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ABSTRACT

Several of the Implications of the presence of 
topological defects in the early universe are considered.

Chapter one provides a brief introduction to the 
subject.

In chapter two a three dimensional model for the 
formation of monopoles connected by strings is presented. 
The length distribution of the strings has been found using 
a Monte Carlo simulation of the phase transition. The 
result is that long strings connecting monopoles are 
exponentially suppressed. The implications of the results 
for the monopole problem are discussed.

In chapter three the dynamics of, and radiation from, 
superconducting strings are studied. An approximate local 
action for a current carrying string is derived and some 
exact solutions to its equation of motion given. The 
radiation from one of these solutions is calculated exactly 
and is found to be finite (unlike the results of previous 
work). It is shown that loop shrinkage can lead to current 
loss rather than gain and the astrophysical implications of 
the work are discussed.

In chapter four the parameter space for theories of 
the type which produce bosonic strings is investigated. The 
tunnelling rate for current loss from the string is also
estimated.
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Chapter five presents the results of a study of the 
nature of phase transitions leading to the production of 
cosmic strings. The statistical properties of the strings 
are derived and the implications of the results for the 
cosmic string scenario of galaxy formation discussed.
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PREFACE

The w o r k  p r e s e n t e d  in this t h e s i s  w a s  c a r r i e d  out in 

t h e  D e p a r t m e n t  of Ph y s i c s ,  I m p e r i a l  College, L o n d o n  

b e t w e e n  June 1986 and O c t ober 1987 and in the a s t r o p h y s i c s  

g r o u p  at F e r m i l a b  b e t w e e n  O c t o b e r  1987 and M a y  1988 under 

the s u p e r v i s i o n  of P r o f e s s o r  T.W.B. K i b b l e  a n d  Doctor 

N.G. Turo k ,  w i t h  the f i n a n c i a l  s u p p o r t  of an S E R C  R e s e a r c h  

S t u d e n t s h i p .

U n less o t h e r w i s e  stated, the w o r k  is o r i g i n a l ,  and it 

h a s  not b een s u b m i t t e d  b e f o r e  for a d e g r e e  of thi s  or any 

other u n i v e r s i t y .  C h a p t e r  2 is b a s e d  on w o r k  w i t h

E . C o p e l a n d ,  T . W . B  Kibble, D . M i t c h e l l  and N . T u r o k  p u b l i s h e d  

in Nucl. Phys. B 2 9 8 , 4 4 5 ( 1988); C h apter 3 on w o r k  w i t h

E . C o p e l a n d ,  M . H i n d m a r s h  and N . T u r o k  to appe a r  in Nucl.

Phys. B in 1988; C h a p t e r  4 on w o r k  w i t h  M . H i n d m a r s h  and 

N . T u r o k  to a p pear in Phys. Lett. B in 1988 a n d  C h a p t e r  5 on 

w o r k  w i t h  E . C o p e l a n d  and R . R i v e r s  r e l e a s e d  as a F e r m i l a b  

p r e p r i n t  and s u b m i t t e d  to Nucl. Phys. B.

I a m  d e e p l y  i n d e b t e d  to Prof. T . W . B . K i b b l e  for h is  

c o n s t a n t  i n t e r e s t  in, and h e l p  with, my r e s e a r c h .  I w o u l d  

like to t h a n k  all my f r i e n d s  at F e r m i l a b  and Imperial  

C o l l e g e  and e s p e c i a l l y  A . A l b r e c h t ,  E . C o p e l a n d ,  T.Evans, 

M . H i n d m a r s h ,  H . H o d g e s ,  D.Levy, D . M i t c h e l l  an d  R . R i v e r s  for 

the m a n y  u s e f u l  d i s c u s s i o n s .
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Finally, I w o u l d  e s p e c i a l l y  like to t h a n k  H e l e n  

P o p h a m  a n d  Neil Turo k ;  Neil for h i s  gui d a n c e ,  f r i e n d s h i p  

and the m a n y  i d e a s  he h as s h a r e d  w i t h  me, H e l e n  for 

t he love a nd s u p p o r t  s h e  gave me  d u r i n g  my  tw o  y e a r s  of 

r e s e a r c h  and d u r i n g  t he p r o d u c t i o n  of this thesis.
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To my  p a r e n t s

- T h a n k  Y o u ! -
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C H A P T E R  1: I N T R O D U C T I O N
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CHAPTER 1. Introduction

T h e  h y p o t h e s i s  t h a t  t he u n i v e r s e  w as o n c e  v e r y  hot h a s  

led to the d e v e l o p m e n t  of a c l o s e  r e l a t i o n s h i p  b e t w e e n  

p a r t i c l e  p h y s i c s  and c o s m o l o g y .  P a r t i c l e  p h y s i c s  e n a b l e s  

us to u n d e r s t a n d  our hot past, w h i l s t  c o s m o l o g y  h a s  p r o v e d  

a u s e f u l  t e s t i n g  g r o u n d  on w h i c h  to try out n e w  and 

s p e c u l a t i v e  i d eas in p a r t i c l e  p h y s i c s .  A s t r o p h y s i c a l  

o b s e r v a t i o n s  h a v e  a l s o  b e e n  u s e f u l  in p l a c i n g  s t r o n g  

r e s t r i c t i o n s  on s o m e  of the p a r a m e t e r s  of the m o r e  s t a n d a r d  

p h y s i c s  m o d e l s .

T h e  s t a n d a r d  c o s m o l o g i c a l  m o d e l  [l.l] b e g i n s  s h o r t l y  

a f t e r  the P l a n c k  t i m e  and is b a s e d  on the p r e m i s e  of a 

h o m o g e n e o u s  i s o t r o p i c  u n i v e r s e  in a s t a t e  of t h e r m a l  

e q u i l i b r i u m .  U s i n g  n o t h i n g  but well e s t a b l i s h e d  p h y s i c s ,  

the m o d e l  has b e e n  h i g h l y  s u c c e s s f u l  in p r o v i d i n g  a 

r a t i o n a l e  for m a n y  h i t h e r t o  u n e x p l a i n e d  o b s e r v a t i o n s .  It 

has for example, led to a clear u n d e r s t a n d i n g  of 

n u c l e o s y n t h e s i s  and in p a r t i c u l a r  a c c o u n t s  for the r e l a t i v e  

p r i m o r d i a l  a b u n d a n c e s  of h y d r o g e n ,  h e l i u m  and l i t h i u m

[1.2]. T he t h e o r e t i c a l  p r e d i c t i o n s  of t h e s e  a b u n d a n c e s  are 

ho w e v e r ,  s e n s i t i v e  to the number of t y pes of p a r t i c l e s  of 

v a r i o u s  s p e cies. A s t r o p h y s i c a l  o b s e r v a t i o n s  h a v e  t h e r e f o r e  

b e e n  a b l e  to c o n s t r a i n  our s t a n d a r d  p a r t i c l e  p h y s i c s  

m o d e l .

For m a n y  y e a r s  t he h o m o g e n e i t y  of the 3K b a c k g r o u n d  

r a d i a t i o n  m a d e  it d i f f i c u l t  to u n d e r s t a n d  the f o r m a t i o n  of 

g a l a x i e s .  R e c e n t l y  h o w e v e r ,  t h a n k s  to some of t he m o r e  

s p e c u l a t i v e  i d eas of p a r t i c l e  p h y s i c s  two p l a u s i b l e
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s c e n a r i o s  h a v e  b e e n  s u g g e s t e d  - i n f l a t i o n  [1.3] and c o s m i c  

s t r i n g s  [1.4].

I w o u l d  like to e x p l a i n  in a l i t t l e  m o r e  d e t a i l  s o m e  of 

t h e  i d e a s  l e a d i n g  to t h e  s e c o n d  of t h e s e  p i c t u r e s .  T h e  i dea  

that th e  e l e c t r o m a g n e t i c  a nd s t r o n g  i n t e r a c t i o n s  a r e  all 

u n i t e d  at e x t r e m e l y  h i g h  e n e r g i e s  in a g r a n d  u n i f i e d  t h e o r y

[1.5] d e s c r i b e d  by  a s i m p l e  g r o u p  is an a t t r a c t i v e  

h y p o t h e s i s .  At lower e n e r g i e s  the u n i f i e d  s y m m e t r y  h a s  to 

be  s p o n t a n e o u s l y  b r o k e n  by, for ex a m p l e ,  t he 

H i g g s - K i b b l e - B r o u t - E n g l e r t  m e c h a n i s m  [1.5]• In t his  

m e c h a n i s m  the s y m m e t r y  is b r o k e n  by  t h e  a c q u i s i t i o n  of a 

n o n - z e r o  e x p e c t a t i o n  v a l u e  by  a scalar f i e l d  $. T h e  

m a g n i t u d e  of thi s  e x p e c t a t i o n  v a l u e  is c o n s t r a i n e d  (at th e 

t r e e  level) to m i n i m i s e  the p o t e n t i a l  U($) of our theory.

In g e n eral, t h i s  c o n s t r a i n t  is not e n o u g h  to s p e c i f y  <$> 

u n i q u e l y .  For e x a m p l e ,  if the g r a n d  u n i f i e d  g r o u p  G  is 

r e d u c e d  to a s u b g r o u p  H, the v a l u e  of <$> is c o n s t r a i n e d  

o n l y  to lie on M=G/H, t he m i n i m u m  s u r f a c e  of U [1.7].

S p o n t a n e o u s  s y m m e t r y  b r e a k i n g  at f i n i t e  t e m p e r a t u r e  

h a s  b e e n  s t u d i e d  by W e i n b e r g  and o t h e r s  [1.8]. T h eir w o r k  

h ad v e r y  i n t e r e s t i n g  i m p l i c a t i o n s  for c o s m o l o g y .  T h e y  

d i s c o v e r e d  that s y m m e t r y  m ay be r e s t o r e d  at h i g h  

t e m p e r a t u r e s .  At e a r l y  t i mes the u n i v e r s e  wa s  v e r y  ho t  and 

we  t h e r e f o r e  e x p e c t  tha t  the full s y m m e t r y  w a s  m a n i f e s t .  As 

t h e  u n i v e r s e  e x p a n d e d  and c o o l e d  a s e r i e s  of p h a s e  

t r a n s i t i o n s  w o u l d  h a v e  o c c u r e d  as the s y m m e t r y  w as 

s u c c e s s i v e l y  broken.
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T p h = T g ~ 1 0 16G e V

G  + H ♦ + S U ( 3 ) x S D ( 2 ) x U ( 1) S U ( 3 ) x O ( l ) em

TEff= 1 0 3G e V

Tph is  'temP e r a 't u : r e  which the phase trans ition  

occurred.

Let us c o n s i d e r  th e  f i r s t  of t h e s e  p h a s e  t r a n s i t i o n s  

w h e r e  G  is b r o k e n  to H. As T f a l l s  b e l o w  T q , $ wil l  ten d  to 

a c q u i r e  a v a c u u m  e x p e c t a t i o n  value. But, as we  h a v e  

a l r e a d y  seen, it s  d i r e c t i o n  is a r b i t r a r y ,  a n y  p o i n t  on M  is 

e q u a l l y  p r o b a b l e .  D i f f e r e n t  r e g i o n s  in s p a c e  m a y  c h o o s e  

d i f f e r e n t  p o i n t s .  As t he u n i v e r s e  c o n t i n u e s  to e x p a n d  and 

cool <$> will, for e n e r g e t i c  r e a s o n s ,  ten d  to s p a t i a l  

u n i f o r m i t y ,  u n l e s s  of c o u r s e  it is p r e v e n t e d  f r o m  d o i n g  so 

by t r a p p e d  s i n g u l a r i t i e s  of some k i n d  [1.9]. The p o s s i b l e  

t y p e s  of s i n g u l a r i t i e s  a re d e t e r m i n e d  by t he t o p o l o g y  of M. 

If, for e x a mple, M h a s  d i s c o n n e c t e d  pieces, d o m a i n  w a l l s  

m a y  be  formed. In t h e  l a n g u a g e  of h o m o t o p y  t h e o r y  this  

c o r r e s p o n d s  to tc0 (M) b e i n g  non tr i v i a l .  In t a b l e  1.1 some 

of the p o s s i b l e  t y p e s  of s i n g u l a r  s t r u c t u r e  h a v e  b e e n  

l i sted [1.9].

T h e  p r e s e n c e  of s u c h  s i n g u l a r i t i e s  in the e a r l y  

u n i v e r s e  w o u l d  h a v e  i n t e r e s t i n g  c o n s e q u e n c e s .

D o m a i n  walls, b e c a u s e  of their great mass, h a v e  

t r e m e n d o u s  g r a v i t a t i o n a l  e f f e c t s  [ l . i o ] .  So m u c h  so that we 

can be  s u r e  that t h e y  do not exist in our p r e s e n t  d ay

u n i v e r s e  - at least w i t h i n  our f i e l d  of view.
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T a b l e  1.1 P o s s i b l e  t o p o l o g i c a l l y  s t a b l e  d e f e c t s .

S t r u c t u r e D i m e n s i o n  of

s i n g u l a r i t y

d o m a i n  w a l l s 2
s t r i n g s 1
m o n o p o l e s 0
t e x t u r e _

S t r i n g s  h a v e  less d r a m a t i c  

an e n e r g y  s c a l e  p, h a s  m a s s  per

M / L  ~

Non t r i v i a l  

h o m o t o p y  g r o u p

* 0 (M)

^ 2 (M)

* 3 (M)

effects. A s t r i n g  f o r m e d  at 

unit l e n g t h  [1.9]

In t a b l e  1.2 som e  t y p i c a l  v a l u e s  h a v e  b e e n  listed.

T a b l e  1.2 T h e  m a s s  pe r  u n i t  l e n g t h  of a s t r i n g  f o r m e d  

at an e n e r g y  s c a l e  \ i.

\x M / L  (gm/cm)

1 0 3 G e V ( e l e c t r o w e a k  scale) 10" ^

1 0 10G e V o t— o

1 0 16G e V (GUT scale) 1022
1 0 19G e V ( P l a n c k  scale) 1028

T h o s e  s t r i n g s  f o r m e d  at e n e r g y  s c a l e s  c l o s e  to the P l a n c k  

s c a l e  h a v e  too l a rge a m a s s  to be c o n s i s t e n t  w i t h
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astrophysical observations [1-11]• The lensing angle
[1.12] for such strings is 0(it) and, as Witten [l.ll] 
pointed out, the presence of a few of these strings 
would make our universe appear kaleidoscopic. There 
would be many images of the same object and gigantic 
jumps in the microwave background [1•13] etc.

Strings formed at GUT scales have intriguing 
astrophysical consequences. They might have provided the 
inhomogeneities around which galaxies form [1.14]. They 
also may have been observed as gravitational lenses for 
example (some recent candidate double images have been 
suggested by Cowie and Hu [1.15]).

Strings formed at much lower energy scales would 
have negligible gravitational effects. Does this mean 
they are of no interest to astrophysics? By no means! It 
is possible that in some particle physics models these 
strings behave like superconducting wires [1.16].
Several observational consequences of the presence of 
such strings have been suggested [1.17-1.19]. For 
example, they might produce high energy cosmic rays
[1.18] or explain quasars [1.19]. In chapters 3 and 4 
such strings are discussed in detail.

The third possible type of structure, monopoles, are 
particularly interesting in that essentially all grand 
unified theories would predict their formation [1 .2 0 ]. 
Grand unified monopoles are massive, have large magnetic 
charges and may catalyse nucleon decay [l.2l]. These 
properties have enabled stringent bounds to be placed on
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their present day number density [1.22,1.23]. For example, 
let us assume that they catalyse proton decay. Not only is 
the cross-section large for processes such as

M + n ■* M + ti” + e+

but the energy released is enormous. Only about 103 0 
monopoles in the sun would account for the total solar 
luminosity. By looking at low luminosity stars such as 
white dwarfs and neutron stars, an upper limit on the 
number of monopoles in these objects can be determined. 
This can then be translated into a bound on the monopole 
flux [1.23]. The stringent bounds people have obtained 
has lead many people to believe that we have a ’monopole 
problem’; that is, too copious a number of monopoles would 
be formed in the early universe to be consistent with 
these bounds [1.24]. This belief is questioned in chapter 
2 .

The final type of defect listed in table 1.1, texture, 
is slightly different to the others in that no singularity 
is present. Instead the whole universe is characterized 
by a given element of ^ ( M ) . Texture can also have 
interesting consequences and anyone interested is referred 
to [1.25].

The final chapter of this thesis is devoted to a 
detailed study of the nature of the phase transition 
producing these topologically stable defects.



CHAPTER 2 :  MONOPOLES CONNECTED BY ST R IN G S

AND THE MONOPOLE PROBLEM
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CHAPTER 2. Uonopoles Connected by Strings and 
the ‘Monopole Problem*

The aim of this chapter is to clarify the status of 
proposed 'causality* arguments limiting the annihilation 
rate of monopoles in the early universe.

Two years ago, Everett, Vachaspati and Vilenkinf2.4] 
(EVV) suggested that these arguments were wrong. They 
presented the results of a two-dimensional model of 
'monopoles' connected by 'strings’, from which they argued 
that the rate of annihilation of monopoles in their model 
would be faster than allowed by the causality arguments. 
There were however two shortcomings to their model; it was 
limited to two dimensions and it allowed monopoles of the 
same topological charge to be joined by strings. These 
monopoles therefore did not annihilate but formed stable, 
doubly charged monopoles.

In this chapter we present the results of a study of 
a three-dimensional model of monopoles connected by 
strings to antimonopoles. We shall show that an 
annihilation process exists that would result in the 
monopole density rapidly falling far below the minimum 
allowed by the causality arguments.

The model is described in section 2 and the results 
of a Monte Carlo simulation are presented in section 3.
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Before turning to the model, however, we review in section 
1 the causality arguments. Our conclusions are discussed in 
section 5.

Section 1. THE CAUSALITY ARGUMENTS

Two distinct types of causality arguments have been 
proposed, that we shall refer to as A and B respectively.

The first [2.4] is based on the observation that the 
direction of the Higgs field cannot become correlated on 
scales larger than the horizon size (unless the 
correlations were present initially). The argument asserts 
that as a result, following the production of monopoles at 
a phase transition, there must always be at least of order 
one monopole per horizon volume, i.e. the monopole number 
density n is always larger than

The second argument B was proposed by Weinberg 
[2.2, 2.3]. He argued that magnetic charge density 
fluctuations, once formed, could not be erased on scales 
greater than the horizon size. This means that the 
monopole density could not decrease faster than a power 
law. For example, in a radiation dominated universe, one 
would have

nmin oe t - 5 ' 2 .
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These arguments are very plausible, in part because 
the analogue of argument A in the case of domain walls îs 
valid. If there is a broken discrete symmetry and the 
sign of the Higgs field in far separated regions is 
uncorrelated there must be domain walls. Each horizon 
volume ~ t3 must contain an area of wall of order t2.

For a continuous symmetry, however, the situation is 
more subtle. Both arguments A and B are in fact wrong for 
the same reason: they neglect the cumulative effect that 
local processes can have.

To illustrate this let us start by recalling the 
arguments of E W  concerning their two dimensional model of 
broken U(l) symmetry. In this there are two complex Higgs 
fields $> and x with U(l) charges 2 and 1 respectively. In 
the first stage of symmetry breaking § acquires a non-zero 
expectation value and the U(l) is broken down to Z 
monopoles are produced. In the second stage % also becomes 
non-zero. At the minimum of the potential $ = x2 > so there 
are two values of x f°r any given $. The symmetry is 
broken and strings are produced joining the monopoles.

The subsequent evolution is governed by local 
dynamics. The tendency will be for the strings to 
shorten, eventually leading to annihilation or merger of 
the monopoles. It is entirely consistent with causality to 
assume that the evolution of the strings is highly
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irreversible, so that strings shorten but almost never 
lengthen. As EVV showed, the strings are on average quite 
short, so that after a brief time they will disappear. In 
this final state there will be doubly-charged monopoles 
(around which the phase of x changes by 2it) but no 
remaining singly-charged monopoles.

It is interesting to examine the causality arguments 
to see where they break down. Consider how the phase of $ 
varies around a circle of radius much larger than the 
horizon size. Since the phase is uncorrelated, it appears 
to follow a random walk and one might therefore expect 
that the total phase change around the circle could be 2n 
times any integer (up to some limit). In fact, because of 
the relation $ = x2 > as long as x is in its vacuum 
everywhere (i.e. there are no strings), it can only be any 
even integer. This has been achieved by entirely local 
processes, and without introducing any correlations 
between the phases in far separated regions.

Even without explicitly introducing x it is quite 
possible to define a local evolutionary rule that will 
achieve this result for the phase of Suppose for
example that following EVV (see also [2.5]) we approximate 
U(l) by Zg and discretize R2 into a planar lattice. At 
each lattice point the phase of $ is represented by 
0,1 or 2, initially chosen at random. (A smooth 
interpolation between the points is assumed, following the 
shortest available path.)
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Consider the phase change around a large loop and the 
effect of the following local rule. At each intervening 
site, whenever the two neighbours have different phases, 
change $ so that its phase is different from both. This 
ensures that the total phase change must be even. (This 
rule is roughly speaking, the effect of requiring that $ = 
X2, since if the phase of x varies by 2u/3 that of $ must 
vary by 4u/3.)

This example should make us cautious about accepting 
the causality arguments, but in three dimensions it is 
perhaps harder to see how they could fail. Consider for 
example an SU(2) model with a triplet Higgs field $ that 
breaks the symmetry to U(l) and induces monopoles. The 
topological charge within some large sphere can be 
expressed in the usual way as a surface integral in terms 
of $. Initially the direction of <£ is random and the 
topological charge will in general be non-zero.

As in the previous example, let us also introduce a 
doublet Higgs field x that breaks the remaining U(l) 
completely, joining the monopoles with strings.

Once again, if the field x evolves to its vacuum 
everywhere by the strings shrinking and disappearing there 
can be no monopoles. If we parameterise a sphere S2 in 
space as a disc with boundary identified then the group 
element producing the x> ® configuration on the sphere 
provides a loop in the U(l) little group of on the
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boundary of the disc. The $ configuration has non-zero 
topological charge if and only if the U(l) group element 
is non-contractable, which means that the x field is not 
in vacuo everywhere.

In this case we can also invent local dynamics for 
the field which will rapidly reduce the net topological 
charge to zero in any closed surface.

On a triangulated surface (such as that used in our 
simulation described in the next section) each triangle 
has a value of $ at each of its vertices. If these are all 
different then the triangle can be mapped onto a 
tetrahedral approximation to the vacuum manifold S2. The 
magnetic flux through a triangle is +1/4 if the 
orientation matches that in the vacuum manifold and -1/4 
otherwise. Then in any closed surface the net flux must be 
an integer, and we must have 4m triangles with +1/4 flux, 
and 4n with -1/4. The net charge (number of monopoles 
minus antimonopoles) is m-n.

The local rule for $ is to draw an extra point inside 
each triangle and assign a new value of $ there. Thus each 
triangle becomes 3 triangles (see figure 2.1). If <$ takes 
3 different values on the original vertices (i.e. there is 
a net flux f) assign the fourth value at the new point.
Now the net flux is changed to -3f, in effect we have 
pulled a monopole through the triangle. If $ does not take 
3 different values on the original vertices then it makes 
no difference how one assigns the new point. Now our local
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Figure 2.1 Our local evolution rule for (|> which demonstrates 
the falsity of the causality bounds. On the left is our 
tetrahedral approximation to die vacuum manifold. On a triangulated 
surface each triangle carries a net flux, 0, or

(as shorn). Each triangle is evolved as described in the text.'
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rule is to make such a change in a probabilistic way with 
a probability of 1/4 on each face with flux through it.
Our 4m triangles with +1/4 flux become 3m with +1/4 and 3m 
with -1/4 flux. The net charge is zero. Due to randomness 
in our choice at each face we expect a net error (or net 
charge) after one timestep of /(n+m). Nevertheless in one 
timestep we have decreased the net charge far below the 
causality bound (under which we could at most halve the 
net flux.)

Note that both our local evolution rules can be 
followed simultaneously in two dimensions (three 
dimensions) on all links (faces) with the same result for 
any closed loop (surface) in space.

