topor, R. W., Keddis, T. and Wright, D. W. [1985] :

"Deductive Database Tools", Technical Report 84/7 (Revised

August 23, 1985), Department of Computer Science, University

of Melbourne, Parkville, Vic. 3052. Shorter version in

Australian Computer Journal, volume 17, number 4, 1985, 163-

173.

Topor, R. W. and Sonenberg, E. A. [1988]:

"On Domain Independent Databases", in "Foundations of

Deductive Databases and Logic Programming", Minker J. [Ed.],

Morgan Kaufmann, 217-240.

Ullman, J. D. [1983]:

"Principles of Database Systems", Pitman, London, second

edition.

Ullman, J. D. [1985]:

"Implementation of Logical Query Languages for Databases",

ACM Transactions on Database Systems, volume 10, number 3,

289-321.

Weyhrauch, R. [1980]:

"Prolegomena to a Theory of Mechanized Formal Reasoning",

214

Artificial Intelligence 13,133-170.

215

