
IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY
AND MEDICINE

University of London

IDENTIFICATION OF THE 
DYNAMIC CHARACTERISTICS OF 

NONLINEAR STRUCTURES

by

Rongming Lin

A thesis submitted to the University of London for 

the degree of Doctor of Philosophy and for 
the Diploma of Imperial College.

Dynamics Section

Department of Mechanical Engineering

Imperial College of Science, Technology and Medicine

London SW7 December 1990



II

ABSTRACT

Modal analysis has been extensively developed during the last two decades and has 
become one of the most effective means of identifying the dynamic characteristics of 
engineering structures. However, most of the techniques developed so far are based on 
the assumption that the structures to be identified are linear while, in practice, most 
engineering structures are nonlinear. It is therefore necessary to extend existing linear 
modal analysis techniques or develop new techniques so that structural nonlinearity can 
be detected, quantified and mathematically modelled based on the measured input-output 
dynamic characteristics. This thesis seeks to present complete yet new developments on 
the identification of dynamic characteristics of nonlinear structures.

For nonlinear structures whose modal parameters for certain modes are displacement 
dependent (the nonlinearity is of symmetrical type), a new nonlinear modal analysis 
method based on the measured first-order frequency response functions is developed. 
The method has been effectively applied to the data measured from practical nonlinear 
structures even when the modes become considerably complex. On the other hand, for 
structures whose nonlinearities are such that the measured first-order frequency response 
functions are effectively linear (nonlinearity of nonsymmetrical type), a higher-order 
frequency response function analysis is presented which provides opportunities for the 
identification of such nonlinear structures. Both the first- and higher-order frequency 

response function analyses are based on the classical assumption that the output of a 

nonlinear structure is periodic if the input is periodic. However, for some nonlinear 
systems (chaotic systems), this assumption is no longer valid and special techniques need 
to be developed in order to identify them. In this thesis, for the first time, the hidden 
chaotic behaviour of a mechanical backlash system with realistic system parameters has 
been revealed and, based on this system, qualitative as well as quantitative ways of 
identifying chaotic systems are presented. Both numerical studies and experimental 

investigations are carried out and possible engineering applications are discussed.

It is believed that nonlinearities of most engineering structures are usually localised in just 

a few spatial coordinates and the ability to locate these has some important engineering 

applications. In this thesis, location techniques based on the correlation between analytical 

model and measured modal parameters as well as frequency response data are developed.
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Numerical study and experimental investigation demonstrate the practical applicability of 
these techniques. Because of the limitation of measured data available, it is essential to 
pinpoint where the structural nonlinearity is located before a nonlinear mathematical 
model can be established.

The ultimate target of the analysis of a nonlinear structure is to establish a nonlinear 
mathematical model (spatial model) which is a function of response amplitude. It is 
believed that such a target can only be achieved by combining analytical modelling (FE 
modelling) and modal testing techniques. In this thesis, new model updating methods are 
developed and extended to the mathematical modelling of nonlinear structures based on 
the correlation between analytical and measured modal parameters as well as frequency 
response data. The practical applicability of these methods is assessed based on a specific 
case study. Criteria on minimum data required in order to update an analytical model are 
established and the possibilities and limitations of analytical model improvement are 
discussed which make it possible for the analyst to judge whether a set of measured data 
will be sufficient to solve the model updating problem uniquely.
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NOMENCLATURE

a constant (real)

Ar, Br real and imaginary parts of modal constant of r*  mode (real)

A ^ ) ,  Br(&) real and imaginary parts of modal constant of r*  mode which are 

functions of vibration amplitude (real)

[A]

rAjk

system generalised mass matrix (real) 

modal constant of r*  mode of 0Cjk(cc) (complex)

b constant (real)

{b} coefficient vector (real)

[B] system generalised stiffness matrix (real)

c constant (real)

cr eigenvector scaling factor (complex)

[C] viscous damping matrix (real)

IP] hysteretic damping matrix

D /(x e) Jacobian matrix of vector field /(x) at xe (real)

DP(x*) Jacobian matrix of map P at x* (real)

Dc capacity dimension of an attractor (real)

E Young's modulus (real)

tCi) a vector with its i*  element unity and all the others zeros (real)

[E(co)] coefficient matrix (real)

f(t) force signal (real)

F(co) Fourier transform of force signal f(t) (complex)

F (x ,i) restoring force (real)

/(x) general nonlinear function (real) 

n* Wiener G-functional (real)
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[G(co)] coefficient matrix (real)

H(co) frequency response function of linear systems (complex)

hn(X1.X2,...,Tn) n1*1-order Volterra kernel (real)

C
33,

E

Volterra kernel transform (Volterra transfer function) (complex)

H}j(co1,...,con) Volterra kernel transform corresponding to excitation at coordinate

H^(co1,...,con)

H“ (a>1,...,CDn)

Xj and response at coordinate (complex) 

receptance-like Volterra kernel transform (complex) 

mobility-like Volterra kernel transform (complex)

HjCco) first-order frequency response function of 

nonlinear systems (complex)

Hn(C0!.... £0n) n^-order frequency response function defined as the 

measured Hn(co1,...,con) or 1^(00! ,...,con) (complex)

i complex notation

I current (real)

[I ] unit matrix (real)

k constant (real or integer)

n^-order Wiener kernel (real)

kn.2k(n)(Ti ’- ’'Tn) derived Wiener kernel which is of n^-order (real)

I K I  [k?] expanded r*  extensional and bending element 

stiffness matrices (real)

KnCCDj, Wiener kernel transform (complex)

[K] system stiffness matrix (real)

IK J analytical stiffness matrix (real)

[AK] stiffness error matrix (real)

[AKn] stiffness error matrix due to nonlinearity (real)

L number of independent design variables (integer)

m number of measured or calculated modes (integer)

[m j, [k j expanded r* element mass and stiffness matrices (real)
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[M]

[MJ

[AM]

[MnmJ. [ K n J

[Mms], [KmS]

[Mss], [Kss] 

[Mr ], [Kr ]

N

N($)

N ^*), N2($) 

[O], [0]

{ph {P)

P

P(e)

{P}

P(co), Q(co) 

R(co), m  
AR, AI 

{R(co)}

[R]

si

system mass matrix (real)

analytical mass matrix (real)

mass error matrix (real)

mass and stiffness matrices corresponding to

master (measured) DOFs (real)

mass and stiffness matrices corresponding to master

(measured) and slave (unmeasured) DOFs (real)

mass and stiffness matrices corresponding to slave DOFs (real)

dynamically or statically condensed mass and

stiffness matrices (real)

number of measured coordinates (integer)

number of degrees of freedom specified in the

analytical model (integer)

describing function coefficient (complex)

real and imaginary part of N(&) (real)

null matrices (real)

vector of displacement and acceleration of

principal coordinates (real)

mapping function (real)

probability function (real)

vector of design variable change (real)

polynomial function of co (real)

real part and imaginary part of Ojk(co) (real)

real and imaginary part of the residue term of r*  mode

coefficient vector (real)

residual matrix representing the contribution of unmeasured 

or uncalculated higher modes (complex) 

first-order eigensensitivity coefficient (real)



Sff<co) auto-spectrum of force signal (real)

Sfx(CO) cross-spectrum of force and response signals (complex)

^xx(^) auto-spectrum of response signal (real)

[S] eigensensitivity coefficient matrix (real)

t time parameter (real)

T J M ( 0 ] n* Volterra functional (real)

{T} coefficient vector (real)

[U] left singular vector matrix (real or complex)

[U(a»] coefficient matrix (complex)

V voltage (real)

{V(co)} coefficient vector (complex)

[V] right singular vector matrix (real or complex)

[V] Vandermonde matrix (real)

x(t) response signal (real)

xe equilibrium point (real)

X* fixed point of map P (real)

X(co) Fourier transform of response signal x(t) (complex)

$ vibration amplitude of certain coordinate (real)

{x}, { x} vector of displacement and acceleration (real)

{z} vector of displacement in state-space (real)

[Z(co)] system impedance matrix (complex)

[Za(a>)] analytical impedance matrix (complex)

[Zx(co)] experimental impedance matrix (complex)

[Zmm(«)] impedance matrix corresponding to master 

(measured) DOFs (complex)

[Ẑ CCO)] impedance matrix corresponding to master (measured) 

and slave (unmeasured) DOFs (complex)

[Zss(co)] impedance matrix corresponding to slave DOFs (complex)
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[AZ(co)] 

ajk(co), [a(co)] 

{a a(co)),[aa(co)] 

{a x(co)),[ax(co)] 

[Aa(co)]

[ac(co)]

[aau(“ M

( a m(co))

{a s(co))

[Omm(“ )]

[ams(W)]

[ a Ss (“ )]

p

r^i

(<t>)r, [<M

(<U

T

T|r

■nr$ )

Ar)r

impedance error matrix (complex) 

receptance element and matrix (complex) 

analytical receptance (complex) 

experimental receptance (complex)

receptance error matrix defined as [0^(0))] - [aa(co)] (complex) 

receptance matrix corresponding to the contribution of 

calculated or measured modes (complex) 

receptance matrix of updated analytical model (complex) 

receptance corresponding to master (measured) DOFs (complex) 

receptance corresponding to slave (unmeasured) DOFs (complex) 

receptance matrix corresponding to master 

(measured) DOFs (complex)

receptance matrix corresponding to master (measured) 

and slave (unmeasured) DOFs (complex) 

receptance matrix corresponding to slave DOFs (complex) 

constant (real)

i* element of r* modeshape {<{)}r (real)

undamped r̂  modeshape and modeshape matrix (real)

flow which starts at x (real)

modeshape corresponding to master DOFs (complex) 

modeshape corresponding to slave DOFs (complex) 

analytical (real) and experimental (complex) modeshape matrices 

constant (real)

damping coefficient of r* mode (real) 

respone-amplitude-dependent damping coefficient 

of r* mode (real)

error on damping coefficient estimate rir (real)



{<P)r- N hysteretically damped r* modeshape and 

modeshape matrix (complex)

n.] eigenvalue matrix (complex)

VKl  [ 'M analytical (real) and experimental (complex) eigenvalue matrices

-̂i> i^i) eigenvalue and eigenvector of lower response level (complex)

■̂2> {<t>2) eigenvalue and eigenvector of higher response level (complex)
3^ 9 (A1
3p’ dpW eigenvalue and eigenvector derivatives (real)

[> .] coefficient matrix (complex)

p, P(x) density and probability density function (real)

°i i* singular value of a matrix (real)

{°} constant coefficient vector (real)

[£] singular value matrix (real)

T time parameter (real)

CO circular frequency (real)

natural frequency of r* mode (real)

cor(£) respone-amplitude-dependent natural frequency of r* mode (real)

Acor error on the estimate of cor (real)

Cr damping loss factor (real)

M r- [y] viscously damped r* modeshape and 

modeshape matrix (complex)

operators

IIAII Euclidean norm of matrix [A]

IIAIIf Frobenius norm of matrix [A]

Da partial differential operator

det (A) determinant of [A]

exp[x] natural exponential function



F(d/dt)

« [ ]

mod

n!

n
Re(z), Im(z)

I

( iT, t f  

[ r 1

t ]-T 

[ iH 

[ i*

function of differential operator

Hilbert transform

modulo function

factor

product
real part and imaginary part of complex number z

summation

transpose

standard inverse

inverse and transpose of a matrix

Hermitian transpose (complex conjugate transpose)

complex conjugate
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CHAPTER [T

INTRODUCTION

1.1 GENERAL INTRODUCTION

In current engineering practice, the emphasis placed on safety, performance and reliability 
of structural systems is becoming more and more demanding due to the continuous 
challenges from real life. For example, any design inadequacy in an aircraft might lead to 
huge loss o f human life. In order to design a structural system which, after being 
manufactured, will satisfy the prescribed safety performance and reliability criteria, it is 
essential that dynamic analysis be carried out at the design stage as well as at the 

prototype stage and, subsequently, a mathematical model which can accurately represent 
the dynamic characteristics of the structure be established. Such a mathematical model is 
needed for response and load prediction, stress and stability analysis, structural 
modification and optimisation etc.

For simple structural components, such as uniform beams and plates, mathematical 

models (and analytical solutions) which accurately describe their dynamic characteristics 
are readily available. However, due to the complexity of most engineering structures, 

analytical solutions are often impossible to obtain (if they exist at all) and numerical 

approximations have to be pursued. In structural mechanics, the most commonly 

employed numerical method is the so-called Finite Element Analysis (FEA) method. In
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FEA, a continuous structure is discretised into many 'small' elements (the size of the 

element depends on the analysis accuracy required) called 'finite elements' and then, 
based on the theory of dynamics (e.g., Newton's law, Lagrange equation) and mechanics 
of deformable bodies (e.g., stress-displacement equations, stress-strain relations), a 
mathematical model of the structure is derived. This is often referred as the 'analytical 
model' as compared with the 'experimental model' which is derived from dynamic 
testing. Once a mathematical model (spatial model in terms of mass, stiffness and 
possibly damping matrices of the structure) has been formulated, the next step o f the 
analysis is to solve the differential equations to obtain the dynamic response. However, 
due to the approximations and idealisation involved, lack of knowledge about the 
structure and even sometimes mismodelling of structural joints and boundary conditions, 
it is inevitable that the mathematical model thus established will not always adequately 
represent the actual behaviour of the real structure.

Apart from the analytical approach to achieve a mathematical model for the study of 
vibration characteristics of a dynamic system, another major approach is to establish an 
experimental model for the system by performing a vibration test and subsequent analysis 
on the measured data. This process, including the data acquisition and the subsequent 
analysis, is now known as 'Modal Testing'. The theoretical basis and practical 
applications of modal testing have been discussed in detail in [1]. The most significant 
application of modal testing is perhaps to compare and eventually to validate an analytical 
model using measured vibration test data. Apart from this, mathematical models derived 
from measured data (referred to as 'experimental models' which can be in the form of 
response, modal or spatial models) are frequently used in structural modification analysis, 
structural coupling, force determination etc. It is usually believed that provided sufficient 
care is given to the experimental procedures, the results from measurement are those that 

should be regarded as the most correct.

In a typical engineering design process, both analytical prediction and experimental modal 
testing procedures are involved in an iterative way. They have complementary roles for 

the complete description and understanding of the dynamic behaviour of a structure and 
one cannot be substituted for the other. In the present work, we shall be dealing mainly 
with the experimental side of the problem of evaluating the dynamic characteristics of 
mechanical structures (mainly nonlinear structures), although analytical models are often 

needed and are assumed to be available in the studies of location of structural 

nonlinearities and mathematical modelling of nonlinear structures.
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1.2 STRU C TU R A L N O N LIN EA R ITY

Most of the theories upon which structural dynamic analysis is founded rely heavily on
the assumption that the dynamic behaviour of the structure to be analysed is linear. By 
this is meant that (i) if a given loading is doubled, the resulting deflections are doubled 
and (ii) the deflection due to two (or more) simultaneously applied loads is equal to the 
sum of the deflections caused when the loads are applied one at each time. This 
superposition principle of linear systems can be expressed mathematically as

where x is the deflection, / ( t) is the loading force and a  is a constant. Linear 

mathematical models of engineering structures based on this superposition principle have 
proven to be very useful in numerous engineering applications. From general theoretical 
considerations based on the superposition principle, successful methods have been 
developed and applied to the dynamic analysis of linear structures.

Failure to obey the superposition principle implies that the structure is nonlinear. In fact, 
most practical engineering structures exhibit a certain degree of nonlinearity due to 
nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and 
nonlinear material properties. For practical purposes, they are in many cases regarded as 

linear structures because the degree of nonlinearity is small and therefore insignificant in 
the response range of interest. For other cases, the effect of nonlinearity may become so 

significant that it has to be taken into account in the analysis of dynamic characteristics of 
the structure.

It is often supposed that unless a real measurement is taken, the existence of a 

nonlinearity in a practical structure cannot be foreseen based on analytical prediction nor 

the degree of nonlinearity can be analytically quantified. Experimental investigation 

becomes essential in the identification of dynamic characteristics of nonlinear structures.

x[cc/(t)] = ax[/(t)] (1-D

d-2)

The present research focuses on the identification, location and mathematical modelling of 

practical nonlinearities based on measurement of the input/output dynamic characteristics 

of nonlinear structures. Although there have been several efforts directed towards the
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identification of nonlinearity, there has not been a complete and systematic development 
of identification techniques which are required in order to analyse the numerous different 
nonlinear phenomena that occur in engineering practice. Further, the location o f i 
nonlinearity (information about where the nonlinearity is located in a structure), which | 
has important engineering applications has not been investigated to date. Also, as an 7 

ultimate target of nonlinear system analysis, the establishment of a nonlinear spatial 
mathematical model which is a function of the response amplitude, has not been 
investigated in spite of its practical relevance to numerous engineering applications.

1.3 ID EN TIFIC A TIO N  OF DYNAM IC C H A R A C TER ISTIC S OF 
N O N LIN EA R  STRU C TU R ES

System identification, which is generally considered as the inverse problem of system 
dynamics, is in the scope of various fields such as structural and control engineering. 
Although mathematicians and engineers have developed a number of approaches to 
address the identification problem, most of the work to date has been restricted to linear 
systems. Nonlinear systems are, however, often assumed to be linearisable in some 
manner, and the resulting linear model is then used to analyse the behaviour of the 
system. Significant inaccuracy arises when conditions and/or assumptions required for 
the linearisation are violated.

The identification of linear time-invariant system is relatively well understood and 
theoretically well developed. The same is not true for the case of a nonlinear system. 
Nevertheless, over the past years, some progress has been made in the development of 
both theories and techniques in the identification of nonlinear systems. A very brief 
review is presented here in terms of frequency, time and amplitude domains and a more 
detailed discussion will be given in some later chapters when specific topics are described 

or referred.

1.3.1 FREQ U EN CY  DOM AIN TEC H N IQ U ES

Techniques developed for the identification of nonlinearirities in the frequency domain 
are, in general, based on the comparison of different characteristics of the measured 

frequency response functions of linear and nonlinear structures (nonlinearity detection) 
and extension/modification of classical linear analysis methods to nonlinear structures 

(nonlinearity quantification). As the first task of nonlinearity analysis, the detection of the 

existence of nonlinearity is believed to be relatively easy. For most practical nonlinear 

structures, frequency response functions (FRFs) measured using sinusoidal excitation
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with constant forcing amplitude will show certain form of distortion as compared with 
those of a linear structure. Distortions of measured FRFs when they are displayed in the 
form of a Bode plot [1] or reciprocal receptance [2] have been employed to detect the 
existence of nonlinearities. Also, as discussed in [1], when a structure is nonlinear, the 
isometric damping plot calculated based on the measured FRF data will show systematic 
variation (surface distortion) and this variation is an indication of nonlinearity. These 
detection techniques are simple and easy to implement in practice.

As a more sophisticated method, the Hilbert transform technique can be used to detect, 
and to some degree, to quantify structural nonlinearities. The theory of the Hilbert 
transform, which is an integral transform, is described in detail in [3]. The basis that the 
Hilbert transform technique can be used to identify nonlinearity is due to the fact that for a 
linear structure, the real and imaginary parts of a measured FRF constitute a Hilbert 
transform pair (that is: H[Re(a(co))]=Im(a(co)) and vice versa), while for the FRF of a 

nonlinear structure, these Hilbert transform relationships do not hold. By calculating the 
Hilbert transform of the real part (or the imaginary part) of a measured FRF and 
comparing it with the corresponding imaginary part (or real part), the existence of 
nonlinearity can be identified based on the difference of the transform pair [4].

For most practical applications, not only does the nonlinearity need to be detected, but 
more importantly, it needs to be quantified. The Hilbert transform approach seeks to 

quantify the nonlinearity by measuring the degree to which the Hilbert transform pair 
differ from each other. As a more practical way of quantifying structural nonlinearity, the 
Inverse Receptance method was developed [5] which aims to establish the relationship 
between the natural frequency and the vibration amplitude of a nonlinear structure. 
However, the method is restricted to the case in which the mode to be analysed is real.

All the above-mentioned techniques are formulated for the identification of nonlinearity 

based on the measured first-order FRFs (FRFs which are obtained by considering only 

the fundamental frequency component of the response signal, as will be defined later). 
For some nonlinear structures, the measured first-order FRFs are effectively linear and 

for some practical vibration problems in which the harmonic components of the response 

become as important as the fundamental component, the measurement and analysis of 
higher-order FRFs becomes necessary. The theoretical basis of higher-order FRFs is the 

Volterra series and its extended Wiener series theory [6]. However, research activities 
had been restricted in electrical and control engineering since Wiener's early work [7] and 

until recently that the theory has been applied to the identification of nonlinear mechanical 

structures [8] and found to be quite useful.
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1.3.2 TIME DOMAIN ANALYSIS

As in the identification of linear structures for which time domain methods such as 
Ibrahim's method (ITD) [9] can be used to obtain modal parameters of a linear structure, 
structural nonlinearities can be identified by analysing the measured time force and 
response data directly. The simplest method of nonlinearity analysis in time domain is the 
phase-space or, more specifically, the phase-plane approach [10] which gives both local 
and global behaviour of a nonlinear system and provides an exact topological account of 
all possible system motions under various operating conditions. In the case of sinusoidal 
excitation, the Poincare map which is the discrete phase-space trajectory of the motion, 
can be calculated to detect the existence of harmonic components and so the existence of 
nonlinearity.

The force state mapping technique for the identification of nonlinearity was initiated by 
Masri and Caughey [11] and independently developed by Crawley and O'Donnel [12- 
13]. The technique aims to establish the relationship between the restoring force and the 

vibration displacement and velocity F(x,x). For an SDOF nonlinear system described by

m x + F(x, x) = / ( t) (1-3)

where F(x, x) is the restoring force, if, by some means, the mass m of the system is 

known and quantities x, x, x and /(t)  are measured, then the restoring force F(x, x) at 

given state (x, x) can be calculated. If the system is linear, then the restoring force surface 
is a plane as shown in Fig. 1.1(a). If the system is nonlinear, then some surface distortion 
is expected, as shown in Fig. 1.1(b) for the case of cubic stiffness nonlinearity. The 
extension of this technique to certain nonlinear MDOF systems has been investigated [11] 
and the practical application of the technique has been discussed [14].
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(a) linear SDOF system (b) nonlinear SDOF system
Fig. 1.1 Restoring Force Surfaces of Linear and Nonlinear Systems

Time series analysis techniques [15] have been widely used in the modelling of linear 
systems and have recently been extended to the identification of nonlinear systems [16- 
17]. In general, a linear time-invariant system can be represented by higher-order (more 
than the second) differential equation with constant coefficients. Such a differential 
equation can, in theory, be approximated by a difference equation whose accuracy 
depends on the time interval of sampled data points. The time series analysis seeks to 
calculate the coefficients of the difference equation model based on the measured input- 
output time series data. In the case of a nonlinear system, extra coefficients have to be 
identified which represent the effect of the nonlinear behaviour [16]. After the difference 
equation model, which describes the dynamic characteristics of a nonlinear system, has 
been identified, the first-order and higher-order frequency response functions of the 
system can be calculated [18].

1.3.3 A M PLITU D E DOM AIN ANALYSIS

Nonlinearities can also be identified by calculating the amplitude probability density 

function of the response due to random excitation. For a linear system, if the input force 

is a random signal with its amplitude probability density function (pdf) being Gaussian, 
then the amplitude pdf of the response will also be Gaussian. For a nonlinear system 
however, this simple relationship no longer holds and some distortion in the response 
amplitude pdf from Gaussian distribution is expected and from this distortion, the 

existence of nonlinearity can be identified [19]. The method is developed based on the 
Fokker-Planck-Kolmogorov (FPK) equation of a nonlinear system which is described in 

detail in [20]. To illustrate the idea, consider an SDOF nonlinear system as
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X + p i  + cp(x) = /(t) (1-5)

where f(t)  is a Gaussian noise signal. The corresponding Fokker-Planck-Kolmogorov 
equation of (1-5) is described as [20]:

Y  ^ ^  fPi(x)P2® ^ " [xp1(x)p2(x)j + - ^ 7  [(Px + (p(x))p1(x)p2(x)] = 0 (1-6)

where S0 is the power spectrum of the input force and pj(x) and p2(x) are the probability 
density functions of the displacement and velocity, respectively. Solving (1-6), Pj(x) can 

be obtained as [20]:

P l(x )= T ex p [ f < p © d U  d -7 )

where y is a constant which can be determined by the normalisation condition. From (1- 
7), it can be seen that only when cp(x) is linear does p^x) have a Gaussian distribution. 
On the other hand, pj(x) can be calculated based on the measured time response data and,

therefore, nonlinearity can be easily identified experimentally based on the distortion of 
measured p x(x) from the standard Gaussian distribution.

In the research described in this thesis, we will concentrate mainly on the development of 
analysis techniques in the frequency domain although time domain techniques such as 
phase-plane and Poincare map approaches will be used in the characterisation of chaotic 
vibrational systems.

1.4 M O D ELLIN G  OF N O N LIN EA R STRUCTURES

For many engineering applications, accurate mathematical models (spatial models in terms 
of mass and stiffness matrices) of nonlinear structures are required. So far, much 
progress has been made in the mathematical modelling of linear structures [21]. As 
mentioned above, a mathematical model o f a linear structure can be established either 

using analytical FE analysis (an analytical model) or based on measured dynamic test data 
(an experimental model). Due to the existence of modelling errors in most practical cases, 

the analytical model needs to be validated using measured test data so that an accurate 

mathematical model can be established. In the case when a structure to be modelled is 

nonlinear, its mathematical model becomes a function of response amplitude ([K]=[K(&)]
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for the case of stiffness nonlinearity) and what needs to be established is a series of 
linearised models corresponding to different vibration amplitudes by correlating the 
analytical model and measured first-order FRF data.

In fact, since structural nonlinearity cannot be foreseen and so cannot generally be 
analytically predicted, measurement is crucially important in the modelling of 
nonlinearity. However, measurement alone cannot, in general, establish a practically 
realistic model because measured data are usually very limited (as will be shown, this is 
especially true for the case of nonlinear structures). It is believed that a reasonably 
accurate linear model of a nonlinear structure (corresponding to very low vibration 

amplitude) and location information of the localised nonlinearity are necessary in order to 
establish the mathematical model of a nonlinear structure.

In the present research, we shall focus on the development of techniques for both the 
location and the mathematical modelling of structural nonlinearities. The procedure is as 
proposed below. First, an analytical model is updated using vibration test data measured 
at very low response amplitude to obtain an accurate linear model of the nonlinear 
structure. Then, the nonlinearity is located, based on this linear model and measured data 
at higher response amplitudes. With this location information available, modelling of the 
nonlinearity can be concentrated on the region where the structural nonlinearity is and 
then by correlating the linear model and measured FRF data at different response 
amplitudes, a mathematical model of the nonlinear structure can be established.

1.5 PR EV IEW  O F TH E TH ESIS

Despite rapid developments in the identification of dynamic characteristics of linear 

structures in recent decades, structural nonlinearity presents a major difficulty to the 
majority of applications to practical cases. The research presented in this thesis is intended 
to seek new developments on the identification, location and modelling of structural 
nonlinearities in the pursuit of better understanding of the dynamic characteristics of 

practical nonlinear structures.

Based on the analysis of measured first-order FRFs, some of the recently-developed 
techniques for the identification of nonlinearity are reviewed in Chapter 2 and their 

advantages and disadvantages when applied to practical problems are discussed. Then, a 
new improved method for the nonlinear modal analysis of complex modes is developed to 

cope with the practical situations in which measured modes become complex. The method 

has been successfully applied to the data measured from practical nonlinear structures
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even when the mcxies are considerably complex. On the other hand, for structures whose 

nonlinearities are such that the measured first-order FRFs are effectively linear (the 
nonlinearity being of nonsymmetrical type), a higher-order frequency response function 
analysis becomes necessary for the identification of such nonlinear structures. The 

theoretical basis of higher-order FRF analysis is presented in Chapter 3 with special 
attention given to the numerical assessment of the practical applicability the technique. 
Both first- and higher-order FRF analysis techniques are largely based on the classical 
assumption that the output of a nonlinear structure is periodic if the input is periodic. For 
some nonlinear systems however, this assumption is no longer valid (chaotic systems, in 
which a periodic input will result in an output of "random" nature) and special techniques 
need to be developed in order to identify them. In Chapter 4, for the first time, the hidden 
chaotic behaviour of a mechanical backlash system with realistic system parameters has 
been revealed and, based on this system, qualitative as well as quantitative ways of 

identifying chaotic structures are presented. Both numerical studies and experimental 
investigations are carried out and possible engineering applications are discussed.

It is believed that nonlinearity in most engineering structures is usually localised in certain 
spatial coordinates and the ability to locate these has some important engineering 
applications. In Chapter 5, nonlinearity location techniques based on the correlation 
between an analytical model and measured modal parameters and/or measured frequency 
response function data are developed. Numerical studies and experimental investigation 

demonstrate the practical applicability of these techniques.

The ultimate target of the analysis of a nonlinear structure is to establish a nonlinear 
mathematical model which is a function of response amplitude. It is believed that such a 
goal can only be achieved by combining analytical modelling (FE modelling) and 
experimental modal testing techniques. In Chapter 6, a new model updating method is 
developed and extended to the mathematical modelling of nonlinear structures based on 
the correlation between an analytical model (of a linear system) and measured frequency 

response data. As compared with existing methods, the new method shows marked 
advantages. The practical applicability of the method is assessed based a special case 

study. In Chapter 7, criteria on minimum data required in order to update an analytical 

model are established and the possibilities and limitations o f analytical model 
improvement are discussed which make it possible for the analyst to judge whether a set 
of measured data will be adequate to solve the model updating problem uniquely.

Finally, Chapter 8 reviews all the new developments presented in this thesis and indicates 

the direction for possible further studies.



CHAPTER |2

IDENTIFICATION OF 
NONLINEARITY USING FIRST- 

ORDER FREQUENCY RESPONSE FUNCTIONS

2.1 GENERAL INTRODUCTION

As mentioned in Chapter 1, it is believed that all practical engineering structures are 
nonlinear to some extent, due to nonlinearities in structural joints, boundary conditions 
and material properties. Some structures may be only slightly nonlinear so that they can 
be analysed based on a linear theory with satisfactory accuracy. For others whose 
nonlinearities are such that their dynamic characteristics deviate considerably from linear 
behaviour, nonlinear analysis techniques have to be employed.

As far as analyses of nonlinear systems are considered, there are two types of activity 

which are loosely termed here as "theoretical analysis" and "experimental analysis". The 
theoretical analysis methods assume that a mathematical model of the nonlinear system to 

be analysed is known (usually in the form of differential equations) and what is of interest 
is the prediction of the response of the system due to a certain input. In contrast, the 
experimental analysis methods seek ways of identifying mathematical models of nonlinear 
systems based on measured input/output dynamic characteristics.

Since, in general, nonlinear problems do not possess closed form solutions, both 

theoretical and experimental analyses are approximate and the accuracy of each analysis 

depends on the mathematical nature of the problem and the specific methods employed. 

W hat is of major interest in this thesis is the experimental identification of nonlinear
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structures based on structural modal testing, but since the theoretical analysis provides the 
basis for the experimental identification of nonlinear structures, it is necessary to give a 
brief introduction to the theoretical analysis of nonlinear systems.

Nonlinear systems with either inherent nonlinear characteristics or nonlinearities 
deliberately introduced into the system to improve their dynamic characteristics have 
found wide applications in most diverse fields of engineering. The principal task of 
nonlinear system analysis is obtain a comprehensive picture, quantitative if possible, but 
at least qualitative, of what happens to the system if it is driven into its nonlinear regime. 
According to whether the system variables such as vibration displacement in the 
mechanical structure are perturbed only slightly or largely from their operating points (for 
most nonlinear mechanical structures, the nonlinear effect becomes more severe as the 
vibration amplitude increases, but there are some exceptions such as friction 
nonlinearity), the nonlinear characteristics can be divided into local or global behaviour. 
Local behaviour can be investigated by rather general and efficient linear methods that are 
based on the powerful superposition principle as explained in Chapter 1 because, in this 
case, the dynamic characteristics of the system are completely dominated by linear 
behaviour. However, if these linear methods are extended to describe the global 
behaviour of a nonlinear system, the results can be erroneous both quantitatively and 
qualitatively since, in this case, the nonlinear characteristics may be essential but the linear 
methods may fail to reveal it. Therefore, there is a strong emphasis on the development of 
methods and techniques for the analysis and design of nonlinear systems.

However, it has to be mentioned that the development of nonlinear methods faces real 

difficulties for a variety of reasons. There are no universal mathematical methods for the 

solution of nonlinear differential equations which are the mathematical models of 

nonlinear systems. The methods which exist deal with specific classes of nonlinear 
equations and therefore have limited applicability to system analysis. The classification of 
a given system and the choice of an appropriate method of analysis is not at all an easy 
task. Furthermore, even in simple nonlinear problems, there are numerous new 
phenomena qualitatively different from those expected in linear system behaviour, and it 
is impossible to encompass all these phenomena in a single and unique method of 

analysis.

Although there is no universal approach to the analysis of nonlinear systems, nonlinear 

methods generally fall into one of the three following approaches: (i) the phase-space 

topological method, (i) the stability analysis method, or (iii) the approximate method of 

nonlinear analysis. These are summarised below.
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(i) The phase-space or, more specifically, the phase-plane approach has been used for 
solving problems in mathematics and engineering at least since Poincare in 1880's. The 
approach gives both local and global behaviour of the nonlinear system and provides an 

exact topological account of all possible system motions under various operating 
conditions. It is a powerful concept underlying the entire theory of ordinary differential 
equations (linear, nonlinear, time-varying and time-invariant). However, it is limited to 
the case of second-order equations. For higher-order systems, this approach is very 
cumbersome to use.

(ii) The stability analysis of nonlinear systems, which is heavily based on the work of 
Lyapunov, is a powerful approach to the qualitative analysis of system global behaviour. 
By this approach, the global behaviour of the system is investigated utilizing a given form 

of nonlinear differential equations without explicit knowledge of their solution. Stability 
is an inherent feature of a wide class of systems such as aerospace structures.

(iii) Approximate methods for solving problems in mathematical physics were first 
developed at the beginning of this century. They have been received with much interest 
by engineers and have promptly obtained wide application in diverse fields of 
engineering. The basic merit of approximate methods lies in their being direct and 
efficient and they permit a simple evaluation of the solution for a wide class of problems 
arising in the analysis of nonlinear oscillations.

In the theoretical analysis of nonlinear systems whose equations of motion can be 
formulated analytically, there are quite a number of approximate methods available to 

examine their nonlinear vibration behaviour. According to different input signals, 

methods in general can be categorised into deterministic methods, in which the excitation 
signals are deterministic such as sinusoids and statistical methods, in which the input 
signal is of a random nature. Statistical analysis methods include the method(s) of random 
linearisation [22-23] and the amplitude domain analysis based on the FPK equations [20] 
as discussed in Chapter 1. On the other hand, in deterministic analysis, the most 

commonly used methods are the Linstedt-Poincare method [24], the method of multiple 
scale [24-26] and the harmonic balance method [27]. What is of particular interest here is 
the harmonic balance method (often called describing function method) because this 

harmonic balance analysis provides the mathematical basis for a new nonlinear modal 

analysis method developed in this chapter. The harmonic balance method is heavily based 

on the Krylov-Bogoliubov approach [28] and is applicable to nonlinear systems described 

by higher-order differential equations. The mathematical basis of the method and the
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applicability conditions when it is used to identify the nonlinearities of mechanical 
structures will be discussed in detail later in this chapter when the new nonlinear modal 
analysis method is introduced. However, it will be appropriate here to introduce the 
measurement techniques available in the dynamic characterisation of nonlinear structures 
since what is of primary interest is the identification of nonlinear structures from the 
actual test data.

2.2 M EA SU REM EN T O F FIR ST-O R D ER  FREQ U EN CY  R ESPO N SE 

F U N C T I O N S

A brief introduction has been made so far of the theoretical analysis of nonlinear systems 
based on the known differential equations. However, the primary target which is sought 
in this study is the identification of the unknown mathematical models of nonlinear 
structures based on measured input/output dynamic characteristics. Therefore, it becomes 
necessary before the introduction of any identification techniques to discuss how the 
dynamic characteristics of a structure (linear or nonlinear) can be measured.

First of all, it is necessary to explain what is meant by the so-called f i r s t - o r d e r  f r e q u e n c y  

r e sp o n se  fu n c tio n s  of a nonlinear structure. In concept, first-order frequency response 
functions (first-order FRFs) are the extension of frequency response functions (FRFs) of 
linear systems to nonlinear systems. Similar to the measurement of FRFs of a linear 
structure, in the case of sinusoidal excitation (the excitation is a pure sinusoid), the first- 
order FRF H^co) of a nonlinear structure is defined as the spectral ratio of the response 
X(co) and the force F(co) at the excitation frequency: H1(co)=X(co)/F(co). During the 
estimation of H^co), all the harmonic components (subharmonics, superharmonics and 
combinational resonances) are ignored and only the fundamental frequency component of 
the response is retained. Similarly, in the case of random excitation (the excitation is 
wide-band random signal), first-order frequency response function is defined as the 
spectral ratio of cross-spectrum of the force and response and the auto-spectrum of the 
force: H1(co)=Sfx(co)/Sff(co) (or its equivalent form H1(co) =Sxx(co)/Sfx(co)). The measured 
first-order FRFs of a nonlinear structure based on sinusoidal and random excitations are 
in general different and their relationship will be discussed in Chapter 3.

For linear structures, the first-order frequency response functions (often referred simply 
as frequency response functions) are unique and, therefore, will not vary according to 
different excitation techniques and conditions. For nonlinear structures, however, the 
measured first-order frequency response functions are, in general, not unique. They 
depend not only on the excitation conditions (input force levels), but also on the different
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excitation signals used to measure them. Therefore, the first problem of nonlinearity 
investigation will necessarily be to decide a proper means of excitation so that nonlinearity 
can easily be revealed and then identified. There are three types of excitation method 
widely used in vibration study practice - sinusoidal, random and transient - and each of 
them is discussed below.

2.2.1 SINUSOIDAL EX C ITA TIO N  TE C H N IQ U E

In testing a linear structure, if the input is a sinusoid, the response will also be a sinusoid 
with the same frequency as that of the excitation and the frequency response function at 
this excitation frequency is simply the ratio of the amplitudes (usually complex) between 
the response and the input signals. This observation of its special characteristics naturally 
made the sinusoidal excitation to be the first choice of excitation signal at the very 
beginning of structural dynamic testing and it still remains one of the most favourable 
excitation techniques in today's modal testing practice because of its uniqueness and 
precision, although other techniques such as random, transient etc. have also been 
developed.

The main advantages of sinusoidal excitation are: (i) the input force level can be accurately 
controlled and hence it becomes possible to excite the structure at specified response 
levels required and (ii) since all the input energy is concentrated at one frequency each 
time, and the noise and harmonic components in the response signal are averaged out 
through an integration process, the signal-to-noise ratio is generally good as compared 
with other excitation methods. As in most cases the study of nonlinearity requires either 
response or force controls, the characteristics of (i) become important in the successful 
identification of structural nonlinearity.

When the response level is set to be constant during the measurement (response amplitude 
is constant at different excitation frequencies), a nonlinear structure is said to be linearised 
and the measured first-order frequency response functions can be analysed using standard 
linear modal analysis methods in exactly the same way as for the frequency response 
functions measured on a linear structure. On the other hand, when the input force is kept 
constant during the measurement (the amplitude of the input force is constant at different 
excitation frequencies), the measured first-order frequency response functions are 
nonlinear (they are characteristically different from FRFs measured from linear structures) 
and in this case, special nonlinear modal analysis methods have to be used to analyse 
them in order to identify the existing nonlinearity.
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However, it is worth mentioning that in some cases, the accurate control of force or 
response can be a problem due to the electro-dynamic characteristics of the shaker. A 
feedback control process is required in order to achieve either response or force control as 
will be discussed in some detail in Chapter 5.

The main drawback of the sinusoidal excitation technique is that it is relatively slow when 
compared with many of the other techniques used in measurement. The reason for this is 
that the excitation is performed based on frequency by frequency basis and, at each 
frequency, time is needed for the transient response components to decay and the system 
to settle to its steady-state vibration. However, it is believed that in many applications, 
correct measurement of the dynamic characteristics of a structure becomes more important 
than the measurement time involved. As will be discussed in chapter 6 on analytical 
model updating practice, the accuracy of measured frequency response functions becomes 
vitally important for a successful correlation to be achieved.

2.2.2 M EA SU REM EN T USING RANDOM EX C IT A TIO N

The term ’random’ applies to the amplitudes of the excitation force which, in statistical 
terms, have a Gaussian or Gaussian-like probability distribution. Wide-band random 
excitation is widely used in structural dynamic testing because it approximates more 
closely the statistical characteristics of vibration service environments than does a pure 
sinusoidal excitation.

With this type of excitation, individual time records in the analyser contain data with 
random amplitude and phase for each frequency component. On average, however, the 
spectrum is flat and continuous, containing energy approximately the same level for every 
frequency in the range of interest. The spectrum distribution is easy to control in a 
random test, and it can be limited to cover the same range as the analysis.

The excitation is random and continuous in time, but the record length is finite, and so the 
recorded signals (force and response) are, in general, nonperiodic. However, during the 
signal analysis, these nonperiodic signals are assumed to be periodic and as a result, 
leakage errors occur in the estimation of frequency response functions. These errors can 
be minimised by using window functions, or weighting, which act as a soft entry and exit 
for the data in each record. A suitable weighting function to use with random data is the 
Hanning window.
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In order to eliminate the leakage problem, a pseudo-random excitation signal can be used 

instead of a true random signal. The pseudo-random signal is periodic and repeats itself 

with every record of analysis. A single time record of a pseudo-random signal resembles 
a true random wave form, with a Gaussian-like amplitude distribution. However, the 
spectral properties are quite different from those of a random signal because of its 
periodicity. First, the periodic nature of the pseudo-random signal removes the leakage 
error entirely so that a rectangular window must be used in the analysis and secondly, the 
spectrum becomes discrete, only containing energy at the frequencies sampled in the 
analysis.

For the FRF measurement of linear systems, random and pseudo-random excitations are 
attractive to analysts and researchers because of their potential time-saving in obtaining 
frequency response functions. In random and pseudo-random excitation measurement, 
the structure is excited simultaneously at every frequency within the range of interest. It is 
this wideband excitation characteristic that makes the random and pseudo-random 
excitation faster than sinusoidal excitation. As compared with true random excitation, in 
addition to the advantage of being leakage error free, pseudo-random excitation is much 
faster because as the random source is true noise, it must be averaged for several time 
records before an accurate FRF can be determined.

As for nonlinear structures, from the measured first-order frequency response function 
point of view, a random test in general linearises nonlinear structures due to the 

randomness of the amplitude and phase of the input force signal and the averaging 
effects, therefore, the measured first-order frequency response functions using random 
test are linear. The theoretical aspects of this linearisation process will be discussed in 
Chapter 3. However, the linearisation of a nonlinear structure when using random 

excitation does not mean that it is impossible to identify nonlinearity using random 
excitation. Corresponding to different input excitation levels (power spectra), the 

measured linearised first-order frequency response functions are different and if a set of 
these frequency response functions are measured at different excitation levels, the 
identification of nonlinearity could, in some cases, become possible. On the other hand, 

as will be shown in Chapter 3, this conventional random test technique can be extended to 

measure the higher-order frequency response functions of a nonlinear structure and these 
provide valuable information concerning the nature of the nonlinearity and can be used to 
serve the purpose of nonlinearity identification. Pseudo-random excitation on the other 
hand, is in general not suitable for the first-order FRF measurement of nonlinear 

structures. This is because a pseudo-random signal is periodic and so contains limited 

discrete frequency components. When such a input signal is applied to a nonlinear
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structure, modulation and intermodulation distortion will be generated due to nonlinearity 
and, unfortunately, these distortion products (e.g. 2f1? 3f1}... due to modulation of input 

component will fall exactly on the other frequency components of the input signal 
(e.g. 2f1? 3fj, ...). So the distortion products add to the output and therefore interfere 

with the measurement of frequency response functions [29]. Unlike random excitation, in 
which these distortions can be averaged out, pseudo-random is periodic and so the 
averaging has no effect on the measured FRF.

Although the first-order frequency response functions measured using random excitation 
are different when the input force spectrum levels are different, these differences could be 
very small when practical nonlinear structural tests are considered. One reason for this is 

the dropout of the input force spectrum around resonance frequencies due to the 
impedance mismatch between the test structure and the electro-dynamic shaker. Since the 
energy input around structural resonance(s) is mainly responsible for the vibration level 
of a structure, dropout of the input force spectrum around resonance(s) means that the 
structure cannot easily be driven into its very nonlinear regime and the measured 
frequency response functions corresponding to different input force levels will not, in 
general, be very different from one another. With sinusoidal excitation, this impedance 
mismatch can be compensated using a feedback control system, but for random 
excitation, such compensation seems to be difficult and this is a practical problem for the 
identification of nonlinearity using random test.

2.2.3 M EA SU R EM EN T USING TR A N SIEN T EX C IT A TIO N

One of the most popular excitation techniques used in structural dynamic testing is 

transient excitation, sometime referred as ‘impact testing’. This popularity is because 

transient excitation has some unique characteristics as compared with shaker-based 
excitation techniques. The main advantages of using transient excitation can be 

summarised as:
(i) transient excitation does not require a dynamic shaker to generate the input excitation 

force; this is usually produced using an impactor such as a hand-held hammer and 

therefore the test structure remains unmodified during the test,
(ii) because there is no attachment required in the test, transient excitation provides easier 
access to the measurement points of the structure and,
(iii) transient excitation requires less equipment (no shaker and its related power amplifier 

involved) and measurement time, therefore, it is ideal for mobile experiments.
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As in the case of random excitation, the derivation of input and output relationship under 

transient excitation relies on Fourier transform theory and is based on the Duhamel 
Convolution Integral. The measured frequency response function depends on estimates of 
the auto-spectrum Sff(co) of the force signal and the cross-spectrum Sxf(co) of the force 
and response and it is calculated as H(co)=X(co)/F(co)=Sxf(co)/Sff(co) (or its equivalent 

form H(co)=Sxx(co)/Sxf(co).

An ideal impulse is the delta function 8(t) which, after being Fourier transformed, 

produces a force spectrum with equal amplitude at all frequencies. Unfortunately, this 
ideal impulse is practically impossible to achieve. The waveform which can be produced 
by an impact is a transient (short time duration) energy transfer event whose spectrum is 
continuous, with a maximum amplitude at zero frequency and amplitude decaying with 
increasing frequency. The spectrum shape of the transient signal is mainly determined by 
the time duration of the signal. The shorter the time duration of the signal, the broader the 
range of energy distribution in the frequency domain. On the other hand, the time 
duration of an impact is determined by the mass and stiffness of both the impactor and the 
structure. Therefore, by properly choosing the material and of the hammer tip and its 
mass, it is possible to generate the required transient signal with desired spectrum 
characteristics. However, the spectrum can only be controlled at the upper frequency 
limit, which means the technique is not suitable for zoom analysis.

Although it has been suggested that the high crest factor of transient excitation makes it 

possible for the nonlinear behaviour of the structure to be provoked and then possibly 
identified, there has not been much evidence so far which seems to support the advantage 
of using transient excitation to identify structural nonlinearity based on the measured first- 
order FRFs. However, a special hammer has been designed to measure second-order 

FRFs of nonlinear structures [30] as will be discussed in Chapter 3.

2 .2 .4  CO M M EN TS AND PR A C TIC A L CO NSID ERA TIO NS OF 
N O N LIN EA R ITY  M EA SU REM EN T

As discussed above, there are three main types of excitation technique available for the 
vibration testing of a structure. Each of them has its advantages and disadvantages and a 

proper choice of excitation technique depends, in general, on the measurement accuracy 
required and time available for the test. For linear structures, since the measured 
frequency response functions are, in theory, unique and independent of the excitation, all 

techniques should be equally applicable. For nonlinear structures, however, the choice of 

excitation becomes important for the hidden nonlinearities to be revealed and then
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identified because, in this case, the measured dynamic properties are excitation- 

dependent.

Transient excitation is one of the most often used techniques in structural dynamic testing 
because of its simplicity and speed in obtaining frequency response functions. It requires 
less equipment and is therefore suitable for mobile experiments. Since there is no shaker 
involved, the structure remains unmodified during the test. The coherence functions 
obtained from transient tests, being an indication of the measurement quality, are usually 
better than those from random tests in the sense that low coherence only occurs at anti­
resonances due to the low signal-to-noise ratio of the response signal while in the random 
excitation case, low coherence occurs not only at anti-resonances, but also at resonances 
due to the dropout of input force spectrum around resonances caused by the impedance 
mismatch between the test structure and shaker. As for the identification of nonlinearity, 
although it is believed that it might be possible to use the transient excitation because of its 
high crest factor which provokes the structural nonlinearity, there have not been many 
studies carried out to support this idea.

When random excitation is used, the measured first-order FRFs are always linear, 

whether the structure is linear or not. In the case where the test structure is linear, the 
measured FRFs are unique and will not vary according to different excitation levels, 
while on the other hand, if the test structure is nonlinear, a series of linearised first-order 
FRFs will be obtained corresponding to different excitation levels. These measured first- 
order FRFs can be used to detect whether a structure is linear or not by comparing their 
values for different excitation levels and in cases where only an approximate linear model 
of a nonlinear structure is of interest, regardless of the type of nonlinearity the structure 
possesses, these linearised FRFs can often provide an accurate linear approximation of 

the nonlinear structure from a response prediction point of view.

On the other hand, the conventional random excitation technique can be extended to the 
case of higher-order frequency response function measurement based on the Wiener 
theory of nonlinear systems [7]. As will be shown in the next chapter, higher-order FRFs 
can be used in some cases to identify the type of structural nonlinearity and, together with 
the measured first-order FRFs, to predict the response due to certain inputs more 
accurately than those obtained using the measured first-order FRFs alone.

