
AUTOMATA THEORETIC ASPECTS OF TEMPORAL BEHAVIOUR AND COMPUTABILITY IN LOGICAL NEURAL NETWORKS

A thesis submitted for the degree of
Doctor of Philosophy

and the
Diploma of Imperial College

Teresa B. Ludermir

Department of Electrical Engineering
Imperial College of Science, Technology and Medicine

The University o f London

November 1990

2

ABSTRACT

Of the many types of neural networks that have recently emerged this

thesis is based on the RAM neuron model [Aleksander-Stonham, 79]. Tem

poral phenomena are fundamental to the everyday activities of human beings.

Because of this, if one is to employ machines which interact with humans,

temporal phenomena must be dealt with. The concept of time is at the centre

of many fundamental pattern recognition tasks, such as speech recognition

and motion detection. In this thesis it is shown that RAM networks are able to

store sequential information from input "training" patterns and that they

operate quite efficiently on some temporal pattern recognition tasks. Three

different systems that deal with temporal problems are presented. The influ

ence of stability in the generalisation and, consequently, the performance of a

neural network with respect to a temporal behaviour of the network to solve a

given task is discussed. Some ways to control the stability of the network are

presented.

The performance of a learning algorithm is measured by looking at the

structure achieved through such learning processes and comparing the desired

function f to the function computed by the network acting as a classical auto

maton. It is important to characterise the functions which can be computed by

the network in this fixed structure, since if there is no configuration which

allows the computation of / , say, then a network cannot learn to compute / .

The computability of networks of RAMs and PLNs (Probabilistic Logic Node

[Aleksander, 88]) is studied. A new method of recognition based on stored

probabilities with PLN networks is suggested. This new method increases the

computability power of such networks beyond that of finite state acceptors. It

is demonstrated that the computability of a PLN network is identical to the

3

computability of a probabilistic automaton [Rabin, 63]. This implies that is

possible to recognise more than finite state languages with such machines.

The results obtained provide: 1) an insight into the capacity of such net

works to deal with temporal pattern recognition tasks; 2) a formal (automata

theoretic) relationship between these networks and conventional computation

and 3) a more powerful system to recognise temporal patterns.

4

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Prof. Aleksander,

for his valuable advice, continual encouragement and patience with my limita

tions. Also, for the freedom to pursue my own ideas and the encouragement

to see them through.

I would like to thank my family for the support and encouragement in

my dedication to study. Special thanks to Wilson de Oliveira for his under

standing, patience and trust during the period of this research.

I would also like to express my special gratitude to Lee Flanagan who

was very helpful during these years at Imperial; always with a word of

encouragement and friendship, always willing to help.

I would like to thank my colleagues in the neural systems enginnering

group for their friendship and the many interesting discussions. Special thanks

to Adrian Redgers and Eamon Fulcher for their time in reading this work and

making my English readable.

My finance was supported by the Brazilian Research Council CNPq

(Conselho Nacional de Desenvolvimento Cientffico e Tecnologico).

5

Table of Contents

ABSTRACT.. 2

ACKNOWLEDGEMENTS... 4

TABLE OF CONTENTS .. 5

TABLE OF FIGURES .. 8

LIST OF SYMBOLS AND ABBREVIATIONS .. 10

CHAPTER 1. Introduction ... 13

1.1. Motivations and Aim of the Thesis .. 15

1.2. Overview of the Solution and Results... 18

1.3. Outline of the Thesis ... 21

CHAPTER 2. Neural Network Models and Temporal Pattern Recog

nition ... 23

2.1. Introduction ... 23

2.2. Weighted-Sum-and-Threshold Models .. 23

2.3. Logical Neuron Models .. 29

2.4. Temporal Pattern Recognition... 37

2.5. Summary of the Chapter .. 41

CHAPTER 3. Automata Theory.. 42

3.1. Introduction ... 42

3.2. Finite Machines... 42

3.3. Probabilistic Machines 45

6

3.4. Overview ... 49

3.5. The Application of Neural Networks to Formal Language

Recognition.. 53

3.6. Summary of the Chapter ... 56

CHAPTER 4. A Feedback RAM-Network for Temporal Pattern

Recognition.................... 57

4.1. Introduction ... 57

4.2. Description of the Network.. 57

4.3. Nature of the Experiments... 62

4.4. Probabilistic Classifier ... 64

4.5. Stability Property .. 70

4.6. Buffer Classifier .. 78

4.7. Final State Classifier ... 81

4.8. Conclusion ... 84

CHAPTER 5. Computability of logical Neural Networks.......................... 87

5.1. Introduction ... 87

5.2. A Probabilistic Recognition Method .. 88

5.3. From Grammars to Neural Networks ... 91

5.4 From Neural Networks to Grammars .. 108

5.5 Conclusions ... I l l

CHAPTER 6. Conclusions.. 114

6.1. Summary of Achievements ... 114

6.2. Improvements and Suggestions for Future Work 120

7

REFERENCES .. 123

APPENDICES ... 133

Appendix 1. Language L is not regular .. 132

Appendix 2. Published papers .. 135

8

Table of Figures

1.1 A simplified map of part of the London Underground 18

2.1 The McCulloch and Pitts model .. 25

2.2 A Perceptron .. 27

2.3 RAM node .. 30

2.4 An example of a RAM neural network ... 31

3.1 The diagram of a finite state automaton .. 45

3.2 Relationship between Chomsky’s hierarchy and weighted regular

languages ... 48

3.3 The transition diagram of a probabilistic automaton 49

4.1 Sequential Digital Neural Network ... 58

4.2 The training phase ... 60

4.3 Tracking Movements.. 63

4.4 Probabilistic Classifier with L^triangles and L2= squares and cir

cles ... 67

4.5 Probabilistic Classifier with L-squares and Z,2=triangles and cir

cles ... 68

4.6 Probabilistic Classifier with L1= {X\X=aibjckdl,i,j,k,l2z0} and

L1= U -L l ... 69

4.7 Recovery Percentage.. 73

4.8 State Sets Size .. 74

4.9 Sequence Discrimination .. 76

4.10 Buffer Classifier with L1= {X\X= a'bickdl,i,j,k,l^0} and L2= U -L i

4.11 Final State Classifier with L^triangles and L2=squares and cir

cles ... 83

4.12 Final State Classifier with L1= {x\x = aibjckdl,i,j,k,l^6} and

L2= U -L l .. 84

5.1 A network for Si-w (p) ... 94

5.2 A network S-* e (p) .. 95

5.3 A network for Si-wSj(p) .. 96

5.4 A network for S^wSj(p) with i = j .. 97

5.5 A network for with i> j .. 98

5.6 A network for Sr*wlSj(pi)\Si-*w2Sk(p2) with i< j,k 99

5.7 A network for »J1-*>v15j(pi)|5,->v2^(p2) with z== J an ̂*’< *

5.8 A network for Si-+wlSj(p1)\Si~w2Sk(p2) with i = j= k 101

5.9 A network for 5,-ivjSj(pi)\Sr*w2Sk(p2) with i> j and i<k 102

9

10

LIST OF SYMBOLS AND ABBREVIATIONS

A finite state automaton

Ap probabilistic automaton

a , b t ... terminal symbols (a, b t ... € V T)

D(t) desired response or state of the network at instant t

8 next-state function

€ empty word

F set of final states (F C Q)

G regular grammar

G w weighted regular grammar

L language

L(G) language generated by a grammar G

\ cut-point of a weighted regular language or of a probabilistic

automata

MCP McCulloch and Pitts

N number of address lines in a node

n number of nodes in a network

P set of productions rules

P» set of weighted productions rules

PLN Probabilistic Logic Node

P weight associated with the application of a weighted produc

tion rule

p (X £ L k/ R) probability that the input sequence X belongs to the language

11

L k given that the response R occurred when X was fed into the

network

w0 n-dimensional row vector which contains the initial distribu

tion of a probabilistic automaton

Q finite set of states of an automaton

9o initial state (q0 € Q)

?1> •••» 9n states of an automaton (qx.......qn € Q)

RAM Random Access Memory

R output sequence or state sequence of a network

R(0 response or state of a network at instant t

SDNN(m,i,/) Sequential Digital Neural Network with m neurons; each neu

ron has i terminals connected to the external input and / con

nected to the feedback input

S , Si,. . . , S n nonterminal symbols (S, Si,..., S n € V N)

s starting symbol of a sentence

Sk(t) continuous average of p (X € L k/ R) until the instant of time t

2 alphabet (finite set of input symbols)

r(A) set of patterns accepted by A

t instant of time

V total alphabet of a grammar

V* set of all patterns composed of symbols of V

V* nonterminal alphabet of a grammar

Vt- terminal alphabet of a grammar

V't set of all patterns composed of symbols of V T

12

V? V j - e

X, Y input sequences or input words

X(t) input of the network at instant t

w a word of a language (w € vf)

1 3

CHAPTER 1

INTRODUCTION

The study of artificial neural networks was largely originated in 1943

with the McCulloch and Pitts (MCP) model of the neuron [McCulloch-Pitts,

43]. Much of the current research in the field is still based on their model.

There are many advantages in using this model as the basic unit in a neural

network, due to the amount of work that has been done on them: many tools

for both the development and analysis of such systems have been developed.

Nevertheless, the McCulloch and Pitts model (or weighted-sum-and-threshold

model) is difficult to realise in hardware because a manipulation of a set of

real values (weights) is necessary. Learning algorithms for such a model are

very slow and hard to implement. In this thesis a different model is investi

gated: the logical neuron model or RAM neuron model [Aleksander-Stonham,

79]. The analysis of logical models is still in its infancy and has not been stu

died as much as the MCP model but the advantages of the model are that

firstly, it is very simple to implement in hardware and secondly, learning is

not as nearly as slow as the MCP model.

At its origin, much automata theory was motivated by biological and/or

psychological investigation. Turing was fascinated by the behaviour of any

computer, in the then current sense of a human doing calculations, according

to some well specified rules [Turing, 36]. McCulloch and Pitts sought to dis

cern the logical calculus immanent in mental activity by formalising certain

basic properties of neurons [McCulloch-Pitts, 43]. Von Neumann sought to

combine the work of Turing and McCulloch-Pitts with the emerging study of

computers to analyse both brain functions and processes of genetics and

reproduction [von Neumann, 51]. In the landmark collection of papers

1 4

"Automata Studies" [Shannon-McCarthy, 56], the majority of authors were

still concerned with modelling biological and psychological processes, espe

cially neural models. From 1956 on, automata theory came to be more and

more the province of applied algebraists and computer theorists, so that the

best results of the theory tended to be of mathematical interest, or related to

the theory of programming languages. Meanwhile, neural modelling contin

ued slowly but all too often with insufficient mathematical rigour. The field of

neural networks has matured and there is more contact between theorists and

experimentalists. It seems now appropriate to once again marry automata

theory with the study of neural networks. Some questions that arise from such

a relationship, which are related to the fact that neural networks are non-

universal machines, are:

• Given a training set, how close is the generalisation of the network to the

language L to be recognised by the network?

• Which properties must the training set have in order to minimise the differ

ence between the generalisation of the network and the language L to be

recognised? That is, given the language L is it always possible to find a train

ing set such that the generalisation is equal to the language? Otherwise, is

there a maximal solution?

• What is the computability power of a network? That is, what are the sort

of languages that can be recognised by the network?

• What is the complexity of learning in such networks? How many presenta

tions does a network of given components need to learn a certain function?

These are the kinds of question which stimulated the work of this thesis and

they were firstly discussed in [Ludermir, 88]. Of course, not all of these ques

tion are answered in this work, many are left to future work (section 6.2 of

this thesis). In particular, here the class of functions chosen is the recognition

15

of temporal patterns as applied to the study of logical networks.

The work in this thesis can be seen , in a practical sense, as the study of

the ability of logical neural networks to recognise temporal patterns. Three

systems using RAM networks are developed to deal with temporal patterns.

All the networks have feedback connections once feedback networks are more

suitable for temporal pattern recognition. If logical networks are to be used

for temporal pattern recognition they need to be able to compute more than

finite state languages. Many of the temporal problems cannot be solved by

finite states machines. The networks in all three systems are finite state

machines. The computability power of the systems is increased by introducing

different classifiers combined with the network because the RAM networks,

by themselves, cannot deal with temporal patterns.

Another way of increasing the computability power of logical networks is

by using PLNs (probabilistic logic nodes) [Aleksander, 88]. A new method of

recognition using PLNs is proposed. It is shown that PLN networks with this

new method of recognition compute more than finite state languages. They

are computationally equivalent to probabilistic automata which makes them

more suitable for temporal pattern recognition.

1.1. MOTIVATIONS AND AIM OF THE THESIS

Given the present state of the art, it has been difficult to write programs

to solve problems such as sequence prediction, face and scene recognition,

etc., using traditional methods on serial digital computers. It is first necessary

to find a set of rules (programs or grammars), and, although in some cases it

is theoretically possible to find the set of rules, it can take an impractical

length of time. In contrast, Neural Networks have been used with consider

able success, and in a relatively simpler way, where instead of writting a

16

program (thereby making the grammar explicit) the net is just "trained" to

recognise the patterns. The network acquires knowledge implicitly through

the process of training. For example, 20 seconds of exposure to a neurally

based system such as WISARD [Aleksander et al., 84] will allow the network

to select among a vast number of rules (node functions) in a very short time

in order to discriminate between the images in question.

It is not hard to see that in many daily-life pattern recognition tasks the

notion of time and sequentiality of actions are fundamental. This is to say that

when it comes to understanding memory, learning, and intelligence as mani

fested in biological systems, the precise temporal relationship among stimuli

and between stimuli and responses may be crucially important. Hebb [Hebb,

49] showed an appreciation of this principle in the neuronal model he pro

posed. He suggested that the efficacy of a modifiable synapse increased when

ever the synapse was active in conjunction with activity of the postsynaptic

neuron. Thus, Hebb was proposing that learning (i.e., changes in the efficacy

of synapses) was a function of correlations between approximately simultane

ous pre- and postsynaptic levels of neuronal activity. Models such as Hebb’s

emphasise the temporal association of signals: each critical event in the

sequence leading to learning has a time associated with it and this time plays a

fundamental role in the computations that yield changes in the efficacy of

synapses.

To deal with temporal pattern recognition tasks, a computational agent

must be able to, at least, store (preserve) time information, sequentially in

such a way that past computations contribute to future computations. Feed

back networks can perform this type of computation. The feedback enhances

the temporal process which in the case of word recognition and image recog

nition leads to selectivity in the network’s reaction, while in the case of

1 7

language understanding it leads to time-ordered recall. The feedback state

stores the sequential information. But feedback RAM networks have only the

same computability power of finite state automata, they are finite state

machines by definition. Many temporal problems also need the context where

the symbol happens and RAM feedback networks are not able to store such

contexts. To illustrate the need for context in temporal problems the ‘under

ground journey’ example in [Aleksander-Morton, 90] is used.

Consider the map of part of the London Underground shown in figure

1.1. Say that a fully interconnected layer in a network is capable of learning a

sequence of states by "being" in a state, and being trained to change to the

next state. These states could be the names of underground stations. So if the

state of the network is P, it could learn that the next state will be C, in the

sense that if the network is clamped to P and released, it will change to C.

However, a characteristic of such a layer is that one state can only lead to

another specific state. Therefore merely labelling states as stations would lead

to confusion, as there are many states that can follow G in the example.

Clearly, the network has to store context as a ‘state’ (e.g. ‘I am on the Vic

toria line at O and I am trying to get C’) to determine the next state (which

should be ‘I am at G changing to the Piccadilly line towards P trying to get to

C’).

This thesis tackles the problem of the recognition of temporal patterns,

initially by using RAM feedback networks associated with different classifiers

and, then with PLN networks. The classifiers give the system the extra capa

city necessary to work with contextual temporal patterns.

18

Jubilee

Centra!

Victoria

Piccadilly

B : Bond St.
C : Covent Garden
G : Green Park
H : Hyde Park Corner
M : Marble Arch
O : Oxford Circus
P : Piccadilly Circus
S : Swiss cottage
T : Tottenham Ct. Rd.
V : Victoria
W : Warren St.

Figure 1.1 A simplified map of part of the London Underground.

1.2. OVERVIEW OF THE SOLUTION AND RESULTS

The temporal problems dealt in this work are the recognition of

sequences. Two different types of discrete sequences are considered: i) the

sequences of tracking movements for geometric forms and ii) sequences gen

erated by regular languages. The sequences are fed into the network symbol

by symbol and the network is trained to predict the next input symbol in the

sequence. The systems here were asked to classify sequences into one of two

different languages L l and L2. To distinguish more than two languages one can

combine many of the systems suggested in this thesis.

The first classifier designed to distinguish the two languages was based

on the Information Theory of Shannon [Shannon, 49], that is, the information

carried by an input symbol Xt regarding the class membership of an input

sequence X is directly related to the frequency with which symbol X, occurs in

sequences of both languages L\ and L2. Thus the first classifier is based on

the probability p (X £ L k/ R) that the input sequence X belongs to the language

L k , given that the response R occurred when X was fed into the network.

1 9

p (X € L k/ R) changes randomly near 1 for sequences X in L k and near 0 for

sequences X not in L k . The continuous average S k(t) of p (X £ L k/ R) is used for

considering p (X $ L k/ R) for all symbols in the same sequence X . S k(t) tends to 1

for all sequences belonging to the language L k , while S k(t) tends to 0 for all

sequences not belonging to the language L k . To facilitate the choice of the

parameters of the network, the study of the stability is made. The stability

property is responsible for the increase of generalisation and consequently has

influence in the recognition of patterns. The influence of the size of the feed

back connection on the stability of the network and in pattern recognition is

study. Two different ways of controlling the stability are investigated.

The second classifier is also based on the a posteriori probability. It is a

more powerful classifier in the sense that it is able to process more sequential

information. The extra power of this classifier is introduced by the use of

more memory, a buffer in this case. Although the buffer gives the system

more capability to deal with contexts it also requires more computations to be

performed.

The third, and last, classifier is based on automata theory. Automata

theory is a well established field and has enabled us to capture some funda

mental ideas about the system such as to measure the computability power of

logical networks and also to understand the computability power of PLN net

works. Unfortunately, this classifier is not very effective; indeed it actually

proved to be the worst method, at least in terms of the experimental results.

However, the main purpose of this classifier is to measure the capacity of the

network to recognise languages as a finite state automaton. If a relationship is

found between formal language recognisers and logical networks, the compu

tability power of logical networks can be determined from a knowledge of the

computability power of a formal language recogniser. To know the computa

20

bility power of a recogniser is the same as to know which functions a

recogniser can compute. And it is important to know which functions a net

work can compute because, obviously, the functions the network cannot com

pute cannot be learnt.

The computability power of PLN networks is here analysed and the abil

ity of the network to deal with temporal patterns is discussed. The capacity of

the PLN networks has not been completely uncovered up to now. The way the

recognition algorithms of PLN networks have been designed gives these

machines the same computability power as that of RAM networks. RAM net

works are finite states machines and can only compute regular languages. The

advantage of the PLN model which is being exploited is in the training of the

network. PLN networks are easier to train because there is no pre-existing

structure (depending on the initial value of the memory of the nodes before

training, arbitrary confluences of states exist) in the state space before train

ing [Kan-Aleksander, 89]. The nodes of the network are initialised with the

value of ‘undefined’ before training. This initial value signifies a guess to the

correct answer is required and consequently this ‘undefined’ value separates

the untrained memory position from the trained ones.

A new recognition algorithm is here proposed that uses all of the compu

tability power of the PLN network. This recognition algorithm makes use of

the probabilistic information stored in the memory of the node. It is proved

that the computability power of a PLN network is the same as of a probabilis

tic automaton. Probabilistic automata can recognise more than finite state

languages [Rabin, 63]. There are context-free, context-sensitive and recursive

languages that can be recognised by probabilistic automata and thus they are

more suitable for dealing with symbol sequences than finite automata. The

proof of the equivalence between PLN networks and probabilistic automata is

21

divided in two parts. In the first part an algorithm is given to transform any

weighted regular grammar [Salomaa, 69] into a PLN network. With this algo

rithm it is possible to design a network to recognise a specific weighted regu

lar language. This algorithm also provides a way of implementing probabilis

tic automata in non-deterministic devices. Changes can be made in the PLN

network through training in order to recognise a different language from the

one the weighted regular grammar generates. The second part of the proof

demonstrates that every set of patterns recognised by a PLN network can be

generated by some weighted regular language. It will be also possible to

determine the generalisation of a network and the functions a network is able

to compute using the algorithm designed in the second part of this proof -

which may be a useful contribution in itself.

1.3. OUTLINE OF THE THESIS

This thesis contains six chapters. Here, in chapter one, the work carried

out is stated, and the organisation of the thesis is outlined. Chapter two

presents a brief review of research on artificial neural networks covering the

work both in the weighted-sum-and-threshold models and in the logical neu

ron models. The current state of research on processing temporal patterns

using neural networks will be reviewed, and previous work in this area with

logical neural networks is discussed.

Chapter 3 is concerned with Automata Theory, and more specifically

with probabilistic automata theory. An overview of the research done on pro

babilistic automata is given and all definitions used in this thesis from this

field are explained. Some neural networks designed for formal language

recognition are described.

22

Chapter 4 contains all the experimental results of the thesis. It describes

the nature of the networks and the data used in the experiments. It explains

why feedback networks are more suitable for temporal pattern recognition

than feed-forward networks. A probabilistic classifier is suggested with which

recognise input sequences. The effectiveness of the system is illustrated by the

experimental results. The influence of the stability property in the ability of

the network to solve a specific task is discussed. Two more classifiers, the

buffer and final state classifiers, are suggested and further experimental

results are shown. A comparison of the three classifiers is then made.

Chapter 5 is dedicated to the study of the computability of logical net

works. A new recognition method using PLN networks is proposed. The

equivalence between the computability of a PLN network and a probabilistic

automaton is demonstrated. An algorithm that converts any weighted regular

language into a neural network is designed and an example with a particular

language is presented. Another algorithm to generate a weighted regular

grammar for the patterns recognised by a given network is put forward and

followed by an example. Different ways of training the network generated

from the grammar are suggested.

Chapter 6 reviews the results of the work as a whole and the contribu

tions of the thesis. It discusses the nature of the main results achieved and

indicates those areas in which it is considered likely that further research will

be valuable.

2 3

CHAPTER 2

NEURAL NETWORK MODELS AND TEMPORAL PATTERN RECOGNITION

2.1. INTRODUCTION

As part of the recent revival of interest in artificial neural networks,

many new approaches have been produced. Before making a contribution to

the field, the developments in the area should be stated. The study of Neural

Networks is not entirely new, indeed its past stretches back beyond that of

conventional computing. What is new, however, is a concern with well-

founded analysis and a deepening understanding. In this chapter there is a

review of the most important work done on the two major models of neural

networks: the weighted-sum-and-threshold model and the logical model.

Much of the enthusiasm for investigating neural networks lies in their

potential in applications for which solutions are unsatisfactory when attempted

using conventional computing. Temporal pattern recognition is one of the

areas in which neural network solutions are being studied. Many problems in

this field, such as in the field of speech recognition, are considered as being

difficult when approached with conventional techniques. Here, descriptions of

neural solutions for temporal pattern recognition problems are given.

2.2. WEIGHTED-SUM-AND-THRESHOLD MODELS

The neuron was first modelled in 1943 by McCulloch and Pitts

[McCulloch-Pitts, 43]. This was a simplification of what was known of a real

neurons. They noted the following properties of real neurons: that they had

many inputs but a single output which could branch towards other neurons;

2 4

that some of the inputs were excitatory (had positive weights) and some were

inhibitory (had negative weights); and that neurons would only fire if the

excitation on its inputs exceeded the inhibition by a certain threshold T. They

simplified the model by assuming that the neuron acted in a synchronous way,

so that on some absolute time scale the inputs at time t to any neuron deter

mine the output at time t + 1. Despite these simplifications, it is still this model

that is the basis of neural networks in contemporary neural computing.