Just because it is theoretically possible for local 
processes to reduce the total charge to zero it does not 
mean it actually happens. The dynamics above are certainly 
rather strange and only a detailed study of realistic 
dynamics can answer this question. In this chapter we try 
to answer it, so far as one model of monopoles connected 
by strings is concerned.

Section 2. THE MODEL

We now turn to our specific model, which is based on 
a system possessing an SU(2) symmetry that undergoes two 
symmetry breaking phase transitions at roughly the same 
temperature. At the first, SU(2) is broken to U(l). In 
this process Tt Hooft-Polyakov monopoles [2.6] are formed
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[2.7]. At the second transition the U(l) symmetry is 
completely broken. This causes the magnetic field to be 
squeezed into flux tubes (strings) connecting monopoles 
with antimonopoles [2.8]. Also closed and infinite strings 
are formed.

The strings connecting monopoles with antimonopoles, 
being regions of false vacuum, tend to contract to 
minimise their energy. The monopole-antimonopole pairs are 
pulled together and then annihilate into the vacuum. The 
life-time of these pairs will be roughly the time it takes 
to dissipate the energy of the string [2.9, 2.10, 2.1l]. 
The monopole number density at any time after the phase 
transition can thus be related to the initial distribution 
of string lengths.

The above sequence of symmetry breakings can be 
achieved using two Higgs fields, $ and ¥, which transform 
according to the 3̂ and 2 of SU(2) respectively. It is 
convenient to regard $ as a 2x2 traceless hermitian 
matrix; ¥ is a two-component doublet" .

If the symmetry group is SU(2), the potential must 
contain interaction terms between the $ and ¥ fields such 
as

Y+<& ¥, Y+$ 2 ¥, ¥ +¥ tr($2) .

By suitable normalisation of the $ and ¥ fields the
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potential can be chosen so that at its minimum

<£>2 = 1 , Y +¥ = ! , $ ¥ = ¥

After the first transition, ® acquires a nonzero 
expectation value and the symmetry is broken to U(l). 
After the second, y also acquires a nonzero expectation 
value and the symmetry is reduced to {1}• The standard 
vacuum solution may be chosen to be

$ 0 0

A monopole at the origin with a string along the -z axis 
is represented by

<3? = r • a = cos 0 
sin 0 ei<J>

sin 0 e 
- cos 0

“i <t>

cos —  0 2
w =

sin
1 _ i<J> — 0 e y2

To perform the Monte Carlo simulation it is 
convenient to approximate the space of $ (S2) by four 
points forming a tetrahedronf3 .1 2], say

= -1/ 3  a3 + 2/2/3 

<$2 = - 1 / 3  cjg - /2/3 + /(2/3)

<$3 = -1/3 a3 - /2/3 - /(2/3) a2
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Having chosen a discrete approximation for the manifold S2 
we need to know what phase the Y field picks up on 
transforming it from a point ( $.) to another ( $.)• The

 ̂ J

smallest angle rotations taking one into another are :

D 10 = 1//3 — i /(2/3) a2

D 20 = 1//3 + i 1//2 + i 1//6 a2

°30 = 1//3 - i ]//2 CT + i 1//6 o2

U32 = 1//3 + i /2/3 - i 2/3 a3 .

U13 = 1//3 - i 1/(3/2) °1 + i 1//6 cjg - i 2/3 ag

U 21 = 1//3 - i 1/(3/2) °1 - i 1//6 a2 — i 2/3 o’0

for example, U^q .

We can now choose standard phases at each of the $ .J
values

Y0

Y1 U Y10 *0
1//3
/(2/3)

Y2 U20  x0Y„ = 1//3
i//2 -1//6

Y3 U30 Y0 fl//3\-i//2 -1//6

A general value of Y may be specified by its phase a 
relative to these standards. For example if , then
Y = Y^ ela. Havingal lotted standard phases we can 
consider transforming y 2 by the rotation that carries $ 2
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to $3. The result is

° 3 2  ? 2  - 1  ? 3

similarly

U Y 
1 3  * 3

= -i Y1 ’ 021 T« = -i I,

We see that if we wish to compare the phases' of the Y 
field at two neighbouring points where $ has the values 
and we must include a phase correction factor ^. As 
an example, suppose that at the first point

la,
$ s  $ 2 ' f  =  f  2  e

Applying to these fields the transformation U32 we arrive 
at

$ = $3 , Y = -i Y2 e

which is to be compared with the field at the second 
point, say

l a ,
*  = $3 , *  = *3 e

The difference in phase is thus a 2 ” a 3 " TC/2. In general 
it is

-  aj  + AuAa = a ̂
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where

°
0 0 0

A  = 0 0 -it/2 iu/2

0 u / 2 0 - n / 2

\ o -it/2 ir/2 0

Section 3. THE MONTE CARLO SIMULATION

We considered an n x n x n body centered cubic 
lattice. At each vertex of this lattice one of the four 
values of namely was chosen at random
along with a value of a between -ic and it. The lattice may 
be regarded as made up of irregular tetrahedral cells, the 
vertices of which are the lattice points (Figure 2.2a).
The centres of the tetrahedra form a regular lattice (the 
tetrakaidekahedral lattice, Figure 2.2b). A monopole was 
considered to lie at the centre of a given tetrahedron if 
the four vertices had values for the § field of <£q ,
$2 » ^3 or an ev©n permutation thereof (an antimonopole if 
an odd permutation). A string was considered to pass 
through a face of the tetrahedron if the net phase change 
was less than -it and an antistring if it was greater than
i t .

For a tetrahedron containing a monopole/antimonopole, 
there were two possibilities in our simulation; they may 
have been a single string/antistring entering it or two 
strings/antistrings and one antistring/string. This latter
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Figure 2.2a A diagram showing hew the body centered cubic 
lattice was divided into tetrahedra. Each vertex of the 
tetrahedron is common to 24 others.
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Figure 2.2b The tetrakaidekehedral lattice associated with 
the body-centered cubic lattice. The points of the lattice 
correspond to the centres of the tetrahedra shewn in figure 2.2a 
For example, the point A could be associated with the centre 
of the tetrahedron shown in figure 2.2a.
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case represents a string entering the tetrahedron through 
one face and leaving it through a second, in addition to a 
string segment terminating on the monopole. Similarly, it 
is easy to see that for tetrahedra which do not contain a 
monopole or an antimonopole, our algorithm always gives an 
equal number of string and antistring segments entering 
it. The monopoles were taken to lie at the centres of the 
tetrahedra and the strings along lines joining them (all 
of which are of equal length), namely along the edges of 
the tetrakaidekahedra. From the above considerations it 
follows that string segments either formed closed loops or 
start or end on monopoles or antimonopoles. Periodic 
boundary conditions were used to prevent strings leaving 
the lattice.

Having determined the positions of the monopoles and 
antimonopoles the computer followed the string leaving a 
monopole, determining its length, until it terminated on 
an antimonopole. This was done for all the monopoles 
before proceeding to follow the string segments in loops 
evaluating their lengths. In the case of configurations 
like that in Figure 2.3 the computer decided at random 
which string/antistring segment was connected to the 
monopole/antimonopole. Similarly, for configurations like 
the one shown in Figure 2.4, the computer decided at 
random which pair of string and antistring segments were 
connected with each other.

The largest sized body centered cubic lattice we used 
3was (40) . In a typical run we found the number of
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Figure 2.3 A tetrahedron containing a monople and for which 2 
str.ing segments and 1 antistring segment enter it. The computer 
decided at randan which string segment was connected to the 
monopole.

Figure 2.4 tetrahedron for which 2 string segments and 2 antistring 
segments' enter it. The computer decided at randan which string 
segment was connected to which anti string segment.



- 4 0 -

monopole/antimonopole pairs produced was 35930. This is 
consistent with our algorithm which gives a probability of 
3/64 of finding a monopole in any given tetrahedron. The 
number of string segments produced was 419216 which is 
again consistent with our algorithm (the mean probability 
of a string passing through a given face of a tetrahedron 
is 35/128) The percentage of string segments in loops was 
approximately 9%. In units in which the correlation length 
5 of the Higgs field at the phase transition- is taken to 
be one, the length of the largest open string segment was 
141 and that of the largest loop was 41 (note in these

ounits the lattice size would be (40 x 2/2) ). Let 
n ( X )  and n . .(A) be the number density of open and
closed strings of length greater than or equal to X 

respectively. In Figures 2.5 and 2.6 we show plots of 
ln[n(£)] versus X .  Figure 2.5 is consistent with

n ( X )  - n e x p ( -  £8) open' J 0

and Figure 2.6 is consistent with

nclosed(Jl) = A 1 7  d V  * ’“5/2 exP<-^')

in agreement with the theoretical predictions of Mitchell 
and Turok and Copeland, Haws and Rivers [2.1, 2.14]. A 
fit to the curve of Figure 2.5 gave

p = 7.4+0.6X10-2
nQ = 1.9±0.5Xio-2
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Figure 2.5 A plot of log(Nopen) vs* 1 in units in
which l  = 1 for a typical run using a lattice

size of (80/2)3

Lo g (N o p e n )



Figure 2.6 A plot of - 4 2 -

a) (squares) loS<Nclose<P vs- l  

for a lattice size of (80/2;

b) (circles)log(Nacc)
N is defined by acc J

«♦ «♦
N (JT) = l  A *“5/2 exp(-al)

vs. X where

cc = 0.087 
A = 0.0345

(p0SOj3Nj)6oi

Le
ng

th 
L
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The value 1/p << 80/2 (the size of the lattice) and since 
the vast majority of the strings are much smaller than 
80/2 the finite size of the lattice does not affect our 
results. As a further check on the effect of the finite 
lattice size a run was made using a body centered cubic 
lattice size of (20) ((40/2) in units where £=l).
These results are shown in Figures 2.7 and 2.8. A fit to 
the curve of Figure 2.7 gave

p = 7.0±0.6 xio-2 
nQ = 1.6±0.5 xlcT2

3insignificantly different from those of the (40) lattice 
results.

Section 4. DISCUSSION

In this chapter we have shown that the length 
distribution of strings exhibits an exponential 
suppression of long strings:

n «open exp(-K A / 5 )

The lifetime of any monopole-antimonopole pair will depend 
on the time it takes to dissipate the stringTs energy. 
Since the string lengths are predominately microscopic 
(£~£) the whole system rapidly decays. In a very short 
time the monopole number density will therefore become 
much less than one per horizon volume, contrary to the
causality arguments. Causality alone does not impose any
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Figure 2.7 The same as 5 except using a lattice size 

of (40/2)3

lo g (N o p e n )

i
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Figure 2.8 The same as 6 except using a lattice size 
of (40/2)3

L o g (N c lo se d )
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interesting constraints on monopole annihilation. To 
determine the rate of annihilation the dynamics of the 
monopoles in the primordial plasma must be studied in 
detail.

In our simulations, as EVV did, we have used the same 
lattice spacing to simulate both phase transitions. As 
they pointed out, this amounts to the assumption that if 
the phase transition is second order, then both 
transitions occurred at roughly the same temperature. Let 
us suppose now that this is not the case. We still would 
expect qualitatively the same conclusion, i.e. that the 
monopole density rapidly falls away. Even if the string 
distribution was not initially exponential, in a short 
time we would expect it to become so. This is because, as 
EVV emphasized, the strings can break with the formation 
of a monopole-antimonopole pair. Fragmentation would 
rapidly establish an exponential distribution unless the 
transitions occured at such widely different temperatures 
that the breaking probability was negligible.

This study has only answered the question of monopole 
evolution for the special case of monopoles connected by 
strings. What happens when the monopoles are not connected 
by strings or flux tubes? At temperatures less than the 
Ginsburg temperature TG the monopoles may effectively only 
disappear by annihilation with antimonopoles. This process 
has been discussed by Preskill [2.14] and Zel'dovich and 
Khlopov [2.15]. Their work studied the diffusion of
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monopoles towards antimonopoles followed by capture in 
Bohr orbits and final annihilation. The results of their 
work suggests that, if we accept the standard monopole 
density at T „ , we have a 'monopole problem'. The work ofyj
this chapter however questions the validity of the 
standard estimate of the monopole density at T^. Whether 
or not we do have a monopole problem in the standard 
cosmological model would therefore still seem to be open 
to question.
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CHAPTER 3 THE DYNAMICS OF, AND RADIATION 
FROM, SUPERCONDUCTING STRINGS
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CHAPTER 3 The dynamics of and radiation from 
superconducting strings

In the next few chapters superconducting cosmic 
strings are discussed. These are a particularly 
interesting type of topological defect predicted to occur 
by some unified theories [3.1]. Like ’ordinary1 cosmic 
strings [3.2], they are line-like defects which may be 
formed at a phase transition in the early universe. The 
observational situation is, however, much brighter for 
superconducting strings - the large currents they are 
capable of carrying could lead to a variety of interesting 
astrophysical phenomena [3.3 - 3.7]. For example, they 
have been invoked as the energy sources for an explosive 
scenario of galaxy formation by Ostriker, Thompson and 
Witten (OTW) [3.3]. Chudnovsky et al. [3.4] have 
considered their effect on plasma, estimating synchrotron 
emission and radiation from shock heating. While Field 
and Vilenkin [3.5] have suggested that electromagnetic 
radiation beamed from cusps on strings might provide an 
explanation for quasars.

In order to test these scenarios it is important to 
understand the motion of, and radiation from, 
superconducting strings. In this chapter we continue the 
work of Copeland et al. [3.8] who showed that the Nambu 
action acquires an extra local correction term due to the 
current on the string.

Depending on the value of the critical current on the
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string [3.1], this correction may be large enough to 
cancel the string tension completely forming ’springs’
[3.8]. In this case the large currents initially present 
on the string at formation quickly stabilise loops, 
forming magnetic dipoles which may come to dominate the 
universe. In chapter 4 we show that typically, in regions 
of parameter space where the current carrying state is 
long lived, springs are formed. (Long lived currents are 
of course essential for the strings to have interesting 
astrophysical consequences.) As we shall explain, however, 
it does appear possible to produce current lifetimes long 
enough to be observable without producing springs.

Even if the critical current is small (as is 
typically the case for fermionic strings [3.1]) the effect 
of current is still important in correctly calculating the 
radiation from the superconducting strings. Calculations 
[3.10, 3.16] using Nambu trajectories give infinite 
answers. In this chapter we calculate the radiation from 
an exact solution to our corrected action and find it is 
perfectly finite.

Also if the critical current is small, current loss 
processes will occur on the string [3.8]. For small 
critical current the Nambu action is in general a 
reasonable approximation and generically produces ’cusps’ 
in closed loops where the current density becomes very 
large [3.1l]. At these points we show that current will be 
lost, so that loop 'shrinkage' due to radiation results in 
the net loss rather than gain in current as other authors
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had assumed [3.3, 3.5]. Thus for example, we show that the 
OTW scenerio can only work for very large primordial 
fields.

This chapter is divided into six sections. In section 
1 we derive the corrected action describing the motion of 
current-carrying strings. In section 2 we discuss some 
exact solutions to the corrected equations of motion 
including springs and kinky loops. Springs are shown to be 
stable to small perturbations, and the local effect of the 
current is shown to decrease the velocity of propagation 
of waves on the strings. In section 3 we calculate the 
electromagnetic radiation from a kinky loop and in section 
4 we show that kinks, although not ’rounded' off by the 
local corrections to the equations in our action, are 
'rounded' off by the higher order effects of the nonlocal 
current self-interactions. This is important in section 5 
where we see how the 'cusps' formed in this process 
quickly lead to the loss of current from loops. The final 
section summarises our results and discusses their 
cosmological implications.

Section 1. The Superconducting String Action

In this section we explain how the current flowing 
along a superconducting string affects its motion. We 
begin by recalling the derivation of the Nambu action for 
an ordinary string in a broken U(l) gauge theory [3.12].

The field theory action is
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S = / d**y (- 1 F2 + | D_ $|2 - V($) ) (3.1.1)
4

V(«) - X  (|$|2 — T)2 ) 2 
4

with $ a complex scalar and F ^ = d A^ - 3^Aa , 
a,b * 0,1,2,3 as usual. We look for an approximate 
solution to the equations of motion of (3.1.1) which 
locally take the form of the static cylindrically 
symmetric string or vortex line solution [3.12]. These 
are given by

$(p,9) = f(p) e10 1 ( a(p) - 1 )e p
(3.1.2)

in cylindrical coordinates, with f(0) = 0, a(0) = 1 and 
’ f' and ’a 1 tending exponentially to tj and 0 respectively 
on a length scale given by the inverse masses of 3? and

Our solutions are constructed around an arbitrarily
curved worldsheet with spacetime coordinates xa(aa), where 
a a - (x,a) are the two worldsheet coordinates. Given such 
a worldsheet we may construct two space-like normal
vectors (A = 1,2), which everywhere obey

an7 X = 0. We can also choose them to be orthonormal A a , a
1-e- “a naB = - SAB • For any point y in spacetime closer 
to the string than its radius of curvature we can
associate two worldsheet coordinates cra and two radial 
coordinates :
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ya = xa(a) + na(<j) pA (3.1.3)

Our ansatz for the fields is then $ = $ (p) for thes
scalar field and Aa(y) = n^a) AA(p) where the subscript

A S

TsT stands for the static cylindrically symmetric 
solutions. Now we change coordinates in (3.1.1) from ya 
to = (<ra,pA) to obtain

S - -/ d 2 a d 2p /(-M) ( 1 B | ( p )  + | DA$ s ( p ) | 2 + V(®g ( p > )  )
2

(3.1.4)

where

M
\LV 9C v

Yap + 0 ( p )  ( 3 . 1 . 5 )

comes from the Jacobian and y = a xa*drtx is the induced' ap a p a
metric on the string worldsheet.

Performing the transverse integration we note that 
terms of 0(p) will, when integrated against the energy 
density, be down by 0(W/R) where W is the width of the 
string and R its radius of curvature. Hence we find

S = - n / d2a /(-y) + 0(W/R) ( 3 . 1 . 6 )
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where \i is the energy per unit length of a static straight 
string. Except in regions of high curvature (such as cusps 
or kinks) the equations of motion derived from (3.1.6) 
should be a good approximation for strings of radius 
R >> W. Note that in the case of global strings the 
energy density of the string only decays like a power law 
away from the string - this leads to an extra non-local 
interaction term in the action (3.1.6) [3.13, Appendix].

For superconducting strings the above derivation 
breaks down when there is a current on the string because 
the static configuration is no longer independent of the z 
coordinate - fields vary along the string. This means that 
the Lorentz invariance of the string under boosts in the z 
direction is broken and the relativistic string begins to 
behave more like an ordinary non-relativistic string.

Let us briefly recall how bosonic superconducting 
strings arise. The simplest theory in which they occur is 
a U(l)'x U(l) gauge theory which has two complex 
scalars % and <f> carrying u(l)em and U(1)T charges 
respectively. The § Higgs field breaks U(1)T forming 
strings and couplings are then arranged so the condensate 
field % acquires a non-zero value in the string core where 
<j>~0. Spatial varations of the phase of x along the string 
produces an electromagnetic current which is topologically 
conserved as long as x remains non-zero on the string.

In more detail, the Lagrangian used is
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1 \ t  ( l ® | 2 -  n 2 ) 2
2

(3.1.7)

To ensure electromagnetism is not broken outside the 
string we take :

|x| is zero at the global minimum, but if $ is zero, as 
it is in the string core, the potential for x has the 
symmetry-breaking form and forces |x| to be non-zero, of 
order /(X^/Xg) m * For some range of the couplings a x 
condensate does indeed exist on the string [chapter 4, 
ref. 3.9, 3.14]. Let us call it Xq (p )* The condensate 
does not carry any current if its phase is constant. If we 
set x - Xq(p ) ei0(z »t) in the static straight string 
solution we find an extra contribution to the string 
action :

AS = / d2a / d2p / (-y) IDax I 2

= k /  d 2a / ( - y )  y a  ̂ + eAa ) ( a p0 + eAp )

(3.1.8)

where k I d2p (x0(p)j2* Here we used
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i abDa *  V = M|ivD x D xLI* y *

with the 
the term

order p , 
have

inverse of M

»  X ( ? )

pv

2

, given in (3.1.5). We include
in our definition of \l and, to

0

are left with the Jd^x |2 term in (3.1.8). We also

V CT) = x a , a  V X<a) )

and we assumed that the electromagnetic gauge field ASL
varied slowly across the string in performing the integral 
in (3.1.8). This will be justified later. In the next 
chapter we will show that for the current to last for a 
significant period of time one requires < ^ 20 [3.9].

From (3.1.8) we find the electromagnetic current

J = - 6(AS) = -2 e< (8 0 + eA ) (3.1.9)---- v a a
a 6 A a

and so

AS -  7 7  /  d 2 « A t ) v ap J a J p
4 e 2K H (3.1.10)

The current carried by such a string persists because 
the total change in 0 around a loop is conserved as long 
as |x | does not go to zero (i.e. does not fhopT over the 
potential barrier) at the core of the string. The winding
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o f  0 may c h a n g e  t h r o u g h  t u n n e l l i n g  o f  t h e  x f i e l d  s o  t h e  

c u r r e n t  c a r r y i n g  s t a t e  i s  a c t u a l l y  m e t a s t a b l e  [ c h a p t e r  

4 ,  r e f .  3 . 1 ,  3 . 9 ] .

I n  f a c t ,  t h e  g a u g e  f i e l d  i s  d e t e r m i n e d  i n  t e r m s  o f

5 0 b y  M a x w e l l ’ s  e q u a t i o n s .  I n  t h e  L o r e n t z  g a u g e ,  d Aa  =oc a
0 , t h e s e  r e a d

a 2 Aa ( y )  = /  d 2 a / ( - y )  6 4 ( x ( a )  -  y )  j “

= J a ( y )  ( 3 . 1 . 1 1 )

o b t a i n e d  b y  s e t t i n g

Aa ( o )  = 3a x a  Aa ( x ( a , i ; ) )

= /  d 4 y 6 4 ( x ( o , t ) -  y)  3a x a Aa ( y )

i n  ( 3 . 1 . 1 0 ) .  T h i s  h a s  t h e  s o l u t i o n

Aa ( y )  = /  d 4 y '  Gr e t ( y -  y ’ ) J a ( y ’ )

= /  d 2 cr' / ( -  y )  Gr e t ( y  -  x ( < j \ t ' ) )  j “ a a xa

( 3 . 1 . 1 2  )

w h e r e

Gr e t ( y )  = ( 1 / 2 tt )  6 ( y 2 ) 0 ( y ° )
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i s  t h e  r e t a r d e d  G r e e n  f u n c t i o n .  From ( 3 . 1 . 1 2 )  A i sv a
d e t e r m i n e d  i n  t e r m s  o f  J  w h i c h  d e p e n d s  on  A a s  w e l l  a s

a  a

5 0 . We e v a l u a t e  ( 3 . 1 . 1 2 )  on  t h e  s t r i n g  w o r l d  s h e e t  a s  a
f o l l o w s .  L e t t i n g  y a  *  x a ( a , x ) ,  we p e r f o r m  t h e  t ’ i n t e g r a l  

b y  e x p a n d i n g  t h e  a r g u m e n t  o f  t h e  d e l t a  f u n c t i o n  i n  t ' -  t 

a n d  a* -  u ,  s i n c e  t h e  i n t e g r a l  i s  d o m i n a t e d  b y  t ’ = t a n d  

a -  a '  .

0 ( x ° ( < j , t )  -  x ° (  a 1 , t  T )  ) 6 [ ( x (  a , t  )  -  x (  oj  , t  1 )  ) 2 ]

-  6 ( ( t ' —t ) 2  x 2  + 2 ( T f - T ) ( a ’ - a ) x . x T+ ( c j T- a ) 2 x , 2 ) 0 ( i : - T T)

=* + { ( x * x ’ ( a ' - ( j ) +  / ( ( x * x ’ ) 2 -  x 2 x ’ 2 ) | a  ’ - a  | ) /  ( x 2 )  } ]

2  / ( ( x * x T) 2 -  x 2 x T2 ) | a ’ -  a |

( 3 . 1 . 1 3 )

P e r f o r m i n g  t h e  t t i n t e g r a l  a n d  n o t i n g  t h a t  t h e  s q u a r e  r o o t  

i n  ( 3 . 1 . 1 3 )  i s  / ( - y )  we f i n d

a
A ( x (<j , t ) ) 1  /  d a '

4rc
1

a ' - a
( j “ a a x a ( a )  + 0 ( a ' - a ) )

( 3 . 1 . 1 4 )

t h e  f i r s t  t e r m  o f  w h i c h  d i v e r g e s  l o g a r i t h m i c a l l y .

