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The frontispiece shows a portion of a Landsat MSS band 7 image over 

the Dartmoor Granite in SUJ England, acquired in January, 1979. The 

right half of the figure shows lineaments at azimuths centred about 

40° (red), 130° (green) and 000° (blue), as picked by the automatic 

lineament analysis system described in this thesis. The intensity of 

the lineaments reflects their scale - "local" features are shown at 

low intensity, while "regional" features are shown at high intensity.

(This figure reproduces figure 7.4(e) of chapter 7.)



Abstract

This thesis addresses the task of automatic recognition of geological 

lineaments in remotely sensed imagery. The problems of interpreter 

bias and the sheer quantity of remotely sensed imagery currently  

available, mean that a practical system for automatic lineament anal

ysis would be extremely useful.

A fter development of a definition for a lineament and examination 

of the feature-recognition capabilities of the human visual system,

I define a model for a lineament analysis system that emphasizes 

the progressive refinement of an image description, and the use of 

information channels in the azimuth and spatial frequency domains. 

Knowledge refinement within the information channels proceeds using 

Fourier power spectral analysis, edge- and line-detectors based on 

simple template-matching operators, and relaxation-labelling techniques. 

A novel application of relaxation labelling is used to recombine the 

information channels and produce a final lineament map.

A system based on this model has been built and tested. In the course 

of this testing, over 60 edge- and line-detectors were subjected 

to a series of tests designed to evaluate their suitability for linea

ment-recognition. One novel detector based on the autocorrelation  

function was included in this testing. The results of these tests support 

the use of simple, template-matching operators. Tests on Fourier 

spectral analysis techniques show that they can be used to map the 

variation in bedding directions and fault/joint sets across a scene, 

in a way analogous to rose diagram analysis, but with considerably 

less manual effort. Tests to determine acceptable parameters for  

relaxation labelling and thresholding were also performed.
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Directional filtering techniques, used to create the azimuthal informat

ion channels, also proved to be useful for image enhancement for 

manual interpretation. A supplementary technique equalizes the amount 

of power in each image azimuth and is known as azimuth-whitening 

filtering. It  is shown to be a particularly useful image enhancement 

tool, especially for images where low solar-illumination angles produce 

a strong azimuthal bias.

Overall, the lineament analysis system produces high quality lineament 

maps and other useful image enhancements. At the same time, the 

structure of the system offers considerable scope for refinement, 

and for application to more general problems of image analysis and 

geological interpretation.
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Nature’s Lineaments

When mountain rocks and leafy trees 

And clouds and things like these,

With edges,

Caricature the human face,

Such scribblings have no grace 

Nor peace -

The bulbous nose, the sunken chin,

The ragged mouth in grin 

Of cretin.

Nature is also so: you find 

That all she has in mind 

Is wind,

Retching among the empty spaces, 

Ruffling the idiot grasses,

The sheeps’ fleeces.

Whose pleasures are excreting, poking, 

Havocking and sucking,

Sleepy licking.

Whose griefs are melancholy,

Whose flowers are oafish,

Whose waters, silly,

Whose birds, raffish,

Whose fish, fish.

Robert Graves
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Chapter 1

Introduction

1.1 Aims

The utility of lineament analysis as an aid to geological interpretation  

is well established (for example, see Burns et al, 1976; Vincent et 

al, 1978; Rowan and Lathram, 1980; Abrams et al, 1983; Prost, 1983; 

Rauch, 1984; Thumult, 1984; Vixo and Kelly, 1984). The d ifficu lty  in 

obtaining a reproducible map of lineaments from aerial photography 

or sate llite  imagery is also well known: if a scene is interpreted 

by two different people, or by the same person on different days, 

not all lineaments are reproduced in both interpretations. Yet, without 

some constant, objective framework to build from, the final interpret

ation of the lineament interpretation must always be open to doubt. 

Burns et al (1976) examine this problem, with a view to a t least defining 

the reproducibility of the initial lineament map, and hence gaining 

some idea of the level of uncertainty inherent within it. Ultimately, 

some way of guaranteeing a reproducible and unbiased lineament map 

is highly desirable.

Another problem is presented by the quantity of data available for 

interpretation. Landsat, SPOT, Seasat, HCMM and numerous other systems 

have all provided large quantities of geologically useful data, and 

continue to do so. Additional sensors are planned for the near future. 

All this data has different spatial, spectral or temporal resolution, 

and hence, in an ideal world, should be examined before a final geolog

ical map is produced. The time constraints imposed on any geologist,
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no matter where he or she works, mean that this can almost never 

be done. Any system which reduces the workload on the geologist, 

hence allowing the available data to be examined more fully, is worth

while.

This project represents an attempt to develop automatic lineament- 

detection and analysis techniques to assist in the geological interpret

ation of remotely sensed imagery. Automatic techniques are justified  

on the ground that:

(a) they are unbiased, and give reproducible results, and

(b) they allow a computer to do the bulk of the routine work associated  

with interpretation (eg. drawing and measuring lineaments), thus 

freeing the geologist to spend more time on tasks requiring more 

thought and judgement. This allows more ground to be covered 

in a given period of time, or for data to be examined in more 

detail.

It is expected that these techniques will still leave a need to spend 

time on manual checking of lineaments, to discard artific ia l features 

(eg. roads) and check for subtle features which may only be apparent 

to an experienced geologist with a sound understanding of the inform

ation required from the analysis. A realistic aim would be to reduce 

this time significantly, rather than to eliminate it completely. The 

system described here could, however, ultimately be extended (through 

use of a cartographic data-base and knowledge engineering techniques) 

to perform more complex tasks. These possibilities are addressed 

at the end of the study.
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1.2 Definition of the Problem

1.2.1 Definition of a Lineament

One of the reasons for lack of repeatability in lineament analysis 

is the large number of different definitions which have been given 

for the term "lineament" (or "linear"). It is clear that an objective, 

widely-accepted definition is required before unbiased, repeatable 

analyses can be performed.

From the discussion in Appendix A, a lineament is here defined as:

"a line, edge or alignment which is long and has a low curvature." 

where

(a) a line is defined (after Paton, 1979) by:

"Consider a disk of radius R, centred on point (x,y) and partitioned 

by two lines of orientation B, each at a distance w/2 from (x,y), 

into regions A, B and C, as shown in figure 1.1. The disk contains 

a line segment of orientation B and width w passing through (x,y), 

if

(i) the grey-level is approximately constant in each region A, 

B and C (taking values DNa, DNb and DNc),

and

(ii) DNa is greater than DNb, and 

DNc is greater than DNb,

or

(iii) DNa is less than DNb, and 

DNc is less than DNb.

The amplitude of the line is (DNb - (DNa + DNc)/2). "
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Y

(b) An edge is defined (after Haralick, 1980) by:

"The digital image DiM(x,y) is divided into connected regions that 

can be approximated by sloped planes:

DN(x,y) - ax + by + c

Then the slope of region has gradient (az+b2) 2 and direction arctan(b/a). 

Edges are located a t points having significantly different planes 

on either side of them."

(c) An alignment is defined as

"a number of unconnected features of similar character, and lying 

in a linear relationship to each other."

A feature may be considered long when its length is greater than 

the size of the primitive operator used for lineament detection (see 

chapter 5). Similarly, it may be considered to have a low curvature  

when its direction does not change by more than some threshold within 

the area covered by the primitive operator.
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From the above, it follows that all lineaments are local features: 

they are defined by the grey-level values over a relatively small 

neighbourhood of the entire image. Thus, consideration o f global 

aspects of the image is not required to recognize individual lineaments.

To a geologist, lineaments may be described as local or regional, 

depending on the size of the neighbourhood required to define them 

(ie. local lineaments are adequately defined by the grey-levels in 

a "small" neighbourhood, whereas regional lineaments can only be 

adequately defined by considering a larger region.) Thus it can be 

seen that while edges, lines and alignments are features of the scene 

alone, their interpretation as lineaments will also be controlled by 

the size of the primitive operators used for their detection. In this 

way, an analysis can be "tuned" to the problem being considered, 

with larger operators (or data of lower spatial resolution) being used 

for regional analysis, while small operators allow the detection of 

more localized features. Once the operator size has been determined 

however, it should allow repeatable, unbiased recognition o f lineaments. 

Ideally, a good overall lineament analysis should recognize and discrim

inate between lineaments of different scales.

1.2.2 Problems and Noise Sources in Lineament Detection

Noise sources relevant to the detection of lineaments in remotely 

sensed data are discussed in Prewitt (1970), Davis (1975), Ehrich (1977), 

Paton (1979) and Slater (1980). The inherent ambiguity o f the problem 

(lineaments may be discontinuous and of widely varying character, 

and their characteristics may change along their length) is added 

to by the following factors:
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1. Noise due to -

(a) quantum effects (photon noise) giving an intrinsic ambiguity 

to the grey-levels,

(b) blurring introduced by aberrations in the imaging system (hope

fully minimized by restoration based on known properties of 

the imaging system),

(c) thermal noise, e ffects of temperature variation in the imaging 

system, etc., as discussed in Slater (1980).

2. Distortions due to -

(a) attenuation of high spatial frequencies by the atmosphere,

(b) motion of the sensor (hopefully minimized by restoration),

(c) projection from a 3-dimensional earth to a 2-dimensional image.

3. Ambiguities due to -

(a) shadows,

(b) overlapping of objects by others in the line of sight (eg. clouds),

(c) interference between features (eg. intersections of lineaments, 

regions covered by surficial cover).

U. Limited spatial resolution due to discrete sampling. This may lead 

to aliasing, and hence interference between features. In the worst 

case, it may cause totally false  trends to be introduced. It  also 

leads to digitization effects (eg. a line on the edge of two pixels 

is averaged across both pixels, forming a feature of decreased 

apparent amplitude and increased apparent width).

Finally, for most geological purposes, lineaments need to be analyzed 

over a large area, implying that images consisting of a large number 

of pixels (eg. of the order of 10 )̂ must be processed. This imposes
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a heavy computational load on any system designed fo r lineament 

analysis, and means that reasonably effic ient algorithms and processors 

must be used.

1.3 Approach

Having defined the features we are looking for, we can look a t tech

niques for their recognition.

Chapter 2 gives a brief introduction to some general concepts behind 

vision systems. The human eye-brain system is discussed as an example 

of a system which detects lineaments very efficiently. The Landsat 

Multi-Spectral Scanner (MSS) system is then taken as a typical remote 

sensing system, and its performance is compared to that of the low- 

level components of the eye-brain system. Using guidelines derived 

from this comparison, a model for a lineament analysis system based 

on computer processing of MSS data is defined. This model is presented 

in chapter 3.

Chapter U describes the data structure and pre-processing techniques 

used by the system. These techniques are designed to enhance the 

signal-to-noise ratio of the image, by breaking it into a number of 

information channels (analogous to channels in the human visual system). 

At the same time, they produce intermediate results which are of 

direct value to the geologist, and hence may be useful even when 

machine recognition of lineaments is not required.

The techniques discussed include:

(a) the use of a pyramid data structure to differentiate between
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high spatial frequency information (dominated by local features) 

and low frequency information (dominated by regional features).

(b) the use of power spectral analysis to generate "rose diagrams” 

and aid in filter design.

(c) the use of directional filters to enhance subtle features and 

differentiate between features of different orientations. D irect

ional filtering reduces the problem from one of locating all linea

ments to one of locating lineaments of a particular orientation.

Chapter 5 addresses the problem of locating lineaments within the 

different information channels. Detectors which assign an initial poss

ibility that a lineament passes through a pixel are described, as is 

an extensive series of tests on these detectors. Iterative techniques 

for refining this initial estimate of lineament-possibility are then 

discussed. Finally, thresholding techniques (used to make the final 

decision as to whether a lineament passes through a pixel) are discussed

Chapter 6 describes techniques for recombining the information chan

nels into a final lineament map. Lineaments may be differentiated  

by their scale (local versus regional) and azimuth in the final display. 

Post-processinf techniques to tdiy up the lineament map are discussed.

Chapter 7 illustrates the results obtained when the lineament analysis 

system is applied to a number of images.

Chapter 8 presents conclusions and proposed extensions to the linea

ment analysis system.
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Chapter 2

Vision Systems

2.1 Requirements for an Effective Vision System  

Marr (1977) describes vision as

”a process that produces from images o f the external world a 

description that is useful to the viewer and not cluttered by 

irrelevant information.”

From this description, it can be seen that a vision system must perform 

three basic functions: image formation, removal of irrelevant details, 

and formation of a description.

2.1.1 Image Formation

An image is formed when the vision system interacts with the electro

magnetic radiation which is reflected or emitted from its field of

view. As a result of this interaction, the pattern of radiation is

converted into a form which is amenable to further processing.

The input to this process is a spatially- and spectrally-varying field 

of radiation. The output image may be a stream or array of digital 

numbers, each representing the intensity for a particular location 

and wavelength band (as produced by the Landsat sensors), an exposed 

photographic film, or an array of neural activ ity  (as produced by

the human retina). In all cases, an effective  vision system will provide



adequate resolution in each of four domains:

(1) Spatial - the pixel size (ie. area covered by each element o f the 

output array).

(2) Spectral - the number and width of the wavelength bands of the 

electromagnetic spectrum which are covered by the system.

(3) Radiometric - the number of grey-levels in each spectral band.

(A) Temporal - the time interval between images of the same area, 

and the time taken to acquire each image.

Without adequate resolution in each domain, a useful description  

cannot be produced. Slater (1980) and Lowe (1980) discuss these require

ments in more detail, and describe the problems involved in obtaining 

resolution in all four domains simultaneously. All practical vision 

systems require trade-offs between resolution and signal-to-noise  

ratio (because higher resolution leads directly to smaller signals, 

unless a compensating decrease in the resolution of another domain 

is allowed), or between resolution and cost (because more complex 

systems and higher processing times are required to increase resolution) 

Finally, the laws of physics place an absolute limit on the resolution 

which can be obtained (eg. quantum effects limit radiometric resolution, 

diffraction e ffects limit spatial resolution).

- 31 -

2.1.2 Removal of Irrelevant Information

This includes restoration (removal of known system noise sources
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and distortions) plus a number of filtering operations for the remov/al 

of different types of unwanted information. For example, the directional 

filtering discussed in chapter A removes information relating to irre l

evant feature orientations. This step is highly system and application 

dependent, so it will not be discussed any further here. It should 

be noted, however, that description and removal of irrelevant details 

are closely related operations.

2.1.3 Formation of a Description

This involves mapping the array of intensity values into a smaller 

set of descriptors (which are generally non-pictorial, ie. no longer 

in the form of an image array). Vernon (1966) recognizes four stages  

in perception, which may be considered four different types of de

scription:

(a) vague awareness, that something is in the field of view,

(b) awareness that this visual stimulation is connected with some 

type of object,

(c) recognition of the object,

(d) understanding of the meaning of the object.

Description (a) and (b) are assumed whenever an image is interpreted

(ie. it is implicitly assumed that the sensor is responding correctly

to some pattern of radiation, and that this pattern is related to

some object in the field of view), and will not be considered further 
here.
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An effectiv/e vision system should produce as its final output a scene 

description of either type (c) or (d), depending on the application. 

This may be achieved by a three stage  process (Pratt, 1977):

(1) Feature extraction - recognition of the presence and location  

of primitive features (eg. lines, edges, corners), to give an initial 

type (c) description.

(2) Symbolic representation - grouping primitive features together, 

hence segmenting the scene into regions and extending the type

(c) description.

(3) Semantic interpretation - interpreting the meaning of the regions, 

to give a type (d) description. In a geological context, this stage  

might mean generating a final map a fter combinng lineaments with 

other information and applying geological reasoning.

This thesis is concerned primarily with the generation of a type (c) 

description from satellite imagery, where the features of interest 

are geological lineaments. The processes of symbolic representation 

and semantic reasoning are largely le ft to the human interpreter, 

although they will be discussed briefly in section 2.2.7 and chapter 

eight.

2,-2, Human Visual Perception

It will be seen that current remote sensing systems concentrate on 

image formation, with only minimal attempts made at describing the 

image. On the other hand, the human visual system can be considered
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complete - it performs all three functions of vision, with a generally 

high level o f performance. A more detailed examination of the human 

visual syatem will therefore shed some light on the problem of auto

matic lineament recognition.

2.2.1 Image Formation - Performance Characteristics

SPATIAL RESOLUTION - Psychophysical experiments show that humans 

are able to discriminate between objects separated by of the order 

of one minute of arc, for foveal vision under ideal conditions of 

image intensity, contrast, state o f adaption etc. (Hochberg, 1964; 

Riggs, 1965c; Barber and Legge, 1976). This corresponds to a separation 

of roughly 260 meters at a distance of 900 kilometers, or a pixel 

size of 130 meters (by comparison to the Landsat MSS pixels from 

the same distance). This acuity is close to the limit imposed by d iffrac t

ion for a 3mm pupil. Visual acuity is much lower for peripheral vision 

or under non-optimum conditions.

The spatial frequency response of the human system, derived from 

tests using gratings and shown in figure 2.1, re flects this acuity, 

and many other features of human visual perception. It can be seen 

that the visual system functions as a band-pass filter: very high 

and very low spatial frequencies are severely attenuated. The high 

frequency cu toff is controlled by the mesh spacing of the retinal 

receptors (described below) and explains the visual acuity. The sup

pression of low frequencies serves to enhance edges, by producing 

the overshoots or Mach bands recognized in studies of visual perception. 

This response is similar to that o f a Laplacian (second derivative) 

operator, meaning that the eye responds to the rate o f change of
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Relative 
Sensitivity

Spatial Frequency 

Figure 2.1
Spatial Frequency Response of the Fluman Visual System 

(after Rosenfeld and Kak, 1976)
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intensity, rather than the absolute value of intensity within a scene. 

This explains several visual illusions and constancies, as is discussed 

in more detail by Hochberg (1964), Barber and Legge (1976), Rosenfeld 

and Kak (1976) and Caelli (1981).

SPECTRAL RESOLUTION - The eye responds to radiation of wavelengths 

in the range 365nm to 1050nm, with its peak sensitivity a t 510nm 

(Bartlett, 1965). Within this range, colour perception as achieved by 

use of receptors which are responsive to either red, green or blue 

light.

As lineaments can normally be seen quite effectively on black-and- 

white imagery, colour resolution will not be considered in any detail 

here. Graham (1965) gives a detailed account. It  is, however, interesting  

to note that Hochberg (1964) suggests that the most natural coordinates 

for describing a scene are hue, saturation and intensity, rather than 

response at different wavelengths. This suggests that tha human 

visual system performs a HSI transformation at some stage in its  

processing, and provides some justification for sucha transformation 

to be applied to satellite data. Thus a system for spectral c la ss if ic 

ation of imagery might use channels based on these parameters.

RADIOMETRIC RESOLUTION - For a fully dark-adapted eye, one receptor 

fires for approximately every ten quanta of light which impinge on 

the eye (Kronauer and Yehoshua, 1985). From this threshold, the eye 

has a dynamic range of 10 or 12 orders of magnitude, the response 

being approximately logarithmic with respect to intensity. However, 

only 2 or 3 orders of magnitude can be perceived at any one time, 

with changes in the size of the pupil and adaption state of the re

ceptors extending the range beyond this. Within these 2 or 3 orders
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of magnitude, no more than 60 or so (and possibly as few as 24) grey 

levels can be recognized.

The dynamic range and number of grey levels that can be perceived 

are discussed in more detail by Barber and Legge (1976), Gonzalez 

and UJinz (1977) and Hall (1979).

TEMPORAL RESOLUTION - Experience shows that the amount of detail 

which can be perceived is dependent on the time available for viewing, 

and that it can be very hard to discriminate between events separated 

by short time intervals. Hence it is clear that temporal resolution 

is an important control on perception. However, as in the case o f 

spectral resolution, temporal resolution of the imagery is of relatively 

minor importance in the recognition of lineaments. It  will not be consid

ered in detail here.

SHAPE PERCEPTION - Some psychophysical results relating to shape 

perception are worth mentioning.

Hochberg (1964) notes that elementary shapes can be discerned in 

very short time periods, implying that shape perception is to some 

degree inherent within the visual system, and is independent of eye 

movement (ie. we do not perceive shape purely by tracking the bound

aries of objects - although tracking may be important for large objects, 

to maximize use of the fovea). Hochberg also discusses depth percept

ion and the importance of monocular versus stereoscopic cues. This 

is of little  importance to the interpretation of current satellite  

imagery, but may be important when extending the system to process 

stereoscopic imagery.

Barber and Legge (1976) and Hake (1966) note that shape perception
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is orientation dependent (eg. it  is easier to recognize upright letters 

than slanted ones). Peripheral vision gives poorer shape perception 

than foveal vision, and responds particularly)\to outline drawings.

Shape perception can be modified by prior expectations and experience, 

as well as by processing artifac ts introduced by the visual system. 

This leads to a variety of visual illusions, and to biased interpretation  

of some scenes.

2.2.2 Image Formation - A Model

Figure 2.2 illustrates the main components of the human eye. The 

eye acts to map the pattern of radiation impinging on the cornea 

onto a pattern of electrical impulses in the neurons leading to the 

visual cortex. Thus it may be considered the image-formation subsystem  

of the human visual system.

Brown (1965) subdivides the eye into five main elements:

(1 ) cornea,

(2) aqueous humor,

(3) lens,

(U) vitreous humor,

(5) retina.

The cornea is a transparent membrane at the front of the eye. As 

well as protecting the eye from the environment, it has a refractive  

index which differs markedly from that of the air outside it, and 

hence controls approximately two-thirds of the eye’s optic power.
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(b) Retinal Distribution of Receptor 

(after Graham, 1965)
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Figure 2.2 (c)

Filtering E ffects within the Eye

LIGHT

OPTIC NERVE

(i) intensity filtering, due to absorption  
and pupil size

(ii) low-pass spatial filtering, due to  
point-spread function of optics

(i) spectral filtering due to pigments
(ii) low-pass temporal filtering due to  

photochemical reaction times
(iii) filtering due to spatial sampling
(iv) logarithmic response w.r.t. intensity

Spatial filtering (eg. "Laplacian" 
filters shown in figure 2.5)



The aqueous humor is a transparent fluid between the cornea and 

the lens. It serves to maintain the correct spacing between refractive  

surfaces, and as a housing for the iris diaphram (a pigmented membrane 

with a central opening, or pupil, whose diameter can be varied between 

2mm and 8mm by the surrounding muscles. The size of the pupil is 

controlled by the intensity of the incident light, and serves to increase 

the dynamic range o f the system by reducing the light flux to the 

reatina a t high intensities. An adjustment of one order o f magnitude 

can be obtained in this way. The iris also helps to improve final image 

quality by excluding light which passes through the periphery of 

the cornea and lens, where aberrations tend to be greater.)

The lens is a flexible, bi-convex lens whose shape is controlled by 

surrounding muscles. Although the lens has lower optical power than 

the cornea, its flexibility allows it to fine-tune the focussing of 

the incident light onto the retina. Normal vision allows correct focus 

at ranges between 10cm and infinity. The lens can also give a partial 

correction for the e ffect of any aberrations in the cornea.

The vitreous humor is a jelly-like fluid that helps maintain the shape 

of the eye. The cornea, aqueous humor, lens and vitreous humor all 

absorb some of the incident light, thus reducing the quantum efficiency  

of the system. The amount of absorption is strongly dependent on 

wavelength, and is thus an important control on the spectral range 

which can be observed.

The retina is a membrane of receptors, neural connections and blood 

vessels which conferts the input radiation to neural impulses, and 

performs the initial processing of these impulses. It  thus forms an 

interface between the image-formation subsystem and the feature
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extraction subsystem. Its  structure is shown in figure 2.3. Figure 

2 .2(b) shows the distribution of receptors over the retina, and figure  

2 .2(c) summarizes the filtering effects of the receptors.

Layer 2 (the rod and cone layer) of figure 2.3 is the only layer con

cerned solely with image formation - layer 1 is present purely to 

exclude extraneous light, while layers 3 to 10 are concerned primarily 

with transmitting the neural impulses (layers 3-5) and doing the initial 

processing for feature extraction and data compression prior to  

transmission to the cortex. Layer 2 lies at the back of the retina, 

meaning that light must pass through layers 3-10 before it is converted 

to neural impusles.

liJhen light impinges on a rod or cone, it is absorbed and hence in it

iates a photochemical reaction. This reaction in turn activates a 

train of neural pulses (see Hsia, 1965, for more detail on the photo

chemical reactions involved). Rods contain a single pigment which 

is very sensitive to light, with its peak absorption at wavelengths 

close to 500nm. This high sensitivity leads to rods being responsible 

for night vision. As they have only a single pigment, rods are colour

blind. Cones may contain one of three pigments, each with peak ab

sorption at a different wavelength (in the red, green and blue respect

ively), thus they are responsible for colour vision.

There is a total of approximately 130 million receptors, of which seven 

million are cones (Barber and Legge, 1976).



Figure 2.3

Structure of the Retina 

(after Brown, 1965)ayer

1 pigment epithalium (to exclude extraneous light)

2 rods and cones (ie. receptors)

3 outer limiting membrane

U outer nuclear layer (contains cell bodies and nuclei of receptors)

5 outer plexiform layer (contains fibres from receptors and
synapses with dendrites of bipolar and 
horizontal cells)

6 inner nuclear layer (nb. layers 6,7,8 contain blood vessels also,
light must pass through these layers before 
reaching the receptors)

7 inner plexiform layer (contains synapses between layers 6 & 8)

8 ganglion cell layer

9 optic nerve fibres 

10 inner limiting membrane



2 .2 .3  C o n tr o ls  o n  A c u ity

Maximum acuity is achieved for foveal vision under bright light. As 

noted in section 2 .2 .1 , this acuity is approximately the same as the 

theoretical limit due to diffraction. This implies that the mesh of 

receptors in the fovea is at least fine enough to achieve such spatial 

resolution. In fact, evolution of the eye has probably been such that 

the foveal receptor mesh is tuned to give maximum acuity with a 

minimum of redundant receptors. The lower acuity for non-foveal 

vision suggests that a coarser receptor mesh controls acuity there.

As shown in figure 2.2(b), the fovea is indeed a region of densely 

packed cones, with very few rods. Barber and Legge (1976) note that 

cones connect one-to-one onto higher order neurons, while rods con

nect many-to-one. Thus rod vision cannot locate the light source 

as accurately as cone vision, leading to decreased acuity for rod 

vision, ie. at low light levels and for peripheral vision. The non- 

uniform distribution of cones is probably a data-compression mechanism: 

to achieve foveal acuity across the entire visual field would require 

a great increase in data quantities. The price paid for data compress

ion is obviously a loss in image quality for peripheral vision (Kronauer 

and Yehoshua, 1985). Movement of the eye compensates for this - 

when an object is detected by peripheral vision, the fovea is brought 

to bear on it, to allow more detailed examination.

Layers 6-9 of figure 2.3 are very thin or absent over the fovea, 

minimizing the absorption and distortion of light by blood vessels 

etc. This also gives improved acuity for foveal vision (Brown, 1965).



2 .2 .A C o n tr o ls  on  t h e  T h r e sh o ld  o f  P e r c e p t io n

At the threshold of perception, approximately 50 to 140 light quanta 

impinge on the cornea. Absorption of light as it passes through the 

eye implies that 5 to 14 quanta must impinge on the retina to in itiate  

sufficient neural activ ity  for a light source to be perceived (Bartlett, 

1965). Thus the retina is sensitive to very low light levels, but the 

overall system sensitivity is reduced by a factor o f ten by absorption 

in the optic media.

The work by Pirenne and Mariott (1959) on the properties of the rod 

pigment (remembering that rod vision is most important at low light 

levels) suggests that a single quantum is sufficient to make any single 

rod fire. Thus between 5 and 14 rods must be activated before light 

is perceived. This is probably a noise-reduction mechanism - random 

firing of individual receptors will be unlikely to significantly a ffe c t  

perception. It is also evidence that neural networks are important 

at some level in the system, as the outputs from several rods must 

be summed in some way before perception occurs. (There are probably 

several levels of network - a low-level network where rods connect 

many-to-one onto connecting neurons, aiding vision at low light levels, 

since only one rod of several need fire to make the connecting neuron 

fire; and higher-level networks which bring the connecting neurons 

together for noise reduction and feature extraction.)

The threshold of perception for a constant light flux (50-140 quanta 

per second) suggests that each rod fires for 0.1 seconds a fter ac tiva t

ion by a quantum. During this period it is insensitive to further stim

ulation, which helps to explain the upper threshold to sensitivity  

and the temporal low-pass nature of the system.
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Although the system can only act over a relatively small range of 

intensities at any one time, the total dynamic range is quite large. 

This is due to (from Bartlett, 1965):

(a) changes in pupil size, to vary the amount of light impinging on 

the retina by an order o f magnitude,

(b) changes in concentration of pigments in the rods and cones,

(c) the different sensitivities of rods versus cones,

(d) changes in the types of excitation/inhibition processes active  

in the neurons.

Obviously some type of feedback from high-level neurons is required 

to control these changes.

The system's logarithmic response with respect to intensity is due 

to the firing rate of the receptors being proportional to log(intensity) 

(Stockham, 1972).

2 .2 .5  C o n tr o ls  o n  D yn am ic R an ge

2.2.6 Feature Extraction - A Model

Once the incoming light has been mapped onto a series o f neural 

impulses a t layers 2-5 o f the retina (figure 2.3), the feature-extraction  

subsystem comes into play. This a c ts  to transform the retinal impulses 

into a map at the visual cortex showing features of interest and 

their location. In our case, the features of interest are lines, edges 

and similar discontinuities, which may represent geological lineaments. 

As noted by Barlow et al (1972), much of the processing done by the 

human visual system is aimed at emphasizing such features. This is 

in line with the psychophysical resu lts indicating that much of the
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information in a scene is contained in the discontinuities, and the 

observation that line drawings can convey almost as much information 

as photographs.

The feature-extraction subsystem can be divided into four elements 

(see figure 2.A also):

(1 ) retinal neural networks,

(2) optic nerve and optic chiasma,

(3) lateral geniculus,

(A) visual cortex.

RETINAL NEURAL NETWORKS - Once a certain threshold of stimulation 

has been applied to a retinal receptor, it will fire, ie. give o ff  a 

series of electrical pulses. The amplitude of these pulses is independent 

of the size of the initial stimulus, however the frequency is dependent 

on stimulus amplitude. At synapses (connections between neurons) 

the pulses are transmitted chemically. Riggs (1965a,b) and Kuffler 

et al (198A) discuss this transfer of information in more detail, and 

describe how neurons may be connected into networks so that pulses 

from different sources can either reinforce or inhibit each other.

The horizontal and bipolar cells in layers 5 and 6 of the retina form 

a network between the receptors and the ganglion cells (layers 7- 

9), enabling the receptor responses to be spatially summed before 

the pulse trains are transmitted to the optic nerve. This allows spatial 

filtering to be performed. Barlow et al (1972), Barber and Legge (1976), 

Caelli (1981) and Kronauer and Yehoshua (1985) discuss this filtering  

mechanism in more detail: the most significant operation is one where 

the response from the central portion of the network is inhibited 

by responses at surrounding receptors (figure 2.5). This gives a spatial
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input map of neural impulses from retinal receptors
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Figure 2.5

Neural Inhibition Networks ("Laplacian” response)

+

network’s response is inhibited by response a t this receptor 

network's response is excited by response at this receptor

(cf. Laplacian operators described in Appendix G)

(more complex ’’template-matching'1 operators can be built up, 
using larger networks.)
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high-pass filter which approximates the Laplacian or D ifference- 

of-Gaussian operatos. Clearly other filte rs can be formed using a 

similar mechanism (eg. template-matching operators like those in the 

cortex - this type of processing may be important in lower mammals, 

but it probably does not take place at retinal level in humans (Barlow 

et al, 1972; Kuffler et al, 198*0).

High-pass filtering may be used to give data compression, since dis

continuities contain much of their power at high spatial frequencies. 

Alternately, it may be used to optimize the frequency content of 

the signal to the cortex, by suppressing the relatively uninteresting 

low frequencies. Kronauer and Yehoshua (1985) note that the fovea

has approximately one optic nerve for each receptor, suggesting

that optimizing the frequency content is more important than data

compression at this stage.

By using a number of different filte rs (eg. by passing the information 

from each receptor through a number of neural networks) the image 

can be sp lit into a number of spatial frequency "bands”. Each band 

contains information about features of a particular range of sizes. 

The human visual system probably uses four such bands to transfer 

information (Granruth, 1981; Heeger and INIachmias, 198*»; Jacobson 

and UJechsler, 198*»). This compares with the three spectral bands 

used - red, green and blue.

For peripheral vision, spatial summation to give low-pass filtering

may be more significant. This leads to decreased acuity but enhanced 

performance at low light levels, and sign ificant data compression. 

Brown (1965) notes that 100 rods in the periphery eventually converge 

onto a single ganglion cell.
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Via these networks, 108 receptors deliver their information into 108 gan

glion cells. These ganglion cells lead out of the eye and into the

optic nerve. The channel capacity o f the optic nerve is of the order 
0

of 10 bits/second (Kronauer and Yehoshua, 1985), but this is probably 

not fully used.

OPTIC NERVE AND OPTIC CHIASMA - The spatial organization of nerves 

originating in different parts of the retina is maintained as they 

leave the eye and enter the optic nerve (Brown, 1965). At the optic 

chiasma, the optic nerves of the le ft and right eyes come together 

and nerves originating in the nasal halves of each retina cross over 

and join the nerves from the temporal halves of the retina o f the 

opposite eye. Apart from this crossover, the correspondence between 

nerves and retinal locations is probably maintained. The nerves then 

go on to the lateral geniculus.

LATERAL GENICULUS - Neural networks similar to those in the retina 

perform additional spatial filtering here. Riggs (1965) suggests that 

some simple edge and line detectors may act at this level. This is 

probably true for lower mammals (where more processing tends to 

be done at lower levels in the system), but humans probably perform 

most processing in the cortex.

Brown (1965) notes that, for monkeys, information from specific retinal 

locations is dispersed at this stage. Again, this need not be true 

for humans, and the approximate point-to-point correspondence between 

retinal regions and nerves could still be maintained.

The lateral geniculus possibly receives feedback from the cortex 

(including the audio centres?) and uses this to control reflex actions
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of the pupils and occular muscles.

CORTEX - Although it is clear that most of the processing done in 

the human visual system is done at the visual cortex, this part of 

the system is least well understood. There are of the order of 1000 

cortical neurons for each foveal cone, implying a capacity to do 

a large number of parallel operations on the data received from the 

retina (Kronauer and Yehoshua, 1985).

Barlow et al (1972) hypothesize a four level heirachy of processors 

in the cortex, based onthe work by Hubei and UJiesel (1966) on the 

ca t’s visual system:

(1 ) simple - detectors for edges, bars and moving slits, based on tem

plate-matching operators formed by neural networks.

(2) complex - operators to combine the output of several simple pro

cessors, to detect moving edges etc.

(3) hypercomplex I - operators to combine information from complex 

processors, to detect ends of lines etc.

(A) hypercomplex II - operators to detect corners etc., using the 

output form lower-level operators.

Kuffler et al (1984) and Hubei and UJiesel (1979) give a similar heirachy 

of processors. They also note that the response of simple cells is 

dependent on both feature orientation (to within 10  or 20 degrees) 

and location within the visual field. The response of complex operators 

is also orientation-dependent, but it is relatively independent of 

feature location (within certain limits - the procesing is not yet 

entirely global). This suggests that low level processors operate as 

a large array of functionally similar processors, with each processor 

covering a small portion of the visual field, thus maintaining the 

point-to-point correspondence with retinal locations. Above level
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(1 ), this correspondence is probably lost and the operators become 

pattern-specific, rather than location-specific (ie. processors for 

a relatively large number of pattern types operate, with each pro

cessor covering a large region of the visual field.)

Higher level processing may be more sequential in nature, whereas 

low level processing is highly parallel.