In the case where accurate quantification of structural nonlinearity is required, e.g. how 

the modal and/or spatial model of a nonlinear structure will change for different vibration 

response levels, sinusoidal excitation is generally regarded as the best choice because of
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its flexibility of input force level control. There are two different types of controlled 
sinusoidal measurement technique commonly used for testing a nonlinear structure,

"A*
referred as the 'constant response' and 'constant force' measurement procedures. In 
constant response measurements, the response amplitude of test nonlinear structure at a 
certain point is kept constant at different excitation frequencies by adjusting the input 
force levels and, as a result, the measured first-order FRFs are linear. However, 
corresponding to different response levels, the measured first-order FRFs are different 
and by analysing them using linear modal analysis methods, a relationship between modal 
model and response levels can be established. The problem here is that the measurement 
is extremely time-consuming and therefore expensive. Furthermore, the measured range 
of response amplitude, which is important in nonlinearity analysis, could be limited 
because of the dramatic changes of receptance amplitude around resonances, especially 
when the structure is very lightly damped. In the case of constant force measurements, 
the amplitude of the input force is constant at each of the different excitation frequencies. 
Due to the varying receptance amplitudes, the response amplitudes are different at 
different measurement frequencies and, therefore, the measured first-order FRFs are 
nonlinear and contain information of a series of linearised FRFs measured at constant 

response amplitudes. Such nonlinear first-order FRFs are used from time to time in 
nonlinearity investigations and it will be shown in this chapter that they can be analysed 
based on the nonlinear modal analysis method developed to establish the relationship 
between the modal model and response levels of a nonlinear structure.

In practical measurements, because of the existence of different types of nonlinearity, care 
must be taken in determining the necessary excitation range so that the nonlinearity(ies) 

can be exposed to a satisfactory extent. In general, nonlinearities can be categorised into 

four different types. For the majority of nonlinearities commonly encountered in practice, 

either stiffness nonlinearities or damping nonlinearities, increasing the excitation force 
level will be similar to increasing the degree of nonlinearity. Examples of such 
nonlinearities are cubic stiffness and quadratic damping. For some nonlinearities such as 
backlash, the structure will remain linear until its response exceeds a certain limit. For 
frictional damping, on the other hand, increasing the excitation level will decrease the 

degree of nonlinearity and for some nonsymmetric nonlinearities such as bilinear and 
quadratic stiffness, the nonlinearity will have no effect on the measured first-order FRFs 
and in order to identify such special types of nonlinearity, the introduction of higher-order 

FRFs becomes necessary.

Following these observations, it is clearly important to choose properly the response 

range and thus the excitation range required so that the nonlinearity can be exposed and

^ c L i - X .  777 j-or Yf\DYQ-
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then identified satisfactorily. For most nonlinear structures in practice, relatively high 

excitation levels are recommended. For some others, such as structures with frictional 
damping, the situation can be the other way round and in order to identify such 

nonlinearities, the excitation levels should be set as low as possible. Lastly, for structures 
whose nonlinearities have no effect on the measured first-order FRFs, the measurement 

of higher-order FRFs is recommended.

2.3 R EC EN T D EV ELOPM ENTS ON TH E ID EN TIFIC A TIO N  O F 
N O N LIN EARITY  BASED ON TH E FIR ST-O R D ER  
FR EQ U EN C Y  R ESPO N SE FU N CTIO N S

Once a structure is suspected of being nonlinear and its first-order FRFs are measured as 
discussed above, it becomes necessary to take nonlinearity into account in the subsequent 

modal analysis of the data. In practical nonlinearity analysis, in order to understand the 
nature and extent of nonlinearity, three requirements must be achieved by appropriate 
application of modal analysis methods. First, the existence of nonlinearity needs to be 
detected. Second, the extent of the nonlinearity needs to be quantified. Finally, physical 
characteristics of nonlinearity need to be established.

It is believed that the first requirement (detection) is comparatively easy to achieve. In 
fact, simply by comparing the difference between measured frequency response functions 
at different excitation levels, the existence of nonlinearity can be discovered. The 
quantification of nonlinearity, that is the establishment of the relationship between modal 
parameters and response levels based on the measured first-order FRFs, is the main topic 

of this chapter and will be discussed in detail. The last objective and the most difficult 
task in nonlinear modal analysis is the identification of physical characteristics of 

nonlinearity - the relationship between the structural spatial properties (such as stiffness) 
and response amplitudes. As will be shown in chapter 6, the establishment of such a 
nonlinear spatial model can only be achieved based on the correlation between the 
analytical model and vibration test data.

In efforts to achieve these various objectives of nonlinearity analysis, a large number of 

papers have been published in recent years. Methods which are commonly used in 

practical nonlinear modal analysis are to be reviewed and their advantages and 

disadvantages will be discussed.
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2 .3 .1  D ETEC TIO N  OF NO N LIN EARITY  BY D IR EC TLY  

USING FR F DATA

As far as nonlinearity detection is concerned, many techniques are available. The simplest 
methods are those which are based on the use of raw measured frequency response data 
without any post-measurement data processing. Detection techniques of this type are the 
Bode plot [1] and the reciprocal receptance plot [2] methods.

The basis of using Bode and or reciprocal receptance plot methods to detect nonlinearity 
is that, due to the existence of nonlinearity, the measured first-order FRFs will be 
distorted systematically from the corresponding linear frequency response functions. 
Since linear FRFs are very well recognised, the existence of nonlinearity can be revealed 
by examining the abnormal behaviour of the measured first-order FRFs.

To illustrate use of the Bode plot to detect nonlinearity, frequency response functions 
measured from a practical Beam/Absorber nonlinear structure are used. As shown in 
Fig.2.1, when the excitation force level increases, the distortion in the measured FRF 
data also increases and the apparent resonance frequency (the frequency of maximum 
FRF value) drops. The existence of softening stiffness nonlinearity of the structure is 
clearly demonstrated.

Fig. 2.1 - FRF Data Measured from Practical Beam-absorber Structure

As an alternative but more versatile technique, FRF data can be displayed in their 

reciprocal form to detect the existence of nonlinearity. The advantage of displaying data in
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this format is that, in the case when the modal constant of the mode to be analysed is 

effectively real, this technique can not only detect the existence of nonlinearity, but can 
also give an indication as to whether the nonlinearity exists in the stiffness or damping. 
Suppose the residual contribution of other modes has been subtracted or can be neglected, 
the receptance data around r111 mode of the structure can be expressed as :

CXjk (CD) =
co,

lAft____
co2 + ir|r cor2

(2- 1)

Rewriting equation (2-1) in its reciprocal form and assume modal constant jAjk to be real:

1
CCjk(CO)

cor2 - co2 . rir cor2
I-Ajk r^jk

R(co) + i I(co) (2-2)

From equation (2-2), it can be seen that if FRF data are expressed in their reciprocal 
form, cOj. (related to stiffness nonlinearity) and rjr (related to damping nonlinearity) can be 

identified separately from the real and imaginary parts of the reciprocal FRF.

When FRF data are obtained for linear structures, the relationships of R(co) vs co2 and 
I(co) vs co2 are straight lines for the case of hysteretic damping as shown in Fig.2.2. Any 

distortion from a straight line gives indication of the existence of nonlinearity. When FRF 
data from nonlinear structures are to be analysed, the effect of a stiffness nonlinearity will 
show up in the real part of the reciprocal of receptance data while the effect of a damping 
nonlinearity will appear only in the imaginary part of the data. To illustrate this point, 
FRF data with stiffness and damping nonlinearity measured from simulated analogue 
circuits are analysed and the real part (R(co) vs co2) and imaginary part (I(co) v.s co2) of the 

reciprocal FRF are shown in Figs.2.3 & 2.4. In the case of stiffness nonlinearity, 
distortion of the reciprocal FRF data only appears in the real part, as shown in Fig.2.3. 

On the other hand, as shown in Fig.2.4, when damping nonlinearity is considered, its 

effect is clearly observed to be confined to the imaginary part of the reciprocal FRF data.
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Reel Part Imaginary P art.
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Fig.2.3 - Real and Imaginary Parts of Reciprocal FRF Data with Stiffness Nonlinearity

Real Part Imaginary P art.
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Fig.2.4 - Real and Imaginary Parts of Reciprocal FRF Data with Damping Nonlinearity
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So far, it has been demonstrated that both Bode and reciprocal receptance plots can be 
used to detect the existence of nonlinearity, and that the latter technique can tell whether 
the nonlinearity is of stiffness or damping type in the case where the measured modes are 
effectively real. However, these methods can only be used to provide rough and basic 
demonstration of the existence of nonlinearity. It is not possible to quantify the extent of 
the nonlinearity based on these methods. In what follows, an alternative method of 
nonlinearity detection - the isometric damping plot technique - will also be discussed.

2.3.2 ISO M ET R IC  DAM PING PLO T TEC H N IQ U E

It has been established [1] that structural nonlinearity can be detected by inspection of the 
isometric damping plots which can be calculated from measured FRF data. The argument 

which supports this technique is generally believed to be that structural nonlinearity 
(usually stiffness nonlinearity) distorts the spacing of frequency response data around the 
Nyquist 'circle' from their positions when no nonlinearity exists. Since the distortion 
caused by nonlinearity is systematic, the consequent distortion of the damping estimate 
plot using different pairs of points around the Nyquist circle will display a specific pattern 
depending on the type of nonlinearity. These patterns in the damping plot can then be 
recognised and compared to detect and possibly to identify the nonlinearity. The 
mathematical basis of this technique will be discussed next with the new explanation for 

the reason why damping estimates vary when different pairs of frequency points are 

used.

Again, suppose that the residual effect of other modes can be neglected and that the modal 
constant is effectively real for the mode to be analysed, then the receptance a jk(co) around 
r th mode can be expressed as that of equation (2-1). When (Xjk (co) is plotted in the 

Nyquist plane, a circle as shown in Fig.2.5 can be obtained. If the data are measured on a 
linear structure, then the damping loss factor of r^  mode T|r can be calculated as follows:
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Fig.2.5 - Nyquist Circle of Receptance Data

IBCI 
IA a

IRe(aik(cob))l = cor2 - cob2 

IlmCajkCcOb))! rir cor2

t = IDEI_ = IRe(alk(coa))l = tor2 - coa2 

g 2  ^  IIm(ajk(coa))l rjr cor2

Adding equations (2-3) and (2-4), the damping loss factor rir is given by:

Br =
CO 2 _ CO,

9 / 9 aC0r2 (tg ~ f  + tg  - f

(2-3)

(2-4)

(2-5)

When different combinations of points (co ĉo,*) are used, a flat plane which is the surface 
plot of the estimated damping ratio T|r(cob,coa) against its two variables and coa, can be 

obtained in the case of linear FRF data.

On the other hand, if the measured FRF data are from a nonlinear structure, distortion of 
the isometric damping plot (no longer a flat plane) calculated based on equation (2-5) will, 

in general, be expected as shown in Fig.2.6 for the data measured from a Beam/Absorber 

structure shown in figure 2.1.



[ j ]  Identification o f Nonlinearity U sing First-order FRFs 2 8

Fig.2.6 - Isometric Damping Plot for Data Measured from Beam-absorber Structure

The reason why this distortion occurs is discussed below. Suppose the FRF data are 
measured from a system with stiffness nonlinearity, then the natural frequency cor of rlh 

mode which is sensitive to nonlinearity becomes a function of response amplitudes 
cor=cor(&) (where & is the response amplitude of certain coordinate) and since different 

frequency points have different response amplitudes for data measured with constant 
force, the effective natural frequencies at different data points are therefore, different. 
With this in mind, equation (2-3) and (2-4) become:

IBCI
IAQ

IR e(aik(mh))l = co,2($b) - cob2 

IIm(ajk(cob))l TIt “ r2($b)

'DEI
lg  2 "  1ADI ~

IRe(aik(coa))l

IIm(ajk(coa))l
Mr2(fta) - Ma2

T)r “ r2(̂ a)

The exact damping loss factor T|r can be calculated as:

Rr =
coa2 - cob2 + cor2(ftb) - cor2($a) 

o y ^ b )  tg y  + cor2(^ a) tg

(2- 6)

(2-7)

(2- 8)

In the case when damping is linear, the calculated damping loss factors based on equation 

(2-8) will be constant and therefore, it is not difficult to see that the distortion of the 

isometric damping plot obtained based on equation (2-5) is determined by the the
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difference between the estimates of equation (2-5) and (2-8) which, to the first-order 

approximation, becomes:

Arir « cor2(fth) - cor2($„) 

“ r2(^b) tg Y + “ r2(^a) tg

(2-9)

From equation (2-9), it can be seen clearly that in the case of stiffness nonlinearity, the 
distortion of the damping plot calculated based on equation (2-5) is caused by the 
different response amplitudes and therefore different natural frequencies of various 
frequency points chosen.

The isometric damping plot technique, as has been demonstrated, can be used to detect 
the existence of nonlinearity. However, as in the case of nonlinearity detection based on 
Bode and Nyquist plot techniques, anything beyond detection in the identification of 
nonlinearity will be truly difficult because the method is of a qualitative nature rather than 
quantitative, although it has been suggested that, by comparing the different distortion 
patterns of damping plot of commonly encountered nonlinearities, the identification of the 
type of nonlinearity may become possible. With a more ambitious objective of 
quantifying nonlinearity, the Inverse Receptance method was developed [5]. The method 
will be presented next and its limitations when applied to FRF data measured from 
practical nonlinear structures will be discussed.

2.3.3 IN V ER SE R EC EPTA N C E M ETH O D

As discussed before, nonlinearities in FRF data will cause distortion of a plot of the 

inverse receptance data and such characteristics as plot distortion have been employed for 

the detection of the existence of nonlinearity. These inverse receptance data can be further 
employed for the purpose of quantifying nonlinearity. In this section, the Inverse 
Receptance method [5] is introduced. The limitations of the method for the analysis of 
practical nonlinear structures will be discussed and further possible improvements will be 
pointed out.

For a nonlinear SDOF system, the natural frequency con(&) and damping loss factor rj(£) 

are, in general, response amplitude & dependent. With this in mind, the reciprocal of the 

receptance can be expressed as:



[~2j Identification o f N onlinearity U sing First-order FR Fs 3 0

a(co) ^

1 con2( £ ) - c o 2 . ti(£) con2(&)
— A + 1  A (2- 10)

where A is the modal constant which is assumed to be real. Separate equation (2-10) into 
its real and imaginary parts, so that

Re(l/a(co)) =
con2($) - co2 

A (2- 11)

(2- 12)

Suppose that the input force signal F(co) is also recorded during the measurement, so that 

the response amplitude at each frequency can be easily calculated as:

It becomes clear that if the modal constant A can be estimated by some means, then the 
relationships of con(&) vs it and rj(ft) vs it can be calculated based on equations (2-11) 

and (2-12) as:

where it is the response amplitude at frequency co, and can be calculated from equation (2- 

13). The calculation of the modal constant A in this Inverse Receptance method is based 
on a trial-and-error approach and the criterion for the correct estimation of A is based on 

the fact in which satisfactory results have been obtained.

Based on this method, FRF data measured from analogue computer circuit with cubic 
hardening stiffness nonlinearity have been analysed and the results are shown in Fig.2.7. 
The effect of a hardening stiffness nonlinearity is clearly demonstrated.

l£(co)l = IF(co)l la(co)l (2-13)

con2(&) = co2 + A Re(l/a(co)) (2-14)

(2-15)
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Damping C o e f f i c i e n t s Natura l  F r eque nc ie s

Resp . Rmp1i tude Reap. Rmp1i tude

Fig.2.7 - Analysis of Stiffness Nonlinearity Using Inverse Receptance Method

However, an assumption that the modal constant of the mode to be analysed should be 

real and constant was made during the development of the Inverse Receptance method. 
The validity of this assumption when analysing FRF data measured from practical 
nonlinear structures will be discussed later on but, the influence of mode complexity on 
the estimation of cun(£) and T|(&) based on this method will be discussed here. Suppose 

the modal constant is complex and can be expressed as A(cos0+isin0), then equations (2- 

14) and (2-15) becomes:

co„2(£) = co2 + (Re(l/a(co))A cos6 + Im(l/a(co))A sin6) /  cos26 (2-16)

^  = Im (l/a(co))A  - (e)n2(g) - co2)sin9 
Cl)n2($) COS0

Comparing equations (2-16) and (2-17) with those of (2-14) and (2-15), and bearing in 

mind that modal parameter changes due to nonlinearity are usually of second order, a 

small degree of complexity could seriously impair the results obtained based on the 
Inverse Receptance method just outlined. To illustrate this point, the same FRF data as 
those shown in Fig.2.7, but with 10° modal constant complexity artificially added are 
analysed using the method and the results are shown in Fig.2.8. In this case, not only is 
the damping value seriously in error (it should be constant for data points on either side of 
the resonance since the damping is linear), the calculated natural frequencies are incorrect 

as well (compare with figure 2.7). This demonstrates the limitation of the Inverse 

Receptance method and recommends the necessity of further development so that 

nonlinearity can be analysed accurately when measured modes become complex.
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Fig.2.8 - Analysis Results of Complex Mode Using Inverse Receptance Method

2 . 3 . 4  COM M ENTS ON CURRENT NONLINEAR M ODAL 

ANALYSIS M ETH O D S

So far, some of the currently available nonlinear modal analysis methods (based on the 
extension of linear modal analysis) have been reviewed. Based on the systematically 
abnormal behaviour of measured nonlinear FRF data, qualitative methods as discussed 
above can be used to detect the existence o f nonlinearity. By comparing FRF data 
measured at different input force levels, the overlaid Bode plots can be used to check 
whether or not the measured data display nonlinearity. On the other hand, when FRF data 
are presented in their reciprocal form, the effect of stiffness and damping nonlinearities 
can be separated into the real and imaginary parts of the data and, by examining the plots 

of both parts, the type o f existing nonlinearity (stiffness or damping) can be revealed. 
Also, the isometric damping plot technique can be used to detect the existence of 

nonlinearity by investigating the variation o f damping ratios calculated using different 
pairs of frequency points on the Nyquist circle. The reason for this damping variation in 

the case of stiffness nonlinearity, as demonstrated, is due to the different response 
amplitudes, and so different effective natural frequencies, of different receptance data 

points.

With these methods available, the task of detecting the existence of nonlinearity can be 
accomplished reasonably successfully if the structural nonlinearity has some contribution 

to the measured first-order FRFs. However, since all these methods are qualitative in



[~2~1 Identification o f N onlinearity Using F irst-order FR Fs 3 3

nature, it is difficult for them to establish the extent of nonlinearity which a structure 

possesses.

The Inverse Receptance method seeks to quantify nonlinearity by establishing the 
relationship between modal parameters and response amplitudes: cor(£) vs (&) and T|r(&) 

vs (&). The method was developed based on an assumption that the modal constant of the 
mode to be analysed is real and constant. Although valid for FRF data measured from 
nonlinear SDOF systems, for those measured on practical nonlinear structures, this 
assumption is, in general, no longer valid for following reasons:

(i) measured data may contain mode complexity;
(ii) the modal constant of a mode is, in theory, a function of response amplitude.

The effect of mode complexity on the analysis results based on Inverse Receptance 
method has been demonstrated and detailed discussions on the existence of genuine 
complex modes will be presented later on. Here, only the second point (the modal 
constant of a nonlinear system is a function of response amplitude) will be illustrated 
based on a 2DOF system with cubic stiffness nonlinearity as shown in Fig.2.9. 
Assuming Kj is nonlinear and can be expressed as K^OOOOOQ+p&^N/m (where £ is 
the vibration amplitude of mass nq when it vibrates sinusoidally) and solving the 
eigenvalue problem of this system, for the first mode, the natural frequency c o ^ )  and 
modal constant A n (&) of a n (co) can be expressed as:

K2 = K 3 = 400000N/m M j=  = 1.0000 kg 

K 2= 400000 (1 + p x 2 )

Fig.2.9 - A 2DOF Nonlinear System

V ( t ) ,  4 . m M -  + X 400000 (2-18)
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A „ ( * )  = P ft2 + V 4 + P2 

4 + p2 £ 4 + P £ 2 V 4 + p 2 £ 4
(219)

From equations (2-18) and (2-19), it is clear that if cubic stiffness is introduced as shown 
in figure 2.9, both natural frequency and modal constant of mode 1 are functions of 
response amplitude. The relationships co^ft) vs £  and A n (&) vs £  are illustrated in 
Fig.2.10 with (3=1.0 and nondimensionalised response & = 0. - 1.0.

As far as the quantification of nonlinearity is concerned, since FRF data measured from 
practical nonlinear structures usually contain mode complexity and the modal constant of 
the mode to be analysed cannot be assumed to be constant, the analysis results obtained 
based on the Inverse Receptance method can be erroneous and sometime misleading. 
Therefore, it becomes necessary to develop more realistic techniques so that the 
complexity of the mode and the variation of modal constant can be taken into account and 
more accurate modal parameters of nonlinear structures can be obtained.

2.4 CO M PLEX ITY  O F VIBRATION M ODES

2.4.1 T H E O R E T IC A L  BASIS

There exist two different types of mode known as real modes and complex modes in 

structural vibration analysis. In real mode vibration, individual elements of a system 
move exactly in or out of phase with each other while in the case of complex modes, 
individual elements vibrate with different phase angles (relative to each other). The reason 
for the existence of complex modes is known to be a nonproportional distribution of the 
structure's damping. However, the degree of complexity of modes when the damping is 

nonproportional is largely determined by the closeness of the natural frequencies of the
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system. In what follows, the necessary and sufficient conditions for the existence of 
complex modes, the influence of mode spacing on the complexity of a mode and the 
relationship between viscous and hysteretic damping models from mode complexity point 

of view, will be discussed.

It is well known that an undamped linear dynamic system described by

[M] [x] + [K] {x} = {0} (2-20)

possesses real modes when [M] is nonsingular and ([M]"1 [K]) has a full set of 
eigenvectors, [31]. Such real modes can be used to find the principal coordinates in 
which the equations of motion of the system are decoupled. Suppose [(])] is the mass 
normalised modeshape matrix and let {x} =[<[)]{p}, then equation (2-20) becomes:

[M] [({)] [p] + [K] [<J>] {p) = {0} (2-21)

Pre-multiply equation (2-21) by [$]T and since [(}>]T[M][({)]=[I] and [(}>]T[K][(|)]=[X], then 

equation (2-21) can be decoupled in terms of principal coordinates {p} as:

f p } + m { p }  = {0} (2-22)

In the presence of damping (assuming viscous damping for the convenience of analysis), 
equation (2-20) is modified to become

[M] {x) + [C] [x] + [K] {x} = {0} (2-23)

In this case, the criterion for the existence of real modes of the damped system is that the 
real modes of the corresponding conservative system (without damping) can be used to 
decouple the equations of motion of the damped system. For damped systems, in general, 

the decoupling property is violated and the modes become complex. However, certain 

conditions on the form of the damping matrix have been found under which a damped 
system can still possess real modes. Such damping condition have been discussed in 

detail by Caughey [32-33] who pointed out that the sufficient condition for the existence 
of real modes in a damped system is that the damping matrix of the system can be 

expressed as:
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N
[C] = X Ps [M] ([M l'^K ])'"1

S=1
(2-24)

where N is the dimension of the system. In the case when Pi=P2= l and ps=0 (s=3,N), 

equation (2-24) becomes the familiar Rayleigh damping which is

[C]= pj [M] + p2 [K] (2-25)

To prove the sufficiency of equation (2-24), pre-multiply both sides of equation (2-24) by 
[<})]T and post-multiply by [<)>], then

N
[<t)]T [C] [<t>] = Z p s ["*■■¥ ' = ['M-.J (2-26)

S=1

From equation (2-26), since the damping matrix is diagonalised by the real modes of the
corresponding conservative system, these real modes are also the real modes of the
damped system. On the other hand, if the corresponding conservative system has no
repeated eigenvalues, then condition described in equation (2-24) is also the necessary

N
condition. To illustrate this point, rewrite ^  Ps[*^-]s_1 = [’M-] into linear algebraic

S=1

equations in terms of unknowns {p} as:

1 Xi  .

1 x 2 . . T, N - 1. A 2

<

' P f

P2

--
--

-V
--

--
--

--
--

--
-

II
__

_
__

__
__

__

r  ^
h

V-2

■

1--
--

--
--

>>
 

•

1 N - 1 . A n -J

(2-27)

The coefficient matrix is a Vandermonde matrix [V] whose determinant is given as: 

N
det(V) = F I  ( V  *.j) 

i>j>l
(2-28)
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Therefore, if all eigenvalues are distinct, then [V]'1 exists and the unknown coefficients 
{p} can be uniquely determined.

When the damping matrix of the system does not satisfy the condition set in equation (2- 
24), then the damping matrix cannot be diagonalised using the real modes o f the 
corresponding conservative system and the modes of the damped system will in general 
become complex. Since the extent of departure of a given damping matrix from that of 
equation (2-24) (often referred as nonproportionality) determines how complex the modes 
of the system will be, the quantification of such departure becomes necessary in order to 
study complex modes. Some research work on the quantification of nonproportionality of 
a given damping matrix and the complexity of modes has been reported and the 
relationship between complexity of modes and nonproportionality of damping matrix has. 
been investigated [34].

The degree of complexity of a certain mode depends on the closeness of the natural 
frequencies of the system. In the case when all the modes of the system are well 
separated, even though the damping matrix is nonproportional (localised damping for 
example), the modes will not be substantially complex. Theoretically, considerably 
complex modes can only occur when modes become close. This effect of mode spacing 
on the complexity of modes is to be discussed below based on the perturbation theory.

In order to illustrate the effect of mode spacing on the complexity of modes, a hysteretic 
damping model is assumed in the analysis although the relationship between the hysteretic 

and viscous damping models will be discussed later. Also, assume that the structural 

damping matrix [D] is of second order in its Euclidean norm sense when compared with 

the system's stiffness matrix [K], then to first order approximation, the r*  modeshape of 
the damped system {cp}r can be expressed in terms of the modal parameters of the 

corresponding conservative system and damping matrix [D] as:

N

{<P)r= {<!>)r+ ' X
s = l ; s * r

{<!>}} [D] {<$>),
Xr - X,

{<H (2-29)

In the case when the r^  mode is well isolated, then {(})}J[D]{(J)}S (which is a scalar), will 

be of second order compared with (XT-XS) and, therefore, {cp}r will be effectively real. 

However, if  there are close modes, say mode r and mode (r+1), then when s=(r+l),
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{(})}J[D]{({)}r+1 will no longer be of second order of (Xr-X,r+1) and {cp}r will become 

considerably complex.

In the above discussion, both viscous and hysteretic damping models have been used. 
The relationship between these two damping models and the complexity of modes need to 

be discussed.

In the case of viscous damping, the eigenvalue problem of the system becomes quadratic 

as:

([M] s2 + [C] s + [K]) {x} = {0} (2-30)

While the standard eigenvalue problem is in the form of 

([A] X + [B]) {z} ={0} (2-31)

where [A] and [B] can be complex matrices in general. In order to solve the quadratic 
eigenvalue problem given in equation (2-30), some mathematical transformations are 

required, namely:

[A]
'[C ] [M]- 

_[M] [0]_
. [B] =

"[K] [0] '  

.[0] -[M]_T
{z} =

:
and X=s

By solving equation (2-31), the eigenvalues and the so-called 'A-normalised' 
eigenvectors (normalised to the system's generalised mass matrix [A]) of the system can 

be obtained.

In the case of hysteretic damping, the eigenvalue problem becomes:

( [ M ] U [ K ]  + i [D] ){x)  = {0) (2-32)

Compared with equation (2-31), the solution to equation (2-32) is standard and since 
[A]=[M] and [B]=([K] + i[D]) in this case, the eigenvectors for the hysteretic damping 

case are therefore mass-normalised (normalised to the mass matrix [M] of the system).

Because of the different normalisation procedures used when the different damping 

models are considered, the corresponding eigenvectors are apparently quite different, 

even for the case of proportionally damped systems although, in fact, they differ only by
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a complex scaling factor. These differences in amplitude as well as phase angles of the 

corresponding eigenvectors often cause confusion to analysts and it is therefore necessary 
to establish the relationship between the 'A-normalised' and the mass-normalised 
eigenvectors. In the case of proportional damping, the corresponding rth mode 
eigenvectors of hysteretically- (normalised to [M]) and viscously-damped (normalised to 
[A]) systems can be expressed, in theory, as {\p'}r = Xr{<Mr (where %r is a complex 
scaling factor). Substitute {y}r=%r{<Mr into the 'A-normalisation' condition for the rth 
mode together with {<(>}J[M]{<j)}r= l and {({)}J[C]{<j)}r=2cor£r,

(V)r T -[C] [M]- (V)r

,'o W K r2 M r . - [M] [0] - jo W K r 2 (V)r.
(2-33)

Xr can be calculated as:

X r

\ 2 oW k 7 ^ u

(2-34)

From equation (2-34), it can be seen that in the case of proportional damping, the r* 'A- 
normalised' modeshape for the case of viscous damping, {\|/}r, is the corresponding 
mass-normalised modeshape {(j)}r for the case of hysteretic damping scaled by a factor of

\2 c o r(V l "Cr2 " Cr) and a phase rotation of j .  For the case of nonproportional

damping, the relationship between these two damping models has been investigated in 

[35].

2.4.2 N U M ERICA L EXAM PLE OF CO M PLEX  M ODES

As discussed above, when the damping distribution of the structure is nonproportional, 

complex modes exist. However, the degree of complexity of a mode is mainly dependent 
on the closeness of the structure's natural frequencies. In order to illustrate these points, a 
numerical case study was carried out.

The system used in the numerical study is the 4DOF mass-spring system shown in 
Fig.2.11. The mass matrix [M], stiffness matrix [K] and hysteretic damping matrix [D] 

of the system are:
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K13

K24

Fig. 2.11 - A 4DOF Mass-spring System

" 0.800 0.000 0.000 0.000 -
0.000 1.005 0.000 0.000 
0.000 0.000 1.000 0.000 

-  0.000 0.000 0.000 0.800 -

(Kg),

[K]

3.00 -1.00 
-1.00 3.25 
-1.00 -1.25
0.00 - 1.00

- 1.00 0.00 
-1.25 -1.00 
3.25 -1.00 
-1.00 3.00

(xlO3 N/m)

r  0.10 0.00 0.00 0.001

[D] =
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

(xlO3 N/m).

The calculated eigenvalue matrix [X] and eigenvector matrix [tp] are:

” 1066.2(1.0+i0.03) 0.0000 0.0000 0.0000

0.0000 3750.1(1.0+i0.00) 0.0000 0.0000

0.0000 0.0000 4517.3(1.0+i0.01) 0.0000
0.0000 0.0000 0.0000 4650.2(1.0+i0.026)-
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[<p] =

0.495(-1.8°)

0.676(0.5°)

0.387(-0.3°)

0.495(1.0°)

0.006(175°)

0.640(0.0°)

0.640(180°)

0.474(0.0°)

0.029(-37°)

0.712(180°)

0.700(1.0°)

0.029(-46°)

0.144(224°) ‘  

0.742(2.0°) 

0.668(176°) 

0.143(216°) -

From the eigenvalue and eigenvector matrices, it can be seen that modes 1 and 2 are quite 

well separated and, as a result, their modeshapes are effectively real. While for modes 4 
and 3, since they are very close in natural frequency, their modeshapes become quite 
complex when the damping is nonproportional, as it is in this case. Physically, complex 
modes can be explained as a kind of travelling wave which transfers energy from one part 
of the structure to another during vibration.

2.4.3 CO M PLEX  M ODE FRO M  M EASUREM ENTS

It is believed that for practical structures, most of the damping comes from joints [36]. 
Therefore, practical structures possess very nonproportional damping distribution and 
genuine complex modes exist. To demonstrate this, modal testing of a simple 

Beam/Absorber structure as shown in Fig.2.12 was carried out. The structure was found 
to be slightly nonlinear, as will be discussed again later on in this Chapter. However, 
during the test, the vibration amplitude of the structure was controlled to be constant at 
different sinusoidal excitation frequencies and, as a result, the FRF measured is exactly 
the FRF of a linear structure. One of the measured point FRFs (response and excitation at 
the same point) was analysed and, as shown in Fig.2.13, a mode complexity of about 15° 
is clearly demonstrated.

-& 7T

Excitation force F=Asin cot *

Fig.2.12 - The Beam/Absorber S tructure*

*  ApperxdUx UL -fov nioire d-ztfrils
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Fig.2.13 - Measured Point FRF with Mode Complexity

2.5 A NEW  M ETHOD FOR NONLINEAR M ODAL ANALYSIS O F 
CO M PLEX  MODES

So far, some of the most commonly-used nonlinear modal analysis methods have been 
reviewed and their limitations when applied to practically-measured data have been 
examined. In what follows, a new analysis method which avoids the aforementioned 
limitations will be proposed. The harmonic balance theory, on which the present new 
method is based, will be introduced together with its application conditions. In order to 
extend the method to MDOF systems, the residual effect (of other modes) on the analysis 
accuracy will be examined and the practical applicability of the method will be assessed 
by analysing data measured on practical nonlinear structures. Finally, the possibility of 
identifying physical characteristics of nonlinearity from analysed response amplitude- 
dependent modal data based on the new method, when an MDOF system is considered, 
will be discussed.

3.5.1 H A RM O N IC  BALANCE TH EO R Y

In the analysis of nonlinear systems, the harmonic balance method is frequently used 

where sustained oscillations exist. The theoretical basis of the harmonic balance analysis 
lies in the equivalent linearisation theory proposed by Krylov and Bogoliubov [28] for 
solving certain problems of nonlinear mechanics. To explain the concept of the harmonic 

balance method, an SDOF system with nonlinear restoring force F(x, x) driven by a 
sinusoidal excitation is considered:

mx+ F(x, x) = F0 sincot (2-35)
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To solve the above problem by the harmonic balance approach, it is necessary to make a 

basic assumption that the variable x=x(t), appearing in the nonlinear function F(x,x), is 
sufficiently close to a sinusoidal oscillation; that is,

x = Asin(cot -Kj>) (2-36)

where the amplitude A, frequency CD and phase lag <J) are constant. Therefore, the 

harmonic balance analysis belongs to those approximate methods of solving nonlinear 
differential equations which are based upon an assumed solution. As such, it requires that 
conditions for the assumed solution exist. Such an assumption is quite realistic since a 
nonlinear system may well exhibit periodic oscillations arbitrarily close to a pure 

sinusoid. If the variable x in the nonlinear function F(x,x) has the sinusoidal form of (2- 

36), then the variable y=F(x,x) is generally complex, but is also a periodic function of 
time. As such, it can be developed in a Fourier series:

y = N0(co,A) + N 1(co,A) Asin(cot +(J)) + i N2(co,A) Asin(cot +(j)) + harmonics (2-37)

When only the fundamental component is considered, the first three terms are

1 C2n
N° = 2 k  J F(Asin\|/,coAcos\|/) d\\f

1 f 2nN 1 J F(Asin\j/,coAcos\|/) sinxj/dt}/

1 f 2nN2 = ^  J F(Asin\j/,coAcos\}/) cos\j/d\j/

(2-38)

(2-39)

(2-40)

where \j/ = cot + (j). Coefficients N0, N l5 N2 are often referred as describing function 

coefficients.

If we consider the case where the nonlinear function F(x,x) is symmetrical about the 

origin (although the analysis is equally applicable for the case of nonsymmetrical 
nonlinearities), the constant term N0 in the Fourier series (2-37) is N0 = 0. The quantities 
defined in (2-39) and (2-40) are the coefficients of the describing function N=N1+iN2. 

To discuss the physical meaning of the describing function N defined above, suppose 

F(x,x)=F(x) describes a backlash stiffness nonlinearity, as shown in Fig.2.14. Then, if
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the input x (the response of the system) is a sinusoid, x=&sincot, the output y=F(x) will 

not be a pure sinusoid (assuming that & is big enough to exceed the system's linear 
regime). Expressing the output signal y in a Fourier series, the fundamental component 
yx will be

. k 2- k i /2

M

k 2-k i/2 K

-M----X0

to

- W \M
k i/2  15

Fig.2.14 - Backlash Stiffness Nonlinearity

yi = sincot (2-41)

where ^  is the amplitude of the fundamental component which, according to the Fourier 

series theory, can be calculated as:

1 C2n
= — F(&sin\|/) simj/dy (2-42)

n J o

According to equation (2-39), Nj has the form 

1 C2n
N 1 = ^  J F(&sin\}/) sinydy (2-43)

Therefore, the describing function N=Nj is defined as the ratio between the amplitude & 

of the input signal x and the amplitude of the fundamental component yj contained in 

the output; that is

Ni = \ (2-44)

Compared with the definition of static stiffness, it can be seen that Nj can be interpreted 

as the equivalent 'dynamic stiffness' of the nonlinear stiffness element corresponding to 

vibration amplitude If the integral on the right hand side of equation (2-43) is
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calculated with the explicit F(x) as shown in figure 2.14, we obtain the describing 
function coefficient N 1=N1(&) for the backlash stiffness case as:

Nj= kj - -  (kj - k2)[arcsin(-£in(̂ )+f  v 1 - *_o: 
k2

] ; ^ > X q (2-45)

When the vibration amplitude k  is given, the describing function coefficient N x(^) can be 

determined. In the case of nonlinear SDOF systems, since the mass property is usually 
linear, the vibration-amplitude dependent natural frequency co^ft) can be calculated from

the describing function coefficient Nj(^) as cor -, as shown in Fig.2.15 for

the above-mentioned system with backlash stiffness nonlinearity (k^SOOON/m, 
k 2=10000N /m , m = lk g  and xo=0.001m ). In fact, the describing function 
N(^)=N1(^)+iN2(^) and the identified natural frequency con(k) and damping coefficient 

T|(&) satisfy:

N jtf )  = con2(£) m (2-46)

N 2(£) = C0n2($)Tl(£) m (2-47)

where m is the mass of the system which can be calculated from the identified modal 

constant A as m=l/A.

To see how this harmonic balance theory can be applied to the measurement and analysis 
of nonlinear structures, the system shown in Fig.2.16 will be considered. When the 
system is excited by a sinusoidal force f(t)=Fsincot, then after the transient dies away, the 

response of the system at any coordinate will be very close in its waveform to a sinusoid, 

as will be shown to be especially true when the excitation frequency is close to one of the 

resonance frequencies of the system. Therefore, corresponding to this specified excitation



[~2~| Identification o f N onlinearity Using F irst-order FR Fs 4 6

condition, the equivalent stiffness which the nonlinear stiffness element exhibits can be 
calculated based on the harmonic balance theory. If, for example, the force amplitude F is 
kept constant as the excitation frequency varies, then corresponding to different 
frequencies, the vibration amplitude, and therefore the equivalent stiffness value of the 

nonlinear stiffness element, is different. The information on these different stiffness 
values is recorded in the measured first-order FRF data and by analysing these measured 

FRF data, the nonlinearity can be identified.

It should be noted that such a result is achieved only under the condition that it is not 
necessary to include the harmonics and combinational resonances in the response signal. 
For this condition to be valid, certain criteria should be satisfied by the linear part of a 
nonlinear system as well as the nature o f the nonlinearity. These conditions are 
summarised here without mathematical proof, which can be found in [27]:

(i) the system to be analysed should have a narrow-band filter property so that the sub- 

and super-harmonic components will be heavily attenuated;
(ii) kco (k is an integer and co is the excitation frequency) should not coincide with any of 

the natural frequencies of the system; and

(iii) the nonlinear function F(x,x) should have finite partial derivatives with respect to x 

and x.

Condition (i) can usually be satisfied because in the analysis of structural nonlinear 

systems, only the data points around the resonances are of interest and, therefore, the 

system acts as a very good narrow-band filter. As for condition (iii), most practically 
encountered nonlinearities, even for nonlinearities having relay (discontinuous) 

characteristics, have finite partial derivatives. However, condition (ii) is sometimes 
difficult to achieve because it depends on how the natural frequencies of the system are 
situated along the frequency axis and is thus the major source of analysis errors.
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2.5.2 D ESC R IPTIO N  OF A NEW  M ETH O D

Most practical nonlinearities (in both stiffness and damping elements) are response 
amplitude dependent and so if, in measurement, the response amplitudes at different 

frequencies are varied, then the effect of nonlinearities on the measured FRF data will be 

recorded. The main target of nonlinear modal analysis is to identify the nature of any 
nonlinearity by analysing thus-measured FRF data. As discussed, many different 
methods have been developed for detecting the existence of structural nonlinearities. 
Taking stiffness nonlinearity as an example, the nonlinearity can be exposed by observing 
the FRF data measured using different force or response control techniques, or by 
analysing the FRF data and examining the isometric damping plot, or by comparing the 
measured FRF data with their Hilbert transform pair [4], etc. With the more demanding 

objective of quantifying structural nonlinearity, the Inverse Receptance method was 
developed. However, the method was devised based on the assumption that the mode to 
be analysed should be real and the modal constant should be real and constant. As 
demonstrated, these assumptions are not usually valid when practical measured data are 
concerned. In order to remove these restrictions so that nonlinearities o f practical 
structures can be analysed accurately, a new nonlinear modal analysis is introduced 
below.

According to harmonic balance theory, in the case of sinusoidal excitation, when a 
nonlinear structure vibrates at specific amplitude, there will be specific equivalent 
(linearised) stiffness and damping model as far as the first-order FRF is concerned. 
Therefore, measured FRF data generally contain information on a series of linear models. 

What the new method seeks to do is to calculate the modal parameters of these linear 

models together their corresponding response amplitudes so that the relationship between 

modal parameters and response amplitude can be established. Owing to the nature of 
resonance, it is always possible to find two frequency points in the measured FRF data - 
one on either side of the resonance - which have the same (or very similar) response 
amplitude. These two data points constitute a specific linear model corresponding to that 
specific response amplitude in the sense that all the modal parameters necessary to 
determine that linear(ised) model can be calculated just using these two receptance data 

points. The thus determined modal parameters are associated with that specific response 

level. Therefore, if there are many point pairs of different response amplitudes available 

around that resonance, a relationship between modal parameters of the mode and 

response amplitudes can be established.
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Suppose aCcOj) and a(co2) are known to correspond to a certain specific response level, 

one on either side of the resonance, then the following two mathematical equations can be 
established (assume the residual effect is negligible or has been removed at the moment 
and its influence on analysis accuracy will be discussed later)

a (o> i) =
A r +  i B r

(2 -4 8 )
cor2 - (O j2 +  irjrcor2

a (co 2) =
A r +  i B r

(2 -4 9 )
cor2 - co22 +  i r |rcor2

Because equations (2-48) and (2-49) are complex algebraic equations, the four modal 
parameters cor, rjr, Ar and Br can be determined. These parameters represent the linear 

model which corresponds to the chosen response amplitude. By examining different point 
pairs similar to a(co1) and a(co2), the characteristics cor(&), r |r(&), Ar(&) and Br(&) of the 

original nonlinear structure against vibration amplitude & can be revealed.

2 .5 .3  A PPLIC A TIO N  OF TH E NEW  M ETHOD TO TH E ANALYSIS OF 
N O N LIN EA R SYSTEM S SIM U LA TED  
USING ANALOGUE C IR C U IT S

The above method has been applied to several systems with various types of nonlinear 
stiffness or damping in order to assess fully the feasibility of the method. As an 
alternative means of solving nonlinear differential equations numerically, analogue 
circuits have been constructed to simulate nonlinear SDOF systems. Analogue computer 

FRF data with cubic stiffness and frictional damping as well as FRF data measured from 
the ETH/CIRP box (an electrical analogue computer device built to simulate nonlinearity) 

are employed and analysed.

For the case of a cubic stiffness nonlinearity, receptance FRF data with constant force 
input together with the calculated isometric damping plot are shown in Fig.2.17. From 
figure 2.17, the jump phenomenon which is typical of stiffness nonlinearity is clearly 
demonstrated and the isometric damping plot shows a well-defined surface distortion 
pattern. It can be seen that the nonlinearity is clearly indicated both from the receptance 
data plot and the damping plot. In practice, however, what is required is the quantification 

of the nonlinearity and not just its detection. By using this new method, the system's 

properties in terms of modal parameters versus response amplitude have been obtained as 

shown in Fig.2.18, from which it can be concluded that the damping is linear since the
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damping coefficient does not change with response amplitude, while the stiffness is 
nonlinear and the degree of nonlinearity is quantified in the natural frequency versus 
response amplitude plot.

Fig.2.17 - FRF and Damping Plot of Analogue Computer Data
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Damping Coefficients Natural Frequencies

1.99E-04 S.50E-04
Resp. Amplitude Resp. Amplitude

Modulus of Modal Const Phase Angle of Modal Const

1.99E-04 6.50E-04 1.99E-04 6.50E-04
Resp. Amplitude Resp. Amplitude

Fig.2.18 - Modal Parameters versus Vibration Amplitude

When the method is applied to the study of damping nonlinearity, the results are as 

encouraging as those for stiffness nonlinearity. As shown in Fig.2.19, the existence of- 

dry friction damping can be suspected from the characteristic oval-shaped Nyquist plot 
and the distorted damping plot. As in the stiffness nonlinearity case, frequency response 
data measured from an analogue computer circuit with simulated frictional damping are 
analysed using this new method and the results shown in Fig.2.20. The damping 
coefficient decreases as response amplitude increases, which indicates damping of dry 
friction nature.



[2 ] Identification o f N onlinearity U sing F irst-order FR Fs 5 1

QC

Fig.2.19 - Nyquist and Damping Plot of FRF Data with Frictional Damping
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Fig.20 - Modal Parameters versus Vibration Amplitude (Simulated Friction Damping)

The ETH/CIRP box contains three circuits of unknown nonlinear SDOF systems and its 

purpose is to see whether these unknown nonlinear systems can be identified. The FRF 

data measured from one o f the systems and the calculated damping plot are shown in
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Fig.2.21. From these results, the existence of a stiffness nonlinearity is expected. By 

analysing the FRF data using the new method, the curves o f natural frequency and 
damping coefficient vs response amplitude can be established as shown in Fig.2.22. As 

compared with the numerical calculation results of figure 2.15, it can be concluded that 
the system possesses backlash stiffness nonlinearity.

Damping Coefficients Natural Frequencies

8.39E-01 2.t
Resp. fimp11tude

Fig.2.22 - Identified Natural Frequency and Damping Loss Factor (CIRP box)

As mentioned before, the new method is intended for cases in which measured mode is 

complex. The existence of mode complexity will not influence the analysis accuracy. To 

demonstrate this, 45° of mode complexity is added artificially to the FRF data shown in 

figure 2.17 and the data are analysed using the new method. The analysis results shown 
in Fig.2.23 are the same as those of figure 2.18 except that the complexity of the mode is 
45° instead of 0°.
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Fig.2.23 - Analysis Results of Data with Complexity

It also needs to be mentioned that although the phase angle of a mode is a measure of a 
linear system’s complexity, linear modal analysis of the data from a nonlinear system can 

produce an erroneous phase angle which could be misinterpreted as complex mode. This 

is illustrated in Fig.2.24 where the estimated phase angle using the classical circle-fit is 
29° while the true phase angle is 0°.
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Fig.2.24 - Misestimation of Phase Angle Using Linear Modal Analysis Method

2 .5 .4  EXTENSION OF TH E M ETHOD TO  NONLINEAR 

M DO F SYSTEM S

In order to assess the applicability of the above method to MDOF systems, constant force 
FRFs of 2DOF systems with cubic stiffness nonlinearity have been analytically generated 
with (a) only one mode (the second mode is made linear by controlling the input force to 
be very low) and (b) both modes are nonlinear respectively. In this case, in order to 
analyse the mode accurately, the residual must be subtracted. The removal of the residual 
can be accomplished by the method called SIM [37] which analyses the neighbouring 
modes first and then subtracts the influence of these analysed modes from the one to be 
analysed. For the case of only one nonlinear mode, the residual can be removed almost 

completely as shown in Fig.2.25 in which the Nyquist circle passes through the origin 
(the Nyquist circle looks the same as those of SDOF systems). After the residual has been 

removed, the mode can be analysed accurately and the analysis results are shown in 

Fig.2.26. For the case of both modes being nonlinear, however, it becomes very difficult 
to remove the residual completely as shown in Fig.2.27 for the case of the first mode (the 
circle does not pass through the origin, the data points are not exactly on the circle and are 
not symmetrical with the imaginary axis) and therefore, the analysis results obtained 
could be in error. The main difficulty of removing the residual in this case lies in the 

wrong estimation of the phase angle of the neighbouring mode obtained by the linear 
modal analysis. This difficulty can be overcome in practical analysis by linearising the 

neighbouring modes in the measurement (by controlling the response amplitude) so that 

their modal parameters can be accurately estimated based on linear modal analysis 

method(s) and the residual can therefore be correctly subtracted.
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Fig.2.25 - FRF of 2DOF Nonlinear System
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Fig.2.26 - Analysis Results of 2DOF Nonlinear System
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Fig. 2.27 - FRF of 2DOF System with both Modes Nonlinear

Although some measurement and analysis techniques can be employed to remove the 

residual effect, as mentioned above, when a structure is nonlinear, it is not possible for 

the data to be analysed to become completely residual free because in this case the residual 
is a function of response amplitude. Therefore, it is very important for a nonlinear modal 
analysis method based on the SDOF assumption to obtain satisfactory results even when 
a small amount of residual exists and it is necessary to undertake a residual analysis. For 
convenience, an assumption is made that the residual for the mode to be analysed is a 
complex constant (in fact, this is quite accurate for the case of separated modes). The 
mathematical expressions of the modal parameters obtained based on the proposed 
method are as follows:

(R , - R ,)  (R,o>,2 - R 1CO12) + (It  - 1]) (I2<022 - 1 ,to ,2) 

1 (R2 - R , ) 2 + ( I 2 - I 1)2
(2-50)

(la - II) (R2CO22 - Rl<0l2) + (R2 - Ri) (l2<022 - I1CO12) 
C0i2[(R2 - R 1) 2 + ( I 2 - I 1)2]

(2-51)

_ (to2Z- (0 ^)[(R2 - R,)(R2R, -1,1,) + (I2 - I,)(R,l2 + R2I1)]
(R2 - R , ) 2 + ( l 2 - I i ) 2

(2-52)

(CO22 - co12)[(R2 - R i)(I2R ]  - R2I1) + (I2 - I 1 X R 2 R 1  - I2I1)] ( R 2 - R 1)2 + ( I 2 - I i ) 2
(2-53)

W here tor, T|r, A, and Br are the natural frequency, damping coefficient, real and 

imaginary parts of the modal constant respectively while CO], co2, R j, R2, Ij and I2 are the
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frequencies, real parts of the receptances and imaginary parts of the receptances of the 

two points at either side of the resonance chosen.

