IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY
AND MEDICINE

University of London

IDENTIFICATION OF THE
DYNAMIC CHARACTERISTICS OF
NONLINEAR STRUCTURES

by

Rongming Lin

A thesis submitted to the University of London for
the degree of Doctor of Philosophy and for
the Diploma of Imperial College.

Dynamics Section

Department of Mechanical Engineering

Imperial College of Science, Technology and Medicine

London SW7 December 1990



ABSTRACT

Modal analysis has been extensively developed during the last two decades and has
become one of the most effective means of identifying the dynamic characteristics of
engineering structures. However, most of the techniques developed so far are based on
the assumption that the structures to be identified are linear while, in practice, most
engineering structures are nonlinear. It is therefore necessary to extend existing linear
modal analysis techniques or develop new techniques so that structural nonlinearity can
be detected, quantified and mathematically modelled based on the measured input-output
dynamic characteristics. This thesis seeks to present complete yet new developments on
the identification of dynamic characteristics of nonlinear structures.

For nonlinear structures whose modal parameters for certain modes are displacement
dependent (the nonlinearity is of symmetrical type), a new nonlinear modal analysis
method based on the measured first-order frequency response functions is developed.
The method has been effectively applied to the data measured from practical nonlinear
structures even when the modes become considerably complex. On the other hand, for
structures whose nonlinearities are such that the measured first-order frequency response
functions are effectively linear (nonlinearity of nonsymmetrical type), a higher-order
frequency response function analysis is presented which provides opportunities for the
identification of such nonlinear structures. Both the first- and higher-order frequency
response function analyses are based on the classical assumption that the output of a
nonlinear structure is periodic if the input is periodic. However, for some nonlinear
systems (chaotic systems), this assumption is no longer valid and special techniques need
to be developed in order to identify them. In this thesis, for the first time, the hidden
chaotic behaviour of a mechanical backlash system with realistic system parameters has
been revealed and, based on this system, qualitative as well as quantitative ways of
identifying chaotic systems are presented. Both numerical studies and experimental
investigations are carried out and possible engineering applications are discussed.

It is believed that nonlinearities of most engineering structures are usually localised in just
a few spatial coordinates and the ability to locate these has some important engineering
applications. In this thesis, location techniques based on the correlation between analytical
model and measured modal parameters as well as frequency response data are developed.



Numerical study and experimental investigation demonstrate the practical applicability of
these techniques. Because of the limitation of measured data available, it is essential to
pinpoint where the structural nonlinearity is located before a nonlinear mathematical
model can be established.

The ultimate target of the analysis of a nonlinear structure is to establish a nonlinear
mathematical model (spatial model) which is a function of response amplitude. It is
believed that such a target can only be achieved by combining analytical modelling (FE
modelling) and modal testing techniques. In this thesis, new model updating methods are
developed and extended to the mathematical modelling of nonlinear structures based on
the correlation between analytical and measured modal parameters as well as frequency
response data. The practical applicability of these methods is assessed based on a specific
case study. Criteria on minimum data required in order to update an analytical model are
established and the possibilities and limitations of analytical model improvement are
discussed which make it possible for the analyst to judge whether a set of measured data
will be sufficient to solve the model updating problem uniquely.
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CHAPTER (1

INTRODUCTION

1.1 GENERAL INTRODUCTION

In current engineering practice, the emphasis placed on safety, performance and reliability
of structural systems is becoming more and more demanding due to the continuous
challenges from real life. For example, any design inadequacy in an aircraft might lead to
huge loss of human life. In order to design a structural system which, after being
manufactured, will satisfy the prescribed safety performance and reliability criteria, it is
essential that dynamic analysis be carried out at the design stage as well as at the
prototype stage and, subsequently, a mathematical model which can accurately represent
the dynamic characteristics of the structure be established. Such a mathematical model is
needed for response and load prediction, stress and stability analysis, structural
modification and optimisation etc.

For simple structural components, such as uniform beams and plates, mathematical
models (and analytical solutions) which accurately describe their dynamic characteristics
are readily available. However, due to the complexity of most engineering structures,
analytical solutions are often impossible to obtain (if they exist at all) and numerical
approximations have to be pursued. In structural mechanics, the most commonly
employed numerical method is the so-called Finite Element Analysis (FEA) method. In
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FEA, a continuous structure is discretised into many 'small' elements (the size of the
element depends on the analysis accuracy required) called 'finite elements’ and then,
based on the theory of dynamics (e.g., Newton's law, Lagrange equation) and mechanics
of deformable bodies (e.g., stress-displacement equations, stress-strain relations), a
mathematical model of the structure is derived. This is often referred as the 'analytical
model' as compared with the 'experimental model' which is derived from dynamic
testing. Once a mathematical model (spatial model in terms of mass, stiffness and
possibly damping matrices of the structure) has been formulated, the next step of the
analysis is to solve the differential equations to obtain the dynamic response. However,
due to the approximations and idealisation involved, lack of knowledge about the
structure and even sometimes mismodelling of structural joints and boundary conditions,
it is inevitable that the mathematical model thus established will not always adequately
represent the actual behaviour of the real structure.

Apart from the analytical approach to achieve a mathematical model for the study of
vibration characteristics of a dynamic system, another major approach is to establish an
experimental model for the system by performing a vibration test and subsequent analysis
on the measured data. This process, including the data acquisition and the subsequent
analysis, is now known as 'Modal Testing'. The theoretical basis and practical
applications of modal testing have been discussed in detail in [1]. The most significant
application of modal testing is perhaps to compare and eventually to validate an analytical
model using measured vibration test data. Apart from this, mathematical models derived
from measured data (referred to as 'experimental models' which can be in the form of
response, modal or spatial models) are frequently used in structural modification analysis,
structural coupling, force determination etc. It is usually believed that provided sufficient
care is given to the experimental procedures, the results from measurement are those that
should be regarded as the most correct.

In a typical engineering design process, both analytical prediction and experimental modal
testing procedures are involved in an iterative way. They have complementary roles for
the complete description and understanding of the dynamic behaviour of a structure and
one cannot be substituted for the other. In the present work, we shall be dealing mainly
with the experimental side of the problem of evaluating the dynamic characteristics of
mechanical structures (mainly nonlinear structures), although analytical models are often
needed and are assumed to be available in the studies of location of structural
nonlinearities and mathematical modelling of nonlinear structures.
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1.2 STRUCTURAL NONLINEARITY

Most of the theories upon which structural dynamic analysis is founded rely heavily on
the assumption that the dynamic behaviour of the structure to be analysed is linear. By
this is meant that (i) if a given loading is doubled, the resulting deflections are doubled
and (ii) the deflection due to two (or more) simultaneously applied loads is equal to the
sum of the deflections caused when the loads are applied one at each time. This
superposition principle of linear systems can be expressed mathematically as

x[of ()] = ox[f(©)] (1-1)
x[Y f®] = X x[fF®)] (1-2)
k=1 k=1

where x is the deflection, f(t) is the loading force and o is a constant. Linear
mathematical models of engineering structures based on this superposition principle have
proven to be very useful in numerous engineering applications. From general theoretical
considerations based on the superposition principle, successful methods have been
developed and applied to the dynamic analysis of linear structures.

Failure to obey the superposition principle implies that the structure is nonlinear. In fact,
most practical engineering structures exhibit a certain degree of nonlinearity due to
nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and
nonlinear material properties. For practical purposes, they are in many cases regarded as
linear structures because the degree of nonlinearity is small and therefore insignificant in
the response range of interest. For other cases, the effect of nonlinearity may become so
significant that it has to be taken into account in the analysis of dynamic characteristics of
the structure.

It is often supposed that unless a real measurement is taken, the existence of a
nonlinearity in a practical structure cannot be foreseen based on analytical prediction nor
the degree of nonlinearity can be analytically quantified. Experimental investigation
becomes essential in the identification of dynamic characteristics of nonlinear structures.

The present research focuses on the identification, location and mathematical modelling of
practical nonlinearities based on measurement of the input/output dynamic characteristics
of nonlinear structures. Although there have been several efforts directed towards the
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identification of nonlinearity, there has not been a complete and systematic development
of identification techniques which are required in order to analyse the numerous different
nonlinear phenomena that occur in engineering practice. Further, the location of
nonlinearity (information about where the nonlinearity is located in a structure), which |
has important engineering applications has not been investigated to date. Also, as an /
ultimate target of nonlinear system analysis, the establishment of a nonlinear spatial
mathematical model which is a function of the response amplitude, has not been
investigated in spite of its practical relevance to numerous engineering applications.

1.3 IDENTIFICATION OF DYNAMIC CHARACTERISTICS OF
NONLINEAR STRUCTURES

System identification, which is generally considered as the inverse problem of system
dynamics, is in the scope of various fields such as structural and control engineering.
Although mathematicians and engineers have developed a number of approaches to
address the identification problem, most of the work to date has been restricted to linear
systems. Nonlinear systems are, however, often assumed to be linearisable in some
manner, and the resulting linear model is then used to analyse the behaviour of the
system. Significant inaccuracy arises when conditions and/or assumptions required for
the linearisation are violated.

The identification of linear time-invariant system is relatively well understood and
theoretically well developed. The same is not true for the case of a nonlinear system.
* Nevertheless, over the past years, some progress has been made in the development of
both theories and techniques in the identification of nonlinear systems. A very brief
review is presented here in terms of frequency, time and amplitude domains and a more
detailed discussion will be given in some later chapters when specific topics are described
or referred.

1.3.1 FREQUENCY DOMAIN TECHNIQUES

Techniques developed for the identification of nonlinearirities in the frequency domain
are, in general, based on the comparison of different characteristics of the measured
frequency response functions of linear and nonlinear structures (nonlinearity detection)
and extension/modification of classical linear analysis methods to nonlinear structures
(nonlinearity quantification). As the first task of nonlinearity analysis, the detection of the
existence of nonlinearity is believed to be relatively easy. For most practical nonlinear
structures, frequency response functions (FRFs) measured using sinusoidal excitation
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‘with constant forcmg amplitude will show certain form of distortion as compared with
those of a linear éu'—&glgmﬁ;s‘t/ortlons of measured FRFs when they are displayed in the
form of a Bode plot [1] or reciprocal receptance [2] have been employed to detect the
existence of nonlinearities. Also, as discussed in [1], when a structure is nonlinear, the
isometric damping plot calculated based on the measured FRF data will show systematic
variation (surface distortion) and this variation is an indication of nonlinearity. These

detection techniques are simple and easy to implement in practice.

As a more sophisticated method, the Hilbert transform technique can be used to detect,
and to some degree, to quantify structural nonlinearities. The theory of the Hilbert
transform, which is an integral transform, is described in detail in [3]. The basis that the
Hilbert transform technique can be used to identify nonlinearity is due to the fact that for a
linear structure, the real and imaginary parts of a measured FRF constitute a Hilbert
transform pair (that is: H[Re(o(®))]=Im(c(w)) and vice versa), while for the FRF of a
nonlinear structure, these Hilbert transform relationships do not hold. By calculating the
Hilbert transform of the real part (or the imaginary part) of a measured FRF and
comparing it with the corresponding imaginary part (or real part), the existence of
nonlinearity can be identified based on the difference of the transform pair [4].

For most practical applications, not only does the nonlinearity need to be detected, but
more importantly, it needs to be quantified. The Hilbert transform approach seeks to
quantify the nonlinearity by measuring the degree to which the Hilbert transform pair
differ from each other. As a more practical way of quantifying structural nonlinearity, the
Inverse Receptance method was developed [5] which aims to establish the relationship
between the natural frequency and the vibration amplitude of a nonlinear structure.
However, the method is restricted to the case in which the mode to be analysed is real.

All the above-mentioned techniques are formulated for the identification of nonlinearity
based on the measured first-order FRFs (FRFs which are obtained by considering only
the fundamental frequency component of the response signal, as will be defined later).
For some nonlinear structures, the measured first-order FRFs are effectively linear and
for some practical vibration problems in which the harmonic components of the response
become as important as the fundamental component, the measurement and analysis of
higher-order FRFs becomes necessary. The theoretical basis of higher-order FRFs is the
Volterra series and its extended Wiener series theory [6]. However, research activities
had been restricted in electrical and control engineering since Wiener's early work [7] and
until recently that the theory has been applied to the identification of nonlinear mechanical
structures [8] and found to be quite useful.
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1.3.2 TIME DOMAIN ANALYSIS

As in the identification of linear structures for which time domain methods such as
Ibrahim's method (ITD) [9] can be used to obtain modal parameters of a linear structure,
structural nonlinearities can be identified by analysing the measured time force and
response data directly. The simplest method of nonlinearity analysis in time domain is the
phase-space or, more specifically, the phase-plane approach [10] which gives both local
and global behaviour of a nonlinear system and provides an exact topological account of
all possible system motions under various operating conditions. In the case of sinusoidal
excitation, the Poincaré map which is the discrete phase-space trajectory of the motion,
can be calculated to detect the existence of harmonic components and so the existence of
nonlinearity.

The force state mapping technique for the identification of nonlinearity was initiated by
Masri and Caughey [11] and independently developed by Crawley and O'Donnel [12-
13]. The technique aims to establish the relationship between the restoring force and the

vibration displacement and velocity F(x,x). For an SDOF nonlinear system described by
m X + F(x, x) = f(t) (1-3)

where F(x, x) is the restoring force, if, by some means, the mass m of the system is
known and quantities x, X, X and f(t) are measured, then the restoring force F(x, x) at
given state (x, X) can be calculated. If the system is linear, then the restoring force surface
is a plane as shown in Fig.1.1(a). If the system is nonlinear, then some surface distortion
is expected, as shown in Fig.1.1(b) for the case of cubic stiffness nonlinearity. The
extension of this technique to certain nonlinear MDOF systems has been investigated [11]
and the practical application of the technique has been discussed [14].
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(a) linear SDOF system (b) nonlinear SDOF system
Fig.1.1 Restoring Force Surfaces of Linear and Nonlinear Systems

Time series analysis techniques [15] have been widely used in the modelling of linear
systems and have recently been extended to the identification of nonlinear systems [16-
17]. In general, a linear time-invariant system can be represented by higher-order (more
than the second) differential equation with constant coefficients. Such a differential
equation can, in theory, be approximated by a difference equation whose accuracy
depends on the time interval of sampled data points. The time series analysis seeks to
calculate the coefficients of the difference equation model based on the measured input-
output time series data. In the case of a nonlinear system, extra coefficients have to be
identified which represent the effect of the nonlinear behaviour [16]. After the difference
equation model, which describes the dynamic characteristics of a nonlinear system, has
been identified, the first-order and higher-order frequency response functions of the
system can be calculated [18].

1.3.3 AMPLITUDE DOMAIN ANALYSIS

Nonlinearities can also be identified by calculating the amplitude probability density
function of the response due to random excitation. For a linear system, if the input force
is a random signal with its amplitude probability density function (pdf) being Gaussian,
then the amplitude pdf of the response will also be Gaussian. For a nonlinear system
however, this simple relationship no longer holds and some distortion in the response
amplitude pdf from Gaussian distribution is expected and from this distortion, the
existence of nonlinearity can be identified [19]. The method is developed based on the
Fokker-Planck-Kolmogorov (FPK) equation of a nonlinear system which is described in
detail in [20]. To illustrate the idea, consider an SDOF nonlinear system as
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X+ Bx + o(x) = f(t) (1-5)

where f(t) is a Gaussian noise signal. The corresponding Fokker-Planck-Kolmogorov
equation of (1-5) is described as [20]:

N Do e ks =0 (L6
2 30k P1OP2(] - 57 kp; (0P (K] + == [(Bx + 0(x))p, ()p, ()] = 0 (1-6)

where S is the power spectrum of the input force and p,(x) and p,(x) are the probability
density functions of the displacement and velocity, respectively. Solving (1-6), p,(x) can

be obtained as [20]:

2 X
py(x) =vexp[ - g%oj @(€)dg ] (1-7)

where v is a constant which can be determined by the normalisation condition. From (1-
7), it can be seen that only when @(x) is linear does p,(x) have a Gaussian distribution.
On the other hand, p,(x) can be calculated based on the measured time response data and,

therefore, nonlinearity can be easily identified experimentally based on the distortion of
measured p,(x) from the standard Gaussian distribution.

In the research described in this thesis, we will concentrate mainly on the development of
analysis techniques in the frequency domain although time domain techniques such as
phase-plane and Poincaré map approaches will be used in the characterisation of chaotic
vibrational systems.

1.4 MODELLING OF NONLINEAR STRUCTURES

For many engineering applications, accurate mathematical models (spatial models in terms
of mass and stiffness matrices) of nonlinear structures are required. So far, much
progress has been made in the mathematical modelling of linear structures [21]. As
mentioned above, a mathematical model of a linear structure can be established either
using analytical FE analysis (an analytical model) or based on measured dynamic test data
(an experimental model). Due to the existence of modelling errors in most practical cases,
the analytical model needs to be validated using measured test data so that an accurate
mathematical model can be established. In the case when a structure to be modelled is
nonlinear, its mathematical model becomes a function of response amplitude ([K]=[K(})]
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for the case of stiffness nonlinearity) and what needs to be established is a series of
linearised models corresponding to different vibration amplitudes by correlating the
analytical model and measured first-order FRF data.

In fact, since structural nonlinearity cannot be foreseen and so cannot generally be
analytically predicted, measurement is crucially important in the modelling of
nonlinearity. However, measurement alone cannot, in general, establish a practically
realistic model because measured data are usually very limited (as will be shown, this is
especially true for the case of nonlinear structures). It is believed that a reasonably
accurate linear model of a nonlinear structure (corresponding to very low vibration
amplitude) and location information of the localised nonlinearity are necessary in order to
establish the mathematical model of a nonlinear structure.

In the present research, we shall focus on the development of techniques for both the
location and the mathematical modelling of structural nonlinearities. The procedure is as
proposed below. First, an analytical model is updated using vibration test data measured
at very low response amplitude to obtain an accurate linear model of the nonlinear
structure. Then, the nonlinearity is located, based on this linear model and measured data
at higher response amplitudes. With this location information available, modelling of the
nonlinearity can be concentrated on the region where the structural nonlinearity is and
then by correlating the linear model and measured FRF data at different response
amplitudes, a mathematical model of the nonlinear structure can be established.

1.5 PREVIEW OF THE THESIS

Despite rapid developments in the identification of dynamic characteristics of linear
structures in recent decades, structural nonlinearity presents a major difficulty to the
majority of applications to practical cases. The research presented in this thesis is intended
to seek new developments on the identification, location and modelling of structural
nonlinearities in the pursuit of better understanding of the dynamic characteristics of
practical nonlinear structures.

Based on the analysis of measured first-order FRFs, some of the recently-developed
techniques for the identification of nonlinearity are reviewed in Chapter 2 and their

advantages and disadvantages when applied to practical problems are discussed. Then, a o

new improved method for the nonlinear modal analysis of complex modes is developed to
cope with the practical situations in which measured modes become complex. The method
has been successfully applied to the data measured from practical nonlinear structures
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even when the modes are considerably complex. On the other hand, for structures whose
nonlinearities are such that the measured first-order FRFs are effectively linear (the
nonlinearity being of nonsymmetrical type), a higher-order frequency response function
analysis becomes necessary for the identification of such nonlinear structures. The
theoretical basis of higher-order FRF analysis is presented in Chapter 3 with special
attention given to the numerical assessment of the practical applicability the technique.
Both first- and higher-order FRF analysis techniques are largely based on the classical
assumption that the output of a nonlinear structure is periodic if the input is periodic. For
some nonlinear systems however, this assumption is no longer valid (chaotic systems, in
which a periodic input will result in an output of "random" nature) and special techniques
need to be developed in order to identify them. In Chapter 4, for the first time, the hidden
chaotic behaviour of a mechanical backlash system with realistic system parameters has
been revealed and, based on this system, qualitative as well as quantitative ways of
identifying chaotic structures are presented. Both numerical studies and experimental
investigations are carried out and possible engineering applications are discussed.

It is believed that nonlinearity in most engineering structures is usually localised in certain
spatial coordinates and the ability to locate these has some important engineering
applications. In Chapter 5, nonlinearity location techniques based on the correlation
between an analytical model and measured modal parameters and/or measured frequency
response function data are developed. Numerical studies and experimental investigation
demonstrate the practical applicability of these techniques.

The ultimate target of the analysis of a nonlinear structure is to establish a nonlinear
mathematical model which is a function of response amplitude. It is believed that such a
goal can only be achieved by combining analytical modelling (FE modelling) and
experimental modal testing techniques. In Chapter 6, a new model updating method is
developed and extended to the mathematical modelling of nonlinear structures based on
the correlation between an analytical model (of a linear system) and measured frequency
response data. As compared with existing methods, the new method shows marked
advantages. The practical applicability of the method is assessed based a special case
study. In Chapter 7, criteria on minimum data required in order to update an analytical
model are established and the possibilities and limitations of analytical model
improvement are discussed which make it possible for the analyst to judge whether a set
of measured data will be adequate to solve the model updating problem uniquely.

Finally, Chapter 8 reviews all the new developments presented in this thesis and indicates
the direction for possible further studies. ‘



CHAPTER |2

IDENTIFICATION OF
NONLINEARITY USING FIRST-
ORDER FREQUENCY RESPONSE FUNCTIONS

2.1 GENERAL INTRODUCTION

As mentioned in Chapter 1, it is believed that all practical engineering structures are
nonlinear to some extent, due to nonlinearities in structural joints, boundary conditions
and material properties. Some structures may be only slightly nonlinear so that they can
be analysed based on a linear theory with satisfactory accuracy. For others whose
nonlinearities are such that their dynamic characteristics deviate considerably from linear
behaviour, nonlinear analysis techniques have to be employed.

As far as analyses of nonlinear systems are considered, there are two types of activity
which are loosely termed here as "theoretical analysis" and "experimental analysis". The
theoretical analysis methods assume that a mathematical model of the nonlinear system to
be analysed is known (usually in the form of differential equations) and what is of interest
is the prediction of the response of the system due to a certain input. In contrast, the
experimental analysis methods seek ways of identifying mathematical models of nonlinear
systems based on measured input/output dynamic characteristics.

Since, in general, nonlinear problems do not possess closed form solutions, both
theoretical and experimental analyses are approximate and the accuracy of each analysis
depends on the mathematical nature of the problem and the specific methods employed.
What is of major interest in this thesis is the experimental identification of nonlinear
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structures based on structural modal testing, but since the theoretical analysis provides the
basis for the experimental identification of nonlinear structures, it is necessary to give a
brief introduction to the theoretical analysis of nonlinear systems.

Nonlinear systems with either inherent nonlinear characteristics or nonlinearities
deliberately introduced into the system to improve their dynamic characteristics have
found wide applications in most diverse fields of engineering. The principal task of
nonlinear system analysis is obtain a comprehensive picture, quantitative if possible, but
at least qualitative, of what happens to the system if it is driven into its nonlinear regime.
According to whether the system variables such as vibration displacement in the
mechanical structure are perturbed only slightly or largely from their operating points (for
most nonlinear mechanical structures, the nonlinear effect becomes more severe as the
vibration amplitude increases, but there are some exceptions such as friction
nonlinearity), the nonlinear characteristics can be divided into local or global behaviour.
Local behaviour can be investigated by rather general and efficient linear methods that are
based on the powerful superposition principle as explained in Chapter 1 because, in this
case, the dynamic characteristics of the system are completely dominated by linear
behaviour. However, if these linear methods are extended to describe the global
behaviour of a nonlinear system, the results can be erroneous both quantitatively and
qualitatively since, in this case, the nonlinear characteristics may be essential but the linear
methods may fail to reveal it. Therefore, there is a strong emphasis on the development of
methods and techniques for the analysis and design of nonlinear systems.

However, it has to be mentioned that the development of nonlinear methods faces real
difficulties for a variety of reasons. There are no universal mathematical methods for the
solution of nonlinear differential equations which are the mathematical models of
nonlinear systems. The methods which exist deal with specific classes of nonlinear
equations and therefore have limited applicability to system analysis. The classification of
a given system and the choice of an appropriate method of analysis is not at all an easy
task. Furthermore, even in simple nonlinear problems, there are numerous new
phenomena qualitatively different from those expected in linear system behaviour, and it
is impossible to encompass all these phenomena in a single and unique method of
analysis.

Although there is no universal approach to the analysis of nonlinear systems, nonlinear
methods generally fall into one of the three following approaches: (i) the phase-space
topological method, (i) the stability analysis method, or (iii) the approximate method of
nonlinear analysis. These are summarised below.
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(i) The phase-space or, more specifically, the phase-plane approach has been used for
solving problems in mathematics and engineering at least since Poincaré in 1880's. The
approach gives both local and global behaviour of the nonlinear system and provides an
exact topological account of all possible system motions under various operating
conditions. It is a powerful concept underlying the entire theory of ordinary differential
equations (linear, nonlinear, time-varying and time-invariant). However, it is limited to
the case of second-order equations. For higher-order systems, this approach is very

cumbersome to use.

(ii) The stability analysis of nonlinear systems, which is heavily based on the work of
Lyapunov, is a powerful approach to the qualitative analysis of system global behaviour..
By this approach, the global behaviour of the system is investigated utilizing a given form
of nonlinear differential equations without explicit knowledge of their solution. Stability
is an inherent feature of a wide class of systems such as aerospace structures.

(iii) Approximate methods for solving problems in mathematical physics were first
developed at the beginning of this century. They have been received with much interest
by engineers and have promptly obtained wide application in diverse fields of
engineering. The basic merit of approximate methods lies in their being direct and
efficient and they permit a simple evaluation of the solution for a wide class of problems
arising in the analysis of nonlinear oscillations.

In the theoretical analysis of nonlinear systems whose equations of motion can be
formulated analytically, there are quite a number of approximate methods available to
examine their nonlinear vibration behaviour. According to different input signals,
methods in general can be categorised into deterministic methods, in which the excitation
signals are deterministic such as sinusoids and statistical methods, in which the input
signal is of a random nature. Statistical analysis methods include the method(s) of random
linearisation [22-23] and the amplitude domain analysis based on the FPK equations [20]
as discussed in Chapter 1. On the other hand, in deterministic analysis, the most
commonly used methods are the Linstedt-Poincaré method [24], the method of multiple
scale [24-26] and the harmonic balance method [27]. What is of particular interest here is
the harmonic balance method (often called describing function method) because this
harmonic balance analysis provides the mathematical basis for a new nonlinear modal
analysis method developed in this chapter. The harmonic balance method is heavily based
on the Krylov-Bogoliubov approach [28] and is applicable to nonlinear systems described
by higher-order differential equations. The mathematical basis of the method and the
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applicability conditions when it is used to identify the nonlinearities of mechanical
structures will be discussed in detail later in this chapter when the new nonlinear modal
analysis method is introduced. However, it will be appropriate here to introduce the
measurement techniques available in the dynamic characterisation of nonlinear structures
since what is of primary interest is the identification of nonlinear structures from the
actual test data.

2.2 MEASUREMENT OF FIRST-ORDER FREQUENCY RESPONSE
FUNCTIONS

A brief introduction has been made so far of the theoretical analysis of nonlinear systems
based on the known differential equations. However, the primary target which is sought
in this study is the identification of the unknown mathematical models of nonlinear
structures based on measured input/output dynamic characteristics. Therefore, it becomes
necessary before the introduction of any identification techniques to discuss how the
dynamic characteristics of a structure (linear or nonlinear) can be measured.

First of all, it is necessary to explain what is meant by the so-called first-order frequency
response functions of a nonlinear structure. In concept, first-order frequency response
functions (first-order FRFs) are the extension of frequency response functions (FRFs) of
linear systems to nonlinear systems. Similar to the measurement of FRFs of a linear
structure, in the case of sinusoidal excitation (the excitation is a pure sinusoid), the first-
order FRF H,(w) of a nonlinear structure is defined as the spectral ratio of the response
X(w) and the force F(w) at the excitation frequency: H;(w)=X(®)/F(®). During the
estimation of H;(w), all the harmonic components (subharmonics, superharmonics and

combinational resonances) are ignored and only the fundamental frequency component of

the response is retained. Similarly, in the case of random excitation (the excitation is
wide-band random signal), first-order frequency response function is defined as the
spectral ratio of cross-spectrum of the force and response and the auto-spectrum of the
force: Hy(0)=S (0)/Sg(w) (or its equivalent form H,(w) =S,,(©)/S¢ (w)). The measured
first-order FRFs of a nonlinear structure based on sinusoidal and random excitations are
in general different and their relationship will be discussed in Chapter 3.

For linear structures, the first-order frequency response functions (often referred simply
as frequency response functions) are unique and, therefore, will not vary according to
different excitation techniques and conditions. For nonlinear structures, however, the
measured first-order frequency response functions are, in general, not unique. They
depend not only on the excitation conditions (input force levels), but also on the different
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excitation signals used to measure them. Therefore, the first problem of nonlinearity
investigation will necessarily be to decide a proper means of excitation so that nonlinearity
can easily be revealed and then identified. There are three types of excitation method
widely used in vibration study practice - sinusoidal, random and transient - and each of
them is discussed below.

2.2.1 SINUSOIDAL EXCITATION TECHNIQUE

In testing a linear structure, if the input is a sinusoid, the response will also be a sinusoid
with the same frequency as that of the excitation and the frequency response function at
this excitation frequency is simply the ratio of the amplitudes (usually complex) between
the response and the input signals. This observation of its special characteristics naturally
made the sinusoidal excitation to be the first choice of excitation signal at the very
beginning of structural dynamic testing and it still remains one of the most favourable
excitation techniques in today's modal testing practice because of its uniqueness and
precision, although other techniques such as random, transient etc. have also been
developed.

The main advantages of sinusoidal excitation are: (i) the input force level can be accurately
controlled and hence it becomes possible to excite the structure at specified response
levels required and (ii) since all the input energy is concentrated at one frequency each
time, and the noise and harmonic components in the response signal are averaged out
through an integration process, the signal-to-noise ratio is generally good as compared
with other excitation methods. As in most cases the study of nonlinearity requires either
response or force controls, the characteristics of (i) become important in the successful
identification of structural nonlinearity.

When the response level is set to be constant during the measurement (response amplitude
is constant at different excitation frequencies), a nonlinear structure is said to be linearised
and the measured first-order frequency response functions can be analysed using standard
linear modal analysis methods in exactly the same way as for the frequency response
functions measured on a linear structure. On the other hand, when the input force is kept
constant during the measurement (the amplitude of the input force is constant at different
excitation frequencies), the measured first-order frequency response functions are
nonlinear (they are characteristically different from FRFs measured from linear structures)
and in this case, special nonlinear modal analysis methods have to be used to analyse
them in order to identify the existing nonlinearity.
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However, it is worth mentioning that in some cases, the accurate control of force or
response can be a problem due to the electro-dynamic characteristics of the shaker. A
feedback control process is required in order to achieve either response or force control as
will be discussed in some detail in Chapter 5.

