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Abstract

The commonly accepted basis for functional program m ing is the A-calculus; 
and it is folklore th a t A-calculus is the prototypical functional language in puri
fied form. There is, nonetheless, a fundam ental m ism atch between theory and 
practice:

• M uch of w hat is known about the model theory and  proof theory of the 
A-calculus is sens ib le  in nature, i.e. all unsolvables are identified. Crucially, 
Ax._L =  _L where _L represents any divergent te rm  (or program ).

• In practice, however, most im plem entations of functional languages are 
la z y , i.e. program s are reduced in n o rm a l o rder to  weak head n o rm a l fo rm s  
(whnf), corresponding to a ca ll-b y -n am e  semantics. Consequently, Ax._L ^  
_L, because all abstractions, being in whnf, are deemed to  be legitim ate and 
meaningful programs.

This thesis seeks to  develop a theory of la zy  functional program m ing th a t 
corresponds to  practice in the framework of the classical A-calculus. The m ain 
topics studied in this thesis are as follows:

• The fundam ental notions of solvability, A-definability (of numeric func
tions) , A-theories and tree sem antics in the classical sensible A-calculus are 
reviewed and revised in the light of the lazy regime.

• Different form ulations of la zy  X -m ode ls  are presented and  shown equivalent. 
We prove a L o ca l S tru c tu re  Theo rem  for the class of free la zy  P S E -m o d e ls .

• The full abstraction  problem  recast in the lazy A-calculus, a la Abram - 
sky, is studied. We focus on the la z y  X -ca lcu lu s  w ith  convergence te s t in g  

and study  the  problem  of call-by-value sim ulation. A general m ethod for 
constructing fully abstrac t models which are re trac ts  of D  — the initial 
solution of the  dom ain equation D  =  [D  —> D]±  —  w ith  respect to  a class 
of sufficiently expressive variants of A bram sky’s At  is developed. The full 
abstraction  problem  of At  is reduced by this m ethod to  an  open question 
of the  co n se rv a t iv ity  of a  labelled version of Ai  over itself.

• A proof system  for the lazy A-calculus (with convergence testing) based on 
Scott’s logic of existence which is co rrect w ith  respect to  A i s  introduced 
and given a so u n d  and com plete  in terpreta tion  in partia l categories. L a z y  

re f le x ive  ob jects  w ith  enough points in p a r t ia l C a r te s ia n  c losed  d o m in ic a l 

ca tegories  give rise to  lazy A-models in which convergence testing is defin
able, thereby yielding a partial categories semantics.
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C h ap ter 1 

In tro d u ctio n

1.1 Pream ble
Functional languages have had a small group of predom inantly B ritish advo
cates and cognoscenti for many years, until, it would seem, the fateful Turing 
Award speech delivered by J. W. Backus in 1978 [Bac78]. Since then, many 
more functional program m ing languages have sprung up, notably: LML [Aug84], 
MIRANDA [Tur85], PO N D ER [Fai85], LISPK IT [Hen80], TALE [BvL86] and 
ORWELL [Wad85]. A growing interest in the  theory and practice of functional 
program m ing and the allocation of sizable resources to  research in the area over 
the past few years are clear gestures of recognition and appreciation by the com
puting community a t large. Functional languages are now beginning to  a ttrac t 
a much wider interest; and several developm ents including the  advent of highly 
parallel VLSI architectures are promising to  translate  the  theoretical and pro
gram m ing advantages into practical reality. See e.g. [DR81].

Functional languages trace their origins to  the lam bda calculus developed 
by Church in the 1930’s [Chu36] and recursion equations no ta tion  developed by 
Kleene, also in the 1930’s [Kle36]. Lam bda Calculus arose from  research work in 
the  theory  of com putability  and in particu lar, in an a ttem p t by Church to  pin 
down m athem atically  the  notion of num erical functions which are computable 
in a  mechanical or algorithm ic fashion. C hurch’s proposal, or C hurch’s thesis, 
as it becam e known later, was to  identify the  intuitively apprehensible class of 
effectively com putable numerical functions w ith those th a t are definable in the 
lam bda calculus given a suitable coding of the  natural num bers in the calculus. 
T here were other proposals to  capture th is class of com putable functions, notably: 
/i-recursive and partia l recursive functions by Godel and Kleene in 1936; Turing 
M achine com putable functions by Alan Turing [Tur36] and Universal Register 
M achine com putable functions by Shepherdson and Sturgis [SS63]. Although 
there  is great diversity among these various approaches and each has its own

8
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Chapter 1: Introduction 9

rationale for being considered a plausible characterization of com putability, the 
rem arkable result is th a t the various approaches give rise to the same class of 
num erical functions. Because of this result, and th a t of their own experience, 
most m athem aticians are led to  accept Church’s thesis. The fact th a t lam bda 
calculus possesses such delightful com putability results lends itself adm irably to 
a m athem atical foundation for functional programming.

Lam bda calculus may be regarded as a quintessential paradigm  for program 
ming languages in general. This is not to say th a t lam bda calculus by itself 
qualifies as a program m ing language and th a t program s can be w ritten  in it. 
W hat is m eant is th a t one finds incarnations of m any program m ing problems in 
the lam bda calculus, and in particularly  pure and generic forms. The syntax of 
the calculus is simple and classical: variables, application and abstraction  in the 
pure calculus w ith applied calculi obtained by adding constants. Because of the 
sim ilarities between the lam bda calculus and program m ing languages, theoretical 
work on the semantics of the former could be applied to  the  la tte r. Theoretical 
work on the  semantics of lam bda calculus is particularly  relevant to  the  denota- 
tional sem antics of program m ing languages as well as to  th e  design of languages, 
e.g. the language GEDANKEN [Rey70] is explicitly founded on th e  lam bda cal
culus; see also [Gor73] and [Plo77] on how lam bda calculus impinges on program 
ming languages. Functional program m ing aficionados believe th a t the  functional 
approach is a significant advance on conventional program m ing languages not 
only because of the benefits afforded them  by the underlying m athem atically 
clean and relatively well-understood basis and the rich body of m athem atical 
knowledge closely related to it. The benefits also include the am enability of func
tional program s to  formal derivation and m anipulation and the com parative ease 
w ith which such program s lend themselves to parallel evaluation and system atic 
and m ethodical program  developm ent, owing to the property  of referential trans
parency and the absence of side-effects. See e.g. [Dar84] for a  comprehensive 
in troduction to functional programming.

1.1.1 Lazy E valuation
Lazy evaluation was introduced independently by [HM76] and [FW76]. Moti
vated more by the enhanced expressive power owing to lazy evaluation than  by 
any pragm atic  expediencies, lazy evaluation has since been regarded by many 
practitioners of functional program m ing as an  indispensable feature of functional 
languages (see e.g. [Tur8l]).

Consider a simple functional language consisting of A-terms augm ented with 
d a ta  constructors and first order prim itive functions. Given a program

( - - - ( M N 1) - - - N n)

PhD  Thesis M ay 31, 1988



Chapter 1: Introduction 10

to be com puted and an evaluator in the form of a reduction machine say, there 
are two crucial decisions to be m ade regarding the reduction process which will 
have significant semantic and pragm atic consequences, namely the stra tegy  and 
the extent of the reduction scheme.

The first concerns the order in which redexes are chosen to be contracted at 
each stage. The issues a t stake here include both  sa fe ty  as well as e ff ic ie n c y , and 
there is often a trade-off between the two. An applicative order reduction which 
contracts N n first, then N n^i and so on and finally M  is efficient in the sense th a t 
the argum ents needed by M  are fully reduced when passed on to M , hence they 
are never reduced more th an  once. Unfortunately, such a reduction strategy  may 
fail to  term inate  on a normalizable te rm  which ought to  be considered meaningful, 
e.g. (Arc.y)n where fi =f (\ x . x x ) { \ x . x x ). In this sense, it is unsafe. On the 
contrary, the  leftm ost1 reduction strategy  is safe, i.e. normalising. However, an 
argum ent m ay be needlessly reduced more th an  once, e.g.

( \ x . x y x ) ( I z )  -► ((I^)y)(Iz) -> { z y ) ( lz )  -> (zt/)z;

where I  is the  identity. The inefficiency of certain  normalising reduction s tra te 
gies, particu larly  the leftmost strategy, has been extenuated by the introduction 
of the graph model of reduction in which shared representation of term s is al
lowed. See [Tur79] and [Tur81] or [PJ87] for fu rther details.

The extent of the reduction process answers the question: a t w hat stage should 
the reduction of a program  halt? I t is concerned w ith the  identification of a class 
of term s usually referred to  as the  “canonical norm al forms” such th a t whenever 
the reduction of a program  reaches a canonical norm al form , the  reduction process 
should be deemed to  have yielded a meaningful answer; hence, the reduction does 
not need to proceed any further. Consider a program  w ith  circular structure , say

inf1 := (CONS 1 infl)
which is a plausible representation of a potentially “infinite” d a ta  object, namely, 
an infinite list of 1. A reduction scheme th a t halts only when all subprogram s of 
the program  to  be reduced have been reduced to  d a ta  constructors will preclude 
representations of pseudo infinite objects like i n f l .  On the contrary, a leftmost 
strategy  th a t halts whenever the program  reaches an abstraction  or the  syntac
tic shape where the outerm ost subterm  is a constructor or a prim itive function 
(known collectively as weak head n o rm a l fo rm s)  will include infinite objects like 
i n f l  among its class of canonical normal forms. This reduction strategy is called 
la zy  reduction .

1 Leftmost reduction is also known as leftmost-outermost or normal order reduction

PhD  Thesis M ay 31, 1988
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1.1.2 The Lambda Calculus: A n Introduction and Som e 
N otations

In this subsection, we will set out the  notational convention for the  thesis. M ost of 
the notations from elem entary set theory and logic which we will use is standard  
and should cause no problem to  the reader.

(i) Sets and Functions:
We use “=f” for d e f in it io n a l equa lity , typically employed in laying down the 
definition of an entity, as in, say

A° =f all closed A-terms;

or in the  case of M  =f N  meaning th a t “M  is by definition equal to  N ” .

Given a set X , we w rite p X  for the powerset of X  and p f X  for the  finite 
subsets of X .  We w rite X  C f Y to  m ean “X  is a  finite subset of Y ” ; and 
X  C Y to m ean “X  is a proper subset of Y ” . We denote the function th a t 
maps e to  /(e )  as (e H-+ /(e )) .

For any sets X  and Y, w rite [ X  —L Y] as the set of all p a r t ia l fu n c t io n s  

form  X  to  Y . We denote:

=  a  G dom(<£),

(ii) Num bers and Sequences:
We use oj to denote the set of non-negative integers { 0 ,1 ,2 , • • • }; and denote 
the set of n a tu ra l num bers , i.e. { 1 ,2 ,3 , • • •}, by N. Denote the set of all finite 
sequences of u  by Seq, i.e.

Seq =f { (nx, . . . , n k) : k,  n< €  cj }.

Let a  — (fix,. . .  ,n p),/? =  ( m x , . . . ,m g) G Seq. The leng th  of a ,  denoted 
lh(a) is p. By convention, lh() =  0. Also,

a * f i  =  {nu  • • • ,n p,mx, • • • ,m q) 

a  ^  f i =f p.nt- =  m,',

cl < P == a < & a ̂  j8.

PhD  Thesis M ay 31, 1988
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Chapter 1: Introduction 12

(iii) N a k e d  a n d  L ab e lled  T rees:
A tree  is a set A  C Seq such th a t

(1) v p ^ a e A ^ p e A .

(2) a * ( n - \ - l ) ( E A = $ ’ ot* (n) 6  A .

The subtree  of A  a t node a , denoted A a , is the tree 

{ P  : ct * P  €  A } .

Let S  be a set of symbols. A E - labe lled  tree is a  tree w ith  an element of E 
w ritten  a t each node. M ore formally, it is a partia l m ap <f>: Seq —*> E such 
th a t

T# =f { a  £  Seq : (f>(ot) J. } is a  tree, 

called the  u n d e r ly in g  tree. The labe l a t node a  6  T# is <j>(a).

T h e  F o rm a l A /?-Theory
We introduce the formal theory Ap .  Some by now standard  results in lam bda 
calculus needed in the sequel will be s ta ted  and the reader will be referred to  the 
classic treatise on lam bda calculus [Bar84] for their respective proofs and further 
ramifications. N otations and term inology introduced in this work will conform to 
those in [Bar84] as far as possible, unless otherwise stated . We introduce lam bda 
calculus in the H ilbert style as follows:

DEFINITION 1 .1 .2 .1  The F o rm a l T heo ry  AP

• A-te rm s: M  ::=  x \ ( \ x . M ) \ [ M N )  where x  ranges over Var =f a denum erable 
set of variables.

• F o rm u la e : equations M  — N  for all A-terms M , N .

• A x io m s : We introduce three axiom schem ata where M , N , P  range over 
A-terms and x, y  over variables.

(a) Ax . M  — Ay .M [ x  :=  y] (y not free in M )

( p )  (Ax . M ) N  =  M [ x  :=  N ]

PhD  Thesis M ay 31, 1988
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•  R u le s :
«_« :is an equivalence relation

(M)
M  =  N

P M  =  P N

M  =  N

M P  =  N P

(0 M  =  N

X x . M  =  X x . N

T h e  F o rm a l T h e o ry  Aj3r)
\(3r) is the theory obtained by adding the  following axiom scheme to \f3.

NOTATION 1 .1 .2 .2  (i) The set of pure, untyped A-terms is denoted A. Let C
be a set of constant symbols. We define A (C), the  collection of AC-terms, 
as follows:

where c ranges over C .  The symbol “= ” denotes syntactic  equality. O ut
erm ost parentheses are om itted.
We will usually use upper-case letters M ,  N , P , Q , R , L  w ith  or w ithout their 
respective subscripts as m eta-variables for A-terms and lower-case letters 
2 , y, z,  a, b, c w ith  or w ithout the ir respective subscripts for variables. M  is 
a shorthand for ( M i ,  M 2, • • •, M n) where \M \ =  n  ^  0, i.e. a  possibly em pty 
finite sequence of A-terms (since M  ranges over A-term). Thus, similarly, 
x  stands for a  possibly em pty finite sequence of variables. A su b s t itu t io n  

is a m ap o  : Var —► A° and for M G  A, we w rite M a to  m ean the A-term 
obtained from  M  by substitu ting  sim ultaneously <x(x) for x , for all x  G Var.

(ii) A pplication associates to  the left and A-abstractions to  the right. Hence,

(n) Ax . M x  =  M  (x  not free in M )

M  G A (C )  ::=  c | 2 | ( M N )  | (A2 .M ),

M N ! • • • N n =  (• • • ( ( M N i ) N 2) • • • N n) =  M N

and

A21 • • • x n. M  =  (A2 i .(A22. • • • (A2n.M ) • • •)) =  X x .M .

Note th a t A-terms can be divided into three m utually exclusive syntactic 
classes: namely applications, abstractions and variables.

PhD  Thesis M ay 31, 1988



Chapter 1: Introduction 14

(iii) We shall assume the standard  notions of free and bound variables as ex
plained e.g. in [Bar84]. A A-term (or AC-term) is closed  if it has no free 
variable; otherwise it is open. Denote the set of free variables of a A-term 
M  as FV(M ). We write A(C)° for the collection of all closed AC-terms. 
To all in tents and purposes, all expressions will be considered m odulo a -  
convertibility. The (simultaneous) substitu tion  of M  for x  respectively in N  

(which is, of course, meaningful provided |x| =  \M \)  is denoted N [ x  :=  M \\  
variable capture  is avoided by suitable renam ing of bound variables. In 
op. c it .  the symbol E is used exclusively for the so-called “Bohm  tree pre- 
order” . We prefer to use £ as a generic notation for o p e ra t io n a l p reorders  and 
use appropriate  subscript or superscrip t to  specify the  particular preorder 
we have in mind. For example, Bohm  tree preorder, Longo tree preorder 
and (Abramsky) bisim ulation preorder (to be introduced in C hapter 4) are 
denoted as £#, Ex, and Es  respectively.

(iv) Provability in the theories A/? and \(3 ri will be denoted by A(3 h and A(3rj h 
respectively. We shall say th a t M  and N  are (3-conve rtib le  or simply con

ve rtib le  if A/3 h M  =  N ;  and denote it as M  =p N  or simply M  =  N  when 
no confusion is likely to occur. Similarly, for /^-convertib ility .

(v) We assume the  notion of a context. A closed context is one w ithout any 
free variable, which we abbreviate as C [  ] €  A°.

(vi) We shall frequently use the following combinators:

I  =  Ax.x, K  =  T  =  A x y .x ,

F  =  A x y .y ,  S =  X x y z . x z ( y z ),

A n =  (Ax. x  • • • a ), fl =  (Ax.xx)(Ax.xx),
n

Y  =  A /.(A x ./(xx))(A x ./(xx)).

1.2 M ism atch betw een Theory and Practice

1.2.1 Solvability: M eaningfulness in the S trict Regim e
If lam bda calculus is to  be regarded as a  prototypical functional program m ing
language, then  the following are pertinen t questions to  ask.

1. W hat are the meanings of A-terms (seen as program s to  be computed)?

2. W hat are the meaningless A-terms? C an they be characterized?

PhD  Thesis May 31, 1988
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Chapter 1: Introduction 15

These questions were obviously of interest not ju s t to  the com puter scientists 
whose interests in lam bda calculus may be subservient to  and m otivated by se
m antic and pragm atic concerns in the realms of real-life program m ing languages. 
Logicians and m athem aticians alike have thought about the above questions.

M eaning of A-terms: a first attem pt

• The meaning of a A-term is its /^-normal form (nf), if it exists.

• The meaningless A-terms are precisely those w ithout norm al forms and are 
therefore to be identified.

This view incorporates such a natural and simple in terpreta tion  of A-terms th a t 
if it worked there would surely be no doubt th a t it was the right one. However, 
the A-theory which is obtained by equating all A-terms w ith no nf is inconsistent, 
i.e. every (closed) equation is provable in this A-theory. 2

A Second A ttem pt

• The meaning of a A-term is its head  n o rm a l fo rm  (hnf), if it exists; or if a 
more sophisticated discrim ination is needed, its B o h m  tree.

• All term s w ithou t hn fs  (the unso lvab le  terms) are identified.

The proposal was first made by Henk B arendregt in his thesis [Bar7l] which later 
formed the central thesis of his book, giving rise to a beautiful and successful 
theory (henceforth referred to  as the sen s ib le  theory, i.e. one which identifies all 
unsolvable term s), as the book shows.

B asic N otions o f the Sensible Theory

We will give a brief survey of the basic notions of the sensible theory.

DEFINITION 1 .2 .1 .1  A closed A-term is so lvab le  if 3N  C A . .M N  =  I. The 
definition is extended to arbitrary A-terms by considering their closures, i.e. M  

is solvable if Ax . M  is solvable where FV(M) =  { x } .

T h a t unsolvable term s can and should be regarded as com putationally irrel
evant and  carrying no substantive inform ation can be seen from  the following 
result:

2We say that two A-terms M  and N  are in com pat ib le  if any A-theory that equates M  and N  is 
inconsistent. Let M  =  Aaj.xKfi, N  =  X x . x S Q. Since both are without nf, in any A-theory that 
equates such terms, we have K. =  M K =  N K =  S, equating K and S. It is a fact that K and S 
are incompatible. See [Bar84] for further details.

PhD  Thesis M ay 31, 1988
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Chapter 1: Introduction 16

LEMMA 1 .2 .1 .2  (G e n e r ic i ty )  Lei M , N  6 A suc/i tha t M  is  unso lvab le  and  N  
has a  nf. T hen , VC[ ] £  A,

C[M ] =  JV =* VL £  A.C[L] =  AT.

PROOF The proof uses the continuity of the context operation. See the  proof 
of P roposition 14.3.24 in [Bar84, page 374]. □

We m ay read the above result as follows: A context C [  ] may be regarded 
as an algorithm  th a t accepts as input th a t which is in stan tiated  in the  “hole” . 
If the  o u tp u t of a com putation w ith meaningless input is meaningful, then  the 
algorithm  may be regarded as a constant function, i.e. it does not need the input 
for any com putation.

EXAMPLE 1 .2 .1 .3  n ,  Ax.fl and Y K  are unsolvable. In  fact, we can say more: 

VX £  A .X  unsolvable => Ax.X unsolvable.

Hence, if all unsolvables have the  same denotation _L, say, then  we have 

Ax._L =  A.

W adsworth [Wad71] proved a significant C haracterization Theorem  for the 
solvable term s.

Seen from a com putational point of view, his result 
says th a t there is a precise correspondence between solvability and a term ination 
property  in a certain reduction strategy. Note th a t the la tte r is a purely opera
tional notion. We formalize some syntactic notions before stating  W adsworth’s 
result.

FACT 1.2*1.4 E a c h  A-te rm  has exactly  one o f  the fo llo w in g  fo rm s:

(1 ) X x . y M ,

(2 )  Ax.(Ax.Mo)Mi • • • M m, m  ^  1. □

A-terms of the shape ( l)  are in head n o rm a l fo rm  (hnf).
A corollary of the preceding observation is the  following:

FACT 1.2.1.5 The fo llo w in g  is  a m u tu a lly  exc lu s ive  c la s s if ic a t io n  o f X -te rm s:

(1 ) a b s tra c t io n  Ax.M,

(2 )  X-free h n f  xM ,

(S ) le ftm ost P -re d u c ib le  fo rm  (l/3rf) ( X x . P ) Q M .

□
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We call (l) and (2) above collectively as weak head n o rm a l fo rm s  (whnf) and 
denote the collection of all (closed) w hnf’s as A whnf (Awhnf°).

DEFINITION 1 .2 .1 .6  (i) The redex ( X x .P ) Q  in Fact 1.2.1.4(2) is called the
head redex.

(ii) The le ftm ost redex of a A-term is the redex whose “A” occurs leftm ost in the 
term . The leftmost redex is sometimes referred to  as the le ftm ost-ou te rm ost  

or n o rm a l o rde r redex.

(iii) A A-term M  has a la zy  redex if M  is a l/3rf and the  lazy redex is then 
precisely the leftmost redex.

EXAMPLE 1 .2 .1 .7  In (Aa;.x((Ay.P)Q)), ( X y .P ) Q  is the leftm ost redex bu t not 
the lazy or head redex. Generally:

=>
• head redex f/k leftmost redex.

=>
• lazy redex <$=■ head redex.

In w hat follows we define two reduction strategies which will tu rn  out to 
be crucial in capturing the class of well-behaved term s in two com putationally 
different regimes, the contrasts between which we will emphasize by referring to  
one as “s tric t” and the other as “lazy” . We will spell out the precise difference 
in the following section.

DEFINITION 1 .2 .1 .8  (i) Let P 0 =  X x . ( X x .M 0) M iN .  The head re d u c t io n  path
of P q is the uniquely determ ined sequence

Po —►h P i  >h P 2 • • * —*h Pn —»h * * * (t)

where —>h is the 1-step head reduction.
If (f) term inates, say a t P n, then Po is said to have a h n f  and P„ is the 
p r in c ip a l h n f  (phn f). If (f) diverges, then Po has no hnf.

(ii) The la zy  re d u c t io n  pa th  of a l/3rf Po =  (X x . M q) M i N  is the  uniquely deter
mined sequence

Po P i  -*i P 2 • • • —’q P n -+i • • * (*)
where —>1 is the 1-step lazy reduction.
If (*) term inates, say a t P n, then P n is said to have a w hn f, and P„ is the 
p r in c ip a l whnf. Note th a t in this case, V* <  n, P t- is in l/?rf. If (*) diverges, 
then  Po has no whnf.

We s ta te  W adsw orth’s result and refer the reader to  either [W ad7l] or [Bar84, 
page 300] for a proof.

FACT 1 .2 .1 .0  ( C h a r a c te r iz a t io n  o f  S o lv a b ility )  A  X -te rm  is  so lvab le  i f f  it  

has a hnf. □

PhD Thesis May 31, 1988
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Sensibleness =  “Strictness”

Observe th a t the chief difference between head reduction and lazy reduction 
is th a t the  former may “com pute under a A” , and halts a t hnfs; whereas the 
la tte r m ay not compute under a A, and halts a t whnfs. At each step, both 
schemes contract the leftm ost redex, b u t the  la tte r has a shorter extent. I t  
is p re c ise ly  in  th e  sen se  o f  u n r e s t r ic te d  c o m p u ta t io n  u n d e r  a  A th a t  
w e  d u b  th e  h e a d  re d u c t io n ,  o r  m o re  g e n e ra lly , th e  s e n s ib le  th e o ry , 
s t r ic t .  This is not inconsistent w ith the  usual dom ain-theoretic understanding 
of strictness. For we claim th a t head reduction or the sensible approach gives rise 
to  an  in terpreta tion  of A-terms which entails a “s tric t” A-abstraction operator. 
According to  the  sensible approach, the undefined term s are ju s t the  unsolvables. 
Now, observe th a t if M  is unsolvable, so is Ax . M .  Semantically, th is corresponds 
to  a s tric t “graph” function, in A-model theoretic jargon. See C hapter 3 for 
further discussions.

We m ay rephrase W adsworth’s result as follows:

S o lv a b le  te rm s  o r  e q u iv a le n tly , te rm s  w h ic h  h a v e  h n fs , a r e  
p re c ise ly  th e  m e a n in g fu l te rm s  in  th e  “s t r i c t ” re g im e .

For more th an  a decade now, the consensus has been to  regard solvable terms 
as the class of meaningful term s. Referring to  m odel-theoretic investigations of 
lam bda calculus, Coppo et a 1. [CDV81] m ain tain  th a t they

agree on the fact th a t term s w ith a  hnf are all and only those to  which 
a “m eaning” different from “undefined” can be assigned.

See also [Lei86] for a more complete com putational and sem antic characterization 
of the functional properties of A-terms, which arrives a t essentially the  same 
conclusion.

1.2.2 M eaningfulness in the Lazy Regim e
The sensible theory, then, has been the commonly accepted foundation for func
tional program m ing languages; more precisely, for the la zy  functional languages, 
which represents the m ainstream  of current functional program m ing practice. 
B ut do current functional languages as defined and im plem ented actually  evalu
ate to  head norm al form? To the best of my knowledge, most do not —  they do 
not evaluate under A-abstractions. They evaluate to  weak head n o rm a l fo rm s.

W e th e re fo re  h a v e  a  s ta r k  m is m a tc h  b e tw e e n  th e o ry  a n d  p ra c tic e . 
We illustra te  this w ith a simple example. Consider an unsolvable term , say, 
f2. Note th a t according to  the sensible theory, or equivalently, in the “stric t”
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Chapter 1: Introduction 19

regime where there is no restriction on reduction under an  A-abstraction, we 
have X x . f t  =  f l, since X x . f t  is also unsolvable. However, in the lazy regime, Ax.O 
being in weak head normal form is a com putationally meaningful value and hence 
is to  be distinguished from f t .

Since current practice, especially lazy evaluation, is well-motivated by sound 
program m ing methodological principles and the underlying im plem entation is 
driven by efficiency considerations, it makes sense to  see if a good theory can be 
developed for it.

1.3 Overview of the Thesis
This thesis is an investigation in to  the  foundations of functional program m ing in 
the framework of the pure untyped A-calculus. A lthough A-calculus has long been 
accepted as a basis for functional program m ing, and it is forklore th a t A-calculus 
is the  prototypical functional language in purified form; there is, nonetheless, a 
fundam ental m ism atch between theory and practice.

• M uch of w hat is known about the model theory and proof theory of the 
A-calculus is sens ib le  in natu re , i.e. all unsolvables are identified. Crucially, 
Ax.J_ =  _L where _L represents any divergent te rm  (or program ).

• In  practice, however, most im plem entations of functional languages are 
la z y , i.e. programs are reduced in n o rm a l o rde r  to  weak head n o rm a l fo rm s  

(whnf), corresponding to a ca ll-b y -n am e  semantics. Consequently, Ax._L ^  
_L, because all abstractions, being in whnf, are deemed to  be legitim ate and 
meaningful programs.

This thesis seeks to  develop a theory of la zy  functional program m ing th a t 
corresponds to  practice in the framework of the classical A-calculus. We will 
regard (closed) term s of the calculus as program s  and abstractions (=  weak head 
norm al forms) as values. The lazy evaluation m echanism  is represented as a 
determ inistic reduction relation on A-terms which reduces program s in normal 
order to  weak head norm al forms.

The rest of the thesis is organized as follows:

C h a p te r  2 formulates la zy  e v a lu a t io n  in the pure untyped A-calculus. The 
fundam ental notions of solvability, A-definability (of num eric functions), tree se
m antics and A-theories in the classical sensible A-calculus are reviewed and re
vised in the light of the lazy regime. In  the lazy regime, only a proper subclass 
of the unsolvables constitu te  the undefined program s —  the  s trong ly  unso lvab les ,
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which is characterized operationally as the divergent term s under the lazy re
duction.

. W eak B o h m  trees , B ohm  trees and Lon g o  
trees are studied and their inter-relationships, including a non full abstraction  
result, investigated. We show th a t Longo tree preorder is a precongruence  (or it 
is sub stitu t ive ). A theory of la zy  X -th eo r ie s  is developed.

C h a p te r  3 is a study of the m ode l theo ry  of the lazy A-calculus. I t may be 
divided into two parts. The first p a rt begins w ith an introduction to the model 
theory of the classical A-calculus. Different form ulations of the notion of la zy  X- 
m ode l based on A bram sky’s quas i-a p p lica t iv e  s tru c tu re  w ith  d ivergence  are then 
presented and shown equivalent. A general co m p u ta t io n a l adequacy  result for a 
class of continuous lazy A-models is proved. The second part of this C hapter 
focuses on a class of A-models called the P lo tk in -S c o tt -E n g e le r  ( P S E )  models. 

The basic properties of the subclass of free lazy PSE-models are surveyed. The 
main result of this C hapter is a L o ca l S tru c tu re  Theorem  for the class of free  la zy  
P S E -m o d e ls .

The precursor of the work reported in C h a p te r  4 is A bram sky’s application 
of the S tone  d u a lity  between domains and their logics of observable properties 
[Abr87,Abr88] to  tackle the problem  of full abstraction [Plo77,Mil77] reformu
lated in the lazy A-calculus. The study is based on a paradigm atic functional 
program m ing language Ai  called the  pure lazy language whose term s are the 
closed A-terms. The lazy evaluation mechanism is governed by a reduction re
lation. A program  in this language converges  if it reduces to  an abstraction; 
otherwise, it d iverges. An operational preorder called ap p lica t iv e  b is im u la t io n  

is then  defined which compares two term s precisely according to the  criterion 
of w hether they are distinguishable by observing their respective applicative be
haviour. Taking the cue from A£, a general class of structures called lam bda  

t ra n s it io n  system s  (Its) is defined which includes both the language  Ai  and the 
canonical denotational m ode l D  —  the  initial solution of the dom ain equation 
D  =  [D  —> D ]± . Reform ulated in the lazy regime, the full abstraction problem  is 
the following: Is it tru e  th a t

VM,TV €  A° . M  TV D  h M  C TV?

T he answer is no and a counter-exam ple is provided.

Full abstraction  fails because the language Ai  is not expressive enough —  more 
precisely, no t all finite inform ation in the  model D  may be internally represented 
in the language. Abram sky shows th a t full abstraction for D  may be achieved 
by enriching the  language Al  w ith  a parallel convergence constant. We continue 
the study of full abstraction  by considering re trac ts  of D  as candidates for fully 
abstrac t models w ith  respect to various enriched variants of the language X L
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One such variant is Ai c , lazy A-calculus w ith convergence testing . Convergence 
testing (which is not definable in A£) corresponds to  a discrim inatory function be
tween convergent and divergent elements. Its introduction enables the projection 
functions ifrn : D  —> D n (the n-th  approxim ant of D )  to  be internally definable 
in the  language. We study the formal system  A/?C, which is obtained by extend
ing A(3 w ith  convergence testing C and show th a t it is C h u rch -R o sse r  and prove 
a S ta n d a rd iz a t io n  Theorem  for the associated reduction. P lo tk in ’s problem  of 
s im u la t in g  call-by-value evaluation in the  call-by-name regime is revisited. We 
show th a t there is a translation of term s from (P lo tk in ’s call-by-value
language) to  A£c which preserves call-by-value convergence exactly.

A£c is no t fully abstrac t w ith respect to  D .  A m ain result of this C hapter is a 
general m ethod which uses b is im u la t io n  lo g ic a l re la t io n s  to  construct re trac ts  of D  

which are fully abstrac t models for a  class of suitably expressive languages (lts’s) 
which includes X I q. The problem of constructing a re trac t of D  which is fully 
abstrac t for Ai  is reduced by this m ethod to  an  open question of co n se rv a t iv ity  of 
X L ,  (a labelled version of A£) over X L  This C hapter ends w ith  an  investigation 
into the relationships between the various lazy operational preorders introduced 
in this thesis.

C h a p te r  5 divides naturally  into three sections. Section 1 introduces the  var
ious category-theoretic approaches to  partiality , surveying notions like Rosolini’s 
p-category, diPaola and Hellers’ d o m in ic a l category , the ir inter-relationships and 
various concreteness criteria. These lead up to  the notions of p a r t ia l C a r te s ia n  

c losed  category  pCCC and p a r t ia l C a r te s ia n  c losed d o m in ic a l category  pCCDC 
which may be regarded as p a r t ia l counterparts of Cartesian closed category. Two 
m ain applications of partia l categories then  follow. A formal proof system  for 
proving equivalences between program  phrases in the lazy regime using S cott’s 
logic of existence called the A^-calculus is the subject m a tte r of section 2. Â , is 
shown to be co rrect w ith  respect to  X L  X l  augm ented w ith  convergence te st ing  

has a sound  and com plete  in terpreta tion  in categories of partia l morphisms. The 
second application of partial categories, contained in section 3, is a category- 
theoretic presentation  of la zy  X C -m o d e ls , which are lazy A-models in which con 

vergence te s t in g  is definable. We prove th a t la zy  re flex ive  ob jects  in a pCCDC 
give rise to  lazy AC-models.

Finally, in C h a p t e r  6, we consider the lim itations of this thesis and m ention 
the  corresponding possibilities for fu rther research.
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C h ap ter 2

S en sib le  T h eory  R evised: Tree  
S em an tics and  L azy L am bda  
T heories

Synopsis o f the Chapter

This C hapter form ulates la zy  e v a lu a t io n  in the pure untyped A-calculus. The 
fundam ental notions of solvability, A-definability (of num eric functions), tree se
m antics and A-theories in the classical sens ib le  A-calculus are reviewed and revised 
in the light of the lazy regime. In the lazy regime, only a  proper subclass of the 
unsolvables constitu te  the undefined program s —  the s tro n g ly  unso lvab le s , which 
is characterized operationally as the divergent term s under the lazy reduction. 
W ith  this new notion of undefinedness, the lazy A-calculus is shown to  retain 
u n iv e rs a l com pu tin g  power. W eak B o h m  trees , Bohm trees and Lo n g o  trees are 
studied and their inter-relationships, including a non  f u l l  a b s tra c t io n  result, in
vestigated. We show th a t Longo tree  preorder is a precongruence  (or sub stitu t ive  
preorder). Finally, a theory of la zy  \ - th e o r ie s  is developed.

2.1 Laziness and its Properties

2.1.1 Form ulation of Laziness
We formalize lazy reduction in the context of pure type-free A-calculus in two 
slightly different ways:

DEFINITION 2 .1 .1 .1  (i) Define the following relation scheme:

( X x . P ) Q M  —>i P [ x  :=  Q \ M

22
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Chapter 2: Sensible Theory Revised: Tree Semantics and Lazy Lambda Theories23

as the one-step  la zy  reduction . We then define:

-*i

M l  i 

M -f±  i 

M  U N

=f the reflexive, transitive closure of —>1,

=f 3{Mn : n 6 w } & V n 6  —>i M„+i,

=f M  ^  dom(—>-i),

d=  M * \ N

We read M |i  as “M  diverges lazily” and M  iV as “M  converges lazily to 
W” . W hen no confusion is likely, we will om it the  subscript 1.

(ii) Gordon Plotkin  [Plo75] and Samson Abram sky [Abr87, C hapter 6] intro
duced the  following binary reduction relation. M  JJ. N  ( UM  converges to 
p r in c ip a l weak head n o rm a l fo rm  N n) is defined inductively over A° as fol
lows:

(abs-JJ.)
Ax . M  JJ. Ax . M

{ M
M t y X x . P  P [ x : = Q ] \ j , N

m q T n

NOTATION:

=  B N . M t y N  ( “M  converges”)

Afft =  -i(M-IJ-) ( UM  diverges”)

It is clear th a t and 1). are partia l functions from  A to Awhnf and A° to 
A whnf° respectively. In fact, restricted  to  closed A-terms, J,i and JJ- describe the 
sam e partia l function, which we will show.

The two convergence predicates “M  N n and “M  ji  N ” may be defined w ith 
a  m easure of the num ber of steps or the  am ount of tim e required for convergence.

Define { M  -IJ- iV, t) ( UM  converges to  N  a t tim e t” ) inductively as follows:

(abs-J).)
( X x .M  X x .M ,0 )

( M  ^  Ax.P, t) ( P [ x  :=  Q] ^  AT, t') 
( M Q $ N , t  +  t ' +  1)

Similarly, we define (M  | i  converges lazily to N  a t tim e £”) as:
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(M N ,  t) =  M  s  Mq - i  Ma — ------>t Mt =  N €  Awhnf.

It should be clear th a t M t y N  <$=*> 3 t . ( M \ further, the  “tim e” t is unique 
for each M .  Similarly, for M  N .

LEMMA 2 .1 .1 .2  L e t M e  A.0. T hen , M t y N  M  | i  N .

PROOF We rem ark that: M  -*i N  =4> VQ C A° .M Q  -»i N Q .  “=£>” : We 
prove: { M  t y N , t )  =*► ( M  N ,  t) by induction on t. This is clearly valid for t =  0. 
Suppose true for some t ^  0. Let ( M Q  JJ- N , t  +  1). Then, by definition, we have 
( M  ^  X x . P j t i )  and ( P [ x  :=  Q\ IJ. AT,£2) for some Q , *i, t<i < t and th a t t — t\ +  £2 
. By induction hypothesis, we have ( M  J.i \ x . P , t i )  and ( P [ x  :=  Q\ b  N ,  £2) 
respectively. Finally, by the rem ark a t the  beginning of the proof,

MQ  -*i (Ax.P)Q N  e  Awhnf°-

W hence, (MQ fi AT, t i  +  t2 +  1).
“<£=” : We prove: (M  b  AT, t) =>■ (M -Ij■ N , t ) .  Clearly, the  base case of t =  0 is 
trivial. Suppose tru e  for some t > 0. Let (M  | i  IV, t +  1), i.e.

M  =  A B  =  M0 —>i Mi —>i • • • —>i Mt —>i Mt+i = AT.

Now, for some 0 < t ' <  t +  1, (A  Ax .P , t ')  and ( P [ x  :=  B ] N , t n) w ith
t =  t 1 +  tn. By induction hypothesis, ( A  -Ij- Ax .P , t ')  and (P[a; :=  B ]  ^  IV, J"), and 
so, (M  JJ- N , t  +  1). □

Having pinned down a notion of lazy reduction, we shall show th a t it is inap
propriate  to regard the whole of the unsolvable term s as undefined or meaningless 
in  the  lazy regime. In  fact, only a proper subclass of the unsolvable term s, which 
we will call the s tro n g ly  unso lvab le  term s, corresponds to  meaninglessness and 
w arran ts the denotation ± .

A te rm  which converges lazily may be construed as having resulted in an 
increase in the relevant com putational information. In the light of this com
puta tional perspective, term s devoid of any potentially relevant inform ation are 
precisely those which fail to term inate under the lazy reduction, i.e. —>i.

Functionality Order and Strong U nsolvability

We introduce the notion of the fu n c t io n a lity  o rde r of a A-term. Informally, the 
functionality order of a term  M  expresses how “higher order” M  is, which cor
responds roughly to  the num ber of nested A-abstractions M  (or its /^-convertible 
form) has. A term  of functionality order 0, say, is not /^-convertible to an ab
straction; or equivalently, when applied to  another term , does not “act upon 
i t” .
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DEFINITION 2 .1 .1 .3  (i) A term  Af has fu n c t io n a lity  o rde r (or simply order)
0, denoted M e  O 0 iff ->[3JV.A/? h Af =  \ x .N } .

(ii) Af has p rope r o rde r 0, denoted Af e  P O 0 if

M e  O 0 & -n[3N.X/3 h Af =  xiV].

We say th a t Af is strong ly  unso lvab le  if M  is of proper order 0.

(iii) M  has o rde r n , denoted M  e  O n, iff n  is the largest i  such th a t

3N .X /3  h M  =  Axi • • • X{.N .

(iv) M  has o rd e r  00, denoted M  e  C)** iff Vn e  u . M  &  O n.

(v) M  is a fu n c t io n a l te rm , denoted M e l ,  if 3N .X /3  h M  =  Ax.iV; further,

M  €  =f 3JV.A/3 h AT =  A il • • •

REMARK 2 .1 .1 .4  It should not be difficult to  see th a t (O,- : t 6  w +  1}  is a 
partition  of A. Also,

7 =  71 D 72 D  73 • • •

u u u

Oi O2 O3 • • •

EXAMPLE 2 .1 .1 .5  (i) x M  e  Oo, O M  € PO o. O =  (Ax.xx)(Ax.xx) is syn
tactically the minimal strongly unsolvable te rm  and will be im portan t as a 
prim e example of the class of PO o-term s in the  sequel. In fact,

Vm, n  ^  2.VQ C A .A mA nQ e  P O 0.

(ii) Let F  be any fixed-point operator in A, i.e. VAf e  A . M ( F M )  =  F M \  for 
example, the “paradoxical fixed-point com binator” Y  or

© =  (Axy.t/(xxy))(Axy.t/(xxy)).

Since A^ b F K  =  K { F K )  =  ••• =  K ( - • • (K (F K )))  =  \ x f - x n . F K 9 we
v----- v----- '

have F K  e  Ooo• Note th a t F I  e  PO o.

We prove a classification result for the unsolvable term s which shows th a t the 
strongly unsolvable term s are a proper subclass of the  unsolvables.

PROPOSITION 2 .1 .1 .6  (C la ss if ic a tio n  o f  th e  U n so lv a b le s )  Af is  unso lvab le

i f f
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( i)  M  E  Ooo o r

( it )  3n  > 0 3 N  E  P O 0.A/? h X x i  • • • x n.N  =  M

Then , n  is  ca lled  the order of unsolvability o f M .  In  the case o f  ( i) ,  we say  
tha t M  has o rde r o f  u n so lv a b ility  oo.

PROOF By W adsworth’s C haracterization of Unsolvability.
Suppose M  Ooo. Assume n  is the largest such th a t M  =  \x±  • • • x n.N .  

Then, \(3 V- N  =  x P  since M  is unsolvable. By m axim ality of n , N  6  O0. Hence,
N e  p o 0. □

P O n: U nsolvables o f Order n

By abuse of language and for consistency w ith  the case n  — 0, we will call an 
unsolvable te rm  of order n , M , a  P O n-term , denoted M  6  P O n; also we decree 
th a t P O qo == Ooo. Hence, we have

{ unsolvable term s } =  | J  P O n.
n 6 w + l

Note th a t Vn €  w.POn C On and A =  (Jnew+i On. In view of the above results, 
we will call a term  th a t is not strongly unsolvable, in o ther words, a functional 
term , a w eakly so lvab le te rm .

In the next section, we will re tu rn  to  the P O n-term s and study  a class of 
A-theories which we shall call la zy  A-theories.

2.1.2 O perational C haracterization of Strong U nsolvabil- 
ity

Next, we establish an op e ra t io n a l c h a ra c te r iz a t io n  of strong unsolvability. First, 
a definition.

DEFINITION 2 .1 .2 .1  An infinite reduction starting  from M  

M  =  M 0 ^  A/i M i  • • •

is q u a s i- la z y  ( le ftm ost)  if 3{ n t- : Vi 6  w.nt- <  tz1+1 }.Vi 6  w.An. is the  lazy (left
most) redex of M i.

We will prove the following result:

THEOREM 2 .1 .2 .2  L e t  M E  A. Then, M  is  s trong ly  unso lvab le  i f f  M  has an  

in f in ite  q u a s i- la zy  reduction . □
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The proof will be established by a series of lemmas.

NOTATION 2 .1 .2 .3  (i) M  A  N  == M  reduces to  N  by a one-step /3-reduction
and A is the redex in M  th a t is contracted.

(ii) M  —Mf N  =f M  reduces to  N  by a one-step leftm ost reduction.

(iii) M  —►ysif N  == M  N  and A is not the leftmost redex of M .

(iv) For —► =  —>1, —♦■if, —> îf respectively, -»is the reflexive, transitive closure of 
— is the  transitive closure of —►.

LEMMA 2 .1 .2 .4  (A d v a n c e m e n t o f  L e f tm o s t  R e d u c tio n )  I f  M  has an  in f i

n ite  quas i- le ftm ost redu c t io n ,

M  =e Afo — A/j —> Afjj —► • • •,

th en  M  has a n  in f in ite  le ftm ost red u c t io n

M  =  N i  —>-if N i  —►if • • •

PROOF See [Bar84, page 328]. □

Recall the syntactic classification of A in Fact 1.2.1.5. We summarize the way 
leftm ost (lazy) reduction alters or preserves different syntactic shapes as follows:

LEMMA 2 .1 .2 .5 ( i)  Suppose ( X x . P ) Q M  N  where —► is  a one-step

(3-reduction . T hen ,

(1) N  =  Ax . N '  =£» A is  the la zy  ( le ftm ost) redex an d  \M \  =  0.

(2 ) N  =  x L  => A is  the la zy  ( le ftm ost) redex.

(3) A is  n o t the la zy  ( le ftm ost) redex  =4> N  is  in  1(3 rf.

( i i )  Suppose ( A x . P ) M  A  A x .N  where A is  not the le ft-m ost redex. Then, \M \  =
0.

( i i i )  Suppose M  -*• N . I f  M  is  in  w hn f i.e. an  a b s tra c t io n  o r X-free hnf, then so 

is  N ; i.e. -*> p rese rves the syn ta c t ic  shape o f  whnfs.

PROOF Obvious. □
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An im m ediate corollary is th a t if M  has an infinite quasi-lazy reduction 

M  =  M o —► M i —* M 2 • • • 

then  Vn e  w.Mn is in l/?rf.

LEMMA 2 .1 .2 .6 L e t  M e  A. TTien,

(7) M e ?  <=> M  | i  Ax .L .

( ii)  3Ap  h N . M  =  x N  <=► M  |i  

M  e  P O o  <=> 1.

PROOF (i) Suppose M e ? .  Then, by the Church-Rosser property of /?, 
3 Z . M  Z  X x .N  -*■  Z .  By (iii) of Lem m a 2.1.2.5, Z  is an  abstraction. By the 
Advancement of Leftm ost Reduction Lemma,

3 M ' . M  - lf M '  Z  =  X x .N '.

By Lemma 2.1.2.5(i)(3), M '  is an abstraction. Since -*1 is ju s t -̂ >if w ith a  shorter 
extent, we conclude th a t M  J4 A x . L  for some L .
The other direction is immediate, (ii) is proved in the same way as (i).
(iii) M  e  P O q <==> the lhs of bo th  (i) and (ii) are not satisfied. Result then 
follows from the observation th a t for any M e  A precisely one of the following 
holds:

(1) M U X x . L ;

(2) M  ji  x L \

(3) M |, .

□
In words, the above Lemma says th a t the syntactic class of a A-term M  can be 

determ ined by perform ing lazy reduction -*1 on it as follows. If the reduction fails 
to  term inate, then  M  is strongly unsolvable. Otherwise, it converges a t either of 
the  two subclasses of the w hnf’s: abstractions or A-free h n f’s.

COROLLARY 2 .1 .2 .7  I f  M  is  s trong ly  unso lvab le , then M  has a n  in f in ite  quasi- 
la z y  reduction , i.e. M ] \ .  □
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COROLLARY 2.1.2.8 (Substitutivity of Strong Unsolvability)

Af e  P O 0 =► VL e  A.Af [x :=  L) €  P O 0.

PROOF Let Af €  POo. Then, by the Lemma(iii), Aff 1, i.e. we have:

Af =  M q —M M i  — M 2 — • • •.

By the substitu tiv ity  of j3 and th a t substitu tion  preserves lazy redex, we have 

M 0[x :=  L ]  —>1 M i[ x  :=  L \  —>1 Af2[x :=  L ]  —>1 • • ■.

T h a t is Af[rc :=  L]Ti; hence by Lemma(iii), M [ x  :=  L ] €  POo. □

C orollary 2 .1.2.9  L e t  Af €  A. T h en ,

Af €  POo <=> Vcr: Var A°.Afa^.

PROOF The -direction follows form  the S ubstitu tiv ity  of Strong Un
solvability and Lemma 2.1.1.2. For “■<=” , suppose for a contradiction, Af is a 
functional term . Then, by Lemma(i), M „ l \  and hence leading to a con
tradiction. Suppose, for another contradiction, Af J.i x N .  Then, for any closed 
a  which maps x  to  Y K  say, we have Afff̂ , contradicting the  premise. We are 
therefore left w ith the only alternative and th a t is Af 6  P O o. □

C orollary 2 .1 .2.10 Af e  P O 0 => v w  e  A . M N  e  P O 0. □

PROPOSITION 2 .1 .2 .1 1  I f  M  has an  in f in ite  quas i- la zy  reduction , then  Af is  
s tro n g ly  unso lvab le .

PROOF Let the infinite reduction be

By Lemma 2.1.2.5(iii) and the infinite na tu re  of the reduction, Vn £  cj, Afn is in 
Ifirf; and so, lazy and leftm ost redex coincide. By the A dvancem ent of Leftmost 
Reduction Lemma, 3 (N {  : i  6  w) such th a t

Af =  N o  —>if N i  —»if N 2 —>if • • •

which is lazy reduction, since Vt 6  w, N ,  is in l/?rf; whence A f|i. The result then 
follows by an appeal to  Lemma 2.1.2.6(iii). □

We have thus completed the proof of the  Theorem.

PhD  Thesis May 31, 1988



Chapter 2: Sensible Theory Revised: Tree Semantics and Lazy Lambda Theories30

2.1.3 P artia l R ecursive Functions and A-Definability R e
visited

A celebrated com putability result of long standing is th a t, of the partia l numeric 
functions, exactly the  partia l recursive functions are A-definable.

A p a r t ia l n u m e r ic  fu n c t io n  is a partial m apping <j> : u p —1■> w for some p  ^  1. 
Let <£, ^  be two partial functions. We say th a t (f>(n) and t/>(n ) are K le e n e  equal, 
denoted <f>(n) ~  ift(n) if

(j>(n) =  a  <=> 'ip(n) =  a.

T h a t is, if the lhs is defined then  so is the rhs and they  have identical values and 
vice versa.

T he  original definition of A-definability was as follows:

A partia l numeric function <f> w ith  p  argum ent(s) is A-de finab le  if there 
exists an  F  €  A such th a t Vn C u p,

F rn '  = 0
r(f>(nY
has no nf

if <f>(n) is defined, 

else;

where r(—J1 is an encoding of the num erals in A.

As mentioned earlier, the  first breakthrough in ascribing meanings to  A-terms 
came w ith the Barendregt-W adsw orth perspective of characterizing undefinedness 
in term s of unsolvability. In keeping w ith the  spirit of th a t proposal, the notion of 
A-definability was modified by replacing the “else-clause” of the above definition
by

uF rn~l is unsolvable if (j>(n) is undefined.”

In line w ith the le i tm o t i f  of this work —  s trong  u n so lv a b ility  ch a ra c te rize s  
unde fin edness  in  the la zy  reg im e , we shall modify the definition of A-definability 
accordingly.

DEFINITION 2 .1 .3 .1  A partial numeric function <f : wp —*■ u  is w eakly  la zy  A- 
d e fin ab le  if 3 F  €  A such that V n  6 wp,

F rft~l —p r<j)(n)~' if <t>(n) is defined;

F rn nf|- else.

We say th a t <f> is weakly lazily A-definable by F .

T he m ain result in this section is to  re-establish Kleene’s pre-em inent result 
in the  lazy setting as follows:

THEOREM 2 .1 .3 .2  A  p a r t ia l n u m e r ic  fu n c t io n  is  p a r t ia l re cu rs ive  i f f  i t  is  weakly  

la z i ly  \ -d e f in a b le .  □
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In the proof of this Theorem, which will occupy the rest of this section, refer
ences will be made to  existing com putability results in lam bda calculus, especially 
to §6.3 and §8.4 in [Bar84]. Recall the definitions of the initial functions, namely, 
the projection functions, successor, “test-for-zero” , prim itive recursion and mini- 
m alization. We will recapitulate the com binators th a t sim ulate the various “data  
s truc tu res” and their respective operations.

• T ru th  values: T  =  X x y .x , F  =  X x y .y .  Then,

T M N  M , F M N  -* N .

N ote th a t T  =  K  and K I  -*> F .

• C o n d it io n a ls :  Let B  (Boolean) be a term . Define the construct

if  B  th e n  M  else  N  =  B M N .

Then,

_________ B  -~ T _________
if  B  th e n  M else  N  M

_________ B - »  F _________
if  B  th e n  M  else  N  -**> N

If M  or N  are in whnf, then the above proof rules are still sound if -*• is 
replaced by .(I. Of course, if B  converges to neither T  nor F , then  we have 
no way of characterizing B M N .

• C o m p o s it io n : M  o N  =f X x .M ( N x ) .

• P a ir in g :  [M, N ]  == X z . z M N  and

(M ) o =  M T , (N )x  =  A fF.

We have ([Mo, Mi]),- -*• M,-, i  — 0 ,1 . Note th a t this pairing does not satisfy 
the conventional restrain t of being surjective; in fact, no such surjective 
pairing is A-definable.

• f in it e  sequence: (Mo, • • •, M n) =f Xz .zM q • • • M n. Define
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U? Xx0 • • • x n .Xi, P? =  \ z . z V ? .

Then, we have P?(M o, • • •, M n) -**• M t-.

• N u m e ra ls : For each n  €  w, a te rm  rn n is defined as follows:

r0-’ =f I , '-n +  r  =  [F ,rrT].

Note th a t the num erals are in whnfs and are distinct n f’s.

• The successor S + and te st-fo r-ze ro  Z e ro  are defined as:

S + =f A i.[F , x], Z e ro  =  Ai .i T .

It should be clear tha t:

S +rn'1 -h. rn  +  V ,

Z ero^"1 -w- T , Z e ro rn +  l 1 -*► F .

Observe th a t Definition 2.1.3.1 coincides w ith the definition of A-definability of 
to ta l numeric functions in [Bar84, Definition 6.3.1] in the case of to ta l functions. 
Hence, the following is immediate:

LEMMA 2 .1 .3 .3  The to ta l re cu rs ive  fu n c t io n s  a re  weakly la z i ly  \ -d e f in a b le  as 
p a r t ia l fu n c t io n s .  □

It is probably helpful to  recall the following definition:

DEFINITION 2 .1 .3 .4  Let P  be a class of partia l numeric functions.

(i) P  is c lo sed  u nde r co m p o s it io n  if 6  P  implies th a t <f> defined as follows

<K*0 -  x(V>i(n),---,V>m(n))

belongs to  P .

N ote th a t x ( ^ i ( ^ ) > * * * > denotes the  partial numeric function <f> such
th a t <t>(fi) — a  iff

3a l5 • • • , a m.[^>,-(n) =  ot- for 1 < i  < m  & x(a) =  a].

(ii) P  is c losed  unde r m in im a liz a t io n  if P  contains all functions <j> defined by

<f>(n) =  p m .[x { n , rn) =  0]

PhD  Thesis May 31, 1988
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where x  £  P  and is to tal.

(iii) The class of p a r t ia l recu rs ive  fu n c t io n ,  denoted P  Z ,  is th e  least class of 
partial numeric functions containing the to ta l recursive functions and is 
closed under composition and minimalization.

LEMMA 2 .1 .3 .5  L e t  F  G A w eakly la z i ly  \ - d e f in e  a p a r t ia l n u m e r ic  fu n c t io n  <f. 
Then , Vfi C u ,

F rf i 'K I I  =  I  i f  4>{n) is  de fined ; 

f ^  K iifr  else.

PROOF It should be clear th a t <f>{n) is defined implies th a t -P’rT'KII =1. Also, 
4>(n) is not defined implies th a t F rn '1 is strongly unsolvable which implies th a t 
P rn ''K II  is also strongly unsolvable. □

The following Lemma uses a trick first proposed by Lercher as documented 
in [Bar84].

LEMMA 2 .1 .3 .6  The w eak ly  la z ily  X -d e fin ab le  p a r t ia l n u m e r ic  fu n c t io n s  are closed  
un d e r com pos it ion .

PROOF Let (}>{n) ~  where X>^i> • • • , *l>m are lazily A-
defined by G , H i ,  • * •, H m say. Define

F  =  \ x . ( H i x K U )  • • • ( H mx K U ) G ( H i x i  • • • { H mx).

We claim  th a t F  lazily A-defines <f>. Indeed, if one of the is undefined a t ft, 
say xpj, then  the j- th  “jam m ing-factor” H f n 'K I I  is strongly unsolvable. Conse
quently, F rn i is strongly unsolvable. Conversely, if all the <f>i(n) are defined, then 
by the  previous Lemma, all the “jam m ing-factors” converge lazily to  I. Hence,

F rr t '- » l G [ H 1rf t ' ) - - - [ H mrn ') ,

which is as it should be. □

PROPOSITION 2 .1 .3 .7  L e t  P  be such  tha t Vn G u j.P rn i =̂ F . Then , p ,P  is  s trong ly  

unso lvab le .

PROOF Denote 0  =  (\ x y . y ( x x y ) ) ( X x y . y ( x x y )). Recall th a t 

V M 6 A .0 M  M ( Q M ) .

Define

U p  =f ©(A/iz.if P z  then z else /i(S+z))
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and

f t P  =  Hpr0 \
Then,

H p V  -»i if P'n1 then rrT else Hp(S+rn'1).
Therefore, pP  has the following reduction path:

fiP =  H prOn

-*i if P r(T then rCP else Hp(S+rCP)

- i  Hp(S+rCP)

- i  Hp(S+(S+rOn))

-*1 . . .

If follows th a t fiP has an infinite lazy reduction and is therefore strongly unsolv- 
able by the O perational C haracterization Theorem . □

LEMMA 2 .1 .3 .8  The w eakly  la z ily  X -d e fin ab le  p a r t ia l n u m e r ic  fu n c t io n s  are closed  
u n d e r m in im a liz a t io n .

PROOF Let <f>[n) ~  p m .[x (n ,m ) =  0] where x  is to ta l and lazily A-definable 
by, say, G .  Define F  =  X x .p y .[ Z e ro G (x y ) \ .  If <f>(n) is defined, then  3m .x(r?,m ) =  
0. Hence, F rn [ =  r<£(n)n by Proposition 6.3.9(ii) in op. cit. and the observation 
th a t lazy reduction alone suffices. If <f>(n) is undefined, then  V m .x (n ,m )  ^  0 
and so Vm.Zero(Gfrn ‘,rm '1) =  F . Hence, by the preceding Proposition, F rn ' — 

p m \ Z e Y o ( G rn wm ')\  is strongly unsolvable. Thus, F  lazily A-defines (f>. □

LEMMA 2 .1 .3 .9  I f  F  w eak ly  la z ily  X -d e fin e s  a p a r t ia l n u m e r ic  fu n c t io n  <j>. T hen ,

<f>(n) =  m  <==> F rn~l =  rm 1.