F o r  a  l o o p  o f  r a d i u s  o f  c u r v a t u r e  R a n d  s t r i n g  w i d t h  

W, we know t h a t  t h e  f o r m u l a  ( 3 . 1 . 1 2 )  m u s t  b r e a k  down f o r  

| y  -  x ( a , x ) |  ~ W s o  ( 3 . 1 . 1 4 )  g i v e s
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Aa (x(a)) = (l/2n) Jln(R/W) Jadaxa(a) (3.1.15)

as the leading term. For a wire of width W carrying a 
uniformly distributed current J, the gauge field interior 
to the surface Aj = AQ + (J/2u) (p/W)2 (in 'SI* units with 
e0=|io-c”l) where A^ is the value of the gauge field at the 
centre; so the variation of A across the string is indeed 
negligible as previously assumed. Putting (3.1.15) into
(3.1.9) we find that on the string

Ja =-2eic --9 0 eff a

Aa - — e ln(R/W) 9a© l  (3.1.16)

k eff = < / (! + e2 (*/*) in(R/W))
v J

These formulae were derived by Witten [3.1] for a straight 
string.

For k  > > 1, which is required in order for the 
current to last a reasonable time,

Keff ~ (4aEM An(R/W >) ~ !/4

when aEM=l/137 and Jin (R/W)~100.

We may similarly calculate the electromagnetic
contribution to the superconducting string action by 
substituting (3.1.12) into
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/d V  (-1 F2) = i Jd**y Aa92Aa (3.1.17)
4 2

in the Lorentz gauge. We find using (3.1.11) and (3.1.12)

iSgM = (l/4n) / d2<jd2cr' /(-y (cj) ) >̂( ~Y (°' )) 9(x°(<?) " x°(<*’))
6((x(o) - x(cr'))2) Ja (a)JP(<j’)

V a < , I ) 8 p V f f , )

Performing the same steps leading to (3.1.15) we find

ASe m  = (1/4 i t ) in(R/W) / d 2 a /(-Y ) y  af j  J a JP (3.1.18)

as the leading local contribution to the string action. 
There are also non-local terms in the expansion but these 
do not include the logarithm which is typically ~ 100 for 
macroscopic strings. Adding (3.1.10) to (3.1.18) and 
rescaling we find the action for a superconducting 
string in the absence of external electromagnetic fields 
to be [3.8]

S= -n / d 2 a /(-Y) ( l-YaP3aJp ) (3.1.19)

which is the main result of this section. Here, j isCL
dimensionless and is the current in units of J = 2es
/(iCeffP-)* We shall discover in the next section the
reason for the subscript. The dimensionless current j isa
given in terms of the field 0 from (3.1.16) by
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Ja = “ /(<eff/ji) &ae (3.1.20)

Thus (3.1.19) describes a string with a massless field 0 
propagating along it. We shall discuss solutions to the 
equations of motion stemming from (3.1.19) in the next 
section.

Before doing so, however, we should discuss under 
what conditions the action is valid. It is obviously not a 
good approximation in regions where the string is curved 
on scales approaching its width, like kinks or cusps. It 
also ignores the non-local self-interaction of the string 
with itself by radiation from one part affecting another 
part of the string. These effects were dropped because 
they are down by (l/(£n(R/W)) ~ 1/100 (for large loops) 
relative to the terms we retained. In principle they can 
be determined by continuing the expansion in (3.1.13).
The derivation of the action is also incorrect in the case 
of infinite strings. In writing down equation (3.1.17) we 
have dropped surface terms which are non-zero for an 
infinite string.

Finally the existence of the current on the string 
was assumed not to effect XQ (p) which was taken to be 
independent of J. This is actually a very good 
approximation in regions of parameter space where k is 
large and the current carrying state has an 
astrophysically interesting lifetime. Thus our action 
(3.1.19) is not just valid to order j 2 but to all orders
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in j in interesting1 regions of parameter space [3.9]. 
Our action agrees to order j2 with that proposed by- 
Nielsen and Olesen [3.15] based on a Kaluza-Klein 
construction. Thus we believe their action is only a 
valid description of the type of superconducting strings 
we are discussing for small j. As we shall see however, 
one of the most interesting phenomena occurs when j ~ 1.

Section 2. Solutions of the equations, springs and
their stability

We now look for solutions to the equations of motion 
of superconducting strings derived from (3.1.19) and 
(3.1.20). Varying with respect to 0 and xa we find

where we have defined a world sheet energy momentum 
tensor

» „ (  / ( - Y )  r “ P 3 g )  = 0 (3.2.1a)

Sa ( /(-T) (y “p+ eap) 8pxa) = o (3.2.1b)

e“p= 2 6&S
A - Y )  H 5 Yap

(3.2.2)

which is covariantly conserved and traceless.
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As usual we can choose the orthonormal gauge y = 0,
+ y = 0 , so using (3.1*20), (3.2.1a) becomes aa

(B2 - B2 )0 = 0 (3.2.3)V T O

0 = f(cr + t ) + g(a - t ) (3.2.4)

with f and g arbitrary functions. Now the orthonormal 
gauge is invariant under the coordinate transformation

a + T -»■ a + t — 2 f(a + t )
£

a - t  a - t = 2  g (  cr -  t )
A

and in these coordinates 0 = A a. We can always choose 
these coodinates provided the current is space-like 
everywhere (the case of time-like currents is discussed in
[3.19]). If the current vanishes at some point however, we 
may need several patches to cover the loop. In these 
coordinates we have, using (3.1.20)

30 = 0, 3X = ~ kS(Keff/\i) = -j, /(-y)0ap= -y1;Lj26 “P
(3.2.5)

and the equation of motion (3.2.1b) becomes

aT ((l-Y11j2 )3xxa ) = Bo((l + Y11j2)B(jxa) (3.2.6)
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11 \ 2Y = l/(5ax)

11 2Note that only y j , which is invariant under rescaling 
c , enters these equations and therefore they are 
independent of A.

Our first set of solutions comes from noticing that
2 2 aif (a^x) + j = 0  (remember is a space-like vector)

then the right hand side of (3-2.6) vanishes. We then
have the solution x^ = j-u ( the factor j being necessary
to satisfy the orthonormal gauge conditions) and x = x(a),

2 2an arbitrary function subject to (d^x) = j
(i.e. y ^ j 2 = -1). These solutions are arbitrary static
curves in 3 dimensions and are called ’springs' [3.8].
What is happening is that the positive pressure 
contributed by the current cancels the string tension.

This may be seen by computing the stress-energy 
tensor from (3.1.19). In Minkowski spacetime this is

ab
T = -2 6S

^ a b

= U /  d 2 a / ( - y )  ( y“ P+ 0 a P ) 0c(xa dp xb 8 4 ( x a - Xa ( CT) )

(3.2.7)

which in the gauge described above becomes
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,ab= H ((1 - Y11^)^ xD - (1 + y11j"5)d xad xD)
T T Q O

S 4 ( x a  -  x a ( a ) )  ( 3 . 2 . 8 )

11 .2

For example, for a loop of radius of curvature large 
enough for us to approximate it to a straight line in the 
z direction say (i.e. xa* (t ,0,0,<j)) we have

Tab= (i 62 (x) diag( (1+j2 ) , 0, 0, (l-j2 )> (3.2.9)

and we see that as the dimensionless current j increases 
to 1 the energy density T°Q increases whilst the tension
3T g decreases. If j=l the energy momentum tensor is just 

that of a line of pressureless dust.

An interesting difference between superconducting 
string solutions and ordinary string solutions is that if 
the current density is non-zero we cannot have ’cusps'. 
These occur generically in ordinary strings [3.1l] and may 
be defined as points on the worldsheet where the 
determinant of the metric y vanishes. At such points all 
directions on the worldsheet are null. For superconducting 
strings however, the energy density (3.2.8) becomes 
infinite if y ^  vanishes since then y ^ is infinite. This
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is because if a cusp were to form, the current density 
there would be infinite.

Now we would like to check the stability of our 
'spring' solutions to small perturbations. Naively we 
expect that a perturbed spring solution can be moved at 
zero energy cost into another spring. Any other 
perturbation either compresses the string, in which case 
the pressure becomes dominant, or extends it so the 
tension becomes dominant. Thus one expects stability.

In our gauge, (3.2.5), 6ja = 0, so from (3.2.6) we
find

j26x = 3 (x'.6x’ x ’) (3.2.10a)
j 6x °= S (x’.6x') (3.2.10b)T “ S

where x = d^x, x ' =5^x. Setting 6x (t ,ct) = 6x(a)ela)t we 
multiply (3.2.10a) by 6x and integrate around the loop to 
obtain, upon integration by parts,

-0)2/ do (6x)2 = - / do (xl-6x')2/ x'2
(3.2.11)

pThus to > 0 with iff 6x'*x’ = 0 everywhere. Now we— —s
impose the perturbed gauge conditions. Equation (3.2.10b)
is just the t derivative of 6y +6y = 0. Using this and

t t  ' era

6y =0 one gets j6x°= x'*6x', j6x°'= x ’• 5x . These can be 
' ctt —s  — —s  —

integrated using the gauge conditions for x and (3.2.10a)s
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to show that 6x° is purely oscillatory. Thus we have shown
stability. There is a whole family of zero modes
corresponding to deformations of springs into other
springs, those for which 6x’*x’ = 0.—s

One should also bear in mind that we have neglected 
the non-local electromagnetic self-interaction of a loop 
which would act to reduce the electromagnetic field 
energy, presumably slowly bringing a loop to a more 
circular form.

The second class of solutions we present are
oscillating loops which are nevertheless solutions to

2 0(3.2.6) . We suppose that x ’ = constant, x = t and then
(3.2.6) becomes

2v X M

2v = 1 - j2/ x'2

1 +  j 2 /  X ’ 2

(3.2.12)

which has the general solution

x(a,t ) = (1/2) [ a ( a  + v t ) + b(a - v t  ) ] (3.2.13)

However we must also satisfy the orthonormal gauge
2 2conditions x • x* = 0, x + x' = 1 .  These imply

a ' 2  = b ’ 2 = 2/(1 + v 2 ) = £ 2 (3.2.14)
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if we i m p o s e  the e x t r a  c o n d i t i o n  a * * b f= 0. E q u a t i o n  

(3.2.14) says that a' and b' are curves lying on a sphe r e 

of r a d i u s  £. They are p e r i o d i c  and have c e n t r e  of m a s s  

zero, i.e /da a ’(a) = 0 , in the loops c e n t r e  of mass 

frame. Sol u t i o n s  of this type for o r d i n a r y  strings w ere 

d i s c u s s e d  by G a r f i n k l e  and V a c h a s p a t i  [3.16]. T hey h a v e  

kinks - p l aces w h e r e  the d e r i v a t i v e  x ’ is di s c o n t i n u o u s , 

but this is exp e c t e d  to be a g e neric f e a t u r e  for loops 

chopped off long s t r i n g s  in an e x p a n d i n g  universe. The 

simplest k i nky loop has a ’ b e ing simply two points, the 

north and south pole, and b* any two ant i p o d a l  p o i n t s  on 

the equator (Figure 3.1). M o r e  g e n e r a l l y  b 1 can be a ny arc 

or c o l l e c t i o n  of arcs on the equator (Figure 3.2).

We can e x p l i c i t l y  e v a l u a t e  v in t e r m s  of j. Fro m 

(3.2.13) and (3.2.14) we find x 1 1 /(I + v^) and f r o m

(3.2.12) we hav e

2v
/(I + 8j 2 ) - (1 + 2j 2 )

( 3 - 2 . 1 5 )

Note that the e f fect of the cu r r e n t  has simp l y  b een to

r e d u c e  the v e l o c i t y  of w a v e  p r o p a g a t i o n  on the s t r i n g  to 
2v < 1. As the cu r r e n t  is i n c r e a s e d  we see the v e l o c i t y

2 2d e c r e a s e s  until we r e a c h  j = 1  w h e r e  v = 0  and we are 

b a c k  in the r e a l m  of springs. To lowest order the c u r r e n t  

d oes not t h e r e f o r e  ’r o u n d  off' kinks on strings, it just 

slows t h e m  down. T h i s  e f f e c t  is n e v e r t h e l e s s  e n o u g h  to
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£U i S.SXX- J

Figure 3.1 The sphere on which the curves a. 2 — 2
f 2 lie. The oscillating square solution has a 

being two points, the north and south pole, and b 
being any two antipodal points on the equator.

a ’
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Figure 3.2 The a , b_ trajectories for a more general 
'kinky' loop solution.

a '
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m a k e  the r a d i a t e d  p o w e r  c a l c u l a t e d  f r o m  s u c h  an 

o s c i l l a t i n g  loop f i n i t e  as we  s h o w  in t he n e x t  s e c t i o n .  

In t he s e c t i o n  after t hat we d i s c u s s  h o w  t he n o n - l o c a l  

s e l f - i n t e r a c t i o n  of t h e  loop d o e s  a c t u a l l y  'round off' 

t he kinks.

S e c t i o n  3. E l e c t r o m a g n e t i c  R a d i a t i o n  f r o m  a K i n k y

Loop

S u p e r c o n d u c t i n g  s t r i n g s  r a d i a t e  e l e c t r o m a g n e t i c a l l y  

as w e l l  as g r a v i t a t i o n a l l y ,  and t h i s  e f f e c t  h as b e e n  

e v o k e d  by m a n y  a u t h o r s  to p r o d u c e  e x p l o s i o n s  [3.3], q u asar  

j e t s  [3.5] and other a s t r o p h y s i c a l  p h e n o m e n a  [3.6, 3.7]. 

P r e v i o u s  c a l c u l a t i o n s  h a v e  h o w e v e r  p r o d u c e d  v e r y  c r u d e  

e s t i m a t e s  of the t o t a l  power r a d i a t e d  s i n c e  t he n a i v e  

c a l c u l a t i o n  of the t o t a l  r a d i a t i o n  f r o m  a 'Nambu' 

t r a j e c t o r y  g i v e s  an i n f i n i t e  r e s u l t  [3 .10 , 3.16].

In t h i s  s e c t i o n  we  c a l c u l a t e  t he r a d i a t i o n  f r o m  the 

s i m p l e s t  k i n k y  loop a n d  find it is p e r f e c t l y  f i n i t e  if we 

i n c l u d e  t he local e f f e c t  of the c u r r e n t  on t he s t r i n g ' s  

m o t i o n .

T he s o l u t i o n  we u s e  is g i v e n  by (3.2.13) an d  (3.2.14)

w h e r e

a'(x) = l  (1,0,0) ; a(x) = l  (x,0,0) 0< x <L/2

= 5 (-1,0,0) = 1 ( L - x ,0,0) L/2< x <L

b'(x) = l  (0,1,0) ; b(x) = l  (0,x,0) 0< x <L/2
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= l  (0,-l,0) = l  ( 0 , L - x ,0) L/2< x <L

a nd L  is th e  l e n g t h  of t he loop. T h e  t r a j e c t o r y  is s h own  

in F i g u r e  3.1.

For a p e r i o d i c  source, the p o w e r  r a d i a t e d  per u n i t  

s o l i d  a n g l e  is g i v e n  b y  [3.10]

d P
dQ n

dP
dQ

n

d P n = - “ n J*(<o n ,k) J a (u .k) (3.3.2)
3£2 ~2% a  “  — ~

, 27cn 4 % nv
| k | =  «n -  -----  = -----------

T L

w h e r e  T =  L / 2 v  is th e  p e r i o d  of the s o u r c e  a nd J a t h e  

F o u r i e r  t r a n s f o r m  of the c u r r e n t  d e n s i t y .  In our cas e  f r o m  

(3.1.16, 3.1.20) and w i t h

J3 = / d 2a / ( - y ) x3 J “ 5 4 ( x  -  x ( ct, t ))  ,

J “ = (0 , J e f f )>

L / 2 v  L
J ( u n ,k)= (2v/L) J eff f Q dt f Qda exp( i(con t- k . x ( a )  ) ) x'(cr)

J eff = 3 (4e (3.3.3)
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It is c o n v e n i e n t  to s p lit t h e  in t e g r a l  (3.3.3) up 

i n t o  s e v e r a l  r e g i o n s  in t he o - t  p l ane. Thus

J = 2 v J eff [ J ++ + J + _ + J _ + + J__] (3.3.4)

L

w h e r e  t h e  s u b s c r i p t s  ±± c o r r e s p o n d  to r e g i o n s  w h e r e  

a ’ = l  ( ± 1 ,0 ,0 ), b ’ = £ (0,±1 ,0)

( F i gure 3.3). C h a n g i n g  v a r i a b l e s  to a + = a ± vt t he 

F o u rier t r a n s f o r m s  a re e a s i l y  e v a l u a t e d .  For e x a m p l e

J + +  = (5/v) (1 ,1 ,0 ) [_e
i ( L / 4 ) ( ( Uil/v) - k ^ ) )

- 1 ]
( ( u n /v) - k 15 )((ojn /v) + k g ? )

-iL/4( (co /v) + k ?)
x [e - 1 J

(3.3.5)

(here, a nd kg a r e  the x and y c o m p o n e n t s  of the Fourier 

T r a n s f o r m  v a r i a b l e ) .  N o w  u s i n g  a ’ * b T = 0 we h a v e

L 2 / ( 4 v 2j 2 f f ) | J |2 = | J ++ + J __|2 + |j+ _ + J _+|2

A = 1 J + J |2 ; B = IJ + J |2
++ —  + -  - +

and w r i t i n g
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F ig u re  3 .3  Diagram showing hew th e  o ' - t  in t e g r a l  ( 3 . 3 . 3 )  

i s  s p l i t  up i n t o  d i f f e r e n t  r e g io n s .  The ++, + -  e t c .  

d en o te  th e  d ir e c t io n  o f  a 1 b ' .
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it f o l l o w s  that

A  = ( 3 2 / v 2 ) 52 1 2 s i n ( L w _ / 8 ) s i n ( L w + / 8 )

1 2co_ <o+

si n (Lo)^/8 ) sin (Lu)^ / 8 )
1 2

C0 +  (0_

B = ( 3 2 / v 2 ) 52 1 2 sin(Lco_/8 )sin(L(o_/8 )
1 2

CO (0

sin(Lco^/8 )sin(Lco^/8 )
1 2 

“  + a> +

1 2 w h e r e  co+ = (con/v) ± k^) and co+ = (con/v) ± k
to p o l a r  c o o r d i n a t e s  we w r i t e

k. = to sinO cosd) = co a i n  n

k 0 — co sine sin* = co 6 2 n Y n K

„ . 1 2 ,R e - e x p r e s s i n g  co+ , cu+ we h ave

(3.3.7) 

. C h a n g i n g
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wj = (4 icn /L )  ( 1  ± Cva) = ( 4 n n / L )  6 +

w. = (4nn/L) (1 ± 5vp) = (4nn/L) y

(3.3.8)

S u b s t i t u t i n g  ( 3 . 3 . 7 ) , ( 3 . 3 . 8) int o  (3.3.2) we o b t a i n

dP 1 6 tu2 v 2 1 2 8 £ 2 J 2
Hq

eff Z n'

L2 ( 2 i t ) L 2 n (4Ttn)‘t

sin(7i:n6 ) sin(7tny )
f f  2 ~_________ 2____

s i n ( i c n 6 . )  s inCirny )2 ________2
6 + T _

s in ( 7 in 6  ) s in ( 7 t n y  ) 
+ { 2 ________2

s in (7 t n 6  ) s in (Trny )
*  ~ '  ) 2 i

r _

(3.3.9)

= 4 j 2 e f f ? 2v2 I  1  ( }
% n 2

A f ter s o m e  a l g e b r a  and u s i n g  t h e  r e l a t i o n  [3.17]

oo 2 2 2Z (1/n ) c o s n a  = (a - it) - n 
n=l

0< a< 2n

we a r r i v e  at the r e s u l t  for a > p >0 (i.e. in t he f i r s t  

o c t a n t  0<<j><7u/4 )
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dP = ( 3 2 / 7 t ) j 2 f f 5 v 2 x (a  ' 2 + (3'2 )

d£3 (1  -  p , 2 ) 2 ( l  -  a ' 2 ) ( 1 + a ' )

w h e r e  a ' = £va , p» = £vp. In t e r m s  of p o l a r  c o o r d i n a t e s  

0 , <j> we h a v e

2 4 4d P  = 32 J e f f £ v 

dQ 7U

2
X _______________________ S 1 D  9_________________________________

(1 - £ 2v 2s i n 20 s i n 2<|>)2 (1 - £ 2v 2s i n 20 c o s 24>)

X _________ *___________ (3.3.10)
(1 + £ v s i n0 cos<j))

T h e  a p p r o p r i a t e  e x p r e s s i o n  for o t her v a l u e s  of 0 a nd <j> can 

b e  o b t a i n e d  by s y m m e t r y .

N ote tha t  if w e  h a d  u s e d  a N a m b u  t r a j e c t o r y  we w o u l d  

h a v e  £v = 1 a nd (3.3.10) w o u l d  d i v e r g e  at 0 = u / 2 ,  <t>=0.

H e r e  h o w e v e r  we h a v e  f r o m  (3.2.14), (3.2.15) tha t  v<l,

£v< l  a nd so (3.3.10) is f i n i t e  e v e r y w h e r e .  A l s o  n o t e  that 

as 'j* a p p r o a c h e s  1 ' v ’ g o e s  to z e r o  and so  d o e s  the 

p o w e r  r a d i a t e d .

T he total p o w e r  r a d i a t e d ,  t he i n t e g r a l  of (3.3.10), 

is h a r d  to c a l c u l a t e  e x a c t l y  but we can o b t a i n  a good 

a p p r o x i m a t i o n  of it for small j by e x t r a c t i n g  t h e  d o m i n a n t  

c o n t r i b u t i o n ,  a r o u n d  0=ic/2, <t> =0 ( F i gure 3.4). We  find  

( s e t t i n g  ©=it/2 + x and ? 2v 2 = l - j2 ( l + v 2 ) * l -2j 2 ) the
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F i g u r e ^  A

, 0f  f a a d E . f ° r  sma11of -the integrand o_ J dK.

j. The
spike corresponds to 9 = 1 * 7 2 , ^ =  0
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i n t e g r a l

tc/4 tc/ 2
AX l/( 2J 2 + x 2 + <l>2 ) (3.3.11)I = / d* /

0 i r / 2

w h i c h  m a y  be p e r f o r m e d  by  f i rst d o i n g  the x i n t e gral, t hen 

s e t t i n g  <{> = /2 j s i n h z  a nd i n t e g r a t i n g  by p a r t s  to o b t a i n  

at s m all j

and t h u s  ( m u l t i p l y i n g  by 8 for e a c h  of the e i g h t  oc t a n t s )  

f r o m  (3.3.10)

w h e r e  J ^  is the t r u e  e l e c t r o m a g n e t i c  c u r r e n t  i n c l u d i n g  

the g a u g e  f i e l d  c o n t r i b u t i o n .  We r e p e a t  t hat (3.3.13) is 

v a l i d  for J 0ff << e/(ice f f n). R e w r i t i n g  (3.3.13) in 

d i m e n s i o n l e s s  u n i t s  of current, J -  -2e / ( k ^ ^ h ) j, we 

fin d

w i t h  r E M « 15 £ n ( l / j )  » 100 for j~ 1 0 ” 3 , u s i n g  k ff ~

1/4. For small j t h i s  is smaller tha n  p r e v i o u s  e s t i m a t e s

1 = 2 £n ( ti/  ( 2/2 j)) a r c t a n 2  + O(j^) (3.3.12)

P = ( 5 1 2 / tc) [ Xn(it/(2/2j)) a r c t a n 2  + 0 ( j 0 )]

(3.3.13)

(3.3.14)
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[3 .10 ] o b t a i n e d  by c u t t i n g  off the i n f i n i t e  r e s u l t  

o b t a i n e d  f r o m  N a m b u  t r a j e c t o r i e s .  We a r g u e  in S e c t i o n  6 
t hat large j is o n l y  p o s s i b l e  if we hav e  l a rge p r i m o r d i a l  

m a g n e t i c  fields. T h i s  looks to be  a p r o b l e m  for exa m p l e , 

for V i l e n k i n  a nd F i e l d ’s [3.1l] q u asar sce n a r i o .

