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ABSTRACT

The main aim of this thesis is to investigate the use of 
optimisation methods in the assessment of structural system 
reliability and to present improvements for the estimation of 
probability of failure of framed structures. This thesis 
gives a critical review of the methods available for the 
enumeration and identification of all possible failure modes 
or failure regions and discusses a multiple objective linear 
programming method for framed structures.

The evaluation of the joint probability of failure presents 
numerical difficulties and some progress has been made in this 
direction. Existing techniques for evaluating system 
reliability bounds are reviewed from a different angle and a 
new ordering algorithm has been developed to get the best 
second-order lower bound. For gaussian safety margins, a new 
fast and accurate method for the evaluation of this joint 
probability is developed and results are presented.

The applicability of Monte Carlo techniques in failure 
probability estimation is critically appraised and the use of 
stochastic multiextremal optimisation methods for dominant 
failure modes identification is thoroughly investigated. A 
rational combination of these two concepts is developed to 
generate an efficient method for simultaneous probability 
integration and dominant failure modes identification. The 
method is designed for correlated and/or non-normal variables 
without transformation to the standardised normal space. Used 
in conjunction with first-order reliability methods (FORM) 
and/or bounding techniques, this method offers a comprehensive 
and reliable way of estimating the probability of failure of 
structural systems. The evaluation of the sensitivity factors 
used in reliability-based design, with respect to design 
variables, has also been critically addressed within this 
Monte-Carlo framework.
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NOTATION

In this thesis, the standard notations of probability theory 
have been followed whenever possible. These notations concern 
mainly the choice of upper or lower case letters for 
distribution functions and probability density functions on 
one hand and a random variable and its value on the other. In 
general, variables and functions are defined in the 
corresponding sections and the following list contains some of 
the variables which have been used throughout the thesis.

M
P
B

B0
X
M1 pe
5 /
Mp

P

P(.)
Pf
Pi
Plj..k

6
n
N
A
V
<P
<I>

Vector of bending moments at critical sections. 
Vector of bi-action moments.
matrix of influence coefficients due to unit bi
actions .
matrix of influence coefficients due to unit loads. 
Vector of loading variables.
Vector of plastic moments.
Vector of rotations at critical sections.
Vector of nodal displacements.
Vector of mean plastic moments.
Vector of mean external loads.
Reliability index.
Probability of ... 
probability of failure.
probability of occurrence of the ith event.
probability of joint occurrence of the ith, jth, . . kth
events (intersection).
correlation matrix.
number of basic variables.
sample size.
random unit vector.
critical angle for clustering.
standard normal density function.
standard normal cumulative distribution function.



On
R (  a )

8

area of the n-sphere surface.
distance from the origin to limit state surface in 
the direction a.
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CHAPTER I 

INTRODUCTION

The design of a structural system involves many parameters 
governing the kinematic and static behaviour of the structure 
and a mathematical model of analysis. The parameters values, 
concerning the material, the geometry or the external loads, 
contain always some element of uncertainty and they are 
referred to as basic variables. This variability makes the so- 
called 'allowable stresses', used in the earlier codes of 
practice, may be exceeded during the structure's lifetime. The 
risk of structural failure cannot, therefore, be eliminated 
and could only be reduced by a good design practice. The term 
'safe structures' is now being replaced by 'low risk 
structures' for the above reason. This can only be achieved by 
a rational assessment of the reliability due to the 
interaction between the various uncertainties in the basic 
variables, resulting in a probabilistic design.

Consideration of the physical uncertainties in the basic 
variables is itself a computationally expensive problem; the 
uncertainty on the statistical parameters (due to lack of 
sufficient data), makes the problem even costlier. Multiple 
performance requirements (ultimate limit state ULS, 
serviceability limit state SLS,...) add a great deal of 
difficulty and the introduction of model uncertainty gives
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another dimension to the complexity of the problem. This 
explains why much of the progress in structural reliability is 
in the treatment of physical uncertainties in the basic 
variables.

The impact of a probabilistic treatment of the basic variables 
on the structural codes, which should be operational, reflects 
the difficulties mentioned above. The old codes, solely based 
on 'good practice', are gradually replaced by new 
scientifically based ones, where theoretical and experimental 
research results are embodied; although no reliability 
analysis is explicitly involved in the codes, some level of 
reliability is sought through the use of partial safety 
factors. This is a safety checking approach and referred to as 
level 1 method.

The ^o-called level 2 methods are based on approximations of 
the failure domain and/or the joint probability distribution. 
The first approximations of the joint probability distribution 
used are based on second moment theory.

Second moment concepts can be traced back in early works on 
structural reliability [Mayer 1926, Freudenthal 1956, 
Rzhanitzyn 1957, Basler 1961]. Cornell [1969a] introduced the 
concept of reliability index, defined in terms of the mean and 
standard deviation of a linearized limit-state, as a 
reliability measure. Due to the lack of invariance in 
Cornell's formulation, Hasofer and Lind [1974] proposed an 
invariant expression by nonhomogeneous linear mapping of the
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basic variables into a normalized and uncorrelated set of 
variables. This becomes to be known as the Hasofer-Lind 
Reliability Index. It was thought that the reliabilities of 
different structural elements may be compared with this 
reliability index, without actual evaluation of their failure 
probabilities. In structural reliability theory, this is 
referred to as the first order second moment method (FOSM).

The FOSM approach has been later extended to allow for 
different probability distributions of the basic variables by 
a transformation into standard normal ones. This gave rise to 
the first-order reliability method (FORM). This has been also
referred to as 'extended FOSM' or 'advanced FOSM' in the
literature. In an attempt to improve the accuracy in
estimating the failure probability, a second order
approximation of the limit state surface was used in what is 
referred to as the second order reliability method (SORM) .

The so-called level 3 methods attempt the estimation of the 
failure probability at the element and/or system level, using 
the joint probability distribution of the basic variables. 
This implies the integration of the joint probability density 
over the failure domain, which is a computationally expensive 
operation. As a structure can fail in many interdependent 
modes, the system failure can also be seen as the union of a 
number of failure modes whose safety margins are correlated. 
These two possible approaches for the estimation of system 
reliability are critically studied and improved in this
thesis.
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1 . 1  S c o p e  o f  t h e  t h e s i s

The overall objective of this thesis is to critically assess 
existing methods of structural system reliability for framed 
structures under time-invariant loads, to discuss the 
applicability of some optimisation methods and to contribute 
to the improvement of the failure probability estimation. 
Various aspect of reliability analyses are examined. These 
aspects cover the identification of stochastically dominant 
failure modes or dominant regions of a failure domain, the 
variables transformations and their approximations and the 
probability integral in normal and original space.

A crucial problem, from the computational point of view, is to 
find the parts of the failure domain which contribute most to 
the overall probability of failure. Efficient methods for such 
purpose would improve dramatically the overall efficiency of 
the failure probability estimation both in computing time and 
accuracy. Various linear and nonlinear optimisation 
techniques, used or of potential use in failure modes 
identification, are discussed. Special emphasis has been given 
to stochastic methods.

With identified dominant failure modes/failure regions, 
accurate probability estimation remains a very difficult task; 
attempts to improve probability estimations in that respect 
are made, using both deterministic and stochastic methods. 
Deterministic methods are investigated through improvements of
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the multinormal integral over polyhedral domains on one hand 
and system bounds on the other. Stochastic estimation by Monte 
Carlo methods and the possibilities of improvement by variance 
reduction techniques have been addressed. Both the so-called 
hit-or-miss Monte Carlo and sample-mean methods are discussed. 
The problem of reliability-based optimisation of structural 
systems has also been addressed in a critical manner, with 
assessment and the impact of reliability analysis efficiency 
on optimum designs.

1 . 2  L a y o u t  o f  t h e s i s

The thesis comprise three main parts :

• The problem of failure modes identification for 
plastic structures is reviewed in chapter 2. It contains a 
crity:al appraisal of different heuristic and conventional 
optimisation techniques for identifying the stochastically 
most dominant modes. In chapter 3, the transformations to 
normal space and related approximations are assessed, and a 
failure probability preserving transformation of the limit 
state surface for highly reliable structural systems is 
proposed. Chapter 3 reviews also the linear and nonlinear 
failure surface approximations. The probability of failure 
estimation for a given set of gaussian safety margins is 
tackled in chapter 4, where a new fast and accurate method is 
proposed, along with a critical assessment of the existing 
methods. Structural system bounds on the probability 
estimation are thoroughly treated in chapter 5, with emphasis



14

on the optimisation of the events ordering.

• In the second part, chapter 6 comprise a review of 
multiextremal optimisation methods with its potential 
applicability to the identification of dominant regions of a 
failure domain in non-normal space. Stochastic methods are 
particularly scrutinised and a suitable algorithm for the 
mentioned problem is proposed. Monte-carlo methods for 
probability integration are analyzed in detail in chapter 7. 
An integrated algorithm for integration and dominant regions 
identification, based on the results of chapter 6, is 
proposed.

• The third part consists of a bibliographical and 
critical review of the reliability based optimisation 
techniques for structural systems in chapter 8.

/

Finally, chapter 9 gives general conclusions and 
recommendations for future researches.
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C H A P T E R  I I

FAILURE MODES IDEN TIFIC A TIO N  FOR STRUCTURAL

SYSTEMS

2 . 0  INTRODUCTION

Different methods can be used for the estimation of the 
probability of failure of structural systems. These methods 
may involve first-order approximations, bounding techniques or 
direct integration by some manageable approach such as 
simulation. In all cases the outcome is a close approximation 
of the integral of the joint probability density over the 
failure domain. Because of the sharp decaying nature of the 
tail^ of the probability density functions, most of the 
contribution to the overall integral is concentrated around 
the locally high density points on the boundaries of the 
failure domain. These local concentration areas are the
stochastically dominant regions with regard to the probability 
of failure. For the multinormal standardised distribution, the 
dominant regions are the neighbourhoods of the origin- 
projection points on the failure surface, due to its 
rotational symmetry. For structural systems with normal basic 
variables, each local minimum corresponds to a different 
failure mode of the structure such as plastic mechanism or 
buckling mode. The global minimum corresponds to the 
structure's reliability index in the FORM sense. For non
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normal basic variables, often more than one local minimum 
might correspond to a single failure mode, once the variables 
are transformed to normal space. In all cases, good estimate 
of the probability of failure cannot be obtained without 
identification of these local minima. In structural systems, 
the number of failure modes is usually large for all of them 
to be identified, and so is the number of local minima. 
However, all of them are not required for a good estimation of 
the probability of failure. In most practical situations, if 
pmin is the global minimum, only few other local minima would 
have P values with probabilities exceeding 1% or so of that of 
Pmin •

For rigid-plastic structural systems, safety margins (failure 
modes) are linear in terms of the basic variables. Within the 
FOSM theory, the local minima of P correspond to different 
hyperplanes of the failure surface and therefore to different 
failure modes. With the distributional approach, this is also 
the case if the basic variables are normally distributed. A 
failure mode is entirely described by its reliability index P 
and its correlation with the other (significant) failure 
modes. The search for the dominant regions coincides with that 
of the failure modes. The failure event is expressed as the 
union of discrete events corresponding to those failure modes. 
This explains why a considerable amount of research in 
structural reliability, has been devoted to the identification 
of dominant collapse mechanisms of rigid-plastic structures.

Several methods have been developed for generating all
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dominant failure mechanisms. These methods are based on :
- Heuristico-combinatorial techniques
- Linear programming
- Non-linear programming
- Random search or stochastic optimisation

In the following sections are critically reviewed some of the 
known methods, with particular attention given to a new vector 
maximisation approach.

2 . 1  H EURISTIC METHODS

2 . 1 . 1  T h e  p - u n z i p p i n g  m e th o d

This method was proposed by Thoft-Christensen [1982] and was 
furtfrfer developed by Thoft-Christensen and Sorensen [1982a] . 
The failure of a structure with n elements is modeled as that 
of a series system of selected parallel systems, each one 
defined by the joint failure of k out of n elements. The k- 
subsets are selected such that their joint reliability index 
lies within the interval [Pmin, Pmin + 8], where pmin is the 
smallest value among all the k-subsets, and 8 is a parameter 
that would dictate which subsets have to be discarded due to 
negligible contribution. The selected k-subsets have been 
referred to as the critical k-subsets, and the resulting 
probability estimate as that of the systems reliability at 
level k. It has been claimed by the above authors that in 
general it is not necessary to go beyond level 3. But it is
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believed that the maximum level for a good estimate must 
depend on the degree of redundancy of the structure, and 
cannot be preset by the investigator.

The viability of the method depends very much on the size and 
complexities of the structure, and the level at which the 
failure is arbitrarily defined. If this level is defined to 
correspond to the formation of a mechanism, the number of 
structural analyses required may become extremely high. If the 
level is set too low, 2 or 3 for instance, the estimate may be 
too conservative, as one gets only an upper bound on the 
probability of failure of some mechanism that includes the 
given k-subset. The main advantage of the method is that it 
can handle structures with brittle elements.

For fully ductile structures, the p-unzipping idea is extended 
to pJ/&stic mechanisms, and referred to as systems reliability 
analysis at mechanism level. Each elementary mechanism is 
taken in turn and combined with others to form a new combined 
mechanism. The combined mechanisms are ordered in increasing 
values of their reliability indices. The ones with reliability 
index exceeding some prefixed threshold level are discarded, 
and the others are combined again with the elementary 
mechanisms, to yield a new set of mechanisms. This new set is 
treated in the same way, by discarding high reliability 
mechanisms, and the procedure is repeated. Although it is 
claimed that this method gives good results, the discarding 
procedure of the mechanisms might prevent the identification 
of significant ones. There is no reason to believe that a low
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reliability index mechanism cannot yield a significant one, if 
combination is carried out further without discarding at an 
early stage. This could be the case if the combination is 
carried out further, with elementary mechanisms, which have 
low correlation with the discarded one. It can therefore be 
argued that the p-unzipping approach is not very suitable at 
the mechanism level.

2 . 1 . 2  B r a n c h - a n d - b o u n d  m e th o d

The branch-and-bound method was first applied to structural 
reliability problems by Murotsu et al. [1981,1983]. More or 
less the same approach has been later proposed by Tang & 
Melchers [1984], under the heading of truncated enumeration 
approach.

/

The aim of the method is to generate sequences of potential 
plastic hinges, leading to failure mechanisms with non 
negligible contribution to the probability of failure. Each 
sequence is referred to as a failure path, and if it 
corresponds to a mechanism it is called a complete failure 
path. In order to optimise the search, the build up of the 
sequence is continued with a new hinge candidate, if the 
resulting reliability of the sequence does not exceed some 
current threshold level; otherwise the hinge is not added to 
the sequence. The probability of failure associated with a 
given sequence is defined as that of the joint occurrence of 
failure of its members. The threshold probability level for
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discarding a new candidate from joining a sequence is set to 
that of a fixed fraction of the highest sequence probability 
found so far. The automatic updating of the threshold 
constitutes the bounding operation and the branching consists 
of selecting the path of maximum probability. The complete 
failure paths are stored as dominant failure modes; the 
sequence corresponding to the bounding threshold, at the end 
of the search, is taken as the most dominant failure mode.

The method can generate a set of dominant failure modes with
a fair level of confidence, especially if there are only few
dominant ones. However, it is difficult to prove that this
method can always select all significant mechanisms, and there
is a high probability that it would miss some significant
failure modes. As presented by Murotsu et Al. [1981, 1983],
the bounding procedure is carried out right from the start at
the first hinge level. The critical threshold based on a

/single member failure (or even two members) may be too high 
and could cause the premature elimination of paths 
corresponding to some significant failure modes. An initial 
bounding threshold is better selected, in the author's 
opinion, as a fraction y of the probability of union of the 
failure events of significant elementary mechanisms, or its 
optimal lower bound ( see Chapter 5) . This would give a 
threshold which is likely to yield a value close to the 
overall probability of failure, and the fraction y would be 
more related to it than to some single or pair of members 
failure. The updating can be carried out by adding newly found 
failure modes to the union and the new probability threshold
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can be obtained at a relatively low extra cost. This would 
reduce the number of unnecessary branchings in a favourable 
situation, when one of the elementary mechanisms is the most 
dominant.

The branch-and-bound method has the flexibility for adaptation 
to deal with structures with various material behaviours, 
including ductile, brittle, strain-softening and strain
hardening [Melchers & Tang 1984] . But its main weak points are

- Most of the discardable mechanisms are generated 
several times, unnecessarily increasing the computing 
cost.
- The number of branchings increases sharply with the 
size of the structure; the effect is worse if the most 
dominant modes are not found first.
- There is no guarantee that all dominant mechanisms are 

■'^generated.
- If the variables are not normal, the evaluation of the 
failure path probabilities can be very costly and the 
overall cost may be prohibitive.

2 . 2  LINEAR PROGRAMMING BASED METHODS

2 . 2 . 1  L i n e a r  p r o g r a m m in g  (LP) f o r m u l a t i o n  o f  l i m i t - s t a t e  

a n a l y s i s

Early attempts of such formulation are due to Charnes and
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Greenberg [1951], Dorn and Greenberg [1957], Charnes et al 
[1959]. These formulations are mainly based on combination of 
elementary mechanisms, which is optimised to yield the load 
factor for a given proportioning of the external forces acting 
on the structure. The primal-dual relationship between 
kinematic (minimisation) and static (maximisation) 
formulations was first suggested by Charnes et al [1959]. The 
constraints of the primal LP are expressed as compatibility 
equations, and the elementary mechanisms are presented as a 
particular technique of getting these equations. This duality 
is further developed with explicit interpretation of the 
physical meaning of the variables for both programs by 
Gavarini [1966]. The compatibility equations (or the 
equilibrium equations for the dual program) are derived using 
an independent set of mechanisms, referred to as 'basic 
mechanisms' by Munro [1965]. A basic mechanism is obtained by 
firsts transforming an indeterminate structure into a 
determinate one by inserting appropriate hinges and then 
inserting a further hinge.

Based on Gavarini's approach of basic mechanisms and from the 
results of Jenkins [1961], a comprehensive study of the 
linear programming duality in plastic analysis was carried out 
by Smith and Munro [1972]. This study includes both the 
theoretical bases of the duality and the practical aspects of 
the simplex formulation.

Both elementary mechanisms and basic mechanisms approaches 
lead to the same results; however it is important to mention
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the following points:
In the elementary mechanism formulation, m more 

variables are needed (mechanisms combining variables),for the 
primal approach, m being the number of elementary mechanisms. 
This leads to m more constraints for the dual program 
(static) . This has an impact on both storing space and 
computing time.

Identification of elementary mechanisms can be 
difficult for complex structures with complex patterns of 
loading. For basic mechanisms formulation, it is often 
possible to select a suitable release system without much 
difficulty [Munro 1965].

- It is possible to transform an elementary mechanism 
formulation into a basic mechanism one, by the elimination of 
the combining variables in the primal program, or by the 
elimination of m dual variables in the dual program, thus 
removing all equality constraints from the latter.
It follows therefore that the basic mechanism approach is much 
more suitable for practical applications.

The ideal case of a hyperstatic structure, subject to 
concentrated loads described by 1 random parameters, is 
considered in the following. If n is the number of critical 
sections, and c the static indeterminacy, then the moments 
vector M  in the critical sections can be expressed in terms of 
an indeterminate forces vector p (at appropriately selected 
sections) and the loading parameters (equilibrium conditions) 
as
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M
( I  0 
, B B. (2 .1)

where B and B0 are the influence coefficients matrices due to 
unit bi-actions at the critical sections and the loading 
positions. The rotations are linked by the compatibility 
conditions, and the nodal displacements can be expressed in 
terms of the rotations as

Let Mp be the vector of plastic moment capacities. Two 
possibilities are to be considered. The first one assumes that 
the loads are proportional to a single parameter and the 
plastic moments are known (or proportional ). This yields the 
known single objective formulation of the static and kinematic
LP's. The second one assumes several independent loading

/  . . .parameters together with proportional or independent plastic
moments, and yields a multiobjective static LP.

The geometrical interpretation of the LP problem, and the 
physical interpretation of the simplex tableau content, are 
necessary for efficient identification of failure modes. In 
the simplex tableau of the kinematic program, the decision 
variables correspond to the rotations (or axial displacements 
for trusses), while the reduced costs at the bottom correspond 
to the moments at the critical sections. In the dual program, 
the variables correspond to the moments and the reduced costs 
to the rotations. The feasible domains of both primal and dual
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problems are polyhedra, i.e. subsets bounded by hyperplanes 
(constraints) which intersect at vertices, or extreme points. 
By duality, extreme points of the primal program correspond to 
facets of the dual programm and vice-versa. At least one 
vertex constitutes an optimal solution. For the primal 
program, this corresponds to a specific failure mode (set of 
rotations), which is represented in the dual (static) by a 
facet. An extreme point is entirely defined by the 
intersection of n hyperplanes( n being the dimension of the 
problem) . If the number of active constraints na at this point 
exceeds n, many basic feasible solutions correspond to this 
extreme point, and is said to be degenerate. The problem of 
identifying the failure modes becomes therefore a problem of 
locating vertices and facets of polyhedra.

S i n g l e  o b j e c t i v e  f o r m u l a t i o n

/
With a single loading parameter X , the matrix B0 is reduced 
to a column vector b 0 , and the static LP program is

X

ID\ (2*3)IB  b m] • (J) * Mp

Maximise 
s.t. s

The corresponding kinematic LP is

Minimise MpT * 0

s. t. :
( 2 . 4 )
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where the last equality constraint scales the vector of 
rotations.

M u l t i o b j e c t i v e  f o r m u l a t i o n

The case of independent loading parameters can be formulated 
as a multiple objectives linear programming problem (MOLP) , if 
the plastic moments are assumed fully correlated,

In the above program, the optimality of a solution is replaced 
by the concept of noninferior or nondominated or efficient 
solution, or Pareto-optimal solution [Pareto 1896]. With 
several objectives, a feasible solution is said to be 
efficient, if no improvement on one objective can be obtained, 
by changing the current decisions variables' values, without 
loosing in at least one other objective. This is known as 
strong noninferiority. A much broader definition is the weak 
noninferiority, where improvement on one objective implies 
nonimprovement in at least another one (Fig. 2.1) . In the MOLP 
discussed above, the set of all weakly noninferior objective 
values coincide with the failure surface. It corresponds to 
the optimal solutions obtained by replacing the set of 
objectives by their linear combinations.

Maximise a l t x1**2' *
(2 . 5)

s. t
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BCD j strongly efficient s e t  
ABCDE « weakly efficient s e t

F i g  2 . 1  S t r o n g  a n d  w e a k  e f f i c i e n t  s e t s

Solutions of MOLP problems have been developed by several 
authors during the sixties and seventies. The extension of the 
simplex algorithm to the multicriteria simplex algorithm 
allows the generation of all efficient extreme points [Evans 
and ^teuer 1972; Yu and Zeleni 1975; Ecker and Kouada 1978]. 
Methods of generating the whole efficient set are also 
available. [Yu and Zeleni 1976; Izermann 1977; Ecker and 
Kouada 1980].

One should bear in mind that MOLP methods have been developed, 
in the first place, to solve multidecision making problems 
encountered mainly in Economics and Management. The size of 
the problems addressed in these fields, in terms of number of 
variables, objectives and constraints, is generally much 
smaller than that one usually face in structural analysis. The 
aim of the methods mentioned in the previous paragraph is to
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find the whole efficient set. In structural systems this leads 
to finding all failure modes regardless of their stochastic 
importance and for real structures, this is unrealistic and 
unnecessary. From the structural point of view, it has been 
already pointed out that the number of failure mechanisms may 
be too high for an entire set to be identified. In linear 
programming terms, this leads to a large number of decision 
variables, objectives and constraints, resulting in a huge 
number of efficient extreme points and as many-folds of 
corresponding efficient basis. In single objective linear 
programming the optimality criterion, for an extreme point, is 
simply the negativity of the reduced cost coefficients within 
the simplex tableau. The efficiency in MOLP is much more 
involved; it must be evaluated for each non-basic variable 
which necessitates each time the solution of a linear 
programming sub-problem. The number of variables in the sub
problem is at least equal to (2n+l-c+d) , where d is the number 

/of degenerate basic variables at the current extreme point and 
the number of constraints is (1+d) [Evans and Steuer 1975]. 
Additional calculations and storage are needed for generating 
the maximal facets corresponding to the failure modes. The 
increase in the computing cost, with the increasing size of 
the problem, will therefore be very high.

Investigations on the applicability of these methods have been 
carried out using the Adbase code [Steuer 1986]. This Fortran 
code generates only the efficient extreme points. The facets 
generation corresponding to failure modes, has been carried 
out by the author by parametric decomposition of the
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normalised weight space [Yu and Zeleni 1976], using the 
reduced cost matrix of each extreme point generated.

The outcome of these investigations is that this method has 
limited use in structural reliability at the present stage of 
its development due to the restriction on the size of the 
problem and cannot be used beyond simple single or double 
storey frame. The number of efficient bases is very high, and 
there is no way of predicting this number before hand. For the 
case of Adbase package, an upper bound on the number of 
efficient bases is part of the necessary input data. An 
inputed value lower than the correct one would terminate 
prematurely the program.

The use of the MOLP method in failure modes generation has 
been also investigated by Nafday et al. [1988b]. Their 
conclusions about the practical feasibility of the method are 
not believed to be realistic, even with full correlation 
between resistance parameters and very limited number of 
loading parameters ( 3 or 4 say).

A different use of the MOLP concept, for a reliability index 
minimisation, is discussed section 2.3 .

2 . 2 . 2  D o m in a n t  m o d e s  g e n e r a t i o n

2 . 2 . 2 . 1  L o w e r  a n d  u p p e r  b o u n d  s a f e t y  m a r g i n s  c o n c e p t s
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This concept was introduced by Ditlevsen and Bjerager [1984] . 
The constraints of the system (2.5) are written as a set of 
2n linear safety margins Z1sl

Z / 1 - Af B* - Pi
Z/' - M s*-Pi

sipi, i-1, . . . , c
c

si E bi-c.jPj
i-i

i - C + 1 ,  . . .  , 1 3

(2 . 6)

where Sj represents the + or - sign. This set is referred to 
as lower bound safety margins. The structure is in a safe 
state, if a choice of p is made such that all the above safety 
margins are non-negative. For a fixed choice of p, the 
reliability is a lower bound on the overall reliability 
corresponding to all possible choices of p. This lower bound 
is optimised by maximising the Hasofer-Lind reliability index 
pHL corresponding to the smallest reliability index of the 2n 
safety margins. This optimisation is formulated as follows

Maximise p
s.t. : P * p / *  (2.7)

where PiSi is the reliability index of the lower bound safety 
margin ZLsi. The alternative optima of the above program are 
referred as the dominant lower bounds safety margins. 
Numerical experience [Ditlevsen and Bjerager 84] shows that 
the resulting lower bound is dependent on the original choice 
of the statically determinate system. No general strategy is 
available for an optimal choice which would maximise the 
reliability index.
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Upper bounds on the reliability index are shown to be obtained 
from positive linear combinations of lower bound safety 
margins (equations 2.6) which are independent of p. Those 
particular combinations yield full plastic failure modes 
expressed as a difference between internal and external work. 
This obviously constitutes an upper bound to the Hasofer-Lind 
reliability index. Generation of optimal combinations, which 
would lead to the most dominant modes, seem to be very 
difficult.

2 . 2 . 2 . 2  L i n e a r  p r o g r a m  f o r  d o m in a n t  f a i l u r e  m o d e s

A vertex enumeration technique based on kinematic theorem

The parametric linear programming approach for finding 
collapse modes, has been attempted by different authors 
[Cas^iati 1978], [Nafday et al. 1987]. In the latter 
reference, the primal program (2.4) is used and the extreme 
points (i.e failure modes) are ranked according to their 
collapse loads, using Murty's ranking theorem [1968]. This 
theorem states that if the extreme points xlrx2,..,x1 of a 
given polyhedron Ax=b, are the best with respect to a given 
linear objective function z (x) =cTx, then the next best extreme 
point is adjacent to one of these points. By pivoting from one 
basic feasible solution to an adjacent one successively, 
failure modes are generated. The method has been referred to 
as the polytope extreme point method (PEP) . This idea of 
ranking the extremes points which happen to correspond to the 
failure mechanisms is very appealing one, however the
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following points have to be raised :
- The failure mechanisms generated correspond to a 

prefixed proportioning of the loading parameters, and no 
provisions where made for pivoting to other mechanisms which 
would correspond to a different proportion of the loads. This 
implies that the whole operation is to be repeated for other 
proportions from scratch, as the failure domains are no longer 
the same, unless there is full correlation between the loads.

- More important is the criterion for ranking the extreme 
points, which seems to be based on the load factor. As the 
problem is formulated in terms of the original variables, even 
assumed normally distributed, the load factor (linear 
objective function of the LP) appears to be confused with the 
reliability index of the corresponding failure mode. It would 
be more appropriate in reliability analysis to rank the 
extreme points according to the distance to the origin in u- 
space, obtained from the transformation of the load and 
resistance variables. But the ranking criterion function 
becomes non-linear in the space of rotations, with the 
expression for uncorrelated moments capacities as

P i -  — *±--------- ^ (2 . 8)

nE « p/ V  + E % 2*/
Ni-i  J > 1  J

where |l and o refer to the mean value and standard deviation 
of the plastic moments and the loading parameters. With this 
modified nonlinear objective function Murty's theorem cannot 
be applied. This problem, which consists now of minimising a
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non-linear function over a polyhedron, is in fact an NP-hard 
problem of nonconvex constrained optimisation. It can be 
tackled using directly or adapting existing methods in the 
mathematical programming literature relevant to the problem. 
An outline of the different methods which have been used, or 
are of potential use, is given in the next section.