PROOF u=>” : By definition.
If F rf£ ,=  rm ' i i.e. not strongly unsolvable, <j>(n) is defined and (f>(n) =  m '. 

B u t then , rm~l =  rm ,‘1, hence m =  m !. □

Now, we are in a position to  prove the Theorem .
By Lemmas 2.1.3.3, 2.1.3.6 and 2.1.3.8.

M̂=” : Let <f> be A-definable by F .  Then, by the preceding Lemma,

4>(n) =  m <=> F rr i ' ~ rrri'.

and we are done. □
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2.2 Tree Sem antics
In this section, we introduce B ohm  trees, weak B ohm  trees and Longo trees 
and investigate their inter-relationships. The classical notion of B ohm  trees as 
structures capturing the operational meanings of A-terms is incorrect in the lazy 
regime. We propose two revised tree-structures: weak Bohm trees and Levy- 
Longo trees. The former capture the operational essence of the lazy evaluation 
and the la tte r provide denotations for A-terms enabling fine distinctions to  be 
made between their operational behaviours.

2.2.1 B ohm  Trees as O perational Sem antics
Bohm  trees were first introduced by C. Bohm  in the proof of his celebrated result 
on the separability of A-terms [Boh68]. For each M  €  A, one can define its 
corresponding Bohm tree, B T(M ), which conveys the  operational meanings of M  
in an essentially “stric t” regime.

Terms and their BT’s roughly relate to  each other as a  real num ber 
relates to  its continued fraction expression. If M  has a nf, then  BT(Af) 
is finite. In this respect, n f’s correspond to  rational numbers. [Bar84, 
page 215].

The set of all Bohm-like trees, considered as partial functions on Seq— the set 
of finite sequences of u ,  ordered by inclusion forms a Scott domain, called the 
B o h m  tree d o m a in  which is denoted S. All unsolvable term s have the  sam e Bohm  
tree which is the least element of the domain, namely the  tree w ith singleton node 
_L; and all normalizable term s are characterized as precisely those term s which 
have finite maximal Bohm trees.

Given a B ohm  tree B , one can define a canonical lam bda term  A f(B ), which 
has B  as its Bohm  tree. Since a Bohm  tree B  of dep th  N  >  1 has obvious 
(finite) approxim ants, namely, B  truncated  a t dep th  n  <  IV, denoted B ^  and 
th a t B  =  a notion of approxim ation can therefore be im ported to
the set of A-terms. Formally, we say th a t M  is B o h m  tree less th a n  IV, denoted 
M  Eb N  iff BT(M ) Cj5 BT(IV). More significantly, one can define a topology, 
usually called the (B o h m ) tree topo logy  as the smallest one which makes the map 
BT: A —► B continuous where B  is endowed w ith the Scott topology.

Considered as functions from A x A —> A and A —> A respectively, the A- 
calculus application and the context operator C \  ] can be proved to  be continuous. 
Topological techniques turned out to be crucial in the proofs of various seminal 
results in A calculus, notably the seq u en tia lity  and s ta b ility  of A-calculus due to 
Gerald Berry [Ber78], the Genericity Lemma (see C hapter 1) and also in the 
construction of the Bohm  tree A-model [Bar84, pages 486-491].
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Giuseppe Longo in his paper [Lon84] highlights and advocates the use of Bohm 
tree-like dom ains in the study of the  sem antics of A-calculus based functional 
languages. We refer the reader to  [BCL85] for a  comprehensive survey on the 
full-abstraction problem  in which the  authors employ B ohm  tree domain in the 
study of the sem antics of PC F which is a  functional language based on the  typed 
A-calculus augm ented w ith constants for recursion and elem entary arithm etic 
operations.

Ju st as solvable lam bda term s correspond to  the com putationally well-behaved 
term s only in  the  “stric t” regime, so B ohm  trees only correctly express the com
putational contents of A-terms in the  “s tric t” regime. Since this point is not very 
well-known, we emphasize the observation as follows:

Bohm  trees capture strict semantics.

DEFINITION 2 .2 .1 .1  (i) Let E B =f ( { ± } u { \ x . y  : x , y  C V ar} ,< B) where <B
is the least partial order satisfying Vs 6  E B._L ^ b s . As usual, we w rite 
s < b  t to  m ean s  < B t & s ^  t. Note th a t 5 < B f = > - s  =  l o r s  =  f and 
s < b  t => s =  1..

(ii) Let M  £  A. The B o h m  tree  of M , B T(M ), is a E-labelled tree defined 
informally as follows:

BT(Af) =  

BT(Af) =

±
A x .y

if M  is unsolvable; 

if M  is solvable and 

has principal hnf

BT(Afi) ••• BT(Afm) A £.yA fi---A fm

(iii) Let B  be the  set of all E B-labelled trees (called B o h m - lik e  trees) and 

AS =={<£:<£ is a Ep-labelled tree &: 3M  G A .B T ( M )  =  <}>}.

Define a  binary  relation CB on B as the least p a rtia l order such th a t for 
2?i ,2?2 6  A B . B i  C B B 2 iff B 2 is obtained from B \  by replacing some occur- 
rence(s) of JL in B\ by the Bohm  tree  of some A-term(s).
More formally, B x C B  J?2 iff

(1) T b  ̂ G J.e. B \  is a subset of B 2 as underlying trees.
(2) Va €  S e q .^ ifa )  j  => B i ( a )  ^B B 2(a ).

(3) Va €  Seq.Ba( a ) i  & £ i(a )T  =► 3/? <  a . B x(0) < B B 2(P ).

We will show in the later section on Longo trees, a fo r t r io r i, th a t the  two 
form ulations of C B  above are equivalent. We define for M , N  €  A,

M  Es  N  =  BT(Af) CB BT (AT).
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2.2.2 Weak Bohm  Trees
Taking the cue form Bohm  trees, we construct weak Bohm  trees which induce an 
operational preorder on A-terms in the lazy regime.

DEFINITION 2.2.2.1 (i) Let E w = f ( {_L}  U { A }  U V a r ,^ )  where ^  is the
least partial order on E^ such th a t Vs £  E^.X  ^  s. The weak B o h m  
tree of a A-term M , w BT(M ), is a E^-labelled tree defined informally as 
follows:

(1) wBT(M ) =  X if M  is strongly unsolvable;

(2) wBT(M ) =  A if M  is a A-abstraction;

(3 ) wBT(M) =

x

wBT(Mi) ••• wBT(Mm)

if M  has A-free 

hnf x M i  • • • M m

(ii) Let W B  be the set of all E^-labelled trees (called weak B o h m - lik e  trees) and 
A W B  =  { <p : (f> is a E^-labelled tree & 3 M  6 A .w BT(M ) =  <j>}. Define a 
binary relation C w on W B  as the least partial order such th a t for B i> B 2 €  
W B , B i  C w B 2 iff B 2 is obtained from  B i  by replacing some occurrence(s) of 
X in B \  by the weak Bohm tree of some A-term. M ore formally, B \  Q w B 2 

iff

( 1 )  Tbx C  Tb3 ,

(2) Vo: € Seq.£i(a)J, =>• B i(a ) ^ B2(a),

(3) Vo: £  Seq.-Bi(o:)t &  B 2( a ) [  => 3/3 < a .B i((3 )  < w B 2(/3). 

For M, N  E  A, we define

M N  =f wBT(Af) C„ wBT(JV).

REMARK 2 .2 .2 .2  There is no straightforw ard link between the operational pre
order induced by B ohm  trees and th a t induced by weak B ohm  trees. Let A/, N  £ 
A ,th e n

7b
M E b N ih M  N

Ju s t consider: 
a& *  M  =  A x.n, N  =  0  

M  =  \ x . x , N  =  \ x . n

The incom patibility of the two operational preorders is due to the following: 

PhD  Thesis May 31, 1988

r



Chapter 2: Sensible Theory Revised: Tree Semantics and Lazy Lambda Theories38

• wBTs afford finer distinction betw een unsolvable term s th an  BTs; wBTs 
“filter out” only the  P O 0-term s.

• BTs afford (much!) finer distinction betw een abstractions th an  wBTs.

E xam ple  2 .2 .2.3 (i) M  =  Ax.xO(y(YK))A;z.z

JT(M )

^  H -\?-3

a£T(M) = A

(ii) N  =  z f!(y (Y K ))A x .n

3 t M  = w 3 T ( N )  =  ?

JL 3 A
J- A

LEMMA 2 .2 .2 .4  ts a c o n s is te n t ly  com plete  a lg eb ra ic  cpo.

PROOF By the proof of Lemma 2.2.3.8, a  fo r t r io r i. □
Note th a t in A W 8 , the  least element corresponds to  th e  strongly unsolvable 

term s, bu t unlike B ohm  trees, the set of finite maximal weak Bohm  trees do 
no t correspond to the set of normalizable A-terms. Nevertheless, wBTs induce a 
“correct” notion of operational preorder between term s in the  lazy regime, except 
th a t  the  preorder induced is dismally coarse.

2.2.3 Levy-Longo Trees
We introduce Levy-Longo trees which are a  na tu ra l extensions of the  weak Bohm  
trees. Levy-Longo trees capture the  operational content of A-terms in the lazy 
regime and th a t they afford an appropriate  discrim inatory mechanism between 
term s. Levy knew of this operational preorder long ago and  published it, albeit 
no t in a  tree-like fashion, in [Lev75]. G iuseppe Longo [Lon83] la ter investigated 
a  class of A-models called Plotkin-Scott-Engeler Algebras (see C hapter 3) which 
reflect the operational preorder induced by Levy-Longo trees (which Longo simply 
called “trees” in op. c it.)  internally in their order structures. We will take up the 
sam e them e in the sequel. From  now on, we will abbreviate Levy-Longo trees as 
Longo trees.

D efinition  2 .2.3.1 Let 
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=f ({ T }  U { Az._L : x  C Var} U { X x .y  : x , y  C V a r } ,^ )  

where <£, is the least partial order on satisfying:

(1) Vs 6  Z l \ { T } . \ x .± Xx .s ,

(2) Ax._L^l T.

Note th a t s ^ L t = > s  =  t o i s  =  Xx.JL. _L is the least element in and
th a t T  and X x .y  are the maximal elements. In fact, we can say more:

LEMMA 2 .2 .3 .2  (Ex,,<£,) is  a c o n s is te n t ly  com plete  a lgeb ra ic  cpo, i.e. a S co tt 

dom a in .

PROOF (E^, is by definition a poset. Let X  C Ex, be consistent or directed. 
If X  contains a maximal element a, then  clearly a  =  U X .  If not, then  elements 
of X  m ust all be of the form Ax._L. If |X | is not bounded, then  U X  =  T . If |X | is 
bounded, then  U X  =  Axi • • • x;v._L where N  =  max{ n  : Axi • • • xn._L 6  X  }. The 
finite elem ents of (Ex, <x) are ju s t E x \{  T  }. □

DEFINITION 2 .2 .3 .3  (i) The Longo  tree  of M , LT(Af), is a Ex-labelled tree
defined informally as follows:

(1) LT( M )  =  T  i f M e P O o o ,

(2) LT(M) =  Axi • • -xn._L if M  E P O n such that n  6  w,

A £ =f { (}>: <f> is a Ex-labelled tree Sz 3 M  6  A.LT(M ) =  <j>}.

Define a partial order Cx on £  as follows: For L i , L 2 6  C .L \  C L L 2 iff L 2 

is obtained from L \  by

X x .y if M  is solvable and has 

principal hnf X x .y  M i  • • • M m, m  ^  0(3) LT(M) =

L T (M ) • • • LT(M m)

(ii) Let L  be the set of all Ex-labelled trees (called L o n g o - lik e  trees) and

(a) replacing some occurrence(s) of _L in L \  by the Longo tree of some
A-term an d /o r

(b) replacing some occurrence(s) of Ax.JL in L \  by T .

(iii) M ore formally, L \  C l  L 2 iff

(1) t L i c  r i2 ,

(2) V<* €  Seq.L i(o:)| =*• L 2(q:) | & L i ( a )  L 2( a ),

PhD  Thesis May 31, 1988

!



Chapter 2: Sensible Theory Revised: Tree Semantics and Lazy Lambda Theories40

(3) Va G S eq .L i(a )t & L 2( a ) |  => 3/? <  a .L i{ (3 ) < L L 2(p).

Note th a t (2) subsumes ( l) .

M  El N  =  LT(M) C L  LT(iV).

LEMMA 2 .2 .3 .4  77ie fo rm u la t io n s  o f  C L in  ( ii)  and  (H i)  o f the p re v iou s  d e fin i
t io n  are equ iva lent.

PROOF “(ii) (iii)” : Suppose L \  C L L 2 according to  (ii). Clearly, we have
(1) T l x C T l 2. Suppose L i ( a ) | ,  then  observe th a t either rules (a) and (b) do not 

apply a t all (5 ^  a  or they apply a t a  (in which case, L i ( a )  =  A x .i.), since rules (a) 
and (b) can only possibly apply a t nodes w ith labels Ax._L and such nodes are by 
construction term inal nodes. If the former, then  trivially L2(a) j& L i(a )  =  L 2(ct). 
If the la tte r is true, then since Vs €  Ex, \  { T  }.Ax.± ^x, X x .s  and Ax._L <x, T , 
we therefore also have L 2( a ) [  &; L i [ a )  <x, L 2{a). Suppose L 2( a ) l  &; L i ( a ) | ,  then 
this can only arise as a result of an application of rule (a) a t some node /3 < a . 
Clearly, L i{(3 ) < L L 2{(3).
“(iii) ^  (ii)” : It suffices to  prove the following:

For a  €  Seq.L2(a:) j., e ithe r 

V/? <£*.£!(/?) =  L2(/?)j

T h a t is to  say, rules (a) or (b) do not apply a t all /? ^  a  o r  rules (a) 
or (b) apply a t some (3 ^ oc and L 2(a )  is p a rt of the replaced Longo 
tree in rule (a) or (b) respectively.

Now suppose L 2( a ) J,. We consider two cases:

• L ^ a )  j:  By (2), L i [ a )  < L 2(ot). Then, either L i ( a )  — L 2{q)  or

L i{ a )  =  Ax._L &  L 2(a )  =  Ax .s  where s G Ei,or_L.

Suppose L i ( a )  =  L 2(a ), then V/? <  a .L \((3 )  Ax._L, and so, because of (2)
i.e. L i(/3 )  < l  L 2((3), we thus have L\[(3) =  L 2{(3). Suppose L \ ( a )  =  Arc._L, 
then clearly either rule (a) or (b) applies a t a .

• L i(a)T : By (3), 3(3 < a .L i( (3 )  < l  L 2{(3). Again, by definition of 
L i ( P )  =  Ax.J_ and L 2{(3) — A x .s  where s G E ^ \{  T  }. Note th a t L 2{(3) /  T , 
for otherwise, L 2{(3) would be a term inal node of L2, leading to  a contra
diction. Hence, we conclude th a t L 2(a)  is pa rt of the Longo tree replacing 
the “_L” a t Li(/?), since any subtree of a Longo tree is the Longo tree of 
some A-term.

□
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E xam ple  2 .2 .3 .5  (i) Le t / i  =  L T (x n n ) a n d / 2 =  LT (xO fJfi). Then, h %L l2.
This can be seen immediately from  the informal definition of C L . For the 
formal definition, note th a t 2̂( 2 ) & / i ( 2 ) |  bu t -i[3a <  (2 )./i(a) < l  /2(a)].

(ii) Let l i ,  l 2 be as before. We assert th a t l 2 %L /x. This should be clear, because 
l 2(2 )[  bu t / i(2 ) |.

(iii) Let =  LT(Ax .x x y z )  and l 2 =  U ( \ x . x x ( y £ L ) z ) .  Then, /1 l 2. Note th a t
/2{1 ,0)| & / i ( l , 0 ) t  bu t ->[3a <  (1 ,0 ) ./j(a ) < L l 2(a)\.

OBSERVATION 2 .2 .3 .6  (i) The m axim al elements of ( £ , Q l ) are (finite or in
finite) Longo trees such th a t all (finite) term inal nodes have labels which 
are m axim al in (E x, ,< l) i.e. of the  form Ax .y or T .

(ii) For / E A J l.V a  £  Seq./(o:)]. => V/? <  oc.l(fi) =  A x .y  which is maximal in 
Note th a t by construction, 1(a) =  Ax._L or T  implies th a t a  is a 

term inal node.

REMARK 2 .2 .3 .7  <f) E £  if <^:Seq —»■ Ex, satisfies the following:

(i) Tj, is a tree,

(ii) Va E Seq.[3/? >  a .<£(/?) J, => 4>(a) =  A x.y].

This is clear by definition.

LEMMA 2 .2 .3 .8  ( £ ,Q l ) a cons is tently complete algebraic cpo.

PROOF (C ^Q c ) is clearly a poset by definition of Cx,. We show th a t ( £ , Q c )  
is directed complete and consistently complete sim ultaneously to  save writing. 
Suppose x  ^  £  is directed (consistent). Then Vo: E Seq:

labx(a) =f { a  G Ex, : 3/ G X -K a ) =  a } 

is directed (consistent) in (Ex,,^x,) if labx(a) ^  0. Define l x : Seq —*■ Ex, by

. , , def { U labx(a) if labx(a) ^ 0
W « ) =  S

( |  else.

T he above definition is sound by Lemma 2.2.3.2. CLAIM: l x G £ . This is proved 
by showing th a t the  two conditions in Rem ark 2.2.3.7 are satisfied. Suppose for 
a  G Seq, then  3 x  G x*x (a )i* Since T x is a tree, so V/? < a .x ((3 )[  which
implies l x (/3) j .  Similarly for l x (a  * (n  +  l ) ) j  =£• l x (a  * (ra)) j .  Whence, Tjx is a 
tree. Suppose Ix (ol) [  and a  is no t a  term inal node of /x, i.e. 3 0  >  a ./x(/?)|. By 
definition of /x, 3 x  E X -x { P ) l• Since T x is a tree, x (a) =  A x .y  which is maximal 
in ( E a n d  so, /x(a ) =  x (a ) =  Hence, l x G £ .

Next, we show th a t x  Q l  For any x  G x> it remains to  show th a t conditions
(2) and (3) in Definition 2.2.3.3(iii) are satisfied. Observe th a t for a  G Seq,
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x ( a ) l  = >  K a ) ^  l a M a ) l  => [X W  < l  l x ( a )]>

whence condition (2) is satisfied. For condition (3), note that if /x(o:)| and 
x(a)'f, then for x  directed, 3y  E X -J/M i by definition of labx. For the consistent 
case, we take y  to be the upper bound in the following (of course y  may not 
necessarily belong to x  which is immaterial to the proof; but we clearly have 
x Q l V and In both cases, V/? <  a.y(/3) is maximal in (E l, < l), hence
y(P) =  LJlabx(/?) =  lx(/3). Now, suppose for a contradiction, V/? <  a.x(/3)l  => 
[x(f3)<£Ly (/?)], i.e. x({3) =  y(0)  because by definition of lx, we know that x(/3) ^ l 
y(P) necessarily. For the consistent case, x%Ly  which contradicts the upper bound 
supposition; for the directed case, notice that x and y  are not CL-compatible. For 
if there exists z  such that x C L z&zy CL z.  Then, applying condition (2) to y C L z , 
we have z (a)  J.. Now apply (3) to x and z  at a,  we arrive at a contradiction because 
V/? <  a.x((3)l  =>• x((3) is ^ -m axim al. Hence, 3(3 <  a.x((3) < l y{fi) =  lx(P)- 
Therefore, x  Q l lx- Clearly, lx CL U x-

The compact elements of £  are precisely those Longo trees with finite depth 
and which do not have T among its set of labels; and it is clear that each Longo 
tree is the lub of its compact approximants. □

REMARK 2 .2 .3 .9  Note that ( A £ , C L) is not closed under w-increasing chains. 
To see this we claim the following:
CLAIM: Let L e  £.  Then,

L E AT <===> FV(L) is finite and L is r.e.

The proof of the claim is similar to that of [Bar84, Theorem 10.1.23]. Consider 
the following chain: (/n : n E oj) where ln =f LT(x!(x2(* • • (x„fi) • • •))) where the 
x£s  are all distinct. Clearly, U{^n • n E cj} E £  but does not belong to AT 
according to the Claim.

E xam ple  2 .2 .3.10 (i) N  =  Y  =  Xf . [ \x . f (xx ) ) ( \x . f ( xx ) ) .

L T (tO =  ~ \ f . f  = J T (N ) w £ T  (n; = A

f

S-
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(ii) M  =  x(At/.?/)OAu.u(Aa:.n)(Ax1a:2 .n )(Y K ).

L t ( m )
7

-L ^U.U Otf.L *\X,Xz-± T

w iT (M ) = , x

xy.y x  au.u x  x  x A  x  A A -A A

(iii) For n  £  w define =  Axi • • • a;n.f2 and  O©© =  Y K . Then, 
wBT(O0) =  _L; Vn.O <  n  €  u>.wBT(n„) =  A;
Vn £  w l*BT(f2n) =  _Lj
Vn G w .LT(nn) =  Axx •• -xn.± ; ^(O©©) =  T .

REMARK 2 .2 .3 .1 1  In (i) and (ii) of the previous example, we see infinite be
haviour exhibited in two different “dimensions” which we unimaginatively dub 
vertical and horizontal respectively, for want of more appropriate descriptions.

•  v e rt ic a l d im e n s io n : A n infinite object in the vertical dimension is ju s t a 
tree of vertical depth. In (i), the BT and LT of Y  are the  same tree which 
has infinite depth .

• h o r izo n ta l d im e n s io n : The infinite object in the horizontal dimension bears 
the label “T ” . It is the class of unsolvable term s of infinite order. W hat 
we describe as the  horizontal dim ension is ju s t the  universe inhabited by 
the class of unsolvable terms, ordered according to  the ir uniquely defined 
orders of unsolvability. Observe th a t  only Longo trees have adequate dis
crim inatory power to  characterize unsolvable term s completely according 
to  their orders.

There is a more m athem atically a ttu n ed  argum ent for differentiating between 
horizontal and vertical infinite behaviours as we have ju s t done. Notice th a t non
com pact elements in the  Scott dom ain of Longo trees are precisely the union (not 
disjoint) of two subclasses of Longo trees: namely, those th a t have infinite depth; 
and  those th a t have “T ” among its set of labels.

TABLE 2 .2 .3 .12  T he following table summarizes and con trasts  the respective 
discrim inatory power of wBT, LT and BT.
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D is c r im in a to r y  P o w e r  o f  Trees

S y n ta x  C lass wBT LT BT S o lv a b ility

P O 0-terins _L

Az._L ± Unsolvables

A bstractions A T

A x .y

h \
Solvables

A-free hnfs
X

h \

2.3 Some Properties o f Trees

2.3.1 Longo Tree Preorder is a Precongruence
The m ain result in this subsection is th a t the preorder induced by Longo trees is 
a precongruence  (or su b s titu t iv e  preorder). More precisely,

T heorem  2 .3 .1 .1  L e t  M , N  €  A. Then, M £ L N  => VC[ ] 6  A .C [M ]  El C[iV].

This result is, as far as I know, new. The proof presented in this section 
is syntactic in natu re  and follows th a t of the same result for B ohm  trees as 
presented in [Bar84, §14.3]. The main novel element in the proof is the introduc
tion of “diagonal” approxim ants of (Longo) trees and term s, i.e. approxim ations 
param etrized not ju s t depth -w ise  as is well-known in the case of Bohm  trees, bu t 
also “breadth-w ise” respecting the preorder between the unsolvables.

DEFINITION 2 .3 .1 .2  Let B  e  W B , B  or £ . For k >  1, define

B k (a )  =

B ( a )  if lh(a) <  k,

_L if B ( a ) l  & lh(o:) =  k ,

t  if -B (a)t or lh(a)  >  k.

REMARK 2 .3 .1 .3  By convention, we say th a t the root node of a tree  is of depth 0. 
Then, B k is ju s t the tree B  truncated  a t all depths greater th an  k ; all nodes of B  

which are defined a t depth  k  now have label _L. Note th a t this definition differs 
slightly form  the one in [Bar84]. We clearly have VA; ^ l.LTk ( M )  C L LT(Af). 
Sim ilarly for wBTand BT.
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P roposition  2 .3 .1 .4  ( i)  VAf e  A.LT(Af) =  U*€w LTfc(M).
( it )  LT(M) C L U ( N )  V k  £  CJ.LTk { M )  C L LTfc(Y).

S im ila r ly  fo r  wBTand  BT.

PROOF Straightforward. □

DEFINITION 2 .3 .1 .5  (i) AA, the set of A_L-terms, is defined by the following
gram m ar:

A ± B M : : = X \ x \  (M N ) | (Ax .M ) .

(ii) Define the notion of reduction (/?A) on A_L as the union of (0)  and (_L); 
the la tte r is simply _LP  —> A.

(iii) Let A  £  A £ be finite. By induction on d(A) == max{lh(o:) : a  £  A }, a 
A-term L ( A )  is defined which has A  as its Longo tree.

A  =  X x i  • • •x n.± ,n  ^  0

A  =  T

A  =  A x .y

A x .y  
A =  / \

A \  • • • A n

=> L ( A )  =  Azi • • • xn.n ,

=> L [ A )  =  YK,

=> L ( A )  =  X x .y ,

=> L(A) =  X x .y L { A i)  • • • L ( A n).

(iii) Let A be a finite Longo tree. Then, L [A ]  £  AA is obtained from L ( A )  by 
replacing every occurrence of f i by A.

(iv) Let M  6  A. Define AfW M  L[LT"(M)] 6  AJ_.

FACT 2 .3 .1 .6  ( i)  V f in it e  A  €  A£.LT(L(A)) =  A .

( ii)  LT(AfW) =  LTn(M). □

The following terminology originates from [Wad7l] and is slightly different 
from  th a t in §14.3 of [Bar84].

D e f in it io n  2 .3 .1 .7  Let M  e  AA.

(i) P  £  A A is an app ro x im a te  n o rm a l fo rm  (a n f)  of M  iff P  M  and P  is a 
/?A-nf; and we define A ( M )  =  { P  £  A A : P  is an anf of M  }.

(ii) M  £  AA. Then, a ( M )  £  AA is obtained from M  by replacing the outer
m ost (C-maximal) redexes by A. Define a ( M )  inductively as follows:
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a ( \ x . y M i ' - M m) =  X x . y a ( M i)  • • • a ( M m) m  ^  0

a ( X x . ( X y . P ) Q M i  • • • M m) =  a ( X x .J_MX • • • M m)

=  X x .± a ( M i)  • • - a ( M m).

(iii) oj(M)  is the _L-nf of a (M) ,  defined inductively as follows:

u j( X x .y M i • • • M m )  =  X x .y u ( M i)  - • • w ( M m) m > 0

l j(X x .(Ay.P ) Q M X • • • M m) =  w(Ax .± M i  • • • M m)

=  A£._L.

(iv) A ’ ( M )  =  { u ( N )  \ M  -* 0  N } .

LEMMA 2 .3 .1 .8  L e t  M  G A_L. Then

( i)  co { M )  Ex, M .

( ii)  M  N  =>• cj( M )  cu (N ).

PROOF (i) By induction on the length of M .  Let M  =  X x . ( X y .P ) Q M i  • • • M m. 
Then u ( M )  =  Ax.±; clearly, cj(M ) Ex, M .  Let M  =  X x . y M i  • • • Afm, then  u ( M )  =  
Ax.j/cj(M ‘i ) • • • w(M m) Ex, M , by the induction hypothesis.
(ii) By induction on the structu re  of M , we have M  — N  => w(M ) Ex, w (N ) .  

R esult then  follows from the transitiv ity  of Ex,. □

DEFINITION 2 .3 .1 .9  Let M G  A 1  and x  C A_L.

(i) U X =  M  if U{ LT(P) : P  e  x } =  LT(M ).

(ii) x  is d irected  if { LT(P) : P  G x } is directed in (A £, CL).

P roposition  2.3 .1.10 ^  yf(Af) is directed.

( ii)  A '( M )  is  d irected.

PROOF

(i) By definition, we want to  show { LT(TV) : N  G  n f & TV E/, M }  is 
directed in { C , C L ). Let P , P ; G A ( M )  such th a t LT(P) and LT(P') are 
consistent. Then / =f LT(P) LJ LT(P') is well-defined and belongs to  A H  

because of the  Claim in Rem ark 2.2.3.9. It is no t difficult to  see th a t 
L [ l]  G A { M ) .

(ii) By the Church-Rosser property of (/?) and Lemma 2.3.1.8.

□
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The following “diagonal approxim ation” is needed because in Longo trees, 
two “dimensions” of infinite behaviour are exhibited.

D e f in it io n  2 .3 .1.11  Let M  g a _l , /  g A £

(i) The n -th  d ia g o n a l ap p ro x im an t  of /, l ^  G A Z  is defined as follows:

/<o) 4lf j_. singleton tree

T if lh(<j) >  n  +  1 or /(cr)t;

j_ if lh(cr) =  n  +  1 & l { o ) i

X x .y else II Hi <<

\ x x  • • • ztv-L if l(cr) =  Axx • • -x m._L

s.t. iV =  m in (m ,n  +  1) or T .

(ii) The n -th  d ia g o n a l a p p ro x im an t  of Af, M ^  G AJ_ is defined inductively as 
follows:

Af<°> d=  J_;

A x .yM o ^  • • • if M  has phnf A x . y M ,

Af(n+1) == < Axi • • • x n .Jl  if M  is unsolvable of order

m G w  +  l &  A  =  m in(m , n +  1).

L em m a  2 .3 .1 .1 2  L e t  M  G AJ_. T h en ,

Vn ^  O.LT(Af<">) =  LT(n>(Af).

( i i )  VM €  A.LT(Af) =  U„e„ LT<n>(Af).

PROOF Straightforw ard induction on d(LT(M )). □

REMARK 2 .3 .1 .1 3  For each n G w, M M Ex, Af. In fact, AfW has Longo tree 
which is identical to  the  Longo tree of Af truncated  after dep th  n , i.e. LT(AfW) =  
LT”(Af). However, AfM does not necessarily belong to A ( M ) .  For example, take 
M  =  Y K . Then AfW =  Y K  which is not a /3_L-nf; hence the  need to  introduce 
Af<">.

FACT 2 .3 .1 .1 4  (i) Vn G w .A f^  Ex, Af and Af(n) is in /?_L-nf; hence,
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Vn G co . M {n) G A ( M ) .

(2) From  Lemma 2.3.1.12, we deduce th a t Af = U M ^nK  Hence, Af = U A ( M ) .

P roposition  2 .3 .1 .15  (%) A '{ M )  c  A { M ) .

( i i )  M  =  \ J A ( M )  = l\ A '{ M ) .

PROOF (i) Let u { N )  G A ' w ith Af N .  Then LT(Af) =  LT(1V), hence 
c j(N )  El M  by Lemma 2.3.1.8. Clearly, u ( N )  is a /?J_-nf, so u ( N )  G A [ M ) .

(ii) CLAIM: VP G A { M ) 3 P '  G A ‘ ( M ) . P  El P '.  Then, Af =  U A ( M )  El 
U iP(Af) E Af i.e. Af = U A '( M ) .
PROOF OF CLAIM: Define

\ x .y g ( M o , n) • • • n) if M  has phnf Ax.pAf,

g ( M , n  +  1) =
\ X i  • • • Xjq.M ' if Af is unsolvable of 

order p; N  — min(p, n  +  1) 

& Af -*h Axi • • • x n .M '.

Recall th a t corresponding to the two cases in the preceding definition, Af -**-h 
Ax . y M  and Af X x . M 1 where -*h is the  head  reduction.

Hence, we have Vra.Af g ( M ,n ) .  Also, Vn.Af(n) El n)). Finally,
observe th a t VP G A { M ) 3 n  G co.P  El then take P ' =  u ( g ( M ,  n )). □

COROLLARY 2 .3 .1 .1 6  L e t  M , N  E  A ± .  Then

M ^ L N  <=> VAf': Af -»f} Af'.3iV': N  N ' . u ( M ' )  EL w(AT').

PROOF “<£=” : Since Af =  U l^ A f ')  : Af A f'} , result then  follows from the 
Proposition.
“=£■” : Let Af Af'. Then, by Lemma 2.3.1.8,

w(Af') El Af' » l Af EL U{w(AT') : ^  -V* W'},

i.e. LT(w(Af')) Cj, U { LT(w(iV')) : iV -*•£ AT'}r  Since LT(cj(Af')) is a finite ele
m ent of (£ , C L ) and {•••)-! is directed by Proposition 2.3.1.10,

3N '.N  -*0 AT'.w(Af') EL w(AT').

□
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L em m a  2 .3 .1 .1 7  L e t M e  A 1  an d  C [  ] €  A_L. Then, C[_L] C [ M \ .

PROOF The proof uses Corollary 2.3.1.16. Let C[_L] L .  Then, C [ M ]

L[_L :=  M ]. It suffices to  prove w(L) £x, w(L[_L :=  Af]). By induction on the 
length of the te rm  L .  Then, three cases are as follows:

(1) L  =  X x .y L .  Suppose by hypothesis, w(Lt-) u j( L i[ l.  :=  Af]). Then,

u ( L )  =  X x . y u ( L 0) - •

£l X x . y u ( L 0[± :=  M \ )  • •• u ( L m- i[ ±  :=  M \ )

=  u (X x .y L [±  :=  M ] ) .

(2) L  =  X x . ( X y .P ) Q L ,  u>(L) =  X x .±  Ez, X x . M '. Hence, w (L )  El w(L[_L :=  Af]).

(3) L  =  Ax._LL. Similar to above.

□

COROLLARY 2 .3 .1 .1 8  P  G A { M )  => C [ P ] EL C [ M ] .

PROOF P  is a /?_L-nf by assum ption. Hence,

3 D  G A, 30 < n, G co .P  =  DfAzi • • • xn i._L, • • •, X x i  • • • a:nm._L] &

M  =  -D[M i,. . . ,  Afm];

for appropriate A/,-. There are, in general, more than  one choice for such D [  ] 
and Afj’s. We define a canonical choice for D [  ] as follows. Choose D [  ] and the 
corresponding Af,’s satisfying the above such tha t:

(1) If M i  is solvable, then  n< =  0;

(2) If M {  is unsolvable of order p  ^  oo, then, =  0;

Now, define a new context D 1 =  D [ X x i  • • • xn i.[ Asi • • • x rtm.[ ]]. We note th a t 
in the light of our choice of D [  ] subject to  stipulations m entioned in (1) and (2), 
n,- >  0 i f f  M i  G PC)*,. Then, P  =  D '[X ,---,_L] and A/? b Af =  D '[ M [ ,  • • •, A fJ . 
Hence,

C [P \  =  C [ D '[ X ,  • • •, J.]] Et  C [ D '[ M [ ,  • • •, M 'J ]  C \ M \ ,  

by repeated applications of Lemma 2.3.1.17. □
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L em m a  2 .3 .1.19  ( i)  P  -» ± Q  =» w (P) =  u (Q ) .

( i i )  P  >-_l Q  => P  ~L Q '

P roof

(i) Suffices to  show P  — Q  =» w (P) =  w(Q) which is straightforw ard.

(ii) Since for P  G A_L.LT(P) =f LT(P[_L :=  O]). Observe th a t OM  G PO 0. 
Hence, P  Q.

□

COROLLARY 2 .3 .1 .2 0  L e t  P , Q  G A ± . T h en ,

P  =^j. Q  => P  Q-

PROOF By virtue of P  =0 Q or P  = J _  Q implying P  Q. □
The following notion is due to  Welch and the two results th a t follow the 

definition are extracted  from [Bar84] §14.3.17 and §14.3.8 respectively.

DEFINITION 2 .3 .1 .2 1  (i) Let M G  A and F  C M  (meaning th a t F  is a set
of subterm s of M ). Then, M  reduces to N  w ith ou t to u ch in g  P , denoted 
M  -»-,f  N ,  if there exists a reduction a  : M  -*> N  such th a t a residual (see 
[Bar84] for definition) of an elem ent of F  is never contracted.

(ii) If P  C M , w rite M  -»_,p N  if M  -»^f p  N  where F p  is th e  set of all redexes 
C P .

LEMMA 2 .3 .1 .2 2  L e t  M  -»_,p N  by a re d u c t io n  a . T hen  M [ F  :=  _L] -»► N [F *  :=
±] where [P  := _L] denotes the rep la cem en t o f  the  [c  -m a x im a l ] redexes in  F  by

±  an d  F ' is  the set o f  re s id ua ls  o f  F  w .r.t. a .

PROOF See [Bar84, pp370]. □

PROPOSITION 2 .3 .1 .2 3  (W elch) L e t  C [ M ] , N  G A. Suppose  C [ M ]  N .

Then , S M u N t  : M -» M U N N ^ M i )  -»_Ml N x.

PROOF See [Bar84, pp370]. □
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The following result and its proof follow [Bar84, Proposition 14.3.19], though 
A ( M ) , A '( M )  and have been given som ewhat different meanings.

P roposition  2 .3 .1.24  Le t C [ M ] €  A. Then,

VP 6 A '{ C [ M \ ) 3 Q  G X '(M ).P  EL C [Q \.

PROOF Let P  €  X'(C[M ]). Then, P  =  w(JV) such th a t C[M] -  N .  By 
Proposition 2.3.1.23, for some M \ , N \  G A

(1) M  M U N  -» N u

(2) C [M \ ]  N u

(3) Take Q  =  w(M i). Then, Q  G A '{ M ) .  It remains to  show P  C [Q ].  By
(2) and Lemma 2.3.1.22,

C [ M i] [ F  := ±] -  N i [ F '  := _L],

where F  is the set of all redex occurrences in M i .

Now,

Ex, w (M ) (1), Lemma 2.3.1.8

=  :=  X]) since all redexes have to  be

replaced by ±  anyway

£  L iV i lF '^ X ] Lemma 2.3.1.8

C[A/i][.F :=  X] (3),Corollary 2.3.1.20

=  C[a(M!)]

C\u(Mi)\ Corollary 2.3.1.20

=  C[<?].

COROLLARY 2 .3 .1 .2 5  ( P r o o f  o f  T h e o re m  2 .3 .1 .1 ) L e t  C [  ] G A and  M , N  G 
A. Then,

( i)  C \ M \  =  LK C \Q \  : Q  €  A ’ ( M ) } =  U{ C \Q ]  : Q  6  A ( M )  }.

( it )  C \ M \  =  U„C[Af<B>].
( in )  M Z L N  ^  C [ M \  El C[JV].
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PROOF (i) By Corollary 2.3.1.18, VQ € A ( M ) .C [ Q \  EL C [ M \ .  Then,

U (  C [Q ]  : Q  6  A '( M )  } [J{  C \Q ]  : Q  €  A ( M )  } El C[M]

because ^ '(M ) C A ( M ) .  Since C[M] =  U { P  : P  £  A '( C [ M ] )  }, by Proposi
tion 2.3.1.15. The rest follows from the Proposition.
(ii) Since M ^  €  A ( M )  and VP €  A ( M ) 3 p . P  E/, Now use (i).
(iii) Assume M  N .  Then,

C \ M \  =  U { C { P \ : P e A ( M ) }  by (i)

C \N } .

since P E ^ M ^ P E i i V  and Corollary 2.3.1.18. □

2.3.2 A  N on Full A bstraction  R esult
Longo tree sem antics compares term s according to  their intrinsic syntactic struc
tu re  in keeping w ith operational considerations in the lazy regime such as:

• regarding the strongly unsolvables as least term s,

• comparing abstraction  term s according to  the num ber of nested abstractions 
they can yield.

This furnishes a tool enabling fine distinctions to  be made betw een A-terms. 
Longo tree preorder is substitutive, and ordered by C^,, the Longo-like trees form 
a Scott domain. The Longo tree of a te rm  m ay be regarded as its deno ta tio n .

Weak Bohm  trees capture the o p e ra t io n a l essence of lazy evaluation — normal 
order reduction term inating a t whnf (=  abstractions). Assuming th a t conver
gence to  abstractions or A-free hnfs are the only com putational “observables” , it 
is reasonable not to  distinguish between term s th a t are o p e ra t io n a lly  equ iva len t, 
i.e. betw een term s M , N  such th a t

V<7[] €  A .C[M\ ^  C[iV] & C7[AT] E„ C\M).

Is the  weak Bohm  tree semantics fu l ly  ab s trac t  w ith respect to  the Longo 
tree semantics? — regarding the former as inducing a notion of operational 
equivalence and the la tte r as yielding denotations of terms. T he answer is no.

PROPOSITION 2 .3 .2 .1  (N o n  F u ll A b s t r a c t io n )  L e t M , N  e  A,

M  El N  => VC[] €  A°.C[Af] C[N].
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The converse is  fa lse.

PROOF “=^” follows from  the precongruence of and th a t 5^ C For 
consider closed term s M  =  X x .x t t  and N  =  \ x . x x .  Let C[] range over 

closed contexts. Observe th a t the assertion

VC[] G A° .C [M ]  C [N ]

is equivalent to

VC[] G A°.C[M]JJ- =$■ C[iV]JJ-.

By Proposition 4.1.3.5 (see C hapter 4), it follows th a t the preceding assertion is 
equivalent to  M  N  which is easy to  verify. D

2.4 Lazy Lambda Theories

2.4.1 Prelim inary Definitions
Let T be a set of closed equations of A-terms. Define T h(T ) to be the set of 
closed equations provable in A/? U T . We say T is a A-th eo ry  if T is cons is ten t 

and T  =  T h (T ). A A-theory is in co n s is te n t  if all A-terms can be proved equal. 
A , a set of closed equations, is an a x io m a t iz a t io n  of the A-theory T if Th(>() =  T . 
A A-theory T is r. e. if after coding T is a r.e. set of integers.
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An equational theory T  is H ilb e r t-P o s t  ( H P )  com plete  if for every equation 
M  — N  in the language of T , either T  h M  =  N  or T h (T  U { M  =  N }) 
is inconsistent. In o ther words, a H P-com plete theory is a m a x im a l con s is ten t 

theory.

DEFINITION 2 .4 .1 .1  Let C be a class of A-theories, e.g. semi-sensible A-theories 
or fully lazy A-theories which will be defined in the  sequel, typically characterized 
by the non-provability of certain equations. A (consistent) A-theory T , belonging 
to  the class C is H P -co m p le te  w .r.t. C if for every (closed) equation M  =  N  in 
the  language of T , either T  h M  =  N  or T h(T  U { M  =  N  }) C.

DEFINITION 2 .4 .1 .2  Let Ko =f { M  =  N  : M ,  N  €  A0 & unsolvable} and K  =  
Th(X’0). A A-theory T  is sensib le  if K  C T . T  is sem i-sen s ib le  if T  does not 
equate any solvable term  to an unsolvable one.

2.4.2 Lazy Lam bda Theories
The theory of sensible A-theory and sensible A-model1 is beautifully presented in 
B arendregt’s book on A-calculus [Bar84]. We have argued earlier on th a t sensible 
A-calculus corresponds to  the theory of “s tric t” A-calculus. In  this section, we 
shall develop a theory of non -sens ib le  A-theories (more suggestive and mnemonic 
names will be revealed later!) which is m otivated by com putational considerations 
in the lazy regime.

D efinition  2 .4 .2 .1  Define, f o r n e w + i ,

P 0 „  =  { M = N :  M , N  e  P O n },

£  =f Th( U  P O n ) .
nGw+1

REMARK 2 .4 .2 .2  Strictly  speaking, we should consider only M  €  P O m° =f 
P O m fl A° in the preceding definition as it is custom ary to  consider equation 
between closed term s in defining A-theories, bu t the above extension is natural 
in  the  light of the  su b s t itu t iv ity  of the P O n-term s, i.e.

V m € w  +  l .M  €  P O m VP 6 A.Af [® :=  P] €  P O m.

It is easy to see th is by an appeal to  the  substitu tiv ity  of /^-conversion and PO o- 
term s. For any M  E P O n+i satisfies:

1 Sensib le  A-models are those that give the same denotation to all unsolvable terms, e.g. Poo P<*> 
and Tw.
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M  =£ Ax! ■ • • x n+i . N  where N  E P O 0.

Then, M [ x  :=  P ]  Axi • • • x n+i. N [ x  := P ] and iV[x :=  P } £  P O 0. Similarly, 
for POoo-terms.

Define the A-theories induced by Longo trees, Bohm  trees and weak Bohm 
trees by £ T ,B T  and w B T  respectively. Of the  three, only £ T ,B T  are semi- 
sensible and only BT is sensible.

We rem ark th a t £  is consistent. Since, clearly U new +i^^n C K 0 which is a 
corollary of the Classification Lemma of the unsolvables, we conclude th a t Z  C K .  
The consistency of Z  then  follows from th a t of K .  See [Bar84] for proofs of the 
consistency of K  and K r).

DEFINITION 2 .4 .2 .3  (i) Let T  be a A-theory. T  is zero  sens ib le  if T h (P O o )  C
T  i.e. T  equates all the strongly unsolvable terms.

(ii) T  is f in it e ly  sens ib le  if T  equates all unsolvable A-terms of f in it e  orders.

(iii) T  is p re - la zy  if Z  C T .

(iv) An fu l ly  la zy  X -th e o ry  T  is a pre-lazy A-theory which equates any two 
unsolvable term s iff they have the  sam e order, i.e.

Vm, n E +  l . V M  £  P O m.ViV £  P O n.T  M  =  N  m  =  n.

LEMMA 2 .4 .2 .4  L e t  T  be a zero sens ib le  X -th eo ry  w h ich  equates a l l  P O e0-term s, 
th en  T  is  p re - la zy .

PROOF It remains to  show th a t T  equates any two term s of the same finite 
order of unsolvability greater than  0. Let M , N  E P O n+1. Then,

M  = p X x i  • • • x n+ l. M \  N  Axx • • • xn+1.iV';

and M '^ N 1 E POo- B ut M 1 =7  iV', then result follows from the  fact th a t T  is a 
congruence. □

PROPOSITION 2 .4 .2 .5  A  p re - la zy  X -th eo ry  T  is  e ith e r fu l ly  la z y  o r  f in it e ly  sen 

s ib le . C le a r ly , a  sens ib le  X -th eo ry  is  t r iv ia l ly  f in it e ly  sensib le .

PROOF Let n n be the representative P O n term for each n £ w  +  l .
I. Suppose 3 m ,n  6  oj and m  ^  n  such th a t O m =  Q„. Then, 3A; >  O.Oo =  0* , 
since VC £  A ° .n n+1C =  f l n. From  which we can deduce V/.i =  a k  -1- 6 where 0 < 
b <  k , Q i =  f s i n c e  Ax.On =  O n+1. Now, because f20 =  O 0C  =  fU C  =  0*_ i, 
we then  have f2o =  f i i  =  • • • =  fi*. Hence, Vm, n  6 o ;.n m =  f i n, i.e. T  is finitely
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sensible.
II. Suppose —»[3m,n €  w ,m  ^  n .T  b O m =  O n). I t rem ains to  show: Vn £  
o j.T  Y- n „  =  fioo, then  we are done. Suppose, for a  contradiction, th a t for some 
n  ^  O.T h H n =  Ooo. In  particular, T  h Y K  =  f ln, since Y K  €  P O qo- B ut 
T  h Y K  =  Ax.YK =  A x.fln =  f l n+i, i.e. T  h f2n =  n n+i, which contradicts the  
assum ption. □

COROLLARY 2 .4 .2 .6  L e t  T  be a p re - la zy  X -theo ry . I f  T  ¥■  L2o =  H i then  T  is  
fu l ly  lazy.

PROOF In  view of the  reasoning in II of the  previous proof, we only need to  
show th a t T  b  n 0 =  f2i Vn, m  £  u>.n ^  m .T  J* H n =  f l m which is clear from 
I. □

OPEN Q uestion  2 .4 .2 .7  Is every pre-lazy A-theory which is finitely sensible 
necessarily sensible?

DISCUSSION 2 .4 .2 .8  T he development h itherto  in this section is a  way of impos
ing some structure  in the  universe of unsolvable A-terms. I t m ay be seen as an 
approach to  “non-sensible” A-calculus. In  fact, we can tu rn  the  unsolvables into 
a preorder-ed set in the following obvious way:

Vm, n €  oj +  l.V M  £  P O m.ViV £  P O n.Af C N  <=> m  < n.

However, the associated poset is not a very interesting one, being isomorphic 
to  u  +  1.

Rick S ta tm an  [Sta86] has a more interesting way of turn ing  the  A-terms into 
a poset. The S ta tm a n  p reo rde r  < is defined as follows: for M , N  €  A,

M  N  =  3P . M P  =  N .

We read M  < N  as “M  is more solvable th an  N ” . The struc tu re  of the induced 
poset runs counter to  the  intuitions of classical sensible A-calculus. For example, 
the  poset has a bo ttom  element consisting of all so lvab les  and .has all P O M 
elem ents as maximal elements. S tatm an  shows th a t every countable poset can 
be em bedded into the poset.

OPEN Q uestion  2 .4 .2 .9  Is there an ordered A-model whose induced preorder 
on A-terms coincides w ith (or extends) <?
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C h ap ter 3

L azy L am bda M od els and  th e  
Free Lazy P S E -M o d el

Synopsis o f the Chapter

This C hapter may be divided into two parts . The first p a rt begins w ith an 
in troduction to the model theory of A-calculus. Different form ulations of la zy  A- 
m odels  based on A bram sky’s q u a s i-a p p lica t iv e  s tru c tu re  w ith  d ivergence  are then 
presented and shown equivalent. A general com putational adequacy result for 
a  class of continuous lazy A-models is proved. The second p a rt of th is C hapter 
focuses on a class of A-models called the P lo tk in -S c o tt -E n g e le r  ( P S E )  m odels. The 
basic properties of the  subclass of lazy free PSE-m odels are surveyed. The main 
result of this C hapter, which confirms and strengthens a conjecture of Longo 
in [Lon83, Rem ark 3.9], is a L o ca l S tru c tu re  Theorem  for the  class of free la zy  

P S E -m o d e ls .

3.1 M odels o f the Lambda Calculus

3.1.1 Introduction
A lthough the theory of the pure, untyped A-calculus as a formal system  was fairly 
well established in the  late  1940’s, it took the  m athem atical com m unity about 
th ir ty  years to produce the  first models which are not of a syntactic  nature, usu
ally loosely referred to  as “m athem atical” models. Before 1970, the  only models 
of the A-calculus were “term  models” . They were proved to  be con s is te n t  as a 
corollary of the well known C h u rch -R o sse r p ro p e rty  of the /^-reduction, similarly 
for ftr j-reduction, established as long ago as 1936 [CR36]. T h a t it has taken the 
m athem atical com m unity so long to produce a breakthrough in the model theory
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Chapter 3: Lazy Lambda Models and the Free Lazy PSE-Model 58

of the  pure, untyped  A-calculus calls for some explanation. There are a t least two 
factors which seemed, a t various times, to  be formidable obstacles in the search 
for a m athem atical model of A/3:

• I n tr in s ic  In te n s io n a l i ty  o f  A -term s
It seems fair to suggest th a t the intended in terpreta tion  of A-terms is th a t of 
a lg o r ith m s  which can themselves be regarded as da ta  and given as input to 
other algorithms. Algorithms have significant in te n s io n a l im port; whereas 
set-theoretic functions, which m athem aticians at large are b e tte r conversant 
w ith, are ex ten s ion a l entities. Nevertheless, as a first approxim ation, it is 
reasonable to identify the two notions. The type free nature  of the calculus 
and the observation th a t each A-term plays a d u a l ope ra to r-ope rand  role 
suggest the following “dom ain equation” :

D  =  D d

where D  is the domain of algorithm s and D D its set-theoretic function space. 
Alas, this is impossible because of C an to r’s theorem , if the cardinality of D  
is greater than  1.

• I n c o m p a tib i l i ty  o f  A/3 w i th  (m in im a l)  logic: C u r r y ’s v e rs io n  o f  
R u s s e l l’s P a r a d o x
Type free  A-calculus cannot reside harmoniously in a conventional logical 
framework which gives expression to absurdity. In  such a framework, as 
experienced long ago by Frege [Fre03,Acz80] who had a logical system  th a t 
essentially incorporated the full type free A-calculus, Russell’s Paradox in 
the  form of a fixed point of negation, can be derived. The crux of the 
apparen t logical incom patibility lies in the in te rn a l d e f in a b ility  of such self- 

a p p ly in g  term s as the fixpoint com binator (e.g. X f . ( X x . f ( x x ) ) ( X x . f ( x x ) ) )  

in the type free regime. O perations such as application have an  inherently 
s tro n g ly  typed  nature. Perhaps it should come as no surprise th a t such 
inconsistency result does arise when type constraints are relaxed.

A  B rief Survey o f M athem atical A-models

D ana Scott was the first to  construct a  m athem atical model [Sco72]. As 
alluded to  earlier, a long-standing challenge in the  search for a model of the A- 
calculus is the  construction of a structu re  D  and the  selection of an appropriate 
subspace of its function space D d  such th a t the subspace is isomorphic to  or a 
re trac t of D  in the cases of X(3rj or X/3 respectively. Scott solved this problem
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ingeniously by constructing a complete lattice which is isomorphic to  its Scott- 

con tin u o u s  function space. More fundam entally, Scott established th a t complete 
lattices D  together w ith co n tin u o u s  em beddings form  a C a rte s ia n  c lo sed  category. 
F urther, any complete la ttice D  can be em bedded in a complete lattice, D 0o 
which is isomorphic to  its own function space (exponentiation) [D qq —* Doo}. See 
[SP82,Plo8l] for a general category-theoretic trea tm en t of the  solution of domain 
equation of which the  above is an  im portan t example; and [GHK*80] for a  careful 
study on C o n t in u o u s  L a t t ic e s , an area pioneered by Scott’s seminal 1972 paper 
of the sam e title.

Gordon P lotkin [Plo72] la ter constructed the  graph  m ode l pu j based on a set- 
theoretic notion of application. P lo tk in ’s idea tu rned  out to  coincide w ith the 
classical Myhill-Shepherdson-Rogers definition of application in p u  which was 
originally introduced to  define enum eration operators in com putability  theory 
(see e.g. [Rog67, page 143]). This model was la ter rediscovered by D ana Scott 
[Sco76] who used it as the sem antic dom ain of a A-calculus based program m ing 
language L A M B D A .  The cleanest and simplest set-theoretic construction of 
A-models was given in [Eng81]. This model was later christened Plotkin-Scott- 
Engeler Algebra (PSE-Algebra) and its theoretical properties fu rther investigated 
in [Lon83].

In  [Plo78], an analog of [Sco76], P lotkin  introduced another dom ain for the 
study of the semantics of program m ing languages. M otivated prim arily by the 
view th a t la t t ic e s , because of the presence of the  semantically arcane top element, 
are not the ideal sem antic domains, this paper is an a ttem p t to  develop a m athe
m atical theory of com putation a la Scott based on the w-algebraic epo Tw — the 
C artesian product of denum erably m any copies of T, the 3-element truthvalue 
epo —  as the universal domain. As a A-model, the semantic partia l order of Tw 
has a particularly  elegant lo ca l s y n ta c t ic  characterization: a A-term is B ohm -tree  

less th an  another — an operational notion, if and only if its denotation in Tw is 
less th an  th a t of the other [BL80].

In the early Eighties, research activities in the  model theory of the pure, 
untyped A-calculus seemed to  be focused on a class of ra ther syntactic structures 
known as F i l t e r  \ -M o d e ls .  Types which are traditionally  employed to  study the 
functional properties of A-calculus (see e.g. [CHS72,CDV81]) are shown to  give 
rise to  a class of A-models.
See e.g. [BCD83,CDHL84,DM86,CDZ87].

3.1.2 D esiderata for M odels of A/?

Closely related  to  the quest for concrete m athem atical models of A-calculus is 
a surprisingly non-trivial question of a more abstract, ontological nature: what
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constitu tes a model of the  A-calculus and how to  characterize it in a canonical 
way, e.g. category-theoretically. Many researchers1 have addressed this issue. 
Their findings highlight various salient sem antic characteristics of the models of 
A-calculus. As a result, a consensus seems to have arisen regarding the precise 
definition of w hat constitutes a model of the Strong Com binatory Logic — A- 
A lg eb ra  and w hat constitutes a model of the A-calculus — A-M o d e l.

Before we present in brief the various equivalent characterizations of A-models, 
it is instructive to  examine the various properties th a t are expected of m athe
m atical structures th a t model \/3 and X/3rj.

• A p p lic a t iv e  S t r u c tu r e
(£),•): Since the jux taposition  (corresponding to  formal application) of any 
two A-terms is a A-term, a structu re  D  w ith  a (total) binary application 
operator is needed —  namely, an applicative structure. Equivalently, asso
ciated w ith each element d  of the s truc tu re  D  is a m ap /  from D  to itself, 
i.e. an element of the function space, D D . We shall call the function th a t 
maps d to  f  the Fun map. It should be clear th a t the binary application 
and Fun are inter-definable. W hen no confusion is likely to  arise, we will 
usually omit the symbol in the application d • e.

• C o m b in a to ry  C o m p le te n e ss :
An element /  of D d  is rep resentab le  if

3d  €  D .V x  €: D . f ( x ) =  d  • x;

d is called a rep resen ta tive  of the function / .  For each such / ,  we define

rep (/) =f { d  G D  : Vx 6  D . f  (x) =  d  • x  },

which is known as the  e x te n s io n a lity  c la ss  of / .  Note th a t a function does 
not necessarily have a unique representative. The rep resen tab le  fu n c t io n  

space , [D  —>r D \  is th a t subspace of D d  consisting of representable func
tions. Similarly, for each n  >  1, we define the n-place representable function 
space as

[.D n - > r  D ] =  { /  €  D ° n : 3d  e  D .V e .f ( e )  =  d e} .

Each A-term which is built up from the  variables by the  rules of appli
cation and abstraction  m ay act as an ope ra to r on A-terms. This implies

1[Sco80b,Mey82,Koy82,Koy84,HL80,BK80JBer8l] among others.
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th a t any polynomial term  over D  and Var (the denum erable set of vari
ables), say p (x ,d ), when regarded as a  function of its free variables m ust be 
representable in any structu re  which is to  be a model of A/?.

A function from D n to D  is a lgeb ra ic  if there exists a polynomial term  
p(x, d) such th a t

Ve £  D n.f(e )  =  p ( x , d ) [ x  := e|.

Clearly any representable function is algebraic, bu t the converse is not 
true. An applicative s tructu re  whose algebraic functions coincide w ith its 
representable functions is described as co m b in a to ry  com p le te  and only such 
applicative structures can be adm itted  as candidates for models of A(3. In 
fact, we have

FACT 3 .1 .2 .x A n  a p p lica t iv e  s tru c tu re  is  c o m b in a to ry  com plete  i f f  i t  can  be 
expanded in to  a com binatory algebra i.e. a m odel o f  the co m b in a to ry  log ic.

PROOF Easy exercise. Or see [Bar84, page 90]. □

• R e p re s e n ta b le  F u n c t io n  S p a c e  [D  —>r D ] is a  r e t r a c t  o f  D : A central 
question in the model theory of A(3 is the d en o ta t io n  o f  a b s tra c t io n  term s. 

(3-axiom enunciates the  applicative behaviour of an abstraction  Ax . M  as 
th a t of an a lg o r ith m  which when applied to  an  argum ent N  yields the 
result M [ x  :=  JV]. Provided we accept an extensional perspective, it seems 
reasonable to  denote A x . M  as the fu n c t io n  f i d * - *  \ M [ x  :=  d]j, thereby 
ev isce ra ting  an y  in te n s io n a l contents. If D  is com binatory complete, then 
the function /  (which is algebraic) is representable.

