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ABSTRACT

Several of the implications of the presence of

topological defects in the early universe are considered.

Chapter one provides a brief introduction to the

subject.

In chapter two a three dimensional model for the
formation of monopoles connected by strings is presented.
The length distribution of the strings has been found using
a Monte Carlo simulation of the phase transition. The
result is that long strings connecting monopoles are
exponentially suppressed. The implications of the results

for the monopole problem are discussed.

In chapter three the dynamics of, and radiation from,
superconducting strings are studied. An approximate local
action for a current carrying string is derived and some
exact solutions to its equation of motion given. The
radiation from one of these solutions is calculated exactly
and is found to be finite (unlike the results of previous
work). It is shown that loop shrinkage can lead to current

loss rather than gain and the astrophysical implications of

the work are discussed.

In chapter four the parameter space for theories of
the type which produce bosonic strings is investigated. The

tunnelling rate for current loss from the string is also

estimated.



Chapter five presents the results of a study of the
nature of phase transitions leading to the production of
cosmic strings. The statistical properties of the strings
are derived and the implications of the results for the

cosmic string scenario of galaxy formation discussed.
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random which string segment was connected to
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CHAPTER 1. Introduction

The hypothesis that the universe was once very hot has
led to the development of a close relationship between
particle physics and cosmology. Particle physics enables
us to understand our hot past, whilst cosmology has proved
a useful testing ground on which to try out new and
speculative ideas in particle physics. Astrophysical
observations have also been useful in placing strong
restrictions on some of the parameters of the more standard

physics models.

The standard cosmological model [1.1] begins shortly
after the Planck time and is based on the premise of a
homogeneous isotropic universe in a state of thermal
equilibrium. Using nothing but well established physics,
the model has been highly successful in providing a
rationale for many hitherto unexplained observations. It
has for example, led to a clear understanding of
nucleosynthesis and in particular accounts for the relative
primordial abundances of hydrogen, helium and lithium
[1.2]. The theoretical predictions of these abundances are
however, sensitive to the number of types of particles of
various species. Astrophysical observations have therefore
been able to constrain our standard particle physics

model.

For many years the homogeneity of the 3K background
radiation made it difficult to understand the formation of
galaxies. Recently however, thanks to some of the more

speculative ideas of particle physics two plausible
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scenarios have been suggested - inflation [1.3] and cosmic

strings [1.4].

I would like to explain in a little more detail some of
the ideas leading to the second of these pictures. The idea
that the electromagnetic and strong interactions are all
united at extremely high energies in a grand unified theory
[1.5] described by a simple group is an attractive
hypothesis. At lower energies the unified symmetry has to
be spontaneously broken by, for example, the
Higgs-Kibble-Brout-Englert mechanism [1.5]. In this
mechanism the symmetry is broken by the acquisition of a
non-zero expectation value by a scalar field &. The
magnitude of this ekpectation value is constrained (at the
tree level) to minimise the potential U(®) of our theory.
In general, this constraint is not enough to specify <&>
uniquely. For example, if the grand unified group G is
reduced to a subgroup H, the value of <®&> is constrained

only to lie on M=G/H, the minimum surface of U [1.7].

Spontaneous symmetry breaking at finite temperature
has been studied by Weinberg and others [1.8]. Their work
had very interesting implications for cosmology. They
discovered that symmetry may be restored at high
temperatures. At early times the universe was very hot and
we therefore expect that the full symmetry was manifest. As
the universe expanded and cooled a series of phase
transitions would have occured as the symmetry was

successively broken.
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G+ H»> ..... > SU(3)xSU(2)xU(1) » SU(3)xU(1)
= ~ 16 = 3
Ton= Tg~ 10'°GeV Tpy= 10°GeV

Tph is the temperature at which the phase transition

occurred.

Let us consider the first of these phase transitions

where G is broken to H. As T falls below T., & will tend to

G’
acquire a vacuum expectation value. But, as we have
already seen, its direction is arbitrary, any point on M is
equally probable. Different regions in space may choose
different points. As the universe continues to expand and
cool &> will, for energetic reasons, tend to spatial
uniformity, unless of course it is prevented from doing so
by trapped singularities of some kind [1.9]. The possible
types of singularities are determined by the topology of M.
If, for example, M has disconnected pieces, domain walls
may be formed. In the language of homotopy theory this
corresponds to ﬁo(M) being non trivial. In table 1.1 some
of the possible types of singular structure have been

listed [1.9].

The presence of such singularities in the early

universe would have interesting consequences.

Domain walls, because of their great mass, have
tremendous gravitational effects [1.10]. So much so that we
can be sure that they do not exist in our present day

universe - at least within our field of view.
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Table 1.1 Possible topologically stable defects.

Structure Dimension of Non trivial
singularity homotopy group
domain walls 2 no(M)
strings 1 ., (M)
monopoles 0 T o (M)
texture - ns(M)

Strings have less dramatic effects. A string formed at

an energy scale u has mass per unit length [1.9]

M/L ~ p

In table 1.2 some typical values have been listed.

Table 1.2 The mass per unit length of a string fdrmed

at an energy scale u.

B M/L (gm/cm)
103 GeV (electroweak scale) 10-4
101 0Gev 1010
1016GeV (GUT scale) 1022
101°GeV (Planck scale) 1028

Those strings formed at energy scales close to the Planck

scale have too large a mass to be consistent with
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astrophysical observations [1.11]. The lensing angle
[1.12] for such strings is O(x) and, as Witten [1.11]
pointed out, the presence of a few of these strings
would make our universe appear kaleidoscopic. There
would be many images of the same object and gigantic

jumps in the microwave background [1.13] etc.

Strings formed at GUT scales have intriguing
astrophysical consequences. They might have provided the
inhomogeneities around which galaxies form [1.14]. They
also may have been observed as gravitational lenses for
example (some recent candidate double images have been

suggested by Cowie and Hu [1.15]).

Strings formed at much lower energy scales would
have negligible gravitational effects. Does this mean
they are of no interest to astrophysics? By no means! It
is possible that in some particle physics models these
strings behave like superconducting wires [1.16].
Several observational consequences of the presence of
such strings have been suggested [1.17-1.19]. For
example, they might produce high energy cosmic rays
[1.18] or explain quasars [1.19]. In chapters 3 and 4

such strings are discussed in detail.

The third possible type of structure, monopoles, are
particularly interesting in that essentially all grand
unified theories would predict their formation [1.20].
Grand unified monopoles are massive, have large magnetic
charges and may catalyse nucleon decay [1.21]. These

properties have enabled stringent bounds to be placed on
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their present day number density [1.22,1.23]. For example,
let us assume that they catalyse proton decay. Not only is

the cross-section large for processes such as

M+n->M+ 1" + et

but the energy released is enormous. Only about 1030
monopoles in the sun would account for the total solar
luminosity. By looking at low luminosity stars such as
white dwarfs and neutron stars, an upper limit on the
number of monopoles in these objects can be determined.
This can then be translated into a bound on the monopole
flux [1.23]. The stringent bounds people have obtained
has lead many people to believe that we have a 'monopole
problem'; that is, too copious a number of monopoles would
be formed in the early universe to be consistent with
these bounds [1.24]. This belief is questioned in chapter

2.

The final type of defect listed in table 1.1, texture,
is slightly different to the others in that no singularity
is present. Instead the whole universe is characterized
by a given element of n3(M). Texture can also have
interesting consequences and anyone interested is referred

to [1.25].

The final chapter of this thesis is devoted to a
detailed study of the nature of the phase transition

producing these topologically stable defects.
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CHAPTER 2: MONOPOLES CONNECTED BY STRINGS

AND THE MONOPOLE PROBLEM
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CHAPTER 2. Monopoles Connected by Strings and

the 'Monopole Problem!

The aim of this chapter is to clarify the status of
proposed 'causality' arguments limiting the annihilation

rate of monopoles in the early universe.

Two years ago, Everett, Vachaspati and Vilenkin[2.4]
(EVV) suggested that these arguments were wrong. They
presented the results of a two-dimensional model of
'monopoles' connected by 'strings', from which they argued
that the rate of annihilation of monopoles in their model
would be faster than allowed by the causality arguments.
There were however two shortcomings to their model; it was
limited to two dimensions and it allowed monopoles of the
same topological charge to be joined by strings. These
monopoles therefore did not annihilate but formed stable,

doubly charged monopoles.

In this chapter we present the results of a study of
a three-dimensional model of monopoles connected by
strings to antimonopoles. We shall show that an
annihilation process exists that would result in the
monopole density rapidly falling far below the minimum

allowed by the causality arguments.

The model is described in section 2 and the results

of a Monte Carlo simulation are presented in section 3.
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Before turning to the model, however, we review in section

1 the causality arguments. Our conclusions are discussed in

section 5.

Section 1. THE CAUSALITY ARGUMENTS

Two distinct types of causality arguments have been
proposed, that we shall refer to as A and B respectively.

The first [2.4] is based on the observation that the
direction of the Higgs field cannot become correlated on
scales larger than the horizon size (unless the
correlations were present initially). The argument asserts
that as a result, following the production of monopoles at
a phase transition, there must always be at least of order
one monopole per horizon volume, i.e. the monopole number

density n is always larger than

Bmin ~ £ .
The second argument B was proposed by Weinberg
[2.2, 2.3]. He argued that magnetic charge density
fluctuations, once formed, could not be erased on scales
greater than the horizon size. This means that the
monopole density could not decrease faster than a power
law. For example, in a radiation dominated universe, one

would have

n . = t75/2,
min
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These arguments are very plausible, in part because
the analogue of argument A in the case of domain walls is
valid. If there is a broken discrete symmetry and the
sign of the Higgs field in far separated regions is
uncorrelated there must be domain walls. Each horizon

volume ~ t3 must contain an area of wall of order t2.

For a continuous symmetry, however, the situation is
more subtle. Both arguments A and B are in fact wrong for

the same reason: they neglect the cumulative effect that

local processes can have.

To illustrate this let us start by recalling the
arguments of EVV concerning their two dimensional model of
broken U(1l) symmetry. In this there are two complex Higgs
fields & and * with U(1l) charges 2 and 1 respectively. In
the first stage of symmetry breaking & acquires a non-zero
expectation value and the U(1l) is broken down to Zz;
monopoles are produced. In the second stage y also becomes
non-zero. At the minimum of the potential & = 32, so there

are two values of y for any given &. The Zz symmetry is

broken and strings are produced joining the monopoles.

The subsequent evolution is governed by local
dynamics. The tendency will be for the strings to
shorten, eventually leading to annihilation or merger of
the monopoles. It is entirely consistent with causality to

assume that the evolution of the strings is highly
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irreversible, so that strings shorten but almost never
lengthen. As EVV showed, the strings afe on average quite
short, so that after a brief time they will disappear. In
this final state there will be doubly-charged monopoles
(around which the phase of x changes by 2n) but no

remaining singly-charged monopoles.

It is interesting to examine the causality arguments
to see where they break down. Consider how the phase of &
varies around a circle of radius much larger than the
horizon size. Since the phase is uncorrelated, it appears
to follow a random walk and one might therefore expect
that the total phase change around the circle could be 2xn
times any integer (up to some limit). In fact, because of
the relation & = y2, as long as yx is in its vacuum
everywhere (i.e. there are no strings), it can only be any
even integer. This has been achieved by entirely local
processes, and without introducing any correlations

between the phases in far separated regions.

Even without explicitU/introducing x it is quite
possible to define a local evolutionary rule that will
achieve this result for the phase of &. Suppose for
example that following EVV (see also [2.5]) we approximate
U(1) by Z, and discretize R2 into a planar lattice. At
each lattice point the phase of & is represented by
0,1 or 2, initially chosen at random. (A smooth
interpolation between the points is assumed, following the

shortest available path.)
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Consider the phase change around a large loop and the
effect of the following local rule. At each intervening
site, whenever the two neighbours have different phases,
change & so that its phase is different from both. This
ensures that the total phase change must be even. (This
rule is roughly speaking, the effect of requiring that & =
x2, since if the phase of y varies by 2n/3 that of & must
vary by 4n/3.)

This example should make us cautious about accepting
the causality arguments, but in three dimensiomns it is
perhaps harder to see how they could fail. Consider for
example an SU(2) model with a triplet Higgs field & that
breaks the symmetry to U(1l) and induces monopoles. The
topological charge within some large sphere can be
expressed in the usual way as a surface integral in terms
of &. Initially the direction of ® is random and the

topological charge will in general be non-zero.

As in the previous example, let us also introduce a
doublet Higgs field y that breaks the remaining U(1)

completely, joining the monopoles with strings.

Once again, if the field y evolves to its vacuum
everywhere by the strings shrinking and disappearing there
can be no monopoles. If we parameterise a sphere S2 in
space as a disc with boundary identified then the group
element producing the y, & configuration on the sphere

provides a loop in the U(1l) little group of & on the
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boundary of the disc. The & configuration has non-zero
topological charge if and only if the U(1l) group element
is non-contractable, which means that the yx field is not

in vacuo everywhere.

In this case we can also invent local dynamics for
the P field which will rapidly reduce the net topological
charge to zero in any closed surface.

On a triangulated surface (such as that used in our
simulation described in the next section) each triangle
has a value of & at each of its vertices. If these are all
different then the triangle can be mapped onto a
tetrahedral approximation to the vacuum manifold S2. The
magnetic flux through a triangle is +1/4 if the
orientation matches that in the vacuum manifold and -1/4
otherwise. Then in any closed surface the net flux must be
an integer, and we must have 4m triangles with +1/4 flux,
and 4n with -1/4. The net charge (number of monopoles

minus antimonopoles) is m-n.

The local rule for & is to draw an extra point inside
each triangle and assign a new value of & there. Thus each
triangle becomes 3 triangles (see figure 2.1). If & takes
3 different values on the original vertices (i.e. there is
a net flux f) assign the fourth value at the new point.
Now the net flux is changed to -3f, in effect we have
pulled a monopole through the triangle. If & does not take
3 different values on the original vertices then it makes

no difference how one assigns the new point. Now our local
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Fiqure 2.1 Our local evolution rule for §which demonstrates

the falsity of the causality counds. On the left is our

tetrahedral agproximation < the vacuum manifold. On a triangulazed
1

surface each triangle carr:=s a net flux, 0, =3, or -i

(as showm). Each triangle is evelved as descriped in the text.
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rule is to make such a change in a probabilistic way with
a probability of 1/4 on each face with flux through it.
Our 4m triangles with +1/4 flux become 3m with +1/4 and 3m
with -1/4 flux. The net charge is zero. Due to randomness
in our choice at each face we expect a net error (or net
charge) after one timestep of v(n+m). Nevertheless in one
timestep we have decreased the net charge far below the
causality bound (under which we could at most halve the

net flux.) s

Note that both our local evolution rules can be
followed simultaneously in two dimensions (three
dimensions) on all links (faces) with the same result for

any closed loop (surface) in space.

Just because it is theoretically possible for 1local
processes to reduce the total charge to zero it does not
mean it actually happens. The dynamics above are certainly
rather strange and only a detailed study of realistic
dynamics can answer this question. In this chapter we try
to answer it, so far as one model of monopoles connected

by strings is concerned.

Section 2. THE MODEL

We now turn to our specific model, which is based on
a system possessing an SU(2) symmetry that undergoes two
symmetry breaking phase transitions at roughly the same
temperature. At the first, SU(2) is broken to U(1l). In

this process 't Hooft-Polyakov monopoles [2.6] are formed
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[2.7]. At the second transition the U(l) symmetry is
completely broken. This causes the magnetic field to be
squeezed into flux tubes (strings) connecting monopoles
with antimonopoles [2.8]. Also closed and infinite strings

are formed.

