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ABSTRACT

This thesis describes the theory, application and implementation of a 

new method, called the Consistency method, for checking integrity 

constraints in deductive databases. It also describes a new proof 

procedure that has been developed for this application.

The Consistency method is suitable for general range-restricted 

deductive databases where the constraints can be arbitrary formulae of 

first order predicate logic, and the transactions consist of one or more 

updates. Each update is an addition, deletion or modification of a 

database fact or non-atomic rule, or an addition or deletion of an 

integrity constraint.

The Consistency method is based on general purpose theorem-proving 

techniques. The new proof procedure is an extension of SLDNF, 

which is the underlying proof procedure of Prolog. This new proof 

procedure allows forward as well as backward reasoning, and 

incorporates the negation as failure rule, as well as additional inference 

rules for reasoning about implicit deletions.

Backward reasoning is particularly suited to query evaluation, where 

the database is static but the queries change. Forward reasoning, on the 

other hand, is particularly suited to knowledge assimilation, one 

component of which is integrity checking, where the database changes, 

and it is necessary to investigate the consequences of these changes.
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In the Consistency method we reason forward from the updates, and 

thus focus on the effects of the updates and ignore what remains 

unchanged. This can increase the efficiency of the integrity checking 

significantly by avoiding redundant evaluation of those constraints that 

are satisfied in the database prior to the updates and which are not 

affected by the updates.

The Consistency method and the new proof procedure have been 

implemented in Prolog.

The method approximates the algorithms of Decker, Lloyd, Topor, et 

al, Martens and Bruynooghe, and Bry et al, which are the major 

existing algorithms for checking integrity of deductive databases.
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CHAPTER 1

INTRODUCTION

This thesis describes the theory, application and implementation of a 

new method, based on theorem-proving techniques, for checking 

integrity constraints in deductive databases. It also describes a new 

proof procedure that has been developed for this application. The proof 

procedure allows forward as well as backward reasoning, and can be 

thought of as an extension of Prolog. Although the proof procedure has 

been developed with integrity checking in mind, it, in fact, is suitable 

for knowledge assimilation in general.

Our integrity checking method, called the Consistency method, for 

reasons that will become clear in the next chapter, is designed for 

range-restricted deductive databases (defined formally in the next 

chapter), integrity constraints that are expressed as formulae of first 

order predicate logic, and transactions that consist of one or more 

updates. Each update may be an addition, deletion or modification of a 

fact or non-atomic rule, or an addition or deletion of an integrity 

constraint.

Deductive databases are extensions of relational databases. Relational 

databases can be thought of as consisting only of facts. Deductive 

databases may contain general rules as well as facts. Thus deductive 

databases have more expressive power, and allow a better compaction 

of information. A large part of the most recent British Nationality Act,

9



for example, has been formalised as a deductive database and 

implemented in Prolog (Sergot, Sadri, et al [1986]). It would be very 

difficult, and quite unnatural to represent complex information such as 

legislation as a relational database.

Integrity constraints are conditions that the database is expected to 

satisfy as it changes through time. They are intended to prevent 

erroneous or undesirable information entering the database. If a 

transaction violates the constraints, the integrity of the database can be 

recovered in a number of different ways. One or more updates in the 

transaction can be rejected, or alternatively, the database or even the 

constraints can be modified. The recovery may be undertaken 

autonomously by the database management system, or through 

interaction with the user.

The following are some examples of integrity constraints expressed in 

first order logic. Throughout the thesis we use the following notational 

convention. Predicate and constant symbols start in the upper case, and 

variable and function symbols start in the lower case. is the 

implication sign, and can be replaced by "if'.

Example 1.1:

(1) A much quoted constraint is that "human beings are either male or 

female", or more formally:

Vx [Male(x) orFemale(x) Human(x)].

(2) Functional dependencies are particularly common types of
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constraints in relational databases. Here is an example: "Each student 

has exactly one tutor", or more formally:

Vx 3y [Tutor(y x) <- Student(x)]

Vx Vy Vz [y=z <- Student(x) and Tutor(y x) and Tutor(z x)] 

The first constraint states that each student has a tutor, and the second 

states that each student has no more than one tutor.

(3) Type constraints specify the correct argument types. In relational 

database terminology these constraints specify the domains of attribute 

values. For example:

Vx Vy [Human(x) <- Salary(x y)]

Vx Vy [Real-num(y) Salary(x y)]

Vx [Animal(x) orPlant(x) <- Animate(x)]

(4) Many constraints can be naturally expressed as denials, which, 

roughly speaking, are rules with no conclusions (denials are defined 

formally in the next chapter). Consider, for example, the following 

constraint:

"no secretary receives a salary higher than a manager".

This can be formalised as:

V x Vy V u Vv  [<- Secretary (x) and Manager(y) and

Salary(x u) and Salary(y v) and u>v]

The above formula is equivalent to

V x Vy V u Vv  [NOT (Secretary(x) and Manager(y) and

Salary(x u) and Salary(y v) and u>v)].

In general, a formula of the form 

Vx [«-P(x) and Q(x)] 

is equivalent to
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Vx [NOT (P(x) and Q(x))],

and can be read as "it is not the case that P and Q are true together for 

any x". □

All the examples have so far described static constraints, that is 

constraints specified on a single (usually the current) state of the 

database. It is also possible to specify dynamic constraints, that is 

constraints that impose conditions on more than one state of the 

database. For example, a temporal database that contains historical 

information can have the following constraint: "salaries do not 

decrease", or more formally:

Vx Vy VzVt Vt '  [<-Sal-at-time(x y t) and Sal-at-time(x z t')

and t<t' and z<y],

where "Sal-at-time(x y t)" expresses that x has salary y at time t. A 

number of formalisms have been proposed for representing temporal 

information in deductive databases. Sadri [1987] discusses and 

compares three of the major formalisms.

Alternatively, if DO and D name the database before and after a 

transaction, respectively, then the above dynamic constraint can be 

formalised as follows:

Vx Vy Vz [<-Demo(D0 salary(x y)) and Demo(D salary(x z)) 

and z<y],

where "Demo(d p)" expresses that property p is provable in database 

state d. "salary" is a metalevel function symbol naming the object level 

predicate symbol "Salary". The constraint can be expressed more 

generally by replacing the constants DO and D by variables, dO and d, 

say, respectively, and adding an extra condition "Result(dO t d)" to 

express that database d results from dO by transaction t.
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Our integrity checking method allows any formula of first order logic as 

integrity constraint. Thus it can deal with any kind of constraint which 

is expressible as a first order formula. Note that the last formula, 

above, is a first order formula. It is, in fact, a formula of amalgamated 

logic incorporating object and metalevels (Bowen and Kowalski 

[1982]). We have more to say about this in later chapters.

Since relational databases contain facts only, general rules have to be 

expressed as integrity constraints. When the constraints are violated 

they can be used to identify data whose addition to the database would 

recover integrity. The absence of general rules in the database, although 

limiting the expressive power, makes the checking of integrity relatively 

easy in relational databases.

Deductive databases, on the other hand, allow general rules, as well as 

facts. Nicolas and Gallaire [1978] propose some guidelines for 

deciding what information should be described as database rules and 

what should be described as integrity constraints. Intuitively, there is a 

difference between database rules and integrity constraints. Database 

rules are statements about the world that is modelled by the database, 

whereas integrity constraints are statements about the database. 

Consider the information that "all vicars are men", or more formally:

Vx [Man(x) <- Vicar(x)].

If this is a database rule, then it allows us to infer that an individual x 

is a man, given that he is a vicar. On the other hand, if it is an integrity 

constraint, then it states that if for some individual x, it is possible to 

prove that x is a vicar, then it is also possible to prove that x is a man.

13



Alternatively, as a constraint the formula can be interpreted as stating 

that integrity is violated if for some individual x it is possible to prove 

that x is a vicar, but it is not possible to prove that x is a man.

It can be argued that since database rules and integrity constraints have 

different intended meanings, then they should also be distinguished 

syntactically. Reiter [1988], for example, proposes the use of modal 

formulae for constraints, and Eshghi and Kowalski [1988] propose the 

use of metalevel formulae that express provability explicitly. Similar 

approaches have also been proposed by Noel [1988] and Small [1988]. 

We have our own way of distinguishing between constraints and 

database rules, as we will describe in later chapters.

The presence of general rules in deductive databases makes the 

checking of integrity more difficult than in relational databases, because 

in deductive databases it is necessary to determine how the updates 

interact with the existing database, and what new information can be 

deduced from them.

A simple way of checking integrity constraints is to use a backward 

reasoning system such as Prolog. The constraints can be set as queries 

to be checked in the database. This approach, however, can be very 

inefficient, because it may result in redundant computations, rechecking 

constraints which are satisfied prior to the transaction and which are not 

affected by the transaction.

Our method is particularly designed to avoid this inefficiency, and to 

exploit the assumption that the constraints are satisfied prior to the
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transaction. We take advantage of this assumption by reasoning 

forward from the updates. Intuitively, if the database satisfies its 

constraints before the transaction, then any violation of the constraints 

after the transaction must be due to the updates. Forward reasoning 

from the updates has the effect of focusing attention only on parts of the 

database and the constraints that are affected by the transaction, and 

ignoring what remains unchanged.

In general, backward (or goal oriented) reasoning, such as the 

reasoning allowed by Prolog, is most suited to query evaluation in a 

fixed database. Forward reasoning, on the other hand, is better suited 

to knowledge assimilation, where the database evolves through time, 

and the updates have to be assimilated into the database. In this case, it 

is important to determine how the new knowledge interacts with the old 

database and its integrity constraints. Integrity checking is only one 

aspect of knowledge assimilation. It determines if the new knowledge 

is inconsistent with the old database, or if it violates the constraints. In 

addition to this, the new knowledge can be related to the old database in 

a number of different ways (Kowalski [1979]). The new knowledge 

might, for example, imply part of the old database, in which case a 

revision of the database might improve the efficiency of query 

evaluation and save space as well. Alternatively, the new knowledge 

might be implied by the old database, in which case the new knowledge 

might simply just be ignored, or it might strengthen confidence in the 

old knowledge. Finally, the new knowledge might be independent of 

the old database, that is it might be consistent with the database, but not 

implied by it, nor might the new knowledge imply any part of the 

database. In this case the new knowledge might just simply be 

accepted, or some explanation might be sought for it.
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In this thesis we only address the integrity checking component of 

knowledge assimilation. However, the proof procedure that we have 

developed for this application, is suitable for knowledge assimilation, 

in general, because it allows focusing on the updates and exploring the 

consequent changes. This new proof procedure is an extension of 

SLDNF (Lloyd [1987]), which is the underlying proof procedure of 

Prolog. Our proof procedure extends SLDNF by

• allowing forward as well as as backward reasoning,

• incorporating a generalised resolution step, which is needed 
for reasoning forward from negated conclusions, and

• incorporating additional inference rules for reasoning about 
implicit deletions caused by explicit and other implicit changes 

to the database.

This proof procedure and the integrity checking method have been 

implemented in Prolog. They have also been proved correct in general, 

and complete in certain special cases.

There are a number of other integrity checking algorithms, often known 

as simplification algorithms, that are designed to exploit the assumption 

of the satisfaction of the constraints in the old database. Bernstein, 

Blaustein and Clarke [1980], for example, propose such a method for 

checking certain types of aggregate constraints in relational databases. 

Nicolas [1982], in a very influential paper, proposes a logic-based 

simplification method for checking general first order constraints in 

relational databases. Most of the existing integrity checking methods for 

deductive databases are extensions of Nicolas' method, amongst these
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are the algorithms of Lloyd, Sonenberg and Topor [1986], Decker 

[1986], Martens and Bruynooghe [1987], and Bry, Decker and 

Manthey [1987].

Our method is also an extension of Nicolas' algorithm. Moreover, it is 

also an approximation of these latter algorithms. We can, in fact, 

simulate these algorithms by employing different literal selection and 

search strategies in our proof procedure.

There are other ways of ensuring the integrity of the database, without 

actually checking the constraints. Probably the most widely used 

approach is to "compile" the integrity constraints into the database 

rules. This is an approach that is used intuitively by almost all 

programmers, who do not have access to integrity checking facilities. 

Consider the following simple and informal database and integrity 

constraint:

database: customer gets goods customer orders goods

constraint: customer gets goods and

customer in debt

The constraint states that it should not be allowed for a customer who is 

in debt to receive goods.

Intuitively, a simple way of achieving roughly the same effect, without 

the integrity constraint, is to rewrite the database rule as follows: 

customer gets goods < -  customer orders goods and

customer is not in debt,

and do away with integrity checking. The transformed rule ensures that 

no customer who is in debt gets any goods. Other examples of this kind
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of "compilation" of constraints in database rules can be found in logic- 

based planning systems, for example in the situation calculus of 

McCarthy and Hayes [1969].

This approach to database integrity has been investigated by Asirelli, De 

Santis and Martelli [1985] for a restricted class of databases and 

constraints. It is worth exploring this approach further, if only because 

it is the approach that many programmers adopt quite intuitively, when 

they need integrity checking, but do not want to employ a separate 

integrity checking method. We have some on-going research in this 

area, but this is not in the scope of the thesis. The thesis is concerned 

with the first approach to database integrity, that is where the 

constraints are specified explicitly and are checked after transactions.

The thesis is organised as follows. In Chapter 2 we formally define 

what we mean by deductive databases, integrity constraints and 

constraint satisfaction. In Chapters 3 and 4 we introduce our integrity 

checking method by considering two simplified cases. In Chapter 5 we 

formalise the method in the general case. In Chapter 6 we describe the 

implementation of the method in Prolog, and propose an alternative and 

more efficient implementation for a special case. In Chapter 7 we 

compare our method with other integrity checking algorithms, and in 

Chapter 8 we discuss the correctness and completeness of our method. 

Chapter 9 concludes the thesis by a summary and a discussion of 

further work.

Some of the material presented in this thesis has appeared in Sadri and 

Kowalski [1988], Kowalski, Sadri and Soper [1987] and in Soper's
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M.Sc. thesis (Soper [1986]).
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CHAPTER 2

DEFINITIONS

In this chapter we formally define deductive databases, integrity 

constraints and constraint satisfaction.

2.1 Deductive Databases

A deductive database is a finite set of deductive rules. which are closed 

formulae of the form

A < -  L \  and . . .  and Ln, n >0,

where A is an atom, the Lj are literals (i.e. atoms or negated atoms), 

and all the variables are assumed to be universally quantified in front of 

the formula in which they occur. A is called the conclusion of the 

rule and the Lj the conditions. If a condition is an atom then it is a 

positive condition of the deductive rule. If a condition is a negated 

atom then it is a negative condition. When n=0 the deductive rule is 

also called a feet. When n>0 the deductive rule is said to be non- 

atomic. If all the conditions of a rule are positive then the rule is also 

called a definite clause. A definite database is a finite set of definite 

clauses.

It is possible to transform more general formulae of the form "A<-W” 

into a set of deductive rules. Here, A is an atom, W is an arbitrary first 

order formula, and all the variables in A and all the free variables in W
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are assumed to be universally quantified in front of the formula. Such 

transformations are described by Lloyd and Topor [1984].

For our integrity checking method we assume that the database before 

and after any updates is range-restricted (r-r). A database is r-r if and 

only if all the rules in it are r-r. A deductive rule is r-r if and only if any 

variable that occurs in it has an occurrence in a positive condition of the 

rule. The motivation for this restriction, which is to avoid 

"floundering", is discussed in Chapter 4.

Example 2.1:

The following rules are r-r:

P(x y) < -  Q(x y) and NOT R(y)

M(x y z) <r- P(x x) and Q(y z)

N(x y) <- Q(x z) and R(y) and NOT S(z).

The following rules are not r-r:

P(x y) < -  Q(x x) and NOT R(y)

M(x y z) P(x x) and Q(y y)

N(x y) <- Q(x y) and R(y) and NOT S(z). □

The r-r restriction corresponds exactly to Decker’s "range-restriction" 

(Decker [1987]), and to the "allowed" condition of Lloyd and Topor 

[1986] and Topor and Sonenberg [1988].
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2.2 Integrity Constraints

Our integrity checking method deals directly with constraints of the 

form

L \  and ... and Ln, n > 0,

where the Lf are literals and all variables are assumed to be universally 

quantified in front of the constraint in which they occur. We call 

formulae of this kind denials, or sometimes goals. If a literal in a denial 

is an atom then it is a positive condition of the denial, and if a literal is a 

negated atom then it is a negative condition. Denials that have positive 

conditions only are called negation-free denials (goals), or n-f denials 

(goals), for short.

Constraints must also be range-restricted, that is any variable that 

occurs in a negative condition of a denial representing a constraint must 

also have an occurrence in a positive condition of the denial.

It is also possible to deal with constraints that are in a more general 

form than denials. Given an arbitrary closed first order formula W as a 

constraint, we can replace it by a new constraint A", and add a 

rule

A <-NOT W

to the database, where A is a nullary predicate symbol that does not 

occur elsewhere in the database or the constraints. The rule 

"A<-NOT W" can then be transformed to a set of deductive rules as 

described by Lloyd and Topor [1984]. Because the resulting deductive 

rules must be range-restricted, this imposes a corresponding range- 

restriction on the form of the integrity constraint W. The restricted
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quantification condition on the constraints proposed by Bry et al [1987] 

is sufficient to ensure that the transformed rules are range-restricted. A 

closed first order formula F satisfies this condition if and only if every 

subformula of F is either of the form

3xi...3xn [Al and ... and Am and Q], m>l, 
or of the form

Vxi...Vxn [Ai and ... and Am -> Q], m>l, 
where the Aj are atoms, every variable xj occurs in at least one Aj, and 

Q is a formula. Some or all of the x{ may be free in Q.

Example 2.2:

Consider the following integrity constraint on a database D:

"Each employee has a supervisor who is a manager".

This can be represented by the first order formula:

Vx [Employee(x) -> 3y [Supervisory x) and Manager(y)]].

We replace this by a new constraint " <-A", assuming that the nullary 

predicate A does not occur in D or in any other integrity constraint on 

D. We also add the rule

A<- NOT Vx[Employee(x) 3 y[Supervisory x) and

Manager(y)]]

to the database. This rule is then transformed, as described in Lloyd 

and Topor [1984] into the following deductive rules:

A <- Employee(x) and NOT AUX(x)

AUX(x) <r- Supervisory x) and Manager(y), 

where "AUX" is a new predicate symbol not occurring anywhere else 

in the database or the constraints. □
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If a constraint W is in non-Horn clausal form, that is in the form

Bj or ... or Bm <- Aj and ... and An, n > 0, m > 0, 

where the A [  and the Bj are atoms, then W can simply be rewritten 

directly as the denial

<-Aj and ... and An and NOT B \  and ... and NOT Bm.

We show the correctness of these rewritings in Chapter 8.

Throughout this thesis we restrict our attention to sets of integrity 

constraints which are mutually consistent. Thus we do not allow, for 

example, both
A<r- and <—A

to belong to the same set of integrity constraints. Bry, Decker and 

Manthey [1987], and Bry and Manthey [1986] present an algorithm for 

checking the consistency (and finite satisfiability) of a set of integrity 

constraints. (A set of formulae is finitely satisfiable if and only if it has 

a finite model.) Their algorithm resembles the tableaux method 

(Smullyan [1968]), and is based on the principle of constructively 

interpreting the inductive definition of formula semantics. The 

algorithm is complete for unsatisfiability (as well as for finite 

satisfiability). Thus if the algorithm terminates successfully, then finite 

satisfiability, and consequently the consistency, of the formulae is 

shown. On the other hand, if the algorithm fails, then unsatisfiability, 

and therefore inconsistency, is shown. In cases where all models of the 

formulae are infinite the algorithm will not terminate. The algorithm has 

been implemented by the authors in Prolog.
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In the remainder of the thesis, without loss of generality, we assume 

that constraints are of the form of denials, unless otherwise stated.

2.3 Constraint Satisfaction

The most commonly used definition of constraint satisfaction is that a 

database D satisfies its constraints I, where I is a set of closed 

formulae, if and only if the completion of D is consistent, and every 

formula in I is a logical consequence of the completion of D. We call 

this the theoremhood view of constraint satisfaction.

The completion of a database D, denoted Comp(D), consists essentially 

of D together with the "only-if' versions of the rules in D and an 

appropriate equality theory. For a more precise definition of 

completion see Clark [1978] or Lloyd [1987]. Here it is sufficient for 

us to give the following definition.

Comp(D) consists of the completed definitions (to be described below) 

of all the relations that occur in D, together with an appropriate equality 

theory. The equality theory states certain properties of the constants 

and the function symbols in the language, for example 

c 9̂  d,

for all pairs c, d of distinct constants, 

f(xi ... xn) * c,

for each constant c and function f and any variables xj,..., xn, and
f(xi ... Xn) *  g(yl ... ym),

for all pairs f and g of distinct functions and any variables x \ ,..., xn,
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y 1 ym. 'V' denotes not equal.

The completed definitions of database relations are defined as follows. 

Let P be a relation and

(1) P(ti ... t n) <- Lj and ... and Lm

be a deductive rule defining P in database D . The t {  are terms, and the 

Iq are literals. This definition is equivalent to the following database 

rule:

(2) P(xi ... xn) <- xj=ti and ... and xn=tn

and h \  and ... and Lm,

where the x [  are variables that do not appear in (1). Recall that all the 

variables occurring in a deductive rule are assumed to be universally 

quantified in front of the rule. Thus (2) is equivalent to

(3) P(xi ... xn)<-Hyi ...3yr

Dq=ti and ... and xn=tn 

and Li and ... and Lm], 

where y^,..., yr are the variables that occur in (1). Now let 

P(xi ... xn)< - Ei

P(x 1 ...xn)<- Ek
be the transformed versions, as in (3), of all the rules in D that define 

the relation P. Then the completed definition of P is the formula 

Vxi ... Vxn [P(xi ... xn) E \  or ... or E^].

We assume that the completion of D contains a denial of 

the form

<-Q(xi ... xn)
for every n-ary predicate Q in the underlying language, such that Q is
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not defined in D (i.e. does not occur in the conclusion of any deductive 

rule in D).

The definition given above for completion is general and covers all 

deductive rules. It can, however, be simplified in certain 

circumstances. One useful simplification is as follows. Consider 

definition (1), above, of the relation P. If in (1), for some q,

1< q < n, tq is a variable, x, say, then (2) can be simplified to

P(xi ... xn) <- xi=ti and ... and xq_i=tq_i andxq+i=tq+i and 

... and xn=tn and L, 

and (3) can be simplified to

P(xi ... xn)< - 3 y 2 ...3ys

[x 1 =ti and ... and x ^ t ^  and x q+1=tq+1 

and ...and xn=tn and L],

where L is the conjunction "Lj and ... and Lm" in which the variable x 

is systematically substituted by xq, and y ,̂..., y s are all the variables 

in (1) apart from x.

Example 2.3:

Suppose relation Q is defined as follows:

Q(B C)

Q(A B).

Then the completed definition of Q is

Vx Vy [Q(x y) <-> [(x=B and y=C) or (x=A and y=B)]].

The equality theory will include the following inequalities:
B *C
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A * B  

A*C.  □

Example 2.4:

Suppose relation P is defined as follows:

P(x A)

P(x y) <- Q(x y) and NOT R(y)

P(B y) <-S(y) and T(z y).

Then the completed definition of P is the following formula:

Vx Vy[P(x y) O  [(y=A) or

(Q(x y) and NOT R(y)) or 

3z(x=B and S(y) and T(z y))]]. □

Example 2.5:

Suppose relation T is defined as follows:

T(f(x) A) <-N(x)

T(x g(y)) <-M(y x) and NOT N(h(x)).

Then the complete definition of T is:

Vxi Vx2
[T(x i X2) **[3x (xi=f(x) and X2=A and N(x)) or

3y(x2=g(y) and M(y xj) and NOT N(h(xi)))]]. □

In practice, for convenience, only the database is represented explicitly 

and reasoning with its completion is implemented through the negation
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as finite failure rule (Clark [1978]), which is described in detail in 

Chapter 4.

In our method we also appeal to the completion, but we use a definition 

of constraint satisfaction which is slightly different from the 

theoremhood view. According to our definition a database D satisfies 

integrity constraints I if and only if the completion of D is consistent 

with I. We call this the consistency view of constraint satisfaction. 

Our method also uses negation as failure to implement reasoning with 

the completion of the database.