Let Graph or simply Gr be a map from the representable function space 
[D  —>r D ] to  D  th a t  selects a unique representative, G r(/) 6  rep (/) C D  

for each representable function / .  Gr plays the  role of a cho ice  function.

The satisfaction of (3-axiom  im p lie s  tha t [D  —>r D ] is  a re tra c t o f  D , i.e. 
Fun o Gr =  id[£>_r£>]. To see this, consider any representable function f  and 
one of its representative(s), d. In the augm ented calculus A(22J, we have, 
for any e €  D ,
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/(« ) = d  • e

(3 — axiom

[[(Ax.dx)e]]

\ \x .d x }  • |e j

[(Ax.dx)J • e Fun, inter-definability

Fun(J(Ax.dx)J)e m eaning of abstraction

(Fun o Gr(c »-»• d  • c))e d  €  rep (/)

(Fun o G r(/))e .

Hence, we conclude Fun o G r(/) =  / ,  i.e. Fun o Gr =  id p —d \-

• W e a k  E x te n s io n a l i ty  —  a x io m  (£ ):2 In  the “extensional” framework 
in which the meanings of A-terms are functions instead of algorithm s, the 
denotation of an abstraction  Ax . M  is completely characterized by its ap

p lic a t iv e  behav iou r

d i—v \ M [ x  :=  d]J.

If th is holds, then the  s tructu re  D  is said to  be w eakly e x ten s io n a l; equiva
lently, if the following axiom is satisfied:

(£) D  f= [Vx(M =  N ) ]  => A x . M  =  X x .N ;

2An applicative structure D  is ex ten s io n a l , if D  satisfies the following (ext) axiom:

(ext) Vs, y  G Z?.[Vd G D ( x  ■ d  =  y  • d) =>• x  =  y].

It is not to be confused with weak ex ten s io n a l i ty , i.e. D  f= (^).

-  Extensionality, a stronger property, says that each e lem e n t  of the structure D  is completely 
determined by its applicative behaviour i.e. argument-value correspondence; equivalently, 
each representable function of D  has precisely one representative. It is an easy exercise to 
see that D  is extensional iff D  satisfies (£) and (rj) where (rj) is

(tj) VM €  A. D  N X y . M y  =  M  y  not free in M .

— However, weak extensionality merely says that the d en o ta t io n  o f  each a b s tra c t io n  te rm  is 
completely determined by its applicative behaviour which, as we have seen, is entirely in 
keeping with the “abstractions as functions” perspective.

It is interesting to note that there are applicative structures that satisfies (ext) but fail to be 
A-models. See [CDHL84] for some characterization results.
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which means VM, iV.Vp

( 0  {Vd €  =  [JVI,[li=d]} => [[Ax.Mj], =  [Ax.JV]^.

This would be an entirely reasonable stipulation for a model of X(3 were it 
no t for the fact th a t the  struc tu re  consisting of all closed A-terms (which 
sh o u ld  be the archetypal model) does not satisfy the  £-axiom. 3 S tructures 
th a t satisfy all the above-mentioned properties b u t not necessarily axiom 
(£) are known as X-algebras\ if in addition they satisfy (£), they are known 
as A-m ode ls. Their precise definitions will be given in the sequel.

3.1.3 Equivalent C haracterizations o f A-models
In the following, we present three equivalent form ulations of A-models under the 
headings of en v iro n m en t X -m ode ls, fu n c t io n a l X -m ode ls, and f i r s t  o rd e r X -m ode ls  

and a ca tegory-theore tic  c h a ra c te r iz a t io n  o f X -m ode ls.

I. Environment A-Models [HL80]
This approach is the most straightforw ard and obvious one. I t delineates from 
first principles w hat is required of a model of the A-calculus. An en v iro nm en t  

X -m ode l is a structure  (D ,  •, [-]_) such th a t

(1) (D , •) is  an  a p p lica t iv e  s tru ctu re .

(2) A  w e ll-d e fin ed  sem an tic  fu n c t io n  [-]_ : A(D) x ZAVar —*■ D  such th a t for 
every environment p 6  .DVar, the m ap J-] : A(D) —* D  satisfies:

M P =  p (*)>

i M N j p =  m P . m P.

(3) D  is  a m ode l o f  X/3: V M , N  €  A

A/?h M  =  N = > D t M  =  N  i.e. V p .p /J ,  =  [[#]],.

(4) D  is  w eakly  e x ten s io n a l i.e. D  (£).

3This is an immediate corollary of the w- in c o m p le ten es s  of \ f i ( \ /3 r } )  due to Gordon Plotkin 
[Plo74|. w-rule is the following:

, , VZ G A ° . M Z  =  N Z
M  ------- M = N -------
Plotkin constructed two closed A-terms M ,  N  such that VZ G A ° . M Z  = N Z  but \/3 Y- M  =  N  
This reveals the inherent intensional character of the A-caiculus.
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II. F u n c t io n a l  A -M odels [Mey82,Koy82,Koy84]
The functional approach presents the notion of a A-model a t a ra ther more ab
s trac t level, explicating the precise relationship between the ground domain and 
its (representable) “function space” . I t is precisely this relationship th a t the 
category-theoretic characterization seeks to  capture.

GrA fu n c t io n a l X -m ode l is a struc tu re  (D , Fun, Gr, [—J ) such th a t

(l) (D , •) is  an  a p p lica t iv e  s tru c tu re  where is the (canonical) application 
operation associated w ith the Fun map

[D  D ]£ > D F™ [D  -v r D ].

We have

Vx,y €  D .x  • y  =  Ap(Fun(x),y)

where Ap : D D x D  —*• D  is the usual application map. For simplicity, we 
will om it Ap and represent application by juxtaposition .

(2) (Fun,Gr) is  a re trac t o f  the representab le  fu n c t io n  space [D  —>r D ] in to  D  
(Notationally, [D  —>r D ]  < D ) .

(3) C lo su re  o f  [D  —>r D\ unde r \ -d e f in a b le  a lgeb ra ic  fu n c t io n s  4 i.e. for any 
A-term M  (which may or may not contain abstractions as subterm s), (d 

[M jp[x:=d]) £  [D  —>r D \. More pedantically bu t equivalently, we require the
following associated p a r t ia l sem antic function |G r]-_ : A (D ) x -DVar —*■ D  to  
be to ta l:

a.

b.

c.

d.

[*]®r = />(*) 

M *  »  d

I M N j f  ^  ■ m ?  • [ ^ r

undefined

if \ M ] *  & ] N ] *  defined; 

else.

Gr(d

is defined &:

(d  ~  m % : ^ )  e  [D  - r  D \

undefined else.V

4Given an applicative structure (D , •) and an interpretation of A-terms, a function /  G D D 
is X-definable  algebraic if 3 M  G A.FV(M) C { x } 3 p X f d  G D . f ( d )  — \ M \ x  := d]]|. Note that the 
A-term M  above may well contain abstractions as subterms. Closure under algebraic functions 
alone will not do.
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Conditions ( l)  and (2) lend themselves to  succinct characterization and their 
significance is readily understood; not so for condition (3).

• W hat is the model-theoretic im port of condition (3)?

• W hat are the conditions in this functional presentation th a t correspond to  
the validity of (/?) and (£) axioms?

A structure  (D, Fun,Gr) satisfying (1) and (2) is called a fu n c t io n a l dom a in . The 
following Lemma spells out the significance of condition (3).

LEMMA 3 .1 .3 .1  L e t  (D ,  Fun ,G r,[—] ) be a fu n c t io n a l dom a in . T hen  D  is  a 
X -m ode l i f f

( i)  (D ,- )  is  co m b in a to ry  com p le te , an d

( it )  The uch o ic e ” fu n c t io n ,  Gr o Fun €  [D  —»>r D \ is  in te rn a lly  de finab le .

In  o the r words, c o n d it io n  (S ) in  the d e f in it io n  o f  fu n c t io n a l X -m od e l is  equ iva len t 
to  ( i)  a n d  ( ii)  above. Observe tha t  JlJ =  |[Axt/.xj/]| =  Gr(Gro Fun).

P roof

“=£■” (i) is clearly satisfied. We show th a t the representable function /  having 
[Ax y .x y \  (which denotes in D ) as its representative is precisely Gr o Fun. 
For any d  G D ,

iX x y . x y j  • d = [Ay.dyJ
Gr(c Jdc]) 
Gr(c i y d  • c) 
Gr(c h-v Fun(d)c) 
Gr o Fun(d)

tt<=n According to the definition of functional A-model, it remains to show th a t 
w ith respect to the associated sem antic function |-J all A-definable alge
braic functions are representable. T h a t is, for M ( x )  G A(x) which means 
FV(M) =  x  — x i ,  • • •, x n th a t

(a) V d G  D n.|M (d )J is defined, and

(b) (d  h-> [Af(d)j) G [.D n —>r D ];  where M [d )  =f M ( x ) [ x  :=  J |.

We show by structu ra l induction. Consider the harder case of M ( x )  =  
Ay .N ( x , y ) .  By induction hypothesis,
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' id  £  D n. ie  £  Z>.[[iV(dk)]] is defined,

and

i d €  D n. ie  £  D 3 c  £  D .cd e  =

Now, (e cde) =  Fun(cd) £  [.D  —>r D ]. Hence,

[M (d l] =  Gr(F un(cd)) =  e • (cd) exists,

where e =  Gr(Gr o Fun). Moreover, (d  i-+ e(cdj) is algebraic and hence 
representable by com binatory completeness. Thus, we have shown (b ).

□
The functional and environm ent A-models are completely equivalent.

PROPOSITION 3 .1 .3 .2  (%) F o r  each fu n c t io n a l A-m ode l (£>,Fun,Gr), the co r

respond ing  (.D,*, ]_) is  a n  (e n v iro n m e n t)  \ -m o d e l.

( ii)  A n  en v iro n m e n t X -m ode l (JD, *,[—]_) defines  (D ,Fun,G r), a fu n c t io n a l X- 

m ode l w ith  the assoc ia ted  se m a n t ic  fu n c t io n  [—]_^r by pu tt in g  G r(/) =  
[Ax.gLeJ where d £  rep( / ) .

(H i)  F u rth e r, the co n s tru c t io n s  in  ( i)  and  ( ii)  a re  each o th e r}s inve rse .

PROOF Straightforw ard modification of the proof of Proposition 1.4.14 in 
[Koy84]. □

We can now answer the question we posed earlier on in the section and em
phasize an im portan t observation.

COROLLARY 3 .1 .3 .3  L e t  (D , •) be an  ap p lica t iv e  s tru c tu re . Suppose tha t ab s tra c 

t io n  te rm s are g iven  an  ue x te n s io n a l” in te rp re ta t io n ,  i.e. as in  s ta tem en t (S d ) in  

the d e f in it io n  o f  fu n c t io n a l X -m ode l. Then , (£ )  is  sa t is f ie d  im m e d ia te ly  and

(Gr, Fun) : [D  —>r D ] < D  <=> D  N (0)  1

□
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III. F i r s t  o rd e r  m o d e ls  [Mey82,Sco80b]
The theory A/? is logic free. A t first sight, A(3 seems tantalisingly like a purely 
equational theory. If it were so, then  the class of all models of A/? would be 
w hat universal algebraists know as a variety. Upon closer scrutiny however, 
the A-abstraction operator is seen to  exhibit subtly the streng th  of a universal 
quantifier in the presence of the axiom of weak extensionality, i.e.

W x .M  =  N  <=> Ax . M  =  Ax .N .

T h a t A-abstraction is the critical “operator” which disqualifies A/? from being 
a purely equational theory can be seen from the models of S tro n g  C o m b in a to ry  

Log ic . C o m b in a to ry  L o g ic  is a sibling system  of A/? in which the effect of A- 
abstraction  is sim ulated by com binators S and K . Strong Com binatory Logic, 
which is f in it e ly  axiom atizable over Com binatory Logic (by way of five combina
tory  axioms known as in [Bar84, page 161]) is an equivalent form ulation of A/? 
in th a t they prove exactly the same formulas. The significant point to  note is th a t 
Strong Com binatory Logic is a purely equa tiona l theory. Its models are called 
A-a lgebras. Perhaps somewhat surprisingly, A-algebras do not necessarily satisfy 
the  weak extensionality axiom which seems entirely natura l and in keeping w ith 
the  view th a t A-abstractions mimick set-theoretic functions. A-algebras th a t do 
satisfy the weak-extensionality axiom tu rn  out to coincide w ith  the two previous 
equivalent notions of A-models. We will call A-models defined using com binatory 
logic f ir s t -o rd e r  A-m odels. B oth D ana Scott and Albert Meyer proposed slightly 
different form ulations of first-order A-models. (They are of course equivalent.) 
We will ju s t m ention the neater version due to Meyer.

DEF IN IT IO N  3 .1 .3 .4  ([M ey82]) A co m b in a to ry  m ode l is a triple (D ,*,e) such 
th a t (D , •) is a com binatory complete applicative structu re  (or equivalently, ex
pandable into a com binatory algebra), and e €  D  satisfying:

(el) Vx, y .e xy  =  x y

(e2) Vx, y . \ iz ( x z  =  y z )  ex  =  ey.]

(e2) is also known as the  M e y e r -S c o tt  A x io m  (MS). We say th a t a com binatory 
model is stab le  if in addition the following axiom is satisfied:

(Stability) ee =  e.

Crucially, we observe th a t a com binatory model is a model which satisfies:

• a one -so rted  equa tiona l p re sen ta tio n  comprising the usual equational axioms 
defining th e  S , K  com binators and the equational axiom  (e l)), and

• a f ir s t -o rd e r  im p lic a t io n  (e2).
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The following proposition establishes th a t stable c o m b in a to ry  m odels  is yet 
ano ther (equivalent) way of form ulating A-models.

PROPOSITION 3 .1 .3 .5  ( i)  There is  a one -to -one  co rrespondence between stable

co m b in a to ry  m ode ls  (£>,-, e) and  fu n c t io n a l X -m ode ls  (D ,  Fun,Gr).

( ii)  A  co m b in a to ry  m ode l is  stab le i f f  e =  [Axy.xy].

PROOF Let (£>, Fun,Gr) be a functional A-model. Define e =  Gr(Gro Fun). Let 
x , y  G D .  Then,

exy =  Fun(Fun(Gr(Gr o Fun))x)y 

=  Fun(id(Gr o Fun)x)y 

=  (Fun(Gr(Funx)))y 

=  (Funx)y 

=  x y .

This establishes (e l). Suppose V z .x z  =  y z .  This means th a t x ,y  €  rep (/) for 
some representable function / .  Now,

ex =  Fun(Gr(Gr o Fun))x =  Gr(Fun(x)).

Since Fun (a) =  Fun(y), we have Gr(Fun(x)) =  Gr(Fun(y)) which implies th a t 
ex =  ey. We have thus established (e2). Stability can be shown in the similar 
way.

Conversely, given a stable com binatory model (D ,  *,e), define Gr : [D  —>r 

D ]  —> D  by G r(/) =  e • d for any d G rep (/) . Com binatory completeness holds by 
definition. It is easy to  show th a t (Gr, Fun) : [D  — D \ < D  and hence (D , Fun,Gr) 
is a functional domain. Observe th a t Gro Fun is a representable function w ith the 
representative e. Hence by Lemma 3.1.3.1, (jD,Fun,Gr) is a functional A-model. 
This completes the  proof of (i).

For (ii), observe th a t

|Axy.xyJp =  Gr(d >-> Gr(e d  • e)) =  e • e.

□
IV . C a te g o ry -T h e o re t ic  C h a r a c te r iz a t io n  [Lam80,Sco80b,LM84]
By bringing the m achinery of category theory to  bear on the model theory of A- 
calculus, the following elegant characterization has been obtained: In a category 
C, we say th a t a m orphism  /  G  C(a,6) is p r in c ip a l if Vy G C ( a ,b ) 3 h  G C(a, a).g  =  

f  o h .  Then,

(l)  a yields a co m b in a to ry  a lgebra  iff 3 /  G C (a ,aa) principal and a  X a < a ,  
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(2) a  yields a A-a lgebra  iff a a < a\ and

(3) a  yields a A-a lgebra  s a t is fy in g  (rj) iff a° =  a.

In  the  case of a category C hav ing  enough p o in ts  i.e. if 1 is the  term inal object, 
then

V h  G  C (l, a ) . f  o h  =  g o h = ^ f  =  g.

then  (2) and (3) above characterize A-m ode ls  and ex ten s ion a l X -m ode ls  respec
tively. A category th a t has enough points is also described as concrete. Crucially, 
in such a category, the behaviour of a m orphism  is uniquely determ ined by the 
behaviour between the corresponding g loba l e lem ents ; more precisely, a m orphism 
/  : a  —► b can be identified w ith a function from C (l,a )  to  c ( l ,6 ) .  The condition 
of a  category “having enough points” corresponds exactly to  the satisfaction of 
the axiom  (f). See C hapter 5 for more details.

3.2 Lazy Lambda M odels
In this section, we introduce (quasi) a p p lic a t iv e  s tru c tu re  w ith  d ivergence  and its 
essentially equivalent counterpart (quasi) ap p lica t iv e  t r a n s it io n  system  and show 
how they provide a na tu ra l framework in which to  define la z y  X -m ode ls. We prove 
a general co m p u ta tio n a l adequacy resu lt for a class of ordered lazy A-models w ith 
structu res th a t are am enable to standard  (as in Scott’s £><») index calculation 
techniques.

3.2.1 A pplicative Transition System s
The original and definitive account of the notion of applicative structu re  w ith 
divergence and lam bda transition  system  is C hapter 6 of Samson Abram sky’s 
PhD  thesis [Abr87], in which he deals w ith the subject of lazy A-calculus in 
the grand framework of the S tone  d u a lity  between domains and their logics of 
observable properties.

A bram sky introduced the  b is im u la t io n  o rd e r in g , (see C hapter 4) to study
operational properties of the  lazy A-calculus. The A b ra m sky  la z y  X -theo ry  (see 
C hap ter 4), Ai ,  is derived from a particu lar operational model — the transition 
system  (A °,|l). It is na tu ra l to  ask w hat is the general m athem atical structure 
of which the previous transition  system  is an instance. A bram sky proposed the 
following notions in reply to  the question.

DEFINITION 3 .2 .1 .1  (A b ra m s k y )  (i) A quas i-a p p lica t iv e  t ra n s it io n  system  

(q-ats) is a struc tu re  (A, eval) such th a t eval : A  —*• A A  and A/dom(eval) ^
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0 .

N o t a t i o n :

a  Jj- /  == a £  dom(eval) & eval (a) =  / ,  

aJJ. =f aE dom (eval),

aft =f “-MO-

(ii) Let (A, eval) be a q-ats and Rel(A) =f p ( A x A ) .  D e fin ed  : Rel(A) —> Rel(A)by,
F ( R )  =  { (a, b) : a  ft /  =► 6 ft g & Vc e A .f{ c )R g { c )  }.

Then, R  €  Rel(A) is an ap p lica t iv e  b is im u la t io n  if R  C F ( R ) .  We define 
EB, an operational pre-order known as b is im u la t io n  o rd e r in g  as follows. For 
a, b 6  A, a  Es  6 holds if there is an  applicative bisim ulation R  such th a t 
a R b . In other words,

SB = |J{ JR €  Rel(A) : R  C F { R )  }

and hence is th e  maximal fixpoint of the  monotonic function F .  Since ft 
is a partial function, it is easily shown th a t the closure ordinal of F  is less 
th an  or equal to  u .  EB can thus be described more explicitly as follows:

a  EB b =f V/c E u>.a Ef b

where

V(z, b €  A .a  Eq

a £*+i &=f a f t / = > 6 f t 0 & V c€  A ./(c ) Ef flr(c).

We abbreviate a  6 & 6 Efl a  as a  6. It is easily checked th a t EB is 
a preorder; hence, is an equivalence relation. Denote the equivalence 
class of a  as [o].

(iii) A n ap p lica t iv e  t ra n s it io n  system  (ats) is a q-ats (A, eval) satisfying:

(ats) Va €  A .a  ft /  & V6, c G A .6 EB c =* /(&) EB /(c ) .

Significantly, an  a ts  has a quotient (A / ~ B,eval/ ~ B) where

eval/ [a] =f <

PhD  Thesis May 31, 1988
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In the  case of a (total) applicative structu re , (J9, •), and its associated structure, 
(D ,  Fun), such th a t Fun : D  —► D D, we recall th a t the application operator 
and Fun are essentially the same notion and they are inter-definable. In  the same 
way, we will show how a ts  is related to  ap p lica t iv e  s tru c tu re  w ith  d ivergence.

DEFINITION 3 .2 .1 .2  (i) A q u a s i-a p p lica t iv e  s tru c tu re  w ith  d ivergence  (q-aswd) 
is a struc tu re  (A ,-,ft) such th a t

• (A, •) is an applicative structure;

• 0 7̂  ft ^  A is a d ivergence pred icate  satisfying

(left-strictness) xft => Vy €  A .x  • yft.

Similarly, given (A, -,ft) we can define a preorder w ith  the  following recur
sive specification:

a b == aft => 6ft & Vc €  A .a • c Es  b • c

as the maximal fixpoint of a monotonic function as before, where ft =f -i(ft).
(ii) An a p p lica t iv e  s tru c tu re  w ith  d ivergence  (aswd) (A,*,ft) is a  q-aswd satis

fying

(aswd) Va, 6, c €  A .b  E5 c =>• a  • b E-5 a • c.

q-aswd (aswd) and q-ats (ats) are essentially equivalent in a  sense which we will 
make clear in the following.

Given a q-aswd (aswd) A  =  (A, •, ft), define the  associated evaluation function 
eval : A —1- A a  by

eval(a) =f <
x  a  • x  

undefined

if aft; 

if aft.

Clearly, the  structu re  Aq~aU == (A, eval) thus defined is a q-ats. Also, the axiom
(aswd) implies (ats); hence AaU =f (A, eval) is an  ats if A is an  aswd.

Conversely, given a q-ats A =  (A, eval) such th a t there exists an  (distin
guished) element J_ belonging to  A\dom (eval), define the  associated binary oper
a tion  • : A x A —► A by

a
if eval (a) =  / ,  

if a ^  dom(eval);
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and define ft =f A\dom(eval). Observe th a t the axiom (ats) implies (aswd). It is 
clear th a t A q~a3wd =f (A ,-,ft) is a q-aswd; and A aawd =  (A ,-,ft) is an aswd if A 

is an  ats. In  fact, it is easy to see (A q~aswd)9~at3 =  A ; and ( A a3wd) ats =  A  if A  is a 
q-ats and an a ts  respectively.

However, for a q-aswd A  =  (A ,*,ft), we only have (j{<i - atay - aawd =  A  and 
(rfatsyswd _  p ro v ided  ft =  { _L}, a singleton set.

To summarize, we have shown

PROPOSITION 3 .2 .1 .3  ( i)  G iv e n  a  q-ats A such  tha t  3JL 6 A\dom(eval), then
j^q-aswd as d ej i ne(i  above is  a q-aswd; s im ila r ly , i f  A  is  a n  ats.

( ii)  G iv e n  a  q-aswd A 1, A ,q~aU as de fined  above is  a  q-ats. S im ila r ly , i f  A is  an  

aswd.

(H i)  M o reo ve r, we a lw ays have (j{4 -aawdy - ata =  A ; but ( A ,g~atay ~ aawd =  A 1 ho lds  

provided ft =  { -L }.
□

From  now on, unless otherwise specified, we will m ostly be concerned w ith 
those q-aswd’s such th a t ft =  { _L }.

Intuitively, a q-aswd is a specialized applicative structu re  w ith  the following 
distinctive features:

(1) q-aswd has a built-in divergent element; “non-term ination” is dealt w ith 
axiomatically;

(2) application is left-strict.

Let (A, •) be an applicative s tructu re  and X  C A. A representable function 
/  6  A A is said to be X -rep re sen tab le  if /  has a representative in X .  We define 
rePx ( f )  == X  n  rep (/) . D enote [A —>x A] as the  class of all X -representable 
functions.

3.2.2 Lazy A-Models
Now, we are in a  position to  form ulate (equivalent) structures which we will 
propose as candidates for the notion of a la zy  \ -m o d e l.

NOTATION 3 .2 .2 .1  Recall th a t for M  e  A°, <=$> 3N  e  A.A/? h M  =  Ax .N .

DEFINITION 3 .2 .2 .2  We give three equivalent form ulations of la zy  X -m ode l.

I. E n v i ro n m e n t  L azy  A -M odel A  =  (A, *, ft, [—]_)

(1) (A, •, ft, [ —J_) is a q-aswd such th a t ft =  { _L } .

PhD  Thesis M ay 31, 1988

f



Chapter 3: Lazy Lambda Models and the Free Lazy PS E-Model 73

(2) [—]_ is h om om o rp h ic  w ith  respect to  application, i.e. VM, iV £  A (A),Va £  

A,

H ,  =

M ,  =  p(x),
IJWVJ, =  [A fl,- IJV |,.

(3) A  1= (/?), i.e. A/3 h M  =  N  =!> A *  M  =  N .

(4) A  N (£) where f  is as before.

(5) VM £  A° .M $  => A \= M-U-.

II. F u n c t io n a l  L a z y  A -M odel A  =  (A , Fun,Gr, | —]_)

(1) (A, Fun) is a q-ats such th a t A \dom (FUn) =  { -L };

(2) (Gr, Fun) : [A — A ]< A  i.e. A  [A  — A] A  w ith  FunoGr =  id[A—̂ ] ;  
such th a t range(Gr)nff =  0 where the representable function space is defined 
w ith  respect to  (A ,  Fun)q-aatt,d; (note th a t (2) implies th a t [A  —̂  A]±  < A .)

(3) [-]]_ : A(A) x AVar -> A  such th a t V M , N  £  A(A), Va £  A,

a. (homomorphism)

N l ,  =

1*1,  = p(x),
I M N I  =  W l - l N l ;

where the application • is as defined in (A, Fun)9-aawd;

b. (weak-extensionality) \ \ x . M \ p =  Gr(d [Af]Lz:_^) such th a t 
[A —̂  A] is closed under A-definable algebraic functions.

III. F i r s t  O r d e r  L azy  A -M odel A  =  (A ,-,e , [—]]_)

(1) (A, *, 'll) is a  q-aswd such th a t f|- =  { _L }.

(2) (A, •) is a  com binatory algebra such th a t

A  N K ^ , S ^ , K a 4 , S:z^, Sxt/^.

(3) A  satisfies the  following axioms:

(el) Vx, y .e xy  =  xy;

(MS) Vx, y . [ iz . x z  =  yz) => ex =  ey;

(stability) £•€ =  €.
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PROPOSITION 3 .2 .2 .3  ( i)  a. E v e r y  env ironm en t la zy  \ -m o d e l A de fin e s  an

asso c ia ted  fu n c t io n a l la zy  X -m od e l A f .

b. E v e ry  fu n c t io n a l la zy  X -m od e l A de fines a n  assoc ia ted  e n v iro n m en t  

la z y  X -m ode l A e.

c. The co n s tru c t io n s  in  (a )  and  (b) are each o th e r ’s inverse .

( ii)  There is  a n a tu ra l 1-1 correspondence between fu n c t io n a l la zy  X -m ode ls  and  

f i r s t  o rd e r la z y  X -m ode ls.

PROOF We will prove (i) and leave (ii) as an exercise, (a) Given an environment 
A-model A  =  (A, •, -ft, [—]_), define A*  =  (A, Fun, Gr, [—J^_) where (A, Fun) =  

(A, •,f|')9_a<4 which is a q-ats. Define G r : [A —̂  A] —► A by

G r(/) =  [Ax.ax] where a  is a representative of / .

N ote th a t range(Gr) flff =  0, because by definition abstractions are convergent in 
an  environm ent model. Then, for f  w ith  representative a  and d G A;

Fun(G r(/))d =  Fun([Ax.ax])d 

=  [Ax.ax] • d 

=  a • d =  / (d ) .

Hence, (Gr, Fun) : [A — A] < A.
Define [— : A(A) x AVar —> A as prescribed by the definition of functional 

lazy A-model. We prove by m utual induction the  following assertions:

(1) VAf G A U ) .IM ] , =  l M ] f ,

(2) VM G A ( A ) . F M (x),i, =  (d  i-+ W V f [x:=d\) €  lA  A]; th a t  is to  say

Vd E A 3 rM ,p  G A.PjvfiP(d) =  t m ,p • d.

The base cases of (1) and (2) are obvious. We prove the inductive cases of ( l)  first. 
The case of M  =  P Q  is clear. Suppose M  =  Ax.P. Then, [Ax.PflJ =  Grf-Fj*,), 
by an appeal to  induction hypothesis of (2). B ut by induction hypothesis of (1), 

=  therefore we may choose r P)P to be [A x.P]p. Hence,

[A x.PjJ =  [Ax.[A x.P]px]^ =  [A x.P]p.

We prove the  inductive cases for (2). Suppose M  =  P Q .  Then,
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Ind- Hyp. (2)

=  ( rP.f • d ) ■ [ r Q , P  '  d )

=  1Ax .rp ,px { rq tfx ) l  ■ d.

Suppose M ( x )  =  A y.P(x,y). For any d,

F M (x )A d ) =  l X y-P (X >y)Yp[z:=<i\ =  Gr(e ^  l P U , y ) i fp[y:=e})-

Now, by induction hypothesis (2),

3rf’(iv),/>-Ve €  X .[P ( i» ) lJ 1|(.=s] =  rP(ivU  • e.

B ut, by induction hypothesis (1),

UUvJlk-d =
Hence, taking r P ^y),p to be [Ay.P(d,y)])p, we have:

F M {x )A d) =  I ̂ z \ \ y . P { d , y ) \ pz \

=  \ \ x . \ z . { \ y . P { x ,  y ) ) z \ p • d 

=  y)Jp • d.

Observe th a t the above argum ent is valid for all d €  A ;  and we are done.
(b) Given a functional lazy A-model A  =  (A, Fun, Gr, [—]_). Define

A e =  ( -V ,fN [H -)  where =  (A ,F u r\)q~a3wd.

Then, it should be clear th a t ( A , - ,  ft) is a q-aswd. It is easy to  check th a t 
A e f= (/?) & (£). Finally, (c) follows im m ediately from [—1 =  [— □

Let A  =  (A ,  •, ft) be a q-aswd. Define a binary relation C A  x A  as follows:

x  V == [z-U- •<==> y-IJ-] & Vz G A .x z  =  y z .

Clearly, is an  equivalence relation and there is a 1-1 correspondence between 
[A  —̂  A]±  and A /~ ^  as follows:

1  1

( 0 , / )  <— > [a] where Vz G A . f ( z )  =  a* z.

We define a few axioms.

DEFINITION 3 .2 .2 .4  Let A  be a lazy A-model.
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•adequacy5 VM € A°.A  h M-JJ- M-JJ-;

•^cond Va G A .A  t  [aJJ. =$> Ax.ax =  a];

•E x tcond Vx, y G A .x  ~ ^ y  => x =  y.

LEMMA 3 .2 .2 .5  Le t A =  {A , Fun, Gr, [—]]-) be a fu n c t io n a l la zy  X -m ode l such  tha t 

dom(Fun) =  A \{ X } . T hen , the fo llo w in g  are equ iva len t:

(1) A t  (E x tCond),
(2 )  Gr o  Fun =  id ^  w h ich  im p lie s  tha t A  =  [A  —̂  A ]±,

(8 ) A t  (r/Cond)-

PROOF “(l)  «$=> (2)” F irst observe th a t Vx, y  G J|.x y  *4=  ̂ Fun(x) =  
Fun(y). Suppose ( l) . Since Fun o  Gr =  id[A-^A] — by definition of lazy A-model, 
for any convergent x, Fun(Gr(Fun(x))) =  Fun(x), and so, Gr(Fun(x)) x  by 
the preceding observation. By (E xtcond), we have VxJJ-.Gr(Fun(x)) =  x, i.e. the 
assertion (2). Suppose (2). Then, for xlj. & x y  <=> Funx =  Funy => 
Gr(Fun(x)) =  Gr(Fun(y)). Applying (2), we get x =  y.
“(2) <=> (3)"follows from  the observation th a t for convergent a, |Ax.ax] =
Gr(Fun(a)). □

3.2.3 A  General A dequacy R esult
A denotational semantics of a  program m ing language is said to  be co m p u ta t io n a lly  

adequate  (or simply adequate) w .r.t. the operational sem antics if the denotation 
of any program  is well-defined precisely when the evaluation of th a t program  con
verges. In  this subsection, we prove an  adequacy result for a class of “continuous” 
lazy A-models whose structu re  lends themselves to labelled reduction analysis as 
in the case of Sco tt’s D o© model. We prove the following adequacy  result.

PROPOSITION 3 .2 .3 .1  (A d e q u a c y )  L e t M  =  {D , Fun,Gr) be a la zy  X -m ode l tha t 

has la z y  a p p ro x im a te  a p p lic a t io n  a n d  th a t  Gr is  con tin u ou s . T h en ,

VM  G A°.M N M-lj- =>

□

DEFINITION 3 .2 .3 .2  A lazy A-model (D , •jfl') has a p p ro x im a te  a p p lic a t io n  iff

(i) (Di  E) is a cpo with least element _L —  the axiomatic divergent element 
and that “ ” : D  x D  —► D  is w-continuous.
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(ii) There is a m ap Approx:D x u  —> D  such th a t for any fixed d G D  and n  £  u j ,  

Approx(—,n ) and Approx(d, —) are continuous and m onotonic respectively. 
For any d,e  6  D :

(l) d  =  Llnew (2) do =  -L

(3) -L • e =  _L (4) dn+1 • e C (d  • e„)„

(5) {dn)m C dmin (n,m)

Note th a t (5) can be derived from  axioms (l) and (2).

T he m ain m achinery for the proof of the  above Proposition is th a t  of labe lled  

re d u c t io n  a la H yland and W adsworth. See e.g. [Hyl76] where the technique 
is employed to  prove the classic Approxim ation Theorem  and Local S tructure 
Theorem  for the  A-models: and p u .  A thorough account of this methodol
ogy and the associated notion of app ro x im a te  re la t io n  can be found in [Wad78] or 
[Bar84, chapter 14]. In [MP87], P lotkin  and Mosses give two alternative proofs of 
th e  approxim ation theorem  (vis-a-vis the  A-model D o )  using technically pleasing 
and powerful m ethods. The first utilizes a certain  kind of in term ediate seman
tics for proving correspondences between denotational and operational semantics. 
T he other illustrates a technique of Milne [Mil74,MS76], employing re cu rs ive ly - 
spec ified  in c lu s iv e  p red ica tes  (otherwise known as lo g ica l re la t io n s ). See C hapter 
4 for a brief discussion on logical relations and their application in the construc
tion  of fully-abstract models. We refer the  reader also to  the  adequacy result of 
a  general typed m eta-language in [Plo85].

DEFINITION 3 .2 .3 .4  (i) The term s of the labe lled  X -c a lc u lu s  (w ith  _Lj, AW_L,
is defined by the following gram m ar:

AW_L 9  M  ::=  A .\ x \ ( X x .M ) \ ( M N ) \ ( M n)

where x  and n  range over Var and u j  respectively. E lem ents of AWJ_ are 
known as labe lled  AL - te rm s .  A labe lled  X -te rm  is a labelled A_L-term th a t 
does not contain ±  as subterm s. The collection of labelled A-term is de
noted Aw. \M \  is the underlying A ±-term  obtained from  M  by erasing the 
labels. For the rest of this section, the  usual m eta-variables for A-terms like 
M , N , P , Q ,  etc. will range over labelled A±-terms unless otherwise stated. 
Let M G  A. Define subterm ( M )  as the set of all subterm s of M ; and Seq* 
the set of all non-em pty finite sequences of u j .  To facilitate easy reading of 
the following proofs, we formalize a labelled A-term M  as a  pair (M , I M ) 

such th a t
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I M  : subterm (|M |) —► Seq* U { oo }

where I M  maps N  E subterm(|M |) to a non-em pty sequence corresponding 
to the (nested) labels ascribed to  N . We adopt the  convention th a t if a 
subterm  N  E subterm(|M |) has no labels then I M (N )  =  oo. An example 
should clarify the definition. Take

iW = [(((Ai-x)2̂ 3)5)^ )1]5.

Then,

=  (4.5),

I M ( X x .x ) =  (2),

I M (z) =  OO.

We will sometimes write M  as ( ( (A x .# )^ ! /3,5) ) ^ ^ 00̂ 4’̂ .  A labelled A- 
term  M  E A W_L is com p le te ly -labe lled  if every subterm  of \M \  is labelled. 
More precisely, a completely-labelled A-term is a pair (M , I )  where

range(JM) C Seq*.

We abbreviate “1’ is a complete labelling of M ” as /  E C Z { M ) .

Define on AW_L the following notions of reduction:

(lab) ( M m)n —> jVfmin(m’n),

(/?+) (Ax . M ) n+1N  -*  (M { x  :=  JVn])n,

W o) M °  —> X,

w J .M -4  X,

(-U ) X" —> X =  x °.

We define l la b  = la b  U 0+ U 0o  U X U Xn . (llab  stands for “lazy labelled”
reduction.)
O ur definition of l la b  differs from lab./? in [Bar84, §14.3.1 page 364] in th a t 
the  notion of reduction: Ax._L —► _L is not adm itted  in our version; also /?o 
is different from j3± in op. c it. This should come as no surprise in our la zy  

reg im e , since the  le i tm o t if  of our work is

A b s t r a c t io n  le g itim iz e s  i ts  fu n c tio n  b o d y .

W hen there is a  need to  compare and contrast the  two slightly different 
labelled reductions, we will distinguish our reduction from th a t in [Bar84] 
by qualifying the la tte r as “s tric t” .
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(iii) A lazy labelled reduction strategy:
First, we define a map min : Seq* U { o o } —► w U { oo } by

min (I] =
minimun of / if / 6  Seq*; 

oo if / =  { oo }.

We define a notion of reduction on AW_L by the following proof system:

( ( \ x . P f i Q ) Z  - w ((P[x := Q"])")r’ ’ 

provided  min(Zi) =  n -f 1 or oo, in which case n =  oo;

( M N ) r ->w (MW)r

where M, M \  P  and Q  range over AW_L and l over Seq* U { oo }. In addition, 
we introduce the following as per normal:

- * W
d e f

M U d e f

M  A , d e f

nf(->w) d e f

M  U N d e f

the reflexive, transitive closure of —*w, 

3{ M n : n € w } & Vn.Mn — Mn+i,

M 0  dom(—>w),

{Me AW_L:M 
M - » U N & N - / * U.

Clearly, J,w is a partial function; it defines a determ in is tic  reduction strategy.
(iv) The denotation of a labelled A_L-terms in X, a lazy A-model with lazy 

approximate application, is given below by customary structural induction:

K-L,/)l, = -L
d=  (W ,)m in (/( .»

REMARK 3 .2 .3 .5  (i) It should be clear that nf(—>w) consists precisely of the
following mutually exclusive syntactic classes:
N.B. In the following some indices are left out.

(1) ( \ x . P ) r,
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(2) (• • • * * * Mn)r“, (• • • (J-rMi)fl * • • Mn)S
(3) (• • • ( ( ( \ x . P ) lQ ) 1'L i ) 11 • • • L n) tn such that min(f) =  0, 

where P, Q,Pt- and range over AW_L and n   ̂ 0.
(ii) It should be straightforward to see that the reduction — is just the “lifted” 

version of the lazy reduction —>/ in the following sense:

W , N  G AW. M  -*w N  =» \M \ \N \.

Also, — is a conservative  extension of —►*, i.e.

VM, AT G A.M ->| AT «*=* M - + u N .

(iii) There is really no substantive difference between Aw and AW_L since to 
all intents and purposes all terms with outermost label 0  have the same 
behaviour as ± n =  _L.

Recall that a reduction R on A is strongly normalizing  if VAf G A, there is no 
infinite R-reduction path starting from M .

PROPOSITION 3.2.3 .6  (Strong Norm alization) Let M  G Aw±  be completely  
labelled. Then, every  Maib-reduction s tar tin g  from  M  term inates .

PROOF This is an immediate corollary of the Strong Normalization of the 
“strict” lab./? reduction. See [Bar84, Theorem 14.1.12, page 358] for a proof. □

COROLLARY 3 .2 .3 .7  The reduction  —►u restric ted  to completely-labelled te rm s is 
Noetherian, or term inating . That is to  say, fo r  M G A,

V/ G Cj£ ( M ) 3 N . ( M , I )  j w N  G nf(->w)

PROOF This is immediate from the observation that -**>w specifies a reduction 
strategy in llab. □

COROLLARY 3.2.3 .8  L et M  G A such tha t M  is strongly unsolvable. Then, for  
all com plete  labelling I ,

(M, I) ! w (X x .P )°Q L . (som e indices are left out)

PROOF Since J is a complete labelling, so by Corollary 3.2.3.7,

3 N  G AW.(M, J) l u AT.

But, by Remark 3.2.3.5(ii), we have M  \N \. By the Operational Characteri
zation of Strong Unsolvability, i.e. L  G POo < = >  L ]\ ,  we deduce that |Af| is in 
l/?rf. The result then follows by reference to Remark 3.2.3.5(i). □
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LEMMA 3.2.3.9 Let D  be given as in  the Proposition. Then, for  any M  € A,

D  1= M  =  U { ( M ,I )  : I  € C L (M )  }.

PROOF Let (M, I)  € Aw be a completely-labelled term. We prove by structural 
induction on M .  This is clearly valid for M  =  x. Suppose M  =  P Q .  First note 
that

{ U P, ^  € C C (P )  } is directed.

Then, by Axiom (1) of lazy approximable application and the continuity of 
we have

W \  = LUJII^Un
=  L U J U il, • lQ \)n  Ind. Hyp.

= LU,(U,f *«(*) I(P, I ? ) l  ■ u I?SCC(Q) iw,

=  V i t € C Z ( M ) \ { I ' ,I , I ) \ f

The last two steps are justified by the continuity of (—)n and by definition of 
l ( P Q ,  J)] respectively.

The inductive step for the case M  =  X x .P  is similar and we need to use the 
continuity of Gr. The details are omitted. □

LEMMA 3.2.3.10 Let D  be given as in the Proposition. Let M , N  € Aw, then  

M  N  => D\= M  C N .

PROOF This is immediate from the axioms of lazy approximable application. □

Now, we are in a position to prove the Proposition.
PROOF Let Afft. Then, by Lemma 3.2.3.9:

D \= M  =  LJ{ (M,I) : I  6  C L {M )  } Corollary 3.2 .3.8 and

Lemma 3.2.3.10

C U{((Az.P)QL,J) : J{Xx.P)  = 0 }

=  ± .

□

PhD  Thesis M ay 31, 1988



Chapter 3: Lazy Lambda Models and the Free Lazy PSE-Model 82

3.3 P lotkin-Scott-E ngeler Algebras and M odels
In this section, we introduce a family of combinatory algebras called Plotk in -Scott-  
Engeler (P S E ) Algebras after G. Longo in [Lon83]. PSE-Algebras are defined 
(and some can be constructed inductively from a base set) in a very natural set- 
theoretic way and may be seen as a generalization of earlier ideas in [Plo72,Sco76]. 
The notion of application introduced here to interpret the formal application of 
the A-terms is reminiscent of the classical Myhill-Shepherdson definition of ap
plication and the enumeration operators in poj. A PSE-algebra can be expanded 
into a A-model, which we shall call a P S E -m ode l , by stipulating a graph  function 
which serves as a choice function in the sense described earlier.

3.3.1 M otivation  and Com parison w ith  pu

DEFINITION 3.3.1.1 Let (D , •) be a combinatory complete applicative structure. 
(D,*) is a categorical A-model (A-algebra, combinatory algebra) if it has a unique 
expansion , (D , •, k , s ) ,  turning D  into a A-model (A-algebra, combinatory algebra 
respectively).

We will show in this section that the PSE-models D /1 is a family of particularly 
“soft”Q A-models (as opposed to hard). Essentially, this means that D a  has many 
more elements than those which are denotations of closed A-terms.

DEFINITION 3.3.1.2 (Plotkin, Scott, Engeler and Longo) Let B  be a non
empty set such that

(io-pair) (3 Cf B  S ib  6  B  < = >  (f3; 6) G B .

where (3 (similarly for Po, Pi, • • •, 7 », • • •) ranges over f in ite  sets. We define an 
applicative structure (p B , •), known as the Plotk in -Scott-E ngeler  (P S E )  Algebra, 
where the application “ ” :p B  X p B  —* p B  is defined as

d • e =f { 6 : (/?; 6) £  d k. P Cf e }.

The reader will note the resemblance of the above notion of application with 
that in the A-model put. Recall that in p u ,  the following codings provide the 
essential translation between the operator- and operand roles assumed by each 
element in pur.

• bijective coding of ordered pairs: (—, —) : u  x cj -* u)

6Let Ai be a A-model. Define as the sub-structure of A1 consisting of all A-definable 
elements. .M is hard  if At =  Al°.

PhD  Thesis M ay 31, 1988



Chapter 3: Lazy Lambda Models and the Free Lazy PSE-Model 83

(n, m) =f (1 / 2 ) (m +  l)(n  +  m +  l) +  m  

•  bijective coding of finite sets: e_ : u  —► { x  G p u  : x  finite}

en =  {kor-'ikm-i}

defined by n  =  ]Ct-<m2 *f such that A:0 < k i  < • • • < k m- \ .

Application is defined as

u • i  =f { m : en Cf j  & (n, m) G u }.

Observe that each atomic component d  =  (n, m) G u G gow relates some “input” 
n to some “output” m. The application u • x  may be read as follows:

If the finite set encoded by the “input” component n  approximates 
the operand x  i.e. en Cf z, then the result u • x  is approximated by 
the “output” component m.

The analogy between the PSE-algebra D  and p u  should be clear and has 
pedagogical value: each element of D  =  p B  is a se t  of “input-output” pairs of the 
form (/?; b). A  pleasing feature of the PSE-algebra is that no encoding is necessary 
owing to the explicit presentation of the elements of B  as ordered-pairs which is 
deliberately suggestive of the “input-output” correspondence. PSE-algebras are 
hom om orphic  generalizations  of the p u  model, as shown by Longo and Bruce.

FACT 3.3.1.3 (Longo,Bruce) ( i)  puj is a categorical X-model whereas the 
(well-founded) PSE-algebra D a  generated by a ground se t A  (see D efin i
tion  8 . 8 .1 . 6 )  is not.

( i i)  The (well-founded) PSE-algebra ( D a , •) generated by a ground se t  A  and  
( p u ,  •) can be hom om orphically  embedded one in to the other; but for  no A  
are they isom orphic  as applicative structures.

PROOF See [Lon83] and [BL84]. □

Let D , E  be topological spaces. Denote [D  —► E\ as the set of continuous 
functions from D  to E .

LEMMA 3.3.1.4 Let B  be a n on -em pty  se t  satisfying (io-pair).  Then

( i)  (p B ,•) is a com plete algebraic lattice. B y  e lem en tary  dom ain  theory, the 
S co tt  topology on p B  is given by the basis

{ d  G p B  : P  Cf d } .

PhD  Thesis May 31, 1988

i



Chapter 3: Lazy Lambda Models and the Free Lazy PSE-Model 84

Also, f  £ [ p B n —► p B ] iff  f  is continuous argum ent-wise iff

n S ) = \ M m - J z i d ) .

( i i )  Coincidence o f representable and continuous function space:

[ p B n ->r p B \  =  [P B n -> |pB ).

P roof

(i) Routine.

(ii) The direction “C” follows immediately from the continuity of which is 
an easy exercise. More interesting is the other direction. Observe that

{ (A; (A, • • • (A; b ) - - ) ) : p  c f B .b  e  /(A, • • •, A )}

represents /  € [pBn —> &>B].

□
It should be clear that any PSE-algebra D  is a combinatory algebra. In what 

follows, we will show that there are two canonical ways to expand D  into a A- 
model. A-expansion corresponds to the specification of the graph function — Gr, 
which selects a unique representative Gr(/) for each representable function / .  
The first canonical A-expansion, which we will refer to as s tr ic t  (for reasons to be 
explained in the sequel), is presented as follows:

PROPOSITION 3.3.1.5 Let (p B , •) be a PSE-algebra. D efine  Gr_L : [p B  —► p B ] —► 
p B  by

Gr±(/) = {(/?; 6) : /? Cf B  & 6 e /(/?)}.
Then ( p B ,  Fun, Gr) is a X-model, which we will call the (canonical) strict PSE- 
m odel. The subscript “A.” a ttes ts  to  the fact that Gr̂  selects the least represen
ta t ive  from  rep(/) for each f ,  as we will show later.

PROOF It should be clear that (p B , Fun, Gr) is a functional domain. Continuity 
of and the coincidence of representable and continuous function space implies 
that p B  is combinatory complete. Continuity of Grj_ (easy) implies that

Grj. o Fun €  [ p B  —> p B ]  =  [p B  - * r p B } .

By Lemma 3.1.3.1, (p B , Fun, Grj.) is a A-model. □
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Free PSE -A lgebras

For the rest of our study on the PSE-algebras, we will focus exclusively on the 
class of free PSE-algebras generated by a set A, D a - Freely generated PSE-models 
are well-founded  (in a sense to be made precise later) and their constructive  nature 
is amenable to investigations of their local s tructureJ

DEFINITION 3 .3 .1 .6  (L ongo) Let A 0. Define successively a family of sets 
{ B n : n  € w } as follows:

B0 =  A,

B  =  UB„,

B n+1^  B „ u { { /3 - ,b )  : 0 C f B n Si b e  B n } ,  

D a  d=f p B .

Recall that throughout our work, /? ranges over fin ite  subsets. We call A the set 
of atom ic  information and decree that no element of A shall have the “input- 
output” form: (/?; 6). Intuitively, this constraint is tantamount to saying that no 
element of A is capable of assuming an operator role. We call D a  the PSE-algebra  
freely generated by A.

Given any continuous function /  £ [D a —* D a ], it should not be difficult to 
see that the extensionality  class of /  includes the following subset of p B :

repx ( f )  =  { G ± ( f ) U X : X e p A } .

Recall that G ± { f )  ={(/?;&) : 6 e  /(/3) }; and we define Gr*(/ )  =  Gx (/)  U X  
for X  C A. Observe that repA(/) forms a complete lattice whose structure is 
isomorphic to (p A , C). Each graph function Gr* parametrized by an element X  € 
p A  determines a \ -e x p a n s io n , {D a , Fun, Grjr), of the underlying PSE-algebra. 
That {D a , Fun, Gr*-) is indeed a A-model follows from the same argument in the 
proof of Proposition 3.3.1.5. Clearly, there are at least 2“ different A-expansions 
of D a , where a  is the cardinality of A.

7Barendregt in his treatise on Lambda Calculus [Bar84] distinguishes between local and global 
structures of A-models. The local s truc ture  of a A-model Af is

T h ( M )  =  { M  =  N : M \ = M  =  N . M ,  N  €  A }.

If At is a cpo, then it is also interesting to characterize the ordering between denotations of A- 
terms by means of a syntactic preorder R .  That is, find a syntactic characterization R  C  A x A 
such that

R  =  { ( M , N ) :  Af t=MCiV}.

The global s truc ture  of a model A( consists of properties true in A1 other than equations (not 
necessarily first order), for example, extensionality, satisfaction of the w-rule, h ardn ess  or richness.
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Saturatedness

Each element of the set repA(/) satisfies the property of sa tu ra ted n ess . For
mally, we say that an element x  of p B  is sa tu ra ted  iff

(/?;&) E x  => [V finite 7 D fi-{l', b) E x].

Saturatedness is a natural condition which is rather reminiscent of monotonicity 
in the logic of entailment. We may read it as: if it is the case that any input 
approximated by fi yields an output approximated by 6; then the output infor
mation should at least be preserved if there is a gain in the input information.

Following Longo, we introduce the following notation

NOTATION 3.3.1.7 Given P  C D *2 = D a  X ••• x  D a ,™ ^ 1* We say that
-------------- ------------ '

n
( fii, • • •, /3n) are least such  P ( f i i , • • •, fin) which we abbreviate as 

( fill * * *»fin) least P

iff

• P (/?!,*■•, fin) holds, and
• If Vt.7 i Cf (3, but 7 ^  fi, then iP ( 71, • • •, 7n)-

Perhaps somewhat surprisingly, not every element in the extensionality class 
o f / , rep(/), is saturated. Consider the set, X j , parametrized by /  E [D a  Dj], 
as follows:

X ,  =  { { P \b )  :/J least (6 6 /(/?))}.

Clearly, X f  is not saturated and that it is a representative of / .  Hence, we can 
conclude that

rep*(/) C rep(/)

i.e. the inclusion is strict. In fact, we can say more:

THEOREM 3.3.1.8 (Longo) Suppose (D a , Fun,Gr) is a X -exp a n sio n  o f  the free  
P SE -a lgebra  (DA, •). T h e n  V/ E [DA -> DA\, Gr(/) is sa tura ted .

PROOF See proof of Lemma 4.3 (Main Structural Lemma) in [Lon83]. □
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The other canonical expansion of a PSE-algebra which we call lazy  P S E -m o d e l  
is defined as follows:

DEFINITION 3.3.1.9 We define the (free) la zy  P S E -m o d e l to be {D ^ , Fun, GrT) 
where GrT is defined to be:

GrT(/) = Gr±( / ) u A

i.e. for every representable function / ,  Gry picks the largest (it should be easy to 
see) representative Grj(/) from the extensionality class of / .

NOTATION 3.3.1.10 We denote the semantic function of the lazy PSE-model 
as [-]T and that of the strict PSE-model as [-J-1. For the rest of the Chapter, 
however, unless otherwise specified, [-] shall mean the semantic function in lazy 
free PSE-models.

3.3.2 Sem antic C haracterization o f U nsolvability in Lazy 
P S E  m odels

In this section, we will examine the semantic properties of la zy  P S E -m o d e ls  freely  
genera ted  by a se t A  vis-a-vis the denotation of A-terms. The results in this 
subsection were first obtained by G. Longo in [Lon83]. These results will be 
needed in the proof of the Local Structure Theorem which is the main result of 
this Chapter. The (free) lazy PSE-models provide a semantic classification of the 
class of unsolvable A-terms. In short, it is a fu lly  la zy  X -m odel, i.e.

Vm, n £ w  +  l.VM 6  PO m.ViV €  PO n.[X f= M  =  N  <=> m  =  n].

Another example of an fully lazy A-model is the initial solution of the domain 
equation:

£» = [£»-* D \l -,

whose semantic properties are studied in Chapter 4.

DEFINITION 3.3.2.1 Define A(n) =f [Aa* • • • xn.0J.

LEMMA 3.3.2.2 ( i)  A(0) = 0; A(1) = A .

( ii)  F or all n €  w:

-^(n+l)  =  [[AlE.A^)]]

= GrT(d A(n))

= [Axi • • • x n .A \ L U |Asi • • • Xn-i.A]1 U • • • U A .
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N ote  that JAxi • • - x n.A \ L =  { (ft-i;  * ■ • (ft; a) • • •) : a £  A & f i i  Cf B  }. Con
sequently, we have Vn 6  cj.A(n) C A(n+1).

(Hi) Wd e  D A.A(n+1) • d  =  A(n).

( iv )  JAxi • • • x n. M f  =  JAxi • • • x n. M \ L U A(n).

PROOF Easy induction. □

Observe that

V6 € B .3 ft, — , f t  Cf B 3 a  e  A.b  =  (ft; • • •; (ft; a) • • •).

This is a property of the underlying PSE-algebra which we call its well-founded  
property. Crucially, this property is immediately seen to hold true for all freely  
generated  PSE-algebras. Well-foundedness fails for an interesting class of PSE- 
algebras studied by Longo which is obtained by quotienting the free PSE-algebra 
over appropriate equivalence relations Clearly, not every equivalence relation 
on B  will turn gf? into a non-trivial applicative structure. Two such non-trivial 
examples are obtained by forcing a =  (M a) and a  =  (0 ; a) for all a €  A respec
tively. ^

PROPOSITION 3.3.2.3 ( i )  The (free) lazy  P S E -m ode l M =  (D A, Fun,GrT) is a
lazy \ - m o d e l  which has lazy  approximable application.

(ii)  It is the unique \ -e x p a n s io n  o f  the free PSE-algebra D A that sa tisfies  

(rT) V d € D A.d C [As.dsl.

P roof

(i) {D a , - ,f|-) with f|- =  { 0 }  is easily seen to be a quasi-applicative structure 
with divergence. By definition, range(Grj) fl -ft =  0. That At is a lazy A- 
model then follows form the observation that it is a A-model. Now, we show 
that M has lazy approximable application. Following Longo, we define a 
valuation function | — | with range in w sim ultaneously  on the elements as 
well as f in ite  subsets of B  as follows:

/

ibi m

v

1

101 + H

if b E A, 

if 6 =  (ftc);

|ft =  max{ |c| : c €  (3 } +  1.

We can now define the approximation function Approx : D A X w —► D A. 
For d 6  D a , define d n =  { 6  €  d  : |6|  ̂ n } . Clearly, |/?|,|6| < |(/?;6)|. We 
will only check axiom (4) of Definition 3.2.3.2, the rest is straightforward. 
Observe that
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dn+ \ t  = { b : 3/9 Cf e.(/9; 6) £ d <fe \(3\ +  |6|  ̂ n  +  1 }

C { 6 : 3 / 9 C f en.(/9; b) 6  d & |6|  ̂ n  }

= (den)n.

since V/9, V6.|/9|, |6|  ̂ 1 and |/9|  ̂ n implies (/9 Cf e =$■ /9 Cf en).
(ii) Let d £ D A- Wlog, say, dty. Choose /  £ and d £ rep(/)

such that e =f U rep(/). Now, [Ax.dxJ7  =  GrT(Fun(d)). Recall that Fun 
maps any element d to the unique function (in this case /)  that has d  as 
a representative, i.e. Fund =  / .  Since Gry picks the largest representative 
from rep(/) for every  representable function / .  Hence,

d C U  rep(/) =  GrT(/) =  [Ax . d x f .

□

NOTATION 3.3.2.4 From now on, we will denote the free lazy PSE-model gen
erated by A  as D \ .

COROLLARY 3 .3 .2 .5  The graph functions corresponding to  the s tr ic t  and lazy  
(free) P S E -m ode ls  are the least and the largest \ -e x p a n s io n s  o f  the PSE-algebra  
(D a , •) respectively. M ore precisely, for any A-expansion ( D A, Fun, Gr),

V/ £ [D a -+ D A].Gr± ( f )  C Gr(/) C GrT(/).

PROOF An easy corollary of Theorem 3.3.I.8. □

COROLLARY 3 .3 .2 .6  (A d eq u a cy ) L et M  be a A- term . Then,

M |i <=>• M  £ PO q <=> D \  ^

PROOF This follows directly from the previous Proposition and Proposi
tion 3.2.3.1. □

The following result says that D \  is a fully lazy  X-model.

THEOREM 3 .3 .2 .7  (L ongo) L et M  be a A-term . Then,

( i)  Vn £ u . N  € PO n <=* [JV], =  A {n).

( ii )  M  £ On < = >  [ D \  N M  D A ^ ^  m   ̂n\.

(Hi) M  £ Oqo D \ ¥  M  =  B  =  T.