In the o p p o s i t e  limit, as j a p p r o a c h e s  1 or the

m a g n i t u d e  of the e l e c t r o m a g n e t i c  c u r r e n t  a p p r o a c h e s

2e /(>ce f f n) the s t r i n g  t u r n s  i nto a ’s p r i n g ’ , a nd t he

v e l o c i t y  of p r o p a g a t i o n  goes to zero, and so d o e s  the
2 2r a d i a t e d  power. In fact P g oes to z e r o  like (1 - j ) .

We e m p h a s i s e  t h a t  (3.3.13) is p e r f e c t l y  f i n i t e  u n l i k e  

p r e v i o u s  c a l c u l a t i o n s  of the r a d i a t e d  p o w e r  w h i c h  u s e d 

N a m b u  t r a j e c t o r i e s  and w e r e  i n f i n i t e  [3.10].

S e c t i o n  4. T h e  E f f e c t  of N o n - L o c a l  S e l f - I n t e r a c t i o n s

on a K i n k

In t h i s  s e c t i o n  we u se a s i m p l e  m o d e l  for a k i n k  to 

e s t i m a t e  the r a t e  at w h i c h  it d e p a r t s  f r o m  its o r i g i n a l  

s h a p e  d u e  to e l e c t r o m a g n e t i c  b a c k  r e a c t i o n .  T h i s  f o r c e  is 

t he r e s u l t  of th e  c u r r e n t  on the s t r i n g  m o v i n g  t h r o u g h  a 

f i e l d  w h o s e  s o u r c e  is an o t h e r  p a r t  of the st r i n g .  We shall 

c a l c u l a t e  this f o r c e  for a r i g h t  m o v i n g  n i n e t y  d e g r e e  k i n k  

on an o t h e r w i s e  s t r a i g h t  s t r i n g  c a r r y i n g  a c u r r e n t  J 

s t a r t i n g  at t i m e  t = 0  [Figure 3.5].

For small c u r r e n t s ,  the k i n k  m o v e s  a l m o s t  at the
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Figure 3.5 A right moving 90̂  kink moving with a 
a velocity v^^ 1 on an otherwise straight string 
which carries a current J. The straight string segments 
move with velocity 1 / ^ ~ 2 .
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s p eed of light. Our c a l c u l a t i o n  will not be  s e n s i t i v e  to 

us t a k i n g  the v e l o c i t y  to be 1 and v to be  1/ / 2 .

The f i e l d  B at any p o i n t  in space c l o s e  to the s t r i n g  

is, by the B i o t - S a v a r t  law, g i v e n  by

B ( t , x )  = (1/4*) / d o ' ( d J ( a ' , t r e t ) A  r ) / r 3
(3.4.1)

w h e r e  r = x ( a ’ ,t .) - x and t h e  r e t a r d e d  t i m e  —  —  ’ ret' —
t = t - r. T h u s  at a n y  p o i n t  on the s t r i n g  t he self i* ex
f o r c e  per u n i t  l e n g t h  is

F = J(a,t)A  B(x(cr,t),t)

T he m a g n e t i c  f i e l d  B is that d ue to an i n t e g r a l  over all 

the i n f i n i t e s i m a l  c u r r e n t  e l e m e n t s  i n t e r s e c t i n g  the 

b a c k w a r d  light c o n e  f r o m  x(c,t).

Of course, all s e l f - f o r c e  c a l c u l a t i o n s  h a v e  

a m b i g u i t i e s  [3.18]. Here, t h e  p r o b l e m  can be  i l l u s t r a t e d  

by c a l c u l a t i n g  the s e l f - f o r c e  d ue to a s t r a i g h t  w i r e  

m o v i n g  w i t h  v e l o c i t y  1//2 in t he x d i r e c t i o n .  If our 

i n i t i a l  c o n d i t i o n s  a r e  t hat th e  s t r i n g  l i e s  a l o n g  the 

z - a x i s  at t = 0 , at a later t i m e  t the b a c k w a r d  light con e  

for a ny p o i n t  ( z ^ ,t^) on t he s t r i n g  lies on t he lines  

z - Z q = ± | x  - X q  | , a nd e ach p o i n t  i n t e r a c t s  w i t h  a m a g n e t i c

f i e l d
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R ( t  x , _  , T M  , i '  ( o ’ > W a ^ 0 ’ ’ t r e t ^  ~ *>B s (t, x) =  ( J/4n) j d a  _________________________________________

a l  I *  V e t )  ” i l 3
(3.4.2)

w h e r e  cr_J_ = a ± ( l / /2 )t are t he limits of t h e  b a c k w a r d

light cone. T h i s  is not zero, and we ar e  p r e s e n t e d  w i t h

the n o n s e n s i c a l  r e s u l t  tha t  a m o v i n g  w i r e  e x p e r i e n c e s  an

a c c e l e r a t i o n  d u e  to its o w n  m a g n e t i c  field. However, we

k n o w  that a w i r e  m o v i n g  w i t h  c o n s t a n t  v e l o c i t y  is a

s o l u t i o n  to t h e  t r u e  e q u a t i o n s  of m o t i o n ,  (just by L o r e n t z

b o o s t i n g  a s t a t i c  w i r e  ), so we  will ' r e n o r m a l i s e ’ all

c a l c u l a t i o n s  by s u b t r a c t i n g  B at e v e r y  p o i n t  on the—s

string, so t h a t  s t r a i g h t  w i r e s  do i n d e e d  m o v e  w i t h  

c o n s t a n t  v e l o c i t y .

Let us n o w  t u r n  to the k i n k  of F i g u r e  3.5. F i rst of 

all we nee d  to fin d  the l o cus of t he i n t e r s e c t i o n  of th e  

b a c k w a r d  light c o n e s  of p o i n t s  on the s t r i n g  w i t h  the 

s t r i n g  w o r l d  sheet. It is f a i r l y  s t r a i g h t f o r w a r d  to 

c o n v i n c e  o n e s e l f  that p o i n t s  in front of a k i n k  (like 

p o i n t  (A) on F i g u r e  3.6 ) can o n l y  "see" o t her p o i n t s  that  

w e r e  in f r o n t  of t he kink, so the locus of i n t e r s e c t i o n  

a r e  two lines at 4 5 °  to the string, t e r m i n a t i n g  at p o i n t s  

A', A" s u c h  t h a t  A A ' =  A A " =  t.

T he l o cus for a g i v e n  p o i n t  b e h i n d  t h e  kink, s u c h  as  

a p o i n t  B, is a l i t t l e  m o r e  c o m p l i c a t e d .  P o i n t s  f u r t h e r  

a w a y  f r o m  t h e  k i n k  (which is at a = t) t h a n  B (ie. a < 

a(B) ) a g a i n  a r e  on a h o r i z o n t a l  line BB' w h e n  t h e y  a r e
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Figure 3.6 A diagram shewing the locus of the points of 
intersection of the backward light cone of two different 
points (A, B) on the string with the string (dotted 
lines). Ihe labels Af A', B, ... are explained in the text.
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s o u r c e s  for the f i e l d  o b s e r v e d  at B at t i m e  t.

F u r t h e r m o r e ,  the l o c u s  e x t e n d s  u p w a r d s  to p o i n t  K ’ w h e r e  

the b a c k w a r d  light cone f r o m  B i n t e r s e c t s  the t r a j e c t o r y  

of the kink. For o > a ( K ’) the p o i n t  B is r u n n i n g  i nto the 

f i e l d  p r o d u c e d  by th e  s t r i n g  w h i c h  was in f r o n t  of the 

k i n k  w h e n  the f i e l d  wa s  p r o d u c e d .  The l o cus of t r u e  p o i n t s  

is d e t e r m i n e d  by the c o n d i t i o n  that D D ' / B D ’ = 1//2 b e c a u s e  

D D T is the d i s t a n c e  the s t r i n g  m o v e s  w h i l e  t h e  f i e l d  is 

t r a v e l l i n g  f r o m  D ’ to B. T h i s  is a flypecbolcc w i t h  its f o cus 

at p o i n t  B, w h i c h  e x t e n d s  to p o i n t  B ” w h e r e  the s t r a i g h t  

line d i s t a n c e  B B M is e q ual to t.

N o w  we can p e r f o r m  our r e n o r m a l i s a t i o n ,  w h i c h  for 

p o i n t  A is g r a p h i c a l l y  e q u i v a l e n t  to e l i m i n a t i n g  A ’A, and 

A A " , l e a v i n g  no t h i n g ,  w h i l e  for p o i n t  B we e l i m i n a t e  B ’B 

a n d  B K ’ , and add a p i e c e  K ' R  c o n s i s t i n g  of c u r r e n t  

e l e m e n t s  p o i n t i n g  in the o p p o s i t e  d i r e c t i o n  to J (a < 

cr(K)). T h i s  is s h o w n  in F i g u r e  3.7.

In p r i n c i p l e  we  can n o w  e v a l u a t e  t he f i e l d  at B 

e x a c t l y .  Ho w e v e r ,  thi s  is not r e a l l y  w o r t h w h i l e  b e c a u s e  

the s u b s e q u e n t  e v o l u t i o n  of the s t r i n g  c h a n g e s  the 

g e o m e t r y  of the kink, m a k i n g  th e  c a l c u l a t i o n  of t he locus 

of t he i n t e r s e c t i o n  of the light c one w i t h  th e  s t r i n g  

w o r l d  s h e e t  d i f f i c u l t .  Instead, we shall c o n t e n t  o u r s e l v e s  

w i t h  e s t i m a t i n g  the m a g n e t i c  f i e l d  at p o i n t  B. The
2

c l o s e s t  s o u r c e  p o i n t  to B is p o i n t  C; b e c a u s e  of t he 1/r 

in the B i o t - S a v a r t  f o r m u l a  th e  s o u r c e  p o i n t s  a r o u n d  C w i l l  

d o m i n a t e  t he i n t e g r a l  in (3.4.1). Hence, if w e  let JL = BC, 

a n d  a p p r o x i m a t e  t he p a r a b o l a  as a s t r a i g h t  line,
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R .

Figure 3.7 The locus of the points of intersection of the 
backward light cone of the point B with the string 
after we have performed our 'renormalisation'.
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| B(<j(B) ) | - J / R dx 1 (3.4.3)
x B „ (JL2 + x 2 )

w h e r e  (xB „, x R ) ~ t

If JL < t , t h e n  |B| ~ J/£, w h e r e a s  if Z > t (i.e. B
, , 2is a long w a y  f r o m  the k i n k  ) t h e n  |B| ~ Jt/£ . S i n c e  the 

s o u r c e s  near C d o m i n a t e ,  the d i r e c t i o n  of B (a(B)) is int o  

the page.

H e n c e  t he f o r c e  F = J / \ B  a c t s  in t h e  o p p o s i t e  

d i r e c t i o n  to t h e  v e l o c i t y  of the s t r i n g  b e h i n d  the kink, 

and h a s  t he m a g n i t u d e

l £ l - { J 2 /X
J Zt/JL2

X < t 
X > t

T h u s  we can e s t i m a t e  the d i s p l a c e m e n t  of a p i e c e  of 

s t r i n g  a w a y  f r o m  its u n p e r t u r b e d  p o s i t i o n  as th e  k i n k  

p a s s e s  t h r o u g h  it f r o m  the e q u a t i o n  of m o t i o n

x - x" * F/p,

As the k i n k  c a t c h e s  up w i t h  a p i e c e  of s t r i n g  it
2

s u d d e n l y  e x p e r i e n c e s  an a c c e l e r a t i o n  j /w (w is t he w i d t h
2 2

of t he s t r i n g  j * J /p, ) in a d i r e c t i o n  o p p o s i t e  to its 

m o t i o n  b e h i n d  the kink. After tim e  t the d i s p l a c e m e n t  of 

the s t r i n g  f r o m  its u n p e r t u r b e d  p o s i t i o n  is t h e r e f o r e  (for 

t > W)



- 8 8 -

Ax ~ J*f*'dt’dt"j/t" = J* dt’j2Jtn(t'/W) ~ j2tin(t/w)
(3.4.6)

The k i n k  is not a c t u a l l y  r e m o v e d  by t h i s  b a c k  

r e a c t i o n ,  b e c a u s e  th e  f o r c e  a l w a y s  o p e r a t e s  b e h i n d  it. 

Ho w e v e r  it s e e m s  l i k e l y  that the k i n k  will ten d  to 

s t r a i g h t e n  out in order to j o i n  s m o o t h l y  w i t h  s t r i n g  

l a g g i n g  behind. For t >> w, the l o g a r i t h m  in (3.4.6) is 

l a r g e  and i n d i c a t e s  t hat the k i n k  a c t u a l l y  Tr o u n d s  o u t T 

f a s t e r  t han t he r a t e  of loss of e n e r g y  f r o m  t he loop

(3.3.14). T h i s  w i l l  be i m p o r t a n t  in S e c t i o n  5. T h e  

c a l c u l a t i o n s  p r e s e n t e d  in t his s e c t i o n  h a v e  b e e n  v e r y  

crude. Th e  c o n c l u s i o n s  h a v e  h o w e v e r  r e c e n t l y  b e e n  

c o n f i r m e d  by S p e r g a l  [3.21] w h o  e v a l u a t e d  n u m e r i c a l l y  the 

t r a j e c t o r y  of an o s c i l l a t i n g  c u r r e n t  c a r r y i n g  loop.

S e c t i o n  5. L o o p  S h r i n k a g e  L e a d s  to C u r r e n t  L o s s

T h e r e  is a s i m p l e  a r g u m e n t  that the r a d i a t i o n  f r o m  

l o o p s  and their c o n s e q u e n t  s h r i n k a g e  leads to a b u i l d - u p  

of cur r e n t s .  The t o t a l  w i n d i n g  numb e r  of t h e  0 f i e l d  is 

f i x e d  b a r r i n g  t u n n e l l i n g  e v e n t s  w h e r e  x g o e s  to zero. T he 

c u r r e n t  is h o w e v e r  p r o p o r t i o n a l  to the g r a d i e n t  of 0 . N o w  

as a loop l o ses e n e r g y  its l e n g t h  d e c r e a s e s .  T h u s  the 

g r a d i e n t  of 0 m u s t  r i s e .  T h i s  g r o w t h  of c u r r e n t  is 

p a r t i c u l a r l y  i m p o r t a n t  in the O T W  s c e n a r i o  w h e r e  it leads 

to t he c o n c l u s i o n  t hat w h a t e v e r  t h e  m a g n i t u d e  of the
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p r i m o r d i a l  m a g n e t i c  fields, at some point a loop will

r a d i a t e  v e r y  large a m o u n t s  of e l e c t r o m a g n e t i c  energy. T he
2e l e c t r o m a g n e t i c  r a d i a t i o n  PE ^  = \l j d o m i n a t e s  the

2 -3g r a v i t a t i o n a l  r a d i a t i o n  G|i for j > /(G^) ~ 10

(recall that j is t he e l e c t r o m a g n e t i c  c u r r e n t  in t e r m s  of

t he s p r i n g  c u r r e n t ) .  For a n y  i n t e r e s t i n g  e f f e c t  one

g e n e r a l l y  r e q u i r e s  the c r i t i c a l  c u r r e n t  j to be  t h i sc
large.

One k n o w s  h o w e v e r ,  tha t  if j > 1  t h e n  t h e o r i e sc
p r e d i c t i n g  s u p e r c o n d u c t i n g  s t r i n g s  are r u l e d  out (see

s e c t i o n  6 ). So w e  a r e  led to s t u d y  the r a n g e  1 0“3 < j < 1.c
T h e  upper end of t h i s  r a n g e  is h a r d  to i n v e s t i g a t e :  all

w e  can s a f e l y  s a y  is that t he N a m b u  a c t i o n  w i l l  hav e  

s i g n i f i c a n t  c o r r e c t i o n s  a nd t h e r e f o r e  t h e  n a i v e  

c a l c u l a t i o n s  of [3.3-3.7] m a y  be  u n r e l i a b l e .

What if 1 0”3 < j < 1 0” 1 ?c

F r o m  (3.1.16) any r e g i o n  w h e r e  the 0 f i e l d  h as larger 

g r a d i e n t  than |V0| = J c / ( 2eiceff ) (wliere V© is ‘the s p a t i a l

g r a d i e n t  of 0 a l o n g  the string) will tur n  c r i t i c a l  and 

lose current. R e c a l l i n g  tha t  in t he g a u g e  w e  u s e 

i = - / ( k »»/u) 5 0 = j t h i s  t r a n s l a t e s  i n t o

l i ’lc = 3 2 e  = 3

For |x’| s m aller t h a n  thi s  c u r r e n t  will be  r a p i d l y  lost.
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N ow for s m all j the m o t i o n  of the loop s h o u l d  beo
A p p r o x i m a t e l y  N a m b u ’ . T h u s  we e x p e c t  that ’n e a r - c u s p s ’

[3.11] will occur. T h e s e  a re r e g i o n s  w h e r e  |x’| g e t s  v e r y  

small. In t h e s e  r e g i o n s  c u r r e n t  w ill be lost.

It m i g h t  b e  o b j e c t e d  tha t  the 0 f i e l d  is a m a s s l e s s
2f i e l d  o b e y i n g  (to z e r o t h  order in j ) the s a m e  e q u a t i o n  as

£1x and t h e r e f o r e  a ’c u s p ’ in a loop will o c cur 

p e r i o d i c a l l y  at e x a c t l y  the s a m e  p l a c e  and so the p r o c e s s  

of c l e a n i n g  c u r r e n t  off the s t r i n g  c e a s e s  a f t e r  the f i r s t  

c u s p .

Thi s  m a y  be w r o n g  h o w e v e r .  We  c a n n o t  e x p e c t  c u s p s  to 

r e m a i n  e x a c t l y  at t h e  same p o i n t .  T he s t r i n g  r a d i a t e s  

g r a v i t a t i o n a l l y  l o s i n g  l e n g t h  at a r a t e  A L  ~ r ^ G ^ L  per 

p e r i o d  w h e r e  L is t he l e ngth of t he loop. C u s p s  d o m i n a t e  

t he r a d i a t i o n  and so they s h o u l d  p r e c e s s  a r o u n d  the s t r i n g  

at thi s  r a t e  or faster. R e c a l l i n g  that it is p r e c i s e l y  t h e 

p r o c e s s  of s h r i n k a g e  in the loop w h i c h  g i v e s  r i s e  to a 

g r o w i n g  current, we  see that the loss of c u r r e n t  at 

’c u s p s ’ can o u t w e i g h  the gai n  d u e  to loop s h r i n k a g e .  In 

m o r e  detail, t he c u r r e n t  lost is g i v e n  r o u g h l y  b y
3

dj = “ j j c o m p a r e d  to the g a i n  dj = + r r,T5Gp. j + r ™  j 
dt j cL dt G R  L E M  L

d u e  to the loop s h r i n k i n g  by g r a v i t a t i o n a l  a nd

e l e c t r o m a g n e t i c  r a d i a t i o n .

In F i g u r e  3.8 dj^ is p l o t t e d  v e r s u s  j. W e  a s s u m e  t h a t  
dt
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Figure 3.8 A plot of dj versus j.
dt
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r„„ ~ Tnry and r 2G n j 2 << 1. For v e r y  small i n i t i a l  j
EjM vjK C

g r a v i t a t i o n a l  r a d i a t i o n  c a u s e s  j to r i s e  u n t i l  

j ~ Gprj ~  10 j . T h i s  is to o  small to c a u s e  the 

e x p l o s i o n s  r e q u i r e d  by OTW. N ow h o w e v e r  we h a v e  r e a c h e d  a 

s t a b l e  f i x e d  point. Any larger i n i tial current, up to ~

1/ ( rj ) (which for r ~ 100, j < 10”1 is a l w a y s  g r e a t e r  

than j_), w i l l  c a u s e  a n e g a t i v e  dj and thu s  loss ofC — ——

c u r rent. T h e  t i m e s c a l e  for c u r r e n t  loss is t ~ Lj 1 0 3 .
3

S e c t i o n  6 . S u m m a r y  a n d  D i s c u s s i o n

In t h i s  c h a pter we h a v e  p r e s e n t e d  t h e  r e s u l t s  of a 

d e t a i l e d  s t u d y  of th e  d y n a m i c s  of, and the r a d i a t i o n  

e m i t t e d  from, s u p e r c o n d u c t i n g  strings. We h a v e  d e r i v e d  an 

a p p r o x i m a t e  local a c t i o n  for a c u r r e n t  c a r r y i n g  v o r t e x  

line and p r e s e n t e d  s o m e  e x a c t  s o l u t i o n s  to its e q u a t i o n s  

of m o t i o n .  T h e s e  i n c l u d e d  ' s t a t i c 1 s p r i n g  s o l u t i o n s  w h i c h  

we s h o w e d  w e r e  s t a b l e  to small p e r t u r b a t i o n s .  T h e  s u b j e c t  

of the n e x t  chapter will be 'for w hat v a l u e s  of p a r a m e t e r s  

can s p r i n g s  f o r m ? ’ H e r e  let us a s s e s s  t he c o s m o l o g i c a l  

i m p l i c a t i o n s  of their f o r m a t i o n  [3.21,3.8].

E v e n  in the a b s e n c e  of p r i m o r d i a l  m a g n e t i c  f i e l d s  

c u r r e n t  w i l l  be p r e s e n t  on a loop at i ts f o r m a t i o n .  W h e n  

t he x c o n d e n s a t e  f o r m s  t he p h a s e  of t he x f i e l d  w i l l  be  

u n c o r r e l a t e d  on s c a l e s  e 0 < to (the t i m e  of the p h a s e  

t r a n s i t i o n ) .  If we h a v e  a loop of siz e  '1' o ne m i g h t
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e x p e c t  a net p h a s e  c h a n g e  of O ( / ( l / e 0 )) a n d  t h e r e f o r e

(using (3.1.20)) a c u r r e n t  J k i b b l e---  / ( < e f f /^) / ( l / e 0l)-
Since j T . ̂ ,< i . .. - c u sps are never f o r m e d  and^ s p r i n g  c r i t i c a l
c u r r e n t  w ill t h e r e f o r e  not be lost. T h u s  as the loop

o s c i l l a t e s  and r a d i a t e s  t he cu r r e n t  w i l l  b u i l d  up to j = l

at w h i c h  t i m e  1 . ~ /(« „-/iien l) 1. W h a t  h a p p e n s  to

t h e s e  s p r i n g s ?  T h e y  will look like m a g n e t i c  dipol e s .

Since the f o r c e  b e t w e e n  d i p o l e s  is w e a k e r  tha n  that

b e t w e e n  m o n o p o l e s  we  do not expe c t  a n n i h i l a t i o n  to p r e v e n t

t h e m  f r o m  d o m i n a t i n g  t h e  e n e r g y  d e n s i t y  of t he u n i v e r s e .

T h e  d i p o l e s  will e v e n t u a l l y  d e c a y  b y  t u n n e l l i n g  but, as we

wil l  s h o w  in c h a p t e r  4, t he l i f e t i m e  of t h e  c u r r e n t  on t h e

s p r i n g  w h e n  j=j* . is s i m ilar to tha t  w h e n  the c u r r e n ts p r i n g
is v e r y  small. Thus if we  wan t  the c u r r e n t  to last an 

a s t r o p h y s i c a l l y  i n t e r e s t i n g  time the s p r i n g s  will as w e ll. 