The main drawback of the sinusoidal excitation technique is that it is relatively slow when
compared with many of the other techniques used in measurement. The reason for this is
that the excitation is performed based on frequency by frequency basis and, at each
frequency, time is needed for the transient response componeats to decay and the system
to settle to its steady-state vibration. However, it is believed that in many applications,
correct measurement of the dynamic characteristics of a structure becomes more important
than the measurement time involved. As will be discussed in chapter 6 on analytical
model updating practice, the accuracy of measured frequency response functions becomes
vitally important for a successful correlation to be achieved.

2.2.2 MEASUREMENT USING RANDOM EXCITATION

The term ‘random' applies to the amplitudes of the excitation force which, in statistical
terms, have a Gaussian or Gaussian-like probability distribution. Wide-band random
excitation is widely used in structural dynamic testing because it approximates more
closely the statistical characteristics of vibration service environments than does a pure
sinusoidal excitation.

With this type of excitation, individual time records in the analyser contain data with
random amplitude and phase for each frequency component. On average, however, the
spectrum is flat and continuous, containing energy approximately the same level for every
frequency in the range of interest. The spectrum distribution is easy to control in a
random test, and it can be limited to cover the same range as the analysis.

The excitation is random and continuous in time, but the record length is finite, and so the
recorded signals (force and response) are, in general, nonperiodic. However, during the
signal analysis, these nonperiodic signals are assumed to be periodic and as a result,
leakage errors occur in the estimation of frequency response functions. These errors can
be minimised by using window functions, or weighting, which act as a soft entry and exit
for the data in each record. A suitable weighting function to use with random data is the
Hanning window.
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In order to eliminate the leakage problem, a pseudo-random excitation signal can be used
instead of a true random signal. The pseudo-random signal is periodic and repeats itself
with every record of analysis. A single time record of a pseudo-random signal resembles
a true random wave form, with a Gaussian-like amplitude distribution. However, the
spectral properties are quite different from those of a random signal because of its
periodicity. First, the periodic nature of the pseudo-random signal removes the leakage
error entirely so that a rectangular window must be used in the analysis and secondly, the
spectrum becomes discrete, only containing energy at the frequencies sampled in the
analysis.

For the FRF measurement of linear systems, random and pseudo-random excitations are
attractive to analysts and researchers because of their potential time-saving in obtaining
frequency response functions. In random and pseudo-random excitation measurement,
the structure is excited simultaneously at every frequency within the range of interest. It is
this wideband excitation characteristic that makes the random and pseudo-random
excitation faster than sinusoidal excitation. As compared with true random excitation, in
addition to the advantage of being leakage error free, pseudo-random excitation is much
faster because as the random source is true noise, it must be averaged for several time
records before an accurate FRF can be determined.

As for nonlinear structures, from the measured first-order frequency response function
point of view, a random test in general linearises nonlinear structures due to the
randomness of the amplitude and phase of the input force signal and the averaging
effects, therefore, the measured first-order frequency response functions using random
test are linear. The theoretical aspects of this linearisation process will be discussed in
Chapter 3. However, the linearisation of a nonlinear structure when using random
excitation does not mean that it is impossible to identify nonlinearity using random
excitation. Corresponding to different input excitation levels (power spectra), the
measured linearised first-order frequency response functions are different and if a set of
these frequency response functions are measured at different excitation levels, the
identification of nonlinearity could, in some cases, become possible. On the other hand,
as will be shown in Chapter 3, this conventional random test technique can be extended to
measure the higher-order frequency response functions of a nonlinear structure and these
provide valuable information concerning the nature of the nonlinearity and can be used to
serve the purpose of nonlinearity identification. Pseudo-random excitation on the other
hand, is in general not suitable for the first-order FRF measurement of nonlinear
structures. This is because a pseudo-random signal is periodic and so contains limited
discrete frequency components. When such a input signal is applied to a nonlinear
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structure, modulation and intermodulation distortion will be generated due to nonlinearity
and, unfortunately, these distortion products (e.g. 2f;, 3f;, ... due to modulation of input
component f,) will fall exactly on the other frequency components of the input signal
(e.g. 2f;, 3f}, ...). So the distortion products add to the output and therefore interfere
with the measurement of frequency response functions [29]. Unlike random excitation, in
which these distortions can be averaged out, pseudo-random is periodic and so the
averaging has no effect on the measured FRF.

Although the first-order frequency response functions measured using random excitation
are different when the input force spectrum levels are different, these differences could be
very small when practical nonlinear structural tests are considered. One reason for this is
the dropout of the input force spectrum around resonance frequencies due to the
impedance mismatch between the test structure and the electro-dynamic shaker. Since the
energy input around structural resonance(s) is mainly responsible for the vibration level
of a structure, dropout of the input force spectrum around resonance(s) means that the
structure cannot easily be driven into its very nonlinear regime and the measured
frequency response functions corresponding to different input force levels will not, in
general, be very different from one another. With sinusoidal excitation, this impedance
mismatch can be compensated using a feedback control system, but for random
excitation, such compensation seems to be difficult and this is a practical problem for the

identification of nonlinearity using random test.
2.2.3 MEASUREMENT USING TRANSIENT EXCITATION

One of the most popular excitation techniques used in structural dynamic testing is
transient excitation, sometime referred as ‘impact testing’. This popularity is because
transient excitation has some unique characteristics as compared with shaker-based
excitation techniques. The main advantages of using transient excitation can be
summarised as:

(1) transient excitation does not require a dynamic shaker to generate the input excitation
force; this is usually produced using an impactor such as a hand-held hammer and
therefore the test structure remains unmodified during the test,

(ii) because there is no attachment required in the test, transient excitation provides easier
access to the measurement points of the structure and,

(iil) transient excitation requires less equipment (no shaker and its related power amplifier

involved) and measurement time, therefore, it is ideal for mobile experiments.
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As in the case of random excitation, the derivation of input and output relationship under
transient excitation relies on Fourier transform theory and is based on the Duhamel
Convolution Integral. The measured frequency response function depends on estimates of
the auto-spectrum S;{(®) of the force signal and the cross-spectrum S, {w) of the force
and response and it is calculated as H(w)=X(w)/F(w)=S,{®)/S¢{(w) (or its equivalent
form H(w)=S,, (0)/S,;(®).

An ideal impulse is the delta function 8(t) which, after being Fourier transformed,
produces a force spectrum with equal amplitude at all frequencies. Unfortunately, this
ideal impulse is practically impossible to achieve. The waveform which can be produced
by an impact is a transient (short time duration) energy transfer event whose spectrum is
continuous, with a maximum amplitude at zero frequency and amplitude decaying with
increasing frequency. The spectrum shape of the transient signal is mainly determined by
the time duration of the signal. The shorter the time duration of the signal, the broader the
range of energy distribution in the frequency domain. On the other hand, the time
duration of an impact is determined by the mass and stiffness of both the impactor and the
structure. Therefore, by properly choosing the material and of the hammer tip and its
mass, it is possible to generate the required transient signal with desired spectrum
characteristics. However, the spectrum can only be controlled at the upper frequency
limit, which means the technique is not suitable for zoom analysis.

Although it has been suggested that the high crest factor of transient excitation makes it
possible for the nonlinear behaviour of the structure to be provoked and then possibly
identified, there has not been much evidence so far which seems to support the advantage
of using transient excitation to identify structural nonlinearity based on the measured first-
order FRFs. However, a special hammer has been designed to measure second-order
FRFs of nonlinear structures [30] as will be discussed in Chapter 3.

2.2.4 COMMENTS AND PRACTICAL CONSIDERATIONS OF
NONLINEARITY MEASUREMENT

As discussed above, there are three main types of excitation technique available for the
vibration testing of a structure. Each of them has its advantages and disadvantages and a
proper choice of excitation technique depends, in general, on the measurement accuracy
required and time available for the test. For linear structures, since the measured
frequency response functions are, in theory, unique and independent of the excitation, all
techniques should be equally applicable. For nonlinear structures, however, the choice of
excitation becomes important for the hidden nonlinearities to be revealed and then
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identified because, in this case, the measured dynamic properties are excitation-
dependent.

Transient excitation is one of the most often used techniques in structural dynamic testing
because of its simplicity and speed in obtaining frequency response functions. It requires
less equipment and is therefore suitable for mobile experiments. Since there is no shaker
involved, the structure remains unmodified during the test. The coherence functions
obtained from transient tests, being an indication of the measurement quality, are usually
better than those from random tests in the sense that low coherence only occurs at anti-
resonances due to the low signal-to-noise ratio of the response signal while in the random
excitation case, low coherence occurs not only at anti-resonances, but also at resonances
due to the dropout of input force spectrum around resonances caused by the impedance
mismatch between the test structure and shaker. As for the identification of nonlinearity,
although it is believed that it might be possible to use the transient excitation because of its
high crest factor which provokes the structural nonlinearity, there have not been many

studies carried out to support this idea.

When random excitation is used, the measured first-order FRFs are always linear,
whether the structure is linear or not. In the case where the test structure is linear, the
measured FRFs are unique and will not vary according to different excitation levels,
while on the other hand, if the test structure is nonlinear, a series of linearised first-order
FRFs will be obtained corresponding to different excitation levels. These measured first-
order FRFs can be used to detect whether a structure is linear or not by comparing their
values for different excitation levels and in cases where only an approximate linear model
of a nonlinear structure is of interest, regardless of the type of nonlinearity the structure
possesses, these linearised FRFs can often provide an accurate linear approximation of

the nonlinear structure from a response prediction point of view.

On the other hand, the conventional random excitation technique can be extended to the
case of higher-order frequency response function measurement based on the Wiener
theory of nonlinear systems [7]. As will be shown in the next chapter, higher-order FRFs
can be used in some cases to identify the type of structural nonlinearity and, together with
the measured first-order FRFs, to predict the response due to certain inputs more
accurately than those obtained using the measured first-order FRFs alone.

In the case where accurate quantification of structural nonlinearity is required, e.g. how
the modal and/or spatial model of a nonlinear structure will change for different vibration

response levels, sinusoidal excitation is generally regarded as the best choice because of
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its flexibility of input force level control. There are two different types of controlled
sinusoidal measurement technique commonly used for testing a nonlinear structure,
referred as the 'constant response’ and 'constant force” measurement procedures. In
constant response measurements, the response amplitude of test nonlinear structure at a
certain point is kept constant at different excitation frequencies by adjusting the input
force levels and, as a result, the measured first-order FRFs are linear. However,
corresponding to different response levels, the measured first-order FRFs are different
and by analysing them using linear modal analysis methods, a relationship between modal
model and response levels can be established. The problem here is that the measurement
is extremely time-consuming and therefore expensive. Furthermore, the measured range
of response amplitude, which is important in nonlinearity analysis, could be limited
because of the dramatic changes of receptance amplitude around resonances, especially
when the structure is very lightly damped. In the case of constant force measurements,
the amplitude of the input force is constant at each of the different excitation frequencies.
Due to the varying receptance amplitudes, the response amplitudes are different at
different measurement frequencies and, therefore, the measured first-order FRFs are
nonlinear and contain information of a senes of linearised FRFs measured at constant
response amplitudes. Such nonlinear first-order FRFs are used from time to time in
nonlinearity investigations and it will be shown in this chapter that they can be analysed
based on the nonlinear modal analysis method developed to establish the relationship
between the modal model and response levels of a nonlinear structure.

In practical measurements, because of the existence of different types of nonlinearity, care
must be taken in determining the necessary excitation range so that the nonlinearity(ies)
can be exposed to a satisfactory extent. In general, nonlinearities can be categorised into
four different types. For the majority of nonlinearities commonly encountered in practice,
either stiffness nonlinearities or damping nonlinearities, increasing the excitation force
level will be similar to increasing the degree of nonlinearity. Examples of such
nonlinearities are cubic stiffness and quadratic damping. For some nonlinearities such as
backlash, the structure will remain linear until its response exceeds a certain limit. For
frictional damping, on the other hand, increasing the excitation level will decrease the
degree of nonlinearity and for some nonsymmetric nonlinearities such as bilinear and
quadratic stiffness, the nonlinearity will have no effect on the measured first-order FRFs
and in order to identify such special types of nonlinearity, the introduction of higher-order
FRFs becomes necessary.

Following these observations, it is clearly important to choose properly the response
range and thus the excitation range required so that the nonlinearity can be exposed and

%586 Aff_end{x _m fO)’ more O(Qtai/(.f



Identification of Nonlinearity Using First-order FRFs 22

then identified satisfactorily. For most nonlinear structures in practice, relatively high

excitation levels are recommended. For some others, such as structures with frictional

damping, the situation can be the other way round and in order to identify such
nonlinearities, the excitation levels should be set as low as possible. Lastly, for structures
whose nonlinearities have no effect on the measured first-order FRFs, the measurement
of higher-order FRFs is recommended.

2.3 RECENT DEVELOPMENTS ON THE IDENTIFICATION OF
NONLINEARITY BASED ON THE FIRST-ORDER
FREQUENCY RESPONSE FUNCTIONS

Once a structure is suspected of being nonlinear and its first-order FRFs are measured as
discussed above, it becomes necessary to take nonlinearity into account in the subsequent
modal analysis of the data. In practical nonlinearity analysis, in order to understand the
nature and extent of nonlinearity, three requirements must be achieved by appropriate
application of modal analysis methods. First, the existence of nonlinearity needs to be
detected. Second, the extent of the nonlinearity needs to be quantified. Finally, physical
characteristics of nonlinearity need to be established.

It is believed that the first requirement (detection) is comparatively easy to achieve. In
fact, simply by comparing the difference between measured frequency response functions
at different excitation levels, the existence of nonlinearity can be discovered. The
~ quantification of nonlinearity, that is the establishment of the relationship between modal
parameters and response levels based on the measured first-order FRFs, is the main topic
of this chapter and will be discussed in detail. The last objective and the most difficult
task in nonlinear modal analysis is the identification of physical characteristics of
nonlinearity - the relationship between the structural spatial properties (such as stiffness)
and response amplitudes. As will be shown in chapter 6, the establishment of such a
nonlinear spatial model can only be achieved based on the correlation between the
analytical model and vibration test data. |

In efforts to achieve these various objectives of nonlinearity analysis, a large number of
papers have been published in recent years. Methods which are commonly used in
practical nonlinear modal analysis are to be reviewed and their advantages and
disadvantages will be discussed.
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2.3.1 DETECTION OF NONLINEARITY BY DIRECTLY
USING FRF DATA

As far as nonlinearity detection is concerned, many techniques are available. The simplest
methods are those which are based on the use of raw measured frequency response data
without any post-measurement data processing. Detection techniques of this type are the
Bode plot [1] and the reciprocal receptance plot [2] methods.

The basis of using Bode and or reciprocal receptance plot methods to detect nonlinearity
is that, due to the existence of nonlinearity, the measured first-order FRFs will be
distorted systematically from the corresponding linear frequency response functions.
Since linear FRFs are very well recognised, the existence of nonlinearity can be revealed
by examining the abnormal behaviour of the measured first-order FRFs.

To illustrate use of the Bode plot to detect nonlinearity, frequency response functions
measured from a practical Beam/Absorber nonlinear structure are used. As shown in
Fig.2.1, when the excitation force level increases, the distortion in the measured FRF
data also increases and the apparent resonance frequency (the frequency of maximum
FRF value) drops. The existence of softening stiffness nonlinearity of the structure is
clearly demonstrated. '
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Fig. 2.1 - FRF Data Measured from Practical Beam-absorber Structure

As an alternative but more versatile technique, FRF data can be displayed in their
reciprocal form to detect the existence of nonlinearity. The advantage of displaying data in
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this format is that, in the case when the modal constant of the mode to be analysed is
effectively real, this technique can not only detect the existence of nonlinearity, but can
also give an indication as to whether the nonlinearity exists in the stiffness or damping.
Suppose the residual contribution of other modes has been subtracted or can be neglected,
the receptance data around rth mode of the structure can be expressed as :

Ak

0,2 - 0?2 +in; 0.2

(@) = 2-1)

Rewriting equation (2-1) in its reciprocal form and assume modal constant Ay to be real:

1 (,)r2 - 0)2 i nr (or2

= +
oL (@) Ak Ak

= R(w) +1 I(w) 2-2)

From equation (2-2), it can be seen that if FRF data are expressed in their reciprocal
form, @, (related to stiffness nonlinearity) and n, (related to damping nonlinearity) can be

identified separately from the real and imaginary parts of the reciprocal FRF.

When FRF data are obtained for linear structures, the relationships of R(w) vs ®2 and
I(w) vs @? are straight lines for the case of hysteretic damping as shown in Fig.2.2. Any
distortion from a straight line gives indication of the existence of nonlinearity. When FRF
data from nonlinear structures are to be analysed, the effect of a stiffness nonlinearity will
show up in the real part of the reciprocal of receptance data while the effect of a damping
nonlinearity will appear only in the imaginary part of the data. To illustrate this point,
FRF data with stiffness and damping nonlinearity measured from simulated analogue
circuits are analysed and the real part (R(w) vs @?) and imaginary part (I(w) vs @?) of the
reciprocal FRF are shown in Figs.2.3 & 2.4. In the case of stiffness nonlinearity,
distortion of the reciprocal FRF data only appears in the real part, as shown in Fig.2.3.
On the other hand, as shown in Fig.2.4, when damping nonlinearity is considered, its
effect is clearly observed to be confined to the imaginary part of the reciprocal FRF data.
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Fig.2.2 - Real and Imaginary Parts of Linear Reciprocal FRF Data
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Fig.2.3 - Real and Imaginary Parts of Reciprocal FRF Data with Stiffness Nonlinearity
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Fig.2.4 - Real and Imaginary Parts of Reciprocal FRF Data with Damping Nonlinearity




Identification of Nonlinearity Using First-order FRFs 26

So far, it has been demonstrated that both Bode and reciprocal receptance plots can be
used to detect the existence of nonlinearity, and that the latter technique can tell whether
the nonlinearity is of stiffness or damping type in the case where the measured modes are
effectively real. However, these methods can only be used to provide rough and basic
demonstration of the existence of nonlinearity. It is not possible to quantify the extent of
the nonlinearity based on these methods. In what follows, an alternative method of
nonlinearity detection - the isometric damping plot technique - will also be discussed.

2.3.2 ISOMETRIC DAMPING PLOT TECHNIQUE

It has been established [1] that structural nonlinearity can be detected by inspection of the
isometric damping plots which can be calculated from measured FRF data. The argument
which supports this technique is generally believed to be that structural nonlinearity
(usually stiffness nonlinearity) distorts the spacing of frequency response data around the
Nyquist 'circle' from their positions when no nonlinearity exists. Since the distortion
caused by nonlinearity is systematic, the consequent distortion of the damping estimate
plot using different pairs of points around the Nyquist circle will display a specific pattern
depending on the type of nonlinearity. These patterns in the damping plot can then be
recognised and compared to detect and possibly to identify the nonlinearity. The
mathematical basis of this technique will be discussed next with the new explanation for
the reason why damping estimates vary when different pairs of frequency points are
used.

Again, suppose that the residual effect of other modes can be neglected and that the modal
constant is effectively real for the mode to be analysed, then the receptance ot () around
rth mode can be expressed as that of equation (2-1). When ajk(co) is plotted in the
Nyquist plane, a circle as shown in Fig.2.5 can be obtained. If the data are measured on a
linear structure, then the damping loss factor of rth mode m, can be calculated as follows:
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Fig.2.5 - Nyquist Circle of Receptance Data
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Adding equations (2-3) and (2-4), the damping loss factor 1, is given by:
®.2 - .2
N, = a b (2_5)

0 0
02 (1g R +1tg 5 )

When different combinations of points (t,,0,) are used, a flat plane which is the surface
plot of the estimated damping ratio 1 (w,,®,) against its two variables @y, and w,, can be
obtained in the case of linear FRF data.

On the other hand, if the measured FRF data are from a nonlinear structure, distortion of
the isometric damping plot (no longer a flat plane) calculated based on equation (2-5) will,
in general, be expected as shown in Fig.2.6 for the data measured from a Beam/Absorber
structure shown in figure 2.1.
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Above Res

Fig.2.6 - Isometric Damping Plot for Data Measured from Beam-absorber Structure

The reason why this distortion occurs is discussed below. Suppose the FRF data are
measured from a system with stiffness nonlinearity, then the natural frequency @, of rth
mode which is sensitive to nonlinearity becomes a function of response amplitudes
©,=0,(R) (where { is the response amplitude of certain coordinate) and since different
frequency points have different response amplitudes for data measured with constant
force, the effective natural frequencies at different data points are therefore, different.
With this in mind, equation (2-3) and (2-4) become:

& _ BO _ Re(o@)l _ 0 Rp) - ©p2 2-6)
2 AC lIm(ajk((Db))l N, o)r2(9b) i
. 200 Yy 2
g % _ DE _ Re(o(@))l _ @ °R,) - 0, 2-7)

AD ™ (o)) My o(R)
The exact damping loss factor 1, can be calculated as:

n, = (032 - (l)b2 + mrz(ﬁb) - mrz(Qa) (2-8)

0 0
02Rp) tg 5 + 0 (%,) tg

In the case when damping is linear, the calculated damping loss factors based on equation
(2-8) will be constant and therefore, it is not difficult to see that the distortion of the
isometric damping plot obtained based on equation (2-5) is determined by the the
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difference between the estimates of equation (2-5) and (2-8) which, to the first-order
approximation, becomes:
2 .2
AN, = = (gb) 0 (%) - 2-9)
02®y) tg 7+ 0, (R) tg 5

From equation (2-9), it can be seen clearly that in the case of stiffness nonlinearity, the
distortion of the damping plot calculated based on equation (2-5) is caused by the
different response amplitudes and therefore different natural frequencies of various
frequency points chosen.

The isometric damping plot technique, as has been demonstrated, can be used to detect
the existence of nonlinearity. However, as in the case of nonlinearity detection based on
Bode and Nyquist plot techniques, anything beyond detection in the identification of
nonlinearity will be truly difficult because the method is of a qualitative nature rather than
quantitative, although it has been suggested that, by comparing the different distortion
patterns of damping plot of commonly encountered nonlinearities, the identification of the
type of nonlinearity may become possible. With a more ambitious objective of
quantifying nonlinearity, the Inverse Receptance method was developed [5]. The method
will be presented next and its limitations when applied to FRF data measured from
practical nonlinear structures will be discussed.

2.3.3 INVERSE RECEPTANCE METHOD

As discussed before, nonlinearities in FRF data will cause distortion of a plot of the
inverse receptance data and such characteristics as plot distortion have been employed for
the detection of the existence of nonlinearity. These inverse receptance data can be further
employed for the purpose of quantifying nonlinearity. In this section, the Inverse
Receptance method [5] is introduced. The limitations of the method for the analysis of
practical nonlinear structures will be discussed and further possible improvements will be
pointed out.

For a nonlinear SDOF system, the natural frequency ®,(R) and damping loss factor n(R)
are, in general, response amplitude & dependent. With this in mind, the reciprocal of the
receptance can be expressed as:
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(2-10)

where A is the modal constant which is assumed to be real. Separate equation (2-10) into
its real and imaginary parts, so that

2 _m2
Re(1/o(®)) = %—m (2-11)
2
Im(1/o()) = T‘—(Q)—in—(—ﬁ) 2-12)

Suppose that the input force signal F(w) is also recorded during the measurement, so that
the response amplitude at each frequency can be easily calculated as:

1R(w)! = [F(w)! lou(w)! (2-13)

It becomes clear that if the modal constant A can be estimated by some means, then the
relationships of @, (R) vs & and N(R) vs % can be calculated based on equations (2-11)

and (2-12) as:

®,2(®) = w2 *+ A Re(1/a(w)) (2-14)
Im(1/o(w))

Q) = A ———22 2-15

nX) 0 2®) (2-15)

where % is the response amplitude at frequency , and can be calculated from equation (2-
13). The calculation of the modal constant A in this Inverse Receptance method is based
on a trial-and-error approach and the criterion for the correct estimation of A is based on
the fact in which satisfactory results have been obtained.

Based on this method, FRF data measured from analogue computer circuit with cubic
hardening stiffness nonlinearity have been analysed and the results are shown in Fig.2.7.
The effect of a hardening stiffness nonlinearity is clearly demonstrated.
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Fig.2.7 - Analysis of Stiffness Nonlinearity Using Inverse Receptance Method

However, an assumption that the modal constant of the mode to be analysed should be
real and constant was made during the development of the Inverse Receptance method.
The validity of this assumption when analysing FRF data measured from practical
nonlinear structures will be discussed later on but, the influence of mode complexity on
the estimation of @, (R) and 1(R) based on this method will be discussed here. Suppose
the modal constant is complex and can be expressed as A(cosB+isin6), then equations (2-
14) and (2-15) becomes:

(Dnz(ﬁ) = 2 *+ (Re(1/0(w))A cosd + Im(1/c(w))A sinb) / cos26 (2-16)

Im(1/a())A - (0,2(R) - ©2)sind®
©,%(R) cos®

nR®) = (2-17)

Comparing equations (2-16) and (2-17) with those of (2-14) and (2-15), and bearing in
mind that modal parameter changes due to nonlinearity are usually of second order, a
small degree of complexity could seriously impair the results obtained based on the
Inverse Receptance method just outlined. To illustrate this point, the same FRF data as
those shown in Fig.2.7, but with 10° modal constant complexity artificially added are
analysed using the method and the results are shown in Fig.2.8. In this case, not only is
the damping value seriously in error (it should be constant for data points on either side of
the resonance since the damping is linear), the calculated natural frequencies are incorrect
as well (compare with figure 2.7). This demonstrates the limitation of the Inverse
Receptance method and recommends the necessity of further development so that
nonlinearity can be analysed accurately when measured modes become complex.
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Fig.2.8 - Analysis Results of Complex Mode Using Inverse Receptance Method

2.3.4 COMMENTS ON CURRENT NONLINEAR MODAL
ANALYSIS METHODS

So far, some of the currently available nonlinear modal analysis methods (based on the
extension of linear modal analysis) have been reviewed. Based on the systematically
abnormal behaviour of measured nonlinear FRF data, qualitative methods as discussed
above can be used to detect the existence of nonlinearity. By comparing FRF data
measured at different input force levels, the overlaid Bode plots can be used to check
whether or not the measured data display nonlinearity. On the other hand, when FRF data
are presented in their reciprocal form, the effect of stiffness and damping nonlinearities
can be separated into the real and imaginary parts of the data and, by examining the plots
of both parts, the type of existing nonlinearity (stiffness or damping) can be revealed.
Also, the isometric damping plot technique can be used to detect the existence of
nonlinearity by investigating the variation of damping ratios calculated using different
pairs of frequency points on the Nyquist circle. The reason for this damping variation in
the case of stiffness nonlinearity, as demonstrated, is due to the different response
amplitudes, and so different effective natural frequencies, of different receptance data
points.

With these methods available, the task of detecting the existence of nonlinearity can be
accomplished reasonably successfully if the structural nonlinearity has some contribution
to the measured first-order FRFs. However, since all these methods are qualitative in
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nature, it is difficult for them to establish the extent of nonlinearity which a structure
possesses.

The Inverse Receptance method seeks to quantify nonlinearity by establishing the
relationship between modal parameters and response amplitudes: co,(ﬁ) vs (%) and nr(ﬁ)
vs (R). The method was developed based on an assumption that the modal constant of the
mode to be analysed is real and constant. Although valid for FRF data measured from
nonlinear SDOF systems, for those measured on practical nonlinear structures, this
assumption is, in general, no longer valid for following reasons:

(i) measured data may contain mode complexity;
(ii) the modal constant of a mode is, in theory, a function of response amplitude.

The effect of mode complexity on the analysis results based on Inverse Receptance
method has been demonstrated and detailed discussions on the existence of genuine
complex modes will be presented later on. Here, only the second point (the modal
constant of a nonlinear system is a function of response amplitude) will be illustrated
based on a 2DOF system with cubic stiffness nonlinearity as shown in Fig.2.9.
Assuming K, is nonlinear and can be expressed as K;=400000(1+B8%)N/m (where { is
the vibration amplitude of mass m; when it vibrates sinusoidally) and solving the
eigenvalue problem of this system, for the first mode, the natural frequency ®,(R) and
modal constant A;(R) of o;(®) can be expressed as:

Ky Kz K3
L...» L—»
X1 X2

K, = K3 =400000N/m M,;= M, =1.0000 kg
K,= 400000 (1 + B4?)
Fig.2.9 - A 2DOF Nonlinear System

4+B8R%- 4+p2p?
2

02R) = x 400000 (2-18)
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From equations (2-18) and (2-19), it is clear that if cubic stiffness is introduced as shown
in figure 2.9, both natural frequency and modal constant of mode 1 are functions of
response amplitude. The relationships (&) vs £ and A;;(R) vs % are illustrated in
Fig.2.10 with B=1.0 and nondimensionalised response & = 0. - 1.0.
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Fig. 2.10 - Natural Frequencies and Modal Constants of a Nonlinear System

As far as the quantification of nonlinearity is concerned, since FRF data measured from
practical nonlinear structures usually contain mode complexity and the modal constant of
the mode to be analysed cannot be assumed to be constant, the analysis results obtained
based on the Inverse Receptance method can be erroneous and sometime misleading.
Therefore, it becomes necessary to develop more realistic techniques so that the
complexity of the mode and the variation of modal constant can be taken into account and
more accurate modal parameters of nonlinear structures can be obtained.

2.4 COMPLEXITY OF VIBRATION MODES

2.4.1 THEORETICAL BASIS

There exist two different types of mode known as real modes and complex modes in
structural vibration analysis. In real mode vibration, individual elements of a system
move exactly in or out of phase with each other while in the case of complex modes,
individual elements vibrate with different phase angles (relative to each other). The reason
for the existence of complex modes is known to be a nonproportional distribution of the
structure's damping. However, the degree of complexity of modes when the damping is
nonproportional is largely determined by the closeness of the natural frequencies of the
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system. In what follows, the necessary and sufficient conditions for the existence of
complex modes, the influence of mode spacing on the complexity of a mode and the
relationship between viscous and hysteretic damping models from mode complexity point
of view, will be discussed.