PROOF See [Lon83, Theorem 3.7, page 166]. □
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COROLLARY 3 .3 .2 .8  Let M  be a X-term. Then,

M  is unsolvable «£=>• 3ln  G w + 1 . D \  N M  =  A(„); 

and n  is precisely the order o f  unsolvability o f  M .  □

DEFINITION 3 .3 .2 .9  Let /  G [D J D A] where n G w. Define
[ A x i  • • • x n . / ( x 1} • • • ,  x n) ] “  a s

{ ( f t ; ' * * (ft*; c) • • •) e  [Ax! • • • x n. f ( x u  • • •, X*)]1 : $  least (c G f(jf))  }.

REMARK 3 .3 .2 .1 0  We remark that any 6 6  [Ax* • • • xn. / ( x i ,  • • •, x^)]-  has the 
form

(ft; • • • {Pm\ a) • • •) where a €  A  and m  ̂ n.

REMARK 3 .3 .2 .1 1  (A  M in or T ech n ica l P ro b lem  in  [Lon83])
This might be an appropriate place to point out a minor error on page 186, in 
Appendix B of op. cit.

According to Definition B.5, F~ =  A“xi • • • xn./(x i, • • •, x„) consists precisely 
of elements b of the shape

{P i;•••;(&»;c) •••)

such that P least c G /(/?). It follows that no elements of the form

(/?i; — ; (/?*»; «o) — ) where m < n

can possibly belong to F ~.
Therefore, for any ft, • • •, dp where p  <  n

F ~ d x • • • dp =  { c : P C d & (ft; • • •; (ft; c) • • •) G F ~  }.

Clearly, a 0 g  F ~ d x • • • dp.
However, the first two lines of the proof of Lemma B.6 (2 ) assert the opposite. 

If one redefines F ~  as the union  of the old value of F~  and

{ a Q } U { (0; a 0) } U • • • U { (0; ; (0; a0) • • ♦) },
n — 1

then the proof remains valid. □
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Let a 0 be an arbitrary element of A  for the rest of the Chapter.
PROPOSITION 3 .3 .2 .12  Let f  G [DA -> D A]. Then,

( i )  [[Axi * * * x n - f ( x U  * * ' 5 *̂ n)]] ^1 * ' ’ d>n  f i . d ’ lj * * * » ^n) •

( ii)  Suppose

(-iQ) Vdi, • • • ,d n- i 3 d n. f [ d u  • • • ,d n- u d n) ^ 0.
We haue: i /  0 < p <  n, then  JAxi • • • xn./ (x i ,  • • • , x n)]~ d i  • • • dp does not 
con ta in  ao and it is not saturated.

PROOF (i) follows immediately from the definition, (ii) Let

F =  [Axi • • • xn. / ( x i ,  • • -xn)J“ .

Then, any
h €  [Axi • • • x n. f ( x u  • • •, x n) l~ d t • • • dp

is such that 3 0  Cf d. (/?!; - * -; (/?p; 6) •• •) £  F .  By Remark 3.3.2.10, b cannot 
belong to A , because p <  n  implies that b must be of the form (/?; 6'). As for 
non-saturation, observe that

f  (ei, ? n̂) F e i • • • en

=  { 6 : ^ C f 6 < k ( / ? 1 ; . . . ( / ? n ; 6 ) . . . ) € P } .

Consequently, by the assumption (->0) on / ,

Vp < n.Vdj, • • •, dp.30i d \ , * • •, 3/?p Cf dp,

3/?p+i, • • •, 3(3n, 3b .(0 i\ • • • (/?„; b) • • •) € F.

Crucially, recall that by definition of F, these (5 are least such, thus in particular, 

V7  D /?p+i.(7 ; {Pp+2i ‘ ‘ (/?»; b) •••)) & F d f -  dp, 
and we are done. □

DEFINITION 3 .3 .2 .1 3  For m ^ 2, we define B oh m  perm u ta tors  of degree m as 
follows:

P def \m — A X q  • • • Xm.XmX0 • • • Xm_i»

These permutators play pivotal roles in the so-called “Bohm-out” technique.
For m  >  2 , we define semantic Bohm permutators, pm as follows:

Pm =  IAx0 • • • x m.xmx Q • • • xm_x])".
COROLLARY 3 .3 .2 .1 4  (Bohm  Perm utators) Let X i,di range over D A. Then, 

(') D A t= Pmx 0 ■■■Xm =  Zmx0 ■ ■ ■ Xm—\.
( i i )  I f  l < m , then p mdi • • • d\ is not saturated and does not contain  a0.

PROOF We note that pm == |Axo • • • xm.xmx0 • • • xm_i]|-  satisfies the condition 
(->0) in the Proposition. □
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3.4 Local Structure of Free Lazy PSE -M odels
In this section, we introduce a new operational preorder < which we shall call the 
lazy P lotkin-Scott-Engeler preorder. The least A-terms w.r.t < are the strongly 
unsolvables; and the top  elements are the unsolvables of infinite order. < respects 
the 77- -axiom (to be defined in the sequel or see [Sco80a]) and induces the same 
A-theory as that induced by the Longo tree preorder.

• The lazy PSE ordering has a sound  interpretation in a class of lazy  A-models 
satisfying certain m on oton ic ity  conditions. Two such lazy A-models that we 
will study closely are the free lazy PSE-model and (in Chapter 4) the initial 
solution of the domain equation: D  = [D  —► D ]±  in the category of Scott 
domains where [— ► -] is the function space construction in the category of 
epos and (-)± the usual lifting operation.

• We establish a syntactic characterization of the local structure of the class 
of free lazy  PSE-models D \  — {D ai Fun,Grj) with respect to the interpre
tation of pure untyped A-terms. We show that for any A-terms

M  < N  <=> D ta \ = M Q N .

This result confirms and strengthens a conjecture of Longo’s (see Remark 
3.9 in op. cit.), and complements local structure results already known 
about well-known sensible A-models: for example p u  and Doo in [Hyl76], 
Tw in [BL80].

3.4.1 Lazy PSE-ordering and Soundness Theorem
The ordering is presented via a family of inductively defined operational preorders 
indexed over the natural numbers. The preorders are defined recursively over the 
syntactic shapes or substructures of A-terms. This way of presenting operational 
preorders is obviously reminiscent of the approach adopted by Robin Milner and 
David Park to define observational equivalences in concurrency, see e.g. [HM85], 
as well as Martin Hyland’s work in op. cit. Alternatively, such preorders may be 
presented in terms of labelled trees like the classic Bohm trees and Longo trees 
(see Chapter 2 ). This is the approach adopted by Henk Barendregt in his treatise 
on A-calculus [Bar84]. The former approach seems to lend itself to neater local 
characterization proofs whereas the latter offers a more perspicuous view of how 
terms differ in their respective operational behaviours.

DEFINITION 3 .4 .1 .1  (Lazy PSE-ordering) • VAf, N . M  <° N .

.  M  < k+1 N  =f 
[1] M  € POo or
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[2 ] TV G PO^ or
[3] a .M G  PO n, n  ̂ 1 => TV G J m, m  > n, & 

b. M  Xxi • • • x n.y M i  • • • M m =»
TV Xxi • • • x n+i.y N i  • • • TVm+* &
Vl  ̂ i  ̂ m .M { < k TV,- &
VI < j < /.xn+J- <* TVm+;- for m , n , l  > 0.

• M  < TV =  VA; 6  w.M <* TV.HAfRecall that M G J m = 3TV G A .M  = 0  Xxi • • -xm.TV.

REMARK 3.4.1.2 (i) The least and greatest elements w.r.t. < are the POo-
and PO qo-elements respectively. In fact,

±  < Ax.± < Axx^.-L < • • • < Azi • • • x n. ±  < • • • < T;
and Xxi • • • x n.±. < A î • • • x n. M  where ±  and T represent any PO 0- and 
POoo-terms respectively.
That < has top elements may be given an operational justification as fol
lows. In the lazy regime, convergence to an abstraction is the only kind of 
“information quantum” observable. It follows that the more deeply-nested 
an abstraction a term is convertible to, the more information it contains. To 
extrapolate this argument further, terms which have the greatest amount 
of information are precisely those which are convertible to unboundedly 
deeply nested abstractions — unsolvables of infinite order.

(ii) It is not difficult to see that
VM, TV G AM  El TV =► M  < TV;

recall that is the preorder induced by Longo trees. For the benefit 
of those familiar with the technical jargons of the classical A-calculus, < 
is, roughly speaking, Longo tree preorder with one-s ided  rj-expansion  (see 
[Bar84, page 232]) and the additional constraint that the singleton tree with 
label T is the top element (not merely maximal).

(iii) It is easy to see that the equivalence relation on A-terms induced by the 
Longo tree preorder is the same as that induced by the lazy PSE-preorder.

The first main result we will establish in this subsection is the following Sound
ness Theorem.

THEOREM 3.4.1.3 (Soundness) L et M , N  G A and M =  (D ,  Fun,Gr), a lazy  
X-model th a t has approximable application an d  sa tisfies  the m on o ton ic ity  
conditions as listed in  the Crucial P roposition  (la ter in the section). Then,

Af<TV=>Ml=MCTV.

□
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The rest of this subsection will be devoted to the proof of this Theorem. We 
will also prove an A pproxim ation  Theorem  a la Wadsworth. Firstly, we define the 
set of lazy  approxim ants  of a A-term M .

DEFINITION 3 .4 .1 .4

(i) Let M , N  6  A-X, M  < N  =  |M|[JL := O] < |JVJ[_L := O] where O =  
(X x .x x ) ( \ x .x x ). Let M  6  AJ_. Then, A ( M ), the set of lazy approxim ants  of M, 
is defined as:

A ( M )  =' { N  6  AX : N  < M  Sc N  is a /JX-nf}.

Recall that (_L) is the following reduction rule:

( ± )  _ L M  —>• J_.

(ii) Define A , the set of weak norm al form s  (wnf) as the least set satisfying:

Ax._L, Var C A ;

A  C A => Ax .x A  G A.

A consists precisely of all /?_L-nfs. Clearly, for any M, A ( M )  C A.

LEMMA 3 .4 .1 .5  Each completely-labelled  AJ_-term has a norm al form .

PROOF Easy. Or by the same reasoning in [Bar84, §7.23]. □
The interpretation of labelled A_L-terms in Ai is as defined in Definition 3.2.3.4.

L emma 3 .4 .1 .6  Let M , N  e  AWJL. I f l l a b  : M  N ,  then

( i)  M N M C 1V,
( ii )  N  < M.

PROOF (i) Immediate from the assumption that X is a lazy A-model which 
has lazy approximable application, (ii) It suffices to show that J V ^ M b y  virtue 
of Remark 3.4.1 .2 . Let M , N , P  € Aw±. If N  has no zero labels then the result 
is trivially true. The only non-trivial approximation occurs when M  =  C [ P ] 
C[_L] =  N  where A : P —► J_ is either (/30) or (±). C[X] C [ P ] is valid by
Lemma 2.3.1.17. □
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PROPOSITION 3.4.1.7 (Crucial) L et >1 =  (.D,Fun,Gr) be a lazy \ - m o d e l  that 
has lazy approximable application. We assum e D  is a pose t with a top  elem ent  
and that X sa tisfies the following  monotonicity conditions:

(1 )  A-monotonicity i.e. Gr is m onotonic.

(2 )  X is a model of the fully lazy A-theory i.e. V m ,n  G w + 1

VM € PO m.ViV G PO n.X h M  =  N  4=> m  =  n.

( 8 )  VM 6 POoo.M N M = T.

(4 )  At h (r)~) =f Vd G D .M  N d C Ax .dx .

Then , for M , N  e A ^ N  £  A { M)  =» At N N  C M.

PROOF Firstly, we establish the following result:
CLAIM 1: Vn  ̂ l.Vd 6  D .M  Axi • • • x n.dx  i • • • x n.

We prove by induction on n. The base case of n = 1 is just (r/_) — condition
(4). Suppose the desired result is valid for n  — 1. Then

X N d x i C \ x 2 • • • a:n-(dxi)x2 • • • £n-

By monotonicity of Gr — condition (1), we have

X 1= X x i.d x i  C Xxi • • • x n.dx i • • • x n.

Then, applying (77 ~) again, we establish the inductive case.
NOTATION: For simplicity, we sometimes abbreviate X N W C M a s i V C I  M .

We prove the Proposition by structural induction on N  (recall that N  is a 
wnf) as follows:
I. Base cases:

1. N  =  X. This is clear, since |_L] =  _L, the least element in the domain D .

2 . N  =  Xxi • • • x n.A-,n  ̂ 1 . By supposition N  < M, we have

M  G J m, m   ̂ n i.e. M  = p  Axx • • • x m.M '  for some M 1 G A.

By A-monotonicity, X h N  C M .

3. N  =  x. By supposition,
either M  belongs to POoo, in which case, since POoo-terms are interpreted 

as the top element T in the lattice D  — condition (3), trivially X h 
JVCM;

or M =£ Axi • ♦ • x \ .x M \  • • •M \ for some suitable M,s.
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Let I  be an arbitrary complete labelling of x.
CLAIM 2: Vn € u. At N (x, I)  =  i n C M; from which we deduce that x  C M  
(by axiom (1) of lazy approximate application). We prove by induction on 
J(x).

-  I ( x)  =  0. Then |[(x, I ) } p =  (lx |p)0 =  X Q M  trivially.
— l ( x )  = 1 1  +  1. Let the induction hypothesis be:

(*) VM e  A.x  < M  => Vm ^ n.M  \= x m C M .

We have, by Claim 1:

X h x n+1 C Xxi • • • xi.x^n+1^xi • • • xi.

By axiom (4) of lazy approximate application: dn+ic Q (den) ni we 
deduce that

M i- ~(n+l )  (— 1) (n—/+l)M  F X K ' X i  Xl  L. X X 1 X \  " ' X \

Hence, by A-monotonicity,

M x̂ n+1̂  C Xxi • • • x i . x x ^ x ^ 1̂  • • • x\n~l+1\

Now, since N  =  x < M, so, by definition of <, for 1 < * < /,x t- < M,-. 
By hypothesis (*), M  ̂ C M,-. Therefore,

At N Axi • • • xi.xx^x^-1  ̂ • • • x\n~l~^ C Axi • • • xi.xMi  • * • Mj.

Hence, X x(n+1) □ M .

II. Inductive case: Let m  ^  0 and n  ^  0 and

iV =  Axi • • • xn.yNi • • • Nm, M =  Axi • • • xn+j.t/Mi • • * Mm+I

where VI ^ i  < m.lV,- < Mi and N{ is a /?_L-nf; and VI < j  < l .xn+j < Mm+y. 
Applying the induction hypothesis repeatedly, then by monotonicity of 
and Claim 1:

y N i  • • • N m C Axn+i • • • x n+l.y M i  • • • M mx n+ x • • • x n+l 

C Axn+1 • • • xn+i.yMi  • • • Mffi+i*

Finally, applying the monotonicity of Gr repeatedly, we get,

•M f= A®! • • • xn.2/W! • • • Nm C Ax! • • • x n+ i.yM i  • • • Mm+/.

□
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THEOREM 3 .4 .1 .8  (Approximation) Let M sa tisfy  the prem ises  of the Crucial 
Proposition . Then,

M t  M  =  \ J { N  : N  E A { M ) } .

P roof

M \ = M  =  U{(M ,J) : I E  C Z { M ) }

C U { P -• { M , I )  P  k \ P \ €  A { M ) }  Lem. 3.4.1.5,3.4.1.6(ii)

C U { N :  N e A { M ) }  b y > l f = P C | P |

C M .  Crucial Proposition

□
Given M E  A and n   ̂ 1, recall the n-diagonal approxim ant of M, M ^  defined 

in Definition 2.3.1.11. The intuition behind M ^  is that it effects approximation 
in two “dimensions” (see Chapter 2 for further discussion), namely:

• “Depth-wise”, M ^  is essentially the Longo tree (see Chapter 2) of M  
truncated after depth n (where the root node corresponds to depth 0);

• “Breadth-wise”, unsolvable terms of order greater than n  are not distin
guished in M^n\  This provides a means of approximating the POoo-term.

This definition is needed in the lazy regime because as a consequence of not 
evaluating under the abstraction  the following approximations become non-trivial:

f2 C Ax.f2 C • • • C Axi • • • xn.O C • • • C (YK).

Lemma 3 .4 .1 .9  (i) VM e  A.Vra 6 u . M ^  e  A.

(ii) Vn E u j.M M < M .

(iii) M  < N  => Vn E u t . M ^  < N .

PROOF (i), (ii) by induction on n. (iii) follows from (ii). □

LEMMA 3 .4 .1 .1 0  L et .M sa tis fy  the p rem ises  o f  the Crucial Proposition . Then, 

M  =  \ j M {n).

PROOF Let N  E A ( M) .  Let k  be greater than the sum of

max{ n : 3 a €  S e q .L T ( N ) a  =  Axi ■ • • xn._L }

and the depth of LT(iV), the Longo tree of N  which is finite. Then N  < M ^ .  
Since N  E >l(M^), by the Crucial Proposition At h N  C M ^  and the result 
follows from the Approximation Theorem and that M M ^  C M .  □
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We can now prove the Soundness Theorem. 
PROOF

M  < N  => Vn E < N

=> Vn £ cj..M N M ^  C N  Crucial Proposition 

=> M \= M  =  L]M<n> C IV. Lemma 3.4.1.10

□
Since the free lazy PSE-model and D ,  the initial solution of D  =  [D —> D]_l, 

satisfy the premises of the Crucial Proposition, we remark that the the lazy 
PSE-ordering is sound with respect to them.

3.4.2 C om pleteness Theorem  for Free Lazy PSE -m odels
This subsection will be devoted to the proof of the com pleteness  part of the local 
structure  of free lazy PSE-models.

THEOREM 3.4.2.1 (Local Structure) Let M , N  G A. Then,

M  < N  < = >  D \  h Af C IV.

□

In the following, we formalize the notion of the occurrence of a subterm of a 
A-term and the number of descendents a subterm of a A-term has (with reference 
to the Longo tree of the term).

DEFINITION 3 .4 .2 .2  Let a , ( 3 e  Seq and i  e  w. Define M a inductively as follows: 

.  M 0  =  M ;

deft if M  Xxo • • ■ x„ _ i.yM o  • • ■ M m- i ,  0 < < m — 1,
• =  <

I undefined else.

If M a is defined and M a Xxi • • • x n.y M \  • • • M m, m  ̂ 0, we say the branching 
fa c to r  o f  M a is m. This corresponds precisely to the number of descendents at 
node a  of the tree LT(M), the Longo tree of M .  If M a is undefined, then we say 
the branching factor of M  at a  is 0.

The following formulation follows similar notions which Barendregt defined 
to prove the local structure theorem of the A-model p u  in [Bar84].

DEFINITION 3.4.2.3 Let M , N  E A , a G  Seq. Let p range over u.
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(i) p  is large enough for a - M - N  if p  is larger than the branching factor of Mp 
and N p  for any 0  < a .

(ii) An a - M - N  substitu tor  is a map + m : A —► A (D a ) such that for some 
variables yo, • • • ? Vn some m large enough for a - M - N ,

p+m 4 | f p [ yo . _  p mJ/0] . .  • \yn :=  P my n]

for P  £  A where P m is the Bohm permutator of degree m  introduced earlier. 
For simplicity, we usually write +  for + m.

Lemma 3 .4 .2 .4  Let M  - \ x  1 • • • xm.yNi  • • •Ni . Then, 

Vr > l . D \  h A(g) C M +r < = >  q < m .

PROOF Wlog, and by Lemma 3.3.2.2, say,

IM + l Tp =  l \ x t ■ ■ • xm.P ry N +  ■ ■ ■ U A {m).

“<=” Follows immediately from: A(q) C A(m) iff q < m. w=̂ >” We prove the 
contraposition. For q >  m ,0 {  Cf B , we have

b = (0m] (0 m—l] ‘ * * (01] Vo) * * 0  ^  A (g ) .

Now b A(m), by Theorem 3.3.2.7. By Lemma 3.3.2.14, [PryiV^ • • • W,+Ĵ  does 
not contain a0, hence b $  [Axx • • • xm.P ry N +  • • • . We therefore conclude
that A(g) £ [M +]T. □

N otation 3 .4 .2 .5  Let l : 6 w . We denote x~fc =f x.
k

L emma 3 .4 .2 .6 Let M  - p  y M x • • • Mm, N  = p  z N x • • • N n. Then, 

y ^ z o v m ^ n = >  D \  P M  C N .

PROOF If y ^  z, then take p such that p (y )  =  B  and p (z)  =  0. If y =  z  
and n 7̂  m, wlog say, n  =  m +  k. Then, suppose for a contradiction, M  C N .  
Substituting P„+iy for y, i.e. +  = [y := P„+iy] and applying both sides to x~kw,  
for some variable w ^  x,

Pn+iyAtf ■ ■ ■ M + x ~ kw  C P n+1yJ\T+ • • • N + x ~ kw.

We have, w y M f  ■ • • M * x ~ k C x y N f  ■ ■ • N * x ~ ( k~V w  which contradicts the first 
part of the proof. □
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P roposition  3 .4 .2 .7  M  #  N  => V+ €  Q - M - N . ^ M + c  N + .

PROOF I. Suppose M  6 P O n,n   ̂ 1 and we consider the various cases in 
which -i (iV 6 m   ̂ n).

a. N  E P O 0. By Theorem 3.3.2.7(i).
b. N  = p  y N i  • • • JVj. Suppose for a contradiction, 3+ € Q - M - N

(*) M + C N + .

(Throughout this proof and the next, we will employ such “proof by contra
diction” technique.) Then, wlog (for if + does not involve substitution for 
y, we will consider +' = +  U [y := Ppy]. Note that (*) implies M +' C N +')

N + =  Ppŷ Vi* • • • N f

which is not saturated by Lemma 3.3.2.14(H), since p  >  l. Now, for n > 
1, |M +J =  A (n) is saturated, contradicting (*). For M  E PO i,

[M+l = A(1) =  AB a0 & IN + I  

by Lemma 3.4.2.4.
c. N  E Om; by supposition, m  <  n. If N  E P O m, then apply Theo

rem 3.3.2.7(i) and (ii).
Suppose N  =  Xxi • • • x m.y N i  • • • iVj, then apply Lemma 3.4.2.4.

II. Suppose M  E On\P O n and N  & PO qq. Let M  = 0  Xxi • • • x n.y M \  • • • M m. 

a. N  E POi, for l E w.
Again, suppose for a contradiction, 3+ E Q - M - N  such that M + C N + . As 
before, we may assume +  involves y. Applying both sides to a;~(n+1), we 
have

P py M f  • • • M+z C JV+x~(n+1) =  A m , some l' 6  w.

lhs is x y M i  ■ • ■ M * .  Choose p  such that p(x) =  B  to get the contradiction, 
b. Suppose M  = 0  Xxi • • • x n.y M i  • • • Afm, N  = 0  Xxi * • • x n>.zNi • • • N mt.

— Suppose n  >  n'. Apply Lemma 3.4.2.4.
— Suppose n  < n' and y  ^  z  and suppose 3 + 6  Q - M - N

M + C N + .

As before, assume the same stipulations about +  involving y and z , and 
applying both sides to x~k, for sufficiently large k. We get
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P pyM + ■ ■ ■ M i x ~ k C P pz N +  ■ ■ ■ N+,x~k'\

x y M t  ■ ■ ■ M+x~(k~k) C x z N ?  • • • NX,x~(-k' -1).

Interpreting x as / ,  we have,

y M ?  ■ ■ ■ C zjV+ • • •

contradicting Lemma 3.4.2.6.
Now suppose n  < n 1 and y  =  z .  Say

M  = 0  Xxi • • • x n.y M i  • • • M m; N  x n>.yNi • • • N m>.

Suppose m ' — n' ^  m  — n  and that 3+ € ()- M - N . M + C N + . Applying 
both sides to for large k ,

P py M t  ■ ■ ■ M + x ~ (k~"> c  P py N +  ■ • • N +,x~(k- n’\

Weget, x y M i  • • • C x y N i  ■ ■ ■ N * ,x ~ (k~n'~1h Sine e m + k  — n ^
m ' + k — n \  we have a contradiction with Lemma 3.4.2.6.

□

REMARK 3.4.2.8 Let k   ̂ 1. Observe that if M  <* N  according to clauses [l],[2] 
or [3]a in Definition 3.4.1.1, then Vfc > 1, M  < k N ,  i.e. M  < N .  Hence, if M  < k N  
and M  ^k + 1  N  for some k €  u ,  then we can deduce from the definition of <fc that

(1) M  Axi • • • Xn .yM i • • •
N  Xxi • • • Xn+i.yNi • • • N m+i, for some n, m, / ^ 0; and

(2) [31 < i  < m.Mi ^ k Ni}x or [31 ^ j  < l.xn+J- j ,k iVm+i]2.

Suppose [• *-]i above is true, say, M i^k+1Ni, then notice that M i <*-1 N One 
can continue in this fashion, and arrive at P  Q , where P, Q are respective
homologous subterms of M  and iV, i.e. P  and Q have the same occurrences in M  
and N  respectively. Roughly speaking, P and Q are the “largest” homologous 
pair (of respective subterms of M  and N )  which gives rise to M  •£ N .

We formalize the notion as follows:

DEFINITION 3 .4 .2 .9  Let a  e  Seq. Inductively, for M  ^  N  we define M  $  N  @ 
a  as follows:

• If M ^  AT, then M ^ N  @ ().
• Suppose M  < k N  and M  ^k + 1  N  for k  ̂ 1. Then, with reference to the 

notations in the preceding Remark, M  ^ N  @ (i) *j3 or ( m + j )  *j3 according 
as M {i) i  N {i) @ /? or xn+i i  N {m+j) @ /? respectively.
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Note that M  <fc N  and M  ^fc+1 N  iff M  $  N  @ a  where lh(a) = k.

Intuitively, M  ^  N  @ a  means that a  is the least occurrence such that
M a^ N a.

T h e o r e m  3 .4 .2 .1 0  Suppose M  such that M  *£ N  @ a .  Then ,

V+ € a - M - N . D TA *  M + C N + .

PROOF By induction on the length of a .
• Base case: k  =  0, or equivalently, M  %■} N .  This is precisely Proposition 3.4.2.7.
• Suppose M  < k N  and M  ^ k + 1  N  for k  ^ 1. Then, by definition of <,

M  - » 0  Xxi • • • x n.y M i  • • • Mm,

N  Axi • • • x n+i .y N i • • • Nm+h 1 ^ 0

and that M ^ N @ a = ( i ) * / 3  or {{* +  m) * 0 }  for 1  ̂ i   ̂ m  or {1 < t < /} 
respectively. Then, M , ^ N , {xn+t- ^ N m+i}  @ fl. The induction hypothesis 
implies that,

(t) V+ € P - M r N i .D TA *  M f  C N ?

{V+ e  0 - x n+i- N m+i. D l  *  x++{ C N + +ij  

respectively. Suppose for a contradiction, 3+ 6 a - M - N

(*) D A h M + C JV+.

Wlog, suppose +  involves substitution for y. Applying both sides of (*) to 
X \y • • •, x n+i, 2~*, for k  sufficiently large, we have,

'PpyM i • • • M * x n+1 • • • x n+iz  C P PyN± • • • ArJ[Â T̂+1 • • • N * +lz ~ k\ 

z y M t  ■ ■ ■ M + x „ + 1  • • • x n+tz ~ W  C z y N ?  • • • N * N + + 1  ■ ■ ■ N ^ +lz ~ ^ .

Interpreting 2 as |U tm+i+fc' 1] {[U ”+'+i“1|}  where Uf =f \ x 0 ■ • ■ xr:Xi. Then, we 
have C N f  or {x++l- C N + +i} .  Observe that since + € a - M - N ,  +  € 0 -M i-N i  
or {+  € P -x n+i-N m+i} ,  contradicting the induction hypothesis (f). □

COROLLARY 3 .4 .2 .1 1  (Completeness) Let M , N  e  A. Then,

D A \ = M C N = ^ M < N .

P roof Straightforward corollary of Theorem 3.4.2.10. Just consider the 
trivial a - M - N  substitution that performs no substitution at all. □
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THEOREM 3.4.2.12 (Precongruence of <) Let M , N  €  A. Then,

M  < N  => VC[ } .{C [M \ < C[ N} ) .

PROOF Recall that and “Ax” are (continuous) monotonic operations in 
the free lazy PSE-model. Hence,

VC[ ] €  A . D \  t= M  C N  =» C [ M\  C CfJNT].

Result then follows from the Local Structure Theorem of < in D \ .  □
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C h ap ter 4

Fully A b stra ct M od els o f  
L am bda T ransition  S y stem s

Synopsis o f the C hapter

The precursor of the work reported in this Chapter is Abramsky’s application 
of the Stone duality  between domains and their logics of observable properties 
[Abr87,Abr88] to tackle the problem of full abstraction [Plo77,Mil77] reformu
lated in the lazy A-calculus. The study is based on a paradigmatic functional 
programming language At  called the pure lazy language which has closed A-terms 
as terms (program phrases). The evaluation mechanism is governed by the re
duction relation ^ (we read M  Jj. Ax .P  as “M  reduces lazily  to weak head normal  
fo rm  A x.P”):

A x .P  A x .P

M  JJ. X x.P  P [ x : = Q ] ^ N  
M Q t y N

We say that a term M  converges if M  -1]. A x.P; otherwise it diverges. Under the 
reduction strategy the possible “results” are of a particularly simple, indeed 
atom ic  kind. A term M  either converges to an abstraction (and according to 
this strategy, we have no clue as to the structure “under” the abstraction); or 
it diverges. In contrast to typed A-calculi with ground constants, say Plotkin’s 
PCF language [Plo77], the computational “observables” in our case is convergence 
to  abstraction. As it stands, the relation is too “shallow” to furnish enough 
information about the behaviour of the system.

Inspired by the work of Milner and Park on concurrency, Abramsky [Abr88] 
introduced an operational preorder on A-terms called applicative bisimulation
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Chapter 4: Fully Abstract Models of Lambda Transition Systems 105

which yields a tool enabling much deeper comparisons between the operational 
contents of terms to be made using as basic “building blocks”. The applicative 
bisimulation preorder has the following recursive specification:

M £ B N  «=>■ A f^ A x .P =*•

N  ^ Ax .Q  & [VR 6 A.°.P[x  := R] Es  Q [x  := RJ ].

Intuitively, M  EB N  holds if “everything that can be observed about M  under 
all tests (=applying M  to all possible arguments hereditarily) can also be observed 
about AT”. Bisimulation equivalent terms are operationally indistinguishable. We 
define an (in)equational theory A£ =  (A°, C, = ), which we call the A bram sky lazy  
X-theory  where:

\ t  I- M  C N  =f M  Efl N ,

\ l \ -  M  =  N  =  M ~ B N .

(We will refer to the pure lazy language and the A-theory induced by the associ
ated bisimulation equivalence by the same symbol A£.)

The Abramsky lazy A-theory is based on an operational model — the transi
tion system A£ = (A0, -JJ-). A general class of structures called lambda transition  
s y s te m s , of which the former transition system is an instance, is defined which 
includes the language (whose operational properties are captured in) A£ and the 
canonical denotational m odel D  — the initial solution of the domain equation 
D  =  [D  —► D \ j_. The full abstraction problem recast in the lazy regime is the 
following: Is it true that

VM, N  e  A.M  Eb N  <(=> D  t= M  C IV?

The answer is no and a counter-example is provided. Abramsky [Abr87] 
achieved full abstraction for D  with respect to the language A£p which is Ai  
augmented with a parallel convergence construct P. This Chapter continues the 
study of full abstraction of the canonical model D  (and its retracts) with respect 
to various enriched variants of the language XL We present an outline of the 
Chapter as follows:

• Section 1 begins with an introduction to the A bram sky lazy X-theory, A£, 
which is shown to be H ilbert-Post com plete  with respect to the class of fu lly  
lazy  X-theories (see Chapter 2). The model-theoretic counterpart of A £ are 
structures known as lambda transition  sys tem s  (Its) which are essentially 
lazy A-models that identify bisimulation equivalent elements. A short his
torical account on the full abstraction problem is given in Section 2 together 
with a reformulation of the problem in the untyped lazy regime.
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• D , the canonical model for the lazy A-calculus is the subject matter of 
Section 3. We study some basic properties of the Its D .  Two such properties 
crucial to the construction of fully abstract retracts of D  are:

— The binary application operator in the Its D  left-preserves arbitrary  
jo in s .

— The projection functions tpn : D  —► D n, where D n is the n-th ap- 
proximant of D , are XC-definable, where C is the convergence testing  
constant.

© We introduce lazy X-calculus with convergence te s t in g  in Section 4. The 
language X t c =  (A(C)°,i|c) has expressive power between X t  and A ip . The 
formal system A/?C, which is obtained by augmenting Xj3 with the conver
gence testing constant C, is shown to be Church-Rosser. A Standard iza tion  
Theorem  for the associated reduction is proved. Plotkin’s problem of s im 
ulating  call-by-value evaluation in the call-by-name regime is revisited. We 
show that there is a translation of terms from (A0,^v) (Plotkin’s call-by
value language) to Ai c which preserves call-by-value convergence exactly.

• Section 5 presents two non full abstraction  results. We show that both 
Ai  and A£c are not fully abstract with respect to D . Incom pleteness  of 
fully lazy  topological X-models (following Honsell and Ronchi della Roccas’ 
terminology) with respect to fully lazy A-theories is shown as a corollary.

• In Section 6, a general method using bisim ulation logical relations to con
struct retracts of D  which are fully abstract models for a class of suitably 
expressive languages (lts’s) which includes XIq is presented. We refer the 
reader to the beginning of Section 6 for an overview of the method used. 
The problem of constructing a retract of D  which is fully abstract with re
spect to Ai  is reduced by this method to an open question of conservativ ity  
of Ai w (a labelled version of XL) over XL This Section ends with an investi
gation into the relationships between the various lazy operational preorders 
introduced in this thesis.

4.1 T he Lazy Lambda Calculus a la Abram sky
In this section, we introduce Abramsky’s applicative b isim ulation  ordering  and 
relate it to observational and contextual preorders. These lead up to A£, the 
A bram sky lazy  X-theory , which is shown to be fully lazy. In fact, X i  is Hilbert- 
P o s t  com plete  (i .e . maximal consistent) with respect to the class of fully lazy 
A-theories. The natural A-model theoretic counterpart of the bisimulation or
dering and Abramsky lazy A-theory are structures known as lam bda transition  
sy s tem s  (Its) which are essentially lazy A-models that do not distinguish between
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bisimulation equivalent elements. Perhaps not surprisingly, adequate lts’s induce 
fully lazy A-theories.

4.1.1 Introduction
In his thesis [Abr87], Abramsky elegantly demonstrated a synthesis of a number 
of hitherto separate developments in Theoretical Computer Science and Logic:

• Domain Theory, the mathematical theory of computation introduced by 
Scott as a foundation for denotational semantics.

• The theory of concurrency and systems behaviour developed by Milner, 
Hennessy et a 1. based on operational semantics.

• Logics of programs.
• Locale Theory.

The key to the synthesis is the mathematical theory of S ton e  duality , which pro
vides a junction between semantics (topological spaces) and the logic o f  observ
ables properties  (locales). As a major case study of the general theory developed 
in his thesis, Abramsky turned to the foundations of functional programming in 
Chapter 6 of his PhD thesis [Abr87] entitled A pplica tions to  Functional Program 
ming: The L azy  Lambda Calculus which constitutes the main precursor of the 
work in this Chapter. (His other major case study concerns concurrency, docu
mented in Chapter 5 of op. cit. entitled A pplica tions to  Concurrency: A  D om ain  
Equation  for  B isim ulation.)

We begin by formalizing a reduction strategy on closed A-terms which we will 
regard as a quintessential functional programming language.

DEFINITION 4.1.1.1 The relation M  N  ( “M  converges to principal weak head 
norm al fo rm  N ”) is defined inductively over A0 as follows:

Ax . M  Ij- Ax .M

M 1! X x .P  P [ x  := Q] 4J- iV
M Q ^ N

The transition system Ai  =f (A°,<|J.) is called the pure lazy  language.

The reduction strategy captured by the above formulation is precisely the 
le ftm ost reduction with the proviso that all reductions terminate upon reaching 
abstractions. The relation -IJ. is essentially the same as the “eval” relation in 
Plokin’s call-by-nam e  programming language defined in [Plo75]; hence the sub
script “N” in the label (ftv) of the second inference rule.

[ P n )

PhD  Thesis M ay 31, 1988



Chapter 4: Fully Abstract Models of Lambda Transition Systems 108

N o t a t io n  4 .1 .1 .2

M .Ij- =f 3 N . M  JJ- N  (“M converges”)

Mff =f (“M diverges”)

Plainly, the reduction relation -1]- defines a partial function from A0 to the 
class of principal weak head normal forms (the “range” of JJ- is the collection of 
all closed abstractions, to be precise).

4.1.2 B isim ulation  Ordering
Under the reduction strategy the possible “results” are of a particularly simple, 
indeed atom ic  kind. That is to say, a term M  either converges to an abstraction 
(and according to this strategy, we have no clue as to the structure “under” the 
abstraction); or it diverges. In contrast to typed A-calculi with ground constants, 
say Plotkin’s PCF language [Plo77], the computational “observables” in our case 
is “convergence to abstraction” — the satisfaction of a semi-decidable predicate. 
One may indeed question whether the relation JJ. as it stands now is not too 
“shallow” to furnish any relevant information about the behaviour of the system. 
To see why this is so, just note that although distinguishes between functional  
terms (i.e. those /3-convertible to abstractions and hence capable of an operator  
role) and non-functional terms (i.e. those which are incapable of playing an oper
ator role genuinely, e.g. (Ax.zx^Az.xz)); it does not distinguish one abstraction 
from the other.

Inspired by the work of Robin Milner and David Park on concurrency, Abram- 
sky introduced an operational preorder on A-terms called applicative bisim ulation1 
which yields a tool enabling much deeper comparisons between the operational 
contents of terms to be made. Indeed, there is theoretically pleasing evidence 
(i.e. applicative bisimulation preorder is precisely characterized by observability 
under all contexts, Proposition 4.1.3.5) corroborating the view that applicative 
bisimulation is perhaps the f in es t extensional or behavioural preorder one would 
wish to impose on “lazy programs”.

Applicative bisimulation is consonant with the computational perspective that 
regards applicative behaviour as the touchstone for comparison between programs. 
Here, applicative behaviour of a program refers to the computational outcome 
that is observable when the program is applied to all possible input “arguments”.

1 As pointed out to me by an Edinburgh audience, in keeping with the usual distinction between 
s im u la t io n  and b is im u la t io n  in concurrency, the operational preorder should be named more 
accurately as ap p lica t ive  s im u la t ion . However, to avoid further confusion of terminology and in 
deference to the author of the preorder, we will adhere to applicative bisim ula tion .
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Recall that in A-calculus, no a priori distinction is made between “programs” and 
“datum”. The grammar of the calculus implicitly allows for any A-term to act as 
an operator as well as an operand  in a program of which it is a part, according to 
its (applicative) position in the program.

Divergent terms are the least informative terms with respect to bisimulation 
ordering. (Closed) convergent terms M  and N  are compared by performing 
“tests” on them. The suite of tests consists in applying M  and N  respectively 
to each closed program P  €  A° in turn and noting their respective applicative 
behaviour under the tests; and then performing the same suite of tests on their 
respective applicative outcome in a hereditary fashion.

We prescribe a recursive specification of the applicative bisimulation ordering 
M  Eb N  (which we read as “M is bisimulation less then N ”),  for the moment 
restricted to closed terms M  and N , as follows:

M Z B N  <=► M  1). X x.P  =*

{ N  fl Xx.Q  & Vie e  A‘ .P [x  := R] EB Q [x  := R] } .

Applicative bisimulation may be defined as the conjunction of a family of 
inductively defined preorders as follows:

DEFINITION 4.1.2.1 (Abramsky) We define a sequence of binary relations 
{ Ef: fc 6 w } on A“ as follows:

• VAf, N . M  EB JV.

AfSf+ ,J f  d=  M  Sj-Xx.P =*■ N  JJ. Xx.Q  &

V R  £ A° .P [x  := BJ e£ Q [ x  ~  £].

# Af Efl N  =  \ f k e  u . M  Ef N .

The definition is then extended to all A-terms by considering closures in the 
usual way, i.e. for M , N  £  A,

M  Eb JV =  Vo : Var -► A°.M„  EB N c

(where e.g. M a means the result of simultaneously substituting cr(x) for each 
occurrence of x  in M  with x  ranging over Var). We abbreviate M  N S z N  £B M  
as M  ~ B N .

It should not be difficult to see that an equivalent definition of applicative 
bisimulation is the following:
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M  EB N  < = >  VP C A° .M P ^  =► N P ty .

DEFINITION 4.1.2.2 We define an (in)equational theory Ai  =  (A°,C,=) which 
we call A bram sky lazy X-theory  where:

X i I- M  C JV =  M  Eb JV,

X l \ -  M  =  N  =  M  ~ B N .

Of course, we need to verify that Xi is indeed a A-theory (in fact, it is a fully lazy  
X-theory); and this we will do in the following subsection.

Note that we refer to the pure lazy language and the A-theory induced by the 
associated bisimulation equivalence EB by the same name Xi.

4.1.3 C ontextual and Observable Pre-orders
Let Q  be a proper subset of A 0 closed under a - and /^-conversion. We call Q  the 
“observables”. Following Morris [Mor68], we define a binary relation <q on A° 
(we read M  < q N  as “M is Q-observable less than N ”):

M s q N  =  VC[ ] € A° .C [M \ €  Q => C [ N \  6 Q.

We abbreviate M  N  & N  <q M  as M  ~ q JV, which we call Q-observable  
equivalence. Note that

M  ~ q N  < = >  VC[ ] G A ° . C[ M)  e Q  &  C[iV] £ Q.

LEMMA 4 .1 .3 .1  Let Q be as before. Then, < q is a pre-congruence i.e.

V M , N  e  A ° .M  <g JV =» VC[ ] € A° . C[ M]  <g C[ N} .

Consequently, is a congruence relation.

PROOF We prove the Lemma by a sequence of assertions. We claim: For all 
M , N , P e  A:

(i) M < M .
(ii) M < N & N < P = > M < P .

(iii) M  < JV =* M [ x  := P ] < N[x := P} .

(iv) M  < N  => P [ x  := M]  < P[ x  W].
(v) Ax . M  < Ay . M [ x  y\.

(vi) M  < N  =>■ A x . M  < A x .N .

PhD  Thesis May 31, 1988



Chapter 4: Fully Abstract Models of Lambda Transition Systems 1 1 1

(vii) < Ni (i =  1 , 2 ) => M i M 2 < N i N 2.

(i) and (ii) are trivial. For (iv), assume M  < N .  Suppose for some context 
C[], C [ P [ x  := M]]  E Q.  Consider the context D []  =  C[(Ax.P)[]]. Since Q is 
closed under /^-conversion, we deduce that D [ M ]  E Q.  By assumption, D [ N ]  = p  
C [ P [ x  := N]\ 6  Q.  Proofs for the rest are similar. For (vii), an appeal to (ii) is 
needed. □

Recall that a A-theory T is a consistent extension of the formal theory A/?. 
Given Q  as above, define

Tq =  { M  =  N - . M , N €  A ° . M  N  } .

PROPOSITION 4.1.3.2 L e t Q be as above. Then Tq  is a X-theory.

PROOF Since Q is closed under /^-conversion, A/? C Tq . Since Tq  h M  =  N  
implies VC[] E A° .C \M )  C7[iV], we conclude that Tq  = Th(7g). To show that
Tq is consistent, choose M  E Q and N  #  Q. Then, trivially Tq  P M  =  N .  □

The converse is also true. We say that a A-theory T is contextual  if 3Q  C 
A° .T  =  Tq with Q a proper subset of A° closed under a- and ^-conversions. The 
following result is attributed to Dana Scott in [HdR88].

PROPOSITION 4.1.3.3 (Scott) Every  X-theory is contextual.

PROOF Given a A-theory T. Define

Q  =  { M i  3 U , V . M = t  \ V , V ] U V  = t V }.

Recall that [C/-, V] =f Ax . x U V  where x  ^ FV (U )  U FV(V). It is straightforward to 
see that T C Tq . To show Tq C T, suppose T ¥■ M  = N  and let C[] =  Ax.^OiV'. 
Clearly, C [N ]  E Q. Suppose, for a contradiction, C7[Af] E Q. Then, for some 
U — j  V ,  we have

C \ M ]  = j  Xx.xUV.

Now, applying the preceding equation to K and F = X xy.y  respectively, we get: 

M  —x U, N  —r  V.

But U  = r  V  by supposition, leading to a contradiction. □
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Properties of and X i

We return now to the bisimulation ordering EB and ask if it can be character
ized by a Morris-style Q-observable precongruence. The answer, due to Samson 
Abramsky, is yes. First, a definition.

DEFINITION 4 .1 .3 .4  The binary relat ion Ec on A 0 is defined as 

M Z C N  =  VC[] € A0.C[iW]J| =>• C[iV]J).

P roposition  4 .1 .3 .5  (A b ram sk y) es = ec .

PROOF We refer the reader to Abramsky’s proof op. cit. which makes essential 
use of domain logic, although the statement of the Proposition does not mention 
domains at all. I know of no other proof. □

The importance of the above Proposition is that it follows that the Abram
sky bisimulation preorder is a logical relat ion [Plo73] (see definition later in the 
Chapter) — a highly non-trivial property given the way EB is defined. Another 
consequence of this Proposition is that application is monotonic w.r.t EB.

In view of the results we have hitherto obtained for Q-°hservable precongru
ence and Proposition 4.1.3.5, it should now be clear that

• Xi  is a A-theory and that
• the “observables” are / ,  the set of funct ional  t e rm s , i.e. A-terms convertible 

to abstractions. We have

X i  (equational) =  Tj .

We can say rather more about the A-theory XL In fact, X i  is Hilbert-Post  
complete  w.r.t. fully lazy A-theories, i.e. it is the maximal  consis tent  fully lazy 
A-theory. Before we prove the assertion, it is helpful to recall:

FACT 4 .1 .3 .6  Let  L  E PO 0, M  €  P O n+i for  n  E u> and  N  E P O oq. Then , for  
any  P E  A,

(1 )  L P €  PO 0,
(2)  M P  E PO n,
(S)  N P  E POoo.

□
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The reader should now refresh his memory of such A-theoretic notions as 
pre- lazy  and fully lazy A-theories as introduced in Chapter 2 .

LEMMA 4 .1 .3 .7  At  is a fully lazy X-theory, i.e. for  m , n  G w + 1

VM e P O m.ViV e  PO n.[A£ b M  =  N  < = >  m  =  n].

PROOF By considering the observable applicative behaviour, it is easy to see 
that all strongly unsolvable terms are identified in Xt, similarly for POoo-terms. 
Hence, by Lemma 2 .4.2 .4, A is pre-lazy. Since POi and PO 2 are not provably 
equal in A t ,  applying Corollary 2 .4.2.6 , we conclub j that A t  is fully lazy. □

The following Proposition says that At  is c\ maximal  fully lazy A-theory.

PROPOSITION 4 .1 .3 .8  The Abramsky  lazy X-iheory, Ai ,  is Hilbert-Post  complete  
with respect to  the class of  fully lazy A-theories,  i.e. for  P , Q  G A such that At  ¥■ 
P  =  Q, either At +  ( P  =  Q) is inconsis tent  or it  is not  fully lazy.

PROOF Suppose At  P M  =  N .  Then,
3C{]  G

• Suppose C [ M ] is solvable. Then, by definition, (Ax.C[M])P =  I for some 
x, P; but (Ax.C[iV])P =  L  is unsolvable, by Corollary 8.3.4 in [Bar84]. 
Wlog, we only consider the cases where the order of unsolvability of L  is 0  

and 00 respectively. Suppose L  G POo, then

Xt  +  (Af =  N )  b I =  (Ax.C[Af])P = (Ax.C[iV])P 

= n 3 = (Ax.xxx)(Ax.xxx).

Now, every A-theory which equates I and f23 is inconsistent, for

I = n 3 =  f23(Ax.xxx) =  I(Ax.xxx) =  (Ax.xxx);

i.e. two distinct nf’s are equated, and so, by Bohm’s Theorem, the theory 
is inconsistent.
If L  G PO qo, then similarly, we have

Xt  +  { M  =  N )  b I =  YK  =  K(YK) = Ax.I; 

and so, by Bohms Theorem again, Xt  4- ( M  =  N )  is inconsistent.
• Suppose C [ M ] is unsolvable. Then C \M ]  G P O n where w +  1. We

have

Xt  +  M  =  N  b PO n 9  C [ M \  =  C[AT] € PO 0; 

i.e. A£+ M  =  N  is not a fully lazy A-theory.

□
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4.1.4 Lambda Transition System s
At this point, the reader should refresh his memory of such notions as quasi- 
applicative transition systems, quasi-applicative structures with divergence and 
lazy A-models as introduced in Chapter 3. A lambda transition system is es
sentially a lazy A-model which satisfies a very strong extensionality principle 
(Extbisim). It was introduced by Abramsky [Abr87, Chap 6] as a general class of 
lazy A-models in which to interpret the domain logic corresponding to the lazy 
A-calculus. The significant point to note is that both the language At  and the 
canonical model  D  are instances of the same class (in fact, D  is final  in the cate
gory LTS, see page 196 in op. c i t .) . This enables general logical properties to be 
transferred from one structure to the other.

Recall that an applicative structure with divergence (aswd), A =  (A, is 
a q-aswd which satisfies the following axiom:

(aswd) Va, 6 E A.Vc E A . a  E 6 =>-c*a£c*6;

where E is the associated bisimulat ion ordering. We abbreviate a E 6 & 6 E aas  
a ^ b. Note that

a E 6 -v=> Vd C A.ad-lJ. => bd\\.

DEFINITION 4 .1 .4 .1  An aswd A =  (A,-.ft) satisfies the bisimulat ion extension
ali ty principle if the following axiom is satisfied:

(Extbisim) Va, b E A .a  ~  b =>> a =  b.

D e f in it io n  4 .1 .4 .2
Lambda Transi t ion S ys tem  is a structure A =  (A, Fun,Gr, [—]_) such that

(1) (A, Fun) is an applicative transition system (with dom(Fun) =  A \{ J_ }),
(2 ) A is a functional lazy A-model,

(3) A 1= (Extbisim).

A lambda transition system (Its) A is adequate2 if VM E A°.A 1= M \ ]■ =>• \ i  b M -jj-. 

REMARK 4.1.4.3 (i) Let A =  (A, Fun) be an ats. It is easy to see that

A N (Extbisim) => A N (Extcond);

2Abramsky calls this notion sensibleness. We prefer to call it adequacy so as to reserve sensi
bleness for the classical sense of identifying the unsolvables.
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the converse is not true in general. Hence, by Lemma 3.2.2.5, if A is a Its, 
then condition (3) above implies that

A 1= (r/cond)) (Extcond) & Gr o Fun =  idA\{±>.

(ii) In view of the equivalence between environment and functional lazy A- 
models (Proposition 3.2.2.3), lambda transition system may be defined 
equivalently as the structure A =  (A , •, ft, [—J_) with
(1) {A, •, ft) is an applicative structure with divergence such that ft = { _L },
(2 ) A is an environment lazy A-model,

(3) A N (Extbisim)-
(iii) Our formulation of Its is essentially equivalent to that of Abramsky’s. The 

only point of departure is that in our formulation, bisimulation equivalent 
elements are identified axiomatically.

LEMMA 4.1.4.4 Let A = (A,  Fun,Gr, [—1_) be a Its. Then, with respect to  the 
bisimulat ion ordering, A  has unique least and greatest e lements  denoted  _L and 
T respectively. The to p  element , T, is the in terpreta t ion of  any  POoo-element.  
Also, ±  and  T are the only  solutions,  divergent  and convergent respectively, to  
the fol lowing equation:

Va G A .x  • a =  x.

PROOF It is easy to see that X, the only divergent element, is the least 
element w.r.t. E; and satisfies the equation. The top element is that x  G A  such 
that Vy 6  A.xyft. By (ExtbiSim), such x  is unique.
CLAIM: If x is a convergent solution to Va G A . x  • a =  x ,  then x  is the greatest 
element with respect to EB.

By definition, M  G PO^, =>• M N  G PO qo. Since all POoo-terms have the 
same denotation in A, we have Vx G A . l x  =  l with / being the denotation of 
POoo-terms. Since /ft, we have Vy C A./yft; and so, / =  T. □

COROLLARY 4 .1 .4 .5  If  a Its A is adequate, then  A is a ful ly  lazy X-model,  i.e. 
for  m, n  G w +  1,

VM G PO m, ViV G PO n.[>{ t=MC JV m < n].

P roof  Easy. □
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It follows that any adequate Its induces a fully lazy A-theory. Is every fully 
lazy A-theory induced by an adequate Its? In other words, are adequate lts’s 
complete  with respect to fully lazy X  -theories? We will return to this question 
later in the Chapter.

EXAMPLE 4 .1 .4 .6  (i) D , the initial solution of the domain equation D  =
[D —> D \±  in the category of epos and continuous functions is an Its. In 
fact, it is adequate and internal ly fully abstract i.e.

Vx, y  6  D . x  y  < =>  x  Q y;

where is the associated bisimulation ordering of the q-aswd D .

(ii) ( A ° / ~ B , Jj.) is a Its. That the quotient is well-defined — the validity of the 
axiom (aswd) — follows from Proposition 4.1.3.5.

4.2 The Full A bstraction Problem  —  A B rief 
Introduction

This brief section introduces the background to the full abstract ion  problem as 
studied by Samson Abramsky in Chapter 6 of his PhD thesis. We review some 
basic notions and notations and state the main problem to which the rest of this 
Chapter is a partial solution.

4.2.1 A  H istorical Introduction
The full abs tract ion  problem was first studied by Gordon Plotkin in the seminal 
paper [Plo77], and shortly after by Robin Milner [Mil77]. Informally stated, it 
is concerned with the problem of finding a denotational semantic definition for a 
programming language which is not “over-generous” with respect to a notion of 
operational equivalence defined by observational indistinguishability. Two pro
gram fragments are equivalent if their respective observable computational out
come under all program contexts are identical. Consider a programming language 
with a class of observable C consisting typically of a collection of ground constants, 
and T, the class of well-formed t e rm s  (which may be typed or untyped) including 
a subclass of programs; equipped with the following:

• A deterministic evaluation  mechanism eval : Af —̂ C where M  ranges over 
programs. This we regard as specifying the operational behaviour of the 
language.

e [—] : £ —> D is the denotational semantic definition where D  is an ordered 
semantic domain satisfying the following soundness  or adequacy  condition: 
for any program M,
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eval(M) =  c < = >  JMJ =  [cj and 

eval(M) undefined *£=>• [MJ = _L.

We shall assume the semantic function is homomorphic  with respect to 
program constructors which are denoted by continuous functions in the 
appropriate domains.

In program analysis, especially in the design of optimizing compilers or trans
formation tools where the preservation of the meanings of programs is vital, 
knowledge of whether a program fragment or term may be safely replaced by 
another in all program contexts is indispensable. We formalize this as follows. 
Let Cxt be the class of program contexts  and for programs M  and W, we write 
M  < N  to mean

“if eval(M) is defined, then so is eval(iV) and that eval(M) =  eval(iV)”.

Now, define an operational preorder £ on terms as follows (we read M  £ N  as 
“M safely approximates N  in all contexts”):

M  E N  =f VC[ ] e  Cxt.C[Mj < C[JV].

Since reasoning with the relation £ as defined typically involves rather un
wieldy syntactic calculations, we would like a denotational semantic definition 
which corresponds to the operational semantics sufficiently closely so that rea
sonings such as “substitutivity under all contexts” may be carried out in the 
sem anti c  domain. More precisely, we seek the following fully abstract  denota
tional semantics: for ail terms M, W,

M  £ N  <=> [M] C [iVj.

In [Plo77], Plotkin posed and studied the full abstraction problem for PCF 
which is a simply-typed A-calculus augmented with elementary arithmetic oper
ations. The standard  cpo-domains for PCF consist of two base domains, namely, 
flat integer domain, and flat truth values domain (both without  “top” elements); 
and all continuous function spaces built up successively from them. We call the 
class of domains built up in the same way from the two base domains with top- 
elements added standard  lattice-domains. Plotkin showed that PCF is not fully 
abstract with respect to the standard cpo-domains — in fact PCF is not fully 
abstract with respect to any homomorphic retracts of the standard cpo-domains; 
however PCF augmented with a “parallel or” construct is. An important ad
vance in the problem was achieved by Robin Milner who showed in [Mil77] how 
to construct a fully abstract model from any collection of consistently complete
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^-complete cpo’s V for the class of simply-typed A-calculi augmented with con
tinuous first-order functions over V . The construction may be seen as mirror
ing the well-known Scott’s construction of a solution to the domain equation 
D  =  \D  —► D] syntact ical ly.  Milner also identified the conditions under which 
there exists, for the class of the extended A-calculi, a unique fully-abstract model.

Two Approaches to Full A bstraction

Full abstraction is attained if all the compact elements of the (algebraic) se
mantic domains are definable in the language. Plotkin’s and Milner’s approaches 
exemplify two natural directions in which to achieve full-abstraction:

• The expansive approach consists in enriching the language, enhancing its 
denotational expressiveness, as in the introduction of parallel or to PCF, 
thereby enabling all f ini te  semantic information to be represented syntacti
cally as program phrases.

• The restr ic tive  approach is to “cut down” (as in “quotienting out” by an 
appropriate operational equivalence relation) the existing “over-generous” 
semantic domain to that sub-structure that “fits” the prescribed language. 
Milner’s construction exemplifies this approach.

The restrictive approach to the full abstraction problem is notoriously diffi
cult. Although Milner showed that a fully abstract model for PCF exists, there 
has been little real progress as regards the construction of a satisfactory (math
ematical) fully abstract sub-model  during the intervening years. A number of 
researchers have nonetheless been motivated by the problem to investigate re
lated areas of interests. Their work, which has enriched the general area of 
denotational semantics and domain theory include: sequentiality [Ber78], stabil
ity [Ber78], concrete data structure [KP78], [BC82] and event structures [Win80], 
[Win87].

More recently, Ketan Mulmuley [Mul86] constructed a fuily-abstract model 
for PCF which is a retract (but not a sub-model) of the standard /ctfhce-domains 
by using the technique of logical relat ions  (or inclusive predicates) whose relevance 
to the problem of definability was first recognized and studied by Plotkin in a 
pioneering paper [Plo73j.

4.2.2 Full A bstraction  Problem  in the Lazy Regim e
A fully abstract semantics of a programming language equates two program 
phrases provided their respective observable computational outcome when em
bedded in all program contexts are identical. The first question that arises when
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the problem of full abstraction is recast in the untyped regime possibly without  
any constants (as in the pure lazy language (A0,1J-)) is what should the observables  
be. Abramsky’s approach is to posit that convergence to abstract ion  according 
to a certain deterministic reduction strategy constitutes all that can be observed 
in the pure untyped regime.

Consider the full abstraction problem for the pure lazy language (A0, •(]•). The 
semantic domain is D , the initial solution of the domain equation D  =  [D  —► D]±  
in the category of epos (see Chapter 6 of Abramsky’s thesis or the following 
section for justification). By an appeal to Proposition 4.1.3.5, the full abstraction 
problem may be equivalently presented as follows: Is it true that

VM, N  €  A . M  £ b N  4=* D  h M  C N ?

