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ANALYSIS AND DESIGN OF
MULTIRATE-MULTIVARIABLE SAMPLED DATA SYSTEMS 

Abstract

In this thesis the problem of analysis and design of certain class of multirate 
multivariable (MM) sampled data systems is investigated. The overall aim is to embed the 
study of such systems in a linear time-invariant framework. To achieve this, we first show that 
a practically very important class multirate controllers can be decomposed as the cascade of 
LTI and sample-and-hold (SAH) operators. Then we demonstrate that the SAH operators can 
be approximated by some LTI operators, and that the approximating error can be tightly 
bounded by another LTI operator. Based on the study of the SAH operators, stability analysis 
of MM systems can be accomplished by studying the robust stability problem of an LTI system 
subject to LTI perturbations. Finaly, we propose a design methodology that is based on H°° 
synthesis theory. This design procedure will result in a digitally implementable controller that 
gives rise to performances measured on continuous time (or Laplace frequence domain) basis. 
Numerical methods of the H-infinity optimization are discussed. We have tried our method on 
an example and believe that there is a potentially important improvement over the 
conventional discrete time techniques.
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Chapter One 
Introduction and Survey

1.0 Introduction

A substantial potion of the control literature is devoted to sampled date systems. The 
importance of this theory stems from the wide use of microcomputers in control systems. 
Sampled data systems form a relatively complete and independent branch of control theory, in 
that it has its own methodology and basic techniques. This is due to the most important 
feature of such systems: the internal mechanism of a sampled data system is discrete as 
opposed to continuous. Thus we find analysis and design methods for sampled data systems, 
although sometimes the techniques used are similar to those for continuous time systems.

The overall aim of this thesis is to present a theory which unifies systems analysis and 
design methods in continuous and discrete time domains.

Since the term "sampled data systems” covers a rather wide range of topics, it is 
necessary to define the scope of problems discussed in this thesis.

We will consider the system shown in Fig. 1.0.1. It consists of a controlled system G, 
and a controller K. G is assumed to be linear and time-invariant and K is a sampled data 
controller. A precise description of the sampled data controllers that we study in this thesis is 
given in Chapter Three. Essentially it is a digital device that takes samples from a signal (by a 
A/D converter), and then sends an output to the actuator (through D/A converter). This kind 
of controller is sometimes called a hybrid controller. We are particularly interested in the 
situation when K is multivariable controller with different but fixed sampling rates in various 
loops. Multirate sampling is the simplest generalization of single rate sampling. For a summary 
of sampling schemes see [Kalman,D2]. In this thesis we will confine attention to multirate 
systems only.

There are two main reasons for employing multirate sampling. The first is that on
board computers have finite computing power, so in order to achieve an overall performance, 
computing resources should be allocated to the loops according to their dynamic properties.
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Namely, rapid sampling rates should be used in loops where signals have faster dynamics. 
There is also an economic consideration, for powerful computer and fast A/D and D/A

Pconverters are more expensive. The second reason for the need of multirate sampling is that in 
certain systems it is desirable to accommodate various devices which have their own operating 
periods. Typical examples are radar sensors and step motor actuators. In these cases it would 
be more convenient to let the controller match those devices by having appropriate sampling 
rates at the interfaces with them.

In the next section we give a brief survey of research work in this field. We are not 
going to discuss the details in depth, for they can be found in the references quoted. Rather, we 
will try to demonstrate their basic virtues and limitations, whereby to motivate the search for 
new directions.

1.1 A brief survey

The analysis and design of sampled data systems are two distinct problems. Analysis 
answers the questions about a system which is completely specified, while design is to specify 
(part of) a system in order that its behaviour satisfies given requirements. For this reason, we 
devote two subsections to each of these problems separately.

:) Analysis

The term “analysis” in most cases only refers to stability analysis, thus it is stability 
that is our main focus. One of the most salient features of a sampled data systems is its time- 
varying character. It is this time-variance property that makes some of the most effective 
analysis tools inappropriate.

Discrete time methods

Sampled data systems are a special kind of time-varying systems, i.e. the variance is 
often periodical in some way, depending on the particular sampling scheme used. For example, 
if all the sampling rates are the same (not necessary synchronized), then this period is just the 
sampling period. This is refered to as shift invariant. Stability analysis of this kind of sampled 
data systems can be simplified by only considering the response of the system at the sampling 
instants, which can be described by a set of difference equations with constant coefficients. 
Provided that the samples give adequate information about the actual signal, one may work 
entirely with the difference equation model. Discrete models are approximations, although they 
are often good enough for stability purposes.
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Stability of single rate systems can be determined by Z-transforms. One may argue that 
the discrete time approach is a way of avoiding the difficulties associated with time-variance of 
sampled data systems. This approach is effective, and perhaps this justifies its popularity. It is 
so successful for single rate systems that people have naturally extended it to the analysis of 
multirate sampled data systems. The basic idea is to find a single rate system which is 
equivalent to the multirate system in some sense, and then apply techniques for single rate 
systems. Methods for analysing multirate systems can be classified according to the way the 
equivalent single rate systems are derived. For example in [Glasson, D13], they are classified 
into frequency and time domain methods, and the former is further categorized into frequency 
and switch decompositions. But they all boil down to the same principle: converting a 
multirate system into a system that has the same stability properties.

The variety of methods can be classified according to the list below. We will look at 
some of the important techniques here.

Analysis
Approximate methods:

1. Tustin transformation;
2. PCT [Houpis];
3. Conic sector [Thompson].

Exact methods:
1. Time Domain:

a. State space [Kalman][Walton];
2. (Z-transform) Frequency domain:

a. Switch decomposition [Kranc];
b. Frequency decomposition [Coffey];

Switch decomposition

Let us suppose that sampling rates in the system are rational multipliers of each other.
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This is a ubiquitous assumption for the exact methods, and will be assumed throughout in the 
discussions of these methods. Suppose also that one of the samplers works at a rate T = T s/s, 
where T* is the basic sampling period and s is an integer.

As illustrated in Fig. 1.1.1, this sampler can be “decomposed” into combination of 
samplers with rate T s, and advance and retard operators. Advance and retard operators can all 
be defined in terms of a shift operator Dr: x ► y, as

y(t) =  DT-x(t) =  x(t -  r)

where r is a real number. Thus when r >  0, DT is a retard operator. If we view a sampler 
with rate T as an ideal impulse generator, i.e. it generates a sequence of pulses:

nT)£(t -  nT)

then the decomposition is the following operation:
+ oo k=s-l +oo£ e ( nT)«(‘ -  nT) =  £  ■£ e(mTj + kT)«[t -  (mT, + kT) ] (1.1.1)n=0 k=0 m=0

Substituting all the samplers in a system by their decomposed versions, we arrive at an 
equivalent single rate system. Standard techniques of single rate sampled data systems can 
then be applied. In fact, this technique can be made systematic by introducing the advance and 
retard vector operators [Boykin, D6].

Frequency decomposition

Frequency decomposition is based on a similar technique. In order to give a simplified 
explanation of this method, it is necessary to introduce some notations. Let e(s) be the Laplace 
transform of e(t), then the Impulse Laplace Transform (ILT) of e(t), denoted by e*T where T 
is the sampling rate, is defined by:

+ °o
e*T (s) =  i  '^2  e(s — 27rjn/T)

n = - o o

As in (1.1.1) we can rewrite the above as:
+o°e*nT=  _̂ L e(s _  27rjm/nT)

m = - o o
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n-1 +oo
=  n T ^L, e(s “  27rjl/nT -  27rjm/T)

1=0 m=-oo

=  S e*T(s _27rjl/nT). (1.1.2)
1 = 0

In other words, it is possible to express the ILT of a function with sampling rate nT in terms 
of ILT’s with T. We also note that e*T(s) is a periodic function of period 27rj/T. With this 
preparation, we can derive the Integer Hate Identity (IRI) and Rational Rate Identity (RRI) 
[Boykin, D5, D6][Jury, D4].

Consider the system shown in Fig. 1.1.2.

0-
'f

■€=>

Fig. 1.1.2 Frequency Decomposition

It is desirable to find a multiplication type of relation between y(s) and e(s). If nx/n 2 is 
an integer, it immediately follows that:

r D oT
y *n2T (s) =  [G (s) r* niT j

=  [G(s)]*n2Tr*niT (s) (1.1.3)

for r*"1"1* is periodic in 27rj/n2T. (1.1.3) is refered to as the IRI. In general nx/n 2 is not integer, 
and in order to obtain a similar relation to (1.1.3) the following steps are involved. Let y(s) =  
G(s)r*ni_r, and apply (1.1.2) to y*n2~̂  to obtain an expression that only involves ILT’s of y 
with rate T:

y*"2T(s) = i E  (y)*T(s - 2*jl/n2T),
1=0

since the terms (•)*ni"I"are periodic in T, and hence are invariant under (*)*T operation. Using 
this fact and the expression for y(s), we have



Introduction  and Survey ] -13-

y *n*T  = r ,E  (G r*"iT )*T (s -  27Tjl/n2T )
1=0

n2-l
=  i  E  G *T (s -  r’ "iT (s -  2 ,r jl/n 2T ) (1 .1 .4)

1=0

(1.1.4) is the RRI. The complexity of these formulas can be seen here. The same procedure 
must be repeated on all samplers in a system in order to obtain an input-output relation in 
multiplicative form. A long and tedious calculation is needed to eliminate the intermediate 
variables [Coffey, D3].

Switch and frequency decomposition methods are dual concepts. They are equivalent in 
the sense that results obtainable in one can also be obtained via the other [Jury, D4j. However, 
switch decomposition methods admits more systematic approach in addition to its intuitive 
clarity.

State space methods

An approach based on state space methods was studied by Kalman et al [Kalman et al, 
D2]. In [Kalman et al, D2] many types of sampled data systems are studied. They pointed out 
that samplers in a system should entitle additional states, and the dynamics of a system can be 
analyzed in terms of the propagation of this extended set of state variables. For simplicity we 
introduce the concept of sampling pattern of a system. It can defined as an array of binary 
functions of time. Suppose that there are N samplers in a system, then the sampling pattern of 
the samplers is:

p (t) =  [Pi(t),--*, PN(t)] (1.1.5)

where

=  1 if sampler i samples at t;
Pi(t) |

=  0 elsewhere.

Obviously, if the sampling rates are rational multiples of each other, P(t) is a periodic function 
of time. Suppose that a set of state variables is chosen, then according to the dynamics of the 
system, the states at any given moment can be represented as a transformation of the states at 
a previous instant. Since sampled data systems are time-varying, the transformation over a 
fixed length of time is in general variant. But this transformation is a constant over intervals
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[nT, (n+l)T] if P(t) is periodic: P(t) =  P(t +  T). Therefore one can describe the propagation 
of the states at t= n T , n =  0, 1, ••• by difference equations with constant coefficients. The 
method proposed in [Kalman, D2] is briefly outlined as follows: The states of the sample and 
hold devices evolve only at the discontinuous points of P(t). In between any two such instants, 
the whole system is governed by the continuous propagation of the states other than those of 
the samplers. Thus, between those instants states transitions can be obtained.

To illustrate the idea more clearly, we depict a general sampled data system as in Fig. 
1.1.3. It is different in form from [Kalman, D2], but it conveys the same basic message. 
Suppose that the discontinuous points, or the instants when one of the samplers samples, are t 
=  •••> ^K+l* "•> where t^ + i — tj_ =  T. As far as the continuous part is concerned, its
state transition in (tj, tf.^) is completely determined by its own states xc(tj) and the input to 
it xd(tj), which is constant in this interval. At the instant t =  tj, some of the state components 
of xd are updated, while others remain the same. Summing up all these, one can formally 
write:

xC(ti+i) =  <I>r xC(ti) +  * r * d(ti)

* d(ti+ i) =  ^ ( t i )  +  * r * c(ti)

or more compactly, by denoting x = xc
xd

* ( li+l) =  ‘J'i'Xft'i) •

( 1 .1 .6)

(1.1.7)

The periodicity of P(t) implies that <$j =  . The state propagation over the intervals
( tm K + i > t(m + l)K + i ) is given by

x (t(m + l)K + l)  =  ^•x (tm K + l) >

where
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* = n  *i  • ( i - i - s)i=i

therefore the state evolution is described by a stationary transformation. From this one can 
study the stability properties of the system. State space method can also be used for other 
sampling schemes provided the sampling pattern P(t) is a periodic function. It is important to 
recognize that the samplers have dynamics.

The boundary between frequency and time domain methods is not clear-cut. For 
example, the procedure of calculating a Z-transfer function from a continuous time system 
implicitly includes state transformation. Relations between state space and frequency domain 
approaches have been studied in [Araki, D19] for a special case where the hybrid controller 
only realizes a constant gain. We can show that the arguements in [Araki, D19] apply to 
general situations by incorporating in the separation properties of hybrid controllers, which we 
will study in detail in chapter 4.

The time variance of sampled data systems can appear in two forms. It is either in the 
form that relations between variables are not representable as transfer function multiplication, 
or that transformation over a fixed length of time is not constant. By observing the system 
variables at specially selected instants, relations between them can be simplified. This is clearly 
seen in the case of state apace methods. It is not so obvious for frequency decomposition 
method. The methods discussed up to here give necessary (and sufficient if no dynamic mode 
becomes hidden after sampling) conditions for closed loop stability. In this sense they are exact 
methods. Since they only deal with system dynamics at sampling instants, they are also called 
discrete time methods. It is possible to use approximate methods, which give sufficient 
conditions only. This is the topic of the next section.

Continuous time methods

Discrete time analysis only describes the dynamical behaviour at sampling instants, and 
hence do not give a full description of the system dynamics. If discrete time description can be 
viewed as approximations of the “true” systems, one may also think of other ways of 
approximation. This is the fundamental philosophy in [Thompson]. Thompson has studied 
sampled data systems in a different direction. He approached hybrid controllers from a Conic 
Sector point of view.

The use of conic sector in system analysis has a long history, and the general theoretical 
treatment in [Safonov] has widened its scope of application. For our purposes, a conic sector 
can be understood as a collection of operators centered around an operator. More specifically, 
suppose c and r are two operators defined in some space of functions, a conic sector cone(c,r) of 
operators is defined as
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. Y.cone(c,r) =  { K | j(K — c)-xj < |r-x| V x 6 Dom(T) }. (1.1.9)

It is a “ball” in the space of operators with a “weighted” radius. Suppose the operator K above 
is part of a feedback system, then sufficient conditions of stability of this system can be stated 
in terms of the conic sector that contains K. The remarkable thing about this is that one can 
embed a “difficult” operator K into a conic sector with “easy” centre and radius in order that 
the analysis can be greatly simplified. In [Thompson] conic sectors have been found that 
contain parts of a hybrid controlled feedback system. The centre and radius he has found are 
LTI operators, therefore he carried out the analysis in Laplace-frequency domain. The main 
argument there was that a hybrid controller, though time-varying, is essentially linear and 
time-invariant, i.e. it can be approximated by an LTI system. We can define this 
approximation as the centre of a conic sector, and define a nominal system by substituting the 
time-varying hybrid controller with the centre. If the centre chosen is a good approximation to 
the hybrid controller, then we have reasons to believe that the nominal system should bear the 
main features of the original system. What must be ensured is that the error of the 
approximation will not upset conclusions drawn from the analysis of the nominal system. It is 
especially important to ensure that the stability of the nominal system is the same as that of 
the original system. To do so, the error of the approximation has to be examined. In order to 
avoid the confrontation with the time-varying nature of this error, we only seek to assess its 
effect from an LTI bound on it. “Putting” an operator into a conic sector is the same as 
finding a bound (radius) on the error for the given approximation (centre). Once a radius is 
found, one can then apply conic sector theory to check if the “ball” specified by the radius is 
small enough not to violate stability of the nominal system.

The work of Thompson [Thompson] was only concerned with single rate systems, and 
the techniques he used are not applicable for finding conic sectors for multirate systems. The 
results in [Thompson] can be summarized as follows. The type of systems studied in 
[Thompson] is shown in Fig. 1.1.4.

T

F — -*Cs D H ---- C=- G -------- OC*' &

Fig. 1.1.4 Structure of Hybrid Feedback System

The first step is to put part of the system into a conic sector. As was pointed out by
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Thompson [Thompson], there are several possibilities as to which part of a system is to be put 
into a conic sector. We only consider one of these, namely the case of putting the hybrid 
controller into a conic sector. The main result of [Thompson] is a quantitative specification of 
the radius of the conic sector that contains a stable hybrid controller with a strictly proper 
prefilter. The radius involves the compution of several infinite sums, and can be computed 
when the prefilter is defined. More specifically, a hybrid controller K is inside a conic sector (C, 
R), where both C and R are LTI, if

°m in m»)) > rM

where r(u;) is a function determined by the prefilter, the algorithm of the internal compution of 
K and the choice of centre C. Details of the compution can be found in [Thompson]. Stability 
of the system is guaranteed if G is outside of the conic sector (C, R). The condition for G to be 
outside the conic sector can be broken into two conditions: (a) the “nominal” system (C, G) is 
stable and (b) the nominal system is robustly stable with respect to a class of LTI 
perturbations whose magnitude is bounded by r(u>). In the study of LTI systems the class of 
perturbations A is typically defined as:

A — { A | A is LTI and crmax(A)(w) < r(w) }.

If we regard the C as an approximation to K, and the approximating error as a perturbation to 
the system, then this perturbation is not a member of A. The conic sector theory employed by 
Thompson gives the theoretical fundation that enables one to view the perturbation just as a 
member of A.

Conic sectors for the hybrid controllers can be used for analysing other properties of a 
sampled data system as well. Details of this can also be found in [Thompson].

::) Design

It is possible to make a similar classification of design methods for sampled data 
systems. The exact methods are those that use exact system models, and result in a controller 
to be implemented exactly. Typically, exact methods use discrete time models of systems, for it 
is difficult to use the exact continuous time models, which are time-varying. The approximate 
methods involve approximation either in the stage of modelling or in the stage of obtaining the 
realization of controllers. Transformation methods such as w’-domain synthesis belong to this 
category. Some design methods are listed below.
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Design
Approximate methods:

1. Transformation methods:
a. Tustin transformation (w’-domain);
b. Frequency response matching [Rattan];

2. PCT [Houpis];
Exact methods:

1 . (Z-transform) Frequency domain:
2. Time domain:

a. LQ optimal design [Amit] [Glasson];

As with the methods of analysis, most of the design techniques for singal rate systems 
are inappropriate for multirate systems. We will examine some of the methods listed here. We 
will also discuss the feasibility of modifying these techniques for multirate systems.

Transformation

To use transformation type of methods, a continuous time controller is designed to meet 
the specifications, usually stated in terms of continuous time behaviour. Following this, the 
controller is transformed into a set of difference equations (or a Z-transfer function 
equivalently) so that it can be realized by a digital computer. There are several ways of 
transforming a continuous time controller into hybrid one, but they have one thing in 
common, that is they make the input-output behaviour of the hybrid controller be as close to 
that of the continuous time controller as possible. The simplest way to obtain a hybrid 
controller from a continuous time controller is via the Tustin transformation. This

ft 1transformation uses a Z-transfer function ^  as an approximation to s. A somewhat better 
approximation can be obtained by Rattan’s method [Rattan, D15]. Rattan’s method seeks to 
approximate a continuous time controller by a hybrid controller so that their frequency 
response are close in the sense of least squares. The term “frequency response” of a hybrid 
controller is defined by neglecting the side harmonics of the output of a hybrid controller to a 
sinusoid input in calculating the transfer function [Rattan, D15][Witeback, D ll]. One can also 
do the transformation in such a way that for a specific class of input signals the output signals 
of the hybrid controller coincide with those of the continuous time controller at the sampling 
instants. For example one can do “pulse invariant” transformation, so that above property 
holds true for pulses of fixed width [Astrom]. Transformation methods can be used for 
multirate system designs without additional difficulties (except for one of the invariant 
transformation). But the obvious problem with transformation methods is that the
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approximation error is out of control, because nothing is done in the process of continuous time 
controller design to compensate for this error. Thus the hybrid controlled system is expected to 
give performance quite different from that of the continuous time design [Glasson, D12], Since 
the influence of sampling is ubiquitous in sampled data systems, whatever way of 
transformation is unable to rid of the errors.

Recently, a so called PCT (Pseudo Continuous Time) has appeared in literature [Houpis 
et al, D18]. They have pointed out that a hybrid controller is a combination of an ordinary 
linear time invariant (LTI) system and samplers. By approximating the effects of the samplers 
by LTI operators and including them in the model of the controlled system, some 
compensation to the influence of sampling on performance can be achieved in the course of 
design. This is an improvement, and should lead to superior designs. But it is not possible to 
model the effects of sampling by means of LTI systems, hence the PCT approach must have its 
limitations. In fact, the approximation error of the sampler is considerably high in high 
frequency range. PCT design is similar to transformation methods, and can be used for 
multirate systems.

Direct Design

Direct methods directly design for the hybrid controllers. No approximation is needed in 
order to realize the controller. We will discuss the so-called direct digital design first. Design is 
carried out entirely in discrete time domain. The combination of plant G with the interfaces of 
the hybrid controller is treated as an integral object and the discrete time input-output relation 
of it is found. This amounts to breaking the feedback loop at points a ’ and /?’, as shown in 
Fig. 1.1.4. Design is directly done to give the set of difference equations internal to the hybrid 
controller (or equivalently to design the /-transfer function D(z) ).

Direct digital design methods are in many ways parallel to continuous time systems 
design methods, both in (Z) frequency domain and via state space. Design specifications must 
be translated into discrete time domain and the designer analyzes if the specifications are met 
directly from discrete model. In this regard direct digital methods seem to admit more rigorous 
approaches. But the translation of specifications is not always possible or accurate. For 
example, the robustness requirements on the continuous time model is hard to study in discrete 
time domain. For multirate systems the situation is even worse: the (Z) frequency domain 
analytical techniques can hardly be used for design. To the knowledge of the author, the only 
practical methods proposed is via state spaces, i.e. state estimator and LQ regulator approach 
[Glasson, D12] [Amit].

Before introducing the design methods proposed in [Glasson, D12] and [Amit], we 
quickly review some basic facts about linear quadratic design. Suppose that the controlled
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variable is y(t), and the control signal is u(t). In LQ regulator design problem, one seeks to 
minimize a cost functional

J
E*

[ yTQy +  uTRu ] dt 
o

subject to the system dynamics given by

x =  Ax +  bu

y =  Cx .

In a sampled data system, the control signal is piecewise constant. In single rate 
systems, let the sampling instants be at t =  0, T, •*•, then the controlled variable y(t) is 
determined in the interval [nT, (n-f 1)T) by x(nT) and u(nT). Suppose that we are interested 
in a finite time regulation problem in the interval [0, NT]. Substitute these relations into the 
cost functional, it becomes the form

N TJ =  [ xT(nT)Qx(nT) +  XT(nT)Pu(nT) +  uT (nT)Ru(nT) ] (1.1.10)
i i = 0

subject to

x (n -jT T )  =  Ax(nT) +  Bu(nT) . (1 .1 .1 1 )

Note the cross product term in the cost functional. Although this cost functional is dependent 
of the variables x and u on sampling instants, it is a based on the all-time behaviour of the 
system. The fact that control is piecewise constant is taken into account. Standard techniques 
show that the optimal control strategy is

u(nT) =  -  K(nT)x(nT),

where K(nT) can be obtained by solving a matrix Riccati difference equations. The details of 
the computation of K(nT) is omitted, only to note that when N—*oo, K(nT) converges to a 
steady state limit gain, which can be determined by a algebraic Riccati equation [Franklin].