2 . 3  DOMINANT MODES GENERATION BY QUADRATIC PROGRAMMING 

2 . 3 . 1  K in e m a t i c  f o r m u l a t i o n

Using the kinematic formulation of the limit-state, it is
possible to derive a general expression for the reliability
index in terms of the rotations/displacements (Equation 2.8).
Dominant failure modes are generated by directly minimising
such expressions, in a constrained quadratic program, where

/the constraints are derived from equation 2.2. This approach 
has been used by Ishikawa and Iizuka [1987], within the so- 
called PNET method [Ang and Ma 1982] . In this method, the 
failure modes are generated in a sequence such that the 
correlation between two consecutive modes does not exceed some 
prefixed limit. The resulting set of failure modes is then 
assumed independent, thus simplifying the evaluation of the 
overall probability of failure. The problem is expressed in 
the space of the mechanisms combination coefficients as 
decision variables, and the reliability index as the objective 
function. A first representative mode is obtained by a 
sequential linear programming algorithm, and the following
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modes are obtained by minimisation with an extra correlation 
constraint. The problem of nonconvexity does not seem to have 
been addressed; the failures modes generated are not 
necessarily the most dominant ones, as the search path is 
fixed only by the initial starting point and the demarcating 
correlation value.

The direct minimisation of the reliability index as expressed 
in (2.8), can present some difficulties due to the shape of 
the objective function. A better formulation is

h 1
Maximise (OjQ^2 + (o  ±)

i- i 1-1
s.  t .  :

^p r • 0 - \ikT • 5 - 1
( 2 . 9 )

fI  B *
0 B,

/with a quadratic objective function, and linear constraints. 
As the failure modes in the feasible domain correspond to the 
vertices, the global optimum is necessarily a vertex. A 
possible method for solving this program is the one proposed 
by Cabot and Francis [1970], based on Murty's theorem on 
ranking the extreme points using an auxiliary LP, whose 
objective function is an overestimate of that of the original 
program subject to the same constraints. The extreme points 
are ranked according to the auxiliary objective which provides 
an upper bound to the main objective function at the current 
best solution, while the previous best solution constitutes 
the current lower bound. A backward pivoting away from the
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optimal solution of the auxiliary LP leads to a sequence of 
improved solutions. It is not explicitly proven in the latter 
reference that the sequence converges to the global optimum . 
The method proposed by Falk [1973], also seems to be suitable 
for this problem. In this method a branch-and-bound approach 
is adopted, and the simplex algorithm is used to generate the 
vertices, which provides bounds for the objective. Another 
branch-and-bound type approach, is due to Falk and Soland 
[1969] . This approach minimises convex e n v e l o p e  functions, 
which closely overestimate the objective, over partitions of 
the feasible domain. The partitions are refined until the 
global optimum is isolated in a small area. This is similar to 
the domain-partitioning approach used in global optimisation 
of Lipschitz functions [Meewella and Maine 1988]. The main 
difference is that the convex envelope is less conservative 
than the global Lipschitz constant, and much easier to find. 
Very ̂ recently, Simoes [1990], addressed the dominant failure 
modes identification as a nonconvex quadratic programming 
problem using this method, and claimed some success. A 
different approach to this problem can be the class of c u t t i n g  

p l a n e  m e t h o d s  [Tui 1964, Ritter 1966, Konno 1976], where a 
local optimum is found and its neighbourhood is eliminated 
from the feasible region by a cutting plane.

2 . 3 . 2 .  S t a t i c  t h e o r e m  f o r m u l a t i o n

The above remarks suggest the extension of the vertex ranking 
idea to the multiparametric formulation of the static theorem
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LP, into a 'facets ranking algorithm'.

Here the vertex ranking is replaced by a f a c e t s  r a n k i n g  in the 
objective space, according to their reliability indices. The 
pivoting from one vertex to an adjacent one is such that the 
latter is incident to a better facet. A sequence of extreme 
points is generated following a path of decreasing reliability 
index. The last point of the sequence is incident to a locally 
optimal facet with all its adjacent facets having higher 
reliability indices.

The incident facets to a given extreme point are found by 
convex parametric decomposition. Let W be the simplex

k
w -  { v  e R* I £0 w± -  1 } (2.10)

It is shown in Yu and Zeleni [1975, 1976] that this simplex 
can /be decomposed into subsets of polyhedral shape 
corresponding to each feasible basis (or extreme point x ± 

for the case of nondegeneracy) , such that for each w from Wlf 

xi maximises i/Cx^ over the feasible domain. If Z t  is the 
reduced cost matrix corresponding to J lr the subset W± is 
defined by the optimality condition, which implies the non
positivity of the reduced cost coefficients obtained by convex 
combination of the rows of Zt

w T Z± * 0 (2.11)
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A solution of equation 2.11 above corresponding to an optimal 
set equal to a maximal facet of dimension (n - 1 ), must lie on 
the boundaries of W± with another subset As this solution 
is shared by all extreme points incident to this facet, it 
also lies on the intersection of the boundaries of their w-  

s e t .  As this solution must yield a gradient of the combined 
objective normal to that of the facet, it is unique for the 
whole facet. It follows that the solution can only be a vertex 
of Thus, finding the optimal convex parameters for an
incident facet to a given extreme point amounts to finding a 
vertex of the polyhedron defined by equation 2.11 and the 
simplex W. This can be obtained by solving an auxiliary linear 
program

Maximise wT. 1 
s .  t .  :

w TZ 1 0 ( 2 . 1 2 )

/  w T. 1 - 1

The above auxiliary LP is to be used within the main LP to 
generate incident facets to the current extreme point. 
Solutions are obtained by 'free' pivoting over all vertices. 
Other methods of identifying incident facets to a given 
extreme point can also be used [Izermann 1977/ Ecker et al. 
1980] .

The investigations carried out suggest that the method cannot 
be of practical use. The main reason is that the method needs, 
for each extreme point on the path, the solution a single
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objective LP for all alternative optima. The number of these 
alternative optima increases dramatically with the number of 
parameters wlt due to the highly degenerate nature of the main 
MOLP.

2 . 4  RANDOM SEARCH AND SIMULATION TECHNIQUES

Due to lack or limited success of the failure modes 
identification deterministic methods discussed above, and 
because most of them cannot deal with non-normal variables, 
stochastic techniques are becoming the focus of interest in 
system reliability research. Stochastic techniques and their 
applications in structural reliability are discussed in detail 
in Chapters 6 and 7.

/
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CHAPTER I I I

VARIABLE TRANSFORMATIONS AND LIM IT-STA TE  
APPROXIMATIONS

3 . 1  VARIABLE TRANSFORMATIONS

3 . 1 . 1  B a s i c  p r i n c i p l e s

Given a set of random variables X -  (Xl r X2, . . ., Xn), with known 
joint and continuous probability distribution Fx over a

standardized uncorrelated normal n-dimensional vector, is said 
to be probability preserving if

and the image of any connected subset of S is a connected 
subset in T ( S ) .  This last property is very important for 
reliability analysis, as the safe set (or the failure set) 
remains connected after transformation and the probability of 
failure can be written in terms of the u-space variables as

subset S of Rn, a transformation T: X > U , where U is

P ( X  E S )  -  P { U  E T ( S )  ) 

E [ X ]  E S  ~  E [ U ]  E T ( S )
( 3 . 1 )

( 3 . 2 )

and the limit-state function G ( x ) = 0 becomes

G ( r M u ) ) -  o ( 3 . 3 )
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The jacobian matrix of the transformation is denoted JT

j t "
f d T f 1 (u ) x 

dUj
( 3 . 4 )

which allows the evaluation of the gradient and the hessian of 
the limit-state function in the u-space

V ^ I r M u ) ]  -  {Jt~1) t VxG{x ) ( 3 . 5 )

Hu [G (T _1 ( u) ) ] -  { j , i T Hx [G(x ) ]  { j r } + { V xG(x)  )

( 3 . 6 )

where Hx represents the hessian matrix of the limit-state 
function in the x-space, and HT( i , j )  is the n-dimensional 
vector

HT{ i , j )  -  [ ' k- 1 , 2 ,  . . . ,n\ T ( 3 . 7 )

/

For a given limit-state function, there are an infinite number 
of transformations T from x-space to u-space. Each 
transformation results in a different image of the failure 
set, or a different transformed limit-state surface. A 
transformation can have two aims :

- The reliability assessment, through the evaluation of 
the probability of failure, or the reliability index,
- The easy identification of the most contributing parts 
to failure, or dominant failure modes.

An ideal transformation would be the one which has the two 
following features:



4 1

• The images of the locally dominant regions in x-space 
are themselves locally dominant in u-space, in more or 
less the 'same proportions',
• The image of any connected subset is independent of the 
subscripting of the original variables, so that the image 
of the failure domain is independent of the 
investigator's numbering preference of the variables. In 
the FORM theory, this would lead to the same set of the 
so-called p-points, and the same reliability measure for 
all investigators.

If the first of the two features described above is met, the 
dominant regions in x-space can be qualitatively identified 
through their images, but their quantitative contributions to 
the overall failure probability would not be known with 
acceptable accuracy without the second feature.

/
With these basic principles in mind, some existing 
transformations used in structural reliability, are outlined 
in the next section, for comparison purposes with a proposed 
new type of proportion-preserving transformation.
As the aim is to facilitate the evaluation (or estimation) of 
the probability of failure or the reliability index at low 
cost, exact transformations are often replaced by approximate 
ones, which coincide at the p-points.

3 . 1 . 2  T h e  R o s e n b l a t t  t r a n s f o r m a t i o n

Rosenblatt [1952] proposed a partial conditioning approach for
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generating uniformly distributed random vectors between 0 and 
1, from non-uniform joint distributions. This uniform set can 
be transformed into another set of standardised normal vectors 
by inversion of the gaussian distribution function for each 
component separately. This has been first used in structural 
reliability by Hohenbichler and Rakwitz [1981] . The marginal 
distribution density of the first i variables irrespective of 
the others is

and the conditional distribution function of the i th variable, 
conditioned on the first ( i - 1 )  ones is

f 1 ( x 1 , x z . . . , x 1) -/••/ f x (1 • a 2 • •

( 3 . 8 )

F1 ( x i \x1. x z , . . . , x i _z ) f o r i  h 2

/
(3.9)

Then the Rosenblatt transformation TR is

-  ^ r 1 (F 1 ( x 1) )

u± - 0"1(Fi(xi I X1, X 2 , . . . i-2,3, . . . , n
( 3 . 1 0 )

and its inverse transformation is straightforward

x x -  F1 1 (€> ( lzx ) )
x i " ^i "1 ( ® ( « i )  \ x1,x2, . . . i - 2 , 3 ,  . . . ,n

( 3 . 1 1 )
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For the case of independent variables, the transformation and 
its inverse simplify to

u± - ® _1 (FXi ( x d) ) 

x d - ( ud) )
( 3 . 1 2 )

For correlated normal variables the transformation and its 
inverse are linear, and amounts to a an L.LT factorisation of 
the correlation matrix C

C - L . L t 

U -  L . X  

X - IT1 . U

( 3 . 1 3 )

For log-normal variables, also the transformation is simple, 
and it consists of applying the above linear transformation to 
the logarithms of the variables.

/

Apart from the above particular cases, the Rosenblatt 
transformation is often very costly process, as the evaluation 
of conditional distributions needs to be done numerically if 
the joint distribution function is not tractable analytically.

As a first-order approximation, the Rosenblatt transformation 
is applied only at the origin-projection points of the limit- 
state function in u-space. Both the density and the 
distribution are equated between the P-points and their 
reciprocal images. This means a first-order expansion of the 
Jacobian matrix about the p-points. However, those points are
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not known in advance. An algorithm for their evaluation, 
referred to as the ' p-algorithm ', has been proposed by 
Fisseler and Rakwitz [1979], for independent variables and 
generalised to dependents ones [Hohenbichler & Rakwitz, 1981], 
using the Rosenblatt transformation. This algorithm consists 
of sequential linearizations of the transformation, leading to 
a sequence of x-points converging to a reciprocal image of a 
local minimum of P in u-space.

Ditlevsen [1981], reported more or less the same ideas under 
the heading of 'normal tail approximation' (NTA). Cheng and 
Lind [1983], suggested a slightly improved version of the 
'normal tail approximation' by equating also the slopes of the 
densities at the approximation points. An 'equivalent' set of 
independent normal variables N(|ii,ai) is derived by introducing 
a third parameter as follows

° x

f xU ) — -  ( 3 . 1 4 )
a x  Ox

. a(x-n^) , . X - \ 1 X

Both the full-blown Rosenblatt transformation, and its 
approximated forms, have two undesirable characteristics

-The dependence on the original variables ordering which 
can be easily checked in simple two dimension problems by 
reversing of the ordering of the variables, which results in 
two different transformed structural functions, with different 
sets of p-points. If the lowest p value is to be used as
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reliability measure all nj_ possibilities should be 
investigated. This can be onerous and even unfeasible for high 
values of n. A polyhedral or quadratic approximations of the 
transformed limit-state, using the obtained set of p-points, 
are necessary if the outcome of the transformation is to be 
credible.

-The coordinates of the p-point in u-space have no 
physical meaning, as the i th variable depends the first i 
variables in x-space, unless the x-variables are independent. 
And the wording 'sensitivity factors' used by some authors 
when referring to the cosine directors of the P-point can be 
misleading.

The fact that the P-point obtained from the above algorithm 
does not correspond to the local maximum joint density, has 
been recognised [Horne & Price 1977], but this should not be 
the a,im of any transformation as will be discussed in the 
next section, where a new approach towards 'proportions 
preserving' is developed, ensuring the two features described 
in the previous section.

3 . 1 . 3  T h e  R a d i a l  l i m i t - s t a t e  s u r f a c e  t r a n s f o r m a t i o n

If the probability of failure is evaluated through some 
variable transformation, it can make the evaluation easier. 
However, in practice one is not interested only in the value 
of the probability no matter how accurate is the estimate, but 
also in the influence of each of the original variables on
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this value. If those influences are not faithfully reflected 
in the transformed variables, one cannot identify the critical 
parts of the x-space with most contribution to the probability 
of failure. This is very important for the sensitivity 
analysis, as one can manipulate the parameters of some of the 
original variables in order to meet some target probability. 
It can be argued that those critical parts can be identified 
through the reciprocal images of the p-points, as this 
reciprocal set is independent of the subscripting of the 
original variables. But the use of the p values for first- 
order approximations may yield different estimates from 
different investigators, and this would always shed some doubt 
over the final results.

It has been more or less implicitly believed that the local 
maxima of the joint density on the failure surface are the 
most critical points ', and thus the heading of 'design 
points' seemed to be legitimate, especially within the first- 
order second moment framework. Any transformation can then be 
approximated by linearization at those points. But, beyond the 
second-moment theory, and with the exact joint densities 
assumed available, this idea can be misleading as a local 
maximum of the density is not always good indicator of the 
contribution of its neighbourhood to the probability of 
failure, except in normal space. The extension of this analogy 
to non-normal variables is not believed to be valid.

More informative on the critical parts in x-space, are the 
contributions to the failure probability for fixed
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proportioning of the variables. For both normal and non-normal 
variables, its expression is

where a is a unit vector, characterising the proportioning of 
the variables. For standardised normal variables, the above 
radial integral can be expressed in a closed form

where Q n is the area of the unit hyperesphere. This suggests 
that the analogy with the normal distribution should be 
equating these radial contributions in each direction a, at 
each point of the limit-state surface. The result is a 
transformed limit-state where only the distance to the origin 
is changed, but the cosine directors vectors a* are unchanged. 
The limit-state transformation consists only in 'correcting' 
the radial distances Pi to the origin, and assumes that the 
variables are standardised independent normal ones. The 
transformation consists mainly in shrinking or expanding the 
radial distances of the failure set boundaries, in order to 
maintain the probability content of the failure set.

The value of the new distance p to the origin is such that

( 3 . 1 5 )
*(«)

( 3 . 1 6 )

Z„2 ( P2) -  1 - Q „ f  f x( t a ) t ^ d t
12(a)

( 3 . 1 7 )
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The above equation can be solved for (3 only if its right hand 
side is positive. This is the case for highly reliable 
systems, such as structures. The solution for P± is therefore

From the above formulas, it can be seen that if the original
density is such that the radial integral can be performed
analytically, the computing cost is expected to be very low.
However, in some situations the analytical integral can be a
lengthy expression more expensive than a numerical
integration. Globally speaking, the computing cost is much

/lower than that of the Rosenblatt transformation where many 
multidimensional integrals for the marginal and the 
conditional distributions of the variables are to be carried 
out, against one integral for what can be termed as the radial 
'shrinking-expansion' approach.

The search for the p-points can be carried out by maximising 
the radial probability over the unit sphere, using any 
optimisation package available on the site.

P -  ( r , 2) - 1 ! !  -  Q _  f  f x (ta)  t n"1d t ] ( 3 . 1 8 )

and the ith components of the transformed vector u is

( 3 . 1 9 )

The advantages of this approach can be listed as follows:
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• The image of the failure set of Rn is uniquely defined 
by the transformation regardless of the ordering of the 
variables. This means that the set of (3-points of the 
transformed failure domain is unique for all orderings of 
the variables.
• The neighbourhood of the p-points are the worst 
proportioning of the original variables. The cosine 
directors at those points can be termed legitimately 
sensitivity factors.
• Beyond the first-order approximation, this 
transformation is much more suitable for the probability 
integration by Monte Carlo methods than the Rosenblatt 
transformation, as developed in Chapter 7.

I l l u s t r a t i v e  e x a m p le s

The following parabolic limit-state function
/

G(x,y)  -  + l £ i z l  + 3 x f y  _ _ 5 7 5 y  + s
* 2 5 2 2

2 2 3 x
3

34

is studied for two different non-normal distributions

f x , r ( x ' y)

gx,Y(x , y )

e -x-y-e~x-e~Y

(2  + 4x2 + 2y 2) e~x2 
571

_y 2

The graphical representation of the limit-state function in x- 
space and in u-space using respectively the radial and 
Rosenblatt transformation is given in Fig (3.1) and Fig (3.2). 
The two spaces are more conveniently represented with the same
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set of coordinates axes. In Table (3.1) are given the results 
for exact integration and first-order estimates (using a 
single f-point) based on both transformations.

Radial
Transform.

Rosenblatt
Transform.

Exact
Probability

P Pf p Pf p Pf

fx 1.256 .1045 1.624 .0521 1.295 . 0977

gx 3.549 1.928
E-4

3.504 2.288
E-4

3.551 1.920
E-4

T a b le  3 . 1  F i r s t - o r d e r  e s t i m a t e  o f  t h e  p r o b a b i l i t y  a n d  

r e l i a b i l i t y  i n d e x  u s i n g  t h e  r a d i a l  a n d  R o s e n b l a t t

t r a n s f o r m a t i o n .

/

3 . 2  FAILURE SURFACE APPROXIMATIONS

Most of the limit-state approximations reviewed in this 
section has been used in the so-called level 2 methods as FOSM 

or FORM. In many cases, the probability corresponding to the 
approximated limit-state is close enough to that of the exact 
one to yield an acceptable estimate. In general, the 
corresponding estimate cannot be a poor one; however this 
approximate limit-state is very useful in Monte Carlo methods 
for constructing good sampling distributions ( See chapter 7) .
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3 . 2 . 1  L i n e a r  a p p r o x i m a t i o n

The most common is the tangent hyperplane approximation, at 
the most likely failure point. The probability of failure is 
simply approximated by that of the tangent hyperplane :

( 3 . 2 0 )

where p is the reliability index of this hyperplane.

In systems reliability, the r e p r e s e n t a t i v e  h y p e r p l a n e  

a p p r o x i m a t i o n  is more convenient ( see Chapter IV) . It assumes 
that the probability of failure corresponding to a given 
safety margin is known or can be approximated, and the 
representative hyperplane is defined by the equation

P -  -  0 ( 3 . 2 1 )

/
where p is defined by

( - P )  - p f ( 3 . 2 2 )

and Tiâ  is the unit normal vector. Various choices for the 
direction of this normal vector have been proposed. The 
direction of the most likely failure point (tangent 
hyperplane) has been adopted by Lind [1980]. For the case of 
more than one such point, the average direction may be 
adopted. A parallel translation based approach has been 
proposed by Hohenbichler [1982] . It is shown that, if 8 is an 
arbitrary translation vector, and P(8) is defined by
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$ ( - p ( 6 ) )  -  P [ ( U - b ) 6 & ' ]  ( 3 . 23 )

then an appropriate choice of is

.  VP(0) 
^  I Vp (0) I

( 3 . 24)

The viability of such choice depend very much on the 
evaluation cost of the gradient of p (6).

A third possibility for a choice of TJâ- is such that the error 

A P  -  P [ U  E {H U ^ ) ]  - P [ u e  ( H f l ^ ) ]  ( 3 . 25)

is minimised, where H is the half-space delimited by the 
representative hyperplane. A great difficulty with this choice 
is that the expression above is not easy to evaluate, and its 
minimisation may lead to several optima.

3 . 2 . 2  P o l y h e d r a l  a p p r o x i m a t i o n

The failure surface is approximated by a discrete set of 
hyperplanes to form a polyhedral failure set. As for the 
single hyperplane approximation, the choice of the location 
and the number of hyperplanes can be carried using different 
methods.
A natural choice is the hyperplanes tangent to the failure 
surface at the points of locally maximum likelihood. The 
crucial problem is the identification of those ' c h e c k i n g
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p o i n t s ' .  This problem is discussed in other chapters ( 2, 6 
and 7 ) .

If the failure surface is compound of discrete set of 
continuously differentiable failure surfaces ( i.e finite set 
of failure modes), it can be approximated by a set of 
r e p r e s e n t a t i v e  g a u s s i a n  s a f e t y  m a r g i n s .  The corresponding 
reliability indices are defined as in equation (3.21), and the 
correlation between any couple of safety margins is determined 
by the equation

® 2(-Pi.Pj;p^) -  P l u s  ( ^ n ^ ) ]  (3.26)

In this approach, there are two levels of approximations :
• Approximation of the reliability indices of the 
different failure modes and that of the probabilities of
the mutual intersection, if they are not gaussian;

/  . . . .• A systematic approximation, inherent to the method,
which uses only first and second moment information of 
the original safety margins;

The two types of approximations have a cumulative effect on 
the resulting overall error. The representative gaussian 
safety margins method is used in Chapter 4, for the 
multinormal integral evaluation, and an approach for reversing 
the cumulative effect of the two types of errors is proposed.

If the original safety margins or their gaussian 
representatives are numerous, the computing cost can be 
substantially reduced by reducing their number, without much
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increase in the error. This can be done by a c l u s t e r i n g  

t e c h n i q u e  of the safety margins according to their 
correlations. Several clustering techniques has been proposed 
by different authors [Lind, 1980], [ Chou et al., 1983], [ Ang 
et al., 1975]. However, the use of such clustering techniques 
may lead to unacceptably high errors, and their use should be 
restricted to the cases where the number is very high, say 
more than 200 or so. With the fast methods of multinormal 
integration developed in Chapter 4, the cost of probability 
integration becomes marginal compared to that of the 
identification of the safety margins. The cost saving with a 
number reduction by clustering will not be worth the risk of 
undermining the overall accuracy.

3 . 2 . 3  Q u a d r a t i c  a p p r o x i m a t i o n s

/

The failure surface is approximated by a quadratic 
hypersurface at the most likely failure point. This assumes 
that the probability content of the domain bounded by this 
quadratic hypersurface can be evaluated exactly or at least 
can be approximated more easily and cheaply than that 
corresponding to the original failure surface.

There are at least three known possibilities for generating 
this quadratic hypersurface :

• the straightforward choice of a quadratic surface 
defined by the second order Taylor expansion of the 
failure function about the most likely failure point,



• a curvature fitted parabolic approximation,
• a point fitted parabolic approximation,

In the first case, the resulting approximating function is a 
general quadratic form with non-zero cross terms coefficients. 
The corresponding probability cannot be approximated directly. 
More tractable is the curvature fitted parabola such that its 
principal curvatures are the same as those of the original 
failure surface. The probability estimation can be obtained 
from the asymptotic result [ Breitung 1982, 1984]

n-1
lim p f - $ ( - p )  TT (1-pKy)  _1/2 ( 3 . 2 7 )
P— i-i

where P is the minimal distance to the origin and Klf k2, . . ,  Kn_!

are the principal curvatures of the limit-state surface at the
checking point. More involved approximating expressions have
been proposed by Tvedt [1983,1988].

/

A different approach has been adopted by Der Kiureghian et 
al. [1987]. It is based on a paraboloid approximation obtained 
by fitting to the failure surface at discrete points in the 
neighbourhood of the most likely failure point, in orthogonal 
directions. The method is claimed to have several advantages 
over the curvature fitting approach. Among those advantages 
are the insensitivity to noise in the failure surface, and a 
better account for higher order terms. However, it does not 
have the asymptotic behaviour of curvature fitting [Tvedt,88].

5 5
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C H A P T E R  I V

PROBABILITY APPROXIMATION WITH GAUSSIAN SAFETY MARGINS

4 . 1  METHOD DESCRIPTION

The probability of failure of systems described by linear 
gaussian safety margins { Z1=X1+^lr i = l , n }, with reliability
index vector p and correlation matrix q , can be expressed for 
parallel systems as

P ( f I  i  - P j  )  -  * „ ( - P ; e >  t 4 - 1 )

and

P ( U  X± * - P i  } -  1 -  ® n ( p , e )  ( 4 - 2 )i-1

for Series systems. The problem is therefore the numerical 
evaluation of the expression in the right hand side of 
equation 4.1, where p is taken positive for parallel systems 
and negative for series systems. This integral was first 
solved for the particular case where p^VjV-j (with I vj and 
I Vjl ^1) by Dunett & Sobel [1955], where the expression is 
reduced to a single dimension integral

m n fi® f l ( - P / e )  -  f $ (  ■ ~ P i — i t )  dt
- -  i - l  yj i - v  /

(4.3)
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which can be easily evaluated numerically. For equicorrelated 
sets of margins, v± equals the square root of the common 
correlation p, and the above expression becomes

Thoft-Christensen and Sorensen [1982] suggested the use of 
this expression to approximate the general case, by replacing 
the original correlation matrix by an equicorrelated one, with 
a weighted average of the correlation coefficients. Their 
numerical studies seem to suggest that this approximation 
yields an upper bound on the exact value. Moreover, for 
equireliable margins, the Taylor expansion of the probability 
as function of the correlation coefficients, about the 
equicorrelated point corresponding to the uniform average of 
all off-diagonal coefficients, presents some attractive 
featij^res [Ditlevsen 1984a] . Its first degree term is zero, and 
if the common reliability index exceeds a certain value, the 
second degree term is negative. In the latter reference, 
Ditlevsen suggested the use of a modified Taylor expansion 
about an equicorrelation point, and derived its first and 
second degree terms, as functions of the margins reliability 
indices, and the deviations of the original correlation 
coefficients from the common coefficient of the expansion 
point. The method gives results of good accuracy for 
equireliable margins (first degree term vanishes). But for 
general cases, it is difficult to assess its accuracy. As the

(4.4)



6 0

method is exact for equicorrelated cases, there is no exact 
method left for checking its accuracy. Moreover, for large 
values of n, the result are unlikely to be satisfactory, as 
pointed out to by Ditlevsen.

The general case can be better handled by successive 
conditioning and equivalent gaussian margins representation. 
The variables X1 are first transformed into an independent set 
of a standard normal variables Ulf by an LLT decomposition of 
the correlation matrix

a U UJ ( 4 . 5)

The first reduction in dimension is carried out by introducing 
the (n-1)-dimensional conditional margins, given that a n=l

n  1

*,/P;C> - Pin < E  a i J u)  + Pi * 0 } 1 * - Pi 1 - P ( U L i - pt)
1-2 j - 1

(4.6)

Because the conditioning on U1 does not affect the remaining 
variables, the first factor in the product in the latter 
equation can be replaced by another expression involving a 
new variable 02

n 1
ian ° i + E uv ui + P i  ^ 0,)1-2 j - 2

( 4 . 7 )
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where the density of Oj is

8 1  ) -
9  (tfi) for lT-l i-Pi

•(-P i)
0 for lT-l > ~PX

(4.8)

it follows that

U1 - F?[* (C/Ju^-P,)] - ® ’1[®(-p1)®(q)] (4.9)

and by substitution in equation 4.6

n i

®„(-p,c> - p m ( • ( - P i ) * ( P i > > + + Pj =so}]®(-p,.)
i - 2  J-2

-  p [  n  u / 11 + P i  * o ) ] « (-Pj.)
i - 2

- pi n  i  o
i - 2

(4.10)

The first factor in the right-hand side of Equation 4.10 
corresponds to the intersection of n - 1 margins defined by a 
set of non-linear functions. The ideal solution would be to 
find a set of probability-wise equivalent gaussian variables 
to this new set of non-gaussian margins, so that the dimension 
can be reduced to n - 2  margins, and so on. Unfortunately there 
is no known method for that, and it is necessary to resort to 
approximate methods. The non-gaussian margins are linear 
functions of random variables of known distributions (normal 
and truncated-normal), and therefore their moments (up to some 
order i) can be easily evaluated. This suggests the idea of 
deriving a new set of gaussian variables with the same moments 
as an approximation. The most realistic one is the second- 
moment approximation.
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In the following, Ux will refer to the pi-truncated-normal 
variable. The ith non-linear safety margin expression at the 
1th stage of dimension reduction is

Zi,J) - «iiDi + + Pi12"1’ (4-lx)k~2

Its expectation is

£ [ z i u ) ] -  a ^ E l u j  + P i (1 -1 ) ( 4 . 1 2 )

and its covariance with the jth safety margin can be easily 
found to be

Covar(Zd,Zj) -  an aj3E[U^] + ( a ^ p ^  + a ^ p  ±) E[UX] + P i P ^  +

i
-  ( c i u E l u j  + P i )  ( a j i S t c r j  + p j )

-  E[u^]  -  E l u J *  ) + E « i * a j *

/

i
r

Jc- 2

( 4 . 1 3 )

Using the fact that

a ika jk " PiJJc-l
(2-1) ( 4 . 1 4 )

it follows

C o v a r i z ^ Z j ] - Pil(I“1,P̂ i(i"1,{ E [ u 2] - E[ ux]2 - l } + p.*/2"1’
( 4 . 1 5 )

The expectations of U2 and C7/ can be derived by the 
integration of the truncated density
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E [ U J  -  -

E l U .!2] -  1 + P i

<p(Pi)
®(-Pi>

<P(P1>
•  (-Pi)

( 4 . 1 6 )

The expressions of the correlation coefficients for the 
equivalent gaussian margins at the 1 th stage are

u> .  [ n ( P i )  + P i j " ' 11 3
Vi pil‘l,n(Pi> +1 n  +1 ]

( 4 . 1 7 )

where

„ (B ) _ B » (p i ) -  [ _ £ l P l L ] ( 4 . 1 8 )

The corresponding reliability indices can be approximated at 
least by two different methods

/
-by assuming that the margins are gaussian and taking
their reliability indices as

P i u , .
< J v a z  {z t {1))

( 4 . 1 9 )

-or by "exact” evaluation of their probabilities as an 
intersection of two gaussian margins

P(Zi (I> * 0)
p( z1(i“i>  ̂ o n z ^ 1-^ * o )

P(Z1(J"1) * 0 ) ( 4 . 2 0 )



6 4

(using their correlation pn and their R.I.'s Pi(1_1) and P1(1_1)) 
and the corresponding reliability index

P / 2) - O ' 1 [ P { Zi(I) i  0 ) ] ( 4 . 2 1 )

The first method will be referred to in the sequel as 'method 
1', and the second one as 'method 2'.