The two definitions of constraint satisfaction are equivalent if the 

completion of the database is consistent, and for any closed formula W 

in the language of the database and the constraints, either W or its 

negation is a logical consequence of the completion of the database. 

The completion of such a database is said to be complete. The two 

definitions can give different results when the database includes 

recursive definitions.

Example 2.6:

Let database D consist of the following rule:

P<- P.

Consider the constraint 

P.

This constraint is not a theorem of Comp(D), but it is consistent with 

Comp(D). □
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Notice that if the completion of the database is consistent then any 

theorem of the completion is consistent with the completion. Thus if 

such a database satisfies its constraints according to the theoremhood 

view then it also satisfies them according to the consistency view. 

We discuss the relationship between the two definitions further in 

Proposition 4.1, in Subsection 4.1.1, where we show that, in the 

context of a particular implementation of the two views, the difference 

between them is greatly reduced.

A sufficient condition for the consistency of Comp(D) is that D be 

stratified (Apt, Blair and Walker [1988]). A deductive database is 

stratified if there is a mapping M from its set of predicate symbols to 

natural numbers (the non-negated integers) such that for every database 

rule R of the form "P(t \  ... tn)<-Conditions", where the ti are terms 

and "Conditions" is a conjunction of literals

M(Q) < M(P) if Q is a predicate of a positive condition of R, and 

M(S) < M(P) if S is a predicate of a negative condition of R.

Thus the stratification condition allows recursion but in a limited form. 

It excludes rules such as "P <- NOT P". If this rule is the only 

definition of P in a database D, then the completed definition of P 

would be

PONOTP, 

which logically implies 

P and NOTP.

Thus Comp(D) would be inconsistent.

We have chosen the consistency view not because we believe it is 

always superior to the theoremhood view, but because we believe it is
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preferable to the theoremhood view in certain situations. For example, 

the consistency view is needed for implementing abduction (see, for 

example, Eshghi and Kowalski [1988], Cox and Pietrzykowski 

[1986], or Poole [1987]). In a system which incorporates abduction, 

during the deductive process, propositions may be assumed provided 

that their addition to the database is consistent with the database and the 

integrity constraints.

Abduction has been applied to such areas as default reasoning (Eshghi 

and Kowalski [1988] and Poole [1987]), planning (Eshghi [1988]), 

natural language understanding (Kakas [1987] and Charniak and 

McDermott [1985]), and diagnosis (Cox and Pietrzykowski [1986] and 

Goebel et al [1986]).

The consistency view is also appropriate in a deductive system which 

incorporates query-the-user facilities, such as the expert system shell 

APES (Hammond and Sergot [1984]). In such systems it is important 

to check that the information volunteered by the user is consistent with 

certain pre-specified integrity constraints and the rest of the database.
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CHAPTER 3

THE CONSISTENCY METHOD: SIMPLIFIED CASE 1

In this chapter we describe the Consistency method in a simplified case 

where the database is definite, the integrity constraints are negation-free 

denials and the transactions consist of additions only. In this case the 

Consistency method proof procedure is a form of input resolution 

which allows any definite clause or negation-free denial as top clause 

and employs an unrestricted literal selection strategy. This proof 

procedure is not a special case of SL nor of SLD.

SL (Kowalski and Kuehner [1971]) is a linear proof procedure for 

non-Horn clauses which allows any clause as top clause but which 

imposes a last-in-first-out literal selection strategy. (Recall that a non- 

Horn clause is a formula of the form

B i  or ... or Bm <- A i and ... and An, n > 0, m > 0,

where the Aj and the are atoms.)

SLD (Apt and van Emden [1982]) (also called Lush resolution in Hill 

[1974]) is an input proof procedure for definite clauses which allows an 

unrestricted literal selection strategy (as liberal as ours) but which 

allows only negation-free denials as top clauses. SLD is the underlying 

proof procedure of Prolog without negation as failure. The difference 

between input and linear proof procedures, and the relationship 

between our proof procedure and SL and SLD will become more clear 

as this chapter progresses.

32



Our proof procedure for this simplified case can be most easily 

understood if it is viewed as an extension of SLD which retains SLD's 

unrestricted literal selection, but which allows definite clauses as well 

as negation-free denials as top clauses.

This chapter is divided into three sections. In 3.1 we describe our 

proof procedure in this simplified case by first describing SLD and then 

extending it. In 3.2 we illustrate the application of the Consistency 

method through examples, and in 3.3 we compare our simplified proof 

procedure with SL.

3.1 The Proof Procedure

3.1.1 The SLD Proof Procedure

SLD is an input proof procedure for definite clauses. A derivation in 

SLD consists of a (possibly infinite) chain of resolvents as in the figure 

below:
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n-f Denial Input Clause 1

Figure 3.1: The form of an SLP derivation

The input clauses are the rules in the database. A selection function, 

also called a computation rule in the sequel, selects an atom to be 

resolved upon next in each resolvent in the chain. Each (i+l)th 

resolvent is obtained by the resolution of the (i)th resolvent on its 

selected atom with an input clause. This is the distinguishing 

characteristic of every input proof procedure. We describe the SLD 

proof procedure more formally in the rest of this subsection. Lloyd 

[1987] presents an alternative approach.

A computation rule is a function from derivations to atoms. It selects an 

atom from the last formula in the derivation.

Let S be a set of definite clauses, G a negation-free denial and R a 

computation rule. An SLD derivation of Su{G}, where "u" denotes 

set union, via R is a (possibly infinite) sequence Gq, Gj, G2 , such 

that G=Gq and for each i, i >0, G [ + \  is obtained from Gj as follows. 

Suppose R selects from Gj an atom occurrence A. Then Gj+j is the 

resolvent on A of Gj and some clause in S which resolves with G [  on

A. S is called the input set, and G is called the top clause. Each Gj,
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for i>0, is either a negation-free denial or the empty clause.

A refutation of Su{G} via R is a derivation of Su{G } via R which 

ends at the empty clause.

A negation-free goal G succeeds from S if and only if for some 

computation rule R there is an SLD refutation of Su{G} via R.

A finitely failed derivation of Su {Gq} is a derivation Gq, G \ ,... , Gn> 

n>0, such that Gn is not the empty clause, and Gn does not resolve on 

its selected atom with any clause in S.

An SLD search space for S u {Gq} via R is the set of all SLD 

derivations of Su {Gq} via R such that any finite derivation in the set is 

either a refutation or a finitely failed derivation.

Notice that because of the definition of computation rule, for any two 

derivations of the form

Go, G i ,  Gfc, Gk+ i,  ...

Go, Gi, ..., Gj,-, G'k+i, ...
in a search space, the same literal is selected from G^. This is less 

restrictive than having to select the same atom from any two identical 

goals occurring on different derivations in the search space.

A finitely failed search space is a search space that consists entirely of 

finitely failed derivations.

The SLD proof procedure is correct because the only inference rule it
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uses is resolution, and resolution has been proved correct by Robinson 

[1965]. SLD has been proved complete by Clark [1979] and Hill 

[1974]. The proofs are also presented in Lloyd [1987]. The

correctness of SLD means that if for some computation rule R there is 

an SLD refutation of Su{G} via R, then Su{G} is inconsistent. The 

completeness of SLD means that if Su{G} is inconsistent, then for all 

SLD computation rules R there is an SLD refutation of Su{G} via R.

By correctness of SLD, if a negation-free goal "f-W" succeeds from S 

then "Bxj ... 3xn W" is a logical consequence of S, where the xj are all 

the variables that occur in W.

Example 3.1:

Suppose goal G is ”<-P(A)" and input set S consists of the following 

rules:

(1) P(x) 4- Q(x) and R(x y)

(2) P(x) 4- S(x y) and T(y)

(3) Q(x) <-T(x)

(4) T(A) (5) R(A B) (6) S(A B)

Then the following represents an SLD search space for Su{G }. 

Throughout the thesis "[ ]" denotes the empty clause. Whenever more 

than one literal is candidate for selection, the selected literal is 

underlined. The numbers on the arcs denote input clauses that are used 

for resolution.
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<-Q[A) and R(A y) < - S (A y) and T(y)

(6)

<-T(B)

(4)

<-R(A y)

(5)

[]

(3)

<r-T (A ) and R(A y)

Figure 3.2: An SLD search space for example 3.1

The search space consists of two derivations, a refutation on the left 

and a finitely failed derivation on the right. The refutation proves that 

"P(A)" is a logical consequence of S. □
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3.1.2 Our Proof Procedure

As mentioned earlier, to exploit the assumption that the database 

satisfies its constraints prior to the transaction, the Consistency method 

reasons forward from the updates. Thus the underlying proof 

procedure must allow as top clauses deductive rules (facts or non- 

atomic rules) corresponding to updates that insert them into the 

database, and denials corresponding to updates that add new integrity 

constraints. In the more general case described in Chapter 4, the proof 

procedure must also allow negated facts as top clauses. This is needed 

to deal with deletions from the database, as will be seen later. When 

the input set is definite and the top clause is a negation-free denial, our 

proof procedure is identical to SLD. In all other cases our proof 

procedure is an extension of SLD.

Below, we describe the simplified version of our proof procedure 

needed for the simplified case discussed in this chapter. This proof 

procedure extends SLD by allowing as top clauses definite clauses as 

well as negation-free denials.

As in SLD, a computation rule in our proof procedure is a function 

from derivations to atoms, such that it selects an atom from the last 

formula in the derivation.

Let input set S consist of a set D of definite clauses and a set I of 

negation-free denials. Let C be an element of D or I, and let R be a 

computation rule. A derivation for S via R with top clause C in our
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proof procedure is a (possibly infinite) sequence Cq, Cj, C2 , such 

that C=Cq, and for all i, i > 0, C [ + \ is the resolvent of Cj, on the atom 

occurrence selected by R, and a definite clause or a denial in S. Each 

Cj is thus a definite clause, a negation-free denial, or the empty clause.

As in SLD, a refutation in our proof procedure is a derivation that ends 

at the empty clause, and a negation-free goal G succeeds from S if and 

only if for some computation rule R there is a refutation via R with G as 

top clause and S as input set.

A finitely failed derivation via R is a derivation C q , C 1 , ..., Cn, via R 

such that Cn is not the empty clause, and Cn does not resolve on its 

selected atom with any definite clause or denial in the input set.

A search space for S via R with top clause Cq is the set of all 

derivations for S via R with Cq as top clause, such that any finite 

derivation in the set is either a refutation or a finitely failed derivation.

A finitely failed search space is a search space that consists entirely of 

finitely failed derivations.

In Chapter 8 we prove that our proof procedure is correct and complete 

for integrity checking in the special case discussed here, in the 

following sense.

Let T name a transaction. Thus T consists of one or more updates, 

where each update is an addition of a definite clause, or an integrity 

constraint in the form of a negation-free denial. Suppose D and DT
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name the database before and after the transaction, respectively, and let 

I and IT name the set of constraints before and after the transaction, 

respectively. We use this naming convention throughout the thesis.

The correctness of our method is defined as follows. If for some 

computation rule there is a refutation of DTuIT with an update in T as 

top clause, then Comp(DT)uIT is logically inconsistent, and thus the 

transaction violates the constraints. Conversely, completeness is 

defined as follows. If Comp(D) u l is consistent but Comp(DT)uIT is 

not, then for all computation rules R and for some update C in T there 

is a refutation of DTuIT via R with C as top clause. As a corollary to 

completeness, if for all updates C in T there is a finitely failed search 

space for DTuIT with C as top clause, via some computation rule, 

then Comp(DT)uIT is consistent, and therefore the transaction satisfies 

the constraints.

In our use of the terms "correctness" and "completeness" we have taken 

a theorem proving point of view. From the integrity checking point of 

view it is also important to consider the notion of "soundness", which 

is the combination of correctness and the above corollary to 

completeness.

In general, when a refutation is obtained it can be examined to identify 

the clauses that contribute to the proof of inconsistency, and which are 

therefore candidates for revision to restore integrity.
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3.2 Examples

In this section we illustrate our method through a series of examples. 

The method is described more generally in Chapter 5.

3.2.1 Adding Facts

Example 3.2:

In this example the transaction consists of a single insertion into the 

database, and the database is relational, that is it consists entirely of 

facts that contain no variables. "Rank(x y)" expresses that x has rank 

y, and "Proj(x y)" expresses that x works on project y.

E*

(1) Rank(John Lect) (5) Proj(John LAW)

(2) Rank (Tom Prof) (6) Proj(Tom MMI)

(3) Rank(Mary Lect) (7) Proj(Mary PARLOG)

(4) Rank(Peter Reader) (8) Proj (Peter MMI)

(9) Proj(Jo MMI)

I:
(IC) < -  Rank(x Lect) and Proj(x MMI)

The constraint states that no lecturer works on project MMI (man- 

machine interface).
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T:

Insert Rank(Jo Lect).

Let us assume (correctly) that D satisfies its constraint. To determine 

whether the updated database, i.e. DT=Du{Rank(Jo Lect)}, still 

satisfies the constraint we apply our proof procedure with DTuI as 

input set and the update as top clause. We obtain the following search 

space.

Rank(Jo Lect)

(IC)

<-Proj(Jo MMI)

(9)

[]
Figure 3.3: A search space for example 3.2 with the update as top 

clause

The search space consists of a single refutation illustrating that the 

transaction violates the integrity constraint.

The advantage of selecting the updates as top clauses is that it limits 

attention to the relevant parts of the database and the relevant 

instantiations of the integrity constraints.

If the completion of the database is consistent, then any inconsistency 

must involve an integrity constraint. The completion of a relational 

database is always consistent, since a relational database is stratified. 

Thus in example 3.2, instead of the update we can choose the constraint

42



as top clause, while still using the updated database as input set. This 

results in the following search space, given the literal selection rule 

indicated by underlining. Because the top clause is a negation-free 

denial the same search space is obtained by the SLD proof procedure as 

well.

<-Rankfx Lect) and Proj(x MMI)

(9)

[]

Figure 3.4: A search space for example 3.2 with the constraint as top 

clause

This search space consists of two finitely failed derivations and a 

refutation. As the search space in figure 3.3, figure 3.4 also 

demonstrates that the updated database violates the integrity constraint 

(because of the correctness of our proof procedure, as shown in 

Chapter 8, or alternatively because of the correctness of SLD). 

However, it is larger than the previous search space, because it does 

not take advantage of the assumption that the constraint is satisfied 

before the transaction. The alternative literal selection strategy that 

chooses the second literal of the constraint would also result in a search

43



space as large as figure 3.4, with two finitely failed derivations and one 

refutation. □

Note that we have defined constraint satisfaction in terms of the 

completion of the database. But we have described the correctness and 

completeness results of the SLD proof procedure in terms of the 

database, itself, and not its completion. This apparent incongruity is 

resolved by the following proposition.

Proposition 3.1:

Let D be a set of definite clauses, and I a set of negation-free denials. 

Then D u l is logically inconsistent if and only if Comp(D)uI is 

logically inconsistent.

Proof:

(1) Suppose D ul is logically inconsistent. D is a logical consequence 

of Comp(D) (Lloyd [1987]). Therefore Comp(D)uI is also logically 

inconsistent.

(2) Suppose Comp(D)uI is inconsistent. Let I be the set of constraints 

{<” C i , ...,< - Cn}, where each Q  is a conjunction of atoms. 

Comp(D)uI is inconsistent. So Comp(D) is inconsistent with

NOT 3x*i Ci and .... and NOT 3x*n Cn, 

where each x*i is a vector of all the variables that occur in Ci. So 

3x* iC i or.... or 3x*n Cn 

is a logical consequence of Comp(D).
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Now any positive sentence that is a consequence of Comp(D) is also a 

consequence of D (Theorem 15 of Shepherdson [1988]). (A sentence is 

positive if and only if it is built up using only the connectives "and" and 

"or", and the quantifiers "V" and "3".) So 

3x*i Ci or.... or 3x*n Cn

is a logical consequence of D. Therefore D ul is inconsistent. □

3.2.2 Adding Non-Atomic Database Rules

The insertion of non-atomic rules is treated exactly as the addition of 

facts, as shown in the following example.

Example 3.3:

(The relations, below, are intended to have their intuitive meaning.)

D.

(1) Eligible(x SERC-grant) <- Student(x) and

Citizen(x UK)

(2) Eligible(x Brit-Council-award) < -

Student(x) and 

Citizen(x y) and 

Dependent-territoiy(y)

(3) Dependent-territory(Falkland-Islands)

(4) Student(Mary)

(5) Citizen(Mary Falkland-Islands)

(6) Student(Tom)

(7) Citizen(Tom UK)
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(IC) <r- Eligible(x SERC-grant) and

Eligible(x Brit-Council-award)

The constraint states that no one is eligible for both an SERC grant and 

a British Council award.

I:

T:

Insert Citizen(x UK) <r- Citizen(x Falkland-Islands).

As before we use the update as top clause and the updated database and 

the constraint as input set. The following refutation shows that the 

update violates the constraint.
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Citizen(x UK) <- Citizenfx Falkland-Islands)

(5)

Citizen(Mary UK)

( 1 )

Eligible(Mary SERC-grant) StudentfMarv'}

(4)

Eligible(Mary SERC-grant)

(IQ

<- Eligible(Mary Brit-Council-award)

(2)

< -  StudentrMarŷ  and Citizen(Mary y) and
Dependent-territory(y)

(4)

< -  Citizen (Mary v) and Dependent-territory(y)

(5)

< -  Dependent-territory(Falkland-Islands)

(3)
[]

Figure 3.5: A refutation for example 3.3 with the update as top clause
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The complete search space contains two other derivations that fail 

finitely. □

3.2.3 Adding Integrity Constraints

This case is similar to the cases of adding facts and non-atomic rules. 

Thus if a negation-free denial (IC) is to be added to the set of integrity 

constraints then (IC) is selected as top clause for the proof procedure.

3.2.4 Transactions With Multiple Updates

In general, when a single transaction consists of several updates, each 

update is a candidate top clause. The input set, as usual, consists of the 

updated database and the updated set of integrity constraints. If an 

update leads to a refutation then the transaction violates the integrity 

constraints. (The proof of inconsistency can then be analysed to 

determine which of the updates contribute to the inconsistency, and to 

identify candidate database clauses or constraints for revision to restore 

integrity.) If all the updates lead to finitely failed search spaces, and 

our method is complete for the given case, then the transaction satisfies 

the constraints.
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Example 3.4:

In this example

On-sand(x)" means x is on a sandwich course,

Grad(x)" means x is a graduate,

Intro(x)" means x is an introductory course,

Prac(x)" means x is a practical course,

Takes(x y)" means x takes course y,

Adv(x)" means x is an advanced course,

Sponsored-by(x y)n means x is sponsored by y, and

Supervised-by(x y)" means x is supervised by y.

D:

(1) Grad( Alice)

(2) Grad(Tom)

(3) Grad(Dick)

(4) On-sand(John)

(5) On-sand(Mary)

(6) Sponsored-by(John BT)

(7) Intro(Cl) (10) Prac(Cl) (13) Adv(C5)

(8) Intro(C2) (11) Prac(C2) (14) Adv(C6)

(9) Intro(C3) (12) Prac(C5)

(15) Takes(x y) Prac(y) and On-sand(x) and Sponsored-by(x BT) 

I:

(IC1) < -  Intro(x) and Adv(x)

(IC2) <-Sponsored-by(x BT) and Supervised-by(x Prof-Smith)
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T:

Insert {(IC3) <-Grad(x) and Takes(x y) and Intro(y)

(16) Adv(C7)

(17) Supervised-by(x Prof-Smith) < -  Grad(x) and

Takes(x C6)}

D satisfies I. The transaction consists of three updates, two insertions 

into the database and one insertion of a new integrity constraint. To 

check if DT satisfies IT, each of the three updates must be considered 

as top clause. In each case the input set consists of DTuIT, i.e. 

Du{(16), (17)}uhj{(IC3)}. The three search spaces are shown 

below. All three fail finitely. Our method is complete for this example, 

as will be shown in Chapter 8. Therefore we can conclude that the 

updated database satisfies its constraints.

<r- Grad(x) and Takesfx y) and Intro(y)

(15)

Grad(x) and Prac(y) and On-sand(x) and 

Sponsored-bv(x BT) and Intro (y)

(6)

*-GradfJohh) and Prac(y) and On-sand(John) and Intro(y)

Figure 3.6: A search space for example 3.4 with an update as top 

clause
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Adv(C7)

(IC1)

<-Intro (C7)

Figure 3.7: A seach space for example 3.4 with an update as top 

clause

Supervised-bvfx Prof-Smith') <-Grad(x) and Takes(x C6)

(IC2)

<-Grad(x) and Takes(x C6) and Sponsored-bvfx BT')

(6)

<“ Grad{John} and Takes(John C6)

Figure 3.8: A search space for example 3.4 with an update as top 

clause □

Note that we are using the term "forward reasoning" rather loosely in 

this thesis. Strictly speaking, forward (or bottom-up) reasoning uses 

facts and non-atomic rules to derive new facts. For example, given a 

fact

A and a rule

B <-A, we derive the fact

B by forward reasoning.
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Backward (or top-down) reasoning uses denials and rules to derive 

new denials. For example, given a denial 

and B and a rule

B<-C and D, we derive the denial 

A and C and D by backward reasoning.

Finally, middle-out reasoning uses non-atomic rules to derive new 

rules. For example, given two rules 

A<-B and

B<-C, we derive the rule

A<-C by middle-out reasoning.

A discussion of these three forms of reasoning can be found in 

Kowalski [1979].

We use the expression "forward reasoning from the updates" to 

emphasize the use of the updates as top clauses. The actual reasoning, 

strictly speaking, can be any combination of forward, backward or 

middle-out according to the above criteria. Nevertheless, even then the 

Consistency method reasons forward in a more general sense of 

deriving consequences from asserted information.

3.3 Comparison With SL

SL (Kowalski and Kuehner [1971]) is a linear proof procedure for 

non-Horn clauses. It allows any non-Horn clause as top clause, and 

insists on a last-in-first-out literal selection strategy. The name SL
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stands for Linear resolution with Selection function.

A derivation in any linear proof procedure is a (possibly infinite) 

sequence of clauses So, S \ ,  S2 , s u c h  that So is the top clause, and 

for all i, i > 0, S [ + i  is obtained by the resolution of S | on its selected 

literal

either (a) with an input clause,

or (b) with an Sj, for some j, j<i. The resolution in (b) is 

called ancestor resolution.

In SL, as well as (a) and (b), above, two other operations, called 

factoring and truncation, can be used to obtain the (i+l)th clause in the 

derivation. These operations do not, however, play a part in the cases 

we are considering in this chapter, and we therefore ignore them.

SL is more general than our proof procedure, because it caters for non- 

Horn clauses. It, however, has one major disadvantage compared to 

our proof procedure, and that is its insistence on a last-in-first-out 

literal selection strategy. Suppose S [+ \  is a clause in an SL derivation, 

obtained by the resolution of Sj, on its selected literal, with an input 

clause B [. Then the selection function must choose from S [+ \  a literal 

which is contributed by B; in preference to any contributed by S[.  

Furthermore, in all subsequent steps no literal contributed by S [ can be 

selected until all those contributed by B j are resolved away.

This inflexibility in literal selection affects the efficiency of SL. In 

general, in the cases that we are considering in this chapter, we can 

simulate SL by our proof procedure. Therefore our procedure can be at
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least as efficient as SL. However, there are cases where our procedure 

allows much greater efficiency than SL. Example 3.4 illustrates such a 

case. The SL search space corresponding to figure 3.6 with (IC3) as 

top clause is shown below. To save space we have used to denote 

the logical connective "and".

<-Grad(x), Takesfx y ) . Intro(y)

(15)

<-Grad(x), Intro(y), Prac(y), On-sand(x), Sponsored-bvfx BT)

(6)

<-Grad(John), Intro(y), Prac(y), On-sandfJohn)

(4)

<-Grad(John), Intro(y), PracM

Intro(Cl) Intro(C2) Intro(C5)

Figure 3.9; An SL search space for example 3.4 with an update as 

top clause

This search space is bigger than the corresponding one in figure 3.6, 

because in figure 3.9 the literal "Grad(John)" cannot be selected until all
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the literals contributed by input clause (15) in the first resolution step 

are resolved away.
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CHAPTER 4

THE CONSISTENCY METHOD: SIMPLIFIED CASE 2

In this chapter we extend our method to deal with deductive databases, 

integrity constraints that are in the form of denials, with or without 

negative conditions, and transactions that add, delete or modify 

database rules, or add or delete constraints. We do not, however, cater 

for implicit deletions here, although we discuss them briefly in 

Subsection 4.2.5. In the next chapter, we extend our method to deal 

with implicit deletions as well.