Glasson studied the infinite time horizon regulation problem for multirate systems. He 
pointed out that in the case of multirate sampling, the optimal gains, instead of converging to 
a stationery gain, propagate into a periodic sequence of gains. The period of this sequence is 
the same as that of the sampling pattern of the system. Suppose this period is MT, then, the



Introduction  and Survey J -21-

controls are given by:

u[(nM +  i)T] =  -  K(i)x[(nM +  i)T] , i =  l, •••, M; n =  l, 2, •••.(1.1.12)

Glasson has given detailed discussion on how to transform the weightings in a continuous time 
cost functional into those for the multirate systems. He also gave some consideration to the 
numerical solutions of periodic Riccati equations.

Amit studied the computational aspects of multirate system in greater details. In 
[Amit,] a wider class of systems are studied, namely the multiple order sampling, to which 
multirate sampling is a special class. The design methods of [Amit] is also based on LQ control 
theory, and the basic results are in the same region as [Glasson, D12]. He has shown that an 
LQ control problem of a multirate system can be transformed into one of a single rate system, 
together with the cost functional. The way the equivalent single rate system is obtained is 
basicly the same as was shown in [Kalman, D2]. There are some notational differences 
however. For example, in [Amit] the equivalent single rate system has the same number of 
states but with an enlarged set of control variables, while in [Kalman, D2] states of the sample 
and hold devices are introduced explicitly. Amit also showed that the first of the sequence of 
optimal gains K(l) for the multirate system is the same as the stationery optimal gain for the 
equivalent single rate system. Thus, as he pointed out, the optimal gains for the multirate 
system can be obtained easily because it is easy to solve the Riccati equations associated with a 
single rate system. Once the first optimal gain K(l) in the sequence is computed, the rest can 
be calculated recursively from the first, which is shown in both [Glasson, D12] and [Amit].

The methods in [Amit] and [Glasson, D12] are exact methods, but they have the 
additional advantage of being able to convert a continuous time specification into one that can 
be used directly for multirate design. Apart from the limitation of the LQ design methodology, 
these methods are satisfactory. There is, however, one point that is not fully justified in these 
works. It has been mentioned in both [Glasson, D12] and [Ami], that the first step of design 
should be to determine the weightings for a continuous time cost functional. Then these 
weightings are transformed into equivalent weightings for the sampled data system. The 
equivalence is in the sense that both cost functionals put the same proportion of emphasis on 
the variables. But it is not clear if it is desirable to minimize this equivalent cost functional, 
because the effect of sampling might require to minimize a different cost functional with a 
different proportion of emphasis in order to achieve an optimal performance.

Comment: We will briefly summarize the survey of analysis and design methods 
discussed. The intention is to motivate our study, rather than giving a verdict on these 
methods. For a more comprehensive survey on this subject, see [Walton, D ll]. First of all, the
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approximate methods are not interesting to us, for what we are seeking for is a rigorous 
approach. As far as analysis is concerned, the discrete time methods, whether in frequency 0! 
state space domain, all give necessary and sufficient conditions for closed loop stability. 
Perhaps the complexity of use is the main point to note. For this reason the frequency 
decomposition technique stems less convenient than switch decomposition. Also, due to the 
work of Coffey et al, switch decomposition can be made systematic by the use of vector 
operator [Coffey, D3]. State space methods are powerful in that they are applicable to a large 
class of sampled data systems. The biggest problem of these methods, we believe, is that the 
sampling rates are treated not only as system parameters but also as part of structural factors. 
In other words, changes in the sampling rates will result in a “new” system, hence the same 
procedure for analysing such a system has to be repeated for every new set of sampling rate. A 
second weak point of these discrete time methods is that they are incapable of dealing with 
unstructured variations in the continuous time part of the systems. In this regard, the conic 
sector approach in [Thompson] is more appealing, since it offers a unified approach to sampled 
data system. Conic sector method does not suffer from dimension growth, and can handle 
robustness analysis easily. But it only gives sufficient conditions for stability.

The decomposition methods for multirate system analysis are not suitable for design 
purposes, because design goals can hardly be translated into those for the equivalent single rate 
system, apart from stability. The state space methods, on the other hand, have been 
successfully used for design, namely the LQG methods. The key point is that an equivalent 
cost functional can be obtained. Conic sector methods as studied in [Thompson] has not been 
used for design purposes, and the reason for this is that Thompson’s conic sector can be 
computed only after the controller has been given.

It is time to find out what we can do. We are interested in a unified approach to 
sampled data systems, both in continuous time versus discrete time and analysis versus design. 
None of the methods discussed so for satisfies this requirement. Furthermore, we would like to 
have more flexibility in design than LQ methodology could offer, most importantly, the ability 
to treat robustness issue as an integral part of design. All these point to the direction of conic 
sector, or perturbation approach, for in this framework sampling systems is viewed as a 
continuous time device.

1.2 Our point of view

The basic philosophy we will adopt is this: if the sampling rates in a system are 
reasonably high, the system should behave similarly to a LTI system. Thus the following 
questions are raised:
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(1) What kind of hybrid controllers are similar to LTI systems?

(2) In what way are they similar to LTI systems?

(3) Can one identify the parts of a hybrid system that make it not like a LTI systems?

(4) Can this part be separated from the rest of the hybrid system?

The answers to (1) and (2) are given in [Thompson] for single rate systems. For multirate 
systems, it depends on the sampling scheme used. We will show that for the practically useful 
schemes, the answers to (1 ) and (2) can be fully given. Answers to (3) and (4) are affirmative 
for the class of most commonly used hybrid systems. For this class of multirate systems, we 
can separate the “trouble-making” parts from the rest of a hybrid system, i.e. to separate a 
multirate hybrid controller into LTI and time-varying parts. The time varying parts are shown 
to be sample-and-hold (SAH) operators, to them a whole chapter is devoted. It turns out we 
can find quite tight conic sectors to bound these SAH operators, although the concept of conic 
sector is not essential here. The important point is: we can approximate the action of a hybrid 
system by substituting the SAH operators with their LTI approximations. We can also find 
bounds on the errors. Furthermore, because of the separation property of this class of multirate 
controllers, both the approximation and the error bounds are independent of the LTI part of 
the hybrid system. In short, a hybrid controlled feedback system is just an ordinary LTI 
system with some SAH operators inserted in the loop. In contrast to [Thompson], we only seek 
to put the non-LTI elements in a hybrid controller into conic sectors, instead of the whole 
controller. We will see this is why our method works for multirate systems.

As an additional application of the separation property, one can readily apply the 
switch decomposition techniques to get necessary conditions of closed loop stability.

This philosophy enables one to use continuous time LTI techniques to sampled data 
systems. And in this sense we consider our approach a unified methods for linear systems.

1.3 Theoretic Fundations

Here are some points concerning the theoretic framework we will work in. The basic 
motto is to make the theory as rigorous as possible and yet not to fall into mathematical 
complexity. The ultimate goal is to present a working method for analysing and designing 
multirate systems. We feel that the following two aspects are particularly important.
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Stability Theory

Stability is of prime importance in both analysis and design. Since sampled data 
systems are time-varying, it is convenient to use operator theoretic terminology to describe 
their dynamic behaviour. Although the systems under study are time-varying, we eventually 
use LTI system theory to estimate their stability and other properties. The bridge over the gap 
between time-varying and time-invariant is the perturbation theory for linear operators. 
Thompson has used conic sector method to achieve this, and the theory used in [Thompsom] 
was from [Safonov]. For our purpose, a conic sector cone(c, r) defined in [Thompson] is a 
neighbourhood of the operator c such that every element in this neighbourhood has a relatively 
bounded difference from c. But one has considerable flexibility in using perturbation theory of 
Kato [Kato] in the case where c is not stable (whose domain is not the whole space). We found 
that all the results that can be obtained by conic sector method are also derivable by 
perturbation method, as far as linear systems are concerned. Conic sector provides an 
instructive conceptual framework and a compact presentation of robust stability, so whenever

Y’>it is appropriate we also use terms form conic sector theory. 

i f 0 system design

In [Safonov, et al], a design method is presented that makes part of a system inside ( or 
outside ) of a conic sector. Our basic design methodology can be summarized as making the 
LTI part of a hybrid controlled system outside of the conic sectors containing the SAH 
operators, although the idea came from Dr. D. J. N. Limebeer in a different form. H°° theory is 
used to form a systematic design procedure. It is a natural consequence of the preceeding 
analysis rather then an arbitrary choice. The steps leading to this choice is briefly as follows:

(1) A hybrid controller (of the kind that is most commonly used) can be separated as 
composition of SAH and finite dimensional LTI operators, and the only designable part of a 
hybrid controller is the LTI part;

(2) Stability of a multirate hybrid system can be determined in two steps: first, the 
nominal stability which is completely characterized by some transfer functions; second, robust 
stability that the nominal system must possess to resist the effects of sampling. Only a subset 
of the nominal-stabilizing controllers have this additional property. This in turn can be 
expressed as a conic sector condition. Therefore, a stabilization problem of a sampled data 
system can be formulated as a robustness stabilization problem of an appropriate LTI system.
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(3) A design should achieve performance while at the same time guarantee stability; also 
performance measured with nominal system should not deteriorate too much when true 
“perturbed” version of the system is switched in. A sufficient condition for this can be 
expressed in terms of the L°° norm of certain operator. H°° design is the right tool to achieve 
the minimization of this norm.

1.4 The main contributions of this thesis

We have looked into three aspects of multirate sampled data systems: (a) structure of 
general multirate hybrid controllers; (b) analysis, mainly of stability, of multirate systems; (c) 
design methodology for such systems. These aspects may be of independent interests, but they 
are parts of a unified approach of linear sampled data systems. The most important conclusion 
of this thesis is that continuous time approach to hybrid controlled systems, first studied in 
[Thompson], is valid and can be effective.

The effectiveness of this approach hinges on the structural analysis of a general class of 
multirate systems. About this, we believe we have achieved the following original results:

( 1 ) Characterization of the input-output behaviour of two practical class of sampling 
schemes, namely the input and output triggered schemes. We have shown that the variable 
part of a hybrid controller is entirely specified by an LTI system;

(2) For a hybrid controller to have a separable structure (defined in chapter 4) it is 
necessary that the realization scheme is both input and output triggered. In this case, the 
input-output relation can be decomposed as the cascade of SAH operators and a LTI systems.

Since the SAH operators are very important to our exposition, we studied their 
properties in details. Among the interesting features of SAH operators, we have shown in 
particular:

(1) SAH operators can be approximated effectively by LTI operators;

(2) When constrained to a special class of signals, the optimal approximation to an SAH 
operator S y  is h y . h y  is in general a good approximation if the sampling rates are practically 
high;

(3) Quantitative criterion are given to estimate the effectiveness of the approximations 
and to indicate the class of signals for which the approximation assumes the smallest and the
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greatest errors.

(4) Two bounds are found. One is valid for finite bandwidth signals satisfying the 
Shannon sampling condition. The other is valid for all signals produced by passing L2 functions 
through an LTI filter with strictly proper transfer function. The general validity of the second 
bound makes it suitable for design purposes, because we must not pose any assumption on the 
signals before the controller is defined.

We have used LTI approximation to SAH and bound on the error to analyze the 
stability of multirate systems. In such a method, only LTI system techniques are needed, e.g. 
Nyquist array and frequency dependent singular values. We have shown that scaling can reduce 
the typical conservatism of Small Gain type of tests, though a complete solution to the optimal 
scaling problem is still unsolved.

The most important potential of the approach presented in this thesis is, we believe, a 
systematic design procedure for multirate sampled data systems. As opposed to LQ approach 
to sampled data system design, the influence of sampling can be accounted for by a trade-off 
procedure. This trade-off procedure will result in not only a balance between performance 
optimization and stability, but also a balance between nominal performance and degradation 
due to sampling. The following have been achieved concerning the stabilization of multirate 
systems:

(1) The stabilization problem of multirate system has been formulated as an H°° 
minimization. The bounds on the SAH operators are shown to be the best choices as weight 
functions.

(2) Optimal scaling is introduced to reduce the conservatism inherent of the Small Gain 
theorem. A solution to a suboptimal scaling is proposed and solved, and numerical procedure 
developed.

(3) Stability of the designed system can be predicted from the optimum of the H°° 
minimization.

A pure stabilization formulation will not result in a satisfactory design. This is well 
demonstrated by numerical examples. The significance of the stabilization problem as posed in 
an H°° framework is that useful information can be gained from this process. Apart form the 
scaling matrix, one can also inspect how demanding the stabilization task is. This is
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subsequently used in the trade off of an overall performance. Trade-off between several 
performance requirements is a difficult problem, which ultimately accounts for the complexity 
of weights selection for H°° optimization. We have developed a general algorithm for making 
balance between two competing targets, where one of them is a “hard” requirement, i.e. it 
must satisfy certain prescribed criterion. This problem is casted as a constrained optimization. 
In the case of multirate system design, the constraint reflects the requirement for stability and 
robust performance. The following issues are investigated:

(1 ) Characterization of the feasible region for the constrainted optimization problem;

(2) A two-step one-dimensional binary search scheme is proposed to solve the 
constrainted optimization problem without calculating derivatives. An approximate solution is 
presented to ease the computation demand;

Once the balance is found, we arrive at a standard H°° optimization problem. It is 
sometimes justifiable to use suboptimal solutions to this problem as is indicated in the 
examples. Post-processing to get the multirate controller is straightforward.

At this stage it is not possible to judge the full potential of the methods proposed in this 
thesis, for substantial experience has yet to be gained. In particular, the performance of an H°° 
design is up to the choice of “correct” weights, which is more experience dependent than theory 
oriented. We have succeeded in transforming a sampled data system design into the context of 
a LTI system synthesis. Therefore, successful application of H°° methods to practical situations 
will make the method of this thesis a useful addition to the collection sampled data system 
design methodologies.



Chapter Two 
Stability Theory

2.0 Iniroduction

This chapter contains some background material on the stability theory of dynamic 
systems. This theory is particularly well developed for LTI systems. In this case Nyquist type 
of stability tests are widely used in systems analysis. But for time-varying systems, there is 
lacking of something that is both general enough and easy to use. This difficulty has motivated 
a lot of research into this area.

A large body of research in this area has made use of functional analysis and operator 
theory [Davis, M2, M4]. There are at least two reasons behind this. Firstly, many physical 
systems have an input-output behaviour that can be conveniently described as an operator. 
Secondly, operator theory itself is well established. Many of the concepts of engineering 
systems, such as stability, time-invariance and causality, can be rigorously stated in operator 
theoretic terms, and many classical results in operator theory can be used in analysing systems. 
It is particularly true for stability of systems.

Mathematically speaking, the stability of a system is equivalent to the invertability of 
certain operators describing the interconnection of the system. Since the concept of an operator 
embraces a wide range of situations, by studying the invertability properties of the operators of 
interests more insight can be gained. It is these ideas which will concern us in this chapter. We 
begin by defining the spaces which are suitable for the purposes of our study. Systems are then 
defined as operators on these spaces. The stability of a system is then defined in terms of the 
domains of certain operators describing the input-output mapping. We will then state some 
results concerning the stability of systems described by certain operators. Particular emphasis 
is put on the stability properties of systems under perturbations. The terminology, approach 
and main results here are taken from [Kato]. Some of the similarities of the results in [Safonov] 
and [Thompson] to those of [Kato] are discussed. Finally, we will point out why the foregoing 
theory can be used to lay the foundation to a frequency domain method for sampled data 
system, and indeed any system that can be efficiently approximated by LTI operators.

2.1 Definition and Terminology

In this section terminology and definitions are introduced which will be needed later in 
this chapter as well as in the rest of the thesis, 
j) space and operators

We need function spaces L2[Cn; (0, -foo)] and L2[C2; ( — oo, -foo)] for signals.
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Specifically:
+oo

L2[Cn; ( — 00, + 00)] =  { x(t) : ( —00, + 00) Cn | J xT (t)*x(t)dt <  00 }

and L2 [Cn; (0, -foo)] is defined as a subspace of L2[Cn; ( — 00, + 00)] of functions which are 
(almost everywhere) zero for t< 0 . When n =  1, L2(—00, + 00) and L2[0, -f-00) are used. We 
will use a prefix R for spaces of real functions. For example, RL2(0, + 00) is the space of real 
functions that are square integrable on (0, + 00). L2 is a Hilbert space with an inner product 
defined by :

<  x, y > 4 x-r(t)-y(t)dt

together with a norm:

|x| =  ĵ< X, X >  .

This Hilbert space is denoted as H[Cn; ( — 00, + 00)]. If the dimension of a space A is finite we 
use dim(A) to represent the dimension. If X is a subspace of H then X-̂ - denotes the orthogonal 
complementary space of X in H:

X -1  =  {x 6 H | < x , m >  =  0 V m e  X }.

If two spaces Hx and H2 are given, we define the product of the two spaces as: 

Hi x H 2 -  { (x, y) [ x G Hj and y G H2} .

The inner product and hence also the norm of elements on a product space are induced from 
the individual spaces:

<(x, y), (u, v )>  =  <X, U> +  <y, V>

and
|(x,y)| =  |x||2 + ||y||2 .

A linear manifold M in a space is a set satisfying:

V x, y G M, a, /? G C =>• ax +  Py G M.
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A closed linear manifold is a subspace.
We need the concept of an extended space. The definition below is from [Safonov], but 

we restrict it only to a simple case.

Definition 2.1.1: Let x T denote the truncated version of x:

xT(t) == x(t) if |t| <  r 
=  0 elsewhere.

The extended space of X, denoted as Xe, is the collection of functions x such that xr 6 X V r.
Because we have in mind the applications in stability analysis, the following definition 

of an operator is adopted:

Definition 2.1.2: Let X and Y be function spaces. A linear operator T form X to Y is a 
linear mapping from a linear manifold in X into another linear manifold in Y. These linear 
manifolds are called the domain and range of the operator, denoted Dom(T) and Rang(T) 
respectively.

Since we will only need linear operators, all operators will be assumed linear throughout. 

Definition 2.1.3: An operator is bounded if there exists a constant C < oo such that 

||T-xj| < C||x|l V x G Dom(T).

For a bounded operator T its domain Dom(T) can be extended to cl{Dom(T)}, the closure of 
Dom(T), by

T-x =  lim T*xn
n —> o o

where {xn} C Dom(T) and xn —► x. A norm can be defined for bounded operators:

llT ll -  sup nor*xGDom(T) llx ll

and it is called the induced norm from the space they are defined on. The induced norm from 
L 2 is sometimes called the infinite norm.

Definition 2.1.4: The graph of an operator from X to Y, denoted as G(T), is a subset of
XxY:
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G(T) =  { (x,y) C XxY | x G Dom(T) and y G Rang(T) }.

Definition 2.1.5: An operator is said to be closed if G(T) is a closed set in XxY .

Projections are an important class operators. An operator P is called an oblique 
projection if it satisfies that

P P  =  P,

and is called an orthogonal projection if it is further self-adjoint, 

zz) Systems and operators

Many system theoretic concepts have counterparts in operator theory. In this section we 
will attempt to make some of these connections clear. We will first try to connect the concept 
of a system to that of an operator. A physical system is an entity whose output is completely 
determined by the input signal and the initial conditions. For linear systems the output is a 
linear function of the input and initial conditions. Such a system is shown in Fig. 2.1.1.

q € Q

x G X O G ■o

Fig. 2.2.1 General Linear System

Let X be the set of all input signals and Q the initial conditions, then the systems is 
described by a linear function G:

G: XxQ Y

We assume that the input signals form a Hilbert space. An engineering interpretation of this 
could be that we confine our attention to signals with finite energy. For certain signals in X 
and under some initial conditions the system will produce an output with finite energy too, 
therefore one can define an operator from some linear manifold of XxQ to another manifold in 
Y. We shall call it the operator describing the system, although it only specifies the “well
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behaved” part of the system. We can also see from this that one must specify the definition 
domain of the operator, for it is part of the description of the system.

What follows is a discussion of the role of the initial conditions. To do this we need the 
concept of controllability. A system defined as above is said controllable if for any initial 
condition in Q one can choose an input function such that the output function is identically 
zero after some finite time. For controllable systems we can assume that the initial conditions 
are always zero because their effects can be perfectly cancelled by a proper choice of input. In 
this case, We simplify the problem by considering the operator G: X h-»Y only.

Sometimes it is desirable to consider systems defined on the whole time scale t E ( — 00, 
+  00). The operators describing these systems are defined on X»-*Y where both X and Y are 
function spaces on ( — 00, + 00), and the initial condition at t =  —00 is assumed to be zero.

Definition 2.1.6: A system is said time-invariant if the operator G describing the system 
satisfies:

G 0D7-X =  Dr oG-x V x E Dom(G) 

where Dr is the pure delay operator:

[Dr -x](t) =  x(t -  r).

In other words G commutes with delay operator. The operator is also said time-invariant.
For linear time-invariant (LTI) systems an invaluable tool of analysis is the Laplace 

transformation. Whenever it makes sense time-invariant operators also commute with 
differential operator D:

D-x(t) =  e(t)

where x(t) is absolutely continuous: x(t) =  J*e(0)d0, for some e E L2[0, 00). This property has 
profound implications. In fact this alone is enough to lead to the conclusion [Power]: there 
exists a G(s) such that for any (x, y) E Graph(G)

y(s) =  G(s)x(s)

where x(s) and y(s) are the Laplace transforms of x and y, respectively. G(s) is called the 
transfer function of the systems and we also use it for the operator. It should be noted that 
systems defined on half time scale are not time-invariant in the above sense. For instance if we
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are only interested in the positive times, then in general operators do not commute with Dr if 
r <  0. However when they do commute with Dr for r > 0 and when the initial condition is 
zero, it is still possible to relate the input-output by a transfer functions defined on C_j_ only. 
These systems are also called time-invariant.

Definition 2.1.7: A system is causal if for any x 6 Dom(G) with x(t) =  0 for t < r, 
y(t) =  [G-x](t) =  0 for t < r.

It is easy to determine the domain of an LTI operator describing a causal system from 
its transfer function. We know that if x(t) =  0 for t < 0, and x € L2, then x(s) is analytic in 
C_f_. If y =  G-x is to be in L2[0,oo), y(s) must be also analytic in Ĉ _. But y(s) =  G(s)x(s), so 
x(s) must be such that it cancels all the singularities of G(s) in C_|_. If G(s) admits an inner- 
outer factorization [Rudin]: G(s) =  N(s)D_1(s), where both N(s) and D(s) are analytic in C .̂, 
then the domain of G is given by

Dom(G) =  { x € X | x(s) =  D(s)e(s), e is analytic in C4J .

Now we can define the stability of a system.
I : -

Definition 2.1.8: A system is said stable if the operator G: X *-*■  Y describing the system 
has dense domain, i.e. cl(Dom(G)) =  X. In addition a system is said to have finite bound if

i/̂ i ^ |G*x||G| =  sup - j jp  =  <  00.
xGX
x^o

A system is said to have extended stability if there exists a constant C <  00 such that 

|(G x)r| <  C |x T| V x g Xe.

The following lemma shows the relation between these concepts .

Lemma 2.1.9: If a causal system G is stable and has finite bound, then it also has 
extended stability. Furthermore:

inf { C | |(G-x)r| < C |xr| V x € Xe.) =  |G|.