N e g l e c t i n g  a n n i h i l a t i o n  then, let us e s t i m a t e  the e n e r g y  

d e n s i t y  in springs. R o u g h l y  s p e a k i n g  we w o u l d  e x p e c t  t h e  

b i r t h  r a t e  of loops of s i z e  1 ~ t to be  t -lf (the s a m e  as 

for n o n - s u p e r c o n d u c t i n g  s t r i n g s ' [3.21]). T h e r e f o r e

P • ( t 1 )Ks p n n g s v J /t 1 dt t ~ 4 E s p r i n g (t) ( a ( t ) / a ( t ' ))

t ^ =  t i m e  at w h i c h  t h e  l a t e s t  loops w h i c h  b e c o m e  s p r i n g s  at 

t T a r e  f o r m e d

t f = t i m e  w h e n  f r i c t i o n  e f f e c t s  b e c o m e  n e g l i g i b l e  so the . 

l o ops can s t a r t  to o s c i l l a t e  and t h e r e f o r e  r a d i a t e  f r e e l y

~ ^ > ' 2 t p l a n k  t 3 ’ 2 3 ]

a(t) is t h e  s c a l e  f a c t o r  at t i m e  t.
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E s t i m a t i n g  e q ~ t 0 w e  o b t a i n  [3.22]

p . ~  t"”3/,2 ^11/2^2K s p n n g  ________ “______ p l a n k

m p l a n k

R e q u i r i n g  t h a t  Q -  (p / P cr i t i c a l ^  ‘today be  less t han 2 

m e a n s  tha t  \i < 1 0 13 GeV. A c c o r d i n g  to O T W  the e x p l o s i v e  

s c e n a r i o  of g a l a x y  f o r m a t i o n  r e q u i r e s  \x ~ 1 0 16 G e V  a nd so 

r e g i o n s  of p a r a m e t e r  s p a c e  w h e r e  s p r i n g s  a r e  f o r m e d  can be 

r u l e d  out if we  are i n t e r e s t e d  in their sce n a r i o .

In t he last s e c t i o n  we  s a w  that for i < 10" 1 c u r r e n tc
loss r a t h e r  t h a n  c u r r e n t  g a i n  o c c u r s  as a loop w i t h  c u s p s  

r a d i a t e s  a nd s h r inks. O n e  m i g h t  say, so what! K i n k y  l o ops 

w i t h o u t  c u s p s  ar e  g e n e r i c a l l y  formed. In s e c t i o n  4 we 

s h o w e d  that k i n k s  a r e  p r o b a b l y  r o u n d e d  out on a t i m e  s c a l e  

faster tha n  the t i m e  for s i g n i f i c a n t  e l e c t r o m a g n e t i c  

r a d i a t i o n  to occur. T h u s  k i n k s  a re r o u n d e d  out on a l e n g t h  

s c a l e  larger t han t h e  t o tal l e n g t h  of s t r i n g  lost - 

l e a d i n g  to the f o r m a t i o n  of c u s p s  and t h e  loss of c u r r e n t  

as d e t a i l e d  in s e c t i o n  5.

If c u r r e n t  b u i l d i n g  d ue to loop s h r i n k a g e  can b e  

r u l e d  out, w h a t  a b o u t  the p o s s i b i l i t y  of l a r g e  c u r r e n t s  

b e i n g  i n d u c e d  in l o ops by  large p r i m o r d i a l  m a g n e t i c  f i e l d s  

as t h e y  f o r m  ? As O T W  d i s c u s s e d ,  a m a g n e t i c  f i e l d  wil l  

i n d u c e  a c u r r e n t  in l o o p s  of order t he H u b b l e  r a d i u s

J*i ~ ^Pm / ^ P b a c  (w h e r e  Pm  is ttie m a g ne,tic f i e l d  e n e r g y  
d e n s i t y  a n d  P k ac is t h e b a c k g r o u n d  e n e r g y  d e n sity) in a 

n e w l y  f o r m e d  loop. T h e  e l e c t r o m a g n e t i c  r a d i a t i o n  will o n l y
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be s i g n i f i c a n t  c o m p a r e d  to the g r a v i t a t i o n a l  r a d i a t i o n  

i n i t i a l l y  if

PE M  = r E M ^  > P GR~ r G R GM'

3 > / (G M'(rG R /rE M ) ~ 10

_6
T h i s  r e q u i r e s  a p r i m o r d i a l  B f i e l d  w i t h  ~ 10 of the 

e n e r g y  d e n s i t y  of t h e  b a c k g r o u n d .  T h i s  is d i f f i c u l t  to 

r u l e  out at p r e s e n t  but m a y  in the f u t u r e  b e  a p r o b l e m  for 

their sce n a r i o .

T h e r e  is p e r h a p s  a n o t h e r  w a y  in w h i c h  l a r g e  

a / c  c u r r e n t s  could be p r o d u c e d .  It is p o s s i b l e  that t he  

c o u p l i n g  of t he e l e c t r o m a g n e t i c  f i eld b e t w e e n  d i f f e r e n t  

p a r t s  of an o s c i l l a t i n g  loop c o u l d  lead to a d y n a m o  

e f f e c t .

F r o m  the a b o v e  d i s c u s s i o n  it is clear that, to date, 

it is far f r o m  c e r t a i n  t hat the e x p l o s i v e  s c e n a r i o  of 

g a l a x y  f o r m a t i o n  is p l a u s i b l e .  Further w o r k  is still 

n e e d e d  in order to c h e c k  the s c e n a r i o  is c o n s i s t e n t  w i t h  

a s t r o n o m i c a l  o b s e r v a t i o n s .

A p p e n d i x : T he G l o b a l  S t r i n g  Action.

In thi s  A p p e n d i x ,  u s i n g  the t e c h n i q u e s  o u t l i n e d  in 

s e c t i o n  3.1 w e  d e r i v e  the a c t i o n  for a g l o b a l  string.

The s i m p l e s t  t h e o r y  that p o s s e s  g l o b a l  s t r i n g  

s o l u t i o n s  is the g o l d s t o n e  m o d e l  of a s e l f - i n t e r a c t i n g
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scalar f i e l d  d e s c r i b e d  by the a c t i o n

S = / d ‘*y ( (a ® ) + ( 6 |i4>) - * X ($+4. - n 2 )2 ) (A.l)
^ 2

P e r f o r m i n g  the c o o r d i n a t e  t r a n s f o r m a t i o n

a sl / » a + v A y = x (a) + n.(a)p (3.1.3)

a nd s u b s t i t u t i n g  th e  a n s a t z  $ = $  (where $ w a s  g i v e n  ins s
(3.1.2)) i nto the a c t i o n  (A.l) we  o b t a i n

^ s t r i n g *  /dadT (/y d 2 P l ’(p ) + Jy d 2 P Ti2f 2 (p)5^0 S^e)
s o

* -|i JdcrdT /-y + J v d**x n 2 d 0 5^0 ( A . 2)
vo 11

w h e r e  V g is the v o l u m e  of the s t r i n g  a nd V Q t h e  r e m a i n i n g  

volume. In w r i t i n g  t h e s e  e x p r e s s i o n s  we  h a v e  a s s u m e d  t h a t  

0 is a s l o w l y  v a r y i n g  f u n c t i o n  so that the w i d t h  

6 ~ ( / ( \ ) ti) ” 1 is well d e f ined. T he 0 f i e l d  m u s t  a l s o  s a t i s f y  

the c o n s t r a i n t

/ d x 11 5^0 = 27ub ( A . 3)

w h e r e  b c o u n t s  the n u mber of t i m e s  the s u r f a c e  S b o u n d e d  

by C cuts th e  string. T h i s  c o n s t r a i n t  m a k e s  the a c t i o n  

( A . 2) r a t h e r  d i f f i c u l t  to u se in s t u d i e s  of t he m o t i o n  a nd 

r a d i a t i o n  f r o m  g l o b a l  s t r ings. We n o w  t h e r e f o r e  s e e k  a 

c l a s s i c a l l y  e q u i v a l e n t  a c t i o n  (i.e. one w i t h  the same
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e q u a t i o n  of m o t i o n  and e n e r g y  m o m e n t u m  t e nsor) in w h i c h  

the c o n s t r a i n t  can be w r i t t e n  in a local form.

T he e q u a t i o n  of m o t i o n  for the 0 f i e l d  is

5 = o (A.4>
p, •

w h i c h  i m p l i e s  that

b F p'= 0 w h e r e  F*1 = d^O

Thi s  s u g g e s t s  that we s h o u l d  i n t r o d u c e  an a n t i s y m m e t r i c  

tens o r  f i e l d  d e f i n e d  by

E ^vpa & a  = s^e
v p a

o u t s i d e  the s t r i n g  (note 0 is not d e f i n e d  in the string, 

t he d e f i n i t i o n  of A  t h e r e  will be g i v e n  later). The 

e q u a t i o n  of m o t i o n  (A.4) is t h e n  j u s t  an i d e n t i t y  for t he 

A field. T he i d e n t i t y

6 „0 = 0v 0

n v p *  ( kti t8 A ) =  o
V v P K T) Y J

for the 0 f i e l d  g i v e s  the e q u a t i o n  of m o t i o n  for A. T he 

a p p r o p r i a t e  a c t i o n  to g ive t his e q u a t i o n  of m o t i o n  is
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C S d hy ( e- a VA pX)2J V ^VpX J

w h e r e  C is a c o n s t a n t .  T he g l o b a l  c o n s t r a i n t  ( A . 3) can be 

w r i t t e n  as a local c o n s t r a i n t  for the A field.

/  d x ^ ( e  
c ^v|3 5 V A [ J J  d ^ v a 

s
( e  „ . a P A x<1') 2-jubn

Her e  we  h a v e  u s e d  S t o k e s  th e o r e m .  We n o w  d e f i n e  A in t he 

s t r i n g  by

A a a “ A 06p a ao  x . . dy*1. d y vs t r i n g  J A  J= 8 Tin J

w o r l d  sheet

6 (x - y (a ,x ))

W

T he local c o n s t r a i n t  can be i n c o r p o r a t e d  i n t o  t he a c t i o n  

u s i n g  L a g r a n g e  m u l t i p l i e r  t e c h n i q u e s  to o b t a i n

n r _ / livpx »2 « f a$\L6^ _v Ax(p
C L = ( E P 3VAgX) + A'ap V p,VX(|;

8Tin / d y a d y P 64 (x - y(a,x)))

T he e q u a t i o n  of m o t i o n  for the A f i e l d  r e l a t e s  A to \ . 

T h i s  r e l a t i o n s h i p  m a y  be u s e d  to e l i m i n a t e  A f r o m  the 

l a g r a n g i a n  to o b t a i n

C L  =  - (e,lvpxav \ )* - 8nn Jffd y ^  d y p 6^ ( x  - y ( c , T ) )  \ a« *4

In order to fix t he c o n s t a n t  C we r e q u i r e  t h a t  the e n e r g y
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m o m e n t u m  tensor for the two f i e l d s  9 and X to be the same. 

After some a l g e b r a  we find C = - ( l / 4 ) .  Thu s  we f i n a l l y  

o b t a i n

S = * J d ^ y  ( e M'vpX5 v Xp x ) 2 + 2 ict)/  d <ya a x acJ "  ^ /  d 2 °
2

T h i s  is the s ame as the a c t i o n  p r o p o s e d  by Lun d  and R e g g e  

[3.13] to d e s c r i b e  global s t r i n g s  and that use d  by 

V i l e n k i n  and V a c h a s p a t i  [3.24] w h e n  t hey e s t i m a t e d  the 

r a d i a t i o n  e m i t t e d  by global strings.
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CHAPTER 4: SUPERCONDUCTING STRINGS OR 
SPRINGS
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Chapter 4. Superconducting Strings or Springs?

For a cosmic string [4.2] to become a bosonic 
superconductor, an electromagnetically charged field has 
to develop a vacuum expectation value (VEV) in a localised 
region around the string [4.1]. Whether it does so or not 
depends on the details of the dynamics - we have to 
arrange for it to happen by carefully choosing the 
relative magnitude of the coupling constants in the 
potential. How careful do we have to be? In this chapter 
we answer this question for the simplest theory in which 
bosonic superconducting strings arise, that defined by 
equation (3.1.7).

The current carrying state is only metastable. 
Tunnelling processes exist whereby current is lost. We 
evaluate the tunnelling rate so we can find the regions of 
parameter space where the current lasts long enough for 
interesting astrophysical consequences. Finally we 
discover what regions of parameter space can be ruled out 
as cosmologically unacceptable for GUT strings because of 
the formation of springs.

The Lagrangian we use is

L = |  D^©! 2 + | D (jX| 2 +  1 ( E 2 -  B 2 ) -  1 X x ( | $ | 2 -  T)2 ) 2

2 2
-  1 x2 I x T  -  x3 ( | ® | 2 -  m2 ) | x | 2 ( 3 . 1 . 7 )

- ±  fT
4-

2
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which has the global vacuum manifold $> = -p , x ” 0 as long 
as [chapter 3, 4.1, 4.8]

m2 < r \ 2  ^1^2 > ^3 (4 *1)

For simplicity, in this chapter we shall set the 
gauge couplings to be equal and then explore parameter 
space for the dimensionless quantities Xg, ^3 anc* 
H=m/T). We shall understand the region of parameter space 
in which condensates form using qualitative arguments 
which we have checked numerically (see below). These 
arguments confirm and explain the results of [4.4, 4.5] 
but our conclusions are rather different because we have 
the additional requirement on the lifetime of the 
metastable current carrying state.

First, let us ask in which region of parameter space 
is it energetically favourable for a x  condensate to form 
on the string. To do this we follow Witten [4.1] and look 
at the stability of the U(l)’ string solution with x=0 and 
A^=0 everywhere. The equation for small fluctuations in x  

in the presence of 4 is

X - V2x + X3 ( HI2 -m2) x = 0 (4.2)

We look for solutions of this equation of the form 
x(x,y,z,t) = e x 0 ( x , y ) .  This reduces (4.2) to
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(- il - i!. ) X0 + v(r)xQ = co2 x0 

6x2 ay2

V(r )=Xg(| $ |2 - m2)

which is just a two dimensional Schrodinger equation. If a 
bound state solution with w2 < 0 exists then the string 
solution with x “ 0 is unstable and the x field will 
evolve to a lower energy state with x * 0 * For ni2 = *n2 the 
potential is negative definite and a bound state always 
exists [4.1, 4.6]. We shall discuss the solution in this 
special case later. For m2 < r \ 2  the situation is more 
complicated. The potential is a well of width 
W « niT^C^X- n ) -1 and depth U = X0n2* If the dimensionless( p i  o
strength of the potential, UW2 * Xg/X^, is larSe then the 
potential is strong enough to localize the wavefunction x* 
In this case (adding X^m2 to the energy) we can 
approximate the ground state energy to be just that of an 
harmonic oscillator with EQ = (X^X2) 1 / 2 ^ 2  • By 
subtracting X^m2, we find the ground state energy is 
negative if \ i 2  > (X^/X^ ) 172 which is much less than unity. 
Thus for large Xg/X^ a wide range of m/T) gives a 
condensate. If however, Xg/X^ is small we have the 
opposite limit in which we can treat the wavefunction as 
essentially constant across the potential. Subtracting 
X3 (t)2-ib2) from the energy so that we have a negative 
definite potential, by a standard result [4.6, page 163] 
for weak potentials the ground state energy is
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-1/(UW2) -2 2 -X-/X«
W « —X 1‘T| e ± °

which is exponentially small. Adding back X3(r]2-m2) the 
ground state energy is only negative if

which is very close to unity. So for X3 << X^there is very 
little p parameter space corresponding to a condensate 
(These results explain those of [4.5] especially their 
figure 4 where the allowed range of p = (X3/X^) is plotted 
for different values of a  - (X3p2/X^) ).

The second condition in equation (4.1) restricts us 
to the region X2 p1* < X^Xg, and requiring a reasonably 
large p parameter space means that X^< X̂ p** • Hence X^p2 

is bounded above by (X^Xg) 172 and below by X^/p2 (Figure 
4.1). Using p2<l we can exhibit a weak but convenient 
bound on the couplings:

Let us first assess the classical stability of the 
current carrying state. We shall construst an effective 
Hamiltonian for a loop of string of radius R carrying a 
constant current, from which the classical critical 
current is defined as the current at which the 
superconducting x  ̂ 0 minimum disappears. If this happens

P 2  > 1 - (X1/X3)e

X1 <X3<X2 (4.3)
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log ( \ 3

E i 9 V r e  A diagram showing the region of parameter 
space in which a string will be superconducting.
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above the ’spring current’, where the pressure from the 
current and associated field balances the string tension, 
then springs are stable solutions to the classical field 
equations. We shall then estimate the quantum stability of 
such a configuration: it transpires that springs are 
extremely long lived.

The current carrying state corresponds to

X = x0(p)ei0 (a)

J = 2e«(5 0 + eA ) = 2e>c --5 0 (4.4)a a a e n  a

(a=0,l) where (see chapter 3)

<  = /<*2p X0(p) (4.5)

eff 1 +(e2K/iu)ln(R/W’)
(4.6)

Here, R is the radius of the string loop and W’~ m” 1 is  ̂ X
the width of the condensate.

We shall assume that the <}> and A fields remain 
unchanged as the current increases, and that the x field 
can be written as  ̂= xQ(p > J=0)a(t, cr) where ’a’ includes a 
phase and an overall amplitude. This latter assumption is 
that the presence of the current does not affect the 
width. Numerically (see below) we found that this was a 
good approximation in regions of parameter where springs 
are formed. Indeed, it is only because the x field is
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little affected by the current that springs can form at 
all.

Substituting this ansatz into the action, integrating 
over p and using the equation of motion of xQ to eliminate 
the radial gradient term we obtain the effective two 
dimensional lagrangian:

La2> = Kl°aa | 2 " ( V 2)1̂ 1* 1" ~  2 lal2) (4-7>

with

<4= / d2P Xq (4.8)

Next we must include the contributions of the gauge fields
by solving for A in terms of J . The variation in A ,a a a *
AA ~ J (p/W’ ) 2 is small compared to its value at the 

a  a
centre of the string [4.3] so we will treat it as constant 
across the string. Thus the gauge field contribution is

L ( P  =  ( 1 / 2 ) /  d 2 p (  E 2 -  B 2 )

* (l/4it) J2 ln(R/W’) (4.9)

So the full effective two dimensional Lagrangian for the 
field ’aT can be written as:

L(2) = K(So |a| ) 2 - (X2/2)K4 (|a|“ - 2 |a|2)
(8 0)2 

+< [a;2 g
(1 + v2 a 2)

(4.10)
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wher e

v2 = (e2(c/7t)ln(R/Wt ) (4.11)

Let p2 = -(d 0)2, which is positive for space-likea
current on the string. The contribution to the potential 
from the current is positive and flat above a * v-1. Thus 
if k is large, that is if v 2 > > 1 ,  the position of the 
minimum is affected very little by the current. In fact, 
in this limit, the superconducting minimum disappears only 
when

The ’spring current’ is determined by equating the energy 
per unit length in the current with the string tension 
T~t)2 (see chapter 3). Hence

27/ k

4\ \0k , e2ic \ 2 4 In
2

(4.12)

T(l+ v2 | a |2 )
(4.13)

Springs are not stable if p2 > p2 . We estimate k  . and kS C  4

by taking | x 0 | 2 ~ (X3m2M 2) and

l / X 3 T)2 ( l - | i 2 )  , i f  X x > \ 3 ( l - | i 2 )

W’ 2 (4.14)
i f  K x < \  3 (  1 —p,2 )
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The width in the second case being determined by that of 
the vortex. Thus classically, for large k there are no 
springs if

X3 I12 £ ( 1 / v 2k ) ( 4 . 1 5 )

Now suppose that instead k is small so that v2 << 1. 
In this case our approximation of treating the radial 
dependence of the fields as fixed is no longer valid. 
Nevertheless we can see in a rough way that springs do not 
exist in this region of parameter space. The minimum of 
the potential in (4.10) goes to zero when

P 2 X2 k4 ( 4 . 1 6 )

Comparing this with the spring current we find that for 
small k springs do not exist anywhere.

Thus the conclusion from our analytic method is that
ctasstcc\\\y

springs generically existAwhen « >> 1, as long as XgH2 is 
not too small. Since k is roughly the inverse of a quartic 
coupling constant we can expect it to be substantially 
larger than unity in a perturbation theory.

So far our results have been very qualitative, and 
our arguments only approximate. We have therefore checked 
them numerically for some particular values of the 
coupling constants.
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To do this we have used a simple ’relaxation method’. 
The energy per unit length is simply written as a function 
of the gauge and Higgs fields and the radial integral 
approximated numerically (we used the trapezium rule). Now 
we have the Hamiltonian of a mechanical system and we 
proceeds to minimize it as follows. Consider adjusting the 
<j> field at site n (4>n)» while keeping all the other 
discretised field variables fixed. To minimize the energy 
one solves dH/d(f>n=0. This is a cubic equation and so its 
roots are easily found. In fact there is a unique solution 
provided the spatial step is small enough. One starts with 
an ansatz for the fields and, keeping the appropriate 
boundary values fixed, evolves the fields at each site in 
turn to minimize the Hamiltonian.

The electromagnetic gauge field is treated in a
slightly different way. We solve for A in terms of p and

o

again treat it as constant across the string so that the 
current contributes a term

UI'p2 t-v 2

(l+v2/d2p T|x(P)I 2)
(4.17)

to the Hamiltonian.

In the program distances are expressed in 
dimensionless units £ = erjp , the fields are scaled by tj , 

and the Hamiltonian depends on the couplings in the ratio 
X^/e2 ... etc. Thus the program uses and calculates e2ic 
(rather than «), and the only extra parameter we have to
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choose is the value of the logarithm which we take to be 
100. This corresponds to GUT scale strings of radius about 
1012m. The spring current is the current at which the 
energy per unit length in the current is exactly half the 
total energy of the string: since the current term
contributes to the pressure with the opposite sign to the 
rest of the energy [4.3] this is the current at which the 
effective tension vanishes. The critical current is the 
current at which the condensate vanishes.

The algorithm converges very rapidly for ordinary 
local strings and gives an accuracy of better than one per 
cent for their energy if we have of order ten points per 
string width^(X^T)2 )'"1/2. For the superconducting case a 
few minutes of VAX cpu time is needed for convergence. We 
ran this algorithm for various couplings to confirm the 
arguments statedbefore. We required that the condensate 
energy changed by less than one part in 106 in fifty 'time 
steps' (i.e. evolving each radial point fifty times) 
before we accepted the solution as having converged.

In Table 4.1 we have listed some results of our
program. We display e2ic , p2 and e2ic (where k is defineds s s
as /d2p | x |2 a>t the spring current pg ) for various values 
of the parameters Xi/e2 (i=l,2,3) and \ i . For example, the 
first entry is clearly a spring: e2fc is large, so the 
effective Hamiltonian is flat above a small value of 'a', 
and even at the spring current e 2 < is hardly changed, 
showing that there is very little back reaction on the
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condensate. The second entry has made sufficiently 
small to satisfy the bound (4.15): we find that the 
critical current is reached before the spring current. The 
third entry shows a situation where e 2 <  is small. Our 
analysis suggests that this should not form a spring which 
we indeed find to be the case. The last entry with \ i = 1 
is a spring. This is discussed below.

Table 4.1: Some results from the numerical 
solutions of the string field equations.

|i (\x/e2) (\2/e2) (\3/e2) spring? e2« e2Kg 

0.95 0.01 0.4 0.06 yes 23.9 22.8

0.90 0.02 2.0 0.20 no 4.5

0.90 0.10 1.20 0.40 no 2.6

1.00 2.00 4.0 2.00 yes * *

* Note that with |i=l, e2« is logarithmically divergent.

The importance and meaning of k  becomes clearer when 
we study the stability of the current on the string 
against the tunnelling of flux through the condensate.
This can happen when a quantum fluctuation takes Ta* to 
zero somewhere and an instanton electric flux tube appears 
in the worldsheet. The appropriate procedure to calcuate 
the probability for such an event is to find the action of 
the instanton solution of the Euclidean equations of
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motion [4.7]. This means minimising the Euclidean action 
SE given by:

SE = k f d 2 a (  I D^a |2 + (X2k 4/2k ) ( | a I2 -l)2)

+ /d2ad2p (1/2)( E2 + B2) (4.18)

where we have shifted the potential so that the Lagrangian 
vanishes away from the instanton. The contribution from 
the electromagnetic field extends off the worldsheet; 
however, the main contribution comes from the centre of 
the Euclidean vortex near the string so we believe that a 
good approximation to SE is obtained by cutting off the 
electric field beyond 1 ~ WT. Scaling the gauge field 
A = qX and the coordinates a  = Q-1 cr with Q  = (ic)1/2/ln\ 
we obtain:

SE - k f d 2 o  (lDaaI2 + (1/2 ) X j( I a |2 - l) 2 +(1/2 )E2

(4.19)

where Xj = % X 2 k ^ 1 2 / k 2  . Apart from the factor tc this is 
just the action of a truly two dimensional vortex. Hence

SE - 2 n K f ( \ I / e 2 )  (4.20)

where f is a slowly increasing function well know from 
vortex studies [4.8, 4.5], and f(l)=l. A naive estimate 
gives XT~ X0. Note however that S_ is relatively
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insensitive to the precise value of X^.