The strings connecting monopoles with antimonopoles,
being regions of false vacuum, tend to contract to
minimise their energy. The monopole-antimonopole pairs are
pulled together and then annihilate into the vacuum. The
life-time of these pairs will be roughly the time it takes
to dissipate the energy of the string [2.9, 2.10, 2.11].
The monopole number density at any time after the phase
transition can thus be related to the initial distribution

of string lengths.

The above sequence of symmetry breakings can be
achieved using two Higgs fields, & and ¥, which transform
according to the 3 and 2 of SU(2) respectively. It is
convenient to regard & as a 2x2 traceless hermitian

matrix; ¥ is a two-component Acubht'.

If the symmetry group is SU(2), the potential must
contain interaction terms between the & and ¥ fields such
as

+ + +
YoV, vValvy, vy tr(a2) .

By suitable normalisation of the & and v fields the
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potential can be chosen so that at its minimum

2 =1, v¢vy=1,0 V¢ =Y

After the first transition, & acquires a nonzero
expectation value and the symmetry is broken to U(1).
After the second, ¥ also acquires a nonzero expectation
value and the symmetry is reduced to {1}. The standard

vacuum solution may be chosen to be

A monopole at the origin with a string along the -z axis

is represented by

5 =2 . 5= [coso© sin 0 e ¢
- sin 6 ef® - cos @
1
cos — O
2
Y = 1
sin -; 0 ei¢

To perform the Monte Carlo simulation it is
convenient to approximate the space of & (S2) by four

points forming a tetrahedron[s.lz], say

@0 = 63
@1 = -1/3 03 + 2/2/3 01
@2 = -1/3 03 - /2/3 o4 + Y(2/3) Oq

Q
N

&, = —-1/3 og = /2/3 gy = /(2/3)



-33-

Having chosen a discrete approximation for the manifold §2
we need to know what phase the ¥ field picks up on
transforming it from a point ( &;) to another ( @j). The

smallest angle rotations taking one @k into another are

1/73

|
e

/(2/3) o

Y10 2

U20 = 1//3 + 1 1//2 o, * i 1/v/6 Tq

Usg = 1/V/3 -1 1//2 oy * i1l//e6 o,

U32 = 1//3 + 1 ¥2/3 o1 = i 2/3 og

Ujg = 1/73 =1 1/(3/2) oy + 1 1//6 o, - 1 2/3 o,

U21 =1//3 -1 1/(3/2) oy - i1l/v/é6 Oy = i 2/3 Oq
for example, U10 @O UIO = @1 .

We can now choose standard phases at each of the Qj

values

e
i
las]
1]
|

_ (1//3 )
0 Y (2/3)

_ _[1//3

¥y = Uy ¥p = (i//z -1//6)
_ _[1//3

¥3 = Uzg ¥p = (-i//z —1//6)

A general value of ¥ may be specified by its phase «

relative to these standards. For example if & = @q, then

Y = Wq el Havingal lotted standard phases we can

consider transforming Yz by the rotation that carries @2
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to @3. The result is

similarly

We see that if we wish to compare the phases-of the ¥
field at two neighbouring points where & has the values @i
and éj we must include a phase correction factor Ai" As

J
an example, suppose that at the first point

at

which is to be compared with the field at the second

point, say

The difference in phase is thus @€y = @g = n/2. In general

it is
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where

0 0 0 0
A=]0 0 -n/2 n/2

0 n/2 0 -n/2

0 -n/2 n/2 0

Section 3. THE MONTE CARLO SIMULATION -

We considered an n x n x n body centered cubic
lattice. At each vertex of this lattice one of the four
values of &, namely @0, @1, @2, @3 was chosen at random
along with a value of « between -n and n. The lattice may
be regarded as made up of irregular tetrahedral cells, the
vertices of which are the lattice points (Figure 2.2a).
The centres of the tetrahedra form a regular lattice (the
tetrakaidekahedral lattice, Figure 2.2b). A monopole was
considered to lie at the centre of a given tetrahedron if
the four vertices had values for the & field of 24> @l,
@2, @B or an even permutation thereof (an antimonopole if
an odd permutation). A string was considered to pass
through a face of the tetrahedron if the net phase change

was less than -n and an antistring if it was greater than

T e

For a tetrahedron containing a monopole/antimonopole,
there were two possibilities in our simulation; they may
have been a single string/antistring entering it or two

strings/antistrings and one antistring/string. This latter
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Figure 2.2a A diagram showing hcw the oody centered cubic

lattice was divided into tetrahedra. Each vertex of the

tetrzhedron is common to 24 others.
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Figure 2.2b The tetrakaidekenedral lattice associated with
the body-centered cubic lattice. The peints ci the lattice
correspond to the centres of the tetrahedra shown in figure 2.2a
For example, the point A could be associated with the centre

of the tetrahedron shown in figure 2.2a.
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case represents a string entering the tetrahedron through
one face and leaving it through a second, in addition to a
string segment terminating on the monopole. Similarly, it
is easy to see that for tetrahedra which do not contain a
monopole or an antimonopole, our algorithm always gives an
equal number of string and antistring segments entering
it. The monopoles were taken to lie at the centres of the
tetrahedra and the strings along lines joining them (all
of which are of equal length), namely along the edges of
the tetrakaidekahedra. From the above considerations it
follows that string segments either formed closed loops or
start or end on monopoles or antimonopoles. Periodic
boundary conditions were used to prevent strings leaving

the lattice.

Having determined the positions of the monopoles and
antimonopoles the computer followed the string leaving a
monopole, determining its length, until it terminated on
an antimonopole. This was done for all the monopoles
before proceeding to follow the string segments in loops
evaluating their lengths. In the case of configurations
like that in Figure 2.3 the computer decided at random
which string/antistring segment was connected to the
monopole/antimonopole. Similarly, for configurations like
the one shown in Figure 2.4, the computer decided at
random which pair of string and antistring segments were

connected with each other.

The largest sized body centered cubic lattice we used

was (40)3. In a typical run we found the number of
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Figure 2.3 A tetrahedron containing a monople'éhd for which 2
string segments and 1 antistring segment enter it. The computer
decided at random which string segment was connected to the

monopole.

Figure 2.4 A tetrahedron for which 2 string segments and 2 antistring
segments enter it. The computer decided at random which string

segment was connected to which antistring segment.
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monopole/antimonopole pairs produced was 35930. This is
consistent with our algorithm which gives a probability of
3/64 of finding a monopole in any given tetrahedron. The
number of string segments produced was 419216 which is
again consistent with our algorithm (the mean probability
of a string passing through a given face of a tetrahedron
is.35/128) The percentage of string segments in loops was
approximately 9%. In units in which the correlation length
¢ of the Higgs field at the phase transition-is taken to
be one, the length of the largest open string segment was
141 and that of the largest loop was 41 (note in these
units the lattice size would be (40 x 2/2)3). Let

n (2) and n

open closed(Jl) be the number density of open and

closed strings of length greater than or equal to 2
respectively. In Figures 2.5 and 2.6 we show plots of

In[n(f)] versus 2. Figure 2.5 is consistent with

Dopent) = g €xXp(-= 18)

and Figure 2.6 is consistent with

= *® ' 1=5/2 -
05 oseq(P) A fx dL' 2 exp(~gL"')
in agreement with the theoretical predictions of Mitchell
and Turok and Copeland, Haws and Rivers [2.1, 2.14]. A
fit to the curve of Figure 2.5 gave

7.4+0.6X10"2

w
1

1.9+0.5%10"2

=]
i
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Figure 2.5 A plot of log(Nopen) vs. 2 in units in

which £ = 1 for a typical run using a lattice
size of (8072%°
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Figure 2.6 A plot of —42-
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The value 1/ << 80vY2 (the size of the lattice) and since
the vast majority of the strings are much smaller than
8072 the finite size of the lattice does not affect our
results. As a further check on the effect of the finite
lattice size a run was made using a body centered cubic
lattice size of (20)3 ((40/2)3 in units where £=1).

These results are shown in Figures 2.7 and 2.8. A fit to

the curve of Figure 2.7 gave

2

B = 7.0£0.6 x10

1.640.5 x10~2

Do

insignificantly different from those of the (40)3 lattice

results.

Section 4. DISCUSSION

In this chapter we have shown that the length
distribution of strings exhibits an exponential

suppression of long strings:

Dopen © ©XP(-¥ 2/8)

The lifetime of any monopole-antimonopole pair will depend
on the time it takes to dissipate the string's energy.
Since the stri;g lengths are predominately microscopic
(2~E) the whole system rapidly decays. In a very short
time the monopole number density will therefore become
much less than one per horizon volume, contrary to the

causality arguments. Causality alone does not impose any
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Figure 2.7 The same as 5 except using a lattice size

of (40/2)3

Log(Nopen)

20 40 60 80 100 120 140

Length |




7 u)buan

-45~

Figure 2.8 The same as 6 except using a lattice size

of (4072)3

Log{Nclosed)

!
o 109] )]
.

91 -
.ﬂt,l...
..Zl._

G¢ 0% G¢Z 0]4 Gl o]!
T

O¥

St




-46-

interesting constraints on monopole annihilation. To

determine the rate of annihilation the dynamics of the
monopoles in the primordial plasma must be studied in

detail.

In our simulations, as EVV did, we have used the same
lattice spacing to simulate both phase transitions. As
they pointed out, this amounts to the assumption that if
the phase transition is second order, then both
transitions occurred at roughly the same temperature. Let
us suppose now that this is not the case. We still would
expect qualitatively the same conclusion, i.e. that the
monopole density rapidly falls away. Even if the string
distribution was not initially exponential, in a short
time we would expect it to become so. This is because, as
EVV emphasized, the strings can break with the formation
of a monopole-antimonopole pair. Fragmentation would
rapidly establish an exponential distribution unless the
transitions occured at such widely different temperatures

that the breaking probability was negligible.

This study has only answered the question of monopole
evolution for the special case of monopoles connected by
strings. What happens when the monopoles are not connected
by strings or flux tubes? At temperatures less than the

Ginsburg temperature T, the monopoles may effectively only

G
disappear by annihilation with antimonopoles. This process
has been discussed by Preskill [2.14] and Zel'dovich and

Khlopov [2.15]. Their work studied the diffusion of
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monopoles towards antimonopoles followed by capture in
Bohr orbits and final annihilation. The results of their
work suggests that, if we accept the standard monopole
density at TG’ we have a 'monopole problem'. The work of
this chapter however questions the validity of the
standard estimate of the monopole density at TG' Whether
or not we do have a monopole problem in the standard
cosmological model would therefore still seem to be open

to question.
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CHAPTER 3: THE DYNAMICS OF, AND RADIATION

FROM, SUPERCONDUCTING STRINGS



CHAPTER 3 The dynamics of and radiation from

superconducting strings

In the next few chapters superconducting cosmic
strings are discussed. These are a particularly
interesting type of topological defect predicted to occur
by some unified theories [3.1]. Like 'ordinary' cosmic
strings [3.2], they are line-like defects which may be
formed at a phase transition in the early qniverse. The
observational situation is, however, much brighter for
superconducting strings - the large currents they are
capable of carrying could lead to a variety of interesting
astrophysical phenomena [3.3 - 3.7]. For example, they
have been invoked as the energy sources for an explosive
scenario of galaxy formation by Ostriker, Thompson and
Witten (OTW) [3.3]. Chudnovsky et al. [3.4] have
considered their effect on plasma, estimating synchrotron
emission and radiation from shock heating. While Field
and Vilenkin [3.5] have suggested that electromagnetic
radiation beamed from cusps on strings might provide an

explanation for quasars.

In order to test these scenarios it is important to
understand the motion of, and radiation from,
superconducting strings. In this chapter we continue the
work of Copeland et al. [3.8] who showed that the Nambu
action acquires an extra local correction term due to the

current on the string.

Depending on the value of the critical current on the
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string [3.1], this correction may be large enough to
cancel the string tension completely forming 'springs'
[3.8]. In this case the large currents initially present
on the string at formation quickly stabilise loops,
forming magnetic dipoles which may come to dominate the
universe. In chapter 4 we show that typically, in regions
of parameter space where the current carrying state is
long lived, springs are formed. (Long lived currents are
of course essential for the strings to have interesting
astrophysical consequences.) As we shall explain, however,

it does appear possible to produce current lifetimes long

enough to be observable without.producing springs.

Even if the critical current is small (as is
typically the case for fermionic strings [3.1]) the effect
of current is still important in correctly calculating the
radiation from the superconducting strings. Calculations
[3.10, 3.16] using Nambu trajectories give infinite
answers. In this chapter we calculate the radiation from
an exact solution to our corrected action and find it is

perfectly finite.

Also if the critical current is small, current loss
processes will occur on the string [3.8]. For small
critical current the Nambu action is in general a
reasonable approximation and generically produces 'cusps'
in closed loops where the current density becomes very
large [3.11]. At these points we show that current will be
lost, so that loop 'shrinkage' due to radiation results in

the net loss rather than gain in current as other authors



-51-

had assumed [3.3, 3.5]. Thus for example, we show that the

OTW scenerio can only work for very large primordial

fields.

This chapter is divided into six sections. In section
1 we derive the corrected action describing the motion of
current-carrying strings. In section 2 we discuss some
exact solutions to the corrected equations of motioﬁ
including springs and kinky loops. Springs are shown to be
stable to small perturbations, and the local effect of the
current is shown to decrease the velocity of propagation
of waves on the strings. In section 3 we calculate the
electromagnetic radiation from a kinky loop and in section
4 we show that kinks, although not 'rounded' off by the
local corrections to the equations in our action, are
'rounded' off by the higher order effects of the nonlocal
current self-interactions. This is important in section 5
where we see how the 'cusps' formed in this process
quickly lead to the loss of current from loops. The final
section summarises our results and discusses their

cosmological implications.

Section 1. The Superconducting String Action

In this section we explain how the current flowing
along a superconducting string affects its motion. We
begin by recalling the derivation of the Nambu action for

an ordinary string in a broken U(1l) gauge theory [3.12].

The field theory action is
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S=/[d% (-1F2+ |D, @]% - V(2) ) (3.1.1)

]

V(®) =2 (le]2 = n2 )2
4

with & a complex scalar and Fab = aaAb - abAa ,

a,b = 0,1,2,3 as usual. We look for an approximate
solution to the equations of motion of (3.1.1) which
locally take the form of the static cylindrically

symmetric string or vortex line solution [3.12]. These

are given by

2(0,0) = £(p) ¢® A = 1 (a(e) - 1)

e p
(3.1.2)

in cylindrical coordinates, with £(0) = 0, a(0) = 1 and
'f' and 'a' tending exponentially to n and 0 respectively
on a length scale given by the inverse masses of & and

A_.
a

Our solutions are constructed around an arbitrarily
curved worldsheet with spacetime coordinates xa(c“), where
o = (t,0) are the two worldsheet coordinates. Given such
a worldsheet we may construct two space-like normal

vectors na(c) (A = 1,2), which everywhere obey

A
nz Xa « 0. We can also choose them to be orthonormal
. a - _ . . .
i.e. n, ng =~ GAB . For any point y in spacetime closer

to the string than its radius of curvature we can

associate two worldsheet coordinates o% and two radial

coordinates pA
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v& = x*(g) + n:(c) pA (3.1.3)

Our ansatz for the fields is then & = @S(p) for the
scalar field and Aa(Y) = nz(c) Ai(p) where the subscript
's' stands for the static cylindrically symmetric
éolutions. Now we change coordinates in (3.1.1) from ya

[

to " = (c“,pA) to obtain

P

S = -f d2c d2p V(-M) ( %ggm + IDy® (p) |2 + V(2 (p)) )

(3.1.4)

where

a b Y
M =0 %Yy o= «p + 0(p) (3.1.5)
Y ) v Vab -
ac® ac 8 AR

comes from the Jacobian and YaB= aaxa-a Xx_ is the induced

8*a

metric on the string worldsheet.