This general model - a heirachy of processors acting in parallel - 

has been suggested by many others (eg. Dodwell, 1966; Reed, 1973; 

Barber and Legge, 1976) and at least represents a good working hypo

thesis to guide in the design of a rtific ia l vision systems. Information 

may flow both ways through the system - image data from receptors 

to cortex and control directives from cortex to low level processors 

and external systems.

2.2.7 Higher Level Functions

The visual cortex has now produced a map of scene intensities, edge/ 

line/corner locations, etc. This is the feature map or tyjae (c) scene 

description. In a geological context, this map is obviously very useful 

- it can be used to identify structural features and domains, and 

hence aid general mapping. Given the current sta te -o f-the -art in 

artific ia l intelligence, a reasonable feature map is the most we can 

hope to achieve from computer processing.

However, the feature map is the result o f quite routine processing, 

albeit a large amount of processing for any practical scene. No 

world knowledge has been introduced, few a priori assumptions have



been made, and no semantic reasoning has been used. Hence the fe a t

ure map cannot be considered the result of an "intelligent" interpret

ation process. For the sake o f completeness, a brief discussion of 

how the feature map might be used as input to the intelligent stage  

of a vision system is worthwhile. Figure 2.6 illustrates these high 

level functions.

The feature map is equivalent to the "primal sketch" introduced by 

Marr (1982). The next processing stage recognized by Marr is production 

of the "2^-dimensional sketch"; ie. information about the intensity, 

size, orientation and density of primitive features, and their spatial 

interrelationships, is used to segment the scene into regions, and 

to define the boundaries and attributes of these regions. This process 

requires the addition of world knowledge and assumptions about the 

primitives (eg. about how they relate to each other, what d ifferent 

textures mean). In a geological context, this step is equivalent to 

combining the original scene and lineament map with knowledge of 

basic geological concepts to produce a map of rock units and structural 

domains.

Finally, the 2^-dimensional sketch is converted into a 3-dimensional 

model. This is done by joining related regions together and interpreting 

the significance of each region. Much world knowledge and semantic 

reasoning is required at this stage, to define the interactions between 

regions and to decide what types of region are reasonable. A t the 

end of this stage, each region or group of regions can be given a 

name. For a geologist, th is process is equivalent to combining the 

map of rock units and structural domains with knowledge of rock  

types in the area (derived from external sources), spectral signatures 

and textural characteristics of rocks, and other structural information
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Figure 2.6 Fiigh-level Functions of a Vision System
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about the area, and more advanced geological concepts in order to  

recognize specific stratigraphic units and build a model of surface  

and sub-surface geology for the area.

2.3 Satellite Imaging Systems

Having defined a model for human recognition of features, a model 

for automatic detection can be described. The automatic detection  

system will be based on a typical remote sensing data acquisition  

system as the image-formation subsystem. Ground-based computer 

processing forms the feature-extraction subsystem. The sequence 

of processing is influenced by

(a) the model for human visual perception,

(b) the different properties of satellite versus human image-formation,

(c) the different capabilities of computer versus human data processing.

2.3.1 Specifications of the MSS

I have chosen the Landsat MSS (Multi-Spectral Scanner) system as 

a representative image-formation system. This system provides a large  

quantity of readily available data of proven utility, and is typical 

of the scanner systems which provide the bulk of the digital imagery 

which is currently available. The output from other digital image 

acquisition systems is similar, so a feature extraction system which 

works on MSS data should need only minor modification to work on 

imagery from other sensors.

The specifications and operation of the MSS are detailed in the Landsat
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Data Users Handbook (NASA, 1979). Additional details are given in 

Lillesand and Kieffer (1979), Lowe (1980), Slater (1980) and Colwell et 

al (1983). The information pertinent to our discussion of vision systems 

is given below.

ORBITAL CHARACTERISTICS AND TEMPORAL RESOLUTION - The Landsat 

satellites operate in circular, sun-synchronous, near-polar orbits 

at an altitude of approximately 920km (Landsats 1, 2 and 3) or 705km 

(Landsats 4 and 5). The orbit allows a nominal 9.30am equator crossing 

during the descending mode, and gives repetitive coverage of most 

of the earth every 18 days (Landsat 1, 2, 3) or 16 days (Landsat 4, 5).

Each image (3240 pixels by 2340 lines, representing an area of 185.3 

by 185.3 km) is acquired in 25 seconds, thus illumination and other 

changes during scene acquisition can be expected to be minimal.

ATTITUDE CONTROL - The attitude of the platform is maintained to 

sufficient precision to give images (after some geometric correction) 

of excellent geometric fidelity.

SPATIAL RESOLUTION - The nominal instantaneous field of view (ie. 

pixel size) for the MSS is 79x79m. The effective instantaneous field 

of view is 56m (across track) by 79m (along track), as the angular 

velocity o f the scanner allows pixels to overlap by 23m. The spatial 

frequency response of the system is shown in figure 2.7. The response 

is dominated by the low-pass nature of the discrete 56x79m sampling.

SPECTRAL RESOLUTION - The MSS collects data in four wavelength 

bands:

Band 4: 500-600 nm (green)
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Band 5: 600-700 nm (red)

Band 6: 700-800 nm (infra-red) 

Band 7: 800-1100 nm (infra-red)
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RADIOMETRIC RESOLUTION - Output from the detectors is divided 

into 64 grey-levels, using quasi-logarithmic quantization for bands 

4, 5 and 6, and linear quantization for band 7. The dynamic range 

of the detectors is comparable to the instantaneous dynamic range 

of the human eye (ie. 2-3 orders of magnitude).

The detectors are calibrated by exposure to a rotating, variable- 

density wedge optical filter, which is illuminated by onboard calibration  

lamps. At less frequent intervals, the sun’s illumination is also used 

for calibration.

2.3.2 Operation of the MSS

Figure 2.8 shows the layout of the MSS. The system may be divided 

into six subsystems:

(1) scanner,

(2) optics,

(3) detectors,

(4) sampling /  analogue-to-digital conversion,

(5) telemetry, and

(6) ground processing.

SCANNER - An oscillating mirror moves the field of view of the detector 

array along scan lines perpendicular to the orbital track o f the Landsat 

platform. The scan angle is small enough to give minimal geometric
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distortion (11.56°). The active scan time is 33msec, out of a total 

scan time of 73msec. The forward motion of the platform advances 

the viewed strip between scans, thus allowing a 2-dimensional image 

to be constructed.

OPTICS - A telescope of 22.3cm aperture and 82.3cm focal length focuses 

the light from the scan mirror onto the detectors, thus performing 

the same function as the cornea, pupil and lens of the human eye.

DETCETORS - An array of 24 detectors is used to scan 6 lines simul

taneously, in each of the four spectral bands. The detectors are 

coupled to the focal plane of the telescope by light pipes. The dimens

ions of these light pipes are a major control on the spatial resolution 

of the system. Optical band-pass filte rs immediately before the detect

ors control the system's spectral discrimination.

The detectors for bands 4, 5 and 6 are photomultiplier tubes, while 

silicon photodiodes are used for band 7. Both types of detector pro

vide rapid response, high quantum efficiency and linear response 

over a good dynamic range (Slater, 1980).

The light pipes, filte rs and detectors are clearly analogous to the 

rods and cones of the human retina.

SAMPLING AND ANALOGUE-TO-DIGITAL CONVERSION - The detectors 

are sampled sequentially. The analogue signal is passed through

(a) amplification,

(b) sample-and-hold,

(c) DC restoration,

(d) compression using quasi-logarithmic amplifiers (bands 4, 5, 6),
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(e) analogue-to-digital conversion to 6-bit words,

(f) multiplexing (so output from the 24 detectors can be transmitted 

through a single data stream}

Such functions are not performed within the human system. Similarly, 

the processing performed by retinal neural networks is not replicated 

in the MSS.

TELEMETRY - The digital data is transmitted to earth at 15 Megabits 

per second (either directly, if a ground station is within direct view 

of the platform, or a fte r storage to magnetic tape). Telemetry per

forms a function similar to that of the optic nerve, however the 

serial nature of the data stream limits the data rate. The optic nerve 

allows parallel information flow, through of the order of a million 

channels.

GROUND PROCESSING - The digital data stream is converted to image 

format. Three processing steps are routinely performed:

(a) pre-processing - demultiplex and format the data to frames. This 

stage is analogous to the optic chiasma and lateral geniculus, 

although the lack of parallelism in the MSS system means that 

demultiplexing and reformatting are major operations.

(b) radiometric and geometric corrections - decompress bands 4, 5 

and 6 to create 7 bit words; apply radiometric calibrations; apply 

geometric corrections for attitude variations and earth rotation. 

No clear analogue is apparent in the human system, however the 

cortex probably includes a mechanism to adjust for changes in 

response due to aging etc. This has much the same purpose as 

the radiometric and geometric corrections.
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(c) annotation and generation of computer-compatible tapes.

2.3.3 Feature Extraction

Image formation is now complete. The result is a 3420 pixel by 2340 

line image having 64 or 128 grey-levels in each of four spectral bands. 

Experience suggests that one band is sufficient for the extraction  

of most lineaments, so I will now limit my discussion to a single band, 

or combination of bands (eg. the first  principal component). Most 

algorithms can be extended to multiple bands, but the processing 

cost rises dramatically.

This image is clearly in no way similar to the visual model o f the 

world output by the human visual system. Further processing is required 

to produce a model: the feature-extraction subsystem takes over. 

Chapter 3 presents a model for such a lineament extraction system.



Chapter 3

A Model for a Lineament Analysis System

3.1 The Model

Automatic extraction of lines and edges has been widely discussed 

(eg. Prewitt (1970), Rosenfeld and Kak (1976), Rosenfeld et al (1976), 

Ehrich (1977), Ehrich and Foith (1977), Frei and Chen (1977), Flanson 

and Riseman (1977), Zucker et al (1978), Nagao and Matsuyama (1980)). 

□n the basis of these discussions, and the model of the human visual 

system developed in chapter 2, it is clear that feature extraction  

is not a simple matter. In the words o f Ehrich and Foith (1977), "analysis 

should proceed by a number of intermediate processing steps, to 

slowly increase the state  of knowledge about the scene".

I have developed a scheme involving eleven stages (figure 3.1):

(1) Noise cleaning - simple linear or non-linear filte rs remove noise 

(eg. data dropouts) and unwanted information.

(2) Creation of a pyramidal data structure - a three level data pyramid 

simulates the spatial frequency channels o f the human visual system.

(3) Spectral analysis - Fourier power spectra yield information commonly 

obtained from rose diagrams, and aid in filter design.

(U) Directional filtering - frequency domain filters emphasize features 

oriented in azimuthal "windows". Four azimuthal windows are used,
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Stage INPUT IMAGE

Figure 3.1 A Model for a Lineament Analysis System
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giving azimuthal channels analogous to the orientation-specific  

operators of the cortex.

(5) Application of "prim itive" feature detectors, for edges, lines and 

alignments.

(6) Thresholding - a generous (ie. low) threshold is applied to flag  

points which obviously do not contain lineaments. This helps minimize 

the e ffects of noise responses, and reduce the processing load 

for later stages.

(7) Relaxation labelling - contextual information is used to iteratively  

remove noise responses and span small gaps in lineaments. Another 

thresholding operation (using more advanced techniques than at 

stage 6) is applied a fter relaxation labelling. This is the main 

decision step in the system - pixels are now labelled as either 

"lineament" or "non-lineament".

(8) Combination of information from different resolutions - features 

are classified as "local", "intermediate" or "regional" and a single  

lineament map is produced. High-resolution responses are used 

to accurately locate regional features.

(9) Cosmetic operations - gaps in lineaments (eg. beneath vegetation  

or other cover) are spanned using curve-following techniques. 

The lineament map is tidied using thinning techniques. Contours 

of lineament density may be produced. (This stage has not been 

fully implemented - results after stage 8 were adequate for most 

purposes, without cosmetic processing.)



- 67 -

(10) Combination of information from azimuthal w indow - a final map 

of lineaments may be produced. Lineaments may be coded according 

to azimuth and scale (eg. using different colours). This map may 

be superimposed on the original image.

(11) Semantic interpretation - techniques from the fields of a rtific ia l 

intelligence and knowledge engineering may be used to determine 

the significance of lineaments located at stage 10. This inv/olves 

the addition of world knowledge to produce semantic and structural 

interpretations. (This stage has not been implemented - a human 

interpreter is required.)

This intelligent part of the system would also ultimately be used 

as a system controller, directing processing at all lower levels 

(eg. see (\lagao and Matsuyama, 1980; Goldberg et al, 1985; and

chapter 8).

These stages are described in more detail in chapters U to 6.

As noted by Hanson and Riseman (1977), this system would ideally be

developed as a heirachically-organized system of parallel processors.

Information would flow in three directions:

(1) upwards (results from low-level processors are used as input to 

higher-level processors),

(2) downwards (high-level results are used via feedback to influence 

parameters for low-level processors), and

(3) laterally (iterative application of a technique at any level, to 

optimize its output for the next level).

In practice, such an organization has not been fully achieved. In

particular, much of the feedback of control information must be per-
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formed manually - th is is a natural consequence of the failure to 

implement the stage 11 processors. Similarly, lack of adequate hardware 

precludes the use of truly parallel processors.

3.2 Comparison between the Human Visual System and the MSS/Computer 

System

3.2.1 Spatial Resolution

The MSS provides a pixel size of 79x79m at an altitude of 920km. The 

eye at the same altitude would give a minimum pixel size o f approx

imately /3O*/30»m. (with the effective pixel size being larger due to 

non-optimum conditions of illumination etc.). The spatial frequency 

response of the MSS has a low-pass nature (see figure 2.7), being 

dominated by the e ffect of discrete sampling. The eye's spatial fre 

quency response is band-pass, with a high-frequency cu to ff controlled 

by the discrete sampling of the retinal receptors, and a low-frequency 

response controlled by the Laplacian-style filtering of neural networks.

Thus the MSS gives better spatial resolution than the eye, but its  

spatial frequency response is not so well optimized to extract edge 

and line information. This deficiency is corrected in stages 2 and 

A of the lineament analysis system.

3.2.2 Spectral Resolution

The spectral range covered by the MSS is similar to that covered 

by the eye, but is displaced into the infra-red (with corresponding
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lack of response at blue wavelengths). MSS band 4 corresponds to 

the region of peak sensitivity of the eye. MSS provides four spectral 

bands, whereas the eye operates in three bands only.

As our main interest is the extraction of lineament details, these 

differences in spectral response are not of great importance.

3.2.3 Radiometric Resolution

The overall dynamic range of the eye is far greater than that of 

the MSS, but the instantaneous dynamic range of the two systems 

is comparable. The MSS provides more grey-levels than the eye does 

at any one time, but the eye compensates for this by its greater 

flexibility. The MSS/computer system is less likely to respond to visual 

illusions (eg. brightness constancies) than the human visual system. 

For the purposes of detecting lineaments, these differences are minor.

3.2.4 Temporal Resolution

The temporal resolution of the human visual system is clearly far 

superior to that of the MSS (one scene every 16 or 18 days, requiring 

25 seconds to acquire a single scene). This is of little  relevance 

to the detection of lineaments.

3.2.5 Flexibility

The human system is vastly more flexible than the MSS/computer system,
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due to:

(a) its ability to adapt to different light levels,

(b) the use of different types o f detector under different conditions,

(c) the variation of detector distribution with retinal location, allowing 

a broad field of view and good spatial resolution to be obtained 

simultaneously,

(d) its ability to move across a scene and concentrate on areas contain

ing most detail, allowing efficient acquisition of relevant information 

(a scanner is very poorly organized in this regard),

(e) its high degree o f parallelism.

Most of this flexibility has probably evolved through a need to process 

visual information rapidly. Efficient data compression and parallel 

processing combine to give the required speed. To be effective, the 

MSS/computer system must seek to emulate this efficiency and paralle l

ism.

3.2.6 Parallelism

8 6
The eye has 10 receptors feeding into 10 neurons of the optic nerve, 

compared to 2U detectors feeding into a single data stream from 

the MSS. Similarly, the cortex processes information in parallel while 

most current computers are strictly  sequential machines. It  is clear 

that the single most important difference between the human visual 

system and the MSS/computer system is in the difference between 

parallel and sequential processing. Thus the MSS/computer system 

can be expected to take much longer to process an image than a 

human interpreter.
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An attempt to simulate the performance of the human visual system  

is justified because:

(a) remote sensing systems are acquiring large quantities of information. 

Any improvement in machine-aided interpretation will cut interpret

ation costs, and minimze the bias introduced by human performance 

of menial tasks.

(b) parallel computers are being developed. Such computers should 

make simulation of human performance more feasible. As a corollary 

to this, it is clear that any algorithms developed for lineament 

analysis should be amenable to implementation on a parallel computer.

I have aimed for the MSS/computer system to produce lineament maps 

for a 2048x2048 image within a weekend. A system which requires much 

longer to process an image could hardly be considered practical.
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Chapter 4

Pre-processing and Formation of Information Channels

A model for the automatic lineament analysis system was presented 

in the last chapter. In the next three chapters I will discuss the 

detailed implementation of this system.

4.1 Pre-processing

The input to the lineament analysis system is a 2048x2048 subscene 

from a single band Landsat MSS image. (Similar data from other systems 

may also be used, as could a principal component or similar image. 

The restriction to 2048x2048 is for convenience only: other sizes could 

also be processed. 2048x2048 is adequate to demonstrate that the 

system can be applied to the analysis of substantial regions of the 

earth.) Standard restoration operations (geometric and radiometric 

corrections) are assumed to have been applied to the data.

Before attempting to extract the lineament information from this 

image, it is desirable to remove some irrelevant detail. The principal 

that '’one person's noise is another person's information” prevails, 

so not all noise can be removed by the standard restoration operations. 

Two pre-processing operations are possible within the lineament analysis 

system: noise cleaning and homomorphic transformation. These operations 

allow the later processors to give optimal performance.
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4.1.1 Noise Cleaning

It is desirable to remove noise due to data dropouts etc. prior to 

further analysis, but with minimal distortion to the image information. 

Edge-preserving smoothing is complex and generally involves the use 

of highly non-linear filte rs for optimal performance (eg. see Lev et 

al, 1977; Nagao and Matsuyama, 1978; Wang et al, 1983; Lee and Kassam, 

1984; Qin-Zhong Ye, 1985; Hakalahti and Virtanen, 1985; Kuan et al, 

1985; Nieminen et al, 1987).

Four simple (3x3) space-domain operators were tested for inclusion 

in the lineament analysis system. An emphasis was placed on minimal 

distortion to the image, rather than maximum noise removal. These 

operators were:

(1) equally-weighted convolution operator (the only linear operator 

tested, and the one which gives maximum distortion to the image 

power spectrum),

(2) median filte r (Pratt, 1977; Justusson, 1978; Bednar, 1983. This filte r  

should give similar noise removal performance to the convolution 

operator, but with less distortion of edges),

(3) despiking filter (Pratt, 1977; appendix B. This filte r tries to "recog

nise” noise spikes and remove them. It  should therefore give less 

image distortion than the convolution operator),

(4) fuzzy despiking filter (appendix B. An extension to the despiking 

filter, which uses fuzzy set comcepts to define the "noisiness" 

of a point, and filte rs it accordingly.)

These four operators were tested on the Cornwall image (described 

in chapter 7). Visual examination of the results showed that all four

operators attenuated obvious noise spikes. The convolution operator



was found to smear edges appreciably (as expected); the median and 

despiking filters were somewhat better, and the fuzzy despiking filte r  

gave least edge smear. These results were reflected in the input 

and output power spectra: all four operators attenuated the high 

frequencies, but the fuzzy despiking filte r gave least distortion to 

the spectrum. More objective tests of the operators were not attempted: 

no satisfactory  criterion of operator performance could be found 

to rival the flexibility of visual examination.

□n the basis of these tests, the fuzzy despiking filte r is applied 

to all images before further processing is performed.

Noise cleaning may also be considered part of the regularization  

stage of edge detection, discussed in Torre and Poggio, 1986. This 

stage is required since edge detection in sampled images is an ill- 

posed problem - it is not robust against noise. Noise cleaning improves 

the numerical stability of the edge detector output. Torre and Poggio 

conclude that Gaussian filters are adequate for regularization prior 

to edge detection; however they only consider linear filters: the 

edge-preserving smoothing filters mentioned above could, if well design

ed, be expected to give better results. For the small operators con

sidered here, the difference between a Gaussian filter and the convol

ution filter is minor.

The regularization process can also be seen in the light of the com

ments by Cordell and Grauch, 1982. They show that high frequency 

information is strongly affected by noise, aliasing and distortion  

by the discrete Fourier transform. The regularizing filte r reduces 

the influence of high frequencies on the results of later operations, 

thus minimizing the distortions due to noise etc.
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4.1.2 Homomorphic Processing

It can be shown (eg. Gonzalez and UJintz, 1977; Soubari et al, 1979) 

that an image consists of the product of an illumination function 

and a reflectance function. UJe are interested in changes in re flect

ance, independent of illumination changes, so we seek some way to 

separate the two functions. This cannot be done by standard filtering  

operations, as the system is multiplicative rather than additive.Taking 

the logarithm of the image function converts the system to an additive 

one, and standard filtering techniques can now be used. This process, 

of converting a non-additive system to an additive one prior to filte r

ing, is known as homomorphic filtering. As illumination normally varies 

slowly across the scene, while re f le c ta n c e  tends to have sharp discon

tinuities, high-emphasis filtering o f the log-transformed image can 

be used to enhance reflectance variations.

The lineament analysis therefore allows logarithms of the image grey- 

leveis to be taken at this stage. This transformation is inverted 

after the directional filtering stage (which includes a high-emphasis 

filter). However, when homomorphic processing was tested on images 

from the Cornwall data pyramid, the lineaments located a fte r homo

morphic processing did not differ significantly to those found without 

such processing. Thus I have not used homomorphic processing as 

a standard part of the lineament analysis system.

The lack of significant results from this homomorphic processing prob
ably reflects the fac t that shadowing variations, as much as re flect
ance changes, indicate the location of lineaments. Thus the assumption 
that only the reflectance function is of interest is violated.
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4.2 The Pyramid Data Structure - Generation of Spatial Frequency 

Channels

The concept of information channels is central to the lineament anal

ysis system. As discussed in chapter 2, the human visual system breaks 

image data into several (A?) spatial frequency channels, using the 

neural networks of the retina, and 10 or 20 azimuthal channels using 

the orientation-specific operators of the cortex. These channels 

are simulated within the lineament analysis system by a 3-level data 

pyramid (giving three frequency channels: low, intermediate and high) 

and use of four azimuthal channels derived by directional filtering  

(see section 4.4).

Three types of data pyramid were tested (see figure 4.1 and appendix 

C also):

(a) Quadtree pyramid - low-resolution channels are produced by averag

ing pixels from higher-resolution channels, ie. each pixel at level 

2 represents the (equally-weighted) average of four pixels at 

level 3. Similarly, each level 1 pixel represents the average of 

four level 2 pixels (and hence 16 level 3 pixels). Thus the highest 

resolution channel contains the original image; the intermediate 

resolution channel contains the low and intermediate frequencies 

only (with the loss of high frequencies meaning that lower resolution 

is adequate to store the information); and the low resolution channel 

carries the low frequency information only.

The properties o f quadtree data structures are discussed more 

fully in Tanimoto and Pavlidis (1975) and Lucas and Gibson (1984).
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Figure U. 1(a) Quadtree and Gaussian Data Pyramids
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Figure U. 1(b) D ifference-of-Gaussian Pyramid
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(b) Gaussian Pyramid - low resolution channels are produced by sampling 

every second pixel o f evry second line of smoothed h igher-resol

ution channels. Smoothing is performed using a 7x7 Gaussian convol

ution operator. The resultant pyramid is very similar to the quadtree 

pyramid, however the Gaussian filte r has a slightly "cleaner" fre 

quency response (see Torre and Poggio, 1986) and hence might 

be expected to give better results when processing noisy images 

(at the expense of slightly greater processing time). Gaussian 

filte rs also give theoretical advantages in tracking features across 

different resolutions (Yuille and Poggio, 1986; Babaud et al, 1986; 

Torre and Poggio, 1986).

(c) D ifference-of-Gaussian pyramid - low-resolution channels o f the 

Gaussian pyramid are subtracted from its  higher-resolution channels, 

thus removing the low frequency information. The resulting high- 

resolution channel carries high-frequency information only; the 

intermediate-resolution channel carries intermediate frequencies 

only; and the low-resolution channel carries low frequencies only 

(and is the same as the low resolution channel of the Gaussian 

pyramid).

This structure closely simulates the frequency channels of the 

human visual system. It therefore gives a sound basis for the 

application of edge-detection techniques based on the human system. 

By making a clear distinction between the frequency channels 

and the edge-detection function, use of the pyramid structure  

allows more flexibility and clearer understanding of teleprocessing 

taking place than is afforded by the conventional implementation 

of such operators (eg. the Marr-Hildreth operator - see appendix F).
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It is interesting to note the use of difference-of-Gaussian pyramids 

and directional filtering to achieve high data compression ratios 

(Kunt et al, 1985; Ikonomopoulos and Kunt, 1985). The techniques 

closely parallel those used here, although the final aim is different. 

(Since lineaments may be subtle features, processing must be optim

ized to enhance relevant features, rather than discard irrelevant 

features.)

These three pyramids were generated and examined for the Cornwall 

image. Their power spectra were also examined. Following these tests, 

it  was decided that only the Gaussian pyramid would be used for 

further processing. It  o ffers appreciable theoretical advantages over 

the Quadtree pyramid, although these were not apparent to visual 

inspection of the images. The implementation of the difference-of- 

Gaussian pyramid lead to significant enhancement of digitization noise 

and Landsat striping by the high-pass filters. An improved implement

ation could have avoided this, but would have been needlessly costly: 

including high-pass filte rs in the directional-filtering stage gives 

the smae results from the Gaussian pyramid, at no additional cost. 

This is possible since only linear filte rs are used to generate the 

pyramid and azimuthal channels.

As well as simulating the channels of the human visual system, the 

pyramid data structure allows easy extraction of different types 

of information. For example, the low-resolution channel gives information 

on large-scale (regional) trends, and allows a large area to be examined. 

The high-resolution channel allows analysis of local trends over a 

more restricted area. Combining results from the different channels 

allows accurate location of the regional trends (since, where features 

located at several resolutions coincide, the high resolution information
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allows precise location, while the low resolution information indicates 

the regional significance) and characterisation of lineaments. (See 

Beattie, 1984; Yuille and Poggio, 1986; Babuad et al, 1986; and chapter 

6 for details on the use of multi-resolution data.)

The pyramid data structure also allows practical implementation of 

the lineament analysis system on relatively small computers: the image 

can be handled as a series of 512x512 data blacks without losing 

a view of the overall scene (which is contained in the low-resolution 

channel). The structure therefore formalizes and optimizes the ad 

hoc techniques currently used for geological analysis of large images.

Finally, by focussing attention on a restricted area, the high-resolution 

channel allows analysis of the spatial variation of the power spectrum  

(section 4.3). Each high-resolution subscene covers only part o f the 

total image: by comparing the spectra fo r different subscenes, the 

variation of spectral properties across the scene can be examined.

4.3 Spectral Analysis

4.3.1 Introduction and Motivation

Ulaby and McNaughton (1975) used optical techniques to generate 

Fourier power spectra of images. They conclude

’’manual interpretation of the spatial frequency and orientation 

curves ... demonstrates that this method of analysis can provide 

an unbiased means of evaluating the orientations, natures of stream 

patterns, and other features apparent in the image.”
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Casasent (1979) and Krogstad (1985) give other examples of the use 

of Fourier power spectral analysis, in these cases for the determination 

of orientation patterns in ocean waves.

These examples plainly demonstrate the relationship between features 

with preferred orientations and the image power spectrum. The power 

spectrum gives much the same information as can be seen in a convent

ional rose diagram (plot of lineament number or length versus azimuth): 

Ulaby and MclMaughton note that the Fourier transform could thus 

be considered a way of generating unbiased "rose diagrams”. Appendix 

E examines this relationship more formally, giving the theoretical 

basis for using the Fourier power spectrum to analyze orientation 

trends in imagery.

Given that rose diagrams are an important tool fo r lineament analysis, 

a spectral analysis stage  within the lineament analysis system is clearly  

useful. The Fourier power spectrum o f each image in the pyramid 

is therefore calculated, using the scheme outlined below. This spectrum  

is interpreted manually, to define preferred orientations in the image 

and determine optimum azimuthal windows for directional filtering  

(section 4.4). Section 4.3.3 discusses the type of geological information 

which may be extracted during this interpretation stage.

4.3.2 The Scheme for Spectral Estimation

An eleven stage scheme is used to calculate the power spectrum. 

The theory underlying this scheme is discussed in Appendix D.
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(1) Mean subtraction - Data with a non-zero mean may be considered 

the sum of a boxcar function (the mean level) and variations about 

this level. Since the variations are of more interest to us, and 

the boxcar function distorts the spectrum by superimposing a 

sine function (its Fourier spectrum) on the spectrum of the varia t

ions, the mean is subtracted prior to calculation o f the power 

spectrum.

(2) Detrending - A sloping base level adds a similar distortion to 

that given by the mean. This distortion is removed by subtracting  

a first-order be st-fit surface from the data. (For image data 

the base level tends not to show any significant f ir s t  order trend, 

and detrending is not normally necessary.)

(3) Prewhitening - Kanasewich (1981) notes that spectral estimates 

are generally more precise when the power is didtributed evenly 

over all frequencies. In particular, the smoothing which windowing 

(see below) performs on the spectrum tends to spread large peaks 

into adjacent frequencies. A prewhitening filter is used to emphasize 

frequencies with low amplitudes (the high frequencies in most 

images), and reduce this distortion. A Laplacian or similar high- 

emphasis operator is commonly used.

The value of prewhitening is debatable. Some 3x3 Laplacian convol

ution operators are include in the system, but test results indicate 

that they do not make the spectrum any easier to interpret. Hence

they are not normally used . f or }arge data sets, with the mean sub
tracted, the smoothing e ffect of windowing is negligable.

(U) Windowing - The Fourier transform is defined for a data set extend

ing to infinity in all directions. Practical images are of limited
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extent, and we must therefore consider that we are looking at 

a window selected from a larger data set. As calculation of the 

Fourier transform assumes that all data values outside the window 

are zero, this is equivalent to multiplying the original (infinite) 

data set by a function:

W(x,y) = 1 within the area of the image 

= 0 elsewhere

Multiplying the data by this window function is equivalent to con

volving its spectrum with the Fourier transform of the window 

(Bracewell, 1965). This leads to a distortion, which can be minimized 

by using a more appropriate window function. Window functions 

are discussed in more detail in Appendix D: a cosine-tapered rect

angular window is normally used to generate spectral estimates 

here, but other options are available.
Windowing is, however, relatively unimportant for large data sets 
(such as those processed here): the Fourier transform of such a broad 
window is sufficiently narrow to have negligable effect on the spectrum.

(5) Reflection of the data at its edges - To decrease edge e ffects

in the spectra of short data sets, it may be desirable to re flect

the data about its edges prior to Fourier transforming (Kanasewich,

1981). Cordell and Grauch (1982) also mention that discrete sampling

of short data sets may distort the computed power spectrum,

giving decreased power at low frequencies and increased power

at high frequencies, relative to the correct values. They discuss

ways to extrapolate the data to minimize the distortion (although

the techniques they give are of dubious applicability to image data)..

Images could normally be considered "long" in this context, and 

reflection of the data about its images is not normally performed.

(6) Calculate the fa st Fourier transform, using standard routines.
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(7) Calculate the power -

P(u,v) = IF(u,v)f where u,v = spatial frequencies

P = power

F = Fourier transform of the image

(8) Post-colouring - Where a prewhitening filte r has been applied, 

an inverse operation should be performed, to give a true spectrum. 

For lineament analysis the high frequency information is of most

interest, hence no post-colouring is performed.

(In any event, any information removed by the zeroes of the prewhiten
ing Laplacian filters can never be recovered.)

(Si) Cosmetic operations on the power spectrum display - The power 

spectrum is rotated through 90°, to give a display which more 

closely resembles the rose diagram (see appendix E). It  may also 

be logarithmically scaled (to enhance the low amplitude information 

at high frequencies) and contoured or pseudocoloured. A median 

filter may be used to smooth the spectrum: this gives smoother 

contours and allows trends to be more easily seen. All these oper

ations make the spectral information more accesible.

(10) Calculation of the "Azimuthal Power Spectrum" - The azimuthal 

power spectrum is defined as the relationship between power and 

azimuth. The azimuthal power is calculated by averaging the power 

spectrum over fan-shaped windows, of a width of 1° and centred 

on the frequency origin (see figure U.Z). The very low frequencies 

are not used in this calculation, as their large amplitudes tend 

to dominate the high frequency information if  included in the 

averaging. The very low frequencies are also not closely related 

to any particular orientation, whereas the high frequencies are

quite orientation-specific.
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Nyquist Freq. Nyquist Freq.

Figure U.2

Fan-shaped windows for Calculation of the Azimuthal Power Spectrum

(from symmetry, only azimuths 0°-18Q° need be considered) 
(v/ery low and very high frequencies are not used in calculations, 

as they may introduce distortions.)
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The azimuthal power is  normally plotted a t a linear scale, as large  

variations in power with respect to azimuth are not expected. 

The peaks will therefore show more clearly on a linear plot. The 

azimuthal power spectrum is a primary aid in the design of direct

ional filters (section U.U). A 9-point triangular smoothing filte r  

is applied to the spectrum to aid in interpretation and filte r design.

(11) Analysis of the spatial variation of the power spectrum - The 

spatial variation of the power spectrum (and hence of lineament 

properties) can be determined by breaking the image into subregions 

and calculating the spectrum for each region.This is done implicitly 

within the implementation of the pyramid data structure.

Other spectral estimation techniques were also considered:

(a) Optical Fourier transforms, despite their speed, offer no real 

advantage within a system where most other processing is digital. 

In particular, a digital Fourier transform is required for directional 

filtering, so there is little  to be gained by performing an optical 

transform as well.

(b) lilalsh transform techniques (Harmuth, 1972; Beauchamp, 1975; Maqusi, 

1981) offer some theoretical advantages in describing rapidly- 

varying functions, such as might be expected in images. However, 

as the FPS array-processor used in the project provided special 

routines for Fourier transforms but not for Walsh transforms, 

the computational advantages normally associated with UJalsh trans

forms could not be easily realized. Given that Fourier techniques 

gave good results when applied to test images, the time required 

to develop special Walsh transform routines could not be justified.
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(c) Maximum Entropy techniques (LaCoss, 1971; Robinson and Treitel, 

1980; Kanasewich, 1981; Chen, 1982) also offer possible theoretical 

advantages over Fourier techniques, but were not tested because 

appropriate routines were not available on the computers used. 

In any event, the large computational load associated with maximum 

entropy techniques suggests that they could not be used in routine 

operation of the lineament analysis system without considerably 

exceeding the aim of processing a 2048x2048 image in a weekend 

(unless special hardware were available).

(d) In addition to the power spectra, the phase spectra for a number 

of Cornwall subscenes were examined. Although it  is clear that 

the phase spectrum contains much valuable image information (eg. 

see Pitrowski and Campbell, 1982), the power spectrum proved to 

be a much more direct aid to the design o f azimuthal windows, 

and in providing rose diagram-like displays. Thus there was not 

time to pursue the information contained in thephase spectrum 

in any detail.

Thus only Fourier power spectra have been examined in detail.

4.3.3 Spectral Properties of Images

In the course of system testing, power spectra of images from Cornwall, 

New Mexico and Saudi Arabia (see chapter 7 for detailed discussion 

of these images) were examined. From this work, the following observ

ations on the interpretation of image power spectra can be made:



- 89 -

Azimuthal Power Spectrum

A linear-scaled display o f the azimuthal power spectrum sllows trends 

to be clearly seen as peaks in the power. This display is every bit 

as powerful as the conventional rose diagram for highlighting subtle 

directional trends, although it gives a slightly different emphasis 

to some trends - this should be considered when making interpretations. 