It is well known that an undamped linear dynamic system described by
M1 (%} +[K] (x) = (0} (2-20)

possesses real modes when [M] is nonsingular and (IM]"Y[K]) has a full set of
eigenvectors, [31]. Such real modes can be used to find the principal coordinates in
which the equations of motion of the system are decoupled. Suppose [¢] is the mass
normalised modeshape matrix and let {x}=[¢]{p}, then equation (2-20) becomes:

[M] [¢] {p} + [K] [¢] {p} = {0} (2-21)

Pre-multiply equation (2-21) by [¢]" and since [¢] [M][¢]=[1] and [¢]7[K][¢]=["A.], then

equation (2-21) can be decoupled in terms of principal coordinates {p} as:

{p} + ['A]{p} = {0) (2-22)

In the presence of damping (assuming viscous damping for the convenience of analysis),
equation (2-20) is modified to become

M] (x} + [C] (x} + [K] {x} = {0} (2-23)

In this case, the criterion for the existence of real modes of the damped system is that the
real modes of the corresponding conservative system (without damping) can be used to
decouple the equations of motion of the damped system. For damped systems, in general,
the decoupling property is violated and the modes become complex. However, certain
conditions on the form of the damping matrix have been found under which a damped
system can still possess real modes. Such damping condition have been discussed in
detail by Caughey [32-33] who pointed out that the sufficient condition for the existence
of real modes in a damped system is that the damping matrix of the system can be
expressed as:
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N
[C]= Y B, [M] (IM][K])*! (2-24)
s=1

where N is the dimension of the system. In the case when B;=B,=1 and B,=0 (s=3,N),
equation (2-24) becomes the familiar Rayleigh damping which is

[Cl= By M] + B,[K] 2-25)

To prove the sufficiency of equation (2-24), pre-multiply both sides of equation (2-24) by
[6]T and post-multiply by [¢), then

N
(61T [C1 0] = ;Bs (AP = (Rl (2-26)

From equation (2-26), since the damping matrix is diagonalised by the real modes of the
corresponding conservative system, these real modes are also the real modes of the
damped system. On the other hand, if the corresponding conservative system has no

repeated eigenvalues, then condition described in equation (2-24) is also the necessary
N

condition. To illustrate this point, rewrite 2 B[ 'A.Js! = ['L.] into linear algebraic
s=1

equations in terms of unknowns {B} as:

(1A, . . AN (B ™
1 )Lz e e XZN.I BZ }lz

9 =37 (2-27)
L1 oan . . AN U B (i S

The coefficient matrix is a Vandermonde matrix [V] whose determinant is given as:

y ,
det(V) = J] (h;- 2 (2-28)

i>j21
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Therefore, if all eigenvalues are distinct, then [V]! exists and the unknown coefficients
{B} can be uniquely determined.

When the damping matrix of the system does not satisfy the condition set in equation (2-
24), then the damping matrix cannot be diagonalised using the real modes of the
corresponding conservative system and the modes of the damped system will in general
become complex. Since the extent of departure of a given damping matrix from that of
equation (2-24) (often referred as nonproportionality) determines how complex the modes
of the system will be, the quantification of such departure becomes necessary in order to
study complex modes. Some research work on the quantification of nonproportionality of
a given damping matrix and the complexity of modes has been reported and the
relationship between complexity of modes and nonproportionality of damping matrix has.
been investigated [34].

The degree of complexity of a certain mode depends on the closeness of the natural
frequencies of the system. In the case when all the modes of the system are well
separated, even though the damping matrix is nonproportional (localised damping for
example), the modes will not be substantially complex. Theoretically, considerably
complex modes can only occur when modes become close. This effect of mode spacing
on the complexity of modes is to be discussed below based on the perturbation theory.

In order to illustrate the effect of mode spacing on the complexity of modes, a hysteretic
damping model is assumed in the analysis although the relationship between the hysteretic
and viscous damping models will be discussed later. Also, assume that the structural
damping matrix [D] is of second order in its Euclidean norm sense when compared with
the system's stiffness matrix [K], then to first order approximation, the r'h modeshape of
the damped system {¢}, can be expressed in terms of the modal parameters of the

corresponding conservative system and damping matrix [D] as:

D
(0] z (0)T [ ] (0], (o). (2-29)

In the case when the r' mode is well isolated, then {¢}T[D] {0}, (which is a scalar), will

be of second order compared with (A,-A,) and, therefore, {@}, will be effectively real.

However, if there are close modes, say mode r and mode (r+1), then when s=(r+1),
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{(¢)}T[D){9),,, will no longer be of second order of (A,-A,,;) and {@}, will become

considerably complex.

In the above discussion, both viscous and hysteretic damping models have been used.
The relationship between these two damping models and the complexity of modes need to
be discussed.

In the case of viscous damping, the eigenvalue problem of the system becomes quadratic
as:

(IM] 52+ [C] s + [K]) {x} = (0} (2-30)
While the standard eigenvalue problem is in the form of
([A] 2 +[B]) {z} ={0} | (2-31)

where [A] and [B] can be complex matrices in general. In order to solve the quadratic
eigenvalue problem given in equation (2-30), some mathematical transformations are
required, namely:

[C) [M] K] (0] x
[A] =LM] [01]’ (] =[[0] -[M]]’ ()= {x} and A=s

By solving equation (2-31), the eigenvalues and the so-called 'A-normalised’
eigenvectors (normalised to the system's generalised mass matrix [A]) of the system can
be obtained.

In the case of hysteretic damping, the eigenvalue problem becomes:
((M] A+ [K] +i [D]) {x} = {0} (2-32)

Compared with equation (2-31), the solution to equation (2-32) is standard and since
[A]=[M] and [B]=([K] + i[D]) in this case, the eigenvectors for the hysteretic damping

case are therefore mass-normalised (normalised to the mass matrix [M] of the system).

Because of the different normalisation procedures used when the different damping
models are considered, the corresponding eigenvectors are apparently quite different,
even for the case of proportionally damped systems although, in fact, they differ only by
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a complex scaling factor. These differences in amplitude as well as phase angles of the
corresponding eigenvectors often cause confusion to analysts and it is therefore necessary
to establish the relationship between the 'A-normalised’ and the mass-normalised
eigenvectors. In the case of proportional damping, the corresponding rth mode
eigenvectors of hysteretically- (normalised to [M]) and viscously-damped (normalised to
[A]) systems can be expressed, in theory, as {y}, =% {¢}, (where X, is a complex
scaling factor). Substitute {\y},=x,{¢}, into the 'A-normalisation’ condition for the rth
mode together with {¢}T[M]{0},=1 and {¢}T[C]{0},=20.C,,

(), Tric mj (v,
{ ] =1 (2-33)
ioV1-62 (v}, Lo ro1d lieV1-¢2 (w),

X can be calculated as:

+i

~Ta

€
Xe=
\/20):(\1 1-62-¢)

From equation (2-34), it can be seen that in the case of proportional damping, the rh 'A-
normalised’ modeshape for the case of viscous damping, {y},, is the corresponding

(2-34)

mass-normalised modeshape {6}, for the case of hysteretic damping scaled by a factor of

\/2&),(\] 1-{,%2 - {,) and a phase rotation of 741 For the case of nonproportional

damping, the relationship between these two damping models has been investigated in
[35].

2.4.2 NUMERICAL EXAMPLE OF COMPLEX MODES

As discussed above, when the damping distribution of the structure is nonproportional,
complex modes exist. However, the degree of complexity of a mode is mainly dependent
on the closeness of the structure's natural frequencies. In order to illustrate these points, a

numerical case study was carried out.

The system used in the numerical study is the 4DOF mass-spring system shown in
Fig.2.11. The mass matrix [M], stiffness matrix [K] and hysteretic damping matrix [D]
of the system are:
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Ki3
——MM——
Kr+iH, K, K K4 Ks
AR AANA = A
X X2 X3 T X4
—AMWA———

Fig. 2.11 - A 4DOF Mass-spring System

0.800 0.000 0.000 0.000
0.000 1.005 0.000 0.000
0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.800

M] = Kg),

~ 3.00 -1.00 -1.00 0.00
-1.00 3.25 -1.25 -1.00
-1.00 -1.25 3.25 -1.00
L 0.00 -1.00 -1.00 3.00

K] = (x103 N/m)

~ 0.10 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
L 0.00 0.00 0.00 0.00

[D] = (x103 N/m).

The calculated eigenvalue matrix [‘A.] and eigenvector matrix [¢] are:

1066.2(1.0+i0.03) 0.0000 0.0000 0.0000
o 0.0000 3750.1(1.0+i0.00) 0.0000 0.0000
r1= 0.0000 0.0000 4517.3(1.0+i0.01) 0.0000

0.0000 0.0000 0.0000 4650.2(1.0+i0.026)
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0.495(-1.8°) 0.006(175°) 0.029(-37°) 0.144(224°)
0.676(0.5°) 0.640(0.0% 0.712(180% 0.742(2.0°)
0.387(-0.3°) 0.640(180°) 0.700(1.0°) 0.668(176°)
0.495(1.0°) 0.474(0.0°) 0.029(-46") 0.143(216")

(o] =

From the eigenvalue and eigenvector matrices, it can be seen that modes 1 and 2 are quite
well separated and, as a result, their modeshapes are effectively real. While for modes 4
and 3, since they are very close in natural frequency, their modeshapes become quite
complex when the damping is nonproportional, as it is in this case. Physically, complex
modes can be explained as a kind of travelling wave which transfers energy from one part
of the structure to another during vibration.

2.4.3 COMPLEX MODE FROM MEASUREMENTS

It is believed that for practical structures, most of the damping comes from joints [36].
Therefore, practical structures possess very nonproportional damping distribution and
genuine complex modes exist. To demonstrate this, modal testing of a simple
Beam/Absorber structure as shown in Fig.2.12 was carried out. The structure was found
to be slightly nonlinear, as will be discussed again later on in this Chapter. However,
during the test, the vibration amplitude of the structure was controlled to be constant at
different sinusoidal excitation frequencies and, as a result, the FRF measured is exactly
the FRF of a linear structure. One of the measured point FRFs (response and excitation at
the same point) was analysed and, as shown in Fig.2.13, a mode complexity of about 15°
is clearly demonstrated.

A A A A Wl A S WL WA WA N S ST S Y

Excitation force F=Asin 0t

Fig.2.12 - The Beam/Absorber Structure ™

* See Appendiz T fov more detoils
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Fig.2.13 - Measured Point FRF with Mode Complexity

2.5 A NEW METHOD FOR NONLINEAR MODAL ANALYSIS OF
COMPLEX MODES

So far, some of the most commonly-used nonlinear modal analysis methods have been
reviewed and their limitations when applied to practically-measured data have been
examined. In what follows, a new analysis method which avoids the aforementioned
limitations will be proposed. The harmonic balance theory, on which the present new
method is based, will be introduced together with its application conditions. In order to
extend the method to MDOF systems, the residual effect (of other modes) on the analysis
accuracy will be examined and the practical applicability of the method will be assessed
by analysing data measured on practical nonlinear structures. Finally, the possibility of
identifying physical characteristics of nonlinearity from analysed response amplitude-
dependent modal data based on the new method, when an MDOF system is considered,
will be discussed.

3.5.1 HARMONIC BALANCE THEORY

In the analysis of nonlinear systems, the harmonic balance method is frequently used
where sustained oscillations exist. The theoretical basis of the harmonic balance analysis
lies in the equivalent linearisation theory proposed by Krylov and Bogoliubov [28] for
solving certain problems of nonlinear mechanics. To explain the concept of the harmonic
balance method, an SDOF system with nonlinear restoring force F(x, x) driven by a
sinusoidal excitation is considered:

mx+ F(x, x) = F sinot (2-35)
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To solve the above problem by the harmonic balance approach, it is necessary to make a
basic assumption that the variable x=x(t), appearing in the nonlinear function F(x,x), is
sufficiently close to a sinusoidal oscillation; that is,

X = Asin(ot +9) (2-36)

where the amplitude A, frequency ® and phase lag ¢ are constant. Therefore, the
harmonic balance analysis belongs to those approximate methods of solving nonlinear
differential equations which are based upon an assumed solution. As such, it requires that
conditions for the assumed solution exist. Such an assumption is quite realistic since a
nonlinear system may well exhibit periodic oscillations arbitrarily close to a pure.
sinusoid. If the variable x in the nonlinear function F(x,x) has the sinusoidal form of (2-
36), then the variable y=F(x,x) is generally complex, but is also a periodic function of
time. As such, it can be developed in a Fourier series:

y = No(®,A) + N(®,A) Asin(ot +9) + i No(w,A) Asin(ot +0¢) + harmonics  (2-37)

When only the fundamental component is considered, the first three terms are

21
Nyg = L F(Asiny,wAcosy) dy (2-38)
2n 0
2n
N; = L f F(Asiny,wAcosy) sinydy (2-39)
A 0
21
N, = nLA f F(Asiny,wAcosy) cosydy (2—-40)
0

where Yy = ot + ¢. Coefficients Ny, N;, N, are often referred as describing function

coefficients.

If we consider the case where the nonlinear function F(x,x) is symmetrical about the
origin (although the analysis is equally applicable for the case of nonsymmetrical
nonlinearities), the constant term Ny in the Fourier series (2-37) is Ny = 0. The quantities
defined in (2-39) and (2-40) are the coefficients of the describing function N=N;+iN,.
To discuss the physical meaning of the describing function N defined above, suppose

F(x,x)=F(x) describes a backlash stiffness nonlinearity, as shown in Fig.2.14. Then, if
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the input x (the response of the system) is a sinusoid, x=&sinwt, the output y=F(x) will
not be a pure sinusoid (assuming that & is big enough to exceed the system's linear

regime). Expressing the output signal y in a Fourier series, the fundamental component
y; will be

, ka-ky2 ko-ky/2 ko

4

4 K

2 M Xo -
é kl Xp X
2 ky2 ki/2 k,

Fig.2.14 - Backlash Stiffness Nonlinearity

y; =9 sinot (2-41)

where 9, is the amplitude of the fundamental component which, according to the Fourier

series theory, can be calculated as:

21
N =11—t . F(&siny) sinydy (2-42)

According to equation (2-39), N; has the form

21
Ny==x | F(siny) sinydy (2-43)
X Jo

Therefore, the describing function N=N; is defined as the ratio between the amplitude &
of the input signal x and the amplitude 9, of the fundamental component y; contained in

the output; that is
Nl = %’ (2""44)

Compared with the definition of static stiffness, it can be seen that N; can be interpreted
as the equivalent 'dynamic stiffness’ of the nonlinear stiffness element corresponding to
vibration amplitude {. If the integral on the right hand side of equation (2-43) is
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calculated with the explicit F(x) as shown in figure 2.14, we obtain the describing
function coefficient N;=N,(R) for the backlash stiffness case as:

2
Ny=k; - -275 (k, - kz)[arcsin(%) + 3‘§9 A ’ 1- %’i— 1:% 2 x, (2-45)

When the vibration amplitude & is given, the describing function coefficient N;(R) can be
determined. In the case of nonlinear SDOF systems, since the mass property is usually
linear, the vibration-amplitude dependent natural frequency w,(8) can be calculated from

the describing function coefficient N; (%) as w,(R)= E-ln(li), as shown in Fig.2.15 for

the above-mentioned system with backlash stiffness nonlinearity (k;=5000N/m,
k,=10000N/m, m=lkg and x¢=0.001m). In fact, the describing function
N(®)=N;(R)+iN(8) and the identified natural frequency w,(®) and damping coefficient
NnR) satisfy:

N;(®) = 028 m (2-46)
No(®) = 0,2NQ) m (2-47)

where m is the mass of the system which can be calculated from the identified modal
constant A as m=1/A.

TIvRLENT STIPFNESY (N/N)
WATURRL, FREOUENCY (MDD
3 = B T =

T 7 1 ‘ ‘ T [] [ ] T ‘
RLEPORST ANPLITIDE (X/X0) RESPONSI APLITUDE (2/X0}

Fig.2.15 - Equivalent Stiffness and Natural Frequency of an SDOF Backlash System

To see how this harmonic balance theory can be applied to the measurement and analysis
of nonlinear structures, the system shown in Fig.2.16 will be considered. When the
system is excited by a sinusoidal force f(t)=Fsinwt, then after the transient dies away, the
response of the system at any coordinate will be very close in its waveform to a sinusoid,
as will be shown to be especially true when the excitation frequency is close to one of the
resonance frequencies of the system. Therefore, corresponding to this specified excitation
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condition, the equivalent stiffness which the nonlinear stiffness element exhibits can be
calculated based on the harmonic balance theory. If, for example, the force amplitude F is
kept constant as the excitation frequency varies, then corresponding to different
frequencies, the vibration amplitude, and therefore the equivalent stiffness value of the
nonlinear stiffness element, is different. The information on these different stiffness
values is recorded in the measured first-order FRF data and by analysing these measured
FRF data, the nonlinearity can be identified.

f(t) = Fsingt Xy X1 Xn

M| e AN M M| e AMAM

-
u

- - .
=X, "X, 0= U sin(t +f)

Fig.2.16 - A Nonlinear MDOF system

It should be noted that such a result is achieved only under the condition that it is not
necessary to include the harmonics and combinational resonances in the response signal.
For this condition to be valid, certain criteria should be satisfied by the linear part of a
nonlinear system as well as the nature of the nonlinearity. These conditions are
summarised here without mathematical proof, which can be found in [27]:

(i) the system to be analysed should have a narrow-band filter property so that the sub-
and super-harmonic components will be heavily attenuated;

(ii) ko (ks an integer and o is the excitation frequency) should not coincide with any of
the natural frequencies of the system; and

(iii) the nonlinear function F(x,x) should have finite partial derivatives with respect to x

and x.

Condition (i) can usually be satisfied because in the analysis of structural nonlinear
systems, only the data points around the resonances are of interest and, therefore, the
system acts as a very good narrow-band filter. As for condition (iii), most practically
encountered nonlinearities, even for nonlinearities having relay (discontinuous)
characteristics, have finite partial derivatives. However, condition (ii) is sometimes
difficult to achieve because it depends on how the natural frequencies of the system are
situated along the frequency axis and is thus the major source of analysis errors.
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2.5.2 DESCRIPTION OF A NEW METHOD

Most practical nonlinearities (in both stiffness and damping elements) are response
amplitude dependent and so if, in measurement, the response amplitudes at different
frequencies are varied, then the effect of nonlinearities on the measured FRF data will be
recorded. The main target of nonlinear modal analysis is to identify the nature of any
nonlinearity by analysing thus-measured FRF data. As discussed, many different
methods have been developed for detecting the existence of structural nonlinearities.
Taking stiffness nonlinearity as an example, the nonlinearity can be exposed by observing
the FRF data measured using different force or response control techniques, or by
analysing the FRF data and examining the isometric damping plot, or by comparing the
measured FRF data with their Hilbert transform pair [4], etc. With the more demanding
objective of quantifying structural nonlinearity, the Inverse Receptance method was
developed. However, the method was devised based on the assumption that the mode to
be analysed should be real and the modal constant should be real and constant. As
demonstrated, these assumptions are not usually valid when practical measured data are
concerned. In order to remove these restrictions so that nonlinearities of practical
structures can be analysed accurately, a new nonlinear modal analysis is introduced
below.

According to harmonic balance theory, in the case of sinusoidal excitation, when a
nonlinear structure vibrates at specific amplitude, there will be specific equivalent
(linearised) stiffness and damping model as far as the first-order FRF is concerned.
Therefore, measured FRF data generally contain information on a series of linear models.
What the new method seeks to do is to calculate the modal parameters of these linear
models together their corresponding response amplitudes so that the relationship between
modal parameters and response amplitude can be established. Owing to the nature of
resonance, it is always possible to find two frequency points in the measured FRF data -
one on either side of the resonance - which have the same (or very similar) response
amplitude. These two data points constitute a specific linear model corresponding to that
specific response amplitude in the sense that all the modal parameters necessary to
determine that linear(ised) model can be calculated just using these two receptance data
points. The thus determined modal parameters are associated with that specific response
level. Therefore, if there are many point pairs of different response amplitudes available
around that resonance, a relationship between modal parameters of the mode and
response amplitudes can be established.
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Suppose o(w,;) and c(m,) are known to correspond to a certain specific response level,

one on either side of the resonance, then the following two mathematical equations can be
established (assume the residual effect is negligible or has been removed at the moment
and its influence on analysis accuracy will be discussed later)

A, +iB,
mrz - (’)12 + iT]r(‘)r2

o(wy) = (2-48)

A, +iB,
(orz - (!)22 + iTlr("‘)r2

o(w,) = (2-49)

Because equations (2-48) and (2-49) are complex algebraic equations, the four modal
parameters @, 1M,, A, and B, can be determined. These parameters represent the linear
model which corresponds to the chosen response amplitude. By examining different point
pairs similar to o(®;) and a(w,), the characteristics @), N,(R), A(R) and B,(R) of the

original nonlinear structure against vibration amplitude & can be revealed.

2.5.3 APPLICATION OF THE NEW METHOD TO THE ANALYSIS OF
NONLINEAR SYSTEMS SIMULATED
USING ANALOGUE CIRCUITS

The above method has been applied to several systems with various types of nonlinear
stiffness or damping in order to assess fully the feasibility of the method. As an
alternative means of solving nonlinear differential equations numerically, analogue
circuits have been constructed to simulate nonlinear SDOF systems. Analogue computer
FRF data with cubic stiffness and frictional damping as well as FRF data measured from
the ETH/CIRP box (an electrical analogue computer device built to simulate nonlinearity)
are employed and analysed.

For the case of a cubic stiffness nonlinearity, receptance FRF data with constant force
input together with the calculated isometric damping plot are shown in Fig.2.17. From
figure 2.17, the jump phenomenon which is typical of stiffness nonlinearity is clearly
demonstrated and the isometric damping plot shows a well-defined surface distortion
pattern. It can be seen that the nonlinearity is clearly indicated both from the receptance
data plot and the damping plot. In practice, however, what is required is the quantification
of the nonlinearity and not just its detection. By using this new method, the system's
properties in terms of modal parameters versus response amplitude have been obtained as
shown in Fig.2.18, from which it can be concluded that the damping is linear since the
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damping coefficient does not change with response amplitude, while the stiffness is
nonlinear and the degree of nonlinearity is quantified in the natural frequency versus
response amplitude plot.

1]
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Fig.2.17 - FRF and Damping Plot of Analogue Computer Data
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Damping Coefficients Natural Frequencies

o o

v -

& )

[ <

e o

S ~

S .

o n

®1.93E-84 6.5PE-B4 1.8SE-B4 6.58E-B4
Resp. Amplitude Resp. Amplitude

Modulus of Modal Const Phase Angle of Modal Const

: 2

3 | 8

“ 0

- +

[ )

8 ]

s g

©

1.88E-84 6.5BE-B4 1.89E-PB4 6.5BE-24

Resp. Amplitude Resp. Amplitude
Fig.2.18 - Modal Parameters versus Vibration Amplitude

When the method is applied to the study of damping nonlinearity, the results are as

encouraging as those for stiffness nonlinearity. As shown in Fig.2.19, the existence of .
dry friction damping can be suspected from the characteristic oval-shaped Nyquist plot

and the distorted damping plot. As in the stiffness nonlinearity case, frequency response

data measured from an analogue computer circuit with simulated frictional damping are

analysed using this new method and the results shown in Fig.2.20. The damping

coefficient decreases as response amplitude increases, which indicates damping of dry

friction nature.
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Fig.2.19 - Nyquist and Damping Plot of FRF Data with Frictional Damping
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Fig.20 - Modal Parameters versus Vibration Amplitude (Simulated Friction Damping)

The ETH/CIRP box contains three circuits of unknown nonlinear SDOF systems and its
purpose is to see whether these unknown nonlinear systems can be identified. The FRF
data measured from one of the systems and the calculated damping plot are shown in
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Fig.2.21. From these results, the existence of a stiffness nonlinearity is expected. By
analysing the FRF data using the new method, the curves of natural frequency and
damping coefficient vs response amplitude can be established as shown in Fig.2.22. As
compared with the numerical calculation results of figure 2.15, it can be concluded that
the system possesses backlash stiffness nonlinearity.
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Fig.2.21 - FRF and Damping Plot of ETH/CIRP Box Data
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Fig.2.22 - Identified Natural Frequency and Damping Loss Factor (CIRP box)

As mentioned before, the new method is intended for cases in which measured mode is
complex. The existence of mode complexity will not influence the analysis accuracy. To
demonstrate this, 45° of mode complexity is added artificially to the FRF data shown in
figure 2.17 and the data are analysed using the new method. The analysis results shown
in Fig.2.23 are the same as those of figure 2.18 except that the complexity of the mode is
45° instead of 0°.
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Fig.2.23 - Analysis Results of Data with Complexity

It also needs to be mentioned that although the phase angle of a mode is a measure of a
linear system's complexity, linear modal analysis of the data from a nonlinear system can
produce an erroneous phase angle which could be misinterpreted as complex mode. This
is illustrated in Fig.2.24 where the estimated phase angle using the classical circle-fit is
29° while the true phase angle is 0°.
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Fig.2.24 - Misestimation of Phase Angle Using Linear Modal Analysis Method

2.5.4 EXTENSION OF THE METHOD TO NONLINEAR
MDOF SYSTEMS

In order to assess the applicability of the above method to MDOF systems, constant force
FRFs of 2DOF systems with cubic stiffness nonlinearity have been analytically generated
with (a) only one mode (the second mode is made linear by controlling the input force to
be very low) and (b) both modes are nonlinear respectively. In this case, in order to
analyse the mode accurately, the residual must be subtracted. The removal of the residual
can be accomplished by the method called SIM [37] which analyses the neighbouring
modes first and then subtracts the influence of these analysed modes from the one to be
analysed. For the case of only one nonlinear mode, the residual can be removed almost
completely as shown in Fig.2.25 in which the Nyquist circle passes through the origin
(the Nyquist circle looks the same as those of SDOF systems). After the residual has been
removed, the mode can be analysed accurately and the analysis results are shown in
Fig.2.26. For the case of both modes being nonlinear, however, it becomes very difficult
to remove the residual completely as shown in Fig.2.27 for the case of the first mode (the
circle does not pass through the origin, the data points are not exactly on the circle and are
not symmetrical with the imaginary axis) and therefore, the analysis results obtained
could be in error. The main difficulty of removing the residual in this case lies in the
wrong estimation of the phase angle of the neighbouring mode obtained by the linear
modal analysis. This difficulty can be overcome in practical analysis by linearising the
neighbouring modes in the measurement (by controlling the response amplitude) so that
their modal parameters can be accurately estimated based on linear modal analysis
method(s) and the residual can therefore be correctly subtracted.
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Although some measurement and analysis techniques can be employed to remove the
residual effect, as mentioned above, when a structure is nonlinear, it is not possible for
the data to be analysed to become completely residual free because in this case the residual
is a function of response amplitude. Therefore, it is very important for a nonlinear modal
analysis method based on the SDOF assumption to obtain satisfactory results even when
a small amount of residual exists and it is necessary to undertake a residual analysis. For
convenience, an assumption is made that the residual for the mode to be analysed is a
complex constant (in fact, this is quite accurate for the case of separated modes). The

mathematical expressions of the modal parameters obtained based on the proposed
method are as follows:

022 -Ra2-Rp Ry@r?- Ryjwy2) + (I, - 1)) (o, - [;0,2)

2-5
1 (Ry-R)2+ (I,-1))? @-50)
Tlr= } (12 - I]) (Rz&)22 - Rl(l)lz) + (RZ - Rl) (120)22 - 110)12) (2_51)
0,2 [(Ry- Ry)2+ (I5- 1;)?]
_(@22- 0D[(R, - R)(RyR; - L)) + (I - INR,I, + Rylp)] )
Ar = (Ry- R)2+ (I - ;)2 (32)
p = (022- 0 )[Ry- RIR; - Roly) + G - DRRy - BIDT ) o3

! (Ry- Rp)2+ (I3 - 1))?

Where o, 7,, A, and B, are the natural frequency, damping coefficient, real and
imaginary parts of the modal constant respectively while ®;, ®,, R;, Ry, I; and I, are the
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frequencies, real parts of the receptances and imaginary parts of the receptances of the
two points at either side of the resonance chosen.

Because of the similarity of these equations, equation (2-50) can be regarded as their
representative for the residual analysis. For convenience, suppose that the receptances of
the two points chosen satisfy: R;=-R,=R>0, I;=I,=I<0 (this is the case for a real mode
with constant force input) and the complex constant for the residual is AR+Al Then the
percentage error for the estimation of ®,2 based on equation (2-50) is:

A(l)rz : (6022 - wlz)[AR(Rz - Ry) + AI(1, - 1))] (2-54)
o2 (Ry - RD(Rywy2 - Rjw2) + (I - I))(Tpw,2 - 11 0,2)
2 2 2
If we denote—@ﬂ—)— = (32, then A, becomes:
(0)22 - colZ) (Drz
2 R
é_o);_ =A_ (2_55)
o2 Rp?

From equation (2-55), it can be seen that the percentage error for the estimation of 2 is
proportional to the real residual ratio AR/R and the imaginary part of the residual has no
effect on the estimate. Although this is true only for the case of natural frequency
estimate, the percentage errors for estimation of the other parameters 1, A, and B, are
more or less at the same level of IAR/RI + IAI/Il. Also, from equation (2-55), it can be
seen that the accuracy of the estimation of 2 can be improved if the frequency difference
between the two selected points (Aw=w,-®;) is small so that [} becomes large. Therefore,
when the mode to be analysed is influenced by other modes, some measures can be taken
at both measurement and analysis stages in order to obtain satisfactory results. At the
measurement stage, (i) it is possible to linearise the neighbouring modes so that they can
be analysed accurately using linear modal analysis method(s) and (ii) the response levels
can be controlled so that it is possible to obtain enough points just around the resonance
and so the values of R, I and B can be increased (in fact, it is possible to quantify
structural nonlinearity by analysing FRF data measured at different response amplitudes
at only two frequency points around resonance). At the analysis stage, on the other hand,
the SIM methoa can be used to subtract the residual until it is at its minimum level. “

To see how residual effects influence the analysis results, analogue computer FRF data
representing dry friction damping nonlinearity and with a 1% artificially-added residual
(here 1% residual means that the complex constant of the residual is
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(ARHAT)=(A+iB,)(cos45°+isin45°)/100m,®,2 where (A +iB,) is the modal constant of
the mode to be analysed) were analysed using this proposed nonlinear modal analysis
method and the results are shown in Fig.2.28. As compared with figure 2.20, the
analysis results obtained are very similar indeed.
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Fig.2.28 - Analysis Results of Frictional Damping with 1% Residual

2.5.5 APPLICATION OF THE METHOD TO PRACTICAL
NONLINEAR STRUCTURES

The proposed new method has so far been successfully applied to the analysis of FRF
data measured from nonlinear analogue circuits and analytically-generated FRF data for
nonlinear MDOF systems. The assessment of residual effects on analysis accuracy has
also been carried out. The method is now applied to the analysis of practical nonlinear
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structures. First-order FRF data measured from three different practical structures
(Beam/Absorber, Frame and NASTRAN Tower structures) are to be analysed.