Proof:
Firstly, for any r >  0, and V x 6 Xe, we have that
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|(G x )r|< lG l |x r|

hence G is extendedly stable. Now suppose that there is a constant C <  |G| such that ||(G-x) || 
< C ||xT|| for all r > 0  and x G Xe. Take an x G L2[0, oo), we have l.m.t. |xT| =  |x|, hence

|G-x| =  l.m.t. |(G-x) I < C l.m.t. |xT| =  C |x|r —► oo I ' t  | — r —► oo

or ||G|| < C, a contradiction. □

As for the relation to asymptotical stability, we first state:

Lemma 2.1.10: A system G is stable =>• for any x G L2, y =  G-x satisfies: 
n

limm,n —► oo |y(t)|2dt =  0.
m

Proof:
It follows from the fact that y G L2. □

This is not exactly asymptotic stability unless we further assume that every y(t) is 
piecewise continuous function. The following lemma gives an idea of when this will happen:

Lemma 2.1.11: Suppose that G is defined by
+ oo

y(t) =  G-x = G(t-0)x(0)d0

and G(-) G L2 is a bounded function on ( —oo, +oo), then y(t) is continuous in t for all x G 
L2.

Proof.
It is clear that

|y(fci) - y(t2)| <
+oo

|[G(t! - 0 ) -  G(tj -  0)]x(9)|d9

<
+ o o  + o o

|G(tx— e) -  G(t2— ef&O - [ |x(̂ 7)|2d<9
—oo —oo

1
2
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It is known [Rudin, pl96] that translation DT: e(t) —► e(t — r) is a continuous mapping from 
R to L2(Lp, 1 < p <  oo) , we conclude that ly ^ )  — y(t2)| —► 0 as |tx — t2| —► 0. For LTI 
systems this is the case if the transfer function is strictly proper. □

2.2 Mathematical description of stability

In this section we study some of the basic aspects of stability theory for linear systems. 
Necessary and sufficient conditions of closed loop stability are given in terms of certain 
invertability conditions. Results of this kind are well understood for LTI systems, and it is of 
interests to generalize these results to a more general class of systems. An example is included 
to demonstrate how the concepts of LTI systems are generalized. Then we preceed to study the 
continuity property of a feedback system, i.e. the robustness issue. The study of continuity 
properties paves the ways to the use of perturbation methods for non-LTI systems that are, in 
an appropriate sense, close to LTI ones.

2.2.1 Necessary and sufficient conditions of stability

We assume throughout this section that all the operators under discussion are closed. 
This is connected to the fact that operators described by proper transfer functions are closed. 
Under this assumption a stable system is described by a bounded operator with full domain. 
Before going on discussion, some elementary properties about all stable systems are briefly 
outlined here. Let the symbol ©(x,Y) denote the collection of all linear stable systems as well 
as the operators describing them, from X into Y. The subscript (X, Y) is normally omitted 
when there is no danger of confusion. It is well known that © is a (Banach) space, i.e. it is 
closed under linear operations (with the induced norm from X and Y).

The standard configuration of feedback systems discussed here is shown in Fig. 2.3.1. G 
and H are linear operators with domains Dom(G) and Dom(H) respectively. The input signal 
to this system is the pair (r1} r2) and the output is (y1} y2). The input-output mapping is
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defined through the following system equations:

y i =

y2 =  H *(r2+yi) (2.2.1)

The explicit relations between (rx, r2) and (y1? y2) are: 

yi =  (I-G-H)'1 .G-r1+  (I-G*H)_1-G-H-r2 

 ̂ y2 =  (I-H-G)_1-H-G-r1+  (I-H-G)_1 -Ht 2

(2.2.2)

supposing the inversions are all well defined. This leads to

Lemma 2.2.1: [Vidyasagar, 1984] [Desor, 1980] The feedback system (2.2.1) defines a 
stable operator (r1? r2) —»■ (yx, y2) if and only if:

(a) (I-G-H) and (I-H-G) are one-to-one, and

(b) (I-G*H)_1G, (I-G-H)_1G*H, (I-H-G)_1H-G and (I-H-G)_1H £ ©.

(a) is a kind of well-posedness condition; while (b) states that four operators have to be 
all stable. In order to make the notation simple we introduce in variables: r =  (r1} r2)"1" and y 
— (y2> yi)T> and define

Then (2.2.1) becomes

(I-K)-y =  Kt . (2.2.1’)

The system is stable if (I-K)_1K £ ©. Since (I — K)_1K =  (I — K )_1— I, we conclude that 
the system is stable if (I-K)”1 £ S . So we have shown that stability is just an invertability 
condition, i.e. the operator (I — K) must be one-to-one and of dense range. In order to pursue 
the investigation further, the following definitions are introduced [Kato]:

Definition 2.2.2: Let T be an operator from X to Y, and let Ker(T) C X denote kernel
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space of T. The nullity and deficiency of T are defined to be the numbers:

Nul(T) =  dim(Ker(T))
and

Def(T) =  dimtRang-^T)).

In terms of Nul and Def, the above discussion can be summarized as

Lemma 2.2.3: The system defined in Fig. 2.3.1 is stable if and only if 

Nul(I -  K) =  Def(I -  K) =  0.
Proof.

Nul(T) =  0 <==> T is one to one hence invertable. Def(T) =  0 <==> Rang(T) =  
Dom(T-1) is dense. T- 1  is closed since T is (by hypothesis), therefore we conclude that T has a 
bounded inverse from Closed Graph Theorem. □

The real problem is that the nullity and deficiency of an operator are not easy to 
compute. However for the class of LTI operators whose transfer functions are rational functions 
of s, this is very simple. The following example illustrates the basic ideas.

Example 2.2.4: Let G(s) be a real rational scaler function that has neither pole nor zero 
on jw-axis, and has C-{--poles {pj}M_1  and C_j--zeros {Z j}^  with corresponding multiplicities 
nij and nj, respectively. It is also assumed that G(s) is proper. Suppose that G(s) is the transfer 
function of a causal operator G defined on X =  RL2[0,oo) into X itself. We can show that

(a) Nul(G) =  0;

. M(b) dim(Dom-L(G)) =  ]Cmj ;i= l
(c) Def(G) =  £ > ; .i= l

Proof
(a) Suppose that G-x =  0. This implies, by Paserval identity, that

+oo

I  |<3(j^)|2|x(jc )̂|2du> 0.

Since G(ju;) is non-zero Vw, x(ju>) =  0 a.e., or x(t) =  0 a.e. as a consequence of the
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uniqueness property of Fourier transform.

(b) Let G(s) have a coprime factorization over the ring of stable proper rational 
functions: G(s) =  N(s)D_1(s), where both N(s) and D(s) are analytic in Cq.. Then inner-outer 
factorizations can be performed on N and D, and the inner factors ^ of N and 0 of D are both 
rational functions:

M
«(s) =  ni=i

(s-Pi)
_m:

(S+P:)

and
4>{s) =

N
n (s-zi)l1

_(s+Z j)_

If a function e(t) is to lie in the domain of G, it must cancel all the poles {p.}^^_ x of G(s). In 
general a function xEDom(G) if and only if

x(s) =  D(s)e(s)

where eEX. We shall now consider the complementary space of Dom(G). Let e be a function in 
X, the following calculations show:

+oo
<D -x, e>  =  2^j J D(jcj)x(ju>)e(jw)dj<

+ oo

2-n-j . e(-jw)D(ja;)x(ju;)djw (e(t) is real function)

e(-s)D(s)x(s)ds (T is jw-axis from -joo upwards) 
r

It is known that if a function is analytic in a strap covering the imaginery axis then it can be 
(up to a constant) uniquely decomposed into the sum of two functions analytic in C_j_ and C_ 
respectively. Thus:

e(-s)D(s) =  g+ (s) +  g_(s)

where g^_(s) is analytic in C_j_. The integrand g^_(s)x(s) is analytic in hence the integral 
represent the inner product of a causal and anticausal functions, which is zero. This leads to
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<D -x, e> 27TJ . g_(s)x(s)ds
r

=  <g.(-s), x (s)> .

Now since g_(-s) is a function in L2[0,oo), so the inner product with any x in X is zero if and 
only if g_(s) =  0. This is true only when e(-s)D(s) is analytic in C .̂, in other words all the C+- 
poles of e(-s) are to be canceled by D(s). In general, functions of the following form

M
•w =  E  E

1 Ot:i,k
i=l k=l (S+P:)

(2.2.3)

have this property. In fact we have:

Lemma 2.2.5: The functions in form of (2.2.3) are the only ones that satisfy:

<D-e, x >  =  0 V x G X.

Proof:
Note that e must be the sum of functions of the form

P(s)
(s+Pj)k

where p(s) is analytic in the whole plane, in order that e(s) only has poles at p.’s. This is to say 
that

+ 00
p(s) =  a"sn Vs- n=0

But on the other hand e(s) must be bounded in C+ since it is the Laplace transform of an L2 

function [Duren, pl91], so an =  0 for n > k, i.e. p(s) is a polynomial of order less than k. 
Functions of this form are in the space

sp< ..m > ..}'

whose dimension is obviously □

(c) Analysis can be carried out in the same way for the range of G, which is given by 
<f)-X [Rudin]. So we have proved the claims. □
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Any e(t) 6 L2( — oo, -f oo) can be decomposed as 

e(t) =  e+ (t) +  e_(t)

where e_j_(t) is identically zero for t <  0, and is called the causal projection of e. Since it is a 
useful concept in later chapters, we give a special symbol P+ to denote the projection operator. 
Similarly e_(t) is called the anti-causal projection, and the mapping e -̂*e_ is defined as P_. It is 
well known that e_|_(s) is analytic in Cq_, and so is e_(s) in C_.

We have seen that the deficiency and nullity are completely determined by the poles 
and zeros of the transfer function for LTI operators. If in system Fig. 2.3.1, K is LTI, then the 
conditions for stability are :

(a) 1 — K(jw) ^  0 Vw and

(b) [1 — K(s)]-1 analytic in C+ .

There are effective methods of testing if condition (b) is satisfied from information 
about K(jcj) alone, for example the Nyquist criterion. But when K is not an LTI operator and 
thus can not be described by a transfer functions, Nul(K) and Def(I — K) have to be 
determined by other means.

2.2.2 Robustness of stability

It is important to study the tolerance of the stability property to variations in the open 
loop operators. The first issue is to specify what is meant by a small variation of an operator.

Definition 2.2.6: A weighted ball centred at A with radius R, where A and R are 
operators in the same space such that Dom(R) D Com(A), is defined as a collection of 
operators

Ball(A, R) =  {B: Dom(B) D Dom(A) | || (A — B)-x|| <  || R-x || V x e
Dom(A) }.

This is a generalization of the conic sector defined in [Thompson]. We have lifted the 
requirement that A and B are stable. In other words this ball consists all the relatively 
bounded operators to A [Katoj.

The use of an operator R instead of a constant as the radius reduces conservatism since
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more information about the difference between B and A is made use of [Safonov].
We will substitute the subsystem H in Fig 2.3.1 with a member in the R-weighted ball 

centred at H and study the stability of the system. All the members in Ball(H, R) are in the 
form of H +  AH, where Dom(AH) D Dom(H) and |AH-x| < |R*x| Vx 6 Dom(H). We have

Lemma 2.2.7: Suppose that the system (G, H) is stable. Let H +  AH E Ball(H, R). 
Then (G, H+AH) is stable if

|R G (I -  H G) ‘| <  1. (2 .2 .4)

Proof.
The assumption that (G, H) is stable implies

Dom(H) D Rang[G(I -  HG)'1] f |  Rang[(I -  G-H)_1]

and since Dom(R) D Dom(H) the use of norm in (2.2.4) is justified. Denote by H the operators 
H +  AH. We want to show that the systems (G, H) are all stable. It can be seen that the 
following calculations make sense:

'o E I - ’o E 'O AH
G 0 G 0 G 0

I - ’o TTT< ’ i -h ’ - l "i -h "O__l ----1
o -G I -G I

=  P(I -  K)

so if P 1 € ©, then (G, H) is stable, for (I — K) x is stable. Further simple calculations lead to-l •

P = I —AH-G(I -  HG) -AH-(I -  GH)
0 I

-l

and all the entries in P have full domains due to the assumption on Dom(AH). By making 
reference to the identity

' a  b ‘r 1 A' 1 -A ^ B C -1
0 C 0 C"1 for invertable A and C,

we conclude that if the (1,1) entry of P is invertable and have dense domain, then it will follow
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that P- 1  is stable. But (2.2.4) is sufficient for this, since

|AH-G(I -  HG)_1x| < |RH(I -  HG)_1xJ Vx 

or |AHG(I -  HG)"1! < 1 .  □

Conditions in the above lemma can be relaxed. From the proof we have seen that it is 
enough to have the following set of conditions:

(1) Dom(R) D Rang{ G(I -  H-G)'1};

(2) Dom(AH) D Rang{ (I -  G-H)"1} U Rang{ G-(I -  H-G) '1 };

(3) |AH-x| < |R-x| Vx 6 Rang{ G-(I -  H-G)'1}.

In other words, the assumption Dom(AH) D Dom(H) is not needed.

Remark 2.2.8: Conditions in (2) on the domains of AH come from the requirement of 
internal stability. Though the input r2 may be fictitious, stability of the mappings from r2 are 
necessary in order to guarantee interenal stability. This is easy to understand from a transfer 
function point of view, because there can be cancelations of unstable poles between G and II. 
However, if we are only interested in the stability of the mapping from rx to yx, which is the 
case we will encounter later, we can simplify the conditions further. This is summarized in the 
following theorem.

Theorem 2.2.9: Suppose that the operator (I — GH) 1G is stable. Let H =  H -f- AH £ 
Ball(II, R). Then (I -  G-H)_1G is stable if

(1) Dom(AH) D Rang[G-(I -  H-G)'1],
and

(2) |r -G-(I -  H-G)"1! <  1.

Proof:
First we note that (I — G-H) 1G =  G-(I — H-G) 1, thus

G-(I -  H-G)"1 =  G-[(I -  HG) -  A H G f1
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=  G-(I -  HG) '1 [I -  AH-G-(I -  H-G)"1]"1.

The stability assumption on the system (G, H) and (1) ensures that the operator in the bracket 
has full domain of definition. (2) implies that this operator is bounded away from zero, 
therefore it is boundedly invertible [Kato, pl90].

Remark 2.2.10: The assumptions on the domain of H is still restrictive, because, in the 
case of LTI operators, it requires that H should have the same C^.-poles as those of H. If we 
recall the Nyquist criterion for stability, it is clear that what is needed is that H should have 
the same number of C_|_-poles as that of H, but not necessarily on the same locations. The 
combined effects of having the same number of C^.-poles and closed jw-axis behaviour ensure 
that the two operators are close to each other. We seem to have defined the “topology” on the 
space of operators in a rather conservative way, i.e. it is so strong that some of the “small” 
changes are excluded as the candidates as members of the neighbourhood. Can we define a 
weaker topology that would still make the stability of systems a continuous function? The 
answer is yes. Actually the weakest topology that possesses this property is defined in [Kato]: 
the Gap between operators. We deplore some of this below for the interests of generality. We 
begin by working in a general operator setting, for the sake of simplicity. As we will see, in the 
case of frequency responses some further detailed study is necessary.

Definition 2.2.11: The gap between two closed subspaces M and N of H is defined as:

6>(M,N) =  max( sup dist(x, M), sup dist(x, N) ). (2.2.5)xGN xGM|X|=1 lx |= l

Theorem 2.2.12: Let PM and PN denote the orthogonal projections onto M and N 
respectively, then

6>(M, N) =  max ( |(PM -  PN)PM|, |(PM -  PN)PN|)

=  |(Pm -  Pn)| (2-2.6)

If Pm and PN are oblique projections onto M and N then

|(Pm -  Pn)| <  |(PM -  Pn)|-

Proof:
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See [Kato, p56].

We can see from here that it is possible to use norm to compute the gaps, provided one 
can get an expression for the projection operators. This is done in the next theorem. But first 
we need

Lemma 2.2.113. Suppose that T is an operator from X to Y that can be factorized as: 

T =  ND"1

where N: E h->Y and D: E h->X have dense domains in E, and where D is one-to-one and 
Rang(D) =  Dom(T); then the graph G(T) C XxY is given by:

G(T) = D
N E.

Proof.
For any e £ X we can see that D-e 6 Dom(T) so let x =  D-e. We have:

N-e =  N-D_1x =  T-x,
or

D
N E C G(T).

On the other hand if (x, y) 6 G(T), just let e =  D -x (because x € Dom(D-1) ), and clearly

e =  (x, y) 6 E

E D G(T).

So we conclude E =  G(T). □

Theorem 2.2.14: Suppose that M is a closed subspace of a Hilbert space H and is defined
by

M =  F-X = ■ X
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where both D and N are closed operators and have dense domains in X. Also assume that D is 
one-to-one. Let denote the projection operator onto M. Then we have:

P M — D
N A_1[D* N*] (2.2.7)

where
A =  F*F =  [D*D+N*N]

has dense range and hence has an inverse with dense domain.

Proof.
It is clear that has range G(F), and what remains to be verified is that P^  

as defined in (2) is an orthogonal projection operator. But this is easily done because we can 
see that P ^ ’Pm =  Pm an<̂  Pm =  Pm- order to prove that A has dense range we assume 
the opposite and deduce that there will be an y G X such that

<F*F-x, y >  =  0 V x € X
=>

|F-yj =  0, if we choose x =  y.

But this can only be true if y =  0, because of the assumption that F is one-to-one. This proves 
the theorem. □

In order to apply the above theory to frequency response operators it is important to 
define a suitable space of functions. If the space is chosen to be L2(-oo,oo), it is difficult to 
represent an operator as a coprime factorization of operators with dense domains, but if the 
space is L2[0,oo) we run into the problem of the adjoint operators being not representable as 
transfer functions. Here we choose to work with L2[0, oo), so the formula for the gap between 
will involve the computation of norms of an operator that is a mixture of Laurent and 
Toeplitz. Although it is not clear how to numerically calculate such a norm, an upper bound
can found in terms of the coprime factors only. Let T(s) have a coprime factorization

/}<
T(s) =  N(s)D_1(s)

such that both N(s) and D(s) are analytic in C_j_. It is seen that if the function T(s) represents 
an operator T, then T has range N(s)-H2, and its graph is given by

D(s)
N(s) •HJG (T ) =



-46- [  Chapter. 2

Let A(s) =  [D^^sJDfs) + NT (-s)N(s) ]-1, and we know that A(s) can factorized as a (s)oT(-s), 
where a(s) is analytic in Cj_. We assert that the orthogonal projector onto G(T) is

D(s)
N(s)

D(s)
N(s)

a (s ) P + -q t (-s) [Dt (-s), Nt (-s) ]. 

a{s) • T^,

(2.2.8)

where Ty, is the Toeplitz operator with symbol tp — a^(-s) [D^(-s), N^~(-s) ]. Note that 
although the operation involves functions not in L2[0,oo), the final effect is well defined 
entirely in the space L2[0, oo). To verify that (2.2.8) is indeed the projection we are looking 
for, we first note that it maps into the graph of T. It is also easy to show that P2 =  P, so it is a 
projection. To see it is an orthogonal projection we need to prove that (2.2.8) defines a self- 
adjoint operator. In the derivation below we take the liberty of switching between L2(-oo,oo) 
and L2[0,oo). A more rigorous justification via complex analysis is also possible but tedious. 
We have

< D(s)
N(s) o(s)P+ -aT(-s)[DT(-s), NT(s)]x(s), y(s) > (in L2[0,oo)

=  < P-f • a T(-s)[Dt (-s) , NT (s)]x(s),aT(-s)[DT (-s), NT (s)]y(s) >  (L2(-oo,oo) )

=  <aT(-s)[DT (-s), NT (s)]x(s),P+ -aT (-s)[DT(-s), NT(s)]y(s) >  (L2(-oo,oo) )

=  <x(s), D(s)
N(s) a(s)P+ -aT(-s)[DT(-s), NT(s)]y(s) > (back in L2[0,oo) ),

i.e. the expression in (2.2.8) is self-adjoint. However, the involvement of P _̂ has made it is 
impossible to represent the operator defined in (2 .2 .8) as a transfer function.

Some bounds on the gaps are given below which enable one to get around the problem 
of T,/,. We will not use the results presented in [El-Akkary] because they involve the calculation 
of the gap between domains, which in general is difficult to compute. First we have

lemma 2.2.15: Let T be closed and P-p the orthogonal projector onto the graph of T. 
Suppose that R satisfies: R-R =  I and R =  R*. Then the orthogonal projector onto R-T is

Prt  = I
0

I 0 
0 R *

If R is a general non-singular matrix, then
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Prt  — I 0. 
0 R"1 •pT ‘ I 0 

0 R"1 •

defines an oblique projection.

Proof.
If (x, y)T E G(T) then (x, Ry)T E G(RT). Thus the above defines an operator 

mapping into G(RT). It is easy to see that Pry  thus defined satisfies i) Pr-j-Pr t  =  Pr t  and 
ii) Pry  =  Pry  • So it is the one we want. In the case R is only non-singular the second 
expression is easily seen to satisfy Pry  — Pr y - G

Lemma 2.2.16: Let A and B be closed, and let T =  
projections onto G(A) and G(B) are PA and PB- We have

A 0 
0 B . Suppose the orthogonal

A 0 
O B

where ip is unitary.

Proof:
If (x1} yx) E G(A) and (x2, y2) £ G(B), then (xl5 x 2;yl5 y2) E G(T). Take a point in the 

appropriate space (u1? u2;v1? v2), i.e. PA(u1} vi) =  (xl5 Yi) etc. If we define a permutation 
matrix ip as:

1 0  0 0
„ 0 0 1 0

iP ± 0 1 0  0
0 0 0 1

and use the definitions of PA and PB we can see that (3^y) maps (u1? u2;v1, v2) into (x1? x2;y!, 
y2). Its other properties for an orthogonal projection is easily checked. □

These two lemmas lead to the conclusion:

Theorem 2.2.17: The gap between
l|PA l-  Pa 2II }-

0 Bj 
Aj 0 i =  l,2 is given by max{ UPb ^  p B2II?

Proof

It follows from the preceding lemmas and the relation
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‘ 0 b " ’ 0 i T a  0 "
A 0 I 0 J[ 0 B

that the projection onto the corresponding graph is

7 PBj o 
0 PA:i j

7 T , i =  1 , 2

where 7  is an unitary operator. So the gap is

PBl-  P b 2 0 

0 PAl-  Pa 2

and the theorem follows. □

The situation we are facing requires to find the gap between operators of the form

' I  Bj'
Ai I j

which is more complicated, for the graphs of them can not be obtained as orthogonal
compositions of simple graphs. We could use the formula [Kato]:

/
1

gap{ A+S, A+T } < 2 (l+ ||A ||2) V p { S , T}

as was done in [El-Akkary], but this is conservative, for no structural information of A, which 
is I in our case, is used. Although it is hard to find the orthogonal projection onto the graphs 
of operators in the form (I +  K), it is possible to find an oblique one. Note that if (x, y) £ 
G(T), then (x, x+y) £ G(I-fT). Let

7r = I 0 
I I

we find that the operator 7r*P-p-7r- 1  maps a pair (x, y) into G(I+T). But it is obviously a 
projection. Using this we get

gapfl+T,, I+T 2) =  || *(PT l-  Pt 2) ’t-1II 

<  IM I I I P t , -  P - r J I l M I I  

=  ^ I I P t , -  P t 2II, (2.2.9)
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which is an improvement over the inequality quoted from [Kato]. Having in mind the situation 
where only part of the system is under perturbation, we can reduce the bound even further. 
Suppose in the foregoing analysis only the operator A is perturbed. Some simple calculation 
shows that

' I b ' " I b "gaP {

1 > H* 1 ___ a 2 I ll® i(P A l -  P a 2) * 2II

where

and
*1

1 0  10  
0 0 0 1

*2
0 1 0  0 
-10 1 0  ’

hence the gap is less than

113-i I I IK P a , -  P a s)IIII*2 II

< 2||(Pa , -  P a 2)II (2.2.10)

=  2gap{ A lt A2 }.