Discrimination between peaks 10° apart is quite possible. The unbiased 

nature of this display is an obvious advantage (or at least, the freedom 

from human bias is an advantage - other biases, inherent within the 

data, still exist).

In the course of system testing, trends due to bedding, tectonic 

features (faults or joints), sand dunes and topographic features (eg. 

ridges and drainage, which presumably reflect underlying geological 

features) were clearly identified in the power spectra. A qualitative  

idea of the relative importance of particular trends in an image can 

also easily be obtained.

Interpretation of spectra is made d ifficu lt by the bias introduced 

by solar illumination, especially for low sun-angles (thus the problem 

could also be expected to be severe for radar images). This bias 

is apparent as a large, broad peak centred perpendicular to the 

illumination direction - this peak must be discounted when making 

interpretations.

Any striping in the image is apparent as a large but very narrow 

(usually 1° or 2° wide, before the spectrum is smoothed) peak. Trends 

parallel to the striping direction are particularly d ifficu lt to interpret 

(but this is an inherent problem in the data - no amount of processing
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can completely remove it). The problem is particularly bad for early 

MSS data.

Full Power Spectra

A log-scaled display is easiest to interpret, reflecting the large 

dynamic range of the spectrum. Most power is concentrated in the 

very low frequencies, and the log scaling is required before high- 

frequency trends (which are of most interest) can be seen. The full 

power spectrum is more d ifficu lt to interpret than the azimuthal 

power spectrum, but it  provides useful information on the relative  

scale of features, and hence is a valuable supplement to the azimuthal 

power spectrum. The local or regional nature of features can often 

be determined from the relative importance of the high and low fre 

quencies (eg. a pervasive but relatively small joint set would be expect

ed to have relatively more power in the higher frequencies than 

a number of large, regional faults). It  is, however, very d ifficu lt 

to put any quantitative interpretation on such variations.

In rare cases, features may be apparent as a distinct peak in the 

power spectrum, rather than as a linear trend. Figure 4.5(b) is an 

excellent example of this, where the sand dunes of figure 4.5(a) plot 

as a broad but quite d istinct peak, due to their very periodic nature. 

In figure 4.5(b), the dune orientation can be seen to be about 60°, 

and the wavelength of the dunes looks to be about 300m (about twice 

the Nyquist frequency for MSS data). Wavelengths and orientations 

measured from the power spectra in this case could be expected 

to give regional estimates far more precise than could be obtained 

from selective measurements of a number of dunes in the original
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image, as the power spectrum effectively represents an average across  

the entire image. It should be noted that this is an unusually good 

example - it  is rare to have such a large area of periodically-varying 

features (although distinct peaks due to pervasive and quite regular 

joint sets and bedding have been observed, if  not so clearly as in 

this example).

Spatial Variation of the Power Spectrum

The variation of trends across a large area can be monitored easily. 

Subtle changes in orientation can be detected with confidence (since 

a 10° sh ift in trend can be quite easily and confidently picked), as 

can variations in the relative importance of different trends. An 

excellent example of this is given for the Cornwall image in section  

7.1, where the warping of beds by a granite intrusion is easily recog

nized, and the relative importance of warped versus unwarped beds 

in different subscenes is quite apparent. To monitor such variations 

using rose diagrams would be very time consuming.
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UM  Directional Filtering - Generation of Azimuthal Channels

By analogy to the orientation-specific detectors in the human cortex, 

the image is now divided into four azimuthal channels. The choice 

of four channels is somewhat arbitrary, but based on the observation 

that images rarely contain more than four significant preferred orient

ations. Practical simulation of the 10 or 20 channels in the cortex  

is not passible on the hardware available to this project. In any 

event, the human system has evolved to cope with a wide range of 

scenes: careful selection of the azimuthal channels for a particular 

scene, a fter considering the power spectra and any other available 

information, should allow acceptable performance with a limited number 

of channels.

This stage could also be considered a way of removing irrelevant 

details from the image. The problem for any particular channel is 

reduced from ’’detect all lineaments" to "detect lineaments of a partic

ular orientation". Torre and Poggio (1986) conclude that use o f d irect

ional derivatives may improve the signal-to-noise ratio of the edge- 

detector output, compared to that obtained using isotropic derivatives 

(such as the Laplacian). It  may also give more accurate localization 

of edges. On the other hand, the detected edges are no longer guarant

eed to be closed, as are those located by a Laplacian (under ideal 

conditions). As lineaments are, by definition, not closed features, 

this is no handicap to the use of directional filtering.

The system also allows images to be processed without division into 

directional channels. Such processing is valuable where the results
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may be used for image segmentation (eg. as a guide for a contextual 

classifier), where closed features are highly desirable. Such processing 

also gives a check on the value of directional filtering to lineament 

detection.

4.4.1 Definition of the Directional Filter

Frequency domain filtering techniques are used to separate the inform

ation pertaining to different orientations. The transfer function  

of the directional filte r for a particular azimuth window is defined

by:

T(r,B) = B(r) + (R(B) x H(r)) [4.4.1]

where

T = transfer function 

r = radial frequency 

B = azimuthal frequency

B = radial blur function = exp(-s.r2) [4.4.2]

s = parameter controlling standard deviation of radial blur function  

R = azimuthal window function

= exp(-g.[(B - Bc)/Br]2) [4.4.3]

g = parameter controlling standard deviation of azimuthal window 

function

Be = centre azimuth o f window 

Br = half-width of window

H = high-emphasis function (described in detail below)

The image for a particular azimuth channel is produced by multiplying 

the Fourier transform of the input image by this transfer function,



-  9U -

and then performing an inverse Fourier transform.

It can be seen that the basic filter is defined by a low-pass function 

acting isotropically (B(r)), with a superimposed high-emphasis function 

(H(r)) acting only in the desired azimuth window. The azimuth window 

is defined by a Gaussian function with standard deviation proportional 

to the half-width of the window. The low-pass function acts to preserve 

the broad (regional) trends, giving a framework within which the more 

localized trends can be interpreted. (This has been found to be highly 

desirably in producing filtered images for human interpretation: it 

is not necessary if the image is to be processed further within the 

lineament analysis system.) The high-emphasis function enhances localized 

trends within the azimuth window, while suppressing trends of other 

directiona. This makes it easier to recognize subtle features and 

separate them from "noise". It  also makes it easier to follow trends 

across cross-cutting features, such as faults etc.

UM.2 Modes of Operation of the Directional Filter

The directional filter may fuction in several modes, depending on 

the choice of blur function, azimuthal window function, and high- 

emphasis function. The following choices were tested:

(1) B(r) = 0 for all r hence T(r,B) = R(B) x H(r)

A high-emphasis filter is applied inside the azimuthal window, while

information from other directions is removed comletely.
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(2) H(r) = 1 for all r hence T(r,B) = B(r) + R(B)

Low frequency information of all directions is preserved, as is 

all information in the azimuthal window. High frequency information 

outside the window is cut.

(3) B(r) = 0 for all r

H(r) = 1 for all r hence T(r,B) = R(B)

The filter has a fla t radial frequency response, and passes only 

information from inside the azimuthal window.

(4) T(r,B) = B(r) + (R(B) x H(r))

The full filte r is applied: low frequency information of all directions 

is preserved. High-emphasis is applied to information inside the 

azimuthal window, while high frequencies outside the window are 

cut.

Section 4.4.5 discusses the value of these different modes for image 

enhancement and feature recognition.

4.4.3 High-emphasis Functions

Three high-emphasis functions were tested:

a user-defined radial 

frequency, where H(Rmax)=1.

(2) H(r) = (r /  Rmax)2

A Laplacian response with respect to r.

(1) H(r) = r /  Rmax where Rmax =

The response is linear with respect to r.
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(3) H(r) = (r /  Rmax)2 x exp(-Rtap.r2)

where Rtap = factor controlling Gaussian taper.

The response is a Gaussian-tapered Laplacian. This is the response 

advocated by Narr and Hildreth (1980) for edge detector based 

on physiological models.

4.4.4 The Azimuth-UJhitening Filter

One further azimuthal filte r was defined in the course o f this study. 

Although it  is not strictly  part of the lineament analysis system, 

it performs a valuable image-enhancement function for images affected  

by low sun angles or radar look-angles. For such images, features 

perpendicular to the illumination direction are enhanced, while features 

parallel to it  are suppressed. The azimuth-whitening filter tends to 

counteract this bias.

Let APS(B) be the azimuthal power at azimuth B (as defined in section 

*♦.3.2). Then the response of the azimuth-whitening filte r at this azimuth 

is defined to be

AliJF(B) = 1 /  APS(B). G

Thus the filte r response at each azimuth is equal to the reciprocal 

of the azimuthal power at that azimuth (see figure 4.3). The nine 

point filter applied to the azimuthal power spectrum helps ensure 

that the azimuth-whitening filter is well-defined for all azimuths 

(ie. that the azimuthal power is non-zero). It  also ensures that the 

response is reasonably smooth, thus preventing ringing due to sharp 

transitions in the filte r transfer function. The azimuth-whitening 

filter is defined to have a fla t radial frequency response. As with 

the other directional filters, it is applied by multiplication in the
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Figure U.3
Azimuthal Whitening Filtering - e ffect on the az. power spectrum
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(a) The image Azimuthal Power Spectrum
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(b) Azimuthal Response of the Azimuth UJhitening Filter
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(c) Azimuthal Power Spectrum of the "Whitened" Image

180°

Nb. Care should be taken when using azimuth whitening filtering that 
information at azimuths with very low power in the azimuthal power 
spectrum is not over-amplified. This can be done by clipping the amp
litude of AWF(B) in equation UA  to some preset maximum.
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frequency domain.

V(VC«r
It  can be seen that the^acts to equalize (whiten) the azimuthal power 

spectrum. Since illumination-angle e ffects tend to dominate the azimuth

al power spectrum (section 4.3.3 and chapter 7), equalizing the azimuthal 

power will tend to remove the bias introduced by illumination angle. 

It should be noted that azimuth-whitening is only a qualitative technique 

- it simplifies recognition of certain spatial features, but does not 

quantitatively remove the e ffects o f illumination angle. It  would pre

sumably be possible to define a bias-removal filte r by considering 

the theoretical e ffects o f illumination direction. To do this, a detailed 

terrain model would be required, plus a reasonably accurate model 

of the interaction between illumination and terrain. In the absence 

of such models, the azimuth-whitening filte r is a quick and easy way 

to minimze illumination e ffects for manual interpretation of imagery.

The value of the azimuth-whitening filte r can also be demonstrated 

by analogy to the process of histogram-equalization. The azimuth

whitening filter increases the entropy of the power spectrum (and 

hence of the image) by making each azimuth equally likely. Histogram  

equalization increases the entropy o f the image by making each grey- 

level equally likely.

Figure 4.4 illustrates the application of the azimuth-whitening filter 

to the Cornwall image. Figure 4.4(a) shows the raw image: a low sun- 

angle from the south-east acts to strongly enhance ENE-trending 

bedding features, while a sign ificant NliJ-trending fault direction 

is suppressed. In the azimuth-whitened image (figure 4.4(b)), the sign if

icance of the north-west trend is much clearer. Figure 4.6 illustrates 

the application of azimuth-whitening to an image from East Africa.
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(b) Azimuth-whitened Image
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(c) Directional-filtered Image.

(mode 1, high-emphasis function 3, azimuthal window: 160°-020°)

(d) Directional-filtered Image.

(mode U, high-emphasis function 1, azimuthal window: 160°-020°)
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Figure 4.5 Saudi Arabia Directional Filtering Example

(a) Raw Image

(b) Power Spectrum

(log-scaled and pseudocoloured in 8 steps (blue=low, white=high))
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(c) Enhancement of dune continuity by filter mode 4.

(d) Frequency response of the filter used in figure 4.5(c).

>
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Figure 4.6 East A frica  Directional-filtering Example

(a) Raw Image

(b) Azimuth-whitened Image
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The directional filte rs defined above were tested on the Cornwall 

image (described in chapter 7). Table 4.1 lists the filte r modes and 

parameters which were tested. Results were evaluated by visual examin

ation. The following filters were found to be particularly useful:

(a) Filter mode (1) with high-emphasis function (3) and g=0.75, Rmax=0.4, 

Rtap=2.0, is the standard filter in the lineament analysis system. 

It separates the azimuthal windows and applies a high-pass filte r  

within each window, as a preliminary step for line and edge detection  

Figure 4.4(c) illustrates the use of this filter to emphasize northerly 

trends in a Cornwall image. Clearly manual interpretation of th is 

image would be difficult, although it proves to be very useful 

for machine interpretation.

(b) Filter mode (4) with high-emphasis function (1) and g=0.75, Rmax=0.25, 

s=40.0, is the preferred filte r if images are to be interpreted 

manually. It  retains sufficient low frequency information to provide 

a "framework” for interpretation, while significantly enhancing 

directional trends. Figure 4.4(d) illustrates the application o f  

this filte r to the Cornwall image: the fau lt trends at azimuths 

010° and 170° are enhanced by a window centred on 000°. Figure 4.5 

illustrates the application of this filter to a dune-covered area 

of Saudi Arabia. Figure (c) illustrates the enhancement of dunes 

by a window including their azimuth: this enhancement is useful 

for dune mapping. Figure 4.5(d) shows the frequency response of 

the filter used to produce figure 4.5(c)

4 .4 .5  D ir e c t io n a l  F i l t e r in g  -  T e s t  R e s u lt s

(c) The azimuth-whitening filter is frequently useful as an aid to
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manual interpretation, as shown by figures 4.4(b) and 4.6(b).

4.4.6 Comparison with Shaded Relief Processing

Shaded relief processing offers an alternative style of directional 

filtering to that discussed above. Filters are designed to simulate 

the e ffect of different solar illumination directions and sun angles, 

and then applied using standard linear filtering techniques. The image 

shown in figue 4.4 was also processed with a number of shaded relief 

filters, to compare the two approaches to filter design. Routines 

written by the United States Geological Survey were used for this 

filtering.

Shaded relief results comparable to those of figure 4.4(b) (the azimuth- 

whitened image) could be obtained by using an illumination from the 

south-west, ie. orthogonal to the original illumination. A sun angle 

of 30° (measured from the horizontal) was found to have some e ffect  

in cancelling out the bias introduced by the original low sun angle. 

Image quality was not as good as that output by the azimuth-whitening 

filter: shaded relief tended to produce very ’’binary” results (ie, 

most pixels a t either the maximum or the minimum grey-level) which 

did not closely resemble standard images, and hence would be d ifficu lt 

to interpret. As figure 4.4(b) shows, the azimuth-whitening filter pro

duces very pleasing results.

Similarly, an illumination from the east produced filtering comparable 

to that of figure 4.4(d), although again the output was nowhere near 

as visually appealing as that produced by the filters of the lineament 

analysis system.
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Shaded relief processing is conceptually appealing - it o ffers a good 

physical model for what the filte r is doing - however the filters  

used in the lineament analysis system are capable of producing equiv

alent or better results, while being more flexible (since more filter  

options are offered) and offering more explicit control of the filter  

design (eg. in control of the window width, type of high-emphasis 

function, etc.). Use of the power spectra to aid filte r design allows 

full use to be made of this flexibility and control, hence allowing 

the filte rs of the lineament analysis system to be used for a wider 

range of applications (eg. image enhancement versus feature recognit

ion). Finally, the output produced by the filters of the lineament 

analysis system is much more visually appealing (although this may 

reflect the implementation of the shaded relief filters, rather than 

inherent limitations of the technique).
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T ab le  4.1 D ir e c t io n a l  F i l t e r in g  T e s t  P a r a m e te r s

Filter
Node

High-emph.
function

Rmax 9

3 0.5

3 0.75

3 1.0

3 1.5

3 2.0

2 0.75

1 1 0.25 0.75

1 1 0.4 0.75

1 1 0.5 0.75

1 1 0.75 0.75

1 1 1.0 0.75

1 1 2.0 0.75

1 2 0.25 0.75

1 2 0.4 0.75

1 2 0.5 0.75

1 2 0.75 0.75

1 2 1.0 0.75

1 2 2.0 0.75

1 3 0.25 0.75

1 3 0.5 0.75

1 3 0.5 0.75

1 3 0.75 0.75

1 3 1.0 0.75

1 3 2.0 0.75

4 1 0.25 0.75

4 1 0.4 0.75

4 1 0.5 0.75

4 1 0.75 0.75

4 1 1.0 0.75
4 1 2.0 0.75
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Table 4.1 (continued)

Filter High-emph. Rmax g

Mode function

4 2 0.25 0.75

0.4

0.5

0.75

1.0

2.0

4 3 0.25 0.75

0.4

0.5

0.75

1.0

2.0

Comments

(1) Parameters are defined in section 4.4.

(2) A value of s=40.0 was used for the above tests (values of s=1,2,5,10, 
20,30,40,50,100 were also tested). The choice of s is largely a matter 
of personal preference - different in te rp re te rs  will feel comfortable 
with different amounts of low-frequency information.

(3) For high-emphasis function 3, a value of Rtap=2.0 was found to 
acceptable (Rtap=0.5,0.75,1.0,2.0,4.0 were tested). By analogy to 
the human visual system, high-emphasis function 3 is preferred, 
however function 1 also gave interesting results. Function 2 tends 
to strongly emphasize noise.

(4) Filter modes 2 and 3 gave less useful results for lineament detection 
than modes 1 and 4. This is expected, as lineaments tend to dominate 
at high frequencies, hence modes which include a high-emphasis 
function are preferred.

(5) The exact value of g was not crucial to filte r operation. The 
width of the azimuthal windows a ffe c ts  the filter ro ll-o ff in much 
the same way as g. A value of g=0.75 was found to be acceptable. 
(A sharp cu t-o ff a t the edge of the azimuthal windows, rather 
than a Gaussian ro ll-off, was also tested. This was found to introd
uce ringing. Although the ringing enhances some directional trends, 
it also introduces a rtifac ts  and hence is not desirable.)
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Chapter 5

Primitive Feature Detection and Refinement

Having split the image information into channels, on the basis of 

spatial frequency and azimuth, we wish to locate the lineaments. 

As lineaments are defined to be composed of lines, edges and align

ments, "primitive feature detectors" are applied to locate these feat

ures, and hence the lineaments. These primitive feature detectors 

allocate a figure-of-m erit to each pixel, indicating the possibility 

that a lineament passes through it. These figures-of-m erit (for lines, 

edges and alignments) are then combined to give an overall "lineament 

possibility" to each pixel. These possibilities may then be refined 

using a relaxation labelling process. This allows contextual information 

to be used to reduce noise responses and span small gaps in features. 

Finally, a decision must be made as to whether a lineament actually  

passes through each pixel: a variety o f thresholding techniques are 

used to convert the (continuous) lineament possibility figure to a 

binary figure (where 0 represents "no lineament" and 1 represents 

a lineament).

5.1 Primitive Feature Detectors

In this step, relatively simple (linear or non-linear) filte rs are applied 

to each image in each information channel. These filte rs output an 

indication of feature orientation and amplitude for each pixel, as 

well as a figure-of-m erit (or degree of confidence) indicating the
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possibility that such a feature actually exists. Primitive feature  

detectors for lines, edges and alignments need to be applied if  all 

possible lineaments are to be located. To be of practical value for 

large images, these detectors must be amenable to implementation 

on parallel computers or special-purpose hardware. To be applicable 

to a wide variety of situations, they should incorporate a minimum 

of a priori assumptions about the nature of the input data.

5.1.1 Edge Detectors

The detection of edges in images has been widely discussed: appendix 

F gives a survey of this literature. In order to select an appropriate 

edge detector, a large number of these detectors were subjected 

to an extensive series of tests (described in detail in appendix G). 

One novel detector, based on the autocorrelation function (described 

in appendix H) was included in this testing. On the basis of this testing, 

two detectors were selected as appropriate fo r the lineament analysis 

system:

(a) Nevatia and Babu operator - a template-matching operator using 

six masks, as defined by Nevatia and Babu (1980: see appendix 

F also). Edges are located at peaks in an approximation to the 

first directional derivative, as output by the mask convolutions.

(b) Marr-Hildreth operator - a Laplacian-of-a-Gaussian operator, as 

defined by Marr and Hildreth (1980: see appendix F). Edges are 

located at zero-crossings in the smoothed second derivative.

For reasons of computational simplicity and compatibility with the
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relaxation labelling scheme of Zucker et al (1977: see section 5.3), 

only the Nevatia and Babu operator was used in operational testing  

of the lineament analysis system (see chapter 7). (Unlike the Nevatia 

and Babu operator, the Marr-HIldreth operator is not capable of 

assigning possibilities to a number of feature orientations, thus its 

output cannot be used by the Zucker et al algorithm.)

5.1.2 Line Detection

As with edge detection, the literature on line detection is vast, and 

is surveyed in appendix F. The tests of appendix G were also applied 

to a large number of line detectors. On the basis of this testing, 

the SUM2S line detector was selected for inclusion in the lineament 

analysis system. This detector uses sampling scheme 2, a semi-linear 

sum evaluation rule and a simple decision rule, as defined in section 

F.2.

5.1.3 Alignment Detection

The autocorelation operator (appendix FI) is the only one designed 

specifically for the detection of alignments. Unfortunately, its perform

ance when applied to real images was poor, and it was abandoned. 

Thus the current version of the lineament analysis system does not 

include an alignment detector.
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5.2 Detector Combination

At this stage, we hav/e the output from both edge and line detectors. 

As lineaments may have different characterstics (they may be either 

lines or edges, or they may change between the two along their length) 

we need to combine these two outputs before continuing further.

Initially, the line and edge detector outputs are independently scaled  

to the range [0,1]̂  by dividing by the maximum output magnitude for  

the appropriate detector in the channel being considered. Then the 

two outputs are merged pixel by pixel, using the algorithm:

FOR each pixel

IF (edge magnitude is greater than line magnitude) TFIEN

OUPUT edge magnitude and edge direction 

ELSE

ROTATE line direction by 90° (since the line direction is 

defined to be parallel to the line, while the edge 

direction is defined to be parallel to the maximum 

gradient, ie. perpendicular to the edge; see appendix 

F. This step resolves the conflict between these 

definitions. Feature orientation is now defined 

by the maximum gradient direction in all cases.)

OUTPUT line magnitude and line direction 

ENDIF 

END.

This algorithm may not be optimal, but it is simple and appears to 

give satisfactory  results in the operational testing. Design of a better 

detector-combination algorithm was beyond the scope of this project.
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5.3 Relaxation Labelling

The primitive feature detectors have now assigned a label to each 

pixel, indicating the possibility/ that a lineament passes through the 

pixel (in the case of the Nevatia and Babu operator, a number of 

labels may optionally have been assigned, each indicating the possibility  

that a lineament of a particular orientation passes through the pixel). 

Relaxation labelling is an iterative, parallel process whereby each 

pixel’s label is influenced by those assigned to neighbouring pixels 

at earlier iterations, ie. contextual information is used to update 

the labels and hence improve the consistency of the over labelling. 

Ideally, this process removes noise responses and enhances weak 

lineament responses (eg. at gaps in features). Application of many 

iterations of relaxation allows contextual information from a large  

neighbourhood to influence the labelling of each pixel, even if  the 

original primitive feature detector used only a small neighbourhood 

in its initial assignment. (In practice, since lineaments are defined 

by reference to the properties of a relatively small neighbourhood, 

it is not expected that more than a few iterations of relaxation  

will be required.)

5.3.1 Theory

The theory of relaxation labelling has been widely discussed. References 

of relevance to image processing include: Rosenfeld et al (1976), Davis 

(1978), Rosenfeld and Peleg (1978), Hummel and Zucker (1980), Davis 

and Rosenfeld (1981), Mero and Vamos (1981), Richards et al (1981) and 

Hedlund et al (1982).
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In all cases, appropriately defined compatibility relationships between 

labels are used to strengthen some labels and weaken others, thus 

improving the overall labelling consistency. Thus if  Bl, B2, ... , Bn 

are the possible labels for each pixel (representing, for example, 

lineaments o f orientations 1 to (n-1), plus a "no lineament” label), 

then the primitive feature detectors have assigned to each label 

a quantity p(Bi) which represents the possibility that Bi is the correct 

label for this pixel. Two labels, Bi and Bj, are defined to be semantic- 

ally compatible if  the occurrence of one in a neighbourhood enhances 

the possibility that the other label might also occur there. The two 

labels are semantically incompatible if the occurence of one in the 

neighbourhood decreases the possibility that the other might also 

occur. Definition of these compatibility functions is difficult, and 

not well understood, and hence is a principal source of variation  

between algorithms. For each pixel in the image, the enhancements/ 

decreases to each label possibility, due to the label possibilities 

of the neighbouring pixels, are summed and an updated label possibility  

is calculated (see detailed examples of the algorithm below). This 

process may be iterated as often as required, thus increasing the 

size of the area from which contextual information is drawn, due 

to the tendency for information to propagate between pixels during 

the updating.

Two relaxation algorithms were selected for testing in the lineament 

analysis system: those o f Zucker et al (1977) and Schachter et al 

(1977). These algorithms were selected for their ease o f implementation 

and proven applicability to edge and line detection problems, rather 

than because they necessarily represent optimum algorithms (in fact, 

their results are probably decidedly sub-optimal by comparison to 

those of more recent algorithms. Since relaxation is only one small
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part of the total lineament analysis system, this is not expected 

to strongly a ffect the final output.)

Techniques similar to relaxation labelling are discussed by Burns et 

al (1986) and Vanderbrug (1977). Vanderbrug describes an iterative  

process that can be seen to be a simplified version of relaxation 

labelling. Vanderbrug concludes that the results obtained a fte r iterative  

enhancement are relatively independent of the initial primitive feature  

detector used, providing some further justification for the use of 

simple, template-matching operators. Burns et al describe an edge 

detection scheme based primarily on the direction information given 

by gradient operators - this compares with the strong use of direction 

information by relaxation labelling schemes (since compatibility coef

ficients are strongly influenced by feature orientations, see especially 

the Schachter et al algorithm below). The work on higher-level descript

ion of edges by Burns et al looks very interesting, but is beyond 

the scope of this project.

5.3.2 Algorithm of Zucker et al (1977)

Let the primitive feature detectors assign a possibility, F(d,x,y), to 

each of (n-1) labels (ie. d = 1 to n-1) at each pixel (x,y). Typically 

each label would be taken to represent the direction associated with 

a particular template of a template-matching operator (eg. the IMevatia 

and Babu or SUM2S operators). The Zucker et al relaxation algorithm  

may be divided into three stages:
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(1) Scaling

(a) calculate TOTMAX = maximum value of F(d,x,y) fo r all d,x,y.

(b) for each pixel, calculate
n-1

SUM(x,y) = £  F(d,x,y)
d=1

MAX(x,y) = max(F(d,x,y)) fo r d = 1 to (n-1)

(c) for each label of each pixel, calculate

G(d,x,y) = scaled possibility  

= MAX(x,y) x F(d,x,y)

SUM(x,y) x TOTMAX

(d) calculate the no-feature possibility for each pixel

G(n,x,y) = 1 - (MAX(x,y) /  TOTMAX)

(2) update the label possibilities for each pixel (x,y) in the image

(a) for each pixel (xn,yn) in the NxN neighbourhood about (x,y)

n n
define Q(d) = £  £  (R(d,dn) x G(dn,xn,yn))

d=1 dn=1

where R(d,dn) = user-defined compatibility between labels d

and dn (the "compatibility coefficients": 

range [-1,1]).

(b) define the new output for each label (d = 1 to n)

G'(d,x,y) = G(d,x,y) x (1 + Q(d))

(c) normalize G'
n-1

G"(d,x,y) = G'(d,x,y) /  C  G ’(d,x,y)
d»1

Stages (1) and (2) may be iterated as required.

(3) Calculate the final output magnitude and direction

n-1
magnitude: F(x,y) = max

o l- l  J
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direction: D(x,y) = label a t which the maximum value of 

F(d,x,y) occurs.

5.3.3 Algorithm of Schachter et al (1977)

Schachter et al describe an algorithm which is applicable to output 

from primitive feature detectors that provide a single feature-possibil

ity label and a continuous range of faeture orientations (by contrast 

to the discrete directions recognized by template-matching operators). 

The algorithm was designed specifically for gradient-style operators, 

but can be easily applied to most other detectors. Examination of 

the algorithm shows it to represent a special case of the Zucker 

et al algorithm, for n=2 but with a continuous range o f directions. 

Schachter et al also give a more explicit definitiion of the compatibility 

function.

Given output from the primitive feature detectors in the form 

mag(x,y) = possibility that a feature exists at (x,y) 

dir(x,y) = orientation of feature a t (x,y) 

define the feature "probability” at each (x,y) to be

P(x,y) = mag(x,y) /  (max(mag(x,y)) for all x and y).

This probability is then clipped to the range [0,0.9]

ie. if P(x,y) is greater than 0.9 then se t P(x,y) = 0.9.

The non-feature probability is defined by 

P(x,y) = 1 - P(x,y).

Feature-feature interactions are accounted for by the coupling coeff-



R ((x,y),(u,v)) = cos(a-c).cos(b-c) /  2D 
ee

where

a = dir(x,y) 

b = dir(u,v)

c = slope of line from (x,y) to (u,v)

D = chessboard distance from (x,y) to (u,v)

(u,\/) = a point in the neighbourhood of (x,y)

(The chessboard distance is used since it is claimed that use of a 

Euclidean distance tends to weaken diagonal features. The e ffect  

of the 2D factor is to weaken the e ffect the e ffect of more distant 

pixels in the neighbourhood.)

Similarly, coupling coefficients for non-feature interactions are defined:

R ((x,y),(u,v)) = min[0, -cos(2b-2c)/2D] 
en

= tendency of a non-feature at (u,v) to weaken

the feature probability at (x,y)

Rne((x,y),(u,\/)) = (1 - cos(2b-2c))/2D+1

= tendency of a feature at (u,v) to weaken the

non-feature probability at (x,y)

R «x,y),(u,v) - 1/2° 
nn

= tendency of non-features at (x,y) and (u,v) 

to reinforce each other.

i c i e n t  f o r  f e a t u r e  r e in fo r c e m e n t :

Having defined these coupling coefficients (or compatibility coe ffic 

ients), the relaxation algorithm is:

(1) calculate

Q(x,y) = £
V (u,v)j*(x,y)[c1 . P(u,v) ((x,y),(u,v))

ee
+ c2 . P(u,v) •Ren((x,y)’ en (u,v))l
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Q(x,y) - < s  [ c3 . P(u,v) . R ((x,y),(u,v)) ♦  c4 . P(u,u) -R ((x,y),(u,v))] 
V (u,v)/(x,y) ne

where c1 + c2 + c3 + cA = 1 are user-defined coefficients 

describing the relative weighting of the different 

types of interaction.

(2) hence calculate the new feature probability

pneW(x y) = p /  (P + p)

where

P = P(x,y) . (1 + Q)

P - P(x,y) - ( 1 * 5 )

Q = Q(x,y) /  ( Q(x,y) + Q(x,y) )

Q = Q(x,y) / ( Q(x,y) + Q(x,y) )

(3) calculate the revised feature orientation

X(x,y) = lil . P(x,y) . cos(dir(x,y)) + i s  P(u,v).R C(x,y),(u,v)).cos(dir(u,v)
^(u,\^(x,y)

Y(x,y) = lil . P(x,y) . sin(dir(x,y)) + £ , P(u,v).R ((x,y),(u,v)).sin(dir(u,v))
V(u,v)*(xfy)

dirnew(x,y) = arc tan (Y/X) 

where

Ul = weighting coefficient for central point. (Large UJ implies 

that the new orientation will be close to the old; small

LJ gives a strong influence to neighbouring points.)

These calculations may be iterated as required. (Schachter et al 

note that usually no more than 3 or A iterations are required.)

Choice of c1, c2, c3, cA and LJ is largely empirical. Schachter et al

used values of:
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(a) c1 = 0.866 

c2 = 0.126

c3 = c6 = 0.005

UJ = 3 for a 5x5 neighbourhood 

and

(b) c1 = 0.706 

c2 = 0.176

c3 = c6 = 0.059

They note that large values of c1 lead to thickening of features 

while small values lead to loss of weak and high-curvature features. 

Large values of c6 lead to the appearance of gaps in features. They 

also note that it may be desirable to change the c values from iteration  

to iteration, although it is d ifficu lt to see how this can be done 

without a much more clearly defined model of feature interactions 

than is currently available.

5.3.6 Relaxation Tests

These two relaxation algorithms were tested on data from the Cornwall 

data pyramid, in order to select an algorithm and set of control 

parameters for use in the lineament analysis system. These tests 

are described in appendix I. On the basis of these results, the Schacht- 

er et al algorithm was selected, with the following parameters: 

neighbourhood size = 3x3 

number of iterations = 2 

c1 = 0.50 

c2 = 0.20

c3 = c6 = 0.15
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and UJ = 2.

Feature maps produced by the Nevatia and Babu /  SUM2S primitive 

feature detectors are used as input to this algorithm.

5.4 Thresholding

’’Clean" maps of feature-possibilities have now been produced. It  only 

remains to convert these continuous possibilities to a binary feature  

map (0 = no-lineament, 1 = lineament). The thresholding process makes 

this decision.

Thresholding techniques have been discussed by Rosenfeld and Kak 

(1976), UJeszka (1978), Otsu (1979), Abdou and Pratt (1979), Mitchie and 

Davis (1980), K ittler et al (1984) and K ittler and Illingworth (1985), 

among many others. The following techniques are used within the 

lineament analysis system:

(a) N% SEMITH - (semithresholding operation) - A histogram of the 

feature possibilities is calculated and pixels in the lowest N per

centiles are then set to 0. The possibilities of the other pixels 

remain unchanged. This technique allows very weak responses to 

be discarded, and is especially valuable for removing small noise 

responses over featureless portions of the image (eg. regions 

covered by water).

Semithresholding (and simple thresholding) is the simplest type 

of thresholding operation, and has been widely discussed in the 

literature. The biggest problem lies in the selection of an appropri

ate threshold: a compromise between passing too much noise (thresh-
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old set too low) and not passing valid feature responses (threshold 

set too high) must usually be made. Techniques for threshold se lect

ion may be based on:

(i) Statistica l signal-detection theory (Abdou and Pratt, 1979; Davis 

and Mitchie, 1980 - but knowledge of the prior probabilities of 

signal and noise points is required fo r this approach to be valid), ■

(ii) location of troughs in the feature-possibility histogram (Rosen- 

feld and Kak, 1976; UJeszka, 1979 - but the histogram is rarely  

clearly bimodal, so these techniques frequently fail),

(iii) trial and error (only valid for interactive processing),

(iv) techniques such as those described by K ittler et al (1984), 

Kittler and Illingworth (1985) or Otsu (1979), which attempt to trans

form the feature-possibility histogram so that boundaries between 

different distributions can be recognized more clearly (again, 

these are of limited applicability), and

(v) techniques based on percentiles, as I use here.

Semithresholding based on percentiles has the obvious advantage 

of simplicity, however the production of feature maps with a fixed 

percentage of feature pixels is of debatable validity. For the 

preliminary cleaning of feature maps, which is the main function 

of SEMITH in the lineament analysis system, this approach is adequate. 

If this style of thresholding were to be used in making the final 

lineament /  no-lineament decision, then a tria l-and-error selection 

technique (using an intelligent system?) would be preferable. Design
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of such a system is beyond the scope of this project. (In any 

event, the applicability of a single threshold to a large image 

when making the final decision is  very dubious. Thus ADAPTH, de

scribed below, is prefered to SEMITH a t the final decision step.)

(b) FIL2TH - The orientation output bys the primitive feature detectors 

may be used to detect noise responses when directionally-filtered  

images are being processed. If  the calculated orientation lies 

outside the azimuthal window o f the directional filter, then the 

pixel is unlikely to contain a valid feature (since directional filte r

ing will have suppressed any features of this orientation), hence 

the feature-possibility can be se t to 0. FIL2TH performs this function.

(In practice, features lying up to 22.5° outside the azimuthal window 

are allowed to pass. This means that, when four azimuthal windows

are used, a 100% overlap of the feature-orientations is retained -*»

and hence that features near to the edge of windows have a greater 

chance of being detected than would otherwise be so.)