The Beam/Absorber structure as shown in Fig.2.12 was designed for the experimental
investigation of dynamic absorber systems. Some typical measured FRF data with
constant force input are illustrated in Fig.2.29. In addition to the shift of resonance

frequency which indicates the existence of a stiffness nonlinearity, the mode to be
analysed is markedly complex (about 15° phase rotation of the Nyquist circle). One of the
FRF curves shown in figure 2.29 was analysed using the proposed method and the
results are shown in Fig.2.30. From the natural frequency vs response amplitude curve,
it can be deduced that the structure probably possesses softening backlash stiffness
nonlinearity which is physically due to the fact that, when the response amplitude
increases, the supports at both ends of the beam (see fig.2.12) go from micro-slip
(stiffness K) to slip (stiffness K,, K;>K,) which reduces the system's stiffness and so

the natural frequencies.
2e
~
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®
-3
185.00 Frequency Hz. 189.82
Fig.2.29 - FRFs of Beam/Absorber Structure
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Fig.2.30 - Analysis Results of Beam/Absorber FRF Data

The Frame structure, as shown in figure 2.31, is an artificially-nonlinear structure which

was designed for the purpose of the nonlinearity. location study in Chapter 5. Typical

measured FRF data with constant force input are shown in Fig.2.32, and from these, it |
can be determined that the structure exhibits both stiffness and damping types of

nonlinearity. One of the FRF plots was analysed and the results are shown in Fig.2.33.
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Fig.2.31 - Artificially-Nonlinear Frame Structure
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A practical structure known as the "NASTRAN Tower" was also investigated. The
structure was known to possess certain type(s) of stiffness nonlinearity [38] although the
exact nature of the nonlinearity is still unknown. In the measurement, neither force nor
response control was used. The measured data and the analysis results are shown in
Fig.2.34 from which, it can be seen that the structure possesses a softening stiffness
nonlinearity, probably a softening type of backlash stiffness since the structure remains
linear within certain response range and then loses stiffness as response level increases.




Identification of Nonlinearity Using First-order FRFs 62

Natural Frequencies
@ s
~ ™~
2 ~
-] <
3
©
E S
-20 Data from DATAJIM (\3
4e.e0 Frequency Hz. 439.58 2
?.13E-27 1.85E-06
Resp. Ampl{tude
Fig. 2.34 - Analysis of Nonlinearity of NASTRAN Tower Structure

Although one can deduce the type of nonlinearity in some cases by examining the @,(8)
vs () and N, (R) vs (R) relationships, as will be discussed next, the exact identification of
the type of nonlinearity, will be difficult when most practical structures are considered.

2.5.6 IDENTIFICATION OF NONLINEAR PHYSICAL
CHARACTERISTICS

Structural nonlinearities can now be analysed using the proposed method and
relationships between modal parameters and response amplitudes can be established. The
quantification of nonlinearity in modal space has thus been accomplished. When
nonlinear SDOF systems are considered, according to harmonic balance theory, the
describing function coefficients (linearised equivalent stiffness or damping) can be.
directly calculated from the identified modal data. For example, a nonlinear SDOF
system's linearised equivalent stiffness (describing function coefficient) N;(®) can be
calculated from the identified ©,(R) as N;(8)=w,2(®)m (m is the mass of the system
which can be calculated from the identified modal constant). Although there exists another
step from N;(8) to the system's true stiffness K(x) (the physical characteristics of the
nonlinearity), by comparing with known types of nonlinearity, K(x) can be conclusively
identified in most cases from the calculated N, }).

For nonlinear MDOF systems, however, the identification of N;(R) and thus of K(x) is
not so straightforward. Considering an MDOF system with localised stiffness
nonlinearity as shown in Fig.2.16, and supposing the rth mode (which is sensitive to the
thus introduced localised nonlinearity) is analysed and the relationship between the natural
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frequency and response amplitude at certain reference coordinate is established, the
describing function coefficient N;(&) of the nonlinear stiffness element cannot be
calculated from these analysis results alone. Therefore, an identification of K(x) which is
based on N; (&) will not be possible. If, on the other hand, the analysed modal data are
interpreted as being from an SDOF system when identifying N, (), then misleading
results can be obtained because in this case the changes of measured modal parameters
depend not only on the stiffness (or damping) changes due to nonlinearity, but also on the
modification sensitivity where the nonlinear elements are located. Take the identified
natural frequency as an example. The natural frequency change of a certain mode can be

mathematically described by
omR)
= = Q 2-
AaR) Q) AN;(R) = SR) AN;(®) (2-56)

Since S(R) is unknown in the identification process and is a function of response
amplitude (R), except in the case of SDOF systems in which, S(R) is known to be the
identified modal constant 1/m, AN,(R) cannot be calculated from the identified Aw(R)

and, as a result, the identification of K(x) is out of the question.

In fact, as will be discussed later on, in order to identify the describing function
coefficients and thus the physical characteristics of nonlinear element(s) of a practical
nonlinear structure, the nonlinearities have to be located first and then the linearised
equivalent stiffness matrix [K(R)] can be established by correlating the analytical model
and measured dynamic testing data.

2.6 CONCLUSIONS

Once a structure is nonlinear, modal parameters obtained from the analysis of measured
FRF data will, in general, be erroneous. In this case, a nonlinear modal analysis is
required so that the structural nonlinearity can be taken into account. There are three main
problems to be solved for a successful modal analysis of a nonlinear structure and they
are: (i) detecting the existence; (ii) quantifying the extent and (iii) identifying the physical
characteristics of the nonlinearity.

Commonly-used methods for the modal analysis of nonlinearity have been reviewed in
this chapter. Bode plot and reciprocal receptance plot techniques detect nonlinearity by
presenting measured FRF data in specific formats and then examining the systematic
distortion(s) caused by the existence of structural nonlinearity. The isometric damping
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plot method achieves its nonlinearity detection by calculating the damping matrix based on
linear modal analysis theory and then examining the distortion of the damping plot due to
the variation in response amplitude and so in the effective natural frequency differences of
data points around Nyquist circle. These methods are convenient for the nonlinearity
detection stage but not so applicable for nonlinearity quantification and identification.
With a more ambitious objective of nonlinearity quantification, the Inverse Receptance
method as discussed was developed by analysing stiffness and damping nonlinearity
separately based on the real and imaginary parts of the inverse receptance data. However,
as demonstrated in some detail in this Chapter, some assumptions have been made during
the development of the method which are, in general, not valid for data measured on
practical structures with nonlinearity and so the method is limited in terms of its practical
applications.

The theoretical aspects of the existence of complex modes have been discussed. The
necessary and sufficient condition for the existence of complex modes is that the damping
distribution of the system is nonproportional. The effect of natural frequency spacing on
the degree of complexity has been illustrated. Numerical as well as experimental examples

are given.

The harmonic balance theory, which is the mathematical basis of the new nonlinear modal
analysis method proposed in this Chapter, is presented together with its practical
application conditions. The relationship between the analytical analysis of a nonlinear
system based on harmonic balance theory and the experimental measurement of FRF data
' of a practical nonlinear structure has been discussed. Based on harmonic balance theory,
a dynamic system having stiffness nonlinearity will take a different equivalent linearised
stiffness values (describing function coefficient N;(R)) for different response amplitudes,
so that each FRF data point from a measurement with constant force actually relates to a
specific FRF data curve measured with constant response, thereby containing all the
information of the latter curves. Due to this specific characteristic of FRF data from
constant force measurement, thus measured data can be analysed to quantify and identify
the nonlinearity of the test structure if the force level is appropriately chosen.

With a theoretical basis of the harmonic balance analysis, a new method has been
proposed to analyse nonlinearity from measured first-order FRF data. In addition to
deriving an indication of the nonlinearity, the method aims at establishing the
relationships between the modal parameters of interest and response amplitude from the
FRF data measured using sinusoidal excitation. The final results of the analysis are the
response-amplitude-dependent eigenvalues A(R) and eigenvectors {¢(R)} of nonlinear
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systems. These identified modal data can be used subsequently to derive a linearised
spatial model ([M], [K(R) and C(R) or D(R) matrices) of the structure. Also, it is
necessary to mention that the condition of constant force is not necessary when measuring
the FRF data for the subsequent modal analysis using this new method. In fact,
satisfactory analysis can be carried out as long as the response amplitude varies
sufficiently to expose the nonlinearity and embraces the range of displacements which
must be described by the model.

The method has been extended to the analysis of nonlinear MDOF systems and the effect
of residual on the analysis accuracy has been discussed. By linearising neighbouring
modes at the measurement stage and applying the SIM method at the analysis stage, the
residual of the mode to be analysed can be removed to its minimum level and so accurate

analysis results can be obtained.

Although the quantification of nonlinearity in modal space has been achieved using the
proposed method, identification of the describing function coefficient N(&) and so of the
physical characteristics K(x) and/or C(x) from the identified modal parameters A®) and
{6(®)}, which will be discussed in later chapters, is by no means straightforward when
MDOF systems are considered. Moreover, it has to be pointed out that, during sinusoidal
excitation measurement, since the DC component of the response signal of a
nonsymmetric nonlinear system has been filtered out, the nonsymmetric nonlinearity has
been made symmetrical and the FRF data measured are the data from an equivalent
symmetric nonlinear system. Due to this symmetrisation, for some nonsymmetric
nonlinear systems, such as bilinear systems, the existing nonlinearity cannot be revealed
from measured first-order FRF data which are effectively linear. Furthermore, except for
the fundamental frequency component, the response of a nonlinear system usually
contains super-, sub- and combinations of harmonics. However, in the first-order FRF
analysis, all these harmonics, which are in some cases as important as the fundamental
component in vibration analysis, are filtered out. Therefore, first-order FRF analysis is
limited in the sense that it reveals the nature of the nonlinearity and in order to identify
nonsymmetric nonlinear systems and take into account these super-, sub- and
combinations of harmonics, higher-order FRF analysis becomes necessary and is to be
introduced in next chapter.



CHAPTER 3

IDENTIFICATION OF
NONLINEARITY USING HIGHER-
ORDER FREQUENCY RESPONSE FUNCTIONS

3.1 INTRODUCTION

The identification of dynamic characteristics of linear structures from measured data is
now well established. In order to characterise a linear system, what is required is the
measurement of its impulse response functions (time-domain) or frequency response
functions (frequency-domain). Unfortunately, as mentioned earlier, most practical
engineering structures are nonlinear and the analysis of a nonlinear system is far more
complicated than that of a linear system. As discussed in some detail in Chapter 2, a new
analysis technique has been developed to identify nonlinear behaviour based on the
analysis of measured classical first-order frequency response functions and has been
found to be quite successful in cases where the effect of structural nonlinearities shows
up in the measured data [39]. However, due to the symmetrisation effect and the
approximate nature of the first-order FRF measurement, for some nonsymmetric
nonlinear systems, the thus measured FRF data are the data from their equivalent
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symmetric counterparts and the harmonic components which are usually present in the
response signal of nonlinear systems are filtered out. This symmetrisation of
nonsymmetrical nonlinearities and the elimination of harmonic components mean that the
first-order frequency response function analysis is not very appropriate for the analysis of
structures with nonsymmetrical nonlinearities. In fact, it will be shown that for some
specific nonlinear systems, such as quadratic and bilinear systems, the analysis technique
is incapable of analysing them at all. From the response prediction point of view,
calculations made using the first-order frequency response functions only can be quite
inaccurate in some cases as described in the application conditions of harmonic balance
analysis in Chapter 2 because, mathematically, this means that only the linear term of the
Taylor expression of a nonlinear function at certain point has been retained. These
limitations of first-order frequency response analysis are illustrated next.

As mentioned, systems with nonsymmetrical nonlinearities such as quadratic and bilinear
systems cannot be identified based on the first-order frequency response function analysis
because these nonlinearities are such that the measured first-order frequency response
functions based on sinusoidal excitation are effectively linear. Suppose the nonlinearities
are of a stiffness type and their force-displacement relationships are shown in Fig.3.1,
then the equivalent stiffness value corresponding to specific response amplitude can be
calculated based on harmonic balance theory as discussed in Chapter 2. Assume the
vibration to be sinusoidal as x(t)=%sinwt, then the describing function coefficients
(equivalent stiffnesses) Nq(ﬁ) for the case of quadratic stiffness and Ny(R) for the case of

bilinear stiffness can be calculated as:
1 2T 5
Nq(ﬁ) =3 J (k&sinowt + k,&*sin?wt) sinot dot = k 3-1)
0

o = L ("% sincot si L (* bcinot si k,+k,
Nb( )= ;&J‘okl sinwt sinwt dwt +E§ k,Xsinot sinot dwt = 5 (3-2)
) T
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Fig. 3.1 - Force Displacement Relationships of Quadratic and Bilinear Stiffness

Since both Nq(ﬁ) and Ny (%), which are the equivalent stiffnesses, are constant
(independent of the response amplitude), the measured first-order frequency response

functions of these systems are linear with equivalent linear constant stiffnesses of k for
the quadratic stiffness case and (k;+k,)/2 for the bilinear stiffness case.

On the other hand, the existence of nonlinear phenomena such as, sub-, super- and
combinational resonances in nature is well known. Nayfeh [24] mentioned that Lefschetz
described a commercial airplane in which propellors induced a subharmonic vibration in
the wing which in turn induced subharmonic vibration in the rudder. The oscillations
were violent enough to cause tragic consequences. Also, reports have been found in the
literature that excessive vibrations were caused by superharmonic excitation and
combinational resonances. In those cases, the analysis of the harmonic components
becomes as important as that of the fundamental frequency component and the response
predicted using first-order FRF data in such circumstances could be very inaccurate. To
illustrate this point, superharmonic excitation is considered for the case of an SDOF
system with cubic stiffness nonlinearity. When the external excitation frequency is far
from one third of the natural frequency of the system (linear natural frequency, as if the
cubic term were not introduced), the response prediction based on the first-order FRF is
very accurate. When the excitation frequency is close to one third of the natural
frequency, then the structural resonance will be excited by the third harmonic component
generated by the cubic nonlinearity and as a result, the response prediction based on the
first-order FRF in this case becomes very inaccurate. Comparisons of the true responses
and the responses predicted using first-order frequency response function data when the
excitation frequencies are of 4/3 and 1/3 the natural frequency are shown in Fig.3.2.
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Fig.3.2 - Response Prediction Accuracy Using First Order FRF

All this means that the first-order frequency response function analysis is inadequate and
even sometimes inappropriate for some nonlinear systems and more accurate
representation of their dynamic characteristics becomes necessary. For this purpose,
research work on the higher-order frequency response function analysis has been carried
out and is described in this Chapter.

The mathematical basis of higher-order frequency response function analysis lies in the
Volterra series theory which, as the functional series representation of nonlinear systems
and with its rigorous mathematical base, has been found to be quite effective in the
characterisation of general nonlinear systems. The theory was first introduced into
nonlinear circuit analysis in 1942 by Wiener who later extended the theory [7] and applied
it in a general way to a number of problems. Since Wiener's early work, many papers
have been published dealing with this subject in system and communication engineering
[40-42]. However, it was not until recently that the theory has been applied to the
identification of nonlinear mechanical structures [8,43,44] and found to be quite useful.
There is some literature available now on the identification of nonlinear mechanical
structures based on the Volterra series theory, such as references [8,43,44,45].
However, most of the studies to date are still at the stage of numerical simulation of
certain nonlinear systems and the difficulties in applying this theory to the identification of
practical nonlinear mechanical structures have not been fully investigated although some
experimental work based on specifically designed nonlinear structure has been carried out
[44]. The research work presented in this Chapter introduces the basic theory of Volterra
series and of their relation to the higher-order frequency response functions and how the
higher-order frequency response functions generalise linear system theory to cover
nonlinear systems. The harmonic probing method for the Volterra kernel measurement
using multi-tone input [46] and correlation technique for the Wiener kernel measurement
using random input [47] are investigated and the relationship between the Volterra and
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Wiener kernels is studied. Possible ways of curve-fitting or surface-fitting the measured
higher-order frequency response functions so that parametric or nonparametric model of
the nonlinear structure can be established are discussed. Considerable attention is given to
the practical assessment of the measurement of higher-order frequency response functions
of realistic nonlinear mechanical systems, both in the case of sinusoidal and random
inputs, by numerically simulating the measurement processes. The existing difficulties
concerning the successful measurement of higher-order frequency response functions are
discussed and possible ways of improving measurement results are suggested. The
applications of higher-order frequency response function analysis in the identification of
nonlinear mechanical systems are also discussed.

3.2 VOLTERRA SERIES REPRESENTATION OF
NONLINEAR SYSTEMS

A nonlinear function f(x) can in general be represented as a Taylor series at a certain point
(e.g. x=Xg) and this series approaches f(x) when the variable x is not far from that point.
Similarly, a nonlinear system can in general be characterised by a Volterra series which
converges when the nonlinearity of the system satisfies certain general conditions [6].
Before presenting the theory of Volterra series, it is necessary to examine some of the
basic characteristics of nonlinear systems.

3.2.1 BASIC CHARACTERISTICS OF NONLINEAR SYSTEMS

Since a linear system must satisfy the principle of superposition (as discussed in Chapter
2), a sinusoid can be regarded as an eigenfunction of the system. For a sinusoid applied
to a linear system, the system only changes its amplitude and phase angle without
distorting its wave form. A nonlinear system however, is characterised by the transfer of
energy between frequencies. For a sinusoidal input f(t)=Asinmt to the nonlinear system

governed by equation
mX + cx + kx + k;x2 + kox3 = f(t) (3-3)

the system will generate harmonic frequency components response in addition to the
fundamental frequency component, as shown in Fig.3.3 (the background curve is due to
numerical inaccuracy). If a multi-tone input x(t)=Asin®,t+Bsinw,t is applied (the input
signal has two or more frequency components where A, B can be complex numbers to
accommodate the different phase shifts of these two waveforms), then in addition to the
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fundamental frequencies (®;,0,) and their harmonics (nw,,n®,), there will also be
combinational frequency components (0;+®,, ,-, etc.) as shown in Fig.3.4. In fact,
for this specific system described by equation (3-3), there will be frequency components
(n;m;+n,m,) present in the response x(t) for all integer values of n; and n,. In order to
establish an input/output model of a nonlinear system which can not only predict the
fundamental frequency, but also the harmonics and combinational frequencies as well, the
Volterra series theory of nonlinear systems was developed.
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Fig.3.3 - Response Spectrum of an SDOF System with Input f(t)=Asinw;t
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3.2.2 THE VOLTERRA SERIES REPRESENTATION

Volterra series have been described as "power series with memory" which express the
output of a nonlinear system in "powers" of the input. A wide class of nonlinear systems
encountered in engineering can be represented as Volterra series. Given an input f(t), the

output x(t) of a time invariant system can, in general be expressed as
2

x(t) = J.drl _[ dt, h, (ty, .y T) Hf(t- T,) (3-4)
n= l‘_‘>°

r=1

where the kernels h,(ty, ..., T,) are the Volterra kernels which describe the system. It
should be noted that the first-order kernel h;(7) is the impulse response due to the linear
part of the nonlinear system and the higher-order kernels can thus be viewed as higher-
order impluse responses which serve to characterise the various orders of nonlinearity. In
the special case when the system is linear, all the higher-order kernels except h;(7) are
zero. The Volterra series representation (3-4) of a nonlinear system is homogeneous. In
order to illustrate this, rewrite equation (3-4) as x(t) =x;(t) + x(t) + ... + x4(t) + ..

where

+ oo + oo

X (1) = J J hg (T, ooy T) FE-T)f(E-T) .. f(t-Tg) dtydTy ... dTy  (3-5)

— oo

From (3-5), it is easy to see that when the input changes from f(t) to o.f(t), then the sth

component of the output becomes o°x((t) and the total output x(t) becomes

oo

x(t)= Zocsxs(t). This homogeneous property of Volterra series representation has been
s =1

applied to the measurement of Volterra kernels of electrical nonlinear circuits by repeating
the measurements using different input levels of the same signal [48]. Since almost all
phy51ca1 systems whethcr they are linear or nonlinear, are causal (a system is said to be
causal if, for any mput the output at any instant of time does not depend upon the future
input), all the kernels have to satisfy

h (Tq, ..., T) =0 for any 1,<0 ((s=1,n),n=1,c0) (3-6)
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Like a Taylor series representation of a nonlinear function, the Volterra series
representation of a general nonlinear system is theoretically infinite and, as will be
discussed later, the effort of computing the nth-order kernel increases exponentially as n
increases so that one has to be satisfied with the first few kernels only (usually, up to the
third kernel). Fortunately, good approximations can be obtained for most engineering
problems by just considering these first few kernels and this is why this theory has been
widely applied to the characterisation of practical nonlinear systems.

3.3 HIGHER-ORDER FREQUENCY RESPONSE FUNCTIONS

3.3.1 THEORY OF HIGHER-ORDER FREQUENCY
RESPONSE FUNCTIONS

The n'h-order Volterra kernel transform or n'h-order Volterra transfer function is simply
defined as the n-dimensional Fourier transform of the nth-order Volterra kernel

~
+ oo 4o
;’ .
H, (0, 0y, ..., ©,) = | J dry .. J. dt, h, (1), ..., T, ) €1 @TLF QT ¥ o+ OTy)
(3-7)

Since the nth-order kernel h,(t;,75,...,T,,) is real, symmetric (the value of h,(1;,T5,...,T;)
does not depend on the order of 1,,1,,...,T,, for example, in the case of second-order
kernel, h,(71,72)= hy(7,,71)) and causal, its Fourier transform H,(®{,0,,...,;) is
symmetric and also possesses complex conjugate symmetry such that

%
H (0, 0y, ..., ;) = H,(- ©, - 0y, ..., - ®,) (3-8)

For a linear system, if the frequency response functions (only the first-order) have been
determined, the output x(t) can be calculated for any form of inputs. The same argument
holds if all the Volterra transfer functions H,(®;,®,,...,00,) have been determined and
since H,(w,0,,...,0,) are unique (independent of input and output of the system), the
Volterra series representation is mathematically very attractive because under this
representation, the identification of a nonlinear system reduces to the measurement of
these unique Voiterra kernel transforms. However, it will be shown that due to the
interactions between kernels, these uniquely defined Volterra transfer functions cannot be
uniquely measured in practice and all that can be measured are approximations which, in
general, are input/output dependent.
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The nth-order frequency response function H,(®,,®,,...,00,) is defined as the measured
nth-order Volterra kernel transform H_ (®;,®,,...,0,). The relationship between
H,(®w,,0,,...,0,) and H (0,,0,,...,0;) is discussed below. The input-output
relationship of a nonlinear system based on Volterra series representation has been
discussed in detail [46] for different forms of input and only the sinusoidal form of input
is considered here. To make the analysis convenient, it is necessary to introduce the
partial differential operator given as:

an

D=9 | o (3-9)
a dat, ... dat,, A =02=..=0,=0
Under this operator, it can be seen that ,)
L n
. . [ X o ft-1)]
[T5¢-t)=D}exp[ ¥ ef(t-1)] = Dy ——=— (3-10)
r=1 s =1 ’

Upon substitution, (3-4) becomes

00 + oo + oo
x(t) = z th J dt, hy (T o Ty) Dhexp [ Y o f(t- 1] (3-11)

n=1 s =1

— oo

After some further mathematical manipulation, (3-11) can be written as:

[ Easf(t'ts) ]n
s =1

n!

n=1

oo + oo + oo
x(t) = z Jdtl J dt, hy (T4, ..., 7, ) D

(3-12)
On the other hand, under the differential operator defined in (3-9), the nth-order Volterra
kemel transform can be rewritten as:

+ oo <+ oo
1 -
Hy(®y, @, ..., @) = 55} d7y ... J dt, h, (5, ..., T, ) Dj HIAD((D,)
(-] PR T =

(3-13)

where
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n
A= D, a,el®% (3-14)
s =1

To illustrate the validity of equation (3-13), consider the derivation of Hy(;,,). In this
case, n=2 and so A,(®) becomes

Ay(®) = a, 1% 4+ o, g1 (3-15)

and upon substitution,

N

Dﬁ H Ay(w) = D2 [ (o el 4 o, e 112 Y(o, 192 4 qy e102R2)]

= el OT+01) | o7+ oT) (3-16)

Substituting (3-16) into (3-13) and considering the symmetry property of H,(w;,,),

equation (3-13) becomes

4+ o0 4 oo

Hz(ﬁ)l, (1)2) = J J h2 (Tl, Tz) C-i(wltl + @) dTldTZ (3'17)

—_— 00 = o0

Using this preliminary mathematics, it is now possible to establish an input-output
relationship of a general nonlinear system when the input to the system is in the form of

sinusoid.
When f(t)=Bcoswt, then

n

z o f(t-1,) = Zas(exmt inT, +e 1mt+mn,) =5 [e’mtAn((D)-*-c'mxAn( w)]

s = s =1
(3-18)
where A (m) is given by (3.14). According to the binormial theorem,

n

Z osf(t-tg) ] B" - pi@emar .
= = = m An((D) An('ﬁ)) (3'19)

n! on
k=0




Identification of Nonlinearity Using Higher-order FRFs 76

Substituting (3-19) into (3-12), and using (3-13) for H,(®;,®,,...,0,), gives

hed n
B" n! i(2k-n)ot
x(t) = s kT (n - 17 Pkak(@)e (3-20)

n=1 k=0

where, Hy ;1 (w) denotes the nth-order Volterra kernel transform H,(®;,®,,...,0,) with
the first k of the w; values equal to (+w) and the remaining (n-k) values equal to (-).

From (3-20), any frequency component which is present in x(t) due to input f(t)=Bcoswt

can be calculated. For example, the eIN®! component of x(t) is

i - | (N+2m)
eIN(J)t 2 (N+2III:1!) °(1\(]1i/22r31), HN_,,m’m(O)) (3_21)

m=20

If the input f(t)=Bcos(wt+¢), then in (3-21), wt should be correspondingly replaced by
(ot+d).

The same type of argument shows that when f(t)=Xcosw;t+Ycos,t, the eiM@1+Nap)t
component of x(t) is (N, M 2 0)

o0 =)

M (M+214+N+2k) ! (X /2)M*2Dy 72)N+2K)
oo D) D (M+D)! 1T (N+KT k! Hy 1N k(@1 02)

1=0k =0
(3-22)
The four subscripts of H,(w{,®,,...,®;) mean that n=M+21+N+2k and the first (M+])
values of w; are equal to (®,), the next I values equal to (-m,), the next N+k values equal
to (w,) and the last k values equal to (-w,). Similarly, when
f()=Xcoswt+Ycosm,t+Zcosmst, the eilLw1+Mw+Nw3)t frequency component in x(t) is
(L, M&N2=0)

z Z z (L+21+M+2k+N+2§)! (X/2)E*2) (y2)M+2K) (72 N+2i)
e S @CADT 1T (M+K)T k! (N+))T j!

i(Lw; + M, + N3t
el MO ¥ ROIH Mk koNs (@15 O, ©03) (2-23)
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From (3-21), the leading terms for the frequency component ® are:

3B3

elot [ %Hl(w) +g H;(0,0,-0) +..] + CC (3-24)

where CC means complex conjugate since the response component must be real.

The leading term for the frequency component (®0;+®,) in (3-22) if ®; and w, are
incommensurable (®, and w, are said to be incommensurable if w;/w, cannot be
expressed as n;/n, where n; and n, are integers), is:

ei@+opt ZL g @) + .. + CC (3-25)

Similarly, the leading term for the frequency component (®;+w,+®;) in (3-23) if ®;, ®,
and w; are incommensurable, is:
XYZ

ei((ol”"(’)l"' w3t -—2——- H3(0)1, (1)2, (D3) + ...... + CC (3'26)

On the other hand, nt-order frequency response function H (®;,0,,...,0,), which is
experimentally measurable, is defined as the output component X(®;,0,,...,@,) of x(t) at
frequency W=0;+0,+...+0, due to the input x()=A,C0osW;t+A,COsSW,t+...+A COSWt
(here A; can be complex to accommodate the different phase shifts) divided by the input

spectra, that is

Hn((ol, 0)2, veey (l)n) = (3'27)

Comparing (3-24), (3-25) and (3-26) with the definition of the higher-order frequency
response function of equation (3-27), it can be seen that the measured nth-order frequency
response function H_(®;,0,,...,0,) is the first-order approximation of the nth-order
Volterra kernel transform H (®,,0,,...,0,). To illustrate this point, take the second-
order frequency response function as an example. If only the leading term is considered
in equation (3-25) and the contribution of other kernels (even-ordered kernels after the
second) at frequency (®;+ ®,) can be neglected, then it becomes clear that the measured
second-order frequency response function H,(w;,,) based on (3-27) will be the same as
the second-order Volterra kernel transform H,(®;,,). In general, however, there will be



Identification of Nonlinearity Using Higher-order FRFs 78

some contribution from the higher even-ordered Volterra kernels and the estimated
second-order frequency response function is an approximate of the uniquely defined
second-order Volterra kernel transform. The same argument holds for other higher-order
frequency response functions. Based on this observation, the Volterra kernel
h,(74,T9...,T,) and its transform H (®,®,,...,0,) have direct physical meaning and

interpretation.

It is worth pointing out here that the Volterra kernel transforms H, (®,,0,,...,0,) are
mathematically unique. However, the nth-order frequency response functions
H,(®0;,0,,...,,) are usually input-output dependent like the classical first-order
frequency response function H;(w) measured using a sine wave excitation. Since we are
only able to deal with truncated series, these measured frequency response functions will,
in some cases, give more accurate representation than the equivalent Volterra kernel
transforms, which are by no means measurable.

3.3.2 ANALYTICAL CALCULATION OF FREQUENCY
RESPONSE FUNCTIONS

So far, it has been shown how the output x(t) and input f(t) of a nonlinear system are
related through the system's frequency response functions (or, more strictly, the Volterra
kernel transforms), and it is appropriate here to investigate what forms and what
characteristics the higher-order frequency response functions of typical nonlinear
mechanical systems possess. There are some different methods for analytically calculating
the frequency response functions of a known nonlinear system and what is discussed

here is the harmonic probing method [46].