Next a bound is given for the gaps between operators that have transfer function 
representations. Suppose that T x and T 2 are closed and their transfer functions have inner- 
outer factorization:

Ti(s) =  N1(s)Dj1(s)

T 2( s )  =  N ^ D - j ^ s )

where Nj(s) and Dj(s) are analytic in Cq.. As we have seen that the graph of Tj is G(Tj) =  
Lj-E, where

L|(s) 4 Di(s)
Nj(s) '

Let Sj be the unit ball in G ^ j) =  {(x,y)| ||x ||2+  ||y ||2= l  }. By definition we have
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gap(T„ T 2) 4  max) {(GfTJ.GCT,)), «(G(T2),G(T,)) }

and

«(G(T1),G(T2)) =  sup dist(u, G(T2))
uGSj

=  sup inf |u — L*e’| uGSx e’

sup inf llj!-e — L2-e’| Lv e e s 1 e’

< sup iLj-e — L2-e| 
L 1 - e G S 1

=  ||Lt -  L2|| sup |e|
M =1

(2.2.11)

The last term can be evaluated easily via transfer functions of Lj’s : 

IlLi -  L2|| =  max a

and
(2.2.12)

Similarly for ^(G(T2),G(T1)).

We note that (2.2.12) is always greater than one.

From the above formula we have

gaP(T„T2) < /jJlID j- D2||2+  ||N2-  N2||2

where /? is a constant less than 1, which is in agreement with the results in [Vidyasagar, 1984].
Having found a way to compute the gap between two operators we can give a set of 

conditions that the gap between H and H must satisfy in order that the system is stable. This 
has been treated in detail in the book by Kato [Kato], and we quote the results there in a

sup 
| L, e |  =

lei mm aUJ -̂1

Dj — D2 
Nx - N 2
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modified form.
Theorem 2.2.18: For the system in Fig. 3.1.1, if K and K are closed and (I — K) 1 is 

stable, then the operator (I — K)"1  is also stable if

gap(K,K) < [ l  +  ||(1 -  K)-‘ ||2p .

In the case only H is perturbed the condition becomes:

gap(H,H) < 1 [ l  +  ||(1 -  K m 2]^ .
Proof:

Apply theorems in [Kato, p205], and use the lemmas developed above the conclusion 
follows. □

2.3 Use L T I operators for stability analysis

We have seen that LTI operators, which can be represented as transfer functions, may 
be treated effectively. Also we have studied the stability behaviour of a system in the 
neighbourhood of another system whose stability properties are known. This leads us to the 
idea of studying the stability properties of linear time varying systems which are close to LTI 
systems. In this section we attempt to make some general observation on this issue.

2.3.1 The effectiveness of approximation

In order to apply the ideas discussed above, the operators we wish to study via LTI 
operators must be “close” to LTI operators, otherwise only trivial results can be obtained. So 
the first thing is to give a criterion by which we may judge the extent to which a given 
operator can be represented by an LTI one. We notice that for any bounded operator there is a 
trivial approximation to it such that the error of approximation is bounded: a constant, for 
example 0. In this case | (T — 0)*x| =  |T*x|. We may regard 0 as the worst possible 
approximation to a given operator, and hence we require that any less trivial choice T q should 
at least make |(T — T0)-x| <  |T-x| for some x.

Definition 2.3.1: An approximation Tq to T is said to be effective if 3 x £ 
Dom(T) fl Dom(To) such that

|(T —T0)-x| <  |T -x l. (2.3.1)
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On the set of x where (2.3.1) is satisfied T is effectively approximated by T 0 . We are 
interested in the cases where an effective LTI approximation can be found. We can also see 
that the set mentioned above is in fact a subspace. Suppose such a space is M, with an 
orthogonal projection PM onto it, then

|(T - T 0)-P m x| <  |T-Pm -x| V X € Dom(T). (2.3.2)

Whether an operator has an effective LTI approximation depends on its character, although 
how to find such approximations is another question. We will see that for sample-and-hold 
(SAH) operators of next chapter the frequency response of signals is the important factor that 
decides if good LTI approximation exists. The following two numbers can be used to measure 
the effectiveness of an approximation:

A  . f |(T -  T0)-Pm-x|
M PM-x€Dom(T) |T-Pm-x|

T x ^ O

a |(T -  T0)-P m -x|. . =  sup ----- f——r----i------ -
M P M -x€ D om (T ) |T-PM -x |

T x ^ O

(2.3.3a)

(2.3.3b)

a M and 0 M represent the best and worst directions for Tq to approximate T. If 0 M is small 
enough we might regard the approximation as uniformly good.

The a and 0  defined are functions of Tq, and on this basis we can talk about how to 
choose T q to optimize the criterion. A sensible definition for optimality is for 0  to be 
minimized. Another definition that we will actually use is

|(T -  Topt)-PM| = oin fx )(T -  T0)-Pm|

2.3.2 Bound on the approximation error

It is necessary to find a relative bound for the approximation error in order to use 
perturbation theory. Although the choice of T0 is arbitrary, the task of finding a bound for the 
error is difficult. It is harder when we want the bound to be tight. We can argue as follows: 
since T0 has taken away the LTI part of T, and the remaining part is very different from an 
LTI operator, and hence it is not easy to relate it to LTI operators. Existence of such a bound 
is no problem since there is always a trivial bound, i.e. R =  |r  -  To|-i. The key issue is how 
to reduce conservatism. The trivial bound is not tight because it doesn’t take into account any
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information about the directions on which the error may assume varying values. We observe 
that in Theorem 2.2.9 it is not required that R should behave like AH. What is required is 
that on every direction R dominates AH in gain. The fact that R has varying gains at different 
directions is the reason why conservatism can be reduced. The ideal situation would be that 
|AH-x|=|R-x| for all x, but this is the case only when R is merely a rotated version of AH, 
which is unlikely to happen for an LTI R. We can also define a number to measure the quality 
of the bound:

A1 - sup
xG D om (^H )

Rx^O

|AH-xl
lRx| (2.3.4)

It is clear that 7  < 1, and the bigger 7  is the tighter is the bound. The most conservative 
direction is the one on which 7  attains maximum.



Chapter Three
The Sample and Hold Operator

3.0 Introduction

It is well known that any sampled data systems must contain a combination of sample 
and hold actions, and that it is these actions that make such systems time-varying. This 
chapter is devoted to the study of the properties of sample and hold.

Before describing the general mathematical properties of this operation, We first study a 
typical “hybrid digital device” as in Fig. 3.0.1a. Its function is to take samples from a 
continuous signal f(t) at instants {nT}, n =  0, 1, 2, ..., record the sampled data fn =  f(nT), 
and perform some linear operations on them. Then it generates a sequence of data yn in 
synchronization with the sampling operations at the input. The relation between yn and fn is a 
linear convolution defined as

n

k=0

where {gn}°° is a fixed sequence. If the 2-transforms of g , y and fn are G(z), y(z) and f(z), n j= Q  n "
then the above relation can also be expressed as 

y(z) =  G(z)f(z) .

On the other hand, we can also construct a system as in Fig. 3.0.1b, where G is a 
continuous time system with transfer function G(s). If the samples of the output of this system 
are taken at t =  T, 2T, •••, etc, a sequence of numbers yn =  y(nT) is obtained. From an 
external point of view, we have two systems, each maps a continuous time function into a 
piece-wise constant function. The questions is, when the digital system is given, can one find a 
continuous system as in Fig. 3.0.1b to emulate the external behaviour of the digital system? 
How about the other way round?
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The following proposition establishes the relation between continuous time and discrete 
time mappings:

Proposition 3.0.1: (i) For any proper rational function G(z), if it does not have the 
factor |  (which represents a pure delay), there exists a proper rational function G(s) such that

Z{G(s)hT (s)f(esT)}| , |n(z) =  G(z)f(z), Vf(-)

where
h_r(s) -  ̂ (1 - e_sT)

and Z{-} denotes the operation of
+ o o

Z{A(s)} =  A(s “  Jwsn) > V s = Y  • (3.0.1)
n = -o o

(ii) For any given proper rational function G(s) the operation Z{hx (s)G(s)} defines a 
rational function G(z) so that the two systems in Fig. 3.0.1a and 3.0.1b have the same external 
behaviour.

Note: The requirement that G(z) does not have factors z_1 can be dropped if we allow 
G(s) to have factors of e-sT.

The proof of this proposition is given in the appendix to this chapter. The operation 
Z{-} is also called the Z-transform though this term normally refers to the operation on a 
sequence of numbers. We point out that the function G(s) in (i) is not necessary a real rational 
function even when G(z) is. More detailed discussion is included in Appendix A. Now let us 
study the input-output mapping of the system in Fig. 3.0.1a under the assumption that G(z) 
satisfies Proposition 3.0.1 for some G(s). Note that the same symbols are used for both the 
time domain functions and their Laplace or Z-transforms. Thus

y(s) =  hx (s)-y*T(s) , (here y*T =  y(z)lz==exp(-sT) )

=  hT (s).[G(z)f(z)]|2=exp(_sT)

=  M * )Z { G(s)hT(s)f(e-sT) }
Introduce in symbol Sx  to designate the operation defined below:

(ST *e)(s) i  hx (s)[Z {e(s)}]. (3.0.2)
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We then have

y(s) =  ST -G-ST -f(s). (3.0.3)

The dots in (3.0.3) are carefully put down to indicate the functional operations rather than 
merely multiplications. This indicates that the input-output behaviour of system Fig. 3.0.1a 
can be externally emulated by Fig. 3.0.1b.

The operation defined in (3.0.2) is in frequency domain. For it to have a time domain 
meaning certain conditions have to be imposed on the kind of signals it operates on. We will 
do this in a function space context next section. For this reason we define the time domain 
SAH transformation:

Definition 3.0.2: Suppose e(t) is a function of t, continuous at t=0,T,2T,..., then the 
SAH transformation e(t) of e(t) is a function given by

e(t) =  e(nT) te[nT, (n+l)T)
O O

or =  5 3  e(n T )1[nT, (n - f l)T ) ( t)>
n=0

where 0A(t) is the characteristic function of a set A:

lA(t) =  1 if teA  
=  0 if t£A  .

The continuity assumption on e(t) is a technicality, 
sampler can only measure the values of a signal at 
neighbourhood of nT. This assumption will simplify

3.1 SAH operators

In the sequel we shall analyze SAH operation in the context of function spaces. Of 
special interests are the questions concerning domain of this operation. It is clear that SAH 
does not map L2[0,oo) into L2[0,oo), as the the example below demonstrates:

O OExample 3.1.1: Let f(t) =  a(n(t-nT)) for t> 0 , where
n=0

but it is not unreasonable. For a physical 
t =  NT if it is continuous in some small 
analysis, and is always assumed.

a(t) =  t -f- J  if t 6 [^, 0)
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=  4 + 2 !  if t £ [0, t£)

=  0 elsewhere.

It is easily seen that
+oo

|f(t)|2dt < l  T 3 £  ±  <  oo
S n = l  11

or f £ L2[0, oo). But the SAH transformation of f(t) =  T Vt, i.e. S-p-f ^ L2. □

In order to study the SAH transformation in the context of function spaces, one has to 
identify those functions that, after the operation by SAH, yield elements in L2[0, oo). Another 
concern is that we would like the definition of the SAH operation to be in agreement with 
(3.0.2). Since Fourier transformation from L2[0, oo) to L2(-oo, oo) is a Hilbert space 
isomorphism, one can say little about the pointwise property of a function from its 
transformation alone. But the operation of SAH is defined only in relation to the samples at a 
very small set of points, so sometimes it does not reflect the global property of a function 
adequately. This is why we can not identify S-p with the time domain SAH transformation 
beforehand. Some smoothness condition must be present to avoid ambiguity of the frequency- 
time domain correspondence.

Definition 3.1.2: Class S functions are those x(t) E L2[0,oo) which satisfy
+ OQ +OQ

M s ) ] C  X(s_j wsn )} =  J 2  x (n T )D[nT ,n+ lT )(^ ) a -e- (3*L 1 )
n=-oo n=0

where Jt' 1 denotes the inverse Laplace transform.

For class S functions, frequency representation of SAH operation is precisely (3.0.2). 
Hence from now on the symbol S-p is used for SAH when the functions under discussion are in 
S. But first we have to find out what kind of functions are in S.

Lemma 3.1.3: If x(t) E L2[0,oo) satisfies the following conditions, it is in S:

(i) x(nT) E l2, i.e. £|x(nT)|2<oo;
+oo(ii) x(s) is such that x(s+ju>sn) converges in Cq_ to an analytic function T(s), in L2n=-oosense;
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(iii) The inversion formula for x holds true for t=nT:
j o o + C

_L
27r

- j o o + C

x(s)esn-|"ds =  x(nT) , c>0

Proof:
From (i) we know that S y x  £ L2[0, oo), thus it makes sense to define its Fourier 

transform (in the senge of Plancherel). It is easy to see that

-sT  j~°°i.{ST -x(t)} =  —  2  x(nT)e'SnTn= 0

here the convergence is in the sense of L2. (ii) says that T(s) is a periodic function so it can be 
expanded as Fourier series:

+ ° °  - j 2 i r m —r(s) =  r(<7+jw) =  Cm(<r)e “s, cr>0
m = - o o

where

T  w

=  Cm(°’)e-jwmT

m=-oo

Cm(cr) — o ~ r

ŝ/2
_  T27T

_ws/2

r(o-+jw)eju'mTdw

+ 00 
_ T _  
2tt x(cr-fj u;)eJ wmTdu;

by (iii)

=  Te’<rmTx(mT).

In other words we have established that (in L2 sense):
+oo -j2xm[

53 x(s+iwsn) =  Cm(^)e s, <r>0
n = - o o  m = - o o

+ o o

=  T V  x(mT)e"smT, 
m=0

1 - e"sTMultiplying on both sides the factor -—^ —  leads to the assertion. □

But the question still remains of under what condition the frequency domain summation 
converges. It suffices for our purposes to have
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Lemma 3.1.4: If x(s) is analytic in C_̂ _ and |x(<r +  jw)| =  0 (u r1-i) as to —>oo, S > 0,
then

+  OQ
5 3  x(s -  jwsn)

is analytic in C_j.

Proof.
There exists a constant a  such that when n is big enough 

|x(s -  jcvsn)| < V cj € [-^ p , + ^ ] .

Since + OQEn= 0

1
1+5n <  oo

we conclude that in every band { nu;s — ̂ p < Im(s) < nws +  ^p} p) C+ the sum converges 
uniformly. But every term in the sum is analytic, so must be the sum.

□

Note that ordinary L2 functions do not possess this property unless they are filtered. 
The above lemma simply says that if the filter has a rational and strictly proper transfer 
function, then it produces signals in S. To see this recall that for a function x in L2[0,oo) its 
transfer function satisfies [Duren]:

_ix(s) =  0 (|s| 2) for Re(s) >  0 and |s| —* oo,

so after multiplication by a factor of O ŝf-1) and taking radical limit to jw-axis, the condition 
in the above lemma is seen met.

3.2 Approximation to SA E  operators

The frequency domain description of the SAH operator provides a way of approximating 
them by LTI operators or transfer functions. S-p maps a function, whose Laplace transform is 
e(s), into

+ o o

f(s) =  hT ( s ) ^  e(s-jo;sn). n=-oo
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f(s) contains the frequency shifts, which is something that an LTI operator can never do. But 
the effect of h-p(s) is a low-pass filter, so the high frequency harmonics in f(s) are “filtered 
out”. Intuitively those terms in the above expression for large n’s should not have significant 
contribution to f(s), and the main part of f(s) is based on e(s). This hints that it is possible to 
capture the basic characteristics of SAH operation by an LTI operator.

An almost immediate choice for this purpose is h-p, meaning simply to ignore the side 
harmonics of f(s) outside of ft =  [-^p, ^p]. Note that h-p is, when interpreted as an operator, a 
convolution with kernel H[o,T)( )̂- We will see later that h-p is in fact a good choice with 
justifications given below.

The first question we ask is whether this approximation is effective, i.e. if 

|(S-p — h-p)-x| <  |S-p*x| V x 6  S .

But this is in general not the case, unless the following condition is met:

V u e f l .  (3.2.1)
+ oo
Y !  x Ga; ~  j^ s n ) <

-foo
Y 2  “  j ^ s n )n=-oon ^ O n=-oo

In other words h-p as an approximation is effective for those functions whose spectra are well 
concentrated in low frequencies. One would naturally think that the typical signals that 
satisfies (3.2.1) would be of narrow bandwidth, in particular the ideal low pass signals: |x(jw)| 
=  0 for w >  ^p. But none of the L2[0, oo) functions possesses this property [Slepianj. On the 
other hand, narrow frequency band is thought to be related to the smoothness of functions, and 
it is a widely accepted notation to talk about the “low frequency part” of a signal. It is rather 
inconvenient that this part of an L2[0, oo) signal goes out of the space L2[0, oo). For this 
reason we will for a while use L2(-oo,oo), because the Fourier transform of this space admits 
the frequency truncation operations that we are accustomed to. S-p can be defined on L 2(-oo , 

oo) in the obvious way.
Since every function x in L2[0, oo) is the projection of some y 6  L2(-oo, oo) on the 

positive times, i.e. x =  P-py, it follows that approximation to S-p*x can be done via S-p-y. 
But the latter is easier to analyze and gives more insight too.

Let B-p be a subspace of L2(-oo, oo) defined as:

B-p =  { x € L 2(-oo, oo) | x(jw) =  0 V a; ^ Q } . (3.2.2)

Let P-p be the orthogonal projection from L 2(-oo, oo) onto B-p. It is easy to see that P-p is an 
LTI operator with transfer function

Pt O") =  • (3.2.3)
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However it is not causal. If a signal in L2[0,oo) is fed into this “filter” the result is a smoother 
function which is not identically zero for t <  0. None of the functions in L2[0,oo) lies in B-p 
[Slepian], but those close to it are the ones with relatively little high frequency harmonics, and 
they should not be much different from their projections onto B-p as far as the parts in the 
positive time are concerned. Also the quantity |P-oPT x| should be small for a “smooth” 
function x in L2[0, oo). Based on the above observations, we have reasons to believe that for 
smooth functions in the above sense, LTI approximation of S-p can be given by one that is 
effective on B-p. On the range of B-j- strong results can be obtained concerning the optimal LTI 
approximation of S-p. In fact we have

Theorem 3.2.1: The solution to the optimization below

inf I(S-t---- A)*P-p*x|
A  e L T I  |V 1 '  1 1

is Aopt =  h-p . The optimality is independent of x.

Proof:
+ o o

|(S-i—  A)P-p-x| =  ±  |(ST -  A)Px -x(ju>)|2dw

i2̂ 5

2tt |h-p(ju>) — AQw^xQwjpdu; +  ...(independent of A)
'2 s

It is obvious that when A is chosen to be h-p, minimization is achieved. □

We can now estimate the quality of this approximation in the way outlined last chapter, 
i.e. the numbers

a  . r  |(Sn- hT )PTx|Q =  inf ------rr— ----i-----
p T x 7 ^ °  |S T P T x |and

a A  ( S T------ h T ) P T x0 =  sup '-----j——— j------- .
P - p X ^ O  |S T P T X |

The range of P-p is the class of signals which can be recovered from their sampled data, so S-p- 
is an invertable operator when restricted to this subspace, or

[St o PtJ 1 = (3.2.4)
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T his is well known in literature o f sam pled data system s. In order to com pute the numbers a  
and (3 we perform the follow ing calculations

+ o o

|ST P n i2 * X = 1_
2tt |hT(jw)l

+ooY (PT*x)Gw
n = - o o

- ĵ s)
2
dui

+ o o

_  _1_ 27T
+oo

lhTOw)|2 Y  l(PT*x)Ow -  Jws)| dw

27T
+ oo
£=-o

(n+|)ws

lhTGw)|2|x(iw ~ ĵ s)|2dw
> i
(n-2̂ wS

|x (jw )|2dw

l
2 WS

27T |x (ja ;)|2dw =  |PT *x r
l

" 2 WS

(3.2.5)

In m uch the sam e way we have
+ o o

|(ST  -  hT )P T -x|2 — ^  f (P T -x)(ju;
—oo n ^ O

-  jw s)
2du;

l
2 WS

=  ^  JT1 ~ I M 2Ĝ )]lxG‘w)l2d̂
i~2WS

So we conclude

a  == in f [ l  -  I h -H H I 2] 5 =  0, (3 .2 .6)Jtf] ̂
and

0  =  sup [ l  -  |hT (i“ ) l 2] 5 =  J l -  ( f ) 2 =  0-77 . (3 .2 .7)u>cn

So in the range o f P-p, h-p is an LTI approxim ation to  S-j- w ith the worst case relative 
error 77%. T he two numbers are not attainable, though arbitrarily close, by functions in L2. 
Functions which are a lm ost constant would give a ratio close to  a , while those th at are close to  
sinusoid w ith period tend to  give (3. In a  practical sam pled data system , th e sam pling rate
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should be high enough so that the important part of the frequency spectra of the signals to be 
sampled is well inside of Nyquist band Q, [Franklin]. In light of this, h y  is in general a good 
LTI approximation to S y.

3.3 Bound on the error

Once the choice of the LTI approximation to S y  is made, one needs to know how much 
error it will introduce. A bound must be found which specifies in how big a neighbourhood of 
the approximation the original operator lies. One can then assess to what extend the 
approximation can be trusted. This is done in this section.

Define A y  =  S-|---- h y. We need to find an LTI operator R y such that

|A y-x| < |Ry-x| V x 6 Dom(Ay). (3.3.1)

From the analysis of last section we know that

< A y P y X , R -P y X >  =  0 Vx

whenever R is LTI. This implies that the nature of A y  is quite different from any LTI 
operator, at least on Rang(Py). It should be expected as A y  is the residual of S y  after the 
LTI part is taken out. It is impossible to visualize A y  in the form of a Bode diagram. The 
bound we are seeking should not be interpreted as having dominating gains in all frequencies. 
The lemma below gives a simple result concerning the “gain” behaviour of A y  on Rang(Py).

Lemma 3.3.1: There exists an LTI operator R such that V x  E L2( —oo, oo)

!|At -Pt -x |1 =  ||R P t x ||.

Proof.
We know that

+oo[ A y  e](ja;) =  hT(ju>)^ e(ju; -  jwsn), ws= ^ .  
n 7^6

If e =  P y x ,  then
+ooE
n=£on=-oo

2
e(ja> — jwsn) =  1 ~ Ja,sn)|2 ,

n^O
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thus +oo
||Ax -PT -xI|2 =  ^  ! M i w)|2 leGw ~  Jwsn)|2du;

n^O

(n+5)2J W S
=  ^  |hT(ja;)|2|x(jw -  jws) |2dw

n7̂ °/_ K
1
2 WS

= ^  J [ i -  IM 2Qw)] |x(jw)|2dw.
1"2̂

4  |R  P t -x |2 ,

where R has transfer function R(s) that satisfies

|R(jw)|2 =  1 -  IM ju O l2 □ (3.3.2)

This states that although A x  is not similar to any LTI operator, one can find an R that has 
the same gain as a t  for all elements in Rang(PT)- The transfer function that can be solved 
from (3.3.2) can then be used as a bound on Rang(Px )» and it is the tightest one. Another 
observation we may make is that R is a high pass filter, which is also expected, for hx  
approximate Sx  in low frequencies only. A bound on the range of Px  only will not suffice for 
our purpose. Nevertheless, (3.3.2) gives a picture of the dominant trend of the error.

The only restrictions we may impose on the class of signals is that they are generated by 
passing L2 functions through filters with a strictly proper transfer function^. This is in fact a 
subclass of absolutely continuous functions.