The above correlation matrix and reliability indices are used 
to generate a problem identical to the original one with 1 - 1  

dimensions and the approximation

fc„ ( -p ;c)  - P [ f l  + P i (i> * 0 } ] « ( -? ,«> )  . . . ®( -Pi )
1-2 j-1

( 4 . 2 2 )

is adopted. This overall approximation comes out as
/

® „ ( - P ; C ) - * ( - P 1) 4 > ( - p f 1) . . (-P.j'"1) <4 -23)

The accuracy of this approximation depends very much on how 
close is the distribution of the non-linear margins, at 
different stages, to the gaussian distribution. This closeness 
can be assessed by a parametric analysis of the skewness of 
their density distribution functions. The sign and the 
absolute value of such skewness govern how underestimated or 
overestimated are the partial reliability indices P ' V  Its 
expression for the ith safety margin is (the superscript is 
dropped for convenience)
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E[(Zi -  EiZj)  ) 3] 

v a r  [zi ] 3/2 ( 4 . 2 4 )

Its evaluation can be made easier if the expression of the ith 
margin ZL is modified, as follows

Zl -  P lJ Di + W * P i  ( 4 . 2 5 )

where W is

^  -  J-2

and using the fact that an = pn (from the Choleski 
factorisation) . Substitution of the new expression of the 
margin ZL in (4.25) and simplifications yield the skewness 
coefficient

E

p i ,3 1
-2

Yi "
+ ( 3 ~ P i 2) ♦ (P-l ) . + 3 P , (  4><Pl)

• ( - P i )
) 2 - 2 ( 4>(Pi)

®(-Pi) ) 3]

/ [Pi,2( i  + Pi- *(Pi)
® ( - p j

-  (
* ( 0 , )  _______  3/2
9  Pl ) 2) + ^ 1 - P i l 2 ]•(-P i)

( 4 . 2 7 )

as a function of the reliability index p: of and its
correlation with Z±. The parametric study of the above 
function (Fig 4.1) leads to the following observations

- The skewness has the opposite sign of the correlation. 
This means that if all correlations are positive, a build-up 
effect of the error is inevitable, by successive 
underestimation ( or overestimation) of P^15 
a mean-standard deviation ratio.

if evaluated as
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- For small values of $ lf the magnitude of the skewness 
is small, and one can expect the normal approximation to yield 
good estimates. This also suggests that the estimate is best 
if the margins are numbered in increasing order of their 
reliability indices. The influence of the correlation could 
also be taken into account for the ordering, but the coupling 
of the two ordering criteria may become a combinatorial 
problem of out of proportion complexity. Except in particular 
situations where some of the margins can be singled out as 
'almost' independent of the rest, ordering based on the 
correlation is better avoided.

- For series systems, the influence of p on the skewness 
is significant only for small values of P and becomes 
negligible for P exceeding 3. The effect of the correlation is 
much more important, as it increases significantly the 
abso^ite value of the skewness coefficient and the increase 
becomes very sharp in the upper range of the correlation 
spectrum, say above 0.6.

- For parallel systems, the effect of Px on the skewness 
coefficient is much stronger than that of the correlation , as 
the increase in magnitude is very sharp. This is hardly 
surprising from a distribution which is the sum of a 
symmetrical distribution and a normal distribution truncated 
at the negative tail. The effect becomes worse if the 
weighting (i.e. p and (1—p2) *5 ) are in favour of the truncated 
one (p).
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4 . 2  NUMERICAL EXPERIENCE

From the above results, one would expect the best estimations 
to be obtained for small values of p, roughly between -1.5 
and 1.5. Extensive numerical experiments tend to support the 
trend suggested by the study of the skewness of the 
conditional margins distributions. Samples of such numerical 
experiments are shown in Tables (4.1) through (4.5). The 
availability of an exact solution for equicorrelated systems, 
gives a way of 'severe' testing of the accuracy of the method 
described above. If its accuracy can be considered acceptable 
for highly equicorrelated systems, then it would be expected, 
for a practical case spanning the whole range of correlation, 
to be also acceptable. Different values of the correlation 
coefficient have been tested, and the results are compared to 
the exact ones evaluated numerically. The choice of the 
reliability indices for testing the method is dictated by two 
considerations

- On one hand the test must be severe enough to ensure 
better estimates for practical problems. The most severe 
is the equireliable case;
- On the other hand, a method that can deliver acceptable 
estimates should not be dismissed because it fails in 
unrealistic problems.

A compromise must be found, based on the fact that the 
accuracy increases with the dispersion of the relative 
importance of the probabilities corresponding to the 
reliability indices, with respect to each other, and the 
probability gap between the highest and the lowest values.
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Such a compromise is believed to be a certain partial 
equireliability, i.e. to choose a fraction among the lowest 
RI's with the same value, and the others are such that the 
probability of the highest is not less than, say, 1% of that 
of the highest. An equireliable fraction of 20% is believed to 
be a reasonable choice.

Non-equicorrelated cases have been also studied, and 
comparison is made with the bounds evaluated by the methods of 
chapter 5, on one hand, and an estimation based on directional 
importance sampling simulation ( see chapter 7) , on the other 
hand. In the examples studied, the gradients of the safety 
margins and their reliability indices are randomly generated. 
In all cases, the computing time is recorded, and corresponds 
to runs on a 20Mhz-386/387 microcomputer. More details on 
different cases are given in the following sections.

/
S e r i e s  S y s t e m s  :

Method 1 and method 2 of evaluation of the partial reliability 
indices p (1), are used separately, for p less than 1.5 and P 
higher than 1.5. For equicorrelated series systems, Tables 
(4.1 ) and (4.2) show typical results. For P < 1.5 , both 
methods yield good estimates although slightly underestimated. 
For p > 1.5 , method one shows an overestimation which
increases sharply with the correlation. This supports the fact 
that the partial reliability indices are underestimated, due 
to negative skewness. Method 2 shows a moderate under
estimation, which also increases with the correlation. This
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can only be explained by an underestimation of the correlation 
coefficients, which seem to be inherent to the equivalent 
hyperplane representation in which only first and second 
moment information are used. The expression (4.17) of the 
current stage correlation, in terms of the previous one, 
suggests that a build-up process of a negative error leading 
to an overall underestimation. This process is reversed in 
method 1 by an overestimation of the p values right from the 
second stage.

The results of the above equicorrelated cases are confirmed by 
those of the non-equicorrelated ones of Table (4.3). For 
method 1, the estimates are very close to or higher than the 
upper bound, while for method 2, and the estimates can be seen 
to be mostly close to the lower bound.

The njagnitude of the error with method 2 is not very high, but 
because it is unconservative, any improvement on its estimate 
is welcome. The above results on series systems suggest that 
some interpolation of the value of the partial reliability 
indices between equations (4.19) and (4.21) can yield more 
accurate estimations. This interpolation takes the following 
form

4>(PU)) -  ( l - T ) ®  (1P (j>) + t ® (2P !i>) ( 4 . 28)

where the left superscripts refer to methods 1 and 2, and T a 
positive interpolation coefficient less than 1. The value of 
T depends on the correlation coefficient pu and to a lesser
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extent on Pi and p ±. Its evaluation as a function needs 
extensive parametric study in terms of the above variables. 
However numerical experiments show that good results can 
obtained by assuming T constant throughout the algorithm. Its 
global value depends on the number of margins n . Good results 
are obtained using the following expression for % for which 
Table (4.3) shows typical results

T -  -0 .0 0 5 6 H  + + 0 .7 8  f o r  pj7fc0.5
25 K11 (4 .2 9 )

t -  1 f o r  p ±1< . 5

The above expression for the interpolation coefficient is 
valid for values of a reliability indices range for which 
method 1 and 2 bracket the exact result. This seems to be the 
case for moderate and high values of the p ' s .  It should be 
emphasized that the method is developed for highly reliable 
syst^ins for which the individual margins themselves have at 
least moderate reliability with p not less than 1.5 to 2. For 
low reliability systems, the estimate of both method 1 and 2 
are good and the use the interpolation is not relevant. The 
choice should therefore go to the faster one, i.e method 1 
which requires no bisections integrations (Table 4.1).

P a r a l l e l  s y s t e m s

The results for parallel systems are presented for 
equicorrelated parallel systems, in Tables (4.4) and (4.5). 
Methods 1 and 2 show the same performance. For p < 1.5 , the 
relative error on the probability is slightly higher than its
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series systems counterpart, but is still reasonable. For P >
1.5 , the error is higher as expected (high skewness), but the 
case corresponds to very highly reliable systems for which the 
absolute error is more relevant. The importance of the error 
is better assessed on the reliability index for which the 
relative error is much smaller, and is exact up to two or 
three digits. As both method 1 and 2, show the same sign for 
the error, the interpolation do not appear to be feasible, but 
on the other hand one might expect the error to be smaller for 
general cases where the correlation coefficients span evenly 
the correlation spectrum, and the cumulative effect is 
partially cancelled out. A thorough parametric study is 
necessary if one is to be affirmative on this issue.

4 . 3  COMPARISON WITH EX ISTIN G  METHODS

/

The idea of conditioning and equivalent hyperplane 
representation has been used by different authors.
Hohenbichler and Rakwitz [1981] proposed the use of this idea 
within the first-order reliability framework. The nonlinear 
margins are approximated by their tangent hyperplanes at their 
origin projection points. The partial reliability indices and 
the correlation matrix at different stages correspond to those 
tangent hyperplanes. The accuracy reported concerns the
reliability index and not the probability of failure, and
seemed satisfactory for a first-order approximation. A slight 
improvement is obtained, by replacing the nonlinear curve by 
a polygon formed by the tangent hyperplane and the two
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asymptotes obtained by letting U: tend to minus and plus 
infinity respectively, and using the same correlation matrix 
(i.e. that of the tangent hyperplanes).

Using the correlation matrix of the tangent hyperplanes, Tang 
and Melchers [1987], improved the method one step further by 
proposing the 'exact' integration of the conditional 
probabilities ( equations 4.19 and 4.21). The corresponding 
results are given in the right of each table under the M-T 
method heading. The accuracy seems to be between those of 
Method 2 and the Interpolation method for series systems, but 
its performance is less than both methods 1 and 2 for parallel 
systems. As presented in reference [Tang & Melchers, 1987], 
the method shows some instability : if the system includes 
safety margins of correlation exceeding 0.7 or so, sometimes 
the algorithm either fails to converge, or converges to a 
completely wrong estimate. This is illustrated in Tables (4.2) 
and (4.5) . The asterisks in the tables correspond to the cases 
where Tang-Melchers algorithm failed to converge. The method 
is about 50% slower than method 2 or the interpolation method, 
and about 2 to 3 times slower than method 1.

A different approach, based on the use of bivariate and 
trivariate normal integrals of the conditional nonlinear 
margins, has been proposed by Ramachandran [1987]. The method 
evaluates the conditional probabilities as in Equation 4.20. 
However the correlation between two conditional margins is 
evaluated such that the trisections are also exact, given that 
the margins of the previous stage are gaussian or assumed to
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be so. Hereafter is an outline of the method.

The probability of the intersection of n events is expanded as

P( A F ± ) -  P ( f l 1Fj I F n) P { F „ )
i - 1  i - 1n-1 ( 4 . 3 0 )

-  P( n [ F j F j  ) P(Fn)
i - l

which becomes, after denoting [F± I Fn ] as Fj"

P( A Fn) -  P (? l  Fin ) P ( F n )
i - l  i - l

( 4 . 3 1 )

The conditional probabilities P(F^) and their intersections 
P (F^ n  Fjn) are

p t p . n p j
P(F„)

( 4 . 3 2 )

/ p ( F " n p / )
P( F^/lFy/lF,,) 

P(Fn)
( 4 . 3 3 )

The correlations between the conditional events Fj" and F^ are 
evaluated in such way that Equation 4.33 is satisfied. This 
amounts to solving the following equation for p±j [Owen,1956]:

P ( F n <) + --------=-------  f  - — EXP[ -------H * ■-•*- ]  du -
2nP{Fnj) { 2  ( 1 - t 2 )

p (F inFj riFn) _
p ^ n)

( 4 . 3 4 )
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where

( 4 . 3 5 )

The probability of intersection of the n - 1  conditional events 
Fm is reduced to n - 2  in the same way using the estimated 
probabilities, bisections and correlations in the previous 
iteration. The process is repeated until the dimension is 
reduced to three events. The final expression of the prob
ability becomes

- P(F4ii5n F 42i5nF43_5> P ( F 5i s ) P { F 65iS) . . . 

. . . P l F « B, l tB ) P ( F B)

i - 1

( 4 . 3 6 )

Table (4.6) shows typical results for equicorrelated systems.
The accuracy is comparable to that of method 1 . The method do

/  . . .not • need any linearization or a search for the origin
projection points. However, the evaluation of the intersection 
probabilities between the events and all the trisections 
involving the event candidate for removal, at each iteration, 
and the extra bisection evaluations to find the correlations 
between the conditional events, makes the computational effort 
very high compared to the methods described above, especially 
for high dimensional problems. Its extensive use in some 
iterative process cannot be recommended.
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4 . 4  CONCLUSIONS

The method discussed in section 4.1 above, is believed to be 
the most efficient with regard to both accuracy and computing 
time. The study of skewness of the conditional margins 
distributions indicates where the method can be expected to be 
accurate. Moreover, the method is virtually free from 
numerical instability and convergence problems, as no 
optimisation algorithm is needed. Its relatively small 
computing time and its stability make it suitable for 
incorporation into reliability-based optimisation packages.

However, the above analysis is based on a qualitative study of 
the skewness and the correlations expressions in equations 
4.17 and 4.27 and numerical experiments. An analytical study 
of the overall behaviour with the aim of bounding the error in 
sign/and magnitude remains a challenge for future research.
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F i g .  4 . 1  - Skewness coefficient. Effect of for different
correlations



11 ■t i

1
c ! Exact value Method ii Method 2

11* 1 H-T Method
i
iii

Prob. ! R.I. ! Prob.
i i

R.I. !Err % \
i

C.T. ! Prob. R.I. {Err % ! C.T. ! Prob. R.I. !Err C.T. !

io! .30! .8064E+00 .8647 ! .8051E+00 .8600 -.2! .11! .8047E+00 .8587 ! -.2! .33!.8031E+00 -.8528 -.4! .49!
io! .50! .7104E+00 ! .5546 ! .7065E+00 .5432 -.6! .05!.7035E+00 .5345 ! -l.o! .33!.7049E+00 -.5384 -.8! .49!
io! .70! .6075E+00 ! .2729 ! .6044E+00 .2647 -.5! .11! .5925E+00 .2340 ! -2.5! .331.6016E+00 -.2574 -1.0! .49!
io! .90! .4893E+00 ! .0268 ! .5065E+00 .0163 3.5! .11! .4770E+00 .0576 ! -2.5! .33!.4868E+00 .0332 -.5! .55!
ioi

i
.97! .4397E+00 ! .1518 !.4765E+00 .0589 8.4! .11! .4372E+00 .1581 ! -.6! .33!.1000E+01 .0000 !l 27.4! .55!

20! .30! .8847E+00 ! 1.1987 ! .8834E+00 1.1924 -.1!
i

.55!.8829E+00
i

1.1897 ! -.2!
i

1.59{.8804E+00 -1.1770 -.5! 2.25!
20! .50! . 7826E+00 ! .7810 1.7766E+00 .7608 -.8! .55!.7730E+00 .7488 ! -1.2! 1.54!.7760E+00 -.7588 -.8! 2.36!
20! .70! .6643E+00 ! .4243 ! .6537E+00 .3953 -1.6! .55!-6410Et00 .3611 ! -3.5! 1.54!.6582E+00 -.4075 -.9! 2.41!
20', .90! .5196E+00 .0490 1.5255E+00 .0641 1.2! .49! .4911E+00 .0222 ! -5.5! 1.59J.5157E+00 -.0395 -.7! 2.36',
20!

1
.97! .4480E+Q0 ! .1306 !.4836E+00 .0410 7.9! .55!.4308E+00

___i
.1744 !

_____ i _
-3.9! 1.591.1000E+01

___i_____
.0000 !123.2! 2.36!

1
30! .30! .9466E+00 ! 1.6130 ! .9464E+00 1.6111 .0! 1.87! .9462E+00 1.6090 ! .0! 4.18|.9442Et00 -1.5909 -.3! 5.82!
30! .50! .8612E+00 ! 1.0858 .8557E+00 1.0613 -.6! 1.86!.8532E+00 1.0504 ! -.9! 4.23 j.8566E+00 -1.0653 -.5! 6.09!
30! .70! .7429E+00 ! .6524 1.7265EI00 .6022 -2.2! 1.87!.7144E+00 .5663 ! -3.8! 4.23!.7374E+00 -.6352 -.8! 6.15!
30! .90! .5790E+00 ! .1992 ! .5721E+00 .1818 -1.2! 1.87! .5322E+00 .0809 ! -8.1! 4.29!.5732E+00 -.1846 -1.0! 6.09!
30! .97! .4910E+00 ! .0225 ! .5195E+00 .0488 5.8! 1.87! .4562E+00 .1100 ! 

_____ i_
-7.1! 4.28! .1000E+01

__ i ____
.0000 !103.7! 6.21!

40! .30! .9840Et00 ! 2.1455 ! .9847E+00 2.1626 .1! 4.67!.9847E+00 2.1624 ! •l! 8.84!.9831E+00 -2.1236 -.1! 12.25!
40! .50! .9321E+00 ! 1.4918 1.9302E+00 1.4776 -.2! 4.67! .9295E+00 1.4719 ! -.3! 8.901.9294E+00 -1.4714 -.3! 12.75!
40! .70! .8349E+00 ! .9736 ! .8183E+00 .9088 -2.0! 4.67! .8101E+00 .8781 ! -3.0! 8.90!.8299E+00 -.9539 -.6! 12.85!
40! .90', .6679E+00 ! .4341 ! .6460E+00 .3745 -3.3! 4.67! .6011E+00 .2563 -lo.o! 8.95J.6609E+00 -.4150 -1.0! 12.85!
40! .97! .5644Et00 ! .1622 ! .5818E+00 .2066 3.1! 4.67,'-5143Et00

i
.0359 !

i
-8.9! 8.95!.1000E+01

i
.0000 77.2! 12.85!

50! .30! .9823E+00 ! 2.1027 1.9831E+00 2.1225 .1! 9.77! .9830E+00
i

2.1209 ! .1! 16.48!.9810E+00 -2.0746 -.1 22.90!
so ! .50', .9238E+00 ! 1.4311 ! .9213E+00 1.4139 -.3! 9.83!.9197E+00 1.4029 ! -.4! 16.48).9199E+00 -1.4047 -.4 23.67!
50! .70! .8159E+00 ! .8999 1.7961E+00 .8277 -2.4! 9.78! .7835E+00 .7841 ! -4.0! 16.48!.8093E+00 -.8752 -.8 23.94!
so ! .90! . 6362E+00 ! .3482 !.6125Et00 .2858 -3.7! 9.83! .5597E+00 .1501 ! -12.0! 16.59!.6276E+00 -.3254 -1.4 23.83',
so !

1
.97! .5285E+00 | .0714 ! .5470E+00 .1181 . 3.5! 9.77!.4706E+00>,. .0737 !

i ■
-10.9! 16.59!.1000E+01

___ i______
.0000 89.2 23.72!

T a b le  4 . 1 .  E q u i c o r r a l a t e d  s e r i e s  s y s t e m s ,  p <  1 . 5



CO
r- i ________i ______________i

N ! 
1

c ! 
1

Exact value
i
ii
i

Method
i
1

i
ii Method

1
2

i
ii

i
Interpolation

1
11 T-H

i
Method

1
11
1

1
11
1

Prob. ii R.I.
i
ii
i

Prob. ii R.I. '.Err X ! C.T. ! Prob. ii R.I.
i i
[Err l ! C.T. ! Prob. R.I. !Err * i

i
C.T. ! 

1
Prob. !

i i
R.I. IErr * !

i
C.T.

io|
1

.30! .4603E-04 ii 3.9106
i
ii .4612E-04 ii 3.9101

i
.i .2! •li! .4603E-04 ii 3.9106

i
ii .o! .33! .4603E-04

i
3.9106 J .0!

1
.33! .4603E-04 ! 3.9106 .0! .44

io! .50! .4512E-04 ii 3.9154 ii .4609E-04 it 3.9103 ii 2.1! .11! .4504E-04 ii 3.9159 ii -.2! .33! .4504E-04 3.9159 ! -•2! ■ 32! .4504E-04 } 3.9159 ! -.2! .49
io! .70! .4095E-04 ii 3.9388 »i .4603E-04 ii 3.9106 ii 12.4! .11! .3987E-04 ii 3.9452 ii -2.6! .33! .4135E-04 3.9364 ! 1.0! .33! .3997E-04 ! 3.9446 ! -2.4} .55
io! .90! .2870E-04 ii 4.0233 ii .4583E-04 ii 3.9117 ii 59.7} .li! .2656E-04 ii 4.0415 ii -7.5! .33! .2957E-04 4.0162 ! 3.0! .33,' .2754E-04 ! 4.0329 -4.0| .55
io!

1
.97!

1
.2U2E-04 i• 4.0949 ii .4563E-04 ii 3.9127 ii 116.0! .11! .2050E-04 ii 4.1018 ii -3.0! .33! .2358E-04 4.0693 !

i
11.6! .33! 

___1
.2091E-04 ! 4.0972 ! -1.0!

i
.55

i
20!

1
.30! •1135E-06 1| 5.1758

i
i .1135E-06 5.1758

i
i .0! .55! .1135E-06 5.1758

i
i .0! 1.54! .U35E-06 5.1758 ! .o! 1.59! .1135E-06 ! 5.1758 .0', 2.14

20! .50! .1130E-06 1| 5.1766 .1135E-06 5.1758 .4! .55! .1130E-06 5.1766 .o! 1.59! .1130E-06 5.1766 ! •0! 1.54! .1130E-06 { 5.1766 ! .0! 2.14

20! .70! .1068E-06 1| 5.1872 .1135E-06 5.1758 6.3! .49! .1049E-06 5.1905 -1.8! 1.59! .1075E-06 5.1859 ! .7! 1.60! -1049E-06 ! 5.1905 ! -1.8! 2.31

20} .90! .7120E-07 1| 5.2621 .1134E-06 5.1759 59.3! .55! .6059E-07 5.2917 -14.9! 1.59} .7051E-07 5.2639 ! -l.o! 1.59,' .6390E-07 ! 5.2820 ! -10.2! 2.42

20!
1

.97!
1

.4295E-07 ii 5.3543 ii .1133E-06 ii 5.1760 ii 163.9! .55! .3606E-07 ii 5.3858 i• -16.0! 1.59! .4608E-07 5.3415 !
i

7.3! 1.59!
___i

.3996E-07 ! 5.3673 ! -7.0!
i

2.47

30!
1

.30! .1312E-04 1| 4.2038
i
i .1315E-Q4 4.2034

i
i .2! 1.81! .1312E-04 4.2038

ii .0! 4.17! .1312E-04 4.2038 ! .o! 4.23! .1312E-04 ! 4.2038 ! .0! 5.77
30! .50! .1278E-04 1| 4.2099 .1314E-04 4.2034 2.9! 1.81! .1271E-04 4.2110 -.5! 4.17! .1271E-04- 4.2110 ! -.5! 4.23! .1271E-04 4.2110 ! -.5! 5.82

30! .70! .1096E-04 1| 4.2445 1| .1314E-04 1| 4.2035 19.9! 1.87! .1005E-04 1| 4.2638 -8.3! 4.23! .1102E-04 4.2431 ! .6! 4.29J .1012E-04 ! 4.2622 ! -7.6! 6.15

30! .90! .5992E-05 1| 4.3779 1 .1313E-04 4.2037 119.1! 1.87! .4347E-05 4.4473 -27.5! 4.23} .5788E-05 4.3854 ! -3.4! 4.22! .4978E-05 ! 4.4181 ! -16.9! 6.37

30!
1

.97!
1

.3279E-05 ii 4.5076 iii
.1312E-04 i• 4.2038 ii 300.2! 1.87} .2377E-05 ii 4.5754 ii -27.5J 4.29! .3528E-05 4.4920 !

_____i_
7.6} 4.23!

___ i
.2893E-05 ! 4.5340 ! -11.8!

i
6.43

40!
1

.30! .9175E-01 1| 1.3301
i
ii .9420E-01 1| 1.3153

i
ii 2.7! 4.67} .8851E-01 1| 1.3500

i
ii -3.5!

i
8.90J .8851E-01 1.3500 ! -3.5! 8.95! .8802E-01 ! 1.3530 ! -4.1! 12.75

40! .50! .6883E-01 1.4846 1| .7611E-01 | 1.4317 ii 1 0 . 6 | 4.66! .5866E-01 i 1.5661 -14.8} 8.95! .5866E-01 1.5661 ! -14.8! 8.95! .6100E-01 ! 1.5464 -11.4', 12.97

40!. ,.70! .4563E-01 4.6887 1| .6017E-01 1 1.5533 31.9! 4.67!' .3176E-01 i 1.8555 -30.4! 8.95J .4055E-01 1.7443 ! - l l . l ! 8.96! .3817E-01 ! 1.7724 ! -16.4! 13.24

40! .90! .2253E-01 1| 2.0041 .4716E-01 1.6731 109.3! 4.67! .1431E-01 ii 2.1888 -36.5! 9.01! .2065E-01 2.0406 } -8.4! 8.95! .1938E-01 ! 2.0667 ! -14.0J 13.23

40!
1

.97!
1

.1354E-01 ii 2.2103 iii .4329E-01 ii 1.7137 iii 219.7! 4.67} .9885E-02 ii 2.3307 ii -27.0! 8.96!
I

.1489E-01 2.1729 } io.o! 8.95J .1000E+01 ! .0000 ! t x x x x !
i ___

13.01

1
50{

1
.30! .2845E-03 1| 3.4460

iii .2880E-03 3.4427
iii 1.2! 9.84! .2842E-03 ii 3.4463

iii -.1! 16.48! .2842E-03 3.4463 ! -.1! 16.59! .2842E-03 i 3.4463 ! -.1! 22.68

50} .50| .2596E-03 ii 3.4706 ii .2866E-03 ii 3.4440 ii 10.4! 9.78! .2495E-03 ii 3.4813 ii -3.9! 16.48! .2495E-03 3.4813 ! -3.9! 16.53! .2498E-03 ! 3.4810 ! -3.8! 23.56

50! .70! .1925E-03 ii 3.5501 ii .2847E-03 ii 3.4458 ii 47.9! 9.83} .1465E-03 ii 3.6214 ii - * } . 9 ! 16.47} .1924E-03 3.5502 ! . o ! 16.53! .1529E-03 ! 3.6103 ! -20.6! 24.33
50! .90! .8458E-04 ii 3.7611 ii .2822E-03 ii 3.4481 ii 233.7! 9.84! .4534E-04 ii 3.9143 ii -46.4! 16.59! .7928E-04 3.7773 ! -6.3} 16.53! .6048E-04 ! 3.8442 ! -28.5! 24.38
50! 

1
.97! 

__1.

.4081E-04 ii 3.9396 iii
.2812E-03 ii 3.4491 iii

589.1! 9.77!
i

.2402E-04 ii 4.0650 iii
-41.1! 16.59!

i
.4534E-04 3.9143 ! ll.l! 16.53!

i1
x x x x x x x x x  ! x x x x x x x  ! x x x x x \

i _ _ _ _ _i
x x x x x

Table 4.2. Equicorrelated series systems, p > 1.5



N ! Dir. Simulation | Bounds Method 1 Method 2 Interpolation ! M-T estimate

! Pr/R.I.!
i_____ i _

:.r. ! l.b. ! u.b. ! c . i .  ! Pr/R.I.! C.T. ! Pr/R.I.! C.T. ! Pr/R.I.! : .t. ! Pr/R.I.! C.T.

10 !.4428E-041
1 1 1 

31.5! .3507E-04! .3799E-04! .22!
i

.4200E-04! .06!
i

.3604E-04! .33!
i

.3741E-041 .33!
i

.3571E-04! .50
! 3.9200! i i i i i i 3.9327! 3.9693! 3.9604! 3.9715!