In the usual way [4.7] the tunnelling rate per unit
olength is estimated as r  * xSEe * thus the larger k is, 

the lower the tunnelling rate. Physically, k  is 
proportional to the square of the number of penetration 
depths across the superconducting string. This is easy to 
understand: in order to lose flux from a loop of string we 
must move it through the string in a vortex line of length 
W’ and mass per unit length of about |x12 - The action for 
this process is roughly |x 12 W T2 * k .

This physical intuition gives us the confidence to
extend this calculation to all currents. We expect the
tunnelling action at winding p to be essentially
2<ir/d2p | x (p ) 12 -  27ric|a|2 where Ta f is  the value of 'a* that

minimises the effective Hamiltonain for a particular p.
But we have seen that for large k , that is in the
classical spring regime, k « k , both analytically and ins
our numerical solutions. So we can say that when k >>1 the 
lifetime of the current on the string is the same whether 
it is a tiny fraction of its critcal value or whether it 
is the spring current. Now suppose we require that small 
currents persist on the string long enough for 
astrophysical consequences. For example, the OTW [4.9] 
scenario conservatively requires a current of 10~3T 
(T~1016GeV) on a string formed at decoupling (t~101 2s) to 
persist for at least one oscillation. If N ~ pR is the 
total winding of 0 on the loop, N tunnelling events are
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required. So using the estimate of the tunnelling rate we 
require:

S_- In S„ > In (m2 L2/N) ~ 125 (4.21)X

Hence we need k  ^ 20. This is the region of parameter 
space where classical springs are generic and in which we 
saw that tcg~ k . We can therefore state an important 
conclusion, long lived currents for astrophysics tend to 
require theories in which springs are equally long lived. 
This is cosmologically disastrous [4.10, chapter 3]. Of 
course, we cannot rule out the superconducting string 
scenarios on this basis because we can always tune Xg to 
smaller values so that condition (4.15) is satisfied.
This also necessitates a tuning of either X^ or ji. It may 
be thought ’unnatural' to have quartic couplings of 
different orders of magnitude particularly if <J> and x 
belong to the same representation of a grand unified gauge 
group, and in this sense springs are a real problem.

Finally, we consider the case where \ i is very close
to one, that is when m << in in the broken phaseX <P
(assuming the ratio of Xg to x^ is not very small). We 
know that this is in a sense a ’natural’ state of affairs 
because of the smallness of the weak scale relative to the 
GUT scale. From the arguments above a condensate exists 
for a wide range of (X3/X^) so we can say that, unless a 
symmetry ensures Xg=0 , a condensate nearly always exists. 
The value of k  will be large as the following argument 
makes clear. If we set m2 =» r \ 2  exactly, as we pointed out 
the potential still has the correct minimum. However the x
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field is now ’massless’ at infinty. What happens? The %  

field equation of motion becomes for large p

i  a 8 x n____( P _  ) = X2 x0 3 (p ) (4.22)
p dp dp

which has the solution

X0 (P) = 1/(A 2 P) (4.23)

- ^ U o C 1! 2 - ® 2 ) )  p

Thus the usual e dependence changes into
a power law. We show a numerical solution in Figure 4.2 
for a case in which we have verified the asymptotic 
behaviour.

Since the energy density falls off as a power law,
« l / p h , the energy depends as 1/p2 on the cutoff radiusc
p . Therefore such strings would have a long range scalar c
attractive force F « 1/p3 (in addition of course to any
electromagnetic force), and k  would be logarithmically
divergent. However, if x  has a small mass in vacuo then k

~ ln(m^/m^ ) / \ 2 which for GUT and weak scales is roughly
50/\2. Thus, contrary to our naive expectation, springs
are generic when m << m unless the coupling between theX 4>
fields are very small.

NOTE ADDED

It has recently been suggested (R.Davis and P.Shellard,
private commmunication) that to obtain springs with 
current alone we depend strongly on taking a large
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Amplitude

o

Figure 4,2 The field profiles for a string with^=1;
'f' and 's' are the ' and 'JC' scaled by)|, while 
b is the azimuthal component of the gauge field scaled 
by V) and multiplied by e .
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logarithm. We have checked the spring solutions in the 
table and have found that they remain springs down to a 
log of 2 0 , corresponding to a size of 1 0~2 3m.
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CHAPTER 5 THE EFFECT OF TOPOLOGICAL 
DEFECTS ON PHASE TRANSITIONS
IN THE EARLY UNIVERSE
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CHAPTER 5. The effect of Topological Defects on 
Phase Transitions in the Early Universe

It has previously been demonstrated by Weinberg and 
others [5.2], that at sufficiently high temperatures, it 
is possible to restore the full gauge symmetry of a 
spontaneously broken simple gauge group that could 
describe the interaction of particles. The big bang model 
suggests that the universe was once very hot and dense and 
at these high temperatures we would expect the full 
symmetry to be manifest. As the universe expanded and 
cooled it would have undergone a series of phase 
transitions at which the symmetry was broken. At these 
phase transitions topological defects may have been formed
[5.3]. These may have been monopoles, strings, domain 
walls, or various combinations thereof, which could have 
been either superconducting or not [5.6, 5.26].

The presence of these defects in the early universe 
has intriguing consequences for cosmology. As already 
discussed, superconducting and ’ordinary’ strings play 
central roles in two different scenarios of galaxy 
formation. To test these scenarios it is important to 
understand the properties of the defects and to be able 
to answer questions such as: At what temperature are they 
formed? What is their number density and distibution at
formation? How does their distribution change as the 
universe expands?
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In this chapter we attempt to answer these questions 
by developing an analytic description of a phase 
transition which leads to the formation of strings. We 
also derive the statistical properties of strings. Our 
results are in very good agreement with theoretical 
calculations based on an approach very different to our 
own [5.1, 5.3], and on computer simulations [5.7, 5.17].

The chapter is divided into four parts. In section 
1 we consider one of the simplest theories that displays a 
phase transition, that of a real scalar field theory. In 
section 2 we derive the partition function describing the 
equilibrium properties of a U(l) gauge theory. In section 
3 we consider the effects of string formation on the phase 
transition and show that the dominant contribution to the 
partition function at temperatures well below the critical 
temperature comes from the constant field configuration 
(i.e the mean field approximation is good in this regime). 
However, as the temperature is increased, the high density 
of states (entropy) available for the topological defects 
balances the energy required to form them, and they then 
make the dominant contribution to the partition function. 
In this section we also derive the statistical properties 
of strings and the effect that temperature has on their 
width and energy per unit length. The final section is 
devoted to a summary and discussion of our results and 
their cosmological significance.
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Section 1. THE PARTITION FUNCTION FOR A REAL SCALAR
FIELD THEORY

We shall start our discussion of phase transitions by 
considering one of the simplest theories that displays 
one; that of a real scalar field theory with Lagrange 
density

L= -  0 4 ) 0 % )  + -  <t,2 - A- $ 4 (5.1)

On taking > 0, L possesses a double well potential 
which breaks the <{>-*-<{> symmetry of the theory.

The partition function of this theory in thermal 
equilibrium at temperature T has the path integral 
representation in terms of Euclidean fields

z « / D«d exp[-I (♦)] (5.2)

where [5.10]

Ip(4>) " Jo dT / dM -  -  " I mo 4>2 + *4]
2 2 4!

(5.3)

The sum over configurations of 4>(t , x ) i s  restricted to 
fields periodic in t with period p and we shall take the
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signature of our Euclidean space to be -4.

The standard approach to evaluating this partition 
function is to adopt the mean field approximation. One 
restricts the path integral to periodic configurations 
whose Euclidean space-time average is specified in advance 
to be:

1 h ___ J^dx / ^3x 4>(̂ »x) = <f> (5*4)
p v

where V is the spatial volume of the system. The 
resulting expression [5.4]:

1 (3
Z(<JO -o*£ / D<j>[6 (4> -  /0dx / d3x<|)(T ,x))]exp(-Ip [<{)]) (5.5)

p v

has the following interpretation. Let us couple the 
field <|)(t ,x ) to a constant source j. The effect of this 
source is to enable the thermal average <<t>> to take any 
value.we wish (almost), (<4>> will be constant by virtue of 
the translational invariance of j for large V). If we now 
write Z as

Z ( 0 ) = e-pv V(<{>) (5.6)

then V(<{>) is the Helmholtz energy density (effective 
potential) of the system when j is chosen so that

<<{>> = With V() satisfying
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a v o
5 (J)

(6.7)

in the absence of external sources, the thermal average 
<4>> for the original system is the value of <{> for which V 
is minimised. In principle it is straight forward to 
compute <<j>> by performing a saddle point expansion for 
Z($) [5.5]. This is equivalent to performing a loop 
expansion for V(^), the generating function for zero 
momentum Green functions. The existence of a phase 
transition is already present at the one-loop level and we 
shall restrict ourselves to this alone.

The calculation is so well known, we shall only quote 
the result that, at large T, V(5>) takes the form:

where

1 2 _ m 0 (1 - ) <j)2 + X 4>4 + ... (5.8)
2 T2 4! c

24m2 (5.9)

and one loop renormalisation has been implemented. Higher
XTorder terms are surpressed either by a factor __ ~ /X,
m

(near T ) or by a factor of X [5.2].

There is a possible problem in that V of (5.8) is not
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concave, as the free energy must be [5.5]. We can however
ignore this as our interpretation of V in the remainder of
this section will be rather different from that above.
Taking (5.8) at face value, we see that, as T increases
from zero to T , so <$>, satisfying c

<*>2 = (1 - t 2  )
r  ?c

(5.10)

decreases smoothly to zero, implying a second order phase 
transition.

Convexity apart, the picture implied by the effective 
potential is that the thermal average decreases uniformily 
across all of space. This is very unlikely to be true.
The classical equation of motion derived from (5.1),

( □ -  mo H  + ^  <t,3 = 0 ( 5 . 1 1 )
6

permits static domain wall solutions of the form

*w(x,y.z) = r,tanh( ) (5 .1 2)
/2

[5.11], [where we have taken a wall in the x-y plane as an 
example]. The field <j> flips value across this wall from

- t) to r), where t)2 - • A much more likely scenario for

the phase transition is that, as the temperature is
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increased, more and more domain wall area will be formed 
until the whole of space is filled at which point the 
symmetric phase <$> = 0 is achieved. That is, the 
effective potential description corresponds to the 
averaging of a much more complicated structure. Until we 
are very close to the phase transition, however, we would 
expect the effective potential averaging to be reliable 
since the domains will be large (see later).

To evaluate the effect of this domain wall formation
on the temperature and nature of the phase transition some
care has to be taken. The thickness of a domain wall at
zero temperature is C “ O ^ q1) and its surface tension 

3
c  =  o( ). Calculations that rely on holding these

X
fixed at finite temperature [5.12] will give the wrong 
answer. The long range correlations that are associated 
with a phase transition arise because the effective scalar

 ̂2 T7 1 / Pmass m «„ = ( , -) ' vanishes at T = T . The effecteff v--- 4)=<t) c5 <j> ̂
of non-zero temperature (to 0 (\)) on a domain wall will be
to replace m0 in C and a by meff• In this way the surface
tension of a single domain wall vanishes at T = T ,c
enabling the creation of domain walls at no extra 
energetic cost.

There are two ways of seeing this from the functional 
representation of Z. One of the methods is outlined 
below, the other in Appendix A.
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Si nee <J)(t ,x ) is periodic in t it permits the Taylor 
expansion:

i2irnT
<)>(t , x ) = I <|>n (x )  e P , 4>* = <|)_n ( 5 . 1 3 )n

in terms of a denumerable set of three-dimensional fields. 
The action I of (5.3) then takes the form

p

Ip [ * ]  = p i p [ { * n }] ( 5 - 1 4 )

where IQ can be decomposed into the contributions from
p

and ^n(n * 0 ) [termed as <J>T ] as

4> * ] - Ho [ <t> o ] + H0 [<D ’ ] + Hj[4>o> <t>* ] (5.15)

H0 [ 4> o ] = / d3x [1 (V* 0 ) 2 - Imo^o + * *o] (5.16)2 2 4!

H0[*'] = l H0 [<t>n ] = I Jd3x^ [ (V**)(V4. ) + (^ ) 2 4,** ] 
n*0 n*0 2 n n p n n

(5.17)

2 * ^
Ht [ <t> o > 4>'] “ “ I \ m0 4>n <j>n + __

1 n^OX 4! 1

p+q+r+s=0

/ d3x4»p$q,t.r4»s

4(excluding <j>o)
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= -T fd3x(~mo 4>*4> - X  4>o 4>*4> ) +  terms containingn*0 1  n n 4 n n n ^ 2 f
(5.18)

(to 0(X) these extra terms will not contribute to Z) From 
(5.17) we see that the masses of the 4>n(n *  0) modes are 
large at high temperatures. We refer to 4>q and 4> ’ as 
light and heavy modes respectively. Z now becomes:

-Ifl -|3lJ>o ,4>’]Z * / D((> e - / D<j>0D<f>’e (5.19)

-p (H[ 4) o ] +v[ 4> o ])= / D4>0e (5.20)

on integrating out the heavy modes, where

”Pv[4>o] ~PH0[4> ’ ] —pHT[<t>o »<f> ’ ]e « / D4>? e 1 (5.21)

The ’effective’ potential v[4>0] for the three-dimensional 
field 4>o contains temperature dependent parameters. Most 
importantly, at high temperatures and to first order in X, 
v [$q ] is the spatial integral of a local density. This can 
be seen by expanding (5.21) to first order in X:

-pv[4>o] , -PH0 [* ’ ]e “ J D<t>' e (1—pHj.[ $ 0 »<t> ’ ])

1- ^  /d3x4? I / D<J>„D4» 4 n * 0
n Tn

-pH0 [ 4 ] *
1 4>n(x)4>n(x) + • • • •

(5.22)
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„ fĵ  , 2, N Am= 1-p Jddx <j)o (x) __
2

(5.23)

where we have dropped terms down by at least a factor of 
(\T/m) or \  and those independent of <t>0- After performing 
the zero temperature renormalisation of the mass, we have
[5.2]:

Am2 = _^ I / d^P 1_________  (5.24)
2 p n*0 (2n) 3 p2 + (2itn/p) 2

- (A T2/24) = m2 (T2/T 2) (5.25)

Exponentiating (5.23) gives

v[<J>o] “ / d3x i Am^ 4>o(x) + 0((\T/m),\) (5.26)
2

Diagrammatically the light-mode mass increment Am2 

has the representation shown in figure 5.1, where the 
solid" line denotes <j>0, the light mode, and the dashed line 
<j)T , the heavy modes.

Inserting the first term of v[<j>0] in (5.26) gives Z 
as

- p i [ + o ]
Z ec J D<f> 0 e ( 5 . 2 7 )



-130-

Figure 5.1 Diagrammatic representation of the lowest 
order mass correction. (Here dashed lines denote the 
heavy modes and the solid lines the light modes).



-131-

the vacuum functional for the three-dimensional field with 
’action’

I [ * „ ]  =  f d 3x  [ i  ( v * o ) 2  -  i  n>o( 1  -  1 2 H o +  1 _  *0 ]2 2 T2 4!c
(5.28)

Equivalently in terms of the one-loop effective potential 
V(<t>) of (5.8)

I [ <t> 0 ] = / d3x [ i (V<(> o )3 + V(*o) ] (5.29)2

Thus, as well as its definition for constant <j>, V(<|>) plays 
the role of an ’effective* potential for the non-constant 
three-dimensional light mode <j>0(x). From this viewpoint, 
it is the vanishing of the scalar mass in the effective 
three-dimensional theory that triggers the long range 
correlations characterising a phase transition.

Now let us consider the nature of the phase 
transition. The dominant contribution to the partition 
function (5.27), will come from solutions to the 
semi-classical equation

_  = 0. (5.30)
6 <t>0

_  n  p  p  pAs well as the constant solution <p = (6mg/X) [ 1- ( T  / T ^) ] ,C
there are domain wall solutions of the form (5.12), in
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w h i c h  m 0 h a s  b e e n  r e p l a c e d  by the e f f e c t i v e  scalar m a s s  

m(T), w h e r e  m 2 (T) = m 2 [1 - ( T2/ T 2 ) ]. Away f r o m  the c r i t i c a l  

t e m p e r a t u r e  the s o l u t i o n  $ = constant, b e i n g  the m i n i m u m  

e n e r g y  s o l u t i o n ,  m a k e s  t he d o m i n a n t  c o n t r i b u t i o n  to the 

p a r t i t i o n  f u n c t i o n  and the m e a n  field a p p r o a c h  is a goo d 

a p p r o x i m a t i o n .  As we  a p p r o a c h  t he c r i t i c a l  t e m p e r a t u r e  

h o w e v e r , t he e n e r g y  r e q u i r e d  to p r o d u c e  a s e c t i o n  of 

d o m a i n  w a l l  b e c o m e s  s m aller and smaller. E v e n t u a l l y  

b e c a u s e  of the large n u m b e r  of d i f f e r e n t  c o n f i g u r a t i o n s  of 

d o m a i n  w a l l s  of a g i v e n  s i z e  it m a y  be p o s s i b l e  for their 

e n t r o p y  to c o u n t e r b a l a n c e  t he B o l t z m a n n  c o e f f i c i e n t  and 

t h e y  m a y  c o m e  to d o m i n a t e  the p a r t i t i o n  f u n c t i o n .  T h e y  m a y  

t h e n  d r i v e  the s y s t e m  i n t o  u n d e r g o i n g  a p h a s e  t r a n s i t i o n  

at a t e m p e r a t u r e  s l i g h t l y  less t h a n  T c .

We shall not b o t h e r  to e v a l u a t e  the e f f e c t  of d o m a i n  

w a l l s  on the p h a s e  t r a n s i t i o n  in any m o r e  d e t a i l .  T he 

r e a s o n  for t h i s  is t hat t h e o r i e s  that p r o d u c e  d o m a i n  w a l l s  

at a p h a s e  t r a n s i t i o n  in the e a r l y  u n i v e r s e  can be  r u l e d  

out as i n c o n s i s t e n t  w i t h  p r e s e n t  d a y  o b s e r v a t i o n s  [ 5 . 11]• 
For e x a mple, t hey w o u l d  p r o d u c e  large a n i s o t r o p i e s  in the 

m i c r o w a v e  b a c k g r o u n d .  Instead we will p e r f o r m  our a n a l y s i s  

for a m o r e  c o m p l i c a t e d ,  but c o s m o l o g i c a l l y  m o r e  

i n t e r e s t i n g  theory, that w h i c h  w o u l d  lead to t he f o r m a t i o n  

of c o s m i c  strin g s .
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S E C T I O N  2. T h e  P a r t i t i o n  F u n c t i o n  for a U(l) S c alar

G a u g e  T h e o r y

The s i m p l e s t  t h e o r y  to p o s s e s s  v o r t e x  s o l u t i o n s  is 

scal a r  QED, w i t h  L a g r a n g e  density:

L = - X F tivF (XV j ( d + i e A  ) <j> 2 + ^  m f  J <J> |2 - ^  |*
4!

(5.31)

w h e r e  f is a c o m p l e x  scalar field. The p a r t i t i o n  f u n c t i o n  

for t his t h e o r y  t a k e s  t he form:

Z cc JD<j>D<t>*DA ( d e t M ) e x p ( - I p  [<j> ,A] ) (5.32)

w h e r e  d e t M  d e s c r i b e s  t h e  g a u g e  fixing, a nd

lot*,A] = - j g  dx / d 3x L e [>,A] (5.33)

w i t h  L e  the E u c l i d e a n  f o r m  of the L a g r a n g i a n  (5.31)

As in s e c t i o n  1 , the t h e r m o d y n a m i c  f r e e  e n e r g y  for 

<(()> = <t>, V(<J>) is o b t a i n e d  by f i x i n g  the s p a t i a l  a v e r a g e  of 

<}>(x) to $ in (5.32). V(<j>) is n e c e s s a r i l y  a g a u g e - v a r i a n t  

q u a n t i t y ,  s i n c e  it is the g e n e r a t o r  of z e r o  m o m e n t u m  1PI 

G r e e n  f u n c t i o n s .  H o w e v e r  p h y s i c a l  c o n c l u s i o n s  d r a w n  f r o m  

it s h o u l d  b e  g a u g e  i n v a r i a n t .  It is m o s t  c o n v e n i e n t  to 

c a l c u l a t e  V(<j>) in t he c o v a r i a n t  gauge, for whic h ,  at h i g h  

t e m p e r a t u r e s  and to 0 ( x , e 2 ) [5 .2 ],

V ( * ) ~  J  m ?  |* |2 ( 1 - ( T2 /T2 )) + - ^ M 4 (5.34)
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T 2 n ow t a k e s  the f o r m  T 2 = m 2/ ( ( \ / l8 ) + ( e2 / 4 ) ). To 

e v a l u a t e  the p a r t i t i o n  f u n c t i o n  we shall a d o p t  the sam e  

p r o c e d u r e  as in s e c t i o n  1. An a l t e r n a t i v e  a p p r o a c h  is 

o u t l i n e d  in A p p e n d i x  A. We  f i r s t  d e c o m p o s e  t he scalar 4> 
and v e c t o r  A f i e l d s  into light (<})0 , A 0 ) and h e a v y  (<j>’ , 

A ’) modes. As b e f o r e  we can w r i t e  Z as:

Z * / D<t>0D A 0 exp(-pl[<t>0 >A0 ] ) (5.35)

w h e r e

exp(-pl[4>0 ,A 0 ] ) = / D<|) ’DA* ( d e t M ) e x p ( - I p  [<t> ,A] )

(5.36)

O b t a i n i n g  the m a s s  c o r r e c t i o n s  by k e e p i n g  t e r m s  q u a d r a t i c

in <j>o and A0 is less simple than for the pure scalar case
of the p r e v i o u s  section. As in s e c t i o n  1, t h e  h e a v y  m o d e s

g i v e  r i s e  to a t e m p e r a t u r e - d e p e n d e n t  m a s s  term,

(A m 2/ 2 ) | <t> | 2 , for t h e  scalar field. The c o n t r i b u t i o n s  to

( A m 2/2) a r e  s h o w n  d i a g r a m m a t i c a l l y  in f i g u r e  5.2. T he

e f f e c t  of t h i s  t e r m  is to r e p l a c e  m 2 in t h e  E u c l i d e a n

t i m e - i n d e p e n d e n t  e f f e c t i v e  a c t i o n  o b t a i n e d  f o r m  (5.31) by

m 2 ( l - ( T2/ T 2 )), j u s t  as in (5.28). u c

T h e r e  is a n o v e l t y  h e r e  ho w e v e r ,  in t h a t  the h e a v y

scal a r  m o d e s  a l s o  i n d u c e  a v e c t o r  m a s s  (Afi2/ 2 ) A  A^  in the
M’

t a d p o l e  a p p r o x i m a t i o n  ( f i gure 5.3). T h i s  i n d u c e d  m a s s  is 

of o r der e 2T 2 . U n f o r t u n a t e l y ,  t he t a d p o l e  d i a g r a m  d o e s  not
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Figure 5.2 Feynman graphs for the tadpole corrections 
to the scalar mass. (Here again dashed lines denote 
heavy modes, solid lines the light mode and wavy lines 
refer to the gauge field modes.)
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Figure 5.3 Feynman graph for the tadpole correction to the 
gauge field mass.
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d e s c r i b e  the total e f f e c t s  of the t e m p e r a t u r e - d e p e n d e n t  

self m a s s  to our order of a p p r o x i m a t i o n .  N o n - l o c a l  

c o n t r i b u t i o n s  like the p h o t o n  s e l f - e n e r g y  h a v e  to be 

i n c l u d e d  as t h e y  a l s o  g i v e  t e rms 0 ( e 2T 2 ) for large T. The 

r e m a i n i n g  o n e - l o o p  d i a g r a m s  w h i c h  c o n t r i b u t e  to 0 ( e 2T 2 ) 
a re s h o w n  in f i g u r e  5.4. Fu r t h e r  p r o b l e m s  a r i s e  b e c a u s e  

t he h e a t  b a t h  g i v e s  a p r e f e r e n t i a l  i n e r t i a l  f r a m e  w h i c h  

leads to t e m p o r a l  a n d  s p a t i a l  c o m p o n e n t s  of b e i n g  

d e c o u p l e d ,  g i v i n g  r i s e  to two i n d e p e n d e n t  s e l f - m a s s  t e r m s  

nL( k ) , nT(k) for m o m e n t u m  k [5.13]. T h e  s a m e  p r e f e r e n t i a l  

r e f e r e n c e  f r a m e  m a k e s  t he nTs n o n - a n a l y t i c  in k 0 . T h e  

r e s u l t  is t h a t  d e p e n d i n g  on h o w  o n e  t a k e s  t h e  z e r o  

m o m e n t u m  limit in t he i n v e r s e  f o u r i e r  t r a n s f o r m s  d i f f e r e n t  

m a s s e s  a re o b t a i n e d  [5.13]. O nly the t a d p o l e  term, w i t h  no 

m o m e n t u m  d e p e n d e n c e  is i m m u n e  f r o m  t h i s  u n c e r t a i n t y .  Yet 

a n o t h e r  c o m p l i c a t i o n  a r i s e s  b e c a u s e  (u n l i k e  t he m e a n  f i e l d  

c a l c u l a t i o n s )  the b a c k g r o u n d  f i e l d s  a r e  not c o n s t a n t .  T h i s  

m e a n s  t hat t he s e l f - e n e r g y  d i a g r a m s  of f i g u r e  5.4 h a v e  to 

be e v a l u a t e d  w i t h  n o n - z e r o  e x t e r n a l  m o m e n t a .  T h e s e  

d i f f i c u l t i e s  m a k e  it h a r d  to e x p l i c i t l y  e v a l u a t e  th e  g a u g e  

m a s s , " e v e n  to 0 ( e 2T 2 ) .