In the calculations below some of steps, though intuitively plausible, are not 
mathematically sound. A more detailed proof with justification for the steps is included in the 
Appendix to this chapter.

What we are looking for is an operator bound that is valid for a general class of 
functions. Formally we have +co

2 7 t || A t - x | | 2  =
I M i ^ ) ! 2

O O

5 3  x ( j w  -  j w s n )
«

— DO n ^ O

n = - o o

+00

I M jw)I2
OO

y ;  hT (jw ~  jwsn)hT(jw -  ju;sn)x(ju; — ju>sn)
— OO

n = - o o
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< lhT(jw) |2(X^ lhTO‘w ~  j wsn)|2) ( j ^  |h^(ju; -  ju>sn)x(ju; -  jwsn)| )dc 
> n^o n^O

Using the identity
+oo

IMj^ - M)|2 = 1

and defining

r 2(ju,) =  |hT (jc ) |2(l -  |hT(ju>)|2)

the above calculation can be continued as
+oo

|r(jw)| T2 lhT xCiw -  jwsn)|2dw
d n^O

OO
= £n^O

+oo
|r(jw +  jwsn)|2 |hxx(ju;)|2du;

—  OO

Let V'' |r(ju; +  jwsn)|2 |h:p(ju;) |2 be denoted by |R(ju;)|2, we have 
n 9^0

+ o o

l|AT -x||2 < ^  |  |R(j^)|2 |x(juj)\2du} =  |R-x|2.
—  OO

Exchange of the order of summation and integration has been made several times on the 
assumption they are allowed. The conclusion is indeed correct if x E Dom(D), where D is a 
kind of differential operator defined below; also an explicit expression of R can be given. These 
are summarized in a theorem.

Definition 3.3.2: Let x E L2 with Laplace transform x(s) be defined in a vertical strap 
covering jo>-axis. Let Dom(D) be defined as the class of functions x that satisfies

1-00J* w^xQwjpdu; <  oo.

D is defined in frequency domain by D-x(s) =  sx(s), i.e. an multiplication by s. Note that this 
definition of differential operator is compatible with the definition given in chapter two.

Theorem 3.3.3: There exists an LTI operator R-p such that



-66- [  Chapter. 3

| |A y x || < ||R y x || V x G Dom(D). (3.3.3)

The transfer function of R is given by

|RT( H  =  g(wT)2 +  |hT(ju;)|2 — 1 (3.3.4)

It can be verified that the right hand side is positive V u> ^  0, therefore an R that is stable 
and minimum phased can always be defined from (3.3.4). □

A proof of this result involves justifying some of the steps outlined above, as well as 
computing several infinite summations. It is put into Appendix B to this chapter, for they are 
merely technical details. Theorem 3.3.3 is stated for an SAH operator that samples at t =  0, 
T, . . .  In fact, this result is also correct for SAH’s that operate at t =  6, T-f<5, ..., .

Lemma 3.3.4: If 6 is a real number satisfying 0 <  8 < T, we use the symbol S-p(<$) for 
an SAH operator sampling at t = 6, T-f£, ..., . Define A-p(<$) =  S-p(£) — h-y, then

|A-[-(5)-x| < |RT -x| V x G Dom(D).

Proof:
It is evident that on Dom(D), S-j-(<$), hence A-p(6) is well defined. We also note the 

relationship S-j-(6) =  D5-S-pD_5 and that Dj commutes with LTI operators. Thus we have 
A-j-(<S) =  D5-A-pD_5. Therefore, V x G Dom(D)

|a t ( « H  =  |d , . a x .d . 4-x|

=  |AT .(D„r x)|

<  |R x -D .4-x |

=  |R y x | □

In other words, Sy(<5) is contained in the conic sector cone(hy R-p) for all 8 G [0, T]. 
We can also see that R is asymptotically a factor s, and hence has large gains at high 
frequencies. Comparison with the bound in (3.3.2) shows some interesting similarity between 
their transfer functions at low frequencies. Of course the assumption on x has ensured that R-x 
is in L . As to the tightness of this bound, we state
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Lemma 3.3.5: The bound specified in (3.3.4) is tight in the sense that it is achievable by 
functions from Dom(D).

Proof.
We only need to construct a function that actually achieves the bound. Take the 

function defined below.

t t e  [0, T);
x(t) =  l 2T -  t t G [T, 2T)

 ̂ 0 t e  [2T, oo),

Its Laplace transform is T 2h-p(s)h-p(s). It follows that x(ju>) =  T 2|h-p(ju>)|2e JwT. Note that the 
only step in the proof of theorem where the inequality is introduced is the Schwarts inequality. 
It is apparent that the above choice of x will make the equality hold. It is also clear that the x 
is in Dom(D). □

Since the term |h-p(ju;) |2 — 1 is small compared to 
ignored. Therefore R-p is merely the operator ^=D, which 
generated by passing L2 functions through strictly proper 
illustration of time domain actions of S-p, h-p, A-p and R-p.

|(w T )2, in practice it can be 
is a differentiator for signals 
filters. See Fig. 3.3.1 for an

3.4 Miscellaneous Properties of SAH

Some properties of SAH operators are listed here for 
interests.

later reference of independent

(:) Integral representation

Define a function
M ‘) -  &  + !]•

where [•] denote the maximum integer not exceeding ( • ). We have that
ST *x(t) = x(r)d/*T(r)- (3.4.1)

(t-T, t]

It is clear that the value of S-p-x(t) is determined by the values of x(t) in the immediate 
history (t — T, t]. Generally speaking, a time invariant causal system 4>: x»-*y is characterized 
by a translate invariant measure <f> of real numbers, i.e.
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y(t) = x(r) d4>{t — t) .
0

Or, the value of y(t) is the weighted average of the past history of x in [0, t]. This expression of 
LTI operator gives further insight into the choice of h-p as an approximation to S-p . The 
action of h-p on x(t) is

h-p-x(t) : x(r)d(21-Y-i) ,
t-T

so h-p has the same “forgetting” factor as S-p. Also, it is interesting to see the graphs of the 
two functions ^ and /xT(r), 0<  r <T, in Fig. 3.4.1. It appeares that without a priori 
knowledge of x and r, the best approximation to /i-j_(r) is the “fair” measure on [t — T, t].

There can be many time invariant measure approximating /j-j-(t). One of them, for 
example, is:

H t) =  [t -  f]H[t - T, t]

( ii) Closedness of S-y

Later we will use the following
Theorem 3.4.1: If G is LTI with transfer function G(s) which is bounded on jw-axis, 

and also satisfies

|G(jw)| =  O(j^j) as |w| *oo.

Then S-p-G is closed. 

Proof
We can write
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ST =  hT +  At  

where A-p satisfies

|A”p‘G ’xj < |R-p-G-x| Vx € Dom(G).

The assumptions on G(ju>) together with the property of R-p guarantee that the operator 
R-p*G is bounded on Dom(G), and hence so is A-yG . Since we know that Dom(G) is closed 
[El-Arkkary], thus any sequence in Dom(G) that converges must converge to a point in 
Dom(G). This is enough to ensure that every C^auchy sequence in the graph of A-p is 
convergent in the graph. [Kato] [Chatelin, p89].

(Hi) Quaniizaiion of delay

S-p does not commute with delay operators DT in general unless T =  nr for some 
integer n. However when S-p is to operate on a piecewise constant signal with the same period 
T, delays are quantized. More explicitly

S-p-DT-S-p =  D-p-S-p, if t <T .

This indicates that a small asynchronization between cascaded sampled data devices can cause 
big delays.

(tv) Absorbing law

When SAH’s with integer ratios are cascaded the slow ones tend to dominate the overall
effects:

ST -ST/ n =  ST/ m-ST =  Sx , n,m being integer.

This will be used for the derivation of a switch decomposition of S-p.

(v) Switch decomposition of SAH operator

In much the same way as doing switch decomposition of a sampler, one can also do it 
for SAH operators, i.e. to express a SAH with T as SAH’s with nT. To accomplish this we first 
introduce an impulse modulator, Ix  whose function is
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IT .x(t) =  T Y ,  x(nT)$(t -  nT) 
n=0

where <5(t) is the Dirac function. It is clear that

S-p — h-p-I-p.

(3.4.2)

(3.4.3)

Note that here the symbol h-p represent zero-order holder in the conventional sense, i.e. its 
response to a impulse is ![o ,t )(^)j though impulses don’t belong to L2. (One could define a 
bigger spaces, for instance space of distributions that would include all the first order Dirac 
distributions, but this is not necessary in our case). Switch decomposition of I-p is:

IT =  Rr
lnT

lnT

•Ar

where

(3.4.4)

R n = [ l ,  Dt , ,D (n_1)T]  (3.4.5)

and

An =  K  =  [I, D_t , • • •, D .(n_1)T]T (3.4.5’)

and Dr is the delay operator. Rn and An are sometimes called the retard and advance 
operators, hy is related to hn-p is following manner:

hT =  hn-p*Fn (3.4.6)

where Fn is LTI whose transfer function is

Fn(s) =  ----  (3-4-7)E e'skTk=0

which is obtained by use of the identity

(1 _ e-snT) = (1 - e‘sT) 2  e'SkT-
k=0

So we have
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ST — h-pl-p

—  Fn* R-n’
>nT

>nT

*Ar (3.4.8)

(vz) Non-integer cascade of S A H

The behaviour of Sy *Sy is complicated when the ratio T ^ ^  is not a integer; it 
becomes irregular when the ratio is irrational. The fundamental difficulty of multirate systems 
lies here, and to some extend it indicates the necessity of requirement that the ratios between 
sampling rates should be integers. The absorbing laws demonstrate the fact that when SAH’s 
are cascaded the slower ones tend to dominate the overall characteristic. This to some extend is 
also true for any T x and T 2 if the faster sampler is placed after the slower one. See Fig. 3.4.2.

Suppose that T x <  T2, then Sy *Sy can be approximated by

(1 + d T i)
2 •St 2

and the error

|S yrs y 2-X -  |(1 + Dyj)*Sy2’x|
+oo _

=  £  L“ i{ |W nT2) -  x (n —1T2) ) } 2 -  (T ,—a,){^(x(nT2) -  x (5 = lT 2))}2]
rp  +00

=  T  £  (x(nX2) -  x( ^ 1T 2))2 
i =  1

=  wt, |(: -  d t 2)-St 2-x|2.

This error bound is also valid when the two SAH’s are not synchronized at t =  0. But
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the situation is more complicated when T 1 > T 2, since it is impossible to predict the amount of 
error that a random delay of r(E[0, T 2] will incur at an arbitrary point of t.

x(t) and S-y-x(t): S j-x (t) and h-j--x(t):

0 . 0  1 . 0  2 . 0  3 . '  0 . 0  1 . 0  2 . 0  3 . 0

Zi-j--x(t) and RT -x(t):

1.0

Fig. 3.3.1 Actions of the operators 
S-y, h*y, R*|"
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Appendix A

Proof of Proposition 3.0.1

Consider the systems in Fig 3.0.1. Let G(z) have a minimum state space realization 
[A,B,C,D], i.e. the variables en and yp are related by

!n+i =  Azn +  Ben

yn =  Czn +  Den .
(A.l)

Suppose that G(s) also have a minimum realization [A,B,C,D] such that

x(t) =  Ax +  BST -e(t)
|  (A.2)

y(t) =  STCx +  S-j-DS-j--e(t)

which leads to
T

x(n-flT) =  eATx(nT) +  eAT e~ArBdre(nT)
0

y(nT) =  Cx(nT) +  De(nT) .

-An

(A.3)

In order for y(nT) to coincide with yn when e(nT) =  en, we only need to let

C =  C, D =  D,
T

eAT=  A and eArdrB =  B. (A.4)

But in the above we may not get A for any choice of A, unless A does not have zero 
eigenvalues, or G(z) does not have factors z_1. This is in fact sufficient for G(s) to be defined, 
for the matrix

T

eATdr

is always non-singular for T >  0. To see this we look at the only two possible cases.
(i) A defined from ^ln(A) is invertable. A does not have zero eigenvalues, therefore we
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can write
T

eArdr =  A"1 [exp(AT) -  I].
0

(But exp(AT) does-Lave eigenvalue one, and hence the right hand side of the above expression 
is invertable.

(ii) A has zero eigenvalues. Then there exist invertable matrix P such that

A A x 0 
0 0 P"1, Aj invertable.

Thus it follows that
T

eArdr
0

P A'11 [exp(A1T)
0

I]

From (i) the conclusion follows.

0
T p-i

Remark A.l: A obtained via (A.4) is not necessarily real even when A is, therefore the 
G(s) can be complex rational matrix. But the lemma below gives condition under which a real 
rational G(z) gives rise to a real rational G(s).

Lemma A.2: If G(z) is real rational and does not have poles on the closed negative real 
line R~, then (A.4) defines a real rational G(s).

Proof:
We only need to show that the A matrix defined in (A.4) is real under the hypothesis. 

For function f(z) analytical in a region f2 and continuous on the boundary dQ that encircles all 
the eigenvalues of a matrix X, f(X) is defined by

i  [ f(z)(zl -  X)-1dz.
J J dQ

In the present case, f(z) =  ln(z), which is analytic on the whole plane except the closed 
negative real line R". If A does not have eigenvalues on R~, it is always possible to choose a 
region so that ln(A) can be expressed in the form of the above integral. It is also known that 
there exists real invertable matrix Q that transforms A into a block diagonal matrix:

QAQ" 1 =  diag(A!, ..., Ak)
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Qt 3where A, are either real numbers or 2x2 real matrices of the form ~ ^-p a
verify that ln(Aj) are real matrices. We note that the eigenvalues 6  
Therefore,

. It is thus routine to 
Aj are those of A.

ln(A) =  Q diag [h^Aj), ...,ln(Ak)] Q"1

is real. □

Appendix B

Proof of Theorem 3.3.3:

Because of the assumptions imposed on x, i.e. x 6 Dom(D), we know that

27r||A T -x||2 =  limit |hT (ju)|2 | Y ] x(jw -  jwsn) |2du 
N^ “Jco n^Nn^O

For any finite N we can write

lhT 0 w)|2 I E  x (jw -  ju;sn)|2dw 
, n = -Nn^O

< lhT ( iw)|2 5 3  lhT(]’w -  j^ sn )!2 E  I^ T X 0 U' — j^ s n )|2dw
> n = -N  n = -Nn^O n^O

+oo N
< [ -  lhT (j^)|2) E  lhTx(j^ -  jwsn)|2du;

n = -Nn^O

N
< E  lr Gw)| lhTxOw -  jwsn )|2du; 

n=-N_oo n^O
+oo

< X ] |r Gw +  Jwsn)|2|bT x(jw)|2d^—oon—-Nn^O
+ oo

<
+oo
E  lrGw + J ŝ11)]21h-p(ja;)12da;n=-oon^O

< |R (iw)|2lxGw)l2dw*
—o o
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Since the last integrand is integrable and independent of N, and we have already know that 
||A-[--x|| =  || (S-j---- h-j-)*x || exists, hence we get

+oo
l|A -r*ll: |R(jw)|2 |x(ju>)|2du>.

The exchanges of integration and summation are legal because N is finite. The appearance of 
hy seems to be troublesome since it introduces infinitely many poles on jw-axis, but in effect 
they are cancelled by the zeros of other terms. The identity

-foo
Y  lhT(iw - ĵ sn)!2 = 1

n = -o o

is used [Thompson]. Another infinite summation we need is

But since

Y lr0w ~ jwsn)|2
n = -o on ̂ 0

|rcH2 =  i m h i 2- ihTa^)i4

we only need to calculate
4-00Y lh T(j'w  -  J w s n ) | 4 .n=-oo

Let a(s) =  hy(s)h-p(-s), and b(s) =  a(s)a(-s). Note that
4-00 +OQY lhT(jw - ĵ sn)!4 = Y ” Jwsn).n=-oo n=-oo

Suppose that b(t) is the Laplace inverse of b(s), then Possion Summation Formula gives
4-QQ 4-QQ . __
Y  bOw -  j^sn) =  T Y  b(mT)e'Jwn

n = - o o  m = 0

so if b(t) is known we have an alternative way to calculate the summation, i.e. by the right 
hand side of the above equality. b(t) can be calculated as follows: Firstly the Laplace inverse of 
a(s) is given by

(T + t)/T 2 te[-T,o) 
a(t) =  hT (t)*hT (-t) =  1 (T -  t)/T 2 te[0,T)

0 elsewhere.
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There is no need to give expression for b(t) because only b(nT) n =  0, ±1, ±2, are needed. 
More calculation reveals that

b (0 ) =  

b(±T ) =  gL
and

b(±nT) =  0, for n > l .

So it follows that
+ oo +oo
Y2 b0w - ĵ sn) = t Y2 b(nT)e

-jwnT

= 1 + y iu T

_ iijj(2 +  coswT).

This gives
+oo
Y 2  lr Gw _  Jwsn)| =  1 -  Cl;)12 — \(2 +  coswT) +  |hT(ju?)|4 n=-oo °n^O

=  1(1 -  coswT) +  (|hT (jw)|2-  l) |h T(jw)|2.

Since
IM iw)l2 =  r h d .1 -  coswT)

we finaly get

|R(H2 =  |(“T)2+ |hT (jU)|2 - 1. □

In the case that S-j- is prefiltered by h with transfer function

h(s) =
2T

a slightly tighter bound can be given for A y h . Because



-78- [  Chapter. 3

4- DO
4-OQ

27r||A-]--h-x||2= ’ Ihrl2 Y  h(jw — jwsn)x(jw -  ju;sn)
—DO n ^ O

n = - o o

+oo
<

—oo
4-co

|hT |2 E  lh0
n^On=-oo

UJ
+oo

ju;sn) |2 Y  lxOw ~  j^ sn )|2dw
n^On=-oo

4-oo 

—oo
{ Ih-rl^G^)

4-QQ

lhT|2|h|2 ) Y  lxGw “ Jwsn)|2 da;
n^On=-oo

where

4-oo

{ (1 -  |hT |2)r(ja;) -  II(ja;) } |x(ja;) |2 da;
— OO

+oo
r(ja;) =  Y  lhO‘w -  ja;sn) |2

and
4-oo

n (jw) -  Y  lhT*h(j^)|2-
n^O

n = -o o

So the main task is to calculate the two summations, which involve the same techniques as 
those used in proof of theorem 3.3.3. The details are as follows.

(i) let /?(jo;) =  h(jo;)-h(-ju;), hence
4-QQ

r(jw) = Y  ~ Ĵ sn).
n = - o o

It can shown that the inverse Fourier transform of /?(jo;) is

/?(t) =  i  exp(- ^  |t| )

and it follows that

r(jo;) =  T Y  P(nT ) exp(-jamT)
n <v>

1 _i_ 2e~2cosa;T — 2e~4 1 -f e-4 — 2e_2cosa;T ’ □

(ii) Let a(ja;) =  (hyh)(ja;) • (h-ph)(-ja;), and a(t) the inverse Fourier transform of or(jo;), 
then we can compute the following
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<*(°) = 2t (! + e_2)

a(±T) = i(l - e-2)

a (±  nT )=  e"2(n_1 )a(T)
and hence +oo 4-QQ

Y 2  c*(ju; -  ju;sn) =  T a(nT) exp(-jwnT)
n=-oo n=-oo

_ 1 1 +  3e-4 +  (1 — 4e-2  — e_4)cosu;T
~  2 1 +  e~4 — 2e"2cosu;T

and
+ 00

n Gw) =  -  jwsn) -  |hT -h(ju;)|2.

Using these equations one can have an explicit expression for an upperbound for A y h . See Fig 
B .l for a comparison. In general, if we know the prefilter characteristics, tighter bounds can be 
obtained. But the calculations are quite tedious, and the improvement is marginal if we have 
to use low order approximation to the bound. In the subsequent chapters, we will always use 
the simplest form of the bounds, i.e. the transfer function -|=sT.

1.0

F i g .  B . l



Chapter Four
Analysis of Multirate-Multivariable Systems

4.0 Introduction

The first aim of this chapter is an input-output characterization of a class of multirate 
hybrid controllers. The input-output mapping of this class of controllers is shown to be the 
cascade of an LTI operator and two SAH operators. Based on this, a stability test that only 
uses LTI techniques will be presented. The idea is that an SAH operator can be approximated 
by an LTI operator together with an LTI bound for the approximation error, therefore the 
perturbation methods studied in chapter two can be applied. We will demonstrate the 
procedure of stability analysis by an example. Following the same idea, we then show that the 
perturbation method can also be used to estimate certain performance characteristics.

The structural analysis of hybrid controllers gives us insight into how the internal 
digital implementation of control algorithms influences the external behaviour. Furthermore, 
the results of this chapter lead to the design philosophy of next chapter.

4.1 Structure of MM controllers
We start with the physical structure of a multirate sampled data controller, because we 

are only interested in the class of controllers that can be practically implemented. A multirate 
multivariable controller has multiple input and multiple output channels. A computer performs 
computations on the data acquired from input channels, and sends the results to the output 
channels. Let the input channels be numbered from j =  1 to n, and the output ones from i =  
1 to m. Both the input and the output signals are analog, though the internal ones are digital. 
See Fig. 4.1.1.

In Fig. 4.1.1 the control programme performs the following taskes:

i) It fetches data from input bufffers.
ii) It performs finite linear calculations on the data at specified instants; The
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computation rules are specified by certain given linear difference equations;
iii) It places the results into output buffers.

Communication between the internal software and the outside world is achieved through 
A/D and D/A converters. An ideal A /D converter can be modelled as the combination of an 
impulse modulater and a zero-order hold. Clearly, this means that the action of putting data 
into registers is treated as an integral part of the A/D operation. The sampling and holding at 
the output represent the action of taking data from memory and putting them into output 
buffers for given periods. The following assumptions are made throughout:

i) the samplers are ideal
ii) all the samplers work at fixed, but different, rates; the j-th input sampler has rate Tj 

and the i-th output sampler T[; these symbols are also used to denote the sampler themselves.
iii) all the operations are instantaneous.

From the above discussion we can see that the signal flows from e/s to Ix and from I2 to 
yj’s are easy to describe: they are just SAH operators. In the sequel we will focus on the 
mapping from Ix to I2, and give a mathematical model for it. There are infinitely many ways 
to programme the software to realize this mapping, thus it is impossible to study all of them. 
We can only concentrated on the “sensible” ones.

We have already assumed that the calculations are linear, but we have also to specify 
the way these calculations are carried out and the data they operate on. To facilitate 
discussion, some fictitious devices are introduced. These devices have nothing to do with the 
actual implemention of the controller, though their functions can be physically realized.

i) Input buffers: Ej, j =  l,---n. When Tj samples, it puts the sampled data into Ej. This 
value will remain the same until the next sample is taken by Tj. Other parts of the hybrid 
controller can have access to these buffers, but they do not change the values in them.

ii) Computing units: Cjj, i = l ,  - m, j =  l,---n. Each Cy maps a sequence of real numbers 
ey into another sequence y  ̂ via the following equations:

X j j ( k - F l )  =  A j j X j j ( k )  +  B j j e j j ( k )  

y j j ( k )  =  B y X y ( k )  +  D j j e j j ( k ) .

(4.1.1)

where Xy is a vector sequence and can be viewed as the internal state of the Cy. The input- 
output behaviour of this unit, expressed in terms of the 2 -transforms of the variables ey and y..
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is

yjj(z) =  Cy(z)-eu(z).