It turns out that D  is not  fully abstract for the pure lazy language, a proof 
of which is presented in the sequel. Abramsky shows in his thesis that D  is fully 
abstract for the pure lazy language extended with a parallel convergence constant  
P; but it is not so for a weaker language A£c =  (A(C)°,JJ.c) which is the pure 
lazy language extended by a convergence tes t ing constant . His proof of the full 
abstraction result exploits the Stone duality between the domain D  and its logic, 
the details of which are beyond the scope of this thesis.

Abramsky achieved full abstraction with respect to D  by augmenting the pure 
lazy language with a sufficiently expressive constant so that all compact elements 
of D  are representable — an expansive approach. In the Chapter, we consider 
the restr ic t ive  approach i.e. the question of whether there are reasonable sub- 
structures of D  which are fully abstract with respect to various enriched variants 
of XL

4.3 Basic Properties of D  —  Canonical M odel 
for Pure Lazy Language

This section studies the basic properties of D  which we regard as the canonical 
model for the pure lazy language. D  is an internal ly  fully abs tract , adequate  Its 
whose application left-preserves arbi trary jo ins .  Some index calculation results 
are presented. The projection maps ipn : D  —*■ D n, where D n is the n-th approx- 
imant of D, are shown to be AC-definable, where C is the convergence testing 
constant to be introduced in the sequel.

4.3.1 Introduction
In the s tandard  theory, A-calculus may be regarded as being characterized by the 
type equation
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D =  [D -> D].

Regarded as a domain equation, it has non-trivial solutions in many categories 
including those of cpo’s, Scott domains, and complete lattices (all these with 
continuous functions as morphisms). Note however, the initial solution is trivial 
— the one-point domain.

In the lazy theory, a distinction is drawn between convergent elements i.e. 
those which evaluate to functions from D  to D ; and divergent  elements whose 
evaluations do not terminate, i.e. those devoid of any functional (or operator  
as opposed to operand) content. That is to say, the following structure map is 
part ial ,

eval : D ^ [ D - * D \ .

The standard approach to partial maps in domain theory is to make them 
into total ones by sending undefined arguments to a “bottom element”, thereby 
changing the type of eval to

eval : D  [D —+ J9]j_.

In the language of the model theory of A-calculus, eval furnishes the “fun” part 
of the retraction of [D —> D ]x into D .

We regard the initial solution of the domain equation

D  =  [D  -*  D}±

(which is non-trivial) as the canonical model of the pure lazy language.

Som e B asic D efinitions

Let D ,  E  be cpo’s. We say that ( i , j )  is an embedding  of D  into E , denotedI >t
D  < jE7, if i , j  are continuous maps D  > E  -» D  and that 

i  o j  Q \ 6 e  and j  o * =  \dD.

i  is the left-adjoint of j  and each uniquely determines the other.
Recall the category-theoretic characterization of lifting as the left adjoint to 

the forgetful functor U :

c p o  cpoj. cpo

where CPOjl is the sub-category of strict functions. As is standard, we have:

• A natural transformation: up : 7cp<o> —► U o (—)j_.
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• For each continuous function /  : D  —► U E ,  its adjoint

lift(/) : { D ) ± - j .  E .

Concretely, we have, for x , y  € D:

( D ) x
d e f {_L}u{<0,<£) 1 d € D } ,

x  C y d e f x  =  _L or
[x =  (0, d) & y =  (0 , d ' ) k

upD(d) d e f
(0  , d ) ,

lift(/)(±) d e f
J-B)

lift(/)(0,d) d e f
/(<*)•

Let dnD =f lift(idp) : D ±  —+± D .  For example, dn[£>_£>]((0, /) )  =  /  for /  € [D  —►
DI
LEMMA 4.3.1.1 Suppose {i , j ) is an embedding o f  D  into D \  Then,  
defined as follows:

e  D '. i  o i n lB^ D][ f )  ° ifo)], 

i* =f Aff e  [£>' ■D'L-Cj£!7i%L0uP[D-.D][ !̂/ e  D ' i  ° dn[D'~r>’](s) o i ( y ) )

is an embedding of  [D —► D]± [22' —> D ;]± where Cy : X  x Y  —► Y ts defined
as

if  x  =  J_*; 

else.

PROOF Clearly and j* are continuous. Also, it is straightforward to check 
that i* o j*  C id[d ^ d 1]  ̂ and j*  o i* =  id[£>_»zj]±. □

4.3.2 C onstruction o f the Initial Solution
Define Do  =f 1  (the one-point domain) and t‘o : Do —► [Do —+ Do\± such that 
z'o(-L) =  _L; and inductively,

D n+1 = \ D n -*  D n)L , D nb D n+A D „ ,
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(W l,in +1> =  <*;,£>.

Writing out the embedding pairs in full, we have 

tn+i =f \ f  €  D n+1 .C%l+l2 f u p [Dn+l_.Dn+l][ \ y  e  D n+1 . in o dn[I?n-*Dn]( f )  ° Jn{y)\,

jn+ 1  =f Agr e  >̂n+2-C ^ ^ u p [I?n_ Dn][Ay e  D n. jn O dn[Cri+1_*zj„+l]( )̂ O %n(y)).  

( D ny j n) neuj is an inverse system of epos which are cj-algebraic complete lattices.

We define the inverse l imit , D  =  lim<_(Z)n,yn)n6w as follows: Define, as is 
standard, : D n -+ D m by

m > n <f>n>n =  X x e  D n.x ,

^ m + l,n  =  ^m ,n °  Jmj 

m  <  n  <f>m,n+ 1 =  h» 0

and identify the initial solution Z? C Iln€w - n̂ as

P  =  { {xn : n € w) : x n £  D n & j n( x n+1) =  x n }  

and name the isomorphism pair as

D  ^  [D -* £>]x D ;

the precise definition of Fun and Gr will be spelt out in full in the sequel. Note 
that direct and inverse limits coincide in Domain Theory (see [SP82]), i.e.

D  lim_» (Z?n, fn)ngw.
Observe that D  is a quasi-applicative transition system (see Chapter 3) with 

the associated evaluation map eval : D  D D defined as:

eval(d) d e f /  if Fun(d) = (0 ,/> ,

undefined if Fun(d) =  _L.

Thus, we may write d /  and dft etc. Equivalently, we may recast the above as 
a quasi-applicative structure with divergence: (D, •, ff) where

d d e fe =
/(e) if < H /, 

_L if dft.

In the following, we will work out the definition of the application in terms of 
projections onto approximants.
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NOTATION 4 .3 .2 .1  For simplicity, henceforth, we will write the n-project ion map  
<l>oo,n as and the n-inject ion m ap  0n oo as <f>n. Also, we will regard each D n 
as a subset of D , i.e. we identify <̂n(x) where x £ D n with x; and that for 
x  £ D , ^ n(x) =  x n £ D n. Hence,

D  =  U  D n.
nSw

4.3.3 Index Calculations and E xtensionality  Properties
We will unpack the structure of D  somewhat and highlight some basic index- 
calculation results. These will be used to spell out the definitions of the appli
cation operation, and the Fun and Gr functions of D .  Finally, we present the
extensionality properties of D .

L e m m a  4 .3 .3 .1  Let  x e D .  Then ,

0 )  ~  •Emin(n,m)*

( ii ) If  n  < m ,  then x n C x m C x.

( in )  x =  Un£n-
( iv)  I f  x  £ D n, then Vra  ̂ n .x m =  x.

PROOF We omit the largely straightforward proofs. □

COROLLARY 4 .3 .3 .2  Let  d e  D .  Then , (note that  in D ,  dft <=> d  =  ± )

( i)  df|- <==> Vn  ̂ 0 .dnf|\
( i i )  d §  <=>  Vn  ̂ l.dn'lj"

PROOF (i): by (iii) of the Lemma, (ii): “<=” is clear from (iii) of the Lemma. 
For “=>■”, in view of (ii) of Lemma, it suffices to show that d §  =4> d i§ .  Suppose 
the contrary, i.e. diff. Since j n(dn+i) = dn, it then follows from the definition of j n 
that Vn £ u . d n-ft which, by an appeal to (iii) of Lemma, leads to a contradiction. □

Define, for n £ w, Ap  ̂ : [D n —* D n]± x Dn —» D n by

Api(/,«0 =
±
g{d)

if /  =  JL,
if /  =  (0 , g) with g £ [D n -> D n\.

In the following, however, we will abbreviate Ap^(/, d) simply as f { d ) .

L e m m a  4 .3 .3 .3  For n ^ k £ w, 
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( i)  x n+i ( y n) C x k+1 {yk).

( i t )  =  x n+ \ (t/n)*
( in )  (xk+1 (yn) k) n =  x n+1 (yn).

P roof

0) If x n + 1  =  _L, then x n+1 ( y n) = _L C x k+1 ( yk). Now suppose x n+i 7̂  _L.

^n+lCl/n) — J n + l i ^ n + i )  (jn(j/n+l))

=  3n 0 ^n+2 0 0 ln(l/n+l)

*cn+2-i)’
i n  0  3 n  E  id

Jn ° ^n+2(j/n+l) X £  D n + 1 ^  *̂ n ®

Q  2'n+2(2/n+l)*
(ii) By induction on k ^ n. Trivial if k =  n. Consider the case k  +  1. Wlog, 

assume xn+1Jj-(equivalently, (xn+i)jfe+2 -W- Note that if a; € D p, p  < q then
iq{Xq) =  ajg+i.

(̂ n+l)jfc+22/jfc+l

( ik o (xn+i)jb+i © ijb)(yjfc+i)

ik ° (^n+l)*+l(l/ib)

(®n+i)*+i(y*)

*^n+l(2/n)*

definition of i k+\

x  £ D k i k{x) — x  

induction hypothesis

(iii) By induction on k. k  =  n

(̂'fc+2(yn)fc+l)n =

is trivial. Wlog, assume xjk+2-IJ-

4> k+ l , n {X k+ l (y n ) k + l )  Vn €  D n, Yl < k

$k,n ° 3k 0 *£jb+2 ° iki,Hn)k definition of 3k+l

Ĵb.n °  Ofc+l^fc+a)) (2/n)fc

(xjfc+i(yn)ik)n induction hypothesis

Xn+l(yn)-

Now, we are ready to spell out the binary application D  x D  —> D

□

z* y  - f U  Api(®n+i,y„).
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It should be clear that is continuous. In fact, we can say more, that 
left -preserves  arbi trary jo ins ,  of which more anon.

Note that if x  E D n+1, y  G D n, then

x  • y  =  x n+i • yn

=  Uieu>(x"+i)t+i(l/n); Lemma 4.3.3.3(ii)

=  Lemma 4.3.3.3(i)

—  Xji-\-l (j/n) •

P ro positio n  4 .3 .3 .4  Let  x , y  e  D .

( i )  X n + i  • y  =  X n + 1  * V n  =  ( X  • t/n)n«

®1 • y =  ±. 
xq • y =  x0 =  -L*

P roof 

(i) We have

Zn+i • 2/ =  U.’ew (xn+i)i+i(y,-) Lemma 4.3.3.3(ii) 

= Ut^n^n+Oi+ify*) Lemma 4.3.3.3(i) 

= xn+i(yn) remark above

=  X n+ l • J/n*

(x • yn)n =  (U,-gw z,-+i(yn),)n Continuity of ipn

= Ueu;(^t+i(yn),)n Lemma 4.3.3.3(iii)

=  n

— U,<n a'»+l(2/n)»
=  U|.<nx,-+1(y,-) Lemma 4.3.3.3(i)

=  ^n+l * 2/n*

(ii) x i - y  =  x i - y 0 (hy (i)) =  X i ( ± )  =  _L.

(iii) Vn e  w.Ap^(-L,y) =  -L.

□
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In the same way as Ap ,̂ we define Ap-1 : [D  —► D ]± x D  —► D  as

g[d) if /  =  (0 , g) with g G [D  -> D],

A. if /  =  ± .
Ap^C/, d) =f

P roposition  4 .3 .3 .5  Define,  for  f  e [ D  -> D]±

reP(/) =  I upiD" - W Ay e  ■D"-(APx (/>y))»] » / /  =  <0.a>;
rep \  -l *y / = jL.

Then, Vy 6  £).Ap1 (/, y) =  rep(/) *y; m which case, we say that  f  is representable  
by rep(/).

PROOF Note that all joins exist in D .  Wlog suppose /  ^  JL.

rep(/) • y = U,eu;reP(/)t+i(2/)»
= U»Guj(reP(/) * Vi)i

= U,((Ur»Up[I?n_ J3n][Ay € A..(0(y))n]) * y<)i 

= U<,n(uP[Di,->i}(i][Ay e  D n. (g (y ) )n\ • y,)t- 

= Uj&,{uP[Dn-.Dn][*V € -Oy-(flr(y))y] * Vj)j 

=  U i {g (y j ) ) j

= UnUi{g{yi))n

=  U,- g (y i)

=  g{y)-

□
We can now spell out the maps (which are both isomorphic and homeomor- 

phic) between D  and [D  —*• D ] ± :

D ^ { D ^ D ] , - ^ D

where

Fun(d) =f <

and Gr(/) =f rep(/). Note that, 
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x  • y  =  Ap-L(Fun(a;),2/).

It follows from Proposition 4.3.3.5 that 

Fun o Gr =  idp_*x>]x .

To show Gro Fun =  idp, observe first that Gr(Fun(_L)) =  Gr(±) =  _L. Suppose 
d _L. Then,

Gr(Fun(d)) Gr({0 , Xx.d • x))

LLê  uP[D„-D„l[Ay e  D n.(d ■ y)„j y n =  y  

UnGw uP[Dn-♦£>«] 1̂ 2/ € D n . ( d n+1 • t/)]

UnEw uP[r>„->r>„][A2/ 6  D n.dn+1 (y)\

U n G o ;  ^ n + 1

= d.

Hence, Gr o Fun = idp.
The following Corollary states that representable functions of D  coincide with 

its continuous functions.

COROLLARY 4.3 .3 .6  Let  f  E D d . Then, f  is cont inuous i ff  f  is ^-representable,  
i.e. 3d  E D.dlj, & Vz E D . f ( x )  = d - x .

PROOF Let /  E D d , then the Proposition asserts that rep(up(/)) is a represen
tative of / .  Conversely, any convergent  d E  D  is a representative of a continuous 
map, namely, dn(Fun(d)). □

E xtensionality  Properties o f D

D  does not satisfy the strong extensionality principle3 — just consider _L and 
± i where J_i =  Gr(up(Ax.±)) and that /<*,«. is the standard step  func t ion  defined 
as

/<.(*) =
e if d  C x ; 

_L else.

3Strong extensionality principle is the following: 

Vx, y  E  D . \ i z  E D .x  z  =  y z = > x  =  y.
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However, D  satisfies the weaker notion which we call 

PROPOSITION 4 .3 .3 .7  (Conditional Strong Extensionality) For d, e E D ,

d-IJ. Sz elj- => [Vx E D .d  • x Q  e • x  d Q  e\.

PROOF Suppose dlj- and e-tj- and Vx E D . d  • x C e • x. Let Fun(d) =  (0, f )  and 
Fun(e) =  (0 , 0) with / , g E [D —> D \.  Then, Vx./(x) C <7(2 ); and so, /  C g which 
implies (0 , / )  C (0 , <7). By monotonicity of Gr and that Gr o Fun = id,

d =  Gr«0 , / »  C Gr((0 ,g)) =  e.

We prove a result due to Samson Abramsky.

THEOREM 4 .3 .3 .8 (Internal Full Abstraction) D  is internal ly  fully abstract  
i.e. Vd, e E D . d  C e <$=>• d e.

PROOF Unpacking the definitions, we see that for all d, e E D:

d C e < = >  d^/=J>[el|p& V cE  D . f { c )  C ^(c)].

Thus the domain ordering is an applicative bisimulation, and so is included in 
For the converse, we prove a stronger statement. Wlog, suppose d\J. and e]].. 

CLAIM: Vd, e E D.\fk  E w.d e =>■ d* C e*. which clearly implies d e => d  C e 
since d = Ukeu d*. The base case k =  0 is trivial. Suppose true for k. Wlog, 
assume d\f and el].. Then, let d Ef+1 e. By definition,

V/ E D . d f k £ f e f k.

Invoking the induction hypothesis, we have 

V/ E D . ( d f k) k C («/*)*.

which implies V/ E D . d k+ i f  Q ek+1 f .  Now, d k+ity and ejb+1l|, the result that 
follows from the above Proposition. □

As a corollary, we see that D  is an aswd. Define an interpretation of A-terms
in D  as follows: for cl E D  and M  E A,

M, d e f
p(*)>

H I,
d e f d,
d e f \ M \  • |W1,.

JAx.m i , d e f Gr(up[D_D)[<i >-*

It is easy to see that D  is a Its.
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4.3 .4  AC-Definability o f the Projection M aps t/>n
Is there a closed A-term X  that discriminates between the convergent and diver
gent A-terms? i.e.

VAf e  A 0.
X M =  I

X M i t

if Afft, 

if M i l ;

(I is the identity). The answer is no.

LEMMA 4.3.4.1 Let  X  G A0, _L be any divergent  (i.e. s trongly unsolvable) \ - t e r m  
and  ± i  any  least convergent t e rm  with respect to the bis imulation ordering, say, 
_Li =f Ax.0 for  any  ©ft. Then, X_Lft & X_Lift => X  =g I.

PROOF Let X  satisfy the antecedent. Then, clearly, X  & Whence, and
because X  is closed, X  Ax . x P .  But, if |P|  ̂ 1, then X ± i ft. Hence, X  I.D

More generally, we have the following definition.

DEFINITION 4.3.4.2 (Abramsky) Let A =  (A,-,ft) be an aswd (or equiva
lently, an ats) and that x,  y  range over A. Convergence test ing is definable in 
A if for some c G A, A satisfies:

• cJJ,
• xft => cxft,
• xft =$■ cx =  I.

Convergence testing is definable in D  by c =f Gr(up(/j_lit)) where i  =  [Ax.x] 
and J_x =f Gr(up(Ax._L)).

DEFINITION 4 .3 .4 .3  Let C  be a set of constants with prescribed interpretations 
in D .  For any function /  6  D D , we say that f  is XC-definable in D  if

3M  G A(C)°.Vx G D . f ( x )  =  [AfJ . x.

OBSERVATION 4.3.4.4 Let C be interpreted as the convergence testing c in D.  
The embedding pairs, {(tn, Jn))nEw, are AC-definable in D  by the following AC- 
terms:

W i \ f . C f ( \ y . i n( f ( } ny ) ) ) ,

jn+i =  *s-C9(.\3/.j„(s(W )));

with i0 =  I and j0 =  X x . J l . □

4Recall that, for n g w, M  e if 3 N  e A.X/3 h M  = Xxx • • • xn.N
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Given a sequence of functions (p n : D  -+ D  : n €  u)  defined inductively as 
follows: po =  Ax.i_ and

(t) Vd € D.Vn  £ w.jn(pn+1d) =  p n{d).

Is it true that Vn £ w-pn — *1*n? Recall that rpn : D  —+ D n is the canonical 
projection function from D  to D n.

An extra condition is needed:

Ve € D.\fn  £ u . p n+1 (d) • e = pn(d • p„(e)).

Clearly, to show Vn £ u;.pn = ^ ni it suffices to show

Vn £ w.Vd £ D . p n{d) =  d n =  tpn(d);

and this we will show by induction on n.
Base case is valid by premise. Now, suppose for some n ^ 1 , Vd £ D . p n(d) =  

dn. If dft, by induction hypothesis pn = ^n, hence pn(d) = _L, and so, by (f), we 
must have Vm > n .pm(d) =  _L. Now, suppose d.||. Then, dn+ilj. and pn+1(d)JJ.. 
For any e £ D,

dn+i • e =  (d • e„)n Induction Hypothesis 

=  Pn{d • prt(e)) (|)

=  Pn+i(d) • e.

By conditional strong extensionality of D, we have dn+i =  pn+1(d). Let us crys- 
talize the result as follows:

LEMMA 4 .3 .4 .5  Let  (pn : D  —> D  : n  £ cj) and d, e £ D  suc/i that

(1 )  po = Ax._L.
( 2 )  V n €  0J.jn{pn+\d) =  p nd.

(3 )  Vn £ cj.pn+1(d) • e =  pn(d • pn(e)).

Then,  Vn £ ca.pn =  □

We will now apply the Lemma to show that the canonical projection functions 
{■0n)n€w are AC-definable.

DEFINITION 4 .3 .4 .6  We define inductively a sequence of AC-terms, (®rn)new> as 
follows:
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^n+i =  Arr.Crc(Ay.Wn(x(^ ny))).

L e m m a  4 .3 .4 .7  (%) Vn g u W  g D ../n([[tf n+iJ • d) =  [®nJ • d.

( i i )  Vn 6  w.W 6  Dn.[^ n+il • ( ind) =  J^n] • d.

( in )  Vn G w.W,e G £>.([[^n+1] • d) • e = [¥„] • {d ■ ([W j • e)).

PROOF We will omit the decorated brackets in and write d • e simply as 
de in the proof for easy reading, (i) and (ii) are proved by simultaneous induction 
on n.  Wlog, suppose dlj., for the cases for divergent d are readily seen to be true. 
Base cases are clearly valid. Suppose (i) and (ii) true for n  — 1 for some n   ̂ 1 . 
For (i),

jn{&n+id)  =  y„[(Aa:.C2 (Aj/.^n(x(1$rny))))d]

= in(Ay.^n(d(^ny))) definition of j n

= Ai 6  Dn_ i.i„_ i($n(d (f  ̂ ( v i i ) ) ) ) )  ind. hyp. (i),(ii)

=  Arc G Dn_i.^„_i(d (^n_ix)) definition of

=  * n d .

For (ii), let d  G D n. Then,

^n+i^nd) = At/.1$rn((tnd)(,®ny)) definition of i n

= Ay.^n(tn_1(d(yn_1(^ ny)))) ind. hyp. (ii)

=  X y .& n - i  (d ( jn- i  (^ ny))) ind. hyp. (i)

=  Ay.^n_1(d(1$rn_1y)) definition of \Pn

=  * n d .

(iii) is easy: (^ n+1d)e =  (Ay.tf n(d(tfny)))e =  Wn(d (¥ne)). □
Applying Lemma 4.3.4.5, we establish the following result:

PROPOSITION 4 .3 .4 .8  The canonical  pro ject ion  maps  : D  —► D n are AC- 
definable; i.e. Vn G u . W  6  D . i f n{d) =  [WnJ • d. □

PhD  Thesis M ay 31, 1988

r



Chapter 4: Fully Abstract Models of Lambda Transition Systems 132

4.3.5 A pplication Preserves A rbitrary Joins
Next, we establish an important property satisfied by the application operation 
of D :  left -preserves arbi trary j o i n s , a result on which our later application
depends. This is a consequence of the coincidence of representable and continuous 
functions of D .  First, a technical Lemma.

LEMMA 4 .3 .5 .1  Let  I  and J  be arbi trary indexing sets and p  : I  x  J  —+ D  and  
that D  is a complete  lattice. Then,

U U (̂tJ) = U U **(*»./)•
iei jeJ jeJ iei

PROOF Observe that all joins exist in D .  For any jo, we have

Vi € I . p { i , j 0) C [J p ( i , j ) .
j eJ

Hence, U,-6j m(*\ Jo) E U e/ Uygj v ( h j ) -  And finally,

U U M(i,y) e U U
jeue i  iei jeJ

The other direction is entirely symmetrical. □

PROPOSITION 4 .3 .5 .2  In D ,  the appl icat ion left -preserves  arbi trary joins,  
i.e.

VX C D .V d  €  £>.(|JX) - d  =  □  I  • d.
xex

PROOF Let X  C D .  Wlog, assume that X  contains a convergent element. 
Define a function F x  : D  —> D  as: for y  £ D .

Fx{y) = U x * V-
xex

Fx {y) exists for all y  6  D  because D  is a complete lattice. F x  is monotonic: Let 
2/i E 2/2- Then Vx € X ,  x  • C x  • y 2. Hence U*=x x  * 2/i E Uxe x  x  ' 2/2*
Further, Fx  is continuous. To see this, let Y  C D  be directed. Then,

i ^ ( u n Uiex x  • (Uyer y) is continuous 

Uzex(Uyer x  * 2/) Lemma 4.3.5.1 

U y e r d J i e x ^  • 2/)
Uyer Fx{y)-
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By the coincidence of representable and continuous function spaces of D , 

3 D  e D . D t y b [ V y e D . D  - y  =  Fx {y)}.

We aim to show that □ = L! X. Now,

Vy €  D .V x  € X . x  • y  E ( [J x) • y,
xex

Vy € D .F x (y) =  U (x * y) ^ ( U x) ‘ y-
xex  xex

Note that □ and U-2dJ-> hence by conditional strong extensionality of D, we 
conclude

□  c  □  I.
xex

But Vx € X.Vy €  D . x - y D  U xe x ( x ‘y) =  □*!/• Hence, Vx G X.x C  □; from which 
we conclude U X  D □ . Hence, we have shown □ = U X  and we are done. □

4.4 Lazy Lambda Calculus w ith  Convergence 
Testing

This section introduces the proof system A/?C and the theory Ai c. Both are 
obtained by extending the by now familiar logical entities A/? and Ai c respectively 
with convergence testing constant C in the natural way. X0C  is shown to be 
Church-Rosser and a Standardiza t ion Theorem  for the associated /?C-reduction 
is proved. We present Abramsky’s results for the theory X£c. Plotkin’s problem 
[Plo75] of simulat ing  call-by-value evaluation in a call-by-name regime is revisited. 
We show that there is a translation of terms from A to A(C) which preserves call- 
by-value convergence exactly.

4.4.1 Pure Lazy Language w ith  Convergence Testing Ai c

As part of his study on the problem of full abstraction, Abramsky introduced an 
extended lazy language which is obtained by augmenting the pure lazy language 
by a constant called convergence tes t ing  in [Abr87, Chapter 6].

CONVENTION 4.4.1.1 By convention, a reduction consists of a (possibly empty) 
sequence of one-s tep  reductions. We emphasize that the word reduction is used 
in this thesis in an i terated sense, i.e. to describe a reflexively and transitively 
closed binary relation.
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DEFINITION 4.4.1.2 Define a binary reduction relation on A(C)° by the fol
lowing rules:

W ) C i C (C4c2) C M  |L I (absJJ-c)
Xx.P  JL \ x . P

(Pn )
M t y c Xx . P  P[x:=Q H |.c W 

M Q  JL N

The constant C is called convergence test ing. Since C is not A-definable, the 
above definition is clearly not superfluous. As before, we define convergence and 
divergence predicates, j|c and ftc respectively. Plainly, Â c == (A(C)°, fj.c) is a 
q-aswd. In fact, it is an aswd — the validity of the axiom (aswd) follows from 
Corollary 4.4.1.5. Hence we can define the corresponding bisimulation preorder 
and obtain an (in)equational theory which we denote Ai c . (As is the case with Ai ,  
we denote the language (A(C)°, fj-c) and the (in)equational theory induced by the 
associated bisimulation equivalence ~ c by the same symbol A£c.) We will write 
the associated bisimulation relation of {A(C)°, Jj.c) as Ec and the conjunction of 
Af £c N  and N  £c M  as M  ~ c N .

We define a binary reduction relation which is the extension of 1J.C to the 
whole of A(C) in the obvious way, i.e. Jj.x is defined by exactly the same four 
rules above, except that the terms appearing in the rules now range over all 
(possibly open) AC-terms. The associated convergence and divergence predicates 
are denoted JJ.X and ffx respectively.

REMARK 4.4.1.3 (i) It should be clear that JJ-C is a conservative extension of

(ii) However, Xtc is not a conservative extension of XL To see why this is so, 
just consider the same M  and N  in Theorem 4.5.1.1 (Non Full Abstraction 
!)■

(iii) A£c is a MA-theory”. That is to say, \ / M , N  € A.A/? b M  =  N  =>• M  ~ c N . 

THEOREM 4.4.1.4 (C ontextual Equivalence) Let  M , N  €  A(C)°. Then

M  Ec N  < = >  VC[] <E A(C) ° .C [ M ] $ c => C[ N} t yc.

PROOF See [Abr87, Theorem 6.6.11, page 210]. □

COROLLARY 4 .4 .1 .5  £c is a pre-congruence,  i.e.

VM,iV 6  A(C).M £c N  => VC[) € A(C)°.C[M] Ec C[N \;

whence X£c is a congruence.  

PROOF Immediate.
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DISCUSSION 4.4.1.6 C corresponds, strictly speaking, only to a semi-decis ion  
procedure as divergence cannot be f ini tely  observed. Note that the application 
operation in the pure lazy language (A0, 4) is left-strict but not right-strict. The 
introduction of C enables a version of application which is both left and right 
strict (as in, say, the application in Plotkin’s call-by-name language in [Plo75]) 
to be simula ted  in (A(C)°, ^c). This result will be formalized and proved later in 
this section.

X ic is a natural extension of Xi  to investigate. From a theoretical point of 
view, the introduction of convergence testing complements  the lazy regime. In 
fact, the assumption of the definability of C (in the form of specially introduced 
convergence testing constant extraneous to. the underlying language) is crucial to 
the main characterization results we prove in this thesis:

1 . The category-theoretic interpretation of Xl ,c — the class of fo rm al  lazy X- 
calculi in which convergence testing is definable — in partial categories is 
sound and complete (see Chapter 5).

2 . There is a retract of D  with respect to which A£c is a ful ly abstract  model, 
a main result of this Chapter.

The introduction of C is reasonable from a functional programming point of 
view; for it is not uncommon for lazy functional languages to have some version 
of “strict” or call-by-value Let construct embedded in it for greater flexibility, 
and arguably, expressiveness in programming style.

DEFINITION 4 .4 .1 .7  In [Plo75], Plotkin introduced a call-by-value or str ic t  lan
guage (A°, -0-v) where the binary reduction relation -lj.v on A0 is defined as:

X x . M  -Ij-v X x .M

M t y y X x . P  N t y y Q  P [ x  := Q] JJ.V L  
M N

The associated convergence predicate and divergence predicate f|v are defined 
in the usual way.

The crucial difference between the call-by-value language and pure lazy lan
guage is that the former evaluates the “argument” first and then the function 
body — eager  evaluation, whereas the latter does not evaluate the “argument” 
at all — lazy evaluation. Consequently, (Axy.x)n-(|-V but (Axy.x)f2-|j., for example.
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4.4.2 The P roof System  A/?C and Lazy /?C-R eduction
In this subsection, we introduce the formal system A/?C which is Xj3 augmented 
with a convergence testing constant C. A/?C relates to A£c in the same way as A/? 
relates to XL

DEFINITION 4.4.2.1 (i) Let X/3C be the proof system defined on the language
A(C) obtained by augmenting the axioms and rules of X/3 with the following 
axiom scheme: C M  =  I provided M1J.X. As usual, we write A/?C b for 
provability.

(ii) Define an associated proof system with formulae of the form M   ̂ N  as 
follows: X/3C b M  ^ N  if XJ3C b M  =  N  without  using the s y m m e t r y  rule.

DEFINITION 4 .4 .2 .2  Define two binary relation schemes on A(C) as follows:

/? d=lf <(Az.P)Q ,P[x :=<?]>,

C d=  (C(Ax.P), I) U (CC,I).

As before, we define:

—>pc =f compatible closure of (3 U C,

-»0C =f reflexive, transitive closure of 

=f transitive closure of — .

— is known as the one-step j3C-reduction.

DEFINITION 4 .4 .2 .3  (L azy /?C -R eduction)
We define one-s tep  lazy ( iC-reduct ion  (or simply, one-step lazy reduction) on A(C) 
as follows:

a 'CC -M l b'Q{ \x.P)  -M l C' ( \ x . P ) Q  -+i P[ x := «?]

M  M '  M  ->i M '
“ ' C M  — C M ’ “' M N ^ t M ' N '

As usual, we define:
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transitive closure of —*1, 

reflexive, transitive closure of —>1,

Af =  M 0 — — >• j * • • — A/p =e i\T,

M  g  dom(—>i),

M-»iNkN- /*u
3{ M i \ i  (z lj }.Afo =  M  & Vi £ u .M i  — Afi+i,

M = Mo Mx------►£* Mn s  N&r
31  ̂  ̂ n.A,- is lazy,

M - ^ c N \ ,

reflexive, transitive closure of —>jt\ .

A context C[] € A(C) is lazy if it has the syntactic shape 

C(- • • (C([ ] A) B)  • • - )D where A, B t • • •, D  C A(C).
n>0

REMARK 4 .4 .2 .4  (i) The one-step  lazy reduct ion may be presented equiva
lently as the union of the following relation schemes:

def <C[CC],C[I]) case a.

U (C[C(Ax.P)],C|I]) case b.

U {C\(\x.P)Q],C\P[x ■ = <?]]); case c.

where C [ ] ranges over lazy contexts.
(ii) By definition, P  — P '  V lazy C[ \ 6  A(C). C[P]  —>\ C[P'} .

(iii) It should be easy to see that for A4, N  € A(C),

\ / 3 C \ - M > N  M  -»pc N .

(iv) It is easy to see that

nf(->c) =  { C } U { X x .P .P  €  A(C) } U

{ C[x]  : x  € Var & C[ \  is a lazy context}.

+ def

def

M - f  N def

M-/+i
def

nf(->i) def

M  U N def

M U def

M  -*i>i N
def

M - + #  N
def

def
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4.4.3 Church-Rosser P roperty and Standardization The
orem

In this subsection, we will establish some basic properties of the proof system 
A/?C and the associated reduction relation. We generalize the notion of strong  
unsolvabil ity to A(C) and prove an operat ional  characterizat ion  result.

CONVENTION 4 .4 .3 .1  We emphasize that a-convertible terms are implicitly 
identified.

THEOREM 4 .4 .3 .2 (Church-Rosser) The proof  sys tem  \(3C is Church-Rosser,  
i.e.

\ P C \- A f> M i for  i =  1 ,2  =* 3 N . \ (3 C  b M { > N .

The proof of the Theorem follows the strategy of Tait and Martin-Ldf by using 
a suitably defined parallel reduction relation. Following Plotkin [Plo75], we use 
the technique of parallel reduction to prove a Standard iza t ion Theorem. First, a 
definition.

DEFINITION 4.4.3.3 (Standard Reduction Sequence)
Define standard reduction sequence on A(C) inductively as follows:

m _  _  —  iVi
[ > (x)  (C> U  { N u N 2 , - - - , N n)

,2) ( N u - - - , N n) ( N U - - - , N „ )
1 ' <Ax . N u  • • •, Ax.N„)  1 > (MJVi, • • •, M mN u  M mN 2, • • •, M mN n) '

THEOREM 4.4.3.4 (Standardization) Let  M , N  £  A(C). Then,

X/3C \- M  ^ N  <=>  3 M . M i  =  M  & M m =  N  (Mi, • • ♦, M m).

Note that any standard reduction sequence is composed of a (possibly empty) 
sequence of one-step lazy /?C-reductions followed by a (possibly empty) sequence 
of one-step /?C-reductions in which the C- and /?-redexes are systematically con
tracted in a strictly left to right order.

Lemma 4.4.3.5

(Mi, • • •, M m) =>*31 O   ̂ m . M i  -»i M i  -*^1 M m.

PROOF Straightforward induction on m  — the length of the standard reduction 
sequence. □
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The parallel reduction is defined inductively together with a measure of the 
number of one-step /?C-reductions concurrently executed in one parallel move as 
follows. This measure yields a handle on which to perform induction proofs. Let 
occ(:c, M )  =f the number of occurrences of x  in M .

DEFINITION 4 .4 .3 .6  (Parallel Reduction) We read M  N  oc p as “M  re
duces to N  in p number of one-step reductions preformed in parallel.” p is 
referred to as the size of the proof of M  >p N .

t  x ■M -AT oc Pm  N  N  oc pjy
' * (Ax . M ) N  >p M '[x  := N'] oc (pM +  occ(x, M')pat +  1)

^  C( Xx . M)  I  oc 1 C C > p I o c l

. M  M ' oc pM M  > p M 1 oc pM JV Afl cc pw
1 j Ai.Af >p \ x . M '  «  pM ( M N )  » p ( M ' N ' )  cc (pM +  Pw) '

Firstly, we note that parallel reduction has “deductive power” at least as 
great as the “uni-directional” (or reduction) version of the proof system /?C with 
formulae of the form M   ̂ N ,  as formalized in the following:

LEMMA 4.4.3.7 X/3C b M  > N  =$> 3 N . M  =  N i  > p • • • N n =  AT.

PROOF Straightforward induction. □
The following Substitution Lemma is needed in the proof of both the Church- 

Rosser and the Standardization Theorems.

LEMMA 4 .4 .3 .8  (S u b stitu tio n )

M  M 1 cc pM & N  N 1 oc pN => M \x  := N] M'[x := IV7] oc p; 

where p < Pm  +  occ(x , M i)p n .

PROOF The proof is by induction on the size of M  and by cases according to 
the last rule applied in M  M' which follows that of Lemma 5 in [Plo75, page 
137]. □

P roof  of T heorem  4 . 4 . 3 . 2  (Church-Rosser)
This is the method of Tait and Martin-Lof. Suppose the antecedent of the The
orem. First note that by Lemma 4.4.3.7, for i  =  1,2, 3JV{,- • • ,N'n. . M  =  N [
• • • >p N xn. =  Mi. By the above Substitution Lemma, the Church-Rosser property 
of the parallel reduction is easily shown. The Theorem then follows from a 
simple induction. □
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The next two Lemmas show that if the result N  of a parallel reduction of 
an application M  is the constant C, a variable or an abstraction, then the same 
result can be arrived at by performing lazy reduction on M; except in the case of 
the result being an abstraction, the “normal form” of the lazy reduction differs 
from the result in that all redexes “under” the abstraction are not contracted. 
The proofs are straightforward inductions on the size of proofs of M  N  and 
are dependent on the preceding Substitution Lemma.

LEMMA 4 .4 .3 .9 If  M  =  U V  >p N  where N  =  C or x,  then M  -+u N .  □

L e m m a  4 .4 .3 .1 0

M  =  U V  X x .P  oc Pm  =>■ 3 P ' . M  -*i Ax . P 1 Ax . P  cc p  where p  <  pM.

□

The next two Lemmas lead up to the proof of the Standardization Theorem. 
Their proofs employ lexicographic induct ion  on a pair (or more generally, an n-  
tuple) of integers (m,n). The ordering, <, used is as follows:

(m, n)  ̂ ( m \  n1) == m  <  m 1 or else m =  m' &zn < n \

Observe that lexicographic induction is just a labour-saving device; any such 
induction can always be replaced by nested (ordinary) inductions.

The length, \M\,  of a AC-term M  is defined inductively as follows:

1*1, |C| =f 1,

\ \ x . M \  =  \M\ +  1,

\ M N \  =  \M\  +  |JV|.

LEMMA 4 .4 .3 .1 1  (C o m m u ta tiv ity )

M  M '  M "  => 3 K . M  K  M".

PROOF The proof, which follows that of Lemma 8 in [Plo75, page 140], is by
lexicographic induction on |M|) where p m  is the size of proof of M  ML □

Lemma 4 .4 .3.12

(Afi, • ■ ■, M j)  & M > p Mi=> 3 ( N U • • •, N n) . N x =  M  & N n =  Afy.

PROOF The proof is by lexicographic induction on (i, P m , \ M \ )  where p M  is 
the size of proof of M  M \  and by cases on the last rule used in the proof. The 
proof follows that of Lemma 9 in [Plo75, page 141]. □
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Now, we are in a position to prove the Standardization Theorem.

PROOF OF THEOREM 4 . 4 . 3 . 4  (Standardization)
The direction “4=” is obvious. Suppose A/?C h M  ^ N .  By Lemma 4.4.3.7, 
3 N i ,  • • • , N i  such that M  =  N i  Ni =  N .  We proceed by induction on
/. The base case is obvious. Suppose true for l — 1. Then 3 K \ ,  • • •, K k . K i  =  
N 2 Kk  =  N  &: { K i ,  • • •, Kk) .  As M  K \ ,  the result follows at once from 
Lemma 4.4.3.12. □

O perational Chracterization o f Strong U nsolvability

DEFINITION 4 .4 .3 .1 3  Let M  G A(C). An infinite /?C-reduction starting from M

4' M <
A,-+i
0c

is quasi-lazy if 3(nt- : i  G co )N i  G cu.rii <  nl+1 M n. is a one-step lazy
reduction.

Next, we prove the following result:

PROPOSITION 4 .4 .3 .1 4  Let M  G A (c). If M  has an  infini te  quasi-lazy reduc
tion, then M  has an infini te lazy reduction.

LEMMA 4.4.3.15 (Substitutivity of (3C) The reduct ion — is subst itut ive:  

VM, iV G A(C).M N  =S> VP G A(C).M[x := P] —^  N [ x  := P].

PROOF The proof follows from the substitutivity of /3-reduction which is an 
easy exercise. Substitutivity of the C-reduction is immediate. □

The next Lemma says that lazy one-step reductions in a /?C-reduction can 
always be advanced.

LEMMA 4.4.3.16 (Advancement) Let  M, M \  N  G A(C). Then

(i)  M  -v !  N  —m N '  & M  M '  =* M '  -»0C N '.

( i i )  M  -»*! N ^ N '  => 3 M ' . M ± , M '  N ' .

PROOF (i) Let C7[ ], C7'[ ] range over lazy contexts. We consider the hardest of 
the three cases in which M  —>1 M', i.e. case c. with reference to Remark 4.4.2.4(i):

M  =  C [ { \ x . P ) Q ]  — C [ P [ x  : = Q\] =  M '  and 
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M  =  C[(As.P)g] - * 1  C'[(Ax . P ' W ]  =  N \

where P  P \ Q  Q' and C[]  -»pc C'[] (regarding the “hole” [] as a free 
variable). Hence, by the substitutivity of /?C,

C [ P [ x  := Q}\ C[ P' [ x  := Q\\ - ^ c C"[P'[z := Q]\ C'[P'[x  := Q']}.

Then, note that C"[(As.P')Q'] ->i C"[P'[x := Q']], and so, N '  =  C'[P'[x  := Q %  
then the result follows immediately. The proof of (ii) follows the that of Lemma 
13.2.5(ii) in [Bar84, page 328] with and the /^-Standardization Theorem re
placed by -*0C the /^-Standardization Theorem. □

The proof of Proposition 4.4.3.14 then follows from the preceding Lemma 
(Advancement) (ii) by a “diagram chase” as depicted comprehensively in Figure
13.4 in [Bar84, page 329].

DEFINITION 4.4.3.17 M  € A(C) is strongly unsolvable5, denoted M  E POo, if 

- > [ 3 N . \0 C  h M  =  A x . N]  & -.[A/JC HM  =  C]&

-[3  lazy C[]  € A(C),3x E Var.A/?C h M  =  C[x)\.

We prove an operational characterizat ion  result for strong unsolvability in /?C.

PROPOSITION 4 .4 .3 .1 8  (O perational Characterization) Let  M  E A(C).
Then, the fol lowing are equivalent:

( i )  M  is s trongly  unsolvable, i.e. M  E POo,
( i i )  M  has an infini te quasi-lazy reduction,

( ii i)  M ] \ ,

PROOF (ii) and (iii) are equivalent by Proposition 4.4.3.14. The normal forms  
of the lazy /?C-reduction, i.e. all those M  E A(C) such that M-/+\ are of the 
following syntactic shapes: C, or Ax . P  or C[x] for some lazy context. Hence, if 
M  |i  A x . P ,  say, then \(3C b M  =  A x.P; i.e. we have shown (i) => (iii). The 
converse follows from the Standardization Theorem. □

LEMMA 4.4.3.19 Â c is a A/?C-theory, i.e. XCq is a consis tent  extension of  \{3C.  

PROOF Straightforward. □

5This notion is a natural and consistent extension of strong unsolvability as introduced in 
Definition 2.1.1.3 which applies only to A-terms (without any constants).
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4.4.4 Sim ulation of Call-by-Value E valuation in Ai c

In this subsection, we show th a t convergence  (and dually, divergence) in the call- 
by-value language can be s im u la ted  in the  pure lazy language augm ented w ith a 
convergence testing constant via a s y n ta c t ic  t ra n s la t io n  of term s.

DEFINITION 4 .4 .4 .1  We define a translation ( ) : A —► A(C) by structural in
duction as follows:

d e f

A x . M
d e f

X,

A x .M ,

M N  =  C N ( ( M ) ( 7 f ) ) .

THEOREM 4 .4 .4 .2  (S im u la tio n )  L e t  M  E  A0. Then,

Af^v 4=> •

REMARK 4 .4 .4 .3 The translation  ( ) does not in general preserve the re su lt  of 
convergent call-by-value reduction. Ju st consider M  =  (Axy.x)(II). Observe 
th a t M  j|v Ay.I; whereas M  1J.C A y .II^a Ay.I. In  the sequel, we show th a t there 
is, however, a p a ra lle l /3C-reduction strategy, —>0, which sim ulates call-by-value 
reduction via the same translation in a step-w ise  fashion (see Proposition 4.4.4.9); 
whence, the result of convergent call-by-value reduction is preserved.

P roof o f the Sim ulation Theorem

The rest of this subsection will be devoted to  the  proof of the Sim ulation 
Theorem.

DEFINITION 4 .4 .4 .4  We define one-step  ca ll-b y -va lue  re d u c t io n  —>v C A° x A° 
as follows:

(1) (A i.P)(A y.Q ) ->v P [ x  :=  Xy.Q ]

. ■ M  ->Y M '  M  —>v M '

1 '  (\ x . P ) M  ->y (\ x . P ) M ' 1 1  M N  —*v M ' N '

As usual, we define M  -»y N ,  M  j v N  and M |v accordingly.

LEMMA 4 .4 .4 .5  L e t  M  G  A0. Then , M  Ax . P  M  j v Ax .P .

PROOF Straightforward induction on the number of reduction steps in in 
exactly the same way as the proof of Lemma 2.1.1.2. □
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In  the following, we define a “one-step” p a ra lle l /?C-reduction strategy in A(C) 
which simulates call-by-value reduction in a step-w ise  fashion.

DEFINITION 4 .4 .4 .6  We define a notion of reduction, —+0 Q A(C) x A(C) as 
follows:

(1)

(2)

C { X y .Q ){ { X x .P ) (X y .Q ))  ->0 P [ x  :=  Ay.Q \ 

P  —>0 P '

C P((A x.Q )P) —»>0 C P '((A z.Q )P ') (3)
P '

C Q ( P Q )  - * 0 C Q ( P 'Q )

Similarly, we defined -*0, - io  (transitive closure of —»-0), M  [ 0 N  and M | 0 ac
cordingly. We denote M  N  == M  =  M 0 — Mx —»-0 * * * —*o Afp =  IV.

Note th a t rules (1), (2) and (3) in the  definition of — are ju s t the respective 
“translation” of the correspondingly num bered rules in the Definition of —*v. This 
is m ade precise in Proposition 4.4.4.9.

REMARK 4 .4 .4 .7  I t is easy to see, by a straightforw ard inductive argum ent, th a t 
for M ,  N  €  A(C),

M  -+0 N  =» M  -»{3c N .

In particular, if M  -+Q N  according to rule ( l) ,  then M  -»f N .

LEMMA 4 .4 .4 .8  L e t  P , Q  e  A. T hen , P [ x  :=  Q] =  P [ x  :=  Q].

PROOF By structu ra l induction according to the syntactic categories of P . □

PROPOSITION 4 .4 .4 .9  (1 -S te p  S im u la tio n )  Le t M , N  S  A0. Then,

M  —s  N  <=>. M - > 0 N .

PROOF Straightforw ard structural induction according to  the  rules of Defini
tions 4.4.4.4 and 4.4.4.6 and by an appeal to  Lemma 4.4.4.8. □

An im m ediate corollary of the above Lem m a is th a t the reduction —>-0 starting  
from  any M  where M  €  A0 is d e te rm in is t ic  because —»v is.

COROLLARY 4 .4 .4 .1 0  L e t  M  € A0. I f  M  io N,  then  N  =  Ax xP .  □
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The following Proposition establishes the difficult direction i.e. “4=” in the 
bi-im plication of the Simulation Theorem.

PROPOSITION 4 .4 .4 .1 1  L e t M  =  L  fo r  som e L  E  A0. I f  M ' lo ,  then  M  has an  

in f in ite  q u as i- la zy  reduction . H ence , by the O p e ra tio n a l C h a ra c te r iz a t io n  P ro p o 

s it io n  J^.Ji.S.18, M fj.

PROOF Let M  E  A0. Suppose M |OJ he.

M  =  M 0 M i ------►*" M„ • • •.

We assert th a t  precisely one of the following three cases holds for M  (with refer
ence to  Definition 4.4.4.6):

A. An unbounded num ber of reductions A,- use rule (1).

B. 3 N  > l.V* ^  N .A {  uses (2) as the last rule.

C. 3AT ^  l.Vt > N . A i  uses (3) as the last rule.

To see why this is so, suppose case A does not hold; and th a t N  is the least 
n such th a t Vt ^  n .A t- uses (2) or (3) as the last rule.

• If Aw uses (2) as the last rule, then  M n  has syntactic shape CP((Ax.Q)P) 
where P  is not an abstraction; for otherwise, A jv+i would use rule ( l) , 
contradicting the supposition. For A n +u  the only possible candidate for 
the last rule applied is (2) w ith th e  premise P  — P ’ - P ’ clearly cannot 
be an  abstraction  for the same reason as before. Applying this argum ent 
inductively yields case B. Note th a t P | 0.

• Suppose A n  nses (3) as the last rule and M n  has syntactic shape CQ ( P Q ) .  
If P |o ,  then  it should be clear th a t  case C holds. If not, then  by Corol
lary 4.4.4.10, P  jo (Ax.P') (in which case Q  is not an abstraction), and so 
case B holds.

For ease of reading, we introduce the following shorthand. Define two classes 
of contexts param etrized by their subscripts as follows:

A u .« [] =  C[]((A*.Q)[]); £ „ [ ]  c«([]<3).

Now, if case A holds, then by Rem ark 4.4.4.7, M  has an  infinite quasi-lazy 
reduction. We consider cases B and C: 
case B: M  —0 D Xx.q [Pq\ - * 0 D \ x.q \P i ] -"►<>••• where P0To; 
case C: M  —0 P q [Po] —►<> E q [P i ] —►<>••• where PoTo-

Let P,[] range over contexts D \ x.q [] or P q [], for i  E  u> and Q  E  A(C). We 
claim  th a t
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• e i th e r  I. Some finite N  is the  largest n such th a t Vi ^  n .L n holds, where

L n : M  -*o Pl[Xi] “*‘o ~*o * * * ”*o - l̂[* * ' [-Fni-Xn]] * • *] & X nf 0>

in which case Xjvto according to  A;

• o r  II. L n is true  for all » 6 w.
Equivalently, 3{ X,- : i  G cj, X q =  M , X,-f0 } such th a t

-*?+1 F l [ - -• [F i+ 1 [ X i+1}}-••}•••

We choose inductively a canonical set of X,-’s as follows: for each i  G u ,  

X i+ i  =f th a t X  which corresponds to  the  least p  such th a t X t- F [X ]& X t0
where F  is some Z>[] or 2?[] (note th a t P ,+i =f F ) .  Observe th a t each X i| 0 
according to B or C and th a t each pt* > 0.

It should be clear th a t for case I, M \i has an infinite quasi-lazy reduction by 
induction on N .

For case II, we prescribe an infinite /?C-reduction strategy  starting  from M  

which is q u a s i- la zy . F irst, for each X,-, we specify a reduction sequence composed 
of “one-step” p a ra lle l /?C-reductions —>a (as usual, we define -*-a to  be the reflexive, 
transitive closure of —>a) starting  from X,- which

• e ith e r term inates, in which case,

Xi =  Z a -A *  ^  • - > t ' ‘ Z „  =  Ci+1[X<+1]

for some la zy  context < *«[];

• or X i  diverges under —>a and th a t the infinite /3C-reduction (i.e. the asso
ciated s ta n d a rd  reduction )  is quasi- la zy .

—>a is defined by case analysis on the syntactic shape of X i  as follows. Given:

X i  =  Yo o 1 Yi • • • ->o p’ Yp. =  F t+i[X l+i]; where P i ^  0.

1. X i  =  C(Ax.Q)((At/.P)(Ax.Q)). Then, p i >  0 and at least one —̂ - re d u c tio n  
(i.e. i  =  1) uses rule (l) ; hence, by Rem ark 4.4.4.7 the associated s tan d a rd 

ized  /?C-reduction from X f- to  P,+1[XI+1] contains a t least two one-step lazy 
reductions.

a. If P<+i j | =  D \ ]  =  C[]((Ay.S)[]), then  set =f Y { l qi =  P ;,->a *'=f-+o *' 
,C i+  i =  P<+i[] which is a lazy context.
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b. If Pi+1[] =  !£[] =  C P ([]P ), then for all 1 < i  < p{ set Z{ and — as 
in case la ; for i  > p,-, take — { to be the lazy reduction starting  from 
CR(Xi+iR),  he.

_ ^p.+y def ^Ay . CR(X .+ 1JQ =  Wo _pAl Wl ------ ► *< w . . . .

Now, the lazy reduction of CR m ay or m ay not term inate. If it term i
nates, i.e. Ci2ji after, say, l  1-step lazy reductions, then

X< P ,+1[Xi+i] =  CR { X i+ 1 R )  - 1  ( d=S? -.() I(X j+1P )
_r i  r y  i.

where Q +iJ] =f ([]P ); or else V/ 6  u .  —»•»'’*+ ,==f —►f'. Note th a t 
the associated standardized /?C-reduction of the  la tte r infinite —»a- 
reduction is quasi-lazy.

2. X i  =  C P ( ( X x .Q ) P )  and P  is not an abstraction.

a. If p, =  0, then  X i + 1  =  P ; <7, d=f 0 ,C i+1[] =  C[]((A z.Q )P).

b. If P i >  0, then  for some j  < P i we m ust have

X i  A  C(Ay.P')((Ax.Q)(Ay.P'))

—  the syntactic shape corresponding to  case 1 ; for if not, then  P f 0 
and so contradicting p i >  0. Define the —»a-reduction from  X t- to 
consist first of the finite sequence of the  preceding -^ -re d u c tio n , then 
fo llo w ed  by the  (possibly infinite) sequence of —>a-reduction starting 
from  C(Ay.P')((Ax.Q)(Ay.P')) as specified in case 1.

3. Xi =  CQ(PQ)  where P  is not an abstraction.

a. If p i =  0, then  X t+i =  P . Define the —>a-reduction starting  from X i  
as identical to  the lazy reduction of CQ (as in case lb )  which may or 
may not term inate. If CQji does, then

x.- A  1 ( P Q )  ( P Q )  s  C,.+1[Xi+1];

where C,+i =f ([ ]Q) or else, X i  diverges under —*a. As in case lb , the 
associated infinite standardized /?C-reduction is quasi-lazy.

b. If p i >  0, then  we m ust have X i  -»Q CQ((Ax.P')Q) —  the syntactic 
shape corresponding to case 2 or 1 — for some P '.  Define the —>a- 
reduction from  X t- to  be composed of the sequence of the preceding —>0- 
reduction followed by the -* a-reduction starting  from CQ((Xx.P')Q)  
as prescribed in case 2 or 1 respectively.
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Now, we are in a position to  define an infinite reduction composed of —*a- 
reductions from  Xo =  M  as follows. F irst, observe th a t

P ' ^ V  lazy C\ ] €  A(C).C[P] - m C[Q }.

We confuse —»a w ith its la zy  com patible closure in the following way: If X t- -*a 
Ci+i[Xi+i] then for any la zy  con text C [], we w rite C [ X i]  -»a C'[C'1-+i[Xt-+i]].

Let N  be the  least i  such th a t X ,-|a; of course N  may be cj, in which case, 
consider the following infinite reduction:

m  =  x o c x̂,] — 1< c,[- • • [c.ix,]] •■•]••• CjI- • ■ [cw[xN]] ■••]•••
We claim th a t the above infinite /?C-reduction (just “decompose” the —>Q- 

reduction into its associated standardized /?C-reduction) is quasi-lazy.
To see this, we check through the above cases. Note th a t the —>a-reduction 

segment from  X,- to C,+i[X t+i] corresponding to  cases la ,  lb , 2b and 3a all involve 
a t least one lazy-reduction step. Hence, we only need to  check the remaining 
case of an infinite reduction from  M  as defined above which use cases la , lb ,  
2b and 3a only f in it e ly  m any times, say all before the  —>a-reduction of X^». In 
other words, all —>a-reductions after X w  correspond to  either cases 2a or 3b. 
This implies th a t the syntactically f in it e  AC-term X n 1 has the  syntactic shape of 
C(* • • (C •••)•• - ) (P Q )  such th a t n  is unbounded  which is absurd.
----- V---- '

n
We therefore conclude the  proof. □

P roof of T heorem  4 .4 .4 .2
Let M  G A°. Suppose M  JJ.V Arr.P, i.e. M  | v Ax . P  by Lem m a 4.4.4.S. By an 
appeal to  the the 1-Step Sim ulation Proposition, we have M  -*0 A x .P . By the 
S tandardization Theorem , we have M \ J-c. Now, suppose Then, M j“0; and
so, by Proposition 4.4.4.11, M |i ,  th a t  is to say, by O perational C haracteri
zation Proposition  4.4.3.18. □

4.5 N o n  Full A b stra ctio n  R esu lts
We present two non full abstraction  results in this section: namely, X t  and Xtc  

are no t fully abstrac t w ith respect to D .  Any la zy  re flex ive  ob ject in the category 
of cpo’s expands to a lazy A-model which we call a topo log ica l la zy  X -m ode l. A 
corollary of the first non full abstraction  result is th a t adequate  lazy topological 
A-models are in com p le te  w ith  respect to fully lazy A-theories. The second non 
full abstraction  result depends on the non definability of parallel convergence in 
X t c , which we prove by a syntactic case analysis.
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4.5.1 Ai  is not Fully A bstract w .r.t. D

We sta te  the first negative full-abstraction result.

THEOREM 4 .5 .1 .1  (N o n  F u ll A b s t r a c t io n  1) 3 M , N  E A . M  ~ B N  &; D  ¥  

M  =  N .

PROOF Let M  =  x(Ay.xTJ_y)T,7V =  x(xT_L)T where _L is any strongly 
unsolvable term , or equivalently a P O Q-term  and T is a POoo-term, for instance, 
13 =  (Ax.xx)(Ax.xx) and Y K  respectively. We show:

I. M  ~ B N ,

II. D  * M  =  N .

I. We claim  th a t

A/? b AJ,i => A  =  X y .A y  for y  ^  FV(A).

(Recall form  C hapter 2 th a t A  X x .P  <==> A ji).

X y .A y  =p X y .{ X x .P ) y  /^-conversion 

= 0  X y .P [ x  := y] a-conversion 

= a  X x .P  

A -

Consequently, to  show I, it suffices to  show:

Vcr: Var -> A ° .o (x )  =  L.LT_Lft =► M a N a ,

since ~ B is a congruence relation. We consider the various cases for L  such th a t 
ZrTXft. Now, it should be clear th a t L  ?$. We rem ark the following:

• If a closed A-term P  E O 26, then, m odulo /^-convertibility, P  m ust have one 
of the following syntactic shapes:

(1) Axix2.J_,

(2) Ax1x2.x1P ,

(3) AxiX2.x2P.

•  If a closed A-term P  £  O i, then, modulo /^-convertibility, P  m ust have the 
following:

(1) Ax._L,

6Recall that for n £ ca, M £ O n i f n i s  the largest i such that 3N.X/3 h M  — X x i • • • Xi.N. 
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(2) X x .x P .