10 !.1101E-04! 28.8!. 1093E-04!.1190E-04i .22! .1477E-04! .06! .1126E-04{ .33! . 1203E-04 J .33! .U14E-04! .49
! 4.2434| i i i i i i 4.1769! 4.2384! 4.2234! 4.2407!

10 1.2313E-02! 28.2! .2396E-02!.2684E-02! .22! .3067E-02! .05! .2512E-02! .33! .2637E-02! .33! .2482E-02! .54
! 2.8319!
i_____ i _

i i i i i i 
___ i____ _______ i _

2.7405',
_____ i.

2.80541,
_____i _

2.7898',
_ _ i

2.8093!
_____ i

20 ! .7726E-02! 131.8!.5265E-02!.9856E-02! 1.70!
i

.1093E-01! .54!
i

.6680E-02! 1.60!
i

.7637E-02! 1.59!
i

.6475E-02! 2.42
! 2.4216! i i i i i i 2.2929! 2.4740! 2.4258! 2.4852!

20 !.6094E-02j 128.6!.4630E-02!.8217E-02! 1.75! .9539E-02! .50! .5851E-02{ 1.60! .6701E-02! 1.59! .5691E-02! 2.47
! 2.5066', i i i i i i 2.3440! 2.5210! 2.4729! 2.5307!

20 1.2670E-02! 124.0[.2261E-02!.3150E-02! 1.76! .3723E-02! .56! .2608E-02! 1.60! .2882E-02! 1.59! .2540E-02! 2.36
! 2.7857',
i_____ i _

i i i i i i 
___ i______i „„__ _i_

2.6762! 2.7934! 2.7610! 2.8020!

30 ! .8846E-06! 324.4J.9361E-06!.1035E-05J 6.92! .1038E-05! 1.86! .9492E-06! 4.23', .9796E-06! 4.29! .9444E-06! 5.82
! 4.7781! i i i i i i 4.7460! 4.7639! 4.7576! 4.7650!

30 1.8471E-02! 349.8!.5806E-021.1404E-01! 6.87! .1203E-01,' 1.82! .7664E-02! 4.28! .8802E-02! 4.28! .7212E-02! 6.31
! 2.3879! i i i i i i 2.2561! 2.4246! 2.3738! 2.4465!

30 J.7124E-02! 327.2',.5368E-02M182E-01! 6.86{ .1036E-01! 1.81! .6624E-02', 4.28! .7636E-02! 4.23! .6217E-02! 6.32
! 2.4510!

_i_____ i.
i i i i i i ___ i______i______i.

2.3132!
__ ___i_

2.4770!
_____ „i_

2.4259!
__ _i

2.4996',
i

40
i i
! .1178E-01!

i i i
727.3J.6143E-021.1616E-01! 19.67!

i
. 1374E-01! 4.67!

i
.8502E-02! 9.01! . 1015E-01! 9.01!

i
.7971E-02! 13.07

! 2.2643! i i i i i i 2.2045! 2.3866! 2.3207! 2.4103!
40 !.6701E"05', 564.51.7018E-051.8674E-051 19.77! .8777E-05! 4.71! .7315E-05! 8.95! .7879E-05! 9.06! .7227E-05! 12.31

! 4.3534! i i i i i i 4.2939! 4.3342! 4.3178! 4.3369',
40 ! .8445E-02! 677.4!.5186E-021.1551E-011 19.61! .1312E-01! 4.73! .7122E-02! 9.00! .8881E-02', 9.00! .6625E-02! 13.23

! 2.3891! i i i i i i 2.2227! 2.4510!
i

2.3705!
1

2.4770'

50
i i
! .2652E-03{ 1052.3!. 1829E-03}.3565E-03' 45.76! .3632E-03! 9.83!

i
.2195E-03! 16.64! .2697E-03! 16.70! .2041E-03 23.72

ii ! 3.4649! i i i i i i ii 3.3794! ii 3.5155! 3.4604! i 3.5348
! 50 !.1240E-04! 968.3! .1081E-04!.1574E-04! 45.87! .1677E-04! 9.94N1209E-04! 16.59! . 1397E-04! 16.70! .1174E-04 23.12
11 ! 4.2166! i i i i i i ii 4.1480! i 4.2223! 4.1896! ii 4.2289
! 50 1.1010E-01! 1095.3J.5610E-02!.2041E-01! .45.70! . 1695E-01! 9.83! .8287E-02! 16.65! .1104E-01! 16.64! .7480E-02 24.55
1
1

! 2.3227! i i i i i i ii 2.1214! ii
__ i

2.3960!
i

ii
i

2.2889!
i

ii
i

2.4333
I I ”  I I I ”  I I I I I  ”  I I I I t

Table 4.3. General series systems. P>1.5 .



7 !
1

c ! Exact value j
_______ _ 1

Method 1 ! Hethod 2 ! H-T Hethod
111

_1
P rob. R.I. i

____ i
Prob. | R.I. !Err * ! C.T. ! Prob. ! R.I. !Err t ! C.T. ! Prob. ! R.I. jErr % ! C.T. !

io! .30! .1666E-02 ! 2.9354 ! .1628E-02 ! 2.9425 ! -2.3! .11! .1621E-02 ! 2.9438 ! -2.7! .33!.1594E-02 ! 2.9491 ! -4.3! .44!
10 .50! .9732E-02 ! 2.3365 .9725E-02 ! 2.3368 ! -.1! .11!.9632E-02 ! 2.3404 ! -1.0! .33', .9365E-02 ! 2.3509 ! -3.8! .44!
10 .70! .3078E-01 ! 1.8695 .3203E-01 ! 1.8517 ! 4.1! .05!.3178E-01 ! 1.8553 ! 3.3! .33!.3055E-01 ! 1.8728 ! -.7! .49!
10 .90! .7757E-01 ! 1.4216 .7989E-01 1.4058 ! 3.0,' .11! .8302E-01 ! 1.3850 ! 7.0! .33!.7969E-01 ! 1.4072 ! 2.7! .49!
10 .97! . 1088E+00 ! 1.2331 . 1026E+00 ! 1.2666 !

i
-5.6! .06! .1129E+00 !

i
1.2111 !

i
3.8! .33!.1105E+00 !

___i___ ___
1.2239 !

i
1.6! .55!

20 .30! .7490E-04 ! 3.7914 .6662E-04 !
i

3.8204 ! -n.o!
i

.55! .6627E-04 !
i

3.8217 ! -11.5!
i

1.59!.5912E-04 !
i

3.8497 ! -21.1! 2.15!
20 .50! .1586E-02 J 2.9506 .1489E-02 2.9699 ! -6.1! .55}.1473E-02 J 2.9734 -7.1! 1.54!.1321E-02 ! 3.0065 ! -16.7,' 2.14!
20 .70! .9658E-02 ! 2.3394 .9954E-02 ! 2.3281 ! 3.1! .55!.9845E-02 ! 2.3322 ! 1.9! 1.59!.9017E-02 ! 2.3649 ! -6.6! 2.31!
20 .90! .3770E-01 ! 1.7780 . 4043E-01 ! 1.7458 ! 7.2! .49! .4207E-01 ! 1.7272 ! 11.6! 1.59!.3853E-01 ! 1.7679 ! o o't .t i 2.42!

1 OA t 1
.97! .6143E-01 ! 1.5428 .5936E-01 ! 1.5602 !

I
-3.4! .55! .6537E-01 !

1
1.5112 !

i
6.4! 1.59!.6219E-01 !

i
1.5367 ! 

1
1 o ii i 2.41!

i
! 30 .30! .3084E-04 ! 4.0063 .2583E-04 !

i
4.0480 ! -16.2!

i
1.87! .2571E-04 !

i
4.0490 ! -16.6! 4.17! .2123E-04 ! 4.0937 ! -31.2! 5.60!

! 30 .50', .1037E-02 ! 3.0794 1.9416E-03 ! 3.1081 ! -9.2! 1.87', .9341E-03 J 3.1104 ! -9.9! 4.18! .8143E-03 ! 3.1507 ! -21.5! 5.66!
! 30 .70! .7678E-02 ! 2.4239 ! .7818E-02 ! 2.4173 ! 1.8! 1.82!.7758E-02 ! 2.4201 ! 1.1! 4.23! .7210E-02 ! 2.4466 ! -6.1! 5.93!
! 30 .90! .3279E-01 ! 1.8413 1.3572E-01 ! 1.8027 ! 8.9! 1.81! .3651E-01 ! 1.7927 11.4! 4.23!.3415E-01 ! 1.8230 ! 4.2! 6.16!
: so .97! .5469E-01 ! 1.6010 ! .5466E-01 ! 1.6013 ! -.1! 1.87!.5942E-01 ! 1.5596 ! 8.7! 4.29,' .5582E-01 !

i__  ___
1.5909 !

i
2.1! 6.15!

.30! .5226E-04 ! 3.8799
i
1.4302E-04 !

i
3.9269 ! -17.7! 4.67!.4285E-04 ! 3.9279 ! -18.0! 8.95!.3780E-04 ! 3.9579 ! -27.7! 11.98!

! 40 .50! .1609E-02 ! 2.9461 1.1467E-02 ! 2.9746 ! -8.8! 4.67‘,.1459E-02 ! 2.9763 ! -9.3! 8.90!.1351E-02 ! 2.9998 ! -16.1! 12.03!
! 40 .70j .1106E-01 ! 2.2883 !.1140E-01 ! 2.2767 ! 3.1! 4.67! .1137E-01 ! 2.2779 ! 2.8,' 8.95!.1092E-01 ! 2.2932 ! -1.3! 12.52!
! 40 .90! .4455E-01 1.7001 1.4843E-01 ! 1.6602 8.7 4.73 J .5056E-01 1.6394 ! 13.5! 8.95!.4685E-01 ! 1.6761 ! C 1' O.ti 12.69!
: 40 .97! .7337E-01 ! 1.4512 1.7157E-01 ! 1.4642 ! -2.4 4.67! .7982E-01 ! 1.4063 ! 8.8! 8.95!.7550E-01 !

i
1.4360 !

i
2.9! 12.79!

1
! 50

1
.30! .1459E-04 ! 4.1798 ! .1092E-04 !

i
4.2451 ! -25.1

i
9.841.1088E-04 !

i
4.2460 ! -25.4! 16.48!.8927E-05 ! 4.2902 ! -38.8! 22.51!

; so ! .s o ! .8024E-03 ! 3.1550 ! .6971E-03 ! 3.1958 ! -13.1 9.83!.6942E-03 ! 3.1971 ! -13.5', 16.48!.6265E-03 ! 3.2265 ! -21.9! 22.57!
! 50! .70! .7291E-02 ! 2.4426 ! .7427E-02 ! 2.4359 ! 1.9 9.831.7448E-02J 

9.83! .3949E-01 ,
2.4349 ! 'I 0 * L . L  | 16.53!.7173E-02 ! 2.4485 ! -1.6! 23.24!

! 50! .90! .3466E-01 ! 1.8163 1.3775E-01 ! 1.7774 ! 8.9 1.7566 ! 13.9! 16.53!.3671E-01 ! 1.7902 ! 5.9! 23.62!
! 50! .97!
i_i__

.5883E-01 ! 1.5647 J.5775E-01 ! 1.5740 ! 
1

-1.8 9.78', .6327E-01 !
i

1.5279 ! 
1

7.6! 16.64!.5987E-01 !
i

1.5558 !
i

1.8! 00 L 0 1Csf . VL | 
1

Table 4.4. Equicorrelated parallel systems, P<1.5



n i c ! 
1

Exact value Method 1
_____ __ _ _ i i

! Method 2 Ii T-M Method 11
i
iii

1
11_1

Prob. ! R.I. Prob. ! 
_

R.I.
i

Err % ! C.T. ! Prob. ! R.I.
i

Err X ! C.T. ! Prob. R.I. {Err * ! C.T. j

10! • 30! .5211E-Q8 ! 5.7237 .4736E-08 ! 5.7399 -9.1! .11! .4740E-08 ! 5.7398 -9.0!
i

.33! .3710E-08 5.7812 ! -28.8! .44
io! .50! .1188E-05 ! 4.7185 .1095E-05 ! 4.7351 -7.9! .06! .1090E-05 ! 4.7359 -8.2! .33! .7956E-06 4.7994 ! -33.0! .49
io! .70! .2931E-04 ! 4.0183 .2882E-04 4.0223 -1.7! .11! .2847E-04 ! 4.0252 -2.9! .33! .2238E-04 4.0814 ! -23.6! .50
io! .90! .2902E-03 ! 3.4406 1.3000E-03 ! 3.4316 3.4! .11! .3016E-03 ! 3.4302 3.9! ,32l*«m m .0000 ! *****! .06
io| .97!

1
.5634E-03 ! 3.2568 ! .5487E-03 ! 3.2643 -2.6! .06! .5708E-03 \

__  i _ __
3.2531 1.3! .33 jm m m

i
.0000 ! ***** j .05

20!
1

.30! .1514E-10 ! 6.6452 ! .1115E-10 ! 6.6901 -26.4! .50!. 1118E-10 ! 6.6897 -26.1! 1.54! .3856E-11 6.8438 ! -74.5! 2.19
20! .50! .4687E-07 ! 5.3385 !.3608E-07 ! 5.3857 -23.0! .55! .3606E-07 ! 5.3858 -23.1! 1.54! .1252E-07 5.5729 ! -73.3! 2.20
20! .70! .3881E-05 ! 4.4716 ! .3404E-05 ! 4.4996 -12.3! .55!.3358E-05 ! 4.5025 -13.5! 1.59M788E-05 4.6347 ! -53.9! 2.25
20! .90! .8729E-04 ! 3.7532 !.9291E-04 ! 3.7375 6.4! .55!.9090E-04 ! 3.7431 4.1! 1.54jm m m .0000 ! *****! .11
20! .97! .2491E-03 ! 3.4817 ! .2612E-03 ! 3.4690 4.8! .55! .2673E-03 !

___ i_______
3.4628 7.3!

_ _ i______
.0000 ! »****! .11

30! .30! .2563E-09 ! 6.2152 ! .1978E-09 ! 6.2558 -22.8! 1.87!.1978E-09 ! 6.2557 -22.8! 4.23} .5517E-10 ii 6.4521 ! -78.5! 5.66
30! .50! .3785E-06 ! 4.9461 ! .3229E-06 ! 4.9770 -14.7! 1.86!.3229E-06 ! 4.9770 -14.7! 4.18!.1121E-06 ii 5.1781 ! -70.4! 5.77
30! .70! .1805E-04 ! 4.1312 ! .1728E-04 ! 4.1411 -4.2! 1.87!. 1720E-04 ! 4.1422 -4.7! 4.23!.1035E-04 ii 4.2572 -42.6! 5.77
30! .90', .2297E-03 ! 3.5034 1.2402E-Q3 ! 3.4914 4.6! 1.87', .2385E-03 ! 3.4934 3.8! 4,23!m m m ii .0000 ! *****! .27
30', .97! .4926E-03 3.2947 1.4931E-03 ! 3.2944 .1! 1.86!.5050E-03 ! 3.2877 2.5! 4.23im m m

i __
ii .0000 ! .22

40! .30! .2055E-10 ! 6.6000 ! .1343E-10 6.6628 -34.7', 4.671.1345E-10 ! 6.6627 -34.6! 8.90',.1944E-U ii 6.9412 ! -90.5! 12.03
40! .50! .9665E-07 ! 5.2057 ! .7262E-07 ! 5.2585 -24.9! 4.67! .7261E-07 ! 5.2585 -24.9! 8.901.1670E-07 ii 5.5226 ! -82.7! 12.14
40! .70! .8134E-05 ! 4.3108 ! .7255E-05 ! 4.3360 -10.8 4.67!.7197E-05 ! 4.3377 -11.5! 8.96!.3813E-05 ii 4.4754 ! -53.1! 12.25
40! .90 .1574E-03 ! 3.6028 !. 1673E-03 ! 3.5869 6.3 4.67', .1640E-03 ! 3.5921 4.2! 8.95!m m m 11 .0000 ! *****! .38
40! .97, .4056E-03 ! 3.3489 ! .4253E-03 ! 3.3358 4.9 4.67! .4308E-03 ! 3.3322 6.2! 9.0l!*********_ i _____

ii .0000 ! *****! .39

50', .30 .1059E-10 ! 6.6976 ! .4912E-11 6.8090 -53.6 9.84! .4902E-11 ! 6.8093 -53.7 16.421.4678E-12 ii 7.1397 ! -95.6! 22.46
so ! .50 . 104IE-06 ! 5.1918 ! .6516E-07 ! 5.2784 -37.4 9.84!.6469E-07 ! 5.2797 -37.9 16.48!.1079E-07 ii 5.5989 ! -89.6! 22.68
50! .70 .1262E-04 ! 4.2126 !. 1101E-04 ! 4.2434 -12.8 9.83!.1091E-04 ! 4.2454 -13.6 16.53!.4286E-05 11 4.4504 ! -66.0! 22.8
50! .90 .3115E-03 ! 3.4214 !.3354E-03 ! 3.4013 7.7 9.83!.3456E-03 ! 3.3930 11.0 16.53lm m m ii .0000 ! **mj 1.1
50',

1I i
.97 .7820E-03 ! 3.1625 1.7587E-03 ! 3.1713 -3.0 9.83! .8216E-03 !

i
X3.1481 5.1 16.64i*********

i1
ii .0000 ! ****»! .6

T a b l e  4 . 5 .  E q u i c o r r e l a t e d  p a r a l l e l  s y s t e m s ,  p > 1.5



N | c I Estimate | Exact | Error | CPU
1 1 1 value I % 1 (sec)

10 | .30 | .0000000828 I
1

.0000000812 |
—  —  1 - 

2.04| 5.0010 | .70 | .0000000827 | .0000000783 | 5.62| 5.16
10 | .90 | .0000000814 | .0000000593 | 37.391 5.39
10 | .97 | .0000000802 | .0000000406 | 97.321 5.50
20 | .30 | .0093803064 | .0088112171 |

-- 1 -
6.46| 47.62

20 | .70 | .0053704273 | .0057554262 | -6.691 64.98
20 | .90 | .0030503857 | .0032444067 | -5.981 75.69
20 | 1 .97 | .0021670129 | .0021653750 | .081 79.53
40 | .30 | .0072928602 | .0067792989 |

---  1 -
7.58 1 415.51

40 | .70 | .0057361021 | .0040867685 | 40.361 488.72
40 | .90 | .0022264505 | .0020162515 | 10.431 628.57
40 | .97 | .0012634876 I .0011552814 | 9.37| 645.43

T a b l e .  4 . 6  T r i s e c t i o n s  m e t h o d .  S e r i e s  s y s t e m s
B e t a  > 1 . 5

/
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CHAPTER V

SYSTEM R E L IA B IL IT Y  BOUNDS

5 . 0  INTRODUCTION

An alternative to direct integration of the joint probability 
density over the failure region, is the bounding techniques. 
Instead of formulating the probability of failure as a 
multiple integral, it may be viewed as the probability of 
occurrence of a union of a discrete set of events . Each event 
F± corresponds to a failure mode, expressed in terms of a 
limit-state function (or a safety margin)

g±{x)  ^ 0  ( 5 . 1 )

and tjie probability of its occurrence is defined as

P(F±) -  P( g±{x) 1 0)  ( 5 . 2 )

The overall probability of failure is formulated as a series 
system probability

p f  -  P (  Cl Fd )
i

( 5 . 3 )

The evaluation of p f is replaced by the search for an upper 
and lower bound of its exact value, which are close enough to 
each other for practical purposes.
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The exact expression of the probability of union of events, by 
inclusion-exclusion theorem, is

p( M ) ■ + E p(PjnFJo Jt)
i - l  i - l  k<J<l

(5 .4 )
-  £  p c f / I f / I f / I F j ) . . .  + ( - 1) n_1p (F^Fgfi . . .  PlFn)

l<k<j<i

The bounds can be formulated from this expression by 
truncation at some mth order. It can be shown that truncation 
after an even order sum (i.e. a sum of intersections of even 
number of events) would result in a lower bound. Conversely, 
a truncation after an odd order sum would yield an upper 
bound. This assumes that the probability of intersection of 
the events, up to the mth order are known, or can be evaluated 
at an acceptable cost, which is rarely the case. A 
computationally viable truncation can be made only up to the 
second or third order at most. Because partial truncations up 
to t^e second order can produce better bounds than full 
truncations of third order, much of the effort on bounds 
improvements has been devoted to second order bounds, and the 
techniques of partial truncations. By mth order full 
truncation, it is understood here that any intersection up to 
the mth order is included and none is discarded. The converse 
is true for partial truncations.

In the following are reviewed different formulations of the 
first, second and third order bounds, and their possible 
improvements by suitable ordering of the events.
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5 . 1  FIRST-O R DER BOUNDS

The earliest known bounds, and the simplest, are due to 
Boole [1854], and are referred to as Boolean bounds. The 
probability of individual events only are involved in these 
bounds

M axP{F±) *P( \ J  Fd) P { F ±)
i - 1  i - i

( 5 . 5 )

The lower bound coincides with the exact result if the events 
are fully correlated. If the events are fully independent ( or 
mutually exclusive), then the upper bound provides the exact 
result. As the failure modes in structural systems are highly 
correlated, the gap between the bounds is often too wide to 
provide an acceptable estimate of the probability.

/

5 . 2  SECOND-ORDER BOUNDS

The first lower bound to include bisections (pairwise 
intersection between events) is due to Bonferroni [1936]. It 
consists of the straightforward truncation of the right hand 
side expression of equation 5.4 after the second-order term 
over all subscripts i < j ,  in an unselective way. The upper 
bound is the same as the first-order Boolean bound. This 
gives

Pi Fj  + £  [ P ( F 1) - ^ P f F i f l F j ) ]  i. P i p Fj )  i  g P t F * )  ( 5 . 6)
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5 . 2 . 1  I m p r o v e m e n ts  o n  t h e  l o w e r  b o u n d

The lower bound can be 'too low' if some of the terms in 
the left hand side of Equation 5.6 become negative. To 
overcome such problem and to improve the bounds, several 
attempts have been made during the fifties and the sixties 
[Chung & Erdos 1952/ Whittle 1959/ Gallotl966/ Dawson & 
Sankoff 1967]. But in all these attempts the effect of the 
events labelling seems to be overlooked. Kounias [1968] put 
forward a formulation, with a truncation across the first and 
second-order terms

ng, despite the fact that this does not appear explicitly in 
the formula, as will be shown later. At first sight, this 
formulation looks too combinatorial to be of any practical 
use, as the identification of the optimal subset(s) J0 among 
all subsets J seemed to be a formidable task. In a later 
work, Kounias et al. [1976] formulated the second-order lower 
bound as an objective function of a linear programming problem 
as follows

P f  h  M A X j l U P i ( 5 . 7 )

where

J  c  ( l ,  2 , . . . , n) ( 5 . 8 )

This'is the first formulation to take account of the numben-

Maximise ( 5 . 9 a )
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S u b j e c t  t o  :

bQ +  E  b± -  E  b±i * 1 bQi  0
±£jr J ( 5 . 9 b )

where J r a  {1,2,...,n} and r the number of elements in Jr .

The number of constraints is equal to 2n ( number of all 
subsets of a set of size n ), n being the number of events. 
This approach becomes rapidly too expensive with increase in 
n , for the identification of all possible solutions. Nevert
heless, improved lower bounds can be obtained from the above 
formulation. The aim, although less ambitious, is to find 
points of high objective function value, inside or on the 
boundaries of the feasible domain defined by the inequalities 
5.9b. Each feasible point, which will be referred to as a 
lower bound point (LBP) in the sequel, yields a class of lower 
bounces, which can be optimised over all permutations of Jn. 
This suboptimisation is merely a relabelling of the events for 
the given LBP. For the particular case where

bj -  a  i f  i  £ J r , b ± -  0 o th erw ise
( 5 . 1 0 )

b „ - b  i f  i , j  6  Jr , bifj  -  0 o th erw ise

this renumbering is limited to selecting the r events contrib
uting to the lower bound, which is independent of the ordering 
within J T. In [Kounias, 1976], some vertices of the feasible 
domain are given, and correspond more or less to the case 
described by equation 5.7.
It is important to mention here that almost all second-order
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lower bound formulations published by different authors before 
or after the publication of [Kounias, 1976], are particular 
solutions to the Kounias linear programming problem. The so 
called Ditlevsen lower bound (DLB) [1979b] in structural 
reliability

* Pi + J ^ i a x U P t  -  2 * 0 ) . ° ]  (5.ii)
i-2 J-1

assumes some ordering. Its wide use in structural reliability
is believed to be due to its simplicity. Ditlevsen used
indicator functions to derive this bound. The search for a
better feasible points within the linear programming framework
has been inhibited, because of the lack on one hand of a
general computationally viable method of feasibility check,
and on the other hand of an optimal ordering algorithm to make
the best use of any LBP. The latter problem is tackled for

/the LBP corresponding to DLB, in the following subsection 
where an optimal ordering method is proposed. But the feasi
bility check is still a challenging topic. It is believed that 
the identification of lower bound points of straightforward 
feasibility check, as did Kounias, is the most computationally 
viable way of lower bound improvement. In the following 
example with four events and with three LBP are given for 
illustrative purpose. The probability matrix is

'.424 .360 .272 .360\
.360 .408 .208 .296
.272 .208 .416 .272
360 .296 .272 .544;



The following are three LBP and their corresponding lower 
bound values

89

(4/5 >
3/5 4/5 
1/5 1/5 2/5 
,2/5 2/5 1/5 3/5,
[ 0.5304

(6/7 \ a '
5/7 6/7 1 1
1/7 1/7 2/7 1 1 1

o o o o oooo
0.5063 0.4080 ]

( 5 . 1 3 )

It can be easily seen that any single permutation in the order 
of the events would give different lower bound value, as none 
of the above LBP 's is found by solving the system 5.9, but 
are arbitrarily selected feasible points. This confirms that 
among all identified LBP's an optimal ordering is to be found 
for each one of them and to select the highest bound.

Theoretically, any LBP is a potential optimal lower bound with 
the right ordering. However, the family of Bonferroni-type 
LBP' af , i.e feasible points with only l's and 0's, are 
vertices of the feasible domain and are therefore potential 
global optimal solutions to the linear programming system 5.9. 
The LBP of the form

1 1 
1 1 1

0 0 0 0 0
,0 0 0 0 0,

( 5 . 1 4 )



90

can be made (sub)optimal by putting the events of most 
contribution at the top of the events list, leading to an 
optimal form of DLB, or to the selection of the optimal subset 
J 0 in the first Kounias LB of Equation 5.7. This means that 
the order in which the elements of J 0 appear in the events 
list is immaterial for the value of the bound. For all other 
numberings, DLB yields a smaller value than Kounias's . This 
can be made clear in a different way as follows:
Let J D be the subset of events with positive contribution 
(i.e. with positive outer sum terms in Equation 5.6), for some 
arbitrary numbering. Then for every event of JD , it can be 
easily seen that

* i - E * U * * i -  E  PV ( 5 . 1 5 )J-l

and that

/  C t70

i.e. any event, with positive contribution in Bonferroni LB, 
is a necessarily part of Kounias's LB optimal subset J 0 and 
its contribution for the latter is at least equal to that of 
the former if not higher. On the other hand any member of J 0 

does not necessarily make a positive contribution to Bonferr
oni LB or Ditlevsen LB, as more bisections are substracted 
(involving events not in J0 ) .
The optimal subset J 0

, k m (5.16)
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can be found using the following method. Its suboptimality is 
shown in the light of Kounias linear programming formulation. 
The events are represented by a graph where the vertices 
represent the events probabilities and the arcs represent the 
intersection probabilities. A subgraph is built up from the 
whole graph of events, such that at each iteration, the new 
vertex i added and corresponds to the maximal value of the 
quantity

( 5 - 17)
> 1

where the j's correspond to the events already selected. The 
process is repeated until the quantity above is negative. 
This algorithm has the following features:
• the events are ordered according to their contribution in
the new numbering,

/• the optimal contribution is selected at each stage. At the 
1th stage, 1 events have been so far renumbered such that any 
single substitution by another non renumbered event would 
reduce the current value of the bound. The only way of 
improving the bound is by adding new events with positive 
contribution. The algorithms is stopped if there is no more 
events with positive contribution to be added. In linear 
programming terms, the LBP represented in Equation 5.14, which 
corresponds to the numbering which put the 1 selected events 
first on the list, is built up by increasing the value of 1 

new coordinates from 0 to 1. If the feasible domain is 
restricted to its intersection with the unit cube [0,l]n, at
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each stage 1 , the current LBP is a vertex of this reduced 
domain. This amounts to moving from one vertex to another by 
adding one event at a time, ensuring the best improvement of 
the bound, which corresponds to shifting the objective 
hyperplane parallel to itself in the direction to its gradie
nt. At the last stage the optimal vertex remains the only 
intersection of the objective hyperplane passing through the 
current vertex with the feasible domain. The analogy and 
similarity with the simplex algorithm is a striking feature of 
the algorithm as the vertex-to-vertex path would be identical 
if the feasible domain is reduced as above. It follows that 
with this algorithm, the best possible subset J 0 of Kounias LB 
is identified.

I l l u s t r a t i v e  e x a m p le s

a . E x f im p le  1

The example quoted above (Equation 5.12), is optimally 
reordered, by selecting the events with positive contribution 
as follows
- First selected event : m axd Pi —> P4

- Second event : maXj ( P i - P 4i) —» P3

- Third event : maXj (Pd -  P3i -  P4i) < 0

After the second selected event, the remaining others have no 
contribution to the lower bound, which yields

J 0 - { 3, 4 }
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and the suboptimal lower bound is

&L " ^3 + -̂ 4 -̂ 34 .688

which is a significant improvement on the lower bound (.472) 
that would be obtained by direct application of DLB expression 
to the initial ordering.
b .  E x a m p l e  2 Ten events with the following probability matrix 
(the figures correspond to 104 times the probabilities):

1.55
.29 4.02
.12 .46 .65
.14 .05 .04 .47
.15 .13 .12 .04 1.07
.31 .49 .35 .14 .80 4.28
.21 1.33 .47 .03 .87 2.53 17.52
.02 .16 .08 .02 .11 .46 .44 .67
.03 .10 .11 .01 .04 .31 .27 .07
.04 .34 .12 .00 .12 .21 .49 .09

/
With the above ordering, it can easily be checked that the 
lower bound is 2.082*10'3 . With the reordering only six events
have positive contribution, yielding the following probability 
submatrix:

17.52
1.33 4.02
2.53 .49
.21 .29
.27 .10
.03 .05

4.28
.31 1.55
.31 .03
.14 .14

1.27
.01 .47

and a lower bound of 2.2 87*10"3.