Without loss of generality, we assume that the computing unit Cy only communicates with the 
j-th input and i-th output channels. We assume further that all the units operate periodically. 
In other words, Cy performs the computation (4.1.1) every Ty, for a fixed Ty. When Cy 
operates, ey(k) is taken from the input buffer Ej, regardless when the contents of this buffer 
was updated last time.

iii) Output buffers: Yj, i = l ,  --m. These are the buffers that store the data to be taken 
out by the output samplers. Because the whole hybrid controller is linear, the values of the 
content of these buffers are linear combinations of the outputs of the computing units. In 
general, we define

Y i« = Y  y-u(t)-
j = i

Note that we have embedded the variables into a universal time scale. So yy(t) represents the 
value of the variable y  ̂ at the moment t. Regarded as a function of continuous time, y.j(t) is 
obviously piecewise constant.

We have to specify the synchronization of the computing units. There may be infinitely 
many ways of doing this, but not all are meaningful or practical. Our intuition is that the 
operation of the computing units should be synchronized with either the input or the output 
samplers, or both if possible. According to the synchronization scheme, the realization of a 
hybrid controller may be classified into two categories.

a. Input triggered scheme

In this scheme, the computing units are synchronized with the input samplers, i.e, the 
units Cy, i =  l, m are called upon immediately after the j-th input buffer is updated. More 
explicitly, if the sequence of data stored in the buffer Ej is ej(k), with a 2-transform ej(z), then 
the output of the ij-th computing unit y.j is given by:

yy(z) =  Cy(z)ej(z).

If we attach a time scale to the above expression, by using discrete Laplace transforms, it 
becomes:
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yyW =  Cijte-^XS-ryejXs). (4.1.2)

Note y.j is viewed as a variable of continuous time, and ej is an input signal to the hybrid 
controller. For simplicity, we assume that there is no delays in the computing units. Therefore 
from Proposition 3.0.1, there is a rational function Cy(s) such that

y ij(s) =  STj'C(s)-STj-ej(s). (4.1.3)

The presence of SAH transformations clearly indicates the action of sampling data and 
storing them into memory. A logical diagram of the functioning of Cy can be depicted in Fig. 
4.1.2.

Due to the assumption of linearity, the i-th output can only be the sum of the
contributions from Cy, j= l ,  •••, n. Obviously the most sensible way to do this is to let the i-th
output have the most recently updated values from the computing units. But since Tf is not 
synchronized with the operations of Cy, it has to take values that are already stored in 
memory. This process is conveniently described by SAH operations. In other words

yj(t) =  ST?*Yj(t) =  STr ( ^  yy(t) )• (4-1-4)
j= l

The interface, represented by the presence of SAH operators, are a consequence of the
requirement that computations for y- are synchronized with the input samplers. The obvious
drawback of this scheme is that y„ are not immediately accessed by the output samplers, and 
hence some delays are incured. Since the relation between the j-th input and the i-th output 
sampling rates is in general non-integer, we can expect the overall mapping of a hybrid 
controller to be complicated. 
b. Output triggered, scheme

In this scheme the computed y  ̂ are immediately sent to the output channels. This
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requires that the computing unit c ,̂ j =  l, •••, n are called upon just before the i-th output 
sampler takes value from buffer Yj. In this case, the content of Yj, viewed as a function of 
continuous time t, is given by:

Y ,(t) =  £  yu(t)
j= i

while y.j is defined by:

yu(s) =  Cij(e-sT0 [S T r (STj-ej)](s). (4.1.5)

Explanation: S-fyej is the contents of input buffer Ej, therefore the action of taking values form 
this buffer, at rate Tj’, is described by S-pv(STj,<Jj). By Proposition 3.0.1, there is a Cy(s) such 
that the above equation can be rewritten as:

yjjOO =  ST ,-C ij(s).ST ...STj-ej(s). (4.1.6)

Clearly, the i-th output y.f is

y f t)  =  s T{-Yi(t) =  ^ 2  yyW
j= l

In this scheme, the samples taken by the input samplers are not used immediately. It is 
therefore hard to say if this scheme is better than the input triggered scheme.

For both schemes, we conclude that the input-output mapping of a multirate hybrid 
controller K, as in Fig. 4.1.1, has the form of

K =  Sa-Cs-Sj

where

and

So 4
sn

(4.1.7)

(4.1.8)

(4.1.9)
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C s has different expressions according to the scheme of realizations. In the case of input 
triggered scheme,

C s =

St j C u  ••• STpC In

S^C m l ••• STnCr 

while in the output triggered scheme

C s =

CnS-j-̂  •

• CmnS-,-̂

(4.1.10)

(4.1.11)

Remark 4.1.1: Hybrid controller has the above forms because of the two important 
assumptions: ( 1 ) the computing units operate periodically; (2) these units have time invariant 
parameters. These assumptions are due to practical considerations. Also, in the case of input 
triggered scheme, one column of computing units can share one set of state variables, because 
they share the same input and they operate at the same rate. A similar remark may be made 
in the case of the output triggered scheme.

The C jj’s in (4.1.10) and (4.1.11) are finite dimensional LTI operators. But they are 
mixed up with the SAH operators. In order to study the input-output behaviour of a hybrid 
controller, it is desirable to separate the SAH’s from the LTI components. If the finite 
dimensionality of C jj’s is abandoned, it is easily seen that

K =  Sa-C-Sj (4.1.12)

where C is given by

,n j= •,m

in input-triggered scheme, and by

(4.1.13)

=1.. (4.1.14)

in output triggered scheme. C in this case is a multiplication operator, but it is infinite 
dimensional.
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Under further condition on the sampling rates, finite dimensionality C can be obtained. 
We define a third scheme for the triggering of the computing units as follows. Let each unit Cy 
have its own clock Ty . As far as the ij-th unit is concerned, its “outside world” are the input 
and output buffers. The foregoing analysis indicates that the input-output mapping of ij-th 
unit is

1 u IJ 1 ij

where Cy is an LTI operator, by Proposition 3.0.1. Thus

K = [STfSTu-CuSTu-STj]. ■
L 1 ->1= 1 , • • •nrrj=ll • • -,n

(4.1.15)

If every input and output sampling rate is an interger multiple of a T >  0, and if we choose 
Ty =  T, then by the absorbing law, it is clear that

K =  Sz-C-Sj

where C is a finite dimensional LTI operator. In this case we say that K is separable as 
compositions of LTI and SAH operators. This is the most important class of realizations for a 
hybrid operator, and is the one most commonly studied in the literature of multirate sampling. 
In the appendix to this chapter we will show that the input-output mapping of a practical 
hybrid controller is in a separable form only in the above situation.

4.2 Nyquist stability test

In this section we study the stability of the feedback system shown in Fig. 1.0.1 in 
which G is an LTI system and K a multirate hybrid controller. We begin by studying a single 
rate system, and then extend the result to multirate systems.
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Suppose that G in system Fig. 4.2.1 is LTI, with transfer function G(s). It is easy to 
write down the relation between the variables:

y =  G-(r -  ST -y)

By applying S-r on both sides, it becomes:

(I +  ST -G)-ST -y =  St *Gt . (4.2.1)

We know that the stability of the system boils down to the question of if the operator H =  (I 
+ ST •G) is boundedly invertible, giving the fact that it is one-to-one. It would be difficult to 
give conditions for this, for (I +  S-j-’G) is time varying. But We can make use of the fact that 
invertibility is only needed on the space Rang(Sy), for the right hand side of (4.2.1) is always 
in Rang(S-j-). On Rang(Sy), H can be represented as transfer function:

H lRang(ST) «  = 1 + (GhT)*T (s) (4.2.2)

In fact, this is why Z-transfer function method is effective. Here the SAH operators are used 
instead of discrete time relations so that it is easier to demonstrate the difficulties of multirate 
sampling and to compare different approaches to the problem. We know that H (on Rang(Sy) 
) is boundedly invertible if H(s) does not have zeros in C_p. Note that H(s) is periodic on any 
vertical line on the complex plane, i.e., it is completely defined in the zone Q =  {s: <  Im(s)
< ^  }. So, in order to determine the invertibility of H, we only need to check if H(s) has any 
zero in finC_p. We also observe that the number of poles of H(s) in is the same as that
of G(s) in the whole right half plane. Let this number be P q. Here we impose one condition on 
the sampling rate T, that it mustn’t be such that G(s) has poles on the lines Im(s) =  

, n =  0, ±1, •••. This is a sensible requirement, because otherwise it may happen that 
some of the modes of G become hidden after sampling. This condition will be assumed 
throughout.
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Let the boundary of QflC^. be T =  T +  7i +  72 +  7 ^  33 illustrated in Fig. 4.2.2, 
where 7 ^  is a vertical segment far enough that all the poles of G(s) lie on its left. Using the 
fact H(s) is periodic we have

f H’(s) f
r+i.

H'(s)
H(s)

ds

and hence H(s) does not have zeros in C_j. if and only if

PG =  Indr -(0) (4.2.3)
where

r A  H o (r +  7 J

and lnd7(0) is the number of anti-clockwise encirclement of the point 0 by a curve 7 . Note that 
H(s) is a function of e~sT, therefore if we place 7 ^  further and further into the right half 
plane, its image under H will shrink into a point. Thus we only need to examine the image of
r.

The above test is well known in Z-transformation form, but it involves the computation 
of H(s). However, one would expect that when sampling is sufficiently fast, H(s) should be 
close to (I +  G(s)hy(s)) in low frequency range T. So it would be nice to have a stability test 
of the system in terms of G(s). It is indeed the case if we specify what is meant by “sampling 
fast”.

Theorem 4.2.1: Suppose that G(s) is strictly proper. If the sampling rate T is so high 
that all the poles of G(s) lie in the zone fit =  {s: —^  < Im(s) < ^  }, and that

+00
£n=-oon^O

(GhT )(s -  jwTn) <  |l +  GhT(s)| on T, (4.2.4)

then the condition for stability becomes

PG =  lndr ..(0) (4.2.5)
where

T” =  (I +  GhT)o f .

Proof.
O OLet F(s) =  Y2 (Ghy)(s — ju>sn), clearly H(s) =  1 +  F(s). We first show that F(s) isn =-oo
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analytic in fi\{poles of G(s)}. Pick a point sQ, if G(s) is analytic there, then there can be one 
of the following cases: either that there is a vertical strap covering s0 or there are poles of G(s) 
on the vertical line passing through s0. In the first instance, choose the boundary T of a strap 
that covers s0, anti-clockwise oriented, and do the integral

2ttj' .r

T(GhT)(Qdg 
1 -  exp[-(s0 -  £)]

+ OO
£n=-oo

Res T(GhT)(Q
1 -  exp[-(s0 -  0 ] i —so_Jwsn

-f-oo
=  Y  (GhT)(so -  Jwsn).n=-oo

The integral is well defined since G(s) is strictly proper. On the other hand, the above integral 
is also

£
poles of G(s)

Res T(GhT)(Q
1 -  exp[-(sc -  £)]

Pg
=  E

Rj
1 -  exp[-(s -  p.)] ’

where Rj is the residue of Gh-y(s) at pole p.(. This is clearly an analytic function.
In the other case, we just need to make some indentations on the integral path and get 

the same expression as above. In either cases we conclude that F(s) is indeed analytic in 
f2\{poles of G(s)}.

(4.2.4) then says that

|H(s) -  (1 +  G(s)hT (s))| <  |1 +  G(s)hT (s)| on V.

This implies that the images of T under the two functions (1 +  Gh-j-(s) ) and H(s) will enclose 
the origin the same number of times. We also know that the two functions have the same 
number of poles in Qfl{Re(s) >  0}. Thus we conclude that they have the same number of 
zeros in f}fl{Re(s) >  0), from Rouche’s theorem applied on curve f  .□

Remark 4.2.2: (4.2.4) can be used as a criterion for the choices of sampling rates. If it is 
satisfied, one can think of the sampling, that perturbes (1 +  Gh-j-(s) ) to H(s), as fast enough 
to be trusted. But the condition (4.2.4) is not easy to check, because it must be verified on the 
whole f . So for theorem 4.2.1 to be of any use, we need an efficient way of verifying (4.2.4).

(4.2.3) is a necessary and sufficient condition for closed loop stability, but (4.2.4) and
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(4.2.5) is only sufficient. In the following, we discuss extensions of these tests to multirate 
systems.

To generalize the necessary and sufficient stability test to multirate systems, one needs 
to construct an equivalent (as far as stability is concerned) single rate system, and apply the 
techniques for single rate systems. So the focal point is how to transform a given multirate 
system into a single rate one. The variety of decomposition methods can only be used in cases 
where, in our terminology, the hybrid controllers are separable. We briefly outline the basic 
steps of using switch decomposition method for the system in Fig. 1.0.1 The technique is well 
known, but we believe that its application to the general hybrid controlled configuration is 
new.

i) Switch Decomposition method

o------ H ----- c=*

S =0---------

Fig. 4.2.3

The system shown in Fig. 1.0.1 can be transformed into that in Fig 4.2.3, where

and

0 -G 
C 0

— diag { St j}-"* S y n; S-jo,*--, }.

Suppose that Tk =  rkT and Tj =  rjT, for some integers rk and ij\ If we take switch 
decomposition of each SAH, then S becomes

♦— N —►S =  F-diag{S-p, •••, S-p}*A (4.2.6)

n mwhere N =  rk +  ^  r; • F and A can ^determined according to (3.4.8). We only need to k= 1 j= iknow that they are LTI. Absorbing F and A into H we obtain an equivalent single rate
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system, whose stability can now be tested by the method outlined above. An evident problem 
of this approach is the dimension growth, though it should not be a serious drawback for 
numerical analysis. What is nice about this test is that it offers a systematic solution, and 
gives necessary and sufficient condition for stability. Of course both A and F are dependent of 
the sampling rates.

The reason for using switch decomposition is the following: for single rate systems 
stability can be deduced from the fact that (I +  G*S-p) is boundedly invertible on the range of 
S-p, which is simply a transfer function. However, the operator (I +  S-H) is in general not 
representable as a transfer function on the range of S.

ii) Perturbation method

It is possible to impose a kind of non-aliasing condition analogue to (4.2.4), which 
should be satisfied if the dynamical characteristics of G are to be adequately reflected from 
sampled data. To be more precise let S be

S =  diag { h-Tj,-” , hTp; hT^ }, (4.2.7)
and

A =  diag { AT l,---, ATn; A-yo,---, AT^ }. (4.2.8)

We require that the sampling rates are sufficiently high so 
are similar. To be more specific, let

that the systems (H, S) and (H, S)

R =  diag { Rt i5-"> RTn; RT?n )> (4.2.9)

and A the class of diagonal perturbations, such that if 6 6 A, then 

|6-x| < |R-x| V x G Dom(A).

We require that the nominal system (H, S) to be robust stable for the class of perturbations A. 
Since it is not difficult to verify the stability of (H, S), what remains to be done is to find an 
effective method of dealing with the time-variant perturbation A. We are particularly 
interested in solving this _fhis problem in the framework of LTI operators. Hence the results 
discussed in the two earlier chapters naturally find application in the present situation. The 
key point here is that although A is not LTI, it belongs to A which is bounded by the LTI 
operator R. However in order to use the results in chapter three, we need that H be strictly 
proper. This is the case only when K is separable, for otherwise C is never strictly proper. In
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the separable case the conditions for closed loop stability are summarised as follows.

Theorem 4.2.3: The system in Fig. 4.2.3 is stable if the the following two conditions are 
satisfied:

(1 ) (H, S) is stable; and

(2) IR-NI <  1,

where N denotes the nominal system mapping, given by 

N =  H - (I -  S-H)"1.

Proof:
(1 ) implies that the nominal system is internally stable for there can not be any 

cancellation between Sj and C or G. Hence N is internally stable. (2) will guarantee that the 
mapping from (rx, r2) to (yx, y2) is stable under the perturbation class A. The only thing to 
note here is that the use of small gain theorem is valid, for A is well defined on the range of N. 
Then theorem 2.2.7 can be applied to prove the assertion. □

Comment 4.2.4: The interesting thing about (2) is that it imposes a kind of “envelop” 
condition on the Bode diagram (of the maximum singular value) of N. From last chapter we 
have seen that R has transfer function K-s, so for (2) to be satisfied N must have a roll-off rate 
not less than 20db/dec in high frequencies. Intuitively it makes sense because sampling is 
especially sensitive to high frequency noise. But what intuition does not tell is the precise rate 
the high frequency gain should be rendered. The results from last chapter give this information.

Comment 4.2.5: The first step towards analyzing the general non-separable multirate 
hybrid controller, by the method used above, is to separate the LTI part of such a controller 
from the rest of its structure. Such a separation is possible, but it does not decompose a hybrid 
controller into a straightforward cascade of Sx-C-Sx. An attempt to analyze such cases is 
included in the appendix to this chapter. As will be shown that the non-separable cases are of 
little interest as far as practical application is concerned.

Example 4.2.6: Suppose that in a hybrid system as Fig. 1 ?? with separable controller 
the following are defined:
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G ~  S -  0.4 ’

K =  ST l-C.ST l
and

C — k U “  s +  2 '

We will illustrate how to analyze the stability of this system by perturbation method. First, 
the system is transformed into the configuration in Fig. 4.2.3, with

and

H =
0
ks 4* 2

-1s -  0.4
1

S = hTl 0

0 h-r,

Rt x 0 
0 RT2

N =  H-(I -  S-H)"1 .

The nominal plant has one unstable pole, (h-j- does not have finite poles), and the Nyquist loci 
is shown in Fig. 4.2.4a,c. Clearly, the nominal system is stable for the indicated sets of 
parameters. The sampled data system is stable if the maximum singular value of R-N is less 
than one for all frequencies. The singular value plots are in Fig. 4.2.4b,d, from which we can 
conclude that for the three sets parameters the system is stable.

These tests, as would be expected, are conservative. To reduce conservatism, scaling can 
be used. Since the system in Fig. 4.2.3 is equivalent to that in Fig 4.2.5 for diagonal matrices 
T ’s with positive entries, one can choose a suitable T to reduce the maximum singular value of 
R-N.

Idealy, scaling T should be solved from

min sup a [T(R-N)(ju;)T'1],TcT "

but this kind of minimization is not easy to solve. However, it is possible to minimize over T 
at the frequency where peak occurs by numerical methods, such as steepest descent procedure.
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In this exam ple, the param eters k =  l ,  T x =  l  and T 2= 0 .5  will correspond to  Fig 4.2 .4  e,f. T he  
tw o plots in f illustrate how scaling can reduce conservativeness, for w ithout scaling one m ay  
not conclude that the system  is stable.

Even with scaling, this m ethod is still conservative. W e can see this in the case o f single 
rate sam pling. W hen T x =  T 2 =  T , the characteristic polynom ial is

Z2 -  (e-2T + e0.4T)Z + e-l-6T +  1.25(1 -  e-2T)(l _  e0-4T)k .

It can be shown that when k =  1, the system  is stable for T  <  1.42. Using perturbation  
m ethod, the corresponding estim ate is T  <  1.0.

T he virtue o f this m ethod lies in that it gives an easy and system atic  approach to the 
analysis o f stability  o f m ultirate system s.

4.3 P e r f o r m a n c e

Follow ing the idea that a m ultirate hybrid controlled system  can be viewed as an LTI 
system  subject to perturbations, one m ay also analyze system  performances by finding a bound 
on the possible degradation o f certain performance index for the nom inal system  under 
perturbation A . For typical performance requirement, such as tracking error, a system  can be 
transformed into Fig. 4 .3 .1 , where r is a reference signal and y represents the error o f tracking. 
T  is entirely LTI, and the approxim ation errors are lum ped into A .

Let

T 11 T 12 n 'n 5'—►
T 21 T 22 r y

N om inal performance is defined by pn =  |T 22|- Sim ple calculation shows th at
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(a, c)
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(e)
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1 . 2

(b, d)
1 . 2

(f)

Fig. 4.2.4
(a, b): k =  1, T i  =  0.5, T 2 =  1;
(c, d): k =  1.4, T i =  0.4, T2 =  0.9; 
(e, t): k =  1, T j  =  1, T 2 =  0.5;

Fig. 4.2.5 Scaling of the perturbation
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y — [T22 +  T 2 i ’(I — A -Tn )

=  Fu[T, A]t

where the symbol Fu[', •] represents a linear fractional mapping for a suitable partitioning of T 
[Doy&I]. Hence performance under perturbation becomes

p 4  |FU[T, A]| (4.3.1)

Because of the presence of A, it is not feasible to use (4.3.1) directly to obtain the performance 
index. Thus it is important to derive a bound on the possible change of the index in terms of 
the LTI bound on A. In [Thompson], an estimate was given in roughly the following manner:

p < P 22I + IIT21II • I|a t 12||
1 -  IIA-Tull

^ Pn +
IIT21II • I|R-t 12||

1 -  IIR-Tull • (4.3.2)

Note that lA-T^I <  1 is assumed as it is required by robust stability. Obviously, this is a very 
conservative estimate. For this reason we propose a different estimate, which is also useful for 
design purposes.

Observe the system in Fig. 4.3.2. T is defined as above, R is an LTI bound on A, and a 
and (3 are constants.

First, since the condition jR^T^I < 1 must be satisfied, we can find a  and /? such that

lt| = r i ' r ’ 1 1

L I •T* a < 1 (4.3.3)

To see this we just need to choose a  and (3 small enough. Of course there are many pairs of (a,
(3) that will satisfy (4.3.3).
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Lemma 4.3.1: For any pah of (or, (3) that satisfies (4.3.3), we have

P (4.3.4)

Proof:
Use the variables defined in Fig. 4.3.2, we have

T- x i < x i l
x2 _X2J

and

Xi ’ r ’n*‘ ' a "n’lT- l
x2

— y > 0_ y J

Note that

x
x12

2
-  Ix il2 +  M 2

hence

|xx|2 +  |x2|2 > lAn’l2 +  |y|2 Vx: and x2.

Let x 1 =  A -n’, i.e. let y =  FU[T, A]-x2, we have

or
llyll < llx2ll Vx2» 

llyll < INI

which implies that

a  |y| .  iP = sup jjj < ^5 □

The foregoing analysis also indicates that if (a, /?) can be found such that ||T|| < 1, one 
can conclude that (1) system is robustly stable and (2) p < This is because that |(T1 1 1| <  
| f |  regardless what a  and (3 are. It is clear that a  and (3 should be chosen as big as possible to 
give an accurate estimate of p; it is also evident that it makes difference to select the balance 
between a  and (3. A numerical example is given below to show the improvement over the 
direct estimate in (4.3.2).



-98- [ Chapter. 4

Example 4.3.2: Let

T(s) =

T be
1 1s-fl s-f5
1 1s+ 6  s+ 2

and the bound on A be

R(s) =  0.8 -s .

It is easy to compute that pn =  IT22I =  0.5. An estimate of p via (4.3.2) will be

P < |T22| + 11T121H1R-T2ill 
1 - HR.Tull 1.67.

If we chose a =  0.7 and /? =  2.5, it follows that

|t | 4 r 1 "r ’ 1 1
L I T- a 0.99 <1

hance we know that p < =  0.57. In other words the performance degradation is about
14%. The improvement is obvious.
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Appendix:

On the separation property of multirate hybrid controllers.

The motivation for decompose the input-output relation of a multirate controller into 
finite dimensional LTI and SAH operators is clear: it enables one to treat such controller in the 
framework of LTI systems. In the main text of this chapter, we have shown that in a special 
case this can be done, i.e. when it is possible to let all the computing units be synchronized 
with a sampling rate that is the maximum common divisor of all the sampling rates. Naturally 
one would ask if such separation property also exists for more general case, without the strong 
assumption that all the sampling rates are in rational ratios of each other.

Such separation exists, though it is perhaps not so helpful or useful. Attempts have been 
made to overcome this problem, and the only case that is resolved satisfactorily is the one in 
the main text. Nevertheless, we list the details of an analysis to demonstrate the nature of the 
problem.