If networks of such formal neurons that contains feedback connections

are considered then it is observed that there is a set of inputs, a set of internal

states and an output set related to every network. Recalling the critical time

scale assumption on the neurons, the state and input of the whole network at

any one time can establish the state of the whole network at the next time

cycle as is conventional in finite-state machines. To determine the firing of a

neuron it is necessary to know the previous firing pattern of its inputs, and

this is induced partly by the overall input to the network and, by the state of

the network. It is clear then from the above discussion that any network com

posed of McCulloch and Pitts neurons (henceforth referred to as MCP neu

rons) is an example of what is called a finite state automaton [Arbib, 87].

McCulloch and Pitts suggested an implementation of their neuron by

means of summing amplifiers, where variable input weights w (which can take

values in the range -1 and +1) play a role analogous to that of synapses in

natural neurons - giving the neuron its adaptability. The neuron takes firing

signals at all its synapses into account by summing their effects, both excita

tory and inhibitory and thereby deciding whether it should or should not fire.

The neuron fires if the total sum exceeds the threshold T. In the MCP model

it is assumed that the firing at the axon of a neuron may be represented by the

number 1 and no firing at the axon by the number 0. When it is not known

25

what this number is, the state of the axon of the neuron is given the label x.

The effect on a neuron of any particular synapse is the product xw. The

mathematical form of the firing rule for a MCP neuron is:

The neuron fires if the following inequality is true:

x lw l + x 2w 2 + * * * + x nwn> T

or, in more compact form:

J , X j W j > T
;=i

where n is the number of synapses of the neuron, w;- is the weight associated

with input x j and T is the threshold.

W1

X1 o— V Y W - a

W2 \
X 2 q — ------------ - SUMMING THRESHOLD

DEVICE DEVICE

W3

X3o— 3/VW
Figure 2.1 The McCulloch and Pitts model.

Much discussion of neural networks focuses on the methods for training

these nodes to perform a particular function. Many training techniques used

until now are based on what Hebb [Hebb, 49] first suggested in 1949.

when an axon of cell A is near enough to excite a cell B and repeat
edly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s effi
ciency, as one of the cells firing B, is increased [p.50]

He suggested that cells that are frequently active should have an increased

chance of becoming active again adding the concept of learning to the MCP

2 6

model by suggesting that synapses are the site of biological learning. Hebb did

not develop a mathematical rule for his learning suggestion. It was up to other

researchers to produce more explicit statements of Hebb’s idea.

Another important learning rule was first suggested by Widrow

[Widrow, 62]. This is now widely used and it is known as the Widrow-Hoff

rule or the delta rule. The Widrow-Hoff learning rule is local, that is, all that

is required by a node is the input, the output and what the output should have

been. The rule works by calculating an error signal between the desired out

put and what the sum (of synapse and weights) computed. The weights are

slowly changed to reduce the error until no more error exists. Back-

propagation, as described by Rumelhart et al [Rumelhart et. al, 86] is a gen

eralisation of the Widrow-Hoff rule applied when the output error of neurons

buried inside a net cannot be directly assessed.

Another important line of development was made by Rosenblatt with his

"Perceptrons" [Rosenblatt, 58]. The basic element of a perceptron is a MCP

node with some additional, fixed, preprocessing. This is shown in figure 2.2.

The units Au A2, ..., Ap have the function of extracting specific features from

some input image, and are called association units. Perceptrons were

presented as pattern recognition devices. They are trained using the delta-rule

previously described. Block [Block, 62] proved that a perceptron with no

more than one layer could be trained in finite time (the convergence pro

perty). If any learning rule is to be usable it must certainly have this conver

gence property.

In 1969 Minsky and Papert [Minsky-Papert, 69] drew attention to some

tasks which perceptrons could not perform. Perceptrons, for example, cannot

detect ‘connectedness’ and ‘parity’. These are examples of ‘hard learning

problems’. Hard learning problems form a very large class of functions and

2 7

Figure 2.2 A Perceptron

cannot be neglected. Although perceptions cannot learn such problems,

multi-layer networks can, but it is difficult to find the right learning algorithm

to train a multi-layer network to solve hard learning problems. Additionally,

in their book, Minsky and Papert claimed that if a network of perceptron

nodes can solve a particular problem, the solution found will not scale up. It

is also important to realise that hard learning problems can sometimes be

easily solvable with conventional computing.

Rosenblatt was himself aware of the limitations of single layer percep

tions. However, if the nodes are arranged in multiple layers with hidden

nodes (nodes that are not accessible from the external input and output) it is

possible to show that any function can be achieved. But a generalisation is

needed of the training algorithm since with multi-layer networks, the delta

rule, as defined before, does not apply. Rosenblatt then proposed to pro

pagate the error backward from the external output layer to the hidden nodes.

However the computational complexity of this method proposed by Rosen

blatt, to multi-layer perceptions, increases exponentially with the size of the

28

network. Thus, when one tries to enlarge the scale of a perceptron-like

machine the numbers of steps of computations are increased exponentially

with the size of the problem. This was another of Minsky and Papert’s criti

cism of perceptrons. A consequence of the work of Minsky and Papert and

the success of Artificial Intelligence led to a general decline of interest for

neural networks in the seventies.

Despite these difficulties, many researchers continued to explore Artifi

cial Neural Networks such as Igor Aleksander (logic neuron model) at

Imperial College, Kunihiko Fukushima (cognitrons and neocognitrons) at

NHK Science and Technical Laboratories, Steven Grossberg (self-adaptive

systems) at Boston University, Teuvo Kohonen (self-organised associative

memory) at Helsinki University among others. Their results were, however,

scattered among many journals in different areas, making their work largely

unknown to most researchers in Artificial Intelligence until recent years.

In 1982 Hopfield [Hopfield, 82] published a paper which attracted atten

tion to the associative properties of a class of neural networks. This paper was

responsible for a revival of interest in the analysis of neural networks.

According to Hopfield, the possible activations of a network can be viewed as

its state space, its current activation is its position in state space. The system

moves over time until it reaches a stable limit point. Hopfield defined an

‘energy function’ for the current state of the system and showed that energy

steadily decreases and eventually relaxes into a stable state. A problem, how

ever, is that the energy may settle into a local minimum (one solution of

many) instead of the global minimum (the optimal solution). It was Hinton,

though, who suggested a way of overcoming these problems through what he

called ‘the Boltzmann machine’ [Hinton et. al, 84], which is based on ideas

originating in statistical mechanics and thermodynamics. Noise is added to the

2 9

system (the equivalent of heat in the Boltzmann system) to avoid false

global-minima (local minimum).

However, Hopfield’s analysis still did not tackle the problems of hard

learning which was the main criticism of Minsky and Papert. A solution for

such problems was necessary to make neural networks carry out useful com

putations. After the definition of the Boltzmann machine Rumelhart, Hinton

and Willians developed and formalised the Error Back-Propagation or Gen

eralised Delta Rule which deals with the hard learning problems [Rumelhart

at al., 86]. Error back-propagation allows the training of hidden nodes, but

requires feed-forward topology.

There are other training methods to deal with hidden nodes and hard

learning problems in MCP networks. Some of these training methods are

unsupervised. In this mode, the network discovers hidden patterns in input

data which even the designer of the net may not be aware of. These unsuper

vised learning methods have an important role to play in systems such as

speech recognisers. The main work on unsupervised learning has been con

ducted by Fukushima [Fukushima, 73], Grossberg [Grossberg, 76] and

Kohonen [Kohonen, 89]. Such training methods are largely outside the scope

of this thesis.

2.3. LOGICAL NEURON MODELS

Neural network models based on weighted-sum-and-threshold have been

extensively studied in neural computing as was suggested in the last section.

The neural computing model used in this thesis is based on a different kind of

artificial neuron called the "logical neuron model" or the "weightless" neuron

model. The logical model is based on the simple operations of a look-up

table which is best implemented by random access memory (RAM) and where

3 0

the knowledge is directly "stored" in the memory (via "look-up tables") of the

nodes during learning. Some advantages of this model are: (1) systems may

be built using conventional digital circuits, without the need to develop special

VLSI devices; (2) learning is not unreasonably slow and (3) error-correction

requires only a global success signal. A definition of a RAM neural network

is given below:

Definition 2.1 - A RAM Neural Network is an arrangement of a finite

number of neurons in any number of layers, in which the neurons are RAM

(Random Access Memory) nodes. The RAM node is represented in the figure

2.3 below:

n-address
terminal

read/write mode

Figure 2.3 RAM node

The input may represent external input or the output of neurons from another

layer or a feedback input. The data out may be 0’s or l ’s. The set of connec

tions is fixed and there are no weights in such nets. Instead the function per

formed by the neuron is determined by the contents of the RAM - its output

is the value accessed by the activated memory location. There are 22* different

functions which can be performed on N address lines and these correspond

exactly to the 2N states that the RAM can be in, that is a single RAM can

3 1

compute any function of its inputs. Figure 2.4 below is one example of a

RAM neural network.

Figure 2.4 An example of a RAM neural network.

Learning in a RAM node takes place simply by writing into it, which is

much simpler than the adjustment of weights as in a weighted-sum-and-

threshold network. The RAM node, as defined above, can compute all binary

functions of its input while the weighted-sum-and-threshold nodes, defined in

section 2.2, can only compute linearly separable function of its input. There is

no generalisation in the RAM node itself (the node must store the appropriate

response for every possible input), but there is generalisation in networks

composed of RAM nodes [Aleksander, 83]. Generalisation in logical net

works is affected first by the diversity of the patterns in the training set, that

is, the more diverse the patterns in the training set, the greater will be the

number of subpatterns seen by each RAM, resulting in a larger generalisation

set. Secondly, the connection of RAMs to common features in the training set

reduces the generalisation set. Three types of misclassification can come from

the generalisation of a network:

1) rejection by double: intersection of two or more generalisation sets;

3 2

2) unknown rejection: a pattern X belonging to one class falls outside the

generalisation set of this class; and

3) error: a pattern X belonging to one class falls within the generalisation set

of another class.

The logical node is based on the n-tuple sampling machines of Bledsoe

and Browning [Bledsoe-Browning, 59], where the n inputs to the node form

the n-tuple which is used to address node memory. While Aleksander took a

great deal of interest in adaptive learning networks using n-tuple sampling

machines, Kauffman’s interest was in gene regulation [Kauffman, 69]. Kauff

man examined the model of genes by random binary automata with two

inputs.

Aleksander suggested a universal logic circuit as the node of a learning

network [Aleksander, 66] and [Aleksander, 71]. He introduced the SLAM

(Stored Logic Adaptive Microcircuit) node, which was produced specially for

research purpose before the availability of integrated circuit memories, and

the RAM node as in definition 2.1. Cheung investigated the use of RAM

feed-forward networks in hand-written numerals [Cheung, 73]. Stonham also

used RAM feed-forward networks as feature extractors in the classification of

mass-spectra [Stonham, 74]. Feed-forward RAM networks were also used by

Nappey in the input pattern recogniser of a reading aid for the blind [Nappey,

77]. In the applications mentioned above, a set of RAM networks is normally

used as discriminators (or feature extractors) with one discriminator per

response class. Reeves and Dawson used a set of RAM networks as the adap

tive controller of a TV camera in a scene analysis system ([Reeves, 74] and

[Dawson, 76]). Reeves also worked with moving edge detection using a feed

back RAM network. This part of his work is described in section 2.4 of this

chapter where the work with feedback RAM networks is covered.

3 3

By the late 1970’s, the construction of a large network able to deal with

high quality images became economical as RAM elements were much cheaper

and of a large capacity. In 1979 the WISARD (Wilkie, Stonham &

Aleksander’s Recognition Device) [Aleksander-Stonham, 79] was designed

and the prototype was completed in 1981. The WISARD is based on RAM

nodes with n (2=sn^l6) inputs. During the operation of the system, an incom

ing image is stored and digitised. Each pixel is represented by a single bit.

Each of the n inputs of a RAM node takes a binary value from a pixel using a

random, but fixed mapping. It is assumed there are enough RAMs to map

into every pixel. The binary values taken from pixels form n-tuples which are

the addresses specifying where the read/write operations are performed. A

layer of RAMs is called a discriminator and represents a class of objects to be

recognised. A WISARD system consists of a number of discriminators and a

decision unit which calculates the responses and the confidence of the discrim

inators during a recognition process.

The recognition activity is built up by a process of training on examples

of the object to be recognised. An object is presented through a camera

together with its desired classification. All the storage locations of discrimina

tors are set to 0 before the training process. The classification selects a partic

ular discriminator to be trained, l ’s are stored in all the locations addressed by

n-tuples taken from the input image but only within the selected discrimina

tor. This has the effect of causing that particular discriminator to produce a

logical 1 at all its data output terminals if the training image is presented

again. If the input image is slightly changed then not all the RAMs within the

selected discriminator will respond with 1. The percentage of RAMs in a

discriminator responding with a 1 is called the ‘response’ of that discrimina

tor. The responses are a function of the overlap of the input patterns and the

3 4

trained patterns. In a recognition process, the responses of discriminators are

fed into a simple calculator which first identifies which of the discriminators

has the strongest response and outputs the class number associated with that

discriminator. It also provides the actual response of the discriminator and the

next highest one. This difference provides a measure of confidence with

which the decision is made. The WISARD was patented and produced com

mercially in 1984.

RAM networks have been used for many tasks and here only a selection

of them are presented. Fairhurst and Mattoso-Maia proposed a recognition

system consisting of two layers of RAM nodes which was capable of storage

reduction in the recognition of alphanumeric characters [Fairhust-Maia, 83].

Aleksander and Wilson demonstrated that RAM networks when trained to be

edge-detectors can perform at least as well as Sobel and Laplace transforms

on a binary image, and are faster and less sensitive to noise distortion

[Aleksander-Wilson, 85]. Allinson and Johnson have used unsupervised learn

ing in a n-tuple recogniser to classify video images at video speed [Allinson-

Johnson, 89]. Tattersall, Foster and Linford used a n-tuple single layer net

work (that is, a WISARD architecture) to do speaker independent recognition

of utterances of the letters of the alphabet and to do text to speech synthesis

[Tattersall et. al, 89]. Their learning rule is different from the one used with

the WISARD, in their case the training rule is based in the difference (error)

between the output of the network and the desired output. This error vector is

used to modify the values of the current addressed RAM locations so that

next time the same input vector is applied, the output is nearer to the desired

output.

Recently, the problem of moving edge detection has been used again as

an example of a problem solvable with logical networks [Vidal, 88]. Vidal

35

also analysed the performance of logical networks in the problem of localisa

tion and tracking patterns of some minimum size in the input data. The RAM

nodes of Vidal’s network are organised in pyramid (tree) structures.

The introduction of a probabilistic element into the logic node was pro

posed by Aleksander [Aleksander, 88]. He called the node with this proba

bilistic element a probabilistic logic node (PLN). The main feature of the

PLN model is the unknown state, u,which responds with a randomly gen

erated output for inputs on which it has not been trained. Below is given a

definition of a PLN node.

Definition 2.2 - A PLN Neural Network is an arrangement of a finite

number of neurons in any number of layers, in which the neurons are PLN

(Probabilistic Logic Node) nodes. A PLN node differs from a RAM node in

the sense that a q-bit number (rather than a single bit) is now stored at the

addressed memory location. The content of this location is turned into the

probability of firing (i.e. generating a 1) at the overall output of the node.

Say that q is 3, then the numbers 0 to 7 can be stored in each location of the

PLN. One way of regarding the actual number stored may be as a direct

representation of the firing probability by treating the number as a fraction of

7. So a stored 2 would cause the output to fire with a probability of 2/7, and

so on. The difference between a PLN neural network and a RAM network is

then that (a) memory locations may store q-bit numbers (where q> 1) and (b)

the stored value represents the probability of outputting a 1.

PLN networks have some advantages relative to RAM networks. First,

because there are no pre-existing structures in the state space of PLN nets,

they are easier to train [Kan-Aleksander, 89]. There are a number of training

strategies for PLN networks such as the ones in [Aleksander-Morton, 90],

[Myers, 88] and [Al-Alawi-Stonham, 89]. Second, while RAM nets are not

3 6

very sensitive to small differences in input patterns, PLN nets can be made

very sensitive if they are organised into a pyramid of PLNs [Aleksander-

Morton, 90]. Thirdly, there are various sources of noise in the activity of

natural neurons in neural networks [Taylor, 87]; and with the stochastic

activity of PLNs a slightly more realistic modelling of neural activity is

achieved than with RAMs. Forthly, by experimental results, it is known that

when solving the same problem with PLN nets and RAM nets, it is possible in

many cases to save states when using PLN nets. This means that smaller

number of nodes are necessary when using PLN networks than when using

RAM networks.

In order to make PLN less susceptible to noise and more able to general

ise Aleksander [Aleksander, 90] suggested an extension of the PLN, the G-

RAM, which once trained, spreads stored information to those neighbouring

locations which still are in the unknown state u.

Another extension of PLN was suggested by Gorse and Taylor [Gorse-

Taylor, 88]. They developed a model of a noise neuron which incorporates

and formalises many known properties of living neurons. They called their

node model a p-RAM. The p-RAM in its simplest form is a lookup table in

which each address stores a value q € [0,1]. This q value is the probability of

firing (i.e. generating a 1) at the overall output of the node. The main differ

ence between p-RAM and PLN is that p-RAMs allow continuous values to be

stored in the memory of the nodes whilst PLNs allow only discrete values. A

hardware implementation of a 2-node network of 2-input p-RAMs has been

constructed successfully [Clarkson et. al, 89].

3 7

2.4. TEMPORAL PATTERN RECOGNITION

Temporal phenomena are fundamental to the everyday activities of

human beings. As a result, time is at the centre of many pattern recognition

tasks, such as speech recognition, motion detection, and signature verifica

tion. Conventional computing cannot, at the moment, satisfactorily deal with

many of these pattern recognition tasks where time is a parameter. Connec-

tionist learning algorithms to date have only marginally been considered for

applications to time-varying input patterns. Although few good results have

been achieved using Neural Networks in difficult temporal problems, such as

speech recognition, it is widely accepted that the way they learn, in many

aspects similar to human brains, should make them more adequate to work

with such problems than conventional machines. Neural Networks will have

limited applications if they cannot be shown capable of reasoning in a tem

poral sense.

Several neural models have been developed to deal with temporal pat

terns such as TRACE [McClelland-Elman, 86] and focused networks [Mozer,

88], and others, such as the neocognitron [Fukushima, 90], are being adapted

to the temporal domain. There are also models based on logical networks

which have been shown to work with problems like sequence recognition

[Ludermir, 90b]. All these models, nonetheless, need improvement in order

to operate efficiently. A short description of some of these follows:

TRACE is a model which assembles phonemes into meaningful phrases.

To put together the whole sentence from parts of a signal that is spread out in

time, a buffer was used. Such a buffer holds the n most recent signals of the

input sequence and can be implemented using a shift register. The buffer

turns a temporal recognition problem into a spatial recognition problem in

which all relevant information for making a response is simultaneously

3 8

available. Because connectionist models are relatively good at spatial recogni

tion problems, this approach works with some success. There are many other

models for dealing with temporal pattern recognition which use a buffer.

Some drawbacks of the buffer model are: 1) the buffer must be sufficient in

size to accommodate the longest possible input sequence; 2) each element of

the buffer must be connected to a higher layer of the network. In consequence

a large number of training examples must be used, else the network will not

generalise well, to obtain nonlinear interactions across time.

Simple temporal (or sequential) behaviour, where information only

needs to be stored over time, in a single-layer logical network is achieved sim

ply by making the networks recurrent, that is, some input terminals of the

nodes are fed from output terminals with some delays (feedback information)

[Ludermir, 89a]. The idea of feeding back the output information to the input

with logical networks was introduced by Aleksander and Mamdani

[Aleksander-Mamdani, 68]. In their paper Aleksander and Mamdani already

mentioned that feedback connections might bring improvement in the perfor

mance of such learning networks. Later, Aleksander and Mamdani

[Aleksander-Mamdani, 70] applied feedback networks in sequential tasks that

are universal. They also discussed, in this paper, that even though universal

networks with feedback have a behaviour which is easily understood, their

analysis is not trivial.

Feedback networks overcome many limitations of perceptron-like

machines. The reason perceptron-like machines cannot decide, for instance,

whether or not an input pattern is disconnected is because each individual ele

ment has only a restricted knowledge of the whole input pattern; whereas

feedback networks (sequential machines) if properly trained (or designed) are

capable of computing global properties since the elements are allowed to com

3 9

municate with one another and the feedback input of the network spreads the

knowledge of each individual element out to the whole network. Thus, it is

obvious that feedback networks do have interesting properties. There are tem

poral problems which, besides needing information being stored over time,

also need the position (context) where the symbol occurs (as explained in sec

tion 1.1 of this thesis) in the patterns, and RAM feedback networks are not

able to store such a context. One solution to this problem of saving context is

to use PLN networks, as is explained in chapter 5 of this thesis.

Some work has been done on the application of feedback logical net

works to the problems of temporal pattern recognition. Fairhurst describes a

system in which ‘OR feedback networks’, with random connections, can be

made sensitive to sequences after being exposed to a training process

[Fairhurst, 73]. In these networks the logical OR of the present input pattern

and the previous output pattern is formed, and the resulting pattern is fed to

the nodes, which then produces the present output pattern. The network was

trained to reproduce the input sequence, that is, the present output is trained

to be equal to the present input. In a simulation of a small network of this

type, he has observed clustering of the output state cycles as the result of

training on two classes of input pattern.

Reeves has also used a network incorporating feedback in an attempt to

recognise the sequences of patterns that are generated when a viewing window

follows round the edge of a pattern [Reeves, 74]. The nodes can be trained to

make the viewing window follow round the edge of a figure. Once the system

has been trained on a few shapes, such as a square and a triangle, it can gen

eralise and follow the contours of others shapes, such as circles. Reeves’ net

works had direct feedback, that is, the present input and previous output are

fed directly to the nodes. Reeves never achieved the desired classification

4 0

which was in itself an important result, for it pointed out the need for a more

fundamental approach to the problem. The unsatisfactory results achieved by

Reeves are due to the configuration he selected, which was, in effect, a two

layer RAM network with feedback loops. Multi-layer networks are known to

be difficult to train and techniques like back-propagation were not used at the

time.

Tollyfield investigated the properties of networks with feedback [Tolly-

field, 75]. He was particularly concerned with the training algorithms required

to enable this type of network to solve recognition problems. He was looking

for a training algorithm which would be generally applicable to a wide range

of tasks. What emerged, however, was that the deriving of training algo

rithms is a far more complex problem that was at first envisaged, that a uni

fied approach would be almost impossible. He realised that the inherent

behaviour of sequential network restricts the selection of training strategies.

Networks with feedback loops possess memory of previous events and so one

needs to consider the feedback information during training. It is more difficult

to control cyclic (temporal) activities than static (spatial) responses. In the

case of temporal patterns the design of training strategies is even more com

plex because the information (which is to be absorbed by the network) con

cerning the class membership of a pattern is spread out in time.

Fernandes applied feedback networks to the problem of temporal recog

nition [Fernandes, 77]. Two particular cases of segmented temporal patterns

were considered in his work: the recognition of prototype sequences with

errors and the recognition of sequences of tracking movements in a scene

analysis problem. The technique proposed involved not only the use of

sequential networks but also the use of combinational networks and the use of

conventional storage systems. He showed that sequential networks are

41

inherently stable sequential structures, and with the recognition of prototype

sequences with errors there was no need to train the network. He proposed a

technique where input sequences are transformed by a sequential RAM net

work into points in an one-dimensional Euclidean space. The sequential net

work was shown to reduce the complexity of the discrimination process.