Because of the similarity of these equations, equation (2-50) can be regarded as their 
representative for the residual analysis. For convenience, suppose that the receptances of 
the two points chosen satisfy: R 1=-R2=R>0,11=I2=I<0 (this is the case for a real mode 
with constant force input) and the complex constant for the residual is AR+iAI. Then the 
percentage error for the estimation of cor2 based on equation (2-50) is:

Ao)r2 = (to ,2 - co12)[AR(R2 - R ,) + A I(I2 - I ,) ]
COr2 (R2 - R1)(R20)22 - R ^ j 2) + (I2 - I1)(I2C022 - I!CO,2)

If we denote
(C022 +  CO]2 ) 

(C022 - COj2)
= p2, then

Acor2
cor2

becomes:

Acor2 AR 
cor2 ~ RP2

(2-54)

(2-55)

From equation (2-55), it can be seen that the percentage error for the estimation of cor2 is 
proportional to the real residual ratio AR/R and the imaginary part of the residual has no 

effect on the estimate. Although this is true only for the case of natural frequency 
estimate, the percentage errors for estimation of the other parameters T|r, Ar and Br are 
more or less at the same level of IAR/RI + IAI/II. Also, from equation (2-55), it can be 
seen that the accuracy of the estimation of cy2 can be improved if the frequency difference 
between the two selected points (Aco=co2-co1) is small so that P becomes large. Therefore, 

when the mode to be analysed is influenced by other modes, some measures can be taken 

at both measurement and analysis stages in order to obtain satisfactory results. At the 
measurement stage, (i) it is possible to linearise the neighbouring modes so that they can 

be analysed accurately using linear modal analysis method(s) and (ii) the response levels 
can be controlled so that it is possible to obtain enough points just around the resonance 
and so the values of R, I and p can be increased (in fact, it is possible to quantify 

structural nonlinearity by analysing FRF data measured at different response amplitudes 

at only two frequency points around resonance). At the analysis stage, on the other hand, 
the SIM method can be used to subtract the residual until it is at its minimum level.

To see how residual effects influence the analysis results, analogue computer FRF data 

representing dry friction damping nonlinearity and with a 1% artificially-added residual 

(here 1% residual m eans that the com plex constant o f the residual is
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(AR+iAI)=(Ar+iBr)(cos45°+isin45°)/100rircor2 where (Aj+iBj) is the modal constant of 

the mode to be analysed) were analysed using this proposed nonlinear modal analysis 
method and the results are shown in Fig.2.28. As compared with figure 2.20, the 

analysis results obtained are very similar indeed.

Damping Coefficients Natural Frequencies

in

> 0 3  6 . 7 6 E - 0 3

Resp. Rmplltude

Modulus of Modal Const Phase Rngle of Modal Const

Resp. Rmp11tude

Fig.2.28 - Analysis Results of Frictional Damping with 1% Residual

2 .5 .5  A PPLICA TIO N  O F THE M ETH O D  TO PRA CTICA L 

N O N LIN EA R  STRU C TU R ES

The proposed new method has so far been successfully applied to the analysis of FRF 
data measured from nonlinear analogue circuits and analytically-generated FRF data for 

nonlinear MDOF systems. The assessment of residual effects on analysis accuracy has 

also been carried out. The method is now applied to the analysis of practical nonlinear
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structures. First-order FRF data measured from three different practical structures 
(Beam/Absorber, Frame and NASTRAN Tower structures) are to be analysed.

The Beam/Absorber structure as shown in Fig.2.12 was designed for the experimental 
investigation of dynamic absorber systems. Some typical measured FRF data with 
constant force input are illustrated in Fig.2.29. In addition to the shift o f resonance 
frequency which indicates the existence o f a stiffness nonlinearity, the mode to be 
analysed is markedly complex (about 15° phase rotation of the Nyquist circle). One of the 
FRF curves shown in figure 2.29 was analysed using the proposed method and the 
results are shown in Fig.2.30. From the natural frequency vs response amplitude curve, 
it can be deduced that the structure probably possesses softening backlash stiffness 
nonlinearity which is physically due to the fact that, when the response amplitude 
increases, the supports at both ends of the beam (see fig.2.12) go from micro-slip 
(stiffness Kj) to slip (stiffness K2> K!>K2) which reduces the system's stiffness and so 

the natural frequencies.
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Fig.2.29 - FRFs of Beam/Absorber Structure
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Damping Coef4 1c1ents Natural Frequencies

Fig.2.30 - Analysis Results of Beam/Absorber FRF Data

The Frame structure, as shown in figure 2.31, is an artificially-nonlinear structure which 
was designed for the purpose of the nonlinearity location study in Chapter 5. Typical 
measured FRF data with constant force input are shown in Fig.2.32, and from these, it 
can be determined that the structure exhibits both stiffness and damping types of 
nonlinearity. One of the FRF plots was analysed and the results are shown in Fig.2.33.

Fig.2.31 - Artificially-Nonlinear Frame Structure
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Fig.2.32 - Frequency Response Functions of Frame Structures
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Fig.2.33 - Analysis of measured Frame FRF data

A practical structure known as the "NASTRAN Tower" was also investigated. The 

structure was known to possess certain type(s) of stiffness nonlinearity [38] although the 
exact nature of the nonlinearity is still unknown. In the measurement, neither force nor 
response control was used. The measured data and the analysis results are shown in 

Fig.2.34 from which, it can be seen that the structure possesses a softening stiffness 

nonlinearity, probably a softening type of backlash stiffness since the structure remains 
linear within certain response range and then loses stiffness as response level increases.



\l\ Identification o f N onlinearity U sing F irst-order FRFs 6 2

Natural Frequencies

Resp. Rmp11tude

________ Fig. 2.34 - Analysis of Nonlinearity of NASTRAN Tower Structure_________

Although one can deduce the type of nonlinearity in some cases by examining the cor(&) 
vs (&) and Tjr(&) vs ($) relationships, as will be discussed next, the exact identification of 

the type of nonlinearity, will be difficult when most practical structures are considered.

2 .5 .6  ID E N T IFIC A T IO N  O F N O N LIN EAR PH Y SICA L 
C H A R A C T E R IST IC S

Structural nonlinearities can now be analysed using the proposed method and 
relationships between modal parameters and response amplitudes can be established. The 
quantification of nonlinearity in modal space has thus been accomplished. When 
nonlinear SDOF systems are considered, according to harmonic balance theory, the 
describing function coefficients (linearised equivalent stiffness or damping) can be. 

directly calculated from the identified modal data. For example, a nonlinear SDOF 
system's linearised equivalent stiffness (describing function coefficient) N j(^) can be 
calculated from the identified con(&) as N 1(^)=con2(^)m (m is the mass of the system 

which can be calculated from the identified modal constant). Although there exists another 
step from Nj(&) to the system's true stiffness K(x) (the physical characteristics of the 

nonlinearity), by comparing with known types of nonlinearity, K(x) can be conclusively 
identified in most cases from the calculated N^ft).

For nonlinear MDOF systems, however, the identification of Nj(^) and thus of K(x) is 

not so straightforward. Considering an MDOF system with localised stiffness 

nonlinearity as shown in Fig.2.16, and supposing the r*  mode (which is sensitive to the 

thus introduced localised nonlinearity) is analysed and the relationship between the natural
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frequency and response amplitude at certain reference coordinate is established, the 
describing function coefficient N ^ )  of the nonlinear stiffness element cannot be 

calculated from these analysis results alone. Therefore, an identification of K(x) which is 
based on Nj(^) will not be possible. If, on the other hand, the analysed modal data are 
interpreted as being from an SDOF system when identifying N ^ ) ,  then misleading 

results can be obtained because in this case the changes of measured modal parameters 
depend not only on the stiffness (or damping) changes due to nonlinearity, but also on the 
modification sensitivity where the nonlinear elements are located. Take the identified 
natural frequency as an example. The natural frequency change of a certain mode can be 
mathematically described by

Aco($) = 9cd(7  AN,(£) = S($)AN,($) (2-56)

Since S(&) is unknown in the identification process and is a function of response 
amplitude (&), except in the case of SDOF systems in which, S(&) is known to be the 
identified modal constant 1/m, ANj(^) cannot be calculated from the identified Aco(&) 

and, as a result, the identification of K(x) is out of the question.

In fact, as will be discussed later on, in order to identify the describing function 

coefficients and thus the physical characteristics of nonlinear element(s) of a practical 
nonlinear structure, the nonlinearities have to be located first and then the linearised 
equivalent stiffness matrix [K(&)] can be established by correlating the analytical model 
and measured dynamic testing data.

2.6 C O N C L U SIO N S

Once a structure is nonlinear, modal parameters obtained from the analysis of measured 

FRF data will, in general, be erroneous. In this case, a nonlinear modal analysis is 

required so that the structural nonlinearity can be taken into account. There are three main 
problems to be solved for a successful modal analysis of a nonlinear structure and they 
are: (i) detecting the existence; (ii) quantifying the extent and (iii) identifying the physical 
characteristics of the nonlinearity.

Commonly-used methods for the modal analysis of nonlinearity have been reviewed in 

this chapter. Bode plot and reciprocal receptance plot techniques detect nonlinearity by 

presenting measured FRF data in specific formats and then examining the systematic 

distortion(s) caused by the existence of structural nonlinearity. The isometric damping
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plot method achieves its nonlinearity detection by calculating the damping matrix based on 
linear modal analysis theory and then examining the distortion of the damping plot due to 
the variation in response amplitude and so in the effective natural frequency differences of 
data points around Nyquist circle. These methods are convenient for the nonlinearity 
detection stage but not so applicable for nonlinearity quantification and identification. 
With a more ambitious objective of nonlinearity quantification, the Inverse Receptance 
method as discussed was developed by analysing stiffness and damping nonlinearity 
separately based on the real and imaginary parts of the inverse receptance data. However, 
as demonstrated in some detail in this Chapter, some assumptions have been made during 
the development of the method which are, in general, not valid for data measured on 
practical structures with nonlinearity and so the method is limited in terms of its practical 
applications.

The theoretical aspects of the existence of complex modes have been discussed. The 
necessary and sufficient condition for the existence of complex modes is that the damping 
distribution of the system is nonproportional. The effect of natural frequency spacing on 
the degree of complexity has been illustrated. Numerical as well as experimental examples 
are given.

The harmonic balance theory, which is the mathematical basis of the new nonlinear modal 
analysis method proposed in this Chapter, is presented together with its practical 
application conditions. The relationship between the analytical analysis of a nonlinear 
system based on harmonic balance theory and the experimental measurement of FRF data 
of a practical nonlinear structure has been discussed. Based on harmonic balance theory, 

a dynamic system having stiffness nonlinearity will take a different equivalent linearised 
stiffness values (describing function coefficient N ^ ) )  for different response amplitudes,

so that each FRF data point from a measurement with constant force actually relates to a 
specific FRF data curve measured with constant response, thereby containing all the 
information of the latter curves. Due to this specific characteristic of FRF data from 
constant force measurement, thus measured data can be analysed to quantify and identify 
the nonlinearity of the test structure if the force level is appropriately chosen.

With a theoretical basis of the harmonic balance analysis, a new method has been 

proposed to analyse nonlinearity from measured first-order FRF data. In addition to 
deriving an indication of the nonlinearity, the method aims at establishing the 

relationships between the modal parameters of interest and response amplitude from the 

FRF data measured using sinusoidal excitation. The final results of the analysis are the 
response-amplitude-dependent eigenvalues X(k) and eigenvectors {<{)(&)} of nonlinear
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systems. These identified modal data can be used subsequently to derive a linearised 

spatial model ([M], [K($) and C(&) or D(&) matrices) of the structure. Also, it is 
necessary to mention that the condition of constant force is not necessary when measuring 
the FRF data for the subsequent modal analysis using this new method. In fact, 
satisfactory analysis can be carried out as long as the response amplitude varies 
sufficiently to expose the nonlinearity and embraces the range of displacements which 

must be described by the model.

The method has been extended to the analysis of nonlinear MDOF systems and the effect 
of residual on the analysis accuracy has been discussed. By linearising neighbouring 
modes at the measurement stage and applying the SIM method at the analysis stage, the 
residual of the mode to be analysed can be removed to its minimum level and so accurate 
analysis results can be obtained.

Although the quantification of nonlinearity in modal space has been achieved using the 
proposed method, identification of the describing function coefficient N(&) and so of the 
physical characteristics K(x) and/or C(x) from the identified modal parameters .̂(&) and 
{<{)(&)}, which will be discussed in later chapters, is by no means straightforward when 

MDOF systems are considered. Moreover, it has to be pointed out that, during sinusoidal 
excitation measurement, since the DC component of the response signal of a 
nonsymmetric nonlinear system has been filtered out, the nonsymmetric nonlinearity has 
been made symmetrical and the FRF data measured are the data from an equivalent 
symmetric nonlinear system. Due to this symmetrisation, for some nonsymmetric 

nonlinear systems, such as bilinear systems, the existing nonlinearity cannot be revealed 
from measured first-order FRF data which are effectively linear. Furthermore, except for 
the fundamental frequency component, the response of a nonlinear system usually 

contains super-, sub- and combinations of harmonics. However, in the first-order FRF 
analysis, all these harmonics, which are in some cases as important as the fundamental 
component in vibration analysis, are filtered out. Therefore, first-order FRF analysis is 

limited in the sense that it reveals the nature of the nonlinearity and in order to identify 
nonsymmetric nonlinear systems and take into account these super-, sub- and 

combinations of harmonics, higher-order FRF analysis becomes necessary and is to be 
introduced in next chapter.



CHAPTER |3

IDENTIFICATION OF 

NONLINEARITY USING HIGHER- 

ORDER FREQUENCY RESPONSE FUNCTIONS

3.1 IN T R O D U C T IO N

The identification of dynamic characteristics of linear structures from measured data is 

now well established. In order to characterise a linear system, what is required is the 
measurement of its impulse response functions (time-domain) or frequency response 
functions (frequency-domain). Unfortunately, as mentioned earlier, most practical 
engineering structures are nonlinear and the analysis of a nonlinear system is far more 
complicated than that of a linear system. As discussed in some detail in Chapter 2, a new 
analysis technique has been developed to identify nonlinear behaviour based on the 
analysis of measured classical first-order frequency response functions and has been 

found to be quite successful in cases where the effect of structural nonlinearities shows 

up in the measured data [39]. However, due to the symmetrisation effect and the 

approximate nature of the first-order FRF measurement, for some nonsymmetric 

nonlinear systems, the thus measured FRF data are the data from their equivalent
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symmetric counterparts and the harmonic components which are usually present in the 

response signal o f nonlinear systems are filtered out. This symmetrisation of 
nonsymmetrical nonlinearities and the elimination of harmonic components mean that the 
first-order frequency response function analysis is not very appropriate for the analysis of 
structures with nonsymmetrical nonlinearities. In fact, it will be shown that for some 
specific nonlinear systems, such as quadratic and bilinear systems, the analysis technique 
is incapable of analysing them at all. From the response prediction point of view, 
calculations made using the first-order frequency response functions only can be quite 
inaccurate in some cases as described in the application conditions of harmonic balance 
analysis in Chapter 2 because, mathematically, this means that only the linear term of the 
Taylor expression of a nonlinear function at certain point has been retained. These 
limitations of first-order frequency response analysis are illustrated next.

As mentioned, systems with nonsymmetrical nonlinearities such as quadratic and bilinear 
systems cannot be identified based on the first-order frequency response function analysis 
because these nonlinearities are such that the measured first-order frequency response 
functions based on sinusoidal excitation are effectively linear. Suppose the nonlinearities 
are of a stiffness type and their force-displacement relationships are shown in Fig.3.1, 
then the equivalent stiffness value corresponding to specific response amplitude can be 
calculated based on harmonic balance theory as discussed in Chapter 2. Assume the 
vibration to be sinusoidal as x(t)=&sincot, then the describing function coefficients 
(equivalent stiffnesses) Nq($) for the case of quadratic stiffness and N ^ )  for the case of 

bilinear stiffness can be calculated as:

1 f^nNq(&) = ^  J (k&sincot + k ^ s in ^ t)  sincot dcot = k (3-1)

j&sincot sincot dcot + ^
2̂71

k2&sincot sincot dcot 
n

k l+k2
2 (3-2)
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Fig. 3.1 - Force Displacement Relationships of Quadratic and Bilinear Stiffness

Since both Nq(&) and Nb(&), which are the equivalent stiffnesses, are constant 

(independent of the response amplitude), the measured first-order frequency response 
functions of these systems are linear with equivalent linear constant stiffnesses of k for 
the quadratic stiffness case and (kj+k2)/2 for the bilinear stiffness case.

On the other hand, the existence of nonlinear phenomena such as, sub-, super- and 
combinational resonances in nature is well known. Nayfeh [24] mentioned that Lefschetz 
described a commercial airplane in which propellors induced a subharmonic vibration in 
the wing which in turn induced subharmonic vibration in the rudder. The oscillations 

were violent enough to cause tragic consequences. Also, reports have been found in the 
literature that excessive vibrations were caused by superharmonic excitation and 
combinational resonances. In those cases, the analysis of the harmonic components 
becomes as important as that of the fundamental frequency component and the response 
predicted using first-order FRF data in such circumstances could be very inaccurate. To 
illustrate this point, superharmonic excitation is considered for the case of an SDOF 

system with cubic stiffness nonlinearity. When the external excitation frequency is far 
from one third of the natural frequency of the system (linear natural frequency, as if the 
cubic term were not introduced), the response prediction based on the first-order FRF is 
very accurate. When the excitation frequency is close to one third of the natural 
frequency, then the structural resonance will be excited by the third harmonic component 
generated by the cubic nonlinearity and as a result, the response prediction based on the 

first-order FRF in this case becomes very inaccurate. Comparisons of the true responses 

and the responses predicted using first-order frequency response function data when the 

excitation frequencies are of 4/3 and 1/3 the natural frequency are shown in Fig.3.2.



[U  Identification o f  Nonlinearity Using H igher-order FR Fs 69

All this means that the first-order frequency response function analysis is inadequate and 
even sometimes inappropriate for some nonlinear systems and more accurate 
representation of their dynamic characteristics becomes necessary. For this purpose, 
research work on the higher-order frequency response function analysis has been carried 
out and is described in this Chapter.

The mathematical basis of higher-order frequency response function analysis lies in the 
Volterra series theory which, as the functional series representation of nonlinear systems 
and with its rigorous mathematical base, has been found to be quite effective in the 
characterisation of general nonlinear systems. The theory was first introduced into 
nonlinear circuit analysis in 1942 by Wiener who later extended the theory [7] and applied 
it in a general way to a number of problems. Since Wiener's early work, many papers 
have been published dealing with this subject in system and communication engineering 
[40-42]. However, it was not until recently that the theory has been applied to the 
identification of nonlinear mechanical structures [8,43,44] and found to be quite useful. 

There is some literature available now on the identification of nonlinear mechanical 

structures based on the Volterra series theory, such as references [8,43,44,45]. 
However, most of the studies to date are still at the stage of numerical simulation of 
certain nonlinear systems and the difficulties in applying this theory to the identification of 

practical nonlinear mechanical structures have not been fully investigated although some 
experimental work based on specifically designed nonlinear structure has been carried out 
[44]. The research work presented in this Chapter introduces the basic theory of Volterra 
series and of their relation to the higher-order frequency response functions and how the 
higher-order frequency response functions generalise linear system theory to cover 

nonlinear systems. The harmonic probing method for the Volterra kernel measurement 

using multi-tone input [46] and correlation technique for the Wiener kernel measurement 

using random input [47] are investigated and the relationship between the Volterra and
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Wiener kernels is studied. Possible ways of curve-fitting or surface-fitting the measured 

higher-order frequency response functions so that parametric or nonparametric model of 
the nonlinear structure can be established are discussed. Considerable attention is given to 
the practical assessment of the measurement of higher-order frequency response functions 
of realistic nonlinear mechanical systems, both in the case of sinusoidal and random 
inputs, by numerically simulating the measurement processes. The existing difficulties 
concerning the successful measurement of higher-order frequency response functions are 
discussed and possible ways of improving measurement results are suggested. The 
applications of higher-order frequency response function analysis in the identification of 

nonlinear mechanical systems are also discussed.

3 .2  V O LTERRA  SERIES R EPR ESEN TA TIO N  OF 
N O N LIN EA R SYSTEM S

A nonlinear function /(x ) can in general be represented as a Taylor series at a certain point 
(e.g. x=x0) and this series approaches /(x ) when the variable x is not far from that point. 

Similarly, a nonlinear system can in general be characterised by a Volterra series which 
converges when the nonlinearity of the system satisfies certain general conditions [6]. 
Before presenting the theory of Volterra series, it is necessary to examine some of the 

basic characteristics of nonlinear systems.

3.2.1 BASIC C H A R A C TER ISTIC S O F NO N LIN EAR SYSTEM S

Since a linear system must satisfy the principle of superposition (as discussed in Chapter
2), a sinusoid can be regarded as an eigenfunction of the system. For a sinusoid applied 
to a linear system, the system only changes its amplitude and phase angle without 

distorting its wave form. A nonlinear system however, is characterised by the transfer of 
energy between frequencies. For a sinusoidal input /(t)=Asincot to the nonlinear system 

governed by equation

mx + cx + kx + kjx2 + k2x3 = / ( t) (3-3)

the system will generate harmonic frequency components response in addition to the 
fundamental frequency component, as shown in Fig.3.3 (the background curve is due to 
numerical inaccuracy). If a multi-tone input x(t)=Asinco1t+Bsinco2t is applied (the input 

signal has two or more frequency components where A, B can be complex numbers to 

accommodate the different phase shifts of these two waveforms), then in addition to the
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fundamental frequencies (coj.ci^) and their harmonics (nco^nci^), there will also be 
combinational frequency components (co1+co2, C02-C0j etc.) as shown in Fig.3.4. In fact, 

for this specific system described by equation (3-3), there will be frequency components 
(n1co1+n2co2) present in the response x(t) for all integer values of nj and n2. In order to 

establish an input/output model of a nonlinear system which can not only predict the 
fundamental frequency, but also the harmonics and combinational frequencies as well, the 
Volterra series theory of nonlinear systems was developed.

Fig.3.3 - Response Spectrum of an SDOF System with Input /(t)=Asinco1t

Fig.3.4 - Response Spectrum of an SDOF System with Input /(t)= A 1sinco1t + A^incity
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3.2.2 TH E V O LTERRA  SERIES R EPR ESEN TA TIO N

Volterra series have been described as "power series with memory" which express the 
output of a nonlinear system in "powers" of the input. A wide class of nonlinear systems 
encountered in engineering can be represented as Volterra series. Given an input / ( t), the 

output x(t) of a time invariant system can, in general be expressed as

x(t) =

+ oo

f dxn hn ( ti , n  f ( t  -  x r)
r = 1

(3-4)

where the kernels hn(Tj, ..., Tn) are the Volterra kernels which describe the system. It 

should be noted that the first-order kernel hqfc) is the impulse response due to the linear 

part of the nonlinear system and the higher-order kernels can thus be viewed as higher- 
order impluse responses which serve to characterise the various orders of nonlinearity. In 
the special case when the system is linear, all the higher-order kernels except tqCc) are 

zero. The Volterra series representation (3-4) of a nonlinear system is homogeneous. In 
order to illustrate this, rewrite equation (3-4) as x(t) = x 1(t) + x2(t) + ... + xs(t) + ... 

where

+ °° + 00

xs(t) = j  j hs (Tj, ..., Ts ) f ( t  - Tj)/(t - t 2) -  f (X ~  Vs) d*l dT2 -  dTs (3-5)

From (3-5), it is easy to see that when the input changes from / ( t) to a /( t) , then the s^  

component of the output becomes a sx s(t) and the total output x(t) becomes

00

x(t)= £ a sxs(t). This homogeneous property of Volterra series representation has been
s = 1

applied to the measurement of Volterra kernels of electrical nonlinear circuits by repeating 

the measurements using different input levels of the same signal [48]. Since almost all 
physical systems, whether they are linear or nonlinear, are causal (a system is said to be 
causal if, for any input, the output at any instant of time does not depend upon the future 

input), all the kernels have to satisfy

hn(T i,..., xn) = 0 for any Ts < 0 (( s = 1, n ), n = 1, 00) (3-6)
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Like a Taylor series representation of a nonlinear function, the Volterra series 

representation of a general nonlinear system is theoretically infinite and, as will be 
discussed later, the effort of computing the n^-order kernel increases exponentially as n 
increases so that one has to be satisfied with the first few kernels only (usually, up to the 
third kernel). Fortunately, good approximations can be obtained for most engineering 

problems by just considering these first few kernels and this is why this theory has been 
widely applied to the characterisation of practical nonlinear systems.

3.3 H IG H E R -O R D E R  FR EQ U EN C Y  RESPO N SE FU N CTIO N S

3 .3 .1  TH EO RY  O F H IG H ER -O R D ER  FREQUENCY 
R E SPO N SE  FU N C TIO N S

The n^-order Volterra kernel transform or nth-order Volterra transfer function is simply 

defined as the n-dimensional Fourier transform of the n^-order Volterra kernel

Since the n^-order kernel hn(Tl5T2,..MXn) is real, symmetric (the value of h ^ X j ^ —Jn) 
does not depend on the order of f°r example, in the case of second-order

kernel, h2(x1,T2)= h2(T2>Ti)) and causal, its Fourier transform Hn(co1,co2,...,con) is 

symmetric and also possesses complex conjugate symmetry such that

For a linear system, if the frequency response functions (only the first-order) have been 
determined, the output x(t) can be calculated for any form of inputs. The same argument 
holds if all the Volterra transfer functions Hn(C0i,a>2.—»con) have been determined and 
since. 1^(0)!,o>2,...,con) are unique (independent of input and output of the system), the 

Volterra series representation is mathematically very attractive because under this 

representation, the identification of a nonlinear system reduces to the measurement of 

these unique Volterra kernel transforms. However, it will be shown that due to the 

interactions between kernels, these uniquely defined Volterra transfer functions cannot be 

uniquely measured in practice and all that can be measured are approximations which, in 
general, are input/output dependent.

'n-

(3-7)

(3-8)
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The n^-order frequency response function Hn(co1,(02,.--5o)n) is defined as the measured 
n th-order Volterra kernel transform Hn((01,co2,.--5Cdn). The relationship between 
H n(co1,co2,...,con) and Hn(co1,co2,...,con) is discussed below. The input-output 

relationship of a nonlinear system based on Volterra series representation has been 
discussed in detail [46] for different forms of input and only the sinusoidal form of input 
is considered here. To make the analysis convenient, it is necessary to introduce the 

partial differential operator given as:

an
“ - 9a, ... da„ 1 «! = a2 = ... = an= 0

Under this operator, it can be seen that

(3-9)

„ „ [ Z  « s / ( t  - t s) ]"
f [  / ( t - tr) = exp [ a s/ ( t  - ts)] = — 8 = 1 ,-------------- (3-10)
_ 1 o_i  n.

Upon substitution, (3-4) becomes

+  ©o +  00

x(t) = X J dTj ... |  dxn hn (T j,..., xn )D ^ e x p [  £  a s/ ( t  - ts)] (3-11)
n = 1 — 00 — 00 s = 1

After some further mathematical manipulation, (3-11) can be written as:

-f- 00 +  00
v  f f [ Z  « s / ( t - t s ) ]

X(t) = z ,  J dx, ... J dx„ hn (x„ .... xn ) 1
n = 1 n!

— 00 — 00

(3-12)

On the other hand, under the differential operator defined in (3-9), the n^-order Volterra 
kernel transform can be rewritten as:

-f- 00 -f- 00

i f f  nH„(co„ 0)2, .... (fln) = ^  I dx, ... I dxn h„(x,.....xn ) D£ I I  A n(cor)
— 00 — 00 r — 1

(3-13)

where
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A n(co) = X  a s e - '“ T* (3-14)
S =  1

To illustrate the validity of equation (3-13), consider the derivation of CO2). In this 

case, n=2 and so A2(co) becomes

A 2(co) = a i  e‘lartl + a 2 e '10” 2 (3-15)

and upon substitution,

2
P I  A 2(cor) = [ ( « ! e ''“ lT| + a 2e-'“ 'T2 )(t t l e " ”2̂  + o t je * '^ 2)]

r = 1

_  g-KwjXj + ©2X2) +  g-K to^+o ^X j) (3-16)

Substituting (3-16) into (3-13) and considering the symmetry property of H2(co1,co2)> 

equation (3-13) becomes

-f- oo -f oo

H2(co1, co2) =  J j  ^ ( - [ L T ^ e - '^ ' - ^ d X j d T z (3-17)
— oo — oo

Using this preliminary mathematics, it is now possible to establish an input-output 
relationship of a general nonlinear system when the input to the system is in the form of 

sinusoid.

When /(t)=Bcoscot, then

n

-  i s )  =  y  2-i a s ( e ‘
lCOt - 1C0X, , -lCOt + lCOX,s + e

s = 1 s = 1
) =  | [ e i“ tAn(co) + e-i“tA„(-®)]

(3-18)
where An(co) is given by (3.14). According to the binormial theorem,

[ X  a s / ( t  - t s ) ]
s = 1

n!
B_
2n

n

X
k = 0

i(2k-n)cot

kl (n _ k)! A n(ti)) An(-co) (3-19)
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Substituting (3-19) into (3-12), and using (3-13) for Hn(co1,co2,...,con), gives

X(t) = X  ei(2k'n,“‘ (3'20)
n = 1 k = 0

where, Hkn.k(co) denotes the nlh-order Volterra kernel transform Hn(co1,co2,...,con) with 
the first k of the C0j values equal to (+co) and the remaining (n-k) values equal to (-co).

From (3-20), any frequency component which is present in x(t) due to input /(t)=Bcoscot 

can be calculated. For example, the eiNcot component of x(t) is

e iNcot V  (N+2m)! (B/2)<N+2m>
" o  m! (N+2m)! n N+m.m^ (3-21)

If the input /(t)=Bcos(cot+<{)), then in (3-21), cot should be correspondingly replaced by 
(cot+cf)).

The same type of argument shows that when /(t)=Xcosco1t+Ycosco2t, the e^M03!4̂ 0̂ )1 

component of x(t) is ( N, M > 0)

+ Na>2)t t  y  (M+21+N+2k)! (X/2)(M+21)(Y/2) 
"  (M+l)! 1! (N+k)! k!

(N+2k)

1 = 0  k = 0
H M+l,l;N+k,k(C0 l ’ % )

(3-22)
The four subscripts of Hn(co1,co2,...,con) mean that n=M+21+N+2k and the first (M+l) 
values of C0j are equal to (coj), the next 1 values equal to (-0)!), the next N+k values equal 
to (co2 ) and the last k values equal to (-co2 ). S i m i l a r l y ,  w h e n  
/(t)=Xcosco1t+Ycosco2t+Zcosco3t, the ei(La)r fM(°2+No)3)t frequency component in x(t) is 

(L, M &N > 0)

V  V  V  (L+21+M+2k+N+2j)! (X/2)(L+21) (Y/2)(M+2k) (Z/2)(N+2j) 
i = o k = 0j = o (L+W 1! <M +k) ! k! (N+J)! j!

e i(L<o, + Me, + N«J. HL+lil;M+k,k;N+jj(C01, 0)2, C03) (2-23)
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From (3-21), the leading terms for the frequency component co are:

etot [ |  H^co) + ~  H3(m ,co,-co) + ...] + CC (3-24)

where CC means complex conjugate since the response component must be real.

The leading term for the frequency component (cq+co2) in (3-22) if cq and co2 are 
incommensurable (cq and co2 are said to be incommensurable if  co1/co2 cannot be 
expressed as q /n 2 where q  and n2 are integers), is:

eK^ + t^ t  2 ^  + ......+ CC (3-25)

Similarly, the leading term for the frequency component (cq+cq+cq) in (3-23) if cq, co2 

and cq are incommensurable, is:

Y Y 7ei(C01 + 02 4.(03)1 H3(cq, a)2f 0)3) + ...... + CC (3-26)

On the other hand, n^-order frequency response function Hn(cq,co2,...,con), which is 

experimentally measurable, is defined as the output component X(co1,cq,...,con) of x(t) at 
frequency co=cq+cq+...+con due to the input x(t)=A1coscqt+A 2coscqt+...+A ncoscont 
(here Aj can be complex to accommodate the different phase shifts) divided by the input 

spectra, that is

H n(o>i, co2 , c o n)
X(CO!, C02, con)

(3-27)

Comparing (3-24), (3-25) and (3-26) with the definition of the higher-order frequency 

response function of equation (3-27), it can be seen that the measured n^-order frequency 
response function Hn(cq,cq,...,con) is the first-order approximation of the nth-order 
Volterra kernel transform Hn(cq,co2,...,con). To illustrate this point, take the second- 

order frequency response function as an example. If only the leading term is considered 
in equation (3-25) and the contribution o f other kernels (even-ordered kernels after the 
second) at frequency (cq+ cq) can be neglected, then it becomes clear that the measured 

second-order frequency response function H2(oq,cq) based on (3-27) will be the same as 

the second-order Volterra kernel transform H2(cq,cq). In general, however, there will be
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some contribution from the higher even-ordered Volterra kernels and the estimated 
second-order frequency response function is an approximate of the uniquely defined 
second-order Volterra kernel transform. The same argument holds for other higher-order 

frequency response functions. Based on this observation, the V olterra kernel 
hn(Ti,T2,...^n) anc* its transform Hn(co1,co2,...,con) have direct physical meaning and 

interpretation.

It is worth pointing out here that the Volterra kernel transforms Hn(co1,co2,...,03n) are 

m athematically unique. However, the n th-order frequency response functions 
H n(co1,co2,...,con) are usually input-output dependent like the classical first-order 
frequency response function H^co) measured using a sine wave excitation. Since we are 

only able to deal with truncated series, these measured frequency response functions will, 
in some cases, give more accurate representation than the equivalent Volterra kernel 

transforms, which are by no means measurable.

3.3.2 ANALYTICAL CA LCU LA TION  OF FREQ U ENCY  

R ESPO N SE FU N CTIO N S

So far, it has been shown how the output x(t) and input / ( t) of a nonlinear system are 

related through the system's frequency response functions (or, more strictly, the Volterra 

kernel transforms), and it is appropriate here to investigate what forms and what 
characteristics the higher-order frequency response functions of typical nonlinear 
mechanical systems possess. There are some different methods for analytically calculating 
the frequency response functions of a known nonlinear system and what is discussed 
here is the harmonic probing method [46].

Suppose that the input / ( t) is

where the cor values are incommensurable and, for simplicity, let Ar= l(r= l,n ) since the 

analytical nlh-order FRF, i.e. the nth-order Volterra kernel transform (we define 
H n(co1,co2,...,con) as the analytical nth-order FRF), is unique. Substituting into (3-4), 

then H ^ c u ^ a ^ ,...,^ )  is given [46] by

n

(3-28)



[~3~j Identification o f  N onlinearity Using H igher-order FRFs 7 9

Hn(co1,co2,...,con) = { coefficient of el(Ct>1 + a>2 + + 0)11)1 term in the expression of x(t) }

(3-29)
Based on (3-29), it is possible to compute H^cOj), ^ (c o j,c o 2),... of a nonlinear 

mechanical system successively. To illustrate this, first consider an SDOF system given 

by

mx + cx + kx + k ^ 2 + k2x3 = /( t)  

Let f(t)  = eicot and substitute into (3-4), then

n!
k! (n - k)! H k>n-k(w)

î(2k-n)cot

(3-30)

(3-31)

n!
k! (n - k)! Hk,n-k(c°) i(2k - n) co ei(2k'n)cot (3-32)

*(o = X  2^ X  " r e W  Hk’n-k(co) ( 2 k ' n)2 0)2 eK2k n)wt (3_33)
n = 1 k = 0

The first few terms of x2(t) and x3(t) are

x2(t) = H,(ca) ei2rot + 2 H^co) H 2(co, co) ei3o)t + H2(co, co) ei4“  (3-34)

x3(t) = Hj(co) ei3“ l + 3 Hj(co) H 2(co, co)ei4mt + 3 H 2(co) H^(co, co) ei5<ot (3-35)

Substitute (3-31)-(3-35) into (3-30) and set the coefficients of eicot at both sides to be 
equal:

Hj(co) = ----------- \ . (3-36)
k - mco + lcco

The first-order Volterra kernel transform is independent of the nonlinear terms present in 

the equation of motion and represents the dynamic characteristics of the linear part of the 

nonlinear system.
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Now, let /(t)= ei(0it+ei(02t and substitute into (3-4), then

x(t) = I
N = 0

I I I
M = 01 = 0 k = 0

i(McO] n-Nco^t 2 - (M+N+2 1+2 k) (M+21+N+2k)!
(M+l)! 1! (N+k)! k!

•^M+1,1; N + k ,k ^ l ’ W2) (3-37)

Differentiate x(t) to get x(t) and x(t) and then substitute into (3-30) in similar way as for 
the H^co) calculation, and let the coefficients of ei(°)i+a)2)1 on both sides be equal:

H2(^ i ,  ®2) = - kx H ^ © ^  H ^ © ^  H 1(co1+co2) (3-38)

From (3-38) it can be seen that 152(002,0)2) has all the poles which H^oo) has and is 
proportional to the coefficient of the quadratic nonlinearity term k v

Similarly, if we let /(t)=ei(°it+eio)2t+eico3t, then

x(t) = m i n
N = 0 M  = 0 L  = 0 1  = 0 k  = 0 j  = 0

H L+l,l;M +k,k;N+jj(°) l>cd2»0 33)

i(MtO! + N(02 + Lo>3)t 9 - (N+M+L+2 1+2 k+2j) (L+21+M+2k+N+2j)!
(L+l)! 1! (M+k)! k! (N+j)! j!

Upon substituting into (3-30) and letting the coefficients of e*((Di+fi>2+Q,3)t 
be equal:

(3-39)

on both sides

H3(q 1, w2, co3) = - H^CDi + ©2 + co3) [ ^(© 3) H 1(co1, o)2) + H ^ )  H 2(co1, cd3) +

H 1(oo1) ^ ( 0)2, ©3) ] - k2 H 1(©1 + ©2 + ©3) H 1(©1) Hj (©2) Hi (©3) (3-40)

In fact, it has been established in [46] that for a physically realisable system specified by 

the nonlinear differential equation as

00

F(d/dt) y + £ a mym = /( t )
m = 2

(3-41)
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where F(x) is a function of the differential operator d/dt, the n^-order Volterra kernel 

transform is given by

X  a m 0 ) 2 , C0n )

HnCcoj, co2, c o n) = 4  --------;--------------:— —
n * FCicOi + ico2 + . . .  + icon)

(3-42)

w here co2, c o n) is defined in such a way that

H ^ W i . c o z )  = 2 ! H 1( co, ) H 1( co2)

= (2!)2 [ H jCcDj) H2(co2,cd3) + H j Ccô H j Ccô cOj ) + H ^ cô H j Ccô cOj ) ]

H (42 ) ( co1,o)2 ,co3, co3) = 3! 2! H^co,) H3(co2,co3,(o4) + (3-43)

It should be noted here that higher nonlinear terms am(m>n) have no influence on the 
lower-order Volterra kernel transforms Hs(co1,co2,...,cos) (s<n) while the lower nonlinear 

terms (m<r) do have an influence on all the higher-order Volterra kernel transforms, 
(s>r). Therefore, a system with cubic stiffness nonlinearity does not possess second- 
order Volterra kernels while a system with quadratic stiffness nonlinearity has, in general, 
all the Volterra kernels. The second- and third-order Volterra kernel transforms of the 
SDOF nonlinear system described by equation (3-30) are calculated and are shown in 

F igs.3.5-3.7.
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Fig.3.6 - Analytical Second Order Frequency Response Function o f an SDOF Nonlinear 
System (Phase Linear Scale, x axis C0j: -275 —  275, y axis ©2: 0 —  275 rad./s)
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To illustrate the physical interpretation of higher-order frequency response functions, the 
second-order frequency response function shown in figure 3.5 is discussed. As shown in 
Fig.3.8, the components of the second-order frequency response function near both 
frequency axes represent the fundamental frequency components of the response. While 
components along both diagonals are the static components (co1=-co2) and second 
harmonic components (co1=co2) of the response respectively. All the other components 
defined on the 0)^5  co2 plane are the combinational frequency components of the 

response which, as will be discussed later, are important in cases of nonlinear MDOF 

systems because these combinational frequency components can excite the system into its 

resonances when they coincide with some of the natural frequencies of the system.
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Fig.3.8 - Physical Interpretation of Second-Order FRF

Also, one special case which has been treated in the literature [49] and is discussed here is 
the square-law system given as:

m*z + cz + kz = f(t) (3-44)

r-f II N to (3-45)

This is an ideal Volterra system for which all the kernels except the second one are zero 
and it is easy to prove that its second-order Volterra kernel transform is

H2(co1, co2) = H 1(co1) H 1(co2) (3-46)

where H^co) is given by (3-36). This second-order frequency response function of the 

square-law system is shown in Fig.3.9. Because of its purely quadratic nature, the 
system's response is dominated by the second harmonic and static components.
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Fig.3.9 - Analytical Second Order Frequency Response Function o f the Square-law System  
(Modulus Linear Scale, x axis CDj: -275 —  275, y axis cô : 0  —  275 rad./s)

The same argument holds for MDOF nonlinear systems, although the analytical 
calculation becomes a bit complicated. To see this, the 3DOF nonlinear system as shown 
in Fig.3.10 is considered. The governing differential equations of the motion are given as

Xj + 2 a x j  + 2kXi - a x 2 - kx2 + px? = / ( t) (3-47)

x2 + 3 a x 2 + 3kx2 - axj - a x 3 - kx1 - kx3 + px2 = 0 (3-48)

x3 + 2 a x 3 + 2kx3 - a x 2 - kx2 + Px3 = 0 (3-49)

1

/ ( o k 5a V a  t

_ r  j t V I
y K ,  - 1-  K2 - 1—  K3 y K 4

Mi - A A A r  Mz - A A A r  - A M "

H d U ?  H i U i z  H — ^ 3

ff//f

Fig.3.10 - A Three Degrees-of-freedom Nonlinear System
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The first-order Volterra kernel transforms of the system are the frequency response 
functions of the linear system (p=0) and here only the second-order Volterra kernel 
transforms are going to be calculated. Similarly to the SDOF case, let /( t)= e icoit+eio)2t, 

then

xr(t) = I
N = 0

I I I
M = 01 = 0 k = 0

(M+21+N+2k)! (X/2)m+21 (Y/2)N+2k 
(M+l)! 1! (N+k)! k!

ei(M<o1+N ^ ) ,H rl+ii;N+kk(c0i)0)2) (3. 37)

where H]^+11.N+kk(co1, % ) (r= 1,2,3) are the transfer Volterra kernel transforms between 

coordinates Xj and xr. Substitute xr(t) and its derivatives xr(t) and Xj-(t) into (3-47)-(3-49) 

and let the coefficients of ei(coit+co2t) on both sides of the equations be equal respectively, 
so that the following algebraic equations are obtained:

[ (C0J+ co2)2 - i2a(co1+ co2) - 2k] r i 2 (col5 co2) + [ ia(co1+ co2) + k ] r f 2 (col5 co2) =

pri/Cco (3-51)

[ (0 !+  co2)2 - i3a(co1+ co2) - 3k] co2) + [ ia(co!+ co2) + k ] F f^ a q , co2) +

[ ia(co1+ co2) + k] co2) = p coj) H?(co2) (3-52)

[ (co ^  co2)2 - i2a(co1+ co2) - 2k] I-f^CD!, co2) + [ ia(co1+ co2) + k ] co2) =

P r f /C c o j ) ^ 1̂ )  (3-53)

From (3-51)-(3-53), the three unknowns H 21(co1,o)2) (r=l,2,3) can be calculated. The 
analytical second-order point frequency response function co2) (excitation and

response are at the same coordinate) is shown in Fig.3.11. In this case, the appearance of 
combinational resonances (peaks which do not lie on the two diagonals) is clearly 

demonstrated.
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Since the above calculations are based on the definition of (3-29), the calculated 
are of receptance-like frequency response functions. If x(t) is changed

into x(t) in (3-29), then the calculated Volterra kernel transforms are the mobility-like 
frequency response functions and it can be easily seen that the receptance-like and 
mobility-like Volterra kernel transforms are related by

H„ (w ,, co2, .... con) = i(co, + co2 + ...+ con) rf^(o),, co2, .... con) (3-54)

3 .3 .3  M EA SU REM EN T O F H IG H ER -O R D ER  FREQ U EN CY  R ESPO N SE 

FU N CTIO N S USING H A RM O N IC PR O B IN G  M ETH O D

As in the case of the measurement of frequency response functions of a linear system, 

different measurement techniques can be employed to measure the frequency response 

functions of a nonlinear system, such as (i) multi-impulse technique [30], (ii) harmonic 

probing method [48], (iii) correlation analysis using random input [47] and (iv) 

NARMAX time series modelling technique [18] etc.. Among these different methods, the
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harmonic probing method and correlation analysis using random input are the most 

commonly referred methods and have been given much discussion in the literature. The 
theoretical basis for the measurement of higher-order frequency response functions by the 
harmonic probing method has already been presented and what is to be discussed next is 
the practical applicability of the method through numerical case study. The theoretical 
basis of the correlation technique and the numerically simulated case studies of higher- 
order frequency response function (Wiener kernel transform) measurement will be given 
later in this Chapter.

As explained earlier, if the input to a nonlinear system is /(t)= A 1cosco1t+...+Ancoscont, 
where the frequency components C0j (i=l,2,..,n) are incommensurable, then the n^-order 
frequency response function which is the first-order approximation of
the nth-order Volterra kernel transform Hn(co1,co2,...,con), can be estimated using (3-27). 
On the thus- estimated Hn(co1,co2,...,con), with the exception of Hn(co1,CD2».--»con) which 
is the leading term, all the higher kernel transforms Hn+21(co1,co2,...,con+21) (1=1,2,...) 

may have a contribution. This, as already pointed out, may make the measured 
Hn(co1,co2,...,con) a better representation of the system than the corresponding Volterra 
kernel transforms Hn(a)1,co2,...,con) since we are only able to deal with the truncated 

series. Measurement of the first-order frequency response functions of nonlinear systems 

has already been well established [39] and here the measurement of higher-order (mainly 
second-order) frequency response functions is discussed. Although the technique can 
theoretically be readily extended to the the measurement of higher- (than the second) order 
terms, because of the time and effort involved, it is hardly practical to measure beyond the 
third and for most practical nonlinear systems, only the lower few terms are in general 
required in order to provide accurate representation of the system.

Based on the above-mentioned theory, numerical simulation of the measurement of the 

second-order frequency response functions for a square-law system described by (3-34)- 

(3-35) and an SDOF nonlinear system given by (3-3) was carried out. For computational 
convenience, the input was set to be /(t)=Asinco1t+Bsinco2t where A is real and equal to 

B (in real practical measurements, A and B can be set independently and can be complex 

to accommodate the relative phase difference of these two sinusoids). The response of the 
system x(t) was calculated using a numerical integration technique and, after the transient 
dies away, the signal was sampled and Fourier transformed to find the 2d)ly 2cd2, 

(cOj+ol̂ ) and (cor co2) frequency components of x(t). Suppose the frequency components 

of x(t) at 20)^ 2g)2, (co1+ co2) and (co1-co2) are Y lf Y2 , Y3 and Y4 respectively, then 

based on (3-27), the following four points of H2(co1,co2) on co1-co2 plane are given by:
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2Y
= A l (3-55)

2Y ,
H 2(co2, to2) = (3-56)

H2(o>i , co2) -  a 3b (3-57)

H2(co„  - co2) -  a 4b (3-58)

The measured H2(co1,co1) and H2(co2,co2) lie on the diagonal of co1=co2 of ca1 vs co2 
plane. When ci^ and co2 are varied, the value of H2(co1,co2) in any desired region on 0^ 
vs co2 plane can be obtained. Considering the mathematical symmetry of H2(co1,co2), if 
the frequency range of interest is G)s-0 )n, then what needs to be measured is the triangular 
region where cOjicOg-cOn and cô CDs-cOn as shown in Fig.3-12.