We will first give a separation result. Then we will argue, by means of state space, that 
this is the best one can hope to do. Finally, we look into the situations that can arise from 
practical applications, and show that there is no need to force oneself into a dilemma by 
choosing arbitrary sampling rates.

z) General separation theorem

The goal is to express K as S2-C-S!, where C is a finite dimensional LTI operator. In 
the following, we only derive such a separation for the input triggered scheme. It is similar for 
output triggered scheme.

Since K is linear, it is in the form of

K =  [Kj, . . . , K n ]
K i

Kn_’
and from the analysis of the structure of such controllers, we know that

Kj =
S-J-5 S f.T 1 'j .

S-T-> S-pI m 1 i
•Cj-STj — Sj-Cj-STj, j =  1, n,
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and Cj is [c^, •••, cmj ]T . Thus we can write K as
SiCjSt  x

K =  [I, - • *, I ] 

=  S-C-Sp
Sn^nST r

(A .l)

We note that C is a block diagonal matrix. S is a quite complicated operator, in that it
involves entries of the form S-t-vSt - about which we don’t know much.

T i 'J

So although we can have a separated form for K, it does not help much for we have not 
found an effective way of dealing with S. The above technique for finding such a separation 
seems primitive, so one would think if it is the right way of doing it. We have tried many 
other ways, without any success. What has been sought for is the possibility to let C be in a 
non-structured form, in other words in the form where

C =  [c„  - , C n ] (A.2)

as in the separable cases. We will show below that the separable types are the only cases where 
it is possible to put C in a non-structured form. We will also see that it is a direct consequence 
of the requirement that the computing units are invoked periodically with finite rates, and that 
they have time invariant parameters. If these requirements are droped, and with some 
additional assumptions that in practice are surely not met, one might get separation always, as 
we will see later.

A computer can only perform calculation discretely, so there is no way for it to provide 
a continuous evolution of the state variables as in a continuous time dynamical system. To 
make it behave like one when observed from the input-output signals, the only way is to let it 
produce the state variables at the exact moments when they are accessed. Therefore it can be 
seen that when all the input and output sampling rates are in interger ratio to a T, one just 
needs to update the state variables periodically in T to conceal the discrete nature of the 
variables from the input-output samplers. However, when such a T does not exist, then 
regardless how fast the internal state variables are updated, there is bound to be moments 
when it is impossible to provide the output sampler with the “true” values of the states.

We can, on the other hand, construct a fictitious algorithm that can emulate a 
continuous state evolution, as long as the input and output sampling rates are finite. Let C be 
the continuous time system that we want to emulate, i.e. we want to realize the mapping 
S2*C• Sĵ . Suppose that C has a state space realization {A, B, C, D). States evolution over any 
time interval [tn, tn .̂jJ is given by:
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tn + l

x(tn+ i)  =  eA(tn+ 1 tn)-x(tn) +  |  exp(A(tn + 1  -  r))B-u(r)dr

=  F(tn + 1  -  tn)-x(tn) +  H(tn+1, tn)-u(tn) (A.3)

since the inputs are always constant between two consecutive sampling actions. Assume that 
the computer programme can calculate the matrices tn) and H(tn _̂1, tn)
instantaneously, whenever tn <  tn_|_i are given. (Is this possible?). The following procedure 
will emulate C completely: suppose one of the input or output sampler samples at t =  tn, 
record this time; as soon as the next sampling (input or output) happens at t =  tn^.l5 

calculate F and H and update the state variables using F and H. In doing so the states are 
always available at the time they are accessed. Hence the input-output mapping of such a K is 
S2-C-SP It is whether the states are updated correctly that decides if the input-output relation 
should be in a separated form.

Obviously, in input-triggered scheme the states are not updated in the manner we have 
just described. In fact only the states shared by one column of units are updated correctly. 
That is why each particular column it is indeed in a separated form. Columns can not share 
states among themselves. In view of this, it is not surprising to get (A .l) but not anything 
better. It is not completely right to say that K, in input-triggered scheme, is a multivariable 
controller. Rather, it is a stack of single-input multi-output controllers piled together. This 
explains why we have not succeeded in writing K as an mxn LTI controller cascaded between 
SAH operators.

Because there are advantages from design, analysis and implementation point of views 
to have K in a separated form, we are led to examine some practical situations where 
particular pattern of sampling rates are chosen. Basicly, the need for multirate sampling arises 
under two circumstances. One is when an on-board computer controls a multiloop system and
there is a high demand for computation resourses, while the computer has limited capacity.

tcTherefore it is necessary to allocate computation time to different loops according^ their 
dynamics. The other is when the sensor and actuators in a system are operating at different 
rates, therefore measurement and control must be synchronized with them. In the first instance 
there is no reason why one should not choose a convenient ratio between sampling rates, and 
let the state updating rate be the same as the fastest input sampling rate (in input-triggered 
scheme). For the second situation, unless it so happens that the working rates of the hardware 
are in irrational ratios, which is an unlikely case, one could always choose a maximum 
common dividing sampling rate to work with.

We thus conclude that the non-separable case is of little practical interests.



Chapter Five
Design of Multirate-Multivariable Systems

5.0 Introduction

In this chapter we study the problem of designing multirate multivariable systems. As 
we have seen in chapter one, the design of sampled data systems can be classified into exact 
and approximate methods. Apart from the basic problems associated with the exact method, 
multirate systems suffers from an additional problems: the growth of dimension. The LQ 
optimal synthesis methods of Amit [Amit] and Glasson [Glasson] seem to be the best among 
all, though limited by the fundmental difficulties of LQ methodology. The approximate 
methods, on the other hand, are more convenient tools for multirate system design. But again 
it does not offer a rigorous methodology that can provide adequate prediction of the resultant 
system performance. The decomposition methods do not seem to be feasible as tools for design 
purposes for several reasons. Perhaps the most important one is that performance specification 
for the original multirate system can hardly be translated in terms of the equivalent single rate 
system.

The structural analysis of last chapter offers a new approach to multirate system design. 
The separation property asserts that a large class of hybrid controllers K can be decomposed 
into S2-C-S!, where C is finite dimensional LTI operator. Also it is apparent that the only 
designable part of such a controller is C. Furthermore, the correspondance between K (of this 
class) and C is unique, therefore the design of K is exactly that of C. But K and C have 
different “outside worlds” to control: the latter must control a system which has SAH 
operators as part of its dynamics. So the design a hybrid controller K for an LTI system can be 
transformed into the design of an LTI controller for a time-varying system.

The analysis of SAH operators underlines the basic fact that when sampling rates are 
chosen appropriately these operators are close to LTI operators. It is thus justifiable to view 
the operators S,’s as perturbations of Sj’s. Therefore the system controlled by C is an LTI 
system with time varying perturbations, and hence the design is essentially a robustness issue. 
Regarding the effects of sampling as perturbations implies that the high frequency harmonics 
incured by sampling are undesirable, hence should be restrained. In practice, this has been 
achieved by either fast sampling or low pass filters. However, the lack of understanding of the 
nature of these high frequency harmonics encourages excessively fast sampling or narrow band 
low-pass filters, resulting in waste of computation resources and/or degradation of 
performance. The merit of our approach to the design of sampled systems is seen in that it 
gives a rational account of the undesirable effects of sampling.

The most important issue of all system properties is stability, others are considered 
afterwards. Thus robust stability can be regarded as constraint to the optimization of other
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performance criterion. From the last chapter, we have seen that such a constraint can be 
expressed in the form of an upper bound on the roll-off rate of certain loop transfer functions. 
Constraint of this kind are equivalent to putting upper bound on the weighted H°° norm of 
these transfer functions. This is where H°° techniques come in.

This chapter is concerned with the application of H°° optimization theory to the design 
of multirate multivariable systems. In section 5.1 some basic facts about H°° synthesis theory 
are summarized. In section 5.2 we briefly outline some of the computational issues. The 
emphasis is put on the constraint optimization. Formulation of optimal robustness of multirate 
sampled data systems is discussed in section 5.3. In section 5.4 we will discuss the 
minimization of sensitivity (tracking error) under constraint of robust stability. Examples are 
given to illustrate the numerical aspects of the problems. An attempt is made to give an 
evaluation of the effectiveness of H°° methods in sampled data systems at the end of this 
chapter.

5.1 Outline of E°° theory

In this section some basic facts about H°° design techniques will be discussed. The 
material is mainly from [Francis], [Doyle, 1984] and [Safonov et al, 1986]. The system shown in 
Fig. 5.1.1 is the standard configuration which our discussion is based on.

In Fig. 5.1.1, P is a given LTI system, with a real proper rational transfer function P(s). 
It is partitioned conformably with the configuration Fig. 5.1.1 as:

P(s) 4 Pll(s) Pl2(s)
P2 i(s) P22(s) (5.1.1)

C(s) is also an LTI invariant system, and represents the controller to be designed. It is easy to 
see that
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y(s) =  ( P u ( . )  +  P i2(s)C(s)[I -  P 22(s)C (s)]‘ 1P 2 i (s) )-r (s).

=  F,[P, C](s)-r(s) (5.1.2)

where Fj[P, C] is the linear fractional map of P over C [Doyle]. Another linear fractional map, 
FU[P, C] (U for upper), was introduced in chapter four. The system in Fig. 5.1.1 is said to be 
internally stable if in Fig. 5.1.2 the mapping from (r, r^ r2) to (y, y1? e) is stable, i.e. all the 
elements of the transfer matrix are in RH°° [Francis]. If there exists C’s such that the system is 
internally stable, P is said stabilizable. A typical statement for an H°° design task is: find a 
C(s) so that:

(i) system Fig. 5.1.1 is internally stable;

(ii) ||Fj[P, C] || is minimized.

Suppose that P(s) has a minimal realization with a conformable partition with (5.1.1):

A B i b 2
P(s) = C i D n D X2

C2 D2 i d 22

then the internal stabilizability is equivalent to the condition that the system
A B2 

C2 D22

is detectable and stabilizable. Intuitively, this says that all the unstable modes are to be 
included in the subsystem P22(s). In this case C stabilizes P if and only f it stabilizes P22(s). 
This is assumed throughout.

A design task stated above is transformed into a solvable form through the following
steps:

(:’) Q-Parameterization

This is the parameterization of all stabilizing real-rational C’s for P22(s), and *s 
achieved through coprime factorizations of P22(s) in the quotient field over the ring of proper 
and stable real-rational matrices RH°°. The real-rational requirement will be looked into 
further in Appendix B. A doubly coprime factorization of P22 amounts to finding Nr, Mr, N(
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and Mj E RH°°, such that

P 22(S) =  NrMr1 =  M ^ N , ,

together with X|, Y|, Xr, and Yr in RH°° satisfying

----
----

-1 1

1

i 1

1
1 JZ S

i ___
___

i

----------1

(5.1.3)

(5.1.4)

It is known that any proper real-rational stabilizing C(s) is given by the formula 

C(s) =  (Yr -  MrQ)(Xr -  NrQ)- 1

=  (X, -  QNj)_1(Y, -  QM,) (5.1.5)

with a proper real-rational Q(s) E RH°°. Substituting C(s) defined in (5.1.5) into the system in 
Fig. 5.1.1, and using the relations in (5.1.4), one can show that

F,[P, C] =  P „ ( s )  +  P 12 (I -  C P 22)_1C P 2 1(s)

=  T x l(s) -  T 12 (s)Q(s)T2 i(S ) (5.1.6)

where T jj(s)’s E RH°° and are defined by:

T n  = P11 + p12M rY |P21

T 12 — P 12Mr

T2i =  M,P2i . (5.1.7)

Explicit state space realization for Ty(s)’s can be obtained, which is important for 
computational purposes [Doyle, 1984], Since the mapping between the proper stabilizing C’s 
and the Q’s in (5.1.6) is one to one, the minimization problem mjn ||T(C)|| subject to internal 
stability is equivalent to that of

mm J T U  -  T 12 QT2 1  |. (5.1.8)
Q e R H
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(5.1.8) is called the model matching problem [Francis, 1986].
There are many possibilities in the choices of Mr, Nr, M| and Nj and hance Ty’s. It has 

been shown that particular choice can make T 12  and T21 parts of inner matrices, i.e. there 
exist Tj^(s) and Tfj^s) such that both

[T12 , T j2](s) and (»)

are inner. Since || • || is unitary invariant, it follows that

min IT-m 
q £ r h ° °

T 12QT211

=  min 
Q t R H ° °

J-12
rp_L + i12

Tii[T^, T 21" ]
Q 0
0 0

=  min 
Q e R H ° °

R n  — Q R12  

R2i R22
(5.1.9)

Therefore the model matching problem becomes a general distance problem [Chu et al, 1985].
After the formulation of the general distance problem, the rest of the theory concerns 

the solution to (5.1.9). A special case of the general distance problem is when both T 12 (s) and 
T 2 i ( s )  are square, thus one only needs to solve the Nehari problem:

min II R — Q 
Q e R H ° °

(5.1.10)

whose solution is well known. The optimal norm is known to be | | r R||, where TR is the Hankel 
operator with symbol R, which is of finite rank for rational R’s. For rational R, complete 
characterization of all the solutions to (5.1.10) is available. Explicit state space formula for Q’s 
that solve (5.1.10) are given in [Glover, 1985]. Francis et al used a different approach based on 
a Ball and Helton theory [Francis et al, 1984]. Solution to (5.1.10) is important for it is the 
bottom line of the more general cases.

There is no direct solutions to the general distance problem yet, and it is still an issue 
for investigation. What is being done is to use a so-called 7 -iteration scheme [Chu et al, 1985]. 
Basic steps are as follows.

i) Two block case
This the case when one of the matrices T ^2 and T2  ̂ is square. We can assume T 21
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square without loss of generality. Then the problem is to solve

R n  — Q 
R2i

In order to reduce this problem to the Nehari problem, note the following two equivalent 
statements:

min
QcRH°°

(i) R n  — Q
R2i < 7

and

(»)
IIR2 1 II <  7

IKRn -  QJ-Go1!! < 1.

G0 is the square root of 7 2I — R21/R 21 in the following sense: G0 is outer and satisfies 
GqG0 =  7 2I — R2 i^ 2 i- ^  f°r a chosen 7  it happens that G0 exists and

Kl) qStH“ll(Rl1 _ Q ) ' G ; l 1 1

=  min J R ’ -  Q’ || <  1 
Q'eRH'**then for this 7

min
QeRH°°

R ll ~  Q
R2i <  7-

Therefore one can proceed to choose a strictly smaller 7  and repeat the above process. This 
process will converge for there is a lower bound for 7 :

7 > r Rn l_R2lJ
It has been shown in [Chu et al, 1985] that the function /i(7 ) is monotonicly decreasing in the 
neighbourhood of the optimal 7 opt, thus the above procedure will in fact converge to the 
optimal 7 opt if the searching interval is chosen correctly.

(:*) Four block case

In this the case neither T 12  nor T2i is aquare. One has to use the kind of equivalent 
conditions of above twice to first reduce the problem to a two block problem and then to the
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Nehari problem. In doing so, one has to solve two spectral factorizations and one inner-outer 
factorization [Safonov et al, 1986]. The details are omitted here since they are wEIl known.

A wide range of problems can be formulated into the standard configuration in Fig. 
5.1.1. For example the optimal robustness and sensitivity design problems. In the sequel, we 
will discuss how complicated problems emerge from more realistic design requirements.

5.2 Robust performance

The aim of this section is to analyze the robust performance design problem. We will 
define this problem in the manner suitable for the purpose of sampled data system designs. 
Then we will propose a procedure to transfer the problem into a form that the standard H°° 
optimization technique of last section is applicable.

Fig. 5.2.1

Consider the system in Fig. 5.2.1. P(s) is an LTI system, and C is the controller to be 
designed. The perturbation is lumped into A, and is assumed to belong to the class of 
perturbations A satisfying

A =  { A | |A-x | < |R*x|, for some LTI R }. (5.2.1)

Suppose that P(s) is partitioned according to the configuration of Fig. 5.2.1 as

P(s) =  [Pij]i = l ,2 ,3; j = l ,2 ,3 . (5.2.2)

For the convenience of discussion we further denote Pi(s) and P2 for the submatrices of P:

p iM  -  j=1.3 -

P »M =  [p iji=2,3; j=2.3 •

an d
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For a C(s) we say that the system is robustly stable for the perturbation class A if, in addition 
to internal stability, the system

(I -  A-F,[Px, C])'1

is also stable for all A E A. This is sufficiently guaranteed by the condition:

|R-F,[Pj, C]| <  1. (5.2.3)

We callj F|[P2, C]j the nominal performance for a given C. Evidently the performance under the 
influence of a given A is

|FU[F,[P, C], A]|

The worst case performance for a given C is defined as

sup , |FU[F,[P, C], A]|. (5.2.4)A c A.
Let C be the class of stabilizing controllers for P. With the preparation and notation 

above, we can define the nominal performance optimization (NPO) as

inf^ |F|[P2, C]|, subject to
f

iViIPi. C]| <  1.
(NPO)

NPO is not a satisfactory formulation as it does not take into account the influence of 
perturbation on the performance. In addition to this drawback, it cannot be transformed into 
the standard H°° minimization form. It is also desirable to maintain the performance uniformly 
for the whole perturbation class A. Thus we define the robust performance optimization as

inf { sup |FU[F,[P, C], A]| }, subject to 
C e C A e A
P

|F,[Pi. C]| <  1 .
(RPO)

But (RPO) is still an unsolved problem, for it is not clear how to take supremum over A. We 
must find an alternative statement that is close to RPO and yet admit a systematic treatment. 
First we note that the degradation of performance due to perturbation can be bounded in
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terms of the bound on A. Also, the perturbation class A is specified by a uniform bound R on 
all its members. Therefore the bound of degradation derived in chapter four is valid uniformly 
for all A G A. In view of this it is suitable to define the following optimization problem:

min , subject to: a,p>0 oc/3 ’

min C f C
‘ i o T r  o '
0 C*:J[ 0 I F.[P. C] I 0

o p:
(P)

< l

(P) is suboptimal in the sense that the optimal solution to (P) is suboptimal to (RPO). 
Since -^5 is an upperbound of the robust performance index for any given C, how good (P) is

. . -Ias an approximation to (RPO) depends on how tight the bound ^  is on the index of 
performance. Example 4.3.6 has shown that this bound is reasonably tight. Therefore we can 
proceed to solve (P) instead. The question is how to transform (P) into standard H°° problem. 

Optimization with inequality constraints are normaly dealt with by multipliers. Define

N(of, p) =  inf c e  C
r i o T r  o ' *1 0 1

0 £ * | o  I F,[P, C] _° p  J (5.2.5)

then in principle (P) is equivalent to

min ~  + 6{N(a, /?) — 1). a,p,e aP \ \ 1 rs l

where 6 is a scaler multiplier. However, in order to solve the above optimization, one needs the 
derivatives of N(o, /?), which is neither theoretically verified nor computationally feasible. To 
avoid derivatives, an one dimensional search scheme is used that, in addition to its simplicity, 
will have guaranteed convergence. First, some characterization of the feasible region Q C [0, 
oo)x[0, oo):

n  =  { («, P) I N(a, P) < 1 } (5.2.6)

are needed.

Lemma 5.2.1: (i) Q in (5.2.6) is radial, i.e. if (or05 P0) £ then (0, aro) x (0» Pq) C fL 
A line radiating from (0, 0) into the first quadrant will intersect the boundary of £2 only once, 

(ii) There exist 5 and /? such that Q C (0, a)x(0, /?).

Proof:
(i) Let (a 0, PQ) G fL For 0 <  kj <  1, i= l,2 , and define a  =  and /? =  k2PQ- Let
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also

T0(C) ^ i o T r  o ’ ' I 0 "
0 a 0J[ 0 I F|[P. C] I O 

i
ta 

, 
o

Then we have

r i  o T r  o ’ I o
[ 0  I F,[P, C]

0 P_ •X ■ Hxl

I 0
0 kj T0(C) I x |

I 0 
0 k2 T0(C)-y

I
0

0
k_1k 2 •y

< |T 0(C).y | -5- | y |

<  I T0(C) |

This is true for all stabilizing C’s, hence by taking infimum over C £ C(Q) on both sides it 
follows that

N(a, P) < N(a0, p Q) < 1

or (a, /?) €

(ii) Let a  =  max {a  | N(a, 0) <  1}, and /3 =  { ft \ N(0, P) < 1}. Clearly a  and P are 
finite. We claim that fi C B =  (0, a]x(0, P]. Because if the pair (a, (3) 6 but {a,ft) £ B, 
then either a  >  a  or / ? > / ? ,  or both. From (i), N(ct, 0) < 1 and N(0, /?) < 1, which is a 
contradiction to the definitions of a  and ft. □

Lemma 5.2.2: The solution (a, P) to (P) is achieved at the tangent point(s) between the 
boundary of and the family a  • /? =  constants, and the smallest constant is the optima.

Proof.
We use a constructive procedure to prove this lemma.
(0) Choose a pair (a, /?) G Q.
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(1) Then, since N(art, f i t) is monotoniciy increasing and unbounded above for t > 1, 
there exists a t: such that N (at1, fitf) =  1, i.e. (cvtlT fitf) is on the boundary of ft. Let cx =  
a fit \  and proceed to (2).

(2) Minimize N(a, fi) on the one dimensional manifold a-fi =  cx. From the previous 
lemma the search interval is finite. There are two possibilities: One is that the minima 
achieved is 1 , i.e. the curve a fi — cx is tangent with the boundary of ft (possibly at more than 
one point). In this case the tangent point (a, fi) is the optimal pair, the search stops. 
Otherwise, on the curve a fi =  c1 one will find a point (a, fi) such that N(a, fi) is less than 1. 
Take this point and go back to (1).

Every time the above process is repeated, the number ^  is reduced by a strictly non
zero amount. Since the optimum is bounded from below, this process converges. □

Generally speaking, ft is not convex. Hence there can be more than one solutions. All 
the solutions are equally good as far as (P) is concerned. From the boundedness of ft, effective 
binary search can be used in the two steps outlined above. The geometrical significance of the 
discussion about ft and the two-step search scheme can be seen in Fig. 5.2.2.

The computional burden is considerable, since in every iteration N(a, fi) has to be 
evaluated, which is in general a four block H00 problem. Computation experience has shown 
that for most of the well formulated problems, the quantity:

inf
Q tR H 00

is quite close to J|rR|] (say less than 10% of error). Thus, after arriving at the general distance 
problem corresponding to the computation of N(a, fi), IITr U may be used in place of the 
precise optimum.

R ll“  Q ^12 
R2i R22

5.3 Stabilizing controllers for sampled data systems
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In this section, we will formulate the stabilization of a multirate sampled data system as 
an H°° synthesis problem. The purpose of a pure stabilizing design of this section is three-fold. 
Firstly, we want to demonstrate through examples that the perturbation approach to sampled 
data systems design is feasible, although theoretically proved in chapter two. Secondly, we will 
have a better understanding of the nature of the stability constraint, in other words we want to 
know if there is much room left for other considerations after the stability requirement has 
been met. Thirdly, and most importantly, we will use the robust stabilization configuration to 
study the scaling problem in order to reduce conservatism.

Fig. 5.3.1 is a diagram of a hybrid controlled system with separable controller. C =  
C-F, where F is a stable and minimum phase filter with relative degree 1. F is included in 
order that S2 and hence A 2 are well defined. As to the question if there is any restriction to the 
choice of F, we have:

Lemma 5.3.1. Suppose that F(s) is a stable and minimum phase transfer function with 
relative degree one. Let C(Q) be the Q-parameterization of all stabilizing controllers for PF. 
Then C(Q)-F is the parameterization of all strictly proper stabilizing controllers for P.