The remaining question on the second-order lower bound is that 
which one of the two families of LBP's discussed above, can
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produce the best lower bound ? Numerical experience, although 
limited, tends to suggest that the Bonferroni-type LBP's (0's 
and l's) are the overall optimal solutions. This could be the 
case for some class of practical problems, but it is not easy 
to prove. In theory at least, no LBP can be ruled out as a 
potential global optimum. From the practical point of view, 
the optimal numbering is much costly with LBP with non-zero 
coefficients less than one. The above algorithm could be used 
to improve the bound, but the overall optimal ordering needs 
more involved method, as after the first event with negative 
contribution is found, the possibility of positive contribu
tion in the next rows of the LBP cannot be ruled out. The 
number of possible combinations for the remaining events may 
be too high for an exhaustive search.

5 . 2 . 2  I m p r o v e m e n ts  o n  t h e  u p p e r  b o u n d

/

The first known improvement on the upper bound (UB) is due to 
Kounias [1968]

^ < U  ? ! )  * E  p i
i - i  i - i

n
mtX E pkll s k * n ( 5 . 1 8 )

Using Moses and Kinser [1967] expression of the probability, 
as a linear combination of the conditional probabilities of 
the survival for the first i-1 events given that the ith fails, 
Vanmarcke [1971] derived the following UB

( 5 . 1 9 )
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where Fkc is the kth survival event. This UB can be easily 
written as

P* *
n

E
i - l

J L  i - l  
Pj -  max

i - l  k m l
( 5 .2 0 )

although it has not been presented in this form by Vanmarcke. 
This UB has been also derived by Ditlevsen using indicator 
functions [Ditlevsen, 1979b].
Hunter[1976] derived the simpler formulation

p f  *  E p i  "E P U  ( 5 .2 1 )
i - l  i - l

for some arbitrary k  < i .  This UB is not only dependent on 
the events ordering, but also on the choice of k . Obviously, 
for a/given ordering, the choice of k would lead to the use of 
Vanmarcke formulation (Equation 5.19). The best ordering is 
the one which maximises the quantity

± p i k  ( 5 .2 2 )
i - l

Hunter used graph theory to derive the best ordering. A graph 
is constructed in the same way as in section (5.2.1). A 
connected subgraph is called spanning tree if it has (n-1) 
branches of which at lest one is incident to each of the n 
nodes. Hunter showed that the bisections to be included in the 
upper bound should form a spanning tree of all nodes. The
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selection of the best ordering becomes a selection of the b e s t  

s p a n n i n g  t r e e .  Hunter made use of Kruskal algorithm [Kruskal 
1956] to obtain the best spanning tree as follows :
The bisections Pi;j are allocated to the tree in decreasing 
order, such that the node i is part of a previously selected 
branch, and j not yet selected, or vice-versa. The process is 
repeated until all n nodes are used up. This algorithm, 
despite its simplicity, is very powerful; it selects the 
ordering that spreads the highest bisections among the rows in 
the subdiagonal part of the probability matrix.
Hunter contribution can be summarised as an implicit ordering 
optimisation for Vanmarcke upper bound.

In [Kounias, 1976], the linear programming approach for the 
lower bound is also adopted for the upper bound. The upper 
bound linear programming system is

/

m in im is e  : ♦  t Ci^ i -  E1£i<jsn C± lP i j
( 5 . 2 3 a )

s u b j e c t  t o

0*c0

l ^ o + r  c t -  E  csj fo r  a l l  JzeJn
l e J x  / i ,  J e j r

( 5 . 2 3 b )

Here again the previous UB's are feasible solutions (UBP) of 
the above system. A catalogue of a few UBP's is given in 
[Kounias, 1976]. The identification of vertices 'by 
inspection' is much more difficult than for the lower bound
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case, which reduces the chances of improving the value of the 
bound.

5 . 3  THIRD-ORDER BOUNDS

Using indicator functions, Ramachandran [1984,1985] derived 
third-order bounds. The lower bound is

n 1-1
P f * RL* -  p 1 * p 2 -  p 12 + T ,  max{ [Pi -  £  P y  + m a x £  Pllk ] , 0 }

i - 3  J - l

( 5 . 2 4 )

where I and k are arbitrary choices in (1,2, . . ., i-1}, such 
that the corresponding branches form a spanning tree of all 
vertices l,2,...,i-l. The upper bound is

/ p r * R ul -  Pi + Pz -  Piz + E  {pi -  [ p n  + -  Puti] >
i - 3

( 5 . 2 5 )

As the trisections evaluation is very costly and makes the use 
of third-order bounds less attractive, Ramachandran proposed 
a nonlinear lower bound to the trisections for the special 
case of events defined by linear functions. This bound is

p {f ± n  Fj n  Fk) p i F i  n Fj) . p ( F d n F k)

P( Fj )
( 5 . 2 6 )
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if pjk > pijpik/ where p±j is the correlation between linear 
functions corresponding to the events i and j . This normal 
trivariate bound is used for the third-order bound by replac
ing the third-order terms by the expression

max{ ^i:}Pik
P±

P i k ? j k  }
Pk

( 5 . 2 7 )

which satisfies the correlation condition above.

5 . 4  HIGHER ORDER BOUNDS

Hohenbichler and Rackwitz [1983], assumed that intersections 
are known up to some order l < n , and derived a general formula
tion of the bound in terms of those intersections. Let J r be 

/
the subset { j 1, j 2f - - - , 3 r ) / with r < l , it has been shown that 
an upper bound is

P( U  Fl > * O j - O i (F1,F 2, . . . , F n)
i - l

- P f F j )  + V ( p ( F j ) - m a x  [ P (  M  ( F i f l F J ) ] }
i - 2  J T. r < l

( 5 . 2 7 )

By considering for each i successively, the i - l  Gj events

{ Gj -  F ^ F j / j  - 1 , 2 .......... i - l  ) ( 5 . 2 9 )
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and applying the above upper bound to each one, a lower bound 
is easily derived

n n
P ()J  Fs ) fc L 1 - P (F j) + Y 'm ax{P (F i ) -

i-1 i-2 ( 5 . 30 )

o 1- 1 {g1, g2, . . . . g j . o)

It is not difficult now to see that application of the above 
bounds to the case 1=1 and 1=2 yields respectively the bounds 
derived earlier. The third-order bounds, after a change of 
notation, come as follows

n i-1
L 3 -  Pi + P2 -  P12 + Y, maxlPj -  Pn  - Y  '  max P „ k ] , 0 }

i-3 J-2

( 5 . 3 1 )

and

/ O3 p x + p 2 -  p 12 +
i-3

max lP 1J + Pl k - P 1Jk]} (5 . 32 )

where Pijk is the intersection of the events i , j f k .

5 . 5  BOUNDING BY CONDITIONING

Another type of strategy for bounding has been adopted by 
Rackwitz [1978] and Ditlevsen [1982] and is outlined below. 
Rackwitz approach is based on the following theorem given by 
Sidak[1968]:
" if {pij> and {Yij > are two correlation matrices such that :

Pij *  Yij
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then :
<f>n(P,Y) * <t>„(P.p)

and the reverse (i.e. fc) is true."
If the events can be represented in terms of linear
safety margins of the form

Z± - v ±U + y j l - \ 2i Ui  , i-1,2, . . . ,22 (5.33)

where U and Ui are independent standard normal variates, and 
| Vi 1*1, it follows that the correlation between events is

Then the probability of failure can be expressed as [Dunnett 
and Sobel,1955]

The probability would be exact if one can find the values of 
Vi's yielding the exact correlation matrix. Unfortunately, 
such values are the solutions of an overdetermined nonlinear 
system of n(n-l)/2 equations and n unknowns, for which 
solutions do not always exist. However, one can always find 
values such that the conditions of Sidak's theorem are 
satisfied, thus yielding a lower bound for the case (ViVj * pi;j) 
and an upper bound for (ViVj £ pi;j) , provided that the condition 
of non-negative definiteness is met. The attractiveness of the 
method comes from the fact that it brings down a multiple 
integral to a single dimensional one. But the hard bone of 
this approach is to find values of v^s that reduces the gap

( 5 . 3 4 )

/
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between the bounds, bearing in mind that different sets may be 
needed for the two bounds. There is no known viable technique 
for such a purpose. Moreover, numerical experience showed that 
the bounds obtained are normally wide, and a search for a 
better v^s is likely to outweigh the single dimensional 
integral feature in term of efficiency.

In a slightly different approach, Ditlevsen assumes the 
variates [7* correlated and seeks the v^s such that their 
correlation is minimised [Ditlevsen 1979b, 1982] . This amounts 
to replacing the original set of linear margins by another of 
less correlated ones, in order to reduce the gap between the 
bounds. This method has many drawbacks, which has been indi
cated by Ramachandran and Baker [1984] . The most important is 
the computing time which is about five times higher than the 
methods discussed above. Using bounds on the bivariate 
integrals may have negative effect on the gap between the 
bounds. Moreover, the single dimensional integral over the 
variable u may be very sensitive to the integration step. A 
further point which has not been raised is the evaluation of 
the constants v i , s which ensures low correlations between the 
equivalent safety margins; this may be a difficult and costly 
optimisation problem.
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CHAPTER V I

OPTIMISATION OF MULTIEXTREMAL FUNCTIONS

6 .0  INTRODUCTION

This chapter presents a concise review of the best known
techniques used in solving unconstrained nonconvex
optimisation problems, and examines the relevance of these
techniques to the generation of critical load-resistance
directions in structural reliability. As the aim of these
methods is to find the global optimum, any other local optimum
found on the way comes only as a by-product, they cannot be
directly used to solve a problem in which a selection of the
'best' local optima is to be found. Therefore any method used
has to be modified to suit this objective in the most

. /efficient way. Existing methods are examined first and an 
algorithm adapted to the selective optimisation problem in 
structural reliability is presented in the last section.

Finding the global optimum to multiextremal functions has been 
and is still a big challenge in optimisation research. So far 
there is no method which can claim to solve the problem 
efficiently despite the restrictive assumptions often made on 
the objective function. The most restrictive methods are of 
the deterministic type with finite convergence, but with 
exponential increase in computational cost with the dimension 
of the problem. Less restrictive are the probabilistic
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are the two major classes of global optimisation methods, but 
some methods include certain random elements within a 
deterministic framework to enhance their performance or to 
widen their range of applicability.

The problem is formalised, for a maximisation, as follows. 
Given the objective function f

f  : x  ------------- - f  (x) E S  ( 6 . 1)

where 5 is a compact subset of R", find x * ,y * such that

y*  - f ( x ’ ) t  f  (x )  , V x  e S  ( 6 . 2 )

Unconstrained optimisation would mean that S is the maximal
subset of Rn for which real function values for f  exist. In
most practical situations the so called unconstrained
problems have the domain S as a box with simple bounds on the

/variables. The methods described below make the same 
assumption but the problem is still referred to as 
unconstrained one.

6 . 1  DETERMINISTIC METHODS

6 . 1 . 1  Space co verin g  techn iqu es

These methods attempt to cover the whole domain S by an 
exhaustive search. They are limited to Lipschitzian functions, 
for which there is a constant K such that
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for which there is a constant K such that

I f ( x ±) -  f ( x 2 ) I i  K \  x 1 -  x 2 | V x l f x 2 E S  ( 6 . 3 )

i.e. there is a bound K on the rate of change of the objective 
function. Moreover this bound is assumed to be known. In 
practice, the existence of such a constant is not always 
evident, and its value can be hard if not impossible to find. 
This is the first drawback of these methods.

The first known method of this type was the grid method of
Fisher [1935] which covers S simply by identical hypercubes.
A better approach is suggested by Evtushenko [1971] in which
a sequence of points is generated until the domain S is
covered by a set of hyperspheres centred at these points, or
hypercubes inscribed in them. Under the same assumption,
Shubert [1972] developed an algorithm which ,although

/impractical for multidimensional functions [Dixon 1975,
Archetti 1984], turns out to be very efficient for single 
dimensional problems. It could also be used in a sequential 
scheme within the multidimensional case [Schoen, 1982] .

Other domain-partitioning algorithms developed recently 
[Mayne & Polak 1984, Meewella & Mayne 1989] for Lipschitz 
continuous functions are claimed to perform well. Using 
interval arithmetic, Hansen [1980] proposed an algorithm 
for functions that are rational and their first and second 
derivative are also rational, but not necessarily
Lipschitzian.
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Another type of method referred to as the "regions of 
attraction" [Treccani et al. 1975, Cories 1975] assumes a 
twice continuous differentiability for the objective 
function. The region of attraction for a local optimum is 
defined as the connected subset of S from each point of which 
a steepest search leads to this local optimum. The domain is 
scanned for the hills (or the basins) corresponding to each 
local optimum via the search for saddle points. The 
neighbourhoods of the saddle points found are explored for 
starting points leading to new local optima.

6 . 1 . 2  T ra j e c to ry  techn iques

Less sensitive to the dimensionality of the problem are the 
trajectory methods. Trajectories of constant gradient 
direction are built up through the solution of a differential 
equation; local optima, or good starting point for local 
search are generated in the process. The original algorithm 
due to Branin [1971] , laid down the path to the development 
and the critical study of this approach [Treccani 1975, 
Gomulka 1975, Hardy 1975, Griewank 1981 ].

6 . 1 . 3  T u n n e llin g  method

The basic idea of this method is to generate a point with 
objective function value better than the local optimum last 
found, by solving an equation involving all the previously
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found local optima. But the solution of this equation, and 
specially deciding if there are other roots or not, could be 
more difficult than the original global optimisation. The 
method was first published by Levy & Montalvo [1977] .

6 .2  STOCHASTIC METHODS

One major problem in global optimisation is the possibility of 
bounding the error on the optimal solution. With deterministic 
algorithms, this bounding can only be achieved for a 
restricted type of functions, of a very moderate 
dimensionality. To avoid this difficulty, the stochastic 
approach seeks an asymptotic guarantee of getting the true 
global optimum rather than an absolute one. This is not a 
serious drawback if there is no other efficient way of 
handling the problem. The basic idea behind the stochastic 
methods is that, by sampling points from some continuous 
distribution over the domain S , the probability of hitting any 
given point or its neighbourhood tends to 1 as the sample size 
tends to infinity [Brooks 1958; Rubinstein & Weissman 1977] . 
The choice of a sampling distribution, the inclusion of a 
local search, and the termination rules are the basic criteria 
behind the classification of the various stochastic methods. 
A few methods are outlined in the following sections.

6 . 2 . 1  Pure random search

The pure random search (or nonadaptive random search) is the
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simplest method. A random sample of N points is generated from 
some distribution in S , and the function is evaluated at 
these points. The best function value is then selected as the 
solution of the problem. Brooks [1958] and Anderssen [1972] 
studied such a method and showed its asymptotic convergence 
for the uniform distribution. Rubinstein and Weissman [1977] 
studied the general case of a continuous distribution. It is 
obvious that the choice of non uniform distribution assumes 
some prior knowledge of the location of the optimal solution 
within S .

Let A be a neighbourhood of the optimal solution x* and a such 
that

a m ( A )
M S )

( 6 . 4 )

where/m is the Lebesgue measure on S ( or simply volume). If 
a uniform sample {Xj} of size N is drawn from S , the 
probability that at least one point from the sample falls 
within A is

P -  l  -  ( l  -  a ) N ( 6 . 5 )

it follows that the minimum sample size to ensure the 
probability level P, for a given a is

* - logd-P)
log(i-a)i\r (6 .6 )
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Without prior assumptions on the objective function f ,  this 
minimum sample size does not guarantee that the optimum value 
of the sample falls inside A. This is a very weak point of 
this method as the objective value might be 'close' to the 
optimum value, with completely wrong location. Moreover, the 
probability, that the error on the optimal objective value is 
lower than some prefixed value, is not known. Another 
problem, linked to the prior knowledge about the objective 
function, is the acceptability of the global optimum 
estimate. This problem has been discussed by Anderssen [1972] 
who introduced the idea of hypothesis testing, by which a 
minimum confidence level for the value and location of the 
optimum should be ensured, using all available information 
about the physical problem.

A straightforward improvement on the crude uniform random
search is the 'multistart' algorithm, where a local

/optimisation is carried out at every sample point. The best 
local optimum is selected as the estimate of the global 
optimum . Due to the computing cost of the local search, 
severe limitation on the sample size is often unavoidable. To 
overcome this problem, a more sophisticated algorithm, 
combining random sampling and a cluster analysis, has been 
developed (see section II.3 for more details).

6 . 2 . 2  A d a p tiv e  random search

While in the previous method the points are sampled
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independently from each other, tine adaptive random search 
generates a sequence of points with improving objective 
function values, and an update of the sampling distribution at 
each iteration. This approach has been investigated by many 
authors, and a bibliographic coverage can be found in 
[Rubinstein 1986].

Matyas [1965] appears to be the first to have developed an 
adaptive random search for unimodal functions and to prove its 
convergence in probability. Matyas' s algorithm generates a 
sequence {x k} of improving objective function value, taking 
account of the previous observations at each stage.

Baba et al. [1977] re-examined Matyas's convergence theorem 
and generalised it to multiextremal functions. A comprehensive 
study of the adaptive random search techniques is due to Solis 
& Wet^ [1981] . They generalised the concept of adaptive search 
to fit most of the previously known algorithms. The sequence 
{x*} is such that

x k+ i "  T { x k , y k ) ( 6 . 7 )

where y k is generated from some distribution h k updated at each 
stage k . Two basic conditions are shown to ensure the 
convergence in probability :

- The mapping T and the sampling distribution h k must ensure 
the improvability of the objective function. It can be a 
random or deterministic search for the local optimum.
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- The distribution h k should not ignore systematically any 
subset A of 5.

The above convergence is shown under the condition of 
measurability of both S and the objective function.

It can be seen from this general formulation that the two main 
ingredients of any recipe for global optimisation, using an 
adaptive random search, are the sampling distribution h k and 
the mapping T. The behaviour of any derived algorithm depends 
very much on the combined effect of these two ingredients.

6 . 2 . 3  M u l t is t a r t  methods

The simplest method is the crude multistart referred to at the 
end o t  section II. 1. But without prior knowledge on the number 
of local optima, or the 'topography' of the function, two 
difficult questions arise :

- Is the estimated optimum 'close enough' to the true 
global one ?

- How can we ovoid converging to the same local optimum 
several times, as many points can be sampled from the 
same region of attraction ?

In stochastic methods, with asymptotic guarantee of 
convergence, the first question can only have a probabilistic 
answer formulated in stopping rules of the sequential
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sampling. More details on stopping rules are given in section
II.5 in the general framework of termination criteria of 
random search techniques.

The second question can be tackled if one can identify the 
regions of attraction of all local optima. This means to find 
contours of 'basins' and 'hills' of the objective function, 
which is more difficult. An alternative to exact 
identification, which can serve the same purpose, is to group 
the sample points into subsets of points belonging to the 
same basin (or hill). By doing so, we can virtually ensure 
that only one local search is carried out in each basin 
(hill) from which at least one point is sampled. This 
technique is well known in statistics, and referred to as 
c l u s t e r  a n a l y s i s  [Everitt 1974; Hartigan 1975; Anderberg 
1973] .

/

Application of cluster techniques in conjunction with random 
sampling and good stopping rules, has produced relatively 
efficient algorithms for global optimisation.

6 . 2 . 3 . 1  C lu s te r in g  techn iques and g lo b a l o p t im is a t io n

C l u s t e r  A n a l y s i s  is the term used to refer to techniques which 
seek to divide a set of N objects or elements into subsets 
according to contiguity or some similarity criterion. It is 
widely used in statistics for data analysis. Clustering 
techniques are as various as their users, but the ones
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considered in the following are those which have been used as 
a part of some global optimisation algorithms. Becker & Lago 
[1970] are reported to have put forward the idea of
clustering the points around the local optima in order to 
avoid unnecessary function evaluations and local searches, 
resulting in a substantial savings in the computational cost. 
From a uniformly drawn sample, regions of high density are 
created around the local optima by removing a prefixed 
proportion of the sample points with lowest (highest) 
function values. This is known as the s a m p l e  r e d u c t i o n  

t e c h n i q u e . In the ideal case, reduction would create a 
clearly distinct sub-agglomerations of sample points leading 
to the same local optima. But in practice, very often these 
sub-agglomerations correspond to the connected components of 
some level set L ( y ) defined as

L { y ) - { x E S I g { x )  l y )  (6.8)

/

Torn [1976] devised and implemented a clustering-based 
algorithm which increases the density of sample points in the 
hills (basins) by undergoing one or a few steepest ascent 
(descent) steps from every point of the sample. This 
operation is known as s a m p l e  c o n c e n t r a t i o n . This is further 
improved by sample reduction [Torn, 1978]. This sample 
concentration would theoretically help to overcome the 
problem left by simple reduction, by creating low density 
'corridors' between contiguous hills (basins), making their 
identification easier. However, this comes in a conflict with 
the clustering procedure which assumes and exploits the
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uniformity of the sample distribution.

To identify the clusters, Torn used a simple version of the 
d e n s i t y  c l u s t e r i n g  t e c h n i q u e , a natural way of grouping points 
in a metric space, which identifies areas of high density. He 
considered the clusters as hyperspheres of stepwise increasing 
volume from a starting seed point. Assuming that the local 
optima are the best seed points, he approximated them by the 
sample points with the best function values. The seed points 
are selected among the best points not yet clustered. The main 
advantage of this method is the fact that it does not need 
the computation of the whole similarity matrix for growing 
the cluster (i.e. for allocating a point to a given cluster 
only this point and the seed point are considered) . The 
cluster is grown by increasing the radius of the hyperspheres 
until the density within the cluster becomes higher than the 
original uniform density over the whole sample. But the 
approximation of the clusters' shape, which represents the 
regions of attraction, by hyperspheres is rather crude and 
can only fit a very limited class of functions. Nevertheless, 
Torn reported some success in handling a series of test
functions. Gomulka [1978] reported her experience with Torn's 
algorithm and found it 'consistently reliable'. But one 
drawback which has not been pointed out before, is the effect 
of the boundaries of S on the peripheral clusters' densities. 
A spherical cluster not entirely contained in S would have its 
density underestimated. However, the negative effect decreases 
as the overall average density increases. This problem can be 
completely eliminated for the particular case where S is a
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subset of the boundaries of a convex subset of Rn. This idea 
is further developed in section 3.

Boender et al [1982] suggested an improvement on the shape of
the clusters ; hyperellipsoids are used instead of
hyperspheres through second order approximation of the
objective function at the local optima (seed points). The
range of applicability although slightly wider, is still very
narrow. In the same reference, further improvement on the
clusters' shape, is sought, based on the distance between any
sample point and its closest neighbour. This is called s i n g l e

l i n k a g e  c l u s t e r i n g  which can produce clusters of virtually
any shape. In this approach, a cluster consists originally of
a single point, other points are added if their distance to
any point already in that cluster is below some critical
threshold. Two clusters are fused, if the distance of any
point from the first to any point from the second is below the

/threshold, which is updated as the overall sample size grows.

The single linkage approach is used for global optimisation by 
defining the distance between two points x 2 and x 2l in the 
neighbourhood of a local optimum x* chosen as a seed point, as

d(x1,x2) - s] (xx -x2) * H(x*) (xx-x2) (6-9

where H is the hessian of the function. Points are allocated 
to a cluster until the smallest distance from any point 
inside this cluster to any other point outside it exceeds some 
threshold level. This threshold criterion is dictated by the
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distribution of the sample ; it should be uniform within each 
cluster. With the metric defined above, the average volume v 
of the neighbourhood of each sample point containing no other 
sample point is approximated by

______ d  n n n/z______
T{n/2 + l)\H{xn)^/2

(6 .10)

where d is the average distance to the nearest sample point. 
The probability of having only one point out of N sample 
points within this volume is

a -  ( 1 ------<6.H>m{S)

If d is taken as the threshold level, it can be estimated by 

d  -  [ r  (l+n/2) <J\ H{ x*)  I m{S) , ̂ _ai/ iw-i) \ i i / n  ( 6 .12)
7ln/2

/

The experience reported on the density and the single linkage 
methods shows that both perform equally well, except for the 
case where the shape of the clusters is far from ellipsoidal 
where the density clustering tends to terminate the clustering 
prematurely. Both methods seem to be better than Torn's 
algorithm and many other existing methods, in terms of number 
of function evaluations.

Rinnoy Kan and Timmer [1984] suggest the following critical 
distance for the single linkage approach
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d  -  ] r 1/2 [ r ( l + n / 2 )  m (S) a l ° a l " L ] i / n  ( 6 . 1 3 )
N

using the normal euclidian norm, and setting the probability 
a to

a -  ( l  -  q l n w  )N ( 6 . 14 )
N

They also show that by s i n g l e  l i n k a g e ,

• if a > 2, the probability that a local search is 
applied at the k th cycle tends to 0 with increasing k .

• if the parameter a exceeds 4, the total number of local 
searches is finite with probability 1 , for infinite 
sample size.
• In every connected component of a given level set L (y)

which a point is sampled, a local optimum will be 
found within a finite number of iterations.

Rinnoy Kan and Timmer [1984, 1987] also suggested another
approach referred to as The  Mode A n a l y s i s . This is in fact a 
simplified adaptation of the clustering method of Wishart 
[1969], known under the same name. The domain S is first 
partitioned into small cells (hypercubes). After sample 
reduction, the cells are classified into full cells and empty 
ones. The cells with more than half the expected number of 
sample points are considered full, otherwise they are empty. 
Then a single linkage clustering is carried out on the cells 
as elements, the clusters being the subsets of S corresponding
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to a connected subsets of full cells.

One common drawback, in both the single linkage and the mode 
analysis, is that each cluster correspond to the connected 
components of the level set defined by the sample reduction, 
which can cover more than one region of attraction, and yet 
only one is identified. The problem may be even more serious 
due to an inherent weakness of the single linkage method, 
known as c h a i n i n g . Here some disjoint contiguous components of 
the level set are put in the same cluster, suggesting a 
spurious connection. This increases substantially the number 
of overlooked regions of attraction hit by the reduced sample. 
This comes on top of the effect of the sample reduction where 
the discarded points of 'bad' function values might belong to 
the region of attraction of the global optimum.

This , / t ed Rinnoy Kan and Timmer [1984, 1987] to introduce the 
so-called M u l t i - l e v e l  m e t h o d s . The procedure is the same as 
for the two previous techniques, except that the local 
optimisation is started from every sample point without a 
neighbour of better function value within some c r i t i c a l  

d i s t a n c e . This results in a sequence of monotonically 
increasing (decreasing) sample points of the objective 
function value, from which a local search is applied. If the 
critical distance of equation 6.13 is used, then the 
asymptotic results concerning the local searches remain valid. 
Moreover, if or is positive and x  is an arbitrary sample point, 
then the probability that a local search is initiated from x, 
would tend to 0 with increasing number of sampling/clustering
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cycles k .

The mode analysis method is further extended to the 
m u l t i - l e v e l  m o d e  a n a l y s i s  (MLMA) , in the same way as the 
multi-level single linkage. The value of each full cell is the 
best function value among its sample points. A local search is 
started from the best point of each cell which has no 
neighbour of a higher value.

Numerical experiments [Rinnoy Kan and Timmer 1984, 1987] show 
that multi-level single linkage method gives promising 
results compared to other clustering-based methods 
(SL,MA,MLMA). Compared to other methods described in previous 
sections, its performance seems to be the best both in terms 
of the number of function evaluations and unit standard time. 
But it has been recognised that any fair comparison should 
take Recount of the fact that, on one hand some parameters 
proper to each method have to be optimised (critical distance 
parameter a,  reduction percentage, sample size per 
iteration...), and on the other hand the stopping rules must 
be the same.

6 . 2 . 3 . 2  T e rm in a tio n  c r i t e r i a

All global optimisation algorithms using random sampling 
comprise a global probabilistic part and/or a local 
deterministic part. The latter part performs the numerical 
approximation of the global optimum candidate and the former
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controls the sampling and the d e c i s i o n s  for making a local 
search and most importantly whether its outcome is the global 
solution or not, in order to terminate or to carry on 
searching. Deciding when to stop sampling and accept the best 
solution found so far as the solution, is the critical part 
of this class of algorithms. Much of the recent work done on 
global optimisation has been devoted to devising "good 
stopping rules". Two different ways of handling the problem 
have been considered ; in the first one, the function values 
of the sampled points are seen as realisations of a random 
variable for which the distribution is approximated; in the 
second one, the number of regions of attraction is estimated 
as that of the cells of a multinomial distribution.

6 . 2 . 3 . 2 . 1  F u n c tio n  le v e l  s e t p r o b a b i l i t y  te rm in a t io n

This ,^lass of termination techniques aims at estimating the 
probability of finding a better local optimum, than the ones 
found so far. The search is terminated if this probability is 
less than some prefixed value. This gives no information on 
the error on the true global optimum, and just indicates the 
chance of any improvement of the function value. Consider the 
following function

E(y> - ( 6 . 1 5 )

where L ( y ) is the level set as defined previously. The global 
minimum can be defined as
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y* - { y  I £ (y) - 0 } (6.16)

and a e-approximation of y* is

ye* -  max { y  I £ (y) ) ( 6 .1 7 )

It can be easily seen that the function defined by equation 
6.15 can be interpreted as a probability distribution of 
f  (X), if X is uniformly distributed over S , and the 
e-approximation is simply its quantile of order e.