In this way, the second-order frequency response functions of the square-law system and 
the SDOF nonlinear system are measured and they are shown in Figs.3.13 and 3.14. 
When comparing figure 3.13 with its analytical counterpart figure 3.9, it can be seen that 
except for some spurious spikes at both diagonals of co1=co2 and co1=-co2, the 

measurement results are quite acceptable. The spurious spikes appear because in the 
numerical simulation, C0j and were chosen to be integers and so the condition that coj 

and co2 should be incommensurable was violated and for this specific system, it can be 

shown that such violation only causes errors when co1=co2 and then, H2(co1,co2) is 

overestimated by 100%. This problem can be removed by measuring the diagonal 
elements of H2(co1,co2) at cd1=co2 and co ^-o ^  using one single sinusoid input and then
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measuring the second harmonic component (on the diagonal co^CDj) and the DC 
component (on the diagonal co1=-co2) of the output. On the other hand, in the case of a 

nonlinear SDOF system, the situation becomes somewhat complicated. When comparing 
figure 3.14 with its analytical counterpart figure 3.5, we see that the measured results are 
not very bad except for some small spurious spikes appearing on the plane, again 
showing the effects o f the violation of the condition that cOj and co2 must be 

incommensurable.
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Fig.3.14 - Measured Second Order FRF of the SDOF Nonlinear System Using Harmonic 
Probing Method (Modulus Linear Scale, x-axis co1:-260 — 260, y-axis cô : -260 — 260 rad./s)

Of course, it is possible to set 0̂  and CO2 to be incommensurable in the measurement, but 

then there may be a leakage problem in the DFT of response x(t) because, in this case, it 
is not possible to make all these major frequency components coj, C02> 20)^ 2 ^  CDj+co  ̂
C0J-CO2,... contained in the x(t) coincide with frequency lines. Some further research is 

needed to investigate how cleanly and consistently the second-order frequency response 

functions of a nonlinear system can be measured using the harmonic probing method 
based on DFT algorithms. However, one possible way of getting around the leakage 
problem, which the author suggests here, is to use the correlation technique. If, say, the 
frequency component Y3 of x(t) at (cOj-f- co2) is of interest, then instead of obtaining Y3 
using the DFT (which can sometimes cause serious leakage errors), the correlation 
technique can be used by multiplying sin(CDi+co2)t + icos(c0i+co2)t to x(t) and then 

integrating the product with time as:

Based on this correlation technique, together with the diagonal elements of H^GOj,©^ to 

be measured using single sinusoid input, clean and consistent measurement results could 

be obtained.

T

(3-59)
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3.4 C O R R EL A TIO N  ANALYSIS USING RANDOM  IN PU T

The correlation method for the measurement of frequency response functions using 
random input has been widely used in structural modal testing because of its convenience. 
In the study of nonlinear structures, as discussed in Chapter 2, first-order frequency 
response functions (first-order Wiener kernel transforms) can be measured using random 
excitation. Corresponding to different excitation levels (or input power spectra), the thus 
measured first-order frequency response functions of a nonlinear system are in general 
different and, therefore, the existence of nonlinearity can be detected by comparing FRF 
data measured at different excitation levels. The theoretical aspects of this first-order 
frequency response function analysis based on random input are given in refs. [22,50]. 
Nevertheless, anything beyond the detection in the identification of nonlinear systems by 
application of the thus measured first-order frequency response functions is difficult. 
However, in addition to the auto- and cross-correlation analysis which is used in the 
calculation of first-order FRF, if we can do higher-order correlation analysis, then as in 

the case of the Volterra kernel measurement, there is a systematic way of characterising a 
nonlinear system by measuring its higher-order Wiener kernels using random input. The 
theory behind this practice is the Wiener series of nonlinear systems.

3.4.1 TH E  W IEN E R  SERIES

In the Wiener theory of nonlinear systems, if the input / ( t) is a white Gaussian time series 
with autocorrelation function <j)jy(x)=A5(x), then the output x(t) of a nonlinear system can

be expressed by the orthogonal expression:

in which {kn(T1,x2,...,Tn)} is the set of Wiener kernels of the nonlinear system which, 

like the set of Volterra kernels {hn(x1,T2>—,'rn) ) ’ serve to describe the system and {Gn} 

is a complete set of orthogonal functionals. For a linear system, all the higher-order 
kernels except k0 and kx(x) are zero. Unlike the nlh Volterra functional, which is 

homogeneous and defined as

(3-60)
n
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T j ^ / G ) ]

4 oo 4* 00
J dXi ... J dTn hn (Tj, .... X„ ) n f i t  - Xr) (3-61)

the Wiener G-functionals are a set of nonhomogeneous Volterra functionals defined as:

Gn [ kn; /( t)  ]

+  00

k()(n) + X
= 1 i dXi

+ 00

J dTr ^r(n) (Tl>
—* OO

r

-.xr ) n / < t - x . )
s = 1

(3-62)
where k ^ s l ^  is known as the n^-order Wiener kernel and k ^ ^ , ...» k ^  are known 
as the derived Wiener kernels of the Wiener G-functional. Gn [ k^, / ( t) ] satisfy

T m [ hm; f ( t )  ] G n [ kn; / ( t) ] = 0  for m < n (3-63)

where the over bar means taking the average of the process. Theoretically, all the derived 
Wiener kernels k ^ ^ , k ^  of n^-order can be determined uniquely by the leading 
nth-order W iener kernel when (3-63) is satisfied for all integer values of men and, 
therefore, in the notation G ^k^/C t)], only the leading term 1̂  is specified as in the case 
of Volterra functional Tn[hn; / ( t)]. The first few Gn[kn; / ( t)] of a general nonlinear 

system, are given as [6]

G0 [ ko; / ( t) ] = ko (1̂  is a constant) (3-64)

+ 00

Gj [ kj; /( t)  ] = j  k l (xl) f ( t - x l) d x l (3-65)

+ 00 4* 00 4. 00

G2 [ k2; / ( t) ] = j  J k2(X!, x2) f i t  - X]) f i t  - x2) dxj dx2 - A J k2(Xi, x,) dxt
- OO

(3-66)

. 0 0  -  00

4-00 4 00 4 00

G3 [ k3; / ( t) ] = J J J k3(^i’ x2’ x3) / ( * '  xi) f(X ~ x2) / ( t  - x3) di j  dx2 dx3
00 . 0 0  - 00
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The relationship between the Volterra kernel hn(T1,'C2v,^n) and the W iener kernel 
>Tn) ts that the system's n^-order Volterra kernel is equal to the system's n1*1- 

order Wiener kernel plus the sum of all the (even or odd order) derived Wiener kernels 
that are of the n^-order, that is

From (3-68), it can be seen that since the derived Wiener kernels are determined uniquely 
by their leading Wiener kernel, a given system's Volterra kernels can be obtained 
uniquely from the system's Wiener kernels (leading Wiener kernels). Also, it should be 
noted from equations (3-66) and (3-67) that as the input level A —>0, the derived kernels 

approach zero and the leading Wiener kernels approach the Volterra kernels. On the other 
hand, it should be pointed out that unlike the Volterra kernels, which are mathematically 
unique, the Wiener kernels are input-output dependent and since the Volterra kernels 
hn(Xi,T2,...,Tn) which uniquely determine the system are uniquely determined by the 

W iener kernels kn(T1,T2,...,xn)> measured W iener kernels ^ ( T j ^ , . . . , ^ )  also 

uniquely determine the system.

3 . 4 . 2  D ETER M IN A TIO N  O F W IEN ER  KERNELS BY 
C R O S S-C O R R E L A T IO N

As in the case of Volterra series representation, under Wiener series representation, the 

problem of identifying a nonlinear system becomes one of determining all the Wiener 
kernels which describe the system. The orthogonality property of Gn and the statistical 

properties of Gaussian noise enable the Wiener kernels to be determined using a cross­
correlation technique. The first four kernels are given [47] as

(3-68)

k0 = x(t) (3-69)

(3-70)

(3-71)
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k3(^l. *2. 1 3 ) - 3 j A 3 [ x ( t )  - G ][k j;  / ( t ) ] ]  f ( t  - X j ) / ( t  - X2) / ( t - x3)

(3-72)
Equations (3-69)-(3-72) serve as a basis for the measurement of W iener kernels. To 
illustrate the derivation of these equations, consider the calculation of the second-order

kernel k2(ii,T2)- From equation (3-60), x (t)/(t - x1) /( t  - t2) becomes

x ( t ) / ( t  - T j ) / ( t  - t 2) 00

{ Z  G n [ k n; / ( t ) ]  ) / ( t - X ! > / ( t - x 2)
n = 0

(3-73)

and since, from the orthogonality relationship of (3-63), the functionals Gn for n>2 are 
orthogonal to / ( t - t 1)/(t-x 2), which is a homogeneous functional of second degree, 

therefore equation (3-73) can be rewritten as

x ( t ) / ( t  - T j ) / ( t  - t2) 2
{ X  G n [ k n; / ( t ) ]  } / ( t - x , ) / ( t - x 2)

(3-74)

n = 0

For n = 0, the average involving G0 is:

G 0 [ k0; / ( t ) ]  / ( t  - TX) / ( t  - x2) = k o / ( t - X ! ) / ( t - x 2) = k o 8 (x , -x 2) (3-75) 

The average for n=l is:

G , [ k i ; / ( t ) ]  / ( t  - x, )  f ( t  - x2) =

+ 00

[ J k j f o , )  / ( t  - a , )  d a j  ] / ( t  - x ,) / ( t  - x2)

+ 00
j ki(ff!) f ( t  - O j) / ( t - x ^ ) /( t  - x2) da , = 0

-  OO

(3-76)
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since the average of the product of an odd number of zero-mean Gaussian variables is 
zero. Finally the average for n = 2 is:

G 2 [k2; / ( t ) ]  / ( t - T ^ / a - T j )  =

+ 00+0° oo

[ |  |  k2(Xi,x2) / ( t  -X i)/(t -t2) dXidx2 - A J k^x^X j) d x1 ] / ( t - a j ) / ( t  - a 2)
> 00 . 00 - oo

+ oo *+• oo

= j J k 2( a lt  a 2) / ( t - O i) / ( t  - o 2) / ( t  - x ^ /C t - x2) dcjjdc^ -

+ «»

k 2(^ 2*CT2) ^^2

+ oo

- J
- oo

+ CO

J A2 [ 8 (a r  a 2) 8(xr  x2) + 8 (a r  Tj) 8(cj2- x2) + 8 (a r  x2) 8(g2- x^]
oo

-f oo

k2(a j, o 2) d a jd o 2 - A2 8(xr  x2) J k2(a2, a 2) d o 2 =

+ oo + oo

A 2 [5(Xj- x2) J k2( a 1, a i ) d a 1+ k 2(TI,X2) + k 2(T2, x I) - 6(Xi-x2) J k2(a 2, o 2) d a2]

= 2A2k2(x ,,x 2) (3-77)

Combining equations (3-73)-(3-77), equation (3-71) is obtained.

From the process of the above derivation, it can be seen that care must be taken in 
applying the Wiener theory to practical problems because it is strictly valid only when the 

averages of infinite time series are considered and Gaussian white noise input is assumed. 

What can be obtained in practical calculation is an estimate of the true Wiener kernel and 

the accuracy of the estimation depends on the length of the averaging time, the
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characteristics of the system to be investigated and the closeness of the input signal to the 
white Gaussian noise process. These points will be discussed further later on.

If the n^-order Wiener kernel k^X }/^,.../^) ^as t>een measured, then its corresponding 
n^-order frequency response function H ^ cô ĝ , . . . ^ )  is defined as

Hn(cOi,co2,...,con) = KnCG)!,©*...,^) (3-78)

where Kj/ cô ĝ , . . . ^ )  *s nth-order Wiener kernel transform of kn(T1,x2,...,xn). As 

discussed, when the input is low (the power spectrum of input A-> 0), the measured 
W iener kernels approach their corresponding Volterra kernels and, therefore, the 
measured H ^ cq̂ ĝ *—»con) based on (3-78) approaches the Volterra kernel transform 

H n(G)i,co2,...,G)n).

3.5 M EA SU REM EN T O F W IEN ER K ERN EL TRA N SFORM S

3 .5 .1  M EA SU REM EN T OF W IEN ER  KERNELS USING C O R R ELA TIO N  
ANALYSIS W ITH  RANDOM  INPUT

So far, the theoretical basis for Wiener kernel measurement has been introduced and the 
possibility of measuring these kernels from practical nonlinear structures now needs to be 
assessed. Such an assessment can be carried out by simulating the measurement of 
Wiener kernels of realistic nonlinear mechanical systems. The input random signal is a 

band-limited Gaussian noise (the effect of non-white Gaussian noise input on the 
estimation of Wiener kernels is discussed in [47]) since according to the sampling 
theorem [51], the maximum valid frequency G)n (the Nyquist frequency) is limited by the 

sampling rate 1/At and a true white Gaussian noise signal is therefore impossible to 

achieve. The process of generating band-limited Gaussian noise is done by passing the 
sampled standard white Gaussian noise data with sampling frequency at 1/At through a 

band-limited filter to remove the higher frequency components. The numerical realisation 

of this process is to interpolate the standard Gaussian noise data by a smoothing function 
h(t)=sint/t which, in the frequency domain, is an ideal low-pass filter [51]. The time 

history and its power spectrum of one of the input band-limited noise signals with 

sampling frequency at 62.5Hz are shown in Fig.3.15.
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Again, as in the case of second-order Volterra kernel transform measurement, the second- 
order Wiener kernel transforms of the square-law system, the SDOF nonlinear system, 

the 3DOF nonlinear system and a bilinear system are calculated and are shown in 
Figs.3.16-3.19. Also, as a typical example, the second Wiener kernel (time domain) of 
the SDOF system is illustrated in Fig.3.20. When comparing the measured frequency 
response functions (Wiener kernel transforms) with their corresponding analytical 
Volterra kernel transforms (figs.3.5, 3.9 & 3.11), it can be seen that the results are quite 
good. For the bilinear system, the measured second-order frequency response function 
looks very much like the second-order frequency response functions of the square-law 
system. Therefore, for a bilinear system, the quadratic component is quite substantial in 
the response x(t). However, it should be pointed out that although the linear contribution 
can theoretically be averaged out by including sufficient data points (increasing the 
averaging time), this is often difficult to do in practice since the computation resources 

required are considerable. During calculation of the second-order Wiener kernels of the 

SDOF and the 3DOF nonlinear systems, the linear contributions (the response component 

due to the linear part of the nonlinear network) are removed first before the correlation 

process takes place because the convergence seems to be very slow in these cases. In 
order to calculate second-order Wiener kernels of a nonlinear system efficiently, removal 
of the linear contribution becomes necessary. A possible way of removing linear 
contribution and therefore increasing the computational efficiency is proposed and 

discussed next.
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3.5.2 REM O VA L O F LIN EA R CO N TR IB U TIO N

It has been demonstrated in the numerical case studies that in order to calculate higher- 
order (second-order) Wiener kernel transforms of a nonlinear system efficiently, removal 
of the linear contribution in the response signal x(t) becomes necessary. This is due to the 
fact that for nonlinear systems like the SDOF and 3DOF systems in the numerical case 
studies the nonlinearities are such that the response component due to the nonlinear terms 
(mainly quadratic term in the estimation of second-order Wiener kernels) is usually of 
second order when compared with that of the linear contribution in the response x(t). As a 
result, although the term expressed in equation (3-76) (due to the linear contribution) for 

the estimation of second-order Wiener kernel should mathematically go to zero as 

averaging time increases, the time required for this to become valid could be very long 
indeed and so to improve the calculation efficiency, it is necessary to remove the linear 

contribution first, before the correlation process takes place.

It is suggested here that this removal of the linear contribution from the system response 
x(t) can be achieved by performing the averaging process in the frequency domain rather 
than in the time domain. The whole procedure is discussed next. Suppose the response 
component due to the quadratic and higher even terms of nonlinearity X2(t) be expressed
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as x2(t)=x(t)-x1(t)-x0 (where x0 is the DC component which is supposed to be removed 
and x x is the linear contribution), then, by replacing x(t)-ko with x2(t)=x(t)-x1(t), 

equation (3-71) can be rewritten as

^2(^1* ^2) ~ 2A2 [x(t) - xj(t)] f i t  - % 0 f ( t  - x2)
(3-79)

Instead of taking the time domain average, let the averaging be done in the frequency 
domain, Fourier transform both sides of (3-79), then

K^COj, (02) = “ 2  [ X(<B1+ C02) - X 1(CD1+ C02) ] F*(C0!) F*(C02)

= -~ 2  [ X(C0!+ co2) - K 1(co1+ (02) X 1(co1+ C02) ] F*(C0!) F*(®2) (3-80)
Z A

With K^co), which is the calculated first-order frequency response function based on (3- 
70), to be available beforehand, K2( Cth, o^) can be derived based on equation (3-80) and 

in this way, the computational efficiency can be improved.

3 .6  ID E N T IFIC A T IO N  OF N O N LIN EA RITY  USING H IG H ER -O R D ER  
FR EQ U EN C Y  R ESPO N SE FU N C TIO N S

So far, the theoretical basis of and measurement techniques for higher-order frequency 

response functions have been discussed in some detail and the remaining question which 

needs to be answered is: "what information about the nature of nonlinearity of a system 

can be derived from measured higher-order frequency response functions?" First, the 
existence of second-order frequency response functions indicates the existence of 

nonsymmetric nonlinearity of a system - a task that, for some systems such as qudratic 

and bilinear systems as mentioned before, cannot be achieved based on the analysis of 
classical first-order frequency response functions. Secondly, as is discussed in some 
detail next, parameters of a nonlinear system can also be identified based on the analysis 
of higher-order frequency response functions together with the first-order ones .

In the following discussion, only the analysis of second-order frequency response 

functions is presented. Depending on whether the physical parameters or the modal 

parameters of the system are of interest, a 'state-space analysis' method [44] or a ’modal- 

space analysis' method [45] can be developed.
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In the 'state-space analysis', a-priori information about the total number of degrees of 
freedom and the physical connectivity of the system to be analysed should be given. 
Since, mathematically, measured first- and second-order FRF data are functions of all the 
physical parameters (mass, nonlinear stiffness and damping elements), given known 
measured first- and second-order FRFs, these parameters can, in theory, be calculated 
provided enough data have been measured. The physical parameter identification problem 
of a nonlinear system can therefore be formulated mathematically as the solution of the 
following linear algebraic equation:

[A] {p} = {b} (3-81)

where {p} is the unknown vector of physical parameters, and [A] and (b) are the 
coefficient matrix and vector formed using the measured first- and second-order 
frequency response functions. To illustrate this process, take the nonlinear SDOF system 
described by (3-3) as an example. The system mass m, linear stiffness k and damping c 
can be calculated based on the familiar analysis of the measured first-order FRF H^co), 
while the coefficient of the second-order nonlinear term kj can be obtained from equation 
(3-38) using the measured second-order FRF 112(0)!,co2). In fact, one data point on the 
0)! vs 0)2 plane is enough to determine k1} although more data points are recommended in 

practice in order to have a reliable averaged estimation.

The 'modal-space analysis' is based on the mathematical observation that, in general, the 
second-order frequency response function (second-order Volterra kernel transform) can 

be decomposed as [45]

2 N  A 2 N  A 2 K  ^

H2(C0„C02) = I  . * *  ■ £  . z  ;--------r 1---------  (3-82)
n = 1 10)!  +  0)n m = 1 10)2 +  C0m 1 = 1 10) j +  I 0 ) 2 +  0)j

where N is the number of degrees of freedom of the system and 2K represents the 
num ber of poles corresponding to "nonlinear coupling modes" which are the 
combinational resonances of the system [45]. When one of the variables (o)} or 0)2) is 

fixed, then equation (3-82) reduces to the following polynomial form:

H2(C0j , co2) = ; n = j, 2N; m = 1; 2N; 1 = 1 ,2K (3-83)
Q(C0i,C0„, com, co,)
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Curve-fitting of this polynomial function can be made using the well-developed 
polynomial curve-fitting algorithms [52] used in linear modal analysis, then all the CQn and 
com which are the natural frequencies of the system can be obtained and the analytical 
model of H 2(co1,co2) in its polynom ial expression can be established. Such analytical 

models can be used for further applications such as response prediction, as shown in 
Fig.3.21 for the system described by (3-3) with k2=0 and with input being a pure 

sinusoid of frequency half of the natural frequency of the system. The improvement of 
prediction accuracy by including second-order FRF is clearly demonstrated.

3.7 C O N C L U SIO N S

In this Chapter, the basic theory of VolteiTa and Wiener series of nonlinear systems has 
been introduced and the measurement of higher-order frequency response functions has 
been discussed. The relationships between the Volterra and W iener kernels and their 
corresponding measured frequency response functions have been demonstrated. By 

extending the classical first-order frequency response function analysis to higher-order 
frequency response function analysis, it can be seen that the linear system theory is 
extended in a logical way to cover nonlinear systems.

From the system identification point of view, the measured higher-order frequency 

response functions provide considerable information about the nature of the nonlinearity 

of the system which the classical first-order frequency response functions cannot provide. 
Among them are the following:

(a) since for certain nonsymmetric nonlinear systems, such as the quadratic and bilinear 
systems mentioned in this Chapter, the measured first-order frequency response functions 

are effectively linear and therefore, cannot be used to detect existence of nonlinearity, the
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measured higher- (second-) order frequency response functions give an indication of the 

nonlinearity in the system;
(b) the different characteristics of higher-order frequency functions may give 

categorization and so identification of common mechanical nonlinear systems by 
comparing the measured higher-order frequency response functions with those analytical 

ones of known nonlinear systems;
(c) from a system response prediction point of view, the higher-order frequency 

response functions together with the first-order frequency response functions give more 
accurate response prediction to any input than just using the first-order frequency 
response functions and;

(d) the measured higher-order frequency response functions can be analysed in a 
similar way to the case of first-order frequency response functions in order to identify 
either the physical parameters or the modal parameters of a nonlinear system so that its 

mathematical model can be established.

The existing numerical difficulties concerning the successful measurement of higher- 
order frequency response functions have been discussed and possible ways of 
overcoming these difficulties suggested, both in the case of measurement using harmonic 
probing technique and correlation analysis with random input. In the harmonic probing 
method, the main problem involved is leakage in the DFT of the response signal. This 
leakage problem can be overcome using the correlation technique as suggested. For the 
correlation analysis with random input, the main problem involved is the removal of the 
linear contribution from the total response so that the computational efficiency can be 
improved. For this purpose, averaging in the frequency domain instead of the time 

domain as discussed is recommended.



CHAPTER [4

IDENTIFICATION OF 
CHAOTIC VIBRATIONAL SYSTEMS

4.1 PRELIMINARIES

So far, techniques for identifying structural nonlinearity based on the measured first- and 

higher- order frequency response functions have been developed and discussed in some 
detail in Chapter 2&3. If the first-order and higher-order (usually second-order) 
frequency response functions of a nonlinear structure are measured in the ways as have 

been discussed in previous Chapters then, in most cases, the structural nonlinearity can 
be detected, quantified and identified by analysing these measured FRPs. However, for 
some nonlinear systems (chaotic systems, which are discussed in this Chapter), the 

dynamic behaviour is so complex that the first- and higher-order FRF analyses, which are 

largely based on the assumption of periodic input periodic output, become inadequate. In 

order to analyse these systems, the development of yet more analysis techniques becomes 
necessary.

In the case of a single sinusoidal input, the possible behaviour of the response spectrum 
of a nonlinear dynamic system can be illustrated in Fig.4.1. The first-order frequency 

response function analysis only considers the fundamental frequency components, while 

the higher-order frequency response function analysis takes the harmonic (both
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subharmonic and superharmonic) and combinational frequency components into account. 

However, except for these fundamental and harmonic frequency components, the 

subharmonics of some nonlinear systems bifurcate in such a way that the response 
spectrum due to a single sinusoid input changes from discrete (periodic) to continuous 
(nonperiodic) distribution. Such newly-discovered strange behaviour of nonlinear system 
- a deterministic system exhibiting apparently random behaviour - is called chaos and is 
one of the most exciting research topics in nonlinear systems research.

Fundament

subharmonics

al component
superharmonics

\ ^
approaching chaos energy transfer to higher frequencies

Fig.4.1 - Response Frequency Components of a Nonlinear System

In the last fifteen years, clues to the emergence of randomlike motion in deterministic 
dynamic systems have been uncovered by new topological methods in mathematics. At 
the same time, experimental measurements and numerical simulations have provided 
supporting evidence to the mathematical analysis which shows that many physical 
systems may exhibit chaotic behaviour without random inputs. Research on chaos has 
become an interdisciplinary subject and applications of the study have been found in 
almost all engineering subjects. In mechanical engineering, it has been well known that 
Duffing's system [53] with negative stiffness, such as that which represents mechanical 

structure of pre-stressed buckled beams, and, some impact mechanical oscillators [54], 
exhibit chaotic behaviour under certain excitation and initial conditions. These systems 
represent very special types of mechanical nonlinear structures which are not commonly 

encountered in practice. In order to investigate the possible chaotic behaviour of practical 

mechanical structures with more commonly-encountered nonlinearities, a mechanical 
system with backlash stiffness nonlinearity is considered in this Chapter. Extensive 

numerical as well as experimental research work has been carried out and apparently, it is 
the first time in literature that the chaotic nature of mechanical system with backlash 
stiffness nonlinearity under realistic system parameters has been revealed. Such a 
nonlinear mechanism as backlash stiffness represents an important and extensive group of 

mechanical structures with manufacturing clearances such as gearing systems. Based on
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the mechanical backlash system, the basic theory of chaotic vibration is introduced and 
qualitative as well as quantitative ways of identifying chaotic behaviour of a nonlinear 
system are presented. Possible engineering applications of the study presented in this 

Chapter are suggested.

4.2 IN TRO D U CTIO N  TO CH A O TIC  VIBRATION TH EO RY

Chaos is ari nonlinear phenomenon which permeates all fields of science. Although 
identified as an important research area only recently, chaos has existed from time 
immemorial. It is now known that chaos can readily occur not only in man-made 
systems, but in all natural and living systems where nonlinearity is present.

Roughly speaking, chaos is an exotic steady-state response. The steady-state response of 
a system is what remains after the transient has decayed to zero and from what has been 
taught in linear system theory, it can either be an equilibrium point, periodic or quasi- 
periodic solution. This basic principle of linear systems has been so deeply-rooted in the 
mind of most engineers that they may subconsciously extrapolate it for nonlinear systems 
as well. We know that for some nonlinear systems, there exist a wide range of parameters 
for which the steady-state responses are bounded, but are not periodic. In fact, the 
response waveform becomes erratic with a broad continuous frequency spectrum (rather 
than discrete, as in the periodic case). Moreover, the response is so sensitive to initial 
conditions that unless a computer with infinite word length is used in the simulation, no 
long-term prediction of the precise waveform is possible.

For mechanical systems, the study of chaotic vibration is important for several reasons. 

First, in the design of mechanical control systems, it is essential to avoid the occurrence 

of chaotic oscillation at design stage because chaos means unpredictability and so 

uncontrollability. Secondly, the random nature of the response to a deterministic (usually 
periodic) excitation of a mechanical structure makes life prediction difficult and statistical 
stress/fatigue analysis becomes necessary. Finally, from a machine monitoring point of 
view, that a broad continuous response spectrum can be due a single sinusoidal input 
makes the reliable diagnosis in most cases difficult and suggests that the development of 

new techniques is required.

In the following section, the basic theory of chaotic vibration is introduced based the 

well-known Duffing's and van der Pol’s systems. Ingredients which are essential for 

understanding chaos are presented.
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4.2.1 DYNAMICAL SYSTEMS THEORY

In general, dynamic systems can be divided into three different categories: a u to n o m o u s  

d y n a m ic  s y s te m s , n o n a u to n o m o u s d y n a m ic  sy s te m s  and d is c r e te - tim e  d y n a m ic  s y s te m s .  

Both autonomous and nonautonomous dynamic systems are described by differential 
equations (ordinary or partial differential equations) while discrete-time dynamic systems 

are expressed in terms of iterative maps. All three types of systems are defined and 
discussed and some of the useful facts from the theory of differential equations are 

presented.

An n^-order autonomous dynamical system is defined by the state equation as

x = f ( x )  x(to) = x0 (4-1)

where x = ^  x, x (t)eR n is the state at time instant t and f :  Rn-> R n is called the vector

field. Since the vector field does not depend on time, the initial time may always be taken 
as to=0. The solution of equation (4-1) with initial condition x=x0 at time t=0 is called a 

trajectory (in n-dimensional space) and is denoted by ^ t(x0). The mapping (which is 

continuous as compared with the discrete mapping of discrete-time dynamical systems) 
<J)t: Rn-> Rn is called the flow of the system since (j)t is a continuous trajectory starts at x0 

and is like fluid flowing in the state-space. The dynamic system described in (4-1) is 
linear if / (x) is a linear function of state variable x. Free vibrational mechanical systems 

belong to this category.

An nth-order nonautonomous dynamical system, on the other hand, is defined by the 

time-varying state equation as

x = f(x ,t)  x(t0) = x0 (4-2)

The vector field depends on time and, unlike the autonomous case, the initial time cannot 
be arbitrarily set to 0. The solution of (4-2) passing through the point Xq at t=to is denoted 

as <j)t(x0,to). Again, the system is linear if /(x ) is linear with respect to x.

If for a nonautonomous system, there exists a constant T > 0 such that f  (x,t) = / (x,t+T) 

for all x and all t, then the system is said to be tim e  p e r io d ic  with period T. The smallest 

such T is called the m in im a l p e r io d . In this Chapter, all nonautonomous systems are 

assumed to be time periodic e.g., time invariant systems with periodic input force.
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An nlh-order time periodic nonautonomous system can always be converted to an 
(n + l^ -o rd e r  autonomous system by appending an extra state 0=27tt/T. Therefore, the 

corresponding autonomous system is given by

x = /(x,6T/27t) x(0) = x0 (4-3)

0 = 2k r r  0(0) = 27Cto/T (4-4)

Since f  is time periodic with period T, the new system described by (4-3) and (4-4) is 
periodic in 0 with period 2k . Therefore, the state-space is transformed from Euclidean 
space R n+1 to cylindrical space R nxS where S = [0, 2n)  is a circle. The solution in the 

new state-space is

'x(t)' ;©
•

O r-t o

< ► = *27tt , _ 1
ect). - j -  m od 2n

(4-5)

where the modulo function (x mod y gives the remainder of x divided by y, e.g., 3 mod 2 
=1) restricts 0 to be within the semi-closed interval [0,2tc). Using this transformation, 

results for autonomous systems can be applied to the time periodic nonautonomous case.

As for discrete-time dynamic systems, any map f :  R n-> R n defines a discrete-time 

dynamic system by the state equation

xk+l = :f(xk)» k = 0 , 1 , 2 , ......  (4-6)

where xk is called the state, and /  maps state xk to the next state xk+j. Starting with an 
initial condition xq, repeated applications of the map f  gives rise to a sequence of points 

{xk)k^o called an orbit of the discrete-time system. Examples of discrete-time dynamic 

systems are given below.

Although the research presented in this Chapter focuses on continuous time vibrational 
systems, discrete-time systems will be discussed for two reasons. First, the Poincare 

mapping technique, which replaces the analysis of flow of continuous-time system with 
the analysis of a discrete-time system, is an extremely useful tool for studying dynamical 

systems. Second, due to this correspondence between flows (of continuous-time dynamic 

systems) and maps (of discrete-time dynamic systems), maps will be used to illustrate 

important concepts without getting into details of solving differential equations.
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The simplest one-dimensional discrete-time system - the population growth model - 
which has been found to be chaotic is described by the logistic equation

xk+j = X x k (l - x k) (4-7)

For some values of X, after certain iterations until the transient component dies, the xk 
will settle to one specific value (period one solution). While for other values of X, xk 

oscillates between 2 values (period 2 solution), 4 values (period 4 solution) and so on. 
However, there are some parameter regions in which xk never repeats its value as 

iteration continues, as shown in Fig.4.2 and such phenomenon is the earliest observation 

of what we call chaos today.

Fig.4.2 - Bifurcation Digram of Logistic Map for 2.7 < X < 4.0

Another discrete-time system which exhibits chaotic behaviour is the quadratic map 

studied by Hdnon [55]

xk+i = l - a x £  + yk (4-8)

yk+1= bxk (4-9)

In the case when a=1.4 and b=0.3, for initial condition (xQ,yo), the sequence of points 
generated by the mapping {*}k“ 0 *s shown in Fig.4.3. Although the sequence of points

never repeats, they settle to restricted areas on the x-y plane and exhibit a very well- 
constructed pattern (as will be discussed, the pattern is very finely defined as it is fractal).
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Fig. 4.3 - The Henon Attractor

The characteristics of logistic map and Henon map are briefly discussed here because they 

will be referred to in later discussions.

4 . 2 . 2  STEADY-STATE BEHAVIOUR AND L IM IT  SETS O F 

DYNAM IC SYSTEM S

Dynamic systems are classified in terms of their steady-state solutions and limit sets. 
Steady state refers to the asymptotic behaviour of the solution of a dynamic system as 
time t —> oo. The difference between the solution and its steady state is called the transient.

A point y is defined as the limit point of x if, for every neighbourhood U of x, flow <j)t(x) 

repeatedly enters U as t -» ©o, e.g., the equilibrium point of a dynamic system.

The set of all limit points is called the limit set L(x) of x. Limit sets are closed and 
invariant under the flow <{>t (a set L is invariant under 4>t if, for all x e  L and all t, 
<j)t(x)eL), e.g., the limit cycle of a nonlinear system.

A limit set L is attracting if there exists an open neighbourhood U of L such that L(x)=L 
for all xeU . The limit cycle of a nonlinear system is an attracting limit set.

The basin o f  attraction B(L) of an attracting set L is defined as the union of all such 
neighbourhoods U. Every trajectory starting in B(L) tends towards L as t -»©©. These

definitions are briefly illustrated in Fig.4.4.
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yii
neighbourhood of y

attracting limit set L(x)

limit pointy
x — —  y f

7

<l>t(x)

limit set L(x)

basin of attraction U

O
limit point

x o x
limit set basin of attraction

Fig .4.4 - Illustration of Limit Point, Limit Set and Basin of Attraction

In a stable linear system, there is only one limit set corresponding to specific input and 
therefore the steady-state behaviour is independent of initial conditions. In a typical 
nonlinear system however, there can be several attracting limit sets, each with a different 
basin of attraction. In this case, the initial condition determines in which limit set the 

system eventually settles.

The concept of limit sets is very useful in understanding different classical types of 
steady-state behaviour such as equilibrium points, limit cycles and quasi-periodic 
solutions. However, as will be shown, it is far too simple to describe the complex steady- 
state behaviour found in chaotic systems and some new mathematical concepts such as 
fractal dimension and Lyapunov exponent need to be introduced when steady-state 
chaotic behaviour (strange attractor) is considered. In what follows, different types of 
steady-state behaviour are discussed based on the well-known Duffing's and van der 
Pol's systems. Each state will be described from three different points of view: in the time 
domain, in the frequency domain and as a limit set in state-space domain.

An equilibrium point xe is related with an autonomous system (a nonautonomous system 
does not have equilibrium points because the vector field f :  R n-» R n varies with time) 
and is the constant solution of equation (4-1), <()l(xe)=xe for all time t. In general, /(x)=0 

implies that x is an equilibrium point of the system. A simple example is the damped free 
vibration system given by

m x + c x + k x = 0  (4-10)

It is well known that the system possesses an equilibrium point which is (x,x)=(0,0). 
This equilibrium point can be obtained by solving j*(x)=0 as follows:

Rewrite (4-10) into its state-space form as
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x = y (4-11)

X

•m
|E1>>

“
IE1II (4-12)

_ c k •
Therefore, /(x)=0 means that y=0 and - — y - —- x = 0 => (x,x)=(0,0).

Both autonomous and nonautonomous systems can have periodic solutions under certain 
initial and excitation conditions. A solution ^(x*,^) is a periodic solution if

<()t(x*,to) = $t+Tm(x*»t0) (4-13)

for all time t and some minimal period Tm > 0. In general, a periodic solution o f a 

dynamic system has a Fourier transform consisting o f a fundamental frequency 

component at f= l/Tm and evenly spaced harmonics at k/Tm, k=2,3,.... The amplitudes of 
some of these spectral components may be zero. For a nonautonomous system, Tm is 
typically some multiple of forcing period Tm=kT and the periodic solution is usually 
referred to as a k1*1 subharmonic. To illustrate this point, a periodic (periodic 3) solution 
of the well-known Duffing's equation with 7=0.1, B=9.8 and co=l (all units appear in 

this chapter are supposed to be normalised except where physical units are given).

x + y x + x3 = B coscot (4-14)

Also, periodic solutions exist in autonomous systems and in this case, the periodic 
solution is called a limit cycle. A limit cycle is a self-sustained oscillation and cannot 
occur in a linear system. One classical example of limit cycle is found in van der Pol's 

equation
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x + (x2 - l ) x +  x = 0 (4-15)

The existence of a stable van der Pol limit cycle is shown in Fig.4.6 and can be physically 
explained in terms of the damping mechanism of the system. When Ixl < 1, the damping 
of the system is negative and therefore, the solution is expanding. While on the other 
hand, when the solution becomes Ixl £ 1, it is contracting. As a result, the solution will 
eventually settle down a limit cycle.

Another type of steady-state solution which exists in some nonlinear systems is the quasi- 
periodic solution (often referred to as almost periodic solution) which is the sum of 
periodic functions with their fundamental frequencies (the reciprocals of their minimal 
periods) to be incommensurable. To see how quasi-periodic solutions arise in dynamic 
systems, again consider the van der Pol's equation with external forcing as

*x + (x2 - 1) x + x = B coscot (4-16)

The system has a limit cycle oscillation with fundamental frequency coL. If the forcing 

frequency co is incommensurable with coL, then a quasi-periodic solution occurs. The 
quasi-periodic solution of equation (4-16) with B=1.0 and co=7t/2 is shown in Fig.4.7.



Q  Identification o f  Chaotic Vibrational System s 116

time domain state-space domain frequency domain

Fig. 4.7 - Quasi-periodic Solution of van der Pol's Equation

Mathematically, a quasi-periodic trajectory which contains n different incommensurable 
fundamental frequencies lies on an n-dimensional torus. Taking the two-periodic 
trajectory (contains two incommensurable fundamental frequencies) as an example, the 
trajectory lies on a two dimensional torus SxS as shown in Fig.4.8 with each S 
representing one of the base frequencies. Since a trajectory is a curve while SxS is a 
surface, not every point on the torus lies on the trajectory. However, it can be shown that 
the trajectory repeatedly passes arbitrarily close to any point on the torus and, therefore, 
the torus is the limit set of the quasi-periodic behaviour.

4.2.3 C H A O TIC  A TTRA C TO R

There is no generally-accepted definition of a chaotic attractor. From a practical point of 

view, chaotic solution can be defined as none of the above mentioned steady-state 
solutions; that is, as bounded steady-state behaviour which is neither an equilibrium 
point, nor periodic, and not a quasi-periodic limit set either. For this reason, chaotic 
attractors are often referred to as "strange attractors". Since the solution is nonperiodic 
(which means that the solution contains some random components) while the system is 

deterministic (there are no random parameters involved in describing the system), chaotic
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systems are very often described as "deterministic systems that exhibit random 
behaviour".

The chaotic behaviour of discrete-time dynamic systems such as the one-dimensional 
logistic equation and the two-dimensional Henon map has been briefly discussed and the 
bifurcation diagram for the logistic equation and the strange attractor for the H6non map 
are shown in figures 4.2&4.3. Now, a chaotic solution of Duffing's equation (4-14) with 
c=0.1, B=10 and co=l is calculated and is shown in Fig.4.9. It is evident from this that 

the trajectory is indeed bounded and nonperiodic. However, one should be careful to note 
that boundedness and nonperiodicity do not necessarily mean that the solution is chaotic 
because a quasi-periodic solution is bounded and nonperiodic as well. In order to 
distinguish chaotic solutions from quasi-periodic ones, the frequency spectrum of the 
signal needs to be calculated. For a quasi-periodic signal, the spectrum only contains 
discrete frequency components while a chaotic solution has a spectrum with a continuous, 
broad-band nature, as shown in figure 4.9. This noise-like spectrum is characteristic of 
chaotic systems.

I S S S  i:

time domain

'*1

state-space domain frequency domain

Fig.4.9 - Chaotic Solution of Duffing’s Equation

Unlike the classical types of attractor that are associated with classical geometric objects 
such as an equilibrium state with a point, the periodic motion or limit cycle with a closed 

curve and a quasi-periodic motion with a surface in multi-dimensional space, the limit set 
of chaotic behaviour is related to a new geometric object called a fractal set [56], which 

will be discussed later on.

Another property of chaotic systems is sensitive dependence on initial conditions: given 
two initial conditions arbitrarily close to one another, the trajectories emanating from these 

initial conditions diverge at an exponential rate (which is some kind of characteristic value 
of the system) until for all practical purposes, they are uncorrelated. This sensitive 

dependence on initial condition for Duffing's equation is illustrated in Fig.4.10 (the two 

initial conditions differ by only 1%). In practice, the initial state of the system can never
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be specified exactly, but only within some tolerance E and therefore, if two initial 

conditions Xo and xc, lie within E of one another, they cannot be distinguished. However, 

after a finite amount of time, flows CPt(xo) and 4>t(x~) will diverge and become 

uncorrelated. As a result, no matter how precisely the initial condition is known, the long­

term behaviour of a chaotic system can never be predicted (of course, the more accurate 

the initial conditions are, the longer the prediction can be, but since the divergence is 

exponential with time, unless the initial condition could be specified to infinite precision, 

accurate long-term prediction becomes impossible). 
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Fi .4.10 - Illustration of Sensitive De endence on Initial Conditions 

4.2.4 THE POINCARE MAPS 

A very useful classical technique for analysing dynamical systems was developed by 

- Poincare. The technique replaces the flow of a continuous-time dynamical system with a 

discrete map called Poincare map. For autonomous and non autonomous systems, the 

definitions of the Poincare map are slightly different and two cases are treated separately. 

Consider an nth..order autonomous system with a limit cycle r as shown in Fig.4.11. Let 

x* be a point on the limit cycle r and let T be the minimal period of the limit cycle. Take 

an (n-1 )-dimensional hyper-plane l: (a plane has a dimension more than two) transverse 

to r at x*. The trajectory emanating from x* will hit l: at x* in T seconds. Due to the 

continuity of 4>t with respect to the initial conditions, trajectories starting on l: in a 

sufficiently small neighbourhood of x* will, in approximately T seconds, intersect l: in 

the vicinity of x·. Therefore, vector field f and hyper-plane l: define a mapping P of 

some neighbourhood Ue 1: of x· onto another neighbourhood Vel: of x·. The thus­

defined P is called the Poincare map of an autonomous system. 
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For nonautonomous systems, as shown in section 4.2.1, an nth-order nonautonomous 
system in R n Euclidean space with period T may be transformed into an (n+1)- 

dimensional autonomous system in cylindrical state-space R nxS. Consider the n- 
dimensional hyper-plane £  in RnxS defined by

X =  {(x,6) R nxS I 0 _ 0{)}. (4-17)

Every T seconds, the trajectory intersects £  as shown in Fig.4.11. Thus a map P: £ —»£ 
is defined by P(x)=({)T(x,t0) where P is called the Poincare map. Such a Poincare map can 

be thought of in following two ways:
(i) P(x) indicates where the flow takes x after a T seconds and this is called T advance 

mapping; or
(ii) the orbit (sequence of points) {Pk(x)}k‘21 is a sampling of a single trajectory every T 

seconds; that is Pk(x0) = ^kT^o^o) for k = 1,2, . . . .

autonomous system
The Poincare map of a first order 
nonautonomous system

Fig.4.11 - Poincare Maps of Autonomous and Nonautonomous Systems

The usefulness of the Poincare map derives from the fact that there is one-to-one 
correspondence between the different types of steady-state behaviour of the underlying 
continuous-time dynamic system and the steady-state behaviour of mapping P. Therefore, 

from the steady-state behaviour of mapping P, the steady-state behaviour of the 

continuous dynamic system can be deduced.

As is clear from the definition of P, a period one solution of the underlying flow 

corresponds to a fixed point of the Poincare map. For nonautonomous systems, a period 
K solution (contains Klh subharmonic) corresponds to K different points on the Poincare 

map.
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The Poincard map can also be used to detect quasi-periodic solutions. As mentioned 

earlier, two-periodic solution (meaning two incommensurable minimal periods and is 
different from period two solution) lies on a two dimensional torus SxS as shown in 
figure 4.8. Using coordinate (61,62) on the torus, a two-periodic trajectory may be 

written as

f0i(t)l J co2t mod 2 k

le2(t)J l co2t mod 2 k

(4-18)

where C0J and co2 are incommensurable. In the nonautonomous case, one of the 
frequencies, say, 0)! is the forcing frequency of the system. An orbit of the Poincare map 

corresponds to sampling (4-18) every 2n/co1 seconds

f61(27ck/co1)'
[62(27tk/co1)

27tk m od 271 

27tkco2/co1 m od 271

0

27tkco2/co1 mod 2n
, k = 1, 2,...

(4-19)
Since and co2 are incommensurable, {62(27tk/co1))k~1 is not periodic and repeatedly 

comes arbitrarily close to every point in [0, 2n). Therefore, in the (61?62) coordinates, 

the limit set of the Poincare map is the circle S. In the original Euclidean coordinates, the 
limit set is a closed curve. To illustrate this point, the Poincare map of quasi-periodic 
solution shown in figure 4.7 with sampling frequency equal to the the forcing frequency 

is shown in Fig.4.12.

Fig. 4.12 - The Poincare Map of a Quasi-periodic Solution of van der Pol's System

For chaotic trajectories, the steady-state Poincare maps are distinctive and often quite 

beautiful. In order to illustrate this, the chaotic attractor (Poincare map) of Duffing's 
equation with c=0.1, B=10 and co=l is calculated and is shown in Fig.4.13. Looking at 

these orbits, it becomes immediately clear that the steady-state orbits do not lie on a
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simple geometrical form as is the case with periodic and quasi-periodic behaviour. The 

attractor has fine structure which is fracta l as will be discussed later on. Such fine 

structure of Poincar6 map is typical of chaotic systems.

Fig.4.13 - Strange Attractor of Puffing’s System

4.2.5 STA BILITY  O F L IM IT  SETS AND LYAPUNOV EX PON EN TS

The study of the stability of limit sets is important because only the attracting limit sets 
(structurally stable) can be physically observed. In this section, the conditions for a limit 
set to be stable will be discussed both in the case of equilibrium points and periodic 
solutions. The Lyapunov exponents which can be used to determine the stability of any 
type of steady-state behaviour, including quasi-periodic and chaotic solutions, will be 

introduced.

Consider an equilibrium point xe o f equation (4-1). It is well-known that the local 
behaviour (for small perturbations) of a nonlinear system near the equilibrium point is 
determined by linearising /  at xe as

8x = D /(x e) 5x (4-20)

where D /(x e) is the Jacobian matrix at point xe and 8x = (x - xe). The thus derived linear 

vector field (4-20) governs the time evolution of perturbations near xe of the original 
nonlinear system. In particular, the stability of the flow near xe can be determined based 

on the linear vector field by examining the real parts of the eigenvalues of the Jacobian 

matrix D /(x e).
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Suppose [’X.] and [<{)] are the eigenvalue and eigenvector matrices of the Jacobian matrix, 
then mathematically, the trajectory with initial condition xe+8xe is, to the first order,

n
$ t(xe+8xe) = <{)t(xe) + 8x(t) = xe + eDf(xe)l8xe = xe + cr { (j) }r e V  (4-21)

r = 1

where {cr contains scalar constants chosen to achieve the correct initial conditions. 

From equation (4-21), it can be seen that the real part of \  gives the rate of expansion (if 
Re(Xj) > 0) or contraction (if Re(?q) < 0) in the neighbourhood of the equilibrium point 
along the direction of

If Re(?q) < 0 for all X-v then all sufficiently small perturbations will die out as t °° and 
xe is asymptotically stable. If R e(^) > 0 for some X-v then xe is not stable. If one of the 

eigenvalues has zero real part, then the stability cannot be determined from the linearised 
vector field and higher terms need to be included in the expression of (4-20).

The stability of a periodic solution is determined by its characteristic multiplier. 
Characteristic multipliers are a generalisation of the eigenvalues at an equilibrium point. 
Since a periodic solution corresponds to a fixed point of the Poincare map P, the stability 
of the periodic solution is determined by the stability of the fixed point of the Poincare 
map. By analogy with the equilibrium point, the stability of fixed point x* of P 
(corresponding to initial condition x0) is determined by linearising P at x*. The linear 

discrete-time system

Sxk+1 = DP(x*) 8xk (4-22)

governs the local behaviour of map P near x*. Again as in the case of equilibrium point, 
the orbit of P for an initial condition x0+8x0 is, to the first order,

n
xk = x* + 8xk = x* + DP(x*) 8xk = x* + X c rM 'r((l)}r (4-23)

r = 1

where [*p.] and [(j)] are the eigenvalue and eigenvector matrices of DP(x*) and {cr)^ j  are 

scalar constants chosen to achieve the correct initial conditions. The eigenvalues [*p.] are 

the characteristic multipliers of the fixed point and determine the amount of contraction (if 
Ipjl < 1) or expansion (if Ip̂ l > 1) near x* in the direction of {4>}i for one iteration of the 

map P.



|~4~| Identification of Chaotic Vibrational Systems 123

The characteristic multipliers determine the stability of the periodic solution. If all the )ij 

lie within the unit circle (|ij is in general, complex), then the periodic solution is 
asymptotically stable. If some of the m lie outside the unit circle, then the periodic 

solution is not stable. If some of the characteristic multipliers lie on the unit circle, then 
the stability of the periodic solution cannot be determined by the multipliers alone.

Lyapunov exponents are a generalisation of the eigenvalues at an equilibrium point and of 
characteristic multipliers. They are used to determine the stability of any type of steady- 
state behaviour, including quasi-periodic and chaotic solutions. The definition of the 
Lyapunov exponent is as follows. Let [*m.] be the eigenvalues of a <I>t(x0) (a square 

matrix which is a function of time), then the Lyapunov exponents are defined by

lim
t—>oo

In lm;(t)l 
t i = 1, 2, ..., n (4-24)

if the limit exists.