Performing the transverse integration we note that
terms of O(p) will, when integrated against the energy
density, be down by O(W/R) where W is the width of the

string and R its radius of curvature. Hence we find

S =-u [ d2¢ ¥(-y) + O(W/R) (3.1.8)
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where p is the energy per unit length of a static straight
string. Except in regions of high curvature (such as cusps
or kinks) the equations of motion derived from (3.1.6)
should be a good approximation for strings of radius

R >> W. Note that in the case of global strings the
energy density of the string only decays like a power law
away from the string - this leads to an extra non-local

interaction term in the action (3.1.6) [3.13, Appendix].

For superconducting strings the above derivation
breaks down when there is a current on the string because
the static configuration is no longer independent of the z
coordinate - fields vary along the string. This means that
the Lorentz invariance of the string under boosts in the z
direction is broken and the relativistic string begins to

behave more like an ordinary non-relativistic string.

Let us briefly recall how bosonic superconducting
strings arise. The simplest theory in which they occur is
a U(l)'x U(l)em gauge theory which has two complex
scalars y and ¢ carrying U(l)em and U(1l)' charges
respectively. The & Higgs field breaks U(1l)' forming
strings and couplings are then arranged so the condensate
field xy acquires a non-zero value in the string core where
¢~0. Spatial varations of the phase of y along the string
produces an electromagnetic current which is topologically

conserved as long as x remains non-zero on the string.

In more detail, the Lagrangian used is
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—In .12 2 by : L,
L ‘le¢, +ID ux, - % Fqu % M (o] 2 n2)2
"2 Alxl® - Ag ([2]? - m?)|x|? (3.1.7)

-\ nv
To ensure electromagnetism is not broken outside the

string we take

2 4
1, Mray ™,
2 VRTINS

|x| is zero at the global minimum, but if & is zero, as
it is in the string core, the potential for y has the
symmetry-breaking form and forces |y| to be non-zero, of
order /(xa/xz) m. For some range of the couplings a
condensate does indeed exist on the string [chapter 4,
ref. 3.9, 3.14]. Let us call it xo(p). The condensate
does not carry any current if its phase is constant. If we

ie(z,t)

set y = xo(p) e in the static straight string

solution we find an extra contribution to the string

action
AS = [ d2¢ [ d2p v/ (-y) 'Daxl 2
=« [ d% /(-v) v*P (s 0 + e,) (050 + ehy)
(3.1.8)
where x = [ d?p (Xo(p))z. Here we used
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ab = ykV
7 Dyx Dpyx = M Dux D, x

with the inverse of MMV, Muv given in (3.1.5). We include

the term - | DA X (p)l2 in our definition of p and, to
0

order p, are left with the fDax12 term in (3.1.8). We also
have

a
Aa(o) = X o

A, (x(9)) -

and we assumed that the electromagnetic gauge field Aa
varied slowly across the string in performing the integral
in (3.1.8). This will be justified later. In the next
chapter we will show that for the current to last for a

significant period of time one requires « » 20 [3.9].

From (3.1.8) we find the electromagnetic current

J = - 6(AS) = =2 eg (aa@ + eAa) (301-9)
a (SAa
and so
1 af
AS = — d2 )’ -
el [ d%c v(=v) v77 I, g (3.1.10)

The current carried by such a string persists because
the total change in © around a loop is conserved as long
as |y | does not go to zero (i.e. does not 'hop' over the

potential barrier) at the core of the string. The winding
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of © may change through tunnelling of the x field so the
current carrying state is actually metastable [chapter

4, ref. 3.1, 3.9].

In fact, the gauge field Aa is determined in terms of
aae by Maxwell's equations. In the Lorentz gauge, aaAa =

0, these read

o4 a

0247 (y) = f a%0 /(1) 8% (x(o) - y) 3% b _x

Ja(y) (3.1.11)

obtained by setting

A (o) = aaxa A, (x(0,7))

/ d4y 54(X(6,T) -v) aaxaAa(y)
in (3.1.10). This has the solutionm

[ aty Tty -y P

A% (y)

= [ % V(= ) Py - x(o",v1))a% 5P

(3.1.12 )

where

¢ tyy = (1/27) 8(v?) o (v
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is the retarded Green function. From (3.1.12) Aa is
determined in terms of J“ which depends on Aa as well as
aae. We evaluate (3.1.12) on the string world sheet as
follows. Letting ya = xa(c,r), we perform the t' integral
by expanding the argument of the delta function in ' - =
and ¢' - ¢, since the integral is dominated by r'=_r and

g =o0'.
0 0 ' v ' ' 2
o(x (o,1) - x (o',t")) 8[(x(o,7) - x(o',7"))?]
~ §((s'=1)2 %2 + 2(v'-1) (o' =0)k.x"+(0'=0)2x'2)0 (1-1")

= §[t'=1 +{(Xx"(0'-0)+ /((i-x')z- izx‘z)lc‘-cl)/(iz)}]

2 /((i-x')z— izx'z)lc' - 0|
(3.1.13)

Performing the t' integral and noting that the square root

in (3.1.13) is /(-y) we find

a
A (x(o,%)) »~ L fdor %

(3% x%(o) + O(c'=0))
47 |c'-c| @

(3.1.14)
the first term of which diverges logarithmically.
For a loop of radius of curvature R and string width

W, we know that the formula (3.1.12) must break down for

|y - %(0,7)| ~ W so (3.1.14) gives
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A%(x(0)) = (1/2n) 2n(R/W) J% _x*(o)  (3.1.15)

as the leading term. For a wire of width W carrying a
uniformly distributed current J, the gauge field interior
to the surface A, = Ay + (J/2n) (p/W)2 (in 'SI' units with

gg=po=c=1) where A is the value of the gauge field at the

0
centre; so the variation of A across the string is indeed
negligible as previously assumed. Putting (3.1.15) into
(3.1.9) we find that on the string

J ==2ek 0 06
a

eff a

A, ==—e In(R/W) (xpe/m) 2.0 (3.1.16)
Kepg = € / (1 + e2 (x/mn) Ln(R/W))

These formulae were derived by Witten [3.1] for a straight

string.

For « >> 1, which is required in order for the

current to last a reasonable time,

Kags ~ 1/(4aEM 2n(R/W)) ~ 1/4

when aEM=1/137 and An(R/W)~100.
We may similarly calculate the electromagnetic
contribution to the superconducting string action by

substituting (3.1.12) into
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[aby (=L F2) = 1 [d¥y A %A% (3.1.17)
4 2

in the Lorentz gauge. We find using (3.1.11) and (3.1.12)

ASpy = (1/4m) | a%5a%5"v(~y ()7 (~v(a")) 8(x%(e) - x°(a"))
| 5((x(o) - x(a'))2) I%0)aP (o)

a
aax (o)asxa(c')
Performing the same steps leading to (3.1.15) we find

ASpy = (1/4n) 1n(R/W) [ d2o /(-) yaBJaJB(3.1.18)
as the leading local contribution to the string action.
There are also non-local terms in the expansion but these
do not include the logarithm which is typically ~ 100 for
macroscopic strings. Adding (3.1.10) to (3.1.18) and
rescaling Ja we find the action for a superconducting
string in the absence of external electromagnetic fields
to be [3.8]

= -u [ a2 /() ( 1-y"Py (3.1.19)

g )
which is the main result of this section. Here, ja is
dimensionless and is the current in units of JS = 2e
/(Keffp)- We shall discover in the next section the
reason for the subscript. The dimensionless current ja is

given in terms of the field o from (3.1.16) by
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ja = - /(Keff/u) aae (3.1.20)
Thus (3.1.19) describes a string with a massless field o
propagating along it. We shall discuss solutions to the
equations of motion stemming from (3.1.19) in the next

section.

Before doing so, however, we should discuss under
what conditions the action is valid. It is o%viously not a
good approximation in regions where the string is curved
on scales approaching its width, like kinks or cusps. It
also ignores the non-local self-interaction of the string
with itself by radiation from one part affecting another
part of the string. These effects were dropped because
they are down by (1/(&n(R/W)) ~ 1/100 (for large loops)
relative to the terms we retained. In principle they can
be determined by continuing the expansion in (3.1.13).
The derivation of the action is also incorrect in the case
of infinite strings. In writing down equation (3.1.17) we
have dropped surface terms which are non-zero for an

infinite string.

Finally the existence of the current on the string
was assumed not to effect xo(p) which was taken to be
independent of J. This is actually a very good
approximation in regions of parameter space where k is
large and the current carrying state has an
astrophysically interesting lifetime. Thus our action

(3.1.19) is not just valid to order j2 but to all orders
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in j in 'interesting' regions of parameter space [3.9].
Our action agrees to order j2 with that proposéd by
Nielsen and Olesen [3.15] based on a Kaluza-Klein
construction. Thus we believe their action is only a
valid description of the type of superconducting strings
we are discussing for small j. As we shall see however,

one of the most interesting phenomena occurs when j ~ 1.

Section 2. Solutions of the equations, springs and

their stability

We now look for solutions to the equations of motion
of superconducting strings derived from (3.1.19) and

(3.1.20). Varying with respect to © and x* we find

3,0 V(1) v*F 55) =0 (3.2.1a)

> ( Y(-y) (v*P+e%Fy 5.x*) =0 (3.2.1b)

a B
where we have defined a world sheet energy momentum

tensor

0B 2 sas = 23%3% - y*PC 35 )

T B v, Y

(3.2.2)

which is covariantly conserved and traceless.
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As usual we can choose the orthonormal gauge Yoo~ o,

Yor + Yoo = 0 , so using (3.1.20), (3.2.1a) becomes
2 2 _
06 = f(o + 1) + g(c - 1) (3.2.4)

with f and g arbitrary functions. Now the orthonormal

gauge is invariant under the coordinate.transformation

c+1T +» o+1=2T1F(s + 1)
K
6 -1 * o-1=2 g(o - )
X
and in these coordinates 6 = A o. We can always choose

these coodinates provided the current is space-like
everywhere (the case of time-like currents is discussed in
[3.19]). If the current vanishes at some point however, we
may need several patches to cover the loop. In these

coordinates we have, using (3.1.20)

j j ; 11,

(3.2.5)

and the equation of motion (3.2.1b) becomes

1

o ((1-v"13%0_x*) = a_((1 + v 1% _x*) (3.2.6)
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Yll = 1/(‘%){)2

Note that only ylljz, which is invariant under rescaling
o, enters these equations and therefore they are

independent of A.

Our first set of solutions comes from noticing that
if (aox)z + j2 = 0 (remember acxa is a space~-like vector)
then the right hand side of (3.2.6) vanishes. We then
have the solution x0 = jt ( the factor j being necessary
to satisfy the orthonormal gauge conditions) and x = x(o),
an arbitrary function subject to (665)2 = jz
(i.e. yllj2 = -1). These solutions are arbitrary static
curves in 3 dimensions and are called 'springs' [3.8].

What is happening is that the positive pressure

contributed by the current cancels the string tension.

This may be seen by computing the stress—-energy

tensor from (3.1.19). In Minkowski spacetime this is

ab
T = -2 &8
3ﬁab
= u [ % /(o) (% 0%Py0 xPo x e (x5 ()
(3.2.7)

which in the gauge described above becomes
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1 b 1

ljz)atxaarx - (1 + v
x® - x*(0)) (3.2.8)

=w [ d% (1 -y 1528 _x* _xP)

5

For example, for a loop of radius of curvature large
enough for us to approximate it to a straight line in the

a

z direction say (i.e. x"= (r,0,0,c))‘we have

=k 6%(x) dtag((1+3®), 0, 0, (1-35))  (3.2.9)

and we see that -as the dimensionless current j increases
to 1 the energy density TOO increases whilst the tension
T33 decreases. If j=1 the energy momentum tensor is just

that of a line of pressurelesé dust.

An interesting difference between superconducting
string solutions and ordinary string solutions is that if
the current density is non-zero we cannot have 'cusps'.
These occur generically in ordinary strings [3.11] and may
be defined as points on the worldsheet where the
determinant of the metric y vanishes. At such points all
directions on the worldsheet are null. For superconducting
strings however, the energy density (3.2.8) becomes
11

infinite if Y11 vanishes since then ¥y is infinite. This
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is because if a cusp were to form, the current density

there would be infinite.

Now we would like to check the stability of our
'spring' solutions to small perturbations. Naively we
expect that a perturbed spring solution can be moved at
zero energy cost into another spring. Any other
perturbation either compresses the string, in which case
the pressure becomes dominant, or extends it so_tpe

tension becomes dominant. Thus one expects stability.

In our gauge, (3.2.5), 6ja = 0, so from (3.2.6) we
find

2..= Y Y
jesx 60(55.65' Es) (3.2.10a)

j 6% 0= 3 (x1.8%") (3.2.10b)

where x = 0 X, x' =3 _x. Setting 6x(7,0) = ég(c)elwt we
multiply (3.2.10a) by 6x and integrate around the loop to

obtain, upon integration by parts,

~0?[ do (83) = - [ do (x5-5x")%/ x?

(3.2.11)
Thus 2> 0 with w=0 iff 6x'+x, = 0 everywhere. Now we
impose the perturbed gauge conditions. Equation (3.2.10b)

is just the 1 derivative of 6Yr1+5Y O. Using this and

O'0'=
5v_.=0 one gets jok0= xl+6x', jox0'= xl. 8% . These can be

integrated using the gauge conditions for X and (3.2.102)
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to show that 6x? is purely oscillatory. Thus we have shown
stability. There is a whole family of zero modes
corresponding to deformations of springs into other

springs, those for which 6§'-§é = 0.

One should also bear in mind that we have neglected
the non-local electromagnetic self-interaction of a loop
which would act to reduce the electromagnetic field
energy, presumably slowly bringing a loop to a more

circular form.

The second class of solutions we present are
oscillating loops which are nevertheless solutions to
(3.2.6). We suppose that 5'2= constant, xO = 1 and then

(3.2.6) becomes

x=v" x"
2 l—jz/ 5'2
v = (3.2.12)
1+ jz/ 5'2
which has the general solution
x(o,1) = (1/2) [ a(oc + v1) + b(o - vi)] (3.2.13)

However we must also satisfy the orthonormal gauge

conditions X +« x' =0, X° + x = 1. These imply

2) = g2 (3.2.14)

2/(1 + v

V)
[

o
Il
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if we impose the extra condition a'<b'= 0. Equation
(3.2.14) says that a' and b' are curves lying on a sphere
of radius ¥. They are periodic and have centre of mass
zero, i.e Sfdo a'(o) = 0, in the loops centre of mass
frame. Solutions of this type for ordinary strings were
discussed by Garfinkle and Vachaspati [3.16]. They have
kinks - places where the derivative x' is discontinuous,
but this is expected to be a generic feature for loops
chopped off long strings in an expanding universe. The
simplest kinky loop has a' being simply two points, the
north and south pole, and b' any two antipodal points on
the equator (Figure 3.1). More generally b' can be any arc

or collection of arcs on the equator (Figure 3.2).