Suppose that the input f(t) is

ft) = Z A, e (3-28)

r =1

where the ®, values are incommensurable and, for simplicity, let A =1(r=1,n) since the
analytical nth-order FRF, i.e. the nth-order Volterra kernel transform (we define
H, (®,0,,...,00,) as the analytical nth-order FRF), is unique. Substituting into (3-4),
then H (®;,0,,...,0,) is given [46] by
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i@+ @2+ -+ )l torm in the expression of x(t) )

(3-29)
Based on (3-29), it is possible to compute H;(®w;), Hy(®,®;),... of a nonlinear

H, (®,,0,,...,00)) = { coefficient of €

mechanical system successively. To illustrate this, first consider an SDOF system given
by

m% + cx + kx + k;x% + kx> = f(t) (3-30)

Let f(t) = ei®t and substitute into (3-4), then

o n
_ 1 n! i(2k-n)ot
x(t) = E on E Kl (n - K)! Hy nx(@) e (3-31)

n=1 k =0
o n
: 1 ! . 2k
k(0 = Z - E o7 Hink®) i@k - ) @ &P 3.32)
n=1 k=20
o n
. 1 ! i2k.
X(t) = z o E P—(nﬂ—k)—, Hy 1 (@) (2k - n)? @2 /@M (3.33)
n=1 k=0

The first few terms of x2(t) and x3(t) are
x2(1) = HA (@) 2 + 2 H,(0) Hy(o, ®) ¢°® + Hi(w, o) e (3-34)
x3() = Hy(@) e + 3 Hi () Hy(o, o)™ + 3 Hi(0) Hi(o, 0) ** (3-35)

Substitute (3-31)-(3-35) into (3-30) and set the coefficients of el®t at both sides to be
equal:
1

3-36
k - mo? +ico ( )

H, () =

The first-order Volterra kernel transform is independent of the nonlinear terms present in
the equation of motion and represents the dynamic characteristics of the linear part of the
nonlinear system.
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Now, let f(t)=ei®1t+ei®t and substitute into (3-4), then

oo

x(t) = Z Z Z Z iMooy +Napt - (M+N+21+2k) (M+21+N+2k)!
N=0 M=01=0Kk=0 (M+D! 1! (N+k)! k!

'HM+1,1;N+k,k(m1’ ) (3-37)

Differentiate x(t) to get x(t) and X(t) and then substitute into (3-30) in similar way as for
the H; () calculation, and let the coefficients of ei(@1+®2)t on both sides be equal:

Hy(w,, ®,) = - k; H{(w,) H;(0,) H{(®;+0,) (3-38)

From (3-38) it can be seen that Hy(w,,m,) has all the poles which H;(®) has and is
proportional to the coefficient of the quadratic nonlinearity term k;.

Similarly, if we let f(t)=ei®1l+ei02ttei®3t, then

oo oo oo oo

x(t) = z Z 2 Z z HE 411;,Mek kN4, j(©01,02,03)
N=0M '

=0L=01=0k=0j=0

iMOy + Ney+ L)t - (N+M+L+21+2k+2j) LA21+M+2k+N+2j)! (3-39)
(L+D! I (M+Kk)! k! (N+))! !

Upon substituting into (3-30) and letting the coefficients of ei(®1+@+®3)t on both sides
be equal:

2k
Hj(y, 0, 03) = - 5+ Hy(0) + 0, + 3) [ Hy(w3) Hy(@y, @) + Hy(p) Hy(wy, @3) +
Hl(ml) Hl (0)2, (D3) ] - k2 Hl(o‘)l + Wy + (!)3) Hl(ml) H](O)z) HI(CO3) (3-40)

In fact, it has been established in [46] that for a physically realisable system specified by
the nonlinear differential equation as

F@/dny+ 9, any™ = f(t) (3-41)

m=2
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where F(x) is a function of the differential operator d/dt, the nth-order Volterra kernel

transform is given by

n
Z an H(rrln)((l)l, Wa, ooy Cl)n)

1 m=2
(0, Wy, .., O) = =1 - (3-42)
Hn(1, 0 Yoonl Fliog + o, + ... + Qo))

where H™(w;, @, ..., @,) is defined in such a way that

HY (0, 0y = 2! Hy(o;) Hy(w,)

H P (0,05,03) = (21)2 [ Hy(0;) Hy(0,,03) + Hy (0)Hy(01,003) + Hy(3)Hp(01,0,) ]
H P (01,02,03,03) = 3! 2! Hy(00;) H3(005,03,00) + v (3-43)

It should be noted here that higher nonlinear terms a,(m>n) have no influence on the
lower-order Volterra kernel transforms Hy(®;,,,...,®,) (s<n) while the lower nonlinear
terms (m<r) do have an influence on all the higher-order Volterra kernel transforms,
(s2r). Therefore, a system with cubic stiffness nonhnearlty does not possess second-

order Volterra kermels while a system with quadranc stiffness nonlinearity has, in general,
all the Volterra kemels The second- and third-order Volterra kernel transforms of the
SDOF nonlinear system described by equation (3-30) are calculated and are shown in

Figs.3.5-3.7.
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Fig.3.5 - Analytical Second Order Frequency Response Function of an SDOF Nonlinear
System (Modulus Linear Scale, x axis @;: -275 — 275, y axis ,: 0 — 275 rad./s)
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Fig.3.7 - Analytical Third Order Frequency Response Function of an SDOF Nonlinear System
(Modulus Log. Scale, x axis w;: -275 — 275, y axis m,: 0 — 275 rad./s, 03=03)

To illustrate the physical interpretation of higher-order frequency response functions, the
second-order frequency response function shown in figure 3.5 is discussed. As shown in
Fig.3.8, the components of the second-order frequency response function near both
frequency axes represent the fundamental frequency components of the response. While
components along both diagonals are the static components (w;=-®,) and second
harmonic components (®,=w,) of the response respectively. All the other components
defined on the ®; vs w, plane are the combinational frequency components of the
response which, as will be discussed later, are important in cases of nonlinear MDOF
systems because these combinational frequency components can excite the system into its
resonances when they coincide with some of the natural frequencies of the system.
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Fig.3.8 - Physical Interpretation of Second-Order FRF

Also, one special case which has been treated in the literature [49] and is discussed here is
the square-law system given as:

mz + cz + kz = f(1) (3-44)
x(t) = Z%(t) (3-45)

This is an ideal Volterra system for which all the kernels except the second one are zero
and it is easy to prove that its second-order Volterra kernel transform is

Hj(wy, 0,) = Hy(w;) Hi(w,) (3-46)
where Hi() is given by (3-36). This second-order frequency response function of the

square-law system is shown in Fig.3.9. Because of its purely quadratic nature, the
system's response is dominated by the second harmonic and static components.
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Fig.3.9 - Analytical Second Order Frequency Response Function of the Square-law System
(Modulus Linear Scale, x axis o;: -275 — 275, y axis @,: 0 — 275 rad./s)

The same argument holds for MDOF nonlinear systems, although the analytical
calculation becomes a bit complicated. To see this, the 3DOF nonlinear system as shown
in Fig.3.10 is considered. The governing differential equations of the motion are given as

%) + 20%, + 2kx, - 0X, - kxy + Px3 = (1) (3-47)
%, + 30X, + 3KX, - OX; - 0X3 - kx, - kx3 + Bx3 = 0 (3-48)
3&3 + 2a)‘(3 + 2kX3 - a).(2 - sz + 6X§ =0 (3’49)
1@ K;s
K} Ky K3 K4
I X1 [ Xo X3

Fig.3.10 - A Three Degrees-of-freedom Nonlinear System
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The first-order Volterra kernel transforms of the system are the frequency response
functions of the linear system (f=0).and here only the second-order Volterra kernel
transforms are going to be calculated. Similarly to the SDOF case, let f(t)=ei®1t+ei®2t,

then

_ S Y YOS (M+21+N+2K)! (X/2)M+2 (y/)N+2k
X0 ‘NZO MZ;OIE‘O k; (M+D)! 1t (N+k)! k!

i 1
el(M(Dl + Nyt H;\/[.*],];N.',k'k(m] , (DZ) (3_37)

where le\}l HLLN+k k(@1 ©2) (r=1,2,3) are the transfer Volterra kernel transforms between
coordinates x; and x,. Substitute x,(t) and its derivatives x(t) and x.(t) into (3-47)-(3-49)
and let the coefficients of ei(®+®,1) on both sides of the equations be equal respectively,
so that the following algebraic equations are obtained:
[ @+ 0,)? - i20(0;+ ©,) - 2k] HJ(w;, ) + [ 0w+ y) + k] H (07, 0,) =
BH{(0) Hi(w) (-51)
[ (@+ w,)? - i30(0;+ 0y) - 3k] B (m;, 0)) + [ io(w+ o,) + k] Hi(w;, ) +
[io(o,+ @) + k] Hj (0, 0y) = Hil(0)) Hl(@y)  (3-52)
[ (@ 0,)? - i20(0;+ 0,) - 2k] BB (w;, ) + [ i+ 0,) + k] Hj (0, ;) =
BH (o)) Hi(@y) (3-53)

From (3-51)-(3-53), the three unknowns Hrzl(col,m;_) (r=1,2,3) can be calculated. The
analytical second-order point frequency response function Hzl(o)l,coz) (excitation and

response are at the same coordinate) is shown in Fig.3.11. In this case, the appearance of
combinational resonances (peaks which do not lie on the two diagonals) is clearly
demonstrated.
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Fig.3.11 - Analytical Second Order Frequency Response Function of a 3DOF Nonlinear
System (Modulus Linear Scale, x-axis ®;: -275 — 275, y-axis w,: -275 — 275 rad./s)

Since the above calculations are based on the definition of (3-29), the calculated
H, (0;,0,,...,0,) are of receptance-like frequency response functions. If x(t) is changed
into x(t) in (3-29), then the calculated Volterra kemel transforms are the mobility-like
frequency response functions and it can be easily seen that the receptance-like and
mobility-like Volterra kernel transforms are related by

HR (0, @y, ..., ©) = i(®; + 0y + ..+ ©0,) B (0, @, ..., @) (3-54)

3.3.3 MEASUREMENT OF HIGHER-ORDER FREQUENCY RESPONSE
FUNCTIONS USING HARMONIC PROBING METHOD

As in the case of the measurement of frequency response functions of a linear system,
different measurement techniques can be employed to measure the frequency response
functions of a nonlinear system, such as (i) multi-impulse technique [30], (ii) harmonic
probing method [48], (iii) correlation analysis using random input [47] and (iv)
NARMAX time series modelling technique [18] etc.. Among these different methods, the
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harmonic probing method and correlation analysis using random input are the most
commonly referred methods and have been given much discussion in the literature. The
theoretical basis for the measurement of higher-order frequency response functions by the
harmonic probing method has already been presented and what is to be discussed next is
the practical applicability of the method through numerical case study. The theoretical
basis of the correlation technique and the numerically simulated case studies of higher-
order frequency response function (Wiener kernel transform) measurement will be given
later in this Chapter.

As explained earlier, if the input to a nonlinear system is f(t)=A;cos®;t+...+A COSW,t,
where the frequency components ®; (i=1,2,..,n) are incommensurable, then the nth-order
frequency response function H (®;,0,,...,0,), which is the first-order approximation of
the nth-order Volterra kernel transform H, (®;,0,,...,m,), can be estimated using (3-27).
On the thus- estimated H_(®,,,,...,0,), with the exception of H (®,®,,...,0,) which
is the leading term, all the higher kernel transforms H, ,5(®;,05,...,0,,7) (1=1,2,...)
may have a contribution. This, as already pointed out, may make the measured
H, (®;,m,,...,0,) a better representation of the system than the corresponding Volterra
kernel transforms H_ (®;,0,,...,00,) since we are only able to deal with the truncated
series. Measurement of the first-order frequency response functions of nonlinear systems
has already been well established [39] and here the measurement of higher-order (mainly
second-order) frequency response functions is discussed. Although the technique can
theoretically be readily extended to the the measurement of higher- (than the second) order
terms, because of the time and effort involved, it is hardly practical to measure beyond the
third and for most practical nonlinear systems, only the lower few terms are in general

required in order to provide accurate representation of the system.

Based on the above-mentioned theory, numerical simulation of the measurement of the
second-order frequency response functions for a square-law system described by (3-34)-
(3-35) and an SDOF nonlinear system given by (3-3) was carried out. For computational
convenience, the input was set to be f(t)=Asinw,t+Bsinw,t where A is real and equal to
B (in real practical measurements, A and B can be set independently and can be complex
to accommodate the relative phase difference of these two sinusoids). The response of the
system x(t) was calculated using a numerical integration technique and, after the transient
dies away, the signal was sampled and Fourier transformed to find the 2w,, 20,,
(w;+0,) and (0;-w,) frequency components of x(t). Suppose the frequency components
of x(t) at 2wy, 2m,, (®,+®,) and (w,-w,) are Y, Y,, Y3 and Y, respectively, then
based on (3-27), the following four points of H,(;,0,) on ®;-w, plane are given by:
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Hy(w;, ©) = 2%;— (3-55)
Hy(0,, ) = %Y% (3-56)
H,(@;, @) = —}% (3-57)
Hy(o;, - ©) = _X‘Aﬁ (3-58)

The measured Hy(w;,0;) and H,(w,,0,) lie on the diagonal of w;=w, of w,; vs ®,
plane. When o, and , are varied, the value of H,(w;,w,) in any desired region on o,
vs o, plane can be obtained. Considering the mathematical symmetry of H,(w;,0,), if
the frequency range of interest is w¢-w;, then what needs to be measured is the triangular
region where m;:0,-0, and ®,:®,-w, as shown in Fig.3-12.

[measurement frequency region|

o
0o w mp 0.)2

Fig.3.12 - Illustration of Measurement Frequency Region Required

In this way, the second-order frequency response functions of the square-law system and
the SDOF nonlinear system are measured and they are shown in Figs.3.13 and 3.14.
When comparing figure 3.13 with its analytical counterpart figure 3.9, it can be seen that
except for some spurious spikes at both diagonals of w;=w, and ®;=-w,, the
measurement results are quite acceptable. The spurious spikes appear because in the
numerical simulation, w; and ®, were chosen to be integers and so the coudition that @,
and ®, should be incommensurable was violated and for this specific system, it can be
shown that such violation only causes errors when w;=w, and then, Hy(®;,0,) is
overestimated by 100%. This problem can be removed by measuring the diagonal
elements of Hy(®,,0,) at ,=0, and ®;=-, using one single sinusoid input and then
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measuring the second harmonic component (on the diagonal w,;=w,) and the DC
component (on the diagonal ®;=-,) of the output. On the other hand, in the case of a
nonlinear SDOF system, the situation becomes somewhat complicated. When comparing
figure 3.14 with its analytical counterpart figure 3.5, we see that the measured results are
not very bad except for some small spurious spikes appearing on the plane, again
showing the effects of the violation of the condition that ®; and w, must be

incommensurable.
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Fig.3.13 - Measured Second Order FRF of the Square-law System Using Harmonic Probing
Method (Modulus Linear Scale, x-axis ®;:-260 — 260, y-axis ®,: -260 — 260 rad./s)
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Fig.3.14 - Measured Second Order FRF of the SDOF Nonlinear System Using Harmonic
Probing Method (Modulus Linear Scale, x-axis ®,;:-260 — 260, y-axis ®,: -260 — 260 rad./s)

Of course, it is possible to set ®; and ®, to be incommensurable in the measurement, but
then there may be a leakage problem in the DFT of response x(t) because, in this case, it
is not possible to make all these major frequency components ®;, @, 20y, 20,, ©;+W,,
;-®,,... contained in the x(t) coincide with frequency lines. Some further research is
needed to investigate how cleanly and consistently the second-order frequency response
functions of a nonlinear system can be measured using the harmonic probing method
based on DFT algorithms. However, one possible way of getting around the leakage
problem, which the author suggests here, is to use the correlation technique. If, say, the
frequency component Y3 of x(t) at (w;+ ®,) is of interest, then instead of obtaining Y
using the DFT (which can sometimes cause serious leakage errors), the correlation
technique can be used by multiplying sin{w;+®,)t + icos(w;+w,)t to x(t) and then
integrating the product with time as:

T

Y; = lim 2 0[x(t)[sin(ml+wz)t+icos((o1+o)2)t]dt (3-59)
Toe () +W,) T

Based on this correlation technique, together with the diagonal elements of H,(®;,®,) to

be measured using single sinusoid input, clean and consistent measurement results could
be obtained.
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3.4 CORRELATION ANALYSIS USING RANDOM INPUT

The correlation method for the measurement of frequency response functions using
random input has been widely used in structural modal testing because of its convenience.
In the study of nonlinear structures, as discussed in Chapter 2, first-order frequency
response functions (first-order Wiener kernel transforms) can be measured using random
excitation. Corresponding to different excitation levels (or input power spectra), the thus
measured first-order frequency response functions of a nonlinear system are in general
different and, therefore, the existence of nonlinearity can be detected by comparing FRF
data measured at different excitation levels. The theoretical aspects of this first-order
frequency response function analysis based on random input are given in refs. [22,50].
Nevertheless, anything beyond the detection in the identification of nonlinear systems by
application of the thus measured first-order frequency response functions is difficult.
However, in addition to the auto- and cross-correlation analysis which is used in the
calculation of first-order FRF, if we can do higher-order correlation analysis, then as in
the case of the Volterra kernel measurement, there is a systematic way of characterising a
nonlinear system by measuring its higher-order Wiener kernels using random input. The
theory behind this practice is the Wiener series of nonlinear systems.

3.4.1 THE WIENER SERIES

In the Wiener theory of nonlinear systems, if the input f(t) is a white Gaussian time series
with autocorrelation function q)ff(‘c)=A6(”c), then the output x(t) of a nonlinear system can

be expressed by the orthogonal expression:

x() = D, Gyl ky f@) ] (3-60)

n=1

in which {k,(1,,75,...,T,)} is the set of Wiener kernels of the nonlinear system which,
like the set of Volterra kernels {h;(,5,...,T,)}, serve to describe the system and {G,)

is a complete set of orthogonal functionals. For a linear system, all the higher-order
kernels except k; and k;(t) are zero. Unlike the nth Volterra functional, which is

homogeneous and defined as
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+ oo + oo
T, [h; f© ] = J dr; ... J dt, by (g on Ty) ] £CE-T) (3-61)

r=1

the Wiener G-functionals are a set of nonhomogeneous Volterra functionals defined as:

Gn [ kn; f(t) ] = kO(n) + Zl J. dTl '[ dTr kr(n) (1:1, ceey Ty ) H f(t - Ts)

s =1
(3-62)
where k; =k, is known as the nth-order Wiener kernel and kn.1(ny - Ko(n) are known
as the derived Wiener kernels of the Wiener G-functional. G, { k,; f(t) ] satisfy

To (b FO )G, [k f()] =0 form<n (3-63)

where the over bar means taking the average of the process. Theoretically, all the derived
Wiener kernels k;, 1y, ..., Koy Of nth-order can be determined uniquely by the leading
nth-order Wiener kernel k, when (3-63) is satisfied for all integer values of m<n and,
therefore, in the notation G, [k ;f(t)], only the leading term k , is specified as in the case
of Volterra functional T,[h,; f(t)]. The first few G,[k,; f(t)] of a general nonlinear

system, are given as [6]

Gyl kg F(© ] = kg (kg is a constant) (3-64)
G, [ ki; f(® ] = j ky(t)) f(t-1p)dTy (3-65)

G2 [ kz; f(t) ] = -[ J k2(11, Tz) f(t - Tl) f(t - T2) dTl d’fz -A j kz(Tl, T]) d'tl

(3-66)

4+ o0 + o0 + oo

G3 [ k3, f(t) ] = J‘ '[ j k3(T], T, T3) f(t - Tl) f(t - Tz) f(t - T3) dTl dTZ dT3
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J k3(1y, Ty, Tp) F(t-T) AT dT,  (3-67)

The relationship between the Volterra kernel h,(14,%;,...,T,) and the Wiener kernel
k,(T1,T5,...,T,) is that the system's nth-order Volterra kernel is equal to the system's nth-
order Wiener kernel plus the sum of all the (even or odd order) derived Wiener kernels
that are of the nth-order, that is

hp (715725000 Tn) = Kn(T1,T25005T0) + Kpoom)(T15T2505T02) + ceveee (3-68)

From (3-68), it can be seen that since the derived Wiener kernels are determined uniquely
by their leading Wiener kernel, a given system's Volterra kernels can be obtained
uniquely from the system's Wiener kernels (leading Wiener kernels). Also, it should be
noted from equations (3-66) and (3-67) that as the input level A—0, the derived kernels
approach zero and the leading Wiener kernels approach the Volterra kernels. On the other
hand, it should be pointed out that unlike the Volterra kernels, which are mathematically
unique, the Wiener kernels are input-output dependent and since the Volterra kernels
h,(1,T9,...,T,) Which uniquely determine the system are uniquely determined by the
Wiener kernels k., (T1,7;,...,T,), the measured Wiener kernels k,(7y,75,...,T,) also

uniquely determine the system.

3.4.2 DETERMINATION OF WIENER KERNELS BY
CROSS-CORRELATION

As in the case of Volterra series representation, under Wiener series representation, the
problem of identifying a nonlinear system becomes one of determining all the Wiener
kernels which describe the system. The orthogonality property of G, and the statistical
properties of Gaussian noise enable the Wiener kernels to be determined using a cross-
correlation technique. The first four kernels are given [47] as

ky = XO (3-69)
] — -70

k(D =& x) f(t- 1) G710
(3-71)

1
ko(t T =55 [x(1) - kol £(t - 1) £(t - 12)



Identification of Nonlinearity Using Higher-order FRFs 95

kﬁﬁ”%%)=§i3[ﬂo-de;ﬁoﬂfa-nxﬂbtﬂfa-@)
(3-72)
Equations (3-69)-(3-72) serve as a basis for the measurement of Wiener kernels. To
illustrate the derivation of these equations, consider the calculation of the second-order

kernel k,(t4,T;). From equation (3-60), x(t)f(t - T,)f(t - T,) becomes

Wft-1)f(t-15) = > (3-73)
KOF- i (3 Galkn FO1) FC- 50 £(1- 7

and since, from the orthogonality relationship of (3-63), the functionals G, for n>2 are
orthogonal to f(t-t;)f(t-1,), which is a homogeneous functional of second degree,

therefore equation (3-73) can be rewritten as

x(Of(t-1)f(t-1) = (3-74)

2
Z o [k FO1 ) FGE-1) £ - 1))

For n =0, the average involving Gy is:

Go[ko; FO] f(t-1) f(t-19) = ko f(t-79) f(t-15) = kyd(t;-19) (3-75)

The average for n=1 is:

G, [k FO)] ft-1)) f(t-15) =

_[ k(o)) f(t-0q) do; Jf(t-19) f(t-1,)

J ky(op) f(t-0p) f(t-1)f(t-15) do; =0 (3-76)
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since the average of the product of an odd number of zero-mean Gaussian variables is

zero. Finally the average forn =2 is:

G, ko FOO] f(t-1) flt-19) =

+ o0 + oo + oo

[ J sz(Tl,Tz)f(t -tf(t-1,) dtdT, - A jkz('cl,'cl)drl]f(t-cl)f(t -0,)

-~ 00 - 00

+ oo ~+ oo

= _f j ka(01, 62) f(t- 01)f(t- 0)f(t - 1) f(t - 75) doydo; -

+ oo

A2 8(11' T2) J k2(0’2,02) d02

= J. J A2[ 8(0;- 09) 8(14- 1) + 8(0;- T1) 8(G,- Tp) + (03~ Tp) 8(0y- 17)]

+ oo

ky(61, G,) do,do, - A?3(1;- 1y) J. ky(0,, 65) doj =

+ oo + oo

A'Ax2 [6(11' ’52) J. kz(cl, (51) d01+ kz(Tl, T2)+ kz(Tz, Tl) - 8(1:1- Tz) J‘ k2(0'2, (52) d02]

= 2A%Ky(14, Tp) (3-77)
Combining equations (3-73)-(3-77), equation (3-71) is obtained.

From the process of the above derivation, it can be seen that care must be taken in
applying the Wiener theory to practical problems because it is strictly valid only when the
averages of infinite time series are considered and Gaussian white noise input is assumed.
What can be obtained in practical calculation is an estimate of the true Wiener kernel and
the accuracy of the estimation depends on the length of the averaging time, the
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characteristics of the system to be investigated and the closeness of the input signal to the
white Gaussian noise process. These points will be discussed further later on.

If the nth-order Wiener kernel k;,(1,,%5,...,T,) has been measured, then its corresponding
nth-order frequency response function H (®;,0,....,00,) is defined as

H (®q,0,,...,0,) = K (0;,0,,...,0,) (3-78)

where K (0,,0,,...,0,) is the nth-order Wiener kernel transform of k;(7,,75,...,7,). As
discussed, when the input is low (the power spectrum of input A— 0), the measured
Wiener kernels approach their corresponding Volterra kernels and, therefore, the
measured H,(®;,0,,...,0,) based on (3-78) approaches the Volterra kernel transform
H (w,,0,,...,00,).

3.5 MEASUREMENT OF WIENER KERNEL TRANSFORMS

3.5.1 MEASUREMENT OF WIENER KERNELS USING CORRELATION
ANALYSIS WITH RANDOM INPUT

So far, the theoretical basis for Wiener kernel measurement has been introduced and the
possibility of measuring these kernels from practical nonlinear structures now needs to be
assessed. Such an assessment can be carried out by simulating the measurement of
Wiener kernels of realistic nonlinear mechanical systems. The input random signal is a
band-limited Gaussian noise (the effect of non-white Gaussian noise input on the
estimation of Wiener kernels is discussed in [47]) since according to the sampling
theorem [51], the maximum valid frequency , (the Nyquist frequency) is limited by the
sampling rate 1/At and a true white Gaussian noise signal is therefore impossible to
achieve. The process of generating band-limited Gaussian noise is done by passing the
sampled standard white Gaussian noise data-with sampling frequency at 1/At through a
band-limited filter to remove the higher frequency components. The numerical realisation
of this process is to interpolate the standard Gaussian noise data by a smoothing function
h(t)=sint/t which, in the frequency domain, is an ideal low-pass filter [51]. The time
history and its power spectrum of one of the input band-limited noise signals with
sampling frequency at 62.5Hz are shown in Fig.3.15.
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Fig.3.15 - Time History and Power Spectrum of a Band-limited Input Signal

Again, as in the case of second-order Volterra kernel transform measurement, the second-
order Wiener kernel transforms of the square-law system, the SDOF nonlinear system,
the 3DOF nonlinear system and a bilinear system are calculated and are shown in
Figs.3.16-3.19. Also, as a typical example, the second Wiener kernel (time domain) of
the SDOF system is illustrated in Fig.3.20. When comparing the measured frequency
response functions (Wiener kernel transforms) with their corresponding analytical
Volterra kernel transforms (figs.3.5, 3.9 & 3.11), it can be seen that the results are quite
good. For the bilinear system, the measured second-order frequency response function
looks very much like the second-order frequency response functions of the square-law
system. Therefore, for a bilinear system, the quadratic component is quite substantial in
the response x(t). However, it should be pointed out that although the linear contribution
can theoretically be averaged out by including sufficient data points (increasing the
averaging time), this is often difficult to do in practice since the computation resources
required are considerable. During calculation of the second-order Wiener kernels of the
SDOF and the 3DOF nonlinear systems, the linear contributions (the response component
due to the linear part of the nonlinear network) are removed first before the correlation
process takes place because the convergence seems to be very slow in these cases. In
order to calculate second-order Wiener kernels of a nonlinear system efficiently, removal
of the linear contribution becomes necessary. A possible way of removing linear
contribution and therefore increasing the computational efficiency is proposed and
discussed next.
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Fig.3.16 - Measured Second Order FRF of the Square-law System Using Correlation
Analysis (Modulus Linear Scale, x-axis ®,: -275 — 275, y-axis ®,: -275 — 275 rad./s)
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Fig.3.17 - Measured Second Order FRF of the SDOF Nonlinear System Using Correlation
Analysis (Modulus Linear Scale, x-axis ®,: -275 — 275, y-axis w,: -275 — 275 rad./s)
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FFig.3.18 - Measured Second Order FRF of the 3DOF Nonlinear System Using Correlation
Analysis (Modulus Linear Scale, x-axis ®,: -275 — 275, y-axis ,: -275 — 275 rad./s)
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Fig.3.19 - Measured Second Order FRF of a Bilinear System Using Correlation
Analysis (Modulus Linear Scale, x-axis ®;: -275 — 275, y-axis w,: -275 — 275 rad./s)




Identification of Nonlinearity Using Higher-order FRFs 101

Tyt ) |

Lt i L 1t 1 8 ¢ 8 ¢ 3 ¢ 2 1 13

AR T \\‘~ e T
Vi a A

hyi | \
A

""m r‘f =i

Vo i S L S
O e e e
aeesaie

o2

Fig.3.20 - Measured Second Order Wiener kemnel of the SDOF Nonlinear System
(Modulus Linear Scale, x-axis 73: 0 — 1, y-axis 75: 0 — 1s)

3.5.2 REMOVAL OF LINEAR CONTRIBUTION

It has been demonstrated in the numerical case studies that in order to calculate higher-
order (second-order) Wiener kernel transforms of a nonlinear system efficiently, removal
of the linear contribution in the response signal x(t) becomes necessary. This is due to the
fact that for nonlinear systems like the SDOF and 3DOF systems in the numerical case
studies the nonlinearities are such that the response component due to the nonlinear terms
(mainly quadratic term in the estimation of second-order Wiener kernels) is usually of
second order when compared with that of the linear contribution in the response x(t). As a
result, although the term expressed in equation (3-76) (due to the linear contribution) for
the estimation of second-order Wiener kernel should mathematically go to zero as
averaging time increases, the time required for this to become valid could be very long
indeed and so to improve the calculation efficiency, it is necessary to remove the linear
contribution first, before the correlation process takes place.

It is suggested here that this removal of the linear contribution from the system response
x(t) can be achieved by performing the averaging process in the frequency domain rather
than in the time domain. The whole procedure is discussed next. Suppose the response
component due to the quadratic and higher even terms of nonlinearity x,(t) be expressed
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as X,(t)=x(1)-x,(t)-xy (Where xg is the DC component which is supposed to be removed
and x, is the linear contribution), then, by replacing x(t)-kg with x,(t)=x(t)-x,(t),

equation (3-71) can be rewritten as

1 3-79
ka(T1,19) = oAz [x(0) - x; (] f(t-17) f(t- 1) e

Instead of taking the time domain average, let the averaging be done in the frequency
domain, Fourier transform both sides of (3-79), then

Ky(@y, ) = ﬁ [ X(@+ @) - X;(0+ 05) ] Fr(@) F (@)

1 * *
= u [ X(w;+ 0,) - K (o+ ;) X (04 @) ] F (@) F (o) (3-80)
With K (w), which is the calculated first-order frequency response function based on (3-
70), to be available beforehand, K,( ®;, ®,) can be derived based on equation (3-80) and

in this way, the computational efficiency can be improved.