(c) N% ADAPTH - (space-variant or adaptive thresholding) - a different 

threshold is applied to d ifferent parts of the image, using the 

following algorithm:

(1) the image is divided into regions of 32x32 pixels,

(2) a histogram of the feature possibilities is calculated for each 

region, and a threshold is defined at the Nth percentile. (The 

comments on threshold selection given fo r SEMITH apply here 

also.) These thresholds are written out to an image of the 

same size as the input image.

(3) the threshold file is smoothed using a 15x15 equally-weighted 

convolution operator. (This process reduces edge effects between
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the 32x32 blocks, hence reducing the "blocky" appearance 

of the thresholded image.)

(4) the smoothed threshold file is applied pixel-by-pixel to the 

image. If  the feature-possibility is less than the threshold 

value for a particular pixel, the the possibility is set to zero; 

otherwise it remains unchanged.

Adaptive thresholding allows relatively weak features to be seen 

in "smooth” areas o f the image, without allowing more "active" 

parts of the image to become overcrowded with features. (If only 

SEMITH were used, then either the weaker features would be lost, 

or the active regions would be saturated.)

(d) NONMAX - (nonmaximum suppression) - Using the algorithm described 

by Rosenfeld and Kak (1976) and Mitchie and Davis (1980), only 

those pixels with a maximum feature-possibility in a line across 

the axis of the feature are retained. In detail, the algorithm  

is:

FOR each pixel

IF f(x,y) is less than m^x(f(u,v))

THEN f(x,y) = 0 

ELSE f(x,y) = 1 

ENDIF

END

where

L = a line parallel to the gradient direction at (x,y)

(u,v) = points on the line L and within a set distance of (x,y)

By this algorithm, NONMAX preserves the connectivity of lineaments, 

while reducing them to a single pixel’s width. Note also that NONMAX
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as defined here performs the final, binary decision step. Thus 

it will be the final thresholding technique applied to the image. 

A 3x3 neighbourhood is used in my implementation of NONMAX - 

this has proved adequate in all testing. A larger neighbourhood 

might be useful if  it is desired to remove all but the largest of 

several close, parallel features.

By the model for the lineament analysis system given in chapter 3, 

two thresholding steps are required. Before relaxation labelling, obvious 

noise responses are removed (so that these responses do not influence 

the labelling). This is done using a 10% SEMITH operation, followed 

by FIL2TH and a 30% ADAPTH operation. A fter relaxation labelling, 

the final lineament decision is made using a 10% SEMITH, N% ADAPTH 

and NONMAX operation, in that order. (N for the final ADAPTH operat

ion depends on the scene being interpreted and the density of linea

ments desired by the interpreter. Typically N = 70 to 90 for reasonable 

results: this means that 30% to 10% o f the pixels are flagged to contain 

lineaments. At these levels, lineaments tend to be well-connected 

without being too cluttered by noise responses. I cannot see any 

way to select N without some intelligent in iput by the interpreter. 

The examples in chapter 7 illustrate these thresholds. (The NONMAX 

operation, of course, suppresses some of these responses.)

Different orders for the application of the thresholding techniques

were tested, but the above order gives the best results. Use of NONMAX

without an ADAPTH step gives a very cluttered feature map, as it

is unable to remove very low amplitude features. Such a map looks

to be of little value for human interpretation of lineaments, but

may be useful as an edge map to constrain machine segmentations

of the image (especially since it is unbiased as to the number of 
pixels which are flagged as lineaments).
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Chapter 6

Recombination of Information Channels and Display of Results

At this stage, a decision has been made as to whether a lineament 

passes through each pixel in the d ifferent information channels. To 

produce a final lineament map, it only remains to recombine these 

channels into a single map. Initially, the three spatial frequency 

channels are combined using a simple arithmetic transformation, followed 

by a relaxation labelling step. This allows a clean lineament map to 

be produced, while also labelling lineaments as "local" or "regional" 

features, depending on the channels in which they are detected. 

The azimuthal channels are combined fo r final display using the colour 

display capabilities of the IIS image processor. Thus a single map 

of lineaments is produced, with lineaments flagged as local or regional 

by intensity, and allocated to azimuthal windows using various colours.

6.1 Recombination of Resolution Channels

For each pixel of the original image, we now have three figures:

FH = lineament flag fo r high-resolution channel (1 = lineament

0 = no-lineament)

FI = lineament flag  for intermediate-resolution channel, and 

FL = lineament flag fo r low-resolution channel.

(The intermediate- and low-resolution channels are interpolated to 

match the high-resolution image using a nearest-neighbour interpolation 

scheme. This scheme is simple, and adequate for our purposes.)
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UJe wish to assign one of four labels to each pixel: 

LOC = local lineament,

KMT = intermediate lineament,

REG = regional lineament, and 

NON = no lineament.

6.1.1 Label Assignment

Initially I assign possibilities to these labels using the following rules: 

LOC = ( FH + (1 -FI) + (1-FL) ) /  3

INT = ( FH + FI + (1-FL) ) /  3 [6.1]

REG = ( FH + FI + FL ) /  3

NON = ( (1 -FH) + (1 —FI) + (1-FL) ) /  3

Thus a local lineament should be located in the high-resolution channel 

only, whereas a regional lineament should be apparent in all three 

channels (with the high-resolution channel providing accurate feature  

location, while the low-resolution channel indicates the regional s ign if

icance of the feature.) A non-lineament should not respond in any 

channel.

If  a consistent and clean response were obtained at all resolutions, 

then it would suffice to assign the label with highest possibility to 

each pixel. However, since each resolution channel has been processed 

independently, it cannot be expected that the responses will be consist

ent. A relaxation step may therefore be required to upgrade the 

consistency of the initial label assignments. A scheme based on the 

algorithm of Zucker et al (1977; see section 5.3) is used.
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(IMo modification is required to adapt the scheme from adjusting feature  

labels for different orientations to adjusting feature labels for d iffe r

ent resolutions; only the compatability coefficients need to be altered.) 

The following compatability matrices were tested:

LOC INT REG NON

LOC 3 -1 -1 -1

INT -1 3 -1 -1

REG -1 -1 3 -1

NON -1 -1 -1 3

(Labels are strongly compatible with themselves only. Unlike labels 

are incompatible with each other.)

LOC INT REG NON

LOC -2 -1 -1

INT -2 2 1 -1

REG -1 1 1 -1

NON -1 -1 -1 3

(Local features are compatible only with local features, while 

intermediate and regional features are compatible with each other 

also. The greater weight given to the compatibility between local 

features reflects the higher density of intermediate and, especially, 

regional labels near features due to the nearest-neighbour inter

polation technique (which increases the number of intermediate- 

scale feature pixels four-fold and regional-scale feature pixels

sixteen-fold.)
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(C) LOC INT REG NON

LOC 3 -1 -1 -1

INT -1 2 0 -1

REG -1 0 2 -1

IMON -1 -1 -1 3

(Local features and non-lineaments are compatible with themselves 

only. Intermediate and regional features are compatible with them

selves, unaffected by each other and incompatible with local fea t

ures or non-lineaments.)

(D) LOC INT REG NON

LOC 6 -2 -2 -2

INT -2 3 1 -2

REG -2 1 3 -2

NON -2 -2 -2 6

(Local features and non--lineami

selves only. Intermediate and regional features are strongly compat

ible with themselves, weakly compatible with each other and incom

patible with local features or non-lineaments.)

(E) LOC INT REG NON

LOC 5 1 0 -6

INT 1 3 1 -5

REG 0 1 3 -U

NON -6 -5 -U 15

(Local features are strongly compatible with themselves, weakly 

compatible with intermediate features and unaffected by regional 

features. Intermediate features are compatible with themselves 

and weakly compatible with local and regional features. Regional 

features are compatible with themselves, weakly compatible with
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intermediate features and unaffected by local features. All features 

are incompatible with non-lineaments.)

Coefficients A to D were designed mainly to reduce responses where 

only the intermediate or regional channels have located features, 

without any evidence for a feature on the full-resolution image - 

these responses are expected to be mostly due to the nearest-neigh

bour interpolation technique. Where a high-resolution response is 

found, it is used to locate the lineament (either a local feature, 

if there is no response a t  lower resolutions, or a regional or intermed

iate feature if  there is such a response.) Coefficients E were tested  

to see the e ffect of a quite different set o f coefficients.

□nee these labels have been assigned to each pixel, an image containing 

the labels is output. Pixels are assigned a grey-level of 85, 170 or 

255 (the maximum on the IIS display) or 0, depending on whether they 

are labelled as local-, intermediate- or regional-lineaments, or non

lineaments, respectively. This image can then be displayed and coloured 

etc. on the IIS  Image Processor.

6.1.2 Test Results

The above five sets of coefficients were tested on lineament maps 

for images 311, 312, 321 and 322 o f the Cornwall data pyramid. One, 

two and three iterations of relaxation were tested, and compared 

with the results obtained by using the label assignments of equation

6.1 without any relaxation. Lineament maps for all four azimuthal 

windows, as well as "raw" lineament maps (produced from images which 

had not been subjected to directional filtering) were tested. Results
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were evaluated by manual comparison of the images.

□n the basis of this testing, coefficients A were selected for future  

use in the lineament analysis system. One iteration of relaxation 

gives the best results: further iterations give no significant improve

ment to the final output, and often tend to remove fine detail from 

the lineament map. One iteration appears to remove some noise re

sponses, without removing small lineaments or introducing gaps in 

lineaments.

Coefficients B and D give similar results to A, but tend to remove 

more fine detail and introduce more gaps in lineaments - if the aim 

was to map mostly regional features, then these coefficients might 

be prefered. I have decided that the lineament analysis system should 

respond to features of all scales - local features can be ignored 

in later analyses, if  desired, by reference to their labels - hence 

coefficients A are prefered. Coefficients C and E remove a lot of 

fine detail and introduce many gaps in features, even a fter only 

one iteration.

The following comments on the output at this stage can be made:

(1) The lineament maps at the intermediate resolution channel (after 

thresholding and interpolation to full resolution, but before recom

bination with the high- and low-resolution data) also look to be 

very useful. As the intermediate-resolution channel is a smoothed 

version of the full-resolution image, this suggests that operation 

of the lineament analysis system might be improved by additional 

smoothing during the pre-processing stages (especially using more 

advanced edge-preserving smoothing techniques?). I did not have 

time to implement such smoothing in the final system.
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(2) The results are strongly biased towards local features, and the 

system often fa ils to connect a series of local features to give 

what is, to a human interpreter, an obvious regional feature. Thus 

many major features of the original image are not adequately 

highlighted. Although this bias was imposed by me at several stages 

in the design of the system, it is clear that some way of obtaining 

a regional overview is still required. I feel that this could best 

be done by inclusion of even lower-resolution channels in the 

processing sequence. Use of four or five resolution channels would 

not impose a very large processing load (since the bulk of the 

processing time is spent on the high-resolution channel, which 

has by far the largest number of pixels), but would probably allow 

large-scale features to be recognized as connected units, rather 

than as collections of small-scale features. Refinement of the 

compatability coefficients used here might also aid in the better 

recognition of regional features (eg. by giving more weight to 

the low-resolution channels).

(3) The lineament maps produced for the "raw” image (without any 

directional filtering) also look to be very useful, although the 

features located are strongly biased by the anisotropic e ffects  

of solar illumination at low sun-angles, and many subtle features 

are missed. The use of azimuthal channels reduces the solar-illumin

ation bias and allows more small-scale features to be located, 

but the results from the "raw" image may be useful for preliminary 

interpretation (since the processing is only a quarter of that 

fo r the four azimuthal channels) or as an edge map to guide advanc

ed image-segmentation processors.
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6.2 Cosmetic Operations

Provision is made by the model of chapter 3 for a number of cosmetic 

operations (ie. operations that improve the visual appearance of 

the final lineament map without changing its substance) to be applied 

at this stage. In particular, it may be desirable to apply thinning 

techniques (to reduce lineaments to a single pixel width, while retaining 

their connectivity) or gap-spanning techniques (to fill in small gaps 

in lineaments).

6.2.1 Thinning

Thinning and related schemes are discussed by Montanari (1968, 1969, 

1970), Hilditch (1969), Stefaneili and Rosenfeld (1971), Deutsch (1972), 

Tamura (1978), Pavlidis (1980, 1982) and Arcelli and di Baja (1982). Several 

of these schemes are quite simple and amenable to implementation 

on parallel computers, so they might be worth considering for inclusion 

in the lineament analysis system. In practice, however, the NONMAX 

thresholding scheme was found to produce adequately thin features. 

After recombination of the resolution channels, some regional features 

were found to be two pixels wide - this is not considered to be a 

major disadvantage, so no thinning scheme is implemented in the current 

version of the system.

6.2.2 Gap Spanning

Gaps in lineaments can be filled in using edge-following techniques 

such as those discussed by Persoon (1976) or Gurney (1980) (given
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a feature of known orientation, B, the points beyond each end of 

the feature, along the direction B, are searched for other feature  

points. If  such a feature is found with the same orientation and within 

a reasonable distance of the original feature, then the two features 

are joined together, ie. the gap is spanned). Alternately, techniques 

based on the least-squares fitting of straight line segments to located  

feature points can be used to interpolate across small gaps. In problem 

domains where world knowledge may be used to guide the process 

(eg. the "blocks world” of much artific ia l intelligence research) gaps 

may be easily filled by refering to the expected location of features 

given by the model of the world (eg. Shirai, 1975). Finally, techniques 

based on the minimum spanning tree are described by Zahn (1971, 

1973).

All these^gap spanning techniques tend to be computationally expensive 

and inherently sequential in operation. Edge following schemes, such 

as those of Persoon or Gurney, would be my preferred choice, due 

to their conceptual simplicity. However, whether the interpolated 

points would represent true lineament points is debatable - if  the 

primitive feature detectors did not give a strong response a t the 

point and a t neighbouring points, there may be no clear evidence 

for a lineament to pass through the point. In the light of this, implem

entation of gap-spanning was given low priority - although it would 

probably improve the appearance of the final lineament map consider

ably, I did not have time to implement any gap-spanning scheme.

6.2.3 Other Cosmetics

It would be quite easy to produce maps of lineament density or related
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parameters from the lineament maps a t this stage. This is, however, 

beyond the scope of this project.

6.3 Recombination of Azimuthal Channels - Final Display

It now only remains to combine the azimuthal channels to produce 

a final lineament map. This is done by assigning each channel to a 

different colour on the IIS image display. Thus a display is produced 

which differentiates between lineaments of different orientation 

using colour, and between lineaments of different scale (local versus 

regional) using intensity (local features are displayed at low intensity  

regional ones with high intensity). As can be seen in the examples 

of chapter 7, this display is of high visual quality, and no more advanc

ed techniques for the recombination of the azimuthal channels are 

required.

6.4 High-level Interpretation and Control

The model of chapter 3 makes provision for an "intelligent” controller 

to oversee the processing performed by the lineament analysis system, 

and provide a link to other geological interpretation processors and 

data bases (see the model of section 8.2 also). As noted in chapter 

3, the construction of such a system is beyond the scope of this 

project, however it is now clear that it should perform the following 

control functions:

(1) Interpretation of the power spectra, to decide on azimuthal windows. 

This clearly cannot be done adequately without some reasoning
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ability, and an appreciation of the nature of the problem to be 

salved (eg. is there an orientation of particular interest? or that 

can be ignored?). In the current system such decisions have been 

left to the human interpreter.

(2) Choice of thresholds for ADAPTH - likewise, this requires reasoning 

ability and an appreciation of the problem to be solved.

Apart from these tasks, the system appears to be quite capable of 

functioning independently, ie. the techniques used are sufficiently  

robust to give adequate results under a wide range of conditions. 

If a system could be designed to automate the above two tasks, the 

goal of truly automatic recognition o f lineaments could be achieved. 

Such an "intelligent" control system could probably also act as the 

basis for the interface to other "intelligent" systems in the image 

analysis system described in section 8.2.
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Chapter 7

Examples of Results Produced by the Lineament Analysis System

Having described the lineament analysis system, and the testing involved 

in its construction, I will now give examples of its operation on scenes 

from Cornwall, New Mexico and Saudi Arabia.

7.1 Cornwall Scene

A Landsat MSS band 7 (infra-red) scene over Cornwall and Devon was 

used as the primary test image during system construction and testing. 

The scene was acquired in January, 1979, when the areqwas snow- 

covered, and the combination of low sun-angle (from the south-east) 

and snow cover acts to enhance certain topographic and structural 

trends while suppressing cultural features, such as field boundaries. 

Thus the scene makes an excellent test case for lineament analysis 

techniques. The preferential enhancement of directional features 

perpendicular to the solar illumination (in this case, NE-SQJ trends) 

does, however, introduce a possible source for bias in the results. 

The ability of directional filtering to overcome this bias is an important 

part of the lineament analysis system.

An infra-red scene was chosen as the infra-red bands are generally 

considered to be the most useful for seeing geological lineaments. (£br
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7.1.1 Processing Sequence

The processing sequence described in figure 3.1 and chapters 4 to

6 was followed, with the following modifications /  choices of parameters:

(1) The IIS image processor was used to deskew the image (ie. remove 

the e ffects of earth rotation during the Landsat scene acquisition), 

using bilinear interpolation. This process is very slow and does 

not really aid lineament detection, and there is always the risk  

that interpolation will introduce distortions to the image. Thus 

I decided that no geometric corrections would be applied prior 

to lineament analysis in future.

(2) Due to problems with the IIS, the image could not be destriped 

(ie. have the e ffects of Landsat 6-line striping, due to its use 

of six detectors per band, removed). It has since become clear 

that destriping is essential when processing Landsat data, and 

hence that a destripe function should be included in the lineament 

analysis system. A standard 3x3 fuzzy-despiking filter was applied 

to the image.

(3) A standard 3-level Gaussian Data Pyramid was created from a 

2048x2048 subsection of the full Landsat image, with the lower 

two levels (ie. the 2048x2048 full-resolution level and the 1024x1024 

intermediate-resolution level) subdivided into 512x512 subscenes 

for all further processing (to allow easy processing on the restricted  

memory of the FPS array-processor). Figure 7.1 shows the arrange

ment of subscenes in the data pyramid; figure 7.2 shows the data 

pyramid in detail.
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(4) The power spectra of the 512x512 subscenes were calculated and 

hence the following azimuthal channels were selected for the scene:

(1) 22.5° to 57.5°, (2) 57.5° to 107.5°, (3) 107.5° to 157.5°, and (4) 

157.5° to 22.5°.

(All directiona are given in geographic convention, relative to 

image North). Thus four azimuthal channels wre generated for 

each image, using the standard directional filters. Images without 

directional filtering were also subjected to all subsequent processing, 

to provide a standard against which the utility of directional 

filtering could be evaluated.

(5) Lineaments were located using the Nevatia and Babu and SUM2S 

operators, followed by standard relaxation labelling, thresholding 

and channel recombination operations. An 85% ADAPTH threshold 

was used for directionally-filtered images; a 70% ADAPTH for scenes 

without directional filtering (choice of these percentages was 

fairly arbitrary: these figures seem to give acceptable results 

under a wide range of conditions).

Figure 7.3 shows the power spectra for the scene (note that these 

spectra are scaled arbitrarily to f it  the full dynamic range of the 

IIS display). Figure 7.4 shows the lineament maps. The total processing 

time to produce these results was approximately 3 days (elapsed time 

on the VAX 11-780 plus FPS 5100). Much of this processing time was 

taken up with tape IO and minor inefficiencies in the command files 

used. Given a fully disk-based system and some relatively triv ia l im

provements to the software structure (a "rapid prototyping" software 

development paradigm was used throughout system development, thus 

complete efficiency cannot be expected), a 2048x2048 image could

certainly be processed within a weekend (thus making the system 

practical for many "real world" applications). Use of special-purpose



hardware could be expected to reduce the processing time by at 

least 2 or 3 orders of magnitude, due to the highly parallel nature 

of the algorithms used.

7.1.2 Results: Power Spectra

(Nb. azimuths of trends are given with an accuracy of +/- 5°)

The power spectra are dominated by power a t east to north-easterly  

azimuths, reflecting the solar illumination from the south-south-east. 

The bias is made particularly apparent by the e ffects of the low 

sun angle for this scene, and must be considered when interpreting 

the spectra: trends due to image features are superimposed on the 

solar-illumination trend, and may be either enhanced or suppressed 

by it.

A trend at azimuth 90° is also always apparent, and is clearly due 

to image striping. A weaker trend a t 0° probably reflects digitization 

and sampling effects in the image (possibly enhanced by the interpolat

ion techniques used by the IIS deskew program).

The most significant features located by a brief survey of the power 

spectra were:

(a) The dominant bedding trend, at azimuths between 60° and 80°. This 

trend is apparent throughout the scene, and hence is prominent 

in the power spectrum for the overall scene (figure 7.3(a)) (although 

part of this prominence may be due to enhancement by the solar- 

illumination direction). Separate peaks a t 70° and 80° reflect varia t

ions in bedding orientations in d ifferent parts of the scene —



these variations can be seen more clearly in the spectra for the 

high-resolution (level 3) subscenes. For example, the two peaks 

are equally strong in subscene 311 (figure 7.3(e)), while the 80° 

peak dominates in subscene 312 (figure 7.3(f)) and the 70° trend 

dominates in subscene 321 (figure 7.3(i)). Examination of the original 

images (figure 7.2) reveals that the variation in bedding orientation 

appears to be related to warping of the beds by a granite intrusion, 

with beds on the west side of the granite being warped to an 

azimuth of 70° during its emplacement, while those to the north 

look to be relatively undisturbed at an azimuth of 80°. The relative  

strength of the two bedding peaks in the azimuthal power spectra  

accurately reflects the proportion of warped versus undisturbed 

beds - in subscene 312 the undisturbed beds dominate, while warped 

beds dominate subscene 321, and the two orientations are present 

in roughly equal proportions in subscene 311.

The frequency distribution for these two trends, seen in the full 

power spectra for the high-resolution subscenes, is also revealing. 

The ridges formed by the beds are more closely-spaced at azimuth 

80° than 70° (presumably reflecting the attitude of the beds), 

and the 80° trend tends to have relatively more power in the 

high frequencies (eg. a peak can be seen at wavelengths o f the 

order of *»00-500m. in subscene 311; while the 70° trend shows a 

peak a t roughly 700m. in subscene 321. These peaks are d ifficu lt 

to interpret with confidence, as they are quite weak, but the 

general interpretation of more high-frequency power in the 80° 

trend is confirmed by examination of the spectra for other sub

scenes.)

Other trends related to bedding can be seen in the spectra for
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other subscenes. For example, in subscene 322 (figure 7.3(j)), where 

folding o f the beds by the granite’s emplacement looks to have 

been greatest, the dominant bedding trend is now at 60° and is 

apparent as a fairly broad peak in the azimuthal power spectrum. 

The 80° trend is present, but much reduced. Further south (and 

away from the granite), in subscenes 331 and 332 (figures 7.3(k) 

and (1», the 80° trend is again dominant. In subscene 313, the domin

ant bedding trend is at 65° (although the azimuthal power peak 

at this orientation is also partly due to the coastline a t this 

orientation); however for this subscene the beds are clearly of 

a different nature to those over most of the rest of the image 

(as can be seen from both the original scene, figure 7.2(g), and 

its power spectrum, figure 7.3(g), which is of a significantly d iffe r

ent nature to those fo r most other subscenes).

(b) Faulting and jointing trends can be seen as peaks in the azimuthal 

power spectra at orientations of 10°, 30°, 50°, 120°-130° (correspond

ing to the major Sticklepath Fault trend, which passes through  

the area) and 170°. All these trends a ffect significant portions 

of the image, and hence are clear on the spectrum for the overall 

scene (figure 7.3(a)), as well as those for most of the subscenes. 

However, as with the bedding trends, local variations in the s ign ific 

ance of these fau lt/joint sets can be seen from the power spectra  

for the high-resolution subscenes.

For example, the 50° trend is particularly clear in the spectra  

for subscene 312 (figure 7.3(f)), where it reflects faults or joints 

at an acute angle to the bedding. These features are not immedi

ately apparent in the original image (figure 7.2(f)), but they can 

be seen when you know to look for them: thus the power spectra
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have usefully highlighted an important trend. The regional import

ance of the Sticklepath Fault trend (approximately 120° azimuth) 

can also be inferred form the spectra for this subscene - it has 

a relatively high proportion of power in the low frequencies (this 

can be seen for other subscenes also, but it is clearest for sub- 

scene 312).

On the other hand, in subscenes 313, 314 and 321 the trends at 

170° and 30° look to be more important - they show as clear peaks 

in the azimuthal power spectra, correlating with prominent features 

in the original images. The 10° trend is particularly prominent 

in subscenes 321 and 322.

Thus, from the power spectra we are able to pick up a picture 

of the regional variation of the fau lt/joint patterns. While all 

the trends mentioned above can be seen in most o f the subscenes, 

indicating that they reflect regional processes, local variations 

in intensity can also be detected quite easily. These variations 

are not immediately apparent in the original images, and to detect 

them would usually require manual construction o f rose diagrams, 

which would be a long, laborious process.

(c) In subscenes where most of the image is covered by sea (subscenes 

331 and 332, figures 7.3 (k) and (1)), striping and system noise domin

ate the spectra (since the sea appears featureless to the Landsat 

sensors, the dominant "features" of the scene are due to noise).
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Figure 7.1

Organization of Subscenes within Data Pyramids



Figure 7.2

Cornwall Data Pyramid

(Images hav/e been despiked and built into a 
Gaussian Data Pyramid, as described in chapter 4.)

Figure 7.3

Cornwall Power Spectra and Azimuthal Power Spectra

(Spectra have been generated by the sequence 
described in section U.3, arbitrarily scaled to 
the range [0,255], smoothed using a 5x5 median 
filter and pseudocoloured into 7 colours in the 
sequence blue(low) - purple - red - orange - yellow 
- white(high). Azimuths are given in geographic 
convention (image north to the top of the picture).)
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Figure 7.3(c) Azimuthal Power Spectrum - 212
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Figure 7.3(f) Azimuthal Power Spectrum - 312
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Figure 7.3(g) Azimuthal Power Spectrum - 313
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7.3(H) POWER SPECTRUM 314
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Figure 7.3(h) Azimuthal Power Spectrum - 314
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Figure 7.3(K) Azimuthal Power Spectrum - 331
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Figure 7.z» shows that the lineament analysis system is capable of 

producing reasonable lineament maps for this scene.

The result for the "raw” image (ie. with no directional filtering) shows 

a distinct bias towards north-east or east-north-east trending features, 

reflecting the solar illumination direction (although the features 

are nonetheless quite real, being the dominant bedding direction). 

There is also a noticable bias towards small-scale features (on all 

images, including those with directional filtering) and an apparent 

failure to recognize several broad regional trends. Much of this bias 

has been introduced by design decisions to concentrate on finding 

small-scale features, with information from low-resolution channels 

being used to integrate them with more regional features. This suggests 

that there is a need to incorporate more low-resolution information 

in the final decision-making process - this might be done by using 

a U- or 5-level data pyramid (hence giving two very-low-resolution 

channels) and by changing the relative weighting of the channels 

in the channel-recombination stage (by altering the relaxation compat

ibility coefficients). Also, as might be expected, there is a bias towards 

high-contrast edges.

Despite these biases, all the located features correlate with features 

in the original image, and the lineament map is clearly very useful.

The results for the images which have passed through the complete 

system (including division into azimuthal channels) look very good. 

In particular, the solar-illumination bias has been removed by treating

7.1 .3  R e s u lts :  L in eam en t M aps
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each azimuth channel separately. Image striping, however, has a s ig 

nificant e ffect on the results for azimuth channel 2 (which includes 

the striping direction) and this channel has not been included in 

the displays. This problem is a natural consequence of the failure  

to destripe the image during the preprocessing stage. All the located 

features correlate with features in the original image, and they are 

generally quite continuous, but there is still a tendency to miss broad, 

regional features and the visual appearance of the display could 

probably be improved by a gap-spanning operation. Overall, the system  

produces an accurate, visually appealing and detailed lineament map.

One problem is introduced by the current implementation of the azimuth

al windows: there is a bias towards features orientated near the 

centre of the windows. This is where the Gaussian defining the direct

ional filter (see section U.U) is a t a maximum, thus there is perhaps 

an undue emphasis on this direction. This bias could be removed by 

using broader azimuthal windows (by increasing the standard deviation 

of the Gaussian, giving it a slower drop-off) or, preferably, by using 

Gaussian-tapered rectangular windows (the taper is required to avoid 

ringing). Alternately, the problem could be avoided by using a larger 

number of windows: this would make the lineament analysis system  

even more closely analogous to the human visual system (which uses 

windows only 5° or 10° wide), but would dramatically increase the 

processing cost - only if  special hardware were available could this 

be considered.

Some thresholding problems over areas of sea are also apparent. 

The adaptive threshold still tries to locate features in such areas, 

and is reduced to enhancing noise trends. The problem is only minor, 

and could be avoided by usins information from a geographic inform
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ation system to mask out areas o f sea. Alternately, an intelligent 

controller for the thresholding could be expected to solv/e the problem.

Again, it is worth emphasizing that these problems are only minor, 

and could easily be remedied if  time were available. The colour displays 

of lineaments, with discrimination by lineament scale and azimuth, 

are clearly an extremely valuable aid to lineament analysis, and hence 

to geological mapping.
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Figure 1 M

Cornwall Lineament Examples

(Top picture = lineaments obtained without directional filtering.

Bottom picture = lineaments obtained from full system,
(Red = 22.5° to 57.5°,
Green = 107.5° to 157.5°,
Blue = 157.5° to 22.5°.) )
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7.4(a) Lineaments - Subscene 311
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7.6(b) Lineaments - Subscene 312
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7.4(c) Lineaments - Subscene 313
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7.6(d) Lineaments - Subscene 316
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7.4(e) Lineaments - Subscene 321
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7.4(f) Lineaments - Subscene 322

>
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7.2 New Mexico Scene

This is a Landsat Thematic Mapper band 4 (infra-red) scene. The geology 

and terrain is quite different to that o f Cornwall, and the spatial 

resolution of the Thematic Mapper is substantially higher than that 

of the MSS, thus this scene provides a good test of the lineament 

analysis system under quite different conditions to those where it 

was tested during its initial design.

7.2.1 Processing Sequence

The processing sequence was exactly the same as that described 

for the Cornwall scene (section 7.1.1), with the following exceptions:

(i) the image was not deskewed (this does not a ffe c t the operation 

of the lineament analysis system),

(ii) the azimuthal windows were:

(1) 13° to 50°,

(2) 50° to 85°,

(3) 85° to U8°,

(4) U8° to 13°.

This scene showed less evidence of striping than the Cornwall scene, 

so it was hoped that the failure to destripe it would not be too 

significant.

Figures 7.5 (raw data pyramid), 7.6 (power spectra) and 7.7 (lineament 

map examples) show the input scene and the results from the lineament 

analysis system. Processing time was as for the Cornwall scene.
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7.2.2 Results: Spectral Analysis

Solar illumination e ffects are apparent fo r this scene, giving a broad 

trend between azimuths of 10° and 60° (approximately) which needs 

to be considered during interpretation. A striping trend at 90° is 

also apparent.

Apart from this, the spectra do not show any clear overall trends 

across the whole scene - the image covers a wide range of topo

graphic types, giving a variety of patterns of ridges and drainage 

which show clearly as a variety o f d ifferent power spectra for the 

different subscenes. A number of trends due to the topography (eg. 

ridges and streams oriented at about 10°, 30°, 55° and 170°) can be 

seen in the spectra for the overall scene (figure 7.6(a)) and then 

traced, with variations o f intensity, across many of the high-resolution 

subscenes. Similarly, a number of textural or tonal boundaries (eg. 

those oriented at about 100° and 120°) can be traced across the image, 

with the power spectra giving important clues as to variations in 

their relative importance. As with the analysis of fau lts and joints 

for the Cornwall scane, this would be a long, laborious process by 

manual preparation of rose diagrams, but can be accomplished quite 

easily from examination of the power spectra. Table 7.1 gives such 

an analysis of the trends in the image, as determined from the power 

spectra. These trends presumably re flect the underlying geology.

Other inferences can be drawn from the power spectra. For example, 

the presence of a large number o f trends in subscene 321, all of 

roughly equal power, is consistent with the observation that the 

subscene shows mostly superficial cover. The drainage developed 

on this cover does not show any strong preferred orientation. Thus
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the geology is clearly reflected in the power spectrum. However, 

in general the power spectra do not seem to give a good indication 

of the geology in th is scene. Conventional rose diagrams could not 

be expected to give much more information - the scene simply does 

not show much evidence of the type of features suited to analysis 

by rose diagrams.
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Table 7.1 Lineament Analysis for the New Mexico Scene

Note: S = strong trend, UJ = weak trend (relativ/e to
other trends in that subscene only)
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Figure 7.5

New Mexico Data Pyramid

(Images have been despiked and built into a 
Gaussian Data Pyramid, as described in chapter 6.)

Figure 7.6

New Mexico Power Spectra and Azimuthal Power Spectra

(Specrta have been generated by the sequence 
described in section 6.3, arbitrarily scaled to 
the range [0,255], smoothed using a 5x5 median 
filter and pseudocoloured into 7 colours in the 
sequence blue(low) - purple - red - orange - yellow 
- white(high). Azimuths are given in geographic 
convention (image north to the top of the picture).)
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Figure 7.6(b) Azimuthal Power Spectrum - 211
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Figure 7.6(c) Azimuthal Power Spectrum - ?12
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Figure 7.6(d) Azimuthal Power Spectrum - ??1
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Figure 7.6(g) Azimuthal Power Spectrum - 312
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Figure 7.6(h) Azimuthal Power Spectrum - 313
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Figure 7.6(i) Azimuthal Power Spectrum - 314
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Figure 7.6(j) Azimuthal Power Spectrum - 321
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Figure 7.6(k) Azimuthal Power Spectrum - 322



Figure 7.6(1) Azimuthal Power Spectrum - 323
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Figure 7.6(m) Azimuthal Power Spectrum - 32*»
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7 6<N> POWER SPECTRUM 331
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Figure 7.6(p ) Azimuthal Power Spectrum - 333

333
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Figure 7.6(g) Azimuthal Power Spectrum - 334
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Figure 7.6(r) Azimuthal Power Spectrum - 341
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Figure 7.6(s) Azimuthal Power Spectrum - 342
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Fiaure 7.6ft1 Azimuthal Power Spectrum - 343
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Figure 7.6(u) Azimuthal Power Spectrum - 3UU
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Some noise-cleaning and gap-spanning would improve the visual quality  

of the final lineament maps (see figure 7.7 for examples), but the 

system has in general located features accurately and comprehensively. 

This is especially noteworthy when it is considered that the procesing 

parameters determined for the Cornwall image were used here also, 

despite the obviously different topography and geology. This illustrates 

the robustness of the lineament analysis system.

As in Cornwall, the system has problems locating very broad regional 

trends, and can produce biases due to too-narrow azimuthal windows. 

These defects can be remedied by relatively minor changes to the 

system, as discussed in section 7.1.3. The advantages of using azimuthal 

windows are clear when the biases introduced by solar-illumination 

direction are seen in the examples which have not undergone azimuthal 

processing.

In areas where there are few features, the simple adaptive threshold 

gives poor results (as it did over sea areas of the Cornwall image) 

by trying to locate too many features (this is a natural consequence 

of the percentile method of determining thresholds). A better thresh

olding system would clearly improve the system's performance consider

ably: such a system probably requires implementation of the "intelligent" 

subsystems of the lineament analysis system.

7 .2 .3  R e s u lts :  L in ea m en ts
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Figure 7.7

New Mexico Lineament Map Examples

(Top picture = lineaments obtained without directional filtering. 
Bottom picture = lineaments obtained from full system.