We can explicitly evaluate v in terms of j. From
(3.2.13) and (3.2.14) we find 5'2= 1 /(1 + v2) and from

(3.2.12) we have

/(1 + 8j2) - (1 + 2j2)
v = (302-15)

252

Note that the effect of the current has simply been to
reduce the velocity of wave propagation on the string to
v2 ¢ 1. As the current is increased we see the velocity
decreases until we reach jz = 1 where v2 = 0 and we are
back in the realm of springs. To lowest order the current

does not therefore 'round off' kinks on strings, it just

slows them down. This effect is nevertheless enough to
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Figure 3.1 The sphere on which the curves a 2 = bLZ
=’§2 lie. The oscillating square solution has a
being two points, the north and south pole, and b

being any two antipodal points on the equator.

0

I



-70-

Fiqure 3.2 The a , b trajectories for a more general

'kinky' loop solution.
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make the radiated power calculated from such an

oscillating loop finite as we show in the next section.
In the section after that we discuss how the non-local
self-interaction of the loop does actually 'round off’

the kinks.

Section 3. Electromagnetic Radiation from a Kinky

Loop

Superconducting strings radiate electromagnetically
as well as gravitationally, and this effect has been
evoked by many authors to produce explosions [3.3], quasar
jets [3.5] and other astrophysical phenomena [3.6, 3.7].
Previous calculations have however produced very crude
estimates of the total power radiated since the naive
calculation of the total radiation from a 'Nambu’

trajectory gives an infinite result [3.10, 3.16].

In this section we calculate the radiation from the
simplest kinky loop and find it is perfectly finite if we
include the local effect of the current on the string's

motion.

The solution we use is given by (3.2.13) and (3.2.14)

where

a'(x) =& (1,0,0) ; a(x)
=t (-1,0,0)

£ (x,0,0) 0< x <L/2

£ (L-x,0,0) L/2< x <L

b'(x) g (0,1,0) ; b(x)

¢ (0,x,0) 0< x <L/2
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=g (0,-1,0) =§ (0,L-x,0) L/2< x <L

and L is the length of the loop. The trajectory is shown

in Figure 3.1.

For a periodic source, the power radiated per unit

solid angle is given by [3.10]

2 *
Pr = - “n I (ek) J*e k) (3.3.2)
de 27
lEl: o, = 2nn _ 4 © av
T L

where T= L/2v is the period of the source and J* the
Fourier transform of the current density. In our case from

(3.1.16, 3.1.20) and with

Ja = f dzc /(—Y) Xa Ja 64(X - X(G,T)),

04
a—
J = (O> Jeff)’

L/2v L

I(w k)= (2v/L) J .. [4 dt jodc exp(i(w, t~k*x(0)))x' (o)

/2

. 2 1
Jeff = j (4e Keffu) (3.3.3)
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It is convenient to split the integral (3.3.3) up
into several regions in the ¢-t plane. Thus

d=2v e [ I, +d,_+d_, +d__] (3.3.4)

= S
L

where the subscripts *+ correspond to regions where

a' =& (1,0,0), b' =& (0,%1,0)
(Figure 3.3). Changing variables to o, = o = vt the

Fourier transforms are easily evaluated. For example

J,. = (£/v) (1,1,0) [ ei(L/4)((wn/v) - klg))_l]

(Cop/v) = kiE)(Cop/v) + kyE)

) [e-iL/4((wn/v) + kzg)_l]

(3.3.5)

(here, k1 and kz are the x and y components of the Fourier

Transform variable). Now using a'eb' = 0 we have

2

L2/(4v2Jgff) |£|2 = | I i__lz + }£+_ +Jd_,

and writing
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A
t
c-vi=0 c-vi=L/2
s’ vl
Loy o~
N —— 7 N+ +
AN / N
N e \
N /
+- X -+ X4 —
/ N 7/
// N //
/ ++ \\ 7 -
Z v, » O
L/
2 N
c +vt=1/2 c+vi=L_L

Figure 3.3 Diagram showing how the o -t integral (3.3.3)

is split up into different regions. The +, + etc.

dencte the direction of a' b’'.
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it follows that

A = (32/v?) £?| sin(Lwl/8)sin(Lu?/8) -

sin(Lwl/8)sin(Lw>/8) |2

1 2
w, w_

B = (32/v2) £2 | sin(Lwl/8)sin(Lu2/8) -

1 2
w. oW

sin(Lw./8)sin(Lu2/8) [2

1 2
W, W,

(3.3.7)

where mi = (wn/v) + kla) and wf = (wn/v) + kzg. Changing

to polar coordinates we write

o
I

sin® cosé

m
€
3]

1 ©h

k, = Wy sin® sing

m
>
™

Re—-expressing w,, w, we have
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Y

I+

w, = (4=n/L) (1 Eva) (4nn/L) 61

I+

(3.3.8)

\V]

= (4=n/L) (1

I+

£ve) = (47n/L) vy,

I+

Substituting (3.3.7),(3.3.8) into (3.3.2) we obtain

dp 16n2v2 128£2J2 n2

= eff
a© L2 (2n)L2 n (4znn)*
T

sin(znnd_) sin(ngy+) sin(n36+) sin(nny_)
2

- P S )2
5_ Y4 6, Y_
sin(zné_ ) sin(wnny_) sin(nné_) sin(wny_)
+ 3 ¥ 5 - P 2 7 )2}
6+ Yy 6_ Y_
(3.3.9)
2 242
= %8V 1y }
3 n g2
After some algebra and using the relation [3.17]
b (1/n2) cosna = (a - n)z - nz 0< a< 21
4 12

we arrive at the result for «>B>0 (i.e. in the first

octant 0<¢<n/4)
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dp = (32/n)J§ffgv2 X (a‘z + ﬁ'z)
de (1 - B'2)2(1 = a'2)(1 + a')
where o' = Eva , B' = EvB. In terms of polar coordinates

©,¢ we have

2 _4 4

EE - 32 Jeffa v
de T
sinze

(1 - £2v2sin20sin?¢)2(1 - £2v2sin20cos?¢)

x 1 (3.3.10)

(1 + Evsinocosd)

The appropriate expression for other values of 0 and ¢ can

be obtained by symmetry.

Note that if we had used a Nambu trajectory we would
have ¢v = 1 and (3.3.10) would diverge at 0=n/2, ¢=0.
Here however we have from (3.2.14), (3.2.15) that v<1,
Ev<1 gnd so (3.3.10) is finite everywhere. Also note that
as 'j':approaches 1 'v' goes to zero and so does the

power radiated.

The total power radiated, the integral of (3.3.10),
is hard to calculate exactly but we can obtain a good
approximation of it for small j by extracting the dominant

contribution, around 6=1/2, ¢=0 (Figure 3.4). We find

(setting 6=n/2 + x and £2v? = 1-32(1+v?) ~ 1-232) the
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integral

I =/ de [ dy 1/( 232 + x2 + ¢2)
0 -n/2

(3.3.11)

which may be performed by first doing the y integral, then
setting ¢ = /2 j sinhz and integrating by parts to obtain

at small j

I =2 an(n/(2/2 j)) arctan2 + 0(30) (3.3.12)

and thus (multiplying by 8 for each of the eight octants)
from (3.3.10)

P =(512/7) Jgff [ 2n(n/(2v2j)) arctan2 + 0(j°)]
(3.3.13)
=(512/%) szf [ an(en/(x ppn)/ (V2T ps) arctan?
e
+ 0(Igpg)]

where Jeff is the true electromagnetic current including
the gauge field contribution. We repeat that (3.3.13) is
valid for Jeff <K e/(Keffp). Rewriting (3.3.13) in
dimensionless units of current, J= -2e J(Keffu) j, we

find
(3.3.14)

with Tpy~ 15 2n(1/3) ~ 100 for j~ 1073, using Kegf ~

1/4. For small j this is smaller than previous estimates
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[3.10] obtained by cutting off the infinite result
obtained from Nambu trajectories. We argue in Section 6
that large j is only possible if we have large primordial
magnetic fields. This looks to be a problem for example,

for Vilenkin and Field's [3.11] quasar scenario.

In the opposite limit, as j approaches 1 or the
magnitude of the electromagnetic current Jeff approaches

2e ¥ (x ) the string turns into a 'spring', and the

ettt
velocity of propagation goes to zero, and so does the

radiated power. In fact P goes to zero like (1 - jz)z.
We emphasise that (3.3.13) is perfectly finite unlike
previous calculations of the radiated power which used

Nambu trajectories and were infinite [3.10].

Section 4. The Effect of Non-Local Self-Interactions

on a Kink

In this section we use a simple model for a Fink to
estimgte the rate at which it departs from its original
shape due to electromagnetic back reaction. This force is
the result of the current on the string moving through a
field whose source is another part of the string..We shall
calculate this force for a right moving ninety degree kink
on an otherwise straight string carrying a current J

starting at time t=0 [Figure 3.5].

For small currents, the kink moves almost at the

R ey T T " L A o 8 rmem a1 9 = ¥
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Figure 3.5 A right moving 909 kink moving with a
a velocity v~/ 1 on an otherwise straight string
which carries a current J. The straight string segments

move with velocity 1/ {2.

N S et e R e - S— [ —
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speed of light. Our calculation will not be sensitive to

us taking the velocity to be 1 and v to be 1//2.

The field B at any point in space close to the string

is, by the Biot-Savart law, given by

B(t,x) = (1/47) [ do'(dd(e" b ) A T )/r°

(3.4.1)

where r X(o',t ) - x and the retarded time

ret

t t = r. Thus at any point on the string the self

ret”
force per unit length is

F = J(o,t), B(x(0,t),t)

The magnetic field B is that due to an integral over all
the infinitesimal current elements intersecting the

backward light cone from x(o,t).

Of course, all self-force calculations have
ambiguities [3.18]. Here, the problem can be illustrated
by calculating the self-force due to a straight wire
moving with velocity 1//2 in the x direction. If our
initial conditions are that the string lies along‘the
z-axis at t=0, at a later time t the backward light cone
for any point (zo,to) on the string lies on the lines

z-zo=i]x - Xx.}, and each point interacts with a magnetic

ol
field

[ SR ————
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o) X' (0, tag) A (R(ST, tgp) = %)

3
- E(O", tret) -Z{.l

(3.4.2)

where c; = ¢ * (1/v2)t are the limits of the backward
light cone. This is not zero, and we are presented with
the nonsensical result that a moving wire experiences an
acceleration due to its own magnetic field. However, we
know that a wire moving with constant velocity is a
solution to the true equations of motion, (just by Lorentz
boosting a static wire ), so we will 'renormalise' all
calculations by subtracting Es at every point on the
string, so that straight wires do indeed move with

constant velocity.

Let us now turn to the kink of Figure 3.5. First of
all we need to find the locus of the intersection of the
backward light cones of points on the string with the
string world sheet. It is fairly straightforward to
convince oneself that points in front of a kink (like
point (A) on Figure 3.6 ) can only '"see'" other points that
were in front of the kink, so the locus of intersection
are two lines at 45O to the string, terminating at points

A', A" such that AA'= AA"= t.

The locus for a given point behind the kink, such as
a point B, is a little more complicated. Points further
away from the kink (which is at ¢ = t) than B (ie. o <

oc(B) ) again are on a horizontal line BB' when they are

v A ETE T e e




_84_

Aﬂ

Figure 3.6 A diagram showing the locus of the points of
intersection of the backward light cone of two different

points (A, B) on the string with the string (dotted

lines). The labels A, &', B, ... are explained in the text.
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sources for the field observed at B at time t.
Furthermore, the locus extends upwards to point K' where
the backward light cone from B intersects the trajectory
of the kink. For ¢ > o(K') the point B is running into the
field produced by the string which was in front of the
kink when the field was produced. The locus of true points
is determined by the condition that DD'/BD' = 1//2 because
DD' is the distance the string moves while the field is
travelling from D' to B. This is a hyperrola with its focus
at point B, which extends to point B" where the straight

line distance BB" is equal to t.

Now we can perform our renormalisation, which for
péint A is graphically equivalent to eliminating A'A, and
AA", leaving nothing, while for point B we eliminate B'B
and BK', and add a piece K'R consisting of current
elements pointing in the opposite direction to J (o <

oc(K)). This is shown in Figure 3.7.

In principle we can now evaluate the field at B
exact}y. However, this is not really worthwhile because
the sussequent evolution of the string changes the
geometry of the kink, making the calculation of the locus
of the intersection of the light cone with the stfing
world sheet difficult. Instead, we shall content ourselves
with estimating the magnetic field at point B. The
closest source point to B is point C; because of the 1/r
in the Biot-Savart formula the source points around C will
dominate the integral in (3.4.1). Hence, if we let 2 = BC,

and approximate the parabola as a straight line,
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v=1/V2

-

Figure 3.7 The locus of the points of intersection of the
backward light ccne of the point B with the string

after we have performed our 'renormalisation'.
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X
B(o(B)| ~ d [ ¥ ax 1 (3.4.3)
Xgo (2% + x2)

where (XB"’ xR) ~ t

If 2 < t, then |B| ~ J/2, whereas if 2 > t (i.e. B
2
is a long way from the kink ) then |B| ~ Jt/&2 . Since the
sources near C dominate, the direction of B (o(B)) is into

the page.

Hence the force F =£/\§ acts in the opposite
direction to the velocity of the string behind the kink,

and has the magnitude

F |- {Jz/k 2 <t

724/ 22 2>t

Thus we can estimate the displacement of a piece of
string away from its unperturbed position as the kink

passes through it from the equation of motion

L
[

| >4

- x" = F/u

As the kink catches up with a piece of string it
suddenly experiences an acceleration j2/w (w is the width
of the string j2 = J2/p ) in a direction opposite to its
motion behind the kink. After time t the displacement of
the string from its unperturbed position is therefore (for

t > W)
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' 2
AX ~ f$f£ dat'dt"j/t" = f; dt'j2an(t' /W) ~ j2tan(t/w)

(3.4.6)

The kink is not actually removed by this back
reaction, because the force always operates behind it.
However it seems likely that the kink will tend to
straighten out in order to join smoothly with string
lagging behind. For t >> w, the logarithm in (3.4.6) is
large and indicates that the kink actually ’'rounds out'
faster than the rate of loss of energy from the loop
(3.3.14). This will be important in Section 5. The
calculations presented in this section have been very
crude. The conclusions have however recently been
confirmed by Spergal [3.21] who evaluated numerically the

trajectory of an oscillating current carrying loop.

Section 5. Loop Shrinkage Leads to Current Loss

There is a simple argument that the radiation from
loops and their consequent shrinkage leads to a build-up
of currents. The total winding number of the © figld is
fixed barring tunnélling events where y goes to zero. The
current is however proportional to the gradient of ©. Now
as a loop loses energy its length decreases. Thus the
gradient of © must rise. This growth of current is
particularly important in the OTW scenario where it leads

to the conclusion that whatever the magnitude of the
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primordial magnetic fields, at some point a loop will
radiate very large amounts of electromagnetic energy. The

electromagnetic radiation P = FEM B jz dominates the

EM

. . c s 2 . -3
gravitational radiation Psr= Tgr Gu” for j > Y(Gu) ~ 10
(recall that j is the electromagnetic current in terms of
the spring current). For any interesting effect one

generally requires the critical current jc to be this

large.