6 . 2 . 3 . 2 . 2  Regions o f a t t r a c t io n  numbering te rm in a t io n

This approach was put forward first by Zielinski [1981] in 
order to find the number of regions of attraction and their 
relative sizes, and later extended by Boender & Rinnoy Kan
[1983] .

The domain S of multimodal functions can be partitioned 
according to the regions of attraction Rk of the local maxima 
(minima) x k*. Let cok be the relative share of the k tb region

m(Rk) co , -  ------—
k m(S)

( 6 .18 )

The number of local optima is 1 . If a uniform sample of size 
N is taken from S, and n 1, n 2, . . . , n 1 are the shares of the 
regions from the sample, then
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n ± + n 2 + . . . ilj - N

The { n lf  n 2, . . ., n 2} set is a realisation of the random set 
{N2,N 2, . . . ,Nj} from a multinomial distribution. Because the 
number of cells is not known, the maximum likelihood estimate 
of 1 is shown to be infinite for all possible outcomes of n d 

[Boender & Rinnoy Kan, 1983].

If the parameters 1 and { co1# co2, ..., CDi) are assumed also to be
random variables, with a specified p r i o r  d i s t r i b u t i o n s  ,
p o s t e r i o r  d i s t r i b u t i o n s  can be found using the sample outcome,
through Bayes theorem. The prior distributions are such that
L is uniform over the set of positive integers, and
{co1#co2, . . . #cOj} jointly uniform over the (1-1) -dimensional unit
simplex. Under such conditions, it can be shown that [Boender
& Rinnoy Kan, 1983] :

/i) the marginal probability that (L=l / l>w) is

______ (1-1) HI ( N -1) t { N - 2 ) [ (6.19)
(iV+I-l) I (1 -w)  \ w\ (w-1) ! (N -w -2 ) l

i i )  the posterior expected value of L is

T/(iV-l)
{N -w -2)

f o r  N  b w+ 3 (6.20)

and its variance is

w{w+1) { N - l )  {N-2)  
{N -w -2 ) 2 { N - w - 3 )

f o r  Nhw+C (6 .21)
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i i i )  the transition probability that a new trial will 
result in a new local optimum is

w ( w + 1) 
N ( N - l )

for N  h w+2 (6 .22)

iv )  given a pair (w,N) , and c  = c 1/ c 2 , where c 2 is the 
cost of premature termination assumed to be proportional 
to the relative error of the posterior expectation, and 
c 2 the cost of each trial assumed constant, then the 
optimal decision is to terminate sampling if

N  h N ' { c ) r 6 + s
C + \

-  13 1 c
( 6 . 23 )

6 . 3  MULTIEXTREMAL OPTIMISATION OVER A HYPERSPHERE
/

6 . 3 . 1  Method s e le c t io n

In order to have a useful comparison between different global 
optimisation methods, each approach will be appraised for its 
suitability for identifying the stochastically dominant 
directions in the load-resistance space.

The function to be optimised in this study corresponds to the 
limit-state surface of a framed structure with random 
resistances and subject to random loads. The integration of 
the probability of failure is carried out by the simulation
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using a directional importance sampling approach. The 
directions of most importance are in the neighbourhood of 
local maxima of the function. But the number of local maxima 
is too high to allow them to be set as a target in their 
totality; moreover only a few of them, with the highest 
function values, are of practical relevance to importance 
sampling. Therefore, the objective would be to find a subset 
of local maxima of function value higher than some threshold. 
In this respect, the goal is different from that of the 
conventional global optimisation which seeks only the global 
maximum as the end result and ignores the other optima. It is 
also different from the multiextremal function analysis which 
tries to find all local optima. Therefore any method used in 
this particular case should be some appropriate blend of the 
methods used for solving the two situations referred to above.

Among the deterministic methods, most of the space covering
/techniques are developed for a particular class of functions 

such as rationals, lipshitzians, and twice differentiable. As 
limit state functions are not given in a closed form, these 
methods are not suitable. Moreover, nearly all these methods 
are time-exponential and can be unacceptably expensive for 
large dimensionality.

The trajectory techniques seem to be unaffected by the 
dimensionality, however the convergence for all cases is 
still questionable.

The tunnelling method generates a sequence of improving local
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optima intended to converge to the global one, in such a way 
that many relevant 'peaks' may be overlooked. More 
importantly, it generates a sub-problem more difficult to 
handle than the original one.

Generally speaking, the range of applicability of the 
deterministic methods in their present state of development, 
is too narrow to be of direct use in the present study. 
Therefore it is believed that only the stochastic methods can 
ensure some useful solution at an acceptable cost in 
structural reliability analysis.

The pure random search techniques (PRS) cannot be directly 
used in this case for obvious reasons. Adaptive random search 
(ARS) as described by Solis and Wets, using local search for 
the mapping T (see section II.2), can be modified to keep 
recor^ of any relevant local optimum found on the way, 
instead of generating an improving sequence only. It may 
appear that our problem can be solved by this method, but the 
number of local searches would be unacceptably high. 
Therefore, even modified ARS cannot be used.

The Multistart (MS) approach remains the most promising 
alternative; by its structure, it generates local optima and 
can be modified to meet closely our purpose. Of course, the 
crude MS is not suitable for lack of efficiency. The 
Multistart/clustering technique is most suitable; it keeps 
record of all (relevant) optima found on the way in a 
systematic manner, and the sample is arranged in order to give
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out the maximum information about the function and its shape; 
it is flexible and can lend itself easily to adaptive 
modifications; a selective scheme of the local optima can be 
efficiently included avoiding wasted local searches for non 
relevant optima.

Within the multistart/clustering scheme, the choice is still 
wide. Many decisions, concerning the different phases of any 
potential algorithm, are yet to be made. In the following are 
discussed the different alternatives for each phase. These 
phases are Sample modifications, Clustering, and Stopping 
rules.

6 . 3 . 2  Sample m o d ific a tio n s

The crucial point in this phase is to decide whether reduction 
and/or concentration should be made, and by how much the 
sample should be reduced or how many steepest steps are to be 
done for concentration.

After sampling and function evaluations, the points are 
theoretically evenly distributed and no sub-groups of 
important size can be singled out. Agglomerations of points 
of 'good' function values can be distinguishable only if they 
are surrounded by areas of density significantly below 
average. This can be achieved either by removing low 
function value sample points or by moving the points a few 
steps toward the corresponding local maxima in the steepest



126

ascent.

As we are not interested in all local optima, concentration of 
the sample would create clusters corresponding to unwanted 
optima (i.e. with function values lower than a prefixed 
threshold) and therefore concentration of the sample cannot 
be selective. Furthermore, concentration leads to at least n 
function evaluations per sample point, which would increase 
substantially the overhead cost of the clustering. 
Consequently, concentration of the sample is not suitable and 
very expensive.

Reduction of the sample is much more attractive in the present 
situation. Firstly, its cost is very marginal. Secondly, the 
choice of the threshold of the function value for the 
relevancy of local optima, would automatically sieve off the 
unwanted ones and highlight well-separated clusters. In 
existing methods, reduction is done by taking off from the 
sample some percent y. The value of y seems to be chosen 
arbitrarily without reference to the type of objective 
function, and so would be the threshold level of the unwanted 
local optima. It is thought that the choice should be done 
the other way around, by fixing the function level limit 
first according to the dispersion of the function values in 
the sample. Information on this dispersion can be obtained 
from the statistical analysis of the function values ( mean 
|ig, standard deviation Gg) . An appropriate form would be

+ P 0 g
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where p is a chosen positive coefficient. This coefficient may 
be updated at later stages of sampling in order to meet some 
clustering conditions, such as the number of clusters.

6 . 3 . 3  C lu s te r in g  procedure

The clustering methods currently used in global optimisation 
are as follows

-Density clustering (DC)
-Single linkage clustering (SLC)
-Mode Analysis (MA)
-Multi-level single linkage (MLSL)
-Multi-level mode analysis (MLMA)

The Ê C techniques are of limited use as the shape of the 
"hills' cannot always be approximated by hyperspheres or even 
by hyperellipsoids. The MA and MLMA techniques suffer the same 
drawback as the deterministic domain-partitioning methods in 
which the number of cells increases exponentially with the 
dimension. Moreover, the values given to the cells (the best 
sample point of the cell) can be misleading unless their size 
is made very small. The SL approach has a good performance, 
but does not make full use of the information the sample can 
provide which result in unnecessary local searches; this can 
be significantly improved by the MLSL method. This is in 
agreement with the experience reported by several authors 
which seems to show that the best choice is the MLSL.
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One crucial point in single linkage clustering is the value of 
the critical distance which determines allocation of points 
to the clusters. The euclidian norm is not suitable as a 
clustering criterion. As our domain is the surface of the unit 
hypersphere, it is more convenient to use polar coordinates. 
The distance between any two points is better represented by 
the angle between them

This choice is very convenient for deriving the critical 
distance from the distribution of the distance from a given 
point to its closest neighbour in a uniformly drawn sample of 
a given size N. This distribution can be obtained using order 
statistics. Let {Xl f X2, . . . ,X N} be a set of uniform random 
vectors from S and x  a given point in S . The angle between x  

and any realisation x d of Xd is

t y { x , y ) - I arccos (x,y ) I ( 6 . 24 )

/
ijri(x1,x) - I arccos(xirx) I ( 6 . 25 )

Assume that the above angles are labelled such that

1 * i *  ^ 2  *  • • • *  V n
( 6 . 26 )

Let Hr be the distribution of the r th order statistic

ifr(ijr) - Pr ( \ j r )
-  P r {  a t  l e a s t  r  o f  t h e  *i|f) ( 6 . 27 )
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where Pp is the distribution of *F. For the particular case of 
r=l, we have the distribution of the closest neighbour

-  P r o b ( ^ 1 * i|r) - 1 -  [ 1 -  P* (i|r) ] * ( 6 . 2 8 )

The density distribution can be easily derived from the 
cumulative distribution

/2i(i|r) -  -  N . P i  ( i |0 [ l-P 7 (ljr) ] (w_1> (6 .29 )

where p* is the density distribution of which can be easily 
seen as the ratio

P t W
m{Sj)
m { S )

( 6 . 30 )

where s¥ is the set of points of S such that the angle between 
them/and x is 'F; it is the surface of an n-1 hypersphere of 
radius sin('F). The density is therefore given by

p (^) - V ( n / 2 )  (sin(ijf) ) n~2 
* r ( ( n - l ) / 2)v^T

( 6 . 3 1 )

and the cumulative distribution

♦  z  ♦

-  fpT( t ) d t - ~ ----- \R 12 lL— _  f  ( s i n ( t )  ) n~2d t  (6 32)
l  r ( ( n - l ) / 2)v^T i

If

*
J sin^Ct) d t
o

( 6 . 33 )
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then it can be easily shown that

T -  T _ s in n( t)  cos ( t) ( 6 . 34 )
n n n~2 n

which allows the evaluation of the distribution numerically. 
The expected value of x¥ l can then be formulated as

n «
E  ( i ) -  cty -  N  ftypv (ty) [ l - P T (i|r) ]N~1dy  ( 6 . 35 )

o o

which on integration by parts gives

it
-  | [ l - P T ( t )  1 ( 6 . 3 6 )

0

and this can be evaluated numerically.

For a/given dimension n and sample size N, the shape of the 
density h 2 is slightly skew to the left, with both tails 
having very small probability content, particularly the upper 
one. The density h 2 and the corresponding cumulative
distribution H2 are represented in Fig 6.1 through Fig 6.4 
for different values of n and N. A 'pseudo-upper bound' on 
the unsampled spherical portion can be evaluated, with some 
confidence level, and used as a critical distance for 
clustering. This critical distance and its corresponding 
probability distribution are a probabilistic measure of the 
space covered by the sample. It can be easily seen that the 
probability of non exceedance rj becomes very close to 1, 
shortly after the modal value of the density. Let \|/n be the
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corresponding angle value.

For different values of n and N, the range of variation of 
is relatively wide. Fig 6.5, represents the curve of n versus 
Vn for different dimensions, and sample sizes, with rj = 
.9999. It shows that \|varies almost linearly with the 
dimension n , specially for high values of n . For a given T|, 
the angle can be easily shown to approach 0 as the sample 
size tends to infinity. It follows that if x* is a local 
optimum, its closest sample point will be within an angle less 
than with probability T|.

The value of T| can be either constant throughout the iteration 
process, or a function £ of the current sample size. A 
possible choice of this function is

/
e  -  1 - a ( 6 . 37)

where a is given by equation 6.14. The critical angle becomes 
therefore a function of c. The choice of a value for a is not 
necessarily the same as for the case of objective functions 
defined over a convex domain, with an euclidian critical 
distance. Numerical experience seems to suggest that for 
values exceeding 1 and a reasonable sample size, dominant 
regions are overlooked and only a fraction of the local optima 
is identified. A value of a=0.5 seems to be a sensible choice. 
However, a thorough parametric study for the class of function 
under investigation is necessary for an optimal choice of G.
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The clustering procedure may be summarized as follows

i )  The points of the reduced sample are relabelled in 
decreasing objective function values.
i i )  The best of the remaining unclustered points is 
selected as a seed point of a new cluster. All 
unclustered points within a critical distance of a point 
already in the cluster are allocated to it, and a record 
is kept of the points which have been already used as a 
starting search point, or fall within a critical distance 
of a previously found local optimum.

Virtually any new portion of £2n of radius less or equal to 
sin(\|/l1) is identified and recorded so that one local search 
at most is made from it.

The Clustering procedure generates a sequence of sets of 
locally improving seed points converging (with an increasing 
probability T|) towards the local optima. It follows that the 
repeated sampling/reduction/clustering scheme without a 
deterministic local search constitutes an approximate 
multiextremal optimisation algorithm on its own.

The method can be made efficient if one tries to make the most 
of the particularities of this original problem, in order to 
reduce the sample size. This is possible if the function is 
confined to some connected and regular portion of the unit 
sphere (orthant, circular portion,...), from which direct 
uniform sampling is possible. Its area is also easy to
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evaluate. This reduces the sampling space to a fraction of the 
n - s p h e r e . A typical case is the one, where some of the 
variables are either positive or negative. If k is the number 
of sign restriction-free variables, this fraction can be 
easily shown to be

n -  2 j l  ( 6 . 38)
2n-k

where is the measure of the n - s p h e r e  surface. This 2n~k-fold
reduction allows a dramatic reduction in the sample size. But
with this reduced sample space, the reformulation of the
density hj and distribution Hx is highly complicated, because
the nice feature of rotational symmetry is now lost.
Therefore, some way of using h2 and H2 as formulated for the
unit sphere, and sampling only from the reduced space, is
necessary. This can be achieved by considering the sampled
set, from the reduced space, as a part of a fictitious and

/much bigger sample that would be sampled from the whole 
sphere. The fictitious sample size can be estimated from the 
real one by extrapolation using equation 6.38, and used to 
evaluate the critical angle \\f .̂

6 . 3 . 4  Lo ca l search

The efficiency of the clustering procedure in identifying the 
sample points closest to the local optima, reduces 
considerably the local search cost. If the objective function 
is smooth enough and does not present very sharp peaks,
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efficient conventional local optimisation routines can be 
used. However, in practical problems, the objective function 
can often present local ill-conditioning, or can be piece-wise 
differentiable. The deterministic local search cannot be 
carried out at an acceptable cost. In this case, one has to 
accept the seed points as approximations to the local optima, 
and try to improve them by increasing the number of 
sampling/clustering cycles.

Because the objective function might present the ill- 
conditioning behaviour in some parts of the feasible domain 
and be smooth in others, a sensible method is to incorporate 
a local search routine with a test for smoothness (by checking 
the gradient for example) , so that the local optimum is 
approximated by the cluster seed point whenever the test is 
negative.

/

6 . 3 . 5  S t o p p i n g  r u l e s

This is the Achilles' heel for stochastic multiextremal 
optimisation problems. It would be too optimistic to expect to 
find g o o d  s t o p p i n g  r u l e s .

The criterion for termination based on the probability of 
finding a better local optimum described in subsection II.5.1 
is clearly not suitable here. Many relevant local optima can 
be systematically overlooked, simply because the global 
optimum has been incidently found at an early iteration.
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The alternative, based on the bayesian estimation of the 
regions of attraction corresponding to the local optima, is 
much more suitable. For well behaved functions with a very 
moderate number of optima, this latter approach could be used 
in a straightforward way. But in our case, we cannot adopt 
these assumptions, and at the same time our scheme is a 
selective optima seeking one. Two possibilities can be 
considered if this method is to be used :

- to derive analytical results equivalent to those in 
section II.5.2 corresponding to the selective case. For 
example, one may want to evaluate the posterior expected 
number of local optima with function value above some 
threshold level.
- to modify the function in such a way that makes the 
results of II.5.2 directly usable.
/

The region of attraction in II. 5.2 is defined as a cell of 
relative size Gj independent of its optimal function value. 
Hence the theoretical framework does not seem to favour the 
first possibility. The second one is much more manageable. As 
a matter of fact, in the sample reduction and the clustering 
procedure described in section III.2 above, is embedded the 
solution of the 'function modification'. If we consider the 
set D of points of S with function value less than the 
threshold for the local optima, this set contains all regions 
of attraction of the unwanted optima. Moreover, the points of 
this set which belong to the regions of useful optima are not 
used either for clustering or for local search, and are
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treated in the same way as any other point of D. This suggests 
the idea of considering the set D as another cell of the 
multinomial distribution, i.e. a particular cluster with 
special clustering rule; allocation of a point to D is done 
if its function value is less than the threshold level. Here 
the whole sample is used and the reduction is simply dumping 
the 'bad' points in D. This is merely replacing the original 
function by a fictitious one in which the number of regions of 
attraction exceeds the number of useful local optima by one.

All regions of attraction or cells, of the fictitious function 
described above are taken into consideration in a nonselective 
way; therefore all analytical results of II.5.2 are valid and 
can be used directly, bearing in mind that the number of local 
optima is the number of cells less one.

The optimal decision formulated in paragraph (iv) of II.5.2 is 
expressed in terms of the ratio c of the sampling cost to the 
premature termination cost. Its value depends very much on 
the physical nature of the problem, the subsequent use of the 
local optima and the subjective judgement of the user. In the 
case of structural reliability the local optima are 
subsequently used either as modal sampling points for 
directional simulation, or as linearization points for a first 
order approximation, or both. The impact of missing some 
relevant local optima concerns the accuracy of the probability 
of failure. There is no general method for assessing this 
impact, which is case dependent. Even if this impact can be 
estimated or bounded, it has to be converted into 'cost' . This
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conversion can be very subjective and may depend on the 
investigator. The uncertainty of the value of the loss ratio 
c would be therefore too high to decide on a termination rule.

This suggests the search for an approach independent of the 
loss ratio c, which can couple the use of a mixed criterion 
based on pure bayesian rules, and some special feature of the 
particular problem under investigation, as follows:

- The use of the transition probability given by the 
expression 6.22. This expression quantifies the chance of 
finding a new local maximum for the next sample. Or more 
conveniently, the probability of not finding a new local 
maximum

w(w+1)  
N(N-l) ( 6 . 39)

/

could be used. For k consecutive samples, the expression

k
- n t l  -

i - l

w(w+1)
(N+i) (N+i-1) ( 6 . 40)

gives the probability of finding at least one new local 
maximum above the current threshold function level, after k  

new samples. It may be used as a termination test by 
comparison to some prefixed maximum confidence level. As the 
expression 6.40 is dependent on k , its choice should be 
carefully made by the investigator depending on the size of 
the problem.
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- The current average value of the function f  is an 
unbiased estimate of the integral of f  over the domain S . The 
fluctuations of such an average are assessed through the 
current estimate of the variance (or more conveniently the 
coefficient of variation), which decreases as the sampling 
proceeds. With uniform sampling and objective functions with 
no sharp peaks, a small value of the variance can be 
interpreted as that the sample has scanned almost all 
important regions. A stabilisation in the average value of the 
objective function can therefore be a good indicator for 
termination. This of course assumes that the shape of the 
objective function does not present sharp peaks which can be 
easily missed out by the sample.

If the function is such that the value of its integral can be 
evaluated by some approximation from the knowledge of the 
local-^optima, a possible criterion is to compare the average 
of f to such an approximation. The ratio of the two estimates 
of the integral should lie within some prefixed bracket 
linked to the accuracy required by the investigator. This is 
precisely the case for the problem of identifying dominant 
failure modes in structural reliability. More details are 
given in chapter 7.

The coupling of the two criteria described above is believed 
to be more relevant than an expected posterior loss based on 
a hypothetical value of the loss ratio. The threshold levels 
for both criteria have a direct physical meaning for the 
investigator and are much easier to fix values for.
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6 . 3 . 6  A l g o r i t h m  su m m ary

In the following is a summary of an algorithm proposed for the 
use in structural reliability

Step 1. Evaluate the critical angle. Set N=N*

Step 2. Sample N* points and evaluate their function 
values, and the threshold for reduction.

Step 3. Relabel the points in decreasing order of 
their function values.

Step 4. Reduce the sample according to the current 
threshold.

Step 5. Clustering procedure of the reduced sample.
Step 6. Local search from the best point of each 

sub-cluster, if not already used for such purpose, 
or if it does not fall within a critical distance 
of some local optimum.

St^p 7. Termination test : for bayesian rule of
equation 6.40, and integral approximation. If 
positive, go to step 9.

Step 8. Draw new sample of size k and evaluate their 
function values, and add them to the current set. 
Set N=N+k, and update the critical angle. Go to 
step 3.

Step 9. End
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Fig 6.1. Closest point from uniform 
sample. Density

density

— *” 8erlea 1 Series 2 8erlea 3 8erlea 4 8erles 6
1 2000 2 4000 8 6000 4 8000 6 10000

Dimension i S



1 4 1

Fig 6.2. Closest point from uniform 
•ample. Cumulative distribution
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Fig 6.4. Closest point from uniform 
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Fig 6.5. Closest point with probability 
.9999 for various sample sizes
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CHAPTER V I I

STRUCTURAL R E LIA B ILITY  BY SIMULATION

The wide use of Monte Carlo (MC) methods in structural
reliability is relatively recent. However, the idea of MC
integration is not new in structural reliability; Warner and
Kabaila [1968], have applied it to reinforced concrete
columns, with some 'selective sampling'; this is in fact a
stratified sampling. But the lack of interest in the method in
the seventies has delayed its development, while the FORM and
SORM methods received much attention. It has been now widely
accepted that MC techniques, are not merely a fantasy approach
with uncertain outcome, but a serious alternative for
estimating the reliability of large structures which otherwise
cannot be handled with conventional methods. This began in the
early eighties with the paper published by Shinozuka [1983]

/and Harbitz [1983] where the latter has applied importance 
sampling technique to an 8-dimensional fatigue problem

7 . 1  H IT -O R -M ISS  MONTE CARLO

7 . 1 . 1  C r u d e  h i t - o r - m i s s

The probability integral is formulated as follows 

p f - J f*(x) d x  -  f l [ G ( x )  ] . f x (x)  d x ( 7 . 1 )
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where I [ . ]  is an indicator function which takes the value of 
one if x is in F and 0 otherwise, and G ( x ) represents the 
limit-state function. The probability p f is formulated now as 
an expected value of I [ G ( x ) ] which is distributed according to

where the x/ s are sampled from f x.

As the reliability of structures is very high, p { is very 
small and for a method with inherent poor efficiency, a very 
large sample is needed to achieve an acceptable confidence 
level. The variance can be estimated as

7 . 1 . 2  Im proved H it -o r -m is s

7 . 1 . 2 . 1  Reduced sample space

An improvement to the MC integration of the probability of 
failure is by the partition of the region suggested by 
Shreider [1966] in a paper by Harbitz [1986] . It has been 
applied to the case of standardised uncorrelated normal 
variables. Let x* be the point on the limit-state surface with

A

f x . An unbiased estimator of p f is

( 7 . 2 )

/ ( 7 . 3 )
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smallest distance to the origin (i.e. the so-called design 
point in the FORM analysis), and refer to this distance as p. 
Every point within the hypersphere with radius p centred at 
the origin is obviously a safe point. To make good use of such 
information , a p-sphere truncated distribution <t>tr is defined 
as follows

<Pp.Cr(*>
<P n W

( l - Xn2 (P2))

0

i f  llxll * p 

i f  llxll ^ p

( 7 . 4 )

where %n2 is the chi-square distribution of degree n. Thus 
sampling from <j)p,tr instead of <j)n would exclude the p-sphere 
from the sampling space allowing more points to be sampled 
outside the safe domain for a given total sample size, 
resulting in estimating a conditional probability of an order 
of magnitude higher than the original one. In other words, the 
so-called crossing rate becomes significant even for a small 
sample. The resulting variance reduction of the new estimator 
p fr can be shown to be

Var(^fz ) * (  1 -  x a 2 ( P ) )  Var(]5f ) ( 7 . 5 )

Csenki [1988] attempts to extend this idea, by excluding from 
the sampling domain a much larger hypersphere. He suggested 
the use of a hypersphere of radius R with largest probability 
content, that can be inscribed in the safe domain, for a given 
centre point a, using classical optimisation techniques. Its 
probability content is equal to the distribution function of 
the non-central chi-square distribution with n degrees of
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freedom and non-centrality parameter H all 2 , evaluated at r=R.

7 . 1 . 2 . 2  Im portance sam pling

distribution is used for sampling, equation 7.1 becomes

and p f is now the expected value of I  [G (x)  ] . f x (x)  / h Y (x) . Two 
major unknowns are to be found for a good sampling 
distribution: its density function and its modal point (s).

A natural choice of h Y is a function with the mode at the 
point of maximum likelihood of the failure domain, this point 
lies.>6n the boundaries of F. Structures fail in many different 
modes, leading to many local 'checking' points; however the 
case of a single failure mode is first considered so that any 
ideas developed for this case can form the basis for handling 
the multifailure case.

If the maximum likelihood point (MLP) is assumed to be unique, 
it can in principle be found by using conventional 
optimisation algorithms, but one should bear in mind that this 
involves implicit limit-state function evaluations at points 
which are not part of the sample. Those function values cannot 
be accumulated with the sampled ones as they are

If some distribution h y entirely different from the original

( 7 . 6 )
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deterministic, and therefore constitute an overhead cost to be 
taken into account when comparing with uniform sampling or any 
other method. Any possibility of using those points by 
estimating their densities would have beneficial effect on the 
method's efficiency.

The choice of an importance density function is mainly a 
user's decision based on his prior knowledge of the integrand 
function and the limit-state surface in the vicinity of the 
assumed 'checking point'. But without such prior knowledge, 
a common choice of the importance sampling density function is 
the multinormal density with diagonal covariance matrix. The 
covariance matrix may be adjusted to take advantage of any 
appropriate information available. For the case of concave 
limit-state function with jointly gaussian distributed 
variables, a better choice is a half-space-truncated standard 
gaus^ian density, defined on the half-space bounded by the 
tangent-hyperplane to the MLP. For other specific cases, 
appropriate sampling distributions may be worked out to 
minimise the variance.

In an attempt to develop a general method, with minimum prior 
information specially concerning the 'checking' point, 
Melchers[1988c] proposed a search based importance sampling 
scheme in which the sampling process provides usable integrand 
function evaluations together with an optimisation path for 
finding the maximum likelihood point (MLP). In other words, 
the sampling distribution has a sequentially changing mode, 
theoretically converging towards the MLP. This is merely the
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adaptive random search method used in global optimisation 
[Matyas 1965/ Baba 1977/ Wets & Solis 1981] referred to in 
chapter 6, in which the sample function values are accumulated 
to provide the probability of failure estimates.

Melchers defined the 'sampling efficiency' as the rate of 
failure points within the sample, and pointed out that it can 
measure the closeness to the limit-state surface, and that a 
minimum 'sampling efficiency' of 0.5 is necessary, but not 
sufficient, for convergence.

Concerning the variance update, initial values for standard 
deviations are chosen relatively large and are sequentially 
reduced as one gets 'closer' to the MLP. Generally the 
sampling variance should not exceed the original variance of 
the basic variables. Melchers reported good results for ratios 
withip the interval [1,2], lower values may overestimate p f 

and both higher and lower ones reduce the convergence rate. 
He proposed the following formula for the standard deviation 
update

( 4 I lU -i -  0 .5  I + 1 )0 ^  ( 7 . 7 )

where o XI is the original standard deviation of the variable 
X1 and T|m is the sampling efficiency recorded for the mth group 
of k sample points.

The effectiveness of importance sampling by the above approach 
can be very limited, because it is carried out right from the
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beginning without prior scanning for the regions of high 
probability density regions. One needs to know that, at some 
stage, sampling is happening in the close vicinity of the true 
MLP, with an acceptable level of confidence; otherwise one 
cannot ensure that sampling is targeted to genuine important 
regions, as it is meant to be.

For multiple failure modes cases, each mode has its own local 
'checking' point. Not all of them are to be considered for 
deriving the sampling distribution, but only the most 
significant ones. The sampling distribution is chosen as a 
multimodal density with local modes at the selected 'checking' 
points. A convenient choice [Melchers 1987] is

hY(x) ( 7 . 8 )
i - l

where each h 1Y is a sampling distribution corresponding to the 
i th failure mode defined in the same way as in the single mode 
case described above. The coefficients a1 are weighting 
constants summing up to one and chosen proportionally to the 
failure probability associated with each considered failure 
mode.

The most crucial problem is finding these 'checking' points. 
For the same reasons discussed in the single failure mode 
case, Melchers extended his approach to multiple failure 
limit-state. The starting points are either chosen randomly 
or pre-assigned, but nothing is said about their number M.
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This is a very important point as a multimodal sampling 
function with too many modes would tend to a uniform one and 
the importance sampling becomes almost spurious one. Moreover, 
if some randomly selected starting points are close enough to 
each other they would converge to the same modal area causing 
an overlapping effect among the modal parts of the partial 
densities h 1Y. The starting points are, therefore, better 
selected in a more refined way to avoid such problems. An 
approach to deal with such problems is proposed in the next 
section (7.3), based on a multiextremal optimisation technique 
presented in Chapter 6, applied to a directional sampling 
integration.