By elimination, we arrive a t the following cases for L  such th a t L T

(a) L  =  J-,

(b) L  — A:r._L,

(c) L  =  X x \ x 2.J_,

(d) L  =  X x ix 2.x 2P .

We tabu la te  the simple calculation of each case as follows:

M a K

(a),(b),(c) _L ±

(d) T T

Hence, M  N .

II. For any environm ent such th a t p (x ) =  c where c is the convergence testing 
constant in D ,  we have

M ,  =  c(Ay.cT _Lt/)T =  T ,

1^1 , =  c(cT X )T  =  cXT =  X.

Hence, D  F  M  =  N .  □
A  fo r t r io r i,  we have the following im m ediate corollary:

COROLLARY 4 .5 .1 .2  The in e q u a tio n a l theo ry  X i  is  no t f u l ly  ab s trac t w ith  respect 
to  D ,  i.e. it  is  n o t  tru e  tha t:

W M ,N  €  A f . M  SB JV =>• D P  M  C N .

T opological Incom pleteness

It is well-known th a t any reflexive object in the C artesian closed category of 
cpo’s and Scott continuous functions is a A-model which we refer to  as a topo log ica l 
X -m o d e l, following Honsell and Ronchi della Rocca [HdR88]. Let E  be an object 
of the same category. We say th a t E  is la z y  re flex ive  if [ E  —> E } ± < E ; i.e. the 
lif te d  function space of E  is a re trac t into E .  It is straightforw ard to  see, by 
essentially the same argum ents as th a t for £>, th a t a lazy reflexive object is a lazy 
A-model. We call such a A-model a topo log ica l la zy  X -m ode l.
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DEFINITION 4 .5 .1 .3  A lazy A-model A  =  ( A , [—|) is fu l ly  la zy  if

Vm, n  6  u  +  l.V M  6 V O m.V N  6  P O n.il t  M  = N  <==> m  =  n.

OPEN QUESTION 4 .5 .1 .4  It is obvious th a t a fully lazy topological A-model is 
adequate. Is the converse true? T hat is to  say, if all strongly unsolvable terms 
have the same denotation in a lazy topological A-model, does it follow th a t all 
POoo-term s have the same denotation? (We can infer from the  premise th a t for 
any fixed n  £  w, all P O n-term s have the same denotation.)

It is natu ral to  ask if all fully lazy A-theories are induced by fully lazy topo
logical A-models, i.e. if fully lazy topological A-models are com p le te  w ith respect 
to fully lazy A-theories.

Now, let E  be a fully lazy topological A-model. Then M  and N  in the proof 
of the Theorem  have different denotations in E  because convergence testing is 
definable in E , as is the case in D .  We therefore have a simple proof of the 
following incompleteness result:

COROLLARY 4 .5 .1 .5  (T o p o lo g ic a l In c o m p le te n e s s )  F u l ly  la zy  topo log ica l 
\ -m o d e ls  are in com p le te  w ith  respect to  fu l ly  la zy  X -theo ries . □

Com pare the Corollary w ith the topological incompleteness result in [HdR88], 
A nother Corollary of the Non Full A bstraction  Theorem  is the following:

COROLLARY 4 .5 .1 .6  (C on vergen ce  te s t in g  is n o t A -definable)
Convergence  te s t in g  is  no t de finab le  in  (A°,-|j.).

PROOF If convergence testing were definable in by C  say, then with
reference to the same M  and N  in the proof of Theorem 4.5.1.1, for o  such that 
a (x )  =  C  we have and contradicting I in the proof of the Theorem. □

4.5.2 Ai c  is not Fully A bstract w .r.t. D

Given th a t convergence testing is definable in D  and th a t in the  construction of 
our previous counter-exam ple for the non full-abstraction of X i  w ith  respect to 
D , convergence testing features so pivotally; it is a t least plausible th a t Ai c might 
be fully abstrac t w ith respect to D .  This tu rns out not to be the case.

This result was first obtained by Samson A bram sky in [Abr87] as a corollary 
of his full abstraction  result obtained by bringing domain logic to  bear on the 
lazy A-calculus. It was la te r independently obtained by the au thor by a direct, 
syntactic m ethod. T he following definitions are introduced to  facilitate the case 
analysis in the  proof of the non-full abstraction result.
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DEFINITION 4 .5 .2 .1  We define two binary reduction relations on A(C): JJ-X, || C 
A(C) x  A(C) by the following inference rules. Let P, Q, M , N  range over (possibly 
open) AC-terms.

(abs-lj.x)
Ax . M  Ax . M

( c -W
c j ; x c

(Av-^x)
M ^ X x . P  P [ x  :=  Q ]ty x N  

M Q  ^X N

(CA4x)
M j|x 

C M  JJ.X I

(var"ii)
*11 x

(C-|j,Q-
M  || N

C M  || C N  M Q  || N Q

(A H I)
M i i - x X x .P  P [ x  :=  Q] || JV 

M Q  || N

As usual, we define convergence predicates JJ.X and ||.

M l |x =  3N . M  N .

Similarly, for M \\. Note th a t the divergence predicate is defined as

M frx ^ t -1[MJ|x]& - [M ||] .

REMARK 4 .5 .2 .2  (i) The set of four inference rules post-fixed by JJ.X are ex
actly the same as those for (except, of course, the m eta-variables in the 
former range over possibly open AC-terms whereas those in the la tte r over 
closed term s). Hence, (regarding -l|c as a binary relation on A(C)), is a 
conservative extension of lj.c, i.e. for M  6  A(C)°, we have M \ J-c <=> M \ J-x.

(ii) We read M  \\ N  as “M  converges p a r t ia lly  to N ” . “P artia lity” arises ex
pectedly from the u n in s ta n t ia te d  free variables which m ight occur in head 
variable position in the AC-terms being considered for reduction.
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The following Lemma asserts th a t JJ-X and || together specify a d e te rm in is t ic  

reduction stra tegy  for AC-terms.

LEMMA 4 .5 .2 .3  L e t M  G A(C) and  FV(M) =  { x i , - •* ,£ „}  where n  ^  0. T h en , 

p re c ise ly  one o f  the fo llo w in g  ho lds:

(1 )  M frx,
(2 ) M  JJ-x X x .P ,

(S)

(4 ) M  || C [x \ where  C[] is  a la zy  context.

PROOF By a straightforward argument from the definition of Mf|-X and the 
observation that (2) and (3) describe the two syntactic classes of “normal forms” 
of ĵ-x and that (4) captures the “normal forms” of ||. □

LEMMA 4 .5 .2 .4  Le t M  G A(C) and  le t C[] range ove r la zy  contexts. T h en ,

( i)  M  i i C  <=> M ^ XC.

(it) M  U  X x . P  <£=> M  4 X X x .P .

(H i)  M  h C [ x \  <=> M  || C [x \ .

( iv )  M  | i  <(=> Mf|-X.

PROOF Straightforw ard induction on the num ber of one-step /?C-reductions 
in M  J|x N  and M  || C [x \. □

EXAMPLE 4 .5 .2 .5  We present some examples of —̂ -divergent AC-terms:

(i) Let A i =  X x .C x x x .  Then, A i A i —>\ C A iA iA i — Ai Ai  —>i • • •.

(ii) Let A 2 =  X x .C (x x ) .  Then, Vrc. G w.A2A 2 C(C(- • • (C(A2A 2)) • • •)).
n

(iii) Let A 3 =  X x .x x C .  Then, A 3A 3 —>1 A 3A 3C —̂  —>i A 3A 3 C • • ■ C —>1 • • •.
n

The next Lemma makes precise the idea th a t J|x and f[-x are natural extensions 
of Jj.c and f|-c respectively to  possibly open AC term s in a way th a t respects closed 
substitutions.

LEMMA 4 .5 .2 .6 Le t M  G A(c) such  tha t FV(M) =  { x } . Then,

( i)  M  JJ.X iV Va : Var -> A(C)°.M <y JJC N a .

( i i )  M frx =» V<7 : Var -> A(C
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(H i)  Mfl* =*■ Ax . M  ~ B A x .0  where  0  £  A (C )°& 0f|-c. See the p re v io u s  E xam p le  
f o r  som e such  can d id a te s .

P roof

(i) By Lemma 4.5.2.4 and the substitu tiv ity  of

(ii) Suppose ATf|-x. Then, by Lemma 4.5.2.4, i* By the substitu tiv ity  of -*i, 
we have M a| i  and so, by Lemma 4.5.2.4 again, M af|-c.

(iii) In view of (ii), it is easy to see th a t

VP C A(C)°.(Ax.M)PJJ-c (A x.Q )P4C.

□

DEFINITION 4 .5 .2 .7  Let K =  ( K ,  •,-!].%} be an aswd. We say th a t p a ra lle l con 

vergence is  de finab le  in K  if there exists p  €  K  such th a t for x, y  €  K ,  K  satisfies 
the following:

• =>• pxy^K & pj/xJJ-jc,
• xf\k  S cy f[K =► pxyftjc-

PROPOSITION 4 .5 .2 .8  (N o n  A C -definab ility  o f  P) L e t  P  6 A(C)°. Then,

* PJ__Lftc =>• PJ.ii.'d 'c  orPAJ_if|-c

where X is  a n y  d ivergen t AC-te rm  an d  _Li is  a n y  least convergen t te rm , sa y  Ax.X. 
H ence , parallel convergence is  n o t de finab le  in  (A(C)°, 4c)«

PROOF Wlog, we assum e PJJ-C, PJ_4J-C and P  $  7$ which leaves us w ith the 
case of P  4c Ax.M and th a t FV(M) C { x  };

By applying Lemma 4.5.2.3 to  M , we assert th a t P  has one of the  following 
syntactic shapes, modulo /^-convertibility:

(1) Ax.X,

(2) Ax.C,

(3) Ax.C[x],

(4) Axix2.± ,

(5) AxiX2.C[xt] where % =  1,2,
(6) Ax i X2.C;

where C [  ] ranges over lazy contexts and X over —̂ -divergent AC-terms. Observe 
th a t (6) satisfies (*) vacuously because the antecedent is not satisfied. It is 
straightforw ard to  check th a t ( l) , (2), (3) and (4) satisfy (*). For (5), if i  =  1, 
then P X X i4 0  if i  =  2 then P X iX ftc. □
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Now, we are in a position to  prove the second non full abstraction  result. (See 
[Abr87] for a different proof.)

THEOREM 4 .5 .2 .9  (N o n  F u ll A b s t r a c t io n  2) 3M , N  €  A(C) . M  ~ c N  k  D  ¥  

M = N .

PROOF Let ±  and ±1 be as before. Consider the  following terms:

M  =  Ax.C(C(x±i_L)i4), N  =  X x .C (C ( x ± !  ± )B )  

where A  =  (x_L_L),P =  (z±J_i). We show:

I. M  Ec N  & N  £c M .

II. D  * M  =  N .

I: Let C \ ] =  Ax.C(C(x±i_L)(x±[])). Then, notice th a t M  =  C[_L], JV =  C[JLi]. 
Since _L £c _Li, by the precongruence of Ec, we deduce th a t M  Ec N .  To show 
N  £c AT, we only need to show

(*) VP €  A(C) ° .N P ty c =» M Pfj.c.

This is because: first, we have N ty c and  M - IJ-C. Next, assume (*) is valid. Then, 
observe th a t,

N P Q ^ C => N P $ c U c Q $ c 

=> M P  -D-c I  & Q'U'c 

=► M P Q ^ C.

To verify (*), we claim th a t it suffices to  consider those P  such th a t (let a  be 
the substitu tion  m apping x  to P ) B c tyc & A aftc. This is because: if B a§ c, then 
iV'PfLcj if then (note th a t A a =  P_L_L, by _L 5C _Li and the precongruence
of Ec) PJ-iX-IJ-c, whence M P |)C. Now, suppose B a =  P_L±ifJ.c and A a =  P ± ± f t c . 
By the  non AC-definability of P, we m ust have P ± .i± ^ c , and so, N P f t c , and we 
are done.

II: Let parallel convergence testing be definable in D  by p. Then, and
JiVjpJJ. in D .  □

4 .6  C o n stru ctio n  o f  Fully A b stra ct M od els

4.6.1 O verview  of the Fully A bstract Subm odel C onstruc
tion  and its P roof

T he Problem
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Let K  =  (if , •*, JJ-jc) be a fu l ly  adequate  Its, i.e. there is a m ap k  : i f  —► D  
th a t preserves application (in K )  and A-terms such th a t VM € A ( K ) ° . M ^ k  =>• 
D  1= where the in terpre ta tion  of M  in D  is defined via the m ap k . We aim  
to  construct Q K , a re tra c t  of D , which is f u l ly  ab s trac t  w ith  respect to  K  by the
re s t r ic t iv e  approach. T h a t is to  say Q K D  Q K w ith  o <f>K =  id and 

VM  e  A (jr )» .lM |K d=t? ^ ( |[M ] |) ;  

satisfying VM, JV €  A(if)°,

.  p O T f  =  [ M f  •* p v f ;

• M Z K N  <=> Q K t M Q N .

In the  following, we present a  sketch of the general stra tegy  we shall adopt 
to  construct such Q K for any fully-adequate Its K .  However, we are only able to  
prove  th a t  Q K is fully ab strac t for K  for a restricted  class of lts ’s, which includes 
\ £ c and  A£w, a “labelled” version of Ai  (to be introduced later).

C onstruction  of

The construction relies on a b is im u la t io n  lo g ica l re la t io n , <K , between D  and 
K  which captures the extent to  which an  element d  of D  b is im u la te s  an  element 
M  of A (if)°  w ith respect to a suite of tests  consisting of elements of A(Jf)°. 
< * C  D  x  A ( K ) °  satisfies the  following recursive specification: d <K M  iff

• VP C A ( K ) ° .D  1= d P \ f  =* K  1= M P %  &

• Ve €  D.ViV 6  A (if)°.[e  <K N  => de <K M N \ .

Thus, < K may be seen as a  natural extension of the by now fam iliar notion of 
bisim ulation to one between two d iffe ren t  lts ’s. Intuitively, d < K M  if “all th a t 
can be observed about d  in D  by applying it to  term s in A (If)°  can equally be 
observed about M in K ” . <K satisfies the property  of a rb it ra ry  j o in  in c lu s iv e n e ss , 
i.e. for any X  C D

[Vx 6 X . x  <K M \  =» ( □  X )  <K M.

Define a preorder on D  as

d z K e =  V M e  A { K ) ° .e  <K M  =► d <K M.

7Abramsky calls it K-sensible.
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<* compares the extent to which any two elements in D  b is im u la te  elements 
of A ( K ) ° .  Finally, Q* is obtained by taking the  respective supremums of the 
equivalence classes induced by the preoder <*.

P roof o f Full A bstraction

This we secure by a technique first employed in [Mil77], see also [Mul86]. 
C onstruct for the model Q K and the language K  respectively a chain of app rox i- 
m an ts  such th a t, roughly speaking, bo th  the model Q K and the language K  are 
appropriate  com p le tio n s  of their respective chains.

We assume th a t the c a n o n ic a l p ro je c t io n s  (fpn)n€u, are de finab le  in  the language  

K  by ( ^ n ) nGw in the sense th a t VM, N  G A (if)° , and n  €  cj, K  satisfies the 
following:

• ~ K A:c._L,
• Vfn+iMfyic <=$> Mlj-jc,

.  * n+iM N ~ k  9 n( M ( 9 nN ) ) ,

where _L represents any divergent element in K , f.e. ; and th a t K  is re fle c t ive ,
i.e.

VM G A { K ) ° \ M \  <K M .

• For each i  G w, define A [ K ) °  as the smallest subset of A ( K ) °  containing

{ V i M  : M  e  A { K ) 0 }

closed under application and == (A(iC)®, 4J-at) , the i- th  ap p ro x im an t

o f the language K , is a well-defined q-aswd and denote the associated bisim
ulation ordering as E*.

• Define for each i  G l j , Q f , the i- th  a p p ro x im a n t o f  the m ode l, consisting 
of the  respective suprem um s of the intersection of D{  and the equivalence 
classes induced by <*.

Full abstraction of the co m p le tio n , i.e. VM, iV G A(JT)°,

M E *  N  Q k  N M C iV ;

then  follows from the full abstraction  of the approxim ants, i.e. VM, N  G A (if)?  

M  Ef N  <*==> Q t ^ M Q N
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by a continuity argum ent. To summarize, we solve the above-mentioned problem  
for a class of Its as follows:

THEOREM 4 .6 .1 .1  (F u ll A b s t r a c t io n )  L e t  K  be a fu lly -adequa te , re fle x ive  Its 

in  w h ich  the p ro je c t io n  fu n c t io n s  are in te rn a lly  definab le . Then, \ / M ,N  £  A(iC)°

M E *  N  <=> Q k  h M  C N .

□

A£c satisfies the premises of the Theorem , hence a fully abstract model which 
is a re trac t of D  exists (and can be constructed) for it. Similarly for X L  The 
same m ethod reduces the full abstraction  problem for Ai  to  an open question 
about co n se rv a t iv ity  of Ai w over X L

C om plem entarity o f  C in the Lazy Regim e

The convergence testing constant C introduced to A£c enables the projection 
functions (ipn)neu to  be in te rn a lly  de finab le  thereby m aking it possible to  enun
ciate finite dom ain-theoretic inform ation w ithin the language X Iq. The domain- 
theoretic role C plays is clear: the l if te d  space D±  is ju s t un itary  separated sum  
and C constitutes the corresponding d is c r im in a to ry  fu n c t io n  [PI08I] i.e. the “elim
ination” operation concom itant to the “introduction” operation up^.

T h a t convergence testing com p lem en ts  lazy A-calculus is reinforced further 
from  a category-theoretic perspective. In  C hapter 5, we introduce a formal proof 
system  Al  based on S cott’s logic of existence [Sco79] which is correct (see [Plo75] 
for definition) w .r.t. A £ and may be given a sound in terpre ta tion  in partia l cate
gories. The in terpreta tion  is com p le te  only for the subclass of Al  in which conver
gence testing is definable. These results lead us to  conclude th a t a foundational 
trea tm en t of lazy functional program m ing in the framework of the pure untyped 
A-calculus should include as fundam ental a device for testing convergence. We 
propose X tc  as such a framework.

4.6.2 A pproxim ants of the Language: Ki =  ( A ( K ) * A k )

In this section, we make precise the notion of the ap p ro x im a n ts  of languages 
(which are lts ’s) given the assum ption th a t p ro je c t io n  m aps  are internally de
finable. The projection maps in question are essentially appropriate sy n ta c t ic  

representations of the canonical projection maps form D  to  D n. For this class of 
languages which includes A£c and A£w (to  be introduced), we prove an O p e ra tio n a l
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A p p ro x im a t io n  L e m m a  which relates bisimulation preorders of the sub-languages  

to the f u l l  language.
Let K  =  ( K ^ ic )  be a Its. Denote the associated bisim ulation preorder and 

equivalence by and ~ K respectively.

DEFINITION 4 .6 .2 .1  (i) We say that p ro je c t io n  m aps are  de finab le  in K  if
there exists (Wn €  A { K )°  : n  €  cj) such that for all M , N  £  A ( K ) °  and 
n  £ oj, K  satisfies:

-  Wo ~ K Ax.JL,

-  <*=> MJJ-k ,

-  * n+1M N ~ K Wn(M(W„W));
where _L represents any divergent element in K, i.e. -Lftjc- Note th a t it 
follows, by an  inductive argum ent, th a t K  satisfies

~ K 4 ,min(m.n)M;

where m in(m , n) is the m inim um  of m  and n.

(ii) For i  £  w, define A(iC)? inductively as follows:

M  £  A(iC)° M i, • • • ,A fm £  A(iC)" m ^ l  
W ,M  £  A (if)?  (M i • • • M m) £  A (if)?

M £ A ( i f ) ?  M ~ k N  

N  £  A (if)?

In other words, A (if)?  is the least subset of A (if)°  containing 

{ W ,M  : M  £  A (if)°  } 

which is closed under application and

NOTATION 4 .6 .2 .2  We abbreviate W,M as M*.

Clearly, =f (A (if)? , JJ.*-), the i- th  a p p ro x im a n t o f  K  w ith  subject to the 
obvious restriction is an aswd. Denote the  associated bisim ulation preorder and 
equivalence by Ef and respectively.

REMARK 4 .6 .2 .3  In  the above Definition, we have assumed th a t AT is a Its. 
However, for the notions ju s t introduced (i.e. definability of projection maps and 
approxim ants of the language) to make sense, it suffices for K  to  be a q-aswd w ith 
an in terpreta tion  of A-terms. Specifically, the satisfaction of the axiom (aswd) is 
no t required.
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REMARK 4 .6 .2 .4  (i) By definition,

VM 6  A(A')?.3M 1, • • •, M m 6  A (K )°, m ?  l .M  ~ K M [  • ■ ■ M*m.

(ii) VM €  A ( K ) ° . M '  M .  This is because,

M ‘ ~ K (M [  ■ ■ ■ M ^ Y  By (i)

~ K ( ( M i M ' f 1 ■ ■ ■ By Definition 4.6.2.1(i)

~ K (MiM'f1 ■ ■ ■ M i~m+l) i- m+1 

~ K M .

(iii) For the same reason as (ii), we have VM 6 A ( K ) ° . M  M ,+1 which 
implies th a t  Vt 6  u r .A (K )°  C A(iT)°+1.

LEMMA 4 .6 .2 .5  (O p e ra t io n a l  A p p ro x im a tio n )  L e t  K  =  (FT,-Or) be an  Its in  

w h ich  p ro je c t io n  m aps a re  de finab le  an d  le t i  £  oj.

( i)  L e t  M , N  €  A ( K ) ° .  Then, M S *  N  =4- Vt €  w .M ‘ s f  N \

( i i )  L e t M , N  6  A ( K ) ° .  Then, M  s f  N  =t> M E *  N .

PROOF (i) By definition of E*. For (ii), let M , N  6  A ( K ) °  such th a t M  E,* N .  

Let X \ ,  ■ ■ • , X i  C A ( K ) °  for / €  u>. Then, by (ii) of Rem ark 4.6.2.4,

M X i  • ■ ■ X i  ~ *  M ' X i  ■ • ■ X i  Definition 4.6.2.1

~ *  ( M x t 1 - - - x i, - ,y->.

Observe th a t X X ’  g  A {K )° .  Now, by Definition 4.6.2.1 

M X i - ' - X & K  => M X i - X . - X i - ^ K  by premise

=► N X i - ' - X t l f K  .

We have thus shown M  N .  □

COROLLARY 4.G .2.6 Let M , N  e  A (if)? . Then,

M  ~ K N  <=> M ~ f  N .

Hence, for M  G A (if)? , M  M \  □
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Projection  M aps are definable in X i c

Recall the sequence of AC-terms (\Pn : n  £  u )  defining the respective canonical 
projections of D  to D n.

Lemma 4 .6 .2 .7  L e t M , N , P  E A(C) an d  n , m £ u .

( i)  M ty x <=> * n+iAffix-

( i i )  ¥ „ ( * mP) ~ C ^min(m,n)P.
(H i)  ( * n+iM)N  ~ c & n( M nN ) )  ~ c ( * n+1M ) ( * nN).

H ence , p ro je c t io n  m aps are de finab le  in  \ t c .

PROOF (i) is immediate from the definition of ^n+i- We prove the first 
equivalence of (iii) by induction on n. The base case of n  =  0 is trivial.

{ * n+1M ) N  ~ c C M (A y.*n( M ( * ny)))AT 

~ c C M (® n(M (¥ J V )) ) .

The last step is justified because CM P N  ~ c C M ( P N )  which m ay be seen to  
hold by a simple case analysis according to w hether M \ J.x or M ffx. Similarly, 
by definition of tp,,, we have C M (\£n(M (\P niV)) ~ c (®rn( M ( ^ niV)). Hence, 
{ & n + i M ) N  ~ c ¥ n ( M ( * nAT)).

Next, we prove (ii) by induction o n n  +  m =  k. The base cases of k  =  0 and 
n, m  < 1 are trivial. Suppose true for n  +  ra =  k. Now, let m  +  n  =  k  +  1. Wlog, 
assume n ,m  > 1.

~ c C(®mF)(Ay.»„_1( ( * mP)(® „-,y)))

~ c CP(Ay.®„_1(®m. 1(F (® m- 1(®n. 1y)))))

~  ^-P(-^2/*^min(n—l,m—1) (P (1®rmin(n—l,m-l))) )

^min (n,m)P*

(i) and (iii) 

ind. hyp.

Finally, we apply (ii) and the first equivalence of (iii) to  prove the second 
equivalence of (iii).

( * n+1M ) ( * nN ) c * n( M ( * n ( * nN ) ) )  (ii) 

c ¥ n( M ( ¥ n7V)) 

c { * n+1M ) N .

□
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The Lam bda Transition System  Ai w —  ((Aw)°,^w)

Observe th a t projection maps are not definable in AL  This is because the 
on ly  A-term X  th a t d is c r im in a te s  between convergent and divergent elements in 
the following elem entary way

VM e  A 0.
x M fr

if M il, 

if M f c

is the identity I.
We therefore define a new q-aswd X iw =  ((A")0,!]^) w ith  Aw == A((\£n : n e  

w)) which is essentially Ai  augm ented w ith the projection constan ts. Note th a t 
the formal constants }&n here are not to  be confused w ith  the AC-terms called 
by the same nam e which were introduced previously: the  context in which they 
occur should clarify which of the two is m eant.

DEFINITION 4 .6 .2 .8  We w rite Aw =f A ((^ n  '• n  €  w)). The binary reduction 
relation C (Aw)° x (Aw)° is defined inductively as follows:

& n Uu, Ax . P  Ax . P

M l |w^ n+i M  1J.W Ax.P P [ x  :=  Q] l |w N
M N \ j . u X y .^ n{ N { ^ ny)) M Q ^ N

Define the bisim ulation preorder and equivalence accordingly.

We provide a re la tive  in te rp re ta t io n  of l |w in l |c via a syntactic translation  

( - ) '  : A“ -  A(C)

where M '  =f “M  with all occurrences of the fo rm a l con stan ts  Wt- replaced by the 
AC -te rm s  for each respective i  e  cj.”

LEMMA 4 .6 .2 .9  L e t  M e  A * . M  N  <=> M 'J|c iV'.

PROOF Straightforward induction according to the rules in Definitions 4.6.2.8 
and 4.4.1.2 respectively. □

As a helpful consequence, we have the  following:

COROLLARY 4 .6 .2 .1 0  L e t M , N  6  fAwl°. Then, M' £c N* => M  N .  * 
The converse is not true  — ju st consider the pair of terms: M  =  i ( a : (K n ) n )  (K O )
and N  =  a:(A j/.a;(K n)n2/ ) (K n ) .  The proof th a t M  /* UN  requires a careful syn
tactic  case analysis.
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Since projection maps are definable in \ i c, by an appeal to the preceding 
Corollary, we conclude th a t

LEMMA 4 .6 .2 .1 1  P ro je c t io n  m aps are  de finab le  in  X£u . □

PROPOSITION 4 .6 .2 .1 2  (C o n te x tu a l  E q u iv a le n c e )  VM, iV €  ( A T  : 

M  E" N  <=► VC[] G (A")°.C[Af]^„ =► C[JV]().„.
H en ce , X£u is  an  aswd, i.e. Ew is  a lo g ica l re la tion .

PROOF The proof uses some dom ain logic notions of Abramsky. We will 
assume the reader’s fam iliarity w ith [Abr87, Chap 6] and use his notations.

Define for n  £  w, F n : t  —► t  where £ , the domain logic, is defined on page 
188 of op. c it.

F 0(4>)

■fn+l (t)

F n+l(<t> A lp )  

F n+ l((<l> -  VOx)

=  F n+1(<t>) A  F „ +1(t1>), 

=  (Fn(4>) -  F n( M ± -

Note th a t F n ( F n<j>) =  F n(<f>).

Define P „  =  { ( F n(<f>) F n(<£))j. : <f> 6  £  } t  G Filt£. We claim

Vn G w .P„ C tAC(* „ )

where is the unique “logic”-preserving morphism  (of the category L T S ) from 
X t w to D  as defined on page 197 in op. c it.

The argum ent then  follows th a t which Abramsky developed to  prove Theo
rem  6.6.11 (of which this Proposition is an analogue) found on page 210 of op. c it.

We prove the claim  by induction on n. The base case is trivial. Suppose the 
claim is true for some n  ^ 0. Let M  t=£ F n+i((f>) =  (ip — ► ( ip1 —* ipu) ± ) ±  for some 
<f> €  L .  Note th a t (ip* —► i p " ) ± =  F n(9) and ip =  F n (9') for some 6 ,0 ' € £ .

Then, it suffices to  prove

(t) $ n+1M ^ ( ^ ( ^ f )  ± ) ± m

Clearly, and so, to prove (f), it suffices to prove:

{t) N  Kc 0  =» Wr+iMN ~ w * n( M ( * nN)) \=c {i/,' -

the preceding equivalence is justified because projection maps are definable 
in X£u .

By induction hypothesis, V<p 6  ( i^ t^ )  -'*■ If follows th a t
& n N  \=c ip =  F n (6 '), and so M ( t f niV) N£ ( j j ' 0 M)j. =  F n(0). (t) then  follows 
from another appeal to the induction hypothesis. □
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An im portan t corollary of the Proposition is the satisfaction of the axiom 
(aswd); and so, it is easy to see th a t A£w (i.e. the associated quotient structure 
((Aw) 7 ~ " l ^ w»  is a Its.

A n Open Q uestion

Aw is rem iniscent of the  classical labelled A-terms (see C hapter 3): the only 
difference is th a t the labe ls  themselves i.e. tp,-, which belong to  Aw, are not labelled 
term s. A0 may be seen as the collection of l im it s  of all “p artia l” term s (i.e. those 
w ith labels) in (Aw)° w ith respect to the obvious ordering induced by the labels. 
In  other words, given any term  M  €  (Aw)°, there  is a  te rm  \M \  E A° defined 
by replacing all w ith I, which M  approxim ates. Now, it is obvious th a t for 
M, iV E A0,

M  N  =» M E 5 N ,

because extends f). conservatively. However, is the following true?

O pen  Q uestion  4 .6 .2 .1 3  L e t  M , N  e A0.

( i)  M E 5 N  => N ?

( i i )  M  ~ B N = >  M ~ u N ?

The fact th a t (Au)° is a superset of A0 gives us some grounds to suspect the 
fa ls ity  of the  above im plications because in general, w ith  an  enlarged suite of 
tests available in (Aw)°, one expects to differentiate more finely between terms. 
However, the new tests consist in ap p ro x im a n ts  of term s which a lready  ex ist in 
A°, from  which one m ight perhaps surmise th a t nothing re a lly  new or of much 
consequence is introduced in (Aw)°. We shall see th a t if O pen Question 4.6.2.13(i) 
is true, then  our argum ent for the construction of a fully abstrac t model for Ai  

is valid.

4.6.3 B isim ulation  Logical R elations and their Properties
In this section, we study b is im u la t io n  lo g ic a l re la tion s . H itherto, we have consid
ered only how an element of a Its might b is im u la te  another element of the same  

Its, and this w ith respect to a suite of tests (which are again elements of the 
same Its) consisting of “inputs argum ents” to  be applied. B isim ulation logical 
relations may be regarded as the natural extension of the notion of bisimulation 
to one between elements of d iffe ren t lts ’s. Given any Its K ,  < * , the bisim ulation 
logical relation between D  and K  is by construction a lo g ica l re la t io n . Further, 
<K is a rb it ra ry  j o in  in c lu s iv e .  We consider specifically <, <w and <c, bisim ulation
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logical relations between D  and X I, between D  and Ai u and between D  and \£c  
respectively. We show th a t all three are re flex ive  i.e. VAf €  A(iC)°.[[M]] Af.

Introduction

In this section, we introduce a class of hereditarily defined relations known 
as lo g ica l re la tion s . Logical relations were used by Gordon Plotkin  in [Plo73] to 
tackle definability problems in lam bda calculus and dom ain theory. We refer the 
reader to  [Sta85] for further historical rem arks and a survey of some powerful 
applications of logical relations. In our work, given a Its K , logical relations 
are employed to construct re tracts  of D  w ith accompanying h o m o m o rp h ic  se
m antic functions w ith respect to  the  in terpreta tion  of X K - te rm s .  This is needed 
specifically for the construction of fully abstrac t models for X i c and A£w. The 
connection between logical relations and the existence of surjective homomorphic 
functions is crucial to our construction, as is the case in  m ost applications — a 
point emphasized in [AL86].

Following [Plo73], we introduce the notion of a logical relation:

DEFINITION 4 .6 .3 .1  A relation R  c  U ie j K i ,  where each == (K { ,  •(]-,•) is a Its, 
is a lo g ica l re la t io n  if d £  R  =$> Ve £  R .d  • e G R  where d  • e =f : i  €  I ) .

NOTATION 4 .6 .3 .2  (i) In  the following, let K  =f ( K ,  range over lam bda
transition  systems w ith a prescribed in terpreta tion  in D .  The associated 
bisim ulation preorder and equivalence are denoted E^ and respectively.

(i) For simplicity, we will omit the decorated brackets of the sem antic function 
[ —J in the following context: for d €  D  and P  C A(iiT)0,

<iP = dP1---P „ d̂ 4 P 1] . . . [ P B];

where [P ] is the denotation in D  obtained by m apping each k  €  K  to D  

via the prescribed in terpretation.

Specification

We prescribe a recursive specification of the b is im u la t io n  lo g ica l re la t io n s  we 
seek: <K C D  x A (i^)° where d M  iff

VP C A(Pr)0.[D h dP^r => K  N M Plk] &
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Ve 6  D.VJV 6  A(.K')<\[e  <K N  de <K M N ] .

REMARK 4 .6 .3 .3  Let a ,b  €  K .  Recall th a t  a  b VcTC K .a d ih '  =$>■ bdlj-^.

The intended reading of the bisim ulation ordering is “for all sequences of tests , 
d , to  which a  and b are subjected, all th a t can be observed about a  can equally 
be observed about 6” . Note th a t the  tests are themselves elements of the  sam e  
Its and th a t only convergence is observable.

The logical relation d <K M  m ay be seen as a generalization of the  notion of 
bisim ulation ordering to  one between elements of poss ib ly  d iffe ren t  lts ’s. We may 
read d <K M  as “for all sequences of elements of K  (or equivalently, AK-definable 
elements of D )  as tests, all th a t can be observed abou t d  can equally be observed 
about M ” . In  o ther words, d <K M  m eans th a t w ith  respect to  the elements of 
K  as tests, M  contains as least as much operational inform ation as d.

The second im plication in the above recursive specification (which is w hat 
qualifies <K as a lo g ica l relation) may be seen as a  generalized notion of precon
gruence between elements of two (or more) different lts’s.

DIRECTION 4 .6 .3 .4  This suggests a theory of bisimulation between two or more 
different lts’s parametrized over the same suite of tests.

E xistence o f the B isim ulation  Logical R elation <K

Following [MP87], we show th a t a non-trivial relation satisfying the above 
recursive specification does indeed exist and prove some salient properties satisfied 
by the relation. Note th a t the existence proof is general enough to  apply to 
bisim ulation logical relations between any two lts ’s, provided the first Its has la zy  

app rox im ab le  a p p lica t io n .

We begin by defining inductively a family of relations <£ on D n x A ( K ) °  which 
are intended to  be successive approxim ations to the targeted logical relation <K . 

Recall the following em bedding-projection pairs:

Dnb o i in n, D A D n+A D n.

DEFINITION 4 .6 .3 .5  For n  € w, define inductively <£ C D„ x A ( K ) °  as follows:

d  <£ M  =  VP C A.(K)°.<t>o(d)Pty =► M P $ k \ 

d < * + l M  =  VP C A.(K)°.4>n+i( d )P ij .  => M P ^ k  &

Ve e Dn.MN 6 A (if )0.[e <£ N  =►  de «£ MN].
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Note th a t since Do  is the singleton set {_L} and <£o(-L) =  _L, the antecedent in 
the r.h.s. of the definition of _L <£ M  is never satisfied, hence vacuously,

VM € A(if)°._L <£ M .

D \  is a two-element set w ith the top elem ent equal to _Li — the least convergent 
element of D .  It is easy to see th a t ._Li < f  M .

The targeted relation, <*, is obtained as the “conjunction” of all <£, as n  
ranges over cj, which we will make precise later in the subsection.

We rem ark the following useful fact.
P Q

LEMMA 4 .6 .3 .6  L e t  D  E  -*► D  be an  em bedding o f  com plete  la tt ice s  D  in to  
E ;  i.e. F , G  are  con tin u ou s  m aps s a t is fy in g  F  o G  C id an d  G  o F  =  id. T hen} F  
preserves a rb it ra ry  jo in s .

PROOF By the Adjoint Functor Theorem . □
Applying the  above Lemma, we observe th a t the embeddings <j>n : D n c—*• 

D  preserve arb itra ry  joins. To all in tents and purposes, we may regard the 
embeddings, <£„, simply as set-theoretic inclusions.

Let us establish some properties satisfied by the family of relations < £ . Note 
th a t all the results for the rest of this subsection culm inating in Lemma 4.6.3.13 
apply, in particular, to  <£, <n and

LEMMA 4 .6 .3 .7  Vn €  w .W ,d! E  D n. V M  E  A (X )°.d '

PROOF We prove by induction on n . The base case is trivial. Suppose true 
for n. Let d1 C. d  <£+1 M .  Applying the m onotonicity of repeatedly,

<£n+1(d')PU  =► <f>n+1(d )P ty  = > M P ^ k .

Suppose e <£ N .  Then, d'e C de <£ M N .  By induction hypothesis, d'e  <£ M N  
and we are done. □

LEMMA 4 .6 .3 .8  F o r  each n  E  uj, <% is  a rb it ra ry  j o in  in c lu s iv e  in  its  f i r s t  a rgu 

m ent; i.e. VX C D n.(Vx E  X .x<£ M  => U X  <£ M \ .

PROOF By induction on n. Again, the base case is trivial. Suppose true 
for n . Let X  C D n+1 and Vx E  X . x  <£+1 M .  We will show \ J X  <£+1 M .  

Suppose <f>n+i (U X)PJJ-. Recall th a t the projection <j>n+ i preserves arb itra ry  joins. 
Also, application left-preserves a rb itra ry  joins Lemma 4.3.5.2 (and applying it 
repeatedly), we deduce th a t <̂n+1(x)P|). for some x. By supposition, M P ty ic .

It rem ains to  show e <£ N  => (U AT) • e <% M N .  Since application (left-) 
preserves a rb itra ry  joins, (U X )  • e =  U ^ ^ -x  • e. Observe th a t Vx E  X .x e  <£ M N  

by supposition. Invoking the induction hypothesis, we have U x e x x  ' e <n M N  
and we are done. □
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For any Af, we have already observed th a t _L <£ M .  The preceding Lemma 
establishes th a t { d  £ D n : d < £  M }  C D n is a downward-closed set which is 
also closed under a rb it ra ry  (not ju s t directed) joins. It is therefore, a fo r t io r i, 
Scott-closed.

LEMMA 4 .6 .3 .9  ( i)  I f  d  <£ M  then  i n {d) <£+1 M .

( i i )  I f  d  <£+1 M  then  j n {d) <£ M .

PROOF We prove by sim ultaneous induction on n. The base cases for (i) and 
(ii) are trivial. Suppose assertions (i) and (ii) are true for n. For (i): Suppose 
d <£+1 M , we w ant to  prove in+1(d) <£+2 M .  Observe th a t ^ n+2(tn+i(d)) =  
<j>n+ i{d). Hence,

^ ( t n + i M ) ^  =* M P ^ k .

Ir remains to  prove: e <£+1 N  => in+i(d) • e <£+1 M N .  By induction hypothesis 
in (ii), j n (e) <£ N .  Hence, d (jn(e)) <£ M N .  Now, by induction hypothesis in 
(i), i n (d ( jn {e)) <n+1 M N  which is ju s t zn+1(d) • e <£+1 M N .  T he proof for (ii) is 
sim ilar and we om it it. □

We are now in a position to  define th e  relation <K for which we have hitherto  
been labouring in th is subsection.

DEFINITION 4 .6 .3 .1 0  Define <K C  D  x  A(iC)° as follows: 

d <* M  =f Vn £  (jj.dn M .

Defined in this way, <K inherits properties satisfied by its “approxim ants” , <£. 
A first such inherited property is w hat we loosely term  as the Scott-closedness (in 
the first argum ent) of <K . In fact, < K satisfies a stronger property: it is a rb itra ry  
j o in  in c lu s iv e  which we will show later.

LEMMA 4 .6 .3 .1 1  (S c o tt-C lo se d n e ss )  F o r  each M  £  A ( K ) ° ,  the set

<K X( M )  =f { d  £  D  : d <K M }  is  Scott-c losed .

PROOF First, we have already seen th a t VM._L <K M .  Let d ' C d <K M .  By 
definition, Vn £  u .d n <£ M .  But we have \fn.d'n C dn, by the monotonicity of the 
projection Hence, d' <K M , i.e. <K _1 ( M )  is left-closed. It rem ains to show 
th a t < K 1( M )  is closed under directed joins. Suppose for some directed X  C  D ,  

Vx £  X . x  <K D .  If 0n((U AT)n)PJJ., then continuity of and <f>n imply th a t for 
some x  £  X ,  (f>n { x )P \J.; which implies, by supposition, th a t M P ty ^ .  Let e <£ iV, 
for some e £  D n. Then,

< i W ( U * )  n+l) e =  U  4>u+ l(®n+l)-«.
x€X

Since, by supposition, Vx £  X . x n+i <£+1 Af, we have xn+i • e <% M N .  Finally, 
inclusiveness of <£ implies th a t U xe x x n+i • e <„ M N .  □
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REMARK 4 .6 .3 .1 2  For each d E  D ,  there is a canonical choice of (dn) new where 
each d n €  D  such th a t d  =  U <f>n(dn) l each d n is uniquely determ ined by the 
n-projection function tjjn : D  —* D n . However, for any sequence (en) n€w where 
en E  D n such th a t

^  =  |_| ^rt(en)j

we claim  th a t: d <K M  iff Vn E u>.en <£ M .

“=>” We first note th a t by Lemma 4.6.3.9, for d E  D n 

d < *  M  <=> <f>n{d) <K M .

Now, for each n, <£n(en) C d <K M .  By <K being left-closed in the first 
argum ent, we have <f>n(en) <K M .  Hence, en <£ M .

en <n M  => <j>n(en) <K M .  Then, by directed-join inclusiveness of <K .

We are now in a position to  show th a t the relation < K thus defined does indeed 
satisfy the recursive specification we sta ted  a t the outset.

LEMMA 4 .6 .3 .1 3  (R e c u rs iv e  S p e c if ic a tio n )  d <K M  i f f

( A )  VP C A [ K ) ° .[D  1= dP ty  => K  N M P t y K } and

( B )  Ve E  D .W N  E  A [K )° .[e  <K N  =► de <K M N } .

PROOF Suppose d P \J.. By the continuity of we have d P  =  U(dnP ).
Hence, for some n, dnP \ J., and so by dn <£ M ,  we have MP-IJ-jc. Let e <K N .  Then 
en <£ N  and so, as dn+i  < „+1 M , we have ie n <£ M N  and so <f>n(dn+ ie„) <K 

M N .  Now, since de =  Un6w^i»(4+i ■ e„), by Rem ark 4.6.3.12, we conclude th a t 
de <K M N .

We show by induction Vn E  u .d n <£ M . The base case is trivial. Suppose 
dn < „ M  and we w ant to  establish dn+1 <£+1 M .  <£n+1(dn+i).P(J- clearly implies, 
by m onotonicity of th a t d P § .  M P $ k  then  follows by supposition. Let 
e <£ N .  By hypothesis, d<f>n(e) <K M N .  B u t, (f>n(dn+xe) C d<f>n (e). Since <K is 
left-closed (in the first argum ent), we have <f>n (dn+ie ) <K M N  which is equivalent 
to  d n+ ie  <% M N .  □

B isim ulation  Logical R elations are Arbitrary Join  
Inclusive

We can now prove an im portan t property  satisfied by the  logical relation < K .
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LEMMA 4 .6 .3 .1 4  ( A r b i t r a r y  J o in  In c lu s iv e n e ss )  < K is  a rb it ra ry  j o in  in c lu 
s ive  in  the f ir s t  a rgum en t, i.e. fo r  an y  X  C D

[Vx E  X . x  <K M ]  => f l j  X) <K M .

PROOF By Lemma 4.3.5.1, we have

U* = U U *»(*») = U U *»(*») = U M  U *»);
x e X n£u x e X  neui x e X

the last step is justified because the embedding <j>n preserves a rb itra ry  joins. By 
Rem ark 4.6.3.12, it suffices to show inductively:

Vn €  u .  | J  x n M .
x e x

Base case is again trivial. Suppose Uzex x n <n A f. Since

( LJ ^n+ l^n+ l))-?  =  [_j (<f>n+l{x n + l)P ) i
z € X  x e x

<f>n+i(Uxexx n+ i)P fy  then  implies th a t for some x  E X , <̂n+i(^n+i)-P-ll- Then, by 
definition of x  <K Af, we deduce th a t M Pty-^ .

Suppose e <£ N .  By definition of x  <K Af, Vx E X .xn+i • e <£ M N .  Since 
< n is a rb itra ry  join inclusive, we have

( U  x n+1) . e =  □  (xn+1 . e) <Kn M N , 
x e x  x e x

and we are done. □

LEMMA 4 .6 .3 .1 5  F o r  d e D  an d  M , N  E  A { K )° ,  d <K M  N  => d  <K N .

PROOF The lemma m ay be established by proving Vn E w .L n inductively 
where:

Ln : Vd E D nN M , N  E A (K ) ° .d  <* M  N  =$> d <* N .

The details should be routine by now and we om it it. □

As examples of < ^ , we will consider <, <w and < c. In  the  case of A4,, the 
formal constants W,- are given the natural interpretations in J9, i.e. Gr(up 
and for A£c, C is in terpreted  as Gr(up(/j_lit)) as before.

R eflexive B isim ulation  Logical R elations
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DEFINITION 4 .6 .3 .1 6  Let K  be a Its with a prescribed interpretation in D .  The 
bisimulation logical relation <K is re flex ive  if VM £ <K M . We say
that K  is reflexive if <K is.

OPEN Q uestion  4 .6 .3 .1 7  Compare the above notion w ith the Fundam ental 
Theorem  of Logical Relation (see e.g. [Sta85]). Can a similar general result be 
proved? More specifically, characterize the class of Its K  =  such th a t
VM £  <K M .

For the rest of this subsection, we will show th a t <, <c and <w are reflexive.

PROPOSITION 4 .6 .3 .1 8  F o r  K  =  A£, Ai Ci A4,, we have  VM €  A(Ff)°.([M! <K M .

PROOF We will only prove the case of A ^. The rest is similar. Owing to  the 
well-known translation  between A°(C) and C L (C )  where C  is a  set of constants 
and C L (C ) the  class of SK -com binators over C  (see e.g. [Bar84]), and because 
<c is a logical relation, it suffices to  prove:

(a) c »  JCfl <c C

(b) k  ^  ([KJ <c K

(c) a (S ] <c S.

We om it the  proof of (b) since it is similar to  and easier th an  (c). W ith  reference 
to the Recursive Specification Lemma, observe th a t in each case, condition (A) 
is trivially satisfied.

(a) We show: e <c N  =>■ ce < c CN .  Suppose the antecedent. Firstly, we 
establish VP.cePJJ. =>* CiVP-lj.c. Wlog, we may assume el]., hence N \ J.c; then 
the im plication is trivially true  since ce =  |I ]  and CN  1J.C I. Now, suppose 
/  <c P , then  c e f  =  f  <c P  ~ c CiVP, and so, we have c e f  <c CN P .

(c) We show e < c N  =$> se < c S N .  We first show

(*) VPl5 • • ■, P n .se P x • • • P J .  =► S N P 1 • • • P nJ|c

(*) holds trivially for n < 1. For n  > 2,

sePi • • • Pn =  eP2(PiP2)P3 * • • Pn,

similarly for S N P .  (*) is then seen to hold because e <c N .  Next, we show 
/  <c p  =>. s e f  < c S N P .  Suppose the antecedent. By similar argum ent, we 
see th a t W Q .se fQ ty c => S N P Q t y c . Suppose g <c Q . Then s e fg  =  e g ( fg )  <c 
N Q ( P Q )  S N P Q  and so, we are done.

□
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O perationally-Tailored Preorders on D

Given a Its K  =  (if , we define a preorder on D  which, roughly speak
ing, compares the  extent to which any two elements in D  bisim ulate elements of

— K
K  w ith  respect to  tests consisting of elements of K .  The quotient of D  by ~ 
identifies any two elements of D  which are not observably distinguishable w ith 
respect to elem ents of K  as tests. In  certain  cases to be specified in the sequel, 
this quotient structu re  turns out to be a fully abstract model for the language K .

D efinition  4 .6 .3 .1 9  For d ,e  e  D ,

d  e =  VAf €  A ( if )“.[e <K M  => d <K M \ .

We abbreviate d  <K e & e <K d as d ~ e. Denote the ~ -equivalence class of d  as
W K -

We will show th a t simulates in D  the bisim ulation relation of K, f.e.

VM, N  e  A ( K ) ° . M  E* N  ^  [M J <* [ATJ.

Since <* is left-closed in its first argum ent, it follows th a t C, the dom ain 
order of D , is a re fin em en t of < * , i.e. C C <*. The following result says th a t the 
relation <* is component-wise a rb it ra ry  j o in  in c lu s ive .

Lemma 4 .6 .3 .2 0  L e t X  C D .  Then ,

( i)  [Vx G X . x  <* d\ =► \ J X  d.

( ii)  [Vx G X .d  <K x] => d  U X .

(H i) X C  [d\K = > U X e  [d\K .

PROOF (i) is a  straightforw ard corollary of the  jo in  inclusiveness of <**. (ii) 
follows directly from  C C < K and the  transitiv ity  of <K . (iii) follows from (i) and 
(ii). □

COROLLARY 4 .6 .3 .2 1  L e t d , e £ D .  Then , d e =>■ U [d\K C U H I 

PROOF Suppose d e. By (i) of Lemma, LiM * ~ K ei and. so, by (i) again, 
U [d\K U e e. The other direction follows from C C < ^ .  Hence, U [d\K U e Z K e. 

It then follows th a t U [d\K C U [d\K U e C U [e]^. □
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Next, we establish a crucial relationship between <* and E*. First, a Lemma. 

L emma 4 .6 .3 .2 2  L e t  M , N  €  A(iC)° a n d  d e  D .  T h en ,

M  E* JV => W  E D .[d  <* M ^ d < K N \ .

PROOF We prove Vn E cj.Ln, where L n is the  following statem ent:

VAf, N  €  E* iV => Vd E D.Vm ^  n.[dm <* M  dm < £  N ] .

The routine details are om itted. □

COROLLARY 4.6*3.23 L e t  K  be re f le x ive  an d  fu l ly  adequate an d  le t M , N  E 
A(iC)°. Then , M  N  <=> [MJ <* iY.

PROOF By reflexivity of K  i.e. [M ] <* M  and an  appeal to  the Lemma.
“*4=”: Im m ediate from full adequacy of K  and condition (A) of the Recursive 
Specification Lemma. □

LEMMA 4 .6 .3 .2 4  L e t  K  be re fle x ive  an d  fu l ly  adequate, d  E D  and  M  E A ( K ) ° .  
Then, d < K M  <=> d < K [M J.

PROOF “=$►” : Let d <* M .  Suppose [M ) <* N  and so, by the  above Corollary, 
M  E* N  which by Lemma 4.6.3.22, implies d <K N .  Hence, d  <* [AfJ.
“<£=” : Suppose d  <* [AfJ. Reflexivity of <* and full adequacy then imply d  <* 
M . □

PROPOSITION 4 .6 .3 .2 5  (C ru c ia l)  L e t K  be re flex ive  a n d  fu l ly  adequate an d  le t 
M , N e \ { K ) ° .  Then ,

[AfJ <* [AT] M E *  N .

PROOF

M  E* N  Corollary 4.6.3.23

[M J <* N  Lemma 4.6.3.24

<=* [M J <* [IV].

□
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As usual, we define [d\K <K [e]K if d  < K e, turning {D /~ K , <K /~ K ) into a 
partia l order. In fact, we can say ra ther m ore th an  th a t:

K K
LEMMA 4 .6 .3 .2 6  D^< =  (D /  ~ ,< *  /  ~ ) is  a com plete la t t ic e .

PROOF It is instructive, a t this juncture , to identify the  -least element. 
Clearly, Vd._L <K d. We claim:

d  J_ => d  =  _L,

which implies th a t [.L]^ =  {_L}. To see this, recall th a t VM._L <K M ; and so, 
for any d  _L we have:

VAf €  A { K ) ° .V P  €  A { K ) ° . d P $  => M P U -

In  particular, VAf.dfJ. => M ^ k . N o w , d  _L i.e. would lead to  a  contradiction. 
T he <*-largest elem ent is [T]*.
I t  rem ains (and suffices) to  show th a t every subset has a lub. Let X  =  

{ [di\K : i  €  I  } C D < k . Observe th a t d  =f U{ d ',}  where V* €  I .d'f €  [d,-]* exists 
because D  is a  complete lattice. We im m ediately have \fi.[d i]K [d]* because 
d{ d \  C d. Hence, [d]^ is an s^ -u p p e r  bound of X .  Now suppose for some d, 
Vi €  /.[d ,]^  [d]*'. Suppose d M .  T he previous supposition then  implies

Vi €  l . d \  <K M .

By arb itrary  jo in  inclusiveness of < ^ , d M .  Hence, [d]* [d]^. □

Note th a t the <*--lub, [d\K where d =f |Jd\- is independent of the choice of 
representatives form  the respective ~ -equivalence classes [dt] .

Lemma 4 .6 .3 .2 7  ( i)  F o r  d €  A  Uc [d}K z<  d; equ iva len tly , Uc \d]K 6  \d)K .

( ii)  The m ap  [—]* : D  —> D _ k de fin ed  by d ^  [d]K is  con tin uou s , i.e. fo r
rs j

X  =  { d i i i € l } C D ,  a  Q -d ire c te d  set,

c <  C

P roof

(i) Direct from  Lem m a 4.6.3.20(iii).

(ii) [—] is m onotonic because C C < *. For the same reason, if { d,- : i  €  I } is 
a □ -directed subset of D , then, { [d,] : t €  J  } is a <*-directed set. Since 
D < k  is a  com plete lattice, [d,*] exists and by the preceding rem ark,

<JC c

which is precisely w hat the continuity of [—] entails.

□
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D efinition of the M odel Q K

We are now in a position to define a substructure QK of D  which will turn out 
to be fully abstract with respect to K subject to certain conditions which will be 
specified in the sequel.

D e f in it io n  4 .6 .3 .2 8

Define a map Q K : D  —► D  by

Q « ( d ) ^ [ J [ d ] K.
c

Observe th a t for d E D , U c  [d\K E [d]K implies [Uc [d]K]K =  [d]K. Hence,

W M )  = U [ U M Y  = U [ ^  = QKW-
Thus, we have Q K o Q K =  Q K. Note th a t Q K so defined is continuous by Corol
lary 4.6.3.21 and the fact tha t □ C <K; and tha t id^ C Q K. We write the image 
of the map Q K as Q K — no confusion need arise. We remark th a t Q K is a retract 
of D.

4.6.4 A pproxim ants of the M odel: Q f
In this subsection, we define Q f , the i-th approximant of Q K, which we will 
show, is fully abstract with respect to K,, the i-th approximant of the language 
K =  (K ,  -llx-)* This subsection is devoted to the proof of the “approximant” full 
abstraction results a t each finite level i E oj. Roughly speaking, the strategy that 
we shall adopt is to prove the main full abstraction result by establishing it as 
the “limit” of the approximant full abstraction results a t each finite level. Recall 
th a t Di  =f rpiD and =  tfj,. For each d E A ,  define [d]f =f D,- fi [d\K.

L emma 4 .6 .4 .1  (i) For i E u ,  d E  D {, Uc [d\f =  ^.(Uc [d]K) E [d \ f .

(it) Define max,- : D, —* Di by max^d) =  j_J[d]5. Then, max,- is monotonic, 
hence continuous since D < is finite.

(Hi) For d,e E D.d  e =>> U [d]f Q U [c]f.

P roof

(i) Let d =f U[d\f .  We first observe th a t d E D {, because Di  is a complete
lattice. Next, we show d ~ d , equivalently, d E [d]K. Now, d <K d follows 
immediately from C C < ^ .  To show d d , suppose d < K M .  By definition 
of [d]f
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Ve e  [d]f.e < K M.

By arbitrary join inclusiveness of < K, d =  U [d]f < K Af.
Since [d]f =  [d]K fl A ,  we have U [d\f C U [d]K. Hence,

U K *  =  « U  14*) E 4 ( U  [<*]*)

because U [d}f e  A . To show ^i(U [d]K) C U [d]f, it suffices to show

M U \ d \K ) ~ K d ’

d Q Uld]^ implies d =  rpi{d) C 0,-(U[d]/C) which implies d < K ^i{U[d]K)- 
Now, suppose d < K M .  Then, by inclusiveness of <*, U \d]K < K M .  By def
inition of <**, Vi £ u . f a (U \d\K) < f  M  which is equivalent to ^ (U  [d]*) <K 
M  and we are done.

(ii) Let d, e £ A  such tha t d C e. Then, we have d < K e and so, by Corol
lary 4.6.3.21, U[d]K Q Llje]^. Monotonicity of fa and (i) together imply 
th a t max,(d) C max,(e).

(iii) Similar to (ii).

□

DEFINITION 4 .6 .4 .2  We define Q f  : D  -»■ A  as Q f  (d) =  m<LXiofa(d) =  U [d,-]f.

Then, for d £ A ,

Qf o Qf ( d )  = QfOJK*)
= UlUHflf 
= UMf
=

The penultim ate step is justified because

U K *  e [d ]K n A = > [ U [ 4 " ] f  =  M f -

Hence, Q f  is a retract of A ;  and hence, of D.

DEFINITION 4.6 .4 .3  We define, for each t £  w, a structure ( Q f , •, ) where

• is just the restriction of :D x D  —► D  to Q f  x Q f .

• : A (K)°  —> Q f  is defined by == Q f  o ' ([M ]).
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Clearly, we need to show that application is well-defined, i.e. Vd, e €  Q f -d- e G 
Q f . To do this, we first prove a useful Lemma. Let x ,y  G D  and x is comoact. 
Define (x => y ) to be the element Gr(up(/Zit/)) £ D.  Note tha t for d G  D,

(x => y) • d =  < y
X

if x C d, 

else.

LEMMA 4 .6 .4 .4  Let K be reflexive. Suppose d,c  £ D such that dc-IJ.. Then, 

b dc => (c =>• b) d.

PROOF Suppose d < K M .  We will establish (c => b) < *  M  according to the 
Recursive Specification Lemma. Let Pu  • • •, Pn £  A(Pf)° such th a t (c => 6)P-U-<. 
We consider three cases:

• n  =  0: Since by premise, dc-(J., and so, d\J. which implies M-0-< by supposition.