One knows however, that if jc > 1 then theories
predicting superconducting strings are ruled out (see
section 6). So we are led to study the range 10-3 < jc< 1.
The upper end of this range is hard to investigate: all
we can safely say is that the Nambu action will have
significant corrections and therefore the naive

calculations of [3.3-3.7] may be unreliable.
What if 1073 < j_< 1071 2

From (3.1.16) any region where the © field has larger

gradient than lve] , = J,/(2ex where Vo is the spatial

eff) (
gradient of © along the string) will turn critical and
lose current. Recalling that in the gauge we use

J = - /(Keff/p) aoe = j this translates into

o}

Bl = 3 20 Y(xgppr) =3
JC JC

Forlgq smaller than this current will be rapidly lost.
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Now for small jc the motion of the loop should be
'approximately Nambu'. Thus we expect that 'near-cusps'
[3.11] will occur. These are regions where |x'| gets very

small. In these regions current will be lost.

It might be objected that the 6 field is a massless
field obeying (to zeroth order in jz) the same equation as
x% and therefore a 'cusp' in a loop will occur
periodically at exactly the same place and so the process

of cleaning current off the string ceases after the first

cusp.

This may be wrong however. We cannot expect cusps to
remain exactly at the same point. The string radiates
gravitationally losing length at a rate AL ~ PGRGpL per
period where L is the length of the loop. Cusps dominate
the radiation and so they should precess around the string
at this rate or faster. Recalling that it is precisely the
process of shrinkage in the loop which gives rise to a
growing current, we see that the loss of current at

'cusps' can outweigh the gain due to loop shrinkage. In

more detail, the current lost is given roughly by

3
dj = -j j compared to the gain dj = +T .

d dj Gp j + T
at 3 L at

GR i EM

J
L
due to the loop shrinking by gravitational and

electromagnetic radiation.

In Figure 3.8 dj is plotted versus j. We assume that
dt
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Figure 3.8 A plot of dj versus j.
dat
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Tem ~ Tgp 2nd r2Guj2 << 1. For very small initial j
gravitational radiation causes j to rise until

j ~ Gurj ~ lo_ujc. This is too small to cause the
explosions required by OTW. Now however we have reached a
stable fixed point. Any larger initial current, up to ~

1/(ri,) (which for T ~ 100, 3o < 10-! is always greater

than jc), will cause a negative dj and thus loss of

dt
current. The timescale for current loss is 1 ~ ch 103.
3

Section 6. Summary and Discussion

In this chapter we have presented the results of a
detailed study of the dynamics of, and the radiation
emitted from, superconducting strings. We have derived an
approximate local action for a current carrying vortex
line and presented some exact solutions to its equations
of motion. These included 'static' spring solutions which
we showed were stable to small perturbations. The subject
0of the next chapter will be 'for what values of parameters
can springs form?' Here let us assess the cosmological

implications of their formation [3.21,3.8].

Even in the absence of primordial magnetic fields
current will be present on a loop at its formation. When
the x condensate forms the phase of the yx field will be
uncorrelated on scales ey < ty (the time of the phase

transition). If we have a loop of size 'l' one might
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expect a net phase change of O(v(l/ep)) and therefore

(using (3.1.20)) a current jkibbleN - /(Keff/p) /Y(1/egl).

.

Since j < 3

critical CUSPS are never formed and

current will therefore not be lost. Thus as the loop

spring

oscillates and radiates the current will build up to j=1

at which time 1 /(Keff/peol) 1. What happens to

spring
these springs? They will look like magnetic dipoles.
Since the force between dipoles is weaker than that
between monopoles we do not expect annihilation to prevent
them from dominating the energy density of the universe.
The dipoles will eventually decay by tunnelling but, as we
will show in chapter 4, the lifetime of the current on the

spring when j=j is similar to that when the current

spring
is very small. Thus if we want the current to last an

astrophysically interesting time the springs will as well.
Neglecting annihilation then, let us estimate the energy
density in springs. Roughly speaking we would expect the
birth rate of loops of size 1 ~ t to be t~* (the same as

for non-superconducting strings [3.21]). Therefore

t

(t)~ [ lat t7*
£

E (t) (act)/act'))3

psﬁrings spring
t1= time at which the latest loops which become springs at
t' are formed

tf= time when friction effects become negligible so the .
loops can start to oscillate and therefore radiate freely

~ (Gp)~2t [3.23]

plank
a(t) is the scale factor at time t.

o - e L e
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Estimating eg~ ty we obtain [3.22]

~ t—3/2 l_111/21!2

pspring plank

L
mplank

Requiring that Q = (p/pcritical) today be less than 2
means that p < 1013 GeV. According to OTW the explosive
scenario of galaxy formation requires p ~ 10!® GeV and so
regions of parameter space where springs are formed can be

ruled out if we are interested in their scenario.

In the last section we saw that for jc< 10~! current
loss rather than current gain occurs as a loop with cusps
radiates and shrinks. One might say, so what! Kinky loops
without cusps are generically formed. In section 4 we
showed that kinks are probably rounded out on a time scale
faster than the time for significant electromagnetic
radiation to occur. Thus kinks are rounded out on a length
scale larger than the total length of string lost -
leading to the formation of cusps and the loss of current

as detailed in section 5.

If current building due to loop shrinkage can be
ruled out, what about the possibility of large currents
being induced in loops by large primordial magnetic fields
as they form ? As OTW discussed, a magnetic field will
induce a current in loops of order the Hubble radius
3y ~ 7o/ "Ppac (where pp is the magnetic field energy
density and p, . is the background energy density) in a

newly formed loop. The electromagnetic radiation will only
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be significant compared to the gravitational radiation
initially if
2 2

Ppy = Tgutd > Pgp™ Tgrlr

=3
j>» /(Gp(PGR/TEM) ~ 10

-6
This requires a primordial B field with ~ 10 of the
energy density of the background. This is difficult to
rule out at present but may in the future be a problem for

their scenario.

There is perhaps another way in which large
a/c currents could be produced. It is possible that the
coupling of the electromagnetic field between different
parts of an oscillating loop could lead to a dynamo

effect.

From the above discussion it is clear that, to date,
it is far from certain that the explosive scenario of
galaxy formation is plausible. Further work is still
needed in order to check the scenario is consistent with

astronomical observations.
Appendix: The Global String Action.

In this Appendix, using the techniques outlined in

section 3.1 we derive the action for a global string.

The simplest theory that posses global string

solutions is the goldstone model of a self-interacting
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scalar field described by the action

1

S = [ d¥y ( (ap@)+(a”¢) - T A (ate - n2)2) (A.1)

Performing the coordinate transformation

v& = x%(o) + ni(o)pA (3.1.3)

and substituting the ansatz ®=®s (where @S was given in

(3.1.2)) into the action (A.1l) we obtain

= [dods /-y ([y d%0 L'(p) + [y d2p n2£2(p)2 0 0'0)

Sstring s o

= -p [dodt /-y + [yd¥x n2 3 0 a¥e (A.2)
(o]

where Vs is the volume of the string and Vothe remaining
volume. In writing these expressions we have assumed that
0 is a slowly varying function so that the width
6~(¥(A)n)~! is well defined. The 6 field must also satisfy

the constraint
[ ax" 2,0 = 21b (A.3)

where b counts the number of times the surface S bounded
by C cuts the string. This constraint makes the action
(A.2) rather difficult to use in studies of the motion and
radiation from global strings. We now therefore seek a

classically equivalent action (i.e. one with the same
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equation of motion and energy momentum tensor) in which

the constraint can be written in a local form.
The equation of motion for the 0 field is
apa“e =0 (A-4)
which implies that

apF“= 0 where F! = ato
This suggests that we should introduce an antisymmetric

tensor field defined by

e¥VPO 5 A = pke
vipo
outside the string (note © is not defined in the string,
the definition of A there will be given later). The
equation of motion (A.4) is then just an identity for the

A field. The identity

for the 0 field gives the equation of motion for A. The

appropriate action to give this equation of motion is
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= 4 , v,Bx 2
C S [ d%y ( euvﬁxa AP
where C is a constant. The global constraint (A.3) can be
written as a local constraint for the A field.

[ dxP(e 2Pa*%y = 2xbn

v, B X = pv
. uvﬁxa A¥7) éf ds ap(s

vBxd¢
Here we have used Stokes theorem. We now define A in the

string by

Sl d 6“Ac6 = 8nn |

4
*Baos x string dyi\dyv 67 (x = ¥(o,7))

world sheet

v

The local constraint can be incorporated into the action
using Lagrange multiplier techniques to obtain
2

cL = (e*PF% A, )2 + 2

v Bx “Phopge” &Y -

aB(EuVX¢€ 6

gnn [ dy® dy? &%(x - y(o,t)))
The equation of motion for the A field relates A to \.

This relationship may be used to eliminate A from the

lagrangian to obtain
CL=- (e"P* a, )2 - 8an [ody® ayP 6%(x - ¥(o,7)) 2
v Bx w A ’ (ZB

In order to fix the constant C we require that the energy
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momentum tensor for the two fields © and A to be the same.
After some algebra we find C=-(1/4). Thus we finally

obtain

1 x 2 oo
s =1 faty (eMVP o hgy)” + 2Enf a™h, -y [ dZo
2

This is the same as the action proposed by Lund and Regge
[3.13] to describe global strings and that used by
Vilenkin and Vachaspati [3.24] when they estimated the

radiation emitted by global strings.
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CHAPTER 4: SUPERCONDUCTING STRINGS OR

SPRINGS
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Chapter 4. Superconducting Strings or Springs?

For a cosmic string [4.2] to become a bosonic
superconductor, an electromagnetically charged field has
to develop a vacuum expectation value (VEV) in a localised
region around the string [4.1]. Whether it does so or not
depends on the details of the dynamics - we have to
arrange for it to happen by carefully choosing the
relative magnitude of the coupling constants in the
potential. How careful do we have to be? In this chapter
we answer this question for the simplest theory in which
bosonic superconducting strings arise, that defined by

equation (3.1.7).

The current carrying state is only metastable.
Tunnelling processes exist whereby current is lost. We
evaluate the tunnelling rate so we can find the regions of
parameter space where the current lasts long enough for
interesting astrophysical consequences. Finally we
discover what regions of parameter space can be ruled out
as cosmologically unacceptable for GUT strings because of

the formation of springs.
The Lagrangian we use is

L=le¢|2 +|Dp,X|2 +—];( 52 ._;3_2 ) "i)‘1 (|@|2 _712)2
2 2
-1, [xI* =g (1212 = m2 )[x |2 (3.1.7)

2
\"J
”i R™ Ruv
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which has the global vacuum manifold & n, x = 0 as long

as [chapter 3, 4.1, 4.8]

2 2 2 i

m2 < 7q Ahg > A% (m/n) (4.1)
For simplicity, in this chapter we shall set the

gauge couplings to be equal and then explore parameter

1’ xz, AS and

p=m/n. We shall understand the region of parameter space

space for the dimensionless quantities A

in which condensates form using qualitative arguments
which we have checked numerically (see below). These
arguments confirm and explain the results of [4.4, 4.5]
but our conclusions are rather different because we have
the additional requirement on the lifetime of the

metastable current carrying state.

First, let us ask in which region of parameter space
is it energetically favourable for a y condensate to form
on the string. To do this we follow Witten [4.1] and look
at the stability of the U(1l)' string solution with =0 and
Au=0 everywhere. The equation for small fluctuations in ¥

in the presence of ¢ is
v 2 2 2
x = Vox + Xs (" -m™) x =0 (4.2)

We look for solutions of this equation of the form

-ipt

x(x,y,z,t) = e xo(x,y). This reduces (4.2) to
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2 2
(- 0 =0y xg V(IR = WP xg

3x2 dy?2

V(r)=rg(l¢ 1% - m?)

which is just a two dimensional Schrodinger equation. If 2
bound state solution with w2 < 0 exists then the string
solution with ¥ = 0 is unstable and the x field will
evolve to a lower energy state with y # 0. For m? = n2 the
potential is negative definite and a bound state always
exists [4.1, 4.6]. We shall discuss the solution in this
special case later. For m?2 < n? the situation is more
complicated. The potential is a well of width

W o~ m;lw(/kl n)~! and depth U = x3n2. If the dimensionless
strength of the potential, UW2 = xs/xl, is large then the
potential is strong enough to localize the wavefunction x.
m? to the energy) we can

3
approximate the ground state energy to be just that of an

In this case (adding A

harmonic oscillator with Ej = (x1x2)1/2n2. By
subtracting xsmz, we find the ground state energy is
negative if p2 > (xl/x3)1/2 which is much less than unity.
Thus for large xs/xl a wide range of m/n gives a
condensate. If however, xslkl is small we have the
opposite limit in which we can treat the wavefunction as
essentially constant across the potential. Subtracting
xs(nZ-mZ) from the energy so that we have a negative

definite potential, by a standard result [4.6, page 163]

for weak potentials the ground state energy is
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-1/(UW2) -2 2 -hy/rg
E .~ —e W = —Kln e

0
which is exponentially small. Adding back As(nz-mz) the

ground state energy is only negative if

AN
2 - 1’73
3% > 1 ()\1/)\3)6 ’

which is very close to unity. So for 13 << xlthere is very
little p parameter space corresponding to a condensate
(These results explain those of [4.5] especially their
figure 4 where the allowed range of B = (x3/x1) is plotted

for different values of « = (x3p2/x1) ).

The second condition in equation (4.1) restricts us

to the region A2 p* < MMy, and requiring a reasonably

3 2’
large p parameter space means that x1< ABp“. Hence xspz
is bounded above by (A1x2)1/2 and below by x1/p2 (Figure
4.1). Using p?<1 we can exhibit a weak but convenient
bound on the couplings:

x1<x3<x2 (4.3)
Let us first assess the classical stability of the
current carrying state. We shall construst an effective
Hamiltonian for a loop of string of radius R carrying a
constant current, from which the classical critical
current is defined as the current at which the

superconducting x # O minimum disappears. If this happens
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log (A, 1)

NO 12 PARAMETER SPACE

P
log A,

Figqure 4.1 A diagram showing the region of parameter.

space in which a string will be superconducting.
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above the 'spring current', where the pressure from the
current and associated field balances the string tension,
then springs are stable solutions to the classical field
equations. We shall then estimate the quantum stability of
such a configuration: it transpires that springs are

extremely long lived.

The current carrying state corresponds to

X = xo(p)eie(c)

Ja = 2eK(aa@ + eAa) = 2eKeffba® (4.4)
(a=0,1) where (see chapter 3)
k = [d%p xq(p) 2 (4.5)
K

= (4’6)

K
eI 1 +(e2x/n)ln(R/W')

Here, R is the radius of the string loop and W'~ m;l is

-~

the width of the condensate.

We shall assume that the ¢ and A fields remain
unchanged as the current increases, and that the yx field
can be written as y = xo(p,J=0)a(t,o) where 'a' includes a
phase and an overall amplitude. This latter assumption is
that the presence of the current does not affect the
width. Numerically (see below) we found that this was a
good approximation in regions of parameter where springs

are formed. Indeed, it is only because the y field is
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little affected by the current that springs can form at
all.

Substituting this ansatz into the action, integrating
over p and using the equation of motion of X0 to eliminate
the radial gradient term we obtain the effective two

dimensional lagrangian:
L{2) = D a|? - (Ay/2)k,(lal* - 2]al2) (4.7)
2 o] 2/2)xy .
with
k= [ d%p x§ (4.8)

Next we must include the contributions of the gauge fields
by solving for Aa in terms of Ja. The variation in Aa,

A ~ Ja(p/W')Z is small compared to its value at the
centre of the string [4.3] so we will treat it as constant

across the string. Thus the gauge field contribution is
2
L3 = /2)f a2 E? - B?)
~(1/4n)J§ 1n(R/W') (4.9)

So the full effective two dimensional lLagrangian for the

field 'a' can be written as:

L) = (o lal)2 = (hy/2)k,(lal* - 21al?)