To explain the physical meaning, the Lyapunov exponents of an equilibrium point are 
calculated. Let [’|i.] be the eigenvalues of D /(x c), then for flow d>t(xe) = eDAxe)t which 
is a linearised vector field, m^t) = eWl and

In lm;(t)llim ---- r----= limt—>oo t t—
In le^ill 

t = Re(M-i) (4-25)

Therefore, in this special case, the Lyapunov exponents are equal to the real parts of the 
eigenvalues of D /(x) at the equilibrium point and indicate the rate of contraction (Xj < 0) 

or expansion (?q > 0) near the equilibrium point.

Lypunov exponents are convenient for categorising steady-state behaviour. For an 
attractor (including a chaotic attractor), contraction must outweigh expansion and

n
therefore ^  X-x < 0. Attractors are classified in terms of Lyapunov exponents as

r = 1

follows. For a stable equilibrium point, X-x < 0 for all i. For a stable limit cycle, ^  = 0 

and ^  < 0 for i = 2, 3, ..., n. For a torus, = X2 ~ 0 an<3 Xx < 0 for i = 3, 4, ..., n.

One feature of chaos, as mentioned earlier, is its sensitive dependence on initial 

conditions. Sensitive dependence occurs in an expanding flow, as is illustrated below.
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Consider a nonautonomous system with a contracting flow (j)t as shown in Fig.4.14(a). 

Suppose that the state of the system can be measured to within an accuracy of e, then it is 
clear that it is more accurate to predict the state at time t2 using the measured state at time 

tx than to measure the state at t2. The larger the elapse time (t2-tj), the greater the accuracy 

of the prediction. Thus for a contracting system, the predictive value of the initial 
condition increases with time. On the other hand, consider the opposite case of an 
expanding flow as shown in Fig.4.14(b). It is more accurate to measure the state at t2 
than to predict it using the measured state at ^  and the predictive value of the initial 

condition deteriorates with time. This means that expanding systems exhibit sensitive 
dependence on initial conditions, but a purely expanding flow also implies unbounded 
behaviour. By definition, a chaotic trajectory is bounded, and therefore it follows that a 
chaotic system must contract in some directions and expand in others with the contraction 
outweighing the expansion (here we only consider the dissipative/damped dynamical 
systems). Hence, for a chaotic/strange attractor, at least one of the Lyapunov exponents 
must be positive and this existence of positive Lyapunov exponents distinguishes a 
strange attractor from other types of attractor and is one of the main criteria for detecting 

chaos.

4.2.6 TH E D IM EN SIO N  OF AN A TTRA CTO R

As discussed above, Lyapunov exponents can be used to categorise different types of 

limit set and here in this section another important concept - the concept of dimension of 
an attractor which serves to quantify the complexity of a given attractor - is introduced. 
An attractor could be defined to be n-dimensional if, in the neighbourhood of every point 
on the attractor, it looks like an open subset of R.n. This is how the dimension of a 

manifold is defined in differential topology. For example, a limit cycle is one-dimensional
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because it looks locally like an interval. A two-dimensional torus has a dimension of 2 
because for every point, locally, it resembles an open set of R2. An equilibrium point is 

considered to have zero dimension. However, as shown in figure 4.13, the 
neighbourhood of any point of a strange attractor has a very finely defined structure and 
does not resemble any Euclidean space. Therefore, strange attractors are not manifolds 
and do not have integer dimension. There are several ways to generalise the dimension to 
the general fractional case and in this section, only the capacity dimension is presented.

The simplest dimension is the capacity dimension. To illustrate how the capacity 
dimension can be calculated, let us consider a long time trajectory in phase space as 
shown in Fig.4.15. First, time sample the trajectory so that a large number of points on 
the trajectory are obtained. Then place a sphere (or cube) of radius (or length) e at some 
point of the orbit and count the number of points within the sphere N(e). The probability 

of finding a point in this sphere is then defined as

P(e) = ^  (4-26)

where N0 is the total number of sampled time data points. For a one-dimensional orbit, 

such as a closed periodic orbit, P(e) will be linear in e as e -» 0  and N0 P(e) ~ |3e 
(where P is a constant). If the orbit is quasi-periodic, two-periodic for example, then the 
probability P(e), as e -> 0 and N0 ->00 will be P(e) « 7E2 (where y  is a constant). These 
observations lead one to define the capacity dimension of an orbit at point Xj by 

measuring the relative percentage of time that the orbit spends in the small sphere; that is,

lim  ^  P(£>Xj)
e—>0 -------------

In e
(4-27)
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In general, thus calculated Dlc will be dependent on x [ and, therefore, averaging is 

required in order to calculate the capacity dimension of the orbit

a
1 M

= -  y  d 1M ci = 1
(4-28)

where M is the number of points which have been averaged. In this way, the capacity 
dimension of the strange attractor shown in Fig.4.3 was calculated to be Dc = 1.26. Since 
Dc is not an integer, the attractor is indeed chaotic.

For nonautonomous time periodic systems, the capacity dimension of the Poincare map 
of an attractor is often used to detect the existence of chaos and to quantify the complexity 
of the motion. If the calculated capacity dimension Dc of the Poincare map is independent 
of the phase of the Poincare map (the phase angle 0 < 0 < 2 k ) and satisfies 0 < Dc < 2, 
then the dimension of the complete attractor is just d = 1 + Dc.

4 .3  C H A O TIC  VIBRATION OF NONLINEAR M ECH AN ICA L 
SYSTEM  W ITH  BACKLASH

So far, the basic theories which are required in order to understand chaotic vibration of 
dynamic systems have been reviewed and summarised. In the following sections, the 
research carried out on the chaotic vibration of mechanical systems with a backlash 
stiffness nonlinearity is presented. Apparently, it is the first time in literature that the 
chaotic behaviour of such a general, yet so simple a nonlinear mechanical system has 

been revealed. Based on such mechanical backlash systems, qualitative as well as 

quantitative ways of analysing chaotic behaviour are presented. Possible practical 

applications of the research presented are discussed and suggested.

4.3.1 IN T R O D U C T IO N

In recent years, the study of chaotic dynamic behaviour in nonlinear deterministic systems 

has become a major research topic in nonlinear dynamic system analysis and new 

discoveries of chaos have been reported in several engineering applications such as 

nonlinear circuit design in electrical engineering [57], turbulence modelling in fluid 

dynamics [58] and chemical reaction process modelling in chemical engineering [59]. In 
mechanical engineering, systems modelled by Duffing's equation, such as pre-stressed 

buckled beams, have been studied extensively and it has been found that under certain 

excitation and initial conditions, chaotic vibrations can occur [53,61,62,63]. In particular,
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the chaotic behaviour of mechanical impact oscillators (oscillators with rigid motion 

constraints), both single and double oscillators, have been studied by Shaw and Holmes 
[54,64], However, it should be noted that these systems represent very special types of 
nonlinear mechanical system. In the case of Duffing's system, although chaotic vibration 
has been observed experimentally when the linear stiffness of the system is negative, 
such as for pre-stressed buckled beams, when the linear stiffness becomes positive - 
which is the more realistic case of some practical nonlinear structures with a stiffness 
nonlinearity - on the other hand, only when the vibration amplitude becomes excessively 
high that chaotic vibration occurs. Under practical service conditions therefore, chaotic 
vibration cannot in general occur for Duffing's system with positive linear stiffness. For 
impact oscillators, practical nonlinear structures rarely possess infinite stiffness and hence 
the impact oscillator model is, in general, not realistic of mechanical structures. 
Therefore, the possible existence of chaotic vibration in a general and practically realistic 
nonlinear mechanical structure has not been investigated to date. The research work 
presented below seeks to demonstrate that it is possible for chaotic vibration to occur in a 

general mechanical system with backlash stiffness nonlinearity which represents a group 
of mechanical systems with manufacturing clearances.

The classical analysis of the vibration behaviour of mechanical system with backlash 
stiffness nonlinearity is treated in standard texts on nonlinear oscillations, such as that of 
Minorsky [65], and an investigation of harmonic and superharmonic resonances of this 
type of systems was carried out by Maezawa [66]. The present analysis concentrates on 
the chaotic behaviour of the mechanical backlash system with realistic system parameters 
under sinusoidal excitation and presents both numerical and experimental results of the 

research. The fourth-order Runge-Kutta method with precision control was used in the 
numerical simulations. It was found that both periodic and chaotic vibrations exist under 

different forcing conditions.

4.3.2 TH E  G EN ERA L SYSTEM

The system studied is the simple nonlinear mechanical system shown in Fig.4.16. When 
the vibration amplitude Ixl is less than a certain value, x0, the system is linear. However, 

when the vibration amplitude Ixl > x0, the system becomes nonlinear. The equation of 

motion of the system excited by a sinusoidal force is written as:



f~4~] Identification of Chaotic Vibrational Systems 128

1
k 2 -  k ,

— V V W V H
c

i— r~

k 2 -  kj

h A / W W —
c

~j—[
L -i-

— W W W —
k,/2

- W W W —
kj/2

Fig.4.16 - Nonlinear Mechanical System with Backlash Stiffness Nonlinearity

mx + 2cx + F(x) = A coscot 

where F(x) is given as

(4-29)

F ( x ) H
k 2(x + x 0) 
k j x
k 2(x - x0)

(x > x 0 ) 
(Ixl < x 0) 
(x < - x 0 )

(4-30)

and is shown in Fig.4.17(a). Since the transient solution of (4-29) will decay due to the 
existence of damping (as illustrated in Fig.4.17(b), for which m =lkg, k1=5000N/m, 
k2=10000N/m, c=4N.s/m and x0=0.005m), only the steady-state solution of (4-29) is of 
interest. When the forcing amplitude A and frequency co satisfy the following relationship

, A ...............S x0 (4-31)
^(k j - mco2 ) 2 + 4c2co2

the system will behave exactly like a linear system for which the steady-state solution is 

given by

x(t) = X cos(cot+<}))

where X = ■ ^ ....... ..........
a/ (kj - mco2 ) 2 + 4c2co2

and (j) = arctg (—
2cco 
- mco 2̂

(4-32)

However, when (4-31) is not satisfied, the system becomes nonlinear and an analytical 

solution of (4-29) becomes mathematically impossible because an explicit analytical 
expression for the returning times i  (x) I x=+ Xo does not exist and numerical methods

have to be employed.
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i ~

(a) force displacement relationship (b) phase plane trajectory of free vibration 

Fig.4.17 - Force Displacement Relationship and Phase Plane Trajectory

As discussed in some detail in Chapter 2, measured first-order frequency response 
functions can be analysed to detect and to quantify structural nonlinearity. Here, they are 
used to give a rough indication as to whether and when chaotic vibration will possibly 
occur in a mechanical backlash system. The first-order FRFs corresponding to the above- 
mentioned parameter settings are calculated for various excitation amplitudes and are 
shown in Fig.4.18. From figure 4.18, it can be seen that when the forcing amplitude is 
either large or small, the system becomes effectively linear and this gives the indication 
that if chaos is to exist in such a system, the forcing amplitudes should be of intermediate 

values.

Fig.4.18 - First Order Frequency Response Functions of Mechanical Backlash System

4.3.3 C H A O TIC  M O TIO N  AND STRA N G E A TTRA CTIN G  SETS

Such a simple system as described by equation (4-29) is found to be chaotic under certain 

excitation conditions. Here, the chaotic behaviour of the system with two different sets of 
system parameters is studied (case 1: m =lkg, kj=0N/m, k2=40000N/m, c=4N.s/m and 
x 0=0.005m and case 2: m =lkg, k^lOOOON/m, k2=40000N/m, c=4N.s/m  and 

x0=0.005m) and a number of typical results are presented in the time, frequency and 

state-space domains. It has been found that there exist large forcing parameter (A,co)
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regions in which chaotic (bounded, nonperiodic) solutions exist and, from these, the 
chaotic solutions for case 1 with A=100N; co=40rad./s and for case 2 with A=240N; 

co=40rad./s (the excitations are pure sinusoids) are presented and shown in Figs.4.19- 

4.22. The Poincard maps shown in figure 4.22 are plots of discrete state-space 
trajectories with sampling frequency equal to that of the excitation. These figures give a 
visual impression of what a chaotic motion looks like. From the time domain plots (figure 
4.19) and the continuous state-space trajectory plots (figure 4.20) of the solutions, it can 
be seen that the motions contain some form o f random components (nonperiodic) and this 
is confirmed by the broad-band frequency components appearing in the response spectra 
(figure 4.21). The well-defined patterns of Poincar6 maps (figure 4.22) give rigorous 
confirmation that the solutions are indeed nonperiodic and, hence, chaotic.
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Fig.4.21 - State-space Trajectory of Chaotic Response

displacement (mmxlO)

Poicare map (case 1)

displacement (mmxlO)

Poicard map (case 2)

Fig.4.22 - Poincard map of Chaotic Response

Also, for comparison with these chaotic solutions, the period 1 (the period of the 
response is the same as that of the force) solution for case 1 with A=10N; co=40rad./s is 

shown Fig.4.23. The time-domain plot and state-space trajectory show clearly the 

periodicity of the resulting motion, and the effective absence of any broad-band 

com ponent (only harmonic components are present) in the response spectrum 
demonstrates the clear difference from the response spectrum of a chaotic response.
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Fig.4.23 - Period one solution of Backlash System



Q  Identification of Chaotic Vibrational Systems 132

During the numerical simulation, it was found that before the onset of chaos, as the 

forcing parameters change gradually, a series of periodic doublings (bifurcations) 
occurred, as is the normal route to chaos. This was shown clearly in the logistic map of 
figure 4.2 in which, as the parameter X changes, the period 1 solution bifurcates into 

period 2 and then to period 4 and then to period 8 and so on, until chaos sets in. 
However, in the present case, since the nonlinearity is symmetric, odd periodic solutions 
(e.g. period 3) also exist and therefore it is difficult to say in this case that the route to 
chaos is via period doubling.

Typical chaotic behaviour of a nonlinear backlash system has now been presented in the 
time, frequency and state-space domains. The existence of chaotic behaviour of a 
nonlinear system can, in general, be detected, as shown above, either using the response 
spectrum or more rigorously, using the the Poincare map of the motion. The quantitative 
analysis of chaotic behaviour is to be discussed next.

4.3.4 FR A C TA L D IM EN SIO N  OF STRA N G E A TTRA CTO RS

As discussed in the introductory section, an attractor is defined in system dynamics as a 
well-defined structure in the state-space plot after the decay of transients due to the 
existence of damping. There are three classical types of dynamic motion and they are: (i) 
equilibrium, (ii) periodic motion/limit cycle and (iii) quasi-periodic motion. These states 
are called attractors since, after the transient decays, the system is attracted to one of the 
above states. Classical types of attractor are all associated with classical geometric forms 

in state-space; the equilibrium state with a point, the periodic motion/limit cycle with a 

closed curve and a quasi-periodic motion with a hyper-surface (a surface has a dimension 
of more than 3). However, a chaotic motion rides on a chaotic or strange attractor which 

is a stable structure of a long-term trajectory in a bounded region of state-space, which 
folds the bundle of trajectories back onto itself, resulting in a mixing and divergence of 
nearby states [67]. The strange attractor is associated with a new geometric form called a 
fractal set which has a dimension of noninteger value known as the 'fractal dimension'.  ̂

For each chaotic motion, based on its Poincare map, the fractal dimension can be 

calculated and the value of this fractal dimension gives quantitative measure of the 

complexity (or chaos) of the motion. As mentioned before, there are some different 
measures of the dimension of a set of points in space and the most intuitive one is the 
capacity dimension. The detailed procedure of calculating the fractal (capacity) dimension 
of a given chaotic attractor (Poincare map) was presented in section §4.2.6.
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Based on equations (4-27) and (4-28), the fractal dimensions have been calculated for the 
Poincare maps of figure 4.22 and found to be Dc = 1.206 for case 1 and Dc = 1.165 for 
case 2, respectively. It should be mentioned here that although e should theoretically be as 
small as possible, according to (4-27), different values of £ must be tried due to numerical 
and/or experimental inaccuracies until the calculated dimension becomes independent of £ 

as shown in Fig.4.24. The noninteger values of these dimensions show that the attractors 
of figure 4.22 indeed have fractal/self-similar structures and that the motions riding on 
them are  chaotic. Furthermore, it is worth mentioning that, in addition to the 
quantification of the complexity of the chaotic motion, the calculation of fractal dimension 
is very important for the modelling of chaotic systems because it is from this value that 
the number of degrees of freedom necessary to model a practical chaotic system can be 
determined so that all the topological nature of the attractor can be preserved.
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Fig.4.24 - Capacity Dimension Versus the Size of £

4 .3 .5  SEN SITIV ITY  TO  IN ITIA L CO ND ITIO N S AND 

LYAPUNOV EX PO N EN TS

As discussed in section §4.2.5, chaos in dynamics implies a sensitivity in the outcome of 
a dynamic process to small changes in the initial conditions. When a system becomes 
chaotic, the accurate prediction of long-term response becomes impossible because, in 
this case, a small initial condition uncertainty will be magnified exponentially as time goes 

on and, as a result, two originally indistinguishable initial conditions will lead to 
completely different long-term solutions. This sensitivity to initial conditions for case 1 
with A=100N; co=40rad./s is illustrated in Fig.4.25 (the time interval between two 

successive points for these two trajectories is a forcing period).
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In order to quantify this sensitivity to the initial conditions, the Lyapunov exponent of the 
motion needs to be calculated. Imagine a set of initial conditions within a sphere of radius 
e in phase space, then the chaotic motion trajectories originating in the sphere will map the 
sphere into an ellipsoid whose major axis grows as d=Ee^1, where X is known as a 
Lyapunov exponent. As mentioned in §4.2.5, for regular motions, ^.<0, while for chaotic 
motions, ?i>0. Thus, the sign of X is a criterion of chaos. The numerical method for 

calculating the Lyapunov exponent was well explained in [68]. Suppose we have two 
chaotic trajectories, Tj and r2, starting with very close initial conditions as shown in 
Fig.4.26, then X can be calculated as:

N

X = lim ■ \  \ 4 1 n (4-33)
N - * o l N  - l 0  a k - l

k = 1

Based on (4-33), the Lyapunov exponents for case 1 with A=100N; co=40rad./s and case 

2 with A=240N; co=40rad./s are calculated to be 0.532 and 0.624. During the calculation,
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an integration time of 200 cycles was used and, as shown in Fig.4.27, the calculated 
value can be considered to be reliable because by that time, X virtually does not change. 

These positive Lyapunov exponents give quantitative measure that the trajectories 
diverge, on average, at an exponential rate of X = 0.532 for case 1 and ^=0.624 for case

2 .

Fig.4.27 - Calculated Lyapunov Exponents Versus Integration Time

4.3.6 E FFE C T  OF FO RCIN G  PA RAM ETER AND DAMPING 

ON CHAOS

Once the chaotic nature of a nonlinear system has been established, what is then of 
interest is to know under what forcing conditions chaotic vibrations will occur because if 
the necessary conditions for chaos have been determined, then it is possible to avoid them 
or to employ them if there are some advantages of doing so. At present, the determination 
of the forcing parameter field of a nonlinear system in which chaotic vibrations occur is 

generally achieved by experiment although analytical predictions for some specific chaotic 

systems such as Duffing’s system have been undertaken. In the present study, the forcing 

parameter field for the existence of chaotic vibration of the system described by equation 
(4-29) (case 1) was determined by numerical experiment, results of which are shown in 
Fig.4.28. It has been found - as expected - that chaotic vibrations occur when the forcing 
amplitudes are of moderate values for all the excitation frequencies tried. For the higher 
excitation frequencies, although it cannot be proven because of limited calculation 
capacity, it was found that no chaotic vibrations occurred when co was greater than 85 

rad./s.
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Excitation Frequency (rad./sec.)

Fig.4.28 - Forcing Parameter Field for the Existence of Chaotic Vibration

To see how chaotic motion changes when the forcing amplitude increases, the Poincare 
maps of different forcing amplitudes at an excitation frequency co=40rad./s are calculated 

and are shown in Fig.4.29. The calculated fractal dimensions show that although all the 
motions are chaotic, they become more 'regular' as forcing amplitude increases.
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displacement (mmxlO)

A = 100, Dc= 1.206 A=200, Dc=1.187

A = 1000, Dc=1.156

Fig.4.29 - The Poincar6 Maps of Different Forcing Amplitudes

To assess the effects o f damping on chaotic vibration, different damping levels were 
introduced for case 1 with A=100N; co=40rad./s. As expected, an increase in damping 

was found to reduce the 'randomness' in the chaotic motion and the Poincare map of the 
motion becomes more compact as the damping increases, as shown in Fig.4.30. The 
fractal dimensions of the Poincare maps for different values of damping c were also 
calculated and the results shown in Fig.4.31. Clearly, the introduction of damping is an 

effective way of avoiding unsatisfactory motions of chaotic systems.
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Fig.4.30 - The Poincar6 Maps at Different Damping Levels

Damping Coefficient

Fig.4.31 - Fractal Dimension Dc Versus Damping Level c
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4.3.7 TW O -D EG R EE -O F-FR EED O M  BACKLASH SY STEM

So far, the chaotic behaviour of an SDOF mechanical system with backlash stiffness 
nonlinearity has been investigated in some detail. In order to study chaotic vibrations of a 
nonlinear MDOF system, the 2DOF system with backlash stiffness nonlinearity as shown 
in Fig.4.32 is considered. It is generally believed that if chaotic vibration occurs in a 
MDOF system, the motion will become yet more complex than that in an SDOF system 

with same type of nonlinearity because, in this case, the interactions between all the 
degrees of freedom act as chaotic excitations and these chaotic excitations make the 
resulting motion more complex. As in the case of the SDOF backlash system, it was 
found that for very low and very high excitation levels, the motions are periodic. 
However, there exists a wide range of forcing parameters in which chaotic vibrations 
occur.

f= 500sin4Qt irq = lkg m2 = 1kg x 0 = 0.005m

v C
c = 4NS/m k == 40000N/m

C £
— 11— “ W V ” ™2 — E — 2 

- A A / V — ✓
' k k 7 ^ 7 k '

Fig.4.32 - 2DOF Mechanical System with Backlash Stiffness Nonlinearity

The system parameters are as shown in figure 4.32 and it was found that when the 
forcing amplitude A=500N and forcing frequency co=40rad./s, the motions become 

chaotic. As before, the results are presented in the time-, frequency- and state-space 

domains as shown in Fig.4.33. However, as the 2DOF system is a four-dimensional 

system since there are four state variables {x],x] ,X2,x2} , the projection of the four­

dimensional Poincare map onto the xj vs x } plane (2-dimensional) disguises the 

fractal/self-similar properties of the true Poincare map.
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Fig.4.33 - Chaotic Response of 2DOF Backlash System

4.3.8 EX PER IM EN TA L IN V ESTIG A TIO N

Detailed numerical studies on the chaotic vibration of backlash system have been carried 
out and reported alone. However, the question remains: "do chaotic vibration exists in 
real practical backlash systems?" To answer this question, an experiment was designed 
based on a test structure comprising a simply-supported beam with a mass at its midpoint 

to simulate the SDOF system, as shown in Fig.4.34. The first natural frequency of the 

structure was designed to be around 20Hz with the second mode much higher so that 
when the excitation is around 20Hz, the structure behaves effectively like an SDOF 

system. The backlash stiffness nonlinearity was introduced by providing motion 
constraints on both sides of the mass (figure 4.34) so that the stiffness characteristics of 
the equivalent SDOF system can be represented by that shown in figure 4.17(a). The 
response was detected by a strain gauge attached on the beam near the mass such that the 
measured strain is proportional to the displacement of the mass. A sinusoidal excitation 

force is produced by an electro-magnetic shaker acting on the mass.
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As in the numerical studies, periodic as well as chaotic responses were found to exist at 
different forcing amplitudes and frequencies. The time response and auto-spectrum of a 
chaotic response at excitation frequency f=25Hz are presented in Fig.4.35. A pseudo- 
Poincare map (x(n+l) vs x(n), where x(n) is the sampled response signal with sampling 

frequency equal to the excitation frequency which is 25Hz), is shown in Fig.4.36 
because in the experimental case, usually only one signal (displacement or velocity) is 
available (the simultaneous measurement of displacement and velocity is practically 
difficult in some cases and it has been mathematically established [58] that the same 
amount of information about the motion of the system can be obtained from the pseudo- 
Poincre map instead of the true Poincard map). From these results, the chaotic nature of 
the response is clearly demonstrated. However, it is difficult to compare these results 
with those from the numerical calculations because the necessary system parameters of 

the experimental rig are difficult to determine.

A
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Fig.4.35 - Time Response and Auto-spectrum of Measured Chaotic Response
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Fig.4.36 - Pseudo-Poincard Map of Experimental Chaotic Response

4.4 C O N C L U SIO N S

In this chapter, the basic theory of chaotic vibration has been summarised and ingredients 
which are required in order to understand chaotic behaviour of dynamic systems have 
been illustrated. Together with Chapters 2 & 3, a complete picture of all the probable 
nonlinear phenomena in structural dynamics and the analysis techniques for identifying 
them have been presented.

For the first time, the hidden chaotic behaviour of nonlinear mechanical systems with 
backlash stiffness nonlinearity has been studied in some detail both numerically and 
experimentally. Particular attention has been paid to the identification of chaotic vibration 

in such nonlinear systems. Indeed, as shown in the numerical simulations, there exist 

wide parameter regions, both in the system parameters and the external forcing 
conditions, for which chaotic vibrations occur. Qualitative as well as quantitative ways of 
identifying chaotic vibration in nonautonomous nonlinear systems are presented.

The chaotic behaviour is explained in time-, frequency- and state-space domains. For 
detecting the existence of chaotic vibrations, the response spectrum or, more rigorously, 

the Poincare map of the motion, is employed. The fractal dimensions of strange attractors 

are calculated and serve the purpose of quantifying the complexity of the motion. The 

sensitivity o f chaotic motions to initial conditions is examined and the Lyapunov 
exponents are calculated, giving further indication of the existence of chaotic vibration.
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The system studied is a singularly simple system whose equation of motion is very easy 
to understand physically. Also, as shown in this paper, an experimental model can readily 
be constructed to demonstrate the predicted behaviour. Such a system is likely to become 
a paradigm for further research into chaos in nonlinear dynamical systems. In mechanical 
structures, such nonlinear mechanisms represent the intermittent contact between 
components due to manufacturing clearances, and therefore it is expected that many 
mechanical systems might exhibit chaotic behaviour under appropriate operating 
conditions. Since one of the major consequences of chaos is unpredictability of the 
response, it is therefore recommended that statistical methods should be applied to 
stress/fatigue analysis when such conditions are anticipated. Furthermore, from a 
condition monitoring view point, if a broad-band response can be caused by a purely 
sinusoidal excitation (e.g., due to the eccentricity of rotational components), this makes 
reliable diagnosis in most cases difficult and creates the necessity of a new understanding 
of such nonlinear systems and the development of new techniques so that reliable 
diagnosis can be achieved. Further, in the design of mechanical control systems such as 
robots, where such backlash stiffness nonlinearity is very likely to exist, care must clearly 
be taken at the design stage so that under normal service conditions, undesirable or 

unpredictable chaotic motion will not occur.



CHAPTER

LOCATION OF

STRUCTURAL NONLINEARITIES

S.l PRELIMINARIES

So far, different types of dynamic phenomenon observed in nonlinear structures have 
been discussed and techniques for analysing them have been presented. For practical 
structures whose nonlinearities are such that the measured first-order FRFs using 
sinusoidal excitation (when the amplitude of the excitation force is kept constant) display 
the nonlinear behaviour (most practical nonlinearities are of this nature), a new 
identification method has been developed in Chapter 2 which can not only quantify the 
extent of the nonlinearity, but also identify its type in some cases. On the other hand, for 
some nonsymmetric nonlinearities such as the quadratic and bilinear stiffness 

nonlinearities, as discussed in Chapter 3, the measured first-order FRFs are effectively 
linear and analysis of the higher-order FRFs becomes necessary so that such 
nonlinearities can be identified in practice. However, both first-order and higher-order 

FRF analyses are largely based on the assumption of periodic-input periodic-output and 
for some nonlinear structural systems (chaotic systems), this assumption is no longer 

valid. Based on a system with backlash stiffness nonlinearity, qualitative as well as 
quantitative ways o f identifying chaotic vibrational systems have been presented in 
Chapter 4. Some important engineering applications of the techniques developed have 
been discussed.
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In this and later Chapters, we shall confine ourselves to the analysis of first-order FRFs 

only although we accept that such analysis could, in some cases, be very approximate. It 
will be shown how measured first-order FRF data (or their derived modal data), together 
with an analytical model of the structure (usually an FE model), can be used to locate the 
structure's localised nonlinearity (Chapter 5) and later how an accurate mathematical 
model of a dynamic structure can be established by correlating an analytical model and 
measured dynamic test data (Chapters 6 & 7).

5.2 N EC ESSITIES AND REQ U IR EM EN TS FOR N O N LIN EA R ITY  
LO C A TIO N

It is usually believed that, if they exist, structural nonlinearities are localised in terms of 
spatial coordinates as a result of the nonlinear dynamic characteristics of structural joints, 
nonlinear boundary conditions and nonlinear material properties such as plasticity. The 
ability to locate a structure's localised nonlinearity thus has some important engineering 
applications. First, the information about where the structural nonlinearity is may offer 
opportunities to separate the structure into linear and nonlinear subsystems so that these 
can be analysed separately based on nonlinear substructuring analysis [69]. Second, since 
nonlinearity is often caused by the improper connection of structural joints, its location 
may give an indication of a malfunction or of poor assembly of the system. Third, from a 

materials property point of view, the stress at certain parts o f the structure during 
vibration can become so high that the deformation of that part becomes plastic and the 
dynamic behaviour becomes nonlinear. In this case, location of the nonlinearity may offer 
the possibility of failure detection. Finally, as will be discussed in detail in Chapters 6&7, 
location information is essential if a nonlinear mathematical model of the structure is to be 

established.

In practical measurements, the data measured are usually quite limited (both measured 

modes and coordinates are incomplete) and this is especially true when a nonlinear 

structure is considered, as will be discussed in some detail in Chapter 6. It is therefore 

believed that the task of locating a structure’s localised nonlinearity can only become 
possible by correlating an analytical model, which may contain modelling errors but can 

represent the structure to some accuracy, and the results from dynamic test of the 
structure. To illustrate the above argument, consider a typical nonlinear structure (two 

linear components connected by a nonlinear joint) as shown in Fig.5.1. Mathematically, 

the structure possesses a mass matrix [M], which is constant, and a stiffness matrix 

[K(ft)], which is a function of of response amplitude, if stiffness nonlinearity is



|~5~| Location of Structural Nonlinearity 146

considered (for the convenience of discussion, the structure is assumed to be undamped). 
Clearly, if the impedance matrix [Z(co)] of the structure can be measured, then the 

nonlinearity location becomes straightforward as shown in Fig.5.2. However, what can 
be measured in practice is the the receptance matrix [a(co)], which is the inverse of 
[Z(co)], and in this inverse format the localised stiffness change due to the nonlinearity at 

different response amplitudes is spread over the whole matrix, as shown schematically in 
Fig.5.3. O f course, one may obtain [Z(co)] by inverting the measured [a(co)] but, 

unfortunately, such a process is found to be extremely sensitive to measurement noise 
and, therefore, is often not implementable in practice. Hence, it becomes clear that in 

order to locate the nonlinearity based on measured data only, all the coordinates and all 
the modes of the structure should be measured so that the mass and stiffness matrices of 
the structure at different response amplitudes, which are necessary to the location of 
nonlinearity, can be reconstructed. This demonstrates the difficulties of using measured 

data only to do the location task.

■■

[Z(co)] at resp. £2 [Z(o>)] at resp. stiffness change

Fig.5.2 - Schematical Illustration of Location Process
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Fig.5.3 - Schematical Illustration of Inverse Process

Fortunately, due to the development of analytical modelling techniques, an analytical 
model of a structure can be employed. Although it may contain modelling errors, these 
are usually of second order when compared with the analytical model itself in the sense of 
the Euclidean norm. With such an analytical model available, it will be shown in this 
Chapter that by correlating the analytical model and the measured dynamic test data, 
location of nonlinearity can be achieved.

5 .3  TECHNIQUE FOR THE LOCATION OF STRUCTURAL 

NONLINEARITY

5.3.1 LOCATION USING MEASURED MODAL DATA

The location method developed in this Chapter is based on the correlation between an 
analytical model which contains modelling errors and dynamic test data which are 

measured at different response levels. A nonlinearity location method based on the use of 

measured modal data is discussed first. This method is then extended to the case of using 

measured FRF data.

Before discussion, it is necessary to mention that the 'modes' of a nonlinear structure are 

difficult to define (if indeed they exist at all) in an exact mathematical sense [70-73] 
because of the existence of harmonic response components, and so the term 'modes of a 
nonlinear structure' is used in this Chapter to mean the natural frequencies and 
modeshapes which are derived from the analysis of measured first-order FRFs in which 

only the fundamental frequency component of the response is of interest. For most 

nonlinear mechanical structures, the thus-obtained natural frequencies and modeshapes
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are response level dependent. As far as stiffness nonlinearity is concerned, the stiffness 
matrix of the structure corresponding to different response levels will be different and, 
therefore, if this difference in stiffness matrix can be calculated in some way, the problem 

of nonlinearity location can be resolved.

Suppose that the eigenvalues and eigenvectors of the r^  mode (which is sensitive to the 
localised nonlinearity) corresponding to a lower response level, are {<t>i} and those 
corresponding to a higher response level, &2, are (^2) anc* that these have been 

obtained from the analysis of measured first-order FRFs (either based on the new 
nonlinear modal analysis method discussed in Chapter 2 or based on standard linear 
modal analysis methods by linearising the structure using response control). Suppose 
also that the analytical model which contains second-order modelling errors 
(corresponding to lower response level) is available. Then, from the eigendynamic 

equations, the following relationship can be established:

( -  ( [MJ + [AM ]) + [KJ + [AK] ) { ^ )  = {0} (5-1)

( -  ( [MJ + [AM] ) X2 + [KJ + [AK] + [AKJ ) {<j)2} ={0} (5-2)

Post-multiply (5-2) by { }T, then

(- X2 [AM] + [AK] +  [AKn]) [<]>2}{4>i }T = - (- M M J  +  [K J )  (<[)2){<1)1)T (5-3) 

Post-multiply (5-1) by (<f>2) , we have

(- X, [AM] + [AK]) (<[>,) [<t>2)T = -(-X ,[M J  + [KJ) [([>,) (<|)2}t (5-4)

Subtract (5-4) from (5-3) and rearrange, then

[AM] (- X2 (<|>2} }T + X ,(<[>!} (<|>2)t ) + [AK] ({<J)2} [<t>i }T -(<[>!) [<t>2}T) +

[AKJ ([<j>2] (<|>i )T) =

(- 3lj [MJ + [KJ ) {(h ) (W T - (- 312 [MJ + [KJ ) {(|>2} (<[)1)T (5-5)

Since {<{)2} is a perturbed modeshape of {(j^}, due to the stiffness change of nonlinearity,

° f  second order compared with ((j)2} in the sense of the 
Euclidean norm (one can notice that all the diagonal elements of ((j)2]



f~5~1 Location o f S tructural Nonlinearity 149

are zero), as a result, if the modelling errors [AK], ?4 [AM] and stiffness change due to 

nonlinearity [AKJ are of the same order of magnitude (also in the sense of the Euclidean 

norm), then to the first order approximation, (5-5) becomes

[A K J [<|>2) [<|>1}T =  (- [M J + [ K J  ) {4)1} (4>2)t  - (- M M J  +  [K J  ) {<t>2> {<t>i)T

(5-6)

As a special case in which [AK]=[0] and [AM]=[0] (no modelling errors), then (5-6) 
becomes an exact statement for [AKJ. The principle of the nonlinearity location process 

based on equation (5-6) is illustrated in Fig.5.4. If the nonlinearity is localised, then 
[AKJ will be a very sparse matrix (only those elements where the structural nonlinearity 

is located are nonzero) and, as shown in figure 5.4, the dominant nonzero elements of the 
resultant matrix after the matrix multiplication will indicate the location of localised 

nonlinearity. Also, it should be noticed that during the location process, only one 
measured mode is required and it is recommended that the mode which is the most 
sensitive to nonlinearity in the measured frequency range should be used. Extra modes 
can be used to check the consistency and reliability of the location results.

.5-' i-fr - ,,
NAAVAvT ,V. < AS  ̂v S %^  -J.

.r- v . \
- W ■■ . 's\'. '< - ;' { Ji

[A KJ full matrix resultant matrix

Fig.5.4 - Illustration of Nonlinearity Location Process

5.3.2 EXPANSION OF UNMEASURED COORDINATES

In the theoretical development of the location method, it is assumed that the measured 
coordinates are complete. In practice, however, this is very difficult to achieve because 
certain coordinates are physically inaccessible, such as internal DOFs, and the rotational 
coordinates are very difficult to measure and so the unmeasured coordinates have to be 

interpolated first before the location process can be carried out. This interpolation of
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unmeasured coordinates can be achieved by using the analytical model itself based on 

Kidder's expansion method [74].

Although the analytical model contains modelling errors, in order to interpolate the 
unmeasured coordinates, it is assumed that the following relationship between the 
analytical model and the r^  measured and unmeasured sub-modes holds:

co:
[Msm] [Mss] J

Wm)

{<M
+

[Kmm] [Kms] 

L[K sm] [Kss]
i w

{<>s}

{0 }

{0 }
(5-7)

where {<})m} and {(j)s} are the r^ measured and unmeasured sub-modes. Upon multiplying 

out (5-7), the following two equations are established

(- co? [ M J  + [ K J )  (<!>m) + (- CO? [1VU + [Kms]) {<y = {0} (5-8)

(- co? [Msm] + [Ksm]) (<}>m) + (- co? [Mss] + [Kss]) {c(>s) = (0) (5-9)

Theoretically, {<|)s} can be calculated from either (5-8) or (5-9). However, when the 

number of measured coordinates is less than that of the unmeasured ones, which is quite 
usual in practice, (5-8) becomes underdetermined in terms of the solution of {<f)s} (the 

coefficient matrix is rank deficient), and it is therefore recommended that (5-9) should be 
used to interpolate {<()s} as follows:

(<t>s) = (- co? [Mss] + [Kss]) •> (co? [Msm] - [Ksm]) {<j)J (5-10)

It has been found that the interpolation of unmeasured coordinates based on (5-10) is 
quite accurate for the lower modes of vibration (this will be further discussed in Chapter 
7) and from the nonlinearity location point of view, if some coordinates have been 

measured where the structural nonlinearity is located, the thus-interpolated modeshapes 
can be used to achieve a successful nonlinearity location. Also, it can be shown 

mathematically that the located errors in the above mentioned nonlinearity location process 

will only occur in the measured coordinates if the unmeasured coordinates are interpolated 
based on (5-10). This is briefly illustrated below.

Since (^ [M J  + [KJ ) {<|>j} (and similarly (k2 fMaJ + [KJ ) {fe}) on the RHS of (5-6) 

can be re-written as:
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[Ma] + [Ka] ) { 0 , } = -
[^nm l [^msl

- [ M J  [ M J  .
( $ J

{$,)

[ K J  [Kms]

P U  [Kss] J
($m)1
($ s) J

' (- ($2 [MmJ  + [Kmm]) {$m} + (- (S? [Mras] + [Kms]) [ $ s [ 

. (- (S2 [Msm] + [Ksm]) ( $ m) + (- (G? [M ss] + [ K J )  ( $ s )
(5-11)

where parameters with A are the modal parameters corresponding to lower response level. 
When {$s} is interpolated based on (5-10), then it is easy to see that in (5-11), the 

elements corresponding to the unmeasured coordinates (the lower part) are zero and (5- 
11) becomes

' (- eg2 [Mram] + [Kmm] ) + (- <®2 [Mms] + [Kms]) {$ ,}  "
< >
. (- cS2 [ M , J  + [Ksm]) f $ J  + (- A 2 [ M J  + [ K J )  { $ , }  . 

Upon substitution of (5-12), (5-6) becomes

{ r i ) i

( 0 )  J
(5-12)

[AKn] (<])2) (tt.!)7 ( R i ) i ( < t > 2 ) T  | ( r 2 ) i  ( 0 i ) t  r [ R ]
(0) J '  1 {0} } L [0]

(5-13)

5 . 3 . 3  SENSITIVITY OF MODAL PROPERTIES TO 
LOCALISED NONLINEARITY

In order to make the location more reliable, it is recommended that a mode which is 

sensitive to the localised nonlinearity should be used in the location process. In order to 
determine which mode is the most sensitive one in the measurement frequency range 
(corresponding to specific excitation point), first-order constant-force FRFs can be 

measured and, as discussed in Chapter 2, the degree of distortion of these measured FRF 
data around each mode can be used to give an indication of which is the most sensitive to 

the nonlinearity. Accordingly, the mode sensitivity to localised nonlinearity can be 

established theoretically. Suppose that a stiffness nonlinearity is introduced between 
coordinates xi and Xj and a unit (harmonic) force is applied at xk, then to a first-order 

approximation, the maximum relative displacement between xj and Xj for the r* mode, ĉ , 

can be expressed as
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dr = — — 2 (5-14)
Tlr«r

Since nonlinearities of practical structures are usually displacement dependent, d, can be 

used to quantify the sensitivity of different modes to localised structural nonlinearity. 
From (5-14), it can be seen that if the structure is nonlinear, some of the lower modes 
will appear to be nonlinear due to their particular modeshapes while the higher modes are 
likely to appear linear.

5.3.4 NUMERICAL CASE STUDIES

A 30DOF mass-spring ‘chain’ model shown in Fig.5.5 is used in the numerical case 
study. Cubic stiffness nonlinearity is introduced between x15 and x16 and 40% analytical 
stiffness modelling errors are introduced between coordinates xr x3 and x28-x30. When 
the excitation coordinate is chosen to be x 1? mode 2 is found to be the most sensitive 
mode ( d ^ l^ E - S ,  d2=3.37E-5, d3=4.83E-7 and d4=3.33E-5 based on (5-14) with 1% 
(r|r=0.01) proportional damping) to the thus-introduced nonlinearity and therefore is used 
in the location process. The point receptances of coordinate x 1 with a 25% stiffness 

change in the nonlinear stiffness element are shown in Fig.5.6, demonstrating the 
sensitivity of mode 2 to the localised stiffness nonlinearity (clear shift of the natural 
frequency of mode 2).

40% stiffness modelling errors

X i  X2 X 3

localised stiffness nonlinearity 40% stiffness modelling errors

m2
L29 3̂0 k31

*28 x 29 x 30

Fig.5.5 - A Mass-spring Model Used in Numerical Case Studies
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Fig.5.6 - FRFs of a^ co) with 25% Stiffness Change of k16

When the measured coordinates are complete, the location results are as shown in 
Figs.5.7-5.9 (3-dimensional plots showing the absolute values of the elements of a 
matrix against its two dimensions) using the modal data of the second mode 'measured' at 
two different response levels (the stiffness change of the nonlinear stiffness element 
corresponding to the lower and higher response levels is 25% of its original value). 
Fig.5.7 shows the stiffness modelling errors [A K ]!^ ) {<j>2}T calculated based on (5-4) 
and Fig.5.8 shows the stiffness modelling errors [AK] and stiffness change [AKJ due to 
nonlinearity ([AK]h-[AKn]){<f)2} {<{>i }T calculated based on (5-3). By taking the difference 

of these two error matrices, shown in figure 5.7 and Figure 5.8 based on (5-5), the 
location of the nonlinearity becomes clear, as shown in Fig.5.9.
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However, as mentioned, it is unlikely that all the coordinates (which are specified in the 
analytical model) will be measured in practice. To simulate coordinate incompleteness of 
practical measurements, only the odd numbered coordinates are included as 'measured' 
and the unmeasured (even-numbered) coordinates are interpolated based on (5-10) using 
the analytical model itself. The location results for this case are shown in Figs.5.10-5.12. 
In this case, since coordinate x16 is not measured, the located nonlinearity error is shifted 
to coordinates x 15 and x17 instead of x15 and x16, as shown in Fig.5.12, although the 

location task is effectively successfully completed.
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5.4 EXPERIM ENTAL INVESTIGATION

5 . 4 . 1  SIMULATION OF STRUCTURAL SYSTEM  
WITH LOCALISED NONLINEARITY

To demonstrate the practical applicability of this proposed nonlinearity location method, 
an experimental investigation was carried out. The experimental system is an essentially 
linear frame structure made of mild steel coupled to an SDOF system with nonlinear 
stiffness. This nonlinear SDOF system is simulated using an electro-dynamic shaker by 
feeding the displacement signal of its moving table through a nonlinear analogue circuit 
and then back to the shaker to produce a force which satisfies a prescribed nonlinear 

function F=/(x). Fig.5.13 illustrates the setup of the simulated nonlinear structure.
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Fig.5.13 - Simulated Nonlinear Structure with Localised Stiffness Nonlinearity

FRAME GEOMETRY

The frame structure is made of mild steel with Young's modulus assumed to be 
E=2.1xl09N/m2 and density p=7800kg/m3. The geometry of the frame is illustrated in 

Fig.5.14.

L

Fig.5.14 - Geometry of the Frame Structure
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SHAKER PROPERTIES

A Ling Dynamics shaker (type No.403) was used to simulate the nonlinear SDOF system 
attached to the frame. The effective mass of the moving system of the shaker is ms=0.2kg 
and the spring/mass resonance is / n=36Hz. The effective stiffness is therefore 
ks=10230N/m (ks=47t2/ 2 ms). The SDOF system model of the shaker is shown in 

Fig.5.15.

Fig.5.15 - Shaker SDOF Model

According to electro-magnetic dynamics, the force F produced on the coil (figure 5.15) is 
proportional to the current I in the coil: F=kl. However, due to the motion of the coil in 
the magnetic field, a back emf is produced which is proportional to the velocity of the 

coil: e=kx. As a result, the relationship between the force F produced on the coil and the 
voltage V applied on the coil becomes F= k(V- e)/(R+icoL) (R, L and co are coil 

resistance, coil inductance and excitation frequency, respectively). Clearly, if F=/(x) (a 
prescribed nonlinear function) is to be satisfied, the effect of this back emf must be 
compensated so that the force produced is proportional to the voltage applied to the power 
amplifier. This compensation can be achieved by using a current power amplifier which 

produces a current output (and so the force F) proportional to voltage input regardless of 

the loading impedance (which changes dramatically around structural resonances). The 

current amplifier and shaker can be looked on as a single unit, as shown in Fig.5.16. The 

output/input (I/V) characteristic of this unit when the frame is attached is measured as 

shown in Fig.5.17. From figure 5.17, it can be seen that although the effective 
impedance of the shaker changes dramatically around the resonance, due to the back emf 
effect, the force produced on the coil is always proportional to the voltage applied to the 
current power amplifier.
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Fig.5.17 - Characteristics of Amplifier-shaker Unit around Structural Resonance

ANALOGUE CIRCUIT

The simulated stiffness nonlinearity is required to be a cubic stiffness described by 
/(x )= p x 3 and the acceleration signal is proportional to the displacement signal when 

sinusoidal input is considered. Therefore, the analogue circuit is required simply to 
multiply the input signal twice to obtain a Px3 output as shown in Fig.5.18.

x \  X2
r
XX

*3

Fig.5.18 - Analogue Computer Circuit
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MEASUREMENT SETUP

The measurement setup is illustrated in Fig.5.19. A Solartron 1254 Frequency Analyser 
was used to obtain the frequency response functions of the structure and an HP 9816 
computer was used to store and analyse the measured data.
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Fig.5.18 - Measurement Setup
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5.4.2 MEASUREMENT RESULTS

As a preliminary measurement, the frame was tested without the nonlinear SDOF system 
(shaker) attached. All 20 translational coordinates around the frame were measured using 
sinusoidal excitation in the frequency range of 30-300Hz with excitation at coordinate Xj 

(figure 5.14). The calibration results of the measurement system and typical frequency 
response functions measured are shown in Figs.5.19-5.20. In the measurement 
frequency range of 30-300Hz, 6 modes were clearly identified (the first resonance is in 
fact two close modes as shown in Fig.5.21). All these modes were analysed and the 
modal parameters are tabulated in Table 5.1 (in modal analysis, the first two close modes 
were treated as single mode because the frequency resolution of the measured FRF data is 
not enough for them to be accurately identified and it is not our purpose to do so).

0

CQ■o
CDO

eocm4»LOc
-40 D a t a  f r o m  FRMCRL1

30.00 Frequency Hz. 500.00

Fig.5.19 - Calibration Results of Measurement

Fig.5.20 - Typical Measured FRF Data
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From figure 5.20, it can be seen that mode 2 (f2 = 97 Hz) is the strongest mode in the 

measurement frequency range and is the most sensitive one to the stiffness nonlinearity 
introduced between x 10 and xn  because of its particular modeshape (see table 5.1). 

Accordingly, mode 2 was chosen to study the nonlinear effects of the simulated nonlinear 
structure. Frequency response functions in the vicinity of mode 2 corresponding to 

different response levels (linearised) are measured (in fact, FRFs at different constant 
force levels are also measured and analysed as shown in §2.5.5) at all 20 translational 
coordinates around the structure and some of these are shown in Fig.5.22. It can be seen 
that a natural frequency shift of approximately 4Hz is caused by the stiffness change of 
the system when it vibrates at different response amplitudes. The measured modal data of 
mode 2 corresponding to two different response levels (the response signals were set to 
be O.lv for low vibration level and 2.0v for high vibration level) are analysed and 
tabulated in Table 5.2. From Table 5.2, it can be seen that in addition to the 4Hz shift in 

the the natural frequency, approximately 10% changes in the modeshapes are observed 

due to stiffness change of the system.
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Fig.5.22 - Measured FRFs at Different Response Amplitudes

5.4.3 LOCATION OF NONLINEARITY

A Finite Element analysis of the structure was performed using the PAFEC package and 
the modal parameters of the first 6 modes of the FE model are shown in Table 5.3. A 
correlation between the measured modal data and those from the FE model of the frame is 
carried out and the MAC value matrix is shown in Table.5.4. From Table 5.4, it can be 
seen that good correlation has been obtained for modes 2, 3 and 4. However, it is 
surprising that good correlation has also been obtained for the first mode (in fact, 2 close 
modes) even when it is treated as a single mode in the experimental modal analysis.