3.6 IDENTIFICATION OF NONLINEARITY USING HIGHER-ORDER
FREQUENCY RESPONSE FUNCTIONS

So far, the theoretical basis of and measurement techniques for higher-order frequency
response functions have been discussed in some detail and the remaining question which
needs to be answered is: "what information about the nature of nonlinearity of a system
can be derived from measured higher-order frequency response functions?" First, the
existence of second-order frequency response functions indicates the existence of
nonsymmetric nonlinearity of a system - a task that, for some systems such as qudratic
and bilinear systems as mentioned before, cannot be achieved based on the analysis of
classical first-order frequency response functions. Secondly, as is discussed in some
detail next, parameters of a nonlinear system can also be identified based on the analysis
of higher-order frequency response functions together with the first-order ones .

In the following discussion, only the analysis of second-order frequency response
functions is presented. Depending on whether the physical parameters or the modal
parameters of the system are of interest, a 'state-space analysis' method [44] or a 'modal-
space analysis' method [45] can be developed.
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In the 'state-space analysis', a-priori information about the total number of degrees of
freedom and the physical connectivity of the system to be analysed should be given.
Since, mathematically, measured first- and second-order FRF data are functions of all the
physical parameters (mass, nonlinear stiffness and damping elements), given known
measured first- and second-order FRFs, these parameters can, in theory, be calculated
provided enough data have been measured. The physical parameter identification problem
of a nonlinear system can therefore be formulated mathematically as the solution of the
following linear algebraic equation:

[A] {p} = {b} (3-81)

where {p} is the unknown vector of physical parameters, and [A] and {b} are the
coefficient matrix and vector formed using the measured first- and second-order
frequency response functions. To illustrate this process, take the nonlinear SDOF system
described by (3-3) as an example. The system mass m, linear stiffness k and damping ¢
can be calculated based on the familiar analysis of the measured first-order FRF H, (),
while the coefficient of the second-order nonlinear term k; can be obtained from equation
(3-38) using the measured second-order FRF H,(w;,,). In fact, one data point on the
®; Vs 0, plane is enough to determine k;, although more data points are recommended in

practice in order to have a reliable averaged estimation.

The 'modal-space analysis' is based on the mathematical observation that, in general, the
second-order frequency response function (second-order Volterra kernel transform) can

be decomposed as [45]
2N 2N 2K
C
Hyo,o) = 3, —o— § —fn_ % ‘ (3-82)

n=110+0, m=1i0+0®,; 1=1 i0] +i0,+ ©,

where N is the number of degrees of freedom of the system and 2K represents the
number of poles corresponding to "nonlinear coupling modes" which are the
combinational resonances of the system [45]. When one of the variables (w; or ;) is

fixed, then equation (3-82) reduces to the following polynormial form:

P(w;, Oy, O, @)
Q(mls O‘)n’ mrrp (D])

Hy(w, @) = n=12N;m=1;2N;1=1,2K  (3-83)



Identification of Nonlinearity Using Higher-order FRFs 104

Curve-fitting of this polynomial function can be made using the well-developed
polynomial curve-fitting algorithms [52] used in linear modal analysis, then all the ,, and
w,, which are the natural frequencies of the system can be obtained and the analytical
model of H,(®;,m,) in its polynormial expression can be established. Such analytical
models can be used for further applications such as response prediction, as shown in
Fig.3.21 for the system described by (3-3) with k,=0 and with input being a pure
sinusoid of frequency half of the natural frequency of the system. The improvement of
prediction accuracy by including second-order FRF is clearly demonstrated.

13 | £l
¥ N .
g g
£ 53
° :.1 g ¥ ] i} :'lll [¥X] o (Y] (X} (¥ [ )
TIRE  (SECONDS) . TInE (SCCoNOs)
9 Prediction Using First Order FRF Prediction Using First and Second Order FRF
~ [—— true response, - - - - - - - - - predicted response
Fig.3.21 - Réﬁpdnse Prediction Using Second Order Frequency Response Function

3.7 CONCLUSIONS

In this Chapter, the basic theory of Volterra and Wiener series of nonlinear systems has
been introduced and the measurement of higher-order frequency response functions has
been discussed. The relationships between the Volterra and Wiener kernels and their
corresponding measured frequency response functions have been demonstrated. By
extending the classical first-order frequency response function analysis to higher-order
frequency response function analysis, it can be seen that the linear system theory is
extended in a logical way to cover nonlinear systems.

From the system identification point of view, the measured higher-order frequency
response functions provide considerable information about the nature of the nonlinearity
of the system which the classical first-order frequency response functions cannot provide.
Among them are the following:

(a) since for certain nonsymmetric nonlinear systems, such as the quadratic and bilinear
systems mentioned in this Chapter, the measured first-order frequency response functions
are effectively linear and therefore, cannot be used to detect existence of nonlinearity, the
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measured higher- (second-) order frequency response functions give an indication of the
nonlinearity in the system;

(b) the different characteristics of higher-order frequency functions may give
categorization and so identification of common mechanical nonlinear systems by
comparing the measured higher-order frequency response functions with those analytical
ones of known nonlinear systems;

(c) from a system response prediction point of view, the higher-order frequency
response functions together with the first-order frequency response functions give more
accurate response prediction to any input than just using the first-order frequency
response functions and;

(d) the measured higher-order frequency response functions can be analysed in a
similar way to the case of first-order frequency response functions in order to identify
either the physical parameters or the modal parameters of a nonlinear system so that its
mathematical model can be established.

The existing numerical difficulties concerning the successful measurement of higher-
order frequency response functions have been discussed and possible ways of
overcoming these difficulties suggested, both in the case of measurement using harmonic
probing technique and correlation analysis with random input. In the harmonic probing
method, the main problem involved is leakage in the DFT of the response signal. This
leakage problem can be overcome using the correlation technique as suggested. For the

correlation analysis with random input, the main problem involved is the removal of the
linear contribution from the total response so that the computational efficiency can be
improved. For this purpose, averaging in the frequency domain instead of the time
domain as discussed is recommended.



CHAPTER 4

IDENTIFICATION OF
CHAOTIC VIBRATIONAL SYSTEMS

4.1 PRELIMINARIES

So far, techniques for identifying structural nonlinearity based on the measured first- and
higher- order frequency response functions have been developed and discussed in some
detail in Chapter 2&3. If the first-order and higher-order (usually second-order)
frequency response functions of a nonlinear structure are measured in the ways as have
been discussed in previous Chapters then, in most cases, the structural nonlinearity can
be detected, quantified and identified by analysing these measured FRFs. However, for
some nonlinear systems (chaotic systems, which are discussed in this Chapter), the
dynamic behaviour is so complex that the first- and higher-order FRF analyses, which are
largely based on the assumption of periodic input periodic output, become inadequate. In
order to analyse these systems, the development of yet more analysis techniques becomes
necessary.

In the case of a single sinusoidal input, the possible behaviour of the response spectrum
of a nonlinear dynamic system can be illustrated in Fig.4.1. The first-order frequency
response function analysis only considers the fundamental frequency components, while
the higher-order frequency response function analysis ‘takes the harmonic (both



Identification of Chaotic Vibrational Systems 107
7

___subharmonic and superharmonic) and combinational frequency components into account.
Hov;é;é\f:‘éicept for these fundamental and harmonic frequency components, the
subharmonics of some nonlinear systems bifurcate in such a way that the response
spectrum due to a single sinusoid input changes from discrete (periodic) to continuous
(nonperiodic) distribution. Such newly-discovered strange behaviour of nonlinear system
- a deterministic system exhibiting apparently random behaviour - is called chaos and is
one of the most exciting research topics in nonlinear systems research.

Fundamental component
subharmonics superharmonics
e ——
B E———— -
approaching chaos energy transfer to higher frequencies
Fig.4.1 - Response Frequency Components of a Nonlinear System

In the last fifteen years, clues to the emergence of randomlike motion in deterministic
dynamic systems have been uncovered by new topological methods in mathematics. At
the same time, experimental measurements and numerical simulations have provided
supporting evidence to the mathematical analysis which shows that many physical
systems may exhibit chaotic behaviour without random inputs. Research on chaos has
become an interdisciplinary subject and applications of the study have been found in
almost all engineering subjects. In mechanical engineering, it has been well known that
Duffing's system [53] with negative stiffness, such as that which represents mechanical
structure of pre-stressed buckled beams, and, some impact mechanical oscillators [54],
exhibit chaotic behaviour under certain excitation and initial conditions. These systems
represent very special types of mechanical nonlinear structures which are not commonly
encountered in practice. In order to investigate the possible chaotic behaviour of practical
mechanical structures with more commonly-encountered nonlinearities, a mechanical
system with backlash stiffness nonlinearity is considered in this Chapter. Extensive
numerical as well as experimental research work has been carried out and apparently, it is
the first time in literature that the chaotic nature of mechanical system with backlash
stiffness nonlinearity under realistic system parameters has been revealed. Such a
nonlinear mechanism as backlash stiffness represents an important and extensive group of
mechanical structures with manufacturing clearances such as gearing systems. Based on
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the mechanical backlash system, the basic theory of chaotic vibration is introduced and
qualitative as well as quantitative ways of identifying chaotic behaviour of a nonlinear
system are presented. Possible engineering applications of the study presented in this
Chapter are suggested.

4.2 INTRODUCTION TO CHAOTIC VIBRATION THEORY

Chaos is ax/{ nonlinear phenomenon which permeates all fields of science. Although
It

identified as an important research area only recently, chaos has existed from time

immemorial. It is now known that chaos can readily occur not only in man-made

systems, but in all natural and living systems where nonlinearity is present.

Roughly speaking, chaos is an exotic steady-state response. The steady-state response of
a system is what remains after the transient has decayed to zero and from what has been
taught in linear system theory, it can either be an equilibrium point, periodic or quasi-
periodic solution. This basic principle of linear systems has been so deeply-rooted in the
mind of most engineers that they may subconsciously extrapolate it for nonlinear systems
as well. We know that for some nonlinear systems, there exist a wide range of parameters
for which the steady-state responses are bounded, but are not periodic. In fact, the
response waveform becomes erratic with a broad continuous frequency spectrum (rather
than discrete, as in the periodic case). Moreover, the response is so sensitive to initial
conditions that unless a computer with infinite word length is used in the simulation, no
long-term prediction of the precise waveform is possible.

For mechanical systems, the study of chaotic vibration is important for several reasons.
First, in the design of mechanical control systems, it is essential to avoid the occurrence
of chaotic oscillation at design stage because chaos means unpredictability and so
uncontrollability. Secondly, the random nature of the response to a deterministic (usually
periodic) excitation of a mechanical structure makes life prediction difficult and statistical
stress/fatigue analysis becomes necessary. Finally, from a machine monitoring point of
view, that a broad continuous response spectrum can be due a single sinusoidal input
makes the reliable diagnosis in most cases difficult and suggests that the development of
new techniques is required.

In the following section, the basic theory of chaotic vibration is introduced based the
well-known Duffing's and van der Pol's systems. Ingredients which are essential for
understanding chaos are presented.
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4.2.1 DYNAMICAL SYSTEMS THEORY

In general, dynamic systems can be divided into three different categories: autonomous
dynamic systems, nonautonomous dynamic systems and discrete-time dynamic systems.
Both autonomous and nonautonomous dynamic systems are described by differential
equations (ordinary or partial differential equations) while discrete-time dynamic systems
are expressed in terms of iterative maps. All three types of systems are defined and
discussed and some of the useful facts from the theory of differential equations are
presented.

An nth-order autonomous dynamical system is defined by the state equation as
x=fx)  x(tp) =xp (4-1)

. d ) ) ) .
where X = Tx x(t)e R is the state at time instant t and f: R"— R" is called the vector

field. Since the vector field does not depend on time, the initial time may always be taken
as ty=0. The solution of equation (4-1) with initial condition x=X at time t=0 is called a
trajectory (in n-dimensional space) and is denoted by ¢,(xq). The mapping (which is
continuous as compared with the discrete mapping of discrete-time dynamical systems)
¢, R R" is called the flow of the system since ¢, is a continuous trajectory starts at X
and is like fluid flowing in the state-space. The dynamic system described in (4-1) is
linear if f(x) is a linear function of state variable x. Free vibrational mechanical systems

belong to this category.

An nth-order nonautonomous dynamical system, on the other hand, is defined by the
time-varying state equation as

x = f(x,t) x(tg) = Xq _ 4-2)

The vector field depends on time and, unlike the autonomous case, the initial time cannot
be arbitrarily set to 0. The solution of (4-2) passing through the point x at t=t;, is denoted
as ¢,(Xg,to). Again, the system is linear if f(x) is linear with respect to x.

If for a nonautonomous system, there exists a constant T > 0 such that f(x,t) = f(x,t+T)
for all x and all t, then the system is said to be time periodic with period T. The smallest
such T is called the minimal period. In this Chapter, all nonautonomous systems are
assumed to be time periodic e.g., time invariant systems with periodic input force.
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An nth-order time periodic nonautonomous system can always be converted to an
(n+1)th-order autonomous system by appending an extra state 8=2nt/T. Therefore, the

corresponding autonomous system is given by

x = f(x,0T/2m) x(0) = xq (4-3)
0 =2n/T 0(0) = 2ntyT (4-4)

Since f is time periodic with period T, the new system described by (4-3) and (4-4) is
periodic in 6 with period 2x. Therefore, the state-space is transformed from Euclidean

RTH'I

space to cylindrical space R"xS where S = [0, 27) is a circle. The solution in the

new state-space is

X(t) q)l(xO’tO)

= 4-5
0(t) % mod 2% *-5)

where the modulo function (x mod y gives the remainder of x divided by y, e.g., 3 mod 2
=1) restricts 0 to be within the semi-closed interval [0,2r). Using this transformation,

results for autonomous systems can be applied to the time periodic nonautonomous case.

As for discrete-time dynamic systems, any map f: R"— R" defines a discrete-time

dynamic system by the state equation
Xk+1 = f(xk), k= 0, 1, 2, """ (4-6)

where xy is called the state, and f maps state xj to the next state Xy, . Starting with an
initial condition x, repeated applications of the map f gives rise to a sequence of points
{Xk ) xeo called an orbit of the discrete-time system. Examples of discrete-time dynamic

systems are given below.

Although the research presented in this Chapter focuses on continuous time vibrational
systems, discrete-time systems will be discussed for two reasons. First, the Poincaré
mapping technique, which replaces the analysis of flow of continuous-time system with
the analysis of a discrete-time system, is an extremely useful tool for studying dynamical
systems. Second, due to this correspondence between flows (of continuous-time dynamic
systems) and maps (of discrete-time dynamic systems), maps will be used to illustrate
important concepts without getting into details of solving differential equations.
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p——

The simplest one-dimensional discrete-time system - the population growth model -
which has been found to be chaotic is described by the logistic equation

Xk4+1 = }» Xk (1 - Xk) (4-7)

For some values of A, after certain iterations until the transient component dies, the xj
will settle to one specific value (period one solution). While for other values of A, xi
oscillates between 2 values (period 2 solution), 4 values (period 4 solution) and so on.
However, there are some parameter regions in which x, never repeats its value as
iteration continues, as shown in Fig.4.2 and such phenomenon is the earliest observation
of what we call chaos today.

10

Alaaag

o8

apansnratae)

iR

04
20aa2 0210522088248

valve of x4

oz

0.0

wfiatteesss

P
3

TTTYTrTeT

¥ BAMAANAR" AR AAAAMARS SLARAML™S AN
value of A

~
(@
o

Fig.4.2 - Bifurcation Digram of Logistic Map for 2.7 <A <4.0

Another discrete-time system which exhibits chaotic behaviour is the quadratic map
studied by Hénon [55]

Xge1 = 1-axf +yg 4-8)
Yk+1 = bxg (4-9)

In the case when a=1.4 and b=0.3, for initial condition (xq,y(), the sequence of points
generated by the mapping {’;,}k"_fo is shown in Fig.4.3. Although the sequence of points
never repeats, they settle to restricted areas on the x-y plane and exhibit a very well-
constructed pattern (as will be discussed, the pattern is very finely defined as it is fractal).



Identification of Chaotic Vibrational Systems 112

valve of y,
00 o053 02 06

013

043
AT

Y 29 23 o3 0s 15
valvz of xy

Fig. 4.3 - The Hénon Attractor

The characteristics of logistic map and Hénon map are briefly discussed here because they
will be referred to in later discussions.

4.2.2 STEADY-STATE BEHAVIOUR AND LIMIT SETS OF
DYNAMIC SYSTEMS

Dynamic systems are classified in terms of their steady-state solutions and limit sets.
Steady state refers to the asymptotic behaviour of the solution of a dynamic system as
time t — . The difference between the solution and its steady state is called the transient.

A point y is defined as the limit point of x if, for every neighbourhood U of x, flow ¢,(x)
repeatedly enters U as t — o, e.g., the equilibrium point of a dynamic system.

The set of all limit points is called the /imit ser L(X) of X. Limit sets are closed and
invariant under the flow ¢, (a set L is invariant under ¢, if, for all xe L and all t,

o0, (x)eL), e.g., the limit cycle of a nonlinear system.

A limit set L is attracting if there exists an open neighbourhood U of L such that L(x)=L
for all xe U. The limit cycle of a nonlinear system is an attracting limit set.

The basin of attraction B(L) of an attracting set L is defined as the union of all such
neighbourhoods U. Every trajectory starting in B(L) tends towards L as t — oo, These

definitions are briefly illustrated in Fig.4.4.
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Fig .4.4 - lllustration of Limit Point, Limit Set and Basin of Attraction

In a stable linear system, there is only one limit set corresponding to specific input and
therefore the steady-state behaviour is independent of initial conditions. In a typical
nonlinear system however, there can be several attracting limit sets, each with a different
basin of attraction. In this case, the initial condition determines in which limit set the
system eventually settles.

The concept of limit sets is very useful in understanding different classical types of
steady-state behaviour such as equilibrium points, limit cycles and quasi-periodic
solutions. However, as will be shown, it is far too simple to describe the complex steady-
state behaviour found in chaotic systems and some new mathematical concepts such as
fractal dimension and Lyapunov exponent need to be introduced when steady-state
chaotic behaviour (strange attractor) is considered. In what follows, different types of
steady-state behaviour are discussed based on the well-known Duffing's and van der
Pol's systems. Each state will be described from three different points of view: in the time
domain, in the frequency domain and as a limit set in state-space domain.

An equilibrium point x€ is related with an autonomous system (a nonautonomous system
does not have equilibrium points because the vector field f: R"— R" varies with time)
and is the constant solution of equation (4-1), ¢,(x®)=x¢ for all time t. In general, f(x)=0
implies that x is an equilibrium point of the system. A simple example is the damped free
vibration system given by

mx+cx+kx=0 4-10)
It is well known that the system possesses an equilibrium point which is (x,x)=(0,0).

This equilibrium point can be obtained by solving f(x)=0 as follows:
Rewrite (4-10) into its state-space form as
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x=vy @-11)

. k

y=-—y-ox (4-12)
Therefore, f(x)=0 means that y=0 and - ;% y- r—l;- x =0 = (x,x)=(0,0).

Both autonomous and nonautonomous systems can have periodic solutions under certain
initial and excitation conditions. A solution ¢,(x*,t;) is a periodic solution if

0:(x* 10) = Duary (X" 10) (4-13)

for all time t and some minimal period T, > 0. In general, a periodic solution of a
dynamic system has a Fourier transform consisting of a fundamental frequency
component at f=1/Ty, and evenly spaced harmonics at k/Tp,, k=2,3,.... The amplitudes of
some of these spectral components may be zero. For a nonautonomous system, Ty, is
typically some multiple of forcing period Ty=kT and the periodic solution is usually

referred to as a k! subharmonic. To illustrate this point, a periodic (periodic 3) solution
of the well-known Duffing's equation with ¥=0.1, B=9.8 and w=1 (all units appear in

this chapter are supposed to be normalised except where physical units are given).
X+ Y%+ x3 =B cosot 4-14)

was calculated and is shown in Fig.4.5.
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Fig. 4.5 - Period 3 Solution of Duffing's System

Also, periodic solutions exist in autonomous systems and in this case, the periodic
solution is called a limit cycle. A limit cycle is a self-sustained oscillation and cannot
occur in a linear system. One classical example of limit cycle is found in van der Pol's
equation
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X+ (x2-Dx+ x=0 4-15)

The existence of a stable van der Pol limit cycle is shown in Fig.4.6 and can be physically
explained in terms of the damping mechanism of the system. When Ix| < 1, the damping
of the system is negative and therefore, the solution is expanding. While on the other
hand, when the solution becomes Ixl| 2 1, it is contracting. As a result, the solution will
eventually settle down a limit cycle.
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Fig. 4.6 - Limit Cycle of the van der Pol's System

Another type of steady-state solution which exists in some nonlinear systems is the quasi-
periodic solution (often referred to as almost periodic solution) which is the sum of
periodic functions with their fundamental frequencies (the reciprocals of their minimal
periods) to be incommensurable. To see how quasi-periodic solutions arise in dynamic
systems, again consider the van der Pol's equation with external forcing as

X+ (x2-1)x+ x=B coswt (4-16)
The system has a limit cycle oscillation with fundamental frequency ;. If the forcing

frequency ® is incommensurable with ®;, then a quasi-periodic solution occurs. The
quasi-periodic solution of equation (4-16) with B=1.0 and w=n/2 is shown in Fig.4.7.
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Fig. 4.7 - Quasi-periodic Solution of van der Pol's Equation

Mathematically, a quasi-periodic trajectory which contains n different incommensurable
fundamental frequencies lies on an n-dimensional torus. Taking the two-periodic
trajectory (contains two incommensurable fundamental frequencies) as an example, the
trajectory lies on a two dimensional torus SxS as shown in Fig.4.8 with each S
representing one of the base frequencies. Since a trajectory is a curve while SxS is a
surface, not every point on the torus lies on the trajectory. However, it can be shown that
the trajectory repeatedly passes arbitrarily close to any point on the torus and, therefore,
the torus is the limit set of the quasi-periodic behaviour.

Fig. 4.8 - Two Periodic Behaviour Lies on Two Dimensional Torus SxS

4.2.3 CHAOTIC ATTRACTOR

There is no generally-accepted definition of a chaotic attractor. From a practical point of
view, chaotic solution can be defined as none of the above mentioned steady-state
solutions; that is, as bounded steady-state behaviour which is neither an equilibrium
point, nor periodic, and not a quasi-periodic limit set either. For this reason, chaotic
attractors are often referred to as "strange attractors". Since the solution is nonperiodic
(which means that the solution contains some random components) while the system is
deterministic (there are no random parameters involved in describing the system), chaotic
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systems are very often described as "deterministic systems that exhibit random
behaviour".

The chaotic behaviour of discrete-time dynamic systems such as the one-dimensional
logistic equation and the two-dimensional Hénon map has been briefly discussed and the
bifurcation diagram for the logistic equation and the strange attractor for the Hénon map
are shown in figures 4.2&4.3. Now, a chaotic solution of Duffing's equation (4-14) with
c¢=0.1, B=10 and w=1 is calculated and is shown in Fig.4.9. It is evident from this that
the trajectory is indeed bounded and nonperiodic. However, one should be careful to note
that boundedness and nonperiodicity do not necessarily mean that the solution is chaotic
because a quasi-periodic solution is bounded and nonperiodic as well. In order to
distinguish chaotic solutions from quasi-periodic ones, the frequency spectrum of the
signal needs to be calculated. For a quasi-periodic signal, the spectrum only contains
discrete frequency components while a chaotic solution has a spectrum with a continuous,
broad-band nature, as shown in figure 4.9. This noise-like spectrum is characteristic of
chaotic systems.
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Fig.4.9 - Chaotic Solution of Duffing's Equation

Unlike the classical types of attractor that are associated with classical geometric objects
such as an equilibrium state with a point, the periodic motion or limit cycle with a closed
curve and a quasi-periodic motion with a surface in multi-dimensional space, the limit set
of chaotic behaviour is related to a new geometric object called a fractal set [56], which
will be discussed later on.

Another property of chaotic systems is sensitive dependence on initial conditions: given
two initial conditions arbitrarily close to one another, the trajectories emanating from these
initial conditions diverge at an exponential rate (which is some kind of characteristic value
of the system) until for all practical purposes, they are uncorrelated. This sensitive
dependence on initial condition for Duffing's equation is illustrated in Fig.4.10 (the two
initial conditions differ by only 1%). In practice, the initial state of the system can never
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be specified exactly, but only within some tolerance € and therefore, if two initial
conditions xg and xj lie within € of one another, they cannot be distinguished. However,
after a finite amount of time, flows ¢,(xq) and ¢,(xy) will diverge and become
uncorrelated. As a result, no matter how precisely the initial condition is known, the long-
term behaviour of a chaotic system can never be predicted (of course, the more accurate
the initial conditions are, the longer the prediction can be, but since the divergence is
exponential with time, unless the initial condition could be specified to infinite precision,
accurate long-term prediction becomes impossible).

4.81
3.8
2.74
1.84
0.9
6.0
-0.8

DISPLACEMENT (HH)

-1.84
-2.74
-3.8

-4.8 T T Y T \ \ T T T J
47.0 §1.2 5.4 69.8 83.8 87.9 7.1 78.3 80.8§ 4.7 °’.9

TIHE (SECONDS)

Fig.4.10 - Illustration of Sensitive Dependence on Initial Conditions

4.2.4 THE POINCARE MAPS

A very useful classical technique for analysing dynamical systems was developed by
- Poincaré. The technique replaces the flow of a continuous-time dynamical system with a
discrete map called Poincaré map. For autonomous and nonautonomous systems, the
definitions of the Poincaré map are slightly different and two cases are treated separately.

Consider an nth-order autonomous system with a limit cycle I' as shown in Fig.4.11. Let
x* be a point on the limit cycle I" and let T be the minimal period of the limit cycle. Take
an (n-1)-dimensional hyper-plane X (a plane has a dimension more than two) transverse
to I' at x*. The trajectory emanating from x* will hit £ at x* in T seconds. Due to the
continuity of ¢, with respect to the initial conditions, trajectories starting on Z in a
sufficiently small neighbourhood of x* will, in approximately T seconds, intersect X in
the vicinity of x*. Therefore, vector field f and hyper-plane T define a mapping P of
some neighbourhood Ue X of x* onto another neighbourhood Ve X of x*. The thus-
defined P is called the Poincaré map of an autonomous system.
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For nonautonomous systems, as shown in section 4.2.1, an nth-order nonautonomous
system in RM Euclidean space with period T may be transformed into an (n+1)-
dimensional autonomous system in cylindrical state-space R™xS. Consider the n-
dimensional hyper-plane X in R"xS defined by

Z={(x,8) R"xSlg-g,}. 4-17)

Every T seconds, the trajectory intersects Z as shown in Fig.4.11. Thus a map P: £—5X
is defined by P(x)=¢r(x,ty) where P is called the Poincaré map. Such a Poincaré map can
be thought of in following two ways:

(i) P(x) indicates where the flow takes x after a T seconds and this is called T advance
mapping; or :

(ii) the orbit (sequence of points) {PX(x)}, 2, is a sampling of a single trajectory every T
seconds; that is P¥(xg) = & p(Xp,tg) fork =1, 2, ...

\[rajectory

The Poincaré map of The Poincaré map of a first order
autonomous system nonautonomous system

Fig.4.11 - Poincaré Maps of Autonomous and Nonautonomous Systems

The usefulness of the Poincaré map derives from the fact that there is one-to-one
correspondence between the different types of steady-state behaviour of the underlying
continuous-time dynamic system and the steady-state behaviour of mapping P. Therefore,
from the steady-state behaviour of mapping P, the steady-state behaviour of the
continuous dynamic system can be deduced.

As is clear from the definition of P, a period one solution of the underlying flow
corresponds to a fixed point of the Poincaré map. For nonautonomous systems, a period
K solution (contains Kth subharmonic) corresponds to K different points on the Poincaré
map.
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The Poincaré map can also be used to detect quasi-periodic solutions. As mentioned
earlier, two-periodic solution (meaning two incommensurable minimal periods and is
different from period two solution) lies on a two dimensional torus SxS as shown in
figure 4.8. Using coordinate (8,,0,) on the torus, a two-periodic trajectory may be

written as
91({) w;t mod 2x
= (4-18)
8,(t) ©,t mod 27
where w; and w, are incommensurable. In the nonautonomous case, one of the

frequencies, say, ; is the forcing frequency of the system. An orbit of the Poincaré map
corresponds to sampling (4-18) every 2n/w; seconds

8,(2nk/w,) 2wk mod 2= 0
= = yk=1,2,..
62(27tk/0.)1) 2751(0)2/0)1 mod 27 277.:1((1)2/0)1 mod 27

4-19)
Since w; and W, are incommensurable, {6,(2nk/w;)},=; is not periodic and repeatedly
comes arbitrarily close to every point in [0, 27). Therefore, in the (6,,8,) coordinates,
the limit set of the Poincaré map is the circle S. In the original Euclidean coordinates, the
limit set is a closed curve. To illustrate this point, the Poincaré map of quasi-periodic
solution shown in figure 4.7 with sampling frequency equal to the the forcing frequency
is shown in Fig.4.12,
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Fig. 4.12 - The Poincaré Map of a Quasi-periodic Solution of van der Pol's System

For chaotic trajectories, the steady-state Poincaré maps are distinctive and often quite
beautiful. In order to illustrate this, the chaotic attractor (Poincaré map) of Duffing's
equation with c¢=0.1, B=10 and w=1 is calculated and is shown in Fig.4.13. Looking at
these orbits, it becomes immediately clear that the steady-state orbits do not lie on a
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simple geometrical form as is the case with periodic and quasi-periodic behaviour. The
attractor has fine structure which is fractal as will be discussed later on. Such fine
structure of Poincaré map is typical of chaotic systems.
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Fig.4.13 - Strange Attractor of Duffing's System

4.2.5 STABILITY OF LIMIT SETS AND LYAPUNOV EXPONENTS

The study of the stability of limit sets is important because only the attracting limit sets
(structurally stable) can be physically observed. In this section, the conditions for a limit
set to be stable will be discussed both in the case of equilibrium points and periodic
solutions. The Lyapunov exponents which can be used to determine the stability of any
type of steady-state behaviour, including quasi-periodic and chaotic solutions, will be
introduced.