(3 0)2
+x |'a,]2 «

4.10)
(1 + v2 a 2) (
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where
v2=(e2¢/n)1n(R/W') (4.11)

Let p?2 = —(aae)2, which is positive for space-like
current on the string. The contribution to the potential
from the current is positive and flat above a =~ v~l, Thus
if k is large, that is if v2>>1, the position of the
minimum is affected very little by the current. In fact,
in this limit, the superconducting minimum disappears only

when

p2 = p2 = 1n (4.12)

The 'spring current' is determined by equating the energy
per unit length in the current with the string tension

T~n2 (see chapter 3). Hence

T(1+ v2|a|? )
pl = (4.13)
k|a|?

Springs are not stable if pé > pzc. We estimate Ky and «
by taking |X0|2 ~ (x3m2/x2) and
2(1=y2 3 -y 2
/agn“(1-p%), 1f Ap> Ag(1=p?)
w2 ~ (4.14)

1/x1n2, if A< Ks(l-pz)
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The width in the second case being determined by that of
the vortex. Thus classically, for large k there are no
springs if
xspz £ (1/v2k) (4.15)

Now suppose that instead x is small so that v2 << 1.
In this case our approximation of treating the radial
dependence of the fields as fixed is no longer valid.
Nevertheless we can see in a rough way that springs do not

exist in this region of parameter space. The minimum of

the potential in (4.10) goes to zero when

p? = p2 = (4.16)

Comparing this with the spring current we find that for

small « springs do not exist anywhere.

Thus the conclusion from our analytic method is that
- classically
springs generically exist,when x >> 1, as long as xsuz is
not too small. Since k is roughly the inverse of a quartic
coupling constant we can expect it to be substantially

larger than unity in a perturbation theory.

So far our results have been very qualitative, and
our arguments only approximate. We have therefore checked
them numerically for some particular values of the

coupling constants.
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To do this we have used a simple 'relaxation method'.
The energy per unit length is simply written as a function
of the gauge and Higgs fields and the radial integral
approximated numerically (we used the trapezium rule). Now
we have the Hamiltonian of a mechanical system and we
proceeds to minimize it as follows. Consider adjusting the
¢ field at site n (¢n), while keeping all the other
discretised field variables fixed. To minimize the energy
one solves aH/a¢n=0. This is a cubic equation and so its
roots are easily found. In fact there is a unique solution
provided the spatial step is small enough. One starts with
an ansatz for the fields and, keeping the appropriate
boundary values fixed, evolves the fields at each site in

turn to minimize the Hamiltonian.

The electromagnetic gauge field is treated in a
slightly different way. We solve for AG in terms of p and
again treat it as constant across the string so that the
current contributes a term
2p2

{x |
(4.17)

(1+v2[d2p" [x(p)] ?)

to the Hamiltonian.

In the program distances are expressed in
dimensionless units ¢ = enp, the fields are scaled by n,
and the Hamiltonian depends on the couplings in the ratio
xl/e2 ... etc. Thus the program uses and calculates e?k

(rather than ), and the only extra parameter we have to
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choose is the value of the logarithm which we take to be
100. This corresponds to GUT scale strings of radius about
1012m. The spring current is the current at which the
energy per unit length in the current is exactly half the
total energy of the string: since the current term
contributes to the pressure with the opposite sign to the
rest of the energy [4.3] this is the current at which the
effective tension vanishes. The critical current is the

current at which the condensate vanishes.

The algorithm converges very rapidly for ordinary
local strings and gives an accuracy of better than one per
cent for their energy if we have of order ten points per
string width~(x1n2)’1/2. For the superconducting case a
few minutes of VAX cpu time is needed for convergence. We
ran this algorithm for various couplings to confirm the
arguments statedbefore. We required that the condensate
energy changed by less than one part in 106 in fifty 'time
steps' (i.e. evolving each radial point fifty times)
before we accepted the solution as having converged.

In Table 4.1 we have listed some results of our
program. We display eZ2g, pé and ezxs (Where « is defined
as [d?p|x|? at the spring current p, ) for various values
of the parameters xi/e2 (i=1,2,3) and p. For example, the
first entry is clearly a spring: e2« is large, so the
effective Hamiltonian is flat above a small value of 'a',
and even at the spring current e?¢ is hardly changed,

showing that there is very little back reaction on the
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condensate. The second entry has A, made sufficiently

3
small to satisfy the bound (4.15): we find that the
critical current is reached before the spring current. The
third entry shows a situation where e?x is small. Our
analysis suggests that this should not form 'a spring which

we indeed find to be the case. The last entry with p = 1

is a spring. This is discussed below.

Table 4.1: Some results from the numerical

solutions of the string field equations.

m (Al/ez) (xz/ez) (x3/e2) spring? e2¢ ek

0.95 0.01 0.4 0.06 yes 23.9 22.8
0.90 0002 200 0-20 no 4-5 -
0090 0010 1020 0040 no 206 -

1.00 2.00 4.0 2.00 yes * *
* Note that with p=1, e?x is logarithmically divergent.

The importance and meaning of « becomes clearer when
we study the stability of the current on the string
against the tunnelling of flux through the condensate.
This can happen when a quantum fluctuation takes 'a' to
zero somewhere and an instanton electric flux tube appears
in the worldsheet. The appropriate procedure to calcuate
the probability for such an event is to find the action of

the instanton solution of the Euclidean equations of
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motion [4.7]. This means minimising the Euclidean action

S.. given by:

E

Sp =« [d?0(ID_al? + (x2K4/2K)(|a12 -1)2)

+ [d%20d2p (1/2)( E? + B2?) (4.18)

where we have shifted the potential so that the Lagrangian
vanishes away from the instanton. The contribution from
the electromagnetic field extends off the worldsheet;
however, the main contribution comes from the centre of
the Euclidean vortex near the string so we believe that a

good approximation to S_ is obtained by cutting off the

E
electric field beyond 1 ~ W'. Scaling the gauge field

A = 0Kk and the coordinates o = @7!5 with @ = (x)!/2/1n,

we obtain:

Sp = & [d25 (I”Daal2 + (1/2) AI(lalz - 1)2 +(1/2)E§

(4.19)

where. A 12/¢2. Apart from the factor « this is

1 T Thoky
just the action of a truly two dimensional vortex. Hence

Sg = 2an(xI/e2) (4.20)
where f is a slowly increasing function well know from
vortex studies [4.8, 4.5], and f(1)=1. A naive estimate

gives xI~ xz. Note however that SE is relatively
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insensitive to the precise value of AI.

In the usual way [4.7] the tunnelling rate per unit

-S

length is estimated as T = m;S e E, thus the larger « is,

E
the lower the tunnelling rate. Physically, k is
proportional to the square of the number of penetration
depths across the superconducting string. This is easy to
understand: in order to lose flux from a loop of string we
must move it through the string in a vortex line of length

W' and mass per unit length of about |x]|2. The action for

this process is roughly |y |2 W'2 = .

This physical intuition gives us the confidence to
extend this calculation to all currents. We expect the
tunnelling action at winding p to be essentially
2nf/d%p]x(p) |2 = 2nk |al? where 'a' is the value of 'a' that
minimises the effective Hamiltonain for a particular p.
But we have seen that for large «, that is in the
classical spring regime, Kg® Ko both analytically and in
our numerical solutions. So we can say that when «>>1 the
lifetime of the current on the string is the same whether
it is a tiny fraction of its critcal value or whether it
is the spring current. Now suppose we require that small
currents persist on the string long enough for
astrophysical consequences. For example, the OTW [4.9]
scenario conservatively requires a current of 107 3T
(T~101€GeV) on a string formed at decoupling (t~10!2s) to
persist for at least one oscillation. If N ~ pR is the

total winding of © on the loop, N tunnelling events are
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required. So using the estimate of the tunnelling rate we

require:

S.- 1n S

B g > 1o (m2xL2/N) ~ 125 (4.21)

Hence we need «k » 20. This is the region of parameter
space where classical springs are generic and in which we
saw that kg™ Ko We can therefore state an important
conclusion, long lived currents for astrophysics tend to
require theories in which springs are equally long lived.
This is cosmologically disastrous [4.10, chapter 3]. of
course, we cannot rule out the superconducting string
scenarios on this basis because we can always tune x3 to

smaller values so that condition (4.15) is satisfied.

This also necessitates a tuning of either A, or p. It may

1
be thought 'unnatural' to have quartic couplings of
different orders of magnitude particularly if ¢ and ¢
belong to the same representation of a grand unified gauge

group, and in this sense springs are a real problem.

Finally, we consider the case where p is very close
to one, that is when mx <L m¢ in the broken phase
(assuming the ratio of A\

to A, is not very small). We

3 1
know that this is in a sense a 'natural' state of affairs
because of the smallness of the weak scale relative to the
GUT scale. From the arguments above a condensate exists
for a wide range of (As/hl) so we can say that, unless a

symmetry ensures A_,=0, a condensate nearly always exists.

3
The value of ¥k will be large as the following argument

makes clear. If we set m? = n?2 exactly, as we pointed out

the potential still has the correct minimum. However the y
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field is now 'massless' at infinty. What happens? The gy

field equation of motion becomes for large p

13 6x0
_—CeZ ) = a0 (4.22)
p Op op
which has the solution
xo(p)=1/(/k2 p) (4.23)
=/ (Ag(n?-m?))p

Thus the usual e dependence changes into
a power law. We show a numerical solution in Figure 4.2
for a case in which we have verified the asymptotic

behaviour.

Since the energy density falls off as a power law,
« 1/p"%, the energy depends as l/pg on the cutoff radius
Por Therefore such strings would have a long range scalar
attractive force F « 1/p3 (in addition of course to any
electromagnetic force), and k¢ would be logarithmically
divergent. However, if y has a small mass in vacuo then «
~ 1n(m¢/mx)/)\2 which for GUT and weak scales is roughly
SO/AZ. Thus, contrary to our naive expectation, springs
are generic when mx<< m unless the coupling between the

¢
fields are very small.

NOTE ADDED
It has recently been suggested (R.Davis and P.Shellard,

private commmunication) that to obtain springs with

current alone we depend strongly on taking a large




olu d

ot

cl

Vi

91

81

03d

-117-

Amplitude

l;l{lllLLLlLlJJO | |

Figure 4.2 The field profiles for a string with p=1;
'f' and 's' are the '¢' and 'X' scaled by V|, while
b is the azimuthal component of the gauge field scaled

by ‘rl and multiplied by e .
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logarithm. We have checked the spring solutions in the
table and have found that they remain springs down to a

log of 20, corresponding to a size of 10~23m.
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CHAPTER 5: THE EFFECT OF TOPOLOGICAL
DEFECTS ON PHASE TRANSITIONS

IN THE EARLY UNIVERSE
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CHAPTER 5. The effect of Topological Defects on

Phase Transitions in the Early Universe

It has previously been demonstrated by Weinberg and
others [5.2], that at sufficiently high temperatures, it
is possible to restore the full gauge symmetry of a
spontaneously broken simple gauge group that could
describe the interaction of particles. The big bang model
suggests that the universe was once very hot and dense and
at these high temperatures we would expect the full
symmetry to be manifest. As the universe expanded and
cooled it would have undergone a series of phase
transitions at which the symmetry was broken. At these
phase transitions topological defects may have been formed
[5.3]. These may have been monopoles, strings, domain
walls, or various combinations thereof, which could have

been either superconducting or not [5.6, 5.26].

Ehe presence of these defects in the early universe
has intriguing consequences for cosmology. As already
discussed, superconducting and 'ordinary' strings play
central roles in two different scenarios of galaxy
formation. To test these scenarios it is important to
understand the properties of the defects and to be able
to answer questions such as: At what temperature are they
formed? What is their number density and distibution at

formation? How does their distribution change as the

universe expands?
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In this chapter we attempt to answer these guestions
by developing an analytic description of a phase
transition which leads to the formation of strings. We
also derive the statistical properties of strings. Our
results are in very good agreement with theoretical
calculations based on an approach very different to our

own [5.1, 5.3], and on computer simulations [5.7, 5.17].

The chapter is divided into four parts. In section
1 we consider one of the simplest theories that displays a
phase transition, that of a real scalar field theory. 1In
section 2 we derive the partition function describing the
equilibrium properties of a U(l) gauge theory. 1In section
3 we consider the effects of string formation on the phase
transition and show that the dominant contribution to the
partition function at temperatures well below the critical
temperature comes from the constant field configuration
(i.e the mean field approximation is good in this regime).
However, as the temperature is increased, the high density
of states (entropy) available for the topological defects
balances the energy required to form them, and they then
make the dominant contribution to the partition function.
In this section we also derive the statistical properties
of strings and the effect that temperature has on their
width and energy per unit length. The final section is
devoted to a summary and discussion of our results and

their cosmological significance.
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Section 1. THE PARTITION FUNCTION FOR A REAL SCALAR

FIELD THEORY

We shall start our discussion of phase transitions by

considering one of the simplest theories that displays
one; that of a real scalar field theory with lLagrange
density

1 2 2 A 4
o

L= (ap¢)<a“¢> + = m7 ¢ - L g (5.1)
2

N -

On taking m% > 0, L possesses a double well potential

which breaks the ¢ » —-¢ symmetry of the theory.

The partition function of this theory in thermal
equilibrium at temperature T has the path integral

representation in terms of Euclidean fields

Z « [ D¢ exp[—IB(¢)] (5.2)
where/[S.lo]
15(e) = f§ av [ a¥s[- 2 (o 03(0%e) - I mfe® + 2 8%
2 2 4!
(5.3)

The sum over configurations of ¢(t,%) is restricted to

fields periodic in t with period B and we shall take the
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signature of our Euclidean space to be -4.

The standard approach to evaluating this partition
function is to adopt the mean field approximation. One
restricts the path integral to periodic configurations
whose Euclidean space-time average is specified in advance

to be:

1 P -
[odr [ d3x ¢(v,x) =% (5.4)

BV

where V is the spatial volume of the system. The

resulting expression [5.4]:

_ _ :
2(3) o[ Do[8(F -1 fodv J a®xe(r,x))]exp(-I,[6]) (5.5)
8V -

has the following interpretation. Let us couple the

field ¢(tr,x) to a constant source j. The effect of this
source is to enable the thermal average <¢> to take any
value_we wish (almost), (<¢> will be constant by virtue of
the translational invariance of j for large V). If we now

write Z as

then V(%) is the Helmholtz energy density (effective

potential) of the system when j is chosen so that

<¢> = ¢. With V(¢) satisfying
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=0 (6.7)

in the absence of external sources, the thermal average
<¢> for the original system is the value of 5 for which V
is minimised. 1In principle it is straight forward to
compute <¢> by performing a saddle point expansion for
Z(E) [5.5]. This is equivalent to performing a loop
expansion for V(%), the generating function for zero
momentum Green functions. The existence of a phase
transition is already present at the one-loop level and we

shall restrict ourselves to this alone.

The calculation is so well known, we shall only quote

the result that, at large T, V(%) takes the form:

1 2 T2 -2 A -4

V() = - mjg (1 - ) e+ 57+ ... (5.8)
2
2 , Tc 4!
where/
24m%
T2 = . (5.9)
¢ 3

and one loop renormalisation has been implemented. Higher
AT
“m

order terms are surpressed either by a factor ~ Y\,

(near T ) or by a factor of A [5.2].

There is a possible problem in that V of (5.8) is not
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concave, as the free energy must be [5.5]. We can however
ignore this as our interpretation of V in the remainder of
this section will be rather different from that above.
Taking (5.8) at face value, we see that, as T increases

from zero to Tc’ so <¢>, satisfying

2 2

cop2 = 6mo (4 T
A T2
(&

(5.10)

decreases smoothly to zero, implying a second order phase

transition.