2.5. SUMMARY OF THE CHAPTER

This chapter has presented some of the work done in Artificial Neural

Networks since the first definition of an artificial neuron. Some of the history

of neural networks has been reviewed: the reasons for a ‘dark age’ in the

seventies and the reasons for the revival of the current interest. Also some of

the ways in which neural networks have been trained and used were outline.

The logical model was described, including the definitions of the RAM

and the PLN nodes. A comparison between the two nodes was delineated,

where the advantages of each node were reported. The WISARD system,

based on the RAM node, was explained. Some other tasks using the RAM

node were covered.

The last section of the chapter related some of the difficulties of design

ing neural networks to solve temporal problems. The work connected with the

topic of this thesis, using the logical node, was explained.

This chapter was intended to prepare the way for the discussions which

follow for the rest of this thesis, by presenting the advantages and disadvan

tages of the different neural models. It gave some of the reasons why the logi

cal node was chosen to be used in the system described in chapter 4.

4 2

CHAPTER 3

AUTOMATA THEORY

3.1. INTRODUCTION

To make the thesis self-contained all the concepts used from Automata

Theory are defined in this chapter. The definitions are followed by examples

which are going to be used again in chapter 5. Although the literature on

deterministic and non-deterministic automata is quite substantial, not quite as

much work has been done on probabilistic automata [Rabin, 63]. As a back

ground to the current chapter and chapter 5 of this thesis, a brief overview of

the work done in probabilistic automata is given in the fourth section of this

chapter.

In the last section, some applications of neural networks designed to for

mal language recognition are described. Such networks have the same compu

tability power of finite state automata. Some of these systems are able to

recognise very simple context-free language with the aid of extra memory. In

chapter 5, it will be shown that logical networks can compute more than finite

state automata without the need of extra memory.

3.2. FINITE MACHINES

Finite-state languages (or regular languages) are generated by the sim

plest of the formal grammars, that is regular grammars, and are recognised by

finite state automata. In this section a regular grammar and a finite state auto

maton will be defined. Each definition is followed by an example.

43

Before giving the definitions of a regular grammar and a finite state

automaton some notation need to be introduced. If VT is the terminal alpha

bet, the Vt denotes the set of all patterns composed of symbols of VT, includ

ing the empty pattern e. Vf denotes the set Vf - e, where € is the empty word.

Synonyms for pattern are string, sequences and word and throughout this

thesis two different notations for patterns X and w are used.

Definition 3.1 - A regular grammar G is a 4-tuple G=(VN,VT,P,S) in

which:

1. VN and VT are the set of nonterminal and terminal symbols of G, respec

tively. VN is supposed to have k elements. The union of VN and VT constitutes

the total alphabet V of G and VNC\VT= 0 .

2. P is a finite set of rewrite rules or productions denoted by Si-~wS2 or S^w

where Sl5 S2 € VN and w is a pattern of terminal symbols (w € vf) .

3. S € VN is the starting symbol of a sentence.

It is assumed that the nonterminal variables are ordered 5!, S2, . . . , S k and

if the production rule has the form S^wSj where /a j it is a recursive produc

tion rule. Note that this does not impose any restrictions in the regular gram

mar yet it simplifies the structure of the algorithms proposed in this thesis.

In order to define the language a grammar generates, the relations = >

and = > between strings in V* need to be defined. If a-*(3 is a production of P

and y and £ are any strings in V*, then ya£ = > y(3£. Suppose that a^, o^,

...» am are strings in V*, and = > o^, (* 2 ~ > a 3> •••» a m_i = > am-

Then a-, = > a .1 m

The language generated by a grammar G is L (G) = { x | x € Vj such that
,

S = > x}.

Below an example of a regular grammar is given.

44

G = (Vn ,Vt ,P,S) where Vn= { s ,5i}, V1 = {a,fc} and

P: (1) S-aSj

(2) Sj-aJ!

(3) Sj-fc

The language 1(G) generated by G is L(G) = {x | x = a nb with n = 1,2,... }

Note that, as defined here, e can be in no regular language. If L had a

finite description then Ly=L U { e } would likewise have a finite description of

L\. The definition of regular grammar will be extend to allow production rules

of the form S - e , where S is the start symbol, provided that S does not appear

on the right-hand side of any production rule. In this case, it is clear that the

production rule S - e can only be used as the first step in a derivation.

Definition 3.2 - A finite state automaton A is a 5-tuple A = (S,G,8,^0,^)

where 2 is a finite set of input symbols (alphabet), Q is a finite set of states, 8

is a mapping of Qx2 into Q (next-state function), q0 € Q is the initial state,

and F C Q is the set of final states. The set of patterns accepted by A is

defined as T (A) = {x | 8(^0,x) € F}.

There exists a one-to-one relationship between the languages generated

by regular grammars and the sets accepted by finite state automaton which can

be expressed by the following theorems (the proofs for these theorems are

omitted here as they can be found in any text book of Automata Theory, such

as [Hopcroft-Ullman, 79]).

Theorem 3.1. Let G = (VN,VT,P,S) be a regular grammar. Then there exists

a finite state automaton A — (^ , Q , h , q 0,F) with T(A) = L(G).

Theorem 3.2. Given a finite state automaton A = (2,g ,8,90,F), there exists

a regular grammar G = (VN,VT,P,S), such that L(G) = T(A).

An example of a finite state automaton is:

A = (2 ,0 ,S ,?o,F) where 2={a,Z>}, Q = {q0,qi,q2}, and

45

8: § (q Q, a) = q 0; 8 (q 0 , b) = q 1; 8 (q i , a) = q 2, H q \ , b) = q 2, 8(q 2 , a) = q 2 , § (q i , b) - q 2\

Figure 3.1 The transition diagram of a finite state automaton.

Figure 3.1 shows the transition diagram of this finite state automaton.

The language recognised by the finite state automaton A is r (A) = { x | x = a nb

with n = 1,2,... }, which is the the language generated by the grammar of the

example in definition 3.1.

3.3. PROBABILISTIC MACHINES

In this investigation of probabilistic automata, the approach of Rabin

[Rabin, 63] is used. There is no deterministic decision as to whether a pattern

X belongs to the language recognised by a given probabilistic automaton, but

only a decision concerning a certain probability of this membership.

Languages recognised by probabilistic automata with a cut-point are called

weighted regular languages [Salomaa, 69]. Weighted regular languages are

generated by weighted regular grammars.

Definition 3.3 - A weighted regular grammar Gw is a 4-tuple

G „ = (V n ,Vt ,Pw,S) where V#, VT and S are as in definition 3.1 above and Pw is

4 6

a finite set of weighted productions denoted by otj - p - j (p,;) where a - S V N ,

p.j is of the form w or wSi with Si € VN and w is a pattern of terminals,

j= i = pij is a weight associated with the application of this

weighted production rule and nf is the number of productions rules which has
JL

the nonterminal st as a. The weight associated with a derivation — > a m

is equal to the product of the weights associated with the sequence of

weighted productions used in the derivation.

The weighted regular language generated by Gw is L(GW) = {(x,p(x)) | x €

*
Vt , S = > x , j = l , . . . , k and p (x) = ' £ pj} where k is the number of distinctively

i= i
tVidifferent derivations of x from S and pj is the weight associated with the j

distinctive derivation of x. The language generated by Gw with a cut-point X.,

such that 0<\<1 will have the additional restriction of p(x)>\ for all patterns

generated by Gw.

Below is an example of a weighted regular grammar.

O w = (y „ , V T , P w , S) where VN= {5,5„52,53,54}, Vr= {0 ,l} and

(1) 5-15, (P = l)

(2) 5 ,-0S3 (p = 0.5)

(3) S,-054 (p = 0.5)

(4) 5 ,-0 (p = 0.5)

(5) 5,-15, (p = 0.5)

(6) 5,-152 (p = 0.5)

(7) 52-152 (P = l)

(8) 52-0S3 II o Ln

(9) 53-153 (p = 0.5)

(10) S3-154 (77 = 0.5)

(1 1) 5 3- l (P = 0.5)

(12) 54-154 (P = 1)

47

(13)S4-1 (P = 1)

The weighted regular language generated by G„ is L(G*,) =

{(lm01”-/7(jr))|»j>0,«^0} and the language generated with a cut-point X=0.5 is

L(GW,X = 0.5)= {(lm01"-p(x))|0<m^n}.

Note that there is no restriction associated with the weights py. If it is

imposed that O c p ^ l and ^ 1 Gw would be a stochastic regular grammar.
;= i

The set of languages generated by a stochastic regular grammar is the same as

that generated by a regular grammar, while the set of languages generated by

a regular grammar is a special case of that generated by a weighted regular

grammar. That is, there exists a weighted regular grammar which is not a fin

ite state language, for instance, L(GW,\ = 0.5) above, is context-free. There is a

formal proof that L(GW,X = 0.5) is not regular, in appendix I. One illustration

of the relationship between the Chomsky’s hierarchy and weighted regular

languages is provided in figure 3.2 below, with the following abbreviated

notation: WRL is the set of weighted regular languages, RL is the set of regu

lar languages, CFL is the set of context-free languages, CSL is the set of

context-sensitive languages and TZL is the set of type zero languages.

This essentially means that: (1) WRL D RL; (2) WRL n CFL * 0 ; (3)

WRL D CSL * 0 ; (4) WRL n TZL ± 0 ;

Definition 3.4 - A probabilistic automaton is a 5-tuple j4p= (2 ,£ ,8 ,ttq,F),

where 2 , Q and F are as in definition 3.2 above, 8 is a mapping of 2 into the

set of nxn (where n is the number of states in Q) probabilistic state transition

matrices and ttq is an n-dimensional row vector and is designated as the initial

state distribution. The interpretation of 8(a), a € X, can be stated as follows.

8(a) = where Pij(a) ^ 0 is the probability of entering state qj from state

n

q{ under the input a , and 2 Pij-U f°r all * =
;=i

4 8

Figure 3.2 Relationship between Chomsky’s hierarchy and
weighted regular languages.

The weighted regular language accepted by a probabilistic automaton Ap

= (2 , 0 , 8 ,ttq,F) is T(Ap) = {(x,p(x))\x € 2 , p(x)= iTQ5(x)'irp>0}. The

language accepted by Ap with a cut-point \, such that 0^\ <1 , is L(A,A.) = {

(x | x € 2 and HQ8(x)'irp>X.}, where Tip is an n-dimensional column vector,
i L

in which the iin component is equal to 1 if <?, € F and 0 otherwise.

There is also a one-to-one relationship between the languages generated

by regular weighted grammars and the sets accepted by probabilistic automa

ton.

Below an example of a probabilistic automaton is given.

Ap=(2,Q ,8,'itq,F) where 2={0,1}, Q ={gi,42,43,44,45>46h 'n ^ t l 0 0 0 0 0],

F = {45} and 8 is given in the tables below.

_____________8f0)_____________
_ 4i 4? 43 45 4fi
41 0 0 0 0 0 1
4? 0 0 0 .5 .5 0
43 0 0 0 .5 0 .5
44 0 0 0 0 0 1
45 0 0 0 0 0 1
.46— 0 0 0 0 0 1

4 9

________ 8m______________
_ q\
Q\ 0 1 0 0 0 0
q? 0 .5 .5 0 0 0

0 0 1 0 0 0
0 0 0 .5 .5 0

q̂ 0 0 0 0 1 0
gfi ■■ 0 0 0 0 0 1

Figure 3.3 shows the transition diagram of this probabilistic automaton.

Figure 3.3 The transition diagram of a probabilistic automaton.

The language recognised by this probabilistic automaton is the same language

generated by the weighted regular grammar in the example of the definition

3.3, irrespective of whether or not there are cut-points.

3.4. OVERVIEW

In this section, rather than giving a complete chronological review of the

history of research on probabilistic automata only the important events and

discoveries which are directly related to the concepts in this thesis are outline.

Following the McCulloch-Pitts modelling of the neuron, Kleene [Kleene,

56] investigated the capabilities and limitations of automata constructed from

5 0

these idealised neurons. He was interested in what kind of events are capable

of being represented in the state of such automata. His principal result was to

show that only and all regular languages (definitions 3.1 and 3.2) may be

represented by a network composed of McCulloch-Pitts neurons. Thus

McCulloch-Pitts neurons are one example of a kind of "universal element" for

finite automata. It is of course essential to his arguments that the number of

cells and the number of states of each are fixed in advance. An assumption of

his mathematical theory, the neurons are reliable and never fail. If the neu

rons could fail the machine would be non-deterministic.

In order to find a closer approximation to reality von Neumann [von

Neumann, 56] made the assumption that with every basic organ is associated a

positive number p such that in any operation the organ will fail to function

correctly with the probability p. In a complicated network, with long

stimulus-response chains, the probability of errors in the basic organs make

the responses of the final output unreliable unless some control mechanism

prevents the accumulation of these basic errors. Deterministic automata are

not suitable for describing the von Neumann model because of the probability

associated with the function of each organ. Since the time of the introduction

of probabilistic elements by von Neumann, many studies of the consequences

of such elements have been published.

De Leeuw et al. [de Leeuw et al., 56] discuss the question ‘Is there any

thing that can be done by a machine with random elements which can not be

done by a deterministic machine?’. They defined, the p-machine, a machine

composed of random devices, which they analysed in relation to enumerable

events. Until that time machines composed of random devices were similar to

non-deterministic automata. Later Rabin [Rabin, 63] defined probabilistic

automata and showed that these automata can recognise more than finite state

51

languages. To the concept of random element machines, he added, the idea of

having a cut-point X related to each machine. The class recognised by the

machine may change accordingly with the change of the cut-point X. This

development was the inspiration for much further work.

Paz [Paz, 66] made a deep analysis of Rabin’s suggestion and showed,

among other things, that even with the simplest case (i.e. probabilistic auto

mata with a single symbol in the alphabet and any number of states, or proba

bilistic automata with any number of symbols and two states) there are events

definable by probabilistic automata which are not regular (regular in the sense

of the definition 3.1). He also extended a little Rabin’s results in stability1 of

probabilistic automata.

The concept of stability plays a fundamental role in the theory of proba

bilistic automata. The behavioural stability of a probabilistic automaton, Ap,

can be defined as follows:

Let Ap have a probabilistic state transition 8 and a cut-point X then Ap is stable

if, when slightly perturbed the probabilistic state transition of Ap to give a

new automaton A'p with a probabilistic state transition 8’, r(Ap,X) is still equal

to T(A'p,\) ; that is, the set T(Ap,\) is unchanged by small changes in 8. The

physical background to this question related to the circuit theory is obvious. In

an unreliable circuit it is not possible to know the probabilistic state transition

with absolute accuracy therefore, it is useful to know that even approximate

values of 8 will lead to a correct description of the circuit behaviour. There

are some sufficient conditions for stability and there are cases in which stabil

ity is not possible but the general problem is still wide open.

1 Stability in probabilistic automata, in general, means that the set recognised by a given probabilistic
automaton does not change under the influence of small perturbations of the transition probabilities of such
probabilistic automata.

5 2

Salomaa [Salomaa, 69] demonstrated the equivalence between the

languages generated by a weighted regular grammar and the languages

accepted by probabilistic automata. Fu and Li [Fu-Li, 69] studied weighted

regular languages (X-stochastic as they called, A. is the cut-point) (definitions

3.3 and 3.4 in this chapter) and their relationship with Chomsky’s hierarchy.

Later, Fu in his book about syntactic pattern recognition [Fu, 82] applied sto

chastic languages to syntactic pattern recognition. Turakainen demonstrated

that for every weighted regular language it is possible to find a probabilistic

automaton with a cut-point X, for any 0<\<1, which can recognise L

[Turakainen, 68]. This means for example, that every weighted regular

language is y-weighted regular. The restriction \>0 is essential, because

every 0-weighted regular language is regular. Conversely, every regular

language is 0-weighted regular because every finite deterministic automaton

can be rewritten as a probabilistic automaton, where the probabilistic state

transition matrices consist of 0’s and l ’s only.

The concept of continuous time was applied to probabilistic automata by

Knast [Knast, 69b]. This concept is similar to a Markov chain with a continu

ous parameter. These results can be applied to neural net machines where the

state of the machine can change at any time. Knast [Knast, 69a] also intro

duced the idea of a linear probabilistic sequential machine. He showed that

there are linear probabilistic automata which can accept non-regular events.

Page [Page, 69] extended the Rabin and Paz’s stability analysis of proba

bilistic automata. He studied the stability problem for probabilistic automata

which are defined from all initial distributions rather than a fixed initial state

as Rabin did. The results he obtained are useful when analysing the stability

of PLN nets.

53

Implementations of probabilistic automata are usually based on deter

ministic devices ([Guiasu, 68], [Paz, 71] and [Fu, 72]). This thesis is con

cerned with the possibility of implementing probabilistic automata with PLN

nets, which will result in a probabilistic implementation of probabilistic auto

mata.

One motivation for studying stochastic automata was the possibility of

using them as models of learning and pattern recognition systems. Some

work was done by Tsetslin with a deterministic automaton subject to a proba

bilistic training process [Tsetslin, 61]. Tsetslin was followed by many authors,

such as Bush and Mosteller [Bush-Mosteller, 55], Bruce and Fu [Bruce-Fu,

63] and others, who extended and generalised his approach.

There are many other applications of probabilistic automata, as for

example: in information theory where the communications channels can be

represented as a stochastic sequential machine; in reliability problems, when a

deterministic automaton has some unreliable elements, making its external

behaviour probabilistic; in control theory with control systems being modelled

by stochastic machines with input symbols representing commands; in analysis

of programming languages by probabilistic context-free languages, and so on.

3.5. THE APPLICATION OF NEURAL NETWORKS TO FORMAL

LANGUAGE RECOGNITION

There has been a great deal of interest in teaching neural networks to

recognise grammars and simulate automata. Much work has been done in this

field, mostly with MCP networks. Networks composed of MCP neurons are

finite state machines but it is not easy to train such networks to recognise reg

ular languages. It is even difficult to make these networks capable of

recognising context-free languages; it is only possible with the use of a

5 4

memory associated with the network. Such memory can be a stack or an addi

tional weight structure in a multi-layer network. Among the work done with

MCP networks in this field, two have been chosen to be described here. The

first example demonstrates the state of the art, and the second shows what

could be seen as an unprofitable application to neural networks.

Giles et al has defined a single layer recursive network which can learn

to simulate a deterministic finite state automaton [Giles et al, 90]. When this

neural network state automaton is connected to an external analog stack

memory, the combination can be interpreted as a neural network pushdown

automaton. The network finite state automaton is given the primitives, push

and pop, and is able to read the top of the stack. Through a gradient descent

learning rule derived from the common error function, the hybrid network

learns to use the stack actions to manipulate the stack memory and to learn

very simple context-free grammars. A question which remain open in this

work is how well such architectures will scale for more complex context-free

grammars which are used in ‘real’ problems.

Lucas and Damper proposed an algorithm which map, what they call, a

non-stochastic strictly hierarchical context-free grammar directly onto a con-

nectionist architecture using a relatively small number of neurons [Lucas-

Damper, 89]. What they call a non-stochastic hierarchical context-free gram

mar is nothing more than a finite regular language. They assume it is possible

to infer an adequate non-stochastic strictly hierarchical context-free grammar

for the set of patterns they want to recognise. A network is derived with

exactly the required number of neurons to match the problem from the

inferred grammar; no guesswork is involved. It is not mentioned in their work

how well the algorithm is likely to work for more complex grammars. Actu

ally the algorithm proposed in their paper is not able to deal with grammars

5 5

which have recursive productions rules.

It will be proved in chapter 5 that logical neural networks have the same

computability power as probabilistic automata. However, it is very hard to

train these networks to be able to recognise all weighted regular languages. In

this thesis an algorithm is given which leads to the design of a logical network

that behaves as a probabilistic automaton. Not much work has been done by

others on teaching logical networks to recognise grammars. Indeed the only

work found in the literature is where SLAM (described in section 2.3 page 31

of this thesis) networks are taught to recognise a small subset of a regular

language.

Tollyfield described a training method which enables a very specific net

work to function as a finite automaton [Tollyfield, 75]. The state structure of

this network is, to some extent, arbitrary, since the state labelling is unimpor

tant, but the transitions must bear some relation to the type of productions

permitted. The language which can be accepted by such a network is very res

tricted. Experimentally he showed that the chosen network appears to accept

all languages generated by regular grammars subject to two restrictions:

firstly, that the number of non-terminal symbols in the grammar should not

exceed three. Secondly, no more than two recursive productions should be

defined, one of which should specify the starting symbol S. Also the

languages can have only two terminal symbols. These restrictions on the regu

lar languages which can be learned by this method are severe. Although there

was scope for extending both the network and the training algorithm to

encompass languages generated by more complex grammars no further work

has appears to have been done.

56

3.6. SUMMARY OF THE CHAPTER

This chapter presented a brief survey on the work done in probabilistic

automata. Definitions of regular grammars and finite state automata were

given in the second part of this chapter. Weighted regular grammars and pro

babilistic automata were also defined. The relationship between weighted reg

ular languages and languages in Chomsky’s hierarchy was illustrated. Exam

ples of regular grammars, finite state automata, weighted regular grammar

and probabilistic automata were given. The use of automata theory in neural

networks was discussed. Some neural networks designed for formal language

recognition were described.

5 7

CHAPTER 4

A FEEDBACK RAM-NETWORK FOR TEMPORAL PATTERN RECOGNITION

4.1. INTRODUCTION

In this chapter a system is described which is able to deal with temporal

patterns. As anticipated in earlier chapters, the model employed is a feedback

neural network based on RAM neurons. It is shown that the response of a

RAM network with feedback carries information about the order of appear

ance of its input patterns. This makes these networks suitable for temporal

pattern recognition. Three different ways of doing the recognition are intro

duced, a probabilistic classifier, a buffer classifier and a finite state classifier.

The use of different classifiers gives a better insight into the systems and

shows the importance of the RAM network itself. Some experimental results

are given with each one of the classifiers used. A comparison of the results

obtained with the different classifiers is made. The influence of a stability pro

perty1 in the generalisation of a network and consequently in the ability of the

network to solve a specific task is discussed. Some ways of controlling the sta

bility of the network are presented and this is supported by experimentation.

4.2. DESCRIPTION OF THE NETWORK

The type of network used in this work consists of a layer of identical

RAM type digital neurons, where each has /:-address terminals, i of them con-

1 When, in this chapter, reference is made to the stability property or stability in a network it is the
stability of the network with respect to input sequences which is considered. That is, stability in the
tendency for the response of a given network not to change under the influence of small errors in the input
sequences. The effect of the stability property in logical neural networks is the increase of the
generalisation of the network.

58

nected to an external matrix of binary elements and / of them connected to the

output terminal of other neurons through clocked delay units (k= i+ f). The

structure of a Sequence Digital Neural Network (SDNN) is represented in fig

ure 4.1 where binary vectors X(f), J?(/), and D(t) represent respec

tively at time t, the state of the input matrix, the response of the neurons, the

delayed response of the neurons and the ‘desired’ response of the neurons.

Since the input connections are fixed and the digital neurons (RAM) used are

deterministic devices, the response J?(f) is only function of X(t) and .R(f-l):

R(t) = * [x (0 ,* (* -l)]
Unless otherwise stated, in the SDNN used in this work, the input vector

X(f) has the same dimension (n-bits) as i?(f), and D (t). The input and

feedback connections are randomly generated.

Figure 4.1 Sequential Digital Neural Network.

The notation SDNN(m,i,/) is used for a Sequence Digital Neural Network

with m neurons; each neuron has i terminals connected to the external input

and / connected to the feedback input. The contents of RAM elements are

randomly set before training. The initial state of the network is randomly

59

generated and the network is always put in the same initial state before feed

ing a pattern to it.