Consider an equilibrium point x¢ of equation (4-1). It is well-known that the local
behaviour (for small perturbations) of a nonlinear system near the equilibrium point is
determined by linearising f at x® as '

dx = Df(x®) ox (4-20)

where Df(x¢) is the Jacobian matrix at point x¢ and dx = (x - x®). The thus derived linear
vector field (4-20) governs the time evolution of perturbations near x¢ of the original
nonlinear system. In particular, the stability of the flow near x¢ can be determined based
on the linear vector field by examining the real parts of the eigenvalues of the Jacobian
matrix Df(xe).
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Suppose ["A.] and [¢] are the eigenvalue and eigenvector matrices of the Jacobian matrix,
then mathematically, the trajectory with initial condition xe+8xe is, to the first order,

O (xe+8x°) = ¢,(x¢) + OxX(1) = x© + eDIxNFxe =xe+ > ¢ (9}, eMt  (4-21)

r=1

where {c ) 2, contains scalar constants chosen to achieve the correct initial conditions.
From equation (4-21), it can be seen that the real part of A; gives the rate of expansion (if
Re();) > 0) or contraction (if Re(A;) < 0) in the neighbourhood of the equilibrium point
along the direction of {¢};.

If Re(A;) < O for all A;, then all sufficiently small perturbations will die out as t — « and
x¢ is asympiotically stable. If Re();) > 0 for some A;, then x¢ is not stable. If one of the
eigenvalues has zero real part, then the stability cannot be determined from the linearised
vector field and higher terms need to be included in the expression of (4-20).

The stability of a periodic solution is determined by its characteristic multiplier.
Characteristic multipliers are a generalisation of the eigenvalues at an equilibrium point.
Since a periodic solution corresponds to a fixed point of the Poincaré map P, the stability
of the periodic solution is determined by the stability of the fixed point of the Poincaré
map. By analogy with the equilibrium point, the stability of fixed point x* of P
(corresponding to initial condition x) is determined by linearising P at x*. The linear

discrete-time system
8Xk+] = DP(X*) 5xk (4-22)

governs the local behaviour of map P near x*. Again as in the case of equilibrium point,
the orbit of P for an initial condition xy+3xg is, to the first order,

n
X = X* + O0x = x* + DP(x*) dx) = x* + Zcru‘r‘{cp}, 4-23)
r=1

where ['lL.] and [¢] are the eigenvalue and eigenvector matrices of DP(x*) and {c,} I, are
scalar constants chosen to achieve the correct initial conditions. The eigenvalues ['u.] are

the characteristic multipliers of the fixed point and determine the amount of contraction (if
Il < 1) or expansion (if Iyl > 1) near x* in the direction of {¢}; for one iteration of the

map P.
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The characteristic multipliers determine the stability of the periodic solution. If all the p;
lie within the unit circle (i, is in general, complex), then the periodic solution is
asymptotically stable. If some of the p; lie outside the unit circle, then the periodic
solution is not stable. If some of the characteristic multipliers lie on the unit circle, then
the stability of the periodic solution cannot be determined by the multipliers alone.

Lyapunov exponents are a generalisation of the eigenvalues at an equilibrium point and of
characteristic multipliers. They are used to determine the stability of any type of steady-
state behaviour, including quasi-periodic and chaotic solutions. The definition of the
Lyapunov exponent is as follows. Let ['m.] be the eigenvalues of a @ (x;) (a square

matrix which is a function of time), then the Lyapunov exponents are defined by

Im:(t)l
A = lim nmiOL
t—oo t

i=1,2,..,n (4-24)

if the limit exists.

To explain the physical meaning, the Lyapunov exponents of an equilibrium point are
calculated. Let ['W.] be the eigenvalues of Df(x¢), then for flow @, (x¢) = eDfF&)t which

is a linearised vector field, m;(t) = eti' and

. In Im;(t)l ) In lekiY
A; = lim n Im;(O1_ lim :
t—o0 t l—00 t

= Re(l;) (4-25)

Therefore, in this special case, the Lyapunov exponents are equal to the real parts of the
eigenvalues of Df(x) at the equilibrium point and indicate the rate of contraction (A; < 0)
or expansion (A; > 0) near the equilibrium point.

Lypunov exponents are convenient for categorising steady-state behaviour. For an
attractor (including a chaotic attractor), contraction must outweigh expansion and
n
therefore 2 A; < 0. Attractors are classified in terms of Lyapunov exponents as
r=1
follows. For a stable equilibrium point, A; < 0 for all i. For a stable limit cycle, A; =0
and A; <0Ofori=2,3,..,n Foratorus, A\; =A, =0and A; <0fori=3,4, .., n

One feature of chaos, as mentioned earlier, is its sensitive dependence on initial
conditions. Sensitive dependence occurs in an expanding flow, as is illustrated below.
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Consider a nonautonomous system with a contracting flow ¢, as shown in Fig.4.14(a).
Suppose that the state of the system can be measured to within an accuracy of €, then it is
clear that it is more accurate to predict the state at time t, using the measured state at time
t; than to measure the state at t,. The larger the elapse time (t,-t;), the greater the accuracy
of the prediction. Thus for a contracting system, the predictive value of the initial

condition increases with time. On the other hand, consider the opposite case of an
expanding flow as shown in Fig.4.14(b). It is more accurate to measure the state at t,

than to predict it using the measured state at t; and the predictive value of the initial
condition deteriorates with time. This means that expanding systems exhibit sensitive
dependence on initial conditions, but a purely expanding flow also implies unbounded
behaviour. By definition, a chaotic trajectory is bounded, and therefore it follows that a
chaotic system must contract in some directions and expand in others with the contraction
outweighing the expansion (here we only consider the dissipative/damped dynamical
systems). Hence, for a chaotic/strange attractor, at least one of the Lyapunov exponents
must be positive and this existence of positive Lyapunov exponents distinguishes a
strange attractor from other types of attractor and is one of the main criteria for detecting
chaos.

(Be(xl))

.

Be (x1) I

(a) Contracting Flow (b) Expanding Flow

Fig.4.14 - Illustration of Contracting Flow and Expanding Flows

4.2.6 THE DIMENSION OF AN ATTRACTOR

As discussed above, Lyapunov exponents can be used to categorise different types of
limit set and here in this section another important concept - the concept of dimension of
an attractor which serves to quantify the complexity of a given attractor - is introduced.
An attractor could be defined to be n-dimensional if, in the neighbourhood of every point
on the attractor, it looks like an open subset of R". This is how the dimension of a

manifold is defined in differential topology. For example, a limit cycle is one-dimensional
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because it looks locally like an interval. A two-dimensional torus has a dimension of 2
because for every point, locally, it resembles an open set of R2. An equilibrium point is
considered to have zero dimension. However, as shown in figure 4.13, the
neighbourhood of any point of a strange attractor has a very finely defined structure and
does not resemble any Euclidean space. Therefore, strange attractors are not manifolds
and do not have integer dimension. There are several ways to generalise the dimension to
the general fractional case and in this section, only the capacity dimension is presented.

The simplest dimension is the capacity dimension. To illustrate how the capacity
dimension can be calculated, let us consider a long time trajectory in phase space as
shown in Fig.4.15. First, time sample the trajectory so that a large number of points on
the trajectory are obtained. Then place a sphere (or cube) of radius (or length) € at some
point of the orbit and count the number of points within the sphere N(€). The probability

of finding a point in this sphere is then defined as

P(e) = %’? (4-26)

sampled data point

- X
Z -
trajectory

Y

Fig.4.15 - Time Sampled Data points of a Trajectory

where N is the total number of sampled time data points. For a one-dimensional orbit,
such as a closed periodic orbit, P(€) will be linear in € as € — 0 and Ny — oo; P(€) = e
(where B is a constant). If the orbit is quasi-periodic, two-periodic for example, then the
probability P(g), as € — 0 and N — oo will be P(€) = ye2 (where y s a constant). These
observations lead one to define the capacity dimension of an orbit at point X; by

measuring the relative percentage of time that the orbit spends in the small sphere; that is,

lim In P(g,x;)

Di= g0 ——— 4-27)
Ine
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In general, thus calculated Dic will be dependent on x; and, therefore, averaging is

required in order to calculate the capacity dimension of the orbit
1 @
D.= 31 leé (4-28)
1 =

where M is the number of point's which have been averaged. In this way, the capacity
dimension of the strange attractor shown in Fig.4.3 was calculated to be D, = 1.26. Since

D, is not an integer, the attractor is indeed chaotic.

For nonautonomous time periodic systems, the capacity dimension of the Poincaré map
of an attractor is often used to detect the existence of chaos and to quantify the complexity
of the motion. If the calculated capacity dimension D of the Poincaré map is independent

of the phase of the Poincaré map (the phase angle 0 < 6 < 2w) and satisfies 0 <D_ < 2,
then the dimension of the complete attractor is justd =1 +D,.

4.3 CHAOTIC VIBRATION OF NONLINEAR MECHANICAL
SYSTEM WITH BACKLASH

So far, the basic theories which are required in order to understand chaotic vibration of
dynamic systems have been reviewed and summarised. In the following sections, the
research carried out on the chaotic vibration of mechanical systems with a backlash
stiffness nonlinearity is presented. Apparently, it is the first time in literature that the
chaotic behaviour of such a general, yet so simple a nonlinear mechanical system has
been revealed. Based on such mechanical backlash systems, qualitative as well as
quantitative ways of analysing chaotic behaviour are presented. Possible practical
applications of the research presented are discussed and suggested.

4.3.1 INTRODUCTION

In recent years, the study of chaotic dynamic behaviour in nonlinear deterministic systems
has become a major research topic in nonlinear dynamic system analysis and new
discoveries of chaos have been reported in several engineering applications such as
nonlinear circuit design in electrical engineering [57], turbulence modelling in fluid
dynamics [58] and chemical reaction process modelling in chemical engineering [59]. In
mechanical engineering, systems modelled by Duffing's equation, such as pre-stressed
buckled beams, have been studied extensively and it has been found that under certain
excitation and initial conditions, chaotic vibrations can occur [53,61,62,63]. In particular,
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the chaotic behaviour of mechanical impact oscillators (oscillators with rigid motion
constraints), both single and double oscillators, have been studied by Shaw and Holmes
[54,64]. However, it should be noted that these systems represent very special types of
nonlinear mechanical system. In the case of Duffing's system, although chaotic vibration
has been observed experimentally when the linear stiffness of the system is negative,
such as for pre-stressed buckled beams, when the linear stiffness becomes positive -
which is the more realistic case of some practical nonlinear structures with a stiffness
nonlinearity - on the other hand, only when the vibration amplitude becomes excessively
high that chaotic vibration occurs. Under practical service conditions therefore, chaotic
vibration cannot in general occur for Duffing's system with positive linear stiffness. For
impact oscillators, practical nonlinear structures rarely possess infinite stiffness and hence
the impact oscillator model is, in general, not realistic of mechanical structures..
Therefore, the possible existence of chaotic vibration in a general and practically realistic
nonlinear mechanical structure has not been investigated to date. The research work
presented below seeks to demonstrate that it is possible for chaotic vibration to occur in a
general mechanical system with backlash stiffness nonlinearity which represents a group
of mechanical systems with manufacturing clearances.

The classical analysis of the vibration behaviour of mechanical system with backlash
stiffness nonlinearity is treated in standard texts on nonlinear oscillations, such as that of
Minorsky [65], and an investigation of harmonic and superharmonic resonances of this
type of systems was carried out by Maezawa [66]. The present analysis concentrates on
the chaotic behaviour of the mechanical backlash system with realistic system parameters
under sinusoidal excitation and presents both numerical and experimental results of the
research. The fourth-order Runge-Kutta method with precision control was used in the
numerical simulations. It was found that both periodic and chaotic vibrations exist under
different forcing conditions.

4.3.2 THE GENERAL SYSTEM

The system studied is the simple nonlinear mechanical system shown in Fig.4.16. When
the vibration amplitude x| is less than a certain value, x, the system is linear. However,

when the vibration amplitude Ixl 2 x, the system becomes nonlinear. The equation of

motion of the system excited by a sinusoidal force is written as:
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Fig.4.16 - Nonlinear Mechanical System with Backlash Stiffness Nonlinearity

mXx + 2cx + F(x) = A cosot (4-29)

where F(x) is given as

k2(X + Xg) (X 2 Xo)
F(;Q:{ k; x (Ixl < xy) ‘ 4-30)
kz(X - Xo) (X < - Xo)

and is shown in Fig.4.17(a). Since the transient solution of (4-29) will decay due to the
existence of damping (as illustrated in Fig.4.17(b), for which m=1kg, k;=5000N/m,
k,=10000N/m, c=4N.s/m and x3=0.005m), only the steady-state solution of (4-29) is of
interest. When the forcing amplitude A and frequency o satisfy the following relationship

A

\/(k] -mn?) ? + 4c’w?

< X0 (4-31)

the system will behave exactly like a linear system for which the steady-state solution is

given by
x(t) = X cos(wt+¢) (4-32)
where X = A and ¢ = arotg (—2—)
(ky - mw?) 2 + 4c’w? ky - mo

However, when (4-31) is not satisfied, the system becomes nonlinear and an analytical

solution of (4-29) becomes mathematically impossible because an explicit analytical
expression for the returning times T (x) | =+ x, does not exist and numerical methods

have to be employed.
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Fig.4.17 - Force Displacement Relationship and Phase Plane Trajectory

As discussed in some detail in Chapter 2, measured first-order frequency response
functions can be analysed to detect and to quantify structural nonlinearity. Here, they are
used to give a rough indication as to whether and when chaotic vibration will possibly
occur in a mechanical backlash system. The first-order FRFs corresponding to the above-
mentioned parameter settings are calculated for various excitation amplitudes and are
shown in Fig.4.18. From figure 4.18, it can be seen that when the forcing amplitude is
either large or small, the system becomes effectively linear and this gives the indication
that if chaos is to exist in such a system, the forcing amplitudes should be of intermediate

values.

INERTANCE
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Fig.4.18 - First Order Frequency Response Functions of Mechanical Backlash System

4.3.3 CHAOTIC MOTION AND STRANGE ATTRACTING SETS

Such a simple system as described by equation (4-29) is found to be chaotic under certain
excitation conditions. Here, the chaotic behaviour of the system with two different sets of
system parameters is studied (case 1: m=1kg, k;=0N/m, k,=40000N/m, c=4N.s/m and
x0=0.005m and case 2: m=1kg, k;=10000N/m, k,=40000N/m, c=4N.s/m and
xp=0.005m) and a number of typical results are presented in the time, frequency and
state-space domains. It has been found that there exist large forcing parameter (A,w)
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regions in which chaotic (bounded, nonperiodic) solutions exist and, from these, the
chaotic solutions for case 1 with A=100N; ®w=40rad./s and for case 2 with A=240N;
w=40rad./s (the excitations are pure sinusoids) are presented and shown in Figs.4.19-
4.22. The Poincaré maps shown in figure 4.22 are plots of discrete state-space
trajectories with sampling frequency equal to that of the excitation. These figures give a
visual impression of what a chaotic motion looks like. From the time domain plots (figure
4.19) and the continuous state-space trajectory plots (figure 4.20) of the solutions, it can
be seen that the motions contain some form of random components (nonperiodic) and this
is confirmed by the broad-band frequency components appearing in the response spectra
(figure 4.21). The well-defined patterns of Poincaré maps (figure 4.22) give rigorous
confirmation that the solutions are indeed nonperiodic and, hence, chaotic.
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Fig.4.19 - Time Response of Chaotic Backlash System
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Fig.4.20 - Response Spectrum of Chaotic Backlash System
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Also, for comparison with these chaotic solutions, the period 1 (the period of the
response is the same as that of the force) solution for case 1 with A=10N; w=40rad./s is
shown Fig.4.23. The time-domain plot and state-space trajectory show clearly the
periodicity of the resulting motion, and the effective absence of any broad-band
component (only harmonic components are present) in the response spectrum
demonstrates the clear difference from the response spectrum of a chaotic response.
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Fig.4.23 - Period one solution of Backlash System
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During the numerical simulation, it was found that before the onset of chaos, as the
forcing parameters change gradually, a series of periodic doublings (bifurcations)
occurred, as is the normal route to chaos. This was shown clearly in the logistic map of
figure 4.2 in which, as the parameter A changes, the period 1 solution bifurcates into
period 2 and then to period 4 and then to period 8 and so on, until chaos sets in.
However, in the present case, since the nonlinearity is symmetric, odd periodic solutions
(e.g. period 3) also exist and therefore it is difficult to say in this case that the route to
chaos is via period doubling.

Typical chaotic behaviour of a nonlinear backlash system has now been presented in the
time, frequency and state-space domains. The existence of chaotic behaviour of a
nonlinear system can, in general, be detected, as shown above, either using the response
spectrum or more rigorously, using the the Poincaré map of the motion. The quantitative
analysis of chaotic behaviour is to be discussed next.

4.3.4 FRACTAL DIMENSION OF STRANGE ATTRACTORS

As discussed in the introductory section, an attractor is defined in system dynamics as a
well-defined structure in the state-space plot after the decay of transients due to the
existence of damping. There are three classical types of dynamic motion and they are: (i)
equilibrium, (ii) periodic motion/limit cycle and (iii) quasi-periodic motion. These states
are called attractors since, after the transient decays, the system is attracted to one of the
above states. Classical types of attractor are all associated with classical geometric forms
in state-space; the equilibrium state with a point, the periodic motion/limit cycle with a
closed curve and a quasi-periodic motion with a hyper-surface (a surface has a dimension
of more than 3). However, a chaotic motion rides on a chaotic or strange attractor which
is a stable structure of a long-term trajectory in a bounded region of state-space, which
folds the bundle of trajectories back onto itself, resulting in a mixing and divergence of
nearby states [67]. The strange attractor is associated with a new geometric form called a
fractal set which has a dimension of noninteger value known as the 'fractal dimension'. ~
For each chaotic motion, based on its Poincaré map, the fractal dimension can be
calculated and the value of this fractal dimension gives quantitative measure of the
complexity (or chaos) of the motion. As mentioned before, there are some different
measures of the dimension of a set of points in space and the most intuitive one is the
capacity dimension. The detailed procedure of calculating the fractal (capacity) dimension
of a given chaotic attractor (Poincaré map) was presented in section §4.2.6.
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Based on equations (4-27) and (4-28), the fractal dimensions have been calculated for the
Poincaré maps of figure 4.22 and found to be D, = 1.206 for case 1 and D, = 1.165 for
case 2, respectively. It should be mentioned here that although € should theoretically be as
small as possible, according to (4-27), different values of € must be tried due to numerical
and/or experimental inaccuracies until the calculated dimension becomes independent of €
as shown in Fig.4.24. The noninteger values of these dimensions show that the attractors
of figure 4.22 indeed have fractal/self-similar structures and that the motions riding on
them are chaotic. Furthermore, it is worth mentioning that, in addition to the
quantification of the complexity of the chaotic motion, the calculation of fractal dimension
is very important for the modelling of chaotic systems because it is from this value that
the number of degrees of freedom necessary to model a practical chaotic system can be
deterrined so that all the topological nature of the attractor can be preserved.
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Fig.4.24 - Capacity Dimension Versus the Size of €

4.3.5 SENSITIVITY TO INITIAL CONDITIONS AND
LYAPUNOV EXPONENTS

As discussed in section §4.2.5, chaos in dynamics implies a sensitivity in the outcome of
a dynamic process to small changes in the initial conditions. When a system becomes
chaotic, the accurate prediction of long-term response becomes impossible because, in
this case, a small initial condition uncertainty will be magnified exponentially as time goes
on and, as a result, two originally indistinguishable initial conditions will lead to
completely different long-term solutions. This sensitivity to initial conditions for case 1
with A=100N; w=40rad./s is illustrated in Fig.4.25 (the time interval between two

successive points for these two trajectories is a forcing period).
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Fig.4.25 - Sensitivity on Initial Conditions of Chaotic Solutions

In order to quantify this sensitivity to the initial conditions, the Lyapunov exponent of the
motion needs to be calculated. Imagine a set of initial conditions within a sphere of radius
€ in phase space, then the chaotic motion trajectories originating in the sphere will map the
sphere into an ellipsoid whose major axis grows as d=eeM, where A is known as a
Lyapunov exponent. As mentioned in §4.2.5, for regular motions, A<0, while for chaotic
motions, A>0. Thus, the sign of A is a criterion of chaos. The numerical method for
calculating the Lyapunov exponent was well explained in [68]. Suppose we have two
chaotic trajectories, I'; and I',, starting with very close initial conditions as shown in
Fig.4.26, then A can be calculated as:

A= lim — 1n Sk (4-33)
N IN ~10 ; dy,

I

Fig.4.26 - Trajectories Starting with Close Initial Conditions

Based on (4-33), the Lyapunov exponents for case 1 with A=100N; w=40rad./s and case
2 with A=240N; w=40rad./s are calculated to be 0.532 and 0.624. During the calculation,
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an integration time of 200 cycles was used and, as shown in Fig.4.27, the calculated
value can be considered to be reliable because by that time, A virtually does not change.
These positive Lyapunov exponents give quantitative measure that the trajectories
diverge, on average, at an exponential rate of A = 0.532 for case 1 and A=0.624 for case
2.
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Fig.4.27 - Calculated Lyapunov Exponents Versus Integration Time

4.3.6 EFFECT OF FORCING PARAMETER AND DAMPING
ON CHAOS

Once the chaotic nature of a nonlinear system has been established, what is then of
interest is to know under what forcing conditions chaotic vibrations will occur because if
the necessary conditions for chaos have been determined, then it is possible to avoid them
or to employ them if there are some advantages of doing so. At present, the determination
of the forcing parameter field of a nonlinear system in which chaotic vibrations occur is
generally achieved by experiment although analytical predictions for some specific chaotic
systems such as Duffing's system have been undertaken. In the present study, the forcing
parameter field for the existence of chaotic vibration of the system described by equation
(4-29) (case 1) was determined by numerical experiment, results of which are shown in
Fig.4.28. It has been found - as expected - that chaotic vibrations occur when the forcing
amplitudes are of moderate values for all the excitation frequencies tried. For the higher
excitation frequencies, although it cannot be proven because of limited calculation
capacity, it was found that no chaotic vibrations occurred when w was greater than 85
rad./s.
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Fig.4.28 - Forcing Parameter Field for the Existence of Chaotic Vibration

To see how chaotic motion changes when the forcing amplitude increases, the Poincaré
maps of different forcing amplitudes at an excitation frequency w=40rad./s are calculated

and are shown in Fig.4.29. The calculated fractal dimensions show that although all the
motions are chaotic, they become more 'regular’ as forcing amplitude increases.
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Fig.4.29 - The Poincaré Maps of Different Forcing Amplitudes

To assess the effects of damping on chaotic vibration, different damping levels were
introduced for case 1 with A=100N; w=40rad./s. As expected, an increase in damping
was found to reduce the 'randomness' in the chaotic motion and the Poincaré map of the
motion becomes more compact as the damping increases, as shown in Fig.4.30. The
fractal dimensions of the Poincaré maps for different values of damping ¢ were also_
calculated and the results shown in Fig.4.31. Clearly, the introduction of damping is an
effective way of avoiding unsatisfactory motions of chaotic systems.
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4.3.7 TWO-DEGREE-OF-FREEDOM BACKLASH SYSTEM

So far, the chaotic behaviour of an SDOF mechanical system with backlash stiffness
nonlinearity has been investigated in some detail. In order to study chaotic vibrations of a
nonlinear MDOF system, the 2DOF system with backlash stiffness nonlinearity as shown
in Fig.4.32 is considered. It is generally believed that if chaotic vibration occurs in a
MDOF system, the motion will become yet more complex than that in an SDOF system
with same type of nonlinearity because, in this case, the interactions between all the
degrees of freedom act as chaotic excitations and these chaotic excitations make the
resulting motion more complex. As in the case of the SDOF backlash system, it was
found that for very low and very high excitation levels, the motions are periodic.
However, there exists a wide range of forcing parameters in which chaotic vibrations

OCCur.

f=500sin40t m; =1kg m, =1lkg X, =0.005m

X, ¢=4NS/m k =40000N/m
C ——-— c

__3]__
m, I—'\/\/\,— m, A A A
K = 5879~ k TP kK

VIIIIIFI4
AR RN

Fig.4.32 - 2DOF Mechanical System with Backlash Stiffness Nonlinearity

~ The system parameters are as shown in figure 4.32 and it was found that when the
forcing amplitude A=500N and forcing frequency w=40rad./s, the motions become

chaotic. As before, the results are presented in the time-, frequency- and state-space
domains as shown in Fig.4.33. However, as the 2DOF system is a four-dimensional
system since there are four state variables {X;,X;,X5,%;)7, the projection of the four-
dimensional Poincaré map onto the x; vs x; plane (2-dimensional) disguises the

fractal/self-similar properties of the true Poincar€ map.
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Fig.4.33 - Chaotic Response of 2DOF Backlash System

4.3.8 EXPERIMENTAL INVESTIGATION

Detailed numerical studies on the chaotic vibration of backlash system have been carried
out and reported alone. However, the question remains: "do chaotic vibration exists in
real practical backlash systems?" To answer this question, an experiment was designed
based on a test structure comprising a simply-supported beam with a mass at its midpoint
to simulate the SDOF system, as shown in Fig.4.34. The first natural frequency of the
structure was designed to be around 20Hz with the second mode much higher so that
when the excitation is around 20Hz, the structure behaves effectively like an SDOF
system. The backlash stiffness nonlinearity was introduced by providing motion
constraints on both sides of the mass (figure 4.34) so that the stiffness characteristics of
the equivalent SDOF system can be represented by that shown in figure 4.17(a). The
response was detected by a strain gauge attached on the beam near the mass such that the
measured strain is proportional to the displacement of the mass. A sinusoidal excitation
force is produced by an electro-magnetic shaker acting on the mass.
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Response (strain gauge)

Excitation force F=Asin ®t

Fig.4.34 - Experimental Model of Backlash System

As in the numerical studies, periodic as well as chaotic responses were found to exist at
different forcing amplitudes and frequencies. The time response and auto-spectrum of a
chaotic response at excitation frequency f=25Hz are presented in Fig.4.35. A pseudo-
Poincaré map (x(n+1) vs x(n), where x(n) is the sampled response signal with sampling
frequency equal to the excitation frequency which is 25Hz), is shown in Fig.4.36
because in the experimental case, usually only one signal (displacement or velocity) is
available (the simultaneous measurement of displacement and velocity is practically
difficult in some cases and it has been mathematically established [58] that the same
amount of information about the motion of the system can be obtained from the pseudo-
Poincré map instead of the true Poincaré map). From these results, the chaotic nature of
the response is clearly demonstrated. However, it is difficult to compare these results
with those from the numerical calculations because the necessary system parameters of
the experimental rig are difficult to determine.

-25.82

—

] FREQUENCY (Mx) seo.ee

POMER SPECTRUM (4B)

Fig.4.35 - Time Response and Auto-spectrum of Measured Chaotic Response
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Fig.4.36 - Pseudo-Poincaré Map of Experimental Chaotic Response

4.4 CONCLUSIONS

In this chapter, the basic theory of chaotic vibration has been summarised and ingredients
which are required in order to understand chaotic behaviour of dynamic systems have
been illustrated. Together with Chapters 2 & 3, a complete picture of all the probable
nonlinear phenomena in structural dynamics and the analysis techniques for identifying
them have been presented.

For the first time, the hidden chaotic behaviour of nonlinear mechanical systems with
backlash stiffness nonlinearity has been studied in some detail both numerically and
experimentally. Particular attention has been paid to the identification of chaotic vibration
in such nonlinear systems. Indeed, as shown in the numerical simulations, there exist
wide parameter regions, both in the system parameters and the external forcing
conditions, for which chaotic vibrations occur. Qualitative as well as quantitative ways of
identifying chaotic vibration in nonautonomous nonlinear systems are presented.

The chaotic behaviour is explained in time-, frequency- and state-space domains. For
detecting the existence of chaotic vibrations, the response spectrum or, more rigorously,
the Poincaré map of the motion, is employed. The fractal dimensions of strange attractors
are calculated and serve the purpose of quantifying the complexity of the motion. The
sensitivity of chaotic motions to initial conditions is examined and the Lyapunov
exponents are calculated, giving further indication of the existence of chaotic vibration.
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The system studied is a singularly simple system whose equation of motion is very easy
to understand physically. Also, as shown in this paper, an experimental model can readily
be constructed to demonstrate the predicted behaviour. Such a system is likely to become
a paradigm for further research into chaos in nonlinear dynamical systems. In mechanical
structures, such nonlinear mechanisms represent the intermittent contact between
components due to manufacturing clearances, and therefore it is expected that many
mechanical systems might exhibit chaotic behaviour under appropriate operating
conditions. Since one of the major consequences of chaos is unpredictability of the
response, it is therefore recommended that statistical methods should be applied to
stress/fatigue analysis when such conditions are anticipated. Furthermore, from a
condition monitoring view point, if a broad-band response can be caused by a purely
sinusoidal excitation (e.g., due to the eccentricity of rotational components), this makes
reliable diagnosis in most cases difficult and creates the necessity of a new understanding
of such nonlinear systems and the development of new techniques so that reliable
diagnosis can be achieved. Further, in the design of mechanical control systems such as
robots, where such backlash stiffness nonlinearity is very likely to exist, care must clearly
be taken at the design stage so that under normal service conditions, undesirable or

unpredictable chaotic motion will not occur.



CHAPTER |5

LOCATION OF
STRUCTURAL NONLINEARITIES

5.1 PRELIMINARIES

So far, different types of dynamic phenomenon observed in nonlinear structures have
been discussed and techniques for analysing them have been presented. For practical
structures whose nonlinearities are such that the measured first-order FRFs using
sinusoidal excitation (when the amplitude of the excitation force is kept constant) display
the nonlinear behaviour (most practical nonlinearities are of this nature), a new
identification method has been developed in Chapter 2 which can not only quantify the
extent of the nonlinearity, but also identify its type in some cases. On the other hand, for
some nonsymmetric nonlinearities such as the quadratic and bilinear stiffness
nonlinearities, as discussed in Chapter 3, the measured first-order FRFs are effectively
linear and analysis of the higher-order FRFs becomes necessary so that such
nonlinearities can be identified in practice. However, both first-order and higher-order
FRF analyses are largely based on the assumption of periodic-input periodic-output and
for some nonlinear structural systems (chaotic systems), this assumption is no longer
valid. Based on a system with backlash stiffness nonlinearity, qualitative as well as
quantitative ways of identifying chaotic vibrational systems have been presented in
Chapter 4. Some important engineering applications of the techniques developed have
been discussed.
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In this and later Chapters, we shall confine ourselves to the analysis of first-order FRFs
only although we accept that such analysis could, in some cases, be very approximate. It
will be shown how measured first-order FRF data (or their derived modal data), together
with an analytical model of the structure (usually an FE model), can be used to locate the
structure's localised nonlinearity (Chapter 5) and later how an accurate mathematical
model of a dynamic structure can be established by correlating an analytical model and
measured dynamic test data (Chapters 6 & 7).