In general, a knowledge assimilation system contains at least two 

stages. Suppose a user requests a change to the logical contents of the 

database. Stage 1 determines what transactions consisting of explicit 

(physical) insertions and deletions would satiafy the user's request. 

There could be several such transactions. Once one of them has been 

chosen, stage 2 then determines if the database that results from 

performing the transaction satisfies the integrity constraints.

For example, suppose we have a database 

D: A<-B

B<-C 

E<-F 

G<-F 

F

and a user requests the logical addition of A and the logical deletion of
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E. The user's request can be interpreted as requesting that the database 

be updated so that A becomes a consequence of the completion of the 

database, but E stops being a consequence of the completion. In 

general, several alternative transactions will achieve the desired effect. 

The choice can be made autonomously by the database management 

system or by interaction with the user.

Two possible transactions g? physical updates that can be determined 

by stage 1 are, for example,

{insert A, delete F} or 

{insert C, delete E<-F}.

Given one of these, stage 2 attempts to determine if the new database 

satisfies the integrity constraints.

This thesis only deals with this second stage, and does not address the 

first stage at all. The term "implicit deletion" is not concerned with the 

first stage. It is concerned with deletions that occur implicitly as 

consequences of physical insertions and deletions. For example, G is 

"implicitly deleted" in the above database as a consequence of the first 

transaction. We describe "implicit deletions" in more detail and 

exemplify them further in Subsection 4.2.5.

In this thesis, by an "update" we mean a physical insertion or a physical 

deletion determined by stage 1, and by a "transaction" we mean a set of 

such updates.
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To deal with the simplified case of this chapter we extend the proof 

procedure described earlier in 3.1.2 to cater for negative conditions and 

explicit deletions. This extended proof procedure can probably be most 

easily understood as an extension of the SLDNF proof procedure 

(Lloyd [1987]), which, in turn, is an extension of SLD. SLDNF is the 

underlying proof procedure of Prolog, and extends SLD by 

incorporating the negation as failure rule. Similar to SLD, SLDNF only 

allows denials as top clauses.

In general, when Comp(DT) is consistent, to check if Comp(DT)uIT is 

consistent, the integrity constraints in IT can be used as top clauses 

with the SLDNF proof procedure. Suppose the denial (IC) is a 

constraint in IT. If there is an SLDNF refutation with (IC) as top clause 

and DT as input set, then (IC) is violated in the database. But if there is 

an SLDNF finitely failed derivation with (IC) as top clause, and 

SLDNF is complete for the given case, then (IC) is satisfied. (SLDNF 

refutation and derivation are described formally shortly.) However, as 

argued earlier, using the constraints as top clauses can be very 

inefficient, because it fails to exploit the assumption that the database 

satisfies its constraints prior to the transaction. To reason forward from 

the updates, and thus to avoid this inefficiency, our proof procedure 

extends SLDNF by allowing as top clauses any deductive rules (facts 

or non-atomic rules), as well as denials. In addition, a top clause can be 

a negated fact representing an explicit deletion, as we shall see shortly.

This chapter is divided into two sections. In 4.1 we first describe 

SLDNF, and then extend it to describe our proof procedure. In 4.2 we
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illustrate the application of our method through a series of examples.

4.1 The Proof Procedure

4.1.1 The SLDNF Proof Procedure

A computation rule for SLDNF is a function from derivations to literals 

such that it selects a literal from the last formula in the derivation. A 

computation rule is safe if and only if it does not select negative 

conditions unless they are ground, i.e. contain no variables.

Let input set S be a set of deductive rules, G a denial and R a safe 

computation rule. An SLDNF derivation of Su{G} via R is a 

(possibly infinite) sequence Go, Gi, G2 , such that Go=G, and for 

all i, i >0, Gj+i is obtained from Gj by one of (a) or (b) as follows:

(a) Let Gi be "<-Li and ...and Ln", and suppose R selects a positive 

condition Lfc from Gj. Then Gj+i is the resolvent on Lfc of G [  and 

some input clause in S.

Here, by "resolvent” we mean the obvious generalisation of the 

standard notion of resolvent: Let C be a deductive rule 

A < -  L’i and ... and L’m

in input set S, such that A and L  ̂unify with most general unifier (mgu)

<[). Then by "resolvent" of Gi and C on L  ̂we mean the formula 
<—(Lx and ... and L ^ i and L^+i and ... and Ln and 

L'i  and ... and L'm)(j).

(Note that this is a generalisation of resolution because the Li and the
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L j can be positive (as in ordinary resolution) or negative.)

(b) Let G| be " and ...and Ln", and suppose R selects from Gi a 

literalL^, which is a negated atom "NOT A". An attempt is made to 

construct a finitely failed SLDNF search space for Su{<-A} via some 

safe computation rule. If the attempt succeeds then Gj+i is G [  with the 

selected literal removed. If the attempt fails finitely then there is no 

Gi+i . This step is the negation as finite failure step in SLDNF.

As in SLD, G is called the top clause. Each Gi, for i>0, is either a 

denial or the empty clause.

Similarly to the definition of SLD, an SLDNF refutation is an SLDNF 

derivation that ends at the empty clause, and a goal G succeeds if and 

only if there is a refutation with G as top clause.

A finitely failed SLDNF derivation is an SLDNF derivation Go, 

G i,..., Gn, n>0, such that Gn is not the empty clause, and it is not 

possible to construct a derivation Go, G \ ,..., Gn, G n + \ .  That is the 

selected literal of Gn is either a negative condition "NOT A" and "<-A" 

succeeds, or the selected literal is a positive condition and Gn has no 

resolvent on this literal with any of the deductive rules in the input set.

SLDNF search spaces and finitely failed SLDNF search spaces are 

defined exactly as their SLD counterparts.

The SLDNF proof procedure has been proved correct for any set of 

deductive rules and goals (Clark [1978]), and complete for certain
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restricted cases (Clark [1978], Jaffar, Lassez and Lloyd [1983], 

Barbuti and Martelli [1986], Kunen [1987 and 1988], Cavedon and 

Lloyd [1987], and Shepherdson [1988] ). Correctness of SLDNF 

means that if for some safe computation rule R, there is an SLDNF 

refutation of Su{G } via R, then Comp(S)u{G} is inconsistent. 

Completeness, in those cases where it applies, means that if 

Comp(S)u{G} is inconsistent, then for all safe computation rules R 

there is an SLDNF refutation of Su{G } via R. (This is an 

oversimplification of the completeness result for SLDNF. We will give 

the exact result in Chapter 8.)

By correctness of SLDNF, if a goal "4-W" succeeds from input set S 

then "3xi...3xnW" is a logical consequence of Comp(S), where 

x i ,..., xn are all the variables occurring in W.

Example 4.1:

Suppose we have the following database, transaction and integrity 

constraint:

D

(1) P(x) 4- R(x)

(2) Q(B) 4- S(B x) and NOT T(x)

(3) R(A)

(4) R(B)

(5) Q(A)

(6) S(B A)
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(IC) <-P(x) and NOT Q(x)

I:

T:

Insert R(C).

Then the following is an SLDNF search space for DTuI. Dotted 

vertical lines denote subsidiary computations for the negation as failure 

steps.
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<-P£x) and NOT Q(x)

(1)

<-R£x) and NOTQ(X)

<-Q(A)
fails

which it does not 

because of (5)

«-Q(B)
 ̂ fails
I
i if

<—SfB_z) and NOT T(z)
 ̂ failsI
i if

«-Q(C) 
fails

[] which it 

does

<-NOT T(A) 

j fails

I if
^T (A )

succeeds 

which it does not

Figure 4.1: An SLDNF search space for example 4.1 with the 

constraint as top clause

The search space consists of three derivations, two of which fail 

finitely. The third which is a refutation shows that Comp(DT)uI is
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logically inconsistent, and that therefore the transaction violates the 

integrity constraint.

Notice that the update contributes only to the rightmost derivation of the 

search space. The other two derivations only use clauses from D ul, 

that is the old database and the constraint. Thus these two derivations 

are also derivations for D u l. In effect, they redundantly investigate 

instances of the constraint that are not affected by the transaction. It is 

to avoid such redundancies that the Consistency method uses the 

updates as top clauses, thus concentrating only on what is affected by 

the transaction, and ignoring what remains unchanged.

It is instructive to compare the search space in figure 4.1 with the 

search space for proving that (IC) is a theorem of the completion of DT. 

To prove the theoremhood of (IC) we have to negate it and use it as top 

clause for an attempted SLDNF refutaton. The negation of (IC), 

however, is

3x [P(x) and NOT Q(x)],

which is not in an appropriate form for SLDNF. We can overcome this 

problem by defining a new relation "Constraint-satisfied" as follows:

(1) Constraint-satisfied <— NOT 3x [P(x) and NOT Q(x)], 

and then using the goal

<—Constraint-satisfied 

as top clause.

The definition of "Constraint-satisfied" can be transformed into 

deductive rules, using transformation steps described in Lloyd and 

Topor [1984], yielding the following rules that would be considered as
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part of the database, both before and after the transaction:

(2) Constraint-satisfied <— NOT AUX

(3) AUX <- P(x) and NOT Q(x), 

where "AUX" is a new nullary relation.

Now using Constraint-satisfied" as top clause we obtain the 

following SLDNF search space.
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<r- Constraint-satisfied

<-NOT AUX 
Jsucceeds

lif
< - A U X  

J fails

l if
<-P[x) and NOT Q(x) 

 ̂fails

!if
<-R(x) and NOT Q(x) 

fails if

<-NOTQ(A)
fails if 

I
< -Q (A )

succeeds 

which it does

<-NOTQ(B)
J fails if

J succeeds if

< - S (B z) and NOT T(z)

J succeeds if

NOTT(A)
I
I succeeds if 

*-T(A)
fails, which it does

Figure 4.2; An SLDNF search space for example 

prove the theoremhood of the constraint

<-j-NOT Q(C) 
fails if

i<-Q(C)
succeeds 

which it does not

4.1 attempting to
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The search space fails finitely. Therefore, by Theorem 18.6 of Lloyd 

[1987], the negation of (IC) is a theorem of Comp(DT). So (IC) is not 

a theorem of Comp(DT), since Comp(DT) is consistent, because DT is 

stratified.

Notice that except for the first three steps and the success/failure labels 

figure 4.2 is identical to figure 4.1. Thus although the two views of 

integrity satisfaction are conceptually different, operationally, the work 

involved in checking consistency, with the constraints as top clauses, is 

virtually the same as the work involved in attempting to prove 

theoremhood of the constraints. □

In general we can prove the following:

Proposition 4.1:

Let S be a deductive database, and let" <-C" be an integrity constraint 

on S, where C is a conjunction of literals. Then:

(i) there exists an SLDNF refutation of Su{<-C}, which shows that 

the constraint is inconsistent with Comp(S), if and only if the attempt to 

show by SLDNF that the constraint " <-C" is a theorem fails finitely, 

and

(ii) there exists an SLDNF proof of the integrity constraint" <-C" as a 

theorem if and only if the attempt to show that the constraint is 

inconsistent fails finitely by SLDNF.

(This Proposition is part of problem 9, on page 138 of Lloyd [1987].)
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Proof:

The proof is a direct generalisation of the preceding example.

(i) The "only if' half:

Suppose there is an SLDNF refutation of Su{<-C}. To attempt to 

prove the theoremhood of "<-C", as in example 4.1, we introduce a 

new relation, "Theorem", say, with the following definition:

Theorem < -  NOT 3x* C,

where x* is a vector of all the variables that occur in C. The definition 

of "Theorem" can be transformed into the following deductive rules, as 

in example 4.1:

(1) Theorem < -NOT AUX

(2) AUX <- C,

where "AUX" is a new nullary relation.

Now using the goal Theorem" as top clause, we obtain the 

following SLDNF search space. We show an incomplete search space 

because we do not need to consider the details of the success of "<-C".
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<—Theorem

<-NOT AUX 

I succeeds
I
i rf

<-AUX
 ̂ fails 
I

I *
<-C

fails

which it does not,

because there is an SLDNF refutation of Su{«-C}.

Figure 4.3: A finitely failed SLPNF search space

Thus the attempt to show the theoremhood of the constraint by SLDNF 

fails finitely.

The "if half of (i) follows by a similar argument.

(ii) The "if half:

Suppose there is an SLDNF finitely failed search space for Su{<-C}. 

Then the SLDNF search space with the goal Theorem" as top clause 

is as follows. We show an incomplete search space because we do not 

need to consider the details of the failure of C".
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<—Theorem

<-NOT AUX
 ̂ succeeds

1 if 
I

<-AUX
J fails 

i
<-C

fails

[ ] which it does,

because there is a finitely failed SLDNF search space for Su{<-C}. 

Figure 4.4: An SLDNF search space

Thus there is an SLDNF proof of the theoremhood of the constraint. 

(Figure 4.4 shows that "Theorem" is a theorem of 

Comp(Su{(l),(2)}). Then by Lemmas 3 and 1 of Lloyd and Topor 

[1984], (IC) is a theorem of Comp(S).)

The "only if' half of (ii) follows by a similar argument. □
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Proposition 4.2:

If Comp(S) is consistent and there is an SLDNF finitely failed search 

space for Su{<-C}, then Comp(S)u{<-C} is consistent, and 

therefore the constraint "4-C" is satisfied in S according to the 

consistency view.

Proof:

The proof is trivial. By Clark's correctness result of negation as failure 

(Clark [1978], also Theorem 15.4 of Lloyd [1987]), "<HC" is a 

theorem of Comp(S). The Proposition follows, since any theorem of a 

consistent theory is itself consistent with the theory. □

As we shall see shortly, our proof procedure is identical to SLDNF 

when the top clause is a denial.

4.1.2 Our Proof Procedure

To deal with the general case considered in this chapter the Consistency 

method proof procedure that was described in 3.1.2 needs to be 

extended in three ways. It needs to incorporate the negation as failure 

step for solving negative subgoals, it needs to allow reasoning forward 

from updates that are deletions, and finally it needs to incorporate 

additional inference rules for implicit deletions (to be described later).
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To motivate our proof procedure, we first describe our scheme for 

associating top clauses with updates, particularly with updates that are 

deletions.

We assume that the transaction consists of a set, al, and a set, dl, of 

deductive rules (and a set, ml, to be described later, specifying 

modifications to existing rules) such that the rules in al are to be 

explicitly added to the database, and such that all rules occurring 

explicitly in the database that are variants of a rule in dl are to be 

explicitly deleted from the database. (A clause C is a variant of a clause 

C' if C is identical to C  up to a renaming of variables.)

A fact F is explicit in a database D if F has an explicit occurrence in D. 

F is implicit in D if it is a logical consequence of Comp(D'), where 

D'=D-{F}.

An update of deleting a fact which is both explicit and implicit deletes 

the explicit occurrence only.

We assume further that al does not contain any variants of rules in dl. 

Thus, for example, a transaction cannot include the addition of a rule 

"P(x) <-Q(x y)" and the deletion of a rule "P(z) <-Q(z x)".

If an update is a deletion of a fact A, which is not implicit in the updated 

database, then we use the negated fact "NOT A" as top clause, and thus 

in effect reason forward from the fact that A is not provable in the 

updated database (or from the fact that the negation of A is a logical 

consequence of the completion of the updated database). "NOT A" is
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the tog clause associated with the update.

If an update is a deletion of a non-atomic deductive rule, then we first 

determine what instances of the conclusion of this rule are deleted as a 

result of the deletion of the rule, and then select as top clauses the 

negation of these deleted instances. These negated facts are the top 

clauses associated with the update.

If an update is a deletion of an integrity constraint, then it cannot 

possibly cause an inconsistency, and therefore we do not need a top 

clause associated with it.

We treat updates that are additions exactly as described in the last 

chapter. That is if an update is the addition of a deductive rule or an 

integrity constraint R, then we use R as top clause as it stands. R is the 

top clause associated with the update. Of course, if R is a constraint 

and it is not in the form of a denial, then it first has to be transformed 

into the required form as described in Chapter 2.

Finally, updates that modify existing rules are treated as a combination 

of additions and deletions.

Given this scheme for associating top clauses with updates, the proof 

procedure has to allow as top clause any deductive rule, denial or 

negated fact. In the rest of this thesis, for convenience, we use the term 

"clause" loosely to refer to any of these types of formulae.

The resolution and negation as failure steps cater for reasoning forward
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from deductive rules and denials. To deal with reasoning forward from 

negated facts we incorporate in the proof procedure an "extended" 

resolution step that allows the resolution of a negated fact 

NOT A' 

and a rule

B < -  NOT A and C

on the underlined literals if the atoms A and A' unify. §  is the most 

general unifier (mgu) of "NOT A" and "NOT A'" if and only if it is the 

mgu of A and A'. The resolvent is then 

(B<-C)<|>.

This step is an "extended" resolution step only in the sense that it is not 

incorporated in the SLDNF proof procedure. The step, however, is, in 

fact, a standard resolution step, as shown by Proposition 8.2 in 

Chapter 8.

Our proof procedure, without inference rules for implicit deletions, is 

described as follows.

A computation rule, or literal selection strategy, in our proof procedure 

is a function from derivations to literals such that it selects a literal from 

the last clause in the derivation. Safe computation rules are defined as in 

SLDNF.

Let input set S be a set of deductive rules and denials. Let Co be a 

clause in S or a ground negated fact. C o is allowed to be a ground 

negated fact "NOT A" if Su{"<“ A"} has a finitely failed SLDNF 

search space. (This is formalised by rule (C2) in Chapter 5.) Let R be a 

safe computation mle. A derivation for S via R with top clause C q is a
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(possibly infinite) sequence Co, C such that for all i, i >_ 0,

Q+l is obtained from Q by one of (a) or (b) as follows:

(a) Suppose R selects from C { a literal L which is not a negative 

condition of Q . Then Q +i is the resolvent on L of Q  and some input 

clause in S. We allow both the standard and the extended resolution 

steps.

(b) Suppose R selects from C {  a negative condition "NOT A". An 

attempt is made to construct a finitely failed search space with "<-A" as 

top clause and S as input set. If the attempt succeeds then Q +i is Cj 

with the selected literal "NOT A" removed. If the attempt fails finitely 

then there is no C { + \ .  Either SLDNF or our proof procedure can be 

used for this subsidiary computation. The two are identical whenever 

the top clause is a denial. (In such a case all clauses Q  in the derivation 

are also denials.)

EachCi, for i>0, is thus a deductive rule or a denial, or the empty 

clause.

Notes:

(1) Steps (a) and (b) above are extensions of steps (a) and (b), 

respectively, in the description of SLDNF derivation.

(2) When a condition "NOT A" is selected the only operation that can 

be performed is the negation as failure step. The resolution step is not 

applicable here, because the input set does not contain any clauses with
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negated conclusions. (Note that a top clause which is a negated fact is 

not considered to be part of the input set.) On the other hand, when a 

conclusion "NOT A" is selected the only operation that can be 

performed is (extended) resolution with an input clause.

In this simplified version of the proof procedure, only the top clause 

can have such a negated conclusion. Therefore the extended resolution 

step can only be applied to obtain the second clause in a derivation from 

the top clause. (In the general case, in the presence of implicit deletions, 

the extended resolution step can be applied at later stages of a 

derivation.)

(3) If a clause consists entirely of non-ground negative conditions, 

then none of its literals can be selected by a safe computation rule. This 

situation is called floundering (Clark [1978]), and applies to SLDNF, 

as well as to our proof procedure. The range-restriction condition on 

the database and the goals prevents floundering (Lloyd and Topor 

[1986]).

The concepts of refutation, success of a goal, search space and finitely 

failed search space for our proof procedure are defined similarly to 

those for SLDNF. Finitely failed derivations are defined as obvious 

extensions of such derivations in SLDNF. Thus a derivation Co, 

Cl,..., Cn is a finitely failed one in our proof procedure if and only if 

Cn is not the empty clause, and it is not possible to construct a 

derivation Co, Ci,..., Cn, Cn+i by an application of step (a) or (b) of 

our proof procedure.

76



In Chapter 8 we prove that this proof procedure is correct in general 

and complete in certain special cases. Correctness means that if for 

some safe computation rule R and for some clause C associated with an 

update there is a refutation of DTuIT via R with C as top clause then 

the transaction violates the constraints. Completeness means that if the 

transaction violates the constraints then for every safe computation rule 

R there is a refutation of DTuIT via R with a top clause associated with 

one of the updates in the transaction. Thus, in those cases where the 

proof procedure is complete, if for every update C in T there is a 

finitely failed search space for DTuIT with C as top clause via some 

safe computation rule, then Comp(DT)uIT is consistent, and therefore 

the transaction satisfies the constraints.

4.2 Examples

4.2.1 Updates That Are Additions

Example 4.2:

Consider example 4.1, and assume (correctly) that D satisfies I prior to 

the transaction. To check if DT satisfies I we use the update as top 

clause with our proof procedure and with DTuI as input set. We 

obtain the following search space showing that the transaction violates 

the integrity constraint.
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R(C)

( 1 )

P(C)

(IC)

<~NOT Q(C) 
succeeds

I if
^Q(C)

fails

[ ] which it does

Figure 4.5: A search space for example 4.2 (and example 4.1) with 

the update as top clause

Compare this search space with the one in figure 4.1. Both show a 

violation of the constraint. But the one in figure 4.1 is much bigger 

because it, in effect, irrelevantly explores two instantiations of the 

integrity constraint, in addition to the one explored in figure 4.5. The 

selection of the update as top clause avoids the inefficiency illustrated in 

figure 4.1. □
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The next example also concerns a case of adding a fact to a database. 

This example illustrates why in our method integrity constraints have to 

be rewritten as denials.

Example 4.3:

In this example "Acc(x y)" expresses that x has access to machine y.

E*
(1) Rank (J ohn Lect)

(2) Rank(Mary Prof)

(3) Proj(JohnPl)

(4) Proj(Mary P2)

(5) Acc(x VAX) <r- Proj(x PI)

I:
(IC) Rank(x Lect) Proj(x PI)

T:

Insert Proj (Tom P1).

The constraint states that anyone who works on project PI must have 

rank lecturer.

Assume (correctly) that D satisfies the constraint. The integrity 

constraint is not in the form required for our integrity checking method. 

If we use the constraint as it stands, and select the update as top clause
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we obtain the following search space.

Proj(Tom PI)

Acc(Tom VAX) Rank(Tom Lect)

Figure 4.6: A search space for example 4.3 with the update as top 

clause

This search space fails to demonstrate any inconsistency. The 

completion of the updated database, however, is inconsistent with the 

integrity constraint because together they logically imply both

"Rank(Tom Lect)" and "NOT Rank(Tom Lect)".

To simulate reasoning with the completion of the database we rewrite 

the constaint in the form

<-Proj(x PI) and NOT Rank(x Lect) 

before applying our proof procedure.

The following search space, still with the update as top clause, but 

using the rewritten form of (IC), demonstrates that the updated database 

violates the integrity constraint.
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Proj(Tom PI)

(IC) rewritten: 

«-Proj(x PI) and 

NOT Rank(x Lect)

Acc(Tom VAX) <-NOT Rank(Tom Lect)

succeeds

if

<-Rank (Tom Lect) 

fails

[ ] which it does

Figure 4.7: A search space for example 4.3 with the update as top 

clause, using the rewritten form of the integrity constraint

The search space consists of two derivations. The one on the left, 

where the update is resolved with a deductive rule in the database, is a 

finitely failed derivation. The one on the right, where the update is 

resolved with the rewritten form of (IC), is a refutation and shows that 

the constraint is violated. □
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The insertion of non-atomic deductive rules and of integrity constraints 

is treated exactly as the addition of facts.

Example 4.3 illustrates how we treat the integrity constraints differently 

from the rules in the database. There are other approaches to treating 

integrity constraints. Reiter [1988], for example, uses the modal 

language of Levesque [1981] to distinguish between database rules and 

constraints. In his formalisation the constraint in example 4.3 is 

expressed by the modal formula

K Rank(x Lect) <- K Proj(x PI),

where K is a modal operator standing for "knows". Thus the constraint 

states that for all x, if it is known that x works on project PI, then it is 

also known that x has rank lecturer. This constraint is satisfied in DT if 

and only if it is true in DT in the modal language of Levesque.