Convexity apart, the picture implied by the effective
potential is that the thermal average decreases uniformily
across all of space. This is very unlikely to be true.

The classical equation of motion derived from (5.1),

(0O- m% Yo+ % $3 = 0 (5.11)

permits static domain wall solutions of the form

Moz

72

¢5(X,¥,2) = ntanh( ) - (5.12)

[5.11], [where we have taken a wall in the x-y plane as an
example]. The field ¢ flips value across this wall from

2
-n to n, where n2 = 6m0. A much more likely scenario for

the phase transition is that, as the temperature is
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increased, more and more domain wall area will be formed
until the whole of space is filled at which point the
symmetric phase <¢> = 0 is achieved. That is, the
effective potential description corresponds to the
averaging of a much more complicated structure. Until we
are very close to the phase transition, however, we would
expect the effective potential averaging to be reliable

since the domains will be large (see later).

To evaluate the effect of this domain wall formation
on the temperature and nature of the phase transition some
care has to be taken. The thickness of a domain wall at

zero temperature is ¢ = O(mal) and its surface tension

3
o= 0( EO ). Calculations that rely on holding these
A

fixed at finite temperature [5.12] will give the wrong
answer. The long range correlations that are associated
with a phase transition arise because the effective scalar

2
off = (a v ¢=$)1/2 vanishes at T = Tc. The effect
262

of non-zero temperature (to O(A)) on a domain wall will be

mass m

to reﬁlace mg in £ and o by m In this way the surface

eff’

tension of a single domain wall vanishes at T = Tc’
enabling the creation of domain walls at no extra-

energetic cost.

There are two ways of seeing this from the functional
representation of Z. One of the methods is outlined

below, the other in Appendix A.
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Since ¢(t,x) is periodic in <t it permits the Taylor

expansion:

i2nn-<

(v.5) = Jeme P, e =0 (5.13)
n

in terms of a denumerable set of three-dimensional fields.

The action IB of (5.3) then takes the form

Ig[e] = pTg[{e,}] (5.14)

where I, can be decomposed into the contributions from ¢q

B
and ¢ (n # 0) [termed as ¢'] as

TB[¢0, ¢') = Holoo] + Holo'] + Hi[60, ¢'] (5.15)

I >~

461 (5.16)

1
Ho[oo] = Jd3x [§ (Véo)? - 1m0¢o +

[
W

Holo'] = ) Holoy) = 1 [a3x> [(verdy (o) + (2% 470, ]
" n#0 n#0 2 B

(5.17)
;g&

A
HI[¢0, 0'] = 2\§0 ¢ o * ) / d3x¢p¢q¢r¢s
p+q+r+s=0

1N

(excluding ¢§)
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*
A ¢§ ¢n¢n) + terms containing

o *
= -7 [a%x(imfe o -
1 (L *"n’n 4 n#2 ¢'

n#0
(5.18)

(to O(r) these extra terms will not contribute to Z) From
(5.17) we see that the masses of the ¢n(n # 0) modes are
large at high temperatures. We refer to ¢p and ¢' as

light and heavy modes respectively. Z now becomes:

-1, -8 60 ,0"]
Z « [ Dp e = [ D¢gDo'e (5.19)

-8 (H[oo]+v[d0])
= [ D¢ge (5.20)

on integrating out the heavy modes, where

-8v[¢o] “BH0[¢'}'5HI[¢0:¢']
e « [ D¢' e

(5.21)

The 'effective' potential v[¢o] for the three-dimensional

field ¢¢ contains temperature dependent parameters. Most

importantly, at high temperatures and to first order in A,
v[¢0] is the spatial integral of a local density. This can

be seen by expanding (5.21) to first order in Ar

—gv N
Sl e TP e D)

-pHo[¢
w1 BA 3.,2 * n- *
1 . Jd3x¢} g¢of Do Do e o (X6 (X) + «ens

(5.22)
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2
= 1-8 [d3x ¢5(x) 2™+ ... (5.23)
)

where we have dropped terms down by at least a factor of
(AT/m) or A and those independent of ¢,. After performing

the zero temperature renormalisation of the mass, we have

[5.2]:

m2 = My [ 43 1 (5.24)
2B n#0 (21:)3 p? + (an/B)z

= (» T2/24) = mg(7?/T_?) (5.25)
Exponentiating (5.23) gives

vieo] = [ a®xz L am? ¢2(x) + O((AT/m),r)  (5.26)
2

Diagrammatically the light-mode mass increment Am2
has the representation shown in figure 5.1, where the

solid line denotes ¢,, the light mode, and the dashed line

¢', the heavy modes.

Inserting the first term of v[¢o] in (5.26) gives Z

as

BT[]
Z « [ Do e (5.27)
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Figure 5.1 Diagrammatic representation of the lowest
order mass correction. (Here dashed lines denote the

~ heavy modes and the solid lines the light modes).
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the vacuum functional for the three-dimensional field with

'action'
- 1 2 1 .2 T2 2 A 4
I[og]) = [d3x [ ~ (v6o)“ - “mg( 1 =" dég + " 6o ]
2 2 T2 41
Cc
(5.28)

Equivalently in terms of the one-loop effective potential

V(¢) of (5.8)

I[eo] = J a3z [ i (V60)2 + V(60) ] (5.29)

Thus, as well as its definition for constant ¢, V(¢) plays
the role of an 'effective' potential for the non-constant
three-dimensional light mode ¢4,(x). From this viewpoint,
it is the vanishing of the scalar mass in the effective
three-dimensional theory that triggers the long range

correlations characterising a phase transition.

Now let us consider the nature of the phase
transition. The dominant contribution to the partition
function (5.27), will come from solutions to the

semi-classical equation

i

)

)

n
o

(5.30)

-

0

As well as the conmstant solution 32 = (6mg/M)[1-(T%/12)],

there are domain wall solutions of the form (5.12), in
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which my; has been replaced by the effective scalar mass
m(T), where mz(T) = m%[l-(Tz/Tg)]. Away from the critical
temperature the solution ¢ = constant, being the minimum
energy solution, makes the dominant contribution to the
partition function and the mean field approach is a good
approximation. As we approach the critical temperature
however, the energy required to produce a section of
domain wall becomes smaller and smaller. Eventually
because of the large number of different configurations of
domain walls of a given size it may be possible for their
entropy to counterbalance the Boltzmann coefficient and
they may come to dominate the partition function. They may
then drive the system into undergoing a phase transition

at a temperature slightly less than Tc'

We shall not bother to evaluate the effect of domain
walls on the phase transition in any more detail. The
reason for this is that theories that produce domain walls
at a phase transition in the early universe can be ruled
out as inconsistent with present day observations [5.11].
For eiample, they would produce large anisotropies in the
microwave background. Instead we will perform our analysis
for a more complicated, but cosmologically more
inferesting theory, that which would lead to the formation

of cosmic strings.
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SECTION 2. The Partition Function for a U(1l) Scalar

Gauge Theory

The simplest theory to possess vortex solutions is
scalar QED, with Lagrange density:
1

L== F*F o+ 1 a vdea ) o2+ T mle)2 - (et
—— v —— — —
Z H 2 W H 2 1!

(5.31)

where ¢ is a complex scalar field. The partition function

for this theory takes the form:
%*
Z « [D¢D¢ DA (detM)exp(-Is[¢,A]) (5.32)

where detM describes the gauge fixing, and

I[¢,4] = -8 dv [ a3x Lg[o,A] (5.33)
with LE the Euclidean form of the Lagrangian (5.31)

As in section 1, the thermodynamic free energy for
o> = $, V(¢) is obtained by fixing the spatial average of
¢(x) to ¢ in (5.32). V(4) is necessarily a gauge-variant
quantity, since it is the generator of zero momentum 1PI
Green functions. However physical conclusions drawn from
it should be gauge invariant. It is most convenient to

calculate V(¢) in the covariant gauge, for which, at high

temperatures and to O(Ar,e2?) [5.2],

1 2 2 2,2 A 4
V(o)== = mo |6 [7(1-(T7/T)) + rrikd (5.34)
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Té, now takes the form T2= m%/((x/18)+(e2/4)). To
evaluate the partition function we shall adopt the same
procedure as in section 1. An alternative approach is
outlined in Appendix A. We first decompose the scalar ¢
and vector Ap fields into light (¢, Aop) and heavy (o',

AL) modes. As before we can write Z as:

Z « [ DopoDAg exp(-BI[6¢,40]) (5.35)

where

exp(-BI[60,A0]) = [ D¢'DA’ (detM)exp(—IB[¢,A])

(5.36)

Obtaining the mass corrections by keeping terms quadratic
in ¢ and Aou is less simple than for the pure scalar case
of the previous section. As in section 1, the heavy modes
give rise to a temperature-dependent mass term,
(Am2/2)| ¢ |2, for the scalar field. The contributions to
(Am2/2) are shown diagrammatically in figure 5.2. The
effect of this term is to replace mg in the Euclidean

time-independent effective action obtained form (5.31) by

mS (1—(T2/Tg)), just as in (5.28).

There is a novelty here however, in that the heavy
scalar modes also induce a vector mass (Au2/2)ApAu in the
tadpole approximation (figure 5.3). This induced mass is

of order e2T2, Unfortunately, the tadpole diagram does not
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Figure 5.2 Feynman graphs for the tadpole corrections
to the scalar mass. (Here again dashed lines denote
heavy modes, solid lines the light mode and wavy lines

refer to the gauge field modes.)
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Figure 5.3 Feynman graph for the tadpole correction to the

gauge field mass.
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describe the total effects of the temperature-dependent
self mass to our order of approximation. Non-local
contributions like the photon self-energy have to be
included as they also give terms O(esz) for large T. The
remaining one-loop diagrams which contribute to 0(e2T2?)
are shown in figure 5.4. Further problems arise because
the heat bath gives a preferential inertial frame which
leads to temporal and spatial components of Ap being
decoupled, giving rise to two independent self-mass terms
M, (k), Mp(k) for momentum k [5.13]. The same preferential
reference frame makes the NI's non-analytic in k. The
result is that depending on how one takes the zero
momentum limit in the inverse fourier transforms different
masses are obtained [5.13]. Only the tadpole term, with no
momentum dependence is immune from this uncertainty. Yet
another complication arises because (unlike the mean field
calculations) the background fields are not constant. This
means that the self-energy diagrams of figure 5.4 have to
be evaluated with non-zero external momenta. These
difficulties make it hard to éxplicitly evaluate the gauge

mass, even to O(e2T2) .

There is no easy way to resolve these problems. The
simplest approach is to restrict ourselves to the regime,
A >>e?, in which the gauge field contributions cannot be
large. (The qualitative details of our later discussions
are not changed by introducing a gauge mass anyway.) Terms
of order e2T2? are then constrained by e2n? (eZmj/\) and
the vector mass is approximately unchanged. At the same

time the vector loop gives a small contribution to the
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Figure 5.4 The remaining graphs of O(ez),
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effective scalar mass. The effect is to replace I of

(5.36) by
I=-fd3 L(¢0(x),A0p(x)) (5.37)

where L is derived from (5.31) by
(i) going Euclidean
(ii) removing Euclidean time dependence
(iii)deleting the massive modes
(iv) replacing m% by m%(l-(Tleg))
(v) implementing gauge fixing.

Thus we finally obtain:

Z <« | D¢0DAopexp(-BT[¢o,Aop]) (5.38)

where in the covariant gauge

= 1 ij 1 i *
I[60,40,] = [ d3x | FossFou= — (0500)(37¢0)
B I 1] 3 1
- . o * * . 2
- 1€ ao [000T 00 = 000760 - X mE(1 - T )[eo|?
2 T2
Cc
- ; e2| 00 |2 Ao A7 + %,l¢°l” + Lea02 ] (5.39)

and the term i(aiA%) describes our gauge fixing.
4
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Section 3. The Statistical Properties of Strings

around the phase transition.

The time has now come to evaluate the partition
function (5.38) in further detail. To do this we apply the
saddle point method; the dominant contributions to the
integral will come from the field configurations that

satisfy the stationary equations:

61! . - 0
X 0=0saddle’ A =Asaddle
61

= BopW =0
EKu ¢=0saddle’ 4 Asaddle

that is, from the field configurations that satisfy the

equations of motion:

in _ 1o ko x ) .
) Fji = ie(d bj¢ ¢bj¢ ) e Aj[¢| (5.40)
. T2 A
U P 1eAi‘2¢ = - mg(l - Jo + 1 1612 ¢ (5.41)
Tc 3!

The contribution of any solution of these equations to the
partition function can be found by substitution into
(5.38). The solution ¢=const, A=0 is the minimum energy
solution and therefore gives the maximum contribution.
Away from the critical temperature the partition function
will be well approximated by this term alone. However, as

we approach Tc this will no longer be the case.
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We will now have to find all the maxima of the functional
and sum their contributions. This becomes necessary
because, although the secondary maxima will be
individually weighted heavily against the constant field
configuration, their sum, because of the large number of

different non-constant configurations, will be larger.

In principle in evaluating the partition function
(5.38) we should consider the contributions of all the
different types of solutions to equations (5.40, 5.41). We
will not do this, but instead will only comnsider the
string like solutions. We do this because here we wish to
consider the effect of the topologically stable defects on
the phase transitionf Equations (5.41, 5.42) contain
string-like solutions at temperatures T<Tc. The simplest
string solution is an infinitely straight static string
running for example, along the z-axis. This can be

expressed as [5.14]:
ie
o= |¢(r)|e (5.42)

A= E/_\-_lilé(r)| (5.43)
r

where k is a unit vector in the z-direction. By imposing
+(The distribution of non-topologically stable field
configurations we believe is not cosmologically
interesting. They would have rapidly disappeared as the
universe expanded and cooled. Only the trapped

singularities would remain for a cosmologically

interesting period.)
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the gauge conditions (A, ,(x)=0, V.4,(x)=0), and

substituting (5.42, 5.43) into (5.40, 5.41) we obtain:

2
-1 xd gy + - elagy? - w1 =T
r dr dr r Tg
+ %'l¢olzJ|¢q =0 (5.44)
- i_ (14 r]ag])) - e £|¢0|2 +|4¢] e2]00]2 = 0
dr r dr r

(5.45)

Before continuing with the evaluation of the
partition function we will first discuss the form of the
thermal string solutions and how they vary with
temperature. The solutions to (5.44, 5.45) are shown

schematically in figure 5.5.
At large distances from the string

lim ¢(r) =+ n
T+

where n2 =(amg/x) and mé(T) = mg(l-(T2/Tg)). At the core
[¢| vanishes. The thickness of the core is determined by
m;l, the Compton wavelength of the Higgs particle. The
magnetic field is restricted to the core, the skin depth

being determined by m;l, the inverse of the vector mass

mv,
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Figure 5.5 An example of the field configurations

for a vortex solution at a temperature T.
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The energy per unit length of the vortex has two separate

components, one due to the scalar field,

og = 0(n?(T))

and the other due to the vector field,

o = 0( 0"y = o(n2(T)) (5.46)

Note that if we had found an additional Ao, mass term of
the form Ap? = qe?T2, its effect would have been to

replace Ty of (5.46) with

4 T)
o, =0 n(
v 71y tat? (5.47)

Increasing the temperature causes Og and Oy to decrease to
zero reducing the energy per unit length of the string
(this would be true even if we had found the Ap?

correction ). The width of the strings also increases.
We now return to evaluating the contribution of the

strings to the partition function (5.38). We can write

the partition function as

Z =~ ) exp( -6ISt[¢S,AS]) (5.48)
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where we have restricted the sum to field configurations
satisfying (5.40, 5.41) that are nodal lines. Equation
(5.44, 5.45) gives the field configurations for an
infinite string; string solutions that are not straight,
but curved so smoothly that any segment of length of order
the width will apppear to be straight, are, to a very good
approximation, also solutions of the equations (5.40,
5.41), whose energy per unit length is approximately the
same as the infinitely straight string. Next we note that
since, in this chapter, we are interested in the effect of
the topologically stable strings on the phase transition,
the strings (in the absence of monopoles) must be either
in loops or 'infinite' in length. To proceed further in
evaluating the partition function it will be necessary to
neglect the interaction energy of the strings when they
are more than a distance 1 (1 = width of string) apart,
and include it inside that distance as an infinite
repulsive/attractive force+. We do this by restricting our
strings to be non-self-intersecting. Placing the strings
in the volume V on a cubic lattice (for convenience only)

of spacing 1, we can write:

N
]

) W(n)exp(-Boln) . (5.49)
n

( "This is effectively what occurs in the numerical
simulations. When two strings come within a distance 1 of
each other, they intercommute. We are really replacing an
exponential force by a step function force which acts over

a distance 1.)
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where W(n) denotes the number of different configurations
of a string of length nl with the above properties and o =

cv+cs the total energy per unit length.