Proof:
It is evident that for any C £ C(Q), CF is strictly proper. We need to show that all 

strictly proper C’s are in this form. Let C be such, i.e. the system (C, P) is stable and C is 
strictly proper. Clearly (CF-1, PF) is also stable, and CF”1 is proper. This implies that C-F”1 

£ C(Q), therefore C £ C(Q)F. □

In view of this, it is not particularly important to choose any special F, for its 
undesirable influence will be compensated by C(Q). However it is appropriate to choose F 
sensibly.

Fig. 5.3.1 is transformed into Fig. 5.2.1, with
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A = A,
0

and

Pi =
G g s 2f
0 F

SjG Sf iSzF

In all our designs, we will always choose F to be the same as S2, because this choice will 
put the right amount of anti-aliasing filtering on the signals going into S2 while at the same 
time providing sufficient bandwidth.

It has been shown that the closed loop system in Fig. 5.3.1 is stable if one can choose a 
stabilizing C such that IIW-F^Pi, C]|| < 1, where

W = Rj 0
0 r 2 (5.3.1)

and both Rj and R2 are diagonal matrices defined by 

Ri =  diag { RTj> x
and

R2 =  diag { RTj }jn==1.

Thus, one needs to find a stabilizing C such that ||F([P, C]|| < 1, with

(5.3.2)

R] 0 0 0 G GS2

P = 0 r2 0 0 0 S2

0 0 I I SjG SiGS^

Because Ri and R2 are non-proper, therefore for P to be

(5.3.3)

proper. This requirement can be satisfied in practice by the use of filters at the output of the 
plant, which in general should be done for the sake of reducing aliasing. But we can not use R-,
as defined in (5.3.2), for their zeros at s= 0  will appear in T 12  and T21 in the corresponding
model matching problem. This will make T]^ and T21 rank variant. The existence of an 
optimal solution is not guaranteed unless T *2 and T2i are of full rank [Francis]. In fact, the 
program we use for the examples is based on the assumption that P ^2 and P2i  have full 
column and row ranks, respectively. To overcome this problem, a small perturbation is
introduced so that Rj and R2 will have factors s-f e instead of s.
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The effect of the minimizing HW-FifPj, C]|| is to shape the frequency response of F|[Pi, 
C] in such a way that it “avoids” the peak of W. If the optimum is less than one, the C 
obtained will stabilize the sampled data system (not only the nominal system). Examples have 
shown that this is indeed the case. But since the envelope on the effect of sampling is 
conservative, it is expected even the minima fails to be less than one, the system may still be 
stable. Nevertheless, by inspecting the optimum we can tell if the stabilization has taken much 
effort for a given set of sampling rates. Since the perturbation here is entirely due to sampling, 
robust optimization of this section may also give information about whether a set of sampling 
rates are appropriate. It is evident that the optimum is in general a decreasing function of the 
sampling rates. But the rates do not influence this optimum in the same way. Thus one can 
observe which samplers have the dominant effect. The considerations for sampling rate 
selection are beyond the scope of this thesis. Some general guidance may be found in, say, 
[Franklin].

Minimizing IIW-F^P^ C]|| will leave other loop transfer functions in whatever shapes to 
satisfy the robust stability. As simulations have shown, a pure robust stabilizing design, 
although gives stable closed loop, offers unacceptable performance.

We have seen in chapter four that scaling can be used to reduce conservatism of the 
stability assertion, for scaling may bring out structural information of the closed loop (not the 
perturbation). It should be pointed out that the way we characterize the perturbation class has 
already taken into account the structure of A. The robust stability condition, which is a 
transformed Small Gain theorem, only involves the maximum singular value of W-F^P^ C], 
while this singular value is not invariant of a diagonal scaling T as in TW-F|[Pl5 C]T_1. 
Therefore a scaling matrix can reduce conservatism by balancing the singular values. However, 
the method used in chapter four is of no use here, because we need to scale the transfer 
functions before the controller is designed, therefore we don’t know the frequency at which the 
singular values assume peak magnitude prior to the design. Also, the meaning of scaling here is 
different: by scaling the perturbation influences on the system are better identified, and this 
will lead to a more accurate target. From a different point of view, if scaling helps bring the 
optimum down, then there will be more room left for other design targets.

Let T be the class of diagonal matrices with positive numbers on the diagonal, then 
idealy optimal scaling T should be solved from

TmJ T inf J T (Ti x -  T 12QT2 1) T 1| . (5.3.4)

But unless for the first kind of H°° minimizations, the above problem is computationally 
expensive. An approximate solution can obtained by minimizing the lower bound to the
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optima, i.e. solving T from

min | r R(T)| , (5.3.5)

where R(T) is defined by the general distance problem corresponding to (5.3.4), which 
evidently depends on the scaling T. An algorithm is developed to solve (5.3.5) for T, details of 
which is included in Appendix A. We will assume that such a scaling matrix is computed.

Example 5.3.1: We are interested in a two car three spring system shown in Fig. 5.3.3.

Ki k 2 k3

— w — M, — w — m 2 - Jw v -

00

o o
Fig. 5.3.3 Two-car-three-spring system.

To simplify notation without lossing the point, we take Mx =  M2 =  1, Kx =  1. The 
dynamics of this system is given by:

where

*i
*2 =  A *2
x3 x3x 4 x4

+  B f2

0 1 0 0 0 0
- ( i + k 2) -el K2 0 ,B  =

1 0
0 0 0 1 0 0

k 2 0 -(K 2+ K 3) -f2 0 1

We assume that the observations are xx(t) find x3(t), and controls are f2 and f2. In order to 
avoid trivial solutions, we assume that the friction factors e1 and e2 are negative so that the 
open loop is unstable. The stiffness factors Kj are such that car no. 1 is sluggish while car No. 2 
is rigid. Thus we choose different sampling rates for Xj and x3.

We want to design a hybrid controller to stabilize the system. For three sets of sampling 
rates, the design procedure of this section is carried out. The results are listed in Table 5.3.2.
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Table 5.3.2: Robust stabilization
case
No.

sampling rates: 
rp nn . rr ’ nr 5x l> x 2> X1 > x 2

^opt Performance ^opt
(scaled)

1 0.45, 0.15; 0.3, 0.15 0.802 stable, poor 0.548
2 0.6, 0.2; 0.4, 0.2 1.131 stable, poor 0.706
3 1.0, 0.25; 0.5, 0.25 1.504 stable, poor 0.723
4 1.6, 0.4; 1.2, 0.4 2.965 unstable 1.485 *

*: After scaling, the design gives stable closed loop.

5.4 A Design method, for sampled data systems

Stabilization of multirate sampled systems has been formulated and solved as a robust 
stabilization problem. We have seen that the perturbation approach to sampling is effective 
because it is possible to shape the relevant loop transfer functions in such a way that the 
“disturbing” effect of sampling is absorbed. In this section we will use the same idea to solve 
the design problem of a sampled data system. Clearly, the perturbation due to sampling not 
only threatens stability, but also influences performance. Therefore the design must first of all 
ensure stability and also then make the performance under the worst influence of perturbation 
as good as possible.

We will consider the optimal regulation problem, i.e. we are interested in minimizing 
the error signal e in Fig. 5.3.1. As in last section, the perturbation is lumped into a singal 
block, so Fig. 5.3.1 can be transformed into Fig. 5.2.1, with a P matrix mapping from [n, r, 
u]T to [n’, e, e’]T. Define

Wx = T-W
/?w0

and W2
T"1 0

J
0 o:Wj

where W is the bound defined in (5.3.1), and T is an appropriate scaling discussed in the 
previous section, ce and (3 are the balance factors introduced in section 5.2; W j(s) and wG(s) are 
weighting functions designated to reflect the design requirements, and will be discussed later in 
this section. Since R and T are fixed, we need to substitute appropriate a, /?, W j(s) and wD(s) 
into the cost function
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|W,-F,[P, C]-W2| =  |F|[P, C]|, (5.4.1)

Weights selection is a complicated problems, and a systematic way for their choices is still 
under investigation. We can only consider the most important aspects of their section in a 
sampled data system design framework. Hence we will confine ourselves to simplest class 
weights.

Weight selection

The weight Wj at the input is used to characterize the class of input signals that the 
regulation is primarily designed for. In a sampled data system, the bandwidth of these signals 
should not be higher than those of the samplers. Therefore, Wj should be chosen as a low-pass 
filter, if no other specific requirement is posed. Thus we take

Wj(s) =  diag [ w-f, •••, wfl

with wf(s) =  to reflect the bandwidth of a particular loop. If there are other
considerations, then the W j( s )  defined above should be used as the basic profile on which further 
shaping can be made. Similarly, wQ is chosen as

w0 =  diag[ Wo, •••, w2]

with Wo(s) =  where Wj,’s are chosen to reflect the bandwidth in which the error ofK '  s-fwk K
tracking should be minimized. For the same reason, we should not let the bandwidth to be too 
wide as to impose an impossible target for a given set of sampling rates. Sometimes it is 
necessary to place particular emphasis on certain of the input or output signals. This is 
accomplished by the constant factors ck and ck’. How these factors are chosen is a matter for 
the designer to decide.

Computation of a and (3

Suppose that we have chosen the shapes of the weights Wj and wc. The next thing to do 
is to calculate a  and (3 according to the procedure outlined in section 5.2. We should note that 
the process of computing a  and (3 is basicly a trade off between robust stability and 
performance. Thus if the bound on the perturbation is conservative, this process could result in 
too much weight on the robustness and hence an unsatisfactory design. This calls for an 
examination of the basis that sampling be treated as perturbation.
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First we note that the LTI bound on the error Aq- operator is tight in the sense that the 
bound is achieved. Thus the focus point is on the issue of if our way of formulating robust 
design is conservative. It is the author’s opinion that the worst case performance defined in 
(5.2.4) is not only difficult, but also, after some reflection, obscure in meaning in our present 
context. Because by (5.3.4) we implicitly assumed that the perturbation class consisted of 
members that can be individually identified. Therefore there was the notion of “the worst 
perturbation”. But the nature of A-j- indicates that there is not an LTI operator that behaves 
like it. We can only use the collective effect of a perturbation class to characterize A-p 
Therefore the definition of (P) is justified.

A more fundamental query is, however, whether it is justified to presume that the 
influence of sampling on performance is always undesirable. The fact that the output of a 
hybrid controller can change instantaneously can certainly be advantageous. But to take this 
advantage it is necessary to use the exact discrete time models of both the plant and the 
controller. For multirate sampled data systems this is very difficult. Therefore, if the basic 
philosophy is approximate as opposed to exact, sampling effect has to be regarded as 
undesirable and should be decoupled from the performance output.

Combining these considerations, the following design procedure is proposed:

(1) Choose bandwidth for the input and output weights, multiply the terms with 
constant factors according to how much emphasis one wants to put on them;

(2) Multiply the robust function with the scaling matrices T and T”1 ;

(3) Use the TSOD search methods to find the balance factors a  and /?;

(4) Solve the H°° minimization problem (5.3.1).

(5) Model reduce the resultant controller if necessary.

Example 5.4.1: We use the same system as in example 5.3.1. The purpose of this 
example is to demonstrate the steps that lead to a reasonable design. What is particularly 
interesting is the use of the balance factors a  and /?.

Experience has shown that the Nyquist frequency is a wise choice for the bandwidth of 
the weights Wj and wQ, thus they can be chosen according to the sampling rates of the loops.

We have done two designs here, in both cases the shape of the weighting functions are 
determined according to the discussion in this section. In the first design, we choose the balance 
by “intuition”. The results are shown in Fig. 5.4.1a. The optimal 7 opt for the first design is
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bigger than one, thus one would not be able to tell how the individual objectives behave. More 
importantly, from 7 opt alone we can not decide if the design gives a stable closed loop. We 
want to point out particularly that though an optimal 7 opt bigger than one dose not 
necessarily incur instability, it does make the performance vulnerable to perturbation.

The scaling procedure of 5.2 ensures that the least amount of sacrifice is made in the 
trade off between robust stability and performance. Fig. 5.4.1b shows the simulation results of 
a design that corresponds to an optimal 7 opt less than 1. It is evident that the overall 
performance is improved a great deal, although less weights is put on tracking error 
minimization.

5.5 Concluding Remarks

It is difficult to evaluate the design procedure for there isn’t a clearly defined benchmark 
against which we can make a judgement. But the following points are common to the 
evaluation of any design methodology.

(1) Effectiveness. It is difficult to decide for there is not an objective criterion for this. 
But from the simulations of the examples, we tend to believe that the method we proposed in 
this chapter offers reasonably good designs. The central point is whether H°° method can give 
good design, which is not completely answered yet. Since this method gives stable designs and 
offers the freedom of shaping the loop transfer functions we are interested in, our own verdict is 
that it is effective.

(2) Ease of use. This includes whether it is easy to formulate a design task into a form 
that can be fed into a computer, and whether it is easy to transfer design specification into 
data used by the design programme. Since this method is based on continuous time approach, 
there is no need to discretized the plant model. All design specification are stated in Laplace 
frequency domain, which is understood by control system design engineers. The only things one 
needs to decide are the sampling rates and the shape the closed loop transfer function. It is 
straightforward to transfer these information into the standard configuration of H°° optimal 
design.

(3) Systematic approach to sampled data design. The information about the shape of 
closed loop leads to the weighting functions for the part of the transfer function representing 
performances. The bounds on the error of approximation to SAH operators are used for 
robustness weighting functions, which is the other part of the transfer function we minimize in 
H°° norm. The controller will be in state space form, and can be easily transformed into
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Simulation results of example 5.4.1: 
(5.4.1a) Intuitively selected balance
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Simulation results of example 5.4.1:
(5.4.1b) With the computed balance factors a and (3
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realizable computer software.

(4) Complexity of controller. In terms of MacMillan degree, the resultant controller is as 
complicated as the P matrix in the standard configuration for H°° minimization [Limebeer et 
al, 1986]. In order to have the freedom to shape the loop transfer functions and to 
accommodate the sampling effect explicitly, a P matrix of high MacMillan degree is inevitable. 
If we accept the problem formulation as being sensible, then a high degree controller is the 
necessary cost. This is one side of the picture. On the hand, we can model reduce the resulting
controller. For example, the controller obtained form Example 5.3.1 has 12 states, while a 6fv 'state optimal Hankel approximation gives nearly identical performance. Basicly, we have two 
choices: one is to design a controller for a simplified problem formulation, and hence to get a 
simple controller; the other is to include all important features in the problem formulation, but 
model reduce the resultant controller. Since a systematic model reduction procedure will have a 
better chance to preserve the fundamental characteristics of a system, our intuition is that we 
should adopt the latter of the two choices.

(5) Computation effort. This is not an important issue in an off-line design context. The 
core of the design procedure is an H°° minimization problem. Compared to this the pre
processing and post-processing are neglectable. The computational issue of H°° optimization is 
beyond the scope of this thesis, apart from the observation that it is improving continuely.

The ultimate test has to be by realistic designs. The author believes that all the signs 
show that it is a promising direction, alone which more research is undoubtably needed. Here 
are some immediate questions that need be looked into.
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Appendix A.

Robustness scaling

Since the scaling matrices have finite elements, we can solve for them from an 
optimization procedure. Since

|r R ( T ) |  >

there must exist a solution T that minimizes the Hankel norm. The mapping from T to R(T) 
is complicated, and it is impossible to calculate the derivatives analytically. It is easy to 
compute the derivatives numerically, but to do so we must show that is differentable
with respect to the scaling matrix T. The mapping T i—► |rp(-y-)| involves the following 
calculations. First, transfer the model matching problem

inf |t (Tu  — T 12QT2i )T"1|
Q  C H ° °

into the general distance problem

inf 
Q  e H

OO R(T) - Q 0
0 I

To do so one needs to solve two Riccati equations so that the stabilizing Q parameterization is 
such that both TT 12  and T21T_1 are parts of inner matrices. A state space realization can be 
found for R(T):

R(T)(s) =  B(T) [si -  A(T) ]_1C(T) +  D(T).

Then controllability and observability grammians P(T) and Q(T) can be solved. Finaly, the 
Hankel norm of R(T) is given by

^max [P(T)Q(T)].

We will first show that the solutions of the two Riccati equations are differentiable functions of 
T, hence so are A(T), B(T) and C(T). Then we have to show the solutions of the two 
Lyapunov equations, i.e. the grammians are differentiable functions of A(T), B(T) and C(T). 
Then it is a known fact^ that the eigenvalues of a matrix are analytic functions of the elements 
of the matrix. We have the following general result on the continuity property of the solution
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of Lyapunov equations.

Proposition A.l: Let A(t), B(t) and Q(t) be continuous nxn matrix functions on [-5, 5] 
(hence bounded), for some £>0. Assume that Aj[A(t)] Aj[B(t)] for i j  =  1,- - -, n, and for 
t€E[-<$, 5]. Then the Lyapunov equation

A(t)X +  XB(t) +  Q(t)t =  0 (A .l)

has a unique solution X(t) =  Y(t)t, for some Y(t) bounded on [-5, 5],

Proof:
The conditions on the eigenvalues of A(t) and B(t) ensure that there exists a Y(t) for 

each t£[-<5, 5] satisfying

A(t)Y(t) +  Y(t)B(t) +  Q(t) =  0 .

Hence the unique solution to (A.l) is Y(t)t. Y(t) is bounded since Q(t) is bounded. □
This proposition above all says that the solution of a Lyapunov equation isil O(t) if the free 
term is O(t).

Lemma A.l: Let A(t), B(t) and Q(t) be the same as in proposition A .l. In addition, 
assume that they also differentiable at t=0. The the solution is also differentiable at t =  0.

Proof:
It is easy to see

A(t) |x(t) -  X(0)] +  [X(t) -  X(0)] B(t) +  [ - ] 0 ( t )  =  0,

where [• ••] is a bounded matrix. Therefore the conclusion follows. □

Lemma A.2: Let A(t), Q(t) be nxn matrix functions continuous in t €:[-<$, 6], and
differentiable at t =  0. Let also R =  B-BT . Suppose that the pair (A(t), B) is stabilizable in [- 
<$, 6], fro some <5>0. Then the unique stabilizing solution to

X(t)A(t) +  AT(t)X(t) +  XRX +  Q(t) =  0

is continuous and differentiable at t =  0.
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Proof. ! •
The Riccati equation has a unique solution for each t 6 [-<5, 6]. Also we have by 

hypothesis that A(t) — A(0) =  0 (t), and Q(t) — Q(0) =  0 (t). Hence

[X(t) -  X(0)][A(0) +  RX(t)] +  (AT (t) +  X(0)R][X(t) -  X(0)] +  0 (t) =  0 .

Since A(t) is continuous in t, hance the stabilizing solution for A(0) is also stabilizing for A(t) 
when t is sufficiently small. Thus the above Lyapunov equation satisfies the conditions for 
lemma A .l, so we have that [X(t) — X(0)] =  0(t), or that X(t) is continuous at t= 0  and 
l̂imit  ̂ |[X(t) — X(0)] exists. □

To simplify presentation, Doyle’s notation of Riccati equation is used here. For the 
Riccati equation

XA +  ATX +  XRX +  Q =  0,

denote the unique (if exists) stabilizing solution by

Ric. A R
-Q -At

If in the standard formulation we have minimal realization:

A Bi b 2
T 0 ’ T '1 0
0 I P(s) 0 I Ci D n D i2

- 1 \- J c 2 D 2i D22

then the two Riccati equations we are concerned are 

X(T) =  Ric. A -  BjD^jC , 
-C 7 'D iL2(D iL2)T C1

and

Y(T) =  Ric. (A -  B1D j1C2)T 
- B , ( D i ) TDf2B7

b 2b 2T
T  n \T- ( A  -  B aD ^C j)

C2

- ( A  -  B ^ J iC j)

Note that B2 and C2 are not changed by T. If we let T be in the form of

T =  diag (1, 1, 1 +  tj, ■ ■ -,!) (A.2)
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where tj G [-<5, <5] and 0 <  <5 <  1, then the coefficients of both Riccati equations satisfy the 
conditions of lemma A.2, i.e. they are differentiable functions of t„ hence X(T) and Y(T) are 
differentiable at tj =  0. Define

F =  -(D T jC , +  B j x )
and

H =  - ( B jDJj +  Y C j) ,

then in the state space realization of R(T) all the elments are differentiable functions of tj in [- 
<5, 6]. Lemma A.l can then be applied to show that the associated controllability and 
observability grammians are differentiable as well. It is a well known facts that compositions of 
differentiable functions are differentiable. Thus we conclude with a

Theorem A.3 : For a scaling T defined as

T =  diag(l+t1, •••, l+ t n) ,

Athe Hankel norm of R(T) is differentiable at T =  I, i.e. the matrices |r r(t )| exist.

Having established the differentiability of |rR(nr)| w^h respect to the scaling matrix T, 
we can use the following numerical procedure to optimize the scaling.

(0) Let T =  In and an index k =  0;

(1) Formulating the P matrix, with scaling T absorbed in; k =  k +  1;

(2) Use finite difference method to compute the derivatives

where
Tj =  diag[ 1 , •••, 1 +  tj, •••, 1]

(4) Do one dimensional search on the steepest descent direction 

T k =  In +  diag[ dl5 •••, dn ]*t

where t is such that dj-t +  1 >  0, and it minimizes |F|
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(5) If dj’s are small enough, stop. Otherwise go back to (1) with the T =  T k computed
in (4).

This procedure will converge, for in each step the Hankel norm of R(T) is reduced and 
this norm is bounded from below. However, there is no guarantee that the convergence is 
towards a global minima. More is yet to be understood of the relation between |r r(t )| an  ̂ T.

Appendix B

On the Q-paramelerization

We have seen in chapter three that for the calss of separable hybrid controllers K, the 
input-output relation can be expressed as:

K =  S^C-S* (B .l)

where C is an LTI operator. Proposition 3.0.1 asserts that when C ranges through all real 
rational functions, (B .l) covers all the digital realizations whose computing units satisfy the 
following conditions:

(1) The Ajj matrices in (4.1.1) do not have zero eigenvalues;

(2) ln(Ajj) are real metrices.

Without these conditions, the C matrix in (B .l) can well be complex irrational function of s. A 
typical element of C would be

Cjj(s) =  Ry(s)-exp(-skT)

where Rjj(s) is complex rational, T is the state updating rate and k is an integer. We may 
assume that there is no delays in the hybrid controller for they do not seem to give rise to a 
better controller. There is, however, no justification for an a priori assumption that C jj(s)’s are 
real rational.

But in all the formulations of this chapter, we assumed that everything is real rational. 
In particular, C is supposed to be real rational. Thus, the optimal design is only optimal when 
confined to a subclass of separable hybrid controllers. The purpose of this appendix is to show 
that the loss of generality in the formulations of this chapter do not incur a suboptimal design
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as far as the non-delay class is concerned.
Let CH°° denote the set of all proper complex rational matrices which do not have poles 

on the closed right half complex plan. With the normal definition for addition and 
multipication, CH00 is ring with much the same properties as RH°°. In particular, any C £ 
CH°° has right-coprime and left-coprime factorizations. We note that RH°° forms a subset of 
CH°°, therefore we see that (5.1.5) gives the complete parameterization of all stabilizing C(s)’s 
in CH°°, for Q(s) £ CH°°. Since the plant is real rational, hence all the matrices in (5.1.5) are 
real rational apart from Q(s). This implies that in the derived general distance problem (5.1.9) 
R(s) is real rational. But it is known that the infimum for (5.1.9) with Q £ RH°° is not bigger 
than the same infimum taken with Q £ H°°, and hence not bigger than the one with Q £ 
CH°° C H°° [Francis]. Thus we conclude that the formulation in this chapter will give optimal 
controllers to the H°° criterion, if we preclude any pure delay in the controllers.
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