(Red = 13° to 50°
Green = 50° to 85° in (a) and (b)

= 85° to 168° in (c) and (d)
Blue = 168° to 13°) )
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7.7(a) Lineament Maps - 311
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7.7(b) Lineament Maps - 312
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7.7(c) Lineament Maps - 313
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7.7(d) Lineament Maps - 314
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7.3 Saudi Arabia Scene

A Landsat MSS band 7 scene was used to test the system’s ability  

to map sand dunes and detect features through the cover of dunes. 

Again, this scene shows quite different geological and topographic 

conditions to those of Cornwall and New Mexico, thus it was hoped 

that it would test the lineament analysis system's ability to perform 

under varying conditions.

7.3.1 Processing Sequence

The processing sequence was exactly the same as that described 

for the Cornwall scene (section 7.1.1), with the following exceptions:

(1) The image was not deskewed.

(2) The azimuthal windows were:

(1) 43° to 85°,

(2) 95° to 134°,

(3) 134° to 175°, and 

(M 175° to A3°.

(3) As the scene was a very early MSS scene, it showed very bad 

striping noise. In the absence of an operational IIS destripe program, 

I attempted to remedy this by

(a) applying a 7x7 Gaussian smoothing filter a fte r the 3x3 fuzzy- 

despiking filter, and

(b) not including azimuths 85° to 95° in any of the azimuthal windows. 

Despite these operations, striping significantly degraded the results 

that I was able to examine. It is clear that, especially for poor 

data such as this scene, a good destriping program is essential.
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Better smoothing operators (eg. edge-preserving smoothing filters) 

would also aid system performance under such conditions.

(4) Due to hardware problems (mostly related to tape problems) only 

a 1024x1024 scene could be processed in the time available. Even 

then, I was not able to examine the lineament maps produced for 

the individual azimuthal channels: thus I was not able to evaluate 

their ability to reduce striping noise. Given their effectiveness 

at removing sun-angle bias, I expect, however, that they would 

also perform well in th is regard.

Figures 7.8 (raw data pyramid), 7.9 (power spectra) and 7.10 (lineament 

maps) show the input scene and results.
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7.3.2 Results: Spectral Analysis

Solar illumination e ffects are not particularly strong for this scene; 

a consequence of its relatively low latitude and the time of year 

of scene acquisition. The striping trend is very strong in all spectra, 

reflecting the poor data quality, but it is still quite easy to interpret 

other features. Thus, even though the system did not produce good 

lineament maps (although this may reflect hardware problems rather 

than inherent limitations o f the lineament analysis system), it  was 

still possible to obtain useful results from the power spectral analysis. 

The most significant trends were:

(a) Tonal boundaries a t azimuths about 115°-120°, possibly reflecting  

geological units. These are clear as peaks in the azimuthal power 

spectra for the overall scene (211; figures 7.8(a) and 7.9(a)) and 

all subscenes. This trend dominates in the west of the image (sub

scenes 311 and 321); further east it is important, but less clearly 

dominant - this variation is clearly reflected in the power spectra.

The scale of these features is also reflected in the spectra. The 

tonal boundaries can be seen in the original images to be broad, 

regional features - the full power spectra show this trend to 

contain a relatively large proportion of its power in the low fre 

quencies.

(b) A pervasive linear fabric oriented at 140°-145°, probably reflecting  

fau lting or jointing. This fabric can also be seen to vary across 

the whole image - the power spectra highlight its tendency to 

dominate in the southern subscenes. The power spectra also clearly  

show that is has much of its information in the relatively high
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frequencies, reflecting its  periodic and relatively small-scale nature. 

(The periodic nature is  apparent in the clear peak for this azimuth 

at wavelengths of 600-800m. in the full power spectrum for subscene 

311, figure 7.9(b). This gives a clear indication of the scale of 

the features.)

(c) Another trend which possibly re flects faulting or jointing in the 

original image is apparent as peaks at azimuths of 155°-170°, espec

ially in subscene 321 but also inthe rest of the scene. A number 

of other possible fau lt sets - eg. at azimuths about 10° and 75° - 

80° in all subscenes - correlate with small peaks in the power 

spectra. Other small peaks in the power spectra may reflect features 

of only local significance (eg. a t 30°-45° in subscene 311, at 55°- 

60° in subscene 312 and at 100°-110° in subscene 322, and numerous 

others).

(d) Sand dunes show as a peak for azimuths about 25°-35°. Subscene 

322 has the greatest proportion of its area covered by dunes, 

and this is reflected by the importance of these peaks in its  

azimuthal power spectrum. However, since the dunes dominate at 

high frequencies (as is made clear in figure 4.5), it seems likely 

that much of the dune information was removed by the 7x7 Gaussian 

filte r applied during the preprocessing stage. This emphasizes 

the need for a more appropriate destripe function.

Thus, examination of the power spectra allows the variation in relative  

importance of the d ifferent features across the scene to be easily 

monitored. Similarly, the emergence of certain features in only partic

ular parts of the scene is easily observed.



Figure 7.8

S a u d i  Arabia D a t a  Pyramid

(Images have been despiked, smoothed with a 7x7 Gaussian and 
built into a Gaussian Data Pyramid, as described in chapter 4.)

Figure 7.9

Saudi Arabia Power Spectra and Azimuthal Power Spectra

(Spectra have been generated by the sequence 
described in section t.3, arbitrarily scaled to 
the range [0,255], smoothed using a 5x5 median 
filter and pseudocoloured into 7 colours in the 
sequence blue(low) - purple - red - orange - yellow 
- white(high). Azimuths are given in geographic 
convention (image north to the top of the picture).)
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Figure 7.9(a) Azimuthal Power Spectrum - 211
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Figure 7.9(b) Azimuthal Power Spectrum - 311
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Figure 7.9(c) Azimuthal Power Spectrum - 312
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7.3.3 Results: Lineaments

Striping significantly degraded the lineament maps which could be 

examined (figure 7.10). As striping is tightly restricted to the 90° 

azimuth, directional filtering to remove this azimuth could probably 

have avoided much of this problem (note that the azimuthal windows 

given in section 7.3.1 were selected to do this). Although many sign ific

ant features were accurately located (thus the system was not a 

complete failure) the predominance o f striping features located in 

the high frequency channel meant that other features were often  

missed by the adaptive thresholding process. This problem is exacerbat

ed by the lineament analysis system's bias towards small-scale features, 

thus inclusion of more low-frequency information in the final decision

making process would probably reduce the problem (if any problem 

remained after destriping and directional filtering).
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Figure 7.10 Saudi Arabia Lineament Maps 

(a) Subscene 311

(b) Subscene 312
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(c) Subscene 321
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Chapter 8

Conclusions and Recommendations

A lineament is here defined to be ”a line, edge or alignment which 

is long and has a low curvature". A system for the automatic recognit

ion of geological lineaments in remotely sensed imagery has been 

defined (see figure 3.1), built and tested. By analogy to the human 

visual system, the following features are incorporated in the lineament 

analysis system:

(a) information channels in feature scale (implemented using a pyramid 

data structure),

(b) information channels in feature orientation (implemented using 

frequency-domain filtering techniques), and

(c) recognition of features using simple detectors (eg. template matching 

masks) followed by progressive refinement of the state  of knowledge 

about the features (eg. using relaxation labelling techniques).

The system is capable of producing lineament maps and other informat

ion of high quality, under a wide range of conditions and with minimal 

human intervention (thus freeing experienced image interpreters to 

do tasks requiring thought and judgement, rather than the routine 

drawing of lineaments). Tests on image data from Cornwall, New Mexico 

and Saudi Arabia illustrate the high quality of the system’s output. 

Futhermore, the system produces these results in a realistic time
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scale - a design aim to process a 2048x2048 image on a standard mini

computer and attached array-processor within a weekend, was shown 

to be quite achievable. Use of special-purpose hardware could reduce 

this processing time dramatically, due to the extensive use of parallel 

algorithms within the system.

Besides lineament maps, the system produces image power spectra  

using Fourier analysis techniques. These spectra give information 

about the azimuthal and spatial variation of lineaments similar to 

that normally obtained from rose diagrams, but with much less manual 

effort. In addition, they give information on the scale o f features 

(eg. local versus more regional lineaments) and are an invaluable 

aid to the design o f filte rs for image enhancement or the creation 

of azimuthal information channels. Particular features o f the power 

spectra produced by the lineament analysis system include:

(a) rotation of the spectra through 90° compared with conventional 

displays. This makes the power spectrum more closely analogous 

to the rose diagrams that geologists are used to, thus making 

interpretation easier.

(b) use of colour displays and median filtering to make the information 

in the spectrum more easily accessible.

(c) production of the azimuthal power spectrum. A display based on 

radial averages of the power spectrum is defined, and is shown 

to be particularly valuable for the analysis of directional trends 

in an image.

Spectral analysis techniques based on Ualsh and maximum entropy 

methods, and on the Fourier phase spectrum, were examined briefly, 

however there was not time to explore their possibilities in any detail.
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Several novel filte rs have been developed for use in the lineament 

analysis system, or to provide supplementary image enhancement tech

niques. These include:

(a) the fuzzy despiking filter. The "noisiness" of each image pixel 

is defined by comparing its grey-level with the average of the 

surrounding pixels. The "noisiness" is then used to determine the 

pixel's influence on a weighted-averaging process which defines 

the output. This filte r proves to be a useful noise-cleaning operator.

(b) standard directional filters. As well as being fundamental to the 

operation of the lineament analysis system (in that they are used 

to create the azimuthal information channels), frequency-domain 

directional filters, as defined in section 4.4, prove to be very 

useful for image enhancement. For example, they can be used 

to enhance subtle directional trends, or to suppress extraneous 

features such as sand dunes. UJithin the lineament analysis system, 

use of azimuthal information channels suppresses striping noise 

and the bias due to solar illumination effects, as well as allowing 

subtle trends to be detected, by reducing the problem from one 

of "detect all lineaments" to one of "detect lineaments of a partic

ular orientation".

(c) the azimuth-whitening filter. This is a special case of directional 

filtering, where the filter is designed to equalize the power for 

each azimuth of the azimuthal power spectrum. This filter proves 

to be an extremely useful image enhancement tool, both for enhanc

ing subtle trends and for reducing the solar illumination bias.

In order to select feature detectors for the system, over 60 distinct
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edge- and line-detectors were subjected to an extensive series of 

tests, designed to measure their freedom from bias, linearity o f re

sponse, noise immunity, ability to discriminate between closely-spaced  

features, cost and overall suitability for lineament-recognition. This 

testing was far more detailed (in both number o f detectors tested, 

and the range of te sts applied) than any available in the published 

literature. One novel detector (the "autocorrelation operator"; appendix 

H) was included in th is testing. This operator was found to be the 

only one to respond equally well to both lines and edges - all other 

detectors are biased towards one or the other. The autocorrelation  

operator was also designed to respond to some alignments. Since 

lineaments are defined to include lines, edges and alignments, a detect

or which responds to all three is clearly useful. Despite this, simpler 

detectors based on template-matching were found to o ffer sufficient 

advantages (in terms of noise rejection, computation time and visual 

quality of their output) to lead to their being used as the standard  

operators for the lineament analysis system. A simple algorithm to 

combine the output of edge- and line-detectors into a single feature  

map has therefore been developed.

A similar, though less extensive, series of tests was used to select 

parameters and algorithms for relaxation labelling and thresholding 

operations. On the basis of this testing, the relaxation algorithm  

of Schachter et al (1977) is used to reduce the noise in intermediate 

feature maps, before a final decision is made using adaptive threshold

ing and non-maximum suppression techniques.

Relaxation labelling (based on the algorithm of Zucker et al, 1977) 

is also used to recombine the information channels in feature scale. 

This allows inconsistencies between the channels to be resolved, and
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features to be classified as either "local", "intermediate" or "regional" 

in scale. This represents a novel, and very promising, application 

of relaxation. A fter this recombination step, the lineaments are dis

played on a colour monitor, with features o f different orientations 

assigned to different colours, and features of different scales dis

tinguished using intensity. This method of display creates highly e ffe ct

ive lineament maps.

The lineament analysis system is already capable of producing high- 

quality output, however during the course of this project it  has 

become clear that several things could be done to improve its perform

ance. Section 8.1 describes the proposed improvements. The scope 

for refinement is another feature o f the system - it produces good 

results although there has not been time for extensive "fine-tuning" 

of all the modules. A fte r such fine-tuning, the results produced should 

rival those produced by human interpreters. Speculations on the 

wider implications of the lineament analysis system, both as a part 

of a larger system for geological image analysis (section 8.2) and 

as a paradigm for geological reasoning as a process of knowledge 

refinement (section 8.3) are also briefly discussed.
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8.1 Proposed Refinements to the Lineament Analysis System

The fallowing refinements to the lineament analysis system might 

be expected to improve its performance to the stage  where it could 

be capable of producing high-quality lineament maps on a routine 

basis:

(1) For poor quality data, a good destriping function in the preprocess

ing stage  is essential. (It could be argued, however, that such 

a function should be part of the standard processing for all images, 

and hence is not properly a part of the lineament analysis system.)

(2) Noise removal using edge-preserving smoothing filte rs would be 

a useful addition to the preprocessing stage. Many appropriate 

filters have been described, and their applicability to the lineament- 

enhancement function would need to be tested.

(3) Removal of the bias introduced by the solar illumination direction 

would be a useful image-processing technique. The azimuth-whitening 

filter does something to remove this bias, but more theory/modelling 

for the problem would be useful.

(A) The information channels in feature orientation need to be widened 

to include a greater range of azimuths (hence reducing the bias 

towards the centres of the azimuthal windows). This could be done 

by increasing the standard deviation of the Gaussian function 

defining the window or, preferably, by using a Gaussian-tapered 

rectangular window. Alternately, a large number of information 

channels could be used (thus strengthening the similarity to the 

human visual system), but this would dramatically increase the
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processing cost, and would not be possible without computers 

with a much higher degree of parallelism than currently available.

(5) The inclusion of additional information channels in feature scale, 

to contain low-resolution information, would allow greater success 

in detecting broad regional features. This could be done by using 

a 4- or 5-level data pyramid.

(6) A primitive feature detector to recognize alignments is required. 

This might be based on an improved version of the detector describ

ed in appendix H.

(7) The detector-combination method described in section 5.2 appears 

to function adequately, but an improved algorithm could perhaps 

be found.

(8) The relaxation-labelling algorithm and compatibility coefficients 

function adequately, but could probably be optimized with greater 

testing or by the development of a more explicit model for feature  

interactions.

(9) Recombination of the resolution channels to produce the final 

lineament maps could use some more thought, especially to optimize 

the compatibility coefficients and to reduce the current bias 

towards local-scale  features. (Use of a 4- or 5-level data pyramid 

addresses much the same problem, and these two refinements would 

best be considered together.) As part of this work, more consider

ation could be given to the characterization of lineaments -  the 

current system characterizes them as ’’local”, "intermediate” or 

"regional”: greater use of the information available from the d if
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ferent channels and from the primitive detectors might allow a 

better description of each feature to be obtained (and the variation  

of features along their length to be monitored). Work by Beattie 

(1984) and Burns et al (1986) illu strates the types of description 

which might be obtained.

(10) Gap-spanning and thinning operations might improve the visual 

quality of the lineament maps (although they would not lead to 

and more "real" information about lineaments being produced).

(11) An operator to remove very short lineaments from the final maps 

would also enhance their visual appearance, although it would 

often lead to the rejection of valid features. It  might be a desir

able option within the system, but should only be used a fter a 

gap-spanning operation has been applied (otherwise long but discon

tinuous features might be removed).

(12) Implementation of the "intelligent" controller is highly desirable, 

especially to automate the selection of azimuthal windows and 

to control the final thresholding process. It  would also be useful 

as an interface to other image-analysis systems. (Implementation 

of such a controller is obviously a non-trivial problem.)

(13) The system should be extended to operate on multiple-band imagery. 

This might be achieved by expanding the concept of information 

channels. (However, the great additional processing cost for such 

an extension may not justify  the results obtained - experience 

suggests that most lineaments can be recognized on a single

band, or single-principal-component, image.)
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(14) The system was developed using a '’rapid prototyping” software  

engineering paradigm. There are many "loose ends" in the implement

ation of the software and data structure which could be tightened 

up to improve efficiency - the underlying structure o f the system  

would remain unaltered, however. Likewise, implementation o f the 

system on more appropriate hardware would dramatically decrease 

the time required to process an image. (At least 2 to 3 orders 

of magnitude of improvement of the processing time could be expect

ed from these changes.)

All the above changes represent refinements rather than fundamental 

modifications to the structure defined in chapter 3. This structure  

seems to be extremely versatile, and well suited to the lineament- 

detection problem.
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8.2 The Lineament Analysis System as part o f a Geological Image 

Interpretation System

Speculation about more adv/anced processors using the lineament anal

ysis system is possible. Figure 8.1 illustrates a possible configuration  

for a Geological Image Interpretation System, based on concepts des

cribed by Nagao and Matsuyama (1980) and Goldberg et al (1985). It 

can be seen that the lineament analysis system is one of several 

feature-extraction subsystems (other systems might perform multi

band spectral classification tasks, or seek to locate man-made features 

etc.). A blackboard is used to pass information between the subsystems, 

with a semantic interpreter providing overall control of the system 

and a geographic data base providing the image data etc. for input 

to the subsystems.

UJhen a task description is input to the system, the semantic interpreter 

takes it from the blackboard and breaks it into subtasks appropriate 

to (a) the feature-extraction subsystems available, and (b) the type 

of information required from the final interpretation. These subtasks 

are placed to the blackboard.

The controller of each subsystem watches the blackboard until it 

finds a task it can perform. It takes the task from the blackboard 

and requests data on which to perform this task. The geographic 

information system acts  like any other subsystem, and provides this 

data when it finds the request. When the data is available, the sub

system controller feeds it into the algorithmic processors and controls 

their processing. Eventually a feature map is produced and put back

to the blackboard.
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Figure 8.1 A Possible Configuration for a Geological Image 
Interpretation System

RESULTING INTERPRETATION

1

Semantic
Interpreter

&
Geological
Knowledge
Base

TASK DESCRIPTIONT
SYSTEM
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Image Data Base 

&

Geographic
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©

Lineament Analysis Subsystem

Intelligent Controller & 
Image Processing Knowledge Base

□ titori ig & I^ontr ol In ?o.

Algorithmic Processors 

(Stages 1-10 of figure 3.1)

Other
Feature-extraction
Subsystems

&
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(7) The semantic interpreter breaks the initial task into appropriate subtasks 
for the feature-extraction subsystems. As their results become available 
on the blackboard, it works on its  interpretation and requests additional 
processing until it has sufficient information to make its final 
interpretation.

(? )  The geographic information system provides data as requested by other 
subsystems, and stores the maps produced by them for future reference.

©  The subsystem controller selects appropriate tasks from the blackboard 
and requests data (and appropriate preprocessing by other subsystems). 
When the data is available, it controls the flow through the algorithmic 
processors and puts its  final feature map to the blackboard.
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This feature map may be stored to the geographic information system  

for future reference, used by the other feature-extraction subsystems 

(eg. to constrain a contextual classifier), or used by the semantic 

interpreter. As such feature maps become available, the s e m a n t ic  

interpreter integrates them into its own interpretation. It may then 

request additional information or processing from the other subsystems, 

via the blackboard, or when the interpretation is adequate to fu lfil 

the requirements of the original task, it outputs the results and 

halts all processing until another task is requested.

8.3 Geological Reasoning as a Process of Refinement of Knowledge

By producing accurate, reproducible lineament maps, the lineament 

analysis system gives results which are o f direct value for geological 

mapping. The system is also of indirect value as it gives a possible 

paradigm for geological reasoning.

The lineament analysis system and higher-level vision functions (dis

cussed in section 2.2.7) operate by a process of knowledge refinement: 

information is extracted from the raw image and progressively refined  

until it is in a useful format. This refinement includes the following 

steps:

(1) Removal of noise (ie. the raw image is refined using standard image- 

processing techniques).

(2) Division into information channels, each of which is optimized 

for a particular problem.
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(3) Processing of each channel to extract its  information (ie. refining 

the information in each channel until only that about the particular 

primitive feature of interest remains).

(£*) Re-integration of the primitive features and addition of knowledge 

about how they interact, to give a segmentation (ie. information 

from all the primitive feature maps is refined into a single segment

ation).

(5) Addition of knowledge about more-general concepts to interpret 

the significance o f the regions of the segmentation.

Table 8.1 illustrates the way this paradigm guides the lineament analysis 

system, the geological image interpretation system (section 8.2) and 

general geological mapping.
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Table 8.1 The Paradigm of Knowledge Refinement

Step Lineament
Analysis
System

Geological
Image
Interpretation
System

General
Geological
Mapping

INPUT DATA remotely-sensec 
image

remotely-sensed 
images and 
geographic 
data base

field mapping, 
images,
geophysical data 
etc.

1. Noise 
removal

pre-processing
stages

pre-processing 
operators and 
image-enhancement 
operators

extraction of bad 
data points etc.

2. Division 
into
channels

azimuth and
spatial-
frequency

lineament 
extractors, 
spectral 
classifiers etc.

production of outcrop 
maps, geophysical I
maps, maps of |
structural features etc.

3. Information 
extraction  
within 
channels

primitive
extraction,
relaxation,
thresholding

produce lineament 
maps, spectral 
classification  
maps etc.

produce geophysical 
interpretations, 
maps of structural 
domains etc.

U. Segmen
tation

compatibility 
coefficients for 
channel recomb
ination embody

eg. knowledge that 
lineaments can 
define boundaries 
between rock

knowledge about units allows the
interactions 
between line
aments o f d if
ferent scales, 
and are used tolation 
segment the image 
into regions of 
"lineament” and 
"no-lineament" 
ie. the final 
lineament map

lineament map to 
interact and 
produce a 
refined segment-

eg. geophysical 
models and ideas 
about structure  
are integrated with 
the outcrop map to 
produce a map of 
surface geology

5. Semantic 
Interpretation

lineaments may 
be interpreted 
as faults, joints 
bedding contacts 
etc.
- knowledge 
of spectral 
properties of 
rocks allows 
rock-type inter
pretations to 
be made

the above maps, 
models etc. are 
combined with general 
concepts about 
deformation of rocks 
etc. to produce a

o ?  suV^utTbvce. 
geology. This may 
interact with an 
exploration model to 
produce exploration 
targets etc.
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No Power

A girl of, perhaps, six years stands alone in the playground. 

She has a rubber ball. It  is younger than her, but still old 

by the standards of a ball: the once-vivid colours have faded 

and it is barely capable of bouncing.

But it still bounces a little,

and this is the source of her absorption: the yellow and red globe 

leaves her hand then, in sudden defiance of gravity, returns to it; 

over and over, in a cycle that holds her like the pattern of the sunrise.

The tank commander looks down on her, and smiles. He throws 

a piece of gum, or a bar of chocolate, or whatever it is 

that is le ft of his last parcel from home. He smiles again, 

for he does not understand that this is the nature of subversion: 

each time the ball bounces the earth reverberates, just a little.
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Appendix A

Definition of a Lineament

O’Leary et al (1976) define a lineament as

"a mappable, simple or composite linear feature of a surface, whose 

parts are aligned in a rectilinear or slightly curvilinear relationship 

and which d iffers distinctly from the patterns of adjacent features 

and presumably re flects a subsurface phenomenon."

This definition, although intelligible to a geologist, is not in a form 

which can be easily translated into a computer implementation. Clearly  

such a translation is required before automatic lineament recognition 

can be achieved.

Burns et al (1976), while discussing the repeatability of lineaments, 

give a more suitable starting point:

"a continuous linear object, formed by a finite set of pixels 

characterized by themes of hue and texture."

This definition is consistent with the definition of O’Leary et al, 

but it is still rather vague. It needs refinement before it can be 

converted to a computer program. Also, lineaments are required to 

be continuous features, although many geologists would interpolate 

lineaments across discontinuities (such as may be caused by variations 

in the thickness of superficial cover, or vegetation etc.). Moore and 

Waltz (1983) note that nearly all lineaments are actually discontinuous:
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the eye merely merges closely spaced linear segments to give an 

appearance of continuity. In the extreme case, lineaments may be 

defined by a number of objects (eg. trees) lying in a stra ight line.

Another starting point is given by Ehrich (1977):

"lines or edges which are long [and] have a low curvature".

As Ehrich’s aim was to achieve machine recognition of lineaments, 

this definition can "easily" be implemented on a computer, once lines 

and edges are defined more formally, and constraints on length and 

curvature are given. Most features recognized by geologists are lines 

or edges, and along-lineament variability is allowed for (a lineament 

may change from line to edge along its length, or it may reverse 

its polarity). The problem of interpolating across discontinuities is 

diminished by allowing fo r such variability; however, recognition of 

alignments of objects is still not possible.

Building from these starting points, the following definition is suggested:

"A lineament is a line, edge or alignment which is long and has 

a low curvature."

Definitions for "lines", "edges" and "alignments" are given below, as 

are interpretations of the qualifiers "long" and "low curvature".

A.1 Definition of a Line

Paton (1979) gives a definition for a line which is unambiguous and 

amenable to machine interpretation:
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"Consider a disk of radius R, centred on point (u,v) and partitioned  

by 2 lines of orietation B, each at a distance w/2 from (u,v), into 

regions A, B and C, as shown in figure A.1. The disk contains a 

line segment of orientation B and width w passing through (u,v) 

if

(a) the grey-level is approximately constant in each region 

A, B, C (taking values of a, b and c), 

and (b) b > a and b > c, 

or (c) b < a  and b < c ."

The line is characterized by ite orientation, width and magnitude 

(defined as b-(a+c)/2).

A.2 Definition of an Edge

The definition of an edge has been widely discussed (eg. Davis, 1975; 

Haralick, 1980; Peli and Malah, 1982; Pratt, 1977). Haralick (1980) gives 

a definition that encompasses most of the definitions of other authors, 

and is well suited to our purposes:

"The d igital image g(x,y) is divided into connected regions that 

can be approximated by sloped planes: 

g(x.y) = ax + by + c

%
Then the slope of each region has gradient (a2+bz) and direction 

arctan(b/a).

Edges are located a t points having significantly different planes 

on either side of them."
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This definition covers step edges (where there is a significant change 

in c), roof edges and ramp edges (where either the gradient magnitude 

or orientation changes), as defined by Davis or Peli and Malah.

The definition does not cover texture edges however: areas can have 

the same average grey-level and grey-level gradient, and yet still 

be seen to be quite different, due to variations in texture. It  is 

not easy to define texture (eg. see Hawkins, 1970; Lipkin, 1970; 

Rosenfeld and Kak, 1976; Pratt, 1977; Wechler, 1980; IMagao and Matsuyama, 

1980; Haralick, 1983), hence it is hard to give a precise definition 

for a texture edge. For the purpose of this study, a texture edge 

is considered to be a pronounced change in textural characteristics, 

as defined by spatial frequency content or statistica l properties 

of the grey-levels within a subregion of the image.

A.3 Definition of an Alignment

In line with the discussions above, an alignment is defined as:

"a number of unconnected features of similar character, and lying 

in a linear relationship to each other”.

Alignments may include such features as lines of trees or topographic

features.
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A.4 Qualifying the Length and Curvature

A feature may be considered long when its length is greater than 

the size of the primitive operator used for lineament detection.

Similarly, it may be considered to have a low curvature when its  

direction does not change by more than some threshold within the 

area covered by the primitive operator.

Y

Figure A.1 Definition of a Line
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Appendix B

Despiking Filters

Four noise-cleaning filte rs were tested for the pre-processing stage  

of the lineament analysis system (chapter U). The convolution and 

median filte rs have been discussed in great detail elsewhere, however 

the two despiking filte rs require some further comment.

The conventional despiking filte r follows the algorithm of Rosenfeld 

and Kak (1976):

FOR each pixel (with grey-level F)

(1) calculate MEAN = mean grey-level of the NxN neighbourhood

about, but excluding, this pixel

(2) calculate DIFF = F - MEAN

(3) IF the absolute value of DIFF is greater than some user-

specified threshold (THRESH)

THEN output MEAN 

ELSE output F 

ENDIF

END.

The "fuzzy” despiking filte r uses a more novel algorithm, based on 

a modification of the above:

FOR each pixel (with grey-level F)

(1) calculate MEAN, as above

(2) calculate DIFF = F - MEAN



(3) calculate NOISINESS = (|DIFFl - THRESH/2) /  THRESH 

IF NOISINESS is greater than 1, THEN NOISINESS = 1 

IF NOISINESS is less than 0, THEN NOISINESS = 0 

(*.) calculate output grey level G = F - (DIFF x NOISINESS)

END.
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It  can be seen that the output is the weighted mean of the central 

grey-level and the neighbourhood mean. The weighting depends on 

the difference between the central grey-level and the neighbourhood 

mean:

(a) if the difference is less than THRESH/2 (where THRESH is a user- 

specified threshold), then the central grey-level is considered 

to be "clean" (ie. it has a noisiness of 0) and is unmodified for 

the output.

(b) if the difference is greater than (3xTHRESH/2), then the central 

grey-level is considered to be entirely corrupted by noise (its 

noisiness is set to 1), and the neighbourhood mean is output.

(c) in intermediate cases, the central grey-level is assumed to be 

a mixture of signal and noise, and is given a weight according 

to the estimated proportion of noise.

This filte r is thus an extension of the convolution operator (which 

makes no estimate of "noisiness", but uses a standard weighting function 

everywhere) and the conventional despiking filter (which makes a 

very crude estimate of "noisiness", with points being assumed to be 

either entirely signal or entirely noise, with no intermediate possibilities 

- see figure B.1). The current version of the fuzzy despiking filter  

uses a linear "noisiness" function, ie. the proportion of noise is estim

ated to be proportional to the difference between the central and 

neighbourhood grey-levels. More sophisticated functions (eg. an S-
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function, from the standard theory of fuzzy logic) could be used.
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(a) Convolution Operator (assumes all points are equally noisy)

1.0 T

"Noisiness”

0.0
DIFF

(b) Despiking Filter (assumes points are either pure noise or pure signal)

1.0 T ------------------------------

"Noisiness"

0.0 ------------------------------ ------------------------------
Thresh

DIFF

(c) Fuzzy Despiking Filter (attempts to estimate a more reasonable "noisiness")

Figure B.1

"Noisiness" Functions for Despiking Filters
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Appendix C

Data Pyramids

Figure 7.1 shows the organization of 512x512 subscenes within the 

data pyramid for a 2068x2048 image. The three types of data pyramid 

discussed in chapter 4 are generated using the following algorithms:

(1) Quadtree Data Pyramid

(a) Divide the 2048x2048 image into 16 512x512 subscenes. These subscenes 

are designated 311 through 344, as shown in figure 7.1, and form 

the high-resolution channel of the pyramid.

(b) Filter the 2048x2048 image with a 2x2 equally-weighted convolution 

operator, and sample every second pixel of every second line 

of the result to give a 1024x1024 image. Divide this into four sub

scenes (211, 212, 221, 222) to give the intermediate-resolution 

channel. (The sub-sampling to give a 1024x1024 image is justified  

because the filtering removes much of the high-frequency detail, 

hence there is no need to maintain the high-resolution sampling.)

(c) Filter the 1024x1024 image with a 2x2 equally-weighted convolution 

operator and sample every second pixel of every second line of 

the result to give a 512x512 image. This is subscene 111, the low- 

resolution channel of the pyramid.
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(2) Gaussian Data Pyramid

The algorithm is as for the Quadtree Data Pyramid, except that a 

7x7 Gaussian operator replaces the 2x2 equally-weighted operator 

of steps (b) and (c). The weights used for the Gaussian operator are:

0.000436 0.001954 0.004806 0.006488 0.004806 0.001954 0.000436

0.001954 0.008758 0.021541 0.029077 0.021541 0.008758 0.001954

0.004806 0.021541 0.052983 0.071519 0.052983 0.021541 0.004806

0.006488 0.029077 0.071519 0.096541 0.071519 0.029077 0.006488

0.004806 0.021541 0.052983 0.071519 0.052983 0.021541 0.004806

0.001954 0.008758 0.021541 0.029077 0.021541 0.008758 0.001954

0.000436 0.001954 0.004806 0.006488 0.004806 0.001954 0.000436

(3) D ifference-of-Gaussian (d.o.g.) Data Pyramid

(a) A Gaussian Data Pyramid is generated, as above.

(b) Level 111 of the d.o.g. pyramid as the same as 111 of the Gaussian 

Pyramid.

(c) The grey-level of each pixel of the low-resolution channel is 

subtracted from the matching pixel of the intermediate channel 

of the Gaussian Pyramid (nb. due to the sub-sampling in generating 

the Gaussian Pyramid, each low-resolution pixel corresponds to 

four intermediate-resolution pixels). This subtraction removes 

the low-frequency information, leaving the intermediate frequencies 

only, which are stored as subscenes 211, 212, 221 and 222.

(d) Each pixel of the intermediate channel of the Gaussian Pyramid

is subtracted from the matching pixel of the high-resolution channel.

This removes the intermediate- and low-frequency information,

leaving the high frequencies only, which are stored as subscenes 

311 to 344.
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Appendix D

Power Spectral Analysis Theory

The Fourier power spectrum of an image may be defined as the re la t

ionship between spatial frequency and power density (Sheriff, 1973), 

ie. if the image were decomposed into a series of sinusoidal functions, 

the power spectrum tells us how much power would be contained in 

each frequency, Thus the power spectrum is a way of presenting 

the information contained in the image in a different format, and 

hence allowing certain aspects of the image to be seen more easily. 

Appendix E shows why the power spectrum may be of use to lineament 

analysis. The theory behind power spectral analysis is discussed in 

detail by Bracewell (1965), Bath (1974) and Robinson and Treitel (1980), 

among many others; I will give a brief outline only.

D.1 Data Models

Three types of process which can generate a set o f data are recognized:

(1) Moving average (MA) o f order m -

y(t) = bnx(t) + h x (t-1 ) + b_x(t-2) + ... + b x(t-m) 
u 1 2 m

where y(t) = output a t time t 

x(t) = input at time t 

a,b = constants

(The output depends on the current and m previous inputs.)
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(2) Autoregressive (AR) of order n -

y(t) = aQx(t) - a^y(t-1) - a2y(t-2) - ... - any(t-n)

(The output depends on the current input and n previous outputs.)

(3) Autoregressive-Moving Average (ARMA) of order m,n -

y(t) = bgX(t) + b^xCt-1) ... + bmx(t-m) - a^Ct-1) - ... - any(t-n)

(The output depends on both previous outputs and inputs.)

For simplicity, these definitions are given in terms of one-dimensional 

time series: they can clearly be extended to cover two-dimensional 

spatial data, such as an image.

The best method of estimating the power spectrum depends on which 

of these models fits  the data: MA processes should be analyzed using 

Fourier techniques (described below); AR processes using maximum 

entropy techniques (MEM - see below); while ARMA processes require 

more complicated analysis techniques (eg. see Robinson and Treitel, 

1980). Intuitively, an MA model would seem appropriate for most remotely- 

sensed image data (at least to a good approximation) - the sensor 

output is a function of the weighted average of the input light inten

sities over some area, and is largely independent of the output prod

uced for neighbouring points (cross-ta lk  between light pipes and 

electronic components may complicate this, but may be considered 

negligable for our purposes). Thus Fourier analysis techniques look 

to be appropriate for image data. Fortunately, Fourier techniques 

are also far less computation-intensive than MEM techniques, or tech

niques for the analysis of ARMA data: for this reason alone, Fourier 

techniques would normally be preferred unless there is a strong reason 

to suggest that more expensive methods are required.
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D.2 Sampling Theory

Each image represents a discrete sampling of a continuous scene. 

The e ffect of sampling must therefore be considered. Bath (1974) 

gives the following result:

For a data set of length T and sampling interval t, the minimum 

frequency which can be resolved is 1/T and the maximum frequency 

(known as the Nyquist frequency) is 1/(2t). Only frequencies separ

ated by 1/T (called the Nyquist co-interval) can be resolved.

Again, the theory can be easily extended to two dimensions.

The Nyquist frequency is of particular importance: if a scene prior 

to sampling contained power in frequencies higher than this, this 

power will be "folded" back into the lower frequencies and contaminate 

the power spectrum. This phenomenon is known as aliasing.