Eshghi and Kowalski [1988] propose a metalogical variant of both 

Reiter's and our approaches. Under their metalogical interpretation the 

above constraint becomes

Demo(d Rank(xLect)) <- Demo(d Proj(x PI)), 

which states that for all database states d, if "Proj(x PI)" is provable 

from d, for some x, then "Rank(x Lect)" is also provable from d. (For 

simplicity we have not distinguished between sentences and their 

names, in the above formula.)

Eshghi and Kowalski [1988] show that, under certain assumptions, 

their formalisation of the constraints is equivalent to our treatment of 

them as denials.
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Noel [1988] and Small [1988] have also proposed similar 

interpretations of integrity constraints.

4.2.2 Updates That Are Deletions

To illustrate our handling of deletions, we first consider 

example of deleting a fact from a relational database.

Example 4.4:

D
(1) Rank(John Lect)

(2) Rank(Mary Lect)

(3) Rank(Tom Prof)

(4) Proj(JohnPl)

(5) Proj(Mary PI)

(6) Proj(Tom P2)

I:
(IC) Rank(x Lect) <- Proj(x PI) 

which is rewritten as

<- Proj(x PI) and NOT Rank(x Lect).

T:

Delete Rank(John Lect).

a simple
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Before applying our method to this example, we show, below, the 

search space with the integrity constraint as top clause and the updated 

database, that is D-{Rank(John Lect)}, as input set, where denotes 

set difference. This search space shows clearly that the integrity 

constraint is violated in the updated database because the proof of 

"Rank(John Lect)" fails. The search space is obtained both by our 

proof procedure and by SLDNF.

<-Proj(x PH and NOT Rank(x Lect)

x=Mary (5) (4) x=John

*-NOT Rank(Mary Lect) 
succeeds

<-NOT Rank(John Lect) 
succeeds

<-Rank(Mary Lect) 
fails

which it does not, 

because of (2)

1 if 
I

<-Rank(John Lect) 
fails

[ ] which it does, 

because of the transaction

Figure 4.8: A search space for example 4.4 with the constraint as top 

clause

In our approach, to achieve the same effect by reasoning forward from 

the update, we use as top clause the negated fact 

"NOT Rank(John Lect)",

which represents the update. The search space below, with this 

negated fact as top clause, shows that the update violates the integrity
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constraint. Note that the updated database, and therefore the input set, 

do not explicitly contain the negated fact "NOT Rank(John Lect)".

NOT Rank(John Lect)

(IC) rewritten

<-Proj(John PI)

(4)

[]

Figure 4.9; A search space for example 4.4 with the update as top 

clause

The first step in the search space is an extended resolution step between 

the negated fact

NOT RankfJohn Lecf) 

and the integrity constraint

<-Proj(x PI) and NOT Rank(x Lect) 

on the underlined literals.

Note that in this example the database is relational and therefore the fact 

that is to be deleted by the transaction can only be explicit in the 

database. In general, however, in a deductive database, facts can be
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implicit as well as explicit. In such a database, given a transaction 

including an update of deleting a fact A we need to ensure that A is not 

provable in the updated database (or, more precisely, that "NOT A" is a 

theorem of the completion of the updated database), before reasoning 

forward from "NOT A". (We can use the SLDNF proof procedure to 

check if A is provable in the updated database.) If A is still provable in 

the updated database, then the update, which only deletes the explicit 

occurrence of A, does not alter the logical content of the database, and 

there is, therefore, no need to consider the update as a top clause for 

integrity checking. Moreover, in this case, it would be incorrect to 

reason forward from "NOT A", as the following example illustrates:

D: P<-NOTQ

Q<-R 

R

Q

Suppose the update is the deletion of the explicit occurrence of Q. 

Choosing "NOT Q" as top clause in this case would allow us to derive 

P which is incorrect, because P is not a consequence of the completion 

of the updated database.

Compare the search spaces in figures 4.8 and 4.9. Intuitively, 4.9 

corresponds to the right branch of 4.8, showing a violation of integrity 

because "Proj(John PI)" is provable, but "Rank(John Lect)" is not. 

The left branch of 4.8 is redundant for integrity checking, because it 

considers an instantiation of the constraint which is not affected by the 

transaction. □
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Because of the possible presence of negative conditions in the deductive 

rules, deletion of facts can implicitly add new facts to the database. 

Using the extended resolution rule to reason forward from negated 

conclusions is also crucial for dealing with such cases, as illustrated in 

the following example.

Example 4.5:

In this example nTeaches(x y)" means x teaches course y.

D
(1) Teaches(John Databases)

(2) Rank(John Lect)

(3) Rank(Mary Lect)

(4) Proj(John PI)

(5) Proj(Mary PI)

(6) Academic-visitor(x) <-

Teaches(x Databases) and 

NOT Rank(x Lect)

I:
(IC) Proj(x PI) and Academic-visitor(x)

T:

Delete Rank(John Lect)

Here the update leads to an inconsistency. This is because the deletion
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of a fact results in the addition of a fact, which violates the integrity 

constraint, as shown in the following search space.

NOT Rank(John Lect)

(6)

Academic-visitor(John) <- Teaches (John Databases)

( 1 )

Academic-v isitor( J ohn)

(IC)

<-Proj(John PI)

(4)
[]

Figure 4.10: A search space for example 4.5 with the update as top 

clause □

4.2.3 Transactions With Multiple Updates

The principles are as described in 3.2.4. Thus each update in the 

transaction is a candidate top clause. The input set in each case consists 

of the updated database and the updated set of integrity constraints. A 

refutation implies violation of constraints. On the other hand, if all the 

updates lead to finitely failed search spaces, and our method is complete 

for the given case, then the transaction satisfies the constraints.
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We believe that our method is as complete as SLDNF. We will discuss 

this point later in Chapter 8. SLDNF has been proved complete for 

several restricted classes of databases (Clark [1978], Jaffar, Lassez and 

Lloyd [1983], Barbuti and Martelli [1986], Kunen [1987] and [1988], 

Cavedon and Lloyd [1987] and Shepherdson [1988]), which include 

hierarchical databases such as those before and after the update in the 

following example. Roughly speaking, a database is hierarchical if it 

contains no recursion. More precisely, a deductive database D is 

hierarchical if and only if there is a mapping M from the predicate 

symbols that occur in D to the natural numbers, such that for every rule 

"Head<-Conditions" in D

M(P) > M(Q) if P is the predicate symbol that occurs in the

Head, and Q is a predicate symbol that 

occurs in the Conditions.

Thus a hierarchical database is also stratified, but not vice versa. 

Hierarchical databases are less general than stratified ones because 

hierarchical databases allow no recursion at all. An alternative definition 

of hierarchical databases can be found in Clark [1978].

Example 4.6:

D.

(1) Employed(Tom)

(2) Self-employed(Tom)

(3) Lecturer(Dick)
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(4) Lecturer(Harry)

(5) Lecturer(Bill)

(6) Eligible-for-state-pension(Dick)

(7) Eligible-for-state-pension(Harry)

(8) Eligible-for-state-pension(B ill)

I:
(IC) Eligible-for-state-pension(x) <- Lecturer(x) 

which is rewritten as

<-Lecturer(x) and NOT Eligible-for-state-pension(x)

T:

{Insert (9) Lecturer(Tom)

(10) Eligible-for-.state-pension(x) <-Employed(x) and

NOT Self-employed(x)

Delete Self-employ ed(Tom)}

Assume (correctly) that D satisfies the constraint. The transaction 

consists of three updates. To check if DT satisfies the constraint, each 

of the three updates must be considered as top clause. In each case the 

input set consists of the constraint and the updated database, that is 

(Du{(9), (10)})-{(2)}.

It is not difficult to see, intuitively, that the updated database satisfies 

the constraint. The transaction could violate the constraint only if it 

added a new lecturer who was not eligible for state pension, or if it 

deleted the eligibility of some continuing lecturer. The second case 

does not arise because the transaction adds more ways of concluding
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eligibility rather than deleting the existing ways. The first case does not 

arise because, although the transaction adds Tom as a lecturer, it also 

implicitly adds Tom's eligibility for state pension.

Below, we show the three search spaces that result from taking each of 

the updates in the transaction as top clause. All three search spaces fail 

finitely. Thus, assuming that our method is complete in this example, 

we can conclude that the transaction satisfies the constraint. (We have 

not, however, proved our method complete for this case.)

In the search spaces we have abbreviated the predicate symbol 

"Eligible-for-state-pension" to "E-f-s-p". Each of the three search 

spaces consists of a single derivation. The second search space 

consists only of the top clause, and the third consists of two clauses.
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Lecturer(Tom)

(IC) rewritten

<-NOT E-f-s-p(Tom) 

succeeds

I if

<-E-f-s-p(Tom)

fails

I if

<-Emploved(Tom) and NOT Self-employed(Tom)

| fails

I if

<“ NOT Self-employed(Tom)

I fails

I if 
I

<-Self-employed(Tom) 

succeeds 

which it does not.

Figure 4.11: A search space for example 4.6 with an update as top 

clause
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E-f-s-pfx) Employed(x) and

NOT Self-employed(x)

Figure 4.12: A search space for example 4.6 with an update as top 

clause

NOT Self-employed(Tom)
(10)

E-f-s-pfTom) < - Employed(Tom)

Figure 4.13; A search space for example 4.6 with an update as top 

clause □

4.2.4 Updates That Modify Database Rules

Suppose an update requests the modification of a database rule (fact or 

non-atomic rule) R to R’. Then the database management system must 

check to see if a variant of R exists in the database. If it does not, then 

the management system can either inform the user, or simply ignore the 

update. If a variant exists, then the update can be treated as two 

updates, the deletion of the existing variant of R, and the addition of 

R’. These two updates are then treated as explained already.

Modifying integrity constraints involves more work, because of the 

transformations that are performed on constraints to convert them into
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denials and deductive rules. To modify a constraint W to W' we need to 

trace all the deductive rules and the denial which resulted from the 

transformations performed on W. This can be done by keeping a record 

of such information. The thesis will not, however, address this issue. 

We assume that "modify" updates only request modifications to the 

database rules.

4.2.5 Updates That Require Additional Inference Rules

In deductive databases the deletion of explicitly present facts can cause 

the deletion of other implicit facts. Consider the following very simple 

propositional database, for example:

D: A

B A.

Fact B is provable in this database. However, if fact A were deleted B 

would no longer be provable. The deletion of A would implicitly delete

B. To check integrity of deductive databases it is necessary to detect 

such implicit deletions. This requires the addition of a new inference 

rule, as illustrated in the following example.

Example 4.7:

In this example "Sup(x y)" expresses that x supports project y, and 

"Alloc(x y)" expresses that project x is allocated machine y.
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D.

Sup(SERC PI)

Sup(BP P2)

Sup(MOD P3)

Alloc(x VAX) 4- Sup(SERC x)

Alloc(x IBM) <- Sup(BP x)

Alloc(x SUN) 4- Sup (MOD x)

I:
(IC) Alloc(Pl VAX) or Alloc(Pl SUN)

which states that project PI is allocated either the VAX or the SUN.

(IC) is rewritten as

4-NOT Alloc(Pl VAX) and NOT Alloc(Pl SUN).

T:

Delete Sup(SERCPl).

The fact "Sup(SERC PI)" is only explicit in D and thus it is not 

provable in the updated database.

Intuitively speaking, the deletion of the fact "Sup(SERC PI)" also 

"deletes" the previously derivable fact "Alloc(Pl VAX)". More 

formally, "4-Alloc(Pl VAX)" is a logical consequence of the 

completion of the updated database D-{Sup(SERC PI)}. Since 

"<-Alloc(Pl SUN)" is also a logical consequence of this completion, 

the update violates the integrity constraint.

One way to deduce that "Alloc(Pl VAX)" is deleted from the updated
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database is to reason as follows:

(Rl)

because inDT "NOT Sup(SERC PI)" holds

and we have "Alloc(x VAX)^Sup(SERC x)" 

and we have no other way of showing " Alloc(Pl VAX)" 

and "Alloc(Pl VAX)" was provable in D 

then "Alloc(Pl VAX)" is deleted.

Thus "NOT Alloc(Pl VAX)" holds in DT.

Such a rule, in part, allows us to reason with the completion of the 

updated database without having to represent the completion of the 

database explicitly. It can also be thought of as a rule that allows us to 

reason forward from negated conclusions. We will formalise and 

generalise the reasoning in (Rl), in the next chapter. Assuming for 

now that we have such a formalisation, the following incomplete 

refutation shows that the updated database violates the integrity 

constraint. The refutation is incomplete because we have ignored the 

details of (Rl).
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NOT Sup(SERCPl)

( R l )

NOT Alloc(Pl VAX)

(IC) rewritten

NOT Alloc(Pl SUN)

succeeds

if

<- Alloc(Pl SUN)

| fails 

if

< - Sup(MOD PI) 

fails

[ ] which it does

Figure 4.14: A refutation for example 4.7 with the update as top 

clause □
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Because of the presence of negative conditions in the deductive rules an 

addition can also cause implicit deletions. We need another inference 

rule to cater for such a case, as illustrated in the following example.

Example 4.8:

D:

(1) Overseas-student(x) < - Student(x) and NOT Resident(x UK)

(2) Student(Jim)

(3) Eligible(Jim Brit-Council-award)

I:

(IC) Overseas-student(x) Eligible(x Brit-Council-award) 

which is rewritten in the form

<-Eligible(x Brit-Council-award) and NOT Overseas-student(x)

T:

Insert Resident(Jim UK).

Intuitively speaking, the insertion of the fact "Resident(Jim UK)" 

"deletes" the previously derivable fact "Overseas-student(Jim)", and 

thus violates the integrity constraint. To deduce this implicit deletion 

we need to reason that
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(R2)

because in DT "Resident(Jim UK)" holds

and we have "Overseas-student(x)<-Student(x) and

NOT Residents UK)"

and we have no other way of showing "Overseas-student(Jim)" 

and "Overseas-student(Jim)" was provable in D 

then "Overseas-student(Jim)" is deleted.

Thus "NOT Overseas-student(Jim)" holds in DT.

In the next chapter we will show how this reasoning can be formalised 

in general. Assuming that we have the required formalisation, the 

following incomplete refutation shows that the update violates the 

integrity constraint. The refutation is incomplete because the details of 

(R2) are ignored.
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Resident Jim UK)

(R2)

NOT Overseas-student(Jim)

(IC) rewritten

< - Eligible(Jim Brit-Council-award)

(3)

[]

Figure 4.15: A refutation for example 4.8 with the update as top 

clause □

This discussion completes the case of the updates that require additional 

inference rules.
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CHAPTER 5

FORMALISATION OF THE CONSISTENCY METHOD IN

THE GENERAL CASE

In this chapter we describe the general case of our method. The general 

proof procedure extends the simplified one described in 4.1.2, by 

incorporating additional inference rules to deal with implicit deletions. 

(Note that the simplified procedure in 4.1.2 already caters for implicit 

additions due to other additions and deletions.)

We present the general method by a logical formalisation of it, using 

logic as metalanguage. Although our formalisation is intended as an 

abstract and general description, it is actually runnable in Prolog, and 

has in fact been implemented in Prolog without much modification, as 

described in the next chapter.

This chapter is in two sections. In 5.1 we formalise the simplified proof 

procedure that was described in 4.1.2. In 5.2 we extend this to include 

the necessary rules for implicit deletions.
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5.1 Formalisation Of The Simplified Proof Procedure

Described In 4.1.2

The proof procedure without inference rules for implicit deletions 

consists of two rules of inference, negation as failure and resolution 

(standard and extended). We formalise these in this section.

In general, we formalise our proof procedure by defining a relation 

"Inconsistent". "Inconsistent(s c)" holds if and only if there is a 

refutation with top clause named by c and input set named by s, by 

means of our proof procedure.

Note that in order to define our proof procedure, it is necessary to name 

object level sentences and other expressions by metalevel terms. This 

can be accomplished in a number of ways, and we do not concern 

ourselves with the details in this thesis.

Suppose "Demo" is the SLDNF provability relation, that is 

"Demo(d g)" is true when it can be shown that there is an SLDNF 

refutation of d'u{<— g'}, where d names a set d' of deductive rules and 

g names a conjunction g' of literals, and all the variables in g' are 

assumed to be existentially quantified over the whole of g\ Then the 

following relationship holds between the relations "Demo" and 

"Inconsistent":

Demo(d g) <-> Inconsistent^ <-g).

This relationship is a consequence of the fact that our proof procedure 

is identical to SLDNF when the top clause is a denial. The symbol "<-" 

is a metalevel function symbol representing the object level implication
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symbol

In the rest of this thesis we ignore the distinction made above between 

object level expressions and their names, where context makes the 

intended meaning clear.

The base case for "Inconsistent” is defined by:

(11) Inconsistent^ [ ])

(As before,"[ ]" denotes the empty clause.)

Rule (12) formalises the standard and extended resolution rules, and 

(13) formalises the negation as failure rule.

(12) Inconsistent^ c) <—

Select-literal (1 c a) and 

In(e s) and

Resolvent(e c 1 a r) and 

Inconsistent^ r)

"Select-literal(l c a)" means literal 1 is selected from the a-side 

(Condition or Conclusion) of clause c. This relation must describe a 

safe computation rule. "In(e s)M means clause e is in input set s, and 

"Resolvent(e c 1 a r)" means r is the resolvent of clauses e and c on the 

literal 1 occurring on the a-side of c. As will become clear in Section 

5.2, where we discuss inference rules for implicit deletions, 

"Resolvent" must be defined in such a way that it deals appropriately
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with clauses c that have negated conclusions and zero or more 

conditions. The a-side parameter is necessary to ensure that the 

negation as failure rule is only applied to negative conditions and not to 

negated conclusions.

(13) Inconsistent^ c) <—

Select-literal (not(p) c Condition) and 

NOT Inconsistent^ <-p) and 

Remove-literal (c not(p) Condition c') and 

Inconsistent^ c')

"Remove-literal(c 1 a c')" expresses that c’ is clause c with literal 1 

removed from its a-side. "not" is a metalevel prefix function symbol 

naming the negation symbol "NOT".

(II), (12) and (13), together with the subsidiary definitions needed for 

them, formalise the proof procedure as described in 4.1.2. We can 

vary the literal selection strategy (or computation rule) by using 

different definitions for the relation "Select-literal".

Recall that computation rules are functions from derivations to literals. 

For the sake of simplicity, however, we have ignored this in the 

relation "Select-literal", and ultimately in the definition of 

"Inconsistent". As the relations stand at the moment, "Select-literal" 

selects a literal from any clause, without any information about the 

derivation in which the clause appears. It is possible to modify these 

relations to conform to our definition of computation rules. This can be 

done by changing the relations "Inconsistent" and "Select-literal" so that
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their second parameters denote the entire derivation ending at clause c.

Suppose "Inconsistent*" and "Select-literal*" are the modified relations 

corresponding to "Inconsistent" and "Select-literal".

"Inconsistent* (s d)" expresses that derivation d can be extended to 

form a refutation, with input set s, according to our proof procedure.

"Select-literal *(1 d a)" expresses that literal 1 is selected from the a-side 

of the last clause in derivation d. Suppose further that the term "d.r" 

denotes the derivation which consists of the derivation d extended by 

clause r. Rules (II) and (12) can now be modified as follows:

(11) ' Inconsistent*(s d.[ ])

(12) ' Inconsistent* (s d.c) <—

Select-literal*(1 d.c a) and 

In(e s) and

Resolvent( e c 1 a r) and 

Inconsistent *(s d.c.r)

(13) can also be similarly modified. (For a Prolog implementation it 

would be better to represent derivations backwards in a list. Thus a 

derivation Co, C C2 , for example, would be represented as

(C2 C1 Co).) As can be seen these modifications are quite trivial, and 

in the remainder of this thesis, for the sake of simplicity of notation, we 

shall ignore them and concentrate on the original rules (I1)-(I3).

To consider automatically all top clauses associated with the updates in 

the transaction we use rules (C1)-(C3), below. (Cl) allows us to
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consider as top clause each of the deductive rules and the integrity 

constraints that are added by the transaction. (C2) allows us to 

consider as top clause the negation of each fact which is either explicitly 

deleted by the transaction, or which is a deleted ground instance of the 

conclusion of a non-atomic rule which is explicitly deleted. (C3) caters 

for updates that modify database rules. Mtransact(al dl ml)" is a term 

that represents the transaction T which consists of a set of additions al, 

a set of deletions dl, and a set of modifications ml. Each element of ml 

is of the form (r r') which is interpreted as an update that modifies a 

database rule r to r’.

(C l) IC-Violated(DTuIT transact(al dl ml)) <—

In(c al) and

Inconsistent(DTuIT c)

(C2) IC-Violated(DTuIT transact(al dl ml)) <—

In(f<-b dl) and 

In(f<-b D) and 

Demo(D f) and 

NOT Demo(DT f) and 

Inconsistent(DTuIT not(f))

(C3) IC-Violated(DTuIT transact(al dl ml)) <-

In((r r') ml) and 
In (r D) and

IC-Violated(DTuIT transactor’) (r) ()))
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(C3) simply ignores an update that requests modifications to a database 

rule no variant of which is present in D. Another metalevel clause can 

be added to (C1)-(C3) to alert the user in such cases, if desired.

In (C2) the variable b stands for a (possibly empty) conjunction of 

literals. Thus (C2) caters for both deletion of facts and deletion of non- 

atomic rules. It correctly ignores the integrity constraints that are deleted 

by the transaction. It also ignores updates that request the deletion of 

rules no variants of which are present in D. In the symmetric case of 

additions, we can add an extra condition

"NOT In(c D)" to (Cl) to avoid reasoning forward from clauses that are 

to be added, but which are already present in the database.

We can replace the "Demo" and "NOT Demo" conditions in (C2) by 

their equivalents "Inconsistent(D <-f)" and 

"NOT Inconsistent(DT <-f)", repectively.

Notice that (C2) and (C3) do not treat unification explicitly. The 

required unification steps would automatically be performed if the rules 

were executed by a Prolog-like system. Alternatively, unification can be 

defined explicitly. In this case , in (C2), for example, an extra argument 

would be added to "Demo" to denote the appropriate instantiation, and 

an extra condition would be added to compute the resulting instantiated 

formula. Thus (C2) modified to incorporate explicit unification and 

substitution can be as follows:
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IC-Violated(DTuIT transact(al dl ml)) 

In(f<-b dl) and 
In(g<-e D) and 

Variant(f<-b g<-e) and 

SDemo(D g sub) and 

Apply-substitution(g sub g') and 

NOT Demo(DT g') and 

Inconsistent(DTuIT not(g')),

where

g and f name object level atoms, and e and b name object level 

(possibly empty) conjunctions of atoms,

Variance c') means the clause named by c is a variant of the clause 

named by c’,

SDemo(d g s) means the fact named by g is provable (by SLDNF) from 

the database named by d with substitution named by s, and 

Apply-substitution(g s g') means g' names the fact that results from 

applying the substitution named by s to the fact named by g.

Further discussion of the explicit treatment of unification can be found 

in Kowalski [1979].

(C1)-(C3) are not considered as part of the proof procedure, but are 

part of the database management system. To check the satisfaction of 

integrity constraints IT in database DT obtained from I and D, 

repectively, by a transaction consisting of a set of additions, al, a set of 

deletions, dl, and a set of modifications, ml, we evaluate the query 

<-IC-Violated(DTuIT transact(al dl ml)).
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If the query succeeds then the constraints are violated. If it fails finitely, 

and our method is complete for the given case, then the constraints are 

satisfied.

Given our present scheme we can easily handle conditional updates as 

well. Such an update may request a transaction T of additions, deletions 

or modifications of rules in D, provided that D satisfies certain 

conditions, F, say. In this case we have to check the conditions F in D, 

and if they succeed we deal with transaction T as explained already. We 

will not, however, pursue the case of conditional updates any further in 

this thesis.

To complete the definition of the Consistency method proof procedure 

we have to augment it with inference rules for implicit deletions.