• n =  1: Then (c =>• b)Pi =  6 and c C  [Pi]), the latter implies tha t c < K P  by 
reflexivity of < K and left-closedness of <K. Since < K is a logical relation, 
b <* dc < K MP\. Hence, (c =► 6)P i(=  b)$ =►

• n > 2: It should be clear that (c =>■ 6)Pij. (c => 6)P =  bP2 • • ‘P n and 
c C Pi. By the same argument as before b <K MP\\ then 6P2 - ‘ -P n-l| =» 
MP\ • • • Pn-D-ZC*

Next, we show: e iV => (c => b)e < K M N . Wlog, suppose (c => 6)el)-, i.e.
(c =>• 6)e =  b and c C e; the latter implies c < /c N  by left-closedness of <K.
Hence, dc < K M N ,  and so, by assumption, b < K M N .  □

REMARK 4.6 .4 .5  If c,b G D , - i , then observe th a t ipi(c =>» b) =  (c => b); and so 
(c => b) G Di.

COROLLARY 4 .6 .4 .6  The application in Q f =  ( Q f ,*, J— ) is well-defined, i.e. 
for d , e G  Q * , d • e G Q f .

PROOF Let /  =  U U [de]f), then /  € A-i C D {. To show d-e G Q f ,
it suffices to show /  =  de. Because de G [de]f_15 we clearly have de C lJ [d e ]^  =  / .  
I t remains to show f  C de. Now /  < K t/>t-_i(de) =  de,_i, by Lemma 4.6.4.l(i). 
Wlog, assume de,-!^; otherwise /  =  X since [X]* is a singleton set. By the 
Lemma, we have (e,_i => / )  d. By Lemma 4.6.4.1 and the above Remark,

(«*-i =► /) C U [(e.-i =► /)]f c  u  = d.

Hence, /  =  (e,-! => f )e  C de.
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Q f  =  (Q f  is a q-aswd where • is restricted to Q f .

LEMMA 4 .6 .4 .7  Let K be reflexive and fully adequate.

(i) For d e  Di and M  €  A ( K ) l  then d < K M  => Q f(d )  =  U [d]f C [M j Q? .

(ii) VAf € A { K ) H M f ?  < K M.

PROOF (i): Suppose d < K Af, then d [MJ by Lemma 4.6.3.24. This 
implies Q f  (d) C by Lemma 4.6.4.1 (iii).
(ii): Let Af € A (K)f .  Now [A fJ^  ZK [AT]],. =  [AfJ < K Af, because < K is 
reflexive. Hence, < K Af. □

PROPOSITION 4 .6 .4 .8  Let K be reflexive and fully adequate. Then, [—] ^  pre
serve application, i.e. VAf,iV €  A ( K ) ^ . lM N lQ  ̂ =  flA f]^ •

PROOF Let M , N  €  A( K) f .  Then, 

i M N f •• =

c  Q f d M f ?

Since, [AfJ*5’ , [ iV ]^  6 Q f  and that application in Q f  is well defined, [[Af]]*9'* • 
IN }9? €  Q f .  Hence, [[AfiVf •' C Q f  { I M f f [ jV f* ) =  f A f f  •’ • p v f * .

To prove the other inequality, observe tha t since <* is a logical relation (this 
property is crucial at this point) and th a t by Lemma 4.6.4.T(ii), [Af|^'' < K
M N . Then, by Lemma 4.6.4.7(i),

f M f •' | i V f ‘ =  E I M N f ? .

□

4.6.5 P ro o f of Full A bstraction
PROPOSITION 4 .6 .5 .1  (A p p ro x im a n t Fu ll A b stra ctio n )
Let K be reflexive, fully adequate and that projection maps are definable in it. 
Then, Vt € w.Ki is fully abstract with respect to Q f , i.e.

V M , N  €  A { K ) I M  Ef N  <=*• JM \ q? C I # ! 9-*.

PROOF “=£•” : Let Af £ f  N .  By Lemma 4.6.2.5(ii), we have M  N . Hence, 
by Proposition 4.6.3.25, |AfJ |JV]]. Then, by Lemma 4.6.4.1 (iii),
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[Mf? = LJ[M]f e | JM ?  = [Jv]9f •

Thus, indeed [Mj®^ C [JV]®1*.
Conversely, suppose [JW]9 * C [[jV|®* . Then

[M] = ([A/D; ZK l M f ‘ C iJV f f  zK (IJVJ), = [JVJ;

f.e. |M J [Af]|. By Proposition 4.6.3.25, M  N  and so, by Lemma 4.6.2.5(i), 
M* Ef N *. Since M  ~ K< M l and N  ~ K{ N * by Remark 4.6.2.6, M  Ef N . □

Q*  q K
LEMMA 4 .6 .5 .2  ( i )  F o r  i  < j ,  Q f  <—* Q f  -L Q f  i s  a n  e m b e d d i n g .  H e n c e ,  w e

h a v e  Q%  < Q *  <  • • • Of <  • • • < Q f  • • •.

( a )  o *  =  u.-€wo f .

P roof

(i) Let d € O f C D { C Dy. Then,

Q f o Q f ( d )  =  g f f l j [ < )

=  U [U W f]f  v U [ ^ € | <

=  U 

=  U[d]f

=  Q f ( d ) = d .

Let e S <3/. Then, [e]f C [e]* =► U[e]f E U N *  => U N f  < U N *- Hence, 
by Lemma 4.6.4.1(iii), Q f  o Q f  (e) =  U [L IN ?]* E U [U N ; ]* =  «•

(ii) For d  E  D { ,

<J*M  =  g * ( g  d i )  =  □  Q K { d t)  =  u  u  [* ]* .
t€w t'Eu» t'£w C

Observe tha t |Jc [d i ]K =  Uc [d]f. Hence, Q K{d) =  Ut6w O f (DI

LEMMA 4 .6 .5 .3  T/ie application in *5 well-defined.

PROOF Let d, e €  Then,
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d ■ e =  Q K(d) - Q K(e)

= Uieu(Qf(d)-<?f(e))
=  U . e . Q f ( d - e )

=  Q^ld- e ) .

□
Let M  €  A (K)°.  Then

I  M f  =  Q k { W D

= (UiOfJOJilJMli)
= UiQfdM],)
= U iQ ftM .)
=  u K f .

Also, [Af] =  U M i  E U M ,;:  =  \ M \ 9 . Hence, VAf e  A (if)» .|M J C [Af]Q. 

PROPOSITION 4 .6 .5 .4  [ —P  preserves application, i.e.

V M , N  6  A(if)°.|[MiV']<5 =  [M ]<5[./V]]<J.

PROOF

i M N f  =  Q^dAfJVl)

=  (Ui QfMU.-lAPiVi],.)

=  U iQ fdA PiV 'l,.)

=  Ui[APiV,]|<5'!t [—l*5’* preserves application

= UfI^10f|JVl9{r

□
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We are now able to prove the main Theorem (4.6.1.1) of this Section and solve 
the full abstraction problem which we posed in the beginning of the Section for 
a class of Its.

P r o o f  o f  T h e o r e m  4 . 6 .1 .1
Suppose M  E*" N.  Then, by Lemma 4.6.2.5, Vi G w.M* Ef N*. Full 

abstraction of K, w.r.t. Qjf implies Vi G C [[iV'*]]<:̂* . Hence,

[ M f  =  U l ^ f '  C U liV -'f.' =  p V f .
i€w t'Gw

Suppose [M j0 C [Jv f .  Then [[M] C [ M f  C [JVJ9 =  ZK |JV].
Thus, [AdT] [AT], and so, by Proposition 4.6.3.25, we have M  E^ N.  □

COROLLARY 4.6 .5 .5  Since Xic and Xlu are reflexive, fully adequate and in which 
projection maps are definable, fully abstract models exist and can be constructed 
for them. □

COROLLARY 4 .6 .5 .6  (F u ll A b s tra c tio n  C o n jec tu re )
If Open Question 4-6.2.18(i) could be resolved in the affirmative, then Xt is fully 
abstract with respect to QA£<J. □

OPEN Q u e s t io n  4.6.5.7 C an our approach yield a proof for the full abstraction 
of A^p with respect to D  (a result due to Abramsky in [Abr87, Chapter 6]) by 
showing th a t the fully abstract submodel Q obtained from D  by quotienting it 
out with the appropriate operational equivalence is isomorphic to D ?

4.6.6 R elationships betw een  Lazy O perational Preorders
In this last subsection, we investigate the relationships between the various op
erational preorders introduced in this thesis, namely, E#, and El which are 
introduced in Chapter 2, <, the PSE lazy ordering, introduced in Chapter 3 and 
Es , the Abramsky bisimulation ordering.

First, note an im portant example.

EXAMPLE 4 .6 .6 .1  Let M  =  x(Ax.n) and N  =  xx. Then, M  EB N .  To see this, 
observe th a t if any closed substitution a  maps x to a strongly unsolvable term, 
then M a ~ B N a. If not, say <r(x) =p  Xx.P, then, since EB is a precongruence, we 
have M a =  C [n] EB C[P]  =  N a where C\ ] =  As.P(A®.[ ]).

P r o p o s it io n  4 .6 .6 .2  c
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PROOF Take M  and N  as in the previous Example. It is easy to see that 
M $ lN .  Hence, EB g  £l- Suppose M  El N.  It is not difficult to see tha t

3 C [ } 6  A .M  = 0  C[Xxi  • ■ • xni.Ou  * • •, Xxi • • • xnm.Om]b

N  = 0  C [ 0 [ , • • •, 0'm\ satisfying

(1) VI < i < m.Oi  E P O 0 and

(2) n< >  0 =£► 0 [  €  POoo.

Then, observe tha t Vl < i ^  m.Xxi • • • xnrOi EB OJ since Xt is an fully lazy 
A-theory, and tha t P O 0 and P O qq are the least and the greatest elements with 
respect to EB respectively. Then, by appealing to the fact that EB is a precon
gruence, we have M  EB N . □

REMARK 4 .6 .6 .3  It is instructive to see why EB % Ê ,.

• POoo-elements are the “top” elements with respect to the preorder EB; 
whereas they are just a maximal element with respect to Ej>

• Variables, either by themselves, or as subterms of a term  are given meaning 
with respect to the EB-ordering by considering their respective closures, i.e. 
universal quantification over all closed terms. In this way uniformity of 
interpretation is forced upon free variables in a way which is incompatible 
with El , as is illustrated by the previous Example.

P roposition  4 .6 .6 .4  < c  EB.

PROOF Let M  and N  be defined according to the previous Example. It is easy 
to see tha t M  N .  Hence, EB % <. Let D a be the free lazy PSE-model generated 
from A  (see Chapter 3). Let M  < V , we show tha t VC[ ] E A°.C[M]]}. C7[iV]4j-
which is so if and only if M  EB N  by Proposition 4.1.3.5. By the Soundness 
Theorem, we have C [[iV]],. Let C[ ] €  A0. Then Vp.[C[Af]]|, C [C[iV]]]„,
because application and abstractions are monotonic operations. This means that

Vp.A C [ C [ M \ l  ^ A C  [CfiV]],;

in particular, this is true for p ranging over those that map free variables of M  
and N  to A-definable substitutions. We therefore have

V<r : Var -> A°.A C lC[Ma}] => A  C lC{Na\ l

But note th a t in D a , VP E A°.PJJ- <=> A  C ]PJ. Whence, C[Ma\\j- => 0[JVo.]4j-, 
and this is true for all closed substitutions o. We therefore conclude th a t M  EB N.

□
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We summarize the results in this subsection in 

T heorem  4 .6 .6 .S

u

C < C

n

the following theorem:

□
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C h ap ter 5

C ategory -T h eoretic  
C h aracter iza tion  o f th e  Lazy  
L am bda C alcu lus

Synopsis o f the C hapter1

This Chapter divides naturally into three sections. Section 1 introduces 
the various category-theoretic approaches to partiality, surveying notions like 
Rosolini’s p-category, diPaola and Hellers’ dominical category and various con
creteness criteria. These lead up to the notions of partial Cartesian closed cate
gory pCCC and partial Cartesian closed dominical category pCCDC which may be 
regarded as partial counterparts of Cartesian closed category. Two main applica
tions of partial categories then follow. A formal proof system, called Ax,-calculus, 
consisting of a logic for partial functions and inference rules pertaining to con
structors and operations in the lazy regime is the subject m atter of section 2. Ax, 
is shown to be correct with respect to A£, Abramsky lazy A-theory (see Chapter 4). 
Al augmented with convergence testing has a sound and complete interpretation 
in categories of partial morphisms. The second application of partial categories, 
contained in section 3, is a category-theoretic semantics of lazy XC-models, which 
are lazy A-models (see Chapter 3) in which convergence testing is definable. We 
prove tha t lazy reflexive objects in a pCCDC give rise to lazy AC-models.

1This Chapter would not have been written without the inspiration and helpful guidance pro
vided so cheerfully by Eugenio Moggi. The generosity of his friendship is very much appreciated.
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5.1 C ategories o f P a r tia l M orp h ism s
This section introduces various category-theoretic frameworks for partiality which 
take expression in partial morphisms. Analogy with well-known concepts in set 
theory will be used as motivation.

The references are [Mog88a,RR88,Ros86]; see also [C088,AL86]. In partic
ular, [RR88] is a delightfully concise and comprehensive survey of the various 
category-theoretic approaches to partiality on which much of the material of this 
introductory section is based. Chapters 2, 3 and 4 of Rosolini’s PhD thesis are a 
careful and detailed exposition of many of the concepts tha t will be introduced 
in this section.

5.1.1 D om ain Structures and Categories w ith  D om ains
Let A be a category. Let a, 6,c, • • • range over objects of the category (denoted 
a, 6, c E Obj(A)) and that / ,  g, /i, • • • range over morphisms. We call the collection 
of morphisms form a to 6 the hom-set from a to b and denote it as A(a, 6).

As is well-known in the set-theoretic framework, any subset X  of a set A  
can be characterized by an injective map into A — just take an injective map 
i  into A  whose image is X.  Clearly, this representation is not unique, for any 
map j  isomorphic to i will do just as well. We therefore define a subobject of an 
object a E Obj(A) as an equivalence class of monos i : d c—► a into a; a morphism 
i1 : d! ► a is equivalent to i if there is an isomorphism h : d —► d! such tha t 
i =  i' o h. It follows that subobjects can only be determined up to isomorphism.

We review some basic category-theoretic notions and fix notation in the pro
cess.

NOTATION 5 .1 .1 .1  • A mono /  from a to b is denoted as /  : a «-► b.

• [i : d *-»> a] is the subobject of a corresponding to i, i.e. the equivalence class 
of monos isomorphic to i. Denote SubObj(a) as the class of subobjects of 
a.

• Suppose /  : a —► b and that [t : d «-*• b] is a subobject of b. Then / -1 ([*]), 
the inverse image of [i] along f  is the subobject [i1] of a such that

d!
/ '  =  * -1(/)

----------------------------------------------------------------- y d

v  =  / -H O

a
f

■* b
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i1 t xa «—» d! A  d is a pullback of a -A b «—9 d for some We shall use the fact 
th a t the inverse image of a mono is a mono.

In set-theoretic terms, a partial map /  from A  to B  is essentially a total map 
from X  — the domain of definition of /  which is a subset of A — to B.  We 
capture this perspective of partial maps in category-theoretic terms as follows:

DEFINITION 5.1.1.2 A witness for a partial morphism from a to 6 is a pair [z, /] 
such th a t i : d<—+ a and /  : d —» b. We say th a t two witnesses [z, /]  and [z', / ']  are 
equivalent if there exists an isomorphism h such th a t i' — i o h  and f '  =  f  oh.  A 
partial morphism from a to 6 is the equivalence class of isomorphic witnesses for 
a partial morphism from a to  b.

We present some basic notions pertaining to partial morphisms.

• A partial morphism g from a to 6 is denoted as g : a —>* 6.

• The definedness partial order < on the class of partial morphisms from a 
to b is defined as follows: [z, /] < [*', / ']  =f 3j . i  =  z' o j  & /  =  f  o j .

• The domain of a partial morphism [z, /] is the equivalence class [z'].

• The composition of partial morphisms [z’i , / i ]  : a —̂ 6 and [z*2 , / 2 ] : b —̂>■ c is 
the partial morphism [n ° z, / 2 o /]  : a —*■ c

, /  , /*d ------------► do. -----------► c

(pullbk) z2

d i
h

ti

a

where di d d2 is a pullback of d\ ^  b d2. Composition is therefore 
well-defined iff such a pullback exists.

Clearly, given a category A, the objects of A together with partial morphisms 
do not in general form a category because composition as prescribed above may 
well be undefined. Fortunately, this may not be entirely undesirable after all 
since not all the definable partial morphisms are the admissible or meaningful
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ones. This is evident, for example, in the category of topological spaces. In 
this case, monos are not even in general subspace inclusions and that one is 
typically interested in continuous maps defined on an open subspace. In the case 
of partial continuous functions on chain-complete posets, the partial morphisms of 
interest are those functions defined on upward-closed subsets. W hat is required is 
therefore a way of specifying the admissible partial morphisms. This is achieved 
by imposing some constraints on the class of admissible subobjects. For these 
reasons, categories of partial morphisms will be defined by specifying a category 
A and a domain structure M consisting in a collection of admissible subobjects 
and sufficient (and necessary, as it turns out) closure properties to qualify the 
collection of subobjects and partial morphisms as a category.

DEF IN IT IO N  5.1.1.3 x  =f { X (a ) : a G Obj(c) } is a domain structure2 on A if

(1) Va G Obj(A).X(a) C SubObj(a),
(2) Va G Obj(A).[ida] G X (a),

(3) [i1 : c ► b] G X(6), [t : 6 ► a] 6 .M(a) => [i o i' : c a] G X (a),
(4) /  : a —> 6, m G M(b) =>» / -1(m) exists, and G X (a).

X-Ptl(A) is the category of partial morphisms in A with domains in M.

REMARK 5.1.1.4 Conditions (3) and (4) together ensure th a t the composition 
of partial morphisms is well-defined. (2) stipulates th a t the identities [ida,ida] 
are in X-Ptl(A). It is easy to check tha t the properties of a domain structure are 
(necessary and) sufficient to ensure tha t X-Ptl(A) is a category.

There is a canonical embedding of A into X-Ptl(A). Define F  : A —> X-Ptl(A) 
to be the identity on objects and tha t it takes a map /  : a —► 6 to [ida, /] : a —»■ b. 
We call a map in the image of F total; and confuse A with the subcategory of 
X-Ptl(A) consisting of total maps. Given any category A, there is a trivial domain 
structure, namely X(a) =  { [ida] }. Clearly, X-Ptl(A) is equivalent to A.

5.1.2 P -C ategories
Let X-Ptl(A) be a category of partial morphisms with domains in M. Suppose 
A is endowed with certain structure. How much of this structure is inherited by 
X-Ptl(A)? We shall seek to answer the question by concentrating on one such 
structure: the categorical product. This is partly because categorical product is 
such a ubiquitous feature in categories that characterize many theoretical com
puter science and recursion-theoretic concepts. More importantly, any category

2This notion is thus christened by Eugenio Moggi. Domain in this context is suggestive of the 
“domain of definition” of admissible partial morphisms
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of partial morphisms can be fully embedded in a category of partial morphisms 
in a category which has categorical products.

Let us first remark the following:

LEMMA 5 .1 .2 .1  Suppose A has categorical products and .M is a domain struc
ture. Then the product bifunctor (—) x (—) on A can be extended to the whole of 
X -Ptl(A).

PROOF Easy. Define [z, /] x [j,g] =f [z x j \  f  x gj. □

However, (—) x (—) ceases to be a categorical product in .M-Ptl(A). It is 
instructive to see why this is so. Consider the category of sets and partial func
tions. Let /  : A —*• B  and g : A —̂ C be partial maps. Extending the definition 
of pairing in the obvious way, we have ( / ,  g) : A —*■ B  x C  where

</,</>(*) =
( f {x) , g(x) )  if bo th /(x ) and g(x) are defined; 

undefined else.

It should be clear tha t dom ((/, g)) =  dom (/) fldom(fif). Now, take /  to be a total 
map and g the everywhere undefined map, then dom ((/, g)) =  0. Hence, we do 
not have

Pb ,c  o ( / ,  g) =  / .

Crucially, the reason why the bifunctor (—) x (—) fails to be the categorical 
product on .M-Ptl(A) (given that A has categorical products) is precisely because 
the projections are not natural in both arguments. To see this, consider a gen
uinely partial map /  : b —*■ c, i.e. the domain of /  is not isomorphic to id*. The 
following square

Pa,b
a x b ------------ ► a

ida X / ida

a x e  --------------- ► a
Pa,c

does not commute because paiC o (ida x / )  is clearly genuinely partial, and hence 
cannot be equal to ida o p a<b =  pa b. However, it is easy (but tedious) to check that

• the diagonal: A : (—) —► (—) x (—),

• commutativity isomorphism:

Ta,b =  (ga,b X Pa,b) 0 Aaxb : a x 6 -> 6 X a;
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• associativity isomorphism:

&a,b,c (O^a X P6,c) X (Qb,c °  <7a,6xc)) 0 ^ o x ( i x c )  ! ffl X (6 X c] > (& X 6) X C\

are natural in all arguments, although the components from which they are con
structed are not.

In what follows, we shall give an algebraic or equational description of the 
situation above.

DEFINITION 5 .1 .2 .2  (R oso lin i) A p-category is a category C endowed with

• a bifunctor x  : (—) x  (—) —» (—) which is called product,

• a natural transformation A : (—) —* (—) x  (—) which is call diagonal and

• two families of natural transformations

{p_xi : ( - )  x b A  ( - ) ,6  G O b j ( c ) } and 

{qa*_ : a x  ( - )  A  ( - ) , a  €  Obj(c) }

which are called projections satisfying the following

• axioms:

Pa,a 0 — ida =  qa,a 0  Aa pa,b X ga,b ° A axb =  ^ 0 x6

Pa, 6 ° (ida X Pb,c) =  Pa,bxc Pa,e ° (ida X qb,c) =  Pa,bxe

Qa,c ° (Pa, 6 X idc) =  qaxb,c Qb,c ° (<7a,6 X idc) =  Qaxb,c•

• commutativity and associativity isomorphisms raij and a a,6,c respectively 
are natural in all arguments.

NOTATION 5.1 .2 .3  In contexts where confusion is unlikely to arise, subscripts 
in morphisms like p0)&, ga(&, A a, a a(6(C, ra j and id0  will be omitted.

REMARK 5 .1 .2 .4  (i) As remarked earlier, p-categories are designed to be al
gebraic characterizations of categories of the form .M-Ptl(A) such tha t A has 
categorical products. It is an easy exercise to check tha t

a. If A has categorical products, then the extension of the product from A 
to X-Ptl(A) induces canonically a structure of p-category on .M-Ptl(A). 
In particular, A is itself a p-category.
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b. Conversely, if .M-Ptl(A) is a p-category, then the bifunctor (—) X (—) is 
categorical product on A. To see why this is so (see Corollary 5.1.3.5); 
and to perceive A as a subcategory of (the p-category) M-Ptl(A) is 
to anticipate the notion of the subcategory of “total morphisms” of a 
p-category, a formulation of which will follow.
The above observation may be summarized as:

A has categorical products <=> .M-Ptl(A) is a p-category.

It seems reasonable, therefore, to suggest that the prefix “p” in p- 
category is mnemonic of the keywords: partial morphisms and partially 
defined products.

(ii) A few comments about the various equational axioms in the definition. The 
first two are clearly necessary if x is to behave like the categorical prod
uct. The other four are somewhat redundant vis-a-vis the commutativity 
isomorphism. All four are needed to prove that a  and r  are isomorphisms; 
but the fact that a  is a natural isomorphism yields one pair of identities 
from the other.

5.1.3 The Category of D om ains o f a P-C ategory
At this juncture, there are pertinent questions tha t remain as yet unanswered:

(1) Since any category of partial morphisms X-Ptl(A) is a p-category — indeed, 
p-categories are deliberately algebraic abstractions of .M-Ptl(A), given any 
p-category, how can one enunciate internally the extent of partiality of a 
morphism? More specifically, is there a way to differentiate a “partial” 
morphism from a “total” one?

(2) Is an arbitrary p-category of the form .M-Ptl(A)? If not, can it be fully 
embedded in one?

The above questions will be answered in what follows.
diPaola and Heller [dH88] introduced the notion of the domain of a morphism 

/  : a —► b in a p-category C. Recall tha t in a category of partial morphisms 
X-Ptl(A), the “domain of definition” of a partial morphism [ t,/]  : a —1* 6 is 
represented by the subobject [i]. diPaola and Hellers’ approach is to replace 
the subobject on which a partial morphism is defined by “that sub-function of 
the identity which is defined precisely on the domain of definition of the partial 
morphism” .

D EF IN IT IO N  5.1.3.1 (d iP a o la  &  H eller) Given a morphism /  : a —► b in a 
p-category C, the domain of / ,  dom(/) : a —* a, is the composite map

PhD  Thesis May 31, 1988

i



Chapter 5: Category-Theoretic Characterization of the Lazy Lambda Calculus 191

Pa,b o (ida x  /) o A a : a -+ a.

REMARK 5 .1 .3 .2  (i) It is easy to check tha t in the p-category .M-Ptl(A),
dom ([t,/]) , the domain (according to diPaola and Heller) of a partial mor
phism, [i, /]  : a —L 6, is [t,t] : a — a. Clearly, such domains are in 1-1 
correspondence with the subobjects in At. To call M a domain structure is 
therefore consistent with DiPaolaformal and Hellers’ notion of domain.

(ii) Given a p-category C, a morphism /  : a —► b is total if dom (/) =  ida. Define 
Ct to be the subcategory of € consisting of total morphisms. It is easy to 
see that:

A ~ (M -P tl(A ))t;

th a t is to say, the notion of totality (or partiality) in the p-category setting 
coincides with that in .M-Ptl(A) — the category of partial morphisms in a 
“total” category A. In p-categories, partiality is the prior notion and total 
morphisms are a derived notion; whereas in .M-Ptl(A), all maps in A are a 
priori total, and partial morphisms [*, /]  are defined in terms of total maps 
i and / .

The following properties are satisfied by domains.

PROPOSITION 5.1.3.3 ( i )  dom(id) =  id,dom(p) =  id,dom(g) =  id,dom(A) =
id,

( i i )  p o  (id x  f ) = p  o (id x dom(/)), id x dom (/) o A  =  A  o dom(/),

(H i )  dom (/ 0 5 ) =  dom(dom(/) o gr),dom(/) o g  =  g  o dom (/ o g ) }

( iu )  f  o dom(f )  =  f ,

(v )  dom (/ x  g) =  dom(/) x  dom(gf),

( v i )  dom(/) o dom (g ) =  dom(^) o dom(/) =  dom(dom(/) o dom(y)),

( v i i )  dom(/) odom (/) =  dom(/).

PROOF Easy exercise in equational reasoning with the axioms of p-category. □

REMARK 5 .1 .3 .4  (i) W ith reference to the above Proposition:

— (i) says that id,p, g, A are total.

— The first equation in (ii) may be interpreted as showing the extent to 
which p falls short of naturality in the second argument. The second 
substantiates in category-theoretic terms our earlier informal state
ment about domains being the “sub-function of the identity defined 
on the domain of definition.”
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— (iii) implies that the composition of total maps is total.
— (vi) and (vii) say that composition is a binary operation on the set 

Dom(a) of domains on a, which is commutative, associative and idem- 
potent with a unit. (In the category of sets and partial functions, com
position behaves exactly as set-intersection in Dom(a) =  pa.) Hence, 
it induces a partial order on Dom(a):

d o m (/) < dom (g) <=> d o m (/)  =  dom(^) o d o m (/) ;

which coincides with the definedness partial order in p-categories of 
the form X-Ptl(A).

(ii) A useful corollary of the Proposition is that

/  is a domain (i.e. 3g . f  =  dom(sr)) iff dom (/) =  /  iff /  ^ id.

(iii) Let /  and g be morphisms in a p-category and tha t p o /  =  p o g and 
q o f  =  q o  g. Then, /  =  g. To see this, observe that (p x q)  o A is the 
identity. By naturality o f  A, /  =  (p x o A o /  = ( p o / x g o / ) o A ;  also 
(p o g x q o g) o A =  g. Whence, the assertion follows.

COROLLARY 5.1.3.5 If C is a p-category, then Q  has binary products.

PROOF By the Proposition, Ct is closed under the product functor. Projection 
maps form a x  b are exactly pa>\, and qa>t. For any pair of total maps /  : c —► a
and g : c —► b. Let h =f ( /  x g) o  A c : c —> a x b. It is total since it is a composition 
of total maps. Now, p o h =  p o '( /  x  g) o  A =  p o ( /  x  id) o (id X g) o A =  
/  o p o (id x jj) o A  =  f  o  dom(^) =  / ,  since g is total. Similarly, q o h =  g. 
Uniqueness follows form Remark 5.1.3.4(iii). □

The discussion hitherto may be seen as providing an answer to question (l) 
which was posed a t the beginning of the section. The answer to question (2) may 
be stated in the form of a representation theorem:

THEOREM 5 .1 .3 .6  (R oso lin i) Suppose C is a p-category. Then, there is a full 
embedding E  : C —* D-Ptl(Bomc ) which preserves the p-category structure. □

Domc is the category of domains of the p-category C defined as follows:

DEFINITION 5 .1 .3 .7  Dome has as objects all domains of C, i.e. idempotent mor
phisms dom (/) : a —► a. A morphism g : dom (/) —> dom(h) in Domc is defined to 
be a morphism g : a —► b in C such that

(f) dom(/i) o g o  dom ( / )  =  g.

The identity of an object dom (/) is itself and the composition of morphisms /  
and g is just f o g .
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It is easy to check that Dome is indeed a category. Note that (f) is equivalent 
to the conjunction of the following equations:

dom(^) =  dom(/) and g =  dom(/i) o g\

which formalize the stipulation that g is “defined” on dom(/i) and g “takes values” 
in dom(/i) respectively. Significantly, Dome has categorical products.

C also induces a canonical domain structure D on Dome. Before D is defined, 
the following preliminary Lemma is in order.

LEMMA 5.1.3.8 Let f  =  dom ( / ) , < 7  =  dom(^) and h =  dom(/i) be domains on a. 
Then f  : dom(gr) —> dom(/i) is a map in Domc iff

f  — g and g < h.

In particular, if f  ^ h, then the map dom (/) : dom (/) —► dom(/i) is a mono in 
D omc .

PROOF Sufficiency is straightforward to check. To see the necessity: we have 

/  =  dom (/) =  dom (g) =  g.

Also, /  =  dom(/i) o f  implies tha t g =  f  =  h o g =  ho  dom(gr). Hence, g ^  h. For 
the final assertion, suppose / ,/ ' : dom(gr) —► dom (/) and

dom (/) o l =  dom (/) o l1.

Then, by definition of morphism in Domc , since dom(h) o dom (/) =  dom (/), we 
have

dom(/i) o (dom(/) o /) o dom(^) =  dom (/) o / o dom(^)

=  /.

Similarly, dom(/i) o (dom(/) o /') o dom(^) =  /'; and we are done. □

LEMMA 5.1 .3 .9  M, the collection of monos in Dome of the form .

dom (/) : dom (/) —► dom(/i) 

with dom (/) < dom(/i) is a domain structure.

PROOF The class At is clearly closed under identity and composition. We claim 
that the pullback of dom (/) : dom (/) ► dom(/i) along l : dom(gf) —* dom(/i) is

dom(dom(/) o l) dom(gf).
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To see this, by Proposition 5.1.3.3(iii)a, we h a v e d o m ( / o / )  =  dom(dom(/) o / ) .  

By definition of morphism /,

dom(<7) o dom (/ o /)

=  dom(/) o dom (/ o /) Proposition 5.1.3.3(iii)b

=  d o m ( / o /) o d o m ( / o  d o m ( / o /)) Proposition 5 . 1 . 3 . 3(iii)b

=  d o m ( / o /) o dom(dom(/) o /) Proposition 5 . 1 . 3.3(iii)a

=  d o m ( /o /) o d o m (/o /)

=  dom (/ o /).

Hence dom (/ o /) ^ dom(^).
Consider the following diagram:

dom (/) o l
d o m (/o /)  ---------------------- ► dom (/)

dom (/ o /) (t) dom (/)

dom (g)
l

dom (h)

dom(/)  o l : dom (/ o /) —> dom(/) is a Domc morphism, for

dom (/) o (dom(/) o / )  o d o m (/o /) =  (dom(/) o /)  o dom(dom(/) o /)

=  dom (/) o l.

The last step is justified by Proposition 5.1.3.3(iv).
The above square (f) is a pullback square:

/o d o m (/  o l )  =  dom(/) o l Proposition 5.1.3.3(iii)b

=  dom(/) o (dom(/) o / ) .

Universality: Suppose
j

dom(/c) -----------► dom(/)

i dom(/)

dom(y) -----------y dom (h)

commute, i.e. I o * =  dom (/) o j  =  j .  Then, by definition of morphism,
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j  =  dom(/) o j
— dom(/) o l o i

=  (dom(/) o /) o i.

Again, by definition of morphism, 

i =  dom(ff) o i

— dom(/)oz Proposition 5.1.3.3(iii)b

=  to  dom(/ o i)

=  * o dom(dom(/) o j )

=  to  dom(dom(/) o l o i) Proposition 5.1.3.3 (iii) b 

=  dom(dom(/) o /) o i 

=  dom (/ o /) o i.

Uniqueness then follows from the injectiveness of dom (/ o /). □
We are now in a position to prove the representation theorem.

PROOF Let € be a p-category and f  : a b a morphism in it. Define 
E ( f  : a —> b) to be

[dom (/),/] : ida ^  id*.

Clearly dom (/) : dom (/) ^  ida and /  : dom(/) —> id* are morphisms in Domc . 
To see tha t E  is a full embedding, consider any morphism:

h
dom(fir) -----------► id*

dom (flf)

ida

We immediately have dom(gf) =  dom(/i). Hence, the partial morphism is wit
nessed by [dom(/t),/i] and h : a —> 6 is a morphism in C. □

DEFINITION 5.1.3.10 Let C be a category and I  a class of idempotents in C. 
Then Spl i t (I)  is the category whose objects are the elements of I  U { id0 : a € 
O bj(c)  } and has morphisms /  : a —> b such that /  is a morphism in C satisfying

b o /  o a =  / .
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PROPOSITION 5 .1 .3 .11  T h e  c a t e g o r y  o f  p a r t i a l  m o r p h i s m s  D - P t l ( D o m c ) i s  p r e 

c i s e l y  S  p l i t ( D o m c ) , t h e  f r e e  c o m p l e t i o n  o f  C w h e r e  a l l  d o m a i n  i d e m p o t e n t s  s p l i t .

PROOF A morphism in P-Ptl(Domc ) is of the form:

[dom (/), /]  : dom(^) —̂ d o m h

such that dom (/) < dom(gf) and dom(/i) o / =  /; or equivalently, dom(h) o / o 
dom(gf) =  /  which is precisely the criterion for /  : dom(fif) —> dom(h) to be a 
morphism in S p l i t ( O o m c ) .  □

COROLLARY 5 .1 .3 .1 2  The image of the embedding E : C D-Ptl(Domc ) is the 
full subcategory of total objects. Hence, the embedding is an equivalence if and 
only if all domains split in C. □

5.1.4 D om inical Categories
Dominical categories were introduced in [dH88] as an abstract category-theoretic 
presentation for recursion theory. More generally, dominical categories constitute 
an approach to enunciate partiality in the category-theoretic framework which 
axiomatically “objectifies” undefinedness or meaninglessness as a family of “zero 
morphisms” . At it turns out, a dominical category does not differ very much 
from a p-category; in point of fact, a dominical category is a slight specialization 
of the notion of p-category.

DEFINITION 5 .1 .4 .1  (i) A pointed category is a category C with a family of
distinguished morphisms 0O(i, : a —> b stable under composition where a, 6 
range over O bj(c), i.e.

0a,6 o /  =  0C>6 and g o 0a>t =  0a,c

for all morphisms /  : c —► a and g : b —► c.
(ii) A morphism /  : a —► 6 in the pointed category C is weakly total if

V/i : c —> a.[f o h =  0Ci& => h — 0c>o].

Observe tha t identity morphisms are weakly total and that composition of 
weakly to tal morphisms is weakly total.

(iii) Let C' stand for the subcategory of C consisting of weakly total morphisms.

Now, we are in a position to define dominical categories.

DEFINITION 5 .1 .4 .2  (D iP a o la  & H eller) A pointed category C with a bifunc
tor (—) x (—) —► (—) is d o m i n i c a l  if
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• x maps C' x C' into €', defining a Cartesian product on in such a way 
that

• the induced commutativity and associativity isomorphisms are natural with 
respect to morphisms in C.

• Moreover, for all morphisms / ,  g  in C:

(Z) /  x g  =  0 <=$■ /  =  0or<7 =  0

(Nat) p o / x i d  =  / o p  /  x / o A  =  A o  / ,

PROPOSITION 5.1.4.3 A  d o m in ic a l  ca tegory  C is  a p -ca tego ry . M o re o v e r , the  

ca tegorie s  C* a n d  €' co in c id e .

PROOF The axioms (Nat) ensure th a t A is a natural transformation and that 
p  is natural in its first argument. The naturality of q in the second then follows. 
Since X is Cartesian on C 1 and tha t for all a, b € Obj(c), p a,btQa,b and Aa are all 
weakly total, hence the six identities in the definition of p-category hold. Thus, 
a dominical category is a p-category.

Let /  : a —► b be a morphism in C. Suppose dom (/) =  ida. Then, given 
/  o h  =  0, we have

h  =  dom (/) o h
=  p  o (ida x / )  o A o h  (Nat)

=  p o (h  x ( /  o h )) o A (Z)

=  0

Now, suppose f  : a —* b is weakly total, then

dom (/) =  pa,6 0 (ida x / )  o A a x is Cartesian on C'

=  ida o Pa,a 0 A a 

=  ida.

Hence, /  is total. □
It is instructive to examine the two implications in the axiom (Z) separately.

DEF IN IT IO N  5.1 .4 .4  Let C be a non-empty pointed p-category. We say that C 
has zero morphisms if

f  =  0 o r g  =  0=> f  x g =  0.
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If the reverse is true, i.e.

/  x <7 =  0 = ^ /  =  0orgf =  0,

then, we say that C satisfies the c a n c e lla t io n  p roperty  o n  m o rp h ism s .

As we alluded to earlier, the introduction of “zero morphisms” as in dominical 
categories is tantam ount to the objectification of undefinedness. This can be seen 
convincingly when one examines Bomc , the associated category of domains of a 
pointed p-category C that has zero morphisms. Intuitively, one would expect the 
domains of zero morphisms to be isomorphic (in Doir^) to the “least defined” 
object, which may be translated into category-theoretic terms as a str ic t  in it ia l  

o b je c t ,  0. Further, given an object dom (/) in Dome, one would also expect the 
existence of the “least” subobject of dom (/), which can be none other than

[0 <—> dom(/)].

More formally, we prove

LEMMA 5.1.4.5 L e t  C be a n o n -e m p t y  p o in te d  p -ca te g o ry  C. T h e n 4,

( i )  C h a s zero m o r p h is m s ,

( i i )  dom(/) =  0 <==> f  — 0.

( i n )  F u r th e rm o re ,

( 1 )  B o m c  h a s  a stric t  in it ia l ob ject 0,

( 2 )  a ll m in im a l  sub ob jects  [0 ^  dom(/)] are in  D o m c .

P r o o f

(i) By naturality of p  in the first argument, we have

Pa,a O (^a,o X idj,) =  0a>o O 0ax6,o*

Since p  is weakly total, we have 0flia x idj =  0axj axj. For any /  : a  —► 6 in 
C, we have,

Oc.d x /  =  (0d,d x idb) o (0c>d x / )  x is a bifunctor

— 0cxa, dxb•

3An object 0 is s tr ic t  if it is the codomain of precisely one arrow, i.e. ido
4We show that (i) necessarily follows from C being a pointed p-category, so does (ii). The 

corresponding Lemma 2.2 in [RR88] asserts that (i) < = >  (ii) which is inaccurate.
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(ii) “4=” follows immediately form (i).
By Proposition 5.1.3.3(iv), we have /  =  /  o dom (/) =  0.

(iii) Let a €  Obj(c) and consider 0flia : a —*• a. 0a)O is a domain because 0ai<J =  
Pa,a ° (ida x 0a) o Aa =  dom(Oa>a). Domc has a strict initial object 0; for 
if /  : 0 —► dom(gr) is a morphism in Domc , then /  =  dom(gr) o /  o  0 =  0. 
Similarly, if /  : dom(fif) —*■ 0, then /  =  0 o /  o dom(<jf) =  0. For any object 
dom (/) in Dome, say, dom(/) : b —► b in C, the map 0ai& : a —► b gives rise 
to a map

0a.fr: 0a,a -* dom (/)

in Domc , for 0a>b =  dom (/) o 0a>6 o 0a>o. For b — a, 0fliO —► dom(/) is a 
mono because 0 < dom (/). Note tha t in Dome, all zero morphisms 0a)& are 
isomorphic to the strict initial object 0.

□

5.1.5 C oncreteness Conditions
DEFINITION 5 .1.5.1 A p-category C has a 1-element object, 1, if 1 is terminal in 
Ct. We denote the unique total map from a to 1 as !0.

REMARK 5.1.5.2 It is easy to verify th a t an object 1 in a p-category C is a 1- 
element object iff given any family of total maps f a : a —*■ 1 for all a €  Obj(c), 
pa, 1  and idtt x f a oA „ are mutually inverse.

DEFINITION 5.1 .5 .3  Let C be a pointed p-category with a 1-element object 1. 
(We have proved that such a category has zero maps.) We say C has enough 
points if the functor

C(l, —) : C -> 1/Set

is faithful, where the canonical point in the hom-set C (l,a) is 0l a. Note that 
1/Set is the (co-sliced) category of pointed sets.

Since /io m (l,—) : Ptl(Set) 1/Set is an equivalence between the p-category 
of sets and partial functions and the category of pointed sets with the p-category 
structure given by the “smash” product, it follows tha t a p-category C with 
enough points is concrete in the sense tha t there is a faithful forgetful functor

U : C —► Ptl(Set).

DEFINITION 5 .1 .5 .4  The 1-element object, 1, of a pointed p-category is atomic 
if it has precisely two domains — the identity and zero morphism, i.e.
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V / : 1 —► a.dom (/) =  id io r0 lfi.

LEM M A  5.1.5.5 S u p p o s e  C  is  a p o in te d  p -ca te g o ry  w ith  a n  a to m ic  1 -e le m e n t  ob

je ct . T h en ,

C(l,_) : C 1 /S e t

p re se rv e s  the p -ca te g o ry  stru ctu re . I n  p a rt icu la r , it p re se rv e s  1 -e le m e n t  object 

a n d  zero  m o rp h is m s .

PROO F Easy exercise. □

TH EO REM  5.1.5 . 6  L e t  C be a p o in te d  p -c a te g o ry  w ith  a n  a to m ic  1 -e le m e n t  object. 

I f  C h a s  e n o u g h  p o in ts, th e n  C is  d o m in ic a l

PROOF First observe that the p-category of sets and partial functions and 
hence l/Set are dominical. To show that C is dominical, we need to show:

(1) C has cancellation property on morphisms,

(2 ) all weakly total morphisms are total.

(1) : Since C ( l , — ) is faithful and it preserves p-category structure, i.e. (—) x (— ) 
and zero morphisms, we have

f x g  =  Q < = >  C(1,/ )  X C (l, gr) =  0

in l/Set, which holds iff either one of the two, say, C ( l , / )  =  0. Since C ( l , — ) is 
faithful, we have f =  0 .
(2 )  : Suppose /  : a  -> b is not total. We have dom(/) ^  ida : a —► a. It follows 
that

C (l,dom (/)) ^  id : C (l,o ) -> C (l,o ).

Choose 01)O ^  g : 1 —► a  such that C (l, d o m (f) )g =  dom(/) o g ̂  g. Since C (l, - )  
preserves domains it follows that C (l,do m (/)) is a sub-function of the identity; 
and we have

dom (/) o g  —  0 1>o. (like mapping to “bottom”)

Hence, dom (/ o g) =  0 i.e. /  o g =  0. /  is therefore not weakly total. □
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5.1.6 Cartesian Closed Categories and its P artial Version
We recapitulate the definition of a Cartesian closed category (CCC).

DEFINITION 5 .1 .6 .1  (i) 1 is a te r m in a l ob ject of C if for any a £  C there exists
a unique morphism !0 : a —> 1

(ii) a  a x b  ^  b is a p ro d u c t  of a  and b iff for any /  : c —> a  and g : c b there 
exists unique ( / ,  g) : c —► a X 6 such that /  =  7Ti o  ( / ,  g) and g  =  7t2 o  ( / ,  g).

(iii) (a  —► 6) x a  6 is a f u n c t io n  space  from a to 6 iff for any /  : c x a  —► b there 
exists unique Ac,a,&(/) : c —*• (a —► 6) such th a t /  =  evalai& o (Ac,a,b{f) x ida).

DEFINITION 5 .1 .6 .2  Let [f i ,/ i]  : c —j- a  and [z2, / 2] : c —*• 6, then their p a rtia l 

tu p lin g

<[*1, /l], [*2, A ]) =f [*\ (/ l O *i, /2 © *2>]

* f ** t* i  d fwhere dj » d  d2 is a pullback of di c d2 and t == i’i o =  i2 o i 2. 

The subobject [*] is called the in te r se c t io n  of [t’i] and [*2] and we denote the 
intersection i  as i\ D i 2.

DEFINITION 5 .1 .6 .3  (i) pevalai : (a —1k 6) x a  —>• b is a p a rt ia l f u n c t io n  space

from a to 6 if for any f  : c x a  b there exists unique pAc>ai)( /)  : c —► (a —̂*■ 6) 
such that

/  =  pevalBij o (pA„,„.»(/) x id0).

/  : c x  a  —1- b 

PK t A f )  - c - > ( a ^ b )

Equivalently, we have a natural isomorphism

<t>-a'h : .M-Ptl(A)(_ X a, 6) 3  A(_, (a  —  b)).

pevala 6 : (0 —*■ 6) x a —*• 6 is the partial morphism (<£“!i6)-1id(a_6). Unlike 
the total case, for /  : c (a —1- 6), pAC Oi6(pevala)b o ( /  x ida)), a total 
morphism, extend s f  and is not equal to /  in general.

(ii) 6_l is a l if t in g  of 6 if for any /  : c —*■ 6 there exists unique /  : c —► b± which 
we call /  lifted  such that /  =  open6 o /  where open6 : bj_ — b.

f  : c —*■ b 

f  : c - + b ±

Equivalently, we have a natural isomorphism
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and opent is just (?7j ) -1id(,j_.

DEF IN IT IO N  5.1.6.4 (M o g g i )  X -P tl(A ) is a p a rt ia l C a r te s ia n  c lo se d  ca tegory  if 
A has terminal object, products and partial function spaces.

In  the category of sets and partial functions, lifting corresponds to adjoining 
an extra element representing undefinedness to a set. Given that A has function 
spaces, then lifting and partial function spaces are inter-definable.

P r o p o s it io n  5.1 .6 . 5  ( i )  o p e n b =f ( 1  -> b) ( 1  b) x 1  & ,-5
a lif t in g  o f  b.

( i i )  (a —> &j_) X a b± °P- ^ b b is a p a rtia l f u n c t io n  space f r o m  a  to  b.

□

PROPOSITION 5 .1 .6 .6  I f  every  object o f  A h a s  a l if t in g , th e n  the c a n o n ic a l e m 

b ed d ing  E  : A —* M-Ptl(A) h a s  a righ t a d jo in t  w h ic h  is  the lif t in g  fu n c to r ,

.M-Ptl(n) (̂ lx a  4  X -Ptl(fl).

N o te  that the  fu n c to r  E  p re se rv e s  co lim it.

PROOF The right adjoint (— )_l : .M-Ptl(A) —► A maps 

a  a_i_ and f  f  o open0.

□
We contrast this with the standard category-theoretic characterization of lift

ing in domain-theory, according to which lifting is the left adjoint of the following 
forgetful functor U :

CPQx CPO CPOj..

We summarize some useful facts about monos, equalizers and pullback in the 
following Proposition. The proof in each case is a straightforward exercise.

PROPOSITION 5.1.6.7 ( i )  E v e r y  equa lizer is  m o n ic .

( i i )  E v e r y  m o n o  in  P ( C, M ) is  the im a g e  o f  a  m o n o  in  C.

( i n )  S u p p o s e  f  o / '  =  g  o g' is  a p u llb a ck . T h e n , i f  g  is m o n ic ,  s o  is  f ,  the  

p u llb a c k  o f  g a lo n g  f ,  w h ich  we s o m e t im e s  d eno te  as / -1 (gf).
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(iv) If both small “squares” are pullbacks, so is the outer rectangle.

. ---------------y . ---------------y .

* •

(v) Suppose the relevant pullbacks exist, then

h~l { f  og)  =  h 1{f)  o ( f  x/i) 1g.

□

5.2 T h e Form al L azy L am bda C alcu lus
In this section, we introduce a language for type structures of partial functions 
and a corresponding formal system: Ai  which we call the (formal) lazy \-calculus, 
or A^-calculus. A  ̂ is a variant of Ap, Moggi and Plotkins’ partial A-calculus 
[Plo85,Mog86]. In the following, we will compare and contrast A  ̂ and Ap and 
provide an interpretation of Al in partial Cartesian closed categories.

We will have occasions to refer to Moggi’s paper op. cit. whose inspiration 
and influence on this work is gratefully acknowledged. The reader is further re
ferred to Moggi’s Ph.D thesis [Mog88b] for a careful and thorough proof-theoretic 
investigation of the partial A-calculus. For an account of the motivation behind 
such formal systems, see §0.1 of Moggi’s thesis and [Plo85].

The formal system consists of two parts:

• a logic for partial functions,

• inference rules pertaining to constructors and operations of the A-calculus.

5.2.1 Form ulation o f the Formal System  Al

We will adhere to Moggi’s terminology as in [Mog86] and concern ourselves with 
the following fragments of the language of partial elements. Let n  > 0.

• S-e q ua tio n s  (Strong-equations)
t i ~  t2,

• ECS-e q ua tio n s  (Existentially Conditioned S-equations)
{ U l  : 1 ^  i  ^  n }  D  q where q is an S-equation;
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• QS-equations (Quasi S-equations)
{ qi : 1 < i < n }  D p where are S-equations.

When the terms of the language are A-terms, we emphasize the respective 
equations as S-AECS-Ax,  and QS-Ax, equations. A formula of the form

{ qi | 1 < i < n } D p

should be understood as an abbreviation for the more pedantic 

* Vx : a . ( / \  q^ D p
1 ̂  t ̂  n

where x  is a sequence of variables of types a  respectively (see later), containing 
all the free variables in q u mmm ,Qn,P- We will sometimes use the more elaborate 
representation of the QS-equations as in (*) (for instance, in the completeness 
proof later on).

Types and Terms of the language A i

Types of the language are defined by the following grammar. Let A t be a set 
of atomic types. Let a range over A t and <r, r  over T ypes.

a  G T ypes ::= a  | o  —>| r

where a  is a possibly empty sequence of types. Note th a t —q, the lazy function 
space type constructor, is to be distinguished from —► and ^  (see [Mog86]), the 
usual and strict (or partial) function space type constructor respectively.

Terms of the language are defined parametrically over a set of atomic functions 
Af. Let /  range over the atomic functions and s , t fu over terms. In particular, 
we consider application as an atomic function eval^if(—, —) which has type (a —*| 
t) , 0  —>| r. As usual, we abbreviate evala>r(s,i) simply as s(i). The set of terms 
are defined by the following grammar:

t € T erm s ::= x | f( t )  | s[t) | (Ax : a.t)

where, as usual, t , x are possibly empty sequences of terms and variables respec
tively.

A type assignment is a map from Var, the set of variables, to T ypes with 
finite domain. A type assignment B  with dom(i?) finite may be represented as 
a finite set of statements of the form x : a. The typing rules for terms are as 
follows:

(Log)
x : o £  B

B.x  : a
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(Seq)
B.t i  : <7i • • • B . tn : an 

B . t : a

H E l )
B.t  : 0  f  : 0  —>| r 

: r

(—>|E2)
B.t : a  B.s  : a - > | r 

B.s(t)  : t

( - | I )
B ,X  \ O.t \ T

B.{Xx : G.t) : a —>\ r

Let s be a term  of the language. We say that 5  is well-typed with respect to B
and has type 0  or simply B.s  : a  is well-typed if B.s  : 0  is provable.

DEF IN IT IO N  5 .2.1.1 (AL, T h e  F o rm a l T y p e d  Lazy A -Calculus)
Let B  =  x  : B be a type-assignment. A statem ent of the form, B.T D  q, means 
that the terms of the respective strong equations in T and q are well-typed with
respect to B.  
L ogical R ules:

(Log.l)
g e v  

B.T D q

(Log.2)
Vp 6  A.B.T  D p B .A D q 

B.T D q

(Subst) B , y  : FT 2> q
C.T[y := u] D q[y :=  u\ 

E x is te n tia l R ules:

where B  C C.u : r

(Ex)

(LStr)

B .r d  (« ~  t) B .r  d  4  
B .r d  u

B .r  d  i(t)i 
B .r d  4

(Ex.A)
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E q u iv a len ce  R ules: 

(Eq.l) B.r d ( t a t )

(Eq.2)

(Eq.3)

B.T  O ( s a t )

B.r D (t a  s)

B.r D ( s a t )  B.r D (t a  u) 
B.r D (s a  u)

(Eq.4)
B.T, s[Z> ( s a t )  B . T , t j O ( s ^ t )

B.r D ( s a t )
C o n g ru en ce  R ules:

(Cong.l)
B .r r> (sj ~  s2) VI < i < n B.r D (U a  U') 

B.r O ( S i t a  s2f )

(Cong.2)

A-Rules:

VI < * ^ n B.T D (si ~  ti) 
B .r  O ( f (s)  a  f ( i ))

f  : a -+\T atomic function

B , y : t .T D (s ~ t)

B.T D  ((Ay : t . s ) c z  (Ay : r.i))
Vi £  FV(f)

m B . T D ( ( X y : r . t ) ( y ) ^ t )

(Cond-7?)
B  t- T D t j

B.T D ((Ay : r. t{y)) ~  t)

We denote provability in A  ̂ as A  ̂K

2H $  FV(t)

N otation  5 .2 .1 .2  For simplicity, we will omit the concomitant type assignment 
B  in our treatm ent of terms and the various equations in the sequel when no 
confusion is likely. Also, we will sometimes be economical with typing details by 
abbreviating Scr.B D x : a  as B D x.

D efinition  5.2 .1 .3  (T h e  F o rm al U n ty p e d  AL-C alcu lu s)
The language and the inference rules for the untyped A£,-calculus are obtained 
by removing the type information from the language and inference rules of the 
typed A^-calculus.
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5.2.2 Com parison w ith  M oggi and P lo tk in s’ Ap-Calculus
The reader is referred to Definition 2 (The Typed Ap-Calculus) in [Mog86] (see 
also [Plo85]).

(l) A crucial difference between AL and Ap is that in the former, variables 
range over total as well as partial elements; whereas variables range over 
only total elements in the latter. This difference is enunciated in the absence  
of the following Ap inference rule in Ax,:

(E.l) ——------- - x  variable
v ' B .T  D x l

Observe also that the substitution axiom (Subst) in Ap is a conditional 
one — only substitution of terms that exist is permissible. In contrast, Ax, 
allows for unrestricted substitution.

(2) The /?-axiom in Ap is consonant with a call-by-value operational semantics 
whereas that in Ax, is consonant with a cal l-by-name  operational semantics, 
or the implementation strategy usually referred to as lazy evaluation in the 
functional programming community. For example, in Ap, a redex (Ax . M ) N  
is undefined if N  is undefined. No such restriction applies in Ax,.

(3) The application operation is both left- and right-s tr ic t in Ap whereas it 
is only lef t-str ic t in Ax,. This is reflected in the absence of the following AP 
rule in Al ‘

(E.2) B.r  D (s(t))| 
B.r d t<i

(4) In the pure untyped case, the two calculi can best be contrasted by noting 
their respective (category-theoretic) canonical models. In the following ta
ble, U  ranges over objects of any category in which the respective constructs 
are well-defined.

Canonical Models of A-calculi

Calculi Canonical Models

A U U < U

Ap U  — U < U

AL U± - ^ U < U

PhD Thesis May 31, 1988
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5.2.3 C ategory-T heoretic Interpretation  of Ai

We give an interpretation of the typed A^-calculus in any category of partial 
morphisms C = X-Ptl(A) which has enough finite limits and representation of 
partial morphisms so that the following definition is meaningful.

NOTATION 5.2.3.1 Let ai,« •*,an, 6i,** - , 6m be objects in C. Denote by 7ra,a'' : 
nay —► at- the canonical projection on the i-th component; and by

yjlloy xn6y
A i n 6 y

/ IT a - x I I t , -
<̂ 6, 7T,

navxlltJ) : nay x n6y n 6y

the canonical thinning. Let B  =  x  : a, D  =  y  : r and C  =  B  U D .  For simplicity, 
we shall adopt the following abbreviation whenever confusion is unlikely to arise.

ng = n B,D
B

TT ]X  X n  I T{ ]]_[_
iLnio<}±

DEFINITION 5 .2 .3 .2  (Interpretation of Typed XL in Categories)
The category-theoretic denotations of the various syntactic entities in our lan
guage are as follows: Let B  = x  : & be a type assignment and £  = n[cr,]]±. 

Interpretation of Types:

• [a] — an object in C,

• H  =  (n i< <<ni<Tt-]),

• I^ -+ l rj =  ( n u i d l f f i L  W -  

In general, we have

• For o  £  Types, [c] is an object in C.
• If B . t  : r, then [£](!?) : £  [rj, i.e. a partial morphism from E to |rj.
• If B .q  where q is a S-A^-equation, then [gj(5) is a subobject of E.
• If B .T  D q is a QS-Aj^-equation, then [T D y](.B) is a truth value i.e. true 

or false.

In terpretation of Terms: Let E = II[at-]]x .

• [ajj]j(x : a) =  open^.j o Ilf : E -*■ [cr.-J where Ilf : I I -> [a,-]x .

• \ t \ [ x  : a) =  ([£,•](£ : c)  11  ̂ i   ̂ n) : E ([fj =  II[rt-]) where B.t : T and
1*1 =  n - ________

• : a) =  pevaln|T|.L>H o ([«]](£: a) , (M (z  : a) 11  ̂ < n» : E M -
where B . t , s  : f, ( f  —>| v) .

• [Ay : : a )  =  pAE J M x iH  ( [ £ ] ( * > y  : a , f ) )  : E  -> (n [7v]|x -- H )  where
B , y  : T.t : is.
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• [UK* : &) = dom([t](* • ^)) ^ SubObj(S).
• [5 -  : a) =  eqj*-pti(A)(M (£ : : ^)) 6 SubObj(E) where

eqc (/, g) denotes the equalizer of /  and # in €.

• [T D g](x : a) d= H i^ iW (*  : *)  ̂ M (* : *) where T =  { Pi, * * - ,P i}- 
Note that [T D : a) is a truth  value. In other words, the value is true 
iff the intersection of [p,-J(* : o)  for all pt- G Y factors  through 5 [q](x : a).

REMARK 5.2.3.3 (i) Note that a term s such that x  : a .s  : r, i.e. a term s
of type r, which has free variables among x  of types 0  is interpreted as a 
partial morphism

M ( * : 5) : n M ±  W -

The source of the partial morphism is the product of lifted objects [<7{Jj_. 
This accords with the requirement in that free variables range over 
all partial  elements, not merely the total ones. Contrast this with the 
interpretation of Ap.