D.3 The Fourier Transform

The Fourier transform of a continuous function, f(x,y), may be defined

as:

where u and v are the frequencies in the x and y directions. The 

inverse transform may be defined as:

[D.1]
cO



For sampled functions, the integrations are converted to summations 

in defining the transforms. It  can be shown that the Fourier transform  

exists for all physically realizable functions, f(x,y). The Fourier tran s

form can be calculated by a fa st  algorithm (the FFT).

The expression e 2^ i(xu+yv) cauecj the kernel of the transform. 

Due to the orthogonality of the trigonometric functions, it serves 

to "pick out" the frequency, (u,v), of interest. The transform then 

integrates over all x and y to calculate the amplitude and phase 

of this frequency. Thus the transform serves as a means of decomposing 

f(x,y) into a series of sinusoidal terms, and hence calculating the 

amplitude o f each term. Substitution of kernels based on other orthog

onal functions (eg. Walsh functions) allows decomposition in terms 

of these functions, thus giving a link between the different types 

of transform.

The power spectral density at frequency (u,v) is given by:

P(u,v) = [F(u,v)]z

Chapter U discusses practical aspects of the calculation of the Fourier 

power spectra in more detail.

Power spectra may also be calculated using techniques based on the 

Walsh transform (Flarmuth, 1972; Beauchamp, 1975; Maquisi, 1981). Although 

such spectra have some theoretical and computational advantages 

over Fourier spectra (largely because Walsh functions are more easily 

able to represent rapidly-varying data, and are very amenable to 

binary arithmetic), routines for their generation did not exist on 

the FPS array processor used during this project. Fourier spectra  

proved to give entirely sa tisfactory  results, hence the e ffo rt to 

develop Walsh transform routines could not be justified.
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D.4 MEM Analysis

Maximum entropy techniques are most appropriate for the analysis 

of AR processes. They are discussed in detail by LaCoss (1971), Robinson 

and Treitel (1980), Kanasewich (1981) and Chen (1982). I considered 

testing such techniques on image data, to give a comparison against 

the results from Fourier analysis, and hence to test the assumption 

that remotely-sensed images are generated by an MA process. However, 

MEM analysis is very computation-intensive and, as Fourier analysis 

gives reasonable results, could not be justified in routine operation 

of the lineament analysis system. Thus I did not perform any tests 

using MEM analysis.

D.5 Window Functions

The Fourier transform is defined (equation D.1) for a data set extending 

to infinity in all directions. In practice, we deal with a limited data 

set, thus we must consider that we are looking a t a window from 

a larger data set. As calculation of the Fourier transform assumes 

that all data values outside the window are zero, this is equivalent 

to multiplying the original data set by a function:

W(x,V) = 1 for D < ix l< x max, 0< |y| < y max 

= 0 elsewhere

(The rectangular or boxcar function.)

Multiplying the data by this window function is equivalent to convolv

ing its spectrum with the Fourier transform of the window (see 

Bracewell, 1965, for proof of this), leading to a distortion of the



spectrum. This distortion can be minimized by choosing an appropriate  

window function.

The ideal window function has a narrow central lobe in the frequency 

domain (as a broad lobe smooths the spectrum when it  is convolved 

with it, decreasing the spectral resolution) and small side-lobes. Negat

ive side-lobes lead to spectral leakage (ie. spurious spectral lines 

near large peaks) and are therefore particularly undesirable. The 

rectangular function transforms to a sine function, which has large  

negative side-lobes, and hence is not a particularly good window 

function.

Selection of a window function is largely qualitative, and a large  

number of possible functions have been described. Five o f the more 

common are:

(1) Hanning

UJ(x,y) = 1A . [1 + cos(tf x/x )] . [1 + c o s ^ y /y  )]
max max

for 0< lx|< x , 0<|y|< y
max 1 *max

= 0 elsewhere

(2) Cosine-tapered Rectangular

Ul(x,y) = 1 for 0 x x ^  , 0 y y ^  

'  * • M * CQS[1,' (* 'Xcut)/(xmax-Xcut)l 1

* *  • M * COS[* (V-Vcut)/(' W vcut)1 ]

for x 5lxJ< 
cut

and 0 <|y|< y

x
max

cut

for 0 <|x)< x .
1 cut

and y ^|y|< yc u t 1 * max



= % • [1 + cos[r (x-xcut)/(Xmax-xcut)I] 

‘ [1 * C 0 5 lv  (y-ycut)/(W ycut)]1
for x 4 lx| AX  cut max

and y a  |vl4 y 
c u t 11 max

= 0 elsewhere

(3) Parzen

W(x,y) - n - ( lx ' /x max>3] • [1 '  ( ly ,/y max)3)
for 0< lx |< xmax

and 0 4 [yt A y' max

= 0 elsewhere

(*») Gaussian (or exponential)

UJ(x,y) = exp[-a(xz+yz)l for 0 4  lx| <  x , 0 4 | y | < y
ITlaX IllaX

= 0 elsewhere

(5) Gaussian-tapered Rectangular

= 1 for 0 < (x( a  x
cut • 0 < l y , < y cut

■ e*P l-a (x -*cut)z] for X <  (x| < X 
cut max • 0< ly ' < y Cut

* exP[-a(y-ycut)2] for 0 < | x ' < x cut • ycut Vmax

* exP[-a(x-xcut)2 ♦ -a(y-y c u / 1
for x 4 fx|<X cut 1 max ’ Vcut Vmax

= 0 elsewhere

All these windows were tested during this study. It is worth noting 

that as the size of the data set increases, the width of the central 

lobe of these windows decreases (see < Bracewell, .1965, for detailed
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theory) - 

for longer

this helps explain the higher spectral resolution possible 

data sets.



Appendix E

Power Spectrum of a Directional Feature

Consider an image containing only a stra igh t line of length 2L, magnitude 

1 and orientation B (measured with respect to the Y-axis, or north,
\\A^Tv \A YVc \^ j  \A O ,troW

with positive clockwisej^and centred on the origin (see figure E.1).

Let s = tan(B) = x '/y '

Then the image can be considered a function of the form 

f(x,y) = 1 for y=x/s and x < L.cos(B)

= 0 otherwise

From the results given by Fuller (1967), the Fourier transform of this 

image is

F(u,v) = k.sinc[21TL(su+v)]

where k is a constant dependent on L and 1. (Its exact magnitude 

is irrelevant here.)

It  can be seen that the power spectrum, P(u,v) = F(u,v)z, has a maximum 

along the line su+v=0, ie. a line passing through the origin and of 

orientation arc cot(s) (= 13 +V/2). (See figure E.2.)

Therefore the line in the space domain is represented by a power 

maximum along a line passing through the origin and of orientation 

perpendicular to the original line.

As L tends to infinity, the magnitude of k increases and the sine



-  2U8 -

Figure E.1

Co-ordinates for a Directional Feature

Figure E .2

Co-ordinates for the Power Spectrum of a Directional Feature
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function tends to an impulse, ie. the power of the original line becomes 

concentrated in line of orientation arccot(B) and magnitude k. Thus 

the frequency domain representation of lines in the space domain 

becomes more concentrated (and hence more notable) as the lines 

increase their length.

It is also worth noting the e ffect of finite line width, UJ. In this 

case, the Fourier transform becomes the product of two sine functions: 

F(u,v) = k ? . sinc[2rL(su+v)] . s in c i^  W(u-sv)].

The power still has a maximum trend along su+v=Q, but its amplitude 

along its length is modified by the second sine function. When LU is 

very much less than the image size (as is the case for all lineaments, 

by definition), this modification is negligable and can be ignored, 

for the sake of simplicity.

Now consider a translation of the line so that it is centred on (a,b). 

The Fourier transform becomes:

F(u,v) = exp[2iri(au+bv)] • k . sinc[2 ̂ Usu+v)]

(from the sh ift theorem for the Fourier transform; see Bracewell, 

1965). Note the P(u,v) is unchanged by the translation, ie. the power 

spectrum is still concentrated along a line through the origin, and 

perpendicular to the initial line - only the phase spectrum is altered  

by the translation. It is this invariance of the power spectrum under 

translation (together with the linearity of the Fourier transform, 

discussed below) which gives it  its utility as a substitute for the 

rose diagram.

Now consider two lines, g1(x,y) and g2(x,y), of orientation B, length 

L and centred on (a1,b1) and (a2,b2). The image becomes:

f(x,y) = g1(x,y) + g2(x,y)
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and its transform is

F(u,v) = (k1.exp[2tri(a1.u+b1.v/)] + k2.exp[2vi(a2.u+b2.v)] ) . sinc[2*L(su+v)] 

where k1 and k2 are constants dependent on L, 11 and 12.

Thus it can be seen that P(u,v) is still concentrated along a line 

passing through the frequency origin and of orientation perpendicular 

to the lines in the space domain, but its magnitude is now proportional 

to (k1+k2)z, ie. its magnitude is dependent on the length and magnitude

Due to the linearity of the Fourier transform, this argument can 

be easily extended to cover any number of lines and, with only minor 

modifications, to cover lines of different lengths and amplitudes. 

Similarly, the argument extends easily to cover lines of different 

orientations: such lines will transform to give distinct trends, perpendic

ular to the original lines, in the power spectrum.

Finally, the argument can be extended to cover sampled functions 

(such as real images) rather than the continuous functions discussed 

above, provided that the sample interval is adequate (as defined 

by the sampling theorem, see appendix D).

In conclusion, it can be seen that a directional feature in the image 

will also be apparent as a directional feature in the power spectrum, 

but rotated through 90° and shifted to pass through the origin. As 

the Fourier transform is linear, this relationship can be easily used 

to produce a "rose diagram” - if there are twice as many features 

orientated in direction a as direction b, then the amplitude of the 

frequencies related to direction a will be double that of frequencies 

related to direction b. Most of the power of these frequencies will
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lie along a line perpendicular to a and passing through the origin  

- the transform has effectively picked out all lineaments of a particular 

orientation and translated them to pass through the origin, so that 

the relative number of lineaments in any direction can be seen more 

easily. This is also the aim of drawing a rose diagram by manual analysis.

Of course, the situation is more complex when lineaments are of d iffe r

ent length, amplitude and form (eg. edges as opposed to lines), but 

the linearity of the Fourier transform allows more complex models 

to be handled quite easily. The power spectrum does not represent 

the density of lineaments in exactly the same form as the rose diagram 

in these cases, but it nonetheless allows the same information to

be extracted.
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Appendix F

Edge, Line and Alignment Detectors

A large number of edge and line detectors have been described in 

the literature. A survey of these detectors is given below. Detectors 

which were considered for inclusion in the lineament analysis system  

are described in some detail. (Appendix G describes the tests applied 

to these operators to determine their suitability as primitive feature  

detectors.) Some ideas on alignment detection are also discussed.

F.1 Edge Detectors

F.1.1 Classification of Edge Detectors

Classification schemes for edge detectors have been described by 

Davis (1975), Levialdi (1983) and Torre and Poggio (1986). None of these 

schemes is particularly satisfactory, so I have used the following 

classification scheme:

(1) Calculation of derivatives by linear filtering.

Linear filte rs are applied to the image, to calculate approximations 

to one or more of the spatial derivatives. Edges are defined by 

the behaviour of the derivatives. These operators are further 

classified as

(a) directional derivatives, or

(b) rotationally symmetric operators.
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(2) Calculation of derivatives by non-linear filtering.

Non-linear filters are used to calculate an approximation to the 

gradient at each image pixel. Edges are defined as local maxima 

in the gradient (possibly coupled with zero-crossings in the other 

derivatives). Again, these operators are classified as

(a) directional derivatives, or

(b) rotationally symmetric operators.

(3) Statistica l operators.

Statistica l properties of local neighbourhoods of the image are  

used to define boundaries between regions with different properties.

(M Autocorrelation operators.

The autocorrelation function is used to search for linear features, 

by recognition of repetition of details along their length.

(5) Miscellaneous operators (eg. extensions and modifications to other 

types of operator).

(6) Sequential operators.

Inherently sequential techniques are used to detect edges. These 

operators tend to make more a priori asumptions about edge 

properties, and to use more global information, than the above 

types o f operator. No sequential operators were tested during 

this project, as they require too much computation to be applied 

practically to large images. Also, the use of a priori assumptions
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at low levels in the feature detection system is considered undesir

able.

(7) Textural operators.

Textural characteristics, rather than simple grey-level properties, 

are used to detect edges.

The boundaries between the classes may be indistinct (eg. the auto

correlation function may be considered a sta tistica l property). All 

operators yield some indication of the possibility that an edge passes 

through each pixel. Some operators also indicate edge orientation 

(defined as the orientation of the maximum grey-level gradient, in 

most cases) and a goodness-of-fit to some edge model.

F.1.2 Calculation of Derivatives by Linear Filtering

These operators are characterized by

(a) definition of edges according to the behaviour of the spatial 

derivatives of the image (eg. as peaks in the first  derivative  

or zero-crossings in the second derivative). Calculation of derivat

ives is a high-pass filtering operation (as might be expected: edges 

tend to have more power in the high spatial frequencies than 

most other features).

(b) linearity. An operator f is linear if f

f(a) = A and f(b) = B

imply that
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f(ca+db) = cA + dB 

for constants c and d.

(c) parallel operation. The same operator is applied to all points in 

the image. To do this, parallel operators tend to use information 

from only the local neighbourhood of each point, ie. they are 

local rather than global operators.

Since noise tends to have much of its power in the high frequencies, 

most linear operators respond strongly to noise. This is o ffse t by 

their computational simplicity (being mostly simple convolution-style  

operators) and hence low cost. High level operators may then be 

used to separate noise from true edge responses. Some of the operators 

have a more sophisticated decision function built into them, and hence, 

theoretically, have greater noise immunity. This is, however, only 

true in practice when the edge model used to define the decision 

function accurately reflects the properties of edges in the image. 

This enhanced noise rejection is gained at the expense of greater 

computational cost.

Linear operators tend to give little  information about edge properties: 

they output a large response over the edge location, but tell little  

about the orientation or degree of confidence that an edge actually  

exists. The more sophisticated operators give more information.

Edge detectors in this class include:
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F. 1.2.1 Directional Derivatives

(1) Difference Equations (Davis, 1975; Rosenfeld and Kak, 1976; Pratt, 

1977; Peli and Malah, 1982).

These operators give a highly anisotropic response with respect 

to edge orientation, hence they were not considered for the line

ament analysis system.

(2) Macleod (Argyle, 1971; Macleod, 1972; Pratt, 1977; Peli and Malah, 

1982)

The operator is defined by 

g(j,k) = □ *  [f(j,k>] 

where

g(j,k) = output at image point (j,k) 

f(j,k) = input image grey-level a t (j,k)

[ . ] denotes the n x n neighbourhood about (j,k) 

n = operator size

□ = the n x n operator

*  denotes convolution.

The weights of D are defined by

□(j,k) = exp(-^(k/t)2) . (exp(-^((j-p)/p)2) - exp(-^((j+p)/p)2) ) 

where

P and t  are spread constants (p=t=2 was used in implementing

this operator).

A similar operator, but rotated through 90°, can also be defined. 

To ensure isotropic response with respect to edge orientation, 

both operators were implementes: their outputs were then combined
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to calculate an approximation to the gradient (see discussion 

of gradient operators below).

Edges are defined to be regions o f high gradient.

(3) Template matching /  matched filtering /  cross-correlation filtering  

(Treitel and Robinson, 1969; Andrews, 1969; Arcese et al, 1970; Prewitt, 

1970; Robinson and Treitel, 1980).

A simple edge-model template is matched to each neighbourhood 

of the image (using cross-correlation). A close match (high output) 

indicates the presence of an edge. This process can be shown 

to be analogous to the calculation of directional derivatives. 

Matched filtering implies a more sophisticated approach to template 

design, taking noise properties of the image into account. Arcese 

et al (1970) and Robinson and Treitel (1980) discuss filter design 

in some detail.

To ensure isotropic response with respect to edge orientation, 

a number of masks are normally used; each mask corresponds to 

a different edge orientation. The detector output is then taken 

to be the maximum response fo r all of the masks. An indication 

of edge orientation is given by the orientation o f the mask with 

maximum response. (The individual masks are, of course, highly 

anisotropic in their response w.r.t. edge orientation.)

Template matching masks include:

(a) Compass Gradient Masks (Prewitt, 1970; Pratt, 1977; Peli and 

Malah, 1982) - figure F.1.
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N -
1 1 1 
1 -2 1 

-1 -1 -1

S -
-1 -1 -1 

1 -2 1 
1 1 1

NE -
1 1 1 

-1 -2 1 
-1 -1 1

SUJ -
1 -1 -1 
1 -2 -1 
1 1 1

E -
-1 1 1
-1 -2 1
-1 1 1

W -
1 1 -1 
1 -2 -1 
1 1 -1

SE -
-1 -1 1 
-1 -2 1 

1 1 1

NW -
1 1 1 
1 -2 -1 
1 -1 -1

Figure F.1 Compass Gradient Masks

N -

S -

NE E - SE -
5 5 5 -3 5 5 -3 -3 5 -3 -3 -3

-3 0 -3 -3 0 5 -3 0 5 -3 0 5
-3 -3 -3 -3 -3 -3 -3 -3 5 -3 5 5

SUJ - 111 - NLlI -
-3 -3 -3 -3 -3 -3 5 -3 -3 5 5 -3
-3 0 -3 5 0 - 3 5 0 -3 5 0 -3
5 5 5 5 5 -3 5 -3 -3 -3 -3 -3

Figure F.2 Kirsch Masks

N - NE E - SE -
1 1 1 0 1 1 -1 0 1 -1 -1 0
0 0 0 -1 0 1 -1 0 1 -1 0 1

-1 -1 -1 -1 -1 0 -1 0 1 0 1 1

Figure F.3 Three-level Masks

NE - E - SE -
1 2 1 0 1 2 -1 0 1 -2 -1 0
0 0 0 -1 0 1 -2 0 2 -1 0 1

-1 -2 -1 -2 -1 0 -1 0 1 0 1 2

Figure F.4 Five-level Masks
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(b) Kirsch Masks (Kirsch, 1971; Pratt, 1977) - figure F.2.

(c) Three-level Masks (Robinson, 1979; Abdou and Pratt, 1979) - 

Figure F.3. (Symmetry of the masks means that only four are 

needed. The other four directional derivatives are recovered 

by negating the outputs of these four masks.)

(d) Five-level Masks (Robinson, 1979; Abdou and Pratt, 1979) - Figure F.4

(e) Cantoni et al (1982) - These masks do not give a clear response 

over simple edge models, hence they were not implemented.

(f) Nevatia and Babu (1980) - figure F.5.

(g) Davies (1984) discusses the design of templates fo r the precise  

estimation of edge orientation. The degree of precision obtained 

from such operators is not required for noisy images or for 

geological applications, hence the additional computational 

cost is not justified. The operators were not implemented.

It should be noted that when processing azimuthal windows, only 

a subset of the any of the above masks is needed for any one 

window. This represents a minor cost saving in the overall system:

I did not have time to implement it.

F. 1.2.2 Rotationally Symmetric Operators

(1) Laplacian (Rosenfeld and Kak, 1976; Pratt, 1977; Beaudet, 1978; 

Peli and Malah, 1982)
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g(j.k) = o *  [f(j,k)j

where 0 is one of the operators shown in figure F.6.

These operators calculate an approximation to the Laplacian, hence 

the output should be approximately symmetrical with respect to 

edge orientation. Edges are defined as zero-crossings in the output 

(since the Laplacian is a second derivative). The Laplacian is very 

sensitive to noise (although the larger operators are less sensitive).

Laplacian filters may also be implemented in the frequency domain, 

using the transfer function:

T(u,v) = k.(u2+v2) for (u2+v2) 2 less than the Nyquist frequency 

= 0 elsewhere

where

u,v are the spatial frequencies 

T is the transfer function 

k is some constant.

(2) Beaudet (1978)

g(j,k) = 0 *  [f(j,k)]

where □ is one of the operators given in figure F.7.

These operators calculate an approximation to f  + 2f + f
xxxx xxyy yyyy

They are very sensitive to noise. Edges are located at zero-crossings.

(3) Statistica l Masks (Prewitt, 1970; Pratt, 1977)

Unless a priori information on the image noise characteristics 

is available, this operator is very similar to the Laplacian, thus

it was not implemented.
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0° -

60° -

120°

(a) n

(b) n

(c) n

-1.0 -1.0 0.0 1.0 1.0 30° - -1.0 0.32 1.0 1.0 1.0
-1.0 -1.0 0.0 1.0 1.0 -1.0 -0.78 0.92 1.0 1.0
-1.0 -1.0 0.0 1.0 1.0 -1.0 -1.0 0.0 1.0 1.0
-1.0 -1.0 0.0 1.0 1.0 -1.0 -1.0 -0.92 0.78 1.0
-1.0 -1.0 0.0 1.0 1.0 -1.0 -1.0 -1.0 -0.32 1.0

1.0 1.0 1.0 1.0 1.0 90° - -1.0 -1.0 -1.0 -1.0 -1.0
-0.32 0.78 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0
-1.0 -0.92 0.0 0.92 1.0 0.0 0.0 0.0 0.0 0.0
-1.0 -1.0 -1.0 -0.78 0.32 1.0 1.0 1.0 1.0 1.0
-1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 150° - 1.0 1.0 1.0 0.32 -1.0
1.0 1.0 1.0 0.78 -0.32 1.0 1.0 0.92 -0.78 -1.0
1.0 0.92 0.0 -0.92 -1.0 1.0 1.0 0.0 -1.0 -1.0
0.32 -0.78 -1.0 -1.0 -1.0 1.0 0.78 -0.92 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0 -1.0 1.0 -0.32 -1.0 -1.0 -1.0

Figure F.5 Nevatia and Babu Masks

= 3
(i) (ii) (iii)

-1 -1 -1 0 -1 0 1 -2 1
-1 8 -1 -1 A -1 -2 A -2
-1 -1 -1 0 -1 0 1 -2 1

= 5
-A -1 0 -1 -A
-1 2 3 2 -1
0 3 A 3 0

-1 2 3 2 -1
-A -1 0 -1 -A

= 7
10 -5 -2 -1 -2 -5 -10
-5 0 3 A 3 0 -5
-2 3 6 7 6 3 -2
-1 A 7 8 7 A -1
-2 3 6 7 6 3 -2
-5 0 3 A 3 0 -5
10 -5 -2 -1 -2 -5 -10

Figure F.6 Laplacian Operators
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(a) n = 5
28 -34 62 -34 28

-34 -78 24 -78 -34
62 24 128 24 62

-34 -78 24 -78 -34
28 -34 62 -34 28

(b) n = 7
31 -4 -11 -11 -11 -4 31
-4 -14 -6 -1 -6 -14 -4

-11 -6 11 19 11 -6 -1
-11 -1 19 28 19 -1 -1
-11 -6 11 19 11 -6 -1
-4 -14 -6 -1 -6 -14 -4
31 -4 -11 -11 -11 -4 31

Figure F.7 Beaudet Operators

X - 1 - 1
1 -1

Y - -1 -1
1 1

Figure F.8 Mero-Vassey Operators

(a) n = 3

X - 1 0 -1 Y - -1 -2 -1
2 0 -2 0 0 0
1 0 -1 1 2 1

(b) n = 5

X - 0.5 0.4 0.0 -0.4 -0.5
0.8 1.0 0.0 -1.0 -0.8
1.0 2.0 0.0 -2.0 -1.0
0.8 1.0 0.0 -1.0 -0.8
0.5 0.4 0.0 -0.4 -0.5

Y - -0.5 -0.8 -1.0 -0.8 -0.5
-0.4 -1.0 -2.0 -1.0 -0.4
0.0 0.0 0.0 0.0 0.0
0.4 1.0 2.0 1.0 0.4
0.5 0.8 1.0 0.8 0.5

Figure F.9 Sobel Operators
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(4) V-filter (Shanmugan, 1979)

The operator is applied in the frequency domain, with a transfer 

function:
j. >

T(u,v) = k.(u2+v2) 2 for (u2+v2) 2 less than the Nyquist frequency 

= 0 elsewhere

Edges are located at zero-crossings (Shanmugan et al locate edges 

at peaks in the detector output, but it can be shown that zero- 

crossings give a more precise location, eg. Marr and Hildreth,

1980.)

(5) Marr-Hildreth Operator (Shanmugan et al, 1979; Marr and Hildreth,

1980; Hildreth, 1983; Berzins, 1984; Yuille and Poggio, 1984; Lunscher 

and Beddoes, 1986a, 1986b, 1986c; Torre and Poggio, 1986; Modestino 

and Fries, 1977; Fries and Modestino, 1977).

The operator is applied in the frequency domain, with transfer 

function:

Tftj.v) - k.(u2tv2).exp(— -~J  .(2 If/ (2N*1) )2 )
7BU

where

c = I.B/2 (normally 0 4 c <. 1. c=Ofor the Laplacian operator)

B = filter bandwidth

I = edge resolution width (as defined by Shanmugan etal)

N = Nyquist frequency

Edges are located at zero-crossings (again, Shanmugan at el use 

peaks in detector output, rather than zero-crossings).
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This operator acts as a Laplacian with a superimposed Gaussian. 

The Gaussian reduces the filter bandwidth, and hence the response 

to noise. Shanmugan et al note that a large value of c enhances 

the output signal-to-noise ratio, but decreases the edge resolution. 

Marr and Hildreth designed this operator on the basis of a model 

of the human visual system. The Gaussian smoothing function is 

based on the operation of neural networks in the retina and cortex. 

By using several Gaussians, of different bandwidths, the frequency 

channels of the eye can be simulated. (Note that this is done 

explicitly by the pyramid data structure of the lineament analysis 

system.) The different channels then allow edges of different 

scales to be detected. Berzins, and Lunscher and Beddoes examine 

this concept more closely, and discuss the senses in which this 

operator may be considered optimal for edge detection.

Edges ideally would be located by zero-crossings in the 2nd direct

ional derivatives, but the Laplacian is used as a reasonable approx

imation to this. Yuille and Poggio, and Torre and Poggio discuss 

the accuracy of this approximation, and the properties of zero- 

crossings. Using the Laplacian ensures that zero-crossings form 

closed curves: this is important for image segmentation, but of 

little value for detecting lineaments (which, by definition, are 

not closed). Using directional derivatives allows more accurate 

edge location: applying the operator to a directionally-filtered 

image is equivalent to calculating a directional derivative.

As a further approximation, the operator is often implemented 

as the difference of two Gaussian-filtered images, as in the differ- 

ence-of-Gaussian pyramid. Yuille and Poggio discuss the accuracy 

of this approximation. I have used a full Laplacian-of-a-Gaussian
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operator for the tests described in appendix G.

Modestino and Fries discuss an operator with a similar frequency 

response, but implemented using recursive filters. This operator 

was not tested, since recursive filtering is not a parallel operation.

F.1.3 Calculation of Derivatives by Non-linear Filtering

Spatial derviatives are used to characterize edges, but non-linear 

filters are used to calculate them. Edges are commonly defined as 

local maxima in the gradient, possibly coupled with zero-crossings 

in other derivatives.

The non-linear operators commonly apply a number of linear operations 

initially, then use a non-linear operation to combine the results for 

output (eg. in calculating the square of a mask’s output and summing 

to give a gradient). Thus the boundary between linear and non-linear 

operators is indistinct. Non-linear operators include:

F. 1.3.1 Directional Derivatives

(1) Herskovitz (Davis, 1975)

An extension of the second-difference equations. Due to its clearly 

anisotropic response with respect to edge orientation, this operator 

was not tested.

(2) UJechler and Kidode (1977)
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This operator was not implemented, due to its computational complex

ity. It does not appear to offer any real advantage over many, 

far simpler operators.

F.1.3.2 Rotationally Symmetric Operators

(1) Gradient (Rosenfeld and Kak, 1976)

(a) g(j,k) = (X2 + Y2) 2 square root operator

(b) g(j,k) = |X/ + lY j magnitude operator

(c) g(j,k) = max( |X|, Jy | ) maximum operator 

where X = f(j,k) - f(j-1,k)

Y = f(j,k) - fCUk-1).

The operator calculates an approximation to the gradient (f2 + f 2) 2. 

Edges are located at gradient maxima. Edge orientation is given 

by arctan(Y/X).

Operators (b) and (c) give an anisotropic response with respect 

to edge orientation, but offer computational savings on some sys

tems. All three operators are very sensitive to noise, as they 

only use a 2x2 region of the region.

(2) Roberts (Davis, 1975; Pratt, 1977; Abdou and Pratt, 1979; Peli and 

Malah. 1982)

%
(a) g(j.k) = (X2 + Y2) square root operator

(b) g(j,k) = |X| + )y | magnitude operator

where X = f(j,k) - f(j+1,k+1) 
Y = f(j,k+1) - f(M,k)
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This operator calculates another approximation to the gradient, 

using a 2x2 region. Edge orientation is given by arctan ((Y+X)/(Y-X)) 

+ /2.

(3) Mero-Vassey (Shaw, 1979)

A square-root and magnitude operator are defined as above, where 

X and Y are calculated by convolving with the masks of figure 

F.8. This gives another approximation to the gradient. The edge 

orientation is given by arctan(Y/X).

(4) Sobel (Pratt, 1977; Abdou and Pratt, 1979; Shaw, 1979; Peli and 

Malah, 1982)

A square-root and magnitude operator are defined as above. X 

and Y are calculated by convolving with the masks of figure F.9, 

giving another approximation to the gradient. Edge orientation 

is given by arctan(Y/X).

Iannino and Shapiro (1979) describe an iterated Sobel operator 

which improves the accuracy of the orientation estimate. The 

improvement does not justify the cost for most applications. Zucker 

and Hummel (1979) describe an extended Sobel operator, which 

is applicable to multi-band imagery.

(5) Prewitt (Prewitt, 1970; Schachter and Rosenfeld, 1978; Abdou and 

Pratt, 1979; Morgenthaler and Rosenfeld, 1981; Chittineni, 1983)

A square-root and gradient operator are defined as above, using 

the masks of figure F.10 to give another approximation to the
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(a) n = 3

X - 1 0 -1 Y - -1 -1 -1
1 0 -1 0 0 0
1 0 -1 1 1 1

(b) n = 5

2 1 0 -1 -2
2 1 0 -1 -2
2 1 0 -1 -2
2 1 0 -1 -2
2 1 0 -1 -2

-2 -2 -2 -2 -2
-1 -1 -1 -1 -1
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2

Figure F.10 Prewitt Operators

1 0 -1 Y - -1 -42 -1
& 0 -^z 0 0 0
1 0 -1 1 1

Figure F.11 Isotropic Operator

X - 5 A 0 Y - 0 -A -5
A 0 -A A 0 -A
0 -A -5 5 A 0

Figure F.12 Machuca and Gilbert Operator

X - 1 0 -1 Y - -1 -1 -1 M - 1 1 1
1 0 -1 0 0 0 1 1 1
1 0 -1 1 1 1 1 1 1

Figure F.13 Moment Operator
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gradient. Edge orientation is given by arctan(Y/X).

The center-centroid distance of Schachter and Rosenfeld is an 

equivalent operator. Morgenthaler and Rosenfeld define an extended 

operator for application to multi-band imagery. Chittineni discusses 

the theory of hypersurface-fitting in detail, thus giving insight 

into the design of derivative operators. This discussion leads 

to the definition of an extended Prewitt operator.

(6) Isotropic (Frei and Chen, 1977)

A square-root and magnitude operator are defined as above, using 

the masks of figure F.11 to give another approximation to the 

gradient. Edge orientation is given by arctan(Y/X).

(7) Machuca and Gilbert (1981)

A square-root and magnitude operator are defined as above, using 

the masks of figure F.12 to give yet another approximation to 

the gradient. Edge orientation is given by arctan((Y+X)/(Y-X)) + /2.

(8) Moment Operator (Machuca and Gilbert, 1981)

9(j,k) - ( (X/M)2 + (Y/M)2)̂

where X, Y and M are defined by convolution with the masks of 

figure F.13. Edge orientation is defined by arctan(Y/X). (This extens

ion to the Prewitt operator is supposd to give enhanced performance

for noisy images.)
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(9) Snyder and Tang (Snyder and Tang, 1980; Sucui and Reeves, 1982)

Yet another gradient operator: it offers no apparent advantage 

over any of the above operators, hence it was not tested.

(10) Frei-Chen (Frei and Chen, 1977; Flail, 1979)

Frei and Chen define four basis functions for an ’’edge space” 

(see figure F.14(a)). The projection of each region, [f(j,k)l, onto 

this edge space may be calculated by convolving with these masks.

The magnitude of the projection is given by one of:

(a) P = (Pa2 + Pb2 + Pc2 + Pd2)̂ square-root operator

(b) P = |Pa| + |Pb| + |Pc| + |Pd| magnitude operator

(c) P = (Pa2 + Pb2)* square-root gradient operator

(d) P = |Pa| + |Pb| magnitude gradient operator

where

P = magnitude of projection 

Px = convolution with mask x.

The angle between [f(j,k)J and its projection onto the edge basis 

is given by

cos(B) = P / £ £  f(j,k)2
(x,y) in region [f(j,k)]

If this angle is small, then the region is close to the edge basis, 

ie. it contains an edge. This decision strategy is compared with 

that of conventional gradient operators if figure F.14(b). Edge 

orientation is given by arctan(Pa/Pb).

Mote: in testing, division by f(j,k)2 to calculate cos(B) was

found to bias the minimum angle to one side of the edge (towards 

the minimum grey-level). Division by the grey-level variance, rather
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(a) Basis functions

a - -1 -4F -1 b - 1 0 -1
0 0 0 42 0 - r
1 4 ? 1 1 0 -1

c - 0 -1 42 d - 4 F -1 0
1 0 -1 -1 0 1

-42 1 0 0 1

(b) Decision strategy

FREI - CHEN

nb. low-amplitude edges will 
be detected, so long 
as they are close to the 
edge basis.

non-edge
vector

0 edge vector

’’NORMAL" GRADIENT OPERATOR

nb. low-amplitude edges will 
be missed.

Figure F.14 Frei-Chen Operator
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than the sum-of-squares, removes this bias. This follows Frei and 

Chen’s examples, if not their original definition.

(11) Hueckel (Hueckel, 1971, 1973; Davis, 1975)

A non-linear operator defined by Hueckel has similarities to the 

above operators. It does not appear to offer sufficient advantages 

to justify its compuational complexity, hence it has not been tested.

(12) Hummel (Hummel, 1979; Shaw, 1979)

The approach is similar to that of the Frei-Chen operator, with 

basis functions defined by: 

a(r,B) = cos(B) 

b(r,B) = sin(B) 

c(r,B) = cos(3B) 

d(r,B) = sin(3B).

However, decisions are made using the magnitude of the projection 

onto the ideal edge vector, rather than the angle between the 

region and the ideal.

Hummel also defines a "biased operator" which is more sensitive 

to edges of a particular orientation. Given the use of directional 

filtering prior to edge detection, there was no need to test this 

operator.

(13) O’Gorman (O'Gorman, 1978; Carl, 1970; Brown, 1970)

A LJalsh function basis (as opposed to the Fourier basis of the 

Hueckel and Hummel operators) is used. The results given by Carl
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and Brown on pattern recognition using UJalsh functions suggest 

that this is a reasonable approach. Figure F.15 shows the basis 

functions.

The angle between the ideal edge vector and the region is given 

by:

arccos(B) = k = [(A12+A22)/(A12+A2Z+A32*A4Z+A52)]̂  

where

Ax = result of convolving [f(j,k)] with mask x.

For an ideal step edge, k=1.0. Large values of k indicate a high 

possibility that an edge passes through the region. Edge height 

is given by (A12+A2Z) \

(14) Griffiths (Davis, 1975)

A blocks-world operator requiring many assumptions about edge 

and noise properties. It is unlikely to be of much value for detecting 

edges in real (ie, noisy and textured) images, hence it was not 

tested.