As illustrated in figure 4.1, the input stimulus of each digital neuron at

time t, A(f) = {Ax(f),Ar(0} has two components: Ax(f), the input component

with i-bits which depends solely on X(t) and Ar(t), the feedback component

with /-bits, depending only on the state of the network, R (t-1). Therefore,

the response of a given neuron, r(t) is only a function of its input and feed

back components: r(t) = g[Ax(f),Ar(0]

TRAINING THE NETWORK

In general, a training process, which consists of subjecting a SDNN to

change in the functions performed by its neurons, involves the choice of the

training vector D(t) as a function of both the input (X) and output (R)

sequences, D(t) = h [X , R] .

In the training mechanism used in this work the SDNN is trained to anti

cipate its inputs, i.e. D(*) = X(r + a), such that /?(f) = X(* + a) might be obtained

during the test phase. For example, with a = l one has D(*) = X(f + l), the net

work tries to predict the next input symbol.

The input matrix is represented by a subset T (the training set) of the

language L that needs to be recognised (in figure 4.2). A subset of language L

is a set of sequences of any length which belong to the language L. A subset

can have any number of sequences belonging to the language L.

During the training phase the network is fed with X € T with one (or

more) RAM(s) in the write mode, and the contents of the memory position is

changed M,[Ax(?),Ar(f)] = d,(f) for all RAMs in the write mode.

The choice of the training strategy depends on the desired application.

Unfortunately, there is not a developed theory in which, for a certain kind of

6 0

problem, a good training strategy can be determined. Here the training stra

tegy D(t) = x (t+ a) was chosen with the objective of the recognition of input

sequences through the states of the network. The goal with this training stra

tegy was to make the network stable with respect to small changes in input

sequences. In section 4.5 the effect of the training strategy described here on

the stability of the network will be explained. Another point to stress is the

fact that the percentage of RAMs that are made to learn at each moment is

variable (i.e. the training rate).

D(t)

R(t)

Figure 4.2 The training phase.

The need for controlling the training rate was first realised by Reeves

[Reeves, 74] in his attempts to classify image tracking sequences. A low train

ing rate is adopted in the experiments of this thesis, where, mostly, one neu

ron is allowed to change at each time. A training mechanism that changes the

responses of the neurons in a gradual manner is necessary because contradic

tions exists among the input sequences. With a low training rate the network

takes longer to be trained. This process can be speeded up provided one can

find an optimal set of training sequences, i.e., a set that is compact and whose

6 1

elements are properly representative of their classes (with less contradictions

as possible). However, finding such an optimal set is not a straight forward

task. Another interesting mechanism that has been incorporated into some

training processes, is the AGEING mechanism. AGEING was introduced by

Fairhurst [Fairhurst, 73] and consists of allowing a high initial training rate

which is reduced as the training phase goes on, eliminating the dominance of

the last pattern seen by the network. The problems with AGEING are that the

network may not stay long enough under the low training rate, which is more

effective than high training rate, and it introduces complications in the train

ing phase such as deciding for how long the training rate should be high and

how often and how much the training rate should be decreased. It is much

simpler to adopt a constant low training rate for the whole duration of the

training phase.

In order to justify the use of a single layer network with feedback in

sequence discrimination one needs to remember that the response of SDNN

carries information about the order of appearance of its input patterns, that is

each output of the network depends not only on the present input but also on

the previous ones. This is a well known result of finite state machines

[Aleksander-Hanna, 76]. But feedback networks are not the only way to deal

with this problem. It is possible to use a feed-forward RAM-network where

the chain mechanism created by supplying the information available by the

feedback loop is given directly from the external input of the network. For

instance, once the training strategy here is D(t) = X(t + 1), /?(*)—X(* + l), then

X(r+1) could be supplied to the network as an input symbol simultaneous with

X{t). This is not to say that feedback networks behave like a feed-forward net

work. The temporal properties of a feedback network are simply not needed

to create the chain mechanism. One advantage of feed-forward RAM-

6 2

networks is that they are less sensitive to input errors. For example, with a

feed-forward network where the external inputs are X(/) and x{t + 1), the

effect of a single error cannot last longer than 2 units of time. Whereas the

same cannot be said about a feed-forward network like that in figure 4.1. Due

to the temporal action of the feedback loops, the effects of a single error may

persist for much longer than 2 units of time. However, feed-forward net

works, because of their structures, are not inherently able to store sequential

information from their input patterns.

4.3. NATURE OF THE EXPERIMENTS

This section describes the nature of the temporal patterns whose recogni

tion is investigated in the next sections. Two different sets of temporal pat

terns are used. The first is generated by the tracking of different geometric

forms, such as triangles, squares and circles. The second one is generated by

regular grammars. In both cases the temporal patterns consist of segmented or

discrete temporal patterns, i.e., a whole consists of well defined segments or

components. In contrast, spoken and hand-written words are examples of tem

poral patterns without segmentation, i.e., the continuous case. The fact that in

our examples the patterns are already segmented makes their recognition far

easier than that of spoken words. In order to appreciate the importance of

segmentation one must remember that the most fundamental mechanism in

pattern recognition consists of breaking down complex patterns into sub

patterns that can be easily recognised, called primitive patterns or features.

What makes speech recognition such a difficult problem is that the segmenta

tion of continuous speech into phonemes is an extremely complex task. An

inherent characteristic of segmented temporal patterns is that they can be han

dled by synchronous systems. In other words, a segmented temporal pattern

6 3

can always be represented by a sequence X(l),X(2),...,X(f) of discrete events

or patterns belonging to a finite set of patterns. Since the work reported here

involves the use of digital systems, the temporal patterns that are dealt with

throughout the whole thesis are, in fact, sequences of binary vectors.

GEOMETRIC FORMS

The data set used in these experiments was generated and first used by

Fernandes [Fernandes, 77]. The set consists of tracking movements, of the

type used by Freeman [Freeman, 61], for geometric forms drawn on the

screen of a graphic display. The tracking consists of moving a cursor from a

point of a grid in the direction of its eight neighbours. This can be seen in fig

ure 4.3 below. In order to feed the network with a sequence of moves, in

every instant of time /, every move was coded as a binary vector. Experi

ments were done with the tracking sequences generated from circles, triangles

and squares.

+

Figure 4.3 Tracking Movements.

REGULAR LANGUAGES

The sequences in this set of experiments were generated by different reg

ular grammars. The symbols of the alphabet were coded as binary vectors.

64

Separate training and testing sets of sequences generated by the grammar were

used. Also a testing set of sequences generated by the complement grammar

was used.

The final configuration of the network is a finite state automaton. The

aim of this group of experiments was to analyse the behaviour of the network

when recognising different regular languages.

4.4. PROBABILISTIC CLASSIFIER

This section describes a classifier based on probabilities of occurrence of

patterns in each of the two classes, and L2, that need to be distinguished. If

one wants to distinguish more than two classes one can combine many of the

systems suggested in this chapter. The a posteriori probability, as defined

below, is used in this classifier.

The information carried by an input symbol X, regarding the class

membership of an input sequence X is directly related to the frequency with

which X, occurs in sequences of both languages L l and L2. This rather quanti

tative statement is a well known fact from information theory [Shannon-

Weaver, 49]. A classifier based, then, on the probability p (X $ L k/R) that the

input sequence X belongs to the language Lk , given that the response R

occurred when X was fed into the network makes use of the information

related with the occurrence of the symbols in each class. If

P^XZL^R) = p (X € L 2/R), the response R carries no information whatsoever

regarding the class membership of X. p (X € L k/R) is called the a p o s t er io r i pro

bability. In general, the greater the difference { p i X ^ L ^ R) - p (x £ L 2/R)\ the

more information R is carrying about the class membership of X.
Although the ideal would be p (X € L k/ R) = l for all symbols in the

6 5

sequence X € L k , this does not generally happen. What often happens is that

p (X € L k/R) changes randomly near 1 for sequences X in Lk and near 0 for

sequences X not in Lk. Hence, a measure is required which considers

p(X$.Lk/R) for all input symbols in the same sequence X. The measure that

was used was the continuous average
a

Sk(t) = a - l'2 p (X Z L k/R(t)), it =1,2 and
t = i

Using this measure, for all sequences belonging to the language Lk the sum

Sk{t) tends to 1, while for all sequences not belonging to the language Lk the

sum Sk(t) tends to 0.

Note that the network used in combination with the classifier has output

and feedback state very big (in many experiments of this thesis they have 32-

bits). This means that a huge number of different states are possible (232 in

the case of a 32-bits state). It is not likely that the network will follow the

same sequence of states when a different sequences of input are fed to the

network even if the different sequences have the same symbols with the same

frequency.

For instance if two different sequences X and Y are fed to the network.

X = A B C and Y = ACB , where A, B and C are the input symbols of the different

languages and are coded in 32-bits. Suppose that the network before the feed

ing of both X and Y are in an initial state R0. Suppose now that the output

states for X are R h R2 and R3 and for Y is R u R2 and R3. So it is not likely

that, with such a big number of possible states (232), R2 will be equal to R2 and

R3 will be equal to R3. If, on the other hand, the sequences X and Y were not

fed to the network but the classifier was used with the X and Y, no discrimina

tion would be possible with this classifier. X and Y have exactly the same

input symbols with the same frequency and this classifier is only based on the

frequency with which the symbols occur in each class.

66

It is assumed that in coding the symbols the biggest Hamming distance

between them as possible exists because it is always possible to choose the

code in a way that this is true. Experiments were carried out using only the

classifier, without the network. The results showed, of course, that no distinc

tion at all between the classes which have the same set of input symbols was

possible and where the frequency of occurrence of the symbols in different

classes is similar.

The approach proposed here was a discriminating one where the sum S k

carried only the amount of sequential information (or structural description)

necessary to discriminate sequences from sequences X£L2. Since the

transformation / : X - S was based on a "sequential sample" of the input

sequence X, the discrimination technique examined was not very sensitive to

distortion over input sequence variations. The presence of errors, like deletion

and insertion of symbols did not impair the discrimination process [Fer

nandes, 77].

The system proposed here is composed of three phase:

Phase One: Training the network. In this phase the network is trained with

sequences X belonging to the language L to be recognised as explained in sec

tion 4.2.

Phase Two: Calculating the probabilities. In this phase the a posteriori proba

bilities for sequences X belonging to the language L to be recognised

p (X € L k/ R) are calculated and stored to be used in the next phase.

Phase Three: Testing the system. The input sequences are fed to the network

and based on the probabilities p (X € L k/ R) the sums S k(t) are calculated.

This system could have an extra phase where a threshold would be calcu

lated based on the sums for different languages to be recognised. In such case

the recognition of the sequences would be done based on the value of the

6 7

threshold. The experimental results shown here are related to phase three.

Below the results of the experiments to distinguish different geometric

forms given their tracking sequences are given. The network was composed of

32-RAMs with four inputs each, two from the input patterns and two from

the feedback state. The input patterns X correspond to the sequence of track

ing movements. The first feedback state was randomly generated.

In the figure 4.4 the language Lj was composed of triangles of different

sizes and L2 was composed of squares and circles as examples of non

triangles. In the figure 4.5 the the language Li was composed of squares and

L 2 composed of triangles and circles as examples of non-squares.

o _

c n L i

c o -

cn
CD G C
CL)

-

-

c r0)w
in -

JO
E ^ '
13C

C \l -

o -)........... . ' *................—I ■ i 11— »— '• ’~ i I I"f ■ ■ |

0 0.1 0.2 0.3 0.4 0.5 0 .6 0.7 0.8 0.9 1
S (t = 5 0)

Figure 4.4 Probabilistic Classifier with L^triangles and L2— squares and circles.

68

o

Figure 4.5 Probabilistic Classifier with L-squares and L2=triangles and circles.

This classifier was effective at distinguishing different geometric forms.

The leftmost curves in the figures are for sequences X in L2 while the right

most curves are for sequences X in L\. Note that if ones chooses a threshold

between 0.4 and 0.6 in figure 4.4 and between 0.3 and 0.65 in figure 4.5 one

is able to distinguish the two classes.

Figure 4.6 shows the results of an experiment with regular languages. In

the experiment L\m { x \ x = a lb^ckd l,/,/,*,/&0} and L^—U — L ^ where U is the

universal set.

6 9

Figure 4.6 Probabilistic Classifier with L1= {x\X= a'b^^d1 ti,j,k,l^0} and L2= U -L l.

Although this classifier was effective for distinguishing different

geometric forms, it was not efficient with regular languages. Any value

chosen for the threshold leads to some misclassification. One of the reasons

for this is that in such regular languages the position of the symbols in the

sequences are crucial for the sequence to be classified as belonging to a

language. This means that a great deal of sequential information should be

stored by the network and knowledge of more previous inputs needs to be

processed all the time by the system. Consequently the design of a buffer clas

sifier will be described, which was able to deal with more sequential informa

tion. Also the influence of the stability property on the generalisation of the

network was studied and this is followed by a consideration of the perfor

mance of the network to solve a specific task.

7 0

4.5. STABILITY PROPERTY

For most practical applications, one has to deal with error and distortions

over which there is no control. This is the case for transmission over noisy

channels and also for the recognition of speech and other pattern recognition

tasks. Using RAM- networks it is easily seen how the stability (the effect of

input errors) is controlled by the choice of a well-defined class of functions

performed by the neurons.

The stability property of the network is responsible for the increase of

generalisation. Thus it has direct influence on pattern discrimination and

identification. The relationship between the stability and the generalisation of

a feedback RAM-network was studied with the aim of improving the results

with temporal pattern recognition tasks. Also the influence of different stabil

ity control methods in relation to sequence recognition was examined.

The stability of RAM-nets mainly depends on two parameters: a) neuron

memory contents and b) feedback connection.

a) Neuron memory contents. The stability can be controlled by the distribu

tion of 0’s and l ’s in the neuron memory. The difference between the number

of 0’s and l ’s in the neuron memory is denoted by DL. The greater the differ

ence DL between the number of 0’s and l ’s in the neuron memory the less

will be the probability of changes in the neuron output, in consequence the

network will be more stable. There are two different ways of controlling the

memory contents. 1) direct control and 2) adaptive control. These were first

used by Fernandes in [Fernandes, 85] and then by Ludermir [Ludermir, 86].

1) Direct control. The functions of each neuron is selected at random in such

a way that a particular difference DL could be the same for all neurons.

2) Adaptive control. The distribution of 0’s and l ’s is made through training

with any training strategy.

7 1

b) Feedback connection. These influence the recovery from an input error in

time in a network. If the network has a low number of feedback connections

the error propagation through time is reduced and the recovery phase will be

short. Thus the network is more stable. The greater the number of feedback

connections the larger the influence of error on the network.

The measures used to analyse the results of experiments on stability was:

the size of state sets in each class of sequences fed into the network; the per

centage of error recovery of the input sequence; and the amount of sequence

distinction. The state sets of each class should not be large (in order to save

process time and memory) nor that the common states should be many (in

order to have good discrimination). Take two input sequences

X=X(l)X(2)...X(t) and X' = X'(l)X'(2)...X'(f), where X ' is a distorted version

of X such that they have few different input symbols. In other words

X (r) # X ' (r) for some instant of time. The sequence X is used at training phase

and X ' is used at test phase. The percentage of recoveries from errors in an

input sequence influences the size of the state set in each language. That is,

once the Hamming distance between the responses of the sequence X 6 L, fed

into the network during training, and the test sequence X ' € L is zero

(/t(f) = J*[r(O,r'(f)]=0) all the responses (states) will be the same. Networks

which are stable will generate a smaller quantity of different states than net

works which are not stable.

Experiments were done with different geometric forms and different net

works for which the feedback connections were changed ([Ludermir, 89b] and

[Ludermir, 90a]). The networks used were SDNN(32,2,2) (a Sequence Digital

Neural Network with 32 nodes; each node has 2 terminal connected to the

external input and 2 connected to the feedback input), SDNN(32,2,3),

SDNN(32,2,4), SDNN(32,2,5) and SDNN(32,2,6). The distribution of 0’s

7 2

and l ’s in the neuron memory were controlled by the direct and adaptive con

trol methods described earlier. The goal with the experiments here is to show

the relationship between the stability of the network and its capacity to

discriminate patterns. The feedback connection of the network are increased

in the experiments because as high it is the feedback connection as less stable

the network is. The network is less stable with high feedback connections

because the changes in an input pattern will take longer to be forgotten by the

network, generating different responses until the network has completely for

gotten the difference between the input patterns. Another way to make net

works stable is by controlling the differences between 0’s and l ’s in the

memory of the nodes. The extreme case is when all the memory has only 0’s

or only l ’s. In such cases the network will give the same answer for all input

patterns (complete stability).

ERROR RECOVERY OF INPUT SEQUENCES

When the networks are more stable there will be a better recovery from

the input errors because the network will not give give different responses to

small differences in the input patterns. It is expect, then, that the network

with small number of feedback connections will have better recovery from the

input errors (networks with small number of feedback connections are more

stable than networks with big number of feedback connections). It is impor

tant to note that networks which have a large difference between the number

of 0’s and l ’s in the memory of their RAMs, resulting from direct control of

stability, do not always display a high recovery rate from input errors. This is

because the increase in the differences between 0’s and l ’s is made randomly.

For similar patterns the direct control can give completely different response

because the network is not shown the patterns and their similarities. This does

not happen with the adaptive control where the changes in the memory con

rec
ov

ery

pe
rce

nta
ge

7 3

tents are done by training and the network is exposed to the common charac

teristics of the patterns in the same class.

adaptative
DL=0
DL=37,5%

Figure 4.7 Recovery Percentage

Figure 4.7 shows the percentage of error recovery of input sequences for

experiments with five different networks. One can see that when the number

of feedback connections increases the percentage of error recovery of input

sequences decreases. With SDNN(32,2,2) there is no difference between a

direct control of stability with high value of DL and adaptive control because

the number of feedback connections is small and as a consequence the net

work is very stable. The network SDNN(32,2,3) with direct control and with

D L = 0 (that is: half of the memory contents are 0’s and half are l ’s) was not

able to recover from input error at all because the network was made unstable

from the very small difference between the number of 0’s and l ’s and also

from the increase of the number of feedback connections. Networks with

greater number of feedback connections were less stable and only the adaptive

control method was successful in making these networks able to recover from

input errors because the direct control also makes the network not stable.

74

SIZE OF STATE SETS

When the networks are more stable the size of state sets will be smaller

than when the network are not very stable because when the network is

unstable even similar patterns will generate different states. It is expected,

then, that networks with small number of feedback connections will generate

small size of state sets. The maximum number of states by class is the smaller

value between: 1) 2", where n is the number of bits in the output response

(state) or 2) the number of sequences fed into network multiplied by the

number of symbols in each sequence. The size of state sets has an effect upon

sequence discrimination. In experiments in which the size of the state sets is

very large there is no discrimination between sequences belonging to different

classes because most states belonging to all different classes.

Figure 4.8 State Sets Size

■gj— adaptive
* — DL=0
* — DL=37,5%

Figure 4.8 shows the number of states in each class of sequences for

experiments with the five different networks. The maximum number of states

by class is the number of sequences fed into the network, multiplied by the

number of symbols in each sequence: 500x50=25.000. SDNN(32,2,2) using

75

adaptive control produced a smaller state set, that is, less computation was

necessary to discriminate sequences in different classes, than when using

direct control. With SDNN(32,2,3) the size of the state sets was closer with

adaptive control and direct control with high value of DL. Networks with

greater number of feedback connections produced very large state sets with

direct control, whilst with adaptive control they were still of a reasonable size

because both large number of feedback connections and direct control make

the network unstable.

SEQUENCE DISCRIMINATION

With more stable networks the discrimination of sequences in different

classes is better because the number of states in each class is not big and the

recovery from input errors is good. With an unstable network the discrimina

tion of a patterns is difficult because small variations between the prototypes

(patterns in the training set) and the test pattern result in a completely dif

ferent response sequence R. An unstable network generates more unknown

rejections whilst a very stable one generates more rejections due to low confi

dence (the network is unable to notice the differences between patterns) and

errors from too much generalisation. The generalisation of stable networks

are greater than the generalisation of unstable ones. This implies that with

more stable networks there are more patterns not in the training set being

recognised. It is necessary to limit the size of the generalisation set because

large generalisation sets generate more recognition error.

Figure 4.9 shows the discrimination capability of the network for experi

ments with five different networks using the probabilistic classifier and the

geometric forms as data. The discrimination capability of the network is illus

trated by the difference between the values of S^t) from sequences in the

class to be recognised and the values of Si(t) from sequences which do not

7 6

adaptative
DL=0
DL=37,5%

2 3 4 5 6

feedback connection

Figure 4.9 Sequence Discrimination

belong to the class to be recognised. When the values of the difference

between 5^(0 for X belonging to L and S i (t) for X not belonging to L are

shown to be negative in figure 4.9, it means that there was an intersection

between the values of the sums as in the case of the experiment showed in fig

ure 4.6. There, the difference is -2, which means that there is an intersection

between the values of the sums and that it would be a misclassification if the

sums are in a certain range of .2. If the sums are between .5 and .7 it is not

possible to decide to which class the sequence belongs. With SDNN(32,2,2)

and SDNN(32,2,3) it was possible to distinguish the sequences with both ways

of controlling the stability of the network because the networks were stable in

all cases and the state sets were not very large.

It should be noted that with SDNN(32,2,2) there was not too much

difference in the rate of input error recovery between the two methods of sta

bility control, and that the size of the state sets with adaptive control was

smaller than with direct control; meaning that the adaptive control is the more

efficient in sequence discrimination. However with SDNN(32,2,3) the size of

77

the state sets was similar with adaptive control and direct control with high

value of DL\ the input error recovery was similar and the discrimination

power between the two ways of controlling the stability of the networks was

also the same. Networks with more number of feedback connections had

values of ^(f) which were very close to each other mainly in the cases where

the stability control was direct with D L= 0. With a high number of feedback

connections the network was not very good at discriminating sequences.

Increasing the number of feedback connections causes the network to

remember an input error for a longer time resulting in a less stable structure.

The percentage of input error recovery deteriorates. State sets become larger

and in some cases this will cause difficulties in performing temporal pattern

recognition.

Below is given a short description of the effect of the training strategy

described at the section 4.2 on the stability of the network. Given two dif

ferent instants of time tt and tj, a given neuron may be subjected during a

teaching process, where the stored responses are changed according to

A f [A (r)] = c/(/), to one of the following conditions:

d(ti) = d(tj) with A(ti) = A(tj) eq.(a)

d(ti) = d(tj) with eq.(b)

d(ti)^d(tj) with A(ti) = A(tj) eq.(c)

d(ti)i=d(tj) with A (*,•)# A fy) eq.(d)

Equation (c) has clearly a contradictory effect, for the neuron is asked to

store different responses for the same stimuli, whereas equation (b) has the

opposite effect, since for two different stimuli the neuron associate the same

response. If equation (b) occurs often in the training phase the number of dif

7 8

ferent states will decrease because for different input patterns, the same state

is being associated. On the other hand if the equation (c) occurs often the

number of states will increase because the same input is associated with dif

ferent states. Considering the training conditions above, it can be said that a

SDNN can only become more stable, due to training, if the condition stated

by equation (b) occurs more frequently than that expressed by equation (c).

As explained before stable networks generate small number of states.

4.6. BUFFER CLASSIFIER

This classifier was designed to make the discrimination system capable of

processing more sequential information. With the probabilistic classifier

described in section 4.4 it was not possible to distinguish sequences from the

second set of experiments (Regular Language Data Set).

The RAM-feedback network used in this thesis was blind to small differ

ences in patterns. This can be explained through the stability property. Take

two sequences X = X (1) X (2) . . . X (/) and X' = X ' (l) X ' (2) . . . X ' (f) where X' is a dis

torted version of X such that: X(t)¥ :X '(t) for t = 1 and X(t) = X'(t) for t > 1, for

instance. R = i ? (l) / ? (2) . . . R (0 and j?' = fl, (l) R ' (2) . . . <R '(f) denote the correspond

ing output sequence with respect to X and X' respectively. Since the Ham

ming distance / t [X (l) ,X ' (1)] > 0 then naturally / i [i ? (l) , i ? ' (l)] > 0 . But /i[/ ? (/) , £ ' (*)]

tends to decrease as t increases due to the fact that h[X(t),X’ (r)] = 0 for t > 1.