5.2 Formalisation Of The Rules For Implicit Deletions

There are at least two different ways of formalising the inference rules 

that we need for reasoning about implicit deletions. The first way, to 

be discussed in 5.2.1, is to formalise the inference rules as metalevel 

rules which are included in the input set. The second way, to be 

discussed in 5.2.2, is to formalise the inference rules as part of the 

proof procedure. The first approach is probably easier to understand. 

But the second approach is better for reasons we will explain later.
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5.2.1 The First Approach: The Metarule Version

Let "Deleted(DT D f)" express that fact f is deleted in DT, in the sense 

that f is a logical consequence of Comp(D), but not of Comp(DT). 

This can be formalised by a metarule:

(MR) Deleted(DT D f) <- Demo(D f) and NOT Demo(DT f).

We could write this rule more generally using variables for the first two 

arguments of "Deleted", and adding a condition "Result(d t dt)" to 

express that dt is the database that results from d by means of a 

transaction t. This would be necessary if we were to embed our 

integrity checking method into a more general knowledge assimilation 

system which processes a stream of transactions. In the context of this 

thesis, however, such generality makes the notation more cumbersome 

without providing any benefits.

The use of (MR) as it stands, would give rise to a blind and very 

inefficient search to find out what facts are deleted from the database as 

a result of the transaction. We can improve efficiency by adding to 

(MR) extra conditions to reduce the search. (MR1) and (MR2), 

below, both result from adding extra conditions to (MR). (MR1) is a 

general rule corresponding to (Rl) in example 4.7. (MR2)

corresponds to (R2) in example 4.8. The improved efficiency is due 

to the fact that, in effect, the extra conditions make the rules focus on 

the effects of the updates. This point will become more clear shortly.

The formulae (MR1) and (MR2) are not well-formed, because in both
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formulae p is intended as a metalevel variable ranging over object level 

facts, although it occupies the place of a metalevel atom. This problem 

is discussed further in note (3), below, where a solution is proposed.

(MR1) Deleted(DTDf)<-

NOT p and 

In(f<-b DT) and 

On(p b) and 

Demo(D f) and 

NOTDemo(DTf)

"On(p b)" means literal p occurs in b which is a conjunction of literals.

(MR2) Deleted(DT D f) <-

p and

In(f<-b DT) and 

On(not(p) b) and 

Demo(D f) and 

NOT Demo(DT f)

The relationship between "Deleted" and negation as failure can be 

described by the rule:

(MR3) NOT f Deleted(DT D f)

Note that DT, the updated database, is explicit in the condition of 

(MR3), but implicit in the conclusion. This is to conform with the 

simplified syntax of negation as failure. Essentially, (MR1)-(MR3)
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together formalise a correct but partial definition of negation by failure 

as unprovability. Their purpose is to allow us to determine what facts 

are deleted (i.e. have become unprovable) as a result of the updates. 

Since the metarules give a partial definition of negation as failure, for 

the sake of efficiency, they should only be used forward. Otherwise, if 

used backward, they would only duplicate the effect of normal negation 

as failure rule. This restriction, and the use of updates as top clauses, 

ensure that (MR1) and (MR2) are "entered" only through their first 

conditions. In fact, these metarules are always resolved on their first 

conditions, with an update or with a clause which is a consequence of 

an update. Thus these rules, in practice, compute the implicit deletions 

resulting from the transaction.

Notes:

(1) As in (C2) in Section 5.1, metarules (MR1) and (MR2) do not 

treat unification explicitly. Again a Prolog-like system would 

automatically perform the required unification steps. Alternatively we 

could add extra conditions to these metarules to compute the required 

mgu’s and the resulting instantiated formulae.

(2) The "Demo" and "NOT Demo" conditions in the metarules can 

be solved either by running metalevel definitions of "Demo" and "NOT 

Demo", or by using reflection as in FOL (Weyhrauch [1980]) or in 

amalgamation logic (Bowen and Kowalski [1982]). To solve 

"Demo(D f)" by reflection we show that the goal named f can be solved 

by SLDNF (or our proof procedure) in the database named D. To 

solve "NOT Demo(DT f)" by reflection we show that the goal named f
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fails finitely by SLDNF (or our proof procedure) in the database named 

DT. The reflection rule approach can be formalised by adding two extra 

rules to the definition of the relation "Inconsistent" as follows.

(14) Inconsistent^ c) <-

Select-literal(demo(d g) c Condition) and 

Inconsistent^ <-g) and 

Remove-literal(c demo(d g) Condition c') and 

Inconsistent^ c')

(15) Inconsistent^ c) < -

Select-literal(not(demo(d g)) c Condition) and 

NOT Inconsistent(d <-g) and 

Remove-literal(c not(demo(d g)) Condition c') and 

Inconsistent(s c')

"demo" is a function symbol naming the metalevel relation "Demo".

(3) The symbols p in (MR1) and (MR2) and f in (MR3) are 

variables, and are supposed to range over object level facts. These 

variables, however, do not occur everywhere as arguments of 

metalevel relations or functions in these rules. Thus our metarules 

(MR1), (MR2) and (MR3) are not strictly well-formed (although, in 

practice, they work when using a Prolog-like execution 

mechanism) .This problem can be avoided by replacing the occurrences 

of p in the first conditions of (MR1) and (MR2) and the occurrence of f 

in the conclusion of (MR3) by well-formed atoms "Demo(DT p)" 

and "Demo(DT f)", respectively. This, however, introduces other 

complications, because it requires additional reflection rules and
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modifications to the extended resolution step.

(4) Note that (MR1)-(MR3), together with the standard and the 

extended resolution rules cater for the propagation of the effects of 

initial additions and deletions through chains of database rules.

In this version of our method metarules (MR1), (MR2) and (MR3) are 

part of the input set. The proof procedure is defined by rules (I1)-(I5) 

and the subsidiary definitions required by these. The database 

management system would include rules (Cl), (C2) and (C3). All 

occurrences of DTuIT in (C1)-(C3) would have to be replaced by 

DTulTu{(MRl), (MR2), (MR3)} to include the metarules in the input 

set.

Notice that the proof procedure needs to to allow in derivations, 

formulae of the form

NOT A<- L \  and ... and Ln, n > l ,  

where A is an atom and the L [ are literals. Such formulae can be 

obtained in derivations by the resolution of a clause in the derivation 

with metarule (MR1) or (MR2), and the resolution of the resulting 

resolvent with (MR3).

The inclusion of such formulae in derivations is catered for in the 

definition of the proof procedure given in 5.1. We extend the term 

"clause” to include formulae of the above form.

The inclusion of the metarules in the input set is not entirely satisfactory 

from a methodological point of view. The metarules would have to be
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distinguished from the other input clauses. As well as requiring 

special control restrictions to ensure that they are used forward only, 

the metarules must be protected against modification by user updates. 

These problems and the naming problem, described in note (3) above, 

can be avoided by formalising (MR1)-(MR3) as inference rules in the 

definition of the proof procedure, as described in the remainder of this 

chapter.

5.2.2 The Second Approach: The Inference Rule Version

In this approach we formalise the rules for implicit deletions as part of 

the proof procedure simply by adding extra definitions for the relation 

"Inconsistent". Inference rules (16) and (17), below, correspond to 

(MR1) and (MR2), repectively, and incorporate (MR3) as well.

(16) Inconsistent(DTuIT not(p)<-c) < -

Select-literal(not(p) not(p)<-c Conclusion) and

In(f<-b DT) and

On(p b) and

Demo(D f) and

NOT Demo(DT f) and

Inconsistent(DTuIT not(f)<-c)
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(17) Inconsistent(DTuIT p<-c) < -

Select-literal(p p<-c Conclusion) and
f

In(f<-b DT) and 

On(not(p) b) and 

Demo(D f) and 

NOT Demo(DT f) and 

Inconsistent(DTuIT not(f)<-c)

As in the case of (C2) in 5.1, we can replace the MDemoM and "NOT 

Demo" conditions in these rules by appropriate "Inconsistent" and 

"NOT Inconsistent" conditions, and in fact have done so in the 

implementation. As before, we have not treated unification explicitly in 

these rules.

In this scheme the input set consists only of the updated database and 

the updated set of integrity constraints. The proof procedure is defined 

by rules (I1)-(I3) and (I6)-(I7), and the subsidiary definitions required 

by them. The database management system includes rules (Cl), (C2) 

and (C3).

The inference rule approach has a number of advantages over the 

metarule approach described in the previous subsection. The inference 

rules are part of the proof procedure and not the input set. They, 

therefore, cannot be modified by user updates. For the sake of 

efficiency the metarules should be used forward only, unlike the other 

deductive rules in the input set that can be used backward as well as 

forward. This is an undesirable and ad hoc restriction, which is

116



avoided in the inference rule approach. Furthermore, the inference 

rules are well-formed, whereas the metarules are not.

The metarule and the inference rule approaches have both been 

implemented in Prolog.
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CHAPTER 6

IMPLEMENTATION

Both versions of the Consistency method, that is the metarule and the 

inference rule versions, have been implemented by Soper [1986], as an 

M.Sc. project, in Sigma-Prolog on the SUN III. A summary of the 

implementation has been reported in Kowalski, Sadri and Soper 

[1987].

In effect, our proof procedure is built as a meta-interpreter on top of 

Prolog. The implementation is very close to the formalisation presented 

in the last chapter, and consists essentially of the clauses for 

"Inconsistent" and "IC-Violated" and the necessary subsidiary 

definitions. In this chapter we first discuss the part of the 

implementation that is common to both versions, and then consider the 

extensions that are necessary to implement each approach. Finally we 

propose an alternative and more efficient implementation for a special 

case.

6.1 Parts Common To Both Versions

As explained in the previous chapter, common to both versions of the 

Consistency method are rules (I1)-(I3) (and the subsidiary definitions 

required by them), and rules (C1)-(C3) (with minor modifications for 

the metarule version as explained in 5.2.1) for generating candidate top
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clauses for the proof procedure. In this section we concentrate on the 

implementation of these rules.

The main features of this implementation are:

(1) the representation of the input clauses, that is the databases and 

the integrity constraints,

(2) the implementation of reasoning with the two databases D and DT 

required for rules (C2) and (C3) (and also for (MR1)-(MR2), and (16)- 

(17)), and

(3) the use of indexing information about input clauses to guide 

selection of candidate clauses for resolution, thus providing a 

reasonably efficient search control.

We discuss each one of these, in turn.

( 1 ):

Input clauses are represented as terms in the metalanguage. They are 

represented as lists of "literals", where each "literal" is a list of the form 

(side sign predicate | arguments).

"|" is Prolog's list construction operator, "side" is either "Cone" 

indicating that the literal is the conclusion of the clause, or it is "Cond" 

indicating that the literal is in the conditions. Thus all the literals in an 

integrity constraint have "Cond" for "side", "sign" is either "+" for 

atoms or"-" for negated atoms.
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Example 6.1:

(1) The clause

P(x y) <- Q(x y) and NOT R(x) 

is represented by the term

((Cone + P x y) (Cond + Q x y) (Cond - R x)).

(2) The clause

NOTP(AB) 

is represented as

((Cone -P A  B)). □

For the sake of notational simplicity, we have not distinguished 

between sentences and their names in the above example. As mentioned 

earlier, we will continue this practice where context makes the 

distinction clear. Strictly speaking, however, object level predicate 

symbols and variables should be represented at the metalevel by 

function symbols and constants, respectively (Bowen and Kowalski 

[1982]).

(2):

The Consistency method requires reasoning with two databases D and 

DT and with the updated input set DTulT (as well as 

DTuITu{(MRl), (MR2), (MR3)} in the metarule version; we will 

postpone discussing this latter case until the next section). It is in fact 

sufficient to represent only two sets to correspond to D and DTulT, 

without distinguishing the set DT on its own. This is because, in our
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formalisation, DT occurs on its own only in conditions of the form

(i) NOT Demo(DT f),

(ii) In(f<-b DT), and

(iii) Deleted(DT D f),

and in conclusions of the form

(iv) Deleted(DT D f), 

where f is a fact.

The replacement of DT by DTuIT in all cases (i)-(iv) makes no logical 

difference, as shown below.

Case (i): In SLDNF, and in our proof procedure, to prove a fact f

from DT, the denial " < -f" is used as top clause. In this case all the 

subsequent clauses in the search space will also be denials or the emtpy 

clause. Thus no clause in any derivation can possibly resolve against 

another denial. Thus it makes no difference if the input set is augmented 

by the set of denials IT; these denials will never be used.

Case (ii): The replacement of DT in the "In" conditions mqkes no 

difference, either. This is because "In(f<-b DTuIT)M is true if and only 

if the first parameter is a deductive rule which is a member of DTuIT, 

and this, in turn, is true if and only if the first parameter is a deductive 

rule in DT, since IT consists of denials only.

Cases (iii) and (iv): If a fact f is deleted in DT, it is also deleted in 

DTuIT, and vice versa. So the replacement of the first argument of 

"Deleted" by DTuIT makes no difference.

The sets D and DTuIT are represented by clauses of the form
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((Member set clause-name clause))

signifying that "clause" belongs to the set named "set" and is given the 

name "clause-name". The reason for introducing "clause-name" will 

become clear shortly when we discuss selection of candidate clauses for 

resolution, "set" is either "OLD", or "NEW", or a variable. Clauses 

identified by "OLD" belong to D-DT. Clauses identified by "NEW" 

belong to (DT-D)uIT, and those identified by a variable belong to both 

databases D and DT. Thus, using Prolog’s unification, we use the 

identifier "OLD" to access clauses in D, and the identifier "NEW" to 

access clauses in DTuIT. This scheme avoids the duplication of those 

clauses that are common to both D and DT. With this convention the 

top-level Sigma-Prolog goal, in the inference rule version, for integrity 

checking, for example, is

?((IC-Violated NEW (transact al dl ml))).

(In the metarule version the set "NEW" in this goal would have to be 

replaced by a set label denoting DTuITu{(MRl), (MR2), (MR3)}. 

We will discuss this in the next section.)

The following simple example should make the set labelling scheme 

more clear.

Example 6.2:

Suppose D consists of the following clauses:

(CL1) P 

(CL2) Q.

Let T be a transaction that deletes (CL1) and adds 

(CL3) R.
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Thus DT consists of:

(CL2) Q

(CL3) R.

Then clause (CL1) has label "OLD",

clause (CL2) has a variable label, and 

clause (CL3) has label "NEW".

The databases are represented by the following "Member" assertions: 

((Member OLD CL1 ((Cone + P))))

((Member x CL2 ((Cone + Q))))

((Member NEW CL3 ((Cone+ R)))). □

The set labelling is done automatically by another Prolog program that 

preprocesses the initial input set and the transaction.

(3):
One potential source of inefficiency in the proof procedure is the search 

involved in (12) for an input clause that can be resolved with a clause in 

the derivation on its selected literal. In SLDNF all selected literals are 

condition literals, and therefore SLDNF only needs to search the input 

set to find conclusions which unify with the selected literal. In the 

Consistency method proof procedure, however, selected literals can 

come from the conclusion as well as from the condition of clauses. 

This requires a larger search over all literal occurrences in the input set, 

looking for unifying conditions as well as conclusions. The 

implementation uses a form of indexing, similar to Kowalski's 

connection graphs (Kowalski [1975]), to reduce this search as follows.

For each predicate occurrence "predicate" in each clause in the input set
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we include an assertion of the form

((Possible-resolve input-set clause-name i (side sign predicate))), 

in the metalevel database. This assertion means that the input clause 

identified by "input-set clause-name" can potentially resolve (apart from 

unification of arguments) on its i-th literal with a clause whose selected 

literal is represented by (side sign predicate | arguments). (The 

"Possible-resolve" assertions can be refined to take the unification of 

the arguments into account as well.) These assertions are generated 

automatically by another Prolog program, given the two databases and 

the constraints. There are as many "Possible-resolve" assertions as 

there are literal occurrences in the databases and the constraints.

Without the "Possible-resolve" assertions, to find a candidate clause for 

resolution, we have to access each input clause, in turn, and traverse its 

literals in the search for a match. The "Possible-resolve" assertions 

provide a more direct access to matching literals. Although there can be 

more "Possible-resolve" assertions than "Member" assertions, the use 

of the former has the advantage of doing away with the list processing 

involved in traversing the literals of clauses.

Example 6.3:

Suppose the following clause is in set "NEW" and is given name CL1: 

P(x) < -  Q(x y) and NOT R(x).

Then there is a "Member" assertion:

((Member NEW CL1

((Cone + P x y) (Cond + Q x y)

(Cond-Rx)))).
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The corresponding "Possible-resolve" assertions for this clause are: 

((Possible-resolve NEW CL1 1 (Cond + P)))

((Possible-resolve NEW CL1 2 (Cone + Q)))

((Possible-resolve NEW CL1 3 (Cone - R))). □

Rule (12) in 5.1 can be rewritten as follows, to use the "Possible- 

resolve" assertions:

(PI2)

((Inconsistent input-set clause)

(Select-literal (side sign predicate | arguments) clause side) 

(Possible-resolve input-set clause-name i (side sign predicate)) 

(Member input-set clause-name input-clause)

(Resolve-i input-clause i clause (side sign predicate | arguments) 

side resolvent)

(Inconsistent input-set resolvent))

For simplicity, throughout this chapter, we ignore the Sigma-Prolog 

convention of starting variables with a We keep our earlier 

convention of starting variables and function symbols in the lower case, 

and constant and predicate symbols in the upper case.

"Resolvent-i", as compared to "Resolvent" in (12), has an extra 

argument i which allows fast retrieval of the unifying literal in the input 

clause. Note that with our representation of input clauses the "side" 

parameters in "Select-literal" and in "Resolvent-i" are now redundant 

and can be removed.
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Inference rules (16) and (17) can also be rewritten to exploit the 

"Possible-resolve" assertions.

A simple implementation for "Select-literal" is a strategy that selects 

literals in left to right order, delaying the non-ground negative 

conditions until they become ground, or more simply delaying all the 

negative conditions until after the positive ones have been selected.

Rule (13) for the negation as failure step is implemented using Prolog's 

built-in predicate "NOT" for negation as failure, as follows:

(PI3) ((Inconsistent s c)

(Select-literal (Cond - predicate | arguments) c)

(NOT Inconsistent s ((Cond + predicate | arguments))) 

(Remove-literal c (Cond - predicate | arguments) c') 

(Inconsistent s c’))

Note that in the "Select-literal" and "Remove-literal" conditions of (PI3) 

we have left out the "Condition" parameters (which were present in 

(13)). These parameters are now redundant as explained above.

The relation "Remove-literal" is defined simply by the following rules:

((Remove-literal (x|y) x y))

((Remove-literal (x|y) z (x|yl))

(Remove-literal y z yl)).
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The implementation of rules (C1)-(C3) is straightforward and does not 

require any significant extensions to what has already been described. 

The "Demo" and "NOT Demo" conditions in these mles are replaced by 

"Inconsistent" and "NOT Inconsistent" conditions, as was explained in 

Section 5.1.

We can add another rule to the definition of the relation "Inconsistent" 

to cater for selected literals that are system, that is built-in Prolog, 

predicates, as follows:

(PSYS) ((Inconsistent s c)

(Select-literal (Cond + | atom) c)

(SYS atom) 

atom).

"SYS" is a built-in Prolog primitive such that 

(SYS (predicate | arguments)) 

succeeds if "predicate" is a Prolog built-in predicate.

This concludes the discussion of that part of the implementation that is 

common to both versions of the Consistency method. We next 

consider each of the two approaches to the formalisation of the rules for 

implicit deletions.

6.2 The First Approach: The Metarule Version

To implement the metarule version, in addition to what has already been
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described in Section 6.1, we need to implement metarules (MR1), 

(MR2) and (MR3) as part of the input set, and to augment the proof 

procedure with reflection rules of inference (14) and (15). The 

representation of the metarules is straightforward (although somewhat 

messy!). (MR1), for example, is represented by the following Sigma- 

Prolog term:

((Cone + Deleted NEW OLD (Cone + | atoml))

(Cond - 1 atom)

(Cond + Member NEW clause-name 

((Cone + | atoml) | x))

(Cond + On (Cond + | atom) x)

(Cond + Demo OLD (Cone + | atoml))

(Cond - Demo NEW (Cone + | atoml)))

The details of the above term are not important. Note only that the 

relation "Member" implements the relation "In", which occurs in the 

second condition of (MR1). Note also that whenever we have used the 

set DT in (MR1) we use the set NEW, which represents DTuIT, in the 

above term. We justified this in detail in Section 6.1.

The metarules must be included as part of the updated input set. We 

give them a set label "META", and replace all occurrences of "NEW" in 

the implementation of (C1)-(C3) by a new set label "NEWnMETA" 

which represents DTuITu{(MRl), (MR2), (MR3)}. We need the 

following two rules to describe the set "NEWnMETA":

((Member NEWnMETA x y) (Member NEW x y))

((Member NEWnMETA x y) (Member META x y)).
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The top level Sigma-Prolog goal for integrity checking is 

?((IC-Violated NEWnMETA (transact al dl ml))).

The relation "On” is a Prolog built-in predicate and is dealt with by rule 

(PSYS). To deal with the "Demo" and "NOT Demo" conditions of the 

metarules we need reflection rules (14) and (15), which are implemented 

in the same way as (I1)-(I3).

As mentioned in the last chapter for the sake of efficiency, the metarules 

should be used forward only. To implement this restriction we simply 

avoid generating any "Possible-resolve" assertions for the conclusions 

of the metarules. In fact, as explained in Subsection 5.2.1, the forward 

restriction and the choice of top clauses associated with the updates 

have the effect that metarules (MR1) and (MR2) are only "entered" 

through their first conditions, and it is therefore sufficient to generate 

"Possible-resolve" assertions only for these conditions, as well as for 

the condition of (MR3).

There are many ways of preventing the deletion of metarules by user 

updates. One way is for the database management system to 

preprocess the updates and reject those that delete the metarules. 

Another way is to maintain the "META" set label of the metarules after 

every transaction, and to modify rule (C2) to simply ignore those 

updates that attempt to delete the metarules. Such a modification can 

take the following form:
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(C2)'

IC-Violated(DTuITu{(MR 1), (MR2), (MR3)} transact(al dl ml)) * -  

In(f<-b dl) and 

NOT EQ(f deleted(x y z)) and 

NOT EQ(f not(a)) and 

Demo(D f) and 

NOT Demo(DT f) and

Inconsistent(DTuITu{(MRl), (MR2), (MR3)} not(f)), 

where "deleted" is a function symbol naming the predicate symbol 

"Deleted", and "EQ" is a built-in predicate in Prolog expressing 

identity.

6.3 The Second Approach: The Inference Rule Version

To implement the inference rule version, in addition to what was 

described in Section 6.1, we need to implement inference rules (16) and 

(17) for implicit deletions. This, however, is straightforward and does 

not require any new features from what has already been described in

6.1 and 6.2. This version does not require the reflection rules (14) and 

(15). Furthermore, since we do not have the metarules in the database, 

it is not necessary to restrict the "Possible-resolve" assertions.
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6.4 An Alternative Implementation

In this section we propose an alternative and more efficient 

implementation for the special case where the database is definite, the 

updates are additions only, and the constraints are denials with or 

without negative conditions. In such a case there are no implicit 

deletions. Thus there is no need for inference rules for implicit 

deletions. Moreover, there is no need for the extended resolution step.

The major overhead of the implementation as described earlier in this 

chapter is the need for a meta-interpreter. Without the inference rules 

for implicit deletions, however, the proof procedure relies entirely on 

negation as failure and input resolution. In this form it might be viewed 

as a fairly minor extension of Prolog's SLDNF proof procedure that 

allows forward as well as backward reasoning. Thus one expects that, 

in this special case, it should be possible to implement the Consistency 

method proof procedure with efficiencies comparable to Prolog. This 

can, in fact, be done by a transformation of the input clauses that 

would make a meta-interpreter unnecessary. The transformation 

would, in effect, allow us to use Prolog's backward reasoning strategy 

to reason forward as well as backward.

In Prolog, because it is solely a backward chaining system, the input 

set needs only be searched for a conclusion that unifies with the 

selected literal. However, to allow both forward and backward 

reasoning the input set has to be searched for matching conditions as 

well. Earlier, in 6.1, we showed how this bigger space can be
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searched reasonably efficiently by an indexing method, implemented by 

the "Possible-resolve" assertions. A more effective alternative is to 

retain Prolog’s restriction of only resolving on the conclusion literals of 

input clauses, and to replace each database clause by as many copies as 

there are literal occurrences in the clause, with each literal as the 

conclusion of one of the copies. An extra argument can be added to 

each literal in these copies to indicate whether it comes from the 

conclusion or the conditions of the original clause. A "+" argument 

signifies that the literal is on the same side of as in the original 

clause; a "-" argument signifies that it has changed side.