(15) Haralick (1983b, 1984, 1985)

Edges are located at zero-crossings in the second directional 

derivative. This is claimed to give better edge location than use 

of peaks in the first derivatives or gradient. Haralick discusses 

the calculation of such derivatives in detail, by looking at the 

theory of hypersurface fitting, and hence derives masks to define 

them. He than describes tests to determine if a zero-crossing 

passes through a region and to characterize the derivatives (eg. 

to distinguish between lines and edges).
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Torre and Poggio (1986) discuss the properties of the second deriv

ative along the gradient direction and its zero-crossings. They 

conclude that this operator locates edges slightly more accurately 

than the Laplacian-of-a-Gaussian (Marr-Hildreth) operator.

F.1.4 Statistical Operators

Edges are located using the statistical properties of regions of the 

image. For example, a region containing an edge will tend to have 

a higher grey-level variance than a region without an edge. These 

operators usually give an indication of edge location only: they cannot 

usually determine edge orientation. Statistical operators may perform 

quite poorly on textured regions, where their simple assumptions 

break down. (Most other operators also perform poorly in textured 

regions, however.)

Statistical operators include:

(1) Mean-Median difference (Schachter and Rosenfeld, 1978)

g(j,k) = [f(j,k)l -  [f(j,k)l ..mean median
This supposedly gives similar results to the Laplacian, but is less

sensitive to noise.

(2) Hale minmax (Hale, 1976; Peli and Malah, 1982)

g(j,k) = Rd(j,k) . (J d)Rka,k) 

where

( = 1 for an edge, 0 otherwise)

denotes logical NOT operation
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1 1 1 1 A1 - 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1

-1 -1 1 1 A3 - -1 -1 -1 -1
-1 -1 1 1 1 1 1 1
-1 -1 1 1 1 1 1 1
-1 -1 1 1 -1 -1 -1 -1

-1 -1 1 1 A5 - -1 1 1 -1
-1 -1 1 1 -1 1 1 -1
1 1 -1 -1 -1 1 1 -1
1 1 -1 -1 -1 1 1 -1

Figure F.15 O’Gorman Basis Functions

y y y X X X - y y y
y y y x X X X y y y
y y y X X X y y y

X

X X X
X X X
X X X

y y y - U 5 °  - y y y
y y y y y y
y y y y y y

X X
X X X X X X
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Figure F.17 Bovik Masks
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Figure F.16 Flale Masks 

(Points marked "x" are used in calculations.)
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R. = 0 if r . > threshold d d
= 1 otherwise

r . = max([f(j,k)]) - min([f(j,k)]) for mask dd
The masks (d = 1 to 8) are shown in figure F.16. If the grey-level 

is approximately constant along one mask direction, and has large 

changes along the other directions, then the constant direction 

is inferred to be parallel to an edge. (This idea clearly breaks 

down for textured or very noisy images, since it is based on single 

pixels, which are very susceptible to noise.)

Hall (1979) and Pal (1982) suggest similar, but less sophisticated, 

operators. Pitas and Venetsanopoulos (1986) discuss the theory 

of such operators, and define a number of similar operators.

In my implementation of the Hale minmax operator, I have chosen 

not to include a thresholding function within the operator: I felt 

that primitive detection and thresholding should be maintained 

as separate operations. The operator outputs the maximum grey- 

level difference from the eight masks. These differences can then 

be thresholded as for the output from other operators. I have 

made similar modifications to the other Hale operators (see below).

(3) Hale variance (Hale, 1976; Peli and Malah, 1982)

g(j,k) and the masks are as for the Hale minmax operator. is 

defined by

R , = 0 if s .>  threshold d d
= 1 otherwise

where s , is the grey-level variance within the mask, d



- 278 -

The idea is similar to that of the minmax operator, but the variance 

rather than the grey-level range is used, thus giving greater 

noise immunity. This is Hale’s preferred operator.

(4) Hale curvature (Hale, 1976; Peli and Malah, 1982)

g(j,k) and the masks are defined as for the other Hale operators.

R , is defined by d
R. = 0 if b > threshold

k=-4
and

a . = -0.026 
-i*

a_3 = -0.059 

a_2 = -0.4

a _1 = - 1 -° 

a 0 =0 . 0

a = -a n -n
The idea is similar to the other Hale operators, but uses smoothed 

directional derivatives rather than statistical properties.

(5) Bovik median (Bovik et al, 1983)

Masks are defined in figure F.17. Let S be the number of pixels 

in region y with a grey-level greater than the median for the 

entire mask. If S is greater than 6 or less than 3, then an edge 

passes through the mask. (S is a measure of the “balance* of the 

mask region: a non-parametric statistical test is being used to 

determine if the region is ’’unbalanced”, ie. contains an edge.)

d d
=1 otherwise

where
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IMb. my implementation uses slightly different masks (to allow easier 

implementation on the FPS array processor), but is otherwise the 

same as described above.

(6) Bovil UJilcoxon (Bovik et al, 1983)

An extension of the Bovik median operator uses a QJilcoxon rank 

sum statistic to test the "balance* of the mask region. Calculation 

of this statistic requires much additional computation over that 

for the median operator: I did not feel that the results would 

justify the additional cost, so this operator was not implemented.

A number of other operators based on statistical measures have been

defined. These include:

(7) Grey-level deviation (Smith and Davis, 1975),

(8) Grey-level modality (Smith and Davis, 1975),

(9) Chow (Davis, 1975),

(10) Simple two level model (Sucui and Reeves, 1982), and

(11) Two level model (Sucui and Reeves, 1982).

All these operators have limited applicability or great computational

cost, hence none of them were implemented for this study.

F.T5 Autocorrelation Operators

The autocorrelation function may be used to search for linear features, 

by looking for repetition of details along their length. Appendix H 

describes such an operator in more detail.
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F.1.6 Miscellaneous Operators

(1) Wallis (homomorphic) operator (Pratt, 1977)

This operator applies a Laplacian filter to the logarithm of the 

image grey-levels. This is just homomorphic processing, as discussed 

in section 4.1, and not really a distinct operator.

(2) Product averaging masks (Rosenfeld et al, 1970, 1972; Rosenfeld 

and Thurston, 1971; Davis, 1975; Pratt, 1977; Davis and Mitchie, 

1980; Peli and Malah, 1982)

9(j,k) = D (j,k) x D (j,k) X ... x D (j,k)1 2 TO
where

DR(j,k) = 1/n x [f(j+n-1,k) + f(j+n-2,k) + ... + f(j,k) - f(j-1,k)

- f(j-2,k) - ... -f(j-n,k)]

A two-dimensional extension of this operator can be defined. A 

number of masks, for different edge orientations, are necessary. 

For my implementation, 4 orientations (90°, 45°, 0°, -45°) and m=3 

were used. To give a linear response with respect to edge magnitude, 

the operator was modified to output the cube-root of g(j,k) as 

defined above.

The high order masks of this operator average out noise, but 

give only a rough idea of edge location. The low order masks are 

more noise sensitive, but also give more precise edge location. 

The product of the mask outputs will be large only when all masks 

detect an edge, thus giving a balance of precise edge location
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and noise rejection. The choice of m determines the scale of edges 

which will be detected (small m biases the operator towards small 

scale features, while large m filters out all but major features.) 

Ideas of edge scale etc. are considered in more detail in the design 

of the Marr-Hildreth and related operators, and are embodied 

in the design of the pyramidal data structure used for this study. 

The product averaging masks represent the firat attempt to consider 

such ideas in edge detector design.

(3) Haralick (1980)

An early Haralick operator locates edges by fitting planar surfaces 

to image regions. Edges are located at boundaries between signif

icantly different planes.An F-statistic can be used to locate such 

boundaries.

Unlike many edge detectors, this operator responds equally well 

to ramp or step edges. The use of an F-statistic also allows a 

well-defined measure of "edge confidence" to be defined, although 

at considerable computational cost. I have assumed that later 

Haralick operators were meant to supersede this one, so I have 

not implemented it.

F.1.7 Sequential Operators

Sequential operators act on one pixel or region at a time. The results 

from previously-considered regions are used to aid decision making 

for the current region. This approach allows more contextual information 

to be used (Rosenfeld and Pfalz, 1966; Fu, 1968): most sequential oper
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ators are global (ie. using information from all or most of the image) 

while most parallel operators act locally. This can lead to better 

performance in very noisy images, but at a large computational cost. 

In this regard, it is worth remembering that the early levels of the 

human visual system rely on parallel rather than sequential techniques, 

suggesting that sequential techniques are unlikely to offer a practical 

solution to our problem. It is also worth noting that the results given 

by sequential operators can depend on the choice of starting point 

for the operator: this is clearly undesirable when the aim is to achieve 

unbiased edge detection. Finally, sequential operators tend to make 

a large number of a priori assumptions about the edges they are 

looking for: this is also undesirable at early stages of the processing 

sequence. No sequential operators have been tested during this survey: 

they are considered briefly here for the sake of completeness only.

Sequential edge detectors include:

(1) Planning / Guided search (Kelly, 1971; Davis, 1975)

Edges are located on a reduced resolution image, using a parallel 

edge detector. These results are then used to guide the search 

for edges in the full-resolution image. This gives some computational 

savings (since a full edge detector need not be applied to the 

entire image, but just in the vicinity of edges located at reduced 

resolution) however it means that small scale features may be 

lost. The computational savings would not be realized on a parallel 

computer.

The use of reduced resolution images is embodied in the pyramid 

data structure, however here the aim is to allow better classification
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of edges, rather than reduce computation costs.

(2) Tracking (Rosenfeld and Kak, 1976; Liu, 1977)

Obvious edge points are located with a simple detector, then a 

more complex algorithm is used to "fill in" the edges. Again, subtle 

features may be missed, and there are no computational advantages 

if a parallel computer is being used.

(3) Raster Tracking (Rosenfeld and Kak, 1976)

Edges are located on a single image line, and then tracked form 

line to line. The technique only works for edges roughly perpendic

ular to the lines.

(A) Dynamic programming and search techniques (Montanari, 1971; Martelli, 

1972; Davis, 1975; Shirai, 1975)

Dynamic programming, tree searches etc. are used to optimize 

some cost function in defining the edges. Design of the cost function 

and search technique is difficult and requires many a priori assumpt

ions.

(5) Relational trees (Ehrich and Foith, 1977)

Ehrich and Foith describe a structure to store contextual informat

ion about a line of an image. This structure can be scanned from 

line to line to follow edges.

Many other sequential operators have been defined: none of them



escape the basic problems of large computation time and limited applic

ability.

F.1.8 Texture Operators

Operators designed specifically for the detection of texture edges 

are relatively uncommon, even though valid edges can exist where 

only the texture changes, without any change in the mean grey level 

or grey-level gradient. The absence of such detectors is probably 

due more to the difficulty of defining the txture of a region, than 

to a failure to appreciate the importance of texture. Pratt (1977), 

Rosenfeld and Kak (1976), Hawkins (1970), Lipkin (1970), Chen (1982) 

and Chen and Pavlidis (1983) discuss the definition of texture in more 

detail (as do many others).

The basic idea of texture edge detection is to seek some change 

in the spatial frequency content or local statistical properties of 

subregions of the image. Such changes indicate a change of texture, 

and hence a texture edge. At least four basic types of texture edge 

detector have been defined (in fact, most of these detectors were 

defined for region growth algorithms - I have modified them to act 

as edge detectors):

(1) Davies (Hall, 1979)

The regularity of the grey-level in each subregion is compared using: 

g(j\k) = |s1 - s2 | 

where

s. = £  |f(j,k) - mj for region i
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m. = mean grey-level for region i.

This operator was not tested, as it uses similar, but less sophis

ticated information to that used by the autocorrelation operator 

(appendix H).

(2) Muerle (1970)

Local histogram properties are used to characterize texture. The 

histograms of neighbouring subregions are compared using the 

mean absolute difference between the histograms: a more rigorous 

non-parametrical statistical test could also be used.

This approach requires much computation, yet it does not consider 

the spatial variation of the grey-levels within each subregion, 

even though this is a fundamental property of texture. I have 

not tested it during this study.

(3) Chen and Pavlidis (1983)

The mean grey-level and covariance matrix are used to characterize 

the texture of each subregion. This is a slightly more rigorous 

approach than that used in the autocorrelation operator of appendix

H. It is also more computation intensive, hence I have not tested 

it: I do not think the additional rigour is necessary.

(4) Maximum Entropy Spectral Estimates (Chen, 1982)

The power spectrum of each subregion is used to characterize the 

texture. A small number of parameters (eg. the mean power in each 

of a number of radial and azimuthal windows) is generally used
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for this purpose.

MEM spectral estimation techniques are required since cheaper 

methods (eg. Fourier or Walsh transforms) perform poorly on small 

regions. For very small regions (eg. 16x16) any method will give 

dubious estimates, yet in a typical application it would be desirable 

to locate edges with greater precision than 16 pixels. On the 

other hand, texture is a property of a region rather than a small 

number of pixels, so a sizable region must be considered before 

texture can be defined accurately.

I have not tested this method, since its cost is too great for 

the limited resolution offered. Analysis of the spatial variation 

of the power spectrum (section 4.3) is, however, a crude example 

of this approach. The window sizes used there are, of course, 

far too large for edge detection - they were designed for analysis 

of the properties of large regions.

F.2 Line Detectors

A classification scheme similar to that used in section F.1 could be 

applied to line detectors. However, Paton (1979) describes a scene 

that allows a large number of detectors to be represented compactly. 

This scheme will be used here. Line detectors are classified according 

to:

(a) Sampling configuration (the pixels which are used to make the 

decision),

(b) Evaluation rule (the way in which the grey-levels at the sample 

pixels are combined to give a single figure-of-merit), and
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(c) Comparison rule (the way the figure-of-merit is converted 

to a "line possibility" for thresholding or further processing).

Many of the edge detectors described in the last section will also 

give a strong response over lines (eg. any high-pass filter). Similarly, 

many of the sequential operators could be modified to locate lines. 

None of these operators will be considered again.

F.2.1 Sampling Configuration

The sampling configuration controls the width and orientation of 

lines which will be detected. Thick lines (greater than 3 to 5 pixels 

wide) will be detected as parallel edge pairs by most edge detectors, 

hence they do not need to be considered by line detectors.

Sampling schemes include:

(a) Rosenfeld and Kak (1976) - 3x3 neighbourhood with 12 possible 

line orientations. (Figure F.18)

(b) Vanderbrug (1976) - 5x5 neighbourhood and H  line orientations. 

(Designed to allow easier definition of non-liner evaluation rules). 

(Figure F.19)

(c) V/anderbrug (1977) - 10x10 neighbourhood and 16 line orientations 

(in my implementation, which is designed to be less affected by 

noise than the above configurations. It is only applicable to fairly 

large fetures.) (Figure F.20)

(d) Paton (1979) - 10x10 neighbourhood and 8 line orientations. (Figure F.21)
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(1) a1 b1 c1 (2) a1 b1 c1 (3) b1 c1 c1
a1 b2 c2 a2 b2 c2 a2 b2 c2
a3 b3 c3 a3 a3 b3 a3 b3 c3

(4) a1 b1 c1 (5) a1 a1 b1 (6) b1 c1 c1
a2 b2 c2 a2 b2 c2 a2 b2 c2
b3 c3 c3 a3 b3 c3 a3 a3 b3

(7) a1 a1 b1 (8) c1 c2 c3 (9) C1 c2 c3
a2 b2 c2 b1 b2 b3 b1 b2 c3
b3 c3 c3 a1 a2 a3 a1 a2 a3

(10) b1 c2 c3 (11) c1 c2 b3 (12) c1 c2 c3
a1 b2 b3 b1 b2 a3 c1 b2 b3
a1 a2 a3 a1 a2 a3 b1 a2 a3

Figure F.18 Sampling Scheme 1

Figure F.19 Sampling Scheme 2 
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Figure F.20 (continued)
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Figure F.ZO (continued)
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F.2.2 Evaluation Rules

(1) Template-matching or linear detectors (Arcese et al, 1970; Frei 

and Chen, 1977; Vanderbrug, 1975; Rosenfeld and Kak, 1976; Pratt, 

1977; Paton, 1979; Robinson and Treitel, 1980).

(a) A template for cross-correlation with the image is defined 

by setting a = c = -1 and b = 2 in any of the four sampling schemes. 

This operator responds strongly to edges and noise spikes, as 

well as lines.

(b) Moore and Waltz (1983) define the cross-correlation templates 

given in figure F.22.

(2) Semilinear Sum (V/anderbrug, 1975, 1976; Paton, 1979)

Using sampling schemes (2), (3) or (M, the output is

g(j,k) = |B-A| + [b -C| if (B-A) and (B-C) have the same sign,

= 0 otherwise

where
3

A = £  f(a.) 
i=l 1
3

B - 0  f(b.) 
i=1 1
3

c - £  f ( c )
i=l

These operators respond strongly to noise spikes, but not to edges.

(3) Semi-linear Product (Paton, 1979)

Using sampling schemes (2), (3) or (4), the output is

g(j,k) = max( 0 , (B-A)x(B-C) )
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where A, B and C are defined as above.

(4) Nonlinear (Vanderbrug, 1975)

Using sampling schemes (2), (3) or (4), the output is 

6
g(j,k) = 11. | if all the t. have the same sign

i=1 1 1

= □ otherwise

where

tj - f(b1) - f(a1) 

t2 - f(b1)-f(c1) 

t3 - f(b2) - f(a2) 

t, = f(b2) - f(c2) 

t • f(b3) - f(a3) 

t 6 = f(b3) - f(c3)

These operators do not respond to edges or noise spikes. Unlike 

the above detectors, they also do not span small gaps in lines.

(5) Frei-Chen (1977)

An operator similar to the Frei-Chen edge detector can be defined, 

with basis functions as shown in figure F.23.

F.2.3 Comparison Rules

(1) Simple

The final output is

(a) the maximum value of g(j,k) for all orientations, and
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(1) -1 -2 -1 (2) 1 -2 -2 (3) 2 -1 -2
2 it 2 1 it 1 -1 U -1

-1 -2 -1 -2 -2 1 -2 -1 2

W  1 1 -2 (5) -1 2 -1 (6) -2 1 1
-2 U -2 -2 U -2 -2 it -2
-2 1 1 -1 2 -1 1 1 -2

(7) -2 -1 2 (8) -2 -2 1
-1 U -1 1 U 1
2 -1 -2 1 -2 -2

Figure F.22 Moore and Waltz Templates

0 ) 0 1 0 (2) -1 0 1 (3) 1 -2 1
-1 0 -1 0 0 0 -2 U -2
0 1 0 1 0 -1 1 -2 1

(4) -2 1 -2
1 U  1

-2 1 -2

Figure F.23 Frei-Chen Line Detector Basis Functions

Y

Figure F.ZU Parameterization for the Plough Transform
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(b) the orientation at which this maximum occurs.

The g(j,k) values can then be used for thresholding.

(2) Paton (1979)

Let be the detector output corresponding to direction 

Calculate

X = £  E cos(2B ) k k k

Y = S  Ek • sin(2Bk) 
k

Z - £ e 
k K

and hence

B = \  arctan(Y/X) (the circular mean)

P = 1 - ((Xz+Y2)/Z2) (the circular variance)

= grey-level variance for the operator neighbourhood.

The final output is

(a) magnitude - the maximum value of g(j,k) for all orientations, 

divided by CT.

(b) orientation = B.
x

(c) unanimity = 1 - f  .

The magnitude and unanimity can then be used for thresholding.

F.2.4 Nomenclature

For chapter 5 and appendix G, line detectors from this classification  

scheme have been designated according to sampling configuration,
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evaluation rule and comparison rule using the code 

SSSnC

where

SSS = evaluation rule - LIN = linear

SUM = semilinear sum 

PROD = semilinear product 

NUN = nonlinear 

n = sampling scheme (1 to 4)

C = comparison rule -  S = simple

P = Paton.

F.3 Alignment Detectors

Detection of alignments has rarely been considered, except in the 

context of gap-spanning for line and edge detector output, or in 

very specific problem domains, such as the blocks world of many a r t if 

icial intelligence applications (eg. Shirai, 1975). Neither of these con

texts is relevant to  the detection of primitive features in satellite  

imagery. This lack of consideration reflects the failure to define 

alignments as features of interest.

The autocorrelation detector (appendix H) was designed to have some 

applicability to alignment detection. The only other scheme which 

may be useful for alignment detection is the Hough transform (Duda 

and Hart, 1972, 1973; Shapiro, 1975; O'Gorman and Clowes, 1976; Cohen 

and Toussaint, 1977; Dudani and Luk, 1978; Iannino and Shapiro, 1978; 

Sklansky, 1978; Mero and Vamos, 1981; Thrift and Dunn, 1983).

In the Hough transform, image points (on the x-y plane) are transformed
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to curves in a slope-intercept or angle-radius space. Stra ight lines, 

dashed lines and alignments of points in x-y space are then recogniz

able as intersections of curves in the Tr**-s?om space. The algorithm  

can also be modified to respond to features other than stra igh t lines. 

The Hough transform requires fairly low noise levels to operate e ffe ct

ively (Cohen and Toussaint, 1977). In detail:

Consider several points lying on a line. Each point's coordinates 

will satisfy  (figure F.2A) 

x.cos(B) + y.sin(B) = r

Each (x,y) pair can be transformed to a curve in r-B  space, ie. 

a curve can be found that satisfie s this equation for each particular 

(x,y) pair. Curves corresponding to colinear (x,y) points will intersect 

at a point (or, in the presence of noise, will have a region of 

intersection): this point is the r-B  parameterization o f the line.

In practice, r and B are quantized to a limited number of values, 

and an accum ulator "bin" is set up for each (r,B) pair. For each 

point of the image, the corresponding (r,B) bins are incremented by 

the grey-level of the image point. Peaks and troughs in the (r,B) 

bins then correspond to bright or dark lines respectively.

For my implementation, a further simplification is made: each neighbour

hood of the original image is searched for lines passing through its  

centre only. Thus only bins for B (= arctan(y/x)) need be considered 

and searched for peaks or troughs.
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Appendix G

Line and Edge Detectors: Test Results

As appendix F indicates, a vast number o f feature detectors have 

been defined. This reflects the difficu lty  in defining an optimal oper

ator, except in some relatively narrow sense. The detectors described 

in appendix F, together with the autocorrelation operator defined 

in appendix H, were subjected to 11 tests in an attempt to find an 

acceptable operator (or group of operators) for lineament detection. 

If a detector failed to give adequate performance in any test, it 

was not considered for further testing. Tables G.1, G.2 and G.3 give 

details of the tests.

G.1 Figures of Merit

To perform these tests, a means of describing the quality of feature  

detector output is required. The quality is diminished by the following 

errors:

(a) missed features (failure to correctly classify valid features),

(b) false alarms (classification of noise responses as features),

(c) o ffse t responses (failure to correctly locate features),

(d) smeared responses,

(e) inaccurate determination of feature orientation,

(f) inaccurate determination of feature magnitude, and

(g) anisotropic response with respect to feature orientation.



- 302 -

Error types (a) and (b) are the subject of standard sta tistica l theory 

on signal detection. Unnfortunately, this theory requires a priori 

knowledge of feature priorities, and hence is not completely applicable 

for the practical problem of lineament detection. For some operators 

(eg. gradient-style operators) error types (c) to (g) can be analysed 

theoretically. Not all detectors are amenable to such analysis. In 

the absence of any generally applicable theory, the quality of detector 

output may be defined by applying the detector to a test image with 

known feature locations, noise properties etc., and measuring the 

following properties:

(1) peak detector response over the features,

(2) mean detector response over the features,

(3) error in calculated feature orientations,

(A) percentage of correctly labelled feature pixels,

(5) percentage of false alarms (relative to the true number of 

feature pixels),

(6) Ig
R1 = 1/In. £  1/(1+d.ez)

1

where I
a

I.
i

I
n

d

e

This is the

= number of detected edge pixels

= number of true edge pixels

= max(I , I.) 
a l

= scale constant (eg. d=1/9)

= distance between detected edge point and ideal 

edge location

weighted normalized deviation of Pratt (1977)

(7)

R2 = 1/1 2
1
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This is the average squared deviation of Pratt (1977).

(8)

B = [I . . n . 
mh mh

- I
m ' h 17 [Im m V 2

where I
m

n
m

mh

I
m

nmh

number of lineament pixels located by the detector 

true number of lineament pixels

number o f non-lineament pixels located by the detector

true number of non-lineament pixels

number o f lineament pixels correctly located

by the detector

number o f false alarms

number o f lineament pixels missed by the detector 

number of correctly identified non-lineament pixels

This figure is due to Burns et al (1976).

R1 lies in the range [0,1], with R1=1 for perfect detector performance.

R2 ranges from 0 to infinity, with small values indicating good performance 

B lies in the range [0,1 J, with B=1 for perfect detector performance.

Fram and Deutsch (1975), Pratt (1977), Bryant and Bouldin (1979), Kitchen 

and Rosenfeld (1981) and Peli and Malah (1982) discuss figures of merit 

for detector performance in more detail, and describe a number of 

other measures. UJhile each figure-of-m erit has advantages for quant

ifying certain errors, and no figure-of-m erit is perfect, the above 

selection of figures gives as good an indication of overall detector 

quality as can be hoped for. Peli and Malah preferred to use R1 and 

R2 in their own evaluations of detector performance, as they are 

able to take minor o ffse ts  of edge location into account.
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The main objection to these two measures is that they do not penalize 

gaps in the detected features as strongly as they penalize false  

alarms. R1 measures the density of flagged feature points lying close 

to the true feature location. R2 measures the number of false alarms, 

weighted by their distance from the true feature location (figure  

(5) gives an unweighted measure of false alarms). B gives approximately 

equal weight to false alarms and missed feature points, while figure  

(*») gives a measure of the number of missed feature points alone 

(thus strongly penalizing gaps in the detected feature). Figures (1) 

to (3) give an indication of the accuracy with which the detector 

estimates feature parameters (height and orientation).

The ultimate measure of any operator is the quality of the feature  

maps it produces for real images. No acceptable parameter could 

be found to quantify this quality: all the above figures failed due 

to the absence of unbiased lineament maps for the images tested. 

(An attempt to make detailed lineament maps for the Cornwall image 

yielded maps of insufficient accuracy for detector evaluation. In 

particular, lineaments could only be drawn with an accuracy of + / -  

2 pixels or so. Lack of adequate interactive displays for image interp

retation made manual preparation of digital lineament maps both tedious 

and error-prone.) The final decision between detectors was made 

on the basis of manual evaluation of their performance on the Cornwall 

image.

I considered using a group of photogeologists to rank the operator 

outputs fo r this purpose since, being uninvolved in this project, their 

evaluations would hopefully be "free" of bias (and bias could at least 

be minimized by good experimental design). Unfortunately, this was 

not practical on the equipment available. Thus manual evaluations
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of detector performance represents my judgement alone.

Finally, the computational requirements of the detectors must be 

considered, if  they are to be of practical value. Thus the time required 

to run each operator was evaluated. (This time is, however, not critical: 

better hardware, using parallel computers, would dramatically reduce 

the computation time for all the operators tested. This is a result 

of the early decision to use only parallel operators.)

G.2 Earlier Detector Testing

There have been surprisingly few comprehensive studies of the relative

performance of detectors. Significant results have included:

(1) Peli and Malah (1982) used R1 and R2 to obtain the following ranking

of detector utility for noisy images:

(i) Product averaging masks (best)

(ii) Hale minmax and Hale variance

(iii) Hale curvature

(iv) Roberts (worst performance for noisy images, although it per

forms well for noise-free images).

(2) Abdou and Pratt (1979) calculate detector sensitivities for step

edges in noise-free images, obtaining the following results:

(a) Prewitt, Sobel, 3-level, 5-level, Kirsch and Compass Gradient 

operators all give a fairly  isotropic response with respect 

to edge orientation. The Roberts, Prewitt magnitude and Sobel 

magnitude operators are more anisotropic.

(b) The Sobel operator gives the most accurate indication of edge
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orientation. The Prewitt operator also gives a reasonably accur

ate orientation value, but the 3-level, 5-level, Kirsch and Comp

ass Gradient operators tend to be less accurate. (This is 

resonable when it is realised that the latter four operators 

can only output the orientation as one of eight directions, 

ie. to the nearest 22. 5°, while the Prewitt and Sobel operators 

can give a quite precise value. For many applications, all six  

operators give results of adequate accuracy.)

(c) Sensitivity analysis based on signal detection theory, and 

practical studies using a figure-of-merit, allowed detectors 

to be ranked:

(i) Prewitt and Sobel

(ii) 3-level, 5-level, Kirsch

(iii) Compass Gradient

(iv) Roberts (worst).

It was also noted that in conditions of low signal-to-noise ratio, 

larger detectors (in terms of the neighbourhood used to make 

decisions) tend to give superior performance. This re flects the 

averaging e ffect of using large neighbourhoods.

(3) Sucui and Reeves (1982) compared the Prewitt, Sobel, Snyder and 

Tang, Two Level Model (TLM), Simple Two Level Model (STLM), and 

Moment operators, obtaining the following results:

(a) All detectors were found to give a reasonably isotropic response 

w.r.t. edge orientation. The maximum change in magnitude of 

response versus orientation was 5 or 10 percent. The STLM 

and TLM operators gave the most anisotropic responses.

(b) The Sobel and Snyder and Tang operators give the most accurate  

indication of edge orientation, although the other operators
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were also reasonably accurate.

(c) The Sobel and Prewitt operators give their maximum responses 

for edges passing through the centre of the operator neighbour

hood. Thus they give an accurate indication of edge location. 

The other operators give their maximum response for slightly  

offse t edges, thus they will not locate edges as accurately.

(d) From tests using R1, the Sobel and Prewitt operators give  

the best performance a t low signal-to-noise ratios. The Snyder 

and Tang operator gives poor results even for quite low noise 

levels. The other operators performed well for high signal- 

to-noise ratios, but poorly when the amount of noise increased.

From these results, it is clear that the Sobel and Prewitt operators 

are significantly better than the other four, for most applications.

(*») Fram and Deutsch (1975) and Deutsch and Fram (1977) compare the 

Hueckel, Macleod and Product Averaging operators. The Flueckel 

operator was found to give the most isotropic response w.r.t. 

edge orientation, while the other two operators gave better figures- 

of-merit when applied to noisy images.

(5) Kitchen and Rosenfeld (1981) and Lunscher and Beddoes (1986) compare 

the Marr-Hildreth, Sobel, Prewitt, 3-level, 5-level, Compass Gradient, 

Kirsch and Roberts operators. They give the following order of 

merit:

(i) Marr-Fiildreth (best)

(ii) 3-level, 5-level, Kirsch

(iii) Sobel, Prewitt

(iv) Compass Gradient

(v) Roberts
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(6) Bryant and Bouldin (1979) compare the Roberts, Davies (maximum 

difference), Sobel and Frei-Chen edge detectors. They conclude 

that the Sobel operator gives the best performance, followed 

by the Frei-Chen.

G.3 Test Results

Detailed results and plots are given in table G.U and G.5, 

(on microfiche). These results are summarized below.

Test 1

The following detectors gave anisotropic responses w.r.t. edge orient

ation, and hence were rejected:

(a) all magnitude operators - Sobel, Prewit, Isotropic, Macleod, 

Machuca-Gilbert, Frei-Chen.

(b) all 2x2 operators - Gradient, Roberts, Mero-Vassey (their responses 

were asymmetric as well as anisotropic.)

(c) Laplacian and Beaudet operators (implemented as convolutions 

or as frequency-domain multiplications. The operators appear to 

enhance digitization effects on the edges, giving a noisy and 

anisotropic response. The reduced high-frequency response of 

the Marr-Hildreth operator appreciably reduces this problem, since 

digitization e ffects are most pronounced at high frequencies.)
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(d) option 2 of the autocorrelation operator.

(e) sampling configurations 3 and A fo r line detectors.

(f) line detectors based on the semi-linear product (taking the 

product, rather than the sum, enhances any anisotropy in the 

response).

(g) Moore and liialtz line detector (In general, the number of masks 

used by template-matching operators controls the anisotropy of 

their response: fewer masks leads to greater anisotropy. The Moore 

and Waltz detector uses fewer masks than any other line detector.)

(h) Frei-Chen line detector

(i) line detectors based on the V -filter, Laplacian and Marr-Hildreth  

operators.

(j) Hough transform line detector (the limited number of azimuthal 

bins leads to an anisotropic response. The added computation 

required for more bins is probably not justified.)

Test 2

The template-matching operators generally gave poor estimates of 

feature orientation. The IMevatia and Babu masks gave the best per

formance of the edge detectors (due to their use of a relatively 

large number of masks). The Compass Gradient, Kirsch, 3-level and

5-level masks were rejected outright. The Nevatia and Babu masks
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were modified so that an average direction was calculated using the 

algorithm of Paton (1979) (see appendix F.2.3): these masks then gave 

acceptably accurate orientation estimates. (This modification may 

also have allowed the other masks to give acceptable performance, 

but their performance would always be poorer than that of the Nevatia  

and Baub masks. Their reduced computational cost does not ju stify  

this reduced performance.)

The zero-crossing detector used as part of the Marr-Hildreth operator 

also gave poor orientation estimates. For this operator, and for the 

Mean-Median difference (which gives no indication of feature orientation) 

a 5x5 Sobel operator is used to give orientation estimates fo r all 

future tests.

Test 3

The Moment, Frei-Chen and Hale Variance edge detectors gave non

linear responses w.r.t. edge height. The Hale Variance output was 

made linear by including a square-root transform in the operator. 

Mo transformation could be found to make the other two operators 

linear, so they were rejected.

Test U

The response of all operators was independent of the background 

grey-level.
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Test 5

The approximate order-of-merit for detector performance in the pres-

ence of noise was:

Edge detectors: best - 1. Product Averaging

2. Macleod, Hummel, IMevatia and Babu, 5x5

worst -

Sobel, 5x5 Prewitt

3. Hale Variance, 5x5 Autocorrelation

4. Hale Curvature

5. Machuca and Gilbert, Isotropic, 3x3 Sobel,

3x3 Prewitt, 3x3 Autocorrelation

6. Hale Min-Max, Mean-Median difference, 

Bovik Median

7. O’Gorman

Line detectors: best - 1. 5x5 Autocorrelation

2. 3x3 Autocorrelation

3. LIN1S, LIN2S, SUM2S 

U. IMON2S

5. LIN1P

6. NGN2P, LIN2P, SUM2P

worst - 7. Moore and liJaltz

(This order is fa irly  subjective - a compromise between false alarm 

and correct detection rates must be made. These results are in accord 

with the results determined by other authors (section G.2).)

The Marr-Hildreth, V -filte r  and Haralick operators were not classified

above: their responses were quite different to those of most other
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operators. All these operators were retained for further testing, 

since they represent major classes of feature detector, and I suspect 

that their performance has been limited by the inappropriate threshold

ing strategy  used in these tests. In particular

(a) a detailed decision strategy is built into the Haralick operator, 

hence the simple thresholding did not work well. The thin response 

over edges (only one pixel wide) may also lead to a high fa lse - 

alarm rate for the percentile-based thresholding. Similar comments 

possibly apply to the IMOIM2S line detector.

(b) The V -filte r and Marr-Hildreth operators guve very low false alarm 

rates, as well as low true detection rates (possibly due to their 

thin response over edges also). These operators may therefore  

work well to constrain operators with higher false alarm (amd 

true detection) rates, eg. see Fischler et al (1981) and Peacegood 

and Wilkinson (1986).

On the basis of these results, the following detectors were rejected:

(a) all line detectors with a Paton comparison rule,

(b) the Moore and Waltz line detector,

(c) the Hale Curvature and Min-Max operators, Mean-Median difference, 

Bovik Median, O’Gorman and 3x3 Autocorrelation edge detectors,

(d) all 3x3 gradient operators - Sobel, Machuca-Gilbert, Isotropic 

(larger operators give more smoothing, hence better preformance in 

the presence of noise. The feature localization of these operators 

is reduced, but should still be adequate for my purposes. If  better
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resolution is required, then higher resolution imagery should be 

used. The 3x3 Prewitt operator was retained for further testing  

to compare its spatial resolution with that of the 5x5 operator.)