The SDNN tends to enter the output sequence R when t increases. In other

words a SDNN tends to forget the differences between the input sequences X

and X ' .

The feedback states of the RAM-network used in the probabilistic clas

sifier do not contain enough information to recognise small differences

between patterns. In order to save more information a buffer was introduced

79

into the probabilistic classifier. The buffer stored the time of occurrence of

the states.

One state can occur with the same probability to patterns in different

classes which makes this state to carry no information about the class of the

patterns. But if this state occurs in different instant of time in the different

classes and the time is stored, then this state carries information about the

class of the patterns. This classifier is composed of the same three phases of

the probabilistic classifier. It is in phase two that the time of occurrence of the

states are stored. For each language there will be, k sets of states, where k is

the longest size of sequences in the languages. Here k is equal to 50. Also at

any instant of time there will be two set of states, one to each language, to be

considered.

When feeding different sequences X in the same language to the net

work, it is not likely that the states (or the responses of the network)

generated by all the sequences of a language appear in the same order. From

this fact, a window in which the states can happen is defined. That is, the

states are allowed to occur in an interval of time but not at any time. This is

the same as to say that the responses (states) of the network are allowed to

occur in some different order from the responses generated by the training

sequences but not in any order. If the responses can occur in an interval of

time it means that such response can occur in any time in that interval which

implies that the responses generated by an input sequence can occur in a dif

ferent order in a specific interval. How different it can be the order of the

responses generated by an input sequence is controlled by the size of the win

dow. If the size of the window is the length of the longest sequence in the

language, this classifier becomes the probabilistic classifier. If the size of the

window is equal to 1, the states need to occur in exactly the same order as that

8 0

in which they occurred during the training phase. If the state occurs during

training more than once in the window, the probability chosen for the state is

one instance of time closer to the instant of time at which the state occurred

during the test phase.

In the same way as in the previous classifier the ideal would be

p(X$Lk/R) = l for all symbols in the sequence x€Lk , but this does not gen

erally happen. Again, the continuous average of the probabilities is used. The

sum is defined as:

Sk(t) = a - ' i l p(.XZLk/R(t'))
t= 1

where t '= t± t" , *" = 0,1,...,wj; *= l,2 and with w s being the window

size.

This classifier was submitted to the same experiments as with the proba

bilistic classifier. Better results were achieved with the buffer classifier than

with probabilistic classifier because extra memory were added to the buffer

classifier and the time of occurrence of the responses were taken into account.

To deal with this extra memory and the time of occurrence of the responses

made the buffer classifier more complex and took longer to run than the pro

babilistic classifier.

Figure 4.10 shows an example of the results obtained with this classifier.

The results were obtained with the examples of the experiment on the figure

4.6 in section 4.4, that is:

L1= ;,*,/£:()} and L2= U -L 1

Here, in contrast with the probabilistic classifier in experiment 4.6, it

was possible to distinguish between the different classes very well. Note that

the buffer classifier has two properties in common with any model of tem

poral pattern recognition. Firstly, some memory of the input history is

81

required - in this case the buffer stores the order in which the input symbols

occur in the sequences. Such a buffer does not limit the sequence length.

Secondly, a function must be specified to combine the current memory (or the

temporal context) with the current input to form a new temporal context.

o

Figure 4.10 Buffer Classifier with L1= {X\X= a‘bJckdl,i>j,k,ln0} and L2=C/-L1.

4.7. FINAL STATE CLASSIFIER

Here ideas from formal language theory are used to recognise temporal

patterns using neural networks. It is desirable to characterise the class of

languages that can be recognised by a specific neural network.

One way to recognise temporal patterns using Neural Networks is

through the final state of the network, which makes use of the way in which

8 2

finite automata work. As a result of this, instead of having a probabilistic

calculation, a significant set of final states is required.

After the network has been trained, a finite-state structure is generated

inside the network. The network is then fed with some patterns from the

language to be recognised and the final state of the network for each sequence

is stored. A sequence is deemed to have been recognised if the final state,

after the test sequence has been passed, is within a certain Hamming distance

of the final state for one of the training sequences.

S* = min {rfj\yf(6(.Ro>X),/2f)> }/n ; # 5 € F ; k = 1 ,2 ;

n is the number of bits in a symbol, R 0 is the initial state, RF is a state belong

ing to the set of final states and F is the set of final states.

It is necessary to consider this Hamming distance because otherwise the

generalisation with this classifier would be very small. Instead of calculating

sums of probabilities, S k is just the Hamming distance between the last state

achieved with a sequence X and the closest state in the final state set. The

Hamming distance is normalised in order to compare the results from this

classifier with the results in the previous ones. In contrast with the two other

classifiers, when X is in L k , S k should be close to 0 while when X is not in L K ,

S k should be close to 1.

This classifier was submitted to the same examples, as the probabilistic

and buffer classifiers. Figure 4.11 shows the results for this classifier for the

same problem as in figure 4.4. Figure 4.12 shows the results for the same

problem as in figure 4.6.

As can be seen, in the examples above, the results with this classifier are

worse than with the previous classifiers. In both experiments a complete

separation between the classes was not achieved. The bad results come from

the large generalisation. The network recognises all sequences in the language

8 3

o

Figure 4.11 Final State Classifier with L^triangles and L2= squares and circles

it has been trained on but it also recognises some of the sequences which do

not belong to the language (over-generalisation) because the Hamming dis

tance allowed was too big. When a smaller Hamming distance were used

some patterns belonging to the language were out of the generalisation set

then the experiment with the bigger Hamming distance was chosen to be

shown here. Also the network cannot recognise all the finite state languages

because it is being trained only to predict the next symbol of the input

sequence and there are finite state languages that do more than predict the

next symbol(state).

With this classifier, the minimum difference in Hamming distance

acceptable is decided upon depending on the problem to be solved. For

instance, to solve the parity problem, the difference should be 0 because this

8 4

Figure 4.12 Final State Classifier with L1= {x\x = a'bjckdl and L2=C/-L1.

is a problem where a very small change in the input pattern causes a very big

change in the output pattern (i.e. it changes the classification of the pattern).

Another advantage of this classifier is that, it is very easy to know the total

generalisation of the network by the regular expression. In the next chapter a

method to calculate the total generalisation of a network is given based on

automata theory.

4.8. CONCLUSION

A methodology has been presented for Temporal Pattern Recognition.

The main ideas behind this methodology are: (1) the use of a feedback RAM-

network (2) the use of different classifiers and (3) the study of the relation

85

ship between stability and the recognition of patterns. The main strengths of

the method are that: (1) the response of a RAM-network with feedback car

ries information about the order of appearance of its input patterns (2) the

RAM-network is capable of recognising patterns independently of its initial

states even in the presence of input distortions and (3) the generalisation

emergent from these networks. Three different classifiers (probabilistic,

buffer and final states) have been presented. The way that the output infor

mation of a network is processed makes a difference when working with dif

ferent pattern recognition problems. Different classifiers are necessary to deal

with different kinds of problems. The probabilistic classifier is efficient with

the distinction of some sequences but if much sequential information needs to

be processed the buffer classifier is more effective in distinguishing the

sequences. On the other hand the buffer classifier is more complex than the

probabilistic classifier. The goal with the final state classifier was different.

With this classifier the idea was to measure the performance of the network as

a finite state automaton.

The stability of a network was studied because it has an influence on its

generalisation. Stability can be responsible for an increase in generalisation

and can be controlled by the choice of a well defined class of functions per

formed by the neurons. Two different methods were used to control the sta

bility: direct control and adaptive control. The number of feedback connec

tions of the network was increased to make the network less stable. The

results of the experiments were analysed using three different parameters: the

size of state sets , the percentage of error recovery of input sequence and the

amount of sequence distinction. Although stability increases generalisation,

when a network is made stable by direct control, the classification made by

the network is not always good. The number of feedback connections should

86

be low to make the network stable. But if the number of feedback connections

is too small the network is not able to store the temporal context. With a high

number of feedback connections only the adaptive control method produced

recovery from input errors. With adaptive control the discrimination was

better than with direct control. If the network is not stable, the state set is

larger and the discrimination is poor.

If the stability control is made by the choice of the size of feedback con

nections, such size should be decided at the time the topology of the network

is defined. It is not easy to change such size later on. In contrast, when the

stability is controlled by the memory contents, the decision can be taken later

on. As seen in the last paragraph the results from the study of stability facili

tated the choice of parameters for the networks used in the discrimination

experiments. For instance, a network should not have a big number of feed

back connections when used for discrimination of sequences. In the case of a

network of 32-RAMs with two input connections in each RAM, the number

of feedback connections should not be greater than three. Actually, the best

results were obtained with only two feedback connections.

8 7

CHAPTER 5

COMPUTABILITY OF LOGICAL NEURAL NETWORKS

5.1. INTRODUCTION

Since McCulloch and Pitts [McCulloch-Pitts, 43], there have been many

studies of mathematical models of neural networks. Many concrete applica

tions such as pattern recognition have been successfully tried. Many kinds of

training techniques have been developed. However, there has been little

theoretical research into the computability of such neural network models,

with the exception of the work of Kleene [Kleene, 56] in the fifties.

In this chapter a new approach to pattern recognition, using PLN (Proba

bilistic Logic Node) networks, is introduced. With this method the network

behaves as a probabilistic automaton. Using this method of recognition the

computability of the network is increased beyond that of finite state machines.

The class of languages that can be recognised by a logical neural network is

compared with the classes of languages in Chomsky’s hierarchy. In order to

do this it is demonstrated that the computability of a PLN network and the

computability of a probabilistic automaton are the same. To show that PLN

networks and probabilistic automata have the same computability power it is

only necessary to prove the following theorems:

Theorem 5.1 - Let Gw be a weighted regular grammar then there exists a

PLN neural network that recognises L(GW) with some cut point X, and

Theorem 5.2 - If a set of patterns L is recognised by a PLN neural network

then this set can be generated by a weighted regular grammar Gw.

With theorem 5.1 a network to solve a specific stochastic problem can be

designed. With theorem 5.2 the generalisation of a network and the functions

88

this network is able to compute can be determined. The two theorems

together show the power of the network. Note that a probabilistic automaton

can compute more functions than finite state automata, and once a proof that

PLN networks have the power of probabilistic automata is given it is implied,

then, that PLN networks are more powerful than RAM networks [Ludermir,

90c].

Additionally, having related logical neural networks to automata, some

comments can be made. Firstly, logical neural networks can be trained, from

a set of examples to solve a problem. Logical neural networks retain the

emergent properties of traditional connectionist models [Aleksander, 83].

Secondly, as seen in chapter 4, logical neural networks can be made more

powerful using some classifiers combined with the network.

The remainder of this chapter is divided into four sections. In the next

section the new method of recognition is explained. In the third section an

algorithm to transform any weighted regular grammar into a neural network

is given, proving the first theorem. In the fourth section it is shown that a log

ical network can compute only weighted regular languages, thus proving the

second theorem. The proofs of both theorems are algorithmic and are fol

lowed by examples. In the last section the advantages of such models are dis

cussed and some conclusions are presented.

5.2. A PROBABILISTIC RECOGNITION METHOD

In this section a different way of achieving pattern recognition is intro

duced. This new method, using PLN networks, is based on the way proba

bilistic automata recognise patterns. In the method, the output of the network

will consist of two parts. The first part is the recognition state of the network,

which corresponds to a final state in a probabilistic automata. The second part

89

is the probability of the input pattern being recognised, as in the probabilistic

automaton. A threshold, associated with the network, which has the function

of doing the last step of the recognition of the system is introduced. Patterns

will be recognised by the network if the probability associated with them is

greater than the threshold. It will be shown that one of the advantages of this

method is that the capacity of the network is increased. In the way PLN net

works have been used to date, they could only recognise regular languages,

whilst with the method proposed here they can recognise weighted regular

languages.

Structure of the network

The network consists of several layers of probabilistic nodes. The func

tions performed by the probabilistic nodes are COMPLEMENT, DELAY, p-

AND, p-OR. A p-and function is an operation which gives a value 1 if and

only if all inputs X x, ..., Xn are equal to 1. The only difference between an

and function and a p-and function is that in the memory position 2 " - l of an

and function there is a value 1 whilst in the memory position 2”- l of a p-and

there is a value p. This value p is used to calculate the probability of a pattern

being recognised by a network. A p-or function is an operation which gives a

value 1 if at least one of X lf ..., Xn is equal to 1. As with the and and p-and,

the only difference between an or function and a p-or function is that there

are values p in the memories of the node which performs p-or whilst there are

l ’s in the memories of the or node. Each node can have one, two or several

bits as input depending on the function the node performs. The nodes which

perform NOT and DELAY functions have one input bit. The ones which per

form p-AND functions and the ones which perform p-OR functions have two

or more input bits. Every input pattern X has a vj/ character as its first input

symbol. The i}/ character only occurs once in each input pattern X.

9 0

Recognition algorithm

1. Choose an input pattern X = X 1X 2 • • • X n .

2. Feed the pattern to the network and calculate the probabilities of success

ful paths1

3. Calculate the total probability of the pattern X.

4. See if the pattern is in the language to be recognised

As an example of the implementation of this algorithm a variable associ

ated with every node of the network can be used. The purpose of this variable

would be to store the probabilities of the path followed by the network until

that node. For each input symbol X { if the output of the node is equal to 1, to

update the variable associated with this node. Otherwise put 0 in this variable.

The updating step is better explained below. Suppose that a node k has n input

bits, i\, i2, ..., in. Each of this input bits are the output of nodes N ilt N i2, ...,

Â . The variables associated with nodes N ix, N i2, . . . , N in are V A ilf VA,-2, . . . , V A in

and the variable associated with node k is V A k . The updating of V A k is done by

the following procedure.

If function of node k is true (different from 0)

then begin

V A k : = p k ',

If function of node ix is true

then V A k: = V A k* V A h \

If function of node i2 is true

then V A k: = V A k* V A i2,

If function of node in is true

1 A path is a sequences of states which the network went to when a pattern X was submitted as the
input. A successful path is a path for which the last state of the path is in the set of the final states of the
network for the language to be recognised.

9 1

then V A k: = V A k* V \ ;

else V A k: = 0.

where pk is the probability associated with node k.

After the last symbol of the input pattern is fed to network, only the vari

ables associated with the successful path will have their values different from

0. To calculate the total probability of the pattern X, the values of all the vari

ables are summed. To know if the pattern X belongs to the language L the

total probability of this pattern is compared with the threshold.

This algorithm was only designed to show that the computability of PLN

networks could be increased and the algorithm can be improved in the future.

This algorithm was not used in many applications. One drawback of PLN net

works in relation to pattern recognition is that there is no deterministic deci

sion as to whether a pattern X belongs to the language recognised by a given

PLN network. The way this algorithm works makes the network generate the

same answer whenever a pattern X is submitted to the network. Although the

structure of the network described in the beginning of this section is very

specific, this algorithm will work with any other structure of the network.

5.3. FROM GRAMMARS TO NEURAL NETWORKS

In this section an algorithm for transforming any weighted regular gram

mar into a PLN neural network is given. The way in which the grammar is

transformed into the neural network is such that all the properties of the

grammar are preserved and it is possible to infer the grammar from the PLN

neural network generated. Networks constructed with four kinds of nodes: p-

and, p-or, complement and delay nodes will be considered. Any function of n

inputs can be represented by an expression involving only the operations of

9 2

AND, OR and COMPLEMENT [Booth, 71] then these networks will be able

to represent all functions of n inputs.

As in the recognition algorithm it is assumed that all sequences have an

initial symbol i)/. For example, suppose that a language L has three patterns

X = ABC, 7 = BCA and Z=ACB. To be used in the next theorem these pattern

need to be transformed in X=i|/ABC, F = i[/BCA and Z=v)/ACB. This sym

bol tells the network that a new pattern is being submitted to the network and

it occurs only in the beginning of each sequence. There is no loss of generality

in the supposition of each sequence beginning with a \|i symbol since it is pos

sible to define a node to deal with this symbol. Every PLN network will con

tain exactly one delay node to deal with the symbol i{>. The input of this delay

node is the symbol i|/. For example, in figure 5.1 below, the only delay node

is the one which deal with the symbol iJj . N ' will denote the network N

without the delay node whose the input is the symbol i|j . The input terminal

which connects the v|i symbol to the delay node will be called the i|/-input of a

network. In figure 5.1, for instance, the \[i-input is the input connection of the

delay node. With networks N ' s , the tj/-input of the network is the output of

the delay node (the one which deals with the \|/ symbol).

Each non-terminal symbol (the symbols belonging to the set vw) occurs

at most twice in the left-hand side of the production rules. That is, grammars

with productions like 5'-h’1| • • • |w„, n >2, for example, will not be considered.

The argument can be easily, but tediously, extended for those cases. Also, it

is possible to rewrite grammars where such non-terminal symbol occurs more

than twice in the left-hand side of the production rules in a way that all non

terminal symbols in this situation will occur twice at most.

Theorem 5.1. Let GW = (VN,VT>PW,S) be a weighted regular grammar. Then

there exists a PLN neural network that recognises L(GW) with some cut-point X.

9 3

Proof.

The proof of this theorem is based on the complexity of the production

rules. Transformation of the production rules, in PLN networks, will be

started by the most simplest production rule.

Case 1. The production rule is of the form $!->v (p), w € V} and 5! € VN.

a) S!”*w (p), w € Vj . If the only production rule is S^w (p) it denotes a set

containing only one pattern and it is recognised by the network constructed
x L i . 1 .

from a k+1 input p-and node whose j n input is the j n network input if Xjf

tV*the j n symbol of the sequence (pattern), is 1 , otherwise is the output of a
tV»complement node whose input is the j network input Xj. The last input of the

p-and node is the output of a delay node which has i|/ as input. The output of

the network Ns is the output of the p-and node. This network is shown in fig

ure 5.1 below where for j= 1, Xj=Xx= 1 then the first input of the p-and node

comes directly from the first input of the network and for j= 2, X j= X 2= 0 then

the second input of the p-and node is the output of a complement node which

the input is the second input of the network.

9 4

xl

x2

xk

*

Figure 5.1 A network for Si~w (p).

Below an example of a grammar which generates only one pattern is

given.

G „ = (V n ,Vt ,P„,S) where VN= {s}, Vr= {0 ,l} and Pw: {S-01(p = l)} The only

pattern generated by this grammar is 01.

The only pattern recognised by this network is 01.

b) S- €. If the only rule is S-* e it denotes the empty set. There are several

networks which are able to recognise the empty set. The one chosen here is a

9 5

network constructed from a k+ 2-input p-and node, a delay node for the input

\Ji and a complement node as shown in figure 5.2 below:

xl

x2

xk

*

Figure 5.2 A network S '- €.

The network was chosen to be constructed in this way in order to make it

similar with the other networks of this proof.

Below, an example of a grammar which generates only the empty pattern

is given. GW= (V N,VT,PW,S) where VN= {S'}, VT= { e } and Pw: {S-+ e}

The only pattern recognised by this network is the empty pattern e.

9 6

Case 2. The production rule is of the form wSj(p).

a) Si-wSj(p) with i < j . Suppose that w and Sj are generated by a grammar

with production rules as in case 1. Thus there are networks Nw and NSj which

recognises w and Sj. Now, the network NSl is constructed from N'w, N'S] and

two d e la y nodes as in figure 5.3 below. The output of N'w is the input of of a

d e la y node 2. The i|/-input of the network N'Sj is the output of d e la y node 2.

The output of NSl is the output of N'Sj.

Figure 5.3 Ns , a network for S ^ w S jip).

b) Si-+wSj(p) with i = j . Let Nw be as in case (a) above and construct NSl from

N'„, two d e la y nodes and a 2-input p -o r node as in figure 5.4 below. The out

put of N'„ is the input of d e la y node 2. The output of d e la y node 2 is one of

the inputs of the p -o r node. The other input of the p -o r node is the output of

d e la y node 1. The input of d e la y node 1 is the symbol i|/. The output of the p -

o r node is i|/-input of N ' Note that there is no output in this network S,. To

make sense every time a recursive production rule happens, there should be

an output for this recursive production rule. The recursive production rule

with output will be dealt with in case 3 of this theorem.

9 7

Figure 5.4 Ns , a network for S^wSj^p) with i = j .

c) Sr*wSj(p) with i > j . This case can be considered similar to case (b) above.

Let N„ and NS] be as in case (b) above and construct NSl from N'w, N'Sj, two

d e la y nodes and a 2-input p -o r node as in figure 5.5 below. The output of N'w

is the input of the d e la y node. The output of the d e la y node is one of the

inputs of the p -o r node. The other input of the p -o r node is the output of the

d e la y node associated with the original i|/-input of NSj. The output of the p -o r

node is the ijj-input of N'Sj. The output of N'Sj and the ijj-input of N'w remain

unchangeable. It is possible to have a loop between NSj and Nw, but this is not

generally the case..

98

Figure 5.5 Ns , a network for S i-w Sj(p) with i> j.

Case 3. The production rule is of the form 5,— w2S*(P2)-

a) Si-wxSj& i)\Si-w2Sk(p 2) with i < j , k . Let NWl, NW2, NSj, NSl be as in case 2 and

constructed NSl from N'Wl, N'W2, N'Sj, N'Sk, three delay nodes and a 2-input p-or

as in figure 5.6 below. The input of the delay node 1 is t|i. The output of the

delay node 1 is the i)/-input of the networks N’Wl and N'W2. The output of N'Wl is
the input of the delay node 2. The output of delay node 2 is the t|/-input of

N'Sj. The output of N'Sj is one of the input of the 2-input p-or node. The other

input of the p-or node is the output of N'Sk. The output of N'W2 is the input of

delay node 3. The output of the delay node 3 is the \|;-input of N'Sl and the

output of the p-or node is the output of S,. Note that and w2, or Sj and Sk,

or wj and Sk , or Sj and w2, or only wlt or only w2, or only Sjt or only Sk need

not exist and this would not change the methodology of the construction of

the network.

99

xl

xk

♦

Figure 5.6 Ns , a network for 5'/-w15,;(p1)|5'i->v2̂ jt(P2) with *< A*.

b) Sl--*w1s;-(p1)|S;-w'2S'*(P2) with i = j and i < k . Let NWl, NW2, NSk be as in case 2

and constructed NSl from N'Wl, N 'W2, N'Sk, three d e la y nodes and a 2-input p -o r

node as in figure 5.7 below. The input of d e la y node 1 is i|/. The output of

d e la y node 1 is one of the input of 2-input p -o r node. The other input of the

p -o r node is the output of the d e la y node 2. The output of the p -o r node is the

ij/-input of the network N’Wl and N’„2. The output of N’Wl is the input of d e la y

node 2. The output of N'W2 is the input of the d e la y node 3. The output of

d e la y node 3 is the \|/-input of N'Sk and the output of N'Sl is the output of NSr

As in case (a) above, sk need not exist and this would not change the metho

dology of the construction of the network.

100

If i = j and i< j above the same construction can be applied, only changing Sk

by Sj.

Figure 5.7 Ns, a network for S^wiSj(pi)\Si-*w2Sk(p2) with i = j and i<k.

c) Sl^wJSJ(p1)lSl^w2Sk(p2) with i = j=k . Here both production rules are recur

sive. There is no way out from such a loop. Although such production rules

are not expected to happen in grammars, a solution for them will be given for

completeness. This case is very close to case (b) above. The construction in

(b) to Sj will be applied also to Sk here. This is shown in figure 5.8 below.