Example 6.4:

Database clause

M(x y) <-N(x y) and K(y) 

is replaced by

M(+ x y) <- N(+ x y) and K(+ y)

N(- x y) <- M(- x y) and K(+ y)

K(- y) <r- M(- x y) and N(+ x y). □

The transformation of the integrity constraints is slightly different, since 

there is no need to generate copies of the constraints for all the literals 

that occur in them, but only for the positive literals, as illustrated in the 

following example.
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Example 6.5:

The constraint

<-P(x) and NOT Q(x) 

is replaced by the single rule

P(- x) NOT Q(+ x). □

We call each formula resulting from the transformation of a clause C, a 

backward rule associated with C.

We must also transform all top clauses into denials. Consider an 

update of adding a rule "P(x)<-Q(x)". This update adds the following 

two transformed rules:

P(+ x) <- Q(+ x)

Q(- X) <- P(- X).

The transformed top clause associated with this update, however, is the 

denial

<-P(- x) and Q(+ x).

An update of adding a constraint ”<-P(x) and Q(x)" adds the following 

two transformed rules to the input set:

P(- x) < -  Q(+ x)

Q(-x)<-P(+ x).

The transformed top clause associated with it, however, is the denial 

<-P(+ x) and Q(+ x).

Let C' be the transformed top clause associated with a clause C. We 

call C' the backward denial version of C. Thus "<-P(- A)", for

133



example, is the backward denial version of "P(A)M.

The following example illustrates how these transformations allow us 

to simulate forward reasoning by backward reasoning.

Example 6.6:

n

(Rl) R(x y) 4- P(x) and Q(y)

(R2) Q(A)

(R3) Q(B)

(R4) T(A)

I:
(IC) < -  NOT T(y) and R(x y)

T: Insert P(A).

D, (IC) and T are transformed to:

D’:

(Rl.l) R(+ x y) < -  P(+ x) and Q(+ y) 

(R1.2) P(- x) < -  R(- x y) and Q(+ y)

(R1.3) Q(-y) < - P(+x) and R(-x y)

(R2.1) Q(+ A)

(R3.1) Q(+ B)

(R4.1) T(+ A)
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(IC.l) R (-xy)<- NOTT(+ y)

T': Insert P(+ A).

Using "<-P(- A)" as top clause with Prolog’s backward reasoning 

strategy, and left to right literal selection strategy (with a safety 

condition on the literal selection), we obtain the following search space.

I’:
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*-P(- A)

(R1.2)

<-Rf- A v ) and Q(+ y) 

(IC.l)

NOT T(+ y) and Q (+  y)

<-T(+ A) <-T(+ B)
fails fails

which it does not [ ] which it does

Figure 6.1: A Prolog seach space (via a safe computation rule") for 

the transformed version of example 6.6

Using an analogous literal selection strategy but reasoning forward 

from T with DTuIT as input set we obtain a search space with a similar 

structure, as is shown below.
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P(A)

(Rl)

-R.(A y) <- Q(y)

(IC)

<-NOT T(y) and_Q(y)

Figure 6.2: A search space for example 6.6 by means of our proof 

procedure □

In the above example we insisted on a safe computation rule. However, 

not all implementations of Prolog have safe computation rules. With a 

minor modification of our transformation scheme we can use the 

common Prolog left to right computation rule without a safety 

restriction. The modification necessary is simply to put the negative 

conditions of the constraints after all the positive ones in the
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conditions of the constraints after all the positive ones in the 

transformed versions. This ensures that when the negative conditions 

are selected they are ground. In the rest of this section , when we refer 

to Prolog, we assume that either it has a safe computation rule, or that 

the constraints are transformed as just explained.

In general, for the case we are considering in this section, backward 

reasoning from the transformed version of the updates using the 

transformed version of the input set simulates forward reasoning from 

the original updates using the original input set. That is, given a search 

space in our proof procedure for the original database, constraints and 

update, we can construct an isomorphic SLDNF search space for the 

transformed database, constraints and update, and vice versa. We prove 

this in the following theorem.

Theorem 6.1:

Let S be a set of definite clauses and denials. Let S' be the set of all 

backward rules associated with the clauses in S. Let C \  be a clause in 

S, and let C i' be the backward denial version of C \.

There is a derivation C \ ,  C2 ,.., Cn for S by means of our proof 

procedure, without rules for implicit deletions and without the extended 

resolution step, with top clause C 1 , if and only if there is an SLDNF 

derivationC1 ', C2',..., Cn' of S'u{Ci'}, such that each Cj' is the 

backward denial version of Q .
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Proof:

We will only prove the " only if' half of the theorem. The "if half can 

be proved by a similar argument.

The "only if' half:

Let C i ,..., Cn be a derivation for S via a safe computation rule R by 

means of our proof procedure. We show that there is a safe 

computation rule R' such that there is the required derivation 

Ci',...,Cn' via R'. This proof is by induction on n:

The base case:

n=l: C i ' is known to be the backward denial version of C \ .

The inductive case:

Suppose Cn_i' is the backward denial version of Cn_i. Cn_i is of the 

form

ln, n>0,

such that a is an atom and the l[ are literals, and a may be absent. We 

use "," to denote the connective "and".

Cn-1' is of the form

l l [+]>•••> lnM> n>0,
where "a[-]" denotes the atom a with a "-" added as its first argument, 

and "li[+]" denotes the literal l[ with a "+" added as its first argument.

There are three cases:
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(1) R selects a positive condition lj from Cn_i. Then Cn, if it exists, is 

obtained by the resolution on lj of Cn_i and some input clause

r: f<-bi,..., bm, m>0,

with mgu (|). Thus Cn is

[(a)̂ - li,..., lj_i, lj+i,..., ln> bi,..., bm]cf>.

In this case let R’ select from Cn>i' the positive condition lj[+], and 

obtain Cn' by the resolution on lj[+] of Cn_i' and the backward rule 

associated with r which is of the form 

f[+]*~bi bm[+],

where "f[+]" and the ”bi[+]" are f and the bi, respectively, with a "+" 

added as their first argument. The mgu of this resolution step is (j), and 

Cn is
[ “̂ (a[-]), l i l j - l [ + ] j  lj+1 [+]>•••» lnM> 

bi[+],.--> bmM ]<!>>
which is the backward denial version of Cn.

(2) R selects the conclusion a of Cn_i (if a is present). Then Cn, if it 

exists, is obtained by the resolution on a of Cn_i and some condition k[  

of an input clause

s: (h)«-ki, ..., kp

with mgu a. (If s is a constraint then h is absent, and the kj are literals. 

If s is a database rule then h is present and the kj are atoms.) Thus Cn 

is

[ (h)< 11, ..., ln, ki, ..., ki_i, ki+i, ..., kp ]g.

Let R' select the condition a[-] of Cn_i', and obtain Cn' by the
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resolution on a[-] of Cn_i' and the backward rule associated with s 

which is of the form

kiH ^ (h[-]),k i[+], ki_i[+], ki+i [+], kp[+].

Cn' is then

[<-(h[-]), li[+], ln[+L ki[+], ki_i[+],ki+i[+], ..., kp[+]]a, 
which is the backward denial version of Cn.

(3) R selects a negative condition 1̂  of Cn_i. Suppose this condition is 

"NOTP(t*)M, where t* is a vector of ground terms. Then Cn, if it 

exists, is Cn_i with this condition removed.

Let R' select the negative condition lk[+] from Cn_i'. lk[+] is the literal 

"NOT P(+ t*)".

To prove that Cn' is the backward denial version of Cn, it is sufficient 

to prove that if there is a finitely failed search space for S u{<-P(t*)} 

by means of our proof procedure with "<-P(t*)" as top clause, then 

there is an SLDNF finitely failed search space for S’u{<-P(+ t*)}. We 

show this below:

Let F be a finitely failed search space for Su{<-P(t*)} by means of our 

proof procedure with "<-P(t*)M as top clause. Our proof procedure is 

identical to SLDNF when the top clause is a denial. So F is an SLDNF 

finitely failed search space for Su{<-P(t*)}. Since F is an SLDNF 

search space, only the definite clauses in S could have contributed to it. 

So F is an SLDNF finitely failed search space for D u{<-P(t*)}, where 

D is the set of all definite clauses in S. Now let F' be F with a "+" 

added as first argument to every relation that occurs in F. F' is an
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SLDNF finitely failed search space for D"u{<-P(+ t*)}, where D" is 

the set of all definite clauses in D with a "+" added as first argument of 

every literal that occurs in them. Thus D" is a subset of S'. Now F is 

also an SLDNF finitely failed search space for

S 'u{<-P(+ t*)}. This is because a positive condition of a denial which 

has a "+" as first argument can only be resolved with a rule in D", and 

the resolution can only introduce more positive conditions with a "+" as 

their first arguments. □

Prolog is a special case of SLDNF. Thus any Prolog search space is 

also an SLDNF search space. Therefore by Theorem 6.1, given a 

Prolog search space for the transformed version of the update and the 

transformed version of the input set, there is an analogous search space 

in our proof procedure with the original update and input set. This 

shows the correctness of the Prolog simulation of our integrity 

checking method for definite databases, and in the absence of (explicit 

and implicit) deletions.

This simulation, however, is not complete, in the sense that there might 

be a search space in our proof procedure which cannot be simulated by 

Prolog. This is because of Prolog’s left to right literal selection rule, as 

illustrated in the following simple example.
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Example 6.7:

D: R(x) <- R(x)

I:
(IC) <“ P(x) and R(x) and Q(x)

T: Insert P(A).

The following is a finitely failed search space in our proof procedure 

for this example.

P(A)

<-R(A) and O (A )

Figure 6.3: A search space for example 6.7 by means of our proof 

procedure

The analogous finitely failed SLDNF search space is as follows.

<-P(- A)

transformed version of (IC)

<-R(+ A) and Of+ A)

Figure 6.4: An SLDNF finitely failed search space for the 

transformed version of example 6.7
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The Prolog search space is infinite, however:

<-P(- A)

<—Rf+ A) and Q(+ A) 

<r-R (+  A ) and Q(+ A)

Figure 6.5: A Prolog search space for the transformed version of 

example 6.7 □
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CHAPTER 7

RELATED WORK

There is a substantial body of literature concerning integrity constraints 

in databases. Some of this work focuses on relational databases only, 

but in recent years a number of new papers have emerged addressing 

the problem of constraints in deductive databases, and even more 

generally in clausal databases, that is in databases that contain non- 

Horn clauses with disjunctive conclusions.

In relational databases the dominant approach has been to devise special 

purpose procedures to deal with specific kinds of integrity constraints 

and updates (see Ullman [1983], for example). One paper, however, 

proposes a general method for checking integrity of relational 

databases. This is the influential paper of Nicolas [1982]. He chooses a 

logical view of the database and of constraint satisfaction, and allows 

any closed domain independent formula of first order predicate logic as 

integrity constraint. Moreover, he proposes a simplification method 

which exploits the assumption that the constraints are satisfied in the 

database prior to the transaction. Given a transaction T, and a set I of 

integrity constraints, Nicolas uses the updates in T to construct from I a 

simplified set of constraints I', according to certain syntactic criteria, 

such that to check the satisfaction of I it is sufficient to check the 

satisfaction of I'. The formulae in I' are typically simpler and further 

instantiated than those in I, and therefore it involves less work to check 

the satisfaction of I' than I.
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Most of the general integrity checking algorithms for deductive 

databases are extensions of Nicolas' algorithm. The earliest such 

algorithms are Lloyd, Topor, et al's (Lloyd, et al [1986], Lloyd and 

Topor [1985], Topor, et al [1985]), and Decker's (Decker [1986]). Our 

Consistency method is also an extension of Nicolas' algorithm. Other 

descendants of Nicolas' work, proposed after the Consistency method 

are the algorithms of Martens and Bruynooghe [1987], and Bry, 

Decker and Manthey [1987].

The features required for our method, such as rules for deriving implicit 

deletions, can be incorporated in proof procedures which are not input 

procedures. The choice of an input proof procedure, however, 

facilitates the comparison of our method with other algorithms for 

integrity checking. It is possible to obtain different algorithms from our 

method by adopting different strategies for literal selection and for 

searching the resulting search space. Two such strategies allow us to 

approximate these other four simplification algorithms for deductive 

databases.

There are other methods for integrity checking in deductive and non- 

Horn clausal databases that are not descendants of Nicolas' algorithm. 

Reiter [1988], for example, proposes a modal approach to describing 

and checking integrity constraints. In an earlier paper, Reiter [1981] 

presents an algorithm for checking type constraints in non-Horn clausal 

databases. Finally, Asirelli, et al [1985] also propose an integrity 

checking algorithm for deductive databases. Henschen, McCune and 

Naqvi [1984] present an interesting method for preprocessing update
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schemas and integrity constraints to generate tests that are carried out 

when actual updates are requested. Their method caters for relational 

databases only. However, as it combines theorem-proving techniques 

and a simplification method for integrity checking, it merits a review in 

this chapter.

We describe these latter methods in more detail in Section 7.3. Before 

that we compare our method with the algorithms of Lloyd, Topor, et al 

and Decker in Section 7.1, and with the algorithms of Martens and 

Bruynooghe and Bry, et al in Section 7.2.

Note:

Lloyd and Topor [1985] first described a simplification algorithm for 

checking integrity constraints in definite databases. They and their 

collaborators (Topor, Keddis and Wright [1985], and Lloyd, 

Sonenberg and Topor [1986]) then extended this algorithm to deductive 

databases. For simplicity, in the sequel, we call this more general 

algorithm the LT algorithm. The LT algorithm and all its related results 

also appear in Lloyd [1987].

7.1 Comparison Of The Consistency Method With 

Decker's And The LT Algorithms

Both the LT and Decker algorithms cater for first order formulae of 

predicate logic as integrity constraints. To avoid floundering they 

impose restrictions identical to ours on variable occurrences in database

147



rules and integrity constraints. Both algorithms are based on the 

theoremhood view of constraint satisfaction. Another common feature 

of the two algorithms is that they each consist of three, possibly 

interleaved stages. The first stage reasons forward from the updates to 

compute the facts that are (potentially, in the LT case) added or deleted 

as a result of the transaction. The second stage uses these facts to 

simplify the constraints. Finally, the third stage evaluates the simplified 

constraints. Lloyd, Topor, et al and Decker use special purpose 

procedures for the first two stages, and SLDNF or a similar proof 

procedure for the third.

There are no completeness or correctness results available for Decker's 

algorithm. Lloyd, Sonenberg and Topor [1986], however, have proved 

the LT algorithm sound for stratified databases . On the whole, their 

soundness result is more general than our correctness and completeness 

results which we prove in Chapter 8. We give their result in more 

detail after the description of their algorithm in Subsection 7.1.2.

7.1.1 Decker’s Algorithm

Decker caters for function free range-restricted deductive databases, and 

function free range-restricted first order formulae as integrity 

constraints. The function free restriction does not appear to be 

necessary for correctness (although there are no correctness results 

available for Decker's algorithm). The restriction seems to be imposed 

for simplicity. If function symbols are present then the database might 

need to include an equality theory. Also the presence of function 

symbols in conjunction with recursion could cause infinite
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computations. The Consistency method would also suffer similar 

disadvantages in the presence of function symbols. However, the 

method is correct in general, even with function symbols, as will be 

proved in the next chapter.

Decker's transactions consist of additions and deletions of facts and 

non-atomic rules. His algorithm has been implemented in Prolog.

We illustrate his algorithm and compare it with ours and the LT 

algorithm by the following example, chosen to illustrate the differences 

between the three approaches.

Example 7.1:

D
(1) K(x) < - P(x) and L(x)

(2) R(x y) <- P(x) and Q(y)

(3) M(A) <r- NOT V(A)

(4) H(x) <-K(x)

(5) N(x) < -  T(x)

(6) E(x) G(x)

(7) S(x) E(x)

(8) Q(B)

(9) Q(C)

(10) J(A)

(11) T(A)
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I:
(IC1)
(IC2)

W(x) <- S(x) 

<-H(x) and J(x)

T: { insert P(A)

insert V(A) 

insert G(A) 

delete T(A) }

In general, to check if DT satisfies the constraints, Decker considers 

each update in T in turn. For each update he incrementally computes the 

facts added and deleted as a result of the update, simplifies the 

constraints according to syntactic criteria similar to Nicolas, and 

evaluates the simplified constraints. As soon as a violation of integrity 

is detected the algorithm terminates. According to Decker [1986], if the 

processing of the updates finishes and no violation is detected then the 

transaction does not violate the constraints (Decker does not, however, 

give a proof of this). If the database contains no recursion before and 

after the transaction, then the algorithm will always terminate. The 

added and deleted facts are computed in a specific order. To facilitate 

their computation, Decker keeps track of the dependencies in the 

database, in a way similar to our use of the "Possible-resolve" 

assertions described in Chapter 6. For each database rule 

Head<-Conds,

Decker maintains a set of facts of the form

Occurs-negative(l Head<-Conds) 

for all negative conditions 1 of the rule, and a set of facts of the form 

Occurs-positive(k Head<-Conds)
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for all the positive conditions k.

Furthermore, he precompiles the integrity constraints into "update 

constraints" which are then used at the constraint simplification stage of 

the algorithm. (IC1), for example, is precompiled into the following: 

insert S(x) only-if W(x) 

delete W(x) only-if NOT S(x).

The effect of using the precompiled constraints in Decker's algorithm 

can be simulated by rewriting the constraints as denials, in the way we 

do in our method, and using resolution, as will be shown shortly.

Decker gives an English description of his algorithm which is lengthy 

and difficult to summarise here. We, therefore, do not give a precise 

characterisation of his algorithm in the general case, and only describe it 

in the context of example 7.1.

Assuming that the updates are considered in the order they are written, 

Decker first considers the insertion of "P(A)". This does not match any 

of the constraints. Decker, then, considers each of the facts added by 

the insertion of "P(A)", in turn. These facts are "R(A B)" and 

"R(A C)", and neither of them match any of the constraints, and no 

facts are deleted as a result of their insertion, or as a result of the 

insertion of "P(A)M. So Decker moves to the next update, the insertion 

of "V(A)M. This does not match the constraints. It results in the 

(implicit) deletion of "M(A)", because of rule (3), but this deletion does 

not match the constraints, either. The third update, the addition of 

"G(A)", does not match the constraints. It results in the addition of 

"E(A)", which, in turn, results in the addition of "S(A)". Each is
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considered in turn. The fact "S(A)" matches the condition of the first 

constraint. The simplified constraint "W(A)" is then evaluated by 

attempting to prove that it is a theorem of the completion of the updated 

database. The attempt fails finitely, showing a violation of the 

constraint. The fourth update is not considered at all. (The fact that 

"W(A)M is not a theorem follows from the correctness of SLDNF 

(Clark [1978]) and the consistency of Comp(DT): the SLDNF search 

space for DTu{<-W(A)} fails finitely. Therefore by correctness of 

SLDNF "NOT W(A)" is a theorem of Comp(DT), where "NOT" is 

interpreted as classical negation. DT is stratified, and therefore 

Comp(DT) is consistent. So "W(A)" cannot be a theorem of 

Comp(DT).)

We can simulate Decker's algorithm, in general, by using our proof 

procedure, with the updates as top clauses, and employing the literal 

selection strategy that always selects a condition of a clause in 

preference to the conclusion, if there is one. Depth first search of the 

resulting search spaces then corresponds to Decker's interleaving of the 

three stages of his algorithm. Adopting these strategies in example 7.1, 

we obtain the following three search spaces, each with one of the 

updates as top clauses.
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1 P(A)

Figure 7.1: A search space for example 7.1 simulating Decker's 

algorithm

4 V(A)

(3) inference rule (17)

5 NOT M(A)

Figure 7.2: A search space for example 7.1 simulating Decker’s 

algorithm
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(6)
7E(A)

(7)
8S(A)

(IC1) rewritten:

<-S(x) and NOTW(x) 

9<-NOTW(A)

6 G(A)

I succeeds

ltf
10 <-W(A) 

fails

11 [ ] which it does

Figure 7.3: A search space for example 7.1 simulating Decker’s 

algorithm

The strategy that searches these search spaces in the order indicated by 

the numbers at the clauses simulates Decker’s algorithm almost exactly. 

Where two clauses have the same number the order in which they are 

investigated does not matter.

The computations involved in figure 7.1 correspond to Decker's 

evaluation of the facts added as a result of the first update. The 

computations in figure 7.2 correspond to Decker's evaluation of the fact 

deleted as a result of the second update, and the computations in figure

7.3 correspond to his evaluation of the facts added as a result of the
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third update, and the simplification and evaluation of (IC1).

The main difference between Decker's algorithm and our approximation 

of it, in general, is that he checks if a fact derivable as a consequence of 

an update is provable in the database prior to the transaction, and 

reasons forward from the fact only if it is not. We reason forward from 

all facts that are consequences of the updates. In the symmetric case of 

facts not derivable from the updated database, however, we, similar to 

Decker, ensure that the facts are indeed provable before but not after the 

transaction, before we treat them as deletions.

We can simulate Decker's algorithm exactly by modifying inference 

rules (12) and (13), and the database management rule (Cl), so that we 

reason forward from facts derivable from the updated database only if 

they are not derivable from the old database. (Cl), for example, can be 

replaced by the following two rules:

IC-Violated(DTuIT transact(al dl ml)) < -

In(c al) and 

Fact(c) and 

NOT Demo(D c) and 

Inconsistent(DTuIT c)

IC-Violated(DTuIT transact(al dl ml)) «-

In(c al) and 
NOT Fact(c) and 

Inconsistent(DTuIT c),
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where "fact(c)" expresses that c is a fact. (12) and (13) can be modified 

in a similar way. This "redundancy check" can sometimes result in 

better efficiency, and sometimes in worse, depending on the example.

7.1.2 The LT Algorithm

The LT Algorithm is similar to Decker's. The main difference is that to 

find appropriate instantiations for the integrity constraints, Lloyd, 

Topor, et al only process the non-atomic rules in the database, and not 

the facts. Avoiding access to database facts in the first stage of the 

algorithm can have advantages in organising storage (Lloyd and Topor

[1985] ) in order to minimise access to secondary storage. As far as 

overall efficiency is concerned, however, it can be advantageous or 

disadvantageous depending on individual cases.

Another, less important difference between the LT algorithm and 

Decker's, is that the former does not do either of the redundancy checks 

mentioned at the end of the last subsection. Similar to Decker’s, the LT 

algorithm caters for updates that add or delete deductive rules.

The LT algorithm has been implemented in Prolog by students of the 

University of Melbourne.

Below, we present a brief description of the LT algorithm in the general 

case , and illustrate its application to example 7.1. Our description of 

the algorithm is close to that given in Lloyd, Sonenberg and Topor

[1986] and in Lloyd [1987]. The only difference is that they describe
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the first two stages of their algorithm for closed first order formulae as 

constraints, and databases that consist of rules of the form 

A<-W,

where W is a first order formula. We present a slightly simplified 

description of their algorithm for deductive databases, and constraints 

written as non-Horn clauses.

Let D and DT be databases and T a transaction whose application to D 

produces DT. Suppose that the application of the deletions in T 

produces the intermediate database D". Thus D" is a subset of both D 

and DT.

The first stage of the LT algorithm is the computation of four sets,

p ° s D" negjy pp P0SD" DT anc* ne§D" DT* InformaUy> the second 
and the third sets are the sets of facts that are potentially added to the 

database as a result of the transaction, and the first and the fourth are 

the sets of facts that are potentially deleted.

These sets are computed as follows. Let E and E' be two databases 

such that E is a subset of E'. Then the sets pos^ g. and negg £. are 

defined as follows: (for convenience, we drop the subscripts E,E' in 

the following.)