T h e r e  is no e a s y  w a y  to r e s o l v e  t h e s e  p r o b l e m s .  The 

s i m p l e s t  a p p r o a c h  is to r e s t r i c t  o u r s e l v e s  to  the r e g i m e ,

\  > > e 2 , in w h i c h  t he g a u g e  f i e l d  c o n t r i b u t i o n s  c a n n o t  be  

large. (The q u a l i t a t i v e  d e t a i l s  of our later d i s c u s s i o n s  

a re not c h a n g e d  by  i n t r o d u c i n g  a g a u g e  m a s s  a n y way.) T e r m s  

of order e 2T 2 a r e  t h e n  c o n s t r a i n e d  by e 2<n2 (e2m § /\) and 

t he v e c t o r  m a s s  is a p p r o x i m a t e l y  u n c h a n g e d .  At t h e  sam e  

t i m e  t he v e c t o r  loop g i v e s  a small c o n t r i b u t i o n  to the
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Figure 5.4 The remaining graphs of O(ê ).
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e f f e c t i v e  s c alar mass. Th e  e f f e c t  is to r e p l a c e  I of 

(5.36) by

I = -/ d 3x L(<t)0 ( x ) , A0 (x)) (5.37)
r

w h e r e  L is d e r i v e d  f r o m  (5.31) by :

(i) g o i n g  E u c l i d e a n

(ii) r e m o v i n g  E u c l i d e a n  t i m e  d e p e n d e n c e

( i i i )  d e l e t i n g  the m a s s i v e  m o d e s

(iv) r e p l a c i n g  mo by m o (1 - ( T2/ T ^ ) )
(v) i m p l e m e n t i n g  g a u g e  fixing.

T h u s  we f i n a l l y  obtain:

z «= / D $ 0D A 0 e x p ( - p l [<|>0 ,A0 ])
M1 p

(5.38)

w h e r e  in the c o v a r i a n t  g a u g e

i [ * o , A o u ] = / d 3 x  [ ^  F 0 f Jj - 1  o ^ o X a 1 **)
4 1J 2

-  ^  A o ^ [ < t > o 9 ^ < t ) o  “  O o & S o ]  ~  ) J 4>0 [ ^
T1

“  e 2 |4>o |2 Aq^A* + ^. 14)0 r  + 1 ( S . A q ) 2 ] ( 5 . 3 9 )
2 4! 1 l

a n d  the t e r m  ^ ( 5 . A q ) d e s c r i b e s  our g a u g e  f i x i n g
5
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S e c t i o n  3. T h e  S t a t i s t i c a l  P r o p e r t i e s  of S t r i n g s  

a r o u n d  t h e  p h a s e  t r a n s i t i o n *

The time h a s  n o w  come to e v a l u a t e  the p a r t i t i o n  

f u n c t i o n  (5.38) in further d e t a i l .  To do t h i s  we a p p l y  the 

s a d d l e  p o i n t  m e t h o d ;  the d o m i n a n t  c o n t r i b u t i o n s  to the 

i n t e g r a l  wil l  c o m e  f r o m  the f i e l d  c o n f i g u r a t i o n s  that 

s a t i s f y  the s t a t i o n a r y  e q u a t i o n s :

<b=<i> , a ^ a U; , , ,  = 0v ^ s a d d l e ’ s a d d l e

_  A M - _  A |i = 0
^ “ ^ s a d d l e ’ """saddle

61
6A

t h a t  is, f r o m  t h e  f i e l d  c o n f i g u r a t i o n s  tha t  s a t i s f y  the 

e q u a t i o n s  of m o t i o n :

d 1 ?.. = ^  i e ( 4> 5 . <j> - ) - e 2 A . | 4»J2 (5.40)
j  2  J  J  J

]d.+ ieA. I2<J> = - m 2 (l - ^  ^ | <t> |2 <{> (5.41)
'  ̂ T 2 3 1

T h e  c o n t r i b u t i o n  of any s o l u t i o n  of t h e s e  e q u a t i o n s  to t h e  

p a r t i t i o n  f u n c t i o n  c an be  f o u n d  by s u b s t i t u t i o n  into 

(5.38). T he s o l u t i o n  <)>=const, A = 0  is t he m i n i m u m  e n e r g y  

s o l u t i o n  a n d  t h e r e f o r e  g i v e s  t h e  m a x i m u m  c o n t r i b u t i o n .

A w a y  f r o m  the c r i t i c a l  t e m p e r a t u r e  the p a r t i t i o n  f u n c t i o n  

w i l l  be wel l  a p p r o x i m a t e d  by t h i s  t e r m  alone. Howev e r ,  as 

we  a p p r o a c h  T c t h i s  will no longer be t he case.
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We  w i l l  n o w  h a v e  to find all the m a x i m a  of the f u n c t i o n a l  

and s u m  their c o n t r i b u t i o n s .  T h i s  b e c o m e s  n e c e s s a r y  

b e c a u s e ,  a l t h o u g h  t he s e c o n d a r y  m a x i m a  will be 

i n d i v i d u a l l y  w e i g h t e d  h e a v i l y  a g a i n s t  the c o n s t a n t  f i e l d  

c o n f i g u r a t i o n ,  their sum, b e c a u s e  of the l a rge n u m b e r  of 

d i f f e r e n t  n o n - c o n s t a n t  c o n f i g u r a t i o n s ,  will be larger.

In p r i n c i p l e  in e v a l u a t i n g  t h e  p a r t i t i o n  f u n c t i o n  

(5.38) we  s h o u l d  c o n s i d e r  the c o n t r i b u t i o n s  of all the 

d i f f e r e n t  t y p e s  of s o l u t i o n s  to e q u a t i o n s  (5.40, 5.41). W e  

w i l l  not do  this, b u t  i n s t e a d  w i l l  o n l y  c o n s i d e r  the 

s t r i n g  like s o l u t i o n s .  We  do t h i s  b e c a u s e  h e r e  we  w i s h  to 

c o n s i d e r  the e f f e c t  of t he t o p o l o g i c a l l y  s t a b l e  d e f e c t s  on 

t he p h a s e  t r a n s i t i o n ^  E q u a t i o n s  (5.41, 5.42) c o n t a i n  

s t r i n g - l i k e  s o l u t i o n s  at t e m p e r a t u r e s  T < T q . T h e  s i m p l e s t  

s t r i n g  s o l u t i o n  is an i n f i n i t e l y  s t r a i g h t  s t a t i c  s t r i n g  

r u n n i n g  for e x a m p l e ,  a l o n g  the z-axis. T h i s  can be  

e x p r e s s e d  as [5.14]:

4>= |<t> (r )| e16 (5.42)

a r Ak» A, x A = — A — I A (r )
r I

(5.43)

w h e r e  k is a u n i t  v e c t o r  in the z - d i r e c t i o n .  By i m p o s i n g

+ (The d i s t r i b u t i o n  of n o n - t o p o l o g i c a l l y  s t a b l e  f i e l d  

c o n f i g u r a t i o n s  w e  b e l i e v e  is not c o s m o l o g i c a l l y  

i n t e r e s t i n g .  T h e y  w o u l d  h a v e  r a p i d l y  d i s a p p e a r e d  as the 

u n i v e r s e  e x p a n d e d  a n d  cooled. O n l y  the t r a p p e d

s i n g u l a r i t i e s  w o u l d  r e m a i n  for a c o s m o l o g i c a l l y  
i n t e r e s t i n g  p e r i o d . )
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th e  g a u g e  c o n d i t i o n s  ( A q  q ( x ) = 0 ,  V ^ A q ( x ) = 0 )  , a nd 

s u b s t i t u t i n g  (5.42, 5.43) int o  (5.40, 5.41) we  obtain:

-  i  ( r i _  I H  ) + [ (  i  -  e | A 0 | ) 2 -  m?( 1 -
r dr dr r T 2

+ X |ct> o I 2 ] |*o| = 0 (5.44)
3!

~ d ( 1 d (r | A 0| )) - e ^  14> o | 2 1A01 e 2 14>o | 2 = 0
dr r dr r

(5.45)

B e f o r e  c o n t i n u i n g  w i t h  the e v a l u a t i o n  of t h e  

p a r t i t i o n  f u n c t i o n  we will f i r s t  d i s c u s s  t he f o r m  of the 

t h e r m a l  s t r i n g  s o l u t i o n s  and h o w  t h e y  v a r y  w i t h  

t e m p e r a t u r e .  T h e  s o l u t i o n s  to (5.44, 5.45) a r e  s h o w n  

s c h e m a t i c a l l y  in f i g u r e  5.5.

At large d i s t a n c e s  f r o m  t he s t r i n g

lim ( r ) + t)
T + CO

w h e r e  r\2 =(3lm2/\) a nd m 2 (T) = m£( 1 - ( T 2/ T 2 )) . At th e  c o r e

|<{>| v a n i s h e s .  The t h i c k n e s s  of the core is d e t e r m i n e d  by

m " 1 , t he C o m p t o n  w a v e l e n g t h  of the H i g g s  p a r t i c l e .  T he s
m a g n e t i c  f i e l d  is r e s t r i c t e d  to the core, t h e  s kin d e p t h  

b e i n g  d e t e r m i n e d  by m " 1 , the i n v e r s e  of th e  v e c t o r  m a s s
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Figure 5.5 An example of the field configurations 
for a vortex solution at a temperature T.

= 0(ms ”*) X  = CKn^1).
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The e n e r g y  per uni t  length of the v o r t e x  has two s e p a r a t e  

c o m p o n e n t s ,  one d ue to the scalar field,

a s  = 0 ( n 2 ( T ) )

an d  the other d ue to the v e c t o r  field,

%  = °( 62,111 ) = 0 ( n 2 (T)>
m2v

(5.46)

N o t e  that if we h a d  f o u n d  an a d d i t i o n a l  Ao m a s s  t e r m  of 

the f o r m  A p 2 = a e 2T 2 , its e f f e c t  w o u l d  h a v e  b e e n  to 

r e p l a c e  av of (5.46) w i t h

cV 0 ^ ( T )

ti2 (T) + a T 2
(5.47)

I n c r e a s i n g  the t e m p e r a t u r e  c a u s e s  a g and to d e c r e a s e  to 

z e r o  r e d u c i n g  the e n e r g y  per u n i t  leng t h  of the s t r i n g  

(this w o u l d  be t rue eve n  if w e  h a d  f o u n d  t h e  A p 2 
c o r r e c t i o n  ). T h e  w i d t h  of the s t r i n g s  a l s o  i n c r e a s e s .

We n o w  r e t u r n  to e v a l u a t i n g  the c o n t r i b u t i o n  of t he 

s t r i n g s  to t h e  p a r t i t i o n  f u n c t i o n  (5.38). W e  can w r i t e  

the p a r t i t i o n  f u n c t i o n  as

z ” I exp( -pXs t [*e ,As ]) (5.48)
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w h e r e  we h a v e  r e s t r i c t e d  the s u m  to field c o n f i g u r a t i o n s  

s a t i s f y i n g  (5.40, 5.41) that are nodal lines. E q u a t i o n  

(5.44, 5.45) g i v e s  the f i eld c o n f i g u r a t i o n s  for an 

i n f i n i t e  string; s t r i n g  s o l u t i o n s  that a re not st r a i g h t ,  

but c u r v e d  so s m o o t h l y  that a n y  s e g m e n t  of l e n g t h  of order 

the w i d t h  w i l l  a p p p e a r  to be straight, are, to a v e r y  g o o d  

a p p r o x i m a t i o n ,  a l s o  s o l u t i o n s  of the e q u a t i o n s  (5.40, 

5.41), w h o s e  e n e r g y  per u n i t  l e n g t h  is a p p r o x i m a t e l y  the 

s a m e  as the i n f i n i t e l y  s t r a i g h t  string. N e x t  we not e  that 

since, in t h i s  chapter, we are i n t e r e s t e d  in the e f f e c t  of 

t h e  t o p o l o g i c a l l y  s t a b l e  s t r i n g s  on the p h a s e  t r a n s i t i o n ,  

the s t r i n g s  (in the a b s e n c e  of m o n o p o l e s )  m u s t  be  either 

in loops or ’i n f i n i t e ’ in length. To p r o c e e d  fu r t h e r  in 

e v a l u a t i n g  t he p a r t i t i o n  f u n c t i o n  it w ill b e  n e c e s s a r y  to 

n e g l e c t  the i n t e r a c t i o n  e n e r g y  of the s t r i n g s  w h e n  t hey  

a re m o r e  t h a n  a d i s t a n c e  1 (1 = w i d t h  of s t r i n g )  apart, 

a n d  i n c l u d e  it i n s i d e  t hat d i s t a n c e  as an i n f i n i t e  

r e p u l s i v e / a t t r a c t i v e  force*. We do this by r e s t r i c t i n g  our 

s t r i n g s  to be  n o n - s e l f - i n t e r s e c t i n g .  P l a c i n g  t h e  s t r i n g s  

in the v o l u m e  V  on a c u b i c  l a t t i c e  (for c o n v e n i e n c e  only) 

of s p a c i n g  1 , w e  c an write:

Z = l W ( n ) e x p ( - p a l n )  (5.49)

n

( T h i s  is e f f e c t i v e l y  w h a t  o c c u r s  in the n u m e r i c a l  

s i m u l a t i o n s .  W h e n  t w o  s t r i n g s  c o m e  w i t h i n  a d i s t a n c e  1 of 

e a c h  other, t h e y  i n t e r c o m m u t e .  W e  are r e a l l y  r e p l a c i n g  an 

e x p o n e n t i a l  f o r c e  by  a step f u n c t i o n  f o r c e  w h i c h  a c t s  over 

a d i s t a n c e  1 .)
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w h e r e  W(n) d e n o t e s  the number of d i f f e r e n t  c o n f i g u r a t i o n s  

of a s t r i n g  of l e n g t h  nl w i t h  the a b o v e  p r o p e r t i e s  and a = 

av + a g the t o t a l  e n e r g y  per u n i t  length.

Let us f i r s t  c o n s i d e r  the c o n t r i b u t i o n  of loops. At 

h i g h  s t r i n g  s e g m e n t  density, n o n - s e l f - i n t e r s e c t i n g  r a n d o m  

w a l k s  will be a p p r o x i m a t e l y  B r o w n i a n  w a l k s  [5.18]. T h e  

c a s e  of n o n - s e l f - i n t e r s e c t i n g  w a l k s  at v e r y  l ow d e n s i t i e s  

h a s  b e e n  s t u d i e d  by p o l y m e r  p h y s i c i s t s  (see [5.19] for 

exa m p l e ) .  If P(t) d e n o t e s  the f r a c t i o n  of w a l k s  of l e n g t h  

nl w h i c h  s t art a nd end at the sam e  point, it f o l l o w s  f r o m  

t h e s e  s t u d i e s  t hat (for l a rge n ) :

P(n) = Cn ^ q = —  at h i g h  d e n s i t y
2

7= —  at low d e n s i t y  
4

w h e r e  C is a n o r m a l i s a t i o n  factor. T his r e s u l t s  in t h e  

n u m b e r  of d i s t i n c t  c o n f i g u r a t i o n s  of a s i n g l e  loop of s i z e  

nl being:

W - C n )  = i  C n ~ q _ 1a n 
2

(a = 5 on a c u b i c  lattice)

(5.50)

T h e  e x t r a  d i v i s o r  of 2n in (5.50) a r i s e s  f r o m  t he fact  

t h a t  an n - s t e p  l oop is b o t h  n o n - o r i e n t a b l e  a nd h a s  n 

p o s s i b l e  s t a r t i n g  po i n t s .  T h e  c o n t r i b u t i o n  of s i n g l e  l o o p s

to the p a r t i t i o n  f u n c t i o n  Z is, f r o m  (5.49) an d  (5.50)
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7‘X = - —  l n " q 1 exp(-pnlcJe f f ) (5.51)
2 l 3 n=l

w h e r e

aeff
ln(a)

=  a
T_  ln(a) 
1

= 1 (5.52)

and

T . = ol (5.53)
T n ( a )

The n steps n e e d  not c o n s t i t u t e  a s i n g l e  loop but t wo or 

m o r e  loops. B e c a u s e  of the lack of i n t e r a c t i o n  e n e r g y  the 

p a r t i t i o n  f u n c t i o n  for a Tg a s ’ of loops is:

Z loop 1 + Z- + —  z2 + —  Z 3 + 
1 2! 1 3! 1

• •

= e x p ( Z 1 )

= e xp [
_ 00

1 CV J
2 l 3 n=l

n - q -1
- p n l a

e ef f j (5.54)
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F r o m  t h e s e  w e i g h t s  we can c a l c u l a t e  the a v e r a g e  number of 

l o o p s .

N l o ops [ i  nJ h L  ] /  z
n=0 n! loop

= Z (5.55)

S i m i l a r l y  the m e a n  number of l o ops of size nl is (for 

l a r g e  n ) :

r./ 1 CV -q- 1  , _ . xR ( n l ) = ----7 n e x p ( - p n l a  )
2 l 3 611

(5.56)

N ote that t h i s  is in a g r e e m e n t  w i t h  the n u m e r i c a l  

s i m u l a t i o n s  of [5.7]. It a l s o  agrees, if w e  n e g l e c t  s t r i n g  

i n t e r a c t i o n s  c o m p l e t e l y ,  w i t h  the s t a t i s t i c a l  p r o p e r t i e s  

of s t r i n g s  d e r i v e d  u s i n g  the r a t h e r  d i f f e r e n t  a p p r o a c h  of 

M i t c h e l l  and T u r o k  [5.1]. At h i g h  t e m p e r a t u r e s ,  for w h i c h  

0, R a p p e a r s  to be a s c a l e  i n v a r i a n t  d i s t r i b u t i o n  

w h i l s t  at lower t e m p e r a t u r e s ,  l o ops of l a r g e  l e n g t h  are 

e x p o n e n t i a l l y  s u p p r e s s e d .

N o w  let us c o n s i d e r  the c o n t r i b u t i o n  of ' i n f i n i t e ’
“t"s t r i n g s  to t he p a r t i t i o n  f u n c t i o n  . Since for l a r g e  n

n ^ - q -1 n n a - Cn a « a (5.57)

, +( By  i n f i n i t e  w e  m e a n  s t r i n g s  w h i c h  are as l a r g e  as the 
b ox in w h i c h  our c a l c u l a t i o n s  a re b e i n g  p e r f o r m e d . )
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we can w r i t e  the p a r t i t i o n  f u c t i o n  as:

(5.58)

We can see i m m e d i a t e l y  t h a t  w h e n  cr0 ^ f >> 0, t h e s e  s t r i n g s  

m a k e  a n e g l i g i b l e  c o n t r i b u t i o n .  As ceff t e n d s  to z e r o  

h o w e v e r ,  t he c o n t r i b u t i o n  of the i n f i n i t e  s t r i n g s  w i l l  

b e c o m e  i n c r e a s i n g l y  i m p o r t a n t .

t e m p e r a t u r e s  g r e a t e r  t h a n  A b o v e  t h i s  t e m p e r a t u r e

t h e r e  a re large f l u c t u a t i o n s  in the $ f i e l d  and it is 

no longer a p p r o p r i a t e  to d e s c r i b e  the f i e l d s  in t e r m s  of 

s t r i n g - l i k e  c o n f i g u r a t i o n s .  T h u s  we can t h i n k  of T g .̂ as 

the t e m p e r a t u r e  at w h i c h  s t r i n g s  are f o r med. This 

t e m p e r a t u r e  ( n e g l e c t i n g  the ln(a)) is:

w h e r e  y ~ 0 (l) an d  m  = m i n ( m s ,mv ) (in our c a s e  \ >> e 2 , 

m = m v ). S i n c e  the r i g h t  h a n d  s ide of (5.60) v a n i s h e s  at 

T=T , it f o l l o w s  that:

We  n o t e  that Zm a nd b o t h  d i v e r g e  at

T st « o ( T ) l ( T ) -  y t)2®!"1 (5.60)

c

(5.61)
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as it m u s t  be. T he d i f f e r e n c e  b e t w e e n  T . a nd T is small*st c
E x p l i c i t l y ,

1 st = O ( X ) ,
T 2c

m=ms (5.62)

or

T 2 O1 - st = 0 ( e 2 ), m = m y (5.63)
T 2c

In e a c h  c a s e  we  h a v e  i g n o r e d  t e r m s  0 ( ( e 2/X)) in the 

c o e f f i c i e n t s  on the r i g h t  h a n d  side, b u t  e v e n  if e 2=X 

the c o e f f i c i e n t s  o n l y  c h a n g e  by a factor of order unity.

As so m a n y  other c o e f f i c i e n t s  a re u n c e r t a i n  it s e r v e s  no 

p u r p o s e  to be m o r e  spe c i f i c .

At T ^ m o s t  of the s t r i n g  length is in i n f i n i t e  

s t r i n g s  a nd e q u a t i o n  (5.49) i m p l i e s  tha t  t h e  loops h a v e  a 

s c a l e ' i n v a r i a n t  d i s t r i b u t i o n .  T h i s  is in c o m p l e t e  

a g r e e m e n t  w i t h  t h e  n u m e r i c a l  s i m u l a t i o n s  of V i l e n k i n  and 

V a c h a s p a t i  [5.17].

We can c a l c u l a t e  the w i d t h  of the s t r i n g s  at

f o r m a t i o n  (this w i l l  be of t he same order as their m e a n

s e p a r a t i o n s ) .  By s u b s t i t u t i n g  (5.62) a nd (5.63) int o  m  w es
o b t a i n
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m s (Ts t ) = O ( / ( \ ) m s ( T = 0 ) ) , m = m s , 

m s^ T s t ) = ° ( e m s (T = 0 ))- m = m v >

a nd

m v (Ts t ) = 0 ( / ( X ) m y ( T = 0 ) ) , m = m s>

m v (T s t ) = O ( e m s (T=0)), m = m v ;

T hat is, the n e t w o r k  of s t r i n g s  at the p h a s e  t r a n s i t i o n  

h a s  the s e p a r a t i o n  of the c e n t r e s  of the f l u x  t u b e s  s c a l e d  

up by a factor 0 ((l/e)), (recall e 2 <\), c o m p a r e d  to the 

c l o s e s t  p a c k i n g  of cold s t r ings. Th e  f a c t o r  0((l/e)) can 

b e  o b t a i n e d  by o t h e r  c o n s i d e r a t i o n s  [5 .3 ], a n d  t h i s  

r e i n f o r c e s  our b e l i e f  in the v a l i d i t y  of th e  c h a i n  of 

a p p r o x i m a t i o n s  g i v e n  above.