101

xl

xk

*

Figure 5.8 Ns, a network for 5,-w15;(p1)|51— w2Sk(p2) with i = j= k .

d) IS1,-w2S*(/>2) with i> j and i<k. The first part of this case (

Si~wiSj(pi) with /> j) is equivalent to case 2 (c) and the second part

(Si-+w2Sk(p2) with i<k) is equivalent to case 2 (a). When considering both pro

duction rules (Si-wiSj(p{) and 5/-w2s*(p2)) it is necessary to put them together

as in case 3 (b). This is shown in figure 5.9 below.

102

Figure 5.9 Ns, a network for 5')-w15; (p1)|5,i-w2^(p2) with i> j and i<k.

If i< j and i>k above the same construction can be applied only changing Sk

by Sj.

If i> j and i>k above the same construction can be applied for both Sj and Sk.

103

Now, an example of a conversion of a weighted regular grammar into a

PLN neural network is going to be considered. Given the weighted regular

grammar Gv in the example of definition 3.3 in chapter 3 (page 45), in what

follows, networks which recognise each set of production rules for every sym

bol in VN of Gw are shown and in the last figure a network which recognises

L(GW) is shown.

x

*

0
0 N’Sl
0

delay ---- ► 1 delay --------!»■

NET S

NET S2

1 0 4

NET SI

105

NET S3

NET S4

106

<-
X

NET Gy,

1 0 7

Regular grammars can be transformed in RAM networks using the same

algorithm; but where the neuron stores 0, 1 and not probabilities. The proof

has been omitted and is implied by the following facts: firstly, as regular

grammars and RAM neurons are special cases of weighted regular grammars

and PLN neurons respectively, it is clear that the algorithm will work for

them. Secondly, it is well known that RAM networks are finite state machines

and so they are able to recognise finite state languages. And lastly, the

method for such proof is similar to the one for PLN networks. But as regular

grammars are not probabilistic, instead of putting probabilities in the memory

of the neurons, only the normal and, or, not and delay nodes are necessary.

No weighted regular grammar of languages other than regular ones can be

implemented in RAM networks, since RAM networks are finite state

machines and finite state machines can only recognise regular languages.

Although the algorithm presented in this section gives a complete struc

ture - the network and its memory contents - the language recognised by the

network can be changed in three ways. This is particularly useful when the

exact grammar of the language to be recognised is not known, only an

approximation. Two ways of changing the language to be recognised involve

training the network generated by the algorithm. The third, only involves

changing the threshold. The class recognised by a probabilistic automaton may

change accordingly with the change of the cut-point X [Rabin, 63]. This is also

true for logical networks. The languages recognised by a network when only

the threshold is changed, are related to each other. The higher the value of

the threshold the fewer the elements of the language will be recognised by the

network. That is, L 1 D L 2 D ... D L„ when Xj<\2< • • • <X„. If the threshold

is small there are more restrictions in the path followed in the network: every

time a new symbol, X h is submitted to the network the value of the probabil

1 0 8

ity of the pattern p(X) will decrease or will not change, but it will never

increase. The first way of training will change only the probability stored in

the memory of the nodes. When the probabilistic state transition of the proba

bilistic automaton is slightly changed, the probabilistic automaton will, some

times, recognise a different language [Rabin, 63]. Unfortunately, this is not

true all of the time. There are some sufficient conditions for stability in pro

babilistic automata and there are cases in which stability is not possible. The

general problem of stability is still unsolved, which means that if the changes

generated by the training algorithm in the state transition of the network are

small there is no guarantee that the training changes the language recognised

by the network. The training algorithm in this case can be very simple. Given

a pattern it, if it 6 L then to reward the network (decrease the probabilities of

the transitions the network went to with X) otherwise then to punish the net

work (increase the probabilities of the transitions the network went to with

X). A training algorithm which allows changes in any memory position in the

network is also possible. In this case the function computed by the network

can change completely. The generation of the network by the algorithm

described here is useful as an initial set up of the network.

5.4. FROM NEURAL NETWORKS TO GRAMMARS

In this section it is demonstrated that every set of patterns recognised by

a PLN neural network can be generated by some weighted regular grammar.

Again, as the main goal here is theoretical, optimisation is not a concern.

Actually, this theorem is necessary only to show that the relationship between

weighted regular languages and PLN networks is an if then if relation. This

algorithm can be used to determine the total generalisation of a network after

the network has been trained. This method of calculating the total

1 0 9

generalisation is more efficient than many others, for example: submitting

patterns to the network to see if they are recognised by the net. It is also

better than going through the whole network in order to calculate the general

isation. The method derived from the theorem gives also the probability of

recognition for each pattern in the class recognised by the network. At the

end of this section an example of this theorem with a PLN network will be

given.

Theorem 5.2. Any set of patterns L which is recognised by a PLN neural

network can be generated by a weighted regular grammar.

Proof.

Let N be the PLN neural network which recognises only the set of pat

terns L and let Gw= (V N,VT,Pw,qo) be the grammar which can generate only

and all patterns of L. Suppose there is an initial state q0 of N into which the

feeding all patterns of L will start, and suppose now that q0 is not a final state.

Then there is a production rule S,—aS/p) whenever the feeding of the symbol

a to the network in state 5, causes the network to enter state Sj with probabil

ity p, and also Si-+a(p) whenever the feeding of the symbol a to the network

in state S', takes the network to a final state with probability p. In the same
-Jir

way, there is a set of production rules such that Si = >wSj(p), whenever the

feeding of the pattern w to the network in state 5, causes the network to enter

state Sj with probability p. If w is accepted by N then, is q0 and Sj is a final

state. Hence L(N) = L(G).

Now let q0 be in the set of final states, then € is in L. Note that the gram

mar defined above generates L - { e } . Gw can be modified by adding a new start

symbol S with productions £-$0(Pi)l € (Pi)-

Note that the method used to prove this theorem is similar to that of

proving that a recogniser (automaton) and a generator (grammar) are dealing

110

with the same language in formal language theory.

Now an example of a transformation of a PLN neural network to a

weighted regular grammar is given. The PLN neural network is given in the

figure below.

Suppose that the states of the network are S^OO, S2=01, S3=10, and

54=11; the initial state is S The final state set is F = {52}; and the inputs are

a = 00, and b = 11. Then the grammar Gw will be definied as follows:

Gw—(Vh,Vt,Pw,Si) where V#= {Si,S2,S3,S }̂, Vj — {a,b} and

i V (l) S r a S 2 (P = 1)

(2) 5 j-W 2 (p = 1)

(3) S2-aS2 (P = 1)

(4) S^bS, (p = 1)

(5) SyaS2 (/> = 1)

(6) S3-+bS2 (p = 0.5)

(7) (p = 0.5)

(8) S ^ a S 2 (p = 1)

(9) SA~bSl (/? = 0.5)

(10) S ^ b S 3 (p = 0.5)

Ill

All languages recognised by a RAM network can be generated by some

regular language. The same procedure of theorem 5.2 can be used to show

this well known result. The proof of this fact has been omitted for the same

reasons the proof that regular grammars can be transformed in RAM net

works was omitted. The advantages of PLN networks, mentioned in the

beginning of this section, are also true in the case of RAM networks.

5.5. CONCLUSIONS

A new method of recognition of patterns with PLN networks, based on

the way probabilistic automaton recognises patterns using cut-point, has been

introduced. This method increases the number of functions which can be com

puted with PLN networks with respect to conventional methods used to date.

With conventional methods PLN networks have the computability power of a

finite state machine whilst, with the method introduced in this chapter, PLN

networks can compute all weighted regular languages. Having studied the

relationship between logical (PLN and RAM) neural networks and automata

(deterministic and probabilistic) and having analysed the computability of

such logical neural networks, a formal characterisation of the languages recog

nised by these logical neural networks has been obtained. Algorithms to

transform logical neural networks into automata and vice versa have been pro

vided. It may be worth noting that it is still possible to increase the power of

these networks with the addition of classifiers combined with the network, as

was done with RAM networks in the preceding chapter.

Although logical neural networks have the same computability as proba

bilistic automata it must be remembered that such networks learn how to

recognise a set by training while with automata the set of productions rules

have to be known in order to construct the network. In this work, the

112

networks were not trained to recognise weighted regular languages from

examples. A pushdown automaton network for the task of grammatical infer

ence as in [Giles et al., 90] could have been developed but this was not the

goal here. In their work, Giles et al. were able to solve some simple context-

free problems while here it was shown that it is possible to do much more

than this with logical networks. For finite state languages, a network to recog

nise the language from a set of examples can always be designed. For

instance, the learning algorithm developed by Porat and Feldman [Porat-

Feldman, 88] to obtain the automaton for the set of examples can be used.

Their algorithm will always learn the minimum state deterministic automaton

for any finite state language which is presented to the learning algorithm in

strict lexicographic order. The algorithm in section 5.3 can be used, then, to

transform any regular grammar into a RAM net.

Based on the stability property of probabilistic automaton, discussed in

chapter 3, ones knows that even slight changes in the probabilistic state transi

tion 8 can, in some cases, force the automaton recognise a different language.

Of course, big changes in the probabilistic state transition 8 will make the

automaton recognise a different language in all cases. Although, the main

goal here is to show the computability power of logical networks, it is possi

ble to use the procedure of theorem 5.1 to create the structure of a network

and then train this network to recognise a language which the grammar to

generate this language is not known. This structure can be trained in two dif

ferent ways as explained in section 5.3. The language recognised by the net

work can also be modified only by changing the value of the threshold.

As repetited concluded in the body of this chapter it has been shown that

PLN networks can compute more functions than RAM networks. It is

interesting to note that, in passing from a minimal deterministic automaton to

113

an equivalent probabilistic automaton sometimes it is possible to save states

[Rabin, 63]. The same kind of results were observed experimentally with

RAM and PLN networks. It is important to draw attention to the fact that

PLN neural networks are more powerful, that is, can compute more func

tions, than networks composed of McCulloch- Pitts neurons. This can be con

cluded by looking at Kleene’s results for McCulloch-Pitts networks and the

results of theorems 5.1 and 5.2 in this chapter.

By the computability power of McCulloch-Pitts networks one can show

that such networks can compute many of the hard learning problem (hard

learning problems were defined and discussed in section 2.2 of this thesis).

Kleene [Kleene, 59] showed that McCulloch-Pitts networks are equal to finite

state machines. Parity, for instance is a finite state problem, therefore

McCulloch-Pitts networks can solve parity. McCulloch-Pitts networks can

solve easily all hard learning problems which are regular. There are hard

learning problems which are not regular, as for example symmetry. In this

case a more sophisticated learning algorithm is necessary. If, when Minsky

and Papert presented their argument against perceptrons [Minsky-Papert, 69],

an analysis of the problem had been made through the computability of

McCulloch-Pitts networks one would have realised that what was necessary

was to change the topology of such networks. Of course, this would not have

easily revealed a way to train the network, but at least the research at the time

could have moved in the direction of analysing new topologies and looking

for training algorithms.

114

CHAPTER 6

CONCLUSIONS

The first section of this chapter summarises the contributions of the

research work described in the previous chapters and the last section discusses

possibilities for future work based on the results achieved in this thesis.

6.1. SUMMARY OF ACHIEVEMENTS

The primary aim of the work reported in this thesis was to investigate

the ability of logical neural networks to deal with temporal pattern recognition

tasks. With this in mind, three systems using RAM networks with feedback

were developed and used for temporal tasks. A new method of recognition

using PLN nodes was proposed which was shown to have increased the com

putability power when compared with logical neural networks. It was demon

strated that the computability power of PLN networks and probabilistic auto

mata are the same. The main contributions of this thesis are summarised in

greater detail in the following paragraphs.

CLASSIFICATION OF SEQUENCES

This thesis presented three different systems for recognising sequences.

All these systems were based on RAM networks with feedback, where the

feedback causes information about the order of appearance of input patterns

to be carried. The networks in all the systems were trained to anticipate their

input symbols. This was denoted as D(f) = X(f + cx), such that R(t) = X(t + a)

might be obtained during the test phase. This training strategy was chosen

with the objective of recognising sequences using the states of the network. It

115

was shown that it also made the network stable with respect to small changes

in input sequences.

It was seen that the output of the network did not have enough informa

tion to be able to deal efficiently with temporal pattern recognition. So, the

computability power of the systems was increased by the introduction of dif

ferent classifiers combined with the network. Such different classifiers were

considered to cope with different ways in which the output information of a

network is processed when working with different problems. The three dif

ferent classifiers used were the probabilistic, the buffer and the final state

classifiers. Below a short description of these classifiers and the results

achieved with each one of them are given.

PROBABILISTIC CLASSIFIER

This classifier was based on probabilities of occurrence of patterns in

each of the two classes, and L2, to be distinguished. The frequency with

which output symbol symbol Rt of the network occurs for sequences of both

classes L x and L2 was used in the discrimination process. In other words, the

probability p{X£Lk/R) that the input sequence X belongs to the language Lk,

given that the response R occurred when X was fed into the network, was

used in this classifier. p(X£Lk/R) changed randomly near 1 for sequences X in

Lk and near 0 for sequences X not in Lk . The continuous average Sk(t) of

p(x€Lk/R) was used for considering p(X£Lk/R) for all symbols in the same

sequence X. Sk(t) tended to 1 for all sequences belonging to the language Lk,

while Sk(t) tended for 0 for all sequences not belonging to the language Lk

when the distinction between the two classes was possible. This classifier was

effective at distinguishing different geometric forms, the first class of prob

lems that were dealt with. However, this classifier was not efficient in the dis

1 1 6

tinction of different regular languages, the second class of problems dealt

with. One of the reasons for the unsatisfactory results with the regular

languages was that in such languages the position of the symbols in the

sequences (and not occurrence frequencies) was crucial for determining

whether the sequence to be classified as belongs to a language or not. This

meant that a great deal of sequential information had to be stored by the net

work, which was not possible with this classifier.

BUFFER CLASSIFIER

This classifier was also based on the probability p {X £ L k/R) that the input

sequence X belongs to the language Lk , given that the response R occurred

when X was fed into the network. This classifier was designed to be more

powerful than the probabilistic classifier, once it was found that the proba

bilistic classifier was not able to distinguish between regular languages:

powerful in the sense that this classifier was able to process more sequential

information, that is, it used the information about the order of occurrence of

the input symbols in the input sequences also. The extra power of this classif

ier was introduced by the use of a buffer, to save more sequential informa

tion. Such a buffer was needed because although symbols occurred at dif

ferent positions in different classes, they could occur with the same probabil

ity in both. Hence, it was necessary to store the time of occurrence of the

states. This classifier was submitted to the same experiments as the probabilis

tic classifier. Better results were achieved with the buffer classifier than with

the probabilistic classifier, but the system was more complex.

117

FINAL STATE CLASSIFIER

This classifier was based on ideas from formal language theory. The

final state of the network was used in the discrimination of the two classes and

instead of calculating probabilities, a significant set of final states was

required. A sequence was recognised (accepted) if, after being fed into the

network, its final state was within a certain Hamming distance from the final

state of one of the training sequences. This classifier was submitted to the

same examples as the probabilistic and buffer classifiers. The results with this

classifier were worse than with the previous classifiers. The network could not

recognise all the final state languages because it was trained only to predict

the next symbol of the input sequence and there are finite state languages that

do more than predict the next symbol. The goal with this classifier though was

different: it was to measure the performance of the network as a finite state

automaton. Two advantages of the final state classifier were:

1) the minimum difference in Hamming distance acceptable could be set

depending on the problem to be solved. For instance, to solve the parity prob

lem, the difference should be 0 because this is a problem where a very small

change in the input pattern causes a very big change in the output pattern

(changes the class of the pattern) and

2) it is very easy to predict the total generalisation of the network by the reg

ular expressions.

INFLUENCE OF THE STABILITY PROPERTY IN THE CLASSIFICA

TION OF SEQUENCES

The stability of the network with relation to errors in the input sequence

was studied because it is central to the discrimination process. Two different

methods were used to control the stability: direct control, where the function

118

of each neuron was selected at random in such a way that the same DL (the

difference between the number of l ’s and 0’s in memory) could be met for all

neurons; and adaptive control, where the distribution of 0’s and l ’s was

caused by training. The number of feedback connections also influenced the

stability of the network and it was increased in order to make the network less

stable. Three different parameters were used to analyse the experimental

results when changing the size of the feedback connection and the way of con

trolling neuron memory contents: the size of the state sets; the percentage of

error recovery in input sequences; and the amount of sequence distinction.

The state sets of each class should neither be large nor should there be many

common states. The percentage of recoveries from error in an input sequence

influenced the size of the state set in each language.

Experiments were done with the networks of 32 RAMs, with 2 input

connections and the number of feedback connections varied from 2 to 6, that

is, SDNN(32,2,2), SDNN(32,2,3), SDNN(32,2,4), SDNN(32,2,5) and

SDNN(32,2,6). The results confirmed the fact that the number of feedback

connections should be low to make the network stable, i.e., not more than 3

connections in case of the experiments in this thesis. The best results were

achieved with 2 feedback connections. Although stability in the network

increases generalisation, when a network is made stable by direct control, the

classification made by the network is not always good.

DETERMINISTIC RECOGNITION ALGORITHM USING PLN NODE

A new recognition algorithm using PLN nodes was proposed. This new

method increases the number of functions which can be computed with logical

neural networks with respect to conventional methods used to date. With con

ventional methods PLN networks have the computability power of a finite

119

state machine whilst, with the method introduced in this thesis, PLN networks

can compute all weighted regular languages. This algorithm was based on the

way probabilistic automata recognise patterns using cut-points. The algorithm

makes use of the probabilistic information stored in the memory of the node

and the output of the network consisted of two parts. The first part is the

recognition state of the network and the second part is the probability of the

input pattern being recognised. Patterns are recognised by the network if the

probability associated with them is greater than the threshold associated with

the language. This algorithm not only increases the computability power of

the network but also it is more appropriate to pattern recognition because it

gives a deterministic decision as to whether a pattern X belongs to the

language recognised by a given network or not.

EQUIVALENCE BETWEEN LOGICAL NETWORKS AND PROBA

BILISTIC AUTOMATA

The equivalence of the computability power of a PLN network and a

probabilistic automaton have been demonstrated. To show that a PLN net

work and a probabilistic automaton have the same computability power it was

only necessary to prove the two following theorems:

• (Theorem 5.1) Let Gw be a weighted regular grammar then there exists a

PLN neural network that recognises L(GW) with some cut point and

• (Theorem 5.2) If a set of patterns L is recognised by a PLN neural network

then this set can be generated by a weighted regular grammar Gw.

From the proof of theorem 5.1 an algorithm was designed which, given any

weighted regular language, could construct a neural network that could recog

nise it, thus a network can be designed to solve any specific stochastic prob

lem. From the proof of theorem 5.2 another algorithm was designed to gen

120

erate a weighted regular grammar for the patterns recognised by a given net

work. With this theorem the generalisation of a network and the functions it

is able to compute can be determined. The two theorems together showed the

power of the network. Since probabilistic automata can compute more than

finite state machines, it follows that PLN networks can compute more than

RAM networks. Many neural problems, for instance, natural language under

standing, make use of context free grammars, therefore it is important to be

able to implement in neural networks at least some of the context-free gram

mars. The methods used to prove that PLN networks and probabilistic auto

mata have the same computability power can be used straightforwardly to

prove that RAM networks and finite state automata have the same computa

bility power although this is evident from the start. Three different ways to

change the language recognised by the network generated by the algorithm

from theorem 5.1 were given. This is particularly useful when the exact gram

mar for the language to be recognised is not known, only an approximation.

Two of the ways of changing the language involve training the network gen

erated by the algorithm and the third involves changing the threshold only.

6.2. IMPROVEMENTS AND SUGGESTIONS FOR FUTURE WORK

The study of the relationship between automata theory and neural net

works is at an early stage. Much work must to be done before the results from

automata theory can be exhaustively applied to neural networks. However,

automata theory have been used to come to conclusions about the computabil

ity power of logical networks and to show that logical networks can compute

the same functions as probabilistic automata.

There are several interesting points that were not examined in this thesis

as for instance the complexity of learning in such logical networks. Although,

121

it was shown that logical networks could compute weighted regular languages,

no mention was made of how long a network needs to learn a certain

weighted regular language. That is, how complex is the learning algorithm for

such networks. A study of the complexity of learning was made by Judd for

unidirectional feed-forward networks of MCP nodes [Judd, 90]. Although his

results are quite independent of the details in the nodes themselves he did not

tackle the problem for feedback networks. The complexity of the learning

problem in its general form (the learning of any function) is too difficult to

solve. One way of making the problem easier is by considering particular con

straints on the learning problem. There are fast learning algorithms for cases

where the network is of a very restricted design, or where the data to be

learned are very simple.

A way of increasing the class of languages that can be recognised by log

ical networks was given. Now it is possible to deal with all the weighted regu

lar languages using logical networks when before it was only possible to deal

with regular languages. There are weighted regular languages which are

context-free, context-sensitive and even unrestricted (type 0) languages. The

possibility of dealing with weighted regular language by itself is, then, a very

good result but the practical shortcomings of such a result was not really

investigated. Clearly, this investigation needs to be done soon.

The problem of training was not a concern of this work even though in

chapter 5 some considerations were made to the way the networks generated

by theorem 5.1 could be trained. More work needs to be done in order to

specify the properties a training set needs to have for a successful training of

the network. Also, different training algorithm and strategies should be

developed in the future to make use of the information provided by the node.

Since it has been shown, in this thesis, which functions can be recognised

122

by logical networks, a study can be made of the possibility of increasing the

power of these networks even further with the addition of classifiers com

bined with the network, as was done with RAM networks in chapter 4.

As most of the studies of neural networks are based on simulation

results, simulations should be done using different temporal problems to com

pare the experimental results with the results from other models. Also, the

recognition algorithm proposed in chapter 5 can be made more efficient, for

example, instead of having a variable associated to every node of the network

with the purpose of storing the probability of the the path followed until that

node, to use the memory of the own node to store such probability. This algo

rithm should be used in further experiments and its performance should be

measured.

The distant goal of ‘neural networkers’ is to understand how to store,

retrieve, and process data in neural networks; ultimately to characterise the

types of data that need to be stored, to know how best to represent them, and

to see how to design such machines that accomplish it with the greatest

engineering ease. It is hoped that the results of this thesis have contributed to

this quest.

1 2 3

REFERENCES

[Allinson-Johnson, 89] Allinson, N. M.; Brown, M. T. & Johnson, M. J.

(1989) {0,1}" space self-organising feature maps — extensions and

hardware implementations. Proc. 1st IEE International Conference on

Artificial Neural Networks, London, pp. 261-264.

[Aleksander-Hanna, 76] Aleksander, I. & Hanna, F.K. (1976) Automata

Theory: An Enginnering Approach. Edward Arnold, London.

[Aleksander-Mamdani, 68] Aleksander, I. & Mamdani, E.H. (1968) Micro-

circuit Learning Nets: Improved recognition by means of pattern feed

back. Electronics Letters, 4(20), pp.425-426.

[Aleksander-Mamdani, 70] Aleksander, I. & Mamdani, E.H. (1970) Univer

sal Sequential Logic Elements. Electronics Letters, 6(25), pp. 801-802.

[Aleksander-Morton, 90] Aleksander, I. & Morton, H. (1990) An Introduc

tion to Neural Computing. Chapman and Hall, London.

[Aleksander-Stonham, 79] Aleksander, I.; Stonham, T. (1979) Guide to pat

tern recognition using random-access memories. IEE J. Computers and

Digital Tech., 2(1): 29-40.

[Aleksander et al., 84] Aleksander, I.; Thomas, W.V. & Bowden, P.A.

(1984) WISARD, a radical step forward in image recognition. Sensor

Review 4(3), pp 120-124.

[Aleksander-Wilson, 85] Aleksander, I.; Dobree-Wilson, M. (1985) Adaptive

windows for image processing. IEE Proceedings, 132E(5): 233-245.