P°s=un>0 Posn 
neg=un>0 negn, where

posO={a: a<—c o n d s  is in E'-E} 

neg°={ }
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pOSn+l =

{ a(|): a<- conds is in E, and 1 is a positive condition in 

conds, and 1' is in posn, and cj) is the mgu of 1 and l'}u

{ a(J): a.<- conds is in E, and 1 is a negative condition in 
conds, and Y is in negn, and $ is the mgu of 1 and 1'}

negn+l=

{ a(J>: a<-conds is in E, and 1 is a positive condition in

conds, and 1' is in negn, and $ is the mgu of 1 and l'}u

{ a(j): a*- conds is in E, and 1 is a negative condition in

conds, and 1' is in posn, and §  is the mgu of 1 and 1'}

Thus in example 7.1:

PosD",D = {^(A), N(A)}

ne^ D " ,D = n

posD" DT={p(A)> V(A)> G(A), E(A), S(A), K(A), R(A y), H(A)} 

ne^D",DT ={M(A)}.

If the database contains no recursion, then the computation of the pos 

and neg sets will terminate. In general, however, the computation may 

be infinite. Lloyd and Topor [1985] and Lloyd, Sonenberg and Topor 

[1986] propose certain stopping criteria that can sometimes ensure the 

termination of this computation.

The next stage of the algorithm is the instantiation of the integrity 

constraints. Suppose the clause

B i or ... or Bm <- A i and ... and An, m,n >0,

158



is an integrity constraint. Then it is sufficient to evaluate this constraint 

for all instantiations §  such that

there is an atom 1 in pos^y. and <j) is the mgu of 1 and 

some Ai, or

there is an atom 1 in neg jy  jyp and (j) is the mgu of 1 and 

some B i, or

there is an atom 1 in pos^y. ^  and $ is the mgu of 1 and some B j, 

or

there is an atom 1 in negjy. £> and (j) is the mgu of 1 and some Aj.

Thus in example 7.1 the following instances of the constraints have to 

be evaluated:

(IC1)* W(A)<—S(A)

(IC2)* <-H(A) and J(A).

The last stage of the algorithm consists of the evaluation of the 

constraints by SLDNF. We will just show the evaluation of (IC1)*. It 

will illustrate a feature of the LT algorithm which we will discuss later.

To evalute (IC1)* we introduce a new relation "Constraint-satisfied", 

with the definition

Constraint-satisfied <- [NOT S(A) or W(A)], 

which can be converted into two deductive rules 

Constraint-satisfied <- NOT S(A)

Constraint-satisfied <- W(A).

Now we use the SLDNF proof procedure with

Constraint-satisfied" as top clause. We obtain the following search 

space, which shows that the constraint is not satisfied. (The fact that the
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finitely failed search space shows the violation of the constraint follows 

by a similar argument to that presented in the paragraph immediately 

following Figure 4.2 in Chapter 4, where we argued that Figure 4.2 

showed that the constraint was not a theorem of the completion of the 

updated database.)

<- Constraint-satisfied

<yS(A)

. fails

<-E(A)

 ̂ fails

* if
I

<“ G(A)

fails

which it does not

Figure 7.4: An SLDNF search space for example 7.1 showing that 

flCl) is not a theorem of the completion of the updated database

One of the inefficiencies of the LT algorithm is that some of the 

information obtained during the computation of the pos and neg sets 

may be thrown away and have to be recomputed when evaluating the 

instantiated constraints. This redundancy is avoided in our simulation 

of their algorithm.
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The LT algorithm has been proved correct for stratified deductive 

databases (Lloyd, Sonenberg and Topor [1986]). They define the 

correctness of their method roughly as follows. Let (IC) be a constraint 

satisfied in database D, and let DT be the updated database. Let (IC) be 

the set of all the instantiated constraints resulting from (IC) after the 

processing of the transaction. Then DT satisfies (IC) if and only if DT 

satisfies (IC). They further conclude (easily by the consistency of the 

completions of stratified databases, and SLDNF results) that: (i) if there 

is an SLDNF proof of the theoremhood of all the constraints in (IC), 

then DT satisfies (IC), and (ii) if SLDNF fails finitely to prove the 

theoremhood of some constraint in (IC), then DT violates (IC).

We can approximate the LT algorithm by using our proof procedure 

with a literal selection strategy that selects conclusions in preference to 

conditions. Adopting this strategy we obtain the following four search 

spaces.
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1 P(A)

4 JCAI and LCAI 

(10)

5 <-L(A)

Figure 7.5: A search space for example 7.1 simulating the LT 

algorithm

1 V(A)

(3) inference rule (17)

2 NOT M(A)

provided Demo(D M(A)) and

NOT Demo(DT M(A))

Figure 7.6: A search space for example 7.1 simulating the LT 

algorithm
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1 G(A)

(6)

2 E(A)

(7)
3 S(A)

(IC1) rewritten

4 <-NOT W(A)

■ succeeds

I if
5 <-W(A)

fails

6 [ ] which it does

Figure 7.7: A search space for example 7.1 simulating the LT 

algorithm

1 NOT T(A)

(5) inference rule (16)

2 NOT N(A)

provided Demo(D N(A)) and

NOT Demo(DT N(A))

Figure 7.8: A search space for example 7.1 simulating the LT 

algorithm

The search startegy indicated by the numbers at the clauses allows us to
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approximate the LT algorithm. As before, where two clauses have the 

same number the order in which they are investigated does not matter.

The database rules considered and the mgu's computed at clauses 

numbered 1, 2 and 3 in figures 7.5 and 7.7 correspond exactly to those 

needed for constructing the sets posjy. and negjy The 

computations involved in figures 7.6 and 7.8 correspond exactly to 

those needed for constructing the sets posjy. ^  and negjy. jyp The 

computations involved in the rest of the derivations in figures 7.5 and

7.7 correspond to the instantiation and evaluation of the integrity 

constraints in the LT algorithm. Notice that in figure 7.7, the work 

involved from the clause numbered 5 down to the clause numbered 6 

corresponds to the right branch of figure 7.4. The left branch of 7.4 

duplicates some of the work done in the construction of the set 

P0SD" DT *n This inefficiency is avoided in our
approach and Decker's, and also in our approximation of the LT 

algorithm.

This is probably the main difference between the LT algorithm and our 

simulation of it. Another difference, in general, is the redundancy check 

that we, like Decker, perform for deleted facts. To avoid this check, our 

rules for implicit deletions would become quite complex. Consider, for 

example, rules (16) and (17) for implicit deletions described in Chapter 

5. The "Demo(D f)" condition in those rules serves two purposes. It 

checks if "f' is provable in D. Its evaluation also results in instantiating 

"f", so that the next "NOT Demo" condition becomes ground. If the 

"Demo" condition were to be removed then some other means of 

instantiating "f" should be added, and it is this that makes the
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modification complicated.

Notice that the "Demo" and "NOT Demo" conditions in the derivations 

in figures 7.6 and 7.8 are not strictly part of the object level derivation. 

They are metalevel conditions coming from applications of inference 

rules (16) and (17). To simulate the LT algorithm the selection of these 

two conditions has been deferred. As an alternative, these metalevel 

conditions can be amalgamated into the object level, and can be 

activated by the object level selection rule. This effect can be obtained 

by replacing (17), for example, by the following:

Inconsistent(DTuIT p<-c) <—

Select-literal(p p<-c Conclusion) and 

In(f<-b DT) and 

On(not(p) b) and

Inconsistent(DTuIT not(f)<-(c and demo(D f) a n d

not(demo(DT f)))).

Here "demo" is a prefix function symbol naming the relation "Demo", 

and "and" is an infix function symbol naming the connective "and". 

An extra level of reflection rules is needed to execute the "demo" and 

"not demo" conditions when they are selected. Similar modifications 

can be made to inference rule (16).

Our simulation of the algorithms of Decker and Lloyd, Topor, et al 

provides a good basis for comparing them with one another. In 

example 7.1, figures 7.1-7.3 simulate Decker's algorithm, and figures 

7.5-7.8 simulate the LT algorithm. Figures 7.3 and 7.7, where the
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update ”G(A)" is top clause, are identical. Now consider figures 7.1 

and 7.5, where "P(A)" is top clause. The left derivation of 7.1 involves 

less work than the left derivation of 7.5. The right derivation of 7.1, 

however, involves more work than the right derivation of 7.5. Figures

7.2 and 7.6 both have "V(A)" as top clause. The work involved in 7.2, 

simulating Decker, is greater than the work involved in 7.5, simulating 

LT, because Decker, in effect evaluates the "Demo" and "NOT Demo" 

conditions, but the LT algorithm does not. Finally, Decker does not 

need to consider the last update, that is the deletion of "T(A)", as top 

clause, but the LT algorithm reasons forward from this update as well, 

as illustrated in figure 7.8. In general, Decker’s algorithm is more 

efficient than the LT algorithm in some cases, and vice versa in others. 

We believe that it is an advantage of our method that it is not confined 

to any built-in strategies, and that we can dynamically employ suitable 

selection and search strategies to obtain the best performance.

We have chosen to embed our method for checking integrity within an 

input resolution proof procedure in order to facilitate comparison with 

the other integrity checking algorithms. As a consequence, our proof 

procedure inherits the inefficiencies of input proof procedures, which 

are documented in Kowalski [1975], for example. One such 

inefficiency is illustrated by the following example.
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Example 7.2:

D:

(1) N(x) <- P(x)

(2) R(x y) <- P(x) and Q(y)

(3) Q(B)

(4) M(A)

I:
(IC) <-N(x) and R(x y) and M(y) 

T:

Insert P(A).

Using our method, with the literal selection strategy that simulates the 

LT algorithm, we can obtain the following search space showing that 

the updated database satisfies the constraints. (Our method is complete 

for this example, as will be shown in the next chapter.) We use to 

denote the connective "and".
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P(A)

N(A)

(IC)

<-RfAv). M(y)

(2)

R(A v)<-Q(y)

(IC)

<-N(A). Q(y), M(y)

(1)

^E(Ai, Q(y), M(y) 

(update)

M(y)

(3)

<-M(B)

Q(y), M(y) 
(update)

<-QC>4, M(y)

(3)

<-M(B)

Figure 7.9: A Search Space For Example 7.2 Showing An 

Inefficiency Of Our Proof Procedure

Notice the duplication of work on the last three clauses of the two 

derivations. This inefficiency is avoided in the LT algorithm, because 

of their use of sets, and their method of simplifying constraints only by 

instantiation. We can also avoid this and other inefficiencies by 

employing better theorem-proving techniques, such as the connection 

graph proof procedure (Kowalski [1975]), in our method. □
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7.2 Comparison Of The Consistency Method With The 

Algorithms Of Martens And Bruynooghe, And Bry et al

We have already discussed the relationship between the Consistency 

method and the algorithms of Decker and Lloyd, Topor, et al. Thus to 

compare our method with the algorithms of Martens and Bruynooghe, 

and Bry et al, it is sufficient to compare these last two algorithms with 

the Decker and LT algorithms.

7.2.1 The Algorithm Of Martens And Bruynooghe

Martens and Bruynooghe [1987] cater for first order formulae as 

constraints, and function free, range-restricted stratified deductive 

databases. They impose the function free condition to reduce the 

possibility of infinite computations. Similar to our method, they adopt 

the consistency view of constraint satisfaction.

Their method combines an extension of Nicolas' simplification 

algorithm (Nicolas [1982]), and a modification of Ullman's rule/goal 

graphs and capture rules for query evaluation (Ullman [1985]). The 

resulting algorithm is almost identical to Decker's. It involves the same 

three stages of computation, and exactly the same interleaving of the 

three stages. It also includes redundancy checks for both added and 

deleted facts, exactly as in Decker's algorithm. In fact, Martens and 

Bruynooghe's algorithm can be viewed as a different implementation of 

Decker’s algorithm, where Decker's "Occurs-positive" and "Occurs- 

negative" facts, and update constraints are described graphically in the
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modified rule/goal graph of Ullman's.

There are no correctness or completeness results available for the 

algorithm of Martens and Bruynooghe. The algorithm has not been 

implemented yet.

7.2.2 The Algorithm Of Bry et al

Bry, Decker and Manthey [1987] cater for function free, range- 

restricted deductive databases. Their constraints are function free, 

closed first order formulae that satisfy the restricted quantification 

condition described in Section 2.2 of this thesis. They only consider 

updates that add or delete a single ground fact. More general updates 

are treated by Bry [1987].

Their algorithm, in effect, combines features from both the LT and 

Decker algorithms. Like these two algorithms, the algorithm of Bry, et 

al consists of three stages. The first stage is identical to LT’s: they 

compute all the facts that are potentially added or deleted as a result of 

the update. In this stage they only use the update and the non-atomic 

rules in the database. The second stage is the simplification of the 

constraints. At this stage they generate "update constraints" which 

incorporate Decker’s redundancy checks for added and deleted facts. 

The third stage consists of the evaluation of the "update constraints". 

The algorithm has been implemented in Prolog. The following simple 

example helps illustrate the relationship between the three algorithms.
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Example 7.3:

Suppose D contains the following rule:

R(x y) <- P(x) and Q(y).

Let the following be a constraint on D:

(IC) S(x y) < -  R(x y),

and suppose the update is the addition of "P(A)".

To check if DT satisfies (IC),

Decker will proceed as follows:

stage 1: All instantiations ([) are computed such that

"Demo(DT [R(A y)](]))” and "NOT Demo(D [R(A y)](j))" are true, 

stage 2: (IC) is simplified to the form [S(A y)](j) for each <j) computed, 

stage 3: All simplified constraints are evaluated.

Lloyd, Topor, et al will proceed as follows:

stage 1: "R(A y)" is computed as a potential addition, 

stage 2: (IC) is simplified to "S(A y)<-R(A y)". 

stage 3: The simplified constraint is evaluated.

Bry, et al will proceed as follows:

stage 1: As Lloyd, Topor et al.
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stage 2: The following "update constraint" is generated

S(A y) <- Demo(DT R(A y)) and NOT Demo(D R(A y)). 

stage 3: The "update constraint" is evaluated. □

Thus the main differnce between Bry, et al's and Lloyd, et al's 

algorithms is the redundancy check that the former does but the latter 

does not. The main differences between Bry, et al's and Decker's 

algorithms are firstly that the former does not access the database facts 

in stage 1, but the latter does, and secondly that the former does the 

redundancy check in stage 3, but the latter does the check in stage 1. 

Bry, et al's algorithm shares with the LT algorithm the disadvantage of 

duplicating in stage 3 some of the work already done in stage 1.

We can approximate Bry, et al's algorithm by our proof procedure with 

the same literal selection and search strategies that approximate the LT 

algorithm, while employing the modified versions of inference rules

(12) and (13), and the modified version of the database management rule 

(Cl), to perform redundancy checks for added facts, as was described 

in Subsection 7.1.1.

Bry, et al [1987] present a sketch of a proof of the soundness of their 

method in the case where each transaction consists of the addition or the 

deletion of a single ground fact. In this case soundness of their method 

is defined as follows. Let I be a set of constraints on a database D. Let 

u be an update on D, and let I' be the set of the "update constraints" that 

result from the processing of u. Then I is satisfied in the updated 

database DT if and only if I is satisfied in D and I' is satisfied in DT.
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7.3 Other Integrity Checking Approaches For Deductive

Databases

In this section we present a brief review of the major integrity checking 

methods that are not descendants of Nicolas' method.

7.3.1 Reiter’s Modal Approach

Reiter [1988] concentrates on theoretical rather than practical aspects of 

integrity constraints. He argues that constraints are statements about the 

database, not about the world that is modelled by the database. To 

formalise this notion he uses a first order modal language called 

KFOPCE, which is due to Levesque [1981]. This is a function free 

language with equality, with a single modal operator K, that stands for 

"knows". The database is assumed to consist of function free first order 

formulae. As an example of the use of KFOPCE consider the 

constraint, "every employee known to the database must have a known 

social security number". This is formalised as follows:

Vx K[Emp(x)] -> 3y K[Ss(x y)].

If, on the other hand, it is only required that every known employee 

must be known to have a social security number, without the actual 

number necessarily being known, we will have the following 

constraint:

Vx K[Emp(x)] -> K[3y Ss(x y)].

A similar notion of constraints has been presented by Eshghi and 

Kowalski [1988] who use first order predicate logic and the metalevel

173



provability relation "Demo" instead of the modal operator "K". In their 

paper, Eshghi and Kowalski discuss the relationship between their 

treatment of constraints and ours. Noel [1988] and Small [1988] have 

also proposed similar approaches to formalising constraints.

In Reiter's approach, a database D satisfies an integrity constraint if the 

constraint is true in D in the KFOPCE language. To check constraints, 

Reiter appeals to Levesque's query evaluation in KFOPCE.

Reiter's integrity checking method does not incorporate any 

simplification, that is it does not exploit the assumption that the 

database satisfies the constraints prior to the update.

7.3.2 Reiter's Type Checking

In an earlier paper (Reiter [1981]) Reiter proposes a method for 

checking type constraints in clausal typed databases. In this paper, 

Reiter remains within first order predicate logic. He considers type 

constraints of the form

R( xi ... xn) -> Typei(xi) and ... and Typen(xn) 

for every relation R in the database. For example:

Father(x y) -> Human(x) and Human(y) and Male(x).

In addition to the database and the constraints, there is a type database 

that contains information about the types of the constants in the 

language, and information about relationships between types, for 

example
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<-Male(x) and Female(x).

Given an update, Reiter uses the type database and constraints, and 

certain syntactic criteria to transform it into a "reduced type normal 

form", and then decides whether to accept or reject it according to 

certain guidelines. It is unnecessary to consider the details here. We 

only present a simple example.

Example 7.4:

(This is a simplified version of an example given in Reiter [1981].) 

Consider the update

(x/Human)(x/Male) [Sister(x) <- Brother(x)], 

which states that for all x which is human and male, if x is a brother 

then x is a sister. Assume the intuitive argument types for "Brother" 

and "Sister", namely

(IC1) Brother(x) ->  Human(x) and Male(x)

(IC2) Sister(x) -» Human(x) and Female(x).

Then the update is transformed into the following:

(ul) (x/Human)(x/Male)(x/Female) [Sister(x)<-Brother(x)]

(u2) (x/Human)(x/Male)(NOT x/Female) [<-Brother(x)].

Very roughly, the idea is that the transformed version of the update 

represents all the different typings that the update implies. (u2) states 

that for all x which is of type human and male and which is not of type 

female, x is not a brother.
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Now if we assume that no-one can be both male and female, then (ul) 

has inconsistent typing. Furthermore, the predicate "Sister" does not 

occur in (u2). In this case Reiter rejects the update.

The intuition behind the rejection of (u2) is not clear. Reiter reasons that 

in this case the predicate "Sister" is irrelevant to the original update, and 

he interprets this as an integrity violation. At best, he argues, there is 

something questionable about the update. □

In general an update u is rejected if and only if it is inconsistent with the 

type database (TD) and the type constraints (TC), or if there is a literal 1 

in u which does not occur in any of the formulae of the reduced type 

normal form of u with consistent typing, or if together with TD and 

TC, u implies a new type relationship which is not inconsistent with, 

nor a theorem of TDuTC, and the user rejects the new type 

relationship.

It might be of interest to explore the relationship between Reiter's 

method and a resolution based one. For instance, the following is a 

derivation in our proof procedure for the above example, with the 

update as top clause. The input set consists of (IC1), (IC2), the update 

and the denial

(TD 1) <-Male(x) and Female(x).
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Sisterf xK-Brotherfxl

one half of (IC2)

FemalefxK-  B rother(x)

(TD1)

<-Brother(x) and Malefxl 
one half of (IC1)

<-Brother(x) and Brother(x)

Figure 7.10: A derivation for example 7.4 in our proof procedure

The derivation shows that the update is subsumed by a consequence of 

it together with the type database and constraints. Notice that in this 

derivation we have adopted a literal selection strategy that prefers 

conclusions and type literals to others. We conjecture that such a 

strategy allows us to simulate Reiter's type checking algorithm, in 

general.

7.3.3 The Asirelli et al Approach

Another integrity checking method proposed is the algorithm of 

Asirelli, De santis and Martelli [1985]. They consider definite databases 

only, with restricted forms of integrity constraints. They argue 

(unconvincingly) that integrity constraints are really the "only if' 

version of the rules in the database. It is not clear from their paper 

exactly what class of formulae they allow as constraints.

To check integrity they propose the use of the SLD proof procedure. 

For example, to check if a constraint
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Q(x)<-P(x)

is satisfied in D, they suggest that SLD could generate all substitutions

(|) such that [P(x)]<|> is provable in D, and then SLD could be used again 
to attempt to prove [Q(x)](j), for all such <j). This approach is equivalent 

to using SLDNF (or our proof procedure with the constraints as top 

clauses) to prove the theoremhood of the constraints, and does not 

incorporate any form of simplification.

7.3.4 The Henschen et al Approach

The last approach we will consider in this chapter is that of Henschen, 

McCune and Naqvi [1984]. They propose a method based on theorem­

proving to preprocess update schemas (to be described shortly) and 

integrity constraints, to generate tests that are carried out at run-time 

when updates are actually requested. They cater for relational databases 

and transactions consisting of single updates. However, as well as 

additions and deletions of single facts, updates can have more complex 

forms, such as "delete all facts R(x y) for x=A", or "change all facts 

R(x y z) for x=A to R(x y B)". For example the update "change all facts 

Employee(Toy x y) to Employee(Toy x 10000)" requests changing the 

salaries of all employees in the toy department to 10000. The 

constraints can be any closed formulae of first order predicate logic 

expressed in clausal form.

Although their approach is a simplification approach that exploits the 

satisfaction of the constraints in the database prior to the update, it 

differs from Nicolas' simplification method in a number of ways. In
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Henschen, et al's method the simplification and test generation can be 

done at the time the database is designed, but in Nicolas' the 

simplification is done when actual updates are requested. Furthermore, 

Henschen et al, unlike Nicolas, can deal with updates of the complex 

form exemplified in the last paragraph. Finally, in Henschen et al's 

method the assumption of the satisfaction of the constraints in the old 

database is made explicit by an axiom, which is used in the resolution 

process. Similar to Nicolas, Henschen et al require the constraints to be 

domain independent.

The basic idea of Henschen et al's method is as follows. An update 

schema is an update form rather than an actual update. For example, 

suppose that "S(x y)" means company x supplies item y. Then the 

schema "delete S(A x)" describes the class of updates that delete all the 

"S" facts for a given company. Here, "A" is a dummy constant. An 

actual update conforming to this schema will provide an actual value in 

the place of "A".

For each update schema and each constraint, Henschen et al formulate a 

collection of clauses consisting of the assertion of the satisfaction of the 

constraint in the old database, a description of the new database in 

terms of the old one and the update schema, and the denial of the 

satisfaction of the constraint in the new database. These clauses are then 

processed by a highly selective process of resolution, paramodulation 

(Chang and Lee [1973]) and elimination of subsumed clauses. If a 

contradiction is generated then no update of the form of the schema can 

possibly violate the constraint. If no contradiction is generated then 

tests are extracted from the final set of resolvents. These tests would
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then have to be verified when updates of the form of the schema are 

actually requested.

Example 7.5:

(This example has been taken from Henschen et al [1984].)

Suppose "S(x y)" means company x supplies item y. Let (IC) be the 

constraint

S(x Bolts) < -  S( x Nuts).

Consider the update schema "change S(A Nuts) to S(B Nuts)", which 

is intended to change one of the suppliers of nuts to a different supplier. 

"A" and "5" are dummy constants. An actual update conforming to 

this schema will provide actual values in their places.

Suppose "Sold" expresses the "S" relation in the old database, and 

"Snew" expresses the "S" relation in the new database. Then the set of 

clauses formed in this example will include the following:

Sold(x Bolts) <-Sold(x Nuts),

which expresses the satisfaction of (IC) in the old database. The set of 

clauses will also include clauses such as the following which express 

the new "S" relation in terms of the old one:

Snew(x y) or x=A <r- Sold(x y)

Snew(x y) or y=Nuts <- Sold(x y)

Sold(x y) or x=B  <- Snew(x y), 

etc.

Finally, the set will include the denial of the satisfaction of the 

constraint in the new database, expressed as follows:
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Snew(^T Nuts)

< -S n e w (K  Bolts),

where " K ” is a Skolem constant (Chang and Lee [1973]). The last 

clause simply asserts that some company supplies nuts, but not bolts.