At t e m p e r a t u r e s  b e l o w  T t it is t h e r m o d y n a m i c a l l y  

less f a v o u r a b l e  to h a v e  i n f i n i t e  s t r i n g s  an d  m o r e  

f a v o u r a b l e  to h a v e  small loops.

F r o m  a c o s m o l o g i c a l  p o i n t  of v i e w  t h e  m o s t  

i n t e r e s t i n g  q u e s t i o n  to a d d r e s s  is ’w h a t  h a p p e n s  as the 

u n i v e r s e  c o o l s  t h r o u g h  T ^ ? ’. Our c a l c u l a t i o n s  w e r e  for 

f l a t  s p a c e  b ut t h e y  w o u l d  s e e m  to s u g g e s t  that, w h e n  the 

u n i v e r s e  w a s  v e r y  hot, we w o u l d  be u n a b l e  to r e c o g n i z e  a n y  

s t r i n g  c o n f i g u r a t i o n s .  As it c o o l s  t h r o u g h  T ^ s t r i n g s
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w o u l d  be formed. I n i t i a l l y  m o s t  of the s t r i n g  l e n g t h  w o u l d  

be in i n f i n i t e  strings, but as the u n i v e r s e  c o o l e d  f u r t h e r  

s t r i n g s  w o u l d  chop t h e m s e l v e s  up as fast as p o s s i b l e  into  

the s m a l l e s t  loops the y  could. E v e n t u a l l y  the s t r i n g s  

w o u l d  no longer be  abl e  to chop t h e m s e l v e s  up fast e n o u g h  

to r e m a i n  in t h e r m a l  e q u i l i b r i u m .  We still e x p e c t  m o s t  of 

t h e  s t r i n g  l e n g t h  to be in small loops. T h i s  p i c t u r e ,  if 

true, m a k e s  the s t r i n g  d o m i n a t i o n  s c e n a r i o  of K i b b l e  

[5.15] and B e n n e t t  [5.16] s e e m  u n l i k e l y .  T h e  s i m u l a t i o n s  

of A l b r e c h t  and T u r o k  [5.18] an d  t h o s e  of B e n n e t t  and 

B o u c h e t t  [5.19] s e e m  to c o n f i r m  our p i c t u r e .

S e c t i o n  4. S u m m a r y  a n d  D i s c u s s i o n

In this c h a p t e r  w e  h a v e  a t t e m p t e d  to d e v e l o p  an  

a n a l y t i c  d e s c r i p t i o n  of a p h a s e  t r a n s i t i o n  that r e s u l t s  in 

the p r o d u c t i o n  of t o p o l o g i c a l l y  s t a b l e  d e f e c t s .  A l t h o u g h  

for m o s t  of the c h a p t e r  we h a v e  r e s t r i c t e d  o u r s e l v e s  to a 

d i s c u s s i o n  of s c alar Q ED (which p o s s e s  N i e l s e n - O l e s e n  

s t r i n g  like s o l u t i o n s )  it is clear that u s i n g  similar 

t e c h n i q u e s  the d e s c r i p t i o n  c o u l d  be e x t e n d e d  to e n c o m p a s s  

other m o r e  c o m p l i c a t e d  t h e o ries.

P r e v i o u s l y  t he m e a n  f i e l d  a p p r o a c h  h a s  b e e n  u s e d  as a 

b a s i s  for m o d e l s  of s y m m e t r y  r e s o r i n g  p h a s e  t r a n s i t i o n s .

In t h e s e  m o d e l s  the s y s t e m  is d e s c r i b e d  by c o n s t a n t  f i e l d s  

of o p t i m a l  s t r e n g t h .  For e x a m p l e  for s c alar Q E D  thi s  

a p p r o a c h  w o u l d  a p p r o x i m a t e  the p a r t i t i o n  f u n c t i o n  (5.38) 

to its a b s o l u t e  m a x i m a  only. At low t e m p e r a t u r e s  t his is a 

v a l i d  a p p r o x i m a t i o n ,  we  h a v e  s h o w e d  h o w e v e r  that as the



- 1 5 3 -

t e m p e r a t u r e  a p p r o a c h e s  T this is n o l o n g e r  the case. 

I d e a l l y  to i m p r o v e  on the a p p r o x i m a t i o n  one w o u l d  like 

to f ind all the m a x i m a  of the f u n c t i o n a l  a nd s u m  their 

v a r i o u s  c o n t r i b u t i o n s  to Z b ut u n f o r t u n a t e l y  in p r a c t i c e  

thi s  is not r e a l l y  p r a c t i c a l .  In this c h a p t e r  we h a v e  

a s s u m e d  (ad hoc!) that s t r i n g  like f i e l d  c o n f i g u r a t i o n s  

m a k e  the d o m i n a n t  c o n t r i b u t i o n  to the p a r t i t i o n  f u c t i o n  

and that c o n t r i b u t i o n s  f r o m  other n o n - c o n s t a n t  field 

c o n f i g u r a t i o n s  can be n e g l e c t e d .  Thi s  a s s u m p t i o n  s e e m s  

m u c h  m o r e  p l a u s i b l e  h o w e v e r  w h e n  it is r e a l i s e d  that the 

i n d e p e n d e n t  v o r t e x  m o d e l  of t he X t r a n s i t i o n  in s u p e r f l u i d  

h e l i u m  i n c l u d e s  the s ame a s s u m p t i o n  w i t h  no fu r t h e r 

j u s t i f i c a t i o n  t h a n  our o wn and yet g i v e s  g o o d  q u a n t i t a t i v e  

a g r e e m e n t  w i t h  e x p e r i m e n t a l  o b s e r v a t i o n s .

Our s t r i n g y  m o d e l  p r e d i c t s  that the p h a s e  t r a n s i t i o n  

is s e c o n d  order and o c c u r s  at a t e m p e r a t u r e  T ^ w h i c h  is 

b e l o w  that c a l c u l a t e d  u s i n g  t he m e a n  f i e l d  model. T h e  

m o d e l  can be t h o u g h t  of as p i c t u r i n g  the r e s t o r a t i o n  of 

s y m m e t r y  as b e i n g  due to o v e r l a p p i n g  s t r i n g s  f i l l i n g  the 

w h o l e  of space.

It is clear that our m o d e l  is still a f a i r l y  c r u d e  

d e s c r i p t i o n  of the p h a s e  t r a n s i t i o n  and it is p r e m a t u r e  to 

r u l e  out the p o s s i b i l t y  tha t  in p r a c t i c e  t he p h a s e  

t r a n s i t i o n  m a y  be f i r s t  order. A l a b o r a t o r y  s y s t e m  that 

u n d e r g o e s  an a n a l o g u s  p h a s e  t r a n s i t i o n  to t h e  r e s t o r a t i o n  

of a s p o n t a n e o u s l y  b r o k e n  U(l) g a u g e  s y m m e t r y  is the 

s u p e r c o n d u c t o r .  T he m e a n  f i e l d  a p p r o a c h  p r e d i c t s
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that the p h a s e  t r a n s i t i o n  f r o m  s u p e r c o n d u c t i n g  to norm a l 

s t a t e  is s e c o n d  order. In p r a c t i c e  it is p r o b a b l y  w e a k l y  

f i r s t  order. T h e  f i r s t  order t r a n s i t i o n  b e i n g  i n d u c e d  by 

the large f l u c t u a t i o n s  p r e s e n t  at t e m p e r a t u r e s  c l o s e  to 

T . I h o p e  to a d d r e s s  the p r o b l e m  of w h e t h e r  or not this 

is true for our s y s t e m  in a f u t u r e  p u b l i c a t i o n .

Even n e g l e c t i n g  the i m p l i c a t i o n s  of t o p o l o g i c a l l y  

s t a b l e  f i e l d  c o n f i g u r a t i o n s  for u n d e r s t a n d i n g  the n a t u r e  

of the p h a s e  t r a n s i t i o n  it is still of i n t e r e s t  to k n o w  

w h e n  they f o r m e d  a nd w h a t  their s t a t i s t i c a l  p r o p e r t i e s  

are. Thi s  is b e c a u s e  t h e y  can last an a s t r o p h y s i c a l l y  

i n t e r e s t i n g  p e r i o d  of t i m e  and h a v e  i n t e r e s t i n g  

c o s m o l o g i c a l  c o n s e q u e n c e s .  S t r i n g s  for e x a m p l e ,  m i g h t  h a v e  

p r o v i d e d  the i n i t i a l  d e n s i t y  p e r t u r b a t i o n s  a b o u t  w h i c h  

g a l a x i e s  f o r m e d  [5.3, 5.6]. Our m o d e l  s u g g e s t s  tha t  t h e y  

w e r e  f o r m e d  w h e n  the t e m p e r a t u r e  w a s  T A b o v e  T ^ o n e

w o u l d  be u n a b l e  to r e c o g n i s e  s t r i n g  like c o n f i g u r a t i o n s .

It is i n t e r e s t i n g  to n o t e  t hat T s -t“ 0( T Q i n z ^ u r g ) > the 

s t r i n g  f o r m a t i o n  t e m p e r a t u r e  s u g g e s t e d  by K i b b l e  [5.3]

We h a v e  s e e n  that N i e l s e n - O l e s e n  s t r i n g s  d e v e l o p  a 

t e m p e r a t u r e  d e p e n d e n t  t e n s i o n  and width. T h e  w i d t h  of a 

s t r i n g  at t he p h a s e  t r a n s i t i o n  is s c a l e d  u p  by  a f a ctor

0(l/e) t hat of a c o l d  string. At the p h a s e  t r a n s i t i o n  t h i s  

w i d t h  is a l s o  t he t y p i c a l  s t r i n g - s t r i n g  s e p a r a t i o n .  T h i s  

l e n g t h  s c a l e  is t he s ame as tha t  o b t a i n e d  u s i n g  K i b b l e ' s  

p i c t u r e  of t h e  f o r m a t i o n  of s t r i n g s  [5.3]. We t h e r e f o r e  

b e l i e v e  our a n a l y s i s  lends s u p p o r t  to h is e s t i m a t e s  of
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i n i t i a l  s t r i n g  d e n s i t i e s  etc.

F r o m  the p a r t i t i o n  f u n c t i o n  for the s t r i n g  s o l u t i o n s  

w e  h a v e  e v a l u a t e d  t he e q u i l i b r i u m  d i s t r i b u t i o n  of strings. 

We  h a v e  d i s c o v e r e d  t hat as T ^ is a p p r o a c h e d  m o s t  of the 

s t r i n g  l e ngth g o e s  into i n f i n i t e  s t r i n g s  a n d  tha t  t h e r e  

is a s c a l e  i n v a r i a n t  d i s t r i b u t i o n  of loops, b o t h  w i t h  

a p p r o x i m a t e l y  B r o w n i a n  t r a j e c t o r i e s .  If we  h a d  n e g l e c t e d  

s t r i n g - s t r i n g  i n t e r a c t i o n s  c o m p l e t e l y  we w o u l d  h a v e  

p r e d i c t e d  that t he s t r i n g  t r a j e c t o r i e s  w e r e  e x a c t l y  

B r o w n i a n .  T h i s  a g r e e s  w i t h  the r e s u l t s  o b t a i n e d  by the 

r a t h e r  d i f f e r e n t  a p p r o a c h  of M i t c h e l l  and T u r o k  [5.1]. A 

s i m u l a t i o n  of s t r i n g  f o r m a t i o n  in t w o  d i m e n s i o n s  h as  

r e c e n t l y  c o n f i r m e d  that the t r a j e c t o r i e s  a r e  o n l y  

a p p r o x i m a t e l y  B r o w n i a n  [5.23]. At lower d e n s i t i e s  the 

d i f f e r e n c e  b e t w e e n  n e g l e c t i n g  s t r i n g  i n t e r a c t i o n s  

c o m p l e t e l y  and i n c o r p o r a t i n g  t h e m  to some d e g r e e  b y  

m o d e l l i n g  the s t r i n g  t r a j e c t o r i e s  by  n o n - s e l f - i n t e r s e c t i n g  

r a n d o m  w a l k s  b e c o m e s  m o r e  n o t i c a b l e .  It w o u l d  be 

i n t e r e s t i n g  to d i s c o v e r  w h e t h e r  the s i m u l a t i o n s  of 

V i l e n k i n  and S m i t h  [5.7] can d e t e c t  this d i f f e r e n c e .

At f i rst g l a n c e  the a b o v e  c o m m e n t s  m i g h t  s e e m  

p a r a d o x i c a l .  S u r e l y  s t r i n g  i n t e r a c t i o n s  s h o u l d  be m o r e  

i m p o r t a n t  at h i g h  d e n s i t i e s .  In our s i m p l e  m o d e l  thi s  is 

not t rue b e c a u s e  at h igh d e n s i t i e s  the e x c l u d e d  v o l u m e  to 

a n o n - s e l f - i n t e r s e c t i n g  w a l k  b e c o m e s  a p p r o x i m a t e l y  

h o m o g e n e o u s  and so the p r o b a b i l i t y  for a w a l k  to go in any 

d i r e c t i o n  b e c o m e s  v e r y  n e a r l y  e q u a l  [5.18]. T h i s  r e s u l t  

m i g h t  of c o u r s e  be a c o n s e q u e n c e  of our over s i m p l i f i e d
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m o d e l  of s t r i n g  s t r i n g  i n t e r a c t i o n s  and we are p r e s e n t l y  

i n v e s t i g a t i n g  this [5.27].

The r e l e v a n c e  of our h i g h  t e m p e r a t u r e  r e s u l t s  to the 

e a r l y  u n i v e r s e  a re obv i o u s .  W h a t  m i g h t  not be so clear is 

the r e l e v a n c e  of our low t e m p e r a t u r e  r e s u l t s .  S h o r t l y  

after the u n i v e r s e  c o o l e d  t h r o u g h  T ^ t he s t r i n g  n e t w o r k  

w o u l d  no longer be in t h e r m a l  e q u i l i b r i u m .  Our r e s u l t s  

i n d i c a t e  that the s y s t e m  w o u l d  like to e v o l v e  to a s t ate  

w i t h  an e x p o n e n t i a l l y  s u p p r e s s e d  d i s t r i b u t i o n  of large 

loop sizes. T h i s  m a k e s  the s t r i n g  d o m i n a t i o n  s c e n a r i o s  of 

K i b b l e  [5.15] and B e n n e t t  [5.16] s e e m  u n l i k e l y  bu t  o n l y  

d e t a i l e d  s i m u l a t i o n s  of the s t r i n g  d y n a m i c s  in an 

e x p a n d i n g  u n i v e r s e  c o u l d  r u l e  out their s c e n a r i o  

a l t o g e t h e r .

A m o d e l  of m o n o p o l e s  c o n n e c t e d  by s t r i n g s  in w h i c h  

t he m o n o p o l e  m a s s  w a s  of the same order of m a g n i t u d e  as 

the s t r i n g  t e n s i o n  w o u l d  be well a p p r o x i m a t e d  by o p e n 

s t r i n g s  [5.1]. If w e  a l l o w  the p o s s i b i l i t y  of h a v i n g  open 

as w e l l  as c l o s e d  s t r i n g s  w e  can a l s o  e s t i m a t e  th e  

d i s t r i b u t i o n  of these. T h e  r e s u l t  is an e x p o n e n t i a l l y  

s u p p r e s s e d  d i s t r i b u t i o n  of ope n  strings, (i.e. t h e  l o n g e s t  

o n e s  a r e  s u p p r e s s e d ) .  T h i s  a g r e e s  w e l l  w i t h  the n u m e r i c a l  

s i m u l a t i o n s  of s u c h  m o d e l s  [5.20].

One m i g h t  be w o r r i e d  about our u s e  of th e  c a n o n i c a l  

e n s e m b l e  in a d e s c r i p t i o n  of a p h a s e  t r a n s i t i o n  b e c a u s e  

t h e r e  a r e  l a r g e  f l u c t u a t i o n s  in s o m e  of t h e  t h e r m o d y n a m i c  

q u a n t i t i e s .  As an e x a m p l e  c o n s i d e r  the m e a n  e n e r g y  d e n s i t y
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due to l o ops of string. T h i s  is f i n i t e  r i g h t  up to the 

p h a s e  t r a n s i t i o n .  T h e  r m s  f l u c t u a t i o n s  in this q u a n t i t y  

h o w e v e r  d i v e r g e s  as (T-T ' . Th e  m e a n  e n e r g y  d e n s i t y

in loops is t h e r e f o r e  not a s e n s i b l e  q u a n t i t y  to d i s c u s s  

at t e m p e r a t u r e s  c l o s e  to T ^ . N ote h o w e v e r  that n o t  all 

i n t e r e s t i n g  q u a n t i t i e s  h a v e  such l a rge f l u c t u a t i o n s  a b o u t  

their m e a n  values. For example, c o n s i d e r  th e  r m s  

f l u c t u a t i o n s  in the m e a n  number of loops of siz e  nl 

(R(nl)). T h i s  is p r o p o r t i o n a l  to R ( n l ) ^ ^  w h i c h  a l l o w s  us 

to s e n s i b l y  d i s c u s s  R(nl) even at t e m p e r a t u r e s  v e r y  c l o s e  

to T T h e  p o i n t  to n o t e  is that if y o u  w i s h  to u s e  th e  

c a n o n i c a l  e n s e m b l e  in a d e s c r i p t i o n  of a p h a s e  t r a n s i t i o n  

y o u  s h o u l d  c h e c k  t hat t h e  m e a n  q u a n t i t i e s  y o u  w i s h  to 

d i s c u s s  d o n o t  h a v e  l a r g e  f l u c t u a t i o n s  a b o u t  their m e a n  

v a l u e s .

We w o u l d  like to  m a k e  o n e  c o m m e n t  a b o u t  the i m a g i n a r y  

t i m e  f o r m a l i s m .  At h i g h  t e m p e r a t u r e s  we w e r e  lead to 

i n v e s t i g a t e  T - i n d e p e n d e n t  s o l u t i o n s  for t h e  fields. T h i s  

w as a g o o d  a p p r o x i m a t i o n  b e c a u s e  at h i g h  t e m p e r a t u r e s  the 

w i d t h ^ o f  t he s t r i n g  C >> p, so to a g ood a p p r o x i m a t i o n  the 

v a r i a t i o n  of the f i e l d s  over the i n t e r v a l  p can be  t a k e n  

to be zero. At lower t e m p e r a t u r e s  n e g l e c t i n g  the t 

d e p e n d e n c e  of the s o l u t i o n s  is no longer j u s t i f i a b l e .  It 

is u n c l e a r  w h a t  the i n t e r p r e t a t i o n  of the T - d e p e n d e n t  

s o l u t i o n s  w o u l d  be in t e r m s  of the r e a l  t i m e  t, b e c a u s e  we 

can not p e r f o r m  a W i c k  r o t a t i o n  to r e - o b t a i n  the r e a l - t i m e  

theory.
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The r e s u l t s  o b t a i n e d  h a v e  a p p l i c a t i o n s  o u t s i d e  c o s m i c  

s t r i n g s  and the e a r l y  u n i v e r s e .  Patel h as u s e d  some of the 

f o r m a l i s m  of s e c t i o n  3 in i n v e s t i g a t i n g  c o n f i n e m e n t  in Q C D  

[5.2l]. Si m i l a r  m e t h o d s  h a v e  a l s o  bee n  u s e d  to i n v e s t i g a t e  

the lamb d a  t r a n s i t i o n  in l i q u i d  **He [5.22, 5.19] (for 

f u rther r e f e r e n c e s  see [5.19]).

The c a l c u l a t i o n s  p r e s e n t e d  in thi s  c h a p t e r  w e r e  in 

f lat space. T h e  nex t  step is to co n s i d e r  c u r v e d  s p a c e t i m e  

to see h o w  t h i s  a f f e c t s  t h e  d i s t r i b u t i o n  of strings. T h i s  

w o r k  is c u r r e n t l y  in p r o g r e s s  [5.24].

A p p e n d i x  A

Here w e  p r e s e n t  an a l t e r n a t i v e  d e r i v a t i o n  of t h e  

p a r t i t i o n  f u n c t i o n s  of s e c t i o n s  1 and 2. W e  s t art by 

d e r i v i n g  t hat of the scalar f i e l d  t h e o r y  of s e c t i o n  1 .

As in s e c t i o n  1 we s t a r t  f r o m  the p a t h  i n t e g r a l  

r e p r e s e n t a t i o n  of the p a r t i t i o n  function:

Z « / Dcf>exp[ Ip (<|> ) ]

T h i s  t i m e  we  s p l i t  I_ i n t o  tw o  parts, I t he f i n i t ep r e n
t e m p e r a t u r e  r e n o r m a l i z e d  a c t i o n  and !COUIlt t he p a r t  

c o n t a i n i n g  t h e  c o u n t e r t e r m s . To  0(\) for ex a m p l e :
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Ir e n = / o dT /  d3x [ ~  ( \ * ) ( i > t‘*)  + -  m2 ( T H 22 2 4!

( 5 . 6 4 )

1 += f^dx I d 3x X A<t>2c o u n t  J 0 •’ 2

W e  n o w  e v a l u a t e  t he p a r t i t i o n  f u n c t i o n  by e x p a n d i n g  I

a b o u t  a f i e l d  c o n f i g u r a t i o n  <j>0 that s a t i s f i e s  the e q u a t i o n

of m o t i o n  d e r i v e d  f r o m  I . We obtain:r e n

I = I [ 4>o ] + * < 6 Tr e n i ‘n2 >l , • • • •

2 6 <J> ^6 <|> 2

+ < —^ 4>§i + AXti- ^ o -. + ~  Tl2 
2 1 1  2

w h e r e

T) $ 0 f 4*̂

and „  m e a n s  i n t e g r a t e  over d 3x-dx ., .. . .d3x x,dT,T.
T h i s  e x p a n s i o n  is t h e n  s u b s t i t u t e d  into t he p a r t i t i o n  

f u n c t i o n .  The r e s u l t i n g  f u n c t i o n a l  is e v a l u a t e d  b y  

i n t r o d u c i n g  a c u r r e n t  j c o u p l e d  to the f i e l d  n • To 0(X) 

o n e  obtains:

Z « exp(l[<t>0 ] )exp(< — . AX 2+ —  <j)0 1 ' 1> i >

w h e r e



-160-

D12= -  !
d 3p

( 2 i t ) 3
i  i
P n

e i ( x i -  x 2 )P 

(2n / p ) 2 + p 2

is the f i n i t e  t e m p e r a t u r e  p r o p a g a t o r .  Now ’m ’ in (5.64) 

w a s  c h o s e n  to be t h e  f i n i t e  t e m p e r a t u r e  m a s s  and so:

A\

2 2
D 11

T hus w e  o b t a i n  the c o n t r i b u t i o n  of one s a d d l e  p o i n t  to t he  

p a r t i t i o n  f u n c t i o n  as:

Z °= e x p ( I r e n [ <)> o ] )

T h i s  is the c o n t r i b u t i o n  of o ne s a d d l e  point. If we m a k e  a 

’d i l u t e  g a s ’ a p p r o x i m a t i o n  we obtain:

Z = A l  e x p ( I r e n 0 „ ] )
<f> o

w h e r e ' A  is a n o r m a l i s a t i o n  c o n s t a n t  and the s u m  is over 

all f i e l d  c o n f i g u r a t i o n s  s a t i s f y i n g  the e q u a t i o n  of m o t i o n  

d e r i v e d  f r o m  I . At h i g h  t e m p e r a t u r e s  it is a g o o d  

a p p r o x i m a t i o n  to n e g l e c t  the t v a r i a t i o n  of our s o l u t i o n s .  

T h i s  is b e c a u s e  the s o l u t i o n s  h a v e  to be p e r i o d i c  in p and 

at h i g h  t e m p e r a t u r e s  p will be m u c h  smaller than the 

s p a t i a l  w i d t h  of th e  s o l u t i o n s  [5.25]. T h u s  we h a v e  

r e - o b t a i n e d  the r e s u l t s  of s e c t i o n  2 .
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It is straight forward to apply this scheme to 
evaluating the partition function for scalar QED and 
re-obtain the results of section 2.
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