MAC

matrix

FE mode 1 j FE mode 2 FE mode 3 FE mode 4 FE mode 5 FE mode 6

EX mode 1 0.923 J 0.135 0.000 0.000 0.001 0.048

EX mode 2 0.000 1 0.004 0.948 0.000 0.001 0.005

EX mode 3 0.000 0.002 0.003 0.985 0.000 0.023

EX mode 4 o.ooo  1 0.000 0.006 0.001 0.959 0.005

EX mode 5 0.006 1 0.001 0.000 0.000 0.004 0.775

Table 5.4 - MAC Value Matrix

The mass and stiffness matrices of the frame were generated using PAFEC. However, 
before these matrices are used to conrelate with the measured modal data to locate the 

nonlinearity, the shaker characteristics have to be compensated in the FE model. Since 

what is of interest is mode 2, the compensation of the shaker properties for this mode can 
be illustrated in Fig.5.23. An effective mass me and stiffness ke, can be calculated based
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on equivalent kinetic and potential energy as me=0.605ms and ke=0.605ks (ms and ks are 

the table mass and suspension stiffness of the shaker and they are ms=0.2kg and 

ks=10230N/m).

Fig.5.23 - Illustration of Shaker Property Compensation

On the other hand, since in the FE analysis, 3 DOFs (one translational and two rotational 
- bending and torsion) are considered at each point while in the measurement, only the 
translational degree of freedom is measured, the measured modeshapes have to be 
interpolated first using Kidder's method as mentioned earlier before they can be used to 
correlate with the FE model to locate the structural nonlinearity. The calculated location 
results are shown in Fig.5.23. Theoretically, the errors should be contained between two 
translational coordinates (x10-xn ) right in the middle of the plot. However, the errors are 

distributed so that almost a third of the coordinates have been contaminated. One reason 
for this is that since the exact coordinate where the localised stiffness nonlinearity is 
introduced (between x 10 and xn ) has neither been measured nor included in the FE 

model, this missing coordinate is expected to cause spatial leakage. Another reason is that 
the measured modal data contain measurement errors and these errors may cause this 
spread of location results. To check this later possibility, 2% random errors were added 
to the measured modal data and the location results (Fig.5.24) show that although the 

location results have not been much affected, measurement errors do have the effect of 

spreading the location results.
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5.5 EXTENSION OF THE TECHNIQUE TO MEASURED FRF DATA

The above developed location technique can be generalised when measured FRF data are 
used. Suppose that the i^  column {a i(co)}1 of the receptance matrix (corresponding to 
lower response level 4^) and {cXjCco)} 2 (corresponding to higher response level &2) 

around the r1*1 mode (which is sensitive to nonlinearity) have been measured and, again, 
the analytical model which contains second order modelling errors (corresponding to



[~s] Location o f Structural N onlinearity 165

lower response level &j) is available. Since the impedance and receptance matrices of a 

system satisfy

[Z(co)][a(co)] = [ I ]  (5-15)

by taking the i*  column of both sides of (5-15), following equations can be established 

( -  co? ([MJ + [AM]) + [KJ + [AK] ){ a i(coj)} 1 = {ej (5-16)

( -  co* ([MJ + [AM]) + [KJ + [AK] + [AKJ ){ a i(cok)}2 = [ e j  (5-17)

where {e j is a vector with its i* element equal to unity and all the others zero and C0j and
T*

CDj, are the measured FRF data points chosen. Post-multiply (5-17) by [a^oopjj, then

( -  ce£ [AM] + [AK] + [AKn]) {<xi(cok)}2 ( a i(cop)]' =

- ( -  co£[M J + [KJ) ( o i(cok) ) 2 (a ;(cop){ + {ej} {tXjCtopjf

(5-18)
Post-multiply (5-16) by {cx ĉo )̂} 2. aid we have

(- co? [AM] + [AKDtaptOjMi [a p c o j jj  =

- (- co? [MJ + [KJ) {otj(cOj)}, {apcoj)^ + ( e j  {a;(cok) ) |

(5-19)

Subtract (5-18) by (5-19) and rearrange, then

[AM] (co?laptop}j {otj(ojk) - cô {cXj(cok)}2 ( a i(coj)}'[) +

[AK] ({aj(cok))2 {a i(cop}'[- [apcop], {aj(cok)}^ ) + [AKJ [oti(cok)}2 (a ;(cop)j

= [MJ (co£{a;(cok))2 (apcopjL ojfotjlcop)! (a p c o j j j )  +

[KJ ( ( a i(cOj))1 {aj(cok) ) 2 - {cXj(cok)}2 (apcopij ) + (ei) ( (a i(cop)'[ - (aj(cok)) |)

(5-20)
Unlike the case of location using modal data, here we have the chance to choose C0j and 
cok properly in the measured frequency range as shown in Fig.5.26 so that following 

function is minimised
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mm
CDjG A(i)j 

(l)k G A (0 k

ll(a i(cok))2 (a^tO;))}- (<*,(<»,)), {oCj(cok) I I  

H{aj(cok))2 (a i(coj))'[ II
(5-21)

If the modelling errors [AK], C0j[AM] and stiffness change due to nonlinearity [AKn] are 

of the same order of magnitude in the sense of the Euclidean norm, then to a first-order 

approximation, (5-20) becomes

We state here that when C0j=C0rl(the r* natural frequency of the structure corresponding to 

the lower response level) and cok=G)r2 (the rlh natural frequency corresponding to the 

higher response level), (5-22) will degenerate to (5-6) but we shall leave the mathematical 
proof of this relationship between (5-18) and (5-6) to Chapter 6. The principle of the 
nonlinearity location process based on equation (5-22) is the same as that of (5-6).

When the measured coordinates are incomplete, the receptance terms of the unmeasured 
coordinates can be interpolated based on following equation which is derived from (5-15) 
(the i111 column of (5-15)):

(5-22)

Aco.

Frequency co (rad./s)

Fig.5.26 - Illustration of the Choice of Frequency Points

(ei)

{0 }

(5-23)
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where ( a m(co)} and (a s(co)} are the measured and unmeasured receptances of the ith 
column of the receptance matrix. Upon multiplying out (5-23), {as(co)} can be calculated 

as

{cxs(G))) =  (- co2 [M ss] +  [ K J )  •* (co2 [ M sm] - [ K sm]) { a ra(co)) ( 5 -2 4 )

5.6 LO C A TIO N  OF N ONLINEARITY AND M O D ELLIN G  ER R O R S 
IN ANALYTICAL M OD EL IM PRO V EM EN T

So far, the nonlinearity location technique has been developed and has been verified 
numerically as well as experimentally and it will be advantageous here to examine the 
relationship between the two applications of (i) nonlinearity location and (ii) modelling 

error location of a linear structure in the analytical model updating practice. The 
discussion is made in this chapter for the location of modelling errors and will be referred 
to from time to time in later chapters because of the mathematical similarity of nonlinearity 
location and modelling error location. In modelling error location, [ A K J  = [O ] and what 
needs to be located are the dominant modelling errors in [A M ] and [A K ] (assume the 

modelling errors are localised as they usually are in practice).

Following the same reasoning as that used for nonlinearity location, it can be seen that the 
localised modelling errors in [A M ] and [A K ] can be located based on (5-4). Since in the 

modelling error location case, [A K n] = [ 0 ] ,  therefore W r a°d (5-4) becomes

( K  [AM] + [AK]) {<]>},{<)>)]' = - (MMJ + [KJ) {([>),{<]>}]' (5-25)

The modelling error location technique based on (5-25) has been reported in [74] and we 
will show here that it can be generalised when measured FRF data are used.

Using measured FRF data, let { cXj(cOj) } x={cxi(cok) )2= {oci(co)}, so that (5-19) becomes

( -  to 2 [A M ] +  [A K ])  [otj(co)} ( otj(co) }T =

- ( -  co2 [ M J  +  [ K a] )  {otj(co)} ( a i(<o))T + ( e i ) [ a i(co ))T  ( 5 -2 6 )

Again, it can be shown that when co->cor, (5-26) will degenerate to (5-25). The location 

technique given in (5-26) not only generalises the technique developed in [74], but 

because every measured FRF data point theoretically contains a contribution of all the
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modes of the structure, the location of modelling errors becomes more consistent. This is 
illustrated in Fig.5.27 based on the same mass-spring system used in the numerical case 
studies of nonlinearity location. Fig.5.27(a) shows the exact stiffness modelling error 
[AK], Fig.5.27(b) shows the error location results [AK] {<J)} j { )T based on (5-25) and 
Fig.5.27(c) shows the error location results [AKHa^co)} (a^co)}7 based on (5-26). Due

to the specific modeshape of the first mode, the stiffness error introduced between 
coordinates x15-x 16 has been totally missed out as shown in Fig.5.27(b) while it is 

located as shown in Fig.5.27(c) when FRF data are used.

exact stiffness errors (a) location using mode 1 (modal data) (b) location using FRF data round mode 1 (c)

Fig.5.27 - Comparison of Modelling Error Location Using Modal and FRF Data

5.7 CONCLUSIONS

Most mechanical structures are nonlinear to some extent and the nonlinearites are usually 

localised. The ability to locate a structure's localised nonlinearity has some important 
engineering applications. In this chapter, a nonlinearity location technique has been 

developed based on the correlation between an analytical model of the structure (which 

contains modelling errors) and modal test data which are measured at different response 
levels. In the practical case where the measured coordinates are incomplete, an 
interpolation technique to estimate the unmeasured coordinates based on the analytical 
model has been discussed. The sensitivity of certain modes to localised structural 
nonlinearity has been established. It is recommended that a sensitive mode should always 
be used in the location process so that reliable location can be obtained. Numerical case 

studies have been undertaken to verify the technique developed.

To assess the practical feasibility of the location technique, an experiment was carried out. 

A localised stiffness nonlinearity was simulated using a electro-dynamic shaker and
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analogue computer circuit based on feed-back system control theory. The experimental 
results demonstrate the practical applicability of the proposed method.

It has been shown that the location technique can be generalised when measured FRF data 
are employed. Also, the relationship between nonlinearity location and modelling error 
location in analytical model improvement has been examined and it can be shown that the 
modelling error location method given in [74] can be generalised when FRF data are 

used.

The information concerning the location of structural nonlinearities on practical structures 
can be used subsequently in nonlinear substructuring analysis, system failure and 
malfunctioning detection and mathematical modelling of nonlinear structures.
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Mode No. 1 2 3 4 5

Nat. Freq. (Hz.) 52.80 97.10 156.59 228.58 258.55

x i 0.657 0.674 0.345 0.408 0.415

x2 0.490 0.291 0.692 0.682 -0.162

x3 0.152 -0.274 0.547 0.150 -0.605

x4 -0.336 -0.703 -0.134 -0.386 -0.312

x5 -0.502 -0.245 -0.467 -0.229 0.650

x6 -0.667 0.241 -0.579 0.232 0.569

x7 -0.776 0.760 -0.277 0.553 -0.500

x8 -0.172 0.274 0.448 -0.190 -0.595

x9 0.280 -0.303 0.679 -0.779 -0.134
mode

x10 0.604 -0.693 0.398 -0.345 0.465
shapes

x n 0.703 -0.712 -0.303 0.436 0.408

x12 0.543 -0.303 -0.570 0.829 -0.127

x13 0.150 0.279 -0.426 0.196 -0.513

x14 -0.329 0.708 0.271 -0.700 -0.385

x15 -0.512 0.264 0.523 -0.276 0.696

X16 -0.691 -0.238 0.474 0.235 0.586

x17 -0.763 -0.742 0.278 0.490 -0.565

x18 -0.190 -0.291 -0.436 -0.141 -0.479

x19 0.249 0.277 -0.796 -0.882 -0.199

x20 0.606 0.682 -0.340 -0.476 0.357

Table 5.1 Measured Modal Parameters of the Frame
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Resp. Level Low resp. level 
(O.lv)

High resp. level 
(2.0v)

Nat. Freq. (Hz.) 92.05 96.03

*1 0.715 0.630

*2 0.325 0.276

x3 -0.266 -0.249

x4 -0.776 -0.688

x5 -0.283 -0.229

x6 0.211 0.227

x7 0.725 0.691

x8 0.345 0.271

x9 -0.169 -0.251
mode

x10 -0.523 -0.605
shapes

x n -0.520 -0.602

x12 -0.167 -0.247

x13 0.338 0.265

x14 0.739 0.705

x15 0.211 0.226

x16 -0.285 -0.230

x17 -0.772 -0.684

x18 -0.269 -0.253

x19 0.303 0.258

x20 0.721 0.635

Table 5.2 Measured Modal Parameters of Mode 2 at Different Response Amplitudes
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Mode No. 1 2 3 4 5 6

Nat. Freq. (Hz) 50.36 51.41 94.85 152.40 222.88 255.55

x i 0.1624 0.6826 0.7189 0.3553 0.4250 0.4528

x2 0.4543 0.4306 0.3168 0.7605 0.7680 -0.1704

x3 0.6611 -0.0144 -0.2832 0.4958 0.1755 -0.6282

x4 0.7697 -0.5566 -0.7878 -0.2796 -0.7259 -0.4528

x5 0.2756 -0.6030 -0.2690 -0.5225 -0.2913 0.7256

x6 -0.2756 -0.6030 0.2690 -0.5225 0.2913 0.7256

x7 -0.7697 -0.5566 0.7878 -0.2796 0.7259 -0.4528

x8 -0.6611 -0.0144 0.2832 0.4958 -0.1755 -0.6282

x9 -0.4543 0.4306 -0.3168 0.7605 -0.7680 -0.1704
mode

x 10 -0.1624 0.6826 -0.7189 0.3553 -0.4250 0.4528
shapes

X11 0.1624 0.6826 -0.7189 -0.3553 0.4250 0.4528

x12 0.4543 0.4306 -0.3168 -0.7605 0.7680 -0.1704

x13 0.6611 -0.0144 0.2832 -0.4958 0.1755 -0.6282

x14 0.7697 -0.5566 0.7878 0.2796 -0.7259 -0.4528

x15 0.2756 -0.6030 0.2690 0.5225 -0.2913 0.7256

x16 -0.2756 -0.6030 -0.2690 0.5225 0.2913 0.7256

x17 -0.7697 -0.5566 -0.7878 0.2796 0.7259 -0.4528

x18 -0.6611 -0.0144 -0.2832 -0.4958 -0.1755 -0.6282

x19 0.4543 0.4306 0.3168 -0.7605 -0.7680 -0.1704

x20 -0.1624 0.6826 0.7189 -0.3553 -0.4250 0.4528

Table 5.3 First 6 Modes of the FE Model



CHAPTER [6

IDENTIFICATION OF MATHEMATICAL 

MODELS OF DYNAMIC STRUCTURES

6.1 P R E L IM IN A R IE S

As with the identification of the dynamic characteristics of a linear structure, the ultimate 
target involved in the identification of a nonlinear structure is obviously to establish its 
nonlinear mathematical model which is a function of vibration amplitude ([M], [K(&)] and 
[C(£)J or [D($)]). As will be shown, the establishment of such a nonlinear mathematical 
model becomes possible only when, on the one hand, an accurate linear mathematical 
model (corresponding to very low vibration amplitude and therefore, can be regarded as 
linear model of the nonlinear structure) is available and, on the other, the location 

information of the localised nonlinearity is given. Such requirements in the modelling of a 

nonlinear structure, which are different from those for the modelling of a linear structure, 

are due to the fact that the mathematical model of a nonlinear structure has to be 

established on a mode by mode basis as will be explained later in this chapter. Since an 

accurate linear model is an essential pre-requisite for the modelling of a nonlinear 

structure, most of the effort will be devoted in this chapter to discussions of how an 
accurate linear model can be be established.

As discussed in Chapter 5, techniques for locating the nonlinearities (which are usually 

localised) of practical structures have been developed and these techniques are further 

employed in the modelling of nonlinear structures in this Chapter.
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On the other hand, for the modelling of linear structures (in fact, as will be shown, the 
problem of modelling a nonlinear structure is essentially the same as that for a linear 
structure except that in the former case, a series of linearised models need to be 
established), a new method is presented in this chapter which tackles the modelling 
problem by using the measured frequency response data directly. The method is then 
extended to the modelling of nonlinear structures by combining the updated linear model 
(corresponding to very low vibration amplitude) and the nonlinearity location results.

6.2 M O D ELLIN G  O F LINEAR AND N ONLINEAR STRU CTU RES

Mathematical models of practical continuous structures, both linear and nonlinear, play an 
important role in dynamic analysis. They are frequently used in response and load 
prediction, modification/sensitivity and stability analysis, structural coupling etc.. Due to 
the development of mathematical and physical sciences, the closed-form modelling of 
some basic mechanical components such as uniform beams and plates has now become 
possible. However, for complicated practical structures, there do not in general exist 
analytical solutions (or if they do, it is extremely difficult to find such analytical solutions) 
and therefore some discrete approximate models which can well represent the structure 
under given conditions have to be sought so that the dynamic characteristics of the 
structure can be analysed mathematically. According to Berman [75], such a discrete 
model can be considered as a good model if it will not only predict responses over the 
frequency range of interest, but will also be representative of the physical characteristics 
of the structure. Thus it must have the capability to predict the effects of changes in 
physical parameters and to represent correctly the structure when it is treated as a 
component of a large system. It is the establishment of such a physical model of the 

structure which is discussed in this chapter.

Basically, there are two ways of establishing a discrete mathematical model of a practical 
structure and they are (i) experimental modelling and (ii) theoretical modelling (Finite 
Element Modelling). Due to the advances made in measurement instrumentation and 
techniques, nowadays it is usually agreed that measured data should be considered as the 
true representation of the structure while the FE model - because of the idealisation 
involved, lack of knowledge about the structure and difficulty of modelling of boundary 
conditions - is usually considered to be inaccurate and therefore should be updated using 

measured data if possible. Based on the assumption that the measured data are correct, 
two approaches to modelling exist: (i) using experimental data only to establish a 

mathematical model in terms of measured coordinates of interest and (ii) correlating the
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FE model and dynamic testing data to update the FE model. Both modelling activities will 

be reviewed and further possible development will be discussed.

As for the mathematical modelling of nonlinear structures, correlation between analytical 
model and dynamic testing data becomes essential because, in general, structural 
nonlinearities cannot be foreseen and, therefore, cannot be analytically modelled but can 
be measured. It is believed that the modelling of a nonlinear structure becomes possible 
only when an accurate linear mathematical model of the nonlinear structure is available. In 
addition to the availability of an accurate linear model, location information on the 
structural nonlinearity is also essential in most cases so that the number of unknowns 
involved in the modelling process can be reduced because, unlike the modelling of a linear 
structure, in which the model to be sought is unique and so all the data measured are 
consistent and can be used at the same time, the mathematical model of a nonlinear 
structure has to be established based on a mode by mode basis so that only one measured 

mode is available each time as illustrated below.

Consider the system shown in Fig.6.1. In measurement, in order to linearise the 
structure, the response amplitude of a chosen point (xl5 for example) is kept constant. 
Then, when the excitation frequency cô cOj (around the i* mode), the displacements of all 

coordinates are determined by the i*  modeshape and therefore, the relative vibration 
amplitude of the nonlinear stiffness, which determines the value of equivalent linearised 
stiffness, can be considered to be proportional to the vibration amplitude of This is 

especially true when the mode to be analysed is well separated from its neighbours. 
However, when the excitation frequency is around the j th mode, co^coj, for the same 

vibration amplitude of (assuming this to be possible), the relative vibration amplitude 

^of the nonlinear stiffness will also be proportional to the amplitude of x lf but will be 

different in magnitude from that of the ith mode because these two modeshapes are 
different. Therefore, even when the response amplitude of a certain coordinate (xl in this 

case) is constant, the data measured around different modes could be the data from 
different linearised systems and this means that only one measured mode can be used each 
time in the modelling of a nonlinear structure due to the inconsistency of measured data.



[6] Identification o f M athem atical M odel o f Dynam ic Structures 176

f  = F sin cot keep = Asin(cot + (p (co))

[XT' J T  J?~ J T  b
A A A jJ. A A qJ W  H .. M A uV \A

k+1

for co -  co., xk - xk+1 -  p A sin (cot + 0(co)), for co -co., xk - xk+1 -  7 A sin(cot + (p(co)) 

Fig.6.1 - Illustration of Inconsistency of Measured Data of a Nonlinear Structure

Although the inevitable limitations of measured data could present a problem, the greatest 
difficulty involved in the modelling of a nonlinear structure, as will be shown, is the 
establishment of an accurate linear model. When such a linear model is available, by using 
the measured frequency response data together with location results of the nonlinearity, 
the modelling problem can be resolved in most cases. For this reason, most of the space 

in this Chapter will be devoted to a discussion of how to obtain an accurate linear model 
of a structure by correlating the analytical model and measured dynamic test data.

When the identification of structural dynamic characteristics is undertaken by both 
theoretical analysis (normally FE analysis) and experimental modal testing, discrepancies 
often exist between the vibration characteristics predicted by the theoretical model and 
those identified experimentally. In such cases, the analytical model needs to be modified, 
if practically necessary, so that it represents more accurately the dynamic characteristics of 

the actual structure. When both the analytical model of a structure and experimental modal 
testing data are available, analytical model improvement can be mathematically formulated 

as described below.

Given the analytical mass matrix [M J and stiffness matrix [Ka] (containing modelling 
errors [AM] and [AK]) and dynamic testing data, which can be either modal data [*coJ.] 

and [())] or frequency response data [a x(co)] (but in both cases incomplete in terms of 

measured modes and/or coordinates), then by correlating the analytical model and 
measured data, the former can be updated so that it better represents the dynamic 

characteristics of the actual structure.

6.3 R EV IEW  OF ANALYTICAL M OD EL IM PR O V EM EN T M ETHODS

As mentioned earlier, there exist two different branches of modelling activity, these being 

modelling using experimental data only and modelling based on the correlation between 

an analytical model and experimental data. For mathematical modelling via direct use of
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measured modal data, there have been attempts in recent years to use results of dynamic 

testing to identify the parameters in the equations of motion directly, but it is generally 
believed that unless the number of measured modes is greater than or equal to the number 
of coordinates of interest, a mathematically unique model cannot be obtained [76-79]. A 
survey of the work on the mathematical modelling using measured modal data only was 
conducted in 1969 by Young and On [76]. In 1971, Berman [77], assumed a simple form 
for the mass matrix and then used the limited measured modes to construct a mass matrix 
by invoking the orthogonality equations. This mass matrix is then used together with the 

measured modes to construct the so-called 'incomplete' stiffness matrix: 'incomplete' 
because the contribution of all the unmeasured higher modes (which is usually the major 
part) to the stiffness matrix has not been included. Link [78] used a multi-point excitation 
technique (more than one excitation forces) to establish the mass, incomplete stiffness and 
incomplete damping matrices using measured force and response data. Luk [79] 

employed the incomplete modal data set and used the pseudoinverse to calculate system 
matrices which are minimum 2-norm least-squares solution in a mathematical sense. The 
possibility of establishing a complete mathematical model when the measured data contain 
less modes than the number of coordinates remain to be investigated.

Alongside these studies, a number of methods have been published in the literature to deal 
with analytical model improvement by correlating FE models and measured data. The 

philosophy behind this practice is that the analytical model, while containing modelling 
errors, is assumed to represent the structure with some accuracy so that the limited 
measured test data available will offer the possibility of updating it (otherwise the 
modelling problem will become the same as that of using experimental data only). Based 
on an inverse first-order sensitivity analysis, and considering the random nature of 
measurement errors, Collins et al [80] employed an iterative procedure to adjust their 

analytical model so that the difference between the measured and analytical modal data is 
minimised in terms of the Euclidean norm. Later, Chen/Garba [81] modified this 
procedure by introducing matrix perturbation concepts to avoid the need for an 
eigensolution at every iteration (which is required in the formulation in [80]). Lallement 

[82] extended the method in [81] to pinpoint first where the significant errors are located 
and then to reduce the number of unknowns to improve the solution condition. On the 
other hand, based on the assumption that the mass matrix is correct, Baruch/Itzhack [83- 
84] introduced a kind of objective function together with an orthogonality property so 

that the analytical modes are optimised in such a way that they are closest to the measured 
ones in a weighted Euclidean sense. These optimised analytical modes are then used to 

derive the updated stiffness and flexibility matrices. Berman later extended this theory to 

the case of mass matrix updating [85]. Having recognised the mathematical difficulty of



[~6| Identification o f M athem atical M odel o f D ynam ic Structures 178

whole system matrix updating, simple eigendynamic equations are used in [86] to locate 
the major modelling errors first and then to employ the limited measured modes to turn the 

updating problem into an overdetermined one. All these above-mentioned activities are 
based on the correlation between an analytical model and measured modal data and the 
completeness of measured coordinates is, in most cases, critical.

Recently, there have also been publications on the identification of mass, stiffness and 
damping matrices in terms of measured coordinates of a system from measured FRF data. 
Fritzen used an Instrumental Variable method to identify system matrices based on the 
measured force and response data [87]. Mottershead/Stanway extended the time domain 
invariant imbedding filter to the frequency domain to estimate system parameters [88]. 
Foster/Mottershead later extended the method in [88] to allow correction of reduced-order 
finite element model (Guyan-reduced and so fully-populated) by minimising the 
difference between the analytical and identified models [89].

In the following section, a new advantageous model updating method is developed which 
tackles the problem by using the measured frequency response function data directly. The 
new method is then extended to the case where the structure to be modelled is nonlinear. 
The advantages of using FRF data over modal data to update an analytical model are 
demonstrated. It is shown that model updating methods based on modal data are, in a 
broad sense, discrete versions of the present generalised method where only FRF data at 
resonance frequencies are employed. Based on this method, the uniqueness of the 
updating problem is discussed in some mathematical rigour. Special attention is given to 
the application of the method to the case where both measured modes and coordinates are 

incomplete. The practical applicability of the method is assessed based on the GARTEUR 
exercise which is intended to represent practical problems in terms of the incompleteness 

of both measured modes and coordinates.

6.4 M OD EL UPDATING USING FR F DATA - A NEW  

G EN ERA LISED  M ETHOD

6.4.1 D ESC R IPTIO N  OF TH E M ETH O D

The development of the model updating method described here is based on the following 
mathematical identity:

[[A] + [B]] -1 = [A] -1 - [[A] + [B]] -1 [B] [A] (6- 1)
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where [A] and [B] are two complex matrices satisfying the condition that both [A] and 
([A]+[B]) are nonsingular. To check the validity of equation (6-1), premultiply both sides 

of (6-1) by ([A]+[B]), since it is nonsingular, so that (6-1) becomes:

[ I ] = [ I ] + [B] [A] - [B] [A] 1 = [ I ] (6-2)

Now, if we assume that [A] is the impedance matrix of the analytical system [Za(co)] and 
that ([A]+[B]) is the impedance matrix of the experimental system [Z^co)], then equation 

(6-1) becomes:

[ZX(CD)] -1 = [Za(co)] 4 - [Zx(co)]-1 ([Zx(co)] - [Za(co)]) [Za(co>] -1 (6-3)

Rewriting (6-3) in its more familiar receptance and impedance error form, we have

[Aa(co)] = [a x(co)] - [a a(©)] = - [a x(co)] [AZ(co)] [a a(co)] (6-4)

where [AZ(co)] is the impedance error matrix defined as [AZ(co)]=[Zx(co)]-[Za(co)]. In 

what follows, it will be shown how equation (6-4) can be used to solve the updating 
problem uniquely when one complete column of the receptance matrix is measured and 
how it can be extended to cases where the measured coordinates are incomplete.

In the case where one complete column (the ilh) has been measured, then (6-4) can be 

rewritten in terms of measured and analytical receptance terms as

{cxa(to))7 - {ax(co))'[ = {ax(co))T [AZ(w)] [a a(co)] (6-5)

this formula being obtained by simply taking the i^  row of both sides of equation (6-4). 

In analytical model updating, the physical connectivity of the analytical model should 
usually be respected and therefore the updated model should have the same physical 
connectivity as that of the analytical model, i.e. the modelling errors can only occur where 
the elements of mass or stiffness matrix are nonzero. Further discussions on the necessity 

and mathematical validity of preserving the physical connectivity of the analytical model 

will be given in Chapter 7. Also, in general, the physical connectivity of the damping 
matrix can be assumed to be the same as that of the stiffness. Upon substitution of 
[AZ(co)] in (6-5) in terms of [AM], [AK] and [D] and transpose, equation (6-5) becomes:

(a a(co))i - ( a x(co))i = [a a(co)] (-co2[AM ] + [AK] + i[D ])  (a x(co))j (6-6)
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Consider the physical connectivity of the analytical model and let the design variable 
changes in the mass matrix be Anij (r= l, L 2 where is the total number of independent 

design variables in mass matrix which could be individual nonzero elements, as in the 
case of mass spring systems, or coefficients of element mass matrices as in finite element 
models), in the stiffness matrix be Aks (s=l, L2) and in the damping matrix to be ds (s=l, 
L2). Then, it can be shown that every element bj(co) (j=l,N  where N is the number of 

total degrees of freedom specified in the analytical model) of the RHS of (6-6), which is a 
vector, can be expressed as a linear combination of the changes of all design variables as:

bj(co) = X cm(“ ) A m r +  £ c | ( C 0) A k s + £  c£(co)ds = {Cj(co))T (P) (6-7)
r = 1 s = 1 s = 1

Here {Cj(co)} is the known coefficient vector formed using {a^co)} and [a a(co)] and {P} 
is an unknown vector of design variable changes. Also, for a specific frequency value co, 
bj=bj(co) (j=l,N ) are known as the difference between analytical and experimental 
receptance of coordinate Xj (with excitation being applied at xj). Therefore, from (6-6), 

the following linear algebraic equations in terms of unknown design variable vector {P} 

can be established

[C(co)J {P} = (B(co)} (6-8a)

where [C(co)] =

“  {Ci(co))T 

{C2(co)}t

, ( P ) = <

Am] > 

Akj
>■ and (B(co)) =■<

^bjCco)'

b2(to)

' >

-  {Cn(co))t -

AkL 2

di

 ̂ di,2 >
.̂bN(o))>

In the presence of damping, [C(co)] and (B(co)} become complex, while {P} is known to 

be real, and equation (6-8a) can be reformulated to solve for {P} as:

|~Re([C(co)])l [Re({B(a»})l
{P} = (6-8b)

Im([C(a»]) Im({B(co)})
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To illustrate how the coefficient matrix [C(co)] can be obtained, consider a simple two- 

mass and three-spring 2DOF system with its analytical mass and stiffness matrices as 

follows:

[Ma] =
i rq  0

0  m 2
and [Ka] =

k i+ k2 -k2 
-k2 k2+k3

(6-9)

Suppose the first column of the receptance matrix of the 'experimental' system is 
measured, then (6-6) becomes:

.an C to )-^ !^ © ) 

aa 2 1 ((o)-xa 2 1(co)

aa 11(o))aa 12(co)" 

a 2 1 (co) a 22(co)

-(O^mj+Akj+Akj,

-Ako

_Ak2

(02Am2+Ak2+Ak3 1 ,0 2 ,( 10)

' - < 0 ,1 ,0 , ,  -< 0 2 , ,a 2, ,a ,, ( “„ - a2i)(,“ir ,“2i)

- " < a 21 , “ 21 ’< “2 2 , “ 21 , “ 21 , “ 21 (.“2r .“22X ,“ i r ,“2 l)

aa 21 xa 21 

aa 22 xa 21

"Am1>
Am2

< Akj >
Ak2

^Ak, >

(6- 10)

where the frequency term has been dropped from the RHS of (6-10) to save space. 
Comparing (6-10) with (6-8a), the coefficient matrix [C(co)] and vector (B(co)} are

obtained.

Equation (6-8a) (or (6-8b) in the case where damping exists) is obtained using the 
analytical and measured receptance data at one frequency point, but when j frequency 

points are used, then the total number of linear algebraic equations become j times as 
many as that of using one frequency point and (6-8a) (or (6-8b)) becomes a set of 

overdetermined algebraic equations. In order to solve for {P} in this case, the best 
technique available is the Singular Value Decomposition (SVD) which is described in 
Appendix I. Since no approximation has been made during the formulation of the 
problem, {P} can be solved directly. After {P) is calculated, and together with the 

analytical model itself, the updated system matrices can be determined uniquely. Also, it 

should be noted that in this case, no assumption has been made concerning the 
magnitudes of the error matrices [AM] and [AK].

The assumption that measurements are made in all the coordinates which are specified in 
the analytical model is, in most cases, unrealistic because in many cases: certain 

coordinates are physically inaccessible, such as the internal DOFs, and the rotation 

coordinates are notoriously difficult to measure. When the measured coordinates are
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incomplete, as will be discussed in Chapter 7, direct solution of the updating problem is, 

in general, impossible and some sort of iteration scheme has to be introduced. Suppose 
one incomplete column {O^cd) ^  has been measured, then the multiplication of the RHS 
of (6-6), which requires the complete vector {ax(co)}i, can no longer be carried out 

exactly and some approximation has to be introduced.

Filling the unmeasured coordinates of {oc^co))! in (6-6) with their analytical counterparts 

and then carrying out the multiplication of the RHS of (6-6) in the same way as for the 
complete coordinate case leads to the following linear algebraic equations which are the 
first order approximation:

[U(co)] {P} = {V(co)} (6- 11)

where [U(co)] and {V(co)} are obtained in a similar way to [C(co)] and (B(co)} in the case 

where measured coordinates are complete. However, in addition to the the approximate 
nature of (6-11), the total number of linear algebraic equations involved in (6-11) is n 
when data one frequency point are considered while in (6-8), the number is N (n<N 
where n is the number of measured coordinates and N is total number of degrees of 
freedom specified in the analytical model). Again when more frequency points are used, 
(6-11) can be turned into an overdetermined set and a least-squares method (SVD) can be 
used to solve for {P}. Of course, the thus obtained {P} is only the first order 
approximation and an iteration scheme has to be introduced in order to obtain the exact 
solution.

Also, it should be mentioned that in the case where the measured coordinates are 
incomplete, the updating problem formulated in (6-11) is, mathematically, based on a 

particular form of matrix perturbation analysis. Therefore, in order to guarantee 
convergence of the iteration process, some restriction may have to be made on the 
difference between the analytical and experimental models. This restriction is that the 
Frobenius norms of the error matrices should be of second order when compared with 

those of analytical mass and stiffness matrices (it is found that the convergence is largely 
determined by the difference of these two models in the modal domain rather than the 

spatial domain and the Frobenius norm is more closely related to the modal characteristics 
of the system than any other norms), that is:

IIAMIIp
HMJIp

< e  and
IIAKIIp 
IIKallF - e where IIAIIp =

n n

I  1 * 5
i = Ij =1

(6- 12)
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Although e varies from system to system, computational experience shows that for 
dynamical systems, the maximum value of e can reach 0.3. Since the norm is taken in its 

Frobenius form and the modelling errors are usually localised, the relative amplitudes of 
modification for individual design variables can be more than 100% as shown in the 

numerical case studies below.

6.4.2 N U M ERICA L CASE STUDIES

The first system studied here is an 8DOF mass-spring system as shown in Fig.6.2. This 
model has been used previously by several authors in model updating analysis exercises 
[86] and [90]: one of its noticeable features is that translational as well as rotational 
motions are permitted, and that the mass matrix is not diagonal.

p r *1
x y

;M A A AAAA V \ W AAAA AAAA:
\

S M M AAAA a a a a AAAA AAAA:
ri-

xs
U -

x s X7 XR
Fig.6.2 - An 8DOF System Used in Numrical Case Studies

When one complete column of the receptance matrix (column 1 in this numerical study) 
has been measured, the solution of the updating problem is unique and the procedure 
involved is direct since no approximation has been introduced in formulating the problem 

as discussed in §6.4.1. The analytical model is an undamped system with mass and 
stiffness matrices shown in Tables 6.1&6.2. The 'experimental' model consists, in 

general, of mass, stiffness and damping matrices which are

1
1.25[Mx] = [Ma] ; [K J = 1.25 [K J and [D] = 0.02 [K J (6-13)
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Table 6.1 - Analytical Mass Matrix (kg)

4.0E+5 -2.0E+5 0 0 0 0 .......o ....... : 0
-2.0E+5 4.0E+5 -2.0E+5 0 0 0

1...........
| 0 0

0 -2.0E+5 4.0E+5 -2.0E+5 0 0 o 0
0 0 -2.0E+5 4.0E+5 0 0

0
0

0 0 0 0 4.0E+5 -2.0E+5 i o 0
0

—
0 0 0 -2.0E+5 4.0E+5 -2.0E+5

.... L 1......
0

0 0 0 0 0 -2.0E+5 | 4.0E+5 -2.0E+5

0 0 0 0 0 0 1 -2.0E+5 4.0E+5

Table 6.2 - Analytical Stiffness matrix (N/m)

Based on equation (6-8a), FRF data for 10 different frequency points (which were 

randomly chosen in the 'measured' frequency range) were used each time to construct 
[C(co)] and {B(co)} and as expected, the updated model is always exact regardless of the 

number of modes which are included in the 'measured' frequency range ('measured' FRF 

data covering the first mode, the first two modes and the first three modes were 
considered and the mathematical proof will be given later to illustrate this point). Fig.6.3 
shows the analytical, measured and regenerated (using the updated model) point 
receptances at coordinate x1 in the case the measured FRF data only covering the first 

mode. As shown in Fig.6.3, not only the exact mass and stiffness matrices of the 
'experimental' system are recovered, but also the exact damping matrix of the 

'experimental' system.
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Fig.6.3 - Analytical, Measured and Regenerated Point Receptances at Coordinate x l 
-------------------------- analytical,.................... measured a n d ----------------- regenerated

In order to consider the practical situation where the measured frequency response data 
are contaminated by noise, 1% uniformly distributed noise was added to the 'measured' 
frequency response function data and the above calculations were repeated. In all three 
cases ('measured' FRF data covering the first mode, the first two modes and the first 
three modes), it was found that the first iteration gave an estimation o f errors to within 
10% and after 2 or 3 iterations, the estimation error can be brought within 1% (for the 

stiffness and mass matrices but not damping). No further improvement is possible 
because of the presence of noise in the measured FRF data. The iteration strategy was 
introduced because in this case of data contaminated by noise, the effect of noise on the 
accuracy of estimation becomes less severe when the two models become closer. Again, 
the analytical, measured and regenerated point receptances of coordinate xj are shown in 

Fig.6.4, from which it is clear that the damping of the experimental system is 

underestimated because the existence of noise has drowned the effects of damping on off- 
resonance frequency response data. This demonstrates the difficulties involved in the- 

damping property investigation of practical structures since the influence o f damping on 
the frequency response data (off resonance) is always of second order. This problem of 
noise effecting the damping estimation can be overcome by smoothing the measured FRF 

data first or by using the data points around system resonances during the updating 

process.
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Fig.6.4 - Analytical, Measured and Regenerated Point Receptances at Coordinate X j ( l %  noise) 
---------------analytical,.....................measured and------------------ regenerated

When the measured coordinates are incomplete, the updating procedure is the same as for 
the case of complete coordinates except that during the formulation of equation (6-11), the 
unmeasured pans of the receptance {cxx(co))i are replaced by their analytical counterpans 
{otaC©)}}. In this numerical case study, 4 coordinates x1? x3, x6 and x8 are supposed to be 

measured. The analytical model is the same as that shown in Tables 6.1&6.2 and the 
'experimental' model is the analytical one perturbed in such a way that 30% stiffness 
modelling errors and 2% localised damping are introduced between coordinates xr x2 and 
x7-x8, as shown in Fig.6.5. The point receptances at coordinate x1 for each of these two 

models are shown in Fig.6.6. The mass matrix is assumed to be correct in this numerical 
case study although the method is equally applicable for the case of mass matrix updating 
as will be shown in the case study of GARTEUR structure in §6.4.4.
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Fig.6.6 - Analytica and Experimental Point Receptances of Coordinate x l 
................. ..........  - analytical, ..................... experimental

The program flow-chart for solving equation (6-11) iteratively is illustrated in Fig.6.7. As 
in the case of a complete set of measured coordinates, FRF data at 10 different frequency 
points were used in each iteration. Again, data covering a frequency range of just the first 
mode, the first two modes and the first three modes was investigated and it was found 
that in all these three cases, the error for the estimation (for the stiffness matrix) was less 
than 1% after 10 iterations. The iteration results for the case of data covering just the first 
mode are presented in Fig.6.8. The convergence criterion was chosen to be the relative 
norm (Euclidean) changes (see figure 6.7) of the stiffness and damping matrices of two 
successive iterations and it can be shown mathematically that under this criterion, the 
convergence is absolute (if it converges, it will converge to the true solution). As 
expected, the damping matrix converges more slowly than the stiffness matrix and only 
after the stiffness matrix has been obtained to some accuracy does the convergence of the 

damping matrix becomes faster.
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measured incomplete 
receptance data [cxx (co)] 
1< p, q < N pxq

complete analytical model 

tK ^NxNt KtxN

-------- ►

choose different points 
or increase the number 
of Doints

calculate [U(co)J and [V(co)} based on (6-11) and 
calculate NK 
Yof [U( co)]
calculate NK=IIKIIp IIHII pand condition number

solve [U(co)j {P} = {V(co)} and modify [M] [K] [H] 
NK1 = II K lip, NH1 = II H llF Q ,= I NK1 - NKI /N K  
qi = I N H l - N H I / N K  and C = Max (C^, Ch )

solve eigenvalue problem in terms of [M], [K] and 
[H] and calculate [ a  £ ci)] for the next iteration

Updated
Analytical
Model

Iteration Failed

(reduce the number of unknowns 
or measure more data)

Fig.6.7 - Program Flowchart for Analytical Model Updating
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Stiffness Error Matrix (first iteration) Calculated Damping Matrix (first iteration)

Stiffness Error Matrix (4th iteration) Calculated Damping Matrix (10th iteration)

Stiffness Error Matrix (10th iteration) Calculated Damping Matrix (20th iteration)

Relative Norm Changes (stiffness)

Iteration (times)

Relative Norm Changes (damping)

Fig.6.8 - The Iteration Results
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During the calculation, it was found that when the stiffness modelling errors were greater 
than 35%, convergence became a problem (for this specific case). It is therefore 
considered that if the modelling errors are localised and there are some ways of locating 
them, then the number of unknowns involved in the updating process can be reduced and 

hopefully the restrictions imposed by the original assumption (the Euclidean norm of the 
modification should be of second order) can be relaxed. To illustrate this point, some 
100% stiffness modelling errors are introduced to the same basic system mentioned above 
and the modelling errors are located in the ways which have been discussed in some detail 
in Chapter 5. After the location, only the unknowns which contain modelling errors are 
retained in the updating process. Even when measured FRF data covering only the first 
mode are used, convergence of the results was obtained.

From what is shown in Fig.6.7, a complete eigensolution of the analytical system is 
necessary during each iteration. For large practical problems, this could lead to a huge 
amount of calculation and so, if possible, this complete eigensolution should be avoided. 
This will be discussed in some detail later on in this Chapter.

6 .4 .3  EXTENSION OF TH E M ETHOD TO TH E M OD ELLIN G  
O F N O N LIN EA R STRU CTU RES

The above developed method can be extended to the case where the structure is nonlinear. 
As mentioned before, when a structure to be modelled is nonlinear, its mathematical 
model has to be established on a mode by mode basis because of the inconsistency of 
measured data (even when response control is used to linearise the structure, the FRF data 
measured around different resonances could be the data from different linearised systems 

due the different modeshapes). For this reason, a mathematical model of a nonlinear 
structure cannot, in general, be established based on the use of measured modal data 
because, even when the nonlinearity location information is given, the data for one mode 
are, in most cases, insufficient for the problem to be solved. In order to establish a 
mathematical model of a nonlinear structure, it becomes essential that measured frequency 

response function data should be used instead of modal data.

It is assumed here that the nonlinearity of the structure is localised, as is usually the case 

in practice, and that the linearised frequency response functions corresponding to different 

response levels are measured. Also available is an analytical model of the structure which 

may be in error for the linear part (corresponding to very low response amplitude). What 

needs to be established is a mathematical model of the nonlinear structure corresponding
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to these different response levels. Numerical cases of both complete and incomplete 
measured coordinates were investigated but only the results of the incomplete coordinates 

case are given here.

The analytical model used is that shown in Tables 6.1&6.2 and the 'experimental' model 
corresponding to the lowest response level is the same as the 'experimental' model used 
in the numerical case study of incomplete coordinates in §6.4.2 with stiffness and 
damping error matrices previously shown in Fig.6.5. Both cubic stiffness and quadratic 
damping nonlinearities are introduced between x3-x4 and are studied separately. Four 
coordinates are supposed to be measured x 1? x3, x6 and x8 and the point receptances of 
coordinate Xj corresponding to different response levels for the case of stiffness and 

damping nonlinearities are illustrated in Fig.6.9 in the frequency range of mode 3. First, 
the analytical model is updated using the measured frequency response functions 
corresponding to the lowest response level to obtain an accurate base-level ('zero' 
amplitude) linear model of the nonlinear structure. Then, based on this linear model and 
the measured FRF data at higher response amplitudes, the nonlinearity can be located in 
the ways discussed in Chapter 5. After the location has been made, only those unknowns 
corresponding to the nonlinear region are retained and, therefore, only the FRF data 
around one mode are necessary (mode 3 in this case study) to identify the mathematical 
model of the nonlinear structure (in fact, the only data available due to the inconsistency). 
The calculated stiffness and damping changes versus nondimensionalised response levels 
of coordinate Xj are plotted in Fig.6.10. Clearly, the cubic stiffness and quadratic 

damping features of the nonlinearities are demonstrated.
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Nondimensionalized Response Nondimenskmalized Response

Fig.6.10 - Calculated Stiffness and Damping Changes Versus Response Levels

6.4.4 A PPLICA TIO N  OF TH E M ETH O D  TO TH E 
G A RTEU R  STRU CTU RE

In the previous section, numerical case studies based on an 8DOF mass-spring system 
have been carried out to verify the new method and here an FE model of a more complex 
structure is considered. In general, as for the global mass and stiffness matrices, the mass 
and stiffness error matrices [AM] and [AK] can be expressed as linear combinations of 
element mass and element stiffness matrices [n^] and [ks] which have been appropriately 

(according to their positions in the global mass and stiffness matrices) expanded to the 
global dimension of the system, respectively, as:

Nj Nj

[AM] = X P s K ]  and [AK] = X  YsTkJ (6-14)
S = 1 S = 1

where Nj is the number of elements, ps and ys are the design variable changes associated 

with the s* element, [ms] and [ks] are the sth expanded element mass and stiffness 

matrices. In the case when the measured coordinates are incomplete, replacing the 
unmeasured receptance terms in {ax(cD)}i (on the RHS of (6-6)) by their analytical 

counterparts and substituting [AZ(co)]=(-co2[AM]+[AK]) into the RHS of (6-6), with 
[AM] and [AK] being expressed in (6-14), the RHS of (6-6) becomes a vector with each 

element being a linear combination of all the unknown coefficients ps and ys ( s ^ N j )  and 

(6-6) becomes:
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r  a n(co) - ajiCco)^

,a2i(co) - a 2i(co)

< > =

an(co) a12(co) . 
a2i(co) a22(co)

a 12N1( c°)

a 22N 1( c° )

Lanl(co) âCco) . . . an2Ni(co)J LyNl>

<

Pi

pNj

J l
r  (6-15)

Deleting the rows on both sides o f (6-15) where the *0̂ ( 0)) terms have not been 

measured, the following reduced-order linear algebraic equations are obtained:

[A(co)] (P) = {Aoc(co)} (6-16)

where [A(co)] and (Aa(co)} are known for specific frequency co. Again, equation (6-16) 

is based on FRF data at one frequency point. When data for a number of frequencies are 
used, (6-16) becomes overdetermined and the SVD technique can be used to solve for 
(P) and then to reconstruct the updated analytical model. Since some approximation has 
been made during the formulation of (6-16) due to the incompleteness of measured 
coordinates, the updating problem has to be solved iteratively, as discussed in §6.4.1.

A plane truss structure as shown in Fig.6.11, which is a part of the GARTEUR structure 
as will be explained in next Chapter, is studied. In the formulation of FE model, 3DOFs 

(two translational and one rotational as shown figure 6.11) are considered. As compared 
with the previous mass-spring system, this example is larger in dimension and more 

typical because it is formulated based on a real structure. Modelling errors are introduced 
by overestimating the mass matrix for the 18th element (nodes 17-18) and the stiffness 
matrices for the 11th and 12th element (nodes 10-12) by 100% (notice that in this case, the 
e = lIAKIIp/IIKJlp = V2/VT9" = 0.324). The exact mass and stiffness error matrices are 

shown in Fig.6.12. One incomplete column of the receptance matrix of the 'experimental' 
model - all the odd numbered nodes with their translational degrees of freedom (u,v) - is 

supposed to be measured over a frequency range covering just the first 5 modes and some 
of the measured and analytical frequency response functions are shown in Fig.6.13. 

Based on (6-16), FRF data at 20 frequency points were randomly chosen for each 
iteration in the measured frequency range to construct the coefficient matrices [A(co)] and 
{Aa(co)) and the iteration results are shown in Fig.6.14.
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Fig.6.11 - A Free-free Frame Structure

Error Mass Matrix

Fig.6.12 - Exact Mass and Stiffness Error Matrices
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Fig.6.13 - FRFs of Analytical and ’Experimental' Models 
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Error Mass Matrix (first iteration)

Error Mass Matrix (third iteration)

Error Mass Matrix (5th iteration)

Error Mass Matrix (7th iteration)

Error Stiffness Matrix (first iteration)

Error Stiffness Matrix (third iteration)

Error Stiffness Matrix (7th iteration)

Fig.6.14 - Iteration Results
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6.4.5 SOM E CO NSID ERA TIO NS ON TH E CO M PU TA TIO N A L ASPECTS

As shown in the numerical case studies, complete eigensolution of the updated system is 
required during each iteration when the measured coordinates are incomplete. Although 
computation is becoming cheaper as more powerful computers being produced at lower 
cost, this complete eigensolution is often computationally expensive, especially when 
systems with big dimensions are considered. It is therefore necessary to discuss some 
computational aspects of the eigenvalue problem so that computational effort involved can 

be minimised.