5.2 NECESSITIES AND REQUIREMENTS FOR NONLINEARITY
LOCATION

It is usually believed that, if they exist, structural nonlinearities are localised in terms of
spatial coordinates as a result of the nonlinear dynamic characteristics of structural joints,
nonlinear boundary conditions and nonlinear material properties such as plasticity. The
ability to locate a structure's localised nonlinearity thus has some important engineering
applications. First, the information about where the structural nonlinearity is may offer
opportunities to separate the structure into linear and nonlinear subsystems so that these
can be analysed separately based on nonlinear substructuring analysis [69]. Second, since
nonlinearity is often caused by the improper connection of structural joints, its location
may give an indication of a malfunction or of poor assembly of the system. Third, from a
materials property point of view, the stress at certain parts of the structure during
- vibration can become so high that the deformation of that part becomes plastic and the
dynamic behaviour becomes nonlinear. In this case, location of the nonlinearity may offer
the possibility of failure detection. Finally, as will be discussed in detail in Chapters 6&7,
location information is essential if a nonlinear mathematical model of the structure is to be
established.

In practical measurements, the data measured are usually quite limited (both measured
modes and coordinates are incomplete) and this is especially true when a nonlinear
structure is considered, as will be discussed in some detail in Chapter 6. It is therefore
believed that the task of locating a structure’s localised nonlinearity can only become
possible by correlating an analytical model, which may contain modelling errors but can
represent the structure to some accuracy, and the results from dynamic test of the
structure. To illustrate the above argument, consider a typical nonlinear structure (two
linear components connected by a nonlinear joint) as shown in Fig.5.1. Mathematically,
the structure possesses a mass matrix [M], which is constant, and a stiffness matrix
[K(®)], which is a function of of response amplitude, if stiffness nonlinearity is
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considered (for the convenience of discussion, the structure is assumed to be undamped).
Clearly, if the impedance matrix [Z(w)] of the structure can be measured, then the
nonlinearity location becomes straightforward as shown in Fig.5.2. However, what can
be measured in practice is the the receptance matrix [c(®)], which is the inverse of
[Z(w)], and in this inverse format the localised stiffness change due to the nonlinearity at
different response amplitudes is spread over the whole matrix, as shown schematically in
Fig.5.3. Of course, one may obtain [Z(w)] by inverting the measured [o(®)] but,
unfortunately, such a process is found to be extremely sensitive to measurement noise
and, therefore, is often not implementable in practice. Hence, it becomes clear that in
order to locate the nonlinearity based on measured data only, all the coordinates and all
the modes of the structure should be measured so that the mass and stiffness matrices of
the structure at different response amplitudes, which are necessary to the location of
nonlinearity, can be reconstructed. This demonstrates the difficulties of using measured
data only to do the location task.

near component 2

nonlinear joint

Fig.5.1 - A typical Nonlinear Structure

N

[Z()] at resp. R, [Z()] at resp. X, ~ stiffness change

Fig.5.2 - Schematical Illustration of Location Process
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! [o(w)] at resp. Qz [o@)] at resp. §, €ITOT Teceptance

Fig.5.3 - Schematical Illustration of Inverse Process

Fortunately, due to the development of analytical modelling techniques, an analytical
model of a structure can be employed. Although it may contain modelling errors, these
are usually of second order when compared with the analytical model itself in the sense of
the Euclidean norm. With such an analytical model available, it will be shown in this
Chapter that by correlating the analytical model and the measured dynamic test data,
location of nonlinearity can be achieved.

5.3 TECHNIQUE FOR THE LOCATION OF STRUCTURAL
NONLINEARITY

5.3.1 LOCATION USING MEASURED MODAL DATA

The location method developed in this Chapter is based on the correlation between an
analytical model which contains modelling errors and dynamic test data which are
measured at different response levels. A nonlinearity location method based on the use of
measured modal data is discussed first. This method is then extended to the case of using
measured FRF data.

Before discussion, it is necessary to mention that the ‘modes’ of a nonlinear structure are
difficult to define (if indeed they exist at all) in an exact mathematical sense [70-73]
because of the existence of harmonic response components, and so the term ‘'modes of a
nonlinear structure' is used in this Chapter to mean the natural frequencies and
modeshapes which are derived from the analysis of measured first-order FRFs in which
only the fundamental frequency component of the response is of interest. For most
nonlinear mechanical structures, the thus-obtained natural frequencies and modeshapes
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are response level dependent. As far as stiffness nonlinearity is concerned, the stiffness
matrix of the structure corresponding to different response levels will be different and,
therefore, if this difference in stiffness matrix can be calculated in some way, the problem

of nonlinearity location can be resolved.

Suppose that the eigenvalues and eigenvectors of the rth mode (which is sensitive to the
localised nonlinearity) corresponding to a lower response level, &;, are A;;{¢,} and those
corresponding to a higher response level, &,, are A,;{®,} and that these have been
obtained from the analysis of measured first-order FRFs (either based on the new
nonlinear modal analysis method discussed in Chapter 2 or based on standard linear
modal analysis methods by linearising the structure using response control). Suppose
also that the analytical model which contains second-order modelling errors
(corresponding to lower response level) is available. Then, from the eigendynamic
equations, the following relationship can be established:

(- (IM,] + [AM]) A, + [K,] + [AK]) {9} = {0} (5-1)
(- (IM,] +[AM]) &, + [K,] + [AK] + [AK,]) {9,} ={0) (5-2)
Post-multiply (5-2) by {¢,}7, then
(- & [AM] + [AK] + [AKD) (9} (0,37 = - - 2oIM,] + [K,D) {62} {01}T (5-3)
Post-multiply (5-1) by {¢,}7, we have
(- A [AM] + [AKD) {0,}1{02)T =- (- A [M,] + [KD) {01} {¢2)" (5-4)
Subtract (5-4) from (5-3) and rearrange, then
[AM] (- A5 {02} {01) T+ A {013 {02)T) + [AK] ({02} {91)T - (013{95)T) +
[AKnl ({0,3(9)) =
A M1+ TKD) (03 (02)T - - A5 IM,] + [K,D) {9} (9137 (5-5)
Since {¢,) is a perturbed modeshape of {4, }, due to the stiffness change of nonlinearity,

{0,) {¢1}T-{¢1} {¢2}T is of second order compared with {¢,} {¢1}T in the sense of the
Euclidean norm (one can notice that all the diagonal elements of {9} {d;}T-{;}{d,)7
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are zero), as a result, if the modelling errors [AK], A;[AM] and stiffness change due to
nonlinearity [AK,] are of the same order of magnitude (also in the sense of the Euclidean

norm), then to the first order approximation, (5-5) becomes

[AKL] {02) (0107 = (- A IM] + [KD) (9] (02)7 - (- ApIM,] + [K,D) {02} {91)7
(5-6)

As a special case in which [AK]=[O] and {AM]=[O] (no modelling errors), then (5-6)
becomes an exact statement for [AK_]. The principle of the nonlinearity location process
based on equation (5-6) is illustrated in Fig.5.4. If the nonlinearity is localised, then
[AK,] will be a very sparse matrix (only those elements where the structural nonlinearity
is located are nonzero) and, as shown in figure 5.4, the dominant nonzero elements of the
resultant matrix after the matrix multiplication will indicate the location of localised
nonlinearity. Also, it should be noticed that during the location process, only one
measured mode is required and it is recommended that the mode which is the most
sensitive to nonlinearity in the measured frequency range should be used. Extra modes
can be used to check the consistency and reliability of the location results.

full matrix " resultant matrix

[AK.]

Fig.5.4 - Illustration of Nonlinearity Location Process

5.3.2 EXPANSION OF UNMEASURED COORDINATES

In the theoretical development of the location method, it is assumed that the measured
coordinates are complete. In practice, however, this is very difficult to achieve because
certain coordinates are physically inaccessible, such as internal DOFs, and the rotational
coordinates are very difficult to measure and so the unmeasured coordinates have to be
interpolated first before the location process can be carried out. This interpolation of
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unmeasured coordinates can be achieved by using the analytical model itself based on
Kidder's expansion method [74].

Although the analytical model contains modelling errors, in order to interpolate the
unmeasured coordinates, it is assumed that the following relationship between the
analytical model and the r'h measured and unmeasured sub-modes holds:

Mim] M) [Kinm] [Kp] 0
R ongeri bt (=l S B
Mim] Ml 1 U{05) [Kim] [Ksl 1 U{d) {0}

where {¢,,} and {¢,} are the rth measured and unmeasured sub-modes. Upon multiplying

out (5-7), the following two equations are established
(- @2 [Mpm] + KD {0) + ¢ 02 M ] + [K ) {6} = {0} (5-8)
(- 02 Mgp] + (KD (0] + (- @2 [Mg] + [K D) {¢5) = {0} (5-9)

Theoretically, {¢,} can be calculated from either (5-8) or (5-9). However, when the
number of measured coordinates is less than that of the unmeasured ones, which is quite
usual in practice, (5-8) becomes underdetermined in terms of the solution of {¢.} (the
coefficient matrix is rank deficient), and it is therefore recommended that (5-9) should be
used to interpolate {¢} as follows:

{05} = (- 02 Mg + [K D) ™ (02 [Mgp,] - [KrD) (0] (5-10)

It has been found that the interpolation of unmeasured coordinates based on (5-10) is
quite accurate for the lower modes of vibration (this will be further discussed in Chapter
7) and from the nonlinearity location point of view, if some coordinates have been
measured where the structural nonlinearity is located, the thus-interpolated modeshapes
can be used to achieve a successful nonlinearity location. Also, it can be shown
mathematically that the located errors in the above mentioned nonlinearity location process
will only occur in the measured coordinates if the unmeasured coordinates are interpolated
based on (5-10). This is briefly illustrated below.

Since (\[M,] + [K,]) {¢{} (and similarly (A, [M,] + [K,] ) {¢,}) on the RHS of (5-6)

can be re-written as:
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[Myn] [Mmsl} {(@,m;} [[Kmml [Kmsl] {{«%m}}
+

M) M) ] (3 Kool [Kgl 1 L{3,)

A IM,] + [K, =-&2[
(A1 [M,] + [Ka]) {41} T (3]

{ (- $2 Myl + [Kpmd) () + (- 62 M) + KD (8) }
(5-11)
(- B2 Myl + [Keml) (6] + (- B2 [M] + [K D) (8)

where parameters with » are the modal parameters corresponding to lower response level.
When {$s} is interpolated based on (5-10), then it is easy to see that in (5-11), the

elements corresponding to the unmeasured coordinates (the lower part) are zero and (5-
11) becomes

{ (- B2 Mpp] + Kpm) (8} + - 62 M ] + (KD (65) } {{Rl}}

- B2 M ] + [Km]) (8} + - 62 My ] + [KD) (§) (0}
(5-12)
Upon substitution of (5-12), (5-6) becomes
T_ [IRO (02T (RN (9T _ [[R]] ]
4k, (62 ton) ™= { oV} - L = | g (5-13)

- 5.3.3 SENSITIVITY OF MODAL PROPERTIES TO
LOCALISED NONLINEARITY

" In order to make the location more reliable, it is recommended that a mode which is
sensitive to the localised nonlinearity should be used in the location process. In order to
determine which mode is the most sensitive one in the measurement frequency range
(corresponding to specific excitation point), first-order constant-force FRFs can be
measured and, as discussed in Chapter 2, the degree of distortion of these measured FRF
data around each mode can be used to give an indication of which is the most sensitive to
the nonlinearity. Accordingly, the mode sensitivity to localised nonlinearity can be
established theoretically. Suppose that a stiffness nonlinearity is introduced between
coordinates x; and x; and a unit (harmonic) force is applied at xy, then to a first-order
approximation, the maximum relative displacement between x; and x; for the rth mode, d,,

can be expressed as
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by
d, = T 1% (5-14)
LIPRON

Since nonlinearities of practical structures are usually displacement dependent, d, can be
used to quantify the sensitivity of different modes to localised structural nonlinearity.
From (5-14), it can be seen that if the structure is nonlinear, some of the lower modes
will appear to be nonlinear due to their particular modeshapes while the higher modes are
likely to appear linear.

5.3.4 NUMERICAL CASE STUDIES

A 30DOF mass-spring ‘chain’ model shown in Fig.5.5 is used in the numerical case
study. Cubic stiffness nonlinearity is introduced between x5 and x4 and 40% analytical
stiffness modelling errors are introduced between coordinates x;-X3 and X,g-X3g. When
the excitation coordinate is chosen to be x;, mode 2 is found to be the most sensitive
mode (d;=1.93E-8, d,=3.37E-5, d;=4.83E-7 and d;=3.33E-5 based on (5-14) with 1%
(M,=0.01) proportional damping) to the thus-introduced nonlinearity and therefore is used
in the location process. The point receptances of coordinate x; with a 25% stiffness
change in the nonlinear stiffness element are shown in Fig.5.6, demonstrating the
sensitivity of mode 2 to the localised stiffness nonlinearity (clear shift of the natural
frequency of mode 2).

40% stffness modelling errors localised stiffness nonlinearity 40% stiffness modelling errors

k15 k k17 l—k Ik31

X15 X16 X28 X29 X30

Fig.5.5 - A Mass-spring Model Used in Numerical Case Studies
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FREQUENCY (HZ)

Fig.5.6 - FRFs of o, (w) with 25% Stiffness Change of k¢

When the measured coordinates are complete, the location results are as shown in
Figs.5.7-5.9 (3-dimensional plots showing the absolute values of the elements of a
matrix against its two dimensions) using the modal data of the second mode 'measured' at
two different response levels (the stiffness change of the nonlinear stiffness element
corresponding to the lower and higher response levels is 25% of its original value).
Fig.5.7 shows the stiffness modelling errors [AK]{d, ) {¢2}T calculated based on (5-4)
and Fig.5.8 shows the stiffness modelling errors [AK] and stiffness change [AK,] due to
nonlinearity ([AK]J+[AK,1){®,}{0,}T calculated based on (5-3). By taking the difference
of these two error matrices, shown in figure 5.7 and Figure 5.8 based on (5-5), the
location of the nonlinearity becomes clear, as shown in Fig.5.9.

Y
(st

Fig.5.7 - Stiffness Error [AK]{9,}{0,)T Fig.5.8 - Stiffness Error ([AKI+[AK_ 1) (9,)){¢,}T
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Fig.5.9 - Stiffness Error Due to Nonlinearity [AK 1{6,) (¢,)T

However, as mentioned, it is unlikely that all the coordinates (which are specified in the

analytical model) will be measured in practice. To simulate coordinate incompleteness of

practical measurements, only the odd numbered coordinates are included as 'measured’

and the unmeasured (even-numbered) coordinates are interpolated based on (5-10) using
the analytical model itself. The location results for this case are shown in Figs.5.10-5.12.
In this case, since coordinate x,¢ is not measured, the located nonlinearity error is shifted

to coordinates x,5 and x;; instead of x;5 and x4, as shown in Fig.5.12, although the

location task is effectively successfully completed.

Fig.5.10 - Stiffness Error [AK]{d) {¢2}T

Fig.5.11 - Stiffness Error ((AKI+[AK, ])(¢,) {6;)T
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Fig.5.12 - Stiffness Error Due to Nonlinearity [AK]1{¢,}{¢; }T

5.4 EXPERIMENTAL INVESTIGATION

5.4.1 SIMULATION OF STRUCTURAL SYSTEM
WITH LOCALISED NONLINEARITY

To demonstrate the practical applicability of this proposed nonlinearity location method,
an experimental investigation was carried out. The experimental system is an essentially
linear frame structure made of mild steel coupled to an SDOF system with nonlinear
stiffness. This nonlinear SDOF system is simulated using an electro-dynamic shaker by
feeding the displacement signal of its moving table through a nonlinear analogue circuit
and then back to the shaker to produce a force which satisfies a prescribed nonlinear
function F=f(x). Fig.5.13 illustrates the setup of the simulated nonlinear structure.
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Fig.5.13 - Simulated Nonlinear Structure with Localised Stiffness Nonlinearity

FRAME GEOMETRY

The frame structure is made of mild steel with Young's modulus assumed to be
E=2.1x109N/m?2 and density p=7800kg/m3. The geometry of the frame is illustrated in

Fig.5.14.
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Fig.5.14 - Geometry of the Frame Structure
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SHAKER PROPERTIES

A Ling Dynamics shaker (type No.403) was used to simulate the nonlinear SDOF system
attached to the frame. The effective mass of the moving system of the shaker is m=0.2kg

and the spring/mass resonance is f,=36Hz. The effective stiffness is therefore
k,=10230N/m (k=47n2fZm,). The SDOF system model of the shaker is shown in
Fig.5.15.

L ()

mg ’

Fig.5.15 - Shaker SDOF Model

According to electro-magnetic dynamics, the force F produced on the coil (figure 5.15) is
proportional to the current Iin the coil: F=kIl. However, due to the motion of the coil in
the magnetic field, a back emf is produced which is proportional to the velocity of the
coil: e=kx. As a result, the relationship between the force F produced on the coil and the
voltage V applied on the coil becomes F= k(V- €)/(R+iwL) (R, L and ® are coil
resistance, coil inductance and excitation frequency, respectively). Clearly, if F=f(x) (a
prescribed nonlinear function) is to be satisfied, the effect of this back emf must be
- compensated so that the force produced is proportional to the voltage applied to the power
amplifier. This compensation can be achieved by using a current power amplifier which
produces a current output (and so the force F) proportional to voltage input regardless of
the loading impedance (which changes dramatically around structural resonances). The
current amplifier and shaker can be looked on as a single unit, as shown in Fig.5.16. The
output/input (I/V) characteristic of this unit when the frame is attached is measured as
shown in Fig.5.17. From figure 5.17, it can be seen that although the effective
impedance of the shaker changes dramatically around the resonance, due to the back emf
effect, the force produced on the coil is always proportional to the voltage applied to the
current power amplifier.
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Fig.5.16 - Amplifier Shaker Unit
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Fig.5.17 - Characteristics of Amplifier-shaker Unit around Structural Resonance

ANALOGUE CIRCUIT

The simulated stiffness nonlinearity is required to be a cubic stiffness described by
f(x)=Bx3 and the acceleration signal is proportional to the displacement signal when

sinusoidal input is considered. Therefore, the analogue circuit is required simply to
multiply the input signal twice to obtain a Bx3 output as shown in Fig.5.18.

X—>

Fig.5.18 - Analogue Computer Circuit
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MEASUREMENT SETUP

The measurement setup is illustrated in Fig.5.19. A Solartron 1254 Frequency Analyser
was used to obtain the frequency response functions of the structure and an HP 9816
computer was used to store and analyse the measured data.
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Fig.5.18 - Measurement Setup



Location of Structural Nonlinearity 160

5.4.2 MEASUREMENT RESULTS

As a preliminary measurement, the frame was tested without the nonlinear SDOF systemn
(shaker) attached. All 20 translational coordinates around the frame were measured using
sinusoidal excitation in the frequency range of 30-300Hz with excitation at coordinate x;
(figure 5.14). The calibration results of the measurement system and typical frequency
response functions measured are shown in Figs.5.19-5.20. In the measurement
frequency range of 30-300Hz, 6 modes were clearly identified (the first resonance is in
fact two close modes as shown in Fig.5.21). All these modes were analysed and the
modal parameters are tabulated in Table 5.1 (in modal analysis, the first two close modes.
were treated as single mode because the frequency resolution of the measured FRF data is
not enough for them to be accurately identified and it is not our purpose to do so).
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Fig.5.19 - Calibration Results of Measurement
’e
@
h-]
o
o
=
0
o
c
[
»
[
[ ]
=
-0 Data from FRMLTI!1

.o .
3e.8 Frequency Hz. 299.93

Fig.5.20 - Typical Measured FRF Data
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Fig.5.21 - The First 2 Close Modes of the Frame

From figure 5.20, it can be seen that mode 2 (f, = 97 Hz) is the strongest mode in the
measurement frequency range and is the most sensitive one to the stiffness nonlinearity
introduced between x;q and x;; because of its particular modeshape (see table 5.1).
Accordingly, mode 2 was chosen to study the nonlinear effects of the simulated nonlinear
structure. Frequency response functions in the vicinity of mode 2 corresponding to
different response levels (linearised) are measured (in fact, FRFs at different constant
force levels are also measured and analysed as shown in §2.5.5) at all 20 translational
coordinates around the structure and some of these are shown in Fig.5.22. It can be seen
that a natural frequency shift of approximately 4Hz is caused by the stiffness change of
the system when it vibrates at different response amplitudes. The measured modal data of
mode 2 corresponding to two different response levels (the response signals were set to
be 0.1v for low vibration level and 2.0v for high vibration level) are analysed and
tabulated in Table 5.2. From Table 5.2, it can be seen that in addition to the 4Hz shift in
the the natural frequency, approximately 10% changes in the modeshapes are observed
due to stiffness change of the system. -
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Fig.5.22 - Measured FRFs at Different Response Amplitudes

5.4.3 LOCATION OF NONLINEARITY

A Finite Element analysis of the structure was performed using the PAFEC package and
the modal parameters of the first 6 modes of the FE model are shown in Table 5.3. A
correlation between the measured modal data and those from the FE model of the frame is
carried out and the MAC value matrix is shown in Table.5.4. From Table 5.4, it can be
seen that good correlation has been obtained for modes 2, 3 and 4. However, it is
surprising that good correlation has also been obtained for the first mode (in fact, 2 close
modes) even when it is treated as a single mode in the experimental modal analysis.

MAC FEmode1! FEmode2{ FEmode3} FEmode4|{ FEmode5| FE mode6
matrix

EX mode 1 0.923 0.135 0.000 0.000 0.001 0.048
EX mode 2 0.000 0.004 0.948 0.000 0.001 0.005
EX mode 3 0.000 0.002 0.003 0.985 0.000 0.023
EX mode 4 0.000 0.000 0.006 0.001 0.959 0.005
EX mode 5 0.006 0.001 0.000 0.000 0.004 0.775

Table 5.4 - MAC Value Matrix

The mass and stiffness matrices of the frame were generated using PAFEC. However,
before these matrices are used to correlate with the measured modal data to locate the
nonlinearity, the shaker characteristics have to be compensated in the FE model. Since
what is of interest is mode 2, the compensation of the shaker properties for this mode can
be illustrated in Fig.5.23. An effective mass m, and stiffness k., can be calculated based
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e
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on equivalent kinetic and p_ot_cnﬁal energy as m,=0.605mg and k.=0.605k, (m, and k, are
the table mass and suspension stiffness of the shaker and they are mg=0.2kg and
k=10230N/m).
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— X X=l.l XIO

X1

Fig.5.23 - Illustration of Shaker Property Compensation

On the other hand, since in the FE analysis, 3 DOFs (one translational and two rotational
- bending and torsion) are considered at each point while in the measurement, only the
translational degree of freedom is measured, the measured modeshapes have to be
interpolated first using Kidder's method as mentioned earlier before they can be used to
correlate with the FE model to locate the structural nonlinearity. The calculated location
results are shown in Fig.5.23. Theoretically, the errors should be contained between two
translational coordinates (x;4-X11) right in the middle of the plot. However, the errors are
distributed so that almost a third of the coordinates have been contaminated. One reason
for this is that since the exact coordinate where the localised stiffness nonlinearity is
introduced (between x;( and x;;) has neither been measured nor included in the FE
model, this missing coordinate is expected to cause spatial leakage. Another reason is that
the measured modal data contain measurement errors and these errors may cause this
spread of location results. To check this later possibility, 2% random errors were added
to the measured modal data and the location results (Fig.5.24) show that although the
location results have not been much affected, measurement errors do have the effect of
spreading the location results.
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Fig.5.25 - Located Stiffness Nonlinearity (2% Noise on Measured Data)

5.5 EXTENSION OF THE TECHNIQUE TO MEASURED FRF DATA

The above developed location technique can be generalised when measured FRF data are
used. Suppose that the ith column {o(w)}, of the receptance matrix (corresponding to

lower response level Ql) and {o,(w)}, (corresponding to higher response level &,)
around the rth mode (which is sensitive to nonlinearity) have been measured and, again,
the analytical model which contains second order modelling errors (corresponding to
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lower response level 5&1) is available. Since the impedance and receptance matrices of a

system satisfy
[Z(w)] [(w)] =[1] (5-15)
by taking the ith column of both s‘ides of (5-15), following equations can be established
(- 0 (IM,] + [AM]) + [K,] + [AK] ) {oy(@)); = {e;} (5-16)
(- &f (IM,] + [AM]) + [K,] + [AK] + [AK ] ) {eg(@)], = {e;) (5-17)

where {e;} is a vector with its ith element equal to unity and all the others zero and o, and
o, are the measured FRF data points chosen. Post-multiply (5-17) by {ai((oj)}T, then

(- &f [AM] + [AK] + [AK,]) {oy(@)), {ai((ﬂj)}T =

- (- @} [M,] + [K,D) {oy(@)), (05(@))] + {e;)} {eg(@))]
(5-18)
Post-multiply (5-16) by {ai(u)k)];, and we have

(- 02 [AM] + [AKD {0y(@)}, {oy(0))7 =
- (- @ M,] + [K,D) {0}, (o0} + (e} {og(@));
(5-19)
Subtract (5-18) by (5-19) and rearrange, then

[AM] ((D?{(Xi((l)j) }1 {Oti((!)k)]g - 0)}2({ai(mk) }2 {oci((oj) }T ) +

[AK] ({o(@)), [og(@))] - {og(@)) {o5(0))3) + [AK,] (o), (og(@))]

= M, (@ {0 (@)}, {05(@) )] - @ {ay(@)) {og(@))3) +

[Ka] ({ai(mj)}l {U.i((l)k)};- {ai(wk)}z {ai(wj)}'f ) + {ei}({a’i(mj) }'{ - {ai((‘)k)}g)
(5-20)

Unlike the case of location using modal data, here we have the chance to choose ; and
o, properly in the measured frequency range as shown in Fig.5.26 so that following

function is minimised
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T T
min {a (@)}, {o4(@)); - {ai(mi)}Tl {og@l, i (5-21)
(?)Jl‘('SA((:))ﬂ ”{ai((‘)k)}z {ai(o‘)j)}l Il

If the modelling errors [AK], wjz[AM] and stiffness change due to nonlinearity [AK ] are
of the same order of magnitude in the sense of the Euclidean norm, then to a first-order

approximation, (5-20) becomes
[AK,] {o5(0)), (oy(@))] = M) (@R (0@}, (o(@))] - 0 {ey(@)); {oy(@))7)

+ [K,] ({50 (oy(@))] - (05(0)), (og(@))]) + (e} ({oy(@))] - (@)D
(5-22)

We state here that when coj=0)r1(the rth natural frequency of the structure corresponding to
the lower response level) and w,=w , (the r'h natural frequency corresponding to the
higher response level), (5-22) will degenerate to (5-6) but we shall leave the mathematical
proof of this relationship between (5-18) and (5-6) to Chapter 6. The principle of the
nonlinearity location process based on equation (5-22) is the same as that of (5-6).
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Fig.5.26 - Illustration of the Choice of Frequency Points

When the measured coordinates are incomplete, the receptance terms of the unmeasured
coordinates can be interpolated based on following equation which is derived from (5-15)

(the ith column of (5-15)):

] mz[ M) [Mmsl] {{am(co)}}+[ Ko [Kmd] {{am(w)}}={ (el }
[Msm] [Mss] {as(w)] [Ksm] [KSS] {as(m)] {0]

(5-23)
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where {o ()} and {0 (w)} are the measured and unmeasured receptances of the ith
column of the receptance matrix. Upon multiplying out (5-23), {o(®w)} can be calculated

as

{og(@)) = (- @ [Myg] + [Kl]) ™ (@2 [Mypy] - [Kypn]) {0(0)) (5-24)

5.6 LOCATION OF NONLINEARITY AND MODELLING ERRORS
IN ANALYTICAL MODEL IMPROVEMENT

So far, the nonlinearity location technique has been developed and has been verified
numerically as well as experimentally and it will be advantageous here to examine the
relationship between the two applications of (i) nonlinearity location and (ii) modelling
error location of a linear structure in the analytical model updating practice. The
discussion is made in this chapter for the location of modelling errors and will be referred

to from time to time in later chapters because of the mathematical similarity of nonlinearity
location and modelling error location. In modelling error location, [AK ] = [O] and what

needs to be located are the dominant modelling errors in [AM] and [AK] (assume the

modelling errors are localised as they usually are in practice).
Following the same reasoning as that used for nonlinearity location, it can be seen that the

localised modelling errors in [AM] and [AK] can be located based on (5-4). Since in the
modelling error location case, [AK ]=[O], therefore {¢,}={¢,}= {¢}; and (5-4) becomes

( [AM] + [AKD) {9),{0)T =- (W IM,] + [K,D) {0},{0}T (5-25)

The modelling error location technique based on (5-25) has been reported in [74] and we
will show here that it can be generalised when measured FRF data are used.

Using measured FRF data, let {oni(a)j) Y ={o(w)},={0,(w)}, so that (5-19) becomes
(- 0% [AM] + [AK]) {oy(@)) {oy(@)}T =
- (- 02 [M,] + [K,D) {ou(@)) {on(@))T + (&) (o)) T (5-26)

Again, it can be shown that when w—w,, (5-26) will degenerate to (5-25). The location
technique given in (5-26) not only generalises the technique developed in [74], but
because every measured FRF data point theoretically contains a contribution of all the
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modes of the structure, the location of modelling errors becomes more consistent. This is
illustrated in Fig.5.27 based on the same mass-spring system used in the numerical case
studies of nonlinearity location. Fig.5.27(a) shows the exact stiffness modelling error
[AK], Fig.5.27(b) shows the error location results [AK]{¢}1{¢]'{ based on (5-25) and
Fig.5.27(c) shows the error location results [AK]{o,(w)} {Qi(ﬂ))}T based on (5-26). Due
to the specific modeshape of the first mode, the stiffness error introduced between
coordinates x;5-x;¢ has been totally missed out as shown in Fig.5.27(b) while it is
located as shown in Fig.5.27(c) when FRF data are used.

exact stiffness errors (a) location using mode 1 (modal data) (b) location using FRF data round mode 1 (c)

Fig.5.27 - Comparison of Modelling Error Location Using Modal and FRF Data

5.7 CONCLUSIONS

Most mechanical structures are nonlinear to some extent and the nonlinearites are usually
localised. The ability to locate a structure's localised nonlinearity has some important
engineering applications. In this chapter, a nonlinearity location technique has been
developed based on the correlation between an analytical model of the structure (which
contains modelling errors) and modal test data which are measured at different response
levels. In the practical case where the measured coordinates are incomplete, an
interpolation technique to estimate the unmeasured coordinates based on the analytical
model has been discussed. The sensitivity of certain modes to localised structural
nonlinearity has been established. It is<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>