(ii) Both the pairing operation (— ) and the composition — o — in a cate
gory of partial morphisms are s tr ic t  in the sense that if either one of the 
morphism /  and g is genuinely partial, then so are ( / , g) and f o g .  Now, 
consider the interpretation of the non  right-strict application in \ i .  The 
result of such an application may well be total, even though the operand 
or the second argument is partial. To reflect this behaviour, the partial 
morphism corresponding of the denotation of the operand must be lifted 
before composing with the peval morphism.

(iii) Observe that the denotation of the lazy function space a  —q t is [oJ± —̂ [r]. 
In contrast, that of the strict (or partial) function space is [<7] —*■ [rj.

Next we provide an interpretation of the untyped A^-calculus by way of 
translation into the typed Ap-calculus, and so, through the typed Ap, obtain 
a category-theoretic interpretation. This approach of interpreting the untyped 
calculus in the typed calculus is well-known from Scott’s work, notably [Sco80b]. 
As pointed out to me by Eugenio Moggi, the relative interpretation of the un
typed Al in the typed Ap  provides an insight into why one would not expect 
completeness of the category-theoretic interpretation with respect to pure Â  
(i.e. without any constants): because there are not enough terms. Completeness 
is, however, guaranteed whenever convergence test ing is definable in the language. 
This, together with the fully abstract model obtainable for A£c (see Chapter 4), 
puts the importance of convergence testing and its apparent indispensability on 
a firm theoretical footing.

5Let / , g be monos in C. We say that /  fa c to r s  through g , notationally, f  ^  g iff 3h . f  =  g o h .
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R elative Interpretation o f U ntyped X l  in T yped A p

DEFINITION 5 .2 .3 .4  We assume that the reader is familiar with [Mog86]. Con
sider a typed Ap-calculus augmented with the following (atomic) types, constants 
and axioms:

• types: 1, D;

• constants:

* :1 ,

Gr: ( D l -  D )  -  D,

Fun : D  —̂ (D ±  —̂ D ), 

where D ± is a shorthand for 1 D .

• axioms:

(Terl) x , y  : a,  IT  D (y ~

(Ret) x , z  : j ,(P i  —*■ D).r D (Fun(Gr )̂ a  z ) ,

(Ex.Fun) x , z  : a,  D .T  D Funzj.

Note that (Terl) and (Ret) enunciate that 1 is the terminal object and that 
(D l —*• JD) is a retract of D  respectively.

The translation (—)' maps an untyped term M  to a typed term M '  of typed 
D  such that all free variables in M '  (which are precisely those in M )  have type 
D ± .  The translation is defined as follows:

x ' =f (x*),

( M N ) 1 =f sevalpx>£>(FunM', Ay : 1JV7),

(Ax.M)' =  Gr(Ax : D ± . M ’);

where seval£>Xi£> is the (strict) application operation in Ap of type

[ D ± - ^ D ) i D ± D .

By structural induction, it is easy to verify that for M  E A, M' has type D  
given that all free variables of M  have type D ± .

It is easy to see the following:

LEMMA 5.2.3.5 (—)' ts a relative in terpreta t ion , i.e. for  M, JV E A,
XL h D ( M  N )  ^  Ap h D ( M 1 ~  N') .

□
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REMARK 5.2.3 .6  (Moggi) There is a closed term of type D , namely 

M  =  Gr(Ay : D ± . ( \ z  : D l ' ) [ y * ) )

such that for all untyped term N ,  the above proof system obtained by augmenting 
Ap  with the three axioms cannot prove M  N '.

Semantically, the interpretation of M  in the domain D  =  D ±  —1k D  is conver
gence testing.

Contrast this with the usual translation (—)" of untyped A-calculus to typed 
A-calculus with reflexive object which satisfies the following property:

Any typed term M  of type D  with all free variables of type D  is 
provably equivalent to N u for some untyped term N ,

This observation throws light on why completeness of Ax, with respect to 
categories of partial morphisms is unlikely.

LEMMA 5.2.3.7 Let  C be a category of  partial  morphisms which has partial func
t ion space. Suppose h : c x a —̂ b and g : d —> c is total. ,  then

P^d, a , b { h  °  ( 9  X ida)) =  P K * , b i h ) °  9 '

PROOF Straightforward corollary of the naturality of 0_a,k (with reference to 
Definition 5.1 .6 .3). □

LEMMA 5.2.3 .8  Let  I  be an indexing set.  Let h and li for  i 6  I  be monos in a 
category C in which pullbacks o f  m onos  exist. Then,

a )  n fc_i(*i)=
i t

PROOF To prove (f), it suffices to show: for any L  such that:

=  h ' f t l i )  o tf => 3 Ik.L =  /,■) o k.
i

Suppose the antecedent, then ' i i S t i .h  o L  =  h o h ~ l {li) o t ,• =  /,• o l j l (ti) o t,. Hence, 
3!/c'.hoL = (fit Finally, by pullback of h and fj, /,-, 3 \k .L  =  /*) o k .  □
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LEMMA 5.2.3.9 (Substitution 1) (i) Let C  =  x , y  : <j , t and  B  =  x : a.  Let
T = { qi : 1 < i < n }, 5 ~  t  be as before and suppose that they are well-typed  
with respect to the type assignment  B .  N ote  that this implies  that the free 
variables o f  all equations in  T and s , t  are included in x;  and that  they  are 
also wel l- typed with respect to C . Then,

(1) M ( c )  =  H ( B ) o n g ,
(2 )  [s =  tJ(C) = (n g j- 'd s  ss t j ( B ) ) ,

(s) n,-1*1 (0  =
( ii ) Let  B , y  : f . s  : 1/  and B  C C .u  : f .  Then,

W y  ;=  =  W ( ^ » y : ^ 0

PROOF (i) We prove each item in turn.

(1) Entirely similar to the proof of Lemma 5.3.2.8 (Substitution)(i) in the se
quel.

(2) By an appeal to (1), it suffices to show:
CLAIM: Suppose in a category C, /,• =  g, o l for i  = 1,2. Then,

e q J /1, / 2) =  J- 1(eqc (yi> Sky

writing Q  for eqc (<7i, g2), we have

h o l - ' i Q ) g i o l o  l~x{Q)  

g i o Q o  Q_1(/)

g2 o Q o  Q~*(l)

Suppose f i o h  =  f 2oh,  then g io l o h  =  g2oloh .  By definition, Slk . loh  =  Q ok .  
By pullback of / and Q,  we have

3lk' .h =  l~1(Q)  o k'.

(3) Follows immediately from (2) and Lemma 5.2.3.8. (ii) Entirely similar to 
the proof of Lemma 5.3.2.8(ii).

□
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THEOREM 5.2.3.10 (Soundness) The typed QS-XL-calculus is sound with re
spect to  interpre ta t ion in categories of  partial morphisms.

PROOF The proof consists in verifying the soundness of each inference rule. 
The rule (Log.l) is readily seen to be valid. Rule (Log.2 ) follows from the tran
sitivity of the “factoring” relation, i.e. if /   ̂ g and <7 ^ / 1, then /   ̂ h. The rest 
of the rules will be dealt with in turn.

Let T =  { $!, •••,?„}.

• (Subst)
Let T =  {tfi,
CLAIM: For q a strong equation,

M v  :=  u]](c) =  f))

where h =  (IT§, [^ (C ) , • • •, [wm](C)). This can be verified by an appeal to 
(ii) and the Claim in the proof of (i) (2) of the above Substitution Lemma. 
By Claim, we have

[r[y:=u]](C) =

and we are done.
NOTATION: We introduce standard names for some recurring notions as 
follows. Let l =  [r](B), l s j ( B )  =  [iu  / 1], W(J3) = [i^ f i \  and that [g] =  
Is c* *]](£).

• (Ex)
Note that [$j](J3) =  [z'i]. Now, by premise, l < g and l < i i .  By pullback 
of g and 1, there is a morphism u s.t.

I = g ° 0 _1(n) o u  =  i i o  i ^ i g )  o u.

Since g is an equalizer in M-Ptl(A), there exists an isomorphism v such that

»i 0 h 1^) = *2 0 h'id) 0 v- 
Hence, l =  i 2 o z’J1^) ° v o u, i.e. /  ̂ z*2*

• (LStr)
Let / ,  /'  be partial morphisms. We remark that 
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Lemma 5.2.3.8 

some k; by premise

by Claim
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dom(/o /')  ̂ dom(/').

Omitting the cumbersome details about types, recall that 

M*)] = pevalo (M , ([*,•]]|0 ).

By premise, l < I(s(£))JJ|. Then, by the preceding remark, 

l < dom«[sJ, ( M |0 »  = dom([sJ) n dom(([^]||0).

Since dom((|^]]|i)) =  id, we have l < dom([s|).
• (Ex.A)

The validity follows trivially from the totality of jAx.n.tJ(B) which is pA(g) 
for some partial morphism g.

• The rules (Eq.l) and (Eq.2) are obviously valid.
• (Eq.4) By premise, we have Z fu’i  ̂ g and / n *2 < g . There exist morphisms 

Ci, e2 s.t.

(1) i 1 o i l l ( g )  o e i  =  g o  ^-1(0) o e t  =  / o /_1(z1),

(2) i 2 o %2 l { g )  o e 2 =  g o  g~l { i2) o e2 =  l o Z_1(f2).

Now, since g is the equalizer of and [£](jB), there exists isomorphism
v s.t.

(3) f i  o i~ 1(g) = f 2 o i~ l (g) o v,

H  O i i ' i g )  =  «2 ° h H f f )  ° v '

Hence, from (l), we have ZoZ“1(i1) =  t'201'2 1(p)°v°ci*1 and so, by considering 
pullback of / and f2, there exists morphism u  s.t.

(4) /- 1(0) =  Z_1(22) o u.

We assert that u is actually an isomorphism, because by an.entirely sym
metrical argument, we have

Z_1 (f2) =  f- 1(*i) 0 u';

and that both Z_1(t1) and Z_1(i2) are mono.
Also, i 2 o 1 2 x(g) o v  o ei =  i 2 o f2 1(flf) o e2 o u. Since i 2 o i 2 x(g) are monos, we 
have

(5) v  o — e 2 o u .
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Finally, we claim that [iu  h ]  o [/] =  [«2, f 2\ 0 [*]• Consequently, since g is the 
equalizer, we have / < g and we are done.
To prove the claim, observe that from (1) and (2), we have i x 1(^)oei =  1(l)
and z2 1(g) o e2 =  ^(Z ). Hence,

/ i  ° h  1 (0 = f i  ° h ^ f f )  ° e i by (3) 

o v o e i  by (5) 

/2  ° H l {g) ° e2 o u by (2) 

f 2 o 1(/) o u.

Also, from (4), we get lol 1(fi) =  lol  1{ i2)ou.  Hence, [*i, /i)o[/] =  [i2, / 2]o[/]. 
• (Eq.3)

Suppose the interpretation of the premise is sound. Then, [5] (5) o l — 
|£](i?) o / and o l =  [u])(H) o l. Hence, Js](2?) o / =  [uJ(J3) o /; and so,
by definition of [5  ci u])(J5), we have

Z =  [r](J3) < [ S ^u](H ).

• (0
Let C  =  B  U D  with D  =  y  : f. By naturality of (—) x  (—) in the first 
argument, we have,

n |  o [r](B) x  idD =  |r](B) o PEtD

where [r](B) : E  -  B .  By Lemma 5.2.3.9(i)(3), [r](C) = (n g )-1^ ^ ) ,
and so, [r](C) o h  — [r](H) x  id  ̂ for some morphism h.
Now, suppose interpretation of the premise is sound, i.e.

M (c)o [r ] (c )  = [ i j (c)o[r](c );

composition with h  on the right then yields

M (C) o I Vj ( B)  x  \dD =  M(O) o IT] { B)  x  idD.

Applying pA(-) to both sides, then by an appeal to Lemma 5.2.3.7, we 
have

p A (M (C ) )  O [rj(B) =  p A (W (C ))  O |rj(B);

from which we conclude |[r](J3) < eq((Ay : f.sJ(H ), [Ay : T.t\(B)).
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• m  ______
Let B  =  x : a, D  = y : r and C  =  B U D .  Note that ([j/*]l(C)|t) = Ilg. Now,

peval o ([Ay : f.iJ(C), ([yf](C)|x»

p e v a l  o (pA([£j(C, £>)), Fig) Lemma 5.2.3.9

peval o(pA(W(C)ong-D),ng>
peval o (pA(JiJ(C) o (Ilg x id£>)),ng) Lemma 5.2 .3.7

peval o (pa( !*]((?)) o ng,ng)
peval o pA([£j(C)) x id#

W ( c ) .

The equalizer of two identical partial morphisms with source E is ids, hence 
the result follows trivially.

• (cond-77)
Let l = [rj(J9), l t j ( B )  = [ i , f ] , C  = y : f  and E' = n[r<J±. By premise, 
l  ̂ 1, say l =  % o h. It suffices to prove

(t) [Ay : T . t ( y ) ^ ( B )  o l  =  [*])(B) o /;

for then, by definition, l ^ [Ay : r .t[y ) ~  £](£). Now,

[Ay : r.*(y)](£) = pA(pevalo ([£](£, C) ,  ([y,■]](£, C)|t)» 

= pA(pevalo [£](B) x ids') 

which is a total morphism extending [t](J3); hence

[Ay : f.£(y)J(5) o dom([*](j3)) =  [£j(£) o dom ([£](£)). 

Since l =  i  o h where i  =  dom ([£]](!?)), we have (f).

□

5.2.4 C om pleteness of the C ategory-T heoretic Interpre
tation

This section will be devoted to the construction of a category of partial mor
phisms that correspond to the “initial term model” for a certain class of typed 
A^-calculus. Consider A£,iC, the class of A^-calculi in which convergence tes t ing  is 
definable. That is to say, there exist CT l/ E Terms such that for all well-typing 
x  : o.s  : r,
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X l  • o-.]? D  sj, •4 - - A^c h" ■£ • o .r  D  (C^^s — Ay : 1/.y) 

where cr,r, v  range over Types.
In the following, all conjunctions of the form A;ej P*(z) are assumed to be 

finite, i.e. 1  is finite.

DEF IN IT IO N  5.2.4.1 We define a category C(A£,jC) as follows:

• Objects: entities of the form { x : a.  A,- p,(x) };

• Morphisms: equivalence classes, {x  : a. A { p i ( x ) }  { y  : t . A j  q j (y )} >  

satisfying the following:
(1) x  : <j . s ( x ) : t  is well-typed,
(2) Vy.ALfC h A i P i ( x )  D q;-(6(f));

and that [s(x)j is the equivalence class with respect to the relation 
defined as follows:

s(£) ^  =  A M * )  d  K * )  -  *'(*))•
t

• For any object { x : a.  A,• p*(x) }> the identity morphism is [£].

• For { x \  a. A,- p<(z) } ^  { y  : f. A,- fc(y) } ^  { 2 : p.  A,- ^ (2) }, the compo
sition [£(*/)] o [s(x)j is [£(£l(x))].

It is easy to see that C(Al,c) is a category.
Next, we ascribe a domain structure to C(Ax,iC). Define, for each object, {x  : 

o. f \ iP i{£ )  }, the set of admissible subobjects, At({x : a. A iP i ( z )  }), consisting of 
all morphisms of the form:

{ x :  a . A «.-(£)} { 5 :  a . [ \ p j { x ) } .
i i

Before we prove that A4 is indeed a domain structure, we note the following useful 
Lemma:

LEM M A  5.2.4.2 T h e  f o l lo w in g  is a p u l lb a ck  sq uare :

[ x ]

{ X : a. A P i{x )  A A q j (x )  } ------------ ► { x  : o. Ap»(z) }

{ x : a. A } ------------ ► { x m- 0 - A r k { x ) }

IA
□
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LEMMA 5.2.4.3 M is a domain  s tructure on C(A£,,c)

PROOF We verify the four conditions as stated in Definition 5.1.1.3. First, 
observe that

{ x : a . / \  q{(x )  } { x  : a. / \ P i { x ) }  

is a mono. For suppose for k =  1,2,

{ y T. A  n(y)  } { x : a. / \  q^x) }
and that

[x\ O (sl(yU f) [a] o [£($)].

Then, [si(y)] [^(l/)]- Condition (3) is obvious. The following pullback
square (which is easy to verify) should suffice for (4).

{ y : f . A r i ( y ) A A q i ( s ( y ) ) } --------------- v { X : B. A  q{(x )  }

[51

{ y : r -A  r<(y)} -----------► { x  : a.  A Pi{x) }
i m

The interpretation of types is as follows. Let x  = x i ,  • • •, x n 

Vo 6  Types.[oj =f { x  : o . x i | ,  • • •, x„| }.

□

REMARK 5.2.4.4 We claim that the interpretation is “good enough” for a sound  
category-theoretic interpretation of Al iC. Note that with reference to the above 
interpretation, it is easy to verify that:

[oj =  n<[<T,-J and [ajj_ = { x  : o .x  x  }.

Henceforth, we will abbreviate { x  : o. A,- — Xi } as { x : o  }.
Note, however, [o —*■ r] =f { £ : a  —*■ r . z \  } is, in general, not (IIJovJjJ JrJ, 

— the partial function space from (njo,]^) to [rj. Nevertheless, to ensure a 
sound interpretation of A£)C, it suffices to check that

(*) /  =  peval o pA(/) x id

holds for ail partial morphisms /  that might possibly arise in the course of the 
interpretation given a prescription of the morphisms “peval” and wpA(/)”. As
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it turns out, the respective prescriptions do not qualify as peval or pA(—) (in 
that the respective isomorphisms <f>Jl,b, r jJ  fail to satisfy the naturality condition) 
according to their definitions to be introduced next; they only behave  as peval 
and pA(—) s h o u ld  when their use is restricted to the class of partial morphisms 
that might possibly be encountered in the interpretation.

NOTATION 5 .2 .4 .5  From  now on, we present partial morphisms of the form 
[i](x , y : a, f) as follows:

{ x , y : a , f .  A P -}
[i(x,p)] 
------------------- ► { z  : fi.z 1}

x , y : a , f }  ------------------------- ► { z i j i . z
M (z , y  :

Note that for all such terms t, h l\p \  D  t[. The strong equations 
parametrized over t, pj, may be seen as “filtering” out the extent over which 
free variables in t should range so as to ensure the existence of t.

DEF IN IT IO N  5.2.4 .6  The p se u d o  peval and pA(—) prescribed to interpret ab
straction and application are as follows:

Define pevalf/i : Jf ^  pj x II - -  [/x]:

{ y , z :  t - *  p , r . y l  A (C [y{z]) ^  I)  }
\y(z)\
------------- > {u  : p. u  1 }

\y>z[

{ y : f /z.yj, } X { z : r  } ------------------- > { u  : p.uj }
pevalfM

We define pAg)f)M( p ] ( f ,  y  : a ,f) )  =f [Ay : r.[*J(x,y : a , f ) \  : -* [ r - -  /zfl
(a total morphism) such that

{ x : 5 }
[Ay.[«](£,p: a , f ) \

■* { u  : t —*■ f i . u l  }.

Observe that to ensure a sound interpretation, it suffices to verify, for all 
partial morphisms of the form : <7, f)  with x,y : cr, r.t : /z:

(t) W (®i?: =  pevalr  ̂o pA5 f /1(p l(x , y : o , r ) )  x idf

which we will prove as part of the following Proposition. 
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PROPOSITION 5.2.4.7 S u p p o s e  x  : a.s(x) : t is  well-typed. T h e n ,

( i )  a c co rd in g  to the prescr ibed  ca tegory-theoret ic  in te rp re ta t io n  prescr ibed  ear

lier,
[s{x)\

{ x  : A  Pi } -------------------------- > { y - T . y l }

{ x : o } + { y - T .y l  }
[ s ( f ) l ( x  : o)

( t )  Vt.AL>c I" 5 (® ) |  3  Pi-

( i t )  T he  p reced in g  s ta te m e n t  (%) is  valid.

PROOF (i) We prove by structural induction.

• For the base case of variables: [a:l-J(x : a), we have

w{ X : a.Xii } -------------- ► { Xi : cr.-.x̂  }

{ x ' . B }

M ( 5 : o)

which is composed of the following:

+ { Xi : cri . X i l  }

[x.*J l x *'J"( X • O'.XjJ, { X{ . 0{.X{\, )■ ■  ̂{ Xi : Oi.X{,j, )

x\

{ x : d }
[Xi

\x\

{ x : o }

n *  =  N

(f) is clearly valid.
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• The case for abstraction is trivial and that (f) is clearly true.
• The case for [£j(x : a)  is straightforward.
• For the inductive case of [s(£)|(x : <r), the following diagram which reveals 

the composition:

| f l ( i : 5) = pevalf„  o ([.s]j(z: a), ([[i,-]](x: a)|t)> 

should suffice.

{ x :  a .A p?A
s(x)(r(x ))|}

{ x :  a. A Pi}

[s(x),f(x)] { y, z  : t —  /z, f.y jA

' (c ( y ( ^ ) ) - i ) }

(pllbk sq.) [y, zj

[ s ( x ) , t ( x ) ]   ̂ {  y : r  —»■ ix .yl }
* x {  z  : r }

[y{z)}
■* { u  : f i.u\ }

--------------- ► { u  : p.u\^
peval?iM

x

{ x :  a } { y : T - ± f i . y l }

x { z : t }

We have |s(x)(£(x))|(x : o) =  \y{z )] o [s(x),F(x)] =  [s(x)(f(x))] and note 
that

A p ‘(i) = A p! A
To show (f), observe that by induction hypothesis, we have 

Vi.XL,c H s(x ) | D p .̂

Also, s(x)(£(x))|. D s(x) j by (LStr); and so, by (Log.2),

Vt.Al>c h s(x)(f(x))l D p3{ .

Hence, Vi.AiiC b s(x)(t(x))J. D 

(ii): We show: for any well-typing x, y  : <r, r.i(x, y) : /z,

(t) M (£,y : & , ? ) =  pevalfiMopA5if^(pJ(x,y : a , r ) )  x idf.

Observe that (t) implies that the category-theoretic interpretation of Al iC is 
sound.
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Consider the following diagram:

{ x , y  : a , r .  f\ q\ }
[Xy.t,y\

\x*y] (pllbk sq.)

{ u ^ y  : f
-> T .u l

A ( C ( u { y ) )  ~  I) }

[u,y\

[u{y)}

■+ { z  : V - z l }

5 }  x { S :  ? }  p^ ( M ) x i d  , {x“{ :/ : 7 r " i }

The above composition yields: 

{ x , y - . 5 , T . ! \ q \ )  —
M

pevalf

-> { 2  : m .2|}

*  { z  : }

[£,y]

{ x : 0 }  X { y : f } + { s  : M -*!}
peval o pA([i]) x id 

To show (if), it remains to show:

Al.c 1- A Pi 3 A 1- A => A p ‘-

By definition of the above partial morphism peval o pA(Ji]) X id, we have 
A  q\ D  t[. Applying (i) to £, we have t[  D  Ap*5 and so, by (Log.2)

^i,c 1- => A p ‘>-

With reference to the pullback square, observe that for T — any finite conjunction 
of strong equation such that

T D  (u  cz Xy.t) & T D (C(u(y)) ~  I),

(which imply, by (/?) and (Cong) that V D £j) we deduce, by universality of 
pullback, that

Hence, in particular, Xl ,c b A p\ D A Qi and we are done. □
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THEOREM 5 .2 .4 .8  (S o u n d n e ss  a n d  C o m p le te n e s s  o f  Ajrc)
The category-theoretic interpretation is complete with respect to the class of Xl - 
calculi in which convergence testing is internally definable. That is to say, suppose 
x  : a.pi, • • • , pn, q are well-typed, then

f ) M ( £ : < MR® : <=>  ^L ,c b x : a. A  pi D q.
i i

PROOF We prove the completeness part. Let r =  plt • • •, pn, n  ̂ 0 and let q =  
(s(x) ~  i(x)). Note that the strong equation s i  can be represented equivalently 
as C(s(x)) ~  I. The following proof depends crucially on the assumption that 
convergence testing is internally definable.
CLAIM: [5 ij(x  : a) =  { x : a.s ~  t } { x : a }.

We need to verify that the rhs is the equalizer of [sj(x : a) and |ij(x : o). 
Consider the following diagram:

{ x : a.s ~  t
A A }

{ x  : a.s sss t }

{ x  : a. A p\ }

pllbk

x
-> { x : a  }

pllbk [x]

-* { x : a. A p i}

[s{x)\
-+ { V : T.yl }

+ { y : T- y l }

{ x  : a.s cs£ t ___
A A Pi }

To verify Claim, it suffices to show:

Al,c b (3 t A y\ pi) D  (s ci t A / \  p-) &

{ V : r . y l }

Al ,c b (5 t A / \  p|) D  (s t A / \  pj).

To see this, we have, by an appeal to Proposition 5.2.4.7,

s t / \ f \ P i  D  4 ;

and so, by rule (Ex),

5 cz t A f \ p\ D t[.

By Proposition 5.2.4.7(i), we have

PhD Thesis May 31, 1988



Chapter 5: Category-Theoretic Characterization of the Lazy Lambda Calculus 224

s ~  t A f \  p* D  s  ~  t A f \ p j .

The other direction is completely symmetrical.
Hence, : <?) is just { x  : a. Ap*} { x  : cr}. The premise |TJ <

implies

{ x  : B. f \ P i  } { x  : a.s  ^  t }.

By definition of morphism in C(A£,iC), we conclude, AL)C h T D  q. □

5.2.5 Correctness o f The Form al A ^-Calculus
The formal A^-calculus may be seen as a proof system for deriving quasi-strong 
equations between A-terms. For the proof system to be of any use and relevance, 
formulae derivable by the system must reflect actual programming behaviour (in 
our case) in the lazy regime accurately. This is the question of the co rrec tne ss  of 
a calculus (or a proof system) with respect to a programming language.

As far as I know, Gordon Plotkin was the first to study the correctness of 
variants of A-calculus (seen here as proof systems yielding equations between 
programs) with respect to their corresponding programming languages. In the pa
per [Plo75], Plotkin defines a calculus and a quintessential programming language 
corresponding to each of two different calling mechanisms: call-by-name and call- 
by-value. Regarding A-terms as programs, as is classical, Plotkin maintains that 
if a reduction relation on A-terms could be defined which reflects faithfully how 
computation is carried out, indeed enabling all possible “normal forms” to be 
captured in a deterministic fashion, then the programming language in question 
may be said to have been completely determined. In the same spirit, we will 
regard a programming language as specified by a deterministic reduction relation 
on A-terms.

“On the other hand, the [programming] language can be regarded 
as giving true equations between programs [= terms of the calculus]. 
Informally, one programs equals another, operationally, if it can be 
substituted for the other in all contexts ‘without changing the results’.
From this point of view, a calculus can be correct with respect to the 
programming language.”
[Plo75, pp 125-6]

Taking the cue form Plotkin, we turn now to the lazy regime. The calculus or 
proof system in question is the formal A^-calculus and the formulae derivable are 
q u a s i - s t r o n g  equations. The programming language is exemplified in the shape 
of the pure lazy language (A0,lj.). Note that Abramsky shows that operational 
equivalence or contextual equivalence i.e.
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M ~ c N  =  VC[ ] € A".C[M]-(J- •<=*• C(iV]^

is identical to bisimulation equivalence (Proposition 4.1.3.5). The operational 
behaviour of the pure lazy language is therefore completely determined by XL

DEFINITION 5 .2 .5 .1  Jg] and [ r  D <?]], the respective interpretations of the un
typed S-Ax, and QS-Ax, equations in the pure lazy language, or equivalently, in Ai  
are truth values. They are defined as follows:

• S-Ax, equation:

— [s j]  =f V closed substitutions o  : Var —»■ A^.s*^,

— [5 ~  £] =f V closed substitutions a  : Var —> A ° .sa ~ B ta .

•  QS-Ax, equation: Writing pa as sty or ~ B ta according as p  =  s or s c* t]

lPu  ‘ ‘ * iPn ^ gj =f V closed a  : Var -> K ° .pXa & • • • & p na => qa.

REMARK 5 .2 .5 .2  Recall th a t for (possibly open) s , t  €  A,

s  t =f for all closed substitutions cr, s a ~ B ta is valid.

Compare this with [pi, •••,£* D s ^ ij which means: for all those closed 
substitutions o  which satisfy the precondition p \ a & • •• & pna, t,, is valid. 
According to this interpretation, QS-Ax,-equation furnishes a mechanism with 
which to reason about the partial  bisimulation equivalences between two possibly 
open A-terms — partial in the sense that one may now specify formally only those 
closures of s and t that need enter into the consideration.

Alternatively, the “antecedent” T in the QS-Ax, equation T D q may be seen 
as enunciating the extent over which free variables in q need to range in asserting 
q. Herein lies an advantage of QS-Ax, equations over S-Ax, equations — Ax, is more 
expressive than An  which is the formal calculus corresponding to call-by-name 
argument passing mechanism.

T h e o r e m  5.2 .5.3 (Correctness)
The form al  untyped Xi-calculus is correct with respect to  Ai  or  the pure lazy  
language. That is to say: for all QS~Ax, equations, T D q,

\ L H r  D q =4- [ r  D 9l.

P r o o f

• (Log.l) and (Log.2) are obvious.
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• (Subst) We want to show Vo : Var —> A°.(r[x := P])* D (q[x := P])a. where 
x  D FV(r,g). Given a  : Var —> A0, we define accordingly an associated 
closed substitution o' : { x }  —► A0 by <j'(xt) = (P,)* £ A0. Then, for 
p  € T U { q }, (p[x := P])* =  pat. The result then follows.

• (Ex)
NOTATION: Let r = pi, • • • , p„ and q =  M  ~  N .  We write o  E A°  f T if 
Pia & • • • &: pn<7 are satisfied .
Let o  G A0 f T. By premise, M a ~ B N g Sz M aty, Since M a ~ B N a is by 
definition

VP C A ° .M aP ^  <=► iV̂ PJJ..

The result then follows trivially by setting P  to 0.
• (LStr) follows immediately from the observation that

VL € A°.Lft =*► VP C A’.LPft.

• The cases of (Eq.l), (Eq.2 ) and (Eq.3) are valid because ~ B is an equiva
lence relation.

• (Eq.4) Let o  £ A° \ T and P  C A0. Suppose M aP § .  Then which
implies, together with our supposition <r 6  A0 f T, that a  G A° f (T, Afj). 
Hence, M a ~ B i.e. iV̂ PJJ.. The other direction is entirely similar.

• (Cong) and (£) follow from the fact that ~ B is a congruence.
• (j3) follows from A i  being a A-theory.
• (Cond-77) follows from: for A € A0.A/? h A\ j- => Ax.Ax = A, for x not free 

in A.

□
Consider the example M  =  xx, iV =  x(Ay.xy). It is an easy exercise to see 

that M  ~ B N  and Â  b M  ~  N .  Note that A fl P M  =  N .  Hence, even restricting 
to strong-equations, Ax, is more expressive than A/?.

We claim that AL is not  a pre-lazy A-theory. In particular, Ax, ¥■ A2 A2 a* A3A3 
where An =  Ax. x • • • x. It therefore follows that Ax, is no* complete with respect

to A L

5.3 Towards a C ategory-Theoretic Sem antics
Typed Theories and Categories
It is well-known that there is a tight correspondence between Cartesian closed
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categories  on the one hand, and theories of typed A/377-calculus with surjective 
pairing on the other, as expounded clearly in Part I of Lambek and Scotts’ book 
[LS86]; see also [Lam80].

Correspondence bet. CCC’s and Typed (3rj Theories

Categories Theories

objects types

structures type constructors

universal properties axioms

From Typed Theories to  Type-Free Theories
Scott observed that given an atomic type D  whose function space [.D  —*■ D] is a 
retract  of itself (which, when couched in category-theoretic terms, means that D  
is a reflexive object), there is a well-defined translation of any untyped A-term M  
into a typed A-term M 1 of type D  such that all free variables of M 1 (which are 
precisely those of M )  are of type D .

The important corollary is that given an interpretation of any typed A/?- 
theory, there is a natural relative interpre ta t ion  of the type-free A/?-theory. It is 
interesting to note that whereas the interpretation of the typed  theory involves 
the entire Cartesian closed category, the relative interpretation of the untyped 
theory entails only a reflexive object.6 Indeed, one only needs to consider the 
Cartesian closed subcategory freely generated by D ?

M odels of the Untyped Theory and Categories
A-models are A-algebras which satisfy the weak extensionality axiom (see Chapter 
3). A-algebras are, in essence, just type-free theories  of A(3. Since there is already8

6This corroborates the view that the typed calculus is prior to the untyped calculus. However, 
this view is not entirely satisfactory, at least from a computational perspective. It is well-known 
from the work of Church and Kleene that all (partial) recursive functions can be captured in 
the type-free calculus (see Chapter 1 for a restatement of the computational power of the type- 
free A-calculus in  the lazy  regime); even augmented with recursion constants, typed calculi fail to 
capture all the recursive functions. [FL083] gives a highly readable account of the class of numeric 
functions definable in two typed A-calculi. The s im p ly  typ ed  calculus only defines the e lem en ta ry  
functions. The second order  calculus defines a gigantic hierarchy of functions so rapidly increasing 
that Peano arithmetic alone cannot prove that they are total.

7In his PhD thesis [Koy84, Chapter 2], Koymans addresses the issue of “how much” of a 
Cartesian closed category really impinges on the interpretation of a type-free theory (and model). 
This led him to consider not full-fledged categories in their generality as such, but m on oids  — 
Cartesian closed monoids to be precise.

8With the benefit of hindsight, it is a satisfying exercise to attempt to reconstruct a “history” 
of how one idea leads (or should lead) to another. It is not entirely clear to me whether the links 
between models and categories which occurred to Scott follow the sequence I have presented.
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a correspondence between reflexive objects of a CCC and type-free theories, the 
correspondence may be extended to one between models and categories provided 
the weak extensionality axiom may be pinned down in category-theoretic terms 
in the shape of some local concreteness property. This has indeed been done by 
Koymans and the axiom corresponds to the reflexive object having enough points.  
In point of fact, such constructions give rise to all possible A-models; see [Bar84, 
Chapter 5] and [Koy84] for a comprehensive account.

We have established in section 2 of this Chapter that there is a correspondence 
between partial Cartesian closed categories on the one hand, and theories of Ai,(c 
on the other. In this section, we will make some progress towards specializing this 
correspondence to one between lazy XC-models  and lazy reflexive objects which 
have enough points in part ial  Cartesian closed dominical categories.

5.3.1 Lazy AC-Models and P artia l C artesian Closed D o
m inical Categories

In Chapter 4, we showed that convergence testing C is not A-definable. The 
complementary role C plays in the lazy regime should be evident by now. We 
formalize the notion of a lazy AC-model.
DEFINITION 5.3.1.1 A lazy XC-model (algebra) A = (A ,•,ft, [—1_) is a lazy A- 
model (algebra) in which convergence testing is definable.

To recapitulate, this means that there exists a distinguished element c 6  A  
such that Vx € A, A satisfies:

• <4,

• xjj. => cx =  I,
• xfj- => cx ft.

LEMMA 5.3.1.2 Let  A be a lazy XC-model.  Then ,
VM € A(C)°.MJ|c => A N M \ j .

Hence,  A f= A/3C (Refer  to Defin i t ion  4 .4-2.1) f 

X/3C b M  =  N  =► A 1= M  =  N .

PROOF Suppose M .|}c. Consider the four inference rules defining -|j-c in Def
inition 4.4.1 .2 . We prove A N M JJ- by establishing a stronger statement: for 
M , N e  A(C)°,

M t y c N  => A *  M  =  N;

the result then follows by observing that A N C-lj-&Ax.PfJ.. The stronger statement 
is proved as follows: the base cases — (C4J-cl) and (abs-|]-c) — are obvious; (/3n) is 
valid since A models X/3. Finally, (CJj-c2 ) is valid by an easy induction argument.

□
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We introduce the category-theoretic entities that model lazy AC-models.

DEFINITION 5 .3 .1 .3  (i) Let C =  .M-Ptl(A) be a category of partial morphisms
in a domain .M which has partial function space. An object A is lazy reflexive 
if

[A_l —̂ A] A,

i.e. [A± —1■ A] is a total retract into A.  A is a str ic t  reflexive object if 

[A -*■ A] <t A.

(ii) A category C =  .M-Ptl(A) of partial morphisms in a domain .M is a part ial  
Cartesian closed dominical  category  (pCCDC) if C is dominical, has an 
atomic 1-element object and partial function space.

(iii) Let C be a pCCDC. An object A  of C has enough po in ts  if

V/, g : A_l —** A.[Vx : 1 —1* A . f  o x  =  g o x \ = ^  f  — g.

LEMMA 5 . 3 . 1 . 4  If  a p C C D C  € has enough points,  than all objects  of  C have 
enough points .

PROOF Since 1 is atomic, by Definition 5.1.6.3(ii), 

c ( l ,  A ± ) =  { x  : x €  C(l ,  A) } U { }.

Suppose, for some f , g  : A ±  —t A,

Vx : 1 —̂ A . f  o x =  g o x.

By definition of zero morphism, /  o Oi^j. =  g o OitAx = Ô a. Then, c ( l , / )  is 
equal to C(l, g) as funct ions  from the sets C(l, Aj_) to C (l ,  A) which preserve zero 
morphisms. Since C has enough points, f  =  g\ whence, A has enough points. □

The main Theorem, which is the focus of this section, is stated as follows:

THEOREM 5 . 3 . 1 . 5  Lazy reflexive objects  with enough po ints  in partial Cartesian  
closed dominical categories give rise to  lazy XC-models.
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5.3.2 P artia l Categories Sem antics
The rest of this subsection will be devoted to the proof of the Theorem. First, a 
technical Lemma.

LEMMA 5 . 3 . 2 . 1  ( i)  Let  C be a category of  part ial  morphisms which has partial

funct ion  space. Suppose U  -i- V  W  and that f  is total. Then,

9 °  f  = 9 °  /•

( i i )  Let  C =  M-Ptl(A) be a category of  partial  morphisms and that  A has cate
gorical products.  Suppose f  : U V  and that g : V  W  and h : V  X .  
Then,

( g o  f ,  h o  f )  =  (gr, h) o f .

PROOF (i): g o f \ U - +  W±  is total and opener ° (<7 o /)  =  fir o / .  Uniqueness 
of g o /  then implies g o f  =  g o / .
(ii): C is a p-category. Observe that (fir, h) =  g x h o A. Then,

(g, h) ° f  =  (fir x h) o A o /  Naturality of A

= (g x h) o ( /  x / )  o A 

= ( ( g °  f )  x ( h o  /))  o A 

=  ( 9 ° f , h o f ) .

□

NOTATION 5.3.2.2 Let C =  .M-Ptl(A) be a pCCDC and let U , V  range over 
objects of C. Let A =  • • • ,x n be a sequence of distinct variables. Write
U A =  UlAl(= U n). Define U° =  1 and inductively, U n+1 dA{ U n x U.

(i) Let n A : U A —* U  be the canonical projection on the i-th coordinate.
(ii) Let T =  j/i, • • •, y m with { y  } C { x  } .  Define

n £  =

which is the canonical thinning. Note that n A is a total map.
(iii) If f iy • • •, f n  : U  —*• V ,  then [/i, • • •, / n] : U  —  ̂V n is defined as

[] =  -V,

[fly * * * , fn+l] ~f <[/l, * ' * , fn]yfn+1) for U > 1 .
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If all /,•’s are total, then

(*) n f o  [/!,-•-,/„] =  /,•;

Note that (*) is not necessarily true if the precondition — all /,• being to
tal — is not satisfied. This is a manifestation of the lack of naturality in 
both arguments of the projections. Herein lies the spot where a straightfor
ward extension of the interpretation of A-terms in a total category to an 
interpretation in a partial category falls foul of: an ill-defined substitution.

Let C be a pCCC. For any object A , we define A±  =f [l —k A] and

openA d=  peval1(A o (id[W ] , ! [w ])  : A ± ^  A;

Ifa -  pA-a,i,a(Pa i) : A - * A ± .

It is straightforward to verify that openA o lfA = idA. That is to say, there is, in 
general, a part ial  retract of A  into A±. A  is said to be complete if there is a total 
retract of A  into A±] however, we will not need this condition.

LEMMA 5 .3 .2 .3  Let C be a p C C C  and A  € Obj(C). There is a canonical to tal 
retract of  [A —“ A] ( “s t r i c t” funct ion space)  into [A± —- A] ( “la z y ” function  
space), i.e.

( r , s )  : [ A A ]  <t [A± A}.

PROOF Define r : [A A] -+ [A± -*■ A] by

r  -  pA[A-Ai,AJ.,A(PevalA,A 0 id[A-A| x openA);

and s : [A± —*• A] —> [A —k A] by

« =  ? A [Ax^ A]iAtA{pev*\A± iA  o id[Ax-A] x Ifa ).

Then s o r  =  id[Â A] follows from an application of Lemma 5.2.3.7. □

COROLLARY 5 .3 .2 .4  Let  C be a p C C C .  If A  is a lazy reflexive object with em 
bedding pair  (Gr, Fun), then A  is a s tr ic t  reflexive object via

(Gr”,Funw) : [A —*■ A] <l A;

where Funu = s o  Fun,Grw =f Gr o r, and r and  s are def ined as in the Lemma.  

PROOF Straightforw ard. d
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P artia l Categories Sem antics o f Lazy AC-Models

DEFINITION 5.3.2.5 Let C be a pCCDC and A  a lazy reflexive object of C with 

A ^  [A± -  A\ ■ & *  A .

Define Funv and Grw as in the preceding Corollary. Denote

Ap =f pevalAj>|A o  (Fun x  idAJ ,  

c =f Grv o  pA 1 A t A ( i  o  P l  A) <E c(l, A )

where i  =  Gr o  pA1 Ax>A(openA o qlfAx).

We will see later that i  above is just the denotation of the A-term I.
Let A be a sequence of distinct variables.

(i) Define, for each A, ‘A* : C(.Af,A) X ,yl) -* 0 ( ^ , 4 )  by

f ‘ A $  3  =  Apo

(ii) Let /  € C(l,^4), M  € A(C,C(1,j4)) such that A D FV(M). Define, by 
structural induction, partial morphisms [A : M \  : A A  — A  as follows:

HA:■ a
def

f o ' - A p

I A : :C!
def

c o '-a P

I A : : x\
def openA o I I * ,

|A :: M N j
def [A : M j  -Af IA  : Nj..

[A:: Aj/.MJ
def G ro p A Aj i/lx,A([A,!/

Observe that i  defined earlier in the Definition is just |I] =f [0:1].

(iii) For a valuation p : Var —► C(1,A) ,  define p A == (p(xi),• • • ,p { x n)) and 
[Af]p =  [A : M j  o pA with A = FV(M). Clearly, [M]p € C( l ,  A ) .

(iv) A( C , A )  is the structure (c (l, A), •, 0i>A, [—]-). F or/, g €  C(l,A), we write 
f i t  =  [ / =  0 1|A] and /K- =  -(/fr) and define

/ dfif r
•9  =  /  -10-

R e m a r k  5 . 3 . 2 . 6  (i) Since 1 is the atomic  1-element object in C, the only
morphism in C(l ,  A) which is not total is 01)A.
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(ii) (c (l, A), •, 0 liA) thus defined is a q-aswd with ft =  { 0 1A}. Left-strictness 
axiom is easily seen to hold since (0 , /)  =  0 and that zero maps are stable 
under composition.

OPEN Q u e s t io n  5.3.2.7 Is c thus defined the only convergence testing there 
is?

The following Lemma is crucial to the proof of A(C,  A)  h ((3).

LEMMA 5 .3 .2 .8  (Substitution 2) (i )  Let  A D T D  F V ( M ) .  Then,

[A : M \  =  ir  : Mj ° I # .

( i i )  Let A =  x 2  FV(Af), |JV| =  \x\ and  T D FV(JV). Then,

[r  : M [ x ~  JV]J =  IA : Mj o <|r : AT,]], • • •, |r  : JVn|>.

(Hi) Let  A D FV(Ax.M),r 2  F V ( ( X x . M) N )  and  T 2  A. Then,

ir  : M \ x  := N ] j  =  [A ,x : M \  o (n^, pT V J).

PROOF (i) By structural induction. The base cases are easily seen to be valid. 
We consider the two inductive cases.

[A :PQ ] = Apo<[A: P], [A :<?!)) Ind. Hyp.

=  Ap O (p: : P i ° n M r  : Q1 O n£) Lemma 5.3.2.1 
= Apo ([r : P j ,p T Q l) o n f

= [ r : p q i  o n^.

[ r : \ x .p \  o n f Gr o pA([r,rc : P]) o lip Lemma 5 .2 .3.7

Gr o pA (|r,a;: P] o lip x \dA±)

Gr o pA([T,x : P] o n^'*) Ind. Hyp.

Gr o pA([[A, x : Pj)

[A : \ x . P l

(ii) Again, we consider the inductive cases only. First, note that
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{[[r,y : JVi], • • •, Jr,y  : JV„]> [T ,y : y])

=  <[r M i  o nf ■», • • •, [ r : A7„j] o n{>, n ^ )

=  <[r N i j  ° Pi* * - »lr : N nl  o p,idAx o q)

=  (ir M l ," - , l r :N „ l )x id Axo{p,g)

=  ([r Ml,---,[r:iV„l> xidAj..

p : ( A y . P ) [ i : =  N ] j

= p  : \ y . P [ x , y  := N ,y]]

=  Gr o pA([r,y : P[x,y : N , y } f )  Ind. Hyp.

= Gr o pA(|A,y : PJo ([r ,y  : M J,"  •, [r ,y  : iV„l],[r,y : yj» Note above

=  Gr o pA([A,y : PJ o ([r : JViJ, •••, [r : iVnJ) x idAx) Lemma 5 .2 .3.7

=  Gr o PA(IA, y : PJ) o ([r : M l, ■ ■ •,  Jr : 1V„|>

=  ( A :  Ay .P lo ( lT7w i][ , . - - , i r :JVB]>.

[r : P Q [ x  := JV]1 

=  ir:(P [f:=J^ ])(Q [2:=JV ])l

=  Ap o (Jr : P [ x  := N \ U T  : Q \x  := N ] J> Ind. Hyp.

=  Ap o (|A  : P | o ([r : JV,-]| : *>, [A : <?] o (Jr : M l : i}} Lemma 5.3.2.1 

=  Ap o <IA : P l .p T Q l)  o ([r : iVil, - • •, [r : N j>

=  [A : PQJ o ([r : MJ>‘ • •, |[r : JV„J).

(iii) Apply (ii) to A' =  A ,i  and T, writing A =  y and 

M [ x  := N \  =  M [ y , x  := y , N \ .

PROPOSITION 5.3.2.9 Let M , N  e  A(C,C(1,A)) and  A  2  F Then,

( i )  convergence tes t ing  is definable in  {A(C, A ),  ■, 0 ^ , [—J);
( i i )  \ 0  h A f =  N  => [A : MJ =  [A  : IVJ => A(C, A) t= A f =  N .

Hence,  A ( C ,  A) is a lazy  XQ-algebra.
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Lemma 5.2 .3.7, we remark that
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r 0 PAl,A,A(*°Pl,A)

=  PAi,A±1A((pevalAiA o (id[Â A] x openA)) o (pA1|AiA(t o pl>A) x idAJ )  

=  pAi,AJ.>A(pevalX|X o (pA1>AA(f o p 1>A) x openj).
Let /  G C(l, A). Then, 

c • /

=  pevalAx>A o Fun x idAx o (c, J )

=  PevalAxiA o (r o pA1>A|A(t o pi,A), J )  remark above 

= pevalAx A o [pA1 AxiA(pevalA A o (pAlfAiA(* o p1(A) x openA))] x idAx

=  pevalA A o (pA1A A(z o pliA) x openA) o (\du  J )  

=  pevalA(A o (pA1|A|A(t o p UA) x idA) o <idx, />

=  t 0 Pi,A°(idi,/>

=  i  ° Pi,a 0 (idi x / )  o A i  

=  t'odom(/).

Since 1 is atomic, we conclude that

c -  f  =  <
[0  : IJ =  i  if /U- dom(/) =  idx;

0 1(A else.

(ii) By induction on the length of proof of M  =  N .  We treat only the axioms 
(/?) and (£)9.
Axiom (/?):

[A : (Ax.P)Qj

=  Ap o (Gr o pA(jA, £ : Pj), JA : Qj> Fun o Gr =  id[A±^ Aj

= peval o (Fun o Gr o pA([A,a; : P ]),[A  : Qfl)

=  peval o pA(|[A,a: : PJ) x idAx o (idAA,[A : Qj)

=  [A ,x : P] o (idAA, [A : Q]> 

= [A : P [ x  := Q]J.

Lemma 5.3.2.8(iii)

9This is a proof rule in A/?, not to be confused with weak extensionality axiom.
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Rule (f): i.e. P  =  Q => Xx . P  =  Ax.Q.
Now, [A : Pfl =  [A : Q] by hypothesis. Then,

[A  : P I  o ni'z =  IA  : Qj o n£'*

=*• [ A , i : P] =  [A, i  : Q]

=4> [A : Xx. P}  =  [A : Az.QJ.

To show that A (C, A) is a lazy AC-algebra, it remains to show that the denotation 
of any abstraction term is a total morphism. This is guaranteed by definition, 
since Gr and pA(/) for any morphism /  are total, hence, so is their composition. □ 

The following Proposition characterizes the category-theoretic condition that 
corresponds to the weak extensionality axiom.

PROPOSITION 5 .3 .2 .1 0  Let  A =  { A , - ,0 iiA, [-]]_) be as before. Then, A  has 
enough points  iff  A is a lazy AC -model.

PROOF Let A D FV(M). First observe that

[A : 1 M] = [[A : X y . M y \

= Gr o pA(peval o (Fun o [A ,y : M [,[A ,y  : yj))

= Gr o pA(peval o (Fun o JA : M \  o II^,y, 11̂  ,y))

= Gr o pA(peval o (Fun o [A : M]) x idAx).

“=£>”: Suppose A  has enough points, then  it is easy to see th a t 1 x A  also has 
enough points. For any /,g C (1 ,j4), Vx €  C (l, A) ,

f_x =  y x

=> peval o (Fun o / ,  x) =  peval o (Fun o y, x)

=> peval o ((Fun o /) x idAjJ 0 (idi, x) — peval o ((Fun o g) x idAjJ 0 (idi,x).

Since 1 x A  has enough points, we have

peval o (Fun o /)  x idA± =  peval o (Fun o g) x idAx.

By an appeal to the preceding observation, we conclude that 1 /  = ly . Hence, A 
is a lazy AC-model.
“<£=”: Suppose A is a lazy AC-model and let / ,  y : A± A.  Then,

Vx : 1 —l A . f  o x = y o x

=* Vx : 1 ^  A . { f  o yliA±) o (idi,x) =  (yo yliA±) o (id^x)
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Hence, pevalo (p A (/og1AJ  xidAJ o (id l5 x) =  pevalo (pA(gog1AJ  xidA±)o(idl 5x>; 
and so, pevalo Fun x idA± o (Gr o pA( /  o qiiA±), %) =  pevalo Fun x idA± o (Gr o pA(gr o 

This means

Vz 6  C(l, A ) . f  • x  = g' ■ x

where f ' = G r o  pA( /  o similarly for gl. Now, since A is a lazy AC-model,
and so, satisfies weak extensionality axiom, we have, I f 1 =  1  g1. Then, by the 
earlier observation and since Fun o Gr = id and for any morphism h,  we have 
h =  peval o pA(/i) X id, we conclude that

Gr o pA(/ o qh A x ) =  Gr o pA(g  o qh A ± )-

Then, by the uniqueness of pA(—),

/  o qi,A± =  g o  q1>A±\

from which we deduce f  =  g. □
We have thus concluded the proof of the Theorem.
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C h ap ter 6

Further D irection s

In this thesis, we have investigated various foundational issues of the lazy A- 
calculus. There are many possibilities for extension of our results. In the follow
ing, we will mention in brief some areas for further research.

Local Structure Theorem  for D

An obvious open question, and a hard one, is to capture the local structure 
of D  (the initial solution of the domain equation D  =  [ D —► D]j_ in the category 
of cpo’s) syntactically — a classical A-calculus problem. That is to say, find 
syntactic preorder £ on A such that

VAf, N  e  A . M  £ N  <=>  D\ = M Q N .

A related question is to find the A-theory (which is fully lazy) induced by D.  
With reference to Theorem 4.6.6.5, the theory will lie somewhere between the 
A-theory induced by the lazy PSE-ordering < (because of Proposition 4.1.3.8) 
and At  (owing to Theorem 3.4.1.3).

At the moment, we know of no (mathematical) cpo-based fully lazy A-model 
whose (in)equational theory includes XL Note that strict inclusion is not possible 
because At  is the maximal fully lazy A-model.

Full A bstraction  o f Lambda Transition System s

The bisimulation preorder may be characterized as 

M Z B N  < = >  M P t y  =► NPt y .

Hence, we can immediately deduce that
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M  EB N  ^  V P  €  A . .M P  EB N P .

To show th a t the bisim ulation is a  logical relation (which it is), it remains to 
show th a t (right-)application is monotonic w .r.t. ~ i.e.

M £ b  N  => VP e  A . P M  EB P N ;

which turns out to  be a highly non-trivial assertion to  prove. Abram sky’s proof 
exploits the powerful machinery of the dom ain logic of lazy A-calculus. It would 
be interesting to prove the assertion directly by syntactic means. The technique 
used in proving th a t Longo tree preorder is a precongruence (see C hapter 2) 
m ight be relevant here.

The problem  of constructing a re trac t of D  which is a fully abstrac t model of 
At  remains open. A closely related question identified in C hapter 4 th a t rem ains 
to be resolved is the relationship betw een the bisim ulation inequational theory 
(induced by £w) of X iu and th a t of X L  M ore precisely, w hether it is true th a t the 
inequational theory of A£w is a con se rva t iv e  extension of X L  Also unresolved is 
the relationship between A a n d  Ai c .

Given a program m ing language and a non fully ab strac t denotational model, 
and suppose the language, rather than  the  model, is prior, the  re s tr ic t iv e  approach 
achieves full abstraction  by “cutting down” the original model to  fit the language 
according to some operational criteria. Two obvious stipulations th a t might 
reasonably be placed on the target fully abstract sub-structure are th a t it should 
be a re trac t an d /o r a sub-m ode l of the original model. By sub-model, we m ean the 
existence of a m orphism  from the sub-structure to  the full model th a t preserves 
the basic operations of the language —  homomorphism in the  usual E-algebra 
sense. However, the two requirem ents i.e. retraction and sub-model property, 
seem to be divergent, even m utually exclusive. This is the  case both  for the lazy 
A-calculus as well as for PC F.

It would be interesting to reform ulate S toughton’s construction of the in d u c 

t iv e ly  reachable  fully abstract sub-algebra [Sto88] in the case of lazy A-calculus; 
and establish its relationship w ith fully abstrac t re tracts  obtained by the m ethod 
described in C hapter 4.

C a te g o ry -T h eo r e tic  C h a ra cter iza tio n

We have not been able to  obtain a satisfactory characterization of^A- or AC- 
models in the framework of partial categories. In our form ulation, A-models 
are quasi-applicative structures w ith  divergence which are essentially applica
tive structures w ith  distinguished divergent elements built in and w ith respect
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to  which the application operation is left-strict. The logic of existence (or con
vergence) in lazy A-models is c la s s ic a l —  an element in the structu re  is either 
divergent or convergent; whereas th a t in p-categories is essentially in tu it io n is t ic .  

For this reason, we have to  resort to  using d o m in ic a l categories (which some con
structiv ist category-theorists find objectionable) in our a ttem p t to  characterize 
lazy A-models.

For further research, we intend to consider three categories of entities and show 
th a t they are m utually equ iva lent. F irst, the  category of in tu it io n is t ic  (for want 
of a more descriptive adjective) lazy A-algebras whose axiom  of convergence is 
cast in an intuitionistic fashion. We seek to  relate this category to  the category of 
partia l Cartesian closed categories w ith  (lazy) reflexive objects and the category of 
p a r t ia l C -m o n o id s , using, among others, the technique of K a r o u b i con s tru c t io n . 

Intuitively, partia l C-monoids cf. [LS86],[HS86] are an  axiom atization of the 
monoid C (U ± ,U )  in a partial C artesian closed category C where U  is a lazy 
reflexive object. The same program  could also be carried out for the category of 
intuitionistic ca ll-b y -va lu e  A-algebras.

T h e  F orm al A ^ -C alcu lus an d  M o g g i-P lo tk in s ’ A p -C alcu lu s

The formal system  A^-calculus introduced in C hapter 5 is only a beginning 
in the study of formal systems for proving equivalences betw een program  phrases 
in the lazy regime. From  an operational viewpoint, a program m ing language 
is completely determ ined by specifying a set of program s and prescribing an 
evaluation m echanism  in the shape of a partia l function from  program s to  values; 
in our case, a paradigm atic language At  =  (A0, -1]-) is determ ined this way. The 
evaluation m echanism  in duces  a notion of operational equivalence — two terms 
are equivalent if there are no observable differences in their respective behaviours 
under all program  contexts. In the lazy case, Abramsky shows th a t this notion of 
equivalence coincides w ith bisim ulation equivalence. Following Plotkin, we accept 
the induced operational equivalence as given, and look for the corresponding 
calculi w ith the criterion forjudging a calculus being its co rrectness  w ith respect 
to the operational equivalence. In this sense, A^ is correct, bu t then, there are 
plenty of such correct calculi.

A nother criterion fo rjudging  a calculus is whether it is the unique sound  and  
com p le te  calculus w ith  respect to  a certain  class of models. According to this 
criterion, Al  c and not Al  is the right candidate; because the former is sound and 
complete w ith respect to  in terpretation in partia l categories.

The formulae of the proof system  A^ are intuitionistic sequents, more precisely, 
quas i-s trong  equations ra ther than  equations. W hat is the relationship between
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the equational fragm ent of Al  and A/?? More specifically, is the equational frag
ment of X l  r. e. axiom atizable over A/?? Is there a (semi)-decision procedure for 
the equational fragm ent of Al  and A£(C? To answer the last question, we need an 
associated notion of reduction.

Closely related to  the formal Ai-calculus is Moggi’s work on the Ap-calculus 
[Mog88b], In his thesis, Moggi investigates various formal system s for reason
ing about partial functions or partial elements in the framework of Beeson’s 
(intuitionistic) logic of partial term s (LPT) [Bee85]. V ariants of LPT are in
troduced for reasoning about partial term s w ith a restriction operator (LPT +  
!“), monotonic partia l functions (m onLPT), A-terms (Ap-calculus) and AY-terms 
(Ap/zY-calculus). He also develops new techniques for proving properties of the 
associated reduction systems. An area for fu rther research is to  recast X L  in the 
framework of L PT  and establish (further) relationships betw een Aj, and the var
ious Ap-calculi. A lthough there are fundam ental differences between LPT and 
LPE (Scott’s Logic of P artia l Elem ent, which is the logic of A/,) in the interpre
ta tion  of variables — in the former framework, variables range only over to ta l 
elements, Moggi’s work in showing th a t (different flavours) of LPE are conserva 

tiv e  extensions of LPT makes this representation plausible. We conjecture th a t 
Al ,c is equivalent to Ap.

Also w orth studying is the formal A^p-calculus which is X l  augm ented w ith a 
parallel convergence constant P. We expect this calculus to  be related to  Moggi’s 
Ap w ith restriction operators.
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