The search based importance sampling approach is a double-task 
algorithm which tries to handle optimisation and integration 
simultaneously. But in order to have an efficient integration, 
the convergence of the optimisation part needs to be as fast 
as possible so that the importance sampling can be effective 
for the majority of the samples. In that respect, the method 
has room for improvement, preferably without too many wasted 
function evaluations.

For the case where the 'checking' points are assumed to be 
known, Fu and Moses [1987] proposed an approach which they 
refer to as the 'weighted general normal sampling 
distribution' method. It is basically similar to the method of 
Melchers [1984], except that the sampling covariance matrix is 
identical to that of the original distribution (and not simply 
diagonal) and the sample size allocated to each individual
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partial density is chosen in advance to be in relative 
proportion with the original densities at the 'checking' 
points. The weights ai are also chosen proportional to the 
original densities, whereas in Melchers' method they are 
proportional the reliability indices of each safety margin.

Fu and Moses reported results slightly better than those of 
Melchers [1984], but the difference seems to be marginal 
compared to the overhead due the use of correlated sampling. 
Somewhat similar ideas have been published by Schueller and 
Stix [1987].

7 . 2  D i r e c t i o n a l  s i m u l a t i o n

7 . 2 . 1  U n if o r m  s a m p le - m e a n

/
7 . 2 . 1 . 1  G e n e r a l  f o r m u l a t i o n

The use of MC integration in structural reliability has been 
confined during the first half of the eighties to the 
hit-or-miss approach with a considerable effort of improvement 
by the methods described above. Despite these improvements, 
the sample size needed is still very high due to the high 
reliability level of the structures. A move towards a 
sample-mean approach becomes a necessary alternative. This 
move has been triggered by the relationship between the 
standard normal distribution and the chi-square distribution: 
the sum of the squares of n standard normal variables is
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chi-square distributed, independently of the direction of the 
vector formed by this n variables. This gives the idea of 
radial integration with polar coordinates, instead of 
cartesian ones, for the multinormal integral. This idea was 
first put forward by Deak [1980] . But its use in structural 
reliability has to wait until 1985 when Ditlevsen, Oleson and 
Hasofer [1985] applied it to a load combination problem.

A full use of this approach for the evaluation of the 
probability of failure, assuming gaussian distribution for all 
variables, is proposed by Bjerager [1988] and Ditlevsen and 
Bjerager [1989].

From equation 3.15 (chapter 3), one can define the conditional 
probability of failure given some proportioning of the random 
variable, P (A), as a function of such proportioning

If A is distributed according to a distribution hA defined 
over the unit hypersphere, this distribution must correspond 
to that of the normalised form (unit vector) of a random 
vector Y distributed according to h Y over Rn. The expression 
for hA is therefore

/ (7 . 9 )
K(A)

hA(a) « j h Y( ta) t n~xd t
0

(7 . 10)
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and outcomes of A are obtained by normalising to unity

It can be clearly seen that the efficiency of the approach is 
directly dependent on the computational viability of the 
one-dimensional radial integrations. Any further development 
needs an explicit formulation of the sampling distribution h y, 

and its choice.

Three cases are possible :
a .  the sampling distribution is chosen identical to the 

distribution of the original variables: then the directional 
density distribution of equation 7.10 has to be evaluated 
numerically if it cannot be obtained in an analytical closed 
form. The sampling of directions is not uniform, but this 
non-uniformity is not necessarily beneficial like the 
importance sampling distribution chosen in relation to the 
limit-state function, because it is completely independent of 
the safe region boundaries. However, for highly correlated 
variables and limit-state surface shape close to a spherical 
one, sampling from the original density is more likely to 
target the regions of high density in the failure set.

outcomes of Y. Then the probability of failure can be
expressed as an expected value as follows

( 7 . 1 1 )

o

b .  A standard normal distribution is chosen for the 
sampling distribution h Y centred at the origin : then the



directional density hA is uniformly distributed on the unit 
hypersphere and has the constant value of

( 7 . 1 2 )

This case is the typical crude sample-mean MC applied to the 
function defined by equation 7.9. Then the probability of 
failure becomes

The particular case of f x being standard gaussian itself was 
studied by Bjerager [1988]. The availability of the radial 
integral of the standard normal distribution <)>n in a closed 
form, or at least in a recursive form, increases significantly 
the efficiency of directional simulation methods. The 
probability of failure takes the simple form

This is simply the expression of the multinormal integral in 
the polar coordinates space. An estimation of the probability 
of failure is obtained by sampling N directions ai from hA and 
averaging

( 7 . 1 3 )

p f - EA [ 1 - X n2 ( r ( A)2) ] ( 7 . 1 4 )
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and the variance is estimated by

var  (j5f ) 1
N(N-l)

N
Ei - i

[ 1 - X n2d(« i ) 2) - i5fl2 ( 7 . 1 6 )

Because of the closed form of the radial integral in the case 
of standard normal variables, directional simulation has been 
first used in normal space. This assumes that, if the original 
variables are not normal, a transformation T is made to a 
standard normal space. Sampling is then made from the 
transformed space, and the transformed limit-state equation is 
solved for r ( a ) .  However, the solution of the limit-state 
equation becomes more difficult and needs an expensive 
iterative algorithm. The new limit-state function is

C [ r ( c O ]  -  G[T- Hr{a) ) ]  ( 7 . 1 7 )

As a>^result any possible simplicity in the solution of the 
original function G, such as linearity or a closed form 
expression, becomes almost useless. Moreover, if importance 
sampling is to be carried out, the search for important 
regions is made costly by the solution of equation 7.17.

c .  Sampling distributions are in principle different from 
the original variables' distributions, but the choice takes 
account of the relation between the safe domain boundaries and 
this latter distribution, such that the fluctuations of the 
radial integral of f x in the failure domain are minimised. 
This is called the d i r e c t i o n a l  i m p o r t a n c e  s a m p l i n g , in which
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the sampling space is the surface of the n-dimensional unit 
hyperesphere. The different aspects of directional importance 
sampling and some possible choices of sampling distributions 
are discussed in the next section.

7 . 2 . 1 . 1  P r o b a b i l i t y  i n t e g r a t i o n  o v e r  t h e  f a i l u r e  s u r f a c e

If the original distribution f x is not normal, its radial 
integral in equation 7.9 has to be carried out numerically, or 
by approximation techniques. Errors on this radial integral, 
from different sample outcomes, would not have any harmful 
effect if their expected value can be shown to be zero 
(integration in presence of noise, [Rubinstein 1981]), and if 
their variance is not too high. In deterministic numerical 
approximation methods, although the variance is usually very 
smal^* the expected value has often some systematic error 
inherent to the approximation technique used. The use of Monte 
Carlo simulation in this single dimension integral would not 
be efficient due to the high variance even with an unbiased 
estimator with zero mean. Although the numerical experience 
has shown that errors on the radial integral, using methods 
such as Gauss-Legendre, are negligible, the computing time 
depends on the accuracy required (i.e the number of Gauss 
points). Therefore an analytical closed form of the radial 
integral would be very beneficial both in computing cost and 
accuracy.

An approach which provides a closed form for the integrand,
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under some restrictions, is to use Green's theorem to 
transform an integral over a given domain (say volume) into an 
integral over its boundaries (surface). Similar ideas has been 
used by Shinozuka [1983] to reduce a trivariate normal 
integral to a bivariate normal integral, and a bivariate 
normal integral to a single normal one.

Let Vf be the vector whose components are the conditional 
cumulative distributions Fi ( X) of each variable, i.e

and

Vf - {F1 (x) , F2 ( x ) , . . . , Fn (x)  ) ( 7 . 18)

Xi
F 1 (X )  -  J f x i X l f X 2, ' i ' •»x t )  d t 1 ( 7 . 19)

It can be easily seen that
/

d i v ( V f ) - n . f x ( x ) ( 7 . 20)

To apply Green's theorem, a closed surface boundary of the 
failure domain needs to be defined. In theory, the failure 
domain is usually unbounded, but because the values of the 
marginal distributions tend to zero as the distance to the 
origin tends to infinity, one can easily construct a bounded 
domain with the failure surface as the inner boundary and the 
surface of some hypersphere, centred at the origin with 
arbitrarily large radius, as a fictitious outer boundary (See 
Fig. 7.1). It follows, by Green's theorem, that
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( 7 . 2 1 )

where T| is the outer unit normal vector to the failure 
surface. The radius of the outer sphere can be chosen large 
enough to make Vf arbitrarily small. The probability of 
failure then becomes

Pf ”  ~  £Vfi\ds ( 7 . 2 2 )

In polar coordinates, the surface element d S can be easily 
shown to be

d S r (  A )”-1 
A . t) (A)

dA ( 7 . 2 3 )

where r  (A) is the distance from the origin to the failure 
sur f^ce in the direction A . This yields

Pf
1 /• V>.T| (A)
n j  A.i i  (A)

U  0

r (  AJ^dA ( 7 . 2 4 )

If A is assumed to be a random unit vector distributed 
according to some density hA, derived as in equation 7.10, 
then p f can be expressed as an expectation

1 f Vf--n (A)
Pc n  Ea[ A . i i (A)Aa (A) z  (A) ”"1] ( 7 . 2 5 )
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This assumes that the analytical integration of Vf ( a ) is 
possible and the normalised gradient Tj (a) is easy to evaluate. 
An obvious case, when the conditional distribution can be 
written in closed form, is when the original variables are 
independent. Another obvious case for easy evaluation of the 
gradient is when the failure surface is piece-wise linear, 
which corresponds to the rigid-plastic assumptions in 
structural failures.

7 . 2 . 2  D i r e c t i o n a l  i m p o r t a n c e  s a m p l i n g

Generally speaking, the derivation of the sampling
distribution in integral estimation is a case-dependent
problem, as the shape of the sampling density should be as
close as possible to that of the integrand. In most of the
cases for which the MC method is considered to be the last
resort, it is very difficult if not impossible to find a

/tractable function of similar shape to the integrand. However, 
the numerical experience in importance sampling has shown that 
substantial improvement on the accuracy can be obtained even 
with functions of approximate shapes. Some convenient 'pass 
key' sampling distributions are described in the following.

7 . 2 . 2 . 1  Som e t y p i c a l  s a m p l i n g  d i s t r i b u t i o n s

Most of the common sampling distributions are related to the 
normal distribution, the main reason is its convenience and
ease of use.
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a . the standard normal distribution centred at the mean 
point (Fig. 7.2): it results in uniform directional sampling 
and its formulation is given in subsection 2.2.3.1.

b . the normal distribution centred at some point x*, 

usually in the 'best direction', i.e. the maximum radial 
integral or as close as possible to it (Fig. 7.3).

The sampling density corresponding to a direction A is

hA(a) J*<p n ( tA-x*)  t n_1d t

— ----X \— /exp [-(t - x * ' A) 2/2] tn-1dfc 
y/2n <p (x* A) {

( 7 . 2 6 )

The last integral in this formula can be evaluated by a 
recursive procedure. Let Sn be such an integral

/
( 7 . 2 7 )

It can then be shown that

Sn.l -  nSn-1 + (X ‘'A) Sn ( 7 . 2 8 )

if one assumes that 5_j=(? and S0= (2k ) <{> ( -x* 'A)

c .  the C7-truncated standard normal distribution (Fig 7.4) : 
If the limit-state surface lies on a half-space, then the 
curvatures at the checking point are all positive or negative. 
Let U be a convex set the boundaries of which coincide in the
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neighbourhood of this checking point with the limit-state 
surface and the curvature has the same sign at this point. 
This set can theoretically be used to construct a £7-truncated 
standard normal distribution. If U is such that its 
probability content can be exactly evaluated and it can be 
easily sampled from, this distribution is very convenient as 
the radial integral can be expressed in term of the chi-square 
distribution. A typical set is the set whose cross-sections 
normal to the direction of x*, is an ( n - 1 ) - s p h e r e ;  this 
includes the half-space bounded by the hyperplane normal to 
TJ and at distance P to the origin, and all circular 
paraboloids tangent to it at x *. Let p u be the probability 
content of U and J0 [. ] the indicator function of U. The 
expression for the truncated density is

The directional sampling density can then be shown to be

Samples from a U - t r u n c a t e d  distribution are obtained as

( 7 . 29)

/
This simplifies, for the hyperplane normal to T| , to

( 7 . 30)

hA(oc) -  v/2W

( 7 . 31)

follows
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a - U + (v-u'x] ) T|
( 7 . 32)Hu + (V -U fT1) Tjll

where v  is sampled from a p-truncated normal distribution, 
and u is an outcome from a t r u n c a t e d  multinormal standardised 
distribution to the n - s p h e r e  of same diameter as that of the 
( n - 1 ) - s p h e r e  cross-section normal to T| at distance v  to the 
origin.

d .  the simplex-truncated standard normal distribution 
(Fig. 7.5). This is a generalisation of the previous case. 
The sampling domain is bounded by a set of m (not exceeding n) 
hyperplanes of normal vectors 'H1 and distances to the origin 
pj, and is defined as follows :

<ptr(x,N'N) - ( 7 . 33)

where

/ N “ • • • / T| (7 . 34)

and

7 . 35)

The truncated density is

hA ( a ) - y/2n )] .JtN'a]

(7 .36)

Outcome from this distribution can be obtained by
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normalising standard gaussian outcomes from the simplex 
defined by the m hyperplanes. A sampling procedure based on 
conditioning is described by Bjerager [1988] .

This distribution is suitable for multiple checking points 
problems, or rather multiple 'checking directions'. The Pi's 
should be chosen to reflect the importance of the 'checking 
directions', using the radial transformation described in 
Chapter 3.

where ol±* is the i th 'checking direction'. Each hyperplane
generated in this way can be considered as a local 'equivalent
gaussian approximating hyperplane' and the probability content
of the simplex is a FORM approximation to the exact

/  . .probability.

This can be explained by the fact that the sampling density 
and the integrand coincide in the most important directions, 
and are expected to have close values in neighbouring 
directions.

The probability content of the simplex can be estimated using 
the methods described in Chapter 4, by sequential conditioning 
and hyperplane representation, or if the number of p-points is 
small enough, bounding techniques of Chapter 5 can give 
acceptable bounds.

r(a/)
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Another point concerning this sampling distribution is the 
number of p-points that can be considered, which cannot exceed 
the dimension of the problem. This means that, in some cases, 
important regions may be systematically overlooked.

e .  The class of mixed standard normal and gaussian-derived 
distribution

h Y( y ) - w . y n (y ) + (l-v)0r(y) (7.38)

where w is the mixing probability and 0Y can be any of the 
previously described distributions.

Sampling from the standard gaussian (uniform directions) is
carried out with probability w and sampling from the 0y
distribution (importance sampling) is done with probability
1 - w . The use of mixed distribution is recommended when the

/identification of the important regions is believed to be 
uncertain. The uniform fraction of the distribution would 
ensure that unidentified important regions are sampled from.

f.The class of distributions formed by mixing several 
gaussian-derived distributions

The basic principle is the same as in equation 7.8 used by 
Melchers in hit-or-miss importance sampling. Each 
gaussian-derived distribution corresponds to an important 
region or a dominant failure mode.
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This mixed distribution is much more flexible than the 
simplex-truncated one, as there is no need to approximate the 
probability content of the simplex-domain, and there is no 
restriction on the number of the P-points or dominant failure 
modes, although some restriction may be needed for other 
specific reasons. Moreover, sampling from the simplex is much 
more involved and needs solving linear systems for each 
sampled direction [Bjerager 1988]

1 . 2 . 2 . 2  U p d a t i n g  s a m p l i n g  d e n s i t y :

The shape of the sampling densities used are seldom similar to 
that of the integrand, as the optimal parameters values are 
not known prior to sampling. Good starting values for those 
parameters may be guessed by the investigator, but he may want 
to improve this values as the sampling proceeds and update the 
density accordingly. Among the parameters concerned are the 
modal points (or rather modal directions) , the covariance 
matrix and the mixing parameters.

7 . 2 . 2 . 2 . 1  M o d a l p o i n t s  u p d a t i n g  :

For the modal points updating, the adaptive random search for 
the maximum of the integrand, as discussed in section 7.1.2.2 
for the hit-or-miss importance sampling, may be used. The only 
difference is in the objective function which is now the 
radial integral instead of the point density. The limitations 
and drawbacks of the method discussed in section 7.1.2.2, may 
be reduced by
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• a new sampling strategy such that most use is made of 
information available at each stage of sampling, and to 
locate the maximum possible number of important regions.
• inclusion of bayesian estimations of confidence level 
for the number and/or the important regions.

This second point would have an informative role, as bayesian 
rules could be used to know how likely the current approximate 
modal points are close to the exact ones, and the chance of 
any important region not being represented by a modal point. 
This could help to assess how effective importance sampling is 
as the sampling proceeds, and to estimate how many more points 
are yet to be sampled to meet a given confidence level on a 
given accuracy target.

The approach suggested by Melchers [1988c], even improved by 
bayesian rules, will still suffer in the following two 
situations concerning the starting points

• with 'bad' starting points, the sampling may get 
trapped in non-important regions for a significant 
fraction of the whole sample, and thus may result in 
underestimating the probability. This needs some sampling 
variance tuning, linked to the rate of success in 
improving these points.
• with a 'very good' starting point (i.e. with high 
integrand value), any other important region not already 
represented, with local maximum slightly lesser than the 
initial ones, have a very low chance of been selected as 
a modal area, no matter how significant is its 
contribution. Even the selection of other more important
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regions is very dependent on the initial sampling 
variances.

It follows that the method would be very sensitive to the 
initial conditions of modal points and variances. A 
significant part of the sample may be used up before 
importance sampling becomes effective, leading to biased 
estimates.

A new sampling strategy should be conceived in order to 
reduce the risk of those shortcomings, or at least to decide 
how much should be spent a priori for 'bad importance 
sampling' initially in order to identify the maximum number of 
significantly important regions. The sampling process can be 
carried out in two phases:

. An optimisation phase; in which a stochastic 
multiextremal optimisation (see Chapter 6) of the 
integrand is undertaken using the first phase sample 
points, resulting in the identification of a set of local 
maxima. The points are sampled from some appropriate 
distribution and their corresponding integrand values are 
accumulated for use in probability estimation.

ii. An importance sampling phase; using the local maxima 
found in the first phase as modal points, a new sampling 
distribution is constructed, and an effective importance 
sampling from such distribution takes over the initial 
sampling. The optimisation phase can still be carried
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out, if it is believed that more important regions could 
be discovered, or if the locations of the already found 
modal points have not been obtained by conventional and 
accurate methods. This can be done by allowing a uniform 
fraction in the current sampling distribution so that the 
scanning for more important regions can continue during 
the importance sampling phase. This uniform phase also 
avoids biased estimates, if the shape of the non-uniform 
part of the sampling distribution is not close enough to 
the shape of the objective function.

The details of the method and a corresponding algorithm are 
given in section 7.3.

7 . 2 . 2 . 2 . 2  V a r i a n c e  w i t h  s a m p le s  f r o m  d i f f e r e n t  d e n s i t i e s :

Given^the outcomes of m different samples drawn from different 
densities and their sample averages { P l r . . . ,  Pn },  and a set of 
weighting coefficients {wlr . . . , w m}, an unbiased estimate of the 
probability is

m
P f " E wiNipi  ( 7 . 3 9 )i-i

where the N / s are the sample sizes and the weighting 
coefficients wd are such that

E  wiNi - 12-1 ( 7 . 4 0 )
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In [Ditlevsen & Bjerager, 1989], a formulation of the overall 
variance is given based on the assumption that the w/s are 
deterministic. It is shown that an unbiased estimate of the 
variance is

Vaz [0f]

m w 2 Ni
t ±_2 ]£  iP u rfit

i - l  1  * w i  k -1
) 2 ]

fz i (1-2 Wj)
( 7 . 4 1 )

which is the generalisation of the case wJ=2/N. Theoretically,
if the m variances are known, optimal weighting coefficients
are inversely proportional to these variances. But the use of
variance estimates corresponding to different densities, would
yield different weights for different sets of samples, which
would make the weights random rather than deterministic, thus

/contradicting the basic assumption which led to equation 7.41. 
It seems that more advanced methods are necessary in order to 
find the optimal combination of the outcomes of different 
sampling densities, which minimises the overall variance.

7 . 2 . 2 . 3  P a r a m e t r i c  s e n s i t i v i t y  a n a l y s i s

In the probability integration discussed so far, it is assumed 
that the distribution parameters are known with an acceptable 
accuracy, and are supplied as data. In a single reliability 
analysis, of a structure with known geometric properties, one
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might need to measure the effect of a possible uncertainty on 
the assumed value of some particular parameter. More important 
is the case when some parameters are assumed unknown and are 
to be optimised in order to either minimize the probability or 
to meet some prefixed target probability. This is often the 
case of the parameters depending directly on the cross 
sectional properties (such as the resistance mean values, 
which are considered as design variables in reliability-based 
design problems). A convenient way of measuring the 
sensitivity of the probability to parameter variations is to 
evaluate the gradient with respect to those parameters. As the 
evaluation of the probability is already a costly process, one 
would surely expect that evaluation of its gradient to be even 
more expensive. In the following, is a derivation of the 
analytical expression of this gradient, and a finite- 
difference evaluation using the sample information already 
available for the probability evaluation.

A change in a given parameter might induce a change in three 
different functions:

a . the original distribution fx , a typical parameter is 
the coefficient of variation of a given variable.
b . the limit-state equation, A change in the mean values 
results in a shifting of the limit-state surface and 
possibly in a change also in the shape.
c . the sampling distribution, in the importance sampling 
case, where the sampling density is derived from the 
limit-state surface.
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Let I 2 and I 2 be respectively the integrals in equations 7.9 
and 7.10. The general formulation of the derivative of the 
probability of failure, expressed as a directional expected 
value, with respect to a given parameter £, is therefore

dPf
d (

-  ea [

d l 2
* - ] ( 7 . 42)

The derivative of Jj can be expressed as follows

axi
3C /

i  ( a )

d f x (t a )
3 T “

t n_1dfc 6r (a)a c f x ( r ( a ) )  rn_1 ( 7 . 43)

while the derivative of I 2 is simply

d i 2
a c

p d h Y{ t a )

I 3T~
t n_1d t ( 7 . 44)

The derivative of r  (A) with respect to £ can then be shown to 
be

0r(A) _ 1 - d G ( r ( A)A,C)0 C  " VG(A,C) .A a c  ( 7 . 45)

The derivative of the probability of failure with respect to 
the parameter £ is therefore

dpf d f y (  t A )
t n~1d t +a c

i f ; !
± 2 0

— — i---- dG<r(A)A'0 f (r(A)A))]
A ' . v ( A , 0  3C *

d h Y ( tA) • n-1 d t  ]

( 7 . 46)
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The expression above for the evaluation of the sensitivity 
factors, suggests the use of MC estimation by directional 
sampling. A straightforward idea is to use the same sample 
directions as for the probability. But one should bear in mind 
that a given function and its derivative are rarely of similar 
shape. Therefore, unless it is uniform, a sampling 
distribution tailored for a given function would not 
necessarily be good for its derivative and may yield a very 
poor estimate. It follows that, if importance sampling is 
performed for the probability, a new importance sampling 
distribution should be devised for the sensitivity factors 
using new sample directions. This necessitates repetition of 
the same process of importance sampling integration from 
scratch for every parameter considered. Moreover, for 
nonlinear limit-state functions not known in a closed form, 
the gradient evaluation can be very expensive; a finite 
difference involving a number of structural analysis for each 
simulation is often necessary.

The discussion in the above paragraph shows that an efficient 
use of the derivative in sensitivity factors estimation is 
very costly, and any approach that can make use of the 
original sample would be far more viable. If one considers the 
probability as a parametric function of £, and if a good 
sampling distribution is found for a given value of £, it can 
be used without significant loss of accuracy for £+d£, where 
d£ is a small finite change in £. This would yield a good
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finite difference approximation to the derivative at £. 
Moreover, the use of the same sample sequence for both 
estimations leads to a significant reduction in the variance 
of the final estimate. This is the well known c o r r e l a t e d  

s a m p l i n g  method for variance reduction [Rubinstein 1981]. 
Although it needs two probability evaluations, it is not 
difficult to see that the method needs less calculations than 
the use of the derivative expression 7.46.

Let p fl and p f2 be the probabilities corresponding to the 
parameter values £ and £+A£ respectively , where is a
finite change in ts . An estimate of the rate of change in 
probability per unit of £ is

Ai5f j5f2 -  ]5 f l

“ A?------------ AC <7 -47>

The variance of Ap f is
/

Var[Apf] - V a r [ £ f l ] + V a r [ $ f2] -  2Cov[pfl,$f2\ (7 .48)

This variance is minimal, if the covariance between the 
estimates is maximal. Due to the small change in £, and the 
use of the same sequence of samples for the estimate of both 
probabilities, a high positive correlation between them is 
ensured. It follows that a good importance sampling 
distribution for the probability estimate can also ensure good 
estimate for the sensitivity factors. The burden of evaluating 
a new sampling distribution is removed along with the cost of 
new samples, if the two probability estimates are carried out
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simultaneously.

7 . 3  A  STOCHASTIC SEARCH BASED DIMS ALGORITHM 

7 . 3 . 0  I n t r o d u c t i o n

In this section the algorithm described in chapter 6 is 
adapted in order to be incorporated in an importance sampling 
integration scheme, with the task of finding the dominant 
directions to be used as modal points for the sampling 
distribution. As presented in Chapter 6, the algorithm assumes 
that no prior knowledge is available about the objective 
function , except that it is or can be defined over a unit 
hypersphere.

For the problem under investigation, there is always some
information available either on the shape of the feasible

/domain S or the objective function or both, and can be used to 
improve or derive some variant of the algorithm. This 
information can affect the clustering procedure.

It follows that this algorithm can be modified to suit the 
particularities of the structure and its assumed failure 
model. The case of linear limit-state is examined with 
gaussian variables and an efficient variant of the algorithm 
is presented.

7 . 3 . 1  L i n e a r  l i m i t - s t a t e  a n d  g a u s s i a n  v a r i a b l e s
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For a structural system with e members where the failure is 
defined as the failure of k members, the failure mode is 
identified by this k-subset. If the joint distribution is 
normal or closer to normal, it is possible in this case to 
optimise the number of local searches such that no local 
optimum is found more than once. Moreover, if the failure 
surface corresponding to any failure mode can be expressed in 
a closed analytical form, then the local search can be carried 
out with one single constraint at a time.

A typical case, which is described in the following, is that 
of a rigid-plastic model for structural failures. The 
linearity of the limit-state is exploited to make the 
algorithm of Chapter 6 more efficient. As the gradient of the 
limit-state is piece-wise constant, two points with the same 
gradient can be assumed to belong to the same region of 
attraption, which suggests another criterion for clustering 
the sample points according to the failure mechanisms. The 
clustering procedure would result in the identification of a 
set of hyperplanes. A failure mechanism is identified by the 
set of rotations at the potential hinge locations. The values 
of these rotations are given by the reduced cost matrix of the 
linear programming tableau, which identifies the hinge 
locations for each simulated direction. This means that one 
needs to store this matrix for every sample direction with 
objective value above the threshold. The storage requirement 
would be very high and the cost of handling the comparison 
between mechanisms may become prohibitive as the structure 
becomes larger. As the mechanism can be identified through the
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indices of the hinge locations, no storage of the rotation 
values is needed. This reduces the storage requirements 
dramatically, by storing only the indices of the hinged 
sections. Despite this, the storage requirement and its 
corresponding computing time remain very high for large sample 
sizes and large structures. To overcome this problem, the 
following approach is suggested.

Let I ph be the set of indices of potential hinge locations and 
nh their number

..........n b ) ( 7 . 49)

A kinematically admissible mechanism m is identified by the 
subset Xm of its k hinge indices

J m -  { ilf i2, . . ., ik ) ( 7 . 50)

/

and it can be shown that the quantity

K - 2-*1 + 2^2 + ... + 2: (7 .51)

corresponds to a unique subset of I ph, i.e. two different 
subsets yield two different values of K. It follows that 
storing K is equivalent to storing Iph. But the storage space 
is theoretically k times smaller, so that with a single column 
integer array one can keep record of all mechanisms identified 
as the sampling proceeds. In other words, K is a 
'finger-print' code of the mechanism. However, as the value of
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K grows exponentially with that of nh , it might exceed the 
maximum integer representable by the machine. Let s  be the 
maximal integer such that 2 s is representable. The mechanism 
code number K can be factored as polynomial expression of 2s 

as follows

K E a i<2 *>JI-o (7.52)

where the coefficient a x is

a i Esliiris(l+l)
2 Ur-*1)

(7.53)

the indices i r are those of the current mechanism and L the 
degree of the polynomial factorisation. The storage, which now 
concerns the above coefficients, needs an integer array of 1+1  

columns. For example if s=30, and the maximal hinge index is 
90, ^tech mechanism would need four integer storage, this is 
still more manageable and less expensive than storing all 
hinge indices.

The coupling of this coding procedure with the multilevel 
single linkage procedure ensures that each local search result 
in a new local optimum (i.e. origin projection point of a 
significant failure mode, not outside the safe domain).

The local search consists of successive evaluations of the 
origin projections of the limit-state hyperplanes, and plastic 
analysis until the origin projection falls on the safe set
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boundaries. An immediate advantage of this new clustering 
procedure, is that a local search started from different 
points of the same failure mode lead to the same local 
optimum.

7 . 3 . 2  N o n - g a u s s i a n  v a r i a b l e s

The clustering procedure cannot be linked to the failure 
modes, even for linear limit-state, and should be linked to 
the critical angle defined in Chapter 6. For a piece-wise 
linear limit-state function, the local optimisation is carried 
out with one linear constraint at a time, which is updated by 
a structural analysis, if the local optimum found falls 
outside the safe domain.