Since all the 5x5 gradient operators give similar responses, only one 

was retained for further testing: the Prewitt operator (chosen arb it

rarily, although its simple masks might make a hardware implementation 

easier for the Prewitt operator than for the others). The Sobel, Macleod 

and Hummel operators were not tested any further.

Test 6

The orientation estimates for all operators were acceptable. (As 

expected, the range of orientation estimates was large in the presence 

of noise, especially for the 3x3 operators. However, the mean estimate 

was always quite accurate.)

Test 7

The Hale Variance, Haralick, 3x3 Prewitt and LIN2S operators were 

rejected. (The Hale Variance operator gave a poor true detection 

rate and high false alarm rate. The Haralick operator gave a lot 

of randomly scattered false alarms, where the false alarms from other 

operators were at least concentrated close to the edges. The 3x3 

Prewitt operator appears to o ffer no significant advantages over 

the 5x5 operator for resolution o f closely spaced features, but it 

has appreciably worse noise rejection capabilities. The LIN2S operator’s



response was no better than that of the LIN1S operator: there was 

no point in retaining both operators for further testing, since both 

operate on the same principals.)

The 5x5 Prewitt, Product Averaging and Nevatia and Babu operators 

gave very similar results. The V -filte r and Marr-Hildreth operators

give a slightly different trade-o ff between false alarms and true 

edges. All five operators give acceptable performance.

The LIIM1S, LIN2S, SUM2S and N0N2S operators all gave similar results 

(LIN1S gives slightly better R1 and R2, indicating that false alarms

are close to the lines, followed by LIN2S and SUM2S, and then NON2S).

All four operators gave acceptable results.

The Autocorrelation operators give good R1 and R2 values, but their 

responses showed poorer false alarm and true detection rates. This 

suggests that they are giving a very broad response over lines and 

edges. They were retained for further testing, largely due to the

novelty of their design.

Test 8

All operators gave acceptable results. The approximate order-of- 

merit was:

Edge detectors: best - 1. Prewitt, Nevatia and Babu

2. Product Averaging

3. V -filte r

A. 5x5 Autocorrelation (has a high false alarm 
rate)



- 315 -

worst - 5. Marr-Hildreth (has a low false alarm rate,

but also misses many features).

Line detectors: best - 1. 3x3 Autocorrelation

2. U N IS

3. SUM2S 

worst - U. N0N2S

(Line detectors are ranked largely on the basis of R1 and R2: the 

other measures were virtually the same for all four detectors.)

The results for the 5x5 Autocorrelation edge detector and the Marr- 

Hildreth operator were marginal, but all operators were retained 

for further testing.

Test 9

The autocorrelation operators respond equally well to both lines 

and edges. They are the only operators with this property, thus they 

are the preferred lineament detectors, all other factors being equal 

(especially since they were designed with alignment detection in mind 

also). However, a combination of two other operators may perform  

as well as a single autocorrelation operator, thus the other operators 

were retained for further testing.

The product-averaging, Prewitt, and Nevatia and Babu operators are 

the only ones that respond well to smooth features. This is not a 

great advantage, since smooth features at one resolution may be 

recognized as less smooth features at a lower resolution in the data

pyramid.
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As theory suggests, the N0N2S operator gives a more line-specific  

response than the SUM2S, which is more specific than the LIIM1S. Thus 

the NON2S is preferred if only lines are to be detected: for lineament 

detection, its advantage is not so clear.

The V-filter and Marr-Hildreth operators perform poorly. They were 

retained for further testing on their basis of their theoretical advan

tages only.

Test 10

The approximate order of efficiency (based on elapsed time, which 

is the parameter controlling practical application of the system) 

is:

1. Prewitt (best)

2. Nevatia and Babu, LIN1S

3. V-filter, Marr-Hildreth (in most efficient implementation) 

Product Averaging, SUM2S

U. IMON2S

5. 3x3 Autocorrelation

V-filter, Marr-Hildreth (in standard implementation)

6. 5x5 Autocorrelation

Much of the filtering for the Marr-Hildreth and V -filte r operators 

can be included in the directional filtering stage of the processing, 

in which case these operators can be implemented very efficiently. 

Otherwise, they are relatively slow. (A further, small time saving 

could be made by storing the filters, rather than generating them 

every time the operator is applied, but this would involve an appreci
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able cost in disk storage space.)

The relatively high cost of the autocorrelation operators can be 

tolerated for lineament detection, since they are the only operators 

to respond equally well to both lines and edges. Otherwise, a separate 

edge and line detector would need to be used. In any event, even 

the 5x5 autocorrelation operator costs considerably less than either 

of the relaxation labelling algorithms used later in the lineament 

analysis system.

Test 11

The figures-of-m erit show no sign ificant difference between the detect

ors: in fact, they indicate that none of the detectors give better 

than a random response in relation to the manual lineament maps. 

As discussed in section G.2, this re flects the poor accuracy of the 

manual interpretations as much as any failings of the detectors.

The appearance of the detector outputs indicated that their perform

ance was certainly better than random, thus the figure-of-m erit results 

were rejected. I examined the detector output for five sub-images 

from the Cornwall pyramid (image 311, 312, 321, 322 and 211), and gave 

the detectors the following ranking:

1. Nevatia and Babu, Prewitt, Product Averaging

2. Marr-Hildreth (tends to locate a large number of small-scale

features: this is acceptable in the context 

of the pyramid data structure)

LIN1S (locates edges as well as lines, and misses some lines)
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SUM2S (locates fewer edges than LIN1S, and more subtle lines) 

NON2S

3. V -filte r

U. 3x3 Autocorrelation

5. 5x5 Autocorrelation (response tends to be composed of blotches 

rather than lines, ie. it gives a very broad response over major 

features. It also tends to miss small-scale features. In general, 

major features can be located at low resolution levels of the 

data pyramid: a good response to small scale features is more 

important at this level.)

Results for five raw images and 20 directionally filtered images (5 

images x U directions each: see chapter 7 for details of the azimuthal 

windows used) were used in performing this evaluation.

G.** Final Decision

The following detectors were retained for testing with relaxation  

labelling, and possible inclusion in the lineament analysis system:

(1) Nevatia and Babu - it gives good results for all tests, and is 

the only remaining edge detector amenable to relaxation using 

the algorithm of Zucker et al (see chapter 5).

(2) 3x3 Autocorrelation - it is the only operator to detect both lines 

and edges (and also alignments). The 3x3 operator appears to give 

slightly better results overall, than the 5x5 operator.

(3) Marr-Hildreth
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(4) SUM2S

The other detectors were rejected for the following reasons:

(1) V -filte r - it gives no apparent advantage over the Marr-Hildreth  

operator, which has a stronger theoretical basis.

(2) Prewitt - it shows no strong advantage over the Nevatia and Babu 

operator (to which it is theoretically similar), but it is not amenable 

to Zucker et al relaxation.

(3) Product Averaging - it gives good results, but not sign ificantly  

better than the Nevatia and Babu or Prewitt operators. As heir- 

achical operation is built into the pyramid data structure, there 

is little  point in having it within the feature detection algorithm  

also: this merely serves to increase costs.

(4) LIN1S, N0N2S - their results are no better than those for SUM2S. 

THe theoretical differences between the line detectors are quite 

small: there is no point in retaining more than one.

It is also worth noting that the output from the Nevatia and Babu 

or Prewitt (or similar) operators may be useful for manual interpretation  

of imagery, as well as for further processing within the lineament 

analysis system. Many significant features are very clear in these 

results (in particular, major regional features show clearly as discont

inuities in the located edges). Raw images (not directionally filtered) 

give useful results, but the processing tends to emphasize sun-azimuth 

effects (features perpendicular to the solar-illumination direction

are strongly emphasized): this bias could be reduced by azimuth
whitening filtering.
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Table G.1 Detector Tests (1)

Operator 
(see appendix F 

for details)

Test

1/2 3 5 7 8 9 10 11

Laplacian:

3x3 convolution 1.1

5x5 convolution 1.2

7x7 convolution 1.3

freq. domain (2) 1.6

freq. domain (3) 1.5

Beaudet:

5x5 convolution 1.6

7x7 convolution 1.7

V-filter:

(2) 1.8

(3) 1.9 1.53 1.169 1.261 1.250 (6) (6) (6)

1.56 1.150

1.55 1.151

1.56 1.152

Marr-Hildreth (3) 1.10 1.57 1.153 1.262 1.251 96) (6) (6)

1.58 1.156

1.59 1.155

1.60 1.156

Compass Gradient 1.11

Kirsch 1.12

3-level 1.13

5-level 1.16

Nevatia and Babu

Standard operator 1.15 1.61

1.62

1.63

1.66
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Operator 
(see appendix F 

for details)

Test

1/2 3 5 7 8 9 10 11

Nevatia and Babu

Paton directions 1.16 1.65 1.157 1.243 1.252 (4) (4) (4)

1.66 1.158

1.67 1.159

1.68 1.160

2x2 gradient:

square-root 1.17

magnitude 1.18

Roberts:

square-root 1.19

magnitude 1.20

Mero-Vassey:

square-root 1.21

magnitude 1.22

3x3 Sobel:

square-root 1.23 1.69 1.161

1.70 1.162

1.71 1.163

1.72 1.164

magnitude 1.24

3x3 Prewitt:

square-root 1.25 1.73 1.165 1.244

1.74 1.166

1.75 1.167

1.76 1.168

magnitude 1.26
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Operator 
(see appendix F 

for details)

Test

1/2 3 5 7 8 9 10 11

Isotropic

square-root 1.27 1.77 1.169

1.78 1.170

1.79 1.171

1.80 1.172

magnitude 1.28

Machuca-Gilbert:

square-root 1.29 1.81 1.173

1.82 1.174

1.83 1.175

1.84 1.176

magnitude 1.30

5x5 Sobel:

square-root 1.31 1.85 1.177

1.86 1.178

1.87 1.179

1.88 1.180

magnitude 1.32

5x5 Prewitt:

square-root 1.33 1.89 1.181 1.245 1.253 (4) (4) (4)

1.90 1.182

1.91 1.183

1.92 1.184

magnitude 1.34

Macleod

square-root 1.35 1.93 1.185

1.94 1.186

1.95 1.187

1.96 1.188

magnitude 1.36
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Operator 
(see appendix F 

for details)

Test

1/2 3 5 7 8 9 10 11

Product Averaging 1.37 1.97 1.189 1.256 1.256 (6) (6) (6)

1.98 1.190

1.99 1.191

1.100 1.192

Mean-Median D ifferent 3 1.38 1.101 1.193

1.102 1.196

1.103 1.195

1.106 1.196

Hale:

Minmax 1.39 1.105 1.197

1.106 1.198

1.107 1.199

1.108 1.200

Variance 1.60 1.109 1.201 1.267

1.110 1.202

1.111 1.203

1.112 1.206

Curvature 1.61 1.113 1.205

1.116 1.206

1.115 1.207

1.116 1.208

Moment 1.62 1.117

1.118

1.119

1.120

Bovik Median 1.63 1.121 1.209

1.122 1.210

1.123 1.211

1.126 1.212

1.237

1.238

1.239

1.260
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Operator 
(see appendix F 

for details)

Test

1/2 3 5 7 8 9 10 11

Frei-Chen:

square-root 1.44 1.125

1.126

1.127

1.128

magnitude 1.45

Flummel 1.46 1.129 1.213

1.130 1.214

1.131 1.215

1.132 1.216

O’Gorman 1.47 1.133 1.217

1.134 1.218

1.135 1.219

1.136 1.220

1.233

1.234

1.235

1.236

Haralick 1.48 1.137 1.221 1.248

1.138 1.222

1.139 1.223

1.140 1.224

Autocorrelation

(edge tests):

3x3 operator 1.49 1.141 1.225

1.142 1.226

1.143 1.227

1.144 1.228

5x5 operator 1.51 1.145 1.229 1.249 1.255 (4) (4) (4)

1.146 1.230

1.147 1.231

1.148 1.232
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Operator 
(see appendix F 

for details)

Test

1/2 3 5 7 8 9 10 11

LIN1S 2.1 2.38 2.82 2.1A6 2.152 (A) (A) (A)

2.39 2.83

2. AO 2.8A

2.A1 2.85

LIN1P 2.2 2.A2 2.86

2. A3 2.87

2.AA 2.88

2.A5 2.89

2.126

2.127

2.128

2.129

LIN2S 2.3 2.A6 2.90 2.1A7

2.A7 2.91

2.A8 2.92

2.A9 2.93

LIN2P 2.A 2.50 2.9A

2.51 2.95

2.52 2.96

2.53 2.97

2.130

2.131

2.132

2.133

LIN3S 2.11

LIN3P 2.12

LINAS 2.19

LINAP 2.20

SUM2S 2.5 2.5A 2.98 2.1A8 2.153 (A) (A) (A)

2.55 2.99

2.56 2.100

2.57 2.101

SUM2P 2.6 2.58 2.102

2.59 2.103

2.60 2.10A

2.61 2.105

2.13A
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Operator 
(see appendix F 

for details)

Test

1/2 3 5 7 8 9 10 11

SUM2P (cont) 2.135

2.136

2.137

SUM3S 2.13

SUM3P 2.1A

SUMAS 2.21

SUMAP 2.22

PRODZS 2.7

PROD2P 2.8

PROD3S 2.15

PROD3P 2.16

PRODAS 2.23

PRODAP 2.2A

N0N2S 2.9 2.62 2.106 2.1A9 2.15A (A) (A) (A)

2.63 2.107

2.6 A 2.108

2.65 1.109

IMONZP 2.10 2.66 2.110

2.67 2.111

2.68 2.112

2.69 2.113

2.138

2.139

2.1 A0

2.1A1

N0N3S 2.17

N0N3P 2.18

NONAS 2.25

NONAP 2.26

Moore-UJaltz:

standard operator 2.27

Paton directions 2.28 2.70 2.11A

2.71 2.115

2.72 2.116

2.73 2.117

2.1A2

2.1 A3
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Operator 
(see appendix F 

for details)

Test

1/2 3 5 7 8 9 10 11

Moore-Waltz (cont.) 2.144

2.145

Frei-Chen 2.29

(line detector)

Autocorrelation

(line tests):

3x3 operator 2.30 2.74 2.118 2.150 2.155 (4) (4) (4)

2.75 2.119

2.76 2.120

2.77 2.121

5x5 operator 2.32 2.78 2.122 2.151

2.79 2.129

2.80 2.124

2.81 2.125

V-filter 2.34

(line detector)

Laplacian 2.35

(line detector)

Narr-Hildreth 2.36

(line detector)

Hough Transform 2.37

Notes

(1) Results are plotted in table G.4 (on microfiche). Figures in columns 
1 to 11 indicate the figure number for the relevant plot within 
table G.4. Where no figure is given, the test was not performed 
(ie. the detector was rejected on the basis of earlier tests).

Results for tests 4 and 6 are discussed in the text.

Raw data for all the tests is given in table G.5 (on microfiche).

(2) 3x3 zero-crossing detector.

(3) 7x7 zero-crossing detector.
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Table G.1 

Notes (cont.)

(U) Results for tests 9, 10 and 11 are given in table G.5, and discussed 
in the text.
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T a b le  G.2 T e s t  Im a g es

Image Size Feature
Orientation

Feature
Magnitude

Background
Grey-level

Noise
%

Comments

1 32x32 0-180°
(1)

10 10 (2)

2 32x32 0,15,3Q,A5° 10,12,13,15,
17,20,30,50,
70,100

100 (2)

3 32x32 0° 10 10,12,13,15
17,20,30,50,
70,100

(2)

A 256x256 0,15,30,A5° 100 100 1,2,3,5, 
7,10,20, 
30,50, 
70,100

(3)

5 256x256 0° 100,-100 100 10 (3),(A)

6 256x256 0 100,-100
100,-99
100,-97
100,-90
100,-80
100,-70
100,-50
100,-30
100,-10

100
I0

(3),(5)

7 256x256 0,5°
0,10°
0,20°
0,30°
0,A5°
0,60°
0,90°

100,-100 100 10 (3),(6)

8 512x512 Images 211, 311, 312, 321, 322 of Cornwall Data Pyramid

Notes

(1) 0 to 90° in 5° increments; 90 to 180° in 10° increments.

(2) Smoothed with the 3x3 convolution operator: 0.0625 0.0625 0.0625
0.0625 0.5000 0.0625 
0.0625 0.0625 0.0625

to simulate the point-spread function of a typical imaging system.

(3) Filter of note (2) was applied prior to addition of noise.
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T a b le  G.1 N o t e s  ( c o n t . )

(*») 2 parallel features, spaced 3, 6, 9, 12 and 15 pixels apart.

(5) 2 parallel features, spaced 15 pixels apart.

(6) 2 intersecting features.

(7) For all tests, true edge pixels are defined as the 2 pixels (one 
either side) adjacent to the unsmoothed step edge. True line pixels 
are defined as the pixels directly over the unsmoothed line.

Feature orientations are given in geographic convention (0° = 
North, positive clockwise).

Noise is zero-mean, pseudo-Gaussian and additive. The same noise 
image was used for each test (after appropriate scaling to give 
the desired standard deviation). The noise % is defined as

(noise standard deviation) /  (feature magnitude) x 100%.
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T a b le  G.3 T e s t  D e t a i l s  (1)

Test Image Figures-of-Merit
(2)

Purpose

1 1 1,2 To test the isotropy of detector 
response w.r.t. feature orientation. 
Detectors whose output amplitude 
varied by more than 20% were rejected.

2 1 3 To test the accuracy of the calculated  
feature orientations. Detectors 
whose calculated orientation was 
in error by more than 10° were 
rejected.

3 2 1,2 To measure the amplitude of the 
detector response versus feature  
magnitude. Detectors whose response 
was no linear were rejected.

4 3 1,2 To measure the amplitude of the 
detectors response versus background 
grey-level. Detectors whose response 
was not independent of background 
were rejected.

5 4 4,5,6,7,8 To evaluate the detector response 
in the presence o f noise. Detectors 
were ranked on the basis of the 
figures-of-m erit and the worst 
detectors were rejected.

6 4
(3)

3 To test the accuracy of the calculated  
feature orientations in the presence 
of noise.

7 5,6 4,5,6,7,8 To evaluate the detectors' ability  
to resolve closely spaced features.

8 7 4,5,6,7,8 To evaluate the detectors' ability  
to resolve intersecting features.

9 4
(3)

1,2,4,5,6,7,8 To evaluate the detectors' response 
to d ifferent features.

(4)

10 8 CPU time, 
elapsed time, 
10 operations, 
page fau lts

To determine the operating cost 
of the detectors.

(5)

11 8 4,5,6,7,8
manual evaluation

To examine the detectors' response 
to real images.

(6)
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Notes

(1) Figures-of-merit 1 and 2 were normalized to the amplitude output
by the detector for a feature orientation o f 0°. To measure figures- 
of-merit 4, 5, 6, 7 and 8, a binary (thresholded) detector output 
is required. Following the procedure of Fram and Deutsch (1975), 
the detector output was thresholded so that there was a fixed 
percentage of 1fs (ie. pixels flagged as containing a feature). 
Kitchen and Rosenfeld (1981), Lunsche and Beddoes (1986) and Abdou 
and Pratt (1979) give further discussion of thresholding techniques 
in this context. A 2% threshold was used: this means that there 
will always be a high false alarm rate. Since relaxation labelling 
can be expected to clear up many false alarms, this represents 
a normal mode of operation fo r the primitive feature detectors. 
For some low-noise images, the histograms used did not give su ffic 
ient resolution to define percentiles accurately: performance
was degraded in these cases.

For the Bovik and O'Gorman operators, simple thresholds of 9.0 
and 0.90 respectively were also tested. (The mode of operation 
of these detectors allows such a strategy: their response is ideally
10.0 or 1.0 over a step edge, independent of the edge height.) 
Similarly, a simple threshold was tested for LIN1P, LIN2P, SUM2P 
and NON2P.

(2) Figures-of-merit are described in detail in section in section G.1, 
and in note (1) above.

(3) Only the 10% noise image was tested.

(A) Edge detectors were tested on line images, and vice versa, to 
determine their ability to detect other features. Their response 
to very smooth features (smoothed with a 7x7 convolution operator 
before addition of noise) was also tested.

Detectors should give a reasonable response to features which 
vary from those used through the testing so far. Ideally the re
sponse should be equally good for lines and edges (since both 
are equally valid lineament primitives). Failing this, the response 
should be quite specific to either lines or edges alone.

(5) All else being equal, the cheapest detector is preferred.

CPU time alone is not a good measure of cost (partly because 
it measures the VAX CPU cost, but not the array-processor time). 
For a system with a small number of users, elapsed time is a good 
measure of cost: this is often the main constraint on the practica l
ity of a system. (In any case, many image processing systems are 
configured for eithera single user or a small number of users.)

Results for this test are the average of 5 runs. The te st was 
run when there were no other users on the system.

(6) The raw image and four azimuthal windows were tested. Manual 
interpretation of the images provided feature maps for evaluation 
of the detector performance. A 30% ADAPTH threshold was applied 
to the detector outputs (see section 5.4). For the azimuthally- 
filtered images, features whose calculated orientation was more 
than 22.5° outside the window were ignored.
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T a b le  P lo t s  o f  D e t e c t o r  P e r fo r m a n c e  C h a r a c t e r i s t i c s

Plots of detector performance characteristics for tests 1, 2, 3, 5, 
7 and 8 are stored on microfiche (inside back cover). There are 255 
A3 pages o f plots for edge-detector performance, and 155 A3 pages 
of plots for line-detector performnace.

Table G.5 Raw Test Results

The raw data from tests 1 to 11 is stored on microfiche (inside back 
cover), together with tables of convergence characteristics fo r the 
relaxation labelling tests (appendix I). This table contains 8711 lines 
of data in all.

A supplement to table G.5, containing results for test 6, is overleaf.
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T a b le  G.5 (S u p p le m e n t)  T e s t  6 R e s u lts

Calculated Orientation

Operator True
Orientation 

= 0°

True
Orientation 

= 15°

True
Orientation 

= 30°

True
Orientation 

= 45°

V-filter 0° 11° 23° 45°

Nevatia-Babu 0° 11° 25° 45°

3x3 Prewitt 0° 13° 27° 45°

5x5 Prewitt 0° 11° 25° 45°

Product-
Averaging 0° 17° 31° 45°

Hale Variance 0° 15° 31° 45°

Haralick 0° 13° 27° 45°

5x5 AUTOC 0° 16° 31° 45°

U N IS 0° H° 29° 45°

LIN2S 4° 15° 30° 45°

SUM2S 4° 15° 30° 45°

NON2S 1° 14° 33° 45°

3x3 AUTOC 0° 14° 27° 45°
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Appendix H

The Autocorrelation Operator (AUTOC)

Although the cross-correlation function has commonly been used for  

feature detection (via template-matching masks), the autocorrelation  

function has been used much less frequently. Clowes (1962) notes 

that cross-correlation operators, due to their use of idealized standard  

masks, are very sensitive to small changes in the size or orientation  

of the pattern being sought. The autocorrelation, by using the input 

as its own mask, is not so sensitive to minor perturbations.^Maxima 

in the autocorrelation will correspond to translations of the pattern  

along a straight line, thus giving information on the orientation of 

trends in the data.

Agarwal (1968) used the cross-correlation between a small subset 

of an image and a larger surrounding neighbourhood to delineate 

trends in magnetic and gravity data (where high correlations suggest 

a region of similar character). Although this is more correctly called 

a space-variant, data-adaptive cross-correlation operation, I prefer 

to call it an autocorrelation operator, in order to distinguish it from 

cross-correlation using idealized masks, and due to its obvious similar

ity to the autocorrelation function. I can find no evidence of this 

approach having been used in image analysis, although it clearly should 

work.

It is also worth noting that Chen and Pavlidis (1983) (among many 

others) illustrate the use of autocorrelation (or closely related funct
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ions) to characterize texture and hence segment textured images. 

Thus an operator based on the autocorrelation might be useful for 

detecting texture edges as well as other features.

Summarizing, a feature detector based on the autocorrelation operation 

is expected to offer the following advantages:

(1) Due to its data-adaptive nature, it should be able to recognize 

lines, edges and alignments (since it makes no assumptions about 

the nature of the feature being sought, but just looks for a contin

uation of the current feature). Also, if  a feature changes character 

slowly along its length, then the operator can adapt to th is and 

continue to recognize the feature.

(2) It should be able to detect texture edges.

(3) It should be unresponsive to noise, especially uncorrelated noise.

Implementation

The autocorrelation operator (AUTOC) is implemented in the lineament 

analysis system using the following algorithm:

(1) Define template size, NT, and neighbourhood size, NN. The current 

version offers NT=3 (the 3x3 AUTOC operator), in which case NN=9, 

and NT=5 (the 5x5 AUTOC operator), in which case NN=11.

(2) FOR each pixel in the image, with grey-level = F,

(a) calculate the neighbourhood mean (over the NNxNN neighbour

hood).

(b) calculate Ff = F - neighbourhood mean

(c) output this result. 
END
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(3) FOR each pixel in the image output by step (2)

(a) calculate the cross-correlation between the NTxNT region about 

the pixel and the 48 NTxNT o ffse t regions (3 sh ifts  x 16 d irect

ions, as shown in figure H.1).

(b) calculate output = maximum correlation, and its direction. 

(Direction is calculated using the averaging scheme of Paton 

(1979), to give improved accuracy.)

(c) calculate the square-root of the output magnitude, to give 

a linear response with respect to edge magnitude.

END.

Note that the use of three sh ift distances (approximately 1, 2, and 

3 pixels) allows some gap-spanning, and recognition o f alignments up 

to three pixels distant. To allow recognition of larger alignments, 

more sh ifts  would be desirable, but the computational cost would 

be prohibitive. (Larger templates might also be required in order 

to recognize alignments: again the cost would be prohibitive.)
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Figure H.1 Correlation o ffse ts used in AUTOC

............................. • •

15 16 16 1c 2b 2c 3c

14 15 16 1b 2a 3b 4

14 14 15 1a 3a 4 4

13 13 13 C 5 5 5

12 12 11 9 7 6 6

12 11 10 9 8 7 6

11 10 10 9 8 8 7

C = central pixel of operator 

W = o ffse t direction (N = 1 to 16) 

a,bfc = o ffse t distance

examples

(i) template position for 3x3 operator (NT=3) and offset 5b is shown

(ii) template position for 5x5 operator (NT=5) and offse t 15c is shown



-  339 -

Appendix I

Relaxation Testing

The relaxation algorithms of Zucker at al (1977) and Schachter et 

al (1977) (see section 5.3 for details of these algorithms) were tested  

on data from the Cornwall data pyramid in order to define acceptable  

parameters for use in the lineament analysis system. (Constraints 

on available computer time precluded more extensive testing, thus 

I concentrated on defining acceptable rather than optimal parameters. 

In any event, to be of practical value, the results must be robust 

against small changes in the parameters.)

1.1 Test Data and Method of Evaluating Results

A 512x512 image from the Cornwall data pyramid (image 211) was used. 

The raw image and four directionally-filtered images (using the azimuth

al windows described in section 7.1) were each processed with the 

following primitive feature detector /  relaxation combinations:

(a) IMevatia and Babu Operator /  Zucker et al relaxation,

(b) SUM2S Operator /  Zucker et al relaxation,

(c) IMevatia and Babu plus SUM2S Operators /  Schachter et al relaxation,

(d) Marr-Hildreth plus SUM2S Operator /  Schachter et al relaxation,

(e) Autocorrelation Operator (appendix H) /  Schachter et al relaxation. 

(The nature of the Zucker et al algorithm precludes its  use with 

output from the Marr-Hildreth operator. Similarly, it can only be 

used with output from the SUM2S or Nevatia and Babu operators before
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this is combined by the algorithm of section 5.2.)

Before relaxation, the feature maps were thresholded with a 10% 

SEMITH and 30% ADAPTH operation (see section 5.4). This helped to 

minimize the effects of obvious noise responses. For the directionally 

filtered images, FIL2TH (section 5.4) was applied to exclude pixels 

with a calculated direction more than 22.5° outside the azimuthal

window.

For each detector /  relaxation combination, 1, 2, 3 and 10 iterations

of relaxation were tested, with other parameters as described below.

This number of iterations is in accord with the observations by both 

Schachter et al and Zucker et al that usually only a small number 

of iterations is needed to give a sign ificant improvement.

Results were evaluated by manual comparison of the raw image, unrel

axed feature map and the relaxed feature maps. As with the final 

tests described in appendix G, no acceptable method for automatic

evaluation of the parameter combinations could be found. Before 

making this manual comparison, feature maps were thresholded with 

a 10% SEMITH and 70% ADAPTH operation. This helped produce ’’clean" 

lineament maps.

1.2 Relaxation Parameters: Zucker et al Algorithm

Table 1.1 shows the compatability coefficients used for the output 

from the Nevatia and Babu and SUM2S operators. Neighbourhood sizes

of 3x3 and 5x5 were tested.
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Table 1.1 Compatibility Coefficients for Zucker et al Relaxation

(a) IMevatia and Babu Operator

Orientation

0° 30° 60° 90° 120° 150° 180° -150°-120 0 1 <0 CD
0 -60° -30° no-lineament

0° 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 -0.01

30° 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 -0.01

60° -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.01

90° -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -0.01

120° -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.01

150° 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 -0.01

180° 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 -0.01

-150° 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 -0.01

-120° -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.01

-90° -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -0.01

-60° -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.01

-30° 0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 -0.5 -1.0 -0.5 0.5 1.0 -0.01

no-lin . -.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.12
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(b) SUM2S Operator

Orientation

0° 30° 45° 60° 90° 0° -30° -45° -60° -90° no-lineament

0° 1.0 0.5 0.0 -0.5 -1.0 1.0 0.5 0.0 -0.5 -1.0 -0.01

30° 0.5 1.0 0.5 o.s -0.5 0.5 -0.5 -0.5 -1.0 -0.5 -0.01

45° 0.0 0.5 1.0 0.5 0.0 0.0 -0.5 -1.0 -0.5 0.0 -0.01

60° -0.5 0.0 0.5 1.0 0.5 -0.5 -1.0 -0.5 -0.5 0.5 -0.01

90° -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -0.01

-30° 0.5 -0.5 -0.5 -1.0 -0.5 0.5 1.0 0.5 0.5 -0.5 -0.01

-45° 0.0 -0.5 -1.0 -0.5 0.0 0.0 0.5 1.0 0.5 0.0 -0.01

-60° -0.5 -1.0 -0.5 -0.5 0.5 -0.5 0.5 0.5 1.0 0.5 -0.01

-90° -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -0.01

no-lin. -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.14
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1.3 Relaxation Parameters: Schachter et al Algorithm

The following coefficients were tested:

(a) c1 = 0.85 c2 = 0.10 c3 = 0.025 c4 = 0.025 W = X .

(b) c1 = 0.70 c2 = 0.15 c3 = 0.06 c4 = 0.09 W -  A.

(c) C1 = 0.50 c2 = 0.20 c3 = 0.15 c4 = 0.15 lii =

(Coefficents (a) and (b) correspond approximately to those used by 

Schachter et al in their examples. Coefficients (c) represent a more 

extreme combination, which should give strong noise reduction perform- 

ence.)

Neighbourhood sizes of 3x3, 5x5 and 7x7 were tested.

In all cases, iteration was stopped if  the mean change to the output 

feature probabilities was less than 1% after any iteration. (More precise 

results do not justify the great expense of added iterations.)'

1.4 Test Results

1.4.1 Zucker et ai Algorithm

The results were excellent (relaxation gave good noise cleaning per

formance and some useful gap-spanning, without reducing too many 

subtle features in the first  couple of iterations), but very expensive 

(approximately 30 minutes per iteration for a 512 x 512 image. This 

compares with about 5 minutes per iteration for the Schachter et 

al algorithm.) This is largely due to the high I/O load associated with 

using a large number of labels. On the other hand, the use of a large



number of labels clearly contributes to the excellent final results.

For practical purposes, no more than one iteration of this algorithm  

could be used in the final system (given the desire to process a 2048 

x2048 image in a weekend). The results from one iteration are compar

able to, or slightly better than, those from two or three iterations 

of the Schachter et al algorithm, but whether thay are so fa r ahead 

as to justify  the additional computational cost is debatable. On the 

basis of these tests, I decided to use the Schachter et al algorithm  

in the lineament analysis system, with the proviso that if  special 

hardware was available, I would probably prefer the Zucker et al 

algorithm.

1.4.2 Schachter et al Algorithm

Coefficients (b) and (c) generally gave far better results than those 

for coefficients (a), especially fo r the autocorrelation operator. 

Coefficients (a) do remove some noise and span some gaps in the 

first couple of iterations, but a fte r this they tend merely to make 

the image more binary (ie. low responses tend to zero, high responses 

to one). Thresholding can do this fa r more cheaply, and for results 

which are not noticably worse. The convergence behaviour (the percent

age change to the feature possibilities during each iteration) for  

coefficients (a) was also quite poor: there tended to be a small hump 

at 3 or 4 iterations, rather than the monotonic-decreasing behaviour 

which would be ideal. (Figures for the convergence are given on micro

fiche: table G.5.) The curve is reasonably fla t a fter 5 or 6 iterations, 

but the percent change has not converged on zero - again, this behav

iour is non-ideal.
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The concergence for both coefficients (b) and (c) was quite good 

- monotonic decreasing and converging on zero a fte r 5 or 6 iterations. 

The convergence is slightly faste r for coefficients (c), with more 

change in the initial few iterations (suggesting that fewer iterations 

would be required for coefficients (c) than coefficients (b), with 

obvious cost advantages). Both se ts of coefficients give sign ificant 

noise-cleaning in their f ir s t  couple of iterations. A fter two or three 

iterations, however, subtle features sta rt to disappear and gaps 

start to appear in features. Two iterations with coefficients (c) give 

comparable results to three iterations with coefficients (b), hence 

two iterations with coefficients (c) are the preferred parameters 

for this algorithm, giving good noise-cleaning without too much loss 

of subtle detail, and quite cheaply.

The results using the Nevatia and Babu and SUM2S operators were 

far better than those from the autocorrelation operator, especially 

for the detection of subtle features. The Marr-Hildreth operator 

gave comparable results to the Nevatia and Babu operator.

Use of larger neighbourhoods (5x5 or 7x7) gave slightly faster converg

ence, but the final results did not appear significantly different 

to those for a 3x3 neighbourhood. Certainly the added cost of using 

a larger neighbourhood could not be justified for the detection of 

subtle features, although there might be some advantage in using 

a 7x7 neighbourhood for the detection of regional features (as might 

be expected - such features require more contextual information 

for their recognition, while local features can, by definition, be recog

nized in a small neighbourhood). Only a 3x3 neighbourhood has been 

used in the final version of the lineament analysis system.
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Appendix 3

Computers Used to Implement the Lineament Analysis System

The bulk of the lineament analysis system is implemented on a VAX 

11/780 minicomputer operating under VMS. An attached FPS-5100 series 

array processor performs most of the processing (the highly parallel 

nature o f the algorithms used allows good use to be made of the 

array processor). Where possible, 10 to the system is performed via  

disk, but many intermediate results need to be stored to tape, due 

to limited availability of disk space. High-speed (125 i.p.s.), high- 

density (6250 b.p.i.) half-inch tapes are used for this purpose. (Typically 

15 Mbyte of disk storage and up to 60 Mbyte of tape storage is used 

while processing a 2048x2048 image. This could be reduced slightly, 

at no cost to performance, with more efficient organization of some 

command files. However, a sign ificant reduction in storage requirements 

could only be achieved a t the cost of a significant increase in process

ing time, eg. via data compression algorithms, which could easily reduce 

storage by a factor of four, or more.)

Image display and pseudocolouring etc. is done on a PDP-11/24 mini

computer with an attached IIS Model 70-F image processor. The system  

runs the IIS  System-500 software under RSX-11M, with some additional 

utility programs. An antiquated tape drive on this system was a princip

al cause of failure to fully process the Saudi Arabian image (although 

the tape drives on the VAX also gave problems while processing this

image).
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