If all the eigenvalues and eigenvectors of a matrix are of interest (the complete 
eigensolution), the LR and QR algorithms [91], which are the most effective of known 
methods for the general algebraic eigenvalue problem, can be used. Both methods use a 
reduction of the general matrix to triangular form by similarity transforms, but the 
reduction is achieved by non-unitary transform in the LR algorithm while it is achieved by 
unitary transform in the QR algorithm which is numerically more stable. On the other 
hand, if only some of the eigenvalues and their corresponding eigenvectors are of interest, 
iterative methods, which are often referred to as subspace iteration because only a subset 
of the whole eigensolution is of interest, can be employed. In fact, in practical Finite 
Element analysis, it is rare for all the modes of the system to be calculated because, in 
general, only the lower modes of the system are of interest or, even, valid. The 
computational cost of solving the eigenvalue problem is, in general, proportional to the 
number of modes which are required. The most effective algorithm used for partial 
eigensolution is the Inverse Iteration method [92]. In the following, it will be shown how 

Inverse Iteration method can be used effectively to reduce the computational effort 

involved in the eigensolution.

Let the system to be solved be described by matrix [A]=[M] _1([K]+i[D]) and suppose 
that only the first p modes are of interest. Then, for a given matrix [Q0]e  Cnxp with 

orthonormal columns (initial estimate of the required eigenvectors), the following Inverse 
Iteration generates a sequence of matrices {[Qk]}e Cnxp (k=l,2,...) which will converge 

to the first p eigenvectors of interest

For k = 1, 2, ...
2^ = [A] _1 Qk.i
Qk Rk = Zk (QR factorisation of Zk to calculate Qk for next iteration)

(6-17)
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After the eigenvectors [({)] (which is the converged [Qk]) are calculated, the eigenvalues 
[X ] can be found easily based on the Rayleigh Quotient formulation:

I 'M  = [<M T [A] [<t>] (6-18)

The convergence rate of the sequence of (6-17), as shown in [92], is proportional to the 
ratio ^pAp+i. It should be noted that during the iteration process, only one complex 

inverse is required, that being ([K]+i[D])'\ and in the case of a free-free system in which 
[K] is singular, a shift \l becomes necessary so that [A] '1 in (6-17) becomes ([AJ-p.fi])'1. 
It is easy to prove [91] that systems described by [A] and ([A-p[I]) have the same set of 
eigenvectors and the correponding eigenvalues simply differ by a value of p. Also, in the 

specific case of the Inverse Iteration method where only one eigenvalue and eigenvector 
of a system are of interest, p should be so chosen such that it is the closest to the 

eigenvalue of interest [92].

In the model updating process, since [AM], [AK] and [D] are usually small in the sense 

of the Frobenius norm when compared with the original mass [M] and stiffness [K] 
matrices, the eigenvalue problem is actually reduced to the problem of dynamic reanalysis 
(often referred to as structural modification analysis) and the initial estimation of the 
eigenvectors [Q0] can be very accurately chosen as the eigenvectors of the original 

system. Due to this accurate choice of initial conditions, it can be expected that the 

convergence will in general be very fast.

All this means that if only a partial eigensolution is required, the Inverse Iteration method 
is ideal for solving the eigenvalue problem. As shown in §6.4.1, the whole updated 
analytical receptance matrix is required in each iteration of the updating process and, 
theoretically, in order to calculate this receptance matrix, all modes should be available. 
However, experience shows that the receptance in the lower frequency range can be 
accurately approximated by using just a few of the lower modes and by considering the 

contribution of higher modes as constant residual terms. For example, for a reasonably- 

sized practical 500x500 system, if the receptances are of interest only up to the frequency 
of the fifth mode, then the estimation of a^co) based on following equation should be

very accurate when the first 20 modes are included

20

«ii(co) = I
r = 1

d). (h. rYl rYJ
co^ - (D2 +  i r i r co 2̂  +  RiJ (6-19)



f~6] Identification of M athem atical M odel o f D ynam ic Structures 198

Here is a constant residual term representing the contribution of higher modes which 

can be determined as follows by using the ([K]+i[D])_1 which has been calculated before

([K]+i[D])-‘ = [a(0)] = [0,(0)] + [R] (6-20)

where [ac(co)] is the receptance matrix corresponding to the contribution of the calculated 

modes.

It has been shown that during model updating process, the problem of an eigensolution 
being involved in each iteration is actually reduced to the problem of dynamic reanalysis. 
Hence, performing the complete eigensolution ab initio is unnecessary. On the other 
hand, due to the fact that the contribution of the higher modes to the receptances in the 
lower frequency range decreases quadratically in terms of frequency separation, only a 
partial eigensolution is necessary in order to calculate accurately the receptance data 
needed in the model updating process. These two observations make the Inverse Iteration 
method as discussed above the most appropriate method for the specific problem 
addressed.

6.5 G EN ERA LISA TIO N  OF M ODEL UPDATING M ETH O D S

A model updating method based on the correlation between analytical model and 
measured frequency response functions has been developed and it will be advantageous to 
examine the relationship between the present method and the existing methods which are 

based on the correlation between analytical and measured modal data. It can be recognised 
that model updating methods can be generalised if measured FRF data are used instead of 

the modal data. This argument is self-evident because modal data are effectively derived 
from measured FRF data at the resonance frequencies but a brief mathematical proof is 
given here.

W hen the measured coordinates are complete, the present method of updating is 
formulated based on equation (6-6). Since model updating methods based on the use of 
modal data rely only on the data points where co=cor (at the natural frequencies), it is 

interesting to know to what equation (6-6) will degenerate when co=cor. Unfortunately, 

{a x(co)} j in (6-6) is not defined when co=cor (the damping of the experimental model is 

made to be zero in order to permit a comparison with the methods based on modal data 

which are supposed to be from an undamped system), therefore what needs to be
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discussed is what will equation (6-6) degenerate to as CO—>CDr and the damping matrix 
[D ]-* [0 ].

It is not difficult to see that when co—»cor, {ot̂ Cco)} j can be expressed as

lim {a x(co))j = y {<t>)r + {<|>0} 
(0—>cor

(6-21)

where {({)0} is due to the influence of the other modes and can be considered as a constant 

vector when there is slight change in frequency and change in damping. However, when
the damping matrix [H] —> [0], the coefficient y—»oo. Therefore, 
[H]—>[0], equation (6-6) becomes

when co—>cor and

lim y (- (<Mr + -({<j>°) + {aa(cor))i))T = 
co->cor y

lim y (- {<Mr + -  {<j)°))T [AZ(cor)] [cca(cor)] 
Co—»cor y

(6-22a)

- M l  = [AZ(cor)] [aa(cor)] (6-22b)

(- co* ([Ma] +[AM]) + [Ka] + [AK]) {<(>}r = (0} (6-22c)

From equation (6-22c), it can be seen that equation (6-6) degenerates to the simple 
eigendynamic equation when co—>cor and since all the model updating methods using 

modal data are derived from the basic equation (6-22c), it can be concluded that, in a 

broad sense, model updating methods based on modal data are discrete versions of the 

present generalised method based on frequency response data.

When the measured coordinates are incomplete, as mentioned earlier, the present method 
is derived from some sort of perturbation analysis and again, this perturbation analysis in 
the domain of frequency response functions can, in a broad sense, be regarded as a 
generalised version of the perturbation analysis in the modal domain on which some of 
the methods, such as the inverse sensitivity analysis as will be discussed in detail in 

Chapter 7, are based.

As discussed above, model updating methods based on modal data are discrete versions 

of the present generalised method because modal data are virtually the data of frequency 

response functions at resonance frequencies. Furthermore, in the case of model updating 

using measured FRF data, each data point contains information from all the modes of the
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system and, in general, the data points measured are plentiful. Thus, the updating 

problem, as discussed below, is in most cases uniquely defined while in the case of 
model updating using modal data, the updating problem, in most cases, is underdefined 
since on the one hand, the data points are so badly chosen (FRF data at resonance 
frequencies) that the contribution of other modes has been deliberately eliminated and, on 
the other, the number of measured modes is usually quite limited.

6.6 UNIQUENESS OF UPDATING PROBLEM

The uniqueness of the model updating problem - that is, how much data should be 
measured so that the model updating problem can be solved uniquely (the true solution of 
problem can be obtained) - needs to be discussed when a new method is developed. Since 
the present method seeks to obtain an updated model which will reproduce the measured 
frequency response function data continuously on the frequency axis, as shown in 
numerical case studies, the measured data required (the number of measured modes) in 
order to solve the updating problem uniquely are much less as compared with other 
existing methods. In fact, it can be proven mathematically that when the measured 
coordinates are complete, a unique solution always exists regardless of the number of 
modes which are included in the measured frequency range. On the other hand, when the 
measured coordinates are incomplete, a unique solution can, in most cases, be obtained 
even when just few modes are included in the measured frequency range if the physical 
connectivity of the analytical model is employed as additional constraints.

Suppose one complete column {a x(co)}j of the receptance matrix is measured and its 
updated analytical counterpart {aau(co)}i is available (calculated based on the updated 

analytical model). Since the updated model should reproduce the measured data, it 
follows that {aau(co)}i= {a x(co))i because, otherwise, it will still be possible to improve 

the model. Thus:

N N

A  r^ j = V *

co2 - co2 + iri CO2
r = 1 r = 1

where modal parameters with ~ are those of the experimental system and modal 
parameters without ~ are those of the updated analytical system. Since equation (6-23) is 
valid for any co, then mathematically, we have

r?i r^ i

65̂  - co2 +
for j = 1, N (6-23)
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It is not difficult to see that (6-24) is equivalent to following equations

[*CDr.] = [*63r.], [-TV] = f r y  and [<\>] = [<i>] (6-25)

From (6-25), it is clear that the thus-updated analytical model is unique and is the true 
solution of the problem because the model reproduces all the eigenvalues and eigenvectors 
of the experimental system. Also, it is clear that the number of modes measured is 
irrelevant during the development of the above argument and, therefore, the uniqueness of 
the updating problem when measured coordinates are complete is independent of the 

number of modes measured.

On the other hand, when the measured coordinates are incomplete, a unique solution can 
also be obtained as shown in numerical case studies when the physical connectivity of the 
analytical model is employed. This process is intuitively explained as below. From an 
information point of view, although the measured coordinates are incomplete, every piece 
of measured data contains information about all the modifications (the difference between 
the analytical and experimental models) and since the measured data are plentiful in terms 
of frequency points and the physical connectivity of the analytical model is imposed as 
constraints, the updating problem can, in most cases, still be turned into an 
overdetermined one and thus be solved uniquely.

Mathematically, when the measured coordinates are incomplete, the physical connectivity 
of the analytical model becomes essential in order to have a unique solution. Suppose one 
incomplete column {dx(co)}j of the receptance matrix has been measured (for simplicity, 
assume coordinates Xy to xn have been measured), then, after the model has been 
updated, the {(Tx(co)Rvalues and their updated analytical counterparts {Qau(co))i should 

satisfy {a au(co)}i = {Sx(co)}i, that is

N N

r r

Equation (6-26) is equivalent to the following equations

coj = oij, T|rcô  = TJrc5̂  and A r^ j =r^ir^j for r = l , n  andj = l ,n  (6-27)
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From (6-27), it is clear that the updated model has the same natural frequencies and 
damping loss factors as those of the experimental model, but the modeshape matrix is not 
completely the same due to incompleteness of the measured coordinates as shown in 
Fig.6.15 (only the submatrix of the whole eigenvector matrix corresponding to the 
measured coordinates has been determined). Hence, the updated model cannot, in 
general, be unique. However, if we impose the physical connectivity of the analytical 
model so that the updated model preserves the physical connectivity also, then the 

solution, will in most cases, become unique.

:

lBllflll8gl|lMlli
.,.\ \ v .v .w .,.,.v .v .,.v.wXw.\%v.\\%%%v.,.v .v .v .v .v .v nxN
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NxN
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.

NxN

determined eigenvector elements

arbitrary eigenvector elements

Fig.6.15 - Illustration of the Determination of Eigenvector Elements

6.7 BALANCE OF COEFFICIENT MATRICES

As mentioned in §6.2, when FRF data at j different frequency points are used, equations 

(6-8a) in the case of complete coordinates and (6-11) in the case of incomplete coordinates 

become

[C(co1)]

[C(co2)]

{P} " w c o j) } "

{B(0)2)1

< • >

[C(cOj)] —■ {B(coj)}''

(6-8c)
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[U(©!)]

[U(co2)l

{P} ' { V ^ f

{V(C02)}

< >

L [U(cOj)] ^ {V(coj)} ^

(6-11 a)

Due to the different magnitudes of FRF data at different frequency points (e.g., data 
around resonance and anti-resonance frequencies), the RHS coefficient matrices of 
equations (6-8c) and (6-11 a) could in some cases be poorly-conditioned in terms of its 
generalised inverse and this ill-conditioning could cause numerical difficulty in the 
updating process, especially when FRF data used are contaminated by measurement 
errors. Although such ill-conditioning problem can be overcome by properly choosing 

frequency points, an alternative numerical technique is presented here.

Consider equation (6-8c) and rewrite it as

Pi[C(©j)]

p2[C(co2)]

{P} =

P2{B(co2)}

< >

Pj[C(C0j)] J Pj {B (C0j)}

(6-8d)

The least-square solution of (6-8d) is

Pl[C(C0!)] " T PitCCtOj)]

p2[C(co2)] P2[C(co2)]

-  Pj[C(cOj)] - -  Pj[C(cOj)]

-1 " PitCCcOi)] T ''P1{B(co1)}'>

P2[C(co2)] P2{B(co2))
• < >

-  Pj[C(cOj)] - ^Pj{B(C0j))J

(6-28)

After some mathematical manipulation, equation (6-28) becomes

{PJ = [ i  Pk2 [C(cok)]T [C((0k)] ]■' { X  pk2 [C(cok)]T {B(cok) }}
k=l k=l

(6-29)
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By choosing pk such that the maximum magnitude of the elements of the matrix 
Pk2[C(cok)]T[C(cok)] (k=l,j) is unity, the accuracy of the solution could in some cases be

improved.

6.8 CONCLUSIONS

In this Chapter, a new model updating method has been developed based on the 
correlation between the analytical model and measured frequency response function data. 
It has been mathematically demonstrated that existing methods based on the correlation 
between analytical and measured modal parameters are discrete versions of the new 
generalised method presented here and since only the frequency points which are the 
natural frequencies of the structure are used in those methods (these points are, in effect, 
badly chosen since they contain no information about other modes of the structure), the 
classical updating problem in most cases are underdefined. However, as shown in 

numerical examples, because of the direct use of measured response function data, the 
residual terms involved in the data are taken into account in the new method and the 
measured data are always of plentiful in terms of frequency points, and so, the present 
method turns the updating problem into an overdetermined one in most cases.

Considering the practical difficulty of measuring FRF data at all the coordinates which are 
specified in the analytical model, the present method has been extended to the case where 
measured coordinates are incomplete. Mathematically, in these circumstances, the method 
is based on a certain form of matrix perturbation analysis and, therefore, an iteration 
scheme has to be introduced during the updating process. Some computational aspects 

involved in the eigensolution during this iteration have also been discussed so that 
computational cost can be reduced.

As for the uniqueness of the updating problem, it is often asked how many modes are 
required in order to get a unique (true) solution? Of course, the number of modes required 
depends on which modes are chosen and what characteristics the structure possesses if 

the updating problem is to be solved based on measured modal data as will be discussed 

in next Chapter. However, based on the new method developed in this Chapter, it has 

been mathematically proven that in the case where measured coordinates are complete, the 
unique (true) solution always exists regardless of the number of modes measured. On the 
other hand, when the measured coordinates are incomplete, a unique solution can be 

obtained in most cases even when few modes are measured if the physical connectivity of 
the analytical model is employed.
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Although experimental modal analysis has been highly developed, there still exist some 
problems. In the case where two modes are very close, accurate modal parameters can be 
difficult to obtain. Furthermore, measured modes are usually complex as discussed in 
Chapter 2 and although some investigation has been undertaken to devise ways of 
employing complex modes directly in the correlation [93], most of the correlation 
methods are based on the use of real modes. This means that the measured modes have to 
be realised first before they are used. The realisation process not only introduces 
numerical errors but at the same time, discards the damping information about the 
structure. These problems do not exist in the present generalised FRF method and, as a 
by-product of the updating process, the method reveals the damping information about the 
structure (damping model).

The method has been extended to the case where the structure under investigation is 
nonlinear. It has been shown that in this case, in order to establish the mathematical 
model, an accurate linear model as well as the location information of the nonlinearity are, 
in general, necessary because the model has to be established based on mode by mode 
basis. On the other hand, because of the inconsistency of measured data, it is essential to 
use measured FRF data in the correlation, rather than the measured modal data.

Numerical case studies based on an 8DOF mass-spring system as well as a 57DOF model 
of a frame structure are carried out to assess the practical applicability of the new method 
presented in this Chapter. Cases where measured coordinates are both complete and 
incomplete are considered and the results have shown marked advantages over the the 

existing methods based on the use of measured modal data. Since the method is 
developed for the practical case in which both measured modes and coordinates are 

incomplete, it is readily applicable to practical correlation analysis.



CHAPTER [7

POSSIBILITIES AND LIMITATIONS 
OF ANALYTICAL MODEL IMPROVEMENT

7.1 INTRODUCTION

As one o f the major applications o f modal analysis, analytical model 
improvement/updating using the measured dynamic properties of a structure has become 
a major research topic in the dynamic modelling of practical engineering structures and 
has generated many technical publications. A large number of different algorithms have 

been developed, some of which have been proven to be quite successful, such as the new 

method developed in Chapter 6. However, to the author's knowledge, there has been 
little technical discussion about what can be done (the possibilities) and what cannot (the 
limitations) in the updating of an analytical model when practical measurement cases in 
which both measured modes and coordinates are incomplete are considered. The purpose 
of this Chapter is to identify some of these possibilities and limitations with the objective 
of directing research in this subject towards more productive areas.

The discussion begins with a review of the limitations and difficulties of some of the 
recently developed methods based on full matrix updating. The mathematical 
underdeterminancy associated with these methods is explained. Then the possibility of 

updating a condensed (Guyan-reduced) model with error location based on Kidder's 

expansion method is examined. It is demonstrated that, when measured modes and/or 

coordinates are incomplete as they are in practice, updating of the analytical model using
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full matrix updating method(s) or based on Guyan-reduced model with error location is 
very difficult, if not impossible. In order to solve the updating problem, it becomes clear 
that the physical connectivity of the analytical model should be respected during the 
updating process so that the number of unknowns involved can be reduced and the 
limited measured data available can have the possibility of solving the problem.

When the physical connectivity of the analytical model is imposed, the data required in 
order to update an analytical model are usually within the scope of practical 
measurements. As discussed in Chapter 6, by imposing the physical connectivity, 
measured FRF data covering few modes are, in most cases, enough to solve the updating 
problem even when the measured coordinates are incomplete. Nevertheless, in this 
present Chapter, criteria for the minimum measured data (modal data) required to solve 
the updating problem are established based on the Eigendynamic Constraint Method 

(where measured coordinates are complete) and the Inverse Eigen sensitivity analysis 
(where measured coordinates are incomplete). Such criteria are important because they 
enable the analyst to judge whether an available set of measured modal data is able to 
obtain a unique solution of the updating problem. These criteria are then generalised by 
using the measured FRF data.

Basically, the discussions are illustrated using the analytical model updating exercise 

called 'GARTEUR' which is supposed to represent the true practical problem in terms of 
the incompleteness of both measured modes and coordinates. A mass-spring model is 

also used to illustrate the criterion developed.

7.2 REVIEW OF FULL MATRIX UPDATING METHODS

The term 'full matrix updating' is defined here to mean that all elements in the analytical 
mass and/or stiffness matrices are considered to be in error during the updating process 
and therefore should be corrected using the measured data if possible. Berman's method 

[94], the Error Matrix Method [90] and methods presented in references [83,95] belong 
to this category. Since the measured data are limited (both measured modes and 
coordinates), it will be shown that it is practically very difficult, if not impossible, to 

update the analytical model based on these methods. What these methods provide is an 

optimised solution which can reproduce the measured modal data to some accuracy, but 
which is not the true solution of the problem.
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7.2.1 BERM AN’S METHOD

In reference [94], Berman developed a systematic method for improving analytical mass 
and stiffness matrices based on measured modal data. In general, the method is devised 
for the case where the analytical model is in the Guyan-reduced form in which only the 
measured degrees of freedom are retained as masters and, as a result, the analytical model 
itself becomes fully populated and the measured coordinates are compatible with the 
analytical model. In this case, it will be shown that only when all the modes have been 
measured, can exact updating become feasible based on Berman's method. Otherwise the 
solution obtained is an optimised one. A brief summary of the method is introduced in 
this section for the convenience of discussion and interested readers are referred to the 
original paper [94] for details.

During the optimisation procedure of Berman's method, an 'improved' analytical mass 

matrix is calculated first and then, based on this 'improved' mass matrix, an optimised 
stiffness matrix is obtained. Although it is difficult to provide a physical interpretation, 
the method is developed based on the minimisation of weighted Euclidean norms of the 
differences between the analytical and experimental mass matrices and between the 
analytical and experimental stiffness matrices respectively as:

Em = II [MJ -m  ([MJ - [MJ) [MJ -1/2 II (7-1)

ek = II [M J -m  ([KJ - [KJ) [MJ Aa II (7-2)

Introducing orthogonality and symmetry properties into the experimental mass and 
stiffness matrices as physical constraints in the form of Lagrange multipliers, the final 
'improved' mass and stiffness matrices can be derived from:

[Mx] = [Ma] + [Ma] [<y [m j 1 ([ I ] - [mj) [ma] '' [<y T [MJ (7-3)

[KJ = [Ka] + [Ak] + [Ak] T (7-4)

where [mj = [<y T [Ma] [<>x]

and [AJ = \ [MJ [<M (M> J  T [KJ [<t>J + [ ' M )  tt> J T [MJ - [KJ M>J [<j>J T [MJ
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From equations (7-3) and (7-4), it can be shown that the thus estimated mass matrix [MJ 
and stiffness matrix [Kx] can never be the exact mass and stiffness matrices of the 
structure unless a l l  the modes have been measured and this point will be further 
explained later on.

7.2.2 THE ERROR MATRIX METHOD (EMM)

The basic theory of EMM [90] can be summarised as shown below. Define stiffness 
error matrix [AK] to be [AK]=[Kx]-[Ka] and assume that the [AK], when compared with 
[KJ, is of second order in the sense of the Euclidean norm. Then, based on matrix 
perturbation theory, [AK] can be expressed, to a first order approximation, as:

[AK] = [KJ ([KJ •' - [KJ 4 ) [KJ (7-5)

Again, [KJ'1 and [KJ'1 can be approximated using the m (m<N where m is the number 
of measured modes and N is the number of degrees of freedom specified in the analytical 
model) corresponding measured and analytical modes and then substituted into (7-5) to 
obtain [AK] as:

[AK] = [KJ [<t»J rxa.] -1 [<M T [KJ - [KJ [<|y [•*,.] -1 [<M T [KJ (7-6)

As for Berman's method, the EMM requires c o m p le te  measured coordinates and, even 
then, the estimation of the stiffness error matrix (the estimation of [AM] based on EMM 
is shown in [74]) is approximate even when a ll the experimental modes have been 
included. From this point, Berman's method is mathematically superiorer to the EMM 
because, at least when all the modes and all the coordinates are measured, Berman's 
formulation gives an exact solution (although the solution is trivial in this case). On the 
other hand, although the number of modes required can be reduced when an iteration 
procedure is introduced by imposing physical constraints (physical connectivity) as 
shown in [74], the situation cannot be improved significantly since, during the iteration, 
the total number of unknowns cannot be reduced and it is therefore expected that even 
when the physical constraints have been introduced, the number of modes necessary for 
the EMM to work properly will be in general beyond the capability of practical 
measurement. However, one could argue here that although it is strictly not possible to 
update the analytical model based on this method in practice, when few measured modes 
are available, is it not possible to pinpoint the modelling errors (the errors are supposed to 
be localised as they usually are in practice) using the first iteration results based on the 
EMM and then to reduce the number of unknowns in order to facilitate the solution of the
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problem? This sounds reasonable but is mathematically contradictory because if the 
errors were located in the first iteration, that means something about the solution has been 
obtained and if the iteration is carried on, the condition will be improved and the true 
solution will, in most cases, be achieved. Since the solution cannot be achieved based on 
successive iteration, the location using first iteration results will be, in general, 
meaningless.

7.2.3 MATHEMATICAL ILLUSTRATIONS

It has been demonstrated that in the full matrix updating methods, a l l  coordinates which 
are specified in the analytical model, and a l l  modes (or at least a large proportion in the 
case of iterative EMM) should be measured in order to obtain the exact mass and stiffness 
matrices of the system. This point is to be illustrated here from a linear algebraic equation 
point of view based on the Eigendynamic Constraints Method, which will be discussed 
further in detail later in this Chapter. Based on the eigendynamic equation and mass- 
normalisation property of the i^ measured mode:

- (A*)i [AM] {<Mi + [AK] [<Mi = a x)i [MJ {<Mi ‘ [KJ {(Mi (7-7)

{<M! [AM] = 1 - {«t)x}T [MJ (<t>x)i (7-8)

it can be seen that (7-7) and (7-8) provide (N+l) linear algebraic equations in terms of the 
unknowns in the error mass and stiffness matrices. Therefore, when all the N modes are 
measured, the total number of linear algebraic equations is N(N+1). At the same time, 
since [AM] and [AK] are symmetric, the total number of unknowns involved in [AM] 
and [AK] is also N(N+1). This means that if all the elements of both mass and stiffness 
matrices are considered to be in error, the updating problem is just d e te r m in is t ic  (the 
number of equations is equal to the number of unknowns) when all the modes and 
coordinates have been measured. Any measured piece of information (modes and/or 
coordinates) which is missing will cause the problem to be u n d e r d e te r m in e d  and only 
optimised solutions become possible. This demonstrates the limitations of full matrix 
updating methods.

7.3 CONDENSED MODEL BASED ON GUYAN REDUCTION

So far, the difficulties and limitations of full matrix updating have been discussed. The 
possibilities of updating an analytical model when it is in the Guyan-reduced form 
(usually fully populated) with localised modelling errors now need to be investigated.
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The modelling errors are located first in the ways as discussed in some detail in Chapter 5 
and then the possibility of further updating of the model is investigated. The numerical 
results shown are calculated based on the free-free GARTEUR structure (Fig.7.1).

7.3.1 THE GARTEUR STRUCTURE

The structure being studied is a truss structure as shown in Fig.7.1. Each elemental 
segment shown in Fig.7.1 is the superposition of an axial bar element and a bending 
beam element. Young's modulus is assumed to be E=0.75xl0n N/m2 and the density to 
be p = 2 8 0 0 k g / m 3. For the bar element, the cross section areas are 
Sh(horizontal)=0.004m2, Sv(vertical)=0.006m2 and Sd(diagonal)=0.003m2. For the 
bending beam element, the second moment of inertia is assumed to be the same for all the 
bending beam elements and is I=0.0756m4.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
15000 mm

7.3.2 THE GUYAN REDUCTION TECHNIQUE

In some cases, the full analytical model obtained using FE analysis needs to be reduced 
for computational reasons. The most commonly used technique for undertaking such a 
process is the Guyan reduction technique [96]. If the full analytical mass and stiffness 
matrices are partitioned according to master and slave degrees of freedom, then the 
frequency response function matrix corresponding to the master degrees of freedom at 
frequency co can be calculated as follows:

0  measured nodes 
O unmeasured nodes

Fig. 7.1 - The Free-free GARTEUR Structure

30
00
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[a(co)] =
[ot^nCco)] [a ^ to ) ]

[asmC®)] [a ss(°>)]
= [Z(co)] 1

[Zn,s(W)] '

. [Zsm(CO)] [Zss(CO)]_
(7-9)

From (7-9), the [0^ ( 0))] can be calculated as

[owCco)] = ([Z ^G ))] - [Zms(rn)] [Zss(o>)] -1 [Zms(co)]T) -1 (7-10)

In order to preserve exactly the responses at the master degrees of freedom [0 ^ (0 ))] at 

any frequency, the reduced mass and stiffness matrix must satisfy

[Kr] - c9- [Mr] = [ocnun(G))] -1 = [Zmm(co)] - (Zms(G))] [Zss(o>)] •> [Zms(w )]T (7-11)

The reduced stiffness matrix can be obtained by setting co = 0 in (7-11) as

[KR] = [ K J  - [Kmsl [Kss] -1 [KjnJ T (7-12)

Upon substitution of [KR] into (7-11), the reduced mass matrix [MR] is obtained as

[M r ]  = [Mmm] -  \  [Kms] [Kss] -1 [Kn,,] T +  ([Kms] - G)2 [Mms]) [K J  4 [Mss] 
coz coz

([ I ] - G>2 [Kss] [M J ) -1 [Kss] -1 ([Kjhj] - G)2 [Mms] ) T (7-13a)

Although, thus reduced, the mass matrix is nonlinear and nonunique, because it is a 
function of forcing frequency, the reduction based on (7-12) and (7-13a) is exact in the 
sense that the reduced model would predict exactly the steady state response of the 
structure at all master degrees of freedom at any frequency. In the static case, when co=0 
(in fact, co->0, the limit of (7-13a) exists), the general reduction formula reduces to that of 

the well-known Guyan reduction and the reduced mass matrix becomes:

[MR1(0)^0) = [Mmm] - [Kms] [K J  J [M ^ ]T - [M ^] [K J  [Kms]T

+ [KhJ  [K J [Mss] [K J [ K ^ f  (7-13b)

What should be discussed here are some of the characteristics of the Guyan reduction 

technique from a modelling error location point of view, using appropriate numerical case 

studies. Since, as shown above, Guyan reduction is a static approximation, the reduced 

model cannot preserve the total energy of the original model, and this is demonstrated by
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differences of the natural frequencies between these two models. Furthermore, during the 
reduction, there are energy exchanges from one part of the structure to another which are 
illustrated by the spreading of the localised modelling errors in the original model. To 

explain these two points, numerical case studies (case 1) based on the free-free 
GARTEUR structure shown in figure 7.1 are carried out. The full analytical model has 
234 DOFs by considering 3 DOFs at each node as shown in figure 7.1, while the Guyan 
reduced model has 156 DOFs after condensing out the rotational degrees of freedom. The 
first 6 non-zero natural frequencies of the full and condensed models are shown in Table
7.1. For the lower modes, the natural frequencies of these two models are quite similar 
but become substantially different when higher modes are concerned. To illustrate how 
localised modelling errors in the full analytical model spread during the condensation 
process, the element stiffness matrices of element 12 (nodes 12-13) and element 45 
(nodes 45-46) are doubled to make a modified version of the structure. In this case, the 
stiffness modelling errors on the full coordinate basis are localised in coordinates 37-42 
(nodes 12-13) and 133-138 (nodes 45-46). However, after the condensation, these 
localised modelling errors are seen to have spread into neighbouring coordinates, 
depending on the connectivity, as shown in Fig.7.2&7.3. Although the dominant errors 
are still where they should be, some errors have been spread with considerable 
amplitudes. Taking a close look at where the dominant errors are as shown in Fig.7.3, it 
can be seen that more than 15 coordinates have clearly been contaminated although only 
the stiffness of one single element has been changed. The effect of this spreading of 
modelling errors on the updating of such analytical models can already be anticipated and 
will be discussed later.

Mode No. 1 2 3 4 5 6
cof 145.441 226.784 283.965 397.222 427.044 442.724

C0c 145.244 225.737 282.556 393.635 422.128 436.142
C0f. natural frequency of full analytical model (Hz) 
coc: natural frequency of condensed analytical model (Hz)

Table 7.1 Natural Frequencies of Full and Condensed Analytical Models
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Fig.7.2 - Stiffness Modelling Errors (Guyan-reduced)

Fig.7.3 - Stiffness Errors between Coordinates 22-52 (Guyan-reduced)
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7.3.3 LOCATION OF MODELLING ERRORS

As discussed above, since the physical connectivities of the original analytical model have 
been destroyed during dynamic condensation (Guyan reduction), exact updating of the 
condensed analytical model based on the full matrix updating methods such as Berman's 
method or the Error Matrix method becomes impossible unless all the modes and all the 
coordinates (specified in the condensed model) have been measured. Here, this problem 
is looked at from a different angle by locating the major modelling errors first and then by 
concentrating on those areas where the major modelling errors are believed to be, trying 
to reduce the mathematical difficulties involved and thus to solve the updating problem 
using the limited measured data available.

In the following example (case 2), stiffness modelling errors are introduced between 
nodes 59-62 and nodes 69-72 by doubling the values of the 6 element stiffness matrices 

between these nodes. The stiffness error matrix (condensed) is shown in Fig.7.4 after the 
condensation. Only the hatched nodes (figure 7.1) with their translational degrees of 
freedom (u,v) are supposed to have been measured. The unmeasured coordinates need to 
be interpolated before the location process can be undertaken.

Fig.7.4 - Stiffness Errors for case 2 (Guyan-reduced)
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This interpolation of the unmeasured coordinates can be achieved by using the analytical 
model itself as discussed in some detail in Chapter 5. Partitioning the analytical model 
according to measured and unmeasured degrees of freedom and using the eigendynamic 
equation, the unmeasured subvector {<{>«.} o f r* mode can be interpolated in terms of the 
analytical model and measured subvector {<J)m} of r* mode as:

(<t>s) = (- [Mss] + [K J ) -1 (co* [Msm] - [K jJ) {<t>m} (7-14)

The first 5 non-rigid body modes have been expanded based on (7-14) and the relative 
modeshape errors which are defined as the difference between the true modeshape and 
the expanded modeshape scaled by the maximum absolute value of the elements of the 
true modeshape, are shown in Figs.7.5-7.9. From these figures, it can be seen that the 
expanded modeshapes based on (7-14) are quite accurate except where the localised 
modelling errors are.

Fig.7.5 - Relative Modeshape Error of Mode 1 (case 2)
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Fig.7.6 - Relative Modeshape Error of Mode 2 (case 2)
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Fig.7.7 - Relative Modeshape Error of Mode 3 (case 2)

Fig.7.8 - Relative Modeshape Error of Mode 4 (case 2)

Fig.7.9 - Relative Modeshape Error o f Mode 5 (case 2)
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These expanded modes are then used to find the localised modelling enrors based on the 
location methods discussed in Chapter 5. All 5 modes are used respectively and the 
location results are shown in Figs.7.10-7.14 (these are not strictly stiffness modelling 
errors [AK] but are [AK]{4>}r{<j>)J as explained in Chapter 5). When compared with the 

stiffness error matrix of Fig.7.4, it can be seen that the location is quite successful since 
for every mode, all the areas where the major modelling errors are placed, are clearly 
located. However, it is difficult to identify the different amplitudes of these errors by 
looking at these location results even if, in fact, the errors are considerably different in 
amplitudes (figure 7.4). This adds difficulties for the next-step updating.

Fig.7.10 - Located Stiffness Errors Using Mode 1 (case 2)
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Fig.7.11 - Located Stiffness Errors Using Mode 2 (case 2)

Fig.7.12 - Located Stiffness Errors Using Mode 3 (case 2)
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Fig.7.13 - Located Stiffness Errors Using Mode 4 (case 2)

Fig.7.14 - Located Stiffness Errors Using Mode 5 (case 2)
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7.3.4 THE UPDATING OF AN ANALYTICAL MODEL

Now, suppose the localised modelling errors are successfully located, what to do next? 
Obviously, the next step will be to update the analytical model since this is the ultimate 
target which is sought, but how? As mentioned in Chapter 6, the only way of updating an 
analytical model when the measured coordinates are incomplete, as in this case, is by 
some kind of perturbation or sensitivity analysis based on an iterative strategy. However, 
in this case, since the physical connectivities have been destroyed during the 
condensation process, every element of the mass (if mass modelling errors are 

considered) and stiffness matrices of the condensed analytical model in those located 
areas should be considered as an independent unknown in the updating process. Again, 
from the linear algebraic equation point of view, even for this simple numerical case, 
such a task as to update the analytical model will be beyond the capability of practical 
measurement (at least, as in the GARTEUR exercise, in which only 5 measured modes 
and a third coordinates (half the coordinates in terms of the condensed analytical model) 
are given, it is impossible to solve the problem addressed). On the other hand, although 
the major errors have been located and so considered in the updating process, the 

influence of those 'small' errors (which are not considered in the updating process) on 
the solution process probably cannot be simply overlooked because they are spread over 

the whole matrix.

7.4 STRUCTURAL CONNECTIVITY IN AN ANALYTICAL MODEL

So far, the mathematical difficulties involved in the full matrix updating process have 

been demonstrated and the limitations of updating an analytical model when it is in the 

Guyan-reduced form have been discussed. It becomes clear that in order to update an 

analytical model using limited measured data, it is essential to preserve the structural 
connectivity of the analytical model. As far as the stiffness properties are concerned, this 
suggests that any stiffness modelling errors which exist can only occur in the non-zero 
elements of the analytical stiffness matrix [KJ. The mathematical validity of such 

physical constraints imposed in the updating process, which are essential, is discussed 

below.

It is well known that practical structures are continuous and possess an infinite number of 
degrees of freedom while the mathematical models sought to represent their dynamic 

characteristics have a finite number of degrees of freedom. As shown before, this 

discretisation modelling process is mathematically a dynamic condensation process.
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Suppose there exist unique mass and stiffness matrices [M]NjXNs, [K]NjXNs where Ns—

which exactly describe the dynamic characteristics of the test structure, then according to 
dynamic condensation theory, the mathematical model ([MR(co)]NxN and [KR]NxN with 

N<NS) with finite degrees of freedom which can exactly represent the test structure in 

terms of all these retained coordinates is not unique (the mass matrix is a function of
frequency as can be seen from (7-13a)). On the other hand, during the condensation 
process, the physical connectivity of [M]NjXNs, [K]NsXNs (which could themselves be

fully populated matrices) has been destroyed, and in general, [MR(co)]NxN and [KR]NxN 
become fully populated. In the problem under consideration, [M]NsXNs, [K]NjXNs are

unknown and it is desired to identify constant [MR]NxN and [KR]NxN which can best 

represent the test structure. It is apparent therefore that such a constant coefficient model 
can only be an approximation with limits on the frequency range of applicability.

Although the exact model of the structure to be identified ([MR(co)]NxN and [KR]NxN) is 

fully populated and the mass matrix is, in theory, a function of frequency, experience of 
Finite Element Analysis shows that as far as the lower modes of the structure, which are 
usually of practical interests, are concerned, a model with constant mass and stiffness 
matrices which preserves the physical connectivity can, in general, accurately describe the 
test structure. Also, as shown in the following numerical calculation, a fully populated 
model is not necessarily a better representation of the structure than a model with physical 

connectivity preserved.

To illustrate the above arguments, a free-free beam structure as shown in Fig.7.15 is 
considered. Suppose the 'true' model of the structure is the FE model formulated by 
discretising the beam into 50 elements and consider 2 DOFs at each node: this yields 
[Ml 102x102’ [K]102xio2- A reduced model of [MR]52x52, [KR]52x52 corresponding to 52 

'measured' coordinates (hatched nodes) is to be identified which can best represent the 
structure. One choice of such a model is, naturally, the Guyan-reduced model with these 
measured coordinates considered as master degrees of freedom. A thus-obtained model is 
fully populated. Another choice of a suitable model is the FE representation of the 
structure composed of 25 elements with all the 'measured' coordinates being considered. 
This model preserves the physical connectivity (and is heavily banded). The question to 

be answered is: which model represents the structure better? In order to make this 
comparison, the first 10 natural frequencies of the 'true' model, the Guyan-reduced 
model and the model with 25 elements are tabulated in Table 7.1 from which it can be 

seen that although the Guyan-reduced model and the model with 25 elements are quite 

different in terms of their spatial forms (one is fully populated and another is heavily 

banded), the first 10 modes are almost the same (and, indeed, for all 52 modes, the
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eigenvalues are the same up to 14 digits when double precision computation is 

considered). In addition, the eigenvectors of the true model and the model with 25 
elements are the same (up to 14 digits) for all the corresponding modes and coordinates. 
The MAC values of the corresponding eigenvectors of the 'true' model and the Guyan- 
reduced model and of the true model and the model with 25 elements are shown in 
Fig.7.16. This suggests that it is possible for a constant coefficient model to represent the 
structure accurately while at the same time preserving its physical connectivity, a feature 
which is essential from the point of view of analytical model updating.

> 4 \e

I f \ \  \  \  \  • ■ * / / / / / s \  \  \  \  s ■ / / / / /
element of exact model 
M---------- 10 m element of reduced model

S = 0.004 (m2) 1 = 0.001 (m4) E = 5.0 x 1013(N/m ) p = 2800 (kg/m3) 

Fig.7.15 - Free-free Beam Structure

mode no. 1 2 3 4 5

39.0937 107.763 211.259 349.224 521.683
cog 39.0938 107.764 211.265 349.247 521.759
cof 39.0938 107.764 211.265 349.247 521.759

mode no. 6 7 8 9 10

728.639 970.096 1246.06 1556.54 1901.57

728.842 970.570 1247.06 1558.46 1905.02

(0f 728.842 970.570 1247.06 1558.46 1905.02

coe: exact natural frequency of the structure (Hz)
cog: natural frequency of the Guyan-reduced model (Hz)
cof: natural frequency of the model with 25 elements (Hz)

Table 7.1 - Comparison of Natural Frequencies of Three Different Models
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h—i— 'true' and 25 element models, 'true' and Guyan-reduced models

Fig.7.16 - MAC values indicating the correlation of corresponding eigenvectors

7.5 MINIMUM DATA REQUIRED TO UPDATE AN  
ANALYTICAL MODEL

So far, it has been established that in order to update an analytical model using limited 
measured data, it is essential that the physical connectivity of the analytical model should 
be preserved. The mathematical validity o f preserving such physical connectivity has 
been demonstrated. With this connectivity information available, it will be shown that 
although the measured data may be quite limited in practice, the updating problem can 
become overdetermined in most cases. In what follows, the criteria for the minimal 
measured data required to solve an updating problem uniquely are discussed.

Although many different methods have been developed to update an analytical model 
using measured data, there are no clear rules concerning just how much data should be 
measured (how many modes and coordinates) in order to solve the updating problem 

uniquely. Such a criterion is important not only because modal testing is cosdy, but more 

importantly because it is required for the analyst to judge whether an available set of 
modal data is enough to obtain a unique solution. In the following, a model updating 

method based on eigendynamic properties (Eigendynamic Constraint Method ECM) is 
developed and, based on this method, a criterion of how many modes should be 
measured in order to have a unique solution of the updating problem is established for the 
case when the measured coordinates are complete. When the measured coordinates are 
incomplete but the modelling errors are localised in the measured coordinates, a direct 

solution of the updating problem is still possible based on the Eigendynamic Constraint
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Method. In general, however, when the measured coordinates are incomplete, a direct 
solution is not possible and some kind of perturbation or sensitivity analysis based on an 
iterative scheme has to be sought. In this case, an Inverse Eigensensitivity Analysis 
Method is employed to establish the criterion of how many modes and coordinates should 
be measured in order to solve the updating problem.

7.5.1 THE EIGENDYNAMIC CONSTRAINT METHOD

The problem of reconstructing system matrices from identified eigenvalues and 
eigenvectors has been considered by some authors [97-99]. Assuming a certain form of 
the modification matrix such as diagonal matrix, and using all the identified eigenvalues 
of the modified system, the modification matrix can be calculated [97-98]. Applications 
have been found for such studies in the solution of inverse Stum-Liouville problems and 

nuclear spectroscopy [98]. In reference [99], Gladwell introduced and extended the 
theory of [97-98] to the identification of vibrational systems by using both measured 
eigenvalues and eigenvectors to reconstruct the mass and stiffness matrices. However, 
his analysis is restricted to his specific fixed-free mass-spring chain system because 
during the development of his arguments, he assumed that the system's eigenvalue 
problem is in the form of Jacobian matrices [99]. Based on this simple system, he 
established the necessary and sufficient conditions for a given vector to be one of the 
eigenvectors of the system and pointed out that it is possible to reconstruct the mass and 
stiffness matrices of the system by using two identified modes which satisfy certain 
conditions although the thus reconstructed system is not unique in the sense that it can be 
scaled by an arbitrary factor. Ibrahim [100] later extended Gladwell's theory into 
analytical model updating of dynamic structures. The Eigendynamic Constraint Method 
described below is similar to Ibrahim's method. However, since it makes use of the 

mass-normalisation properties of measured modes, the problem of uniqueness of the 

identified system is resolved.

The method is formulated based on the eigendynamic equation and the mass 
normalisation properties of measured modes as mentioned in §7.2.3,

- ( \x)i [AM] {<j>x)j + [AK] {<(>„); = (Xx); [MJ {(t.x)i - [KJ {<t>x}i (7-7)

(<UT [AM] {<(),}; = 1 - {<|>X}T [MJ [CM; (7-8)

As discussed before, the physical connectivity of the analytical model should be 

preserved during the updating process, and so the updated model should have the same
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connectivity as that of the analytical model. When the connectivity information is 

employed, (7-7) and (7-8) can be combined and turned into standard linear algebraic 
equations in terms of an unknown vector (P}Lxl consisting of all the design variable 

changes in the mass and stiffness matrices in a similar way to that discussed in Chapter 6, 
as

[A il(N+i)xL ( P J lxI ~  {b i)(N+l)xl (7-15)

where N is the number of degrees of freedom specified in the analytical model, L is the 
number of total independent design variables in the mass and stiffness matrices, 
[A i](N +i)xL  a n d {b i)(N+i)xi a r e  tbe coefficient matrix and vector formed using the 
analytical model and i^ measured mode properties.

To see how the coefficient matrix [AJ and {bj} can be obtained, again consider the 2DOF 

mass-spring system as mentioned in Chapter 6. When the first mode is used, equation (7- 
7) becomes

• W i
Amj 0 |xI”i+

Ak!+Ak2 -Ak2

. 0 Am2. U 'M -Ak2 Ak2+Ak3_

(^ n q -k j-k ^  k2 (j)XT 11

k 2 (^ x) im 2-k2-k3. x ^ l j

j ( 0 . x) 1m 1-k 1-k 2) + k2 x< M  = f M

l k 2 x ^ n  + ((Xx) im 2 -k2-k3) x < M  l bJ

After further mathematical manipulation, (7-7a) becomes

(7-7a)

-(Xx)j x ^ l  1 0  x ^ l l  0
rAm;
Am2

< A k j

A k ,
0  -(X.x) i  x ^ l  0  x ^ l  - x ' t ’ l l  x ^ l  _

z
Ak3 >

(7-7 b)

Similarly, (7-8) becomes
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{ X<1>11 X4>11 ) [A m !  0  

_ 0 Am2_

Further, (7-8a) can be written as:

x^2i x^2i 0  0  0}  Amj

Am2
i  Akj f  = b3 (7-8b)

Ak2
^Ak3>

Combining (7-7b) and (7-8b), coefficient matrix [A]3x5 and {b}3xl can be obtained.

are available, it is not difficult to see that the dimension of the coefficient matrix [A] 
becomes m(N+l)xL and {b} becomes m (N+l)xl, that is:

In general, when m(N+l) > L, equation (7-16) becomes overdetermined and the SVD 
technique can be used to solve the unknown vector {P}. After {P} has been calculated, 
the updated mass and stiffness matrices can be reconstructed by using the physical 
connectivity of the analytical model.

7.5.2 INVERSE EIGENSENSITIVITY ANALYSIS

As mentioned previously, when the measured coordinates are incomplete, direct solution 
of the updating problem is generally not possible and some kind of perturbation or 
sensitivity analysis has to be employed based on an iterative scheme. In this case, in 
order to establish a criterion concerning how many modes and coordinates should be 
measured in order to solve uniquely the updating problem, the Inverse Eigensensitivity 

Analysis method [80] can be employed to calculate the design variable changes given 

differences between analytical and measured natural frequencies and modeshapes. The 

method was first introduced to analytical model improvement by Collin et al [80]. Later, 
Chen/Garba [81] modified the procedure described in [80] by introducing matrix 
perturbation to avoid the eigensolution required in every iteration. Lallement [82] recendy 

extended the method to pinpoint where the significant modelling errors are first and then

Equation (7-15) is obtained based on the ith measured mode; when m measured modes

[A]m (N+l)xL{P }Lxl -  { b } m(N+l)xl (7-16)
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to reduce the number o f unknowns to improve the solution condition. Derivation of the 
eigenvalue and eigenvector derivatives which are required in the formulation of updating 
problem is explained in the Appendix II of this thesis.