[Aleksander, 66] Aleksander, I. (1966) Self-adaptive Universal Logic Cir

cuits. Electronics Letters, 2, pp. 231.

124

[Aleksander, 71] Aleksander, I. (1971) Microcircuit Learning Computers.

Mills & Boon Ltd., London.

[Aleksander, 83] Aleksander, I. (1983) Emergent Intelligent Properties of

Progressively Structured Pattern Recognition Nets. Pattern Recognition

Letters, 1, pp. 375-384.

[Aleksander, 88] Aleksander, I. (1988) Logical connectionist systems. In,

Neural Computers (eds. R. Eckmiller, C. von der Malsburg). Springer-

Verlag, Berlin, pp. 189-197.

[Aleksander, 90] Aleksander, I. (1990) Ideal neurons for neural computers.

In, Parallel Processing in Neural Systems and Computers (eds. R. Eck

miller, G. Hartmann, G. Hauske). North-Holland, Amsterdam, pp.

225-228.

[Al-Alawi-Stonham, 89] Al-Alawi, R.; Stonham, T. (1989) A training stra

tegy and functionality Analysis of Multilayer Boolean Neural Networks.

Dep. of Electrical Eng. and Electronics. Brunei University.

[Arbib, 87] Arbib, M.A (1987) Brains Machines and Mathematics. McGraw-

Hill Book Company, New York.

[Bledsoe-Browning, 59] Bledsoe, W.; Browning, I. (1959) Pattern recognition

and reading by machine. Proc. Eastern Joint Computer Conference, Bos

ton, pp. 225-232.

[Block, 62] Block, H. (1962) The perceptron: A model for brain functioning

I. Reviews of Modern Physics, 34, pp. 123-135. [Booth, 71] Booth, T.L.

(1971) Digital Networks and Computer Systems. John Wiley and Sons,

INC.

[Bruce-Fu, 63] Bruce, G.D. & Fu, K.S. (1963) A model for finite state pro

babilistic systems. Proc. Conf. Circuit and System Theory, Allerton,

125

University of Michigan Press, Ann Arbor, Michigan.

[Bush-Mosteller, 65] Bush, R.R. & Mosteller, F. (1965) Stochastic Models

for Learning. Wiley, New York.

[Cheung, 73] Cheung, C.Y. (1973) Some Aspects of adaptive Logic for Pat

tern Recognition. PhD Thesis. University of Kent at Canterbury.

[Clarkson et. al, 89] Clarkson, T.; Gorse, D. & Taylor, J. (1989) Hardware

realisable models of neural processing. Proc. 1st IEE International

Conference on Artificial Neural Networks, London, pp.242-246.

[Dawson, 76] Dawson, C. (1976) Aspects of Simple Scene Analysis with

Learning Nets. PhD Thesis. University of Kent at Canterbury.

[de Leeuw et. al, 56] (1956) de Leeuw, K; Moore, E.F.; Shannon, C.E. &

Shapiro, N. Computability by probabilistic machines. In, Automata Stu

dies (eds. Shannon, C.E. & McCarthy, J.). Princeton University Press,

pp. 183-212.

[Fairhurst-Maia, 83] Fairhurst, M.C. & Mattoso-Maia, M.A.G. (1983) A

two-layer memory network architecture for a pattern classifier. Pattern

recognition Letters 1, pp.267-271.

[Fairhurst, 73] Fairhust, M.C. (1973) The Dynamics of Learning in Some

Digital Networks. PhD Thesis. University of Kent at Canterbury.

[Fernandes, 77] Fernandes, C.G. (1977) Adaptive Sequence Recognition with

Memory Elements. PhD Thesis. University of Brunei.

[Fernandes, 85] Fernandes, C.G. (1985) Stability Properties Inherent to Digi

tal Neural Networks. Proceedings of COGNITIVA 85, Paris.

[Freeman, 61] Freeman, H. (1961) On the Encoding of Arbitrary Geometric

Configurations. IEE Trans. Elect. Comput, EC-10, pp.260-268.

126

[Fu-Li, 69] Fu, K.S. & Li, T.J. (1969) On stochastic automata and languages.

Information Sciences 1, pp. 403-419.

[Fu, 82] Fu, K.S. (1982) Syntactic pattern recognition and applications.

Prentice-Hall, Inc., Enlewood Cliffs, N.J.

[Fukushima, 73] Fukushima, K. (1973) A model of Associative Memory in

the Brain. Kybernetik 12, pp. 58-63.

[Giles et al., 90] Giles, C.L.; Sun, G.Z.; Chen, H.H.; Lee, Y.C. & Chen, D.

(1990) Higher order recurrent networks & grammatical inference, to

appear in Advances in Neural Information Processing Systems 2 (ed. D.S.

Toureyzky). Morgan Kaufmann.

[Gorse-Taylor, 88] Gorse, D. & Taylor, J. (1988) On the equivalence and

properties of noisy neural and probabilistic RAM nets. Physics Letters A,

131(6), pp.326-332.

[Grossberg, 76] Grossberg, S. (1976) Adaptive pattern recognition and

universal recording: Part I, parallel development and coding of neural

feature detectors. Biol. Cybernetics 23, pp. 121-134.

[Guiasu, 68] Guiasu, S. (1968) On Codification in finite abstract random

automata. Information and Control 12, pp. 227-283.

[Hebb, 49] Hebb, D. (1949) The Organization of Behavior. Chapman and

Hall, London. [Hinton et. al, 84] Hinton, G.E.; Sejnowski, T.J. & Ack

ley, D.H. (1984) Boltzmann Machines: Constraint Satisfaction Networks

that learn. Technical Report CMU-CS-84-119, Department of Computer

Science, Carnegie-Mellon University.

[Hopcroft-Ullman, 79] Hopcroft, J.E. & Ullman, J.D. (1979) Formal

Languages and their relation to Automata. Addison-Wesley Publishing.

[Hopfield, 82] Hopfield, J. (1982) Neural networks and physical systems with

127

emergent collective computational abilities. Proc. National Academy of

Science USA, 79(8), pp. 2554-2558.

[Judd, 90] Judd, J.S. (1990) Neural Networks Design and Complexity of

Learning. MIT Press.

[Kan-Aleksander, 89] Kan, W.K. & Aleksander, I. (1989) RAM-Neurons for

Adaptive Image Transformation Tasks. In Neural Computing Architec

tures (ed. Aleksander, I.). Chapman and Hall, London.

[Kauffman, 69] Kauffman, S.A. (1969) Metabolic Stability and Epigenisis in

Randomly Constructed Genetic Nets. Journal Theorectic Biology, 22,

pp.437,467.

[Kleene, 56] Kleene, S.C. (1956) Representation of events in nerve nets and

finite automata. In, Automata Studies (eds. Shannon, C.E. & McCarthy,

J.). Princeton University Press, pp.3-41.

[Knast, 69a] Knast, R. (1969) Linear probabilistic sequential machine. Infor

mation and Control 15, pp. 111-129.

[Knast, 69b] Knast, R. (1969) Continuous-time probabilistic automata. Infor

mation and Control 15, pp.335-352.

[Kohonen, 89] Kohonen, T. (1989) Self-Organization and Associative

Memory. Springer-Verlag.

[Lucas-Damper, 89] Lucas, S.M. & Damper, R.I. (1989) A New Learning

Paradigm for Neural Networks. Proc. 1st IEE International Conference

on Artificial Neural Networks, London, pp. 346-350.

[Ludermir, 86] Ludermir, T.B. (1986) Sequence Discrimination with Digital

Neural Networks (in Portuguese). M.Sc. Thesis. Departamento de Infor-

matica, UFPE, Brazil.

128

[Ludermir, 88] Ludermir, T.B. (1988) Pattern Recognition using Neural Net

work. Imperial College. Neural Computing Group Internal Report.

[Ludermir, 89a] Ludermir, T.B. (1989) A Feedback RAM-Network for Tem

poral Pattern Recognition. Neural Systems Enginnering Internal Report.

[Ludermir, 89b] Ludermir, T.B. (1989) Stability and Temporal Pattern

Recognition with Feedback RAM-Network. Neural Systems Engineering

Internal Report.

[Ludermir, 90a] Ludermir, T.B. (1990) Stability and Temporal Pattern

Recognition. Proceedings IJCNN-90, pp. 428-431. Washington.

[Ludermir, 90b] Ludermir, T.B. (1990) A Feedback Network for Temporal

Pattern Recognition. In, Parallel Processing in Neural Systems and Com

puters (eds. R. Eckmiller, G. Hartmann, G. Hauske). North-Holland,

Amsterdam, pp. 395-398.

[Ludermir, 90c] Ludermir, T.B. (1990) Computability of Boolean Networks.

Neural Systems Engineering Internal Report.

[McClelland-Elman, 86] McClelland, J.; Elman, J. (1986) Interactive

processes in speech processing: The TRACE model. In, Parallel Distri

buted Processing: Explorations in the Microstructure o f Cognition (eds. J.

McClelland, D. Rumelhart). MIT Press, London, vol. 2, pp. 58-121.

[McCulloch-Pits, 43] McCulloch, W.; Pitts, W. (1943) A logical calculus of

the ideas immanent in nervous activity. Bulletin of Mathematical Biophy

sics, 5, pp. 115-133.

[Minsky-Papert, 69] Minsky, M.; Papert, S. (1969) Perceptrons: An Introduc

tion to Computational Geometry. MIT Press, London (2nd edition,

1989).

[Mozer, 88] Mozer, M.C. (1988) A Focused Back-Propagation Algorithm for

129

Temporal Pattern Recognition, Technical report CGR-TR-88-3, Dep. of

Psychology and Computer Science, University of Toronto.

[Myers, 88] Myers, C. (1988) Learning Algorithms for Probabilistic Neural

Nets. Proceedings First INNS Annual Meeting, Boston

[Nappey, 77] Nappey, J.A. (1977) Aspects of N-tuple Character Recognition

for a Blind Reading Aid. PhD Thesis. University of Kent at Canterbury.

[Page, 69] Page, C.V. (1969) Strong stability problems for probabilistic

sequential machines. Information and Control 15, pp.487-509.

[Paz, 66] Paz, A. (1966) Some aspects of probabilistic automata. Information

and Control 9, pp.26-60.

[Paz, 71] Paz, A. (1971) Introduction to Probabilistic Automata. Academic

Press, 1971.

[Porat-Feldman, 88] Porat, S. & Feldman, J.A. (1988) Learning automata

from ordered examples. Technical report TR 241, Department of Com

puter Science, University of Rochester.

[Rabin, 63] Rabin, M.O (1963) Probabilistic automata. Information and Con

trol 6, pp.230-245.

[Reeves, 74] Reeves, A.P. (1974) A Digital Learning System for Tracking

Pattern Features. PhD Thesis, University of Kent at Canterbury.

[Rumelhart et. al, 86] Rumelhart, D.; Hinton, G.; Williams, R. (1986)

Learning internal representations by error propagation. In, Parallel Dis

tributed Processing: Explorations in the Microstructure of Cognition (eds.

D. Rumelhart, J. McClelland). MIT Press, London, vol. 1, pp. 318-

362.

[Rosenblatt, 58] Rosenblatt, F. (1958) The perceptron: A probabilistic model

for information storage and organization in the brain. Psychology

130

Review, 65, pp. 386-408.

[Salomaa, 69] Salomaa, A. (1969) Probabilistic and weighted grammars.

Information and Control 15, pp.529-44.

[Shannon-Weaver, 49] Shannon, C.E. & Weaver,W. (1949) The Mathemati

cal Theory of Communication. University of Illinois Press.

[Shannon-McCarthy, 56] Shannon, C.E. & McCarthy, J. (1956) Automata

Studies. Princeton University Press.

[Stonham, 74] Stonham, T.J. (1974) The Classification of Mass Spectra with

Adaptive Logic Networks. PhD Thesis. University of Kent at Canter

bury.

[Stometta et. al, 87] Stornetta, W.S.; Hogg, T. & Huberman, B.A. (1987) A

Dynamical Approach to Temporal Pattern Processing. Proc. of the IEEE

Conference on Neural Information Processing Systems, pp. 750-759.

[Tattersall, 89] Tattersall, G.; Foster, S.; Linford, P. (1989) Single-layer

look-up perceptrons. Proc. 1st IEE International Conference on Artificial

Neural Networks, London, pp. 148-152.

[Taylor, 87] Taylor, J.G. (1987) Noisy neural net states and their time evolu

tion. King’s College report, London.

[Tollyfield, 75] Tollyfield, A.J. (1975) Aspects of Training and Connection in

Some Cellular Learning Network. PhD Thesis. University of Kent at

Canterbury.

[Tsetslin, 61] Tsetslin, M.L. (1961) On the behaviour of finite automata in

random media. Automat. Remote Control 22, pp. 1345-1354.

[Turakainen, 68] Turakainen, P. (1968) On stochastic languages. Information

and Control 12, pp.304-13.

131

[Turing, 36] Turing, A.M. (1936) On computable numbers with an applica

tion to the Entscheidungs problem. Proc. London Mathematical Society,

Ser. 2, 42, pp. 230.

[Vidal, 88] Vidal, J. (1988) Implementing neural nets with programmable

logic. IEEE Trans, on Acoustics, Speech and Signal Processing, 36(7),

pp. 1180-1190.

[von Neumann, 51] von Neumann, J. (1951) The general and logical theory of

automata. In Cerebral Mechanisms of Behavior : The Hixon Symposium.

pp.1-31. John Wiley & Sons.

[von Neumann, 56] von Neumann, J. (1956) Probabilistic logic and the syn

thesis of reliable organisms from unreliable components. In, Automata

Studies (eds. Shannon, C.E. & McCarthy, J.). Princeton University

Press, pp. 43-98.

[Widrow, 62] Widrow,B. (1962) Generalization and information storage in

networks of AD ALINE neurons. In Self-Organizing Systems (ed. Yovits,

G.T.). Spartan Books, New York.

1 3 2

APPENDIX 1

LANGUAGE L IS NOT REGULAR

Here we are going to prove with all details that the language L =

{(lm01”) | msn} is not regular. This example is used throughout this thesis

every time we need a weighted regular language which is not regular.

In order to prove that L is not regular we need first to introduce some

definitions and to prove some others facts. In what follows we will give all we

need.

Proposition 1 - If L is a regular language, there exists an integer n such

that if j € L and \s\^n, then s admits a factorisation uwv with |w 1 such that

uw'v C L. Furthermore, w can be chosen as a subsegment of any segment of s

of length n. In particular |>v|=£n.

Proof - Let A be an automaton with n states which recognises L. Let c be

a word in L and c' be a subword of c of length exactly n. Since the successful

path of c ’ in A must contain a repeated state, then results a factorisation of c

with d a subword of c ' and |d| l̂. Setting u = a, v = b and w = d , it follows that

uw*v C L.

If L is an infinite language, L contains a word s with and the successful

path for s in A will then involve a repeated state.

Corollary 2 - If L is an infinite regular language, then uw'v C L for some

d

1 3 3

*
k , w , v € 2 , with Iwl^l.

This corollary permits us to show that various languages are not accepted

by finite state automaton.

Definition 3 - Given an automaton A = (2,C,8,^0»-p,)» the reversal automa

ton is A^=f2fQ,h\g0,F) with 8 ’(p,a) = q for each 8(q,a) = p in A. Thus a word

w in A with w = wh...,wn yields a word w* in A* with w4>s=w#I,...,w1.

Proposition 4 - The class of regular languages is closed under union.

Proof - Let L l and L2 be regular languages generated by regular gram

mars and G2=(V % ,V $,P2,S2) , respectively. By renaming

symbols, if necessary, we can assume that and Vj contain no symbol in

common, and that S is in neither of them. We construct a new grammar,

G3= (vn\J yjvU s > vt{ J vt>p 3>S)> where P3 consists of the productions of p x

and P2 except for Si-*€ or S2-*e, plus all productions of the form S->a such that

either S ^ - a is in P l or S2-+a is in P2. L (G 3) = L (G 1) y L (G 2) .

Proposition 5 - The class of sets accepted by finite state automaton is

closed under complement.

Proof - Let M1= (S p ^ ',8 ,^0,ir) be an automaton accepting a set Let

be a finite alphabet containing 2^ and let d be a new state not in K. We con-
jje

struct M2 to accept ^ - SY. Let M2=(K\Jd,'2,2>S2’Qo>(K~ F) U d)> where

82(q,a) = 8 ^(q,a) for each q in K and a in 2p 82(q ,a) = d for each q in K and
*

a in ‘ and 82{d,a) — d for each a in ^ 2 . M2 accepts ^2 - S\.

Proposition 6 - The class of regular languages is closed under intersec

tion.

Proof - Immediately from the fact L2=L1y L2 and propositions 4

and 5.

Proposition 7 - The set L= {(lp01p) | is not regular.

Proof - If L is regular, it would have to contain uw*v for some u,w,v €

2 , with |w|=£l. Clearly w cannot contain 0 as a letter since all words of L

have only a single 0. Thus w = 1" for some n>0. Either u or v (but not both)

must contain 0. Thus assume u = lp, v=T0r. Then H>v*v = {l;,+*,,+r01J | its:0}.

To be in L we must have p + kn + r=s for all fcs=0. This is impossible since

n* 0. Similarly the possibility u = T01J, v = l p is excluded.

Proposition 8 - The language L = {(lm01") | m^n} is not regular.

Proof - If L is regular, then so is the language Lj= {(lm01n) |n=sm} by

reversal and interchanging the roles of 1 and 0. Therefore L f] L i is regular.

However, L n i 'i= {(lm01”)|m^n}n {(lm01n)|n:£m}={(lJW)|p^0}.

{(lp01p)|p :̂0} is not regular so {(lm01n)|m=sn} is not regular.

134

135

APPENDIX 2

PUBLISHED PAPERS

Part of the results of this thesis have been written into papers and sub

mitted to international conferences on neural networks. The first paper

[Ludermir, 90a], with the title "Stability and Temporal Pattern Recognition",

was published in the proceedings of the International Joint Conference on

Neural Networks which was held in Washington in January 1990. This paper

contains the results of section 4.5 of this thesis. The second paper [Ludermir,

90b] with the title "A Feedback Network for Temporal Pattern Recognition",

was published in the book Parallel Processing in Neural Systems and Comput

ers edited by R. Eckmiller, G. Hartmann and G. Hauske. This paper contains

most of the results in chapter 4 of this thesis. These two papers are attached

with this appendix.

136

Stability and Temporal Pattern Recognition
TERESA B. UJDERMIR*

Neural Systems Engineering Group
Imperial College, London SW7 2B T , England

email: JA N E T tbl% w ingc@ sig .ee.ic.ac.uk

ABSTRACT
The aim of this paper is to discuss the influence of the stability property in the

generalization of a neural net and consequently in the performance of the net to solve a
specific task. The task we are working with is the recognition of temporal patterns and the
model employed is an artificial neural net based on RAM as digital neurons[Aleksander,
79]. Some ways to control the stability of the net arc presented. Experiments were done
with different methods of controlling the stability and some of them arc presented here.

1. IN TRO D UCTIO N

There are different types of neural nets. The study of neural nets were largely ori
ginated in 1943 with the McCulloch and Pitts model of neuron [McCulloch-Pitts, 43J. They
proposed a neuron model implemented by threshold logic gates, where variable input
weights play a role analogous to that of synapses in natural neurons. The model used here is
based on a different model called the RAM neuron model. The RAM model is based on the
simple operations of a look-up table which is best implemented by random access memory
(R A M) and where the knowledge is directly “stored” in the memory (the look-up tables) of
the nodes during learning. Some advantages of this model are: (1) it is straightforward to
implemented in hardware; (2) learning is not unreasonably slow and (3) error-correction
requires only a global success signal.
The most important property of a pattern recognizer is generalization. Generalization is the

ability to classify patterns others than those in the training set. RAM -nets having feedback
connections between neurons have been successful with some temporal pattern recognition
tasks [Luderm ir, 89] but feedback machines are more sensitive to input errors than feedfor
ward machines. However RAM-feedback nets are inherently stable adaptive structures [F er
nandes, 85]. They are able to recover from input errors naturally and capable of recognizing
input sequences independent of its initial state.

2. S T A B IL IT Y AND G EN ER A LIZA TIO N P R O P E R T IE S OF NETS WITH FEED BA C K

The type of net used in this work consists of a layer of identical RAM type digital neu
rons, where each of them has n-address terminals, i connected to an external matrix of
binary elements and / connected to the output terminal of others neurons through clocked
delay units (n = / + /) . The RAM type digital neuron is represented in the figure 2.1 .

f e a d / w n i e fnooo

n-addrê s
ICf mmal

0

OAIA OUI

I
O A I A IN

dm

Figure 2.1 RAM type digital neuron Figure 2 .2 Sequential Digital Neural Net
The structure of a SDNN (Sequence Digital Neural Network) is represented in the figure

S u p p o r t e d b y C N P q (B r a z i l i a n R e s e a r c h C o u n c i l) g r a n t n o . 2 0 . 3 2 9 6 / 8 6 - C C

I - 428

mailto:wingc@sig.ee.ic.ac.uk

1 3 7

2 .2 where binary vectors x (t) , r (t) , r (t-l) and d(t) represent respectively at time t, the state
of input matrix, the response, the delayed response and the ‘desired’ response of the neu
rons. The input and feedback connections are randomly generated. The SDNN is trained to
anticipate its inputs, i.e . d (t)= x (t + a) , such that r(t) = x (t + a) during test phase. During the
training phase the net is fed with x € A (where A is the training set) with one (o r more)
R A M (s) in the write mode and the memory position is changed M .[Ax (t) ,A f (t)]= dj(t) (A ^
and A f are input and feedback component respectively) for all RAM s in the write mode.
T he stability property of the net is responsible for the increase of generalization. Thus it

has direct influence on pattern discrimination and identification. Three types of misclassifi-
cation can come from the generalization of the net. 1) rejection by doubt (intersection of two
or m ore generalization sets); 2) unknown rejection (a pattern x € L fall outside the generali
zation set); 3) error (a pattern fall within the generalization set of another category).
The stability of RAM -nets mainly depend on two parameters: a) neuron memory contents

and b) feedback connection.
a) The stability can be controlled by distribution of 0 ’s and l ’s in the neuron mem ory. The

greatest the difference between the number of zeros and ones in the neuron memory less
will be the possibility of changes in the neuron output, in consequence the net will be more
stable. There are two different ways of controlling the memory contents. 1) direct control:
The distribution of zeros and ones is made randomly based on the difference L between
zeros and ones and 2) adaptive control: The distribution of zeros and ones is made through
training with any training strategy. These were first used by Fernandes in [Fernandes; 85].
b) Feedback connection influences the recover of a input error through time in a net. If we

have a small feedback connection the error propagation through time is going to be reduced
and the recover phase will be small. Thus the net is more stable.