7 . 3 . 3  A l g o r i t h m  sum m ary

The î as ic steps in the modified algorithm are as follows

S t e p  1 .  Sample N* points and evaluate their integrand 
values, their mechanism code, the corresponding mean 
value and standard deviation. Evaluate the critical 
angle. Set N=N*

S t e p  2 .  Relabel the points in decreasing order of their 
function values.
S t e p  3 .  Reduce the sample according to the current 
threshold.
S t e p  4 .  Perform the clustering procedure of the reduced 
sample according to the critical angle or the mechanism
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code.
S t e p  5 .  Perform a local search from the best point of 
each cluster, if not already used for such purpose, or if 
it does not fall within critical distance of some local 
optimum.
S t e p  6 .  Termination test; use the bayesian rule of 
equation 6.49, and integral approximation. If the test is 
positive, go to step 8.
S t e p  7 .  Draw a new sample of size k , evaluate the 
function values and mechanism codes. Set N=N+k. Update 
the critical angle and go to step 2.
S t e p  8 .  Construct a set of hyperplanes normal to each of
the optimal directions found previously, and at distance
P to the origin obtained from equation 3.18.
S t e p  9 .  Start the importance sampling phase, using the
new sampling density based on the previously found
hyperplanes.

/

7 . 3 . 4  I l l u s t r a t i v e  e x a m p le s

A single-storey and a double-storey single bay frames shown in 
Fig. 7.6 and Fig. 7.7 are analyzed. The distributions 
considered for the plastic moments and the loads respectively 
are Normal/Normal, lognormal /lognormal and lognormal/Gumbel. 
The parameters of the variables are given in Tables (7.1) and
(7.2). The results are given in Tables (7.3) and (7.4) with 
the sample sizes inside parentheses. The initial sample size 
for all cases is 200, and the number of sample points per 
iteration is 100. For comparison purposes, the coefficient of
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variation of the simulations outcomes, as random quantities, 
is given instead of the variance.

The results show clearly the variance reduction effect of the 
directional importance sampling. For non-normal variables, it 
can be also seen that the number of local searches initiated 
is moderate compared to that of the identified important 
regions.

The sensitivity analysis by correlated sampling is 
illustrated, by the effect on the probability on a small 
change in the mean plastic moments, in the last column of 
Table (7.3).

Concerning the computing time, one is interested in assessing 
the extra cost due to clustering/local search and non-uniform 
sampling, compared to a uniform sampling run with the same 
overall sample size. For the case of lognormal/lognormal 
distribution and single storey frame for example, a 7000 
sample size run, of which 6000 uniform and 1000 non-uniform, 
took 863 seconds ( on an IBM-compatible microcomputer) , and a 
uniform 7000 sample size run, with no clustering or 
optimisation, took 750 seconds, i.e. an extra cost of 15%. The 
former analysis gave a probability estimate of 0.96*10“5 with 
a C.O.V of 0.03. In order to evaluate the efficiency of this 
directional simulation with stochastic optimisation method, 
this analysis is repeated with 50000 uniform samples. A 
uniform 50000 sample size run gave a probability estimate of 
0.97*10'5 and a coefficient of variation of 0.04.
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Normal Lognormal Gumbel

(Kn)
C.O.V n(Kn)

C.O.V
(Kn)

C.O.V

Mx 100.0 .10 110.0 .10 - -

m 2 150.0 .10 160.0 .10 - -

H 10.1 .20 10.1 .20 15.0 .30
vx 53.8 .15 180.0 .15 50.0 .20

T a b le  7 . 1 .  D i s t r i b u t i o n  p a r a m e t e r s .  S i n g l e  s t o r e y  f r a m e .

Normal Gumbel
or Lognormal

C.O.V C.O.V
(Kn) (Kn)

Mi 110.0 .15 - -

m 2 110.0 .15 - -

m 3 275.0 .15 - -

H 16.0 .25 oCO .30
Vi 180. .15 60. .20
v2 90. .25 40. .20

Table 7.2. Distribution parameters. Double storey frame.
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Uniform
phase

Importance
sampling
phase

Num.
of
local
sear-
ches/
Num.
of
iden. 
reg.

Sensi. 
with 
respect 
to mean 
plastic 
moment 
(fii and 
2̂

Distrib. 
(Resist./ 
Loads)

p f xlO5 COV p f xlO5 COV

Norm/Norm 1.17
(3200)

0.10 1.16
(1000)

.003 2/2 -.103
-.177

Logn/Logn 92
(6000)

0.13 .96
(1000)

.03 13/7 -.108
-.210

Logn/Gumb 1.10
(6000)

0.14 .90
(1000)

.03 14/7 -.079
-.060

T a b le  7 . 3 .  P r o b a b i l i t i e s  o f  f a i l u r e  f o r  a  
s i n g l e  s t o r e y  f r a m e .

Uniform
phase

Importance
sampling
phase

Num.
of
local 
search 
-es.

Num. of 
identi. 
regions

77Distrib. 
(Resist./ 
Loads)

p^xlO4 COV pfxl04 COV

Norm/Norm 22.3
(6000)

.05 25.0
(1000)

.01 10 10

Logn/Logn 16.0
(4800)

.10 15.0
(1000)

.03 69 39

Logn/Gumb 1.8
(5000)

.03 1.8
(1000)

.03 31 20

T a b le  7 . 4 .  P r o b a b i l i t i e s  o f  f a i l u r e  f o r  a  
d o u b l e  s t o r e y  f r a m e .
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F i g .  7 . 1  I n t e g r a t i o n  b o u n d a r i e s  f o r  G r e e n ' s  t h e o r e m  
f o r m u l a t i o n

F i g  7 . 2  U n if o r m  d i r e c t i o n a l  s a m p l i n g
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F i g .  7 . 3  G a u s s i a n  d i r e c t i o n a l  s a m p l i n g

/

F i g .  7 . 4  U - t r u n c a t e d  g a u s s i a n  s a m p l i n g  d i s t r i b u t i o n
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/

V

4.00 m

F i g .  7 . 6  A  s i n g l e  s t o r e y  f r a m e .
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r

3.658 n

3.658 n

p  3.050 n »p  3.050 n

F i g .  7 . 7  A  d o u b l e  s t o r e y  f r a m e .
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CHAPTER V I I I

R E LIA BILITY -BA SED  STRUCTURAL OPTIM ISATION  

8 . 0  INTRODUCTION

A comprehensive reliability-based optimisation is a complex 
decision-making operation, that would take account of all 
aspects such as technical and scientific models,
functionality, economy, as well as the human and social 
factors. However, not all aspects are directly quantifiable 
and therefore their incorporation into the optimisation model 
is too difficult if not impossible, and usually many decisions 
have to be taken only through experience and intuitive 
judgement of the designer. Despite the recent advancements in 
artificial intelligence, it cannot yet provide an operational 
toolyt for an overall optimisation including non measurable 
factors such as functional or human. This is why most of the 
work carried out so far deals with quantifiable aspects mainly 
concerning the cost through the material quantity utilised. By 
far the most studied aspect is that of sizing the cross 
sections, followed by that of the cross sectional shape and/or 
overall shape ( i.e geometric nodal layout).

The concept of structural optimisation with the reliability as 
constraint can be traced back to Forsell as early as 1924. 
However, proper interest in the subject started in the 1950's
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[Johnson 1953; Ferry Borges 1954; Freudenthal 1956; Paez and 
Torroja 1959] . The need for lighter structures in industry 
increased significantly that interest in the sixties, among 
the pioneering works in that respect were those of Hilton and 
Feign [I960] , and Kalaba [1962], followed by contributions 
from Switzky [1964] , Kinser [1966], Khachaturian and Heider 
[1966], Moses and Kinser [1967], Benjamin [1968] and Cornell 
[1969a].

During the seventies, the horizons of the reliability-based 
structural optimisation become much wider to include 
multicriteria cases ( serviceability and ultimate limit- 
states) [Parimi and Cohn 1978] and sensitivity analysis for 
changes in the criteria, or any of the non-design random 
variable parameters (such as loading variables), type of 
distributions ...[Moses 1970; Moses and Stevenson 1970].

/

During the last decade, the concept of reliability-based 
design becomes more and more accepted among the structural 
engineering community and applications embrace a wide range of 
structures, particularly industry-related ones such as off
shore platforms and pressure vessels. Among the recent 
contributors are Murotsu et al. [1984], Frangopol [1985a], 
Moses and Feng [1986] , Sorensen [1986] , Frangopol and Fu 
[1989]. Thoft-Christensen and Sorensen [1987] discussed an 
integrated reliability-based optimal design concept in which 
the meaning of the total cost is extended to include the 
future cost of inspection and repair. Soltani and Corotis 
[1988] considered the failure cost as linear combinations of
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the modal failures costs weighted by their corresponding 
probabilities.

8 . 1  PROBLEM FORMULATIONS

8 . 1 . 1  M a t h e m a t i c a l  p r o g r a m m in g  f o r m u l a t i o n

The problem of reliability-based structural optimisation can 
be formulated in many different ways. Two main categories are 
a) cost minimisation with probability constraint (s), and b) 
probability minimisation with cost constraint and/or 
probability constraint. According to the number of limit- 
states involved, the problem is referred to as a single 
criterion or multicriteria optimisation. The single criterion 
case involves only one limit- state of failure either the full 
collajpse or unserviceability. If the objective is to minimise 
the cost, the optimisation problem can be set as follows

M i n i m i s e  Ct

s u b j e c t  to: p f  < p 0
(8.1)

where p 0 is the allowable limit for the system probability of 
failure. A multicriteria formulation is

Pfu * Pou 

Pfs * PoS

M i n i m i s e  

S u b j e c t  to; (8 .2 )
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where the superscripts u and s refer to the ultimate and 
serviceability limit-state.

The system probability of failure can be set as objective to 
be minimised, for a given cost as follows

M i n i m i s e  p f

S u b j e c t  to: Ct - C0
( 8 . 3 )

A different formulation considers constraints on the 
probabilities of failure of the individual members of the 
structure (potential hinge locations, bars for trusses) 
instead of the system failure probability, as follows

M i n i m i s e  

S u b j e c t  t o  :

Ct
P f± * p 0i i-1,2, . . . , n

( 8 . 4 )

This'rormulation has been used by many authors mainly because 
the probability evaluation is much easier and less costly. It 
may be also argued that the component reliability formulation 
is more flexible in allowing the risk levelling throughout the 
structure, something which cannot be controlled through the 
overall system reliability [Mahadevan and Haidar 1989] 
Moreover, the interaction of different types of internal 
forces is much easier to take account of by considering 
components reliabilities. Furthermore, if the system 
reliability is not considered, the chance constrained program 
can be easily transformed into a deterministic mathematical 
programming one.
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However, a comprehensive and rational design should include 
both system and components reliabilities, which can be carried 
out only at a very high computational cost. If both ultimate 
and serviceability limit-states are to considered 
(multicriteria optimisation), the problem becomes even more 
costly.

8 . 1 . 2  F a i l u r e  p r o b a b i l i t y  f u n c t i o n  a s  a  c o n s t r a i n t

The expression for a reliability function depends directly on
the method used for its approximation, which determines both
the efficiency of the method and the confidence level in the
optimal solution with respect to the exact failure
probability. First order second moment method was very common
in the seventies, with the Hasofer-Lind reliability index as
a reliability measure (of the component or system ) . By the

/late 1970's and early 1980's, the so-called advanced first- 
order reliability methods based on normal tail approximation 
led to first order estimate of the probability of failure. In 
the mean time, the crude Monte-Carlo and bounding techniques 
were also used. Improvements of the failure probability 
estimates were sought through the so-called second order 
reliability method (SORM) [Breitung 1984]. Many of the 
methods used in reliability-based optimisation were mixed 
methods where FORM or SORM and simulation techniques are 
coupled in order to provide the best possible estimate of the 
failure probability or the reliability index.
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An important step in setting up the optimisation program is to
decide values of the allowable limit for the probabilities of
failure (or reliability indices) . Although the limit for the
system failure probability may be considered, up to some
extent, as a matter of decision for the client, setting
limit (s) corresponding to the components is more an
engineering problem than a client's requirement. Setting a
uniform target reliability, for all components, is not
believed to be a good basis for a rational design. The
consequences of a failure of a given member depends on its
location within the structure on one hand, and on the limit-
state considered on the other. It follows that each component
or group of components must have its own target reliability
for full collapse and for unserviceability. Moreover, the set
of the components target reliabilities must be consistent
within itself and with the system target reliability. This
does not seem to have attracted the attention of the

/
researchers in the subject, and the matter has been left to 
the subjective judgement and the experience of the designer. 
Although the designer's intuition and experience are 
necessary, a scientific basis for the allowable failure 
probabilities will be always desirable.

8 . 1 . 3  C o s t  f u n c t i o n  a s  a n  o b j e c t i v e  ( o r  a  c o n s t r a i n t )

The cost function may be defined as the total of the initial 
construction cost and the cost of the damage due to the 
failure of the structure

C t “ Cj + C f P f (8.5)
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The second term Cf is very difficult to estimate/ as it means 
assigning cost values to human life/ social consequences or 
similar damage. A credible estimate should based on the 
expertise of economists and jurists, and not left to the 
structural engineer to decide. As long as no precise rules are 
not laid down in the official codes, account of the failure 
cost in the optimum design will remain an academic topic.

The first term Cd is mainly due to the material weight of the 
structure, and can be expressed as function of the cross 
section sizes for framed structures. Generally, the initial 
cost function is taken as the structural volume

n

(8.6)i

where ld is the length of the ith member and Ad its cross
sect L  area. This expression can be directly used for 
trusses. For framed structures, the limit-state analysis is 
carried out in terms of the plastic moments (or the moments of 
inertia.) . The cross sectional area and the plastic moment are 
found to be related by the formula

A  -  K ( 8 . 7 )

where K and y are constants depending on the material and the 
cross-sectional shape. This makes the objective function 
nonlinear and adds a great deal of difficulty to the problem. 
Based on a suggestion by Save and Massonnet [1965] , many
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authors use a linear expression of the plastic moments as 
substitute to the structural weight

(8 .8)

which assumes that sizing the plastic moments is almost 
equivalent to sizing the cross sectional areas.

The interaction between initial cost and failure cost has been 
addressed by Moses [1977] . Soltani and Corotis [1988] 
proposed a multi-objective formulation with both costs as 
objectives. The curve of ci versus p f is a monotonically 
decreasing function, while the failure cost increases with 
the failure probability. It follows that the total cost , as 
function of the failure probability, can present a minimum
value for some value of pf, which can be found by

/ . „ ..............unconstrained minimisation. This would yield an optimum value 
for failure probability, and remove the problem of selecting 
an allowable value for it. However, due to the difficulty 
mentioned earlier of setting values to cf , the unconstrained 
total cost minimisation has been avoided for lack of 
confidence in its outcome.

8 . 2  SOLUTION METHODS

In the following is a review of the methods that are most used 
in reliability-based structural optimisation. They are by no
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means the only ones that can be used among the multitude of 
non-linear programming methods. From the recorded experience 
in the subject, it is very difficult to decide which non
linear programming algorithm is most efficient mainly because 
different authors adopt different definitions for failure and 
different methods for their probability estimation.

The problem can be classified as 'chance constrained 
programming' one, if the components probabilities only are 
considered, and ' joint-chance constrained programming' for the 
case of system reliability. One would expect the problem to be 
treated as one of stochastic programming. However, most of the 
methods used are conventional nonlinear programming 
algorithms.

A commonly used approach is Zoutendijk's feasible directions 
methc^J [Moses 1969; Vanderplaats and Moses 1973; Frangopol 
1984, 1985a] . Starting from a feasible point x 0, a new 
feasible point of a better objective value x  is found by a 
line-search in a direction b such that

x  -  x 0 + a s  a  > 0 ( 8 . 9 )

where s and a are evaluated such that the improvement in the 
objective function is maximal (usable direction), without 
leaving the safe set ( feasible direction). This means that 
the direction s  should not lie outside the cone defined by the 
tangent hyperplanes to the objective hypersurface and the 
active constraints at x 0 . An optimal choice of s  is found by
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solving the linear program

Maximise y

subject to : s T. vpf + E y 6, 0
( 8 . 10)

s T. Vf/ + y  ̂ 0 
- 1 *  s i   ̂ 1

where £ is a fixed constant controlling the extent to which s

is projected away from the safe set hypersurface and it is
known as the p u s h - o f f  f a c t o r .  The main advantage of this
algorithm is that it operates only in the feasible region,
generating an improving sequence of feasible points, so that
even if it fails to converge to the optimum solution, the
designer is left with a better design. Concerning the speed of
convergence, the LP of equation 8.10 ensures that the
shortest path toward the optimum solution is followed.
Considering the line-search along s as very expensive for
large design applications, Belsare and Arora [1983] proposed
. / . . . .instead (for deterministic design) the evaluation of bounds on 
the optimum cost function value, and a systematic search to be 
carried out in the design space between these bounds. The 
bounds gap is successively reduced until the optimum solution 
is found. This idea sounds very attractive, however finding a 
lower bound for the optimum solution seem to very difficult, 
and no practical approach was suggested by the above authors. 
Showing that for a given cost value, no feasible design is 
possible, is not an obvious task.

Another popular method is the b a r r i e r  f u n c t i o n  m e t h o d , also 
known as the i n t e r i o r - p o i n t  u n c o n s t r a i n e d  m i n i m i s a t i o n
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t e c h n i q u e  [Frangopol 1984] . Its use in structural design in 
general, and reliability-based design in particular, is 
reassuring in a sense that it generates improving points 
within the safe set. The constrained problem is transformed 
into an unconstrained one of the form

C ( x , r )  -  W ( x )  + r t s { p f ) r  > 0 ( 8 . 1 1 )

where 0 is a positive function of the failure probability 
(constraint) on the interior of the feasible domain (usually 
logarithmic or inverse function) . A main weakness of the 
method is that for small values of r, the problem becomes ill- 
conditioned and difficult to solve. This sensitivity to r can 
be significantly reduced by using the so-called e x t e n d e d  

b a r r i e r  f u n c t i o n s  [Cassis and Schmit 1976], [Prasad and Haftka 
1979], [Prasad 1980] .

/
A similar approach to the barrier function method is the 
p e n a l t y  f u n c t i o n  m e t h o d , also known as the e x t e r i o r - p o i n t  

u n c o n s t r a i n e d  m i n i m i s a t i o n  t e c h n i q u e . A penalty term, function 
of the constraint (s) , is added to the objective so that a high 
cost is associated with the constraint violation, resulting in 
an unconstrained problem. Its use in optimum design has been 
inhibited by the fact that the optimum solution is approached 
from the unsafe set. Its has the same ill-conditioning 
problems as the barrier method, but this can be overcome by 
using the a u g m e n t e d  l a g r a n g i a n  m e t h o d . The penalty function is 
then added to the lagrangian function instead of the objective 
function.



20 0

A different class of methods is based on linearization 
techniques. A straightforward one is the r e c u r s i v e  l i n e a r  

p r o g r a m m i n g  m e t h o d , used by Morutsu et al. [1984] . It consists 
of solving a sequence of linear programs obtained by 
linearization of the objective and the constraints at the 
optimum solution of the previous LP. As the method converges 
toward a vertex of the safe set, it can only be used if the 
components reliabilities are considered, where their number is 
usually higher than that of the design variables. A slightly 
more sophisticated approach is the Kelly's c u t t i n g  p l a n e  

m e t h o d  (Kelly, J.E. 1960). Polyhedral envelopes to the 
constraints are built up by adding linearizations of the 
constraints at each iteration. As the reliability-based 
optimisation is not necessarily a convex problem, the cutting 
plane method is not recommended because safe regions 
containing the global optimum may be cut off at an 
intermediate stage. Moreover, the sequence of points generated 
f al l/ mainly in the failure set.

One might think of using the r e c u r s i v e  q u a d r a t i c  p r o g r a m m i n g  

m e t h o d  in reliability-based design. It consists of solving the 
stationarity conditions of the lagrangian function using 
Newton methods. This assumes the evaluation of the Hessian 
matrix, which is in reliability-based optimisation is a very 
costly process, especially if the system reliability is 
considered. The use of quasi-Newton algorithms needs the 
approximation of the Hessian matrix via recursive update 
formulae [Broyden 1967; Fletchers and Powell 1963]. However, 
despite the low computational cost, due to the inherent low
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accuracy in system reliability estimation and very low failure 
probabilities in structural engineering, Hessian estimation 
may be of doubtful validity.

Gradient projections techniques could also be used in 
reliability-based optimisation. As they consist of a steepest 
descent along the active constraints surface, using gradients 
information, it is almost equivalent to the feasible 
directions method used with zero push-off factor. The sequence 
of points generated falls outside the safe set, and their 
restoration involves an additional cost, often carried out in 
the non-improving direction of the objective.

Studies for linear cost function [Frangopol 1984 and Moses 
1969], show that the shape of the isoprobability contours in 
the design space is such that the locus of the minima of the 
failure probability for constant cost presents very smooth 
curvatures, almost linear. It follows that once one point is 
found on this locus, a good approximation can be obtained by 
moving along the objective's gradient direction toward the 
boundaries of the feasible domain. The new point can be either 
accepted or used as a starting point for the next iteration. 
The optimisation of the failure probability, at constant cost, 
can therefore be a key step for a fast reliability-based 
design, for linear or very smooth cost function. It can be 
easily transformed into an unconstrained program with one less 
dimension. A more extensive study on the shapes of the 
isoprobability contours would be very useful in the assessment 
of the efficiency of such approach.
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8 . 3  S E N S IT IV IT Y  ANALYSIS

Due to the lack of sufficient data, the statistical parameters 
used in reliability analysis are never known exactly. They are 
rather estimated from records over a limited period of time or 
from finite number of measurements, due to cost limitations. 
Moreover, the mathematical models used, both probabilistic and 
structural, are idealisations of the true physical and 
stochastic behaviour of the structures and this is on top of 
the human factors which results in errors of analysis and 
judgement. The resulting uncertainties have a direct 
influence on the level of confidence in the optimum design. A 
sensitivity analysis would show the impact of those 
uncertainties on the optimum design and optimum cost. This 
would help to set up a minimum level of accuracy for the non- 
desi grf parameters involved, and to identify the critical ones 
which have most influence on the overall design. Improvements 
in the efficiency of reliability-based optimisation techniques 
can be devised through the knowledge of the effect of the 
various parameters.

The early known sensitivity study is due to Moses [1970], were 
the cost sensitivity to change in statistical parameters, 
idealisation model and analysis errors are addressed. 
Sensitivity of the optimum design of a frame structure, to the 
allowable failure probability, the loads coefficients of 
variation and even the nature of the distribution functions, 
has been also studied by Moses and Stevenson [197 0] . The
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effect of the allowable failure probability has been also 
addressed by Parimi and Cohn [1978], while a sensitivity to 
human errors study has been carried out by Nowak [1983] . Using 
Vanderplaats approach [1984] to sensitivity in deterministic 
design, Frangopol [1985b] investigated the case of rigid- 
plastic structures and particularly the effect of the 
correlation between the resistance variables. The local effect 
of a change in a given parameter £, in the vicinity of the 
optimum solution, is evaluated by treating £ as a new design 
variable and performing a search for the optimal feasible 
direction with respect to the objective function improvement.

8 . 4  CONCLUSIONS

The validity of the results and conclusions of optimisation 
and sensitivity studies mentioned above depends very much on 
the .ievel of confidence in the reliability analysis approach 
adopted. If one excludes the cases where the Hasover-Lind 
reliability index measures the reliability, in most cases 
either Cornell bounds or the so-called Ditlevsen bounds has 
been used, for simple portal frames where the failure modes 
are identifiable by inspection and their number is very small. 
The gap between the bounds is small enough to give an 
acceptable estimate of the failure probability. However, this 
is not the case for large structural systems, where the bounds 
are significantly different from the exact failure 
probability. The real optimum design may be very different 
from the estimated one and so would be its sensitivity to the
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non-design parameters variations. A more accurate methods for 
reliability analysis should be used for large structural 
systems, if the conclusions drawn from the above studies are 
to be valid.

The problem of failure probability minimisation, for a given 
cost, should be given more attention, especially the case of 
linear cost function. Efficient methods for solving such 
problem may be very helpful in solving the cost optimisation 
program.

The possible multiextremal character of the reliability-based 
optimisation has not been addressed explicitly, except that 
some authors recommend to repeat the optimisation process from 
different starting points [Frangopol 1984] . The non-convexity 
of the problem has been shown by Sorensen and Thoft- 
Chris^ensen [1986]. The global optimisation approach (see 
Chapter 6) to the reliability-based optimisation would ensure 
a high confidence level in the optimum design. However, due to 
the high computational cost, a special and efficient global 
optimisation technique may be necessary. This remains a 
challenging topic for future research.
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CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

9 . 1  GENERAL CONCLUSIONS

The diverse aspects of structural reliability under time- 
invariant loads has been addressed, using various optimisation 
techniques. These aspects cover the variables' transformations 
and limit state surface approximations on one hand, and system 
reliability estimation on the other.

For structures or structural systems with polyhedral failure
domains in a normal space, good estimation of the failure
probability as a multinormal integral is possible. A new
formulation for equivalent gaussian safety margins

/representation presented m  this thesis appears to be fast and 
relatively accurate. The method uses the second moment theory 
but the correlation matrix is evaluated directly. Qualitative 
interpretation of the method is made clear by the study of the 
skewness of the distribution of non gaussian safety margins. 
Although the accuracy is not uniform over the whole 
probability space, it gives fairly acceptable results even for 
extreme cases. The case of highly reliable series systems very 
frequently met in structural reliability analysis, is made 
particularly accurate by a suitable interpolation method.

The bounds on the reliability of discrete systems has been
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thoroughly investigated. Second-order bounds seem to be cost 
effective, as the evaluation of higher order intersections is 
very expensive even with fast computers. The gap between the 
bounds increases with number and the correlation between the 
safety margins, and is very dependent on the ordering of the 
events (safety margins). The research studies on the ordering 
by the author have shown that great improvements can be 
achieved by a proper indexation of the events, at a marginal 
cost. An algorithm has been developed for the ordering of the 
events to get optimal lower bound. This algorithm has been 
tested on a large number of examples and has been found to be 
very efficient.

For events representable by gaussian safety margins, both 
bounding techniques and direct estimation of the multinormal 
integral ( chapter 4) can be used. For small number of safety 
margins, both methods seem to provide good accuracy; the 
choice should therefore be based on the computing time which 
seem to favour the bounding methods. As the number of safety 
margins grows, the gap between the bounds increases 
significantly, and the computing time grows much faster than 
that needed for direct estimation; theses estimates fall 
within the bounds and can be obtained at a much lower cost.

The Rosenblatt transformation has been used generally by 
reliability theorists to map a non-normal space into a normal 
one. The cost of this transformation, if the conditional 
probability densities cannot be integrated analytically, could 
be very high. An alternative approach, which preserves the
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directions of the original variables, is proposed. This new 
approach is applicable to highly reliable systems, which is 
the case for structures. It is independent of the variables' 
numbering and allows direct evaluation of the sensitivity 
factors (with respect to the locally closest points to the 
origin) which are the same in both x and u-spaces.

The use of Monte-Carlo methods in failure probability 
estimation has been fully investigated. The hit-and-miss 
method is particularly inaccurate and needs unacceptably large 
samples for the estimate to be of any significance. 
Substantial improvements can be obtained by reducing the 
sampling space or by importance sampling. However 
significantly improved results can be obtained by directional 
sampling with polar coordinates. The accuracy can be further 
improved with directional importance sampling, provided a good 
sampling distribution is found. A single figure for the 
coefficient of variation of the estimate can be easily 
obtained with some gaussian-derived sampling distributions. 
For non normal variables, sampling directly from the original 
space is more interesting than sampling from the transformed 
normal space. Within the directional importance sampling 
context of probability estimation, the sensitivity of the 
estimate to changes in the distribution parameters is better 
carried out by finite difference rather than direct 
integration of the analytical expression of the derivative 
with respect to such parameters.

In order to have a good approximation of the limit state
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surface, or to derive a good sampling distribution, 
identification of the stochastically dominant failure modes or 
regions is necessary. This is the most difficult and most 
costly part of any reliability analysis procedure, due to the 
high non-convexity of the problem. In normal space, the 
problem can be formulated as a linear program or a nonlinear 
one. Investigations on the multiple objective linear 
programming method for limit state generation, have shown that 
the method is not very useful for practical structures, as it 
is voraciously time consuming. The applicability of all these 
methods is limited to plastic structures, and do not guarantee 
the selection of all dominant modes. Heuristic methods (Branch 
and bound method, Beta-unzipping methods) can be applied to 
structures with various material properties (ductile, brittle, 
strainhardening,...), but can also fail to select all 
significant modes.

/

In non normal space, the discretisation into failure modes is 
no longer relevant for identifying the stochastically dominant 
parts of the failure domain, and more direct non-convex 
optimisation techniques are necessary. A review of the 
multiextremal optimisation methods suggests that deterministic 
approaches are not very suitable for such non-convex problems. 
Among the stochastic optimisation techniques reviewed, 
multistart clustering methods are the most suitable for our 
purpose. The so-called multi level single linkage approach, 
devised by Rinnoy Kan and Timmer [1984] and others for global 
optimisation over compact domains, is extended to functions 
defined over the boundaries of star-shaped domains. The
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resulting new formulation turns out to be efficient in 
identifying the neighbourhoods of significant local maxima of 
objective functions, defined as the radial integral over the 
failure part in a given direction. This is achieved with a 
minimum number of local searches. Coupling of this 
optimisation method with probability integration by 
directional simulation in a two-phase approach, resulted in an 
efficient package for reliability analyses. The first phase 
scans the failure domain for dominant parts and provides an 
initial estimate. In the second part, information gained from 
the first phase is used to derive a