From the theory of the algebraic eigenvalue problem, a system's eigenvalues and 
eigenvectors are implicit functions of its design variables. Hence, based on the Taylor 
series representation, the relationship between the change of modal parameter 5 (5 can be 

the change of any eigenvalue or of any eigenvector element) and the vector of design 
variable change {P} can be expressed as

8 = £  Si P; + f  X v ij P iPj + ... (7-17)
i = 1 1 = 1 j = 1

where Sj and v  ̂are the first- and second-order sensitivity coefficients. Suppose n out of 

N coordinates have been measured for the mode then, based on (7-17), to a first order 
approximation, we have:

r p oPn {<U i - (< U i
ap, ap2 3Pl <

r 2
> = < >

8(Xa)i 5(^a)i a ( U
aPi 3P2 aj

 
r 1__ w - (^x)i " (^a)i

[S il(n+ l)xL  { P J l x I =  { 5 i)(n + l)x l  ( 7 - 1 8 a )

where [SJ is the sensitivity matrix for n measured coordinates and one measured 

eigenvalue of the i^ mode, and can be calculated in a way as illustrated in Appendix II of 
this thesis, and {8;} is the difference vector between the measured and analytical 

eigenvector and eigenvalue of the ith mode. If m measured modes are available, (7-18a) 
can be re-written as

[S]m (n+l)xL  { P ) l x 1 “  { S ) m(n+ l)x l  ( 7 - 1 9 )

When m(n+l) > L, (7-19) becomes a set of overdetermined linear algebraic equations and 
the SVD technique can be used to solve {P}. Since (7-19) is formulated based on first- 
order approximation, the exact solution of {P) cannot be obtained directly and an iterative 

procedure has to be introduced as illustrated in Fig.7.16. Again, after {P} has been 
calculated, the updated model can be reconstructed using the the analytical model.
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updated/improved 
analytical model

Fig.7.16 - Updating Process Using Inverse Eigensensitivity Analysis
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7.5.3 NUMBER OF MODES AND COORDINATES REQUIRED  
TO UPDATE AN ANALYTICAL MODEL

When the measured coordinates are complete, it can be seen from equation (7-16) that in 
order to have a unique solution of the updating problem, the following condition has to 

be satisfied:

m(N+l) > L (7-20)

where, as mentioned, m is the number of measured modes, N is the number of degrees 
of freedom specified in the analytical model and L is the number of independent design 
variables. Therefore the number of modes required (m) in order to solve the updating 
problem is m>L/(N+l) or the minimum number of modes is m=E(L/(N+l)) where E(x) 
is a mathematical function such that when it is applied to a real number x, it returns an 

integer value which is x < E(x) < x+1.

When the measured coordinates are incomplete, the Eigendynamic Constraint Method 
cannot generally be applied directly. However, in the special case in which all the 
modelling errors are localised in the measured coordinates, the unmeasured coordinates 
can be interpolated exactly based on the analytical model itself using Kidder's expansion 
method, as discussed before. The thus-expanded modes can then be used in the 
Eigendynamic Constraint Method to update the analytical model. For this case, the 

criterion for the minimum number of measured modes is therefore the same as is given in 

(7-20).

In general, when the measured coordinates are incomplete, there exists a criterion 
concerning the number of modes and coordinates which should be measured in order to 
update the analytical model uniquely. From (7-19), in order to have a unique solution of 
the updating problem, the following criterion has to be satisfied:

m(n+l) > L (7-21)

where n is the number of measured coordinates. Expression (7-21) is the necessary 

condition, and as will be shown in the numerical case study, it is also sufficient when 
only mass or stiffness modelling errors are considered. When the modelling errors are 

present in both the mass and stiffness matrices, the situation becomes more complicated 

and it is suggested that in this case an error location procedure be employed in order to



[7 j Possibilities and Lim itations o f A nalytical M odel Im provem ent 2 3 1

reduce the number of unknowns in {P} before the calculation can be carried out based on 

the Inverse Eigensensitivity Analysis.

7.5.4 NUMERICAL CASE STUDIES

In order to verify numerically the criteria presented above, a mass-spring system shown 
in Fig.7.17 is considered. The system has 10 degrees-of-freedom and consists of 21 
design variables (L=21, 10 mass elements and 11 stiffness elements).

5 W -  mi

k2  ̂ p—|

L i l l i
XI x2

‘10 ‘11

^y\/L̂ y\/^n̂V\/Lr̂ vV‘m7 V̂ Ai"18 fWT9fvVTi(tvV'
1 1 I » » 1— L* -

x3 x4 x5 x6 x7 U -  U -  U *-x8 x9 Xio

Fig.7.17 - A 10 DOF Mass-spring System

When the measured coordinates are complete, according to equation (7-20), 
m =E(21/ll)=2. This means that for this specific mass-spring system, two measured 
modes with complete coordinates are in principle sufficient to identify all these 10 mass 
elements and 11 stiffness elements. Numerical results for the identification based on the 
Eigendynamic Constraint Method using the first and second 'measured' modes are 
shown in Table 7.2 (kg for mass and N/m for stiffness).

Variables mi m2 m3 m4 m5 m7

Exact 10.00000 11.00000 12.00000 13.00000 14.00000 14.00000 13.00000

Identified 10.00001 11.00000 12.00000 12.99999 14.00000 14.00000 12.99999

Variables m8 m9 m10 ki k2 k3 k4

Exact 12.00000 11.00000 10.00000 100000.0 100000.0 300000.0 100000.0

Identified 12.00000 11.00000 10.00001 100000.1 100000.1 300000.2 100000.1

Variables k5 h k7 k8 kg k10 kn
Exact 100000.0 300000.0 100000.0 100000.0 100000.0 100000.0 300000.0

Identified 100000.1 300000.2 100000.1 100000.1 100000.1 100000.1 300000.2

Table 7.2 - Identification Results

Although, in general, the ECM is not directly applicable to the case when the measured 

coordinates are incomplete, it has been noted that in the special case when the modelling

y7
//

>
w
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errors are localised in the measured coordinates, a direct solution of the updating problem 

is still possible because in this case, the unmeasured coordinates can be exactly 
interpolated based on the analytical model itself. In this numerical example, the exact 
stiffness modelling errors are shown in Fig.7.18(a) with a 50% stiffness modification in 
k4 and k7 (figure 7.17). Coordinates x3, x4, x6, x7 and x9 are supposed to be measured, 
thereby including the stiffness errors introduced between coordinates x3-x4 and x6-x7. 

Again, the first two modes are used and the identified stiffness error matrix is exact, as 
shown in Fig.7.18(b).

(a) exact stiffness error matrix (b) identified stiffness error matrix
Fig.7.18 - Exact and Identified Stiffness Error Matrix (coordinates complete)

When mass modelling errors are considered, 10 design variables are taken into account in 
the Inverse Sensitivity Analysis (L=10 for 10 mass elements). Half the coordinates are 
supposed to be measured (all the odd-numbered coordinates). According to (7-21), the 

number of modes required in order to update the mass matrix can be calculated as 

m=E(10/6)=2. In the calculation, the first and second 'measured' modes are used. The 
mass modelling errors are introduced by modifying m2, m6 and m10 to 50% of their 

original values. The exact mass error matrix and the iteration results are illustrated in 

Fig.7.19(a) and Fig.7.19(b).
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exact error mass matrix 

Fig.7.19(a) - Exact Mass Error Matrix

first iteration estimation

third iteration estimation
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5th iteration estimation
Fig.7.19(b) - Iteration Results (mass error case)

Similarly, in the case when stiffness modelling errors are considered, 11 design variables 
(11 stiffness elements) are taken into account in the Inverse Sensitivity Analysis. Again, 
all the odd numbered coordinates are assumed to be measured. According to (7-21), the 
number of modes required in order to update the stiffness matrix can be calculated as 
m=E(l l/6)=2. The first two 'measured' modes are used in the calculation. The stiffness 
modelling errors are introduced by increasing k2, k5 and k8 by 100% of the original 

values. The exact stiffness error matrix and the iteration results are shown in Fig.7.20(a) 
and Fig.7.20(b).

exact error stiffness matrix 

Fig.7.20(a) - Exact Mass Error Matrix
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first iteration estimation

second iteration estimation

third iteration estimation
Fig.7.20(b) - Iteration Results (stiffness error case)

7.5.5 GENERALISATION OF THE CRITERION

The criteria concerning how much data should be measured in order to solve the updating 

problem uniquely have been developed based on the ECM and the Inverse 

Eigensensitivity Analysis method. Since, as discussed in detail in Chapter 6, the new
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method developed based on the measured FRF data is a generalised version of the model 
updating methods based on measured modal data, it is therefore expected that such 
criteria can be generalised when measured FRF data are used in the updating process. In 
fact, as has been demonstrated in Chapter 6, a unique solution of the updating problem 

can always be obtained when measured coordinates are complete regardless of the 
number of measured modes, based on the method developed in Chapter 6. In the case 
when measured coordinates are incomplete, the method presented in Chapter 6 is based 
on a form of perturbation analysis and, as mentioned, such a perturbation analysis based 
the use of FRF data can be regarded as a generalisation of the Inverse Eiegensensitivity 
Analysis method presented in this Chapter. Therefore, the number of measured modes 
required to solve the updating problem using the method presented in Chapter 6 can be 
expected to be less than that required by the ECM in the case where measured coordinates 
are complete and, the Inverse Eigen sensitivity Analysis in the case where measured 
coordinates are incomplete.

Also, it is perhaps worth mentioning that in the case when both mass and stiffness 
modelling errors exist, the criterion given in (7-21) based on the Inverse Eigensensitivity 
Analysis is not sufficient. It has been found that although (7-19) becomes largely 
overdetermined (e.g. the number of equations is twice as many as the number of 
unknowns), the condition of [S] in terms of its inverse is generally very poor when both 
mass and stiffness modelling errors are considered. This is probably because given 
modal parameter changes in certain modes might be achieved either by mass modification 

or stiffness modification and, as a result, the Inverse Eigensensitivity Analysis becomes 
mathematically uncertain. As shown in the numerical case studies of §6.4.4, this problem 
does not exist when FRF data are used in the method developed in Chapter 6.

7 .5 .6  APPLICATION OF THE METHODS TO THE 

GARTEUR STRUCTURES

As mentioned in Chapter 6, when a Finite Element model is considered, the mass and 
stiffness error matrices can in general be expressed as:

Ni
[AM] = £ P s [m s] and (7-22)

S

where [ms] and [ks] are the sth element mass and stiffness matrices which have been 

appropriately expanded to the global dimension of the system, Nj is the total number of
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elements and, Ps and ys are the design variable changes associated with the s* element.

5{<UiWith [AM] and [AK] being expressed as (7-22), the eigensensitivity coefficients

ancj can obtained using the analytical model (see Appendix II). 
aPj 3Yj 0Yj

apj ’

Based on the first order sensitivity analysis, the following relationship between the the 
changes of modal parameters and the changes of physical parameters can be established:

c4iX
-e- d{Wi dlWi d{<Ui

fap. dpNi 3Yi •

(^x)l ' (^a)l dX i d X x d X x d X r •

api ^Pni 3Yi 3^ Pn, „k . . . <

3(<Um 3(<t>a)md{<t>a)m 3{<Wm Yi
(Wm - (Wm api apNi 3Yi 3YW,

dkn dXg, 3̂ m .

^ (^ )m  - Wm J L apj apNl 3Yi 7̂ni - Ŷrv

where m experimental modes are supposed to have been measured. Again, the measured 
coordinates are assumed to be incomplete, i.e. {{^xh -(W iln x i where n<N. When a 

sufficient number m of modes are measured, (7-23) becomes overdetermined and the 
SVD technique can be used to solve for ps and ys (s=l,Nj) iteratively.

To assess the practical applicability of the Inverse Eigensensitivity Analysis method, the 

fixed-free GARTEUR structure shown in Fig.7.20 was investigated. Only stiffness 

errors are introduced by overestimating the 10th (nodes 9-10), 14th and 15th (nodes 14- 
16), 30th (nodes 29-30) and 66th and 67th (nodes 62, 14, 63) element stiffness matrices 
by 100% (figure 7.21). The hatched nodes shown in Fig.7.21 with their translational 
degrees of freedom (u,v) are supposed to be measured. According to (7-21), the 
minimum number of modes required to update the analytical model is m=E(L/(n+l)) 
=E(78/(72+1))=2 (where L=78 is the total number and so the total number of design 

variables according to (7-22) when stiffness modelling errors are considered and n=72 is 

the number of measured coordinates (2 translational degrees at 36 nodes)). During the 
calculation, the first 4 modes are supposed to have been measured (twice as many as the 

minimum number required). The exact stiffness error matrix is shown in Fig.7.22 and 

the iteration results are shown in Fig.7.23-7.25.
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0  measured nodes 
O unmeasured nodes

Fig.7.21 - The Fixed-free GARTEUR Structure

Fig.7.22 - Exact Stiffness Error Matrix

30
00
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Fig.7.23 - First Iteration Results

Fig.7.24 - Second Iteration Results
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Fig.7.25 - Third Iteration Results

In some cases, it may not be appropriate to assume that the mass and stiffness modelling 
errors can be simply expressed as that of (7-22) and more independent physical design 

variables need to be considered. To illustrate this point, the free-free GARTEUR 

structure (figure 7.1) is also investigated. Every element shown in figure 7.1 is a 

superposition of an axial bar element and a bending beam element and these pairs of 

elements are considered to be independent of each other. Physically, this means that 
during the modelling, the cross-section area of the axial bar element and the second 
moment of area of the bending beam element are treated independently. As a result, the 
stiffness error matrix can in general be expressed as:

Ni
[AK] = X  Ps t ks] + Ts [k^] (7-24)

r = 1

where [k̂ ] is the expanded extensional element stiffness matrix (which is proportional to 

the cross-section area) and [k ĵ is the expanded bending element stiffness matrix (which
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is proportional to the second moment of inertia). Since, in this exercise, the number of 
elements is 1^=83, 166 unknowns need to be calculated in each iteration when only 

stiffness errors are considered. The stiffness errors are introduced by overestimating the 
11st, 12nd, 39th, 76th and 77th bending element stiffness matrices and the 23rd, 24th, 
25th, 26th and 83rd extensional element stiffness matrices by 100%. The exact stiffness 

error matrix is shown in Fig.7.26 (the stiffness errors for the bending and extension are 
of 100 times different in magnitudes and therefore they are plotted separately). Some of 
the ’experimental' and analytical receptance FRFs are shown in Fig.7.27. For 
comparison, the method developed in Chapter 6 is employed in this case. One incomplete 
column - all the hatched nodes with their translational degrees of freedom (u,v) - of the 
receptance matrix of the 'experimental' model with data covering the first 5 modes is 

supposed to have been measured. In each iteration, 20 FRF data points which are 
randomly chosen in the 'measured' frequency range are used and the iteration results are 

shown in Fig.7.28-7.31.
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extensional stiffness

Fig.7.26 - Exact Stiffness Error Matrix
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point receptance a n (co)

transfer receptance ct1<5o(co)

Fig.7.27 - FRFs of Analytical and 'Experimental' Models 
--------------  analytical,........................'experimental'
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extensional stiffness

bending stiffness

Fig.7.28 - First Iteration Estimation
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extensional stiffness

bending stiffness

Fig.7.29 - 4th Iteration Estimation
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extensional stiffness

bending stiffness

Fig.7.30 - 7th Iteration Estimation



\j\ Possibilities and Limitations of Analytical Model Improvement 2 4 7

extensional stiffness

bending stiffness

Fig.7.31 - 12th Iteration Estimation
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7.6 CONCLUSIONS

In this Chapter, the limitations and difficulties of some of the recently-developed methods 
based on full matrix updating such as Berman’s method and the Error Matrix method 
have been discussed. The mathematical underdeterminacy associated with these methods 
is explained. Then, the possibility of updating a condensed (Guyan-reduced) model with 
error location based on Kidder's expansion method is examined. It has been 
demonstrated that when measured modes and/or coordinates are incomplete, as they are 
in practice, updating of the analytical model based on full matrix updating or the Guyan- 
reduced model with error location is truly difficult, if not impossible. Such a target as to 
update an analytical model by considering every element of mass and stiffness matrices to 
be (potentially) in error is overambitious and not necessarily appropriate when the 
inevitable limitations in measured data are considered. In order to solve the updating 
problem, it becomes clear that the physical connectivity of the analytical model should be 
respected during the updating process so that the total number of unknowns involved can 
be reduced and the limited measured data can have the possibility of solving the problem.

It has been illustrated that the modelling process - that is, to obtain a constant coefficient 
model of a continuous structure - is mathematically a dynamic condensation process and 
since the exact model is frequency-dependent (the mass matrix is a function of 
frequency), it is apparent that such a constant coefficient model can only be an 
approximation with limits on the frequency range of applicability. On the other hand, as 
has been demonstrated in the numerical example, it is quite possible for a constant 
coefficient model with well preserved physical connectivity (heavily banded) to represent 
the structure accurately as far as the lower modes of a structure are of interest (this is a 

limitation of any constant coefficient models - whether they are fully populated or heavily 

banded).

When the physical connectivity of the analytical model is applied, the measured data 
required in order to update an analytical model are usually within the capability of 
practical measurements. Hence, it is possible to establish the criteria on the minimum 
measured data required to solve the updating problem. Such criteria are important not 
only because modal testing is costly, but also because they enable the analyst to judge 

whether a set of measured data will have the potential to solve the updating problem so 

that 'blind' attempts can be avoided.
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For those cases where measured coordinates are complete, the Eigendynamic Constraint 
method has been developed and employed in this Chapter to establish the criterion 
concerning the number of modes required to solve the updating problem. As shown in 
numerical case studies, this method requires less modes as compared with other existing 
model updating methods based on the use of modal data. When the measured coordinates 
are incomplete, a direct solution of the updating problem is, in general, not possible and 
some kind of iterative perturbation or sensitivity analysis has to be devised. In this case, 
the Inverse Eigensensitivity Analysis method has been employed to establish the criterion 
on the minimum data (measured modes and coordinates) required to update an analytical 
model. Furthermore, it has been shown that these criteria can be generalised when 
measured FRF data are used based on the method developed in Chapter 6.

The criteria developed have been verified numerically and the methods presented have 
been applied to the analytical model updating exercise called 'GARTEUR' which is 

intended to represent the realistic practical problem in terms of the incompleteness of both 
measured modes and coordinates.



CHAPTER (8

CONCLUSIONS

8.1 IDENTIFICATION OF STRUCTURAL NONLINEARITY

It is believed that most practical engineering structures possess a degree of nonlinearity. 
In some cases, they are treated as linear structures because the degree o f nonlinearity is 
small and therefore insignificant in the response range of interest. In other cases, the 
effect of nonlinearity may become so significant that it has to be taken into account in the 

analysis of the structure's dynamic characteristics. In fact, for many engineering 
applications, structural nonlinearities need to be identified and, subsequently, nonlinear 

mathematical models must be established.

Unlike theoretical studies, where the vibration characteristics of nonlinear systems can be 
described by differential equations, a major problem in the identification of nonlinearity is 

to study unknown types of nonlinearity. In practice, not only the existence of nonlinearity 

needs to be detected, but more importantly, the degree of nonlinearity must be quantified 
and then the physical characteristics of the nonlinearity identified. A review and 

discussion of those methods currently used to investigate nonlinearity have shown their 

practical applicability. However, conclusive identification o f practical structural 

nonlinearities is still problematic due to the existence of various different types of 

nonlinearity and numerous qualitatively different nonlinear phenomena.
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For those structures whose nonlinearities are vibration amplitude dependent, the dynamic 
characteristics can be identified based on the analysis of measured first-order FRFs. It is 
found that one first-order FRF curve measured with a constant force level contains all the 

information of a series of FRF data with constant response controls. Therefore, a study 
of nonlinearity can be carried out using a single FRF curve measured with constant force. 
Based on this observation, a new nonlinearity analysis method has been proposed in this 
work. Instead of assuming that the mode to be analysed should be real, as in the case of 
inverse receptance method, this new method deals with the practical situation in which 
measured modes contain complexity due to the nonproportional distribution of structural 
damping. The final results of the analysis based on the proposed method are the 
response-amplitude-dependent eigenvalues and eigenvectors <})(&) which can be used 

not only to quantify the degree of nonlinearity but also to derive linearised spatial models 
of a nonlinear structure. The method has been effectively applied to the data measured 
from practical nonlinear structures even when the modes to be analysed are markedly 
complex. Also, it is found that the method does not require the condition of using 
constant force to measure the first-order FRF data as long as the force level is large 
enough to expose nonlinearity.

On the other hand, for structures whose nonlinearities are such that the measured first- 
order FRFs are apparently linear (the nonlinearity is of an nonsymmetrical type), a 
higher-order FRF analysis becomes necessary for the identification of such nonlinear 
structures. Fundamentally different from the analysis of first-order FRFs (in which only 
the fundamental frequency component is of interest), the analysis of higher-order FRFs 
takes into account the super-, sub- and combinational frequency components which, in 

some practical applications, are as important as the fundamental frequency component. 

By extending first-order FRF analysis to higher-order FRF analysis, it can be seen that 
linear system theory has been extended in a natural way to cover nonlinear systems. It has 
been found that many phenomena exhibited by nonlinear systems cannot be explained 
based on classical first-order FRFs, but can be interpreted with a series o f FRFs of 
different orders. Furthermore, measured higher-order FRFs provide valuable information 

about the nature of system nonlinearities and can be used not only to identify structural 

nonlinearities, but also together with the first-order FRFs, to improve the response 

prediction of a nonlinear system due to known input.

Both first-order and higher-order FRF analysis techniques are essentially based on the 

classical assumption that the output of a nonlinear structure is periodic if  the input is 

periodic. However, it has been recognised that for some nonlinear systems (chaotic
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systems), a periodic input will result in an output of a random nature. Such a newly- 

discovered phenomenon is called chaos and is the most complicated dynamic behaviour 
of nonlinear systems. It is believed that the ability to identify such nonlinear behaviour is 
of practical importance. In Chapter 4, for the first time, the hidden chaotic behaviour of a 
mechanical backlash system with realistic system parameters has been revealed and, 
based on this system, qualitative as well as quantitative ways of identifying chaotic 
structures are presented. Both numerical studies and experimental investigations have 
been carried out. Indeed, there exist wide parameter regions, both in the system 
parameters and external forcing conditions, for which chaotic vibrations occur. Such 
nonlinear mechanisms as backlash stiffness nonlinearity represent an extensive group of 
engineering structures and it can be expected that many structural systems will exhibit 
chaotic behaviour under certain operating conditions. The anticipated engineering 
applications of the research work presented include, (i) design of mechanical control 
systems, (ii) statistical stress/fatigue analysis and, (iii) condition monitoring and 
diagnosis of machinery.

8.2 LO C A TIO N  O F STRU CTU RA L N O N LIN EARITY

It is believed that structural nonlinearities, when they exist, are generally localised in 
terms of spatial coordinates as a result of the nonlinear dynamic characteristics of 
structural joints, nonlinear boundary conditions and nonlinear material properties. The 

ability to pinpoint a structure's localised nonlinearity(ies) thus has some important 
engineering applications. First, the information about where the structural nonlinearity is 

may offer opportunities to separate the structure into linear and nonlinear subsystems so 
that these can be analysed separately and efficiently using a nonlinear substructuring 
analysis. Second, since nonlinearity is often caused by the improper connection of 
structural joints, its location may give an indication of a malfunction or of poor assembly 

of the system. Third, from a materials property point of view, the stress at certain parts of 
the structure during vibration can become so high that the deformation of that part 
becomes plastic and the dynamic behaviour becomes nonlinear. In this case, location of 

the nonlinearity may offer the possibility of failure detection. Finally, the location 

information is essential if a nonlinear mathematical model of the structure is to be 
established.

Since structural nonlinearities cannot be foreseen and so cannot be analytically predicted, 

measurement becomes crucially important in locating and identifying them. Nevertheless, 

it is understood that such a task as to locate structure's localised nonlinearity is difficult to
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achieve (if not impossible) based on measured data alone because they are in general quite 

limited and correlation between an analytical model and dynamic test data becomes 
essential. Based on such understanding, a nonlinearity location method was developed 
based on the correlation between an analytical model which contains modelling errors and 
modal test data which are measured at different response levels. The method was then 
extended to the practical case where measured coordinates are incomplete by interpolating 
the unmeasured coordinates based on the analytical model. Further, it has been shown 
that the method can be generalised when measured first-order FRF data are used. As 
illustrated in numerical case studies, a successful location can be achieved provided that 
the modelling errors are of second order in the sense of the Euclidean norm when 
compared with the analytical model itself and some coordinates around where the 
nonlinearities are located are measured.

The location technique has been demonstrated by a practical application. The structure 
used is a frame structure with a localised stiffness nonlinearity simulated using an electro­
dynamic shaker and an analogue computer circuit based on feed-back system control 
theory. Only a third of the coordinates specified in the analytical (FE) model were 
measured. The second bending mode was found to the most sensitive one to nonlinearity 
and so was used in the location process. The unmeasured coordinates were first 
interpolated using the FE model and then the complete modeshape was used to locate the 
nonlinearity. The location process successfully indicates the location of the introduced 

nonlinearity.

8.3 M O D ELLIN G  O F LIN EA R AND NONLINEAR STRUCTURES

In the identification of dynamic characteristics of practical structures, analytical prediction 

and experimental modal testing are involved because both have their own advantages and 
shortcomings. Using modal testing results to improve an analytical model effectively 
makes use of the advantages of both while at the same time overcoming their 

shortcomings. It is therefore believed that by doing so, the most reliable mathematical 
modei can be established.

Since practical structures are continuous, it is apparent that any constant coefficient 
models derived to represent their dynamic characteristics are approximate with limits on 
the frequency range of applicability. A constant coefficient model can be regarded as a 
good model if it will not only predict responses over the frequency range of interest, but 

will also be representative of the physical characteristics of the structure. Thus it must
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have the capability to predict the effects of changes in physical parameters and to 
represent correctly the structure when it is treated as a component of a large system.

In effort to establish such a good model, many different methods have been developed in 
recent years to improve analytical models using modal testing results. Review and 
discussion of those recently-developed methods have suggested their limited practical 
applicability but at the same time, have revealed some of the existing problems. The full 
matrix updating methods such as the Berman's method and the Error Matrix method 
tackle the problem of analytical model improvement from a purely mathematical 
viewpoint, such as an optimisation one, rather than to consider structural characteristics 

as well, such as physical connectivity. As a result, the 'improved' model could be optimal 
in a mathematical sense, but physically unrealistic. Also, the completeness of measured 
coordinates is in general assumed in those methods and is critical to their success in most 
cases in spite of the fact that it is extremely difficult in practice to measure all the 
coordinates which specified in the analytical model. Furthermore, modal data are assumed 
to be used during analytical model improvement and since the number of measured modes 
are often quite limited. Consequently, the updating problem is usually mathematically 
underdetermined. Nevertheless, it is understood that the measured FRF data contain, in 
theory, the necessary information of all the modes of a structure. Based on such 
understanding, a new generalised model updating method has been developed which 

tackles the updating problem by directly using measured FRF data. The method allows 
the physical connectivity o f the analytical model to be preserved and deals with the 
practical case in which measured coordinates are incomplete. It has been shown that 
model updating methods based on modal data are, in a broad sense, discrete versions of 
the present generalised method. Based on this method, the uniqueness of the updating 
problem has been discussed in some mathematical rigour. Numerical studies demonstrate 

the marked advantages of the new method as compared with other existing methods.

When the connectivity information of the analytical model is available, the model updating 
problem can in general be turned into an overdetermined problem even when, as in 

practice the measured data are limited. Therefore, it becomes possible and necessary to 
develop criteria concerning just how much data (modes and coordinates) need to 

measured in order to solve the updating problem uniquely. Such criteria are believed to be 
practically important because they enable the analyst to judge whether a set of measured 
data have the potential to solve the updating problem so that blind tries can be avoided.

The final target in the analysis of a nonlinear structure is perhaps to establish its nonlinear 

mathematical model. It is argued that such a mathematical model of a nonlinear structure



U ] C onclusions 2 5 5

becomes possible only when, on the one hand, an accurate linear mathematical model 
(corresponding to very low response amplitude) is available and on the other, the location 
information of the localised nonlinearity is given because, unlike the modelling of a linear 
structure in which measured data are consistent, a nonlinear mathematical model has to be 
established based on mode by mode basis. Mathematically, structural nonlinearity can be 
considered as modelling errors and as a result, the problem of modelling nonlinear 

structures becomes the same as that of analytical model updating of linear structures 
except that in the former case, a series of linearised models are to be established. In the 
same way, the proposed method is ideally suited for the application of nonlinear 
structures for which FRF data can be measured while modal data are sometimes difficult 
to obtain.

8.4 SU G G ESTIO N  FO R  FU R TH ER  STUDIES

Whereas extensive research work on the identification of the dynamic characteristics of 
nonlinear structures has been carried out in this thesis, the study undertaken has revealed 
that some further development in the field may be necessary and of interest. Some general 
suggestions for possible further studies are summarised below.

Although extensive numerical simulations have been carried out in order to assess the 
practical applicability of the measurement and analysis of higher-order FRFs and it can be 
anticipated that similar results can be obtained in practical measurement as those of 
numerical simulation, no real measurement has been undertaken in this study due to the 

limited period of time available. Further research on the measurement of clean, consistent 
higher-order FRFs of practical engineering structures is recommended.

As discussed in Chapter 4, it can be envisaged that the existence of chaotic behaviour of 
such a simple nonlinear mechanical system with backlash stiffness nonlinearity will have 
important engineering applications such as fatigue analysis, condition monitoring and 
robotics design. Studies on these specific applications are recommended.

The nonlinearity location technique developed in Chapter 5 needs to be applied to more 
sophisticated practical nonlinear structures. In this study, the application has been made to 

a numerical study and a comparatively simple frame structure due to the difficulties 

involved in designing a nonlinear structure with known localised nonlinearity.
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As for the mathematical modelling of nonlinear structures, it has to be mentioned that the 
mathematical models obtained based on the measured first-order FRFs are only the first 
order approximation of the true models of nonlinear structures. In order to improve the 
modelling accuracy, it is obvious that the measured higher-order FRFs should be 
incorporated into the modelling process. Some research work on this subject is necessary.



APPENDIX

THE SINGULAR VALUE DECOMPOSITION

The singular Value Decomposition (SVD) is a mathematical tool which has proven to be 
very useful in many engineering applications and has accumulated many technical 
publications. It is not our purpose here to present a full and rigorous mathematical 
description but, instead, to give a simple introduction to the technique and to highlight its 
specific applications to the determination of the rank of a matrix and to the solution of a 
set of overdetermined linear algebraic equations which are necessary in the analytical 

model updating process as discussed in Chapters 6 & 7.

A review of the singular Value Decomposition of a matrix is given in [101] which 

includes a bibliography dealing with algorithms and applications. Improved algorithms 

can be found in [102-104]. Fortran subroutines are presented in [105] for real matrix 
cases and in [106] for complex matrices. In this appendix, we shall discuss the case 
where the matrix [A] to be decomposed is of dimension mxn with m>n, although the case 

m<n can be treated by applying the analysis to the transpose matrix [A]T.

The SVD of a real matrix [A] results in three component matrices as follows,

[A]m, n = [U]mxm [X]mxn [V]Tnxn (A l.l)

where the component matrices are described as:

[U]mxm orthonormal matrix with its columns called left singular vectors,
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E l mxn

°1
CT2

0

L  0 •

0

0 mxn

a matrix which contains singular values of [A]. The singular values are ordered so 
that

a j  > g2 ^  ^  a n > 0,

[VJnxn orthonormal matrix with its columns called right singular vectors.

Since [U Jn ^  and [ V ] ^  are orthonormal matrices, they satisfy

[U ]L n [U U m = [U]mxm [U ]L m= [ I ] m, m (A 1-2)

M T„XIJV]nxn = [ V L  tV]Tnxn = [ I ] nxn (A 1.3)

Similarly, the SVD of a complex matrix results also in three component matrices as 
follows,

[A] mxn = [U] mxm [2]mxn t^^nxn (A 1.4)

where [U]mxm and [V]nxn are unitary matrices and [V]„xnis the complex conjugate 
transpose of [V ]^ .  Since [U jn ^  and [V]nxn are unitary matrices, they satisfy

[U]” [U]mxm = [U]mxm[U]» = [ I ]

[ v L [V ]nxn = [V]nxn [ V ] » =  [ I ]'nxn

(A 1.5) 

(A 1.6)

The singular values are the non-negative square-roots of the eigenvalues of the matrix 
[A]t[A], if [A] is real, and of [A]H[A], if [A] is complex. Because [A]T[A] is symmetric 

and non-negative definite and [A]H[A] is Hermitian, their eigenvalues are always real and 

non-negative and therefore, singular values are always real and non-negative. The left and 

right singular vectors [U] and [V] are the corresponding eigenvectors of [A][A]T and 
[A]t[A] ([A] [A]h and [A]H[A] if [A] is complex).
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In numerical calculations, the SVD of [A] is usually performed in two stages. First, [A] is 
reduced to upper bidiagonal form using Householder matrices [101]. Once the 
bidiagonalisation has been achieved, the next step is to zero the superdiagonal elements 
using QR algorithm [107]. The computational time depends upon "how much" of the 
SVD is required. For example, if only the information about the rank of a matrix (so the 
condition of the matrix) is required, then only the singular values are of interest and the 
computational time could be four times less than the case in which all the singular values 
and left and right singular vectors are required. In what follows next, we shall discuss the 
application of the SVD technique to the determination of the rank of a matrix and to the 
solution of a set of overdetermined linear algebraic equations.

In the analytical model updating process as discussed in Chapter 6 & 7, we encountered 
the problem of solving a set of linear algebraic equations with n unknowns and m 
equations (m>n). We called the set of linear algebraic equations overdetermined because 
the number of equations is greater than the number of unknowns. However, because of 
the linear dependence of some of the equations, the coefficient matrix o f a set of 
'overdetermined' linear algebraic equations is not necessarily of full rank and if this is the 
case, the solution obtained numerically is likely to be physically meaningless. 
Accordingly, it is necessary to check the rank of the coefficient matrix before solving the 
linear algebraic equations. Theoretically, the rank of a matrix is the number of linearly- 
independent rows (or columns) in the given matrix and it is generally believed that the 
SVD is the only reliable method of determining rank numerically. In SVD calculation, the 
rank of [A] can be determined by examining the nonzero singular values. Due to the 

numerical and/or experimental inaccuracies, it is most likely that none of the singular 

values of [A] will be zero and so [A] is 'full rank' according to the mathematical 

definition although, in fact, [A] has a rank of r<n. One way to circumventing the 
difficulties of the mathematical definition of rank is to specify a tolerance and say that [A] 
is numerically defective in rank if, within that tolerance, it is near to a defective matrix. A 
matrix [A] is said to have rank r if, for a given 5, the singular values of [A] satisfy

> cj2 > ... > a r > 8 > a r+1 > ... > a n (A1.7)

The key quantity in rank determination is obviously the value Gr. The parameter 8 should 
be consistent with the machine precision e in the case of numerical rounding error, e.g. 8 
= e HAIL and if the general level of relative error in the data is larger than e, as in the case 

of experimental investigations, 8 should be correspondingly bigger, e.g. 8 = 10-2 II A IL, 

as suggested by Golub and Van Loan [92]. For our specific problem concerned with
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model updating, we have to make sure that the coefficient matrix is of full rank within 

such tolerances. If this is not the case, different data sets or more data points should be 
used.

Once it has been established that the coefficient matrix [A] is of full rank, then the set of 
overdetermined linear algebraic equations can be reliably and efficiently solved based on 
the SVD of [A]. Suppose the problem to be solved is

mxl (A 1.8)

Applying SVD to [A], we obtain

[U]mxm r a mxn [V iL „ W nxl = (b )mxl (A1.9)

or

Plmxn m L ,{ x } „ x, = [U ]Jxm {b}mxl (A1.10)

or

[£]mx„ (Z>nxl = (d)mxl (A l . l l )

with

(z )„x l=  [V ]Ln{x)„xi (A U 2 )

(d)mx! = [U ]L m {b}mxl (A1.13)

From (A l.l l ) ,  { z } ^  can be easily solved. Having calculated { z } ^ ,  the vector {x)nxl 

can be recovered from (A 1.12) as

W n x l  =  [V]nxn W n x l (A1.14)



APPENDIX

DERIVATION OF EIGENDERIVATIVES

Sensitivity analysis, the study of changes in system dynamic characteristics with respect 
to parameter variation, is being used in a variety of engineering disciplines ranging from 
automatic control theory to the analysis of large-scale physiological systems [108]. Some 
of the specific areas where sensitivity analysis has been applied include (i) system 
identification [80], (ii) development of insensitive control systems [109], (iii) use in 
gradient-based mathematical programming methods [109], (iv) assessment of design 
changes on system performance [109], and (v) approximation of system response to a 
change in a system parameter [110]. In this appendix, the derivation of eigenderivatives 
for eigenvalues and eigenvectors with respect to the system's design parameter changes is 
discussed. Eigenderivatives with respect to design variables have been found to be 
particularly useful in certain analysis and design applications, e.g., approximating a new 

vibration modeshape due to a perturbation in design variable, determining the effect of 
design changes on the dynamic behaviour of a structure, and tailoring modeshapes to 

minimise displacements at certain points on a structure. Here, the eigenderivatives are 
derived for the purpose of analytical model improvement as discussed in Chapter 7.

Methods for calculating eigenderivatives include the modal method [111], Nelson's 
method [112] and an improved modal method [113]. The modal method is 
straightforward in theory but requires all the modes of system which is sometimes 
computationally expensive especially when systems with large dimensions are considered. 
Nelson's method seeks to calculate the eigenderivatives of the ri11 mode by just using the 

modal parameters of that mode. However, one matrix inverse of system dimension (in 

fact, of dimension (N -l) where N is the dimension of the system) is required for each 

mode in order to solve the linear algebraic equations involved. The improved modal
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method aims to derive the eigenderivatives approximately (the eigenderivatives themselves 
are only the first-order approximation) by using the calculated lower modes and the 
flexibility matrix. In the following, all three methods are discussed and their advantages 
and disadvantages in terms of computational cost and numerical accuracy are examined.

However, before discussing the methods in detail, it is necessary to mention that although 

discussions have been made on the derivation of eigenderivatives of repeated modes 
[114], only the eigenderivatives of distinct modes are presented in this appendix. On the 
other hand, as it will be needed in later discussions, we state here that for any static 
structure whose mass and stiffness matrix are symmetric and whose mass matrix positive- 
definite (which is the case of interest here), the complete set of eigenvectors of the system 
forms a complete linearly-independent base and so any vector of the same dimension can 
be expressed as a linear combination of all these eigenvectors. This argument is briefly 
proved as below. The matrix representation of the vibration eigenvalue problem is

[K] {<>}i={0} (A2.1)

Since [M] is symmetric and positive-definite, [M] can be decomposed as [92],

[M] = [L] [L]t  (A2.2)

where [L] is a non-singular lower triangular matrix. Upon substitution (A2.2) into 
(A2.1),

[K] - Xj [L] [L]T{(t>}i =(0) (A2.3)

Since [L] is non-singular, pre-multiply both sides o f (A2.3) by [L] , so that (A2.3)

becomes

[L] ' 1 [K] - Xi [ L f W j  ={0} (A2.4)

Let (z); = [L]T(<|>}j and substitute into (A2.4), then

[L]'1 [K] [L]"t  {z}; - /4 (z)i = {0} (A2.5)

Since [L]'1 [K] [L]‘Tis real and symmetric, the complete set of eigenvectors of (z)j forms 

a complete orthogonal base, regardless o f the existence of repeated modes [92]. On the
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other hand, since [L] is non-singular, [<{>] = [L]*T [z] forms a complete linearly- 

independent base.

TH E M ODAL M ETHOD

Differentiating (A2.1) with respect to the r^  design variable pr:

( [K] - X; [M ]) ^  - Xi ^  ^  [M]) «,}, = (0) (A2.6)

Assume that is normalised such that

{<Hj = 1 (A2.7)

Multiply both sides of (A2.6) by and using (A2.1) and (A2.7), then

(A2.8)

From (A2.8), it can be seen that the eigenvalue derivative is determined by the mode 
itself. Since as discussed, the complete set of eigenvectors forms a complete linearly- 
independent base. Therefore, without any loss of generality, the i*  eigenvector derivative 
which is a vector can be expressed as a linear combination of all the eigenvectors of the 
system:

dPr

N

j = 1

(A2.9)

In order to calculate the coefficients (3y, substitute (A2.9) into (A2.6) and pre-multiply 
(A2.6) by then

N
w J([K] -XjEM] )^XPik - f^ [M ]){< M i-0

(A2.10)

In the case j*i, (A2.10) can be simplified to solve for Py
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t ,3[K] ,  9 [M ]

Pij =
h 3Pr l) (<f)i

j * (A 2 .ll)

When j=i, pii can be computed from the mass-normalisation condition. Differentiating 

(A2.7)

{<Hl ^  W )i+  2{<t>)J [M] ^  = 0 (A2.12)

Substitute (A2.9) into (A2.12), then Pjj becomes

Pu = - j  {<t>>T ^  w ii <A2-13)

From (A2.11 and A2.13), the derivatives of i^  eigenvector are related to all the modes of 
the system. Also from (A 2 .ll) , it can be seen that the method breaks down when the 
eigenvector derivatives of repeated modes are to be calculated because for some j, the 
denominator of (A2.11) becomes zero.

N ELSO N 'S M ETH O D

As discussed above, all the eigenvectors of a system are required in order to calculate the 
eigenderivatives of one single mode based on the modal method. As mentioned in §6.4.5, 
such complete eigensolution can be very expensive when systems of high order are 

concerned. In practice, usually only the few lowest modes which are of interest are 
available based on a partial eigensolution. In order to cope with such a practical situation, 

Nelson developed a method which seeks to derive the eigenderivatives of the r*  mode by 
using only those components of the mode itself.

The derivative of the eigenvalue is the same as expressed in (A2.8). After the eigenvalue 

derivative is calculated, the corresponding eigenvector derivatives can be determined as 
shown below. Define {/} and [G] as

if) = ( - ^  +Xi ^ f  + 5 ^ r M])H>)i and [G] = ( [ K ] -M M ])  (A2.14)

then equation (A2.6) becomes
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[G] i l i l i
9pr = {/} (A2.15)

Note that [G] has rank (N -l) (assuming X\ is a single eigenvalue) and nullspace {<()} i 

(nullspace of a matrix [A] is defined as the set of vectors {x} such that [A]{x}={0}). 
This means that for any {a} satisfying [G]{o}={/}, {c)+y{(j)}i is also a solution, where 
y is any real number. The approach is first to find some particular solution {a), then to

l X ■»
find y so that {g H yW p  \  A suitable {a} can be found by setting one element of

{a} to be zero (since [G] is rank 1 deficient) and solving the remaining elements. This 

will work for any {/} in the range of [G] (the range of matrix [A] is defined as the set of 
vectors {y} such that {y}=[A]{x} for some (x) and the necessary and sufficient 
condition for the existence of exact solution(s) of [A] {x}={y} is that {y} is in the range 
of [A]) as long as the corresponding element of {<{)}* is nonzero. This suggests the 

following algorithm:

1) Find k such that lj<j)kl = II {̂ JjlL = max l̂ jl.
2) Delete the k* row and column of [G]—»[G] and kA element of { /}—>{?} 

and let ok=0 and by removing it from ( a ) —»{?$}.
3) Solve the reduced linear algebraic problem [G] {3} = {J}.

Since [G] is rank 1 deficient and {/} is in the range of [G] (since we know (a )  exists), 
the resulting {a} automatically satisfies [G ]{o}={/). The reason for choosing such a k 

(the eigenvector element with maximum magnitude) is to make sure that the reduced 
coefficient matrix [G] is rank full and numerically well-conditioned so that (5 ) can be 

uniquely and accurately determined. This is illustrated as follows. Defining [A]=([K]- 
^j[M]) and partitioning the matrices, (A2.1) can be written as

~ [A]jj : [A}jk : [A ]* " " ( o r

{A }jk • akk . {A}kl < i^k ► = < 0 r

_  [A ]J : {A )kl : [A ]„ _ J O L

(A2.16)

where [A]jj are the partitioned matrices of ([K]-^[M ]), a ^ i s  the k,k element of ([K]- 
^[M ]), {<j)j)i and {(J>]}j are the partitioned sub vectors, and ^  the k* component of {<j))j. 
Multiplying out (A2.16) and moving the ^  term to the RHS, (A2.16) becomes
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" [Aljj . [A]j,"

rzv____

' ( A ) /

(A >jk . (A}J < ...... > = ■ akk >

-  £A]]i . [A]„_ ^{A)ki>

(A2.17)

If  ̂ i s  nonzero and assigned a specific value, then subvectors {fy}; and must be 

uniquely determined by solving (A2.17) whose coefficient matrix has rank (N -l) when ^  
is a single mode. This argument also shows that when ^  is nonzero, the column of

the NxN matrix in (A2.16) is a linear combination of the remaining (N -l) columns and 
the remaining (N -l) columns are therefore linearly independent. Also, from a numerical 
point of view, ^  should be chosen to be the the element with maximum magnitude so

that the coefficient matrix of (A2.17) and so [G] is well-conditioned in terms of its 
inverse.

As can be seen from the above discussion, the process of deriving eigenvector derivatives 
based on Nelson's method preserves the sparseness and banded structure, if any, of [G], 
which allows for efficient solution of [G ]{a)= {7). It remains to find the scalar y. 

Substitute {o}+y{(|>}i into (A2.12):

{4>)T ^  + 2{(J.}T[M]({a)+y{(t>)i ) = 0 (A2.18)

Y = - {cr)T [M] W i  -0 .5  {(I)}! ^  {<t>)i (A2.19)

This completes the solution for
dX,
dpr

M h
dp

based on Nelson's method. Note that this

method has the desirable properties of preserving the structure of [M] and [K] (allowing 
more efficient solution) and requiring the knowledge of only one eigenvalue-eigenvector 

pair. Both properties are important in realistic structural problems where [M] and [K] have 

very high order.

IM PROVED M ODAL M ETHOD

The improved modal method seeks to calculate the eigenderivatives approximately using 
the lowest m (m«N) pairs of eigenvalues and eigenvectors obtained based on partial 

eigensolution. The eigenvalue derivatives are related to the modes themselves and they are 

expressed in (A2.8). In order to calculate the eigenvector derivatives, rewrite (A2.9) as
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M i
dpT

N
Pii {<t>)i + |z)i where (z); =

j = 1J * 1

Using (A2.ll)> {z}j can be written as

(A2.20)

N
N ^

{ z ) i =  i p i j ( 4 > } j =  >
j = i

(<i>)T (F)i

J *  1
j * i

W j  =

m

X
j = 1 
j * i

N
(<1>)T {F)i 

- Xj
{<!>}; + X

j = m + 1

( <t>)T (F) i
1 {<t>}j

1 ' v j

(A2.21)

riTTCl r)risy[i
where {F}j = ( -jj—  - X-t --^p J ){(})}{ and we have assumed that i<m. If the eigenvalues

are numbered according to their magnitude in ascending order, then for the class of 
problems with a large frequency gap is

Xj - X{ ~ Xj for j > m (A2.22)

It is clear that the above approximation is very accurate for j»m . Thus (A2.22) can be 

approximated as

m N

{ z ) i  « X
j = l 
j * i

{<>}T (p )i
X i - A,j

W j  + x
j = m+l

( <HT <F)i
-

W j (A2.23)

which can also be written as

N

-■ -X f^ -X ^j = 1 1 J j = 1 J
j * 1

(A2.24)

In equation (A2.24), only the middle term is unknown and it can be calculated using the 
flexibility matrix as shown below.
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Since from the theory of algebraic eigenvalue problems, the flexibility matrix [K]'1 can be 

calculated from the system's eigenvalue and eigenvector matrices as

[K]-1 = [(f)] [X ]-1 [(f>F
- ^ i; _ 1 J

(A2.25)

Using this spectral decomposition of (A2.25), the middle term of the RHS of (A2.24) 
becomes and (A2.24) can be written as

{z)i X W T  {F)i
X: - X:

j = i 1 J
j * i

Wj-tKrMFh (A2.26)

We note that the [K]-1 {F}j term in (A2.26) approximates the effect of higher uncalculated 
modal components on eigenvector derivatives of lower modes. With {z}1 being obtained 
and as expressed in (A2.13), the eigenvector derivatives of i*  mode can be simply 

calculated based on (A2.20).
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APPENDIX

DETAILS OF EXPERIMENTAL WORK

1. T H E  BEAM /ABSORBER STRU CTU RE (USED IN C H A PTER  2)

The Beam/Absorber test rig, as referred in Chapter 2, is an existing apparatus used for 
standard projects for many years and was not specially designed for research. A 
photograph of the rig and its main components are shown Fig. A3.1.1 and Fig. A3.1.2. 
The physical dimension of the main beam and the centre mass are shown in Fig. A3.1.3 
and Fig. A3.1.4.

Fig. A3.1.1 - Photograph of the Test Rig

4 3

Fig. A3.1.2 - Main Components of the Beam/Absorber Rig
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Fig. A3.1.3 - Dimension of Component No. 1 (Main Beam)
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Fig. A3.1.4 - Dimension of Component No. 2 (Centre Mass)

Component No. 3 is a uniform beam with dimension (length x width x height) being 
760x20x4 (all dimensions are in mm) and Component No. 4 is a rigid mass with 
dimension 80x40x40 as shown in Fig.A3.1.1.

2. D ETA ILS O F CONSTANT FO R C E C O N TRO L

In some modal tests, such as for the measurement of structural nonlinearity, it is required 
that the amplitude of the excitation force should be kept constant. In cases where the 
damping of the structure to be tested is not very light (i.e., if the damping ratio is of the 
order of 1% or more), the amplitude of the excitation force can be controlled to be 
constant based on a feed-back control loop as shown in Fig.A3.2.1.

Amplifier
Shaker
Unit

Force Gauge

If F<E* increase the generator output V 
L If F=F* next frequency point

If F>F* decrease the generator output V

Y Frequency
Response
Analyser

Computer
p*

to structure
---------------------
F

v F = Actual Force 

F* = Target Force

Fig.3.2.1 - Excitation Force Amplitude Control
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In the case where the damping of the structure is very low, for the frequency points very 
near structural resonance, the response amplitude can become very high and the control of 
constant force becomes difficult, then the FRF data at these frequency points should be 
left out.