3 . IN FL U E N C E O F S T A B IL IT Y IN G EN ER A LIZA TIO N AND IN PATTERN R EC O G
NITION

A classifier based on the probability p (x€L j,/r) that the input sequence x € L j, given
that the response r occurred when x was fed into the net 0 < = p(x€ L^/f) < = 1 was used.
Although the ideal would be p (x ^ L ^ /r) = l for all symbols in the sequence x € L ^ , this does
not generally happen. What happens is that p (x € L ^ /r) changes randomly near 1 for
sequences x in L^ and near 0 for sequences x not in Lj,. In consequence, a measure is
required which considers p (x€L^,/r) for all input symbols in the same sequence x. The meas
ure that is being used is the continuous average

-1 0S^(t) = a p(x 6 L^/r(t)),k= l ,2 a n d 0 ^ 5 ^ < = 1.
i = i

The measures we used to analyse the results are the size of state sets in each class of
sequences fed into the net, the percentage of error recovery of the input sequence and
sequence distinction. We do not wish neither that states sets of each class being large (for
saving process time and memory) nor that the common states being in large quantity (for
better distinction). The percentage of error recovery of input sequence has its importance in
the states which occurs with a input sequence. Once the hamming distance between the
responses of the sequence x € L fed into the net in training and the responses of the
sequence x ’ € L fed into the net in testing is zero (h (t) = h [r (t) ,r ’(t)] = 0) all the responses
will be the same.
Experim ents were done to distinguish different geometric forms, such as triangles, squares

aDd circles. The nets used were M N D S (32,2 ,2), M N D S (32,2,3), M N D S (32,2 ,4),
M N D S (32,2,5) and M N D S (32,2 ,6). The distribution of 0 ’s and l ’s in the neuron memory
were controlled by direct control and adaptive control as described in the last section. The
input patterns x correspond to a sequence of eight tracking movements.
In the figure 3.1 below we show the percentage of error recovery of input sequences for

experim ents with five different nets. As we can see in the figure when the feedback connec
tion increases the percentage of error recovery of input sequences decrease. With

I - 429

ra
eo

vt
ry

p

cf
eo

n
ug

#

138

M N D S (32,2,2) there is no difference between a direct control of stability with high value of
L and adaptive control because the feedback connection is small and as consequence the net
is very stable. With M N D S(32,2,3) the net with direct control with L = 0 , that is half of the
memory contents is zero and half is one, is not able to recover from input error at all
because the net was made unstable from the very small difference between the number of
zeros and ones and also from the increase of the feedback connection. From M N D S(32,2,4)
as the net is not very stable because of the high feedback connection only the adaptive con
trol is successful in making the net to be able to recover from input errors.

(oodbadt corvtecl»on loodb*cfc co o n o r 'io r t

Figure 3.1 Recovery Percentage Figure 3 .2 State Sets Size
It is important to observe that nets with high differences between the number of zeros and

ones in memory of RAM s proceeding from direct control of stability not always result in a
high input error recovery of the net. The reason for this is because this increase in the
differences between zeros and ones were done randomly.
In the figure 3 .2 we show the state quantity in each class of sequences for experiments with

five different nets. The maximum number of states by class is the number of sequences fed
into net times the number of symbols in each sequence: 5 0 0 x 5 0 = 2 5 .0 0 0 . With
M N D S (32,2,2) when using adaptive control we have smaller states set, that is less computa
tion is necessary to discriminate sequences in different classes, than when using direct con
trol. With M N D S (32,2,3) the size of the state sets arc closer with adaptive control and direct
control with high value of L . From M N D S(32,2,4) we have very big state sets with direct
control while with adaptive control we still have a reasonable size. The size of states set will
have effect upon sequence discrimination as we will see in the next paragraph. Experiments
in which the size of the state sets are big we have no discrimination among the sequences
belonging to different classes.
Below we show in the figure 3 .3 the discrimination capability of the net for experiments

with five different nets. The discrimination capability of the net is illustrated by the differ
ence between the values of S j(t) from sequences in the class we want to recognize and the
values of S^(t) from sequences not in the class we want to recognize. When such values arc
negative it means that there was an intersection between the values and the number means
the size of the intersection. With M N D S(32,2,2) and M N D S(32,2,3) were possible to distin
guish the sequences with all ways of controlling the stability of the net because the nets are
stable in all cases and the state sets arc not very big.
It should be noticed that with M N D S(32,2,2) there was not to much difference in the input

error recover between the two methods of stability control and the size of the states sets
with adaptive control was smaller than with direct control meaning that the adaptive control
is much efficient in sequence discrimination. However with M N D S(32,2,3) the size of the
state sets arc closer with adaptive control and direct control with high value of L , the input
error recovery was similar and the discrimination power between the two ways of control
ling the stability of the nets are also the same. From M N D S(32,2,4) we have values of S^(t)
very close to each other mainly in the cases where the stability control was direct with L = 0 .
With high value of feedback connection the net is not very good in discriminating sequences.
When we increase the feedback connection the net will remember of a input error for a

longer time and we have a less stable structure. The percentage of input error recovery will

I - 430

139

deteriorate. We are going to have big state sets and consequently in some cases we are going
to have difficult in temporal pattern recognition.
With unstable net the recognition of pattern is difficult also because small variations

between the prototypes (patterns in training set) and pattern in the test set will result in a
completely different response sequence r. An unstable net will generate more unknown
rejection whilst a very stable one will generate more rejection by doubt (net is not able to
notice the differences between patterns) and error with the generalization.
With more stable nets we have more number of patterns not in the training set being recog

nized which implies in a bigger generalization. But we need to have limit in the size of the
generalization set. Big generalization sets generates more mistakes with the generalization.

«d*pu*vc
d«ocl L»0
d*«cl C-37.VX.

Figure 3 .3 Sequence Discrimination

4 . CO N C LU SIO N

A study of the relation among the inherent stability property, the generalization and
tem poral pattern recognition was made. The main ideas behind this methodology are: (1) the
use of a feedback RA.M- net; (2) probabilistic classifier to temporal pattern recognition; (3)
different methods of stability control and (4) the use of different parameters to analyse the
results. Three parameters (size of state sets and their intersection, the percentage of error
recovery of input sequence and sequence distinction) have been presented.
The main strengths of the method are that: (1) a response of a RAM -net with feedback car

ries information about the order of appearance of its input patterns; (2) the RAM -net is
capable of recognizing patterns independently of its initial states even in the presence of
input distortions and (3) the generalization emergent from these nets.
Many aspects of this methodology remain to be investigated since alternative training stra

tegy were not explored. In addition probabilistic logic neuron [Aleksander, 88] could be
adopted instead of RA M . The probabilistic logic neuron can avoid knowledge being
overwritten in the training phase and introduces some non determinism into the system.
R E F E R E N C E S

[Aleksander, 79] Aleksandcr, I. & Stonham, T .J .: "A Guide to Pattern Recognition
using Random Access M em ories".IEE J Comp & Digital Tech 2 (1) , 29 -40 , 1979.

{ Aleksander, 88] Aleksandcr, I.: "The logic of connectionist system" in R. Eckm illcr,
C hr. v .d . Malsburg, eds. Neural Computers. Berlin: Springer-Vcrlag, 189-197, 1988.

(Fernandes, 85] Fernandes, C.G.:"Stability Properties Inherent to Digital Neural Net
w orks", CO G N ITIVA 85 , Paris, 1985.

f Luderrair, 89] Luderm ir, T .B .:"A Feedback RAM-Network for Temporal Pattern
R ecognition", Neural Systems Eng Report, Imperial College, Dept of Elec Eng 1989.

[M cCulloch-Pitts, 43] McCulloch, W.S. & Pitts, W .:"A logical calculus of the ideas
imminent in neural nets”. Bull. Math. Biophys. 5 , 1943.

I - 431

Parallel Processing in Neural Systems and Computers
R. Eckmillcr. G. Hartmann and G. HausVe (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1990 395

A FEEDBACK NETWORK FOR TEMPORAL PATTERN RECOGNITION

Teresa B. LUDERMIR*

Neural Systems Engineering Group
Imperial College, London SW7 2BT, England
email: JANET tbl%winge@sig.ee.ic.ac.uk

The aim of this paper is to show that the response of a neural network with
feedback carries information about the order of appearance of its input patterns.
They are capable of recognising some temporal patterns independently of their
initial states even in the presence of input distortions. The model employed is an
artificial neural network: based on RAM memory devices as digital neurons
(Aleksander [1]). The architecture has been used successfully in many sequence
recognition problems. Some of them are presented here.

1. INTRODUCTION

Time is the essence of many pattern recognition tasks, e.g. speech recognition, motion
detection and signature verification. However, connectionist learning algorithms to date are
not well-suited for dealing with time-varying input patterns. In this paper it is shown that
RAM networks are able to store sequential information from their input patterns and they
operate efficiently on some temporal pattern recognition tasks.
Some weighted-connectionist systems have been implemented to deal with temporal
recognition. Most of them use a buffer to hold the n most recent elements of the input
sequences. Some drawbacks of this approach are: 1) the buffer must be sufficient in size to
accommodate the longest possible input sequence; 2) by making a great deal of information
simultaneously available, much computation is required each time; 3) each element of the
buffer must be connected to a higher layer of the network. In consequence a large number
of training examples must be used. Others systems arc based on the fact that, in a
connectionist network, the connections from one set of units to another implement a
mapping. This approach is rather inflexible in that the mapping function used to construct
the temporal context is predetermined and fixed. As a result, the representation of a
temporal context must be made sufficiently rich to accommodate a wide variety of tasks.
The model used here is based on a different model called the RAM neuron model. The
RAM model is based on the simple operations of a look-up table which is best implemented
by random access memory (RAM) and where the knowledge is directly "stored" in the
memory (the look-up tables) of the nodes during learning. Some advantages of this model
are: (1) it is straightforward to implement in hardware; (2) learning is not unreasonably slow
and (3) error-correction requires only a global success signal. An example of such a model
is the pattern recognition device called WISARD as in Aleksander [2].

2. SEQUENTIAL BEHAVIOUR OF RAM NETWORKS WITH FEEDBACK

The type of network used in this work consists of a layer of identical RAM type digital
neurons, where each of them has n-address terminals, i of them connected to an external
matrix of binary elements and / of them connected to the output terminal of others neurons
through clocked delay units (n = z+/). The RAM type digital neuron is represented in figure
2.1. The structure of a SDNN (Sequence Digital Neural Network) is represented in figure
2.2 where binary vectors x(t), r(t), r(t-l) and d(t) represent respectively at time t, the state
of input matrix, the response, the delayed response and the ‘desired’ response of the
neurons. The input and feedback connections are randomly generated. The SDNN is
trained to anticipate its inputs, i.e. d(t) = x(t + a) , such that r(t) = x(t-l-a) during test phase.
During the training phase the net is fed with x€A (where A is the training set) with one (or
more) RAM(s) in the write mode, and the memory position is changed
M;[A (t),A r(t)) = d-(t) (A , and Ar are input and feedback component respectively) for all
RAM* in thfc write ktode.x r *

Supported by CNPq (Brazilian Research Council) grant no. 20.3296/86-CC

mailto:winge@sig.ee.ic.ac.uk

396 T.B. Ludcrmir

In order to justify the use of a single layer nctwork(SLN) in sequence discrimination it will
be shown that the response of SLN carries information about the order of appearance of its
input patterns; that is, each output of the network depends not only on the present input but
also on the previous ones.
Theorem : r(t) is function of x(l) x(2) ... x(t).
Proof : Let x = x(l) x(2) ... x(a) be the input sequence and r = r(l) r(2) ... r(a) be the
corresponding response sequence of the network. Obviously, in general, x(i)’s do not relate
themselves, since each sequence x is simply an element of tne free monoid generated by the
input symbols. Then, it is necessary to show only that r(t), l < t < a is function of x(1) x(2)
... x(t) which gives to each r(t) of r the status of sequentiality that we are looking for. There
follows a proof by induction on the length of r. r(l) = (x (l), r(0)) by definition. Suppose
now that r(t) = (x(t) ... x (l), r(t-l)), then by definition r (t+ l) = (x (t+ l) , r(t)). which
gives us r (t+ l) = (x (t+ l) x(t) ... x (l), r(t)). Thus r(t) is function of all inputs until the
instant t, for any t, as stated. Observe also that r(t) is function of r(t-l), which characterises
networks with feedback.
It was shown above that the response of a net with feedback carries information about the
order of appearance of its input patterns. But feedback nets are not the only way to deal
with this problem. It is possible to use a feedforward RAM-net with more inputs at each
time. The advantage of feedforward RAM-nets is that they are less sensitive to input errors,
although it would be necessary to hold and process more information each time.
From the study of the stability properties of feedback networks in Fernandes [4] it is known
that such networks are able to recover from input errors naturally. They are able to recover
from input errors independently of their initial states. It is also known that the stability of
the network is responsible for the increase of generalisation. Thus it has direct influence on
pattern discrimination and identification. It is possible to control the stability of the network
in at least two different ways: by altering memory contents and by the influence of the
feedback connection as in Ludermtr [6].

read/write mode

X(t)

R (t -1)

d(t>

Figure 2.1 RAM type digital neuron Figure 2.2 Sequential Digital Neural Net

3. EVALUATION OF THE FEEDBACK RAM-NETWORK

In this section three different types of classifiers are presented all based on the RAM-
network described in the last section. The use of different classifiers gives a better insight
into the system and shows the importance of the RAM-network itself. Also the choice of the
classifier depends on the desirable application one has in mind. With all classifiers we did
two kinds of experiments. The first one was to distinguish between different geometric
forms, such as triangles, squares and circles. The second one was to recognize regular
languages. Due to lack of space, only the results of the second set of experiments one
presented here. The others results are presented in Ludermir [5], The network used in the
examples in this paper was composed of 32 RAMs with four inputs each, two from the input
patt^rns^ a^d two from the feedback state. And the languages used were L . = {x |
x = a b-*c d ,i,j,k ,1^0} and L 2 is the complement: L 2 = U -L j , where U is the Universal set.

PROBABILISTIC CLASSIFIER
A classifier based on the probability p(x€L, /r) that the input sequence x fL . given that the
response r occurred when x was fed into tnb net was used. Although ideally p(x(iLj/r) = 1
for all symbols in the sequence x€L , , this does not generally happen. What happens is that

C(x€L^/r) changes randomly near lTor sequences x in L. and near 0 for sequences x not in
. . In consequence, a measure is required which considers p(x£L. /r) for all input symbols

inihe same sequence x. The measure that is being used is the contimjous average

A Network fo r Tem poral Pattern Recognition 397

i - 1
where k = l ,2 arc the different languages. This measure ensures 0 < S . < 1 . Then, for
sequences belonging to the language L. the sum S, (t) should be close To one, while for
sequences not belonging to the languageT. the sum & (t) should be close to zero.
In the example in figure 3.1 we show the results obtained with the probabilistic classifier
using the languages L , and L 9 as defined above. This classifier is effective for
distinguishing different ^geometric forms (Ludermir[5]). In the examples with regular
languages, however, the discrimination is not so effective. One of the reasons for this is that
more sequential information needs to be processed. As a result the use of a buffer classifier
is proposed in such cases.

7° n u m b e r o ! s e q u e n c e s

s (0

% number ot s e q u e n c e s

S O)

Figure 3.1 Probabilistic Classifier. Figure 3.2 Buffer Classifier

BUFFER CLASSIFIER
The SDNN used in this work is blind to small differences in patterns. And also the feedback
state does not contain enough information to recognise those small differences. In order to
store more information a buffer is introduced in the probabilistic classifier. The buffer
stores the time of occurrence of the states. Then the only difference between the classifiers
is that here it is necessary to store the times of occurrence of the states.
It is not likely that the states in the sequences x of any class appear in the same order of the
states in the training sequences for this class. The definition of a window, in which the states
can occur, is needed. If the size of the window is the length of the sequence, this classifier
becomes the probabilistic classifier. The sum is defined as:

• V 0 = c *] > X x ^ L J r i O)
i-1

where t’~ t- t” , t" = 0 , lws with ws being the window size and k = l , 2 1 is
conserved).
The results in figure 3.2 were obtained with this classifier using L , and L~.
Better results were achieved with the buffer classifier than with probabilistic classifier but it
usually requires the processing of much more information and the system is more complex
and also takes longer to run. Despite theses drawbacks, this classifier has two properties in
common with any model of temporal pattern recognition. Firstly, some memory of the input
history is required. And secondly a function must be specified to combine the current
memory (or the temporal context) and the current input to form a new temporal context.

FINAL STATE CLASSIFIER
In this model ideas from Formal Language Theory are used to recognise temporal patterns
It is desirable to characterise the (class of) languagcs(s) that can be recognised by a specific
neural net. At this point only finite state languages have been used.
One way to recognise temporal patterns using neural networks is by using the final state of
the network; finite automata work in the same way. Instead of probabilistic discriminations
we have a set of final slates.
Although the temporal transformation f:x - r examined here is a finite state representation,
an analysis of the generalisation of the network is needed. The generalisation in this new
classifier can be large because of the stability properties inherent in networks. After the
network has been trained a finite-stale structure is generated inside the network. Then the
network is fed with some patterns and the final state of the network for each pattern is
stored. The patterns are recognised when their final states are one of the final states stored.
The results in figure 3.3 were obtained with the final state classifier using L . and L^.
As can be seen, in the examples above the results with this classifier are worse tharrwith the
previous classifiers. This is because of the large generalisation. The network recognises all
sequences in the language it has been trained on but it also recognises some of the sequences

143

3 9 8 T.B, Ludermir

w h i c h d o n o t b e l o n g t o t h e l a n g u a g e (o v e r - g e n e r a l i s a t i o n) . A l s o t h e n e t w o r k c a n n o t
r e c o g n i s e a l l t h e f i n i t e s t a t e l a n g u a g e s b e c a u s e t h e n e t i s b e i n g t r a i n e d o n l y t o p r e d i c t t h e
n e x t s y m b o l o f t h e i n p u t s e q u e n c e a n d t h e r e a r e f i n i t e s t a t e l a n g u a g e s t h a t d o m o r e t h a n
p r e d i c t t h e n e x t s y m b o l (s t a t c) . T h e c h o i c e o f t r a i n i n g s t r a t e g y d e p e n d s o n t h e d e s i r a b l e
a p p l i c a t i o n . U n f o r t u n a t e l y , t h e r e i s n o t a d e v e l o p e d t h e o r y i n w h i c h , f o r a c e r t a i n k i n d o f
p r o b l e m , a g o o d t r a i n i n g s t r a t e g y c a n b e d e t e r m i n e d .

V . nu tnbc i n l sequencer,

F i g u r e 3 . 3 F i n a l S t a t e C l a s s i f i e r .
O t h e r m o t i v a t i o n s f o r t h i s n e w c l a s s i f i e r a r c : I) i t i s v e r y e a s y t o k n o w t h e t o t a l
g e n e r a l i s a t i o n o f t h e n e t w o r k b y r e g u l a r e x p r e s s i o n s ; a n d 2) i t i s o n e w a y t o s o l v e p r o b l e m s
s u c h a s p a r i t y w i t h a s i n g l e l a y e r n e t w o r k w i t h f e e d b a c k .
T h e w a y t h a t t h e o u t p u t i n f o r m a t i o n o f a n e t i s p r o c e s s e d m a k e s a d i f f e r e n c e w h e n w o r k i n g
w i t h d i f f e r e n t p a t t e r n r e c o g n i t i o n p r o b l e m s . D i f f e r e n t c l a s s i f i e r s a r e n e c e s s a r y t o d e a l w i t h
d i f f e r e n t k i n d s o f p r o b l e m s . A n d i n o r d e r t o c h a r a c t e r i s e t h e g e n e r a l i s a t i o n o f R A M -
n e t w o r k , t h e a n a l y s i s o f t h e i n f l u e n c e o f d i f f e r e n t t r a i n i n g s t r a t e g i e s , c l a s s i f i e r s , n e t
c o n f i g u r a t i o n , e t c a r e i n d i s p e n s a b l e .

4 C O N C L U S I O N S

A m e t h o d o l o g y h a s b e e n p r e s e n t e d f o r T e m p o r a l P a t t e r n R e c o g n i t i o n . T h e m a i n i d e a s
b e h i n d t h i s m e t h o d o l o g y a r c : (1) t h e u s e o f a f e e d b a c k R A M - n e t w o r k a n d (2) t h e u s e o f
d i f f e r e n t c l a s s i f i e r s . T h r e e d i f f e r e n t c l a s s i f i e r s (p r o b a b i l i s t i c , b u f f e r a n d f i n a l s t a t e s) h a v e
b e e n p r e s e n t e d .
T h e m a i n s t r e n g t h s o f t h e m e t h o d a r e t h a t : (1) t h e r e s p o n s e o f a R A M - n c t w o r k w i t h
f e e d b a c k c a r r i e s i n f o r m a t i o n a b o u t t h e o r d e r o f a p p e a r a n c e o f i t s i n p u t p a t t e r n s a n d (2) t h e
R A M - n c t w o r k i s c a p a b l e o f r e c o g n i s i n g p a t t e r n s i n d e p e n d e n t l y o f i t s i n i t i a l s t a t e s e v e n i n
t h e p r e s e n c e o f i n p u t d i s t o r t i o n s .
M a n y a s p e c t s o f t h i s m e t h o d o l o g y r e m a i n t o b e i n v e s t i g a t e d s i n c e a l t e r n a t i v e t r a i n i n g
s t r a t e g i e s w e r e n o t e x p l o r e d . I n a d d i t i o n p r o b a b i l i s t i c l o g i c n e u r o n s (P L N) d e f i n e d b y
A l e k s a n d c r [3] c o u l d b e a d o p t e d i n s t e a d o f R A M . T h e P L N c a n a v o i d k n o w l e d g e b e i n g
o v e r w r i t t e n i n t h e t r a i n i n g p h a s e a n d i n t r o d u c e s s o m e n o n d e t e r m i n i s m i n t o t h e s y s t e m .
O n e p r o b l e m t h a t i s b e i n g a n a l y s e d b y t h e a u t h o r i s t h e t h e p o w e r o f t h e s e f e e d b a c k
n e t w o r k s (R A M , P L N) i n t h e r e c o g n i t i o n o f l a n g u a g e s i n t h e C h o m s k y h i e r a r c h y . D i f f e r e n t
c l a s s i f i e r s a r e b e i n g u s e d i n o r d e r t o o b t a i n a f o r m a l c h a r a c t e r i s a t i o n o f t h e l a n g u a g e s
r e c o g n i s e d b y t h e s e f e e d b a c k m a c h i n e s .
A p p l i c a t i o n o f t h i s m e t h o d o l o g y t o r e a l - w o r l d p r o b l e m s w i l l p r o b a b l y r e q u i r e t h e
d e v e l o p m e n t o f a d d i t i o n a l s e q u e n c e t r a n s f o r m a t i o n s .

R E F E R E N C E S

[1] A l e k s a n d e r , 1 . &. S t o n h a m , T . J . : " A G u i d e t o P a t t e r n R e c o g n i t i o n u s i n g R a n d o m A c c e s s
M e m o r i e s I H E J C o m p & . D i g i t a l T e c h 2 (1) , 2 9 - 4 0 , 1 9 7 9 .
[2] A l e k s a n d e r , 1 . , T h o m a s , W . V . & B o w d e n , P . A . : " W I S A R D , a r a d i c a l s t e p f o r w a r d i n
i m a g e r e c o g n i t i o n " . S e n s o r R e v i e w 4 (3) , p p 1 2 0 - 1 2 4 , J u l y 1 9 8 4 .
} 3 j A l c k s a n d c r , l . : " T h e l o g i c o f c o n n c c t i o n i s t s y s t e m " i n R . E c k m i l l c r , C h r . v . d .
M a l s b u r g , e d s . N e u r a l C o m p u t e r s . B e r l i n : S p r i n g e r - V e r l a g , 1 8 9 - 1 9 7 , 1 9 8 8 .
(4] F e r n a n d e s , C . G . : “ S t a b i l i t y P r o p e r t i e s I n h e r e n t t o D i g i t a l N e u r a l N e t w o r k s ” ,
C O G N I T J V A 8 5 . P a r i s , 1 9 8 5 .
1 5] L u d e r m i r , T . B . : " A F e e d b a c k R A M - N e t w o r k f o r T e m p o r a l P a t t e r n R e c o g n i t i o n ” , N e u r a l
S y s t e m s E n g R c p o r i , I m p e r i a l C o l l e g e , D e p t o f E l e c t r i c a l E n g 1 9 8 9 .
(6 1 L u d e r m i r , T . B . L ' S t a b i l i t y a n d T e m p o r a l P a t t e r n R e c o g n i t i o n ” , i n P r o c e e d i n g I J C N N - 9 0 ,
W a s h i n g t o n .