The resolution process reduces the set of clauses thus formed to a set 
consisting of four clauses:

(1) Sold(x Bolts) <- Sold(x Nuts)

(2) <- Sold(£ Bolts)

(3) <- Sold(£ Nuts)

(4) Sold(A Nuts)

(1) is assumed to hold, so it is ignored. For actual companies replacing 

"A" and "5", if any of clauses (2)-(4) can be resolved away a 

contradiction will be found which will indicate the satisfaction of the 

constraint after the update. So these clauses are the tests generated in 

this example. Clause (2), for example, yields the test of checking if 

"B" is already known to supply Bolts. If it is then the constraint 

continues to be satisfied. Clause (4) yields the test of checking whether 

"A" was not known in the old database to supply nuts. If it was not 

then the update would be ineffective and the constraint continues to be 

satisfied. □

The preprocessing of update schemas has the obvious attraction of 

reducing the work needed for integrity checking when actual updates 

are requested. It would be interesting to see how our method can be 

extended to incorporate such preprocessing. We conjecture that this can 

be done through symbolic processing.
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CHAPTER 8

CORRECTNESS AND COMPLETENESS OF THE 

CONSISTENCY METHOD

Recall that, according to our definition of constraint satisfaction, 

database D satisfies constraints I if and only if Comp(D)uI is 

consistent. In this chapter we discuss the correctness and completeness 

of our integrity checking method (as formalised by the inference rules 

in Sections 5.1 and 5.2.2) relative to this specification.

Recall also, that our proof procedure is identical to SLDNF whenever 

the top clause is a denial. Therefore it is as correct and as complete as 

SLDNF when the integrity constraints are chosen as top clauses. 

SLDNF has been proved correct in general by Clark [1978]. It has been 

proved complete in a number of special cases (Clark [1978], Jaffar, 

Lassez and Lloyd [1983], Barbuti and Martelli [1986], Kunen [1987] 

and [1988], Cavedon and Lloyd [1987] and Shepherdson [1988]).

Clark [1978], for example, has proved SLDNF complete for 

hierarchical databases and "allowed" goals. A goal is allowed if and 

only if every variable that occurs in a negative condition of the goal, 

also occurs in a positive condition, such that the positive condition 

generates candidate ground substitutions for the variable. (Note that this 

is Clark's definition of "allowed" goals, and is slightly different from 

the "allowed" condition of Lloyd and Topor [1986] and Topor and 

Sonenberg [1988].)
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Jaffar, Lassez and Lloyd [1983] have proved the following result for 

the completeness of the negation as failure rule:

Let D be a definite database and G a negation-free goal. If G is a logical 

consequence of Comp(D), then for all "fair" computation rules R, there 

is a finitely failed SLD search space for Du{G} via R. A computation 

rule is fair (Lassez and Maher [1984]) if in each infinite derivation 

every literal in the goal is eventually selected.

Shepherdson [1988] has slightly extended these results to prove 

SLDNF complete for

(i) definite databases and ground goals, for all fair 

computation rules, and

(ii) range-restricted hierarchical databases and range- 

restricted goals, for all computation rules.

A very similar result to (ii), above, was proved earlier by Lloyd and 

Topor [1986].

Shepherdson [1988] has also proved SLDNF (j)-complete for definite 

databases and allowed goals, for all fair computation rules. SLDNF is

^-complete for a goal G if whenever for a substitution <|>, [G](j) is 
logically inconsistent with Comp(D), there is an SLDNF refutation of 

Du{G} (with answer including <))).

Note that when the database is definite and range-restricted, every 

range-restricted goal is an allowed goal, because:

(i) in a range-restricted goal, by definition of range-restriction, every 

variable that occurs in a negative condition also occurs in a positive
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one, and

(ii) when the database is definite and range-restricted, if a goal is 

resolved on a positive condition, P, say, then any variable of P which 

is not grounded in the resolution step will occur in a positive condition 

in the resolvent.

Finally, by Proposition 4.2, if Comp(DT) is consistent and for all 

constraints (IC) in IT there is a finitely failed search space with (IC) as 

top clause, then Comp(DT)uIT is consistent and therefore database 

DT satisfies IT.

The discussion so far addresses the correctness and completeness of 

our proof procedure with denials as top clauses, and thus the 

correctness and completeness of the Consistency method when the 

updates are integrity constraints.

In the remainder of this chapter, we concentrate on the more 

complicated case where the top clauses are not denials. This 

corresponds to the cases where the updates are additions, deletions or 

modifications of database rules. Recall that ’'modification” updates are 

treated as combinations of additions and deletions. So without loss of 

generality, in the rest of this chapter, we assume that transaction T 

consists of a set, al, of additions, and a set, dl, of deletions of 

deductive rules, unless otherwise stated.
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8.1  Correctness

Proposition 8.1: (Correctness of the simplified proof procedure

described in Subsection 3.1.2)

Let S be the union of a set DT of definite clauses and a set IT of 

negation-free denials. Let Co be a clause in DT. If there is a refutation 

by means of our proof procedure with S as input set and Co as top 

clause, then Comp(DT)uIT is logically inconsistent.

Proof:

The theorem follows from the more general fact that if Co, C \ ,..., Cn 

is a derivation, then Cn, for all n>0, is a logical consequence of 

Comp(DT)uIT. This, in turn, follows from the fact that each Cf+i is 

obtained from C [ and an input clause by resolution, and resolution is 

correct (Robinson [1965]). □

To prove the correctness of our proof procedure in the general case we 

first need to prove the correctness of the extended resolution step.

Proposition 8.2: (Correctness of the extended resolution step)

Let clauses

Ci: NOT P(t*1 Condsl

and C£ (L)<-NOTP£r*} and Conds2
be logical consequences of Comp(DT)uIT. Condsl and Conds2 are 

(possibly empty) conjunctions of literals, L is a literal which may or
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may not be present, t* and r* are vectors of terms, and P is any 

predicate symbol. Let C be obtained by the extended resolution of C \  

and C2 on their underlined literals. Then C is a logical consequence of 

Comp(DT)uIT.

Proof:

C is the clause

[ (L)<-Condsl and Conds2 ](j) 

where (j) is the mgu of P(t*) and P(r*).

Ci and C2 are equivalent to

Ci': <-Condsl andP(t*}

C2*: P(r*) or (L) <-Conds2.

Now C is the resolvent, by the standard resolution step, of Ci' and C2* 

on their underlined literals. Since standard resolution is correct 

(Robinson [1965]), C is a logical consequence of Comp(DT)uIT. □

Theorem 8.1: (Correctness of the general proof procedure -the 

inference rule version- formalised in Sections 5.1 

and 5.2.2)

Let S be the union of a set DT of deductive rules and a set IT of denials. 

Let Co be either a clause in S or the negation of a fact that fails finitely 

from DT by SLDNF. If there is a refutation by means of our proof 

procedure with Co as top clause and S as input set, then 

Comp(DT)uIT is inconsistent.
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We prove more generally, by induction on n, that if Co, C \ , Cn is 

a derivation by means of our proof procedure, then Cn is a logical 

consequence of Comp(DT)uIT.

The base case:

Co is obviously a consequence of Comp(DT)uIT if Co is a clause in S. 

By the correctness of SLDNF, Co is also a consequence of Comp(DT), 

and therefore of Comp(DT) uIT, if it is the negation of a fact that fails 

finitely from DT.

The inductive case:

Suppose Cn_i is a logical consequence of Comp(DT)uIT. Then if Cn 

exists, it is obtained from Cn_i by one of the following rules (the rule 

names refer to their names in Chapter 5):

(1) standard resolution, (12),

(2) extended resolution, (12),

(3) negation by failure, (13),

(4) inference rules for implicit deletions, (16) and (17).

In cases (l)-(3) Cn is clearly a logical consequence of Comp(DT)uIT, 

because each of these steps for deriving Cn from Cn_i is logically 

correct: standard resolution is correct (Robinson [1965]), extended 

resolution is correct (Proposition 8.2), and the negation as failure step 

is correct (by correctness of SLDNF (Clark [1978])).

P ro o f:
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It remains to show that if Cn is obtained from Cn_i by (16) or (17), 

then Cn is a logical consequence of Comp(DT)ulT. In both cases Cn 

has the form

NOT f <- c

for some fact f, and some conjunction of literals c, such that the 

condition

NOTDemo(DTf)

holds. But this condition holds if and only if f fails finitely from DT. 

But then, by the correctness of negation as failure, "NOT f ' is a logical 

consequence of Comp(DT)uIT and therefore so is "NOT f < -  c". □

In this argument we have assumed that the condition 

"NOT Demo(DT f)" is evaluated before the clause "NOT f <-c" is 

derived, as it would be if the conditions in (16) and (17) were executed 

in Prolog order. But the logical content of these inference rules is 

independent of the choice of safe computation rules for evaluating their 

conditions. The above proof therefore implies the correctness of the 

method for any safe computation rule, such as that employed in our 

simulation of the LT algorithm in example 7.1.

To end this section we prove the correctness of our rewriting of the 

integrity constraints as described in Section 2.2. We consider two 

cases:

(a) the simpler rewriting of constraints that are of the form 

A \  or... or An < -  B \  and ... and Bm, 

where the Aj and the B{ are atoms, and

188



(b) the more complicated rewriting of constraints that are more general 

formulae of first order predicate logic.

For case (a) we prove the following proposition:

Proposition 8.3:

Let (IC) be a constraint on DT of the form

A \  or... or An <- B \  and ... and Bm, m,n >0,

where the A [  and the B[ are atoms. Let (IC) be the rewritten version of 

(IC):
(IC) < -  B i  and ... and Bm and NOT A \  and ... and NOT An. 

Then if there is a refutation by means of our proof procedure with 

DTu{(IC')} as input set, and a clause u associated with an update in T 

as top clause, then Comp(DT)u{(IC)} is inconsistent.

Proof:

If such a refutation exists, then by correctness of our method (Theorem 

8.1) Comp(DT)u{(IC')} is inconsistent. Thus Comp(DT)u{(IC)} is 

inconsistent. □

To prove a correctness result for case (b) we need two results proved 

by Lloyd and Topor [1984]. We give a specialised version of these 

results necessary for our purposes.

Let DT" be a set of deductive rules, and let V be a closed first order
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formula of predicate logic. Let DT'=DT"u{A<-V}, where A is a 

nullary predicate symbol which does not occur anywhere in DTM or V. 

Let DT be DT in which the rule "A<-V" is transformed into a set of 

deductive rules, as described in Lloyd and Topor [1984], and 

exemplified in Section 2.2 of this thesis. Suppose C is a closed formula 

which contains predicate symbols that occur in DT' only. Then Lloyd 

and Topor [1984] have proved the following:

(1) If C is a logical consequence of Comp(DT), then C is a logical 

consequence of Comp(DT'). (Comp(DT') is defined as an extension of 

the completion of a deductive database. The details need not concern 

us.)

(2) A is a logical consequence of Comp(DT') if and only if V is a 

logical consequence of Comp(DT').

We use (1) and (2) to prove the correctness of our rewriting of 

constraints in case (b):

Proposition 8.4:

Let W be a closed first order formula, and let V=(NOT W). Let DT, 

DT', DT" and A be as explained above. If there is a refutation by 

means of our proof procedure with DTu{<-A} as input set and a 

clause associated with an update in T as top clause, then 

Comp(DT")u{W} is inconsistent.
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If such a refutation exists then by correctness of our method (Theorem 

8.1) Comp(DT)u{<-A} is inconsistent. So A is a logical consequence 

of Comp(DT). By (1), above, A is a logical consequence of 

Comp(DT'). Then by (2), above, "NOT W" is a logical consequence of 

Comp(DT"). Therefore Comp(DT")u{W} is inconsistent. □

P ro o f:

8.2 Completeness

Recall that our method of integrity checking is based on the assumption 

that D satisfies the constraints prior to the transaction. With this 

assumption, we believe that our method is as complete as SLDNF. 

That is, if there is an SLDNF refutation with an integrity constraint as 

top clause then for all safe computation rules R (or all fair computation 

rules R, whenever SLDNF requires fairness of computation rules) there 

is a refutation via R by means of our proof procedure with a clause 

associated with an update as top clause.

We shall prove the completeness of our method for the special, but 

non-trivial case, discussed in Chapter 3, where the database is definite, 

the integrity constraints are negation-free denials, and the transaction 

consists only of additions. The proof procedure in this case is non­

trivial, because as shown earlier it is neither a special case of SL 

(Kowalski and Kuehner [1971]), nor a special case of SLD (Apt and 

van Emden [1982]). In Chapter 3 we showed how our proof procedure 

extends both SL and SLD.
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SLD has been proved complete by Clark [1979] and Hill [1974]. Thus 

if DT is inconsistent with a constraint (IC) then for any computation 

rule R there exists an SLD refutation of DTu{(IC)} via R. In this 

section we prove the completeness of our method for this special case 

by proving that the method is as complete as SLD.

Since Comp(D) is consistent with the constraints, any inconsistency 

after the transaction must involve at least one of the updates. 

Therefore, in any SLD refutation with a constraint as top clause, 

showing the violation of the constraint in the updated database, one of 

the input clauses contributing to the refutation must be an update. Thus 

to prove the completeness of our method relative to SLD it is sufficient 

to prove the following.

Theorem 8.2:

Let S be a set of definite clauses and negation-free denials, and let (IC) 

be a negation-free denial in S. Suppose there is an SLD refutation F of 

Su{(IC)}. Then, for every computation rule R and for every input 

clause C contributing to the refutation, there is a refutation via R with 

input set S by means of our proof procedure with C as top clause. (An 

input clause C contributes to a derivation C o, C \ , ..., Cn if and 

only if for some i, 0<i<n, Q+i is obtained by the resolution of C and

Q).
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P ro o f:

The proof is obtained by the standard techniques of:

(1) first transforming F to a variable-free SLD refutation F' of 

S 'u{(ICT)}, where (IC) is a ground instance of (IC), each clause in S' 

is a ground instance of a clause in S, and a ground instance C' of C 

contributes to F',

(2) transforming F to a ground refutation F" by means of our proof 

procedure with C as top clause, and finally

(3) applying the Lifting Lemma (Chang and Lee [1973]) to obtain the 

desired refutation F* (isomorphic to F") of Su{(IC)} with top clause

C.

Parts (1) and (3) are well known techniques, often employed in proofs 

of (relative) completeness of resolution proof procedures. We will 

discuss these parts briefly first, and then concentrate on part (2), which 

is specific to Theorem 8.2.

Part (1):

F can be transformed to a variable-free refutation F as follows. First 

apply the mgu's generated in F (that is the mgu's of the resolution steps 

that construct F) to the clauses in F, and to the input clauses that 

contribute to F. This gives a refutation (possibly containing variables) 

which uses only propositional resolution (that is resolution steps that do
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not involve any instantiation of variables). Now replace all remaining 

variables systematically by distinct constants. A variable x must be 

replaced by the same constant symbol wherever it appears in the 

refutation and in the input clauses that contribute to the refutation.

Part (3):

The Lifting Lemma states that if C i ' and C2 ' are instances of C \  and 

C2 , respectively, and if E' is a resolvent of Ci' and C 2', then there is a 

resolvent E of C \  and C2 , such that E' is an instance of E.

So by this Lemma if F" is a refutation with input set S'u{(IC’)} and 

top clause C, then, by inductively applying the Lifting Lemma, there is 

a refutation F* with input set Su{(IC)} and top clause C.

Part (2):

First, transform F into the form of an and-tree TR: the top node of TR 

is the denial (IC) with subtrees for every condition A [  in (IC). These 

subtrees are joined to the top node by arcs connecting the conditions A [  

with the conclusions of the rules in S' with which they resolve in F'. 

The top of TR then has the form

where the C [ denote (possibly empty) conjunctions of literals. By an
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induction argument the subtrees with top node can be

constructed similarly. Notice that the and-tree is actually a special form 

of connection graph (Kowalski [1975]) linking occurrences of clauses 

in S'u{(IC')}. The same clause can occur in different subtrees. Every 

occurrence of an atom in TR is linked to only one other occurrence of 

an atom. Thus every link represents a possible resolution between the 

clauses.

The original SLD refutation F is one particular traversal of TR, starting 

with the top node (IC). The desired refutation F" is just an alternative 

traversal of TR starting with an occurrence of C instead.

F" can be constructed by course of values induction on the number of 

arcs in TR: Suppose C occurs at a node N in TR of the form

Each atom in N is linked to exactly one other atom in a node in TR. N 

may have zero or more conditions, and may or may not have any 

conclusion. Suppose that computation rule R selects an occurrence of 

an atom (conclusion or condition) in C and that B is the ground instance 

of this atom occurrence in C'. Let C" be the resolvent on B of C with 

the clause to which B is linked in TR. Replace the two parent nodes in 

TR by the one node which is the resolvent, letting the resolvent inherit 

all the unselected links from the parent clauses (exactly as in the 

connection graph proof procedure (Kowalski [1975])). The resulting 

tree TR? has exactly one less link than TR. By induction hypothesis for 

every computation rule R' there exists a refutation F'" of S'u{(IC')}

(A) <r- B i  and B2 and ... Bm.

195



*

with top clause C". Choose R' to be the computation rule that selects 

from a clause C'n ending a derivation C'o, ..., C'n of S'u{(IC')} the 

ground instance of the same atom occurrence that R selects from the 

clause Cn ending a derivation C, Co, Cn of Su{(IC)}, where 

C’o, C'n is the ground derivation isomorphic to Co, ..., Cn. The 

desired refutation F" is then just C followed by F"\ □

It is possible to extend the proof of Theorem 8.2 to prove completeness 

of our method relative to SLDNF for a more general case where the 

database is still definite and all the updates are additions, but where 

integrity constraints may have negative conditions.

Suppose there is an SLDNF refutation of DTu{(IC)}, for a constraint 

(IC) in I. Since D satisfies the constraints, one of the updates in the 

transaction must contribute to this refutation (that is, an update must be 

an input clause used in the solution of a positive condition of (IC)). If 

this were not the case then there would be some ground instance 

"NOT A", say, of a negative condition of (IC) such that "NOT A" is 

provable by SLDNF in DT, but not in D. Therefore there is a finitely 

failed SLD search space for DTu{<-A}. But the search space for 

DTu{<-A} includes the search space for D u{4-A } because DT 

includes D and both consist of definite clauses. Therefore there must 

be a finitely failed SLD search space for Du{*-A}, which implies that 

D violates the constraint (IC) contrary to assumption. Thus to prove 

our method as complete as SLDNF in this case it is sufficient to prove 

the following.
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Theorem 8.3:

Let S be a set of definite clauses and denials, and let (IC) be a denial in 

S. Suppose there is an SLDNF refutation F of Su{(IC)}. Then for 

every safe computation rule R and every input clause C contributing to 

the refutation there is a refutation via R by means of our proof 

procedure with C as top clause and S as input set, provided that we 

employ a fair computation rule in the subproofs of negative conditions.

Proof:

The SLDNF refutation F without its auxiliary negation as failure 

subproofs has the same structure as an SLD refutation, except for the 

solution of negative conditions. If for every auxiliary subproof of a 

ground negative condition "NOT A" in F we add a negative fact 

"NOT A" to the database, and then rename such negated atoms 

systematically by means of new and distinct positive ground atoms, we 

transform F into a form to which Theorem 8.2 applies. Thus we can 

construct a refutation via any computation rule by means of our proof 

procedure with C as top clause. In particular, we can construct such a 

refutation via any computation rule that selects the renamed conditions 

only when they are ground. If we now undo the renaming and restore 

the auxiliary negation as failure subproofs, we obtain the desired 

refutation.

Moreover, we obtain proofs of the negative conditions via any fair 

computation rule, for the following reason. Suppose there is an 

SLDNF refutation of Su{<-NOT A}, where A is a ground atom. Then
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there is an SLD finitely failed search space for S u{<-A}. Then, by (a 

specialisation of) the correctness result of SLDNF (Clark [1978]), 

"<-A" is a logical consequence of Comp(S). So, by the Jaffar, Lassez 

and Lloyd [1983] result described in (b) at the beginning of this 

chapter, for every fair computation rule there is a finitely failed SLD 

search space for Su{<-A}, and thus there is an SLDNF refutation of 

Su{<-NOT A}. Furthermore, as explained in Chapter 4, our proof 

procedure is equivalent to SLDNF when the top clause is a denial. 

□

As well as ensuring the completeness of the method, the special cases 

covered in Theorems 8.2 and 8.3 have another major advantage. The 

proof procedure in these cases can be implemented with efficiencies 

comparable to that of Prolog implementations, as described in Chapter 

6 .

We have not yet proved the analogue of Theorem 8.3 for the general 

case. The main difficulty comes from the need to generalise the and- 

tree in the proof of Theorem 8.2 to a tree including auxiliary proofs of 

negation as failure. These auxiliary proofs are not simple and-trees but 

include entire finitely failed search spaces. This suggests that we may 

be able to deal with this case by converting finitely failed search spaces 

into direct proofs of negative conditions using Comp(D) as in Clark's 

proof of the correctness of SLDNF (Clark [1978]).

The correctness of our proof procedure justifies concluding that if we 

obtain a refutation with our proof procedure then the updated database 

violates the constraints. Completeness justifies concluding, as a
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corollary, that if our proof procedure fails finitely with all the updates 

as top clauses then integrity is maintained in the updated database.
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CHAPTER 9

CONCLUSION

In this thesis we have described the Consistency method for checking 

integrity of deductive databases, and a new underlying proof 

procedure. The Consistency method exploits, for efficiency, the 

assumption that the constraints are satisfied in the database prior to the 

transaction. It reasons forward from the transaction, and thus 

concentrates on the effects of the updates, and ignores what remains 

unchanged. The new proof procedure is an extension of Prolog, and 

allows forward as well as backward reasoning.

We described the proof procedure and the Consistency method first in 

two simplified cases and then in the general case. We, then, presented a 

logical formalisation of the proof procedure and the Consistency 

method, and described an implementation in Prolog based on this 

formalisation. We also described an alternative and more efficient 

implementation for a special case.

The proof procedure was compared with the SL, SLD and SLDNF 

proof procedures. It was shown to be extensions of the latter two. It 

was also shown to differ from SL by adopting a more liberal literal 

selection strategy. Thus although our proof procedure is not as general 

as SL, it is not a special case of SL either.

The Consistency method was compared with other existing algorithms
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for integrity checking in deductive databases. It was shown to 

approximate the algorithms of Decker, Lloyd, Topor, et al, Martens and 

Bruynooghe and Bry, et al. We discussed in detail the relationship 

between the Consistency method and the first two algorithms, and that 

between these algorithms and the latter two.

Finally, we proved our method correct in general, and complete in 

certain special cases.

This work can be extended in the future in various directions, for 

example:

(1) Neither we nor any other researchers in deductive database integrity 

have yet adequately addressed the problem of dealing with constraints 

involving aggregates. Heath [1988] has done some preliminary, but 

promising, work on extending our method to deal with aggregate 

constraints. The subject deserves to be further investigated. Consider, 

for example, the following constraint:

"The maximum number of students is 100."

This can be formalised by the rule:

n<100 <- s={x: Student(x)} and Size(s n).

(The set construction can be implemented using Prolog’s "isall" 

operator.)

Intuitively, this constraint must be evaluated when and only when a 

new student is to be recorded in the database. Moreover, we should not 

have to construct the complete set of all students every time we evaluate 

the constraint. Forward reasoning, via resolution, from updates that
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add new students does not achieve either of these requirements.

(2) There is scope for improving the efficiency of our implementation. 

It would be interesting to see if the alternative implementation presented 

in Section 6.4 can be extended to cover more general cases. 

Furthermore, since our approach is based on general theorem-proving 

techniques, it can benefit from existing approaches for improving the 

efficiency of the underlying linear proof procedure (Kowalski [1975]).

(3) Eshghi and Kowalski [1988] propose the use of abduction to 

replace reasoning with negation as failure. For example, a rule

A<-NOTB 

can be rewritten as 

A«-B',

together with a constraint 

<~B and B’,

where B' is an abducible fact, that is a fact that can be assumed 

provided its assumption does not cause any inconsistencies. Thus to 

prove A, fact B' can be assumed provided B is not provable.

Abduction provides an interesting alternative to negation as failure, and 

for implementing default reasoning in general. The consequences of 

replacing negation as failure by abduction in our proof procedure are 

worth investigating, especially since checking abductive assumptions 

for consistency with constraints is an essential feature of the abductive 

approach. On the one hand, replacing negation by failure by abduction 

would influence our integrity checking method. On the other hand, to 

be efficient, abduction needs an efficient integrity checking method.
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(4) Finally, the identification of the largest class of problems for which 

our method can be proved complete is an outstanding theoretical issue.
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