Let us first consider the contribution of loops. At
high string segment density, non-self-intersecting random
walks will be approximately Brownian walks [5.18]. The
case of non-self-intersecting walks at very low densities
has been studied by polymer physicists (see [5.19] for
example). If P(t) denotes the fraction of walks of length
nl which start and end at the same point, it follows from
these studies that (for large n):

P(n) =Cn 2 q =2 at high density

N jeo

= at low density

YN

where C is a normalisation factor. This results in the
number of distinct configurations of a single loop of size

nl being:

W,(n) = 1cnm91,n (a = 5 on a cubic lattice)
2

(5.50)

The extra divisor of 2n in (5.50) arises from the fact
that an n-step loop is both non-orientable and has n
possible starting points. The contribution of single loops

to the partition function Z is, from (5.49) and (5.50)
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_1¢cv v _-g-1 _
z, =_ " ) n exp(-Bnlo ) (5.51)
2 13 n=1
where
Seff - 9 7 )
B1
=0 = E In(a)
1
=o(1 -1 ) (5.52)
Tst
and
Ty = gl (5.53)
In(a)

The n steps need not constitute a single loop but two or
more loops. Because of the lack of interaction energy the

partition function for a 'gas' of loops is:

- -

1+ L z% + L zi + oeees
21 3!

loop = 1 * 2

|

()

s

el
~
N

=

~

II
0
™

el
—
!
&~
=]

(5.54)
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From these weights we can calculate the average number of

loops.

|
|
Lanmmn |
Be~—8
=]
~
[
o =
~
=
| S—
S~
[w]

Nloops B
= Zl (5.55)

Similarly the mean number of loops of size nl is (for
large n):

R(nl) = % C—;’ n~9"1

5 1 exp(-snloeff) (5.56)

Note that this is in agreement with the numerical
simulations of [5.7]. It also agrees, if we neglect string
interactions completely, with the statistical properties
of strings derived using the rather different approach of
Mitchell and Turok [5.1]. At high temperatures, for which
Oogt” 0, R appears to be a scale invariant distribution

whilst at lower temperatures, loops of large length are

exponentially suppressed.

Now let us consider the contribution of 'infinite’
strings to the partition function+. Since for large n
al - cn"97140. A" (5.57)

(+By infinite we mean strings which are as large as the

box in which our calculations are being performed.)
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we can write the partition fuction as:

1

vV 1k
zZ =1lim J [ = ] exp(-Bnlo_,.)
© n+e Kk 13 eff kT
= 1im exp( - exp(-gnlo_.,)) (5.58)
nae 13 eff

We can see immediately that when °eff>> 0, these strings
make a negligible contribution. As Ooff tends to zero
however, the contribution of the infinite strings will
become increasingly important.

We note that Z_ and Z both diverge at

loop
temperatures greater than Tst' Above this temperature
there are large fluctuations in the ¢ field and it is

no longer appropriate to describe the fields in terms of
string-like configurations. Thus we can think of Tst as
the temperature at which strings are formed. This

temperature (neglecting the 1n(a)) is:

T .~ o(T)1(T)=~ yn?m~! (5.60)
where y~O(1) and m = min(m_,m_) (in our case A >> e?,
m=mv). Since the right hand side of (5.60) vanishes at

T=Tc, it follows that:

Top < T, (5.61)
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as it must be. The difference between Ts and Tc is small.

t
Explicitly,

[
|
0}
t
It

O(A), m=m (5.62)

or

[y
|
0]
ct
|

= 0(e?), m=m (5.63)

In each case we have ignored terms O((ez/x)) in the
coefficients on the right hand side, but even if e2=\
the coefficients 6n1y change by a factor of order unity.
As so many other coefficients are uncertain it serves no

purpose to be more specific.

At T__ most of the string lemgth is in infinite
strings and equation (5.49) implies that the loops have a
scale” invariant distribution. This is in complete

agreement with the numerical simulations of Vilenkin and

Vachaspati [5.17].

We can calculate the width of the strings at
formation (this will be of the same order as their mean
separations). By substituting (5.62) and (5.63) into m, we

obtain
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m (Tg,) = O(/(A)mS(T=O)), m=m_,

m (T ) = O(ems(T=0)), m=m_,
and

mv(Tst) = O(/(x)mv(T=0)), m=m_,

m (Tg,) = O(ems(T=0)), m=m_;

That is, the network of strings at the phase transition
has the separation of the centres of the flux tubes scaled
up by a factor O((1/e)), (recall e2<)), compared to the
closest packing of cold strings. The factor O((1/e)) can
be obtained by other considerations [5.3], and this
reinforces our belief in the validity of the chain of

approximations given above.

At temperatures below TSt it is thermodynamically
less favourable to have infinite strings and more

favourable to have small loops.

From a cosmological point of view the most
interesting question to address is 'what happens as the
universe cools through Tst?'. Our calculations were for
flat space but they would seem to suggest that, when the
universe was very hot, we would be unable to recognize any

string configurations. As it cools through Tst strings
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would be formed. Initially most of the string length would
be in infinite strings, but as the universe cooled further
strings would chop themselves up as fast as possible into
the smallest loops they could. Eventually the strings
would no longer be able to chop themselves up fast enough
to remain in thermal equilibrium. We still expect most of
the string length to be in small loops. This picture, if
true, makes the string domination scenario of Kibble
[5.15] and Bennett [5.16] seem unlikely. The simulations
of Albrecht and Turok [5.18] and those of Bennett and

Bouchett [5.19] seem to confirm our picture.

Section 4. Summary and Discussion

In this chapter we have attempted to develop an
analytic description of a phase transition that results in
the production of topologically stable defects. Although
for most of the chapter we have restricted ourselves to a
discussion of scalar QED (which posses Nielsen-Olesen
string like solutions) it is clear that using similar
techniques the description could be extended to encompass

-~

other more complicated theories.

Previously the mean field approach has been used as a

basis for models of symmetry resoring phase transitions.

" In these models the system is described by constant fields

of optimal strength. For example for scalar QED this
approach would approximate the partition function (5.38)
to its absolute maxima only. At low temperatures this is a

valid approximation, we have showed however that as the
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temperature approaches TS this is nolonger the case.

t
Ideally to improve on the approximation one would like

to find all the maxima of the functional and sum their
various contributions to Z but unfortunately in practice
this is not really practical. In this chapter we have
assumed (ad hoc!) that string like field configurations
make the dominant contribution to the partition fuction
and that contributions from other non-constant field
configurations can be neglected. This assumption seems
much more plausible however when it is realised that the
independent vortex model of the A transition in superfluid
helium includes the same assumption with no further

justification than our own and yet gives good quantitative

agreement with experimental observations.

Our stringy model predicts that the phase transition
is second order and occurs at a temperature Tst which is
below that calculated using the mean field model. The
model can be thought of as picturing the restoration of

symmetry as being due to overlapping strings filling the

whole of space.

It is clear that our model is still a fairly crude
description of the phase transition and it is preﬁature to
rule out the possibilty that in practice the phase
transition may be first order. A laboratory system that
undergoes an analogus phase transition to the restoration
of a spontaneously broken U(l) gauge symmetry is the

superconductor. The mean field approach predicts
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that the phase transition from superconducting to normal
state is second order. In practice it is probably weakly
first order. The first order transition being induced by
the large fluctuations present at temperatures close to
Tc' I hope to address the problem of whether or not this

is true for our system in a future publication.

Even neglecting the implications of topologically
stable field configurations for understanding the nature
of the phase transition it is still of interest to know
when they formed and what their statistical properties
are. This is because they can last an astrophysically
interesting period of time and have interesting
cosmological consequences. Strings for example, might have-
provided the initial density perturbations about which
galaxies formed [5.3, 5.6]. Our model suggests that they

were formed when the temperature was TS Above TS one

t° t
would be unable to recognise string like configurations.

It is interesting to note that TS =0(T ), the

t
string formation temperature suggested by Kibble [5.3]

-

Ginzburg

We have seen that Nielsen-Olesen strings develop a
temperature dependent tension and width. The width of a

string at the phase transition is scaled up by a factor

0(1/e) that of a cold string. At the phase transition this
width is also the typical string-string separation. This
length scale is the same as that obtained using Kibble's

picture of the formation of strings [5.3]. We therefore

believe our analysis lends support to his estimates of
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initial string densities etc.

From the partition function for the string solutions
we have evaluated the equilibrium distribution of strings.
We have discovered that as Tst is approached most of the
string length goes into infinite strings and that there
is a scale invariant distribution of loops, both with
approximately Brownian trajectories. If we had neglected
string-string interactions completely we would have
predicted that the string trajectories were exactly
Brownian. This agrees with the results obtained by the
rather different approach of Mitchell and Turok [5.1]. A
simulation of string formation in two dimensions has
recently confirmed that the trajectories are only
approximately Brownian [5.23]. At lower densities the
difference between neglecting string interactions
completely and incorporating them to some degree by
modelling the string trajectories by non-self-intersecting
random walks becomes more noticable. It would be
interesting to discover whether the simulations of

Vilenkin and Smith [5.7] can detect this difference.

At first glance the above comments might seem
paradoxical. Surely string interactions should be more
important at high densities. 1In our simple model this is
not true because at high densities the excluded volume to
a non-self-intersecting walk becomes approximately
homogeneous and so the probability for a walk to go in any
direction becomes very nearly equal [5.18]. This result

might of course be a consequence of our over simplified
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model of string string interactions and we are presently

investigating this [5.27].

The relevance of our high temperature results to the
early universe are obvious. What might not be so clear is
the relevance of our low temperature results. Shortly

after the universe cooled through Ts the string network

t
would no longer be in thermal equilibrium. Our results
indicate that the system would like to evolve to a state
with an exponentially suppressed distribution of large
loop sizes. This makes the string domination scenarios of
Kibble [5.15] and Bennett [5.16] seem unlikely but only
detailed simulations of the string dynamics in an

expanding universe could rule out their scenario

altogether.

A model of monopoles connected by strings in which
the monopole mass was of the same order of magnitude as
the string tension would be well approximated by open
strings [5.1]. If we allow the possibility of having open
as well as closed strings we can also estimate the
distriSution of these. The result is an exponentially
suppressed distribution of open strings, (i.e. the longest
ones are suppressed). This agrees well with the numerical

simulations of such models [5.20].

One might be worried about our use of the canonical
ensemble in a description of a phase transition because
there are large fluctuations in some of the thermodynamic

quantities. As an example consider the mean energy density
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due to loops of string. This is finite right up to the
phase transition. The rms fluctuations in this quantity

however diverges as (T-Tst)“l/2

. The mean energy density
in loops is therefore not a sensible quantity to discuss
at temperatures close to TSt . Note however that not all
interesting quantities have such large fluctuations about
their mean values. For example, consider the rms
fluctuations in the mean number of loops of size nl
(R(nl)). This is proportional to R(nl)l/z which allows us
to sensibly discuss R(nl) even at temperatures very close
to Tst' The point to note is that if you wish to use the
canonical ensemble in a description of a phase transition
you should check that the mean quantities you wish to
discuss donot have large fluctuations about their mean

values.

We would like to make one comment about the imaginary
time formalism. At high temperatures we were lead to
investigate t-independent solutions for the fields. This
was a good approximation because at high temperatures the
width/qf the string ¢ >> B, so to a good approximation the
variation of the fields over the interval B can be taken
to be zero. At lower temperatures neglecting the =
dependence of the solutions is no longer justifiaﬁle. It
is unclear what the interpretation of the t-dependent
solutions would be in terms of the real time t, because we
can not perform a Wick rotation to re-obtain the real-time

theory.
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The results obtained have applications outside cosmic
strings and the early universe. Patel has used some of the
formalism of section 3 in investigating confinement in QCD
[5.21]. Similar methods have also been used to investigate
the lambda transition in liquid “He [5.22, 5.19] (for

further references see [5.19]).

The calculations presented in this chapter were in
flat space. The next step is to consider curved spacetime
to see how this affects the distribution of strings. This

work is currently in progress [5.24].

Appendix A

Here we present an alternative derivation of the
partition functions of sections 1 and 2. We start by

deriving that of the scalar field theory of section 1.

As in section 1 we start from the path integral

representation of the partition function:

Z = fD¢exp[IB(¢)]

This time we split I_ into two parts, I the finite

ren

B

temperature renormalized action and I the part

count
containing the counterterms. To O(\A) for example:
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Iren™ fng [ a¥x [ i (5p¢)(6u¢) * i m? (T)¢?2 -‘iéj

(5.64)

= (B 3 M opq2
Icount IOdT [ d%x 9 As
We now evaluate the partition function by expanding I

about a field configuration ¢, that satisfies the equation

of motion derived from Iren' We obtain:

2
I=1I[00] + 1<% Tren nond o + oun.
=~ - —Ten MNy2q o
2§95,

-

2

AN
¢81 + Aln1¢01 + —; n 1>1

where

ﬂ=¢‘¢o, ¢1=¢(X1)

; 3 3

and <">1,..N means integrate over d xldtl....d detN.
This expansion is then substituted into the partition
function. The resulting functional is evaluated by
introducing a current j coupled to the field n. To O(A)

one obtains:

A2 Axn 2
Z = eXp(I[¢O])eXp(<'Z ¢01D11 + — ¢01 >1)

2

where
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3 i(x1= x2)pP
D. .= - f d°p 1 Z e

12 -
(2n)3 B n (2n/B)?+ p?

is the finite temperature propagator. Now 'm' in (5.64)

was chosen to be the finite temperature mass and so:

Thus we obtain the contribution of one saddle point to the

partition function as:

Z « exp(I._ [¢0])

This is the contribution of one saddle point. If we make a

'dilute gas' approximation we obtain:

Z =AY exp(Iren[¢0])
oo

where A is a normalisation constant and the sum is over
all field configurations satisfying the equation of motion

derived from I At high temperatures it is a good

ren
approximation to neglect the 1 variation of our solutionms.
This is because the solutions have to be periodic in B and
at high temperatures g will be much smaller than the
spatial width of the solutions [5.25]. Thus we have

re-obtained the results of section 2.
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It is straight forward to apply this scheme to
evaluating the partition function for scalar QED and

re-obtain the results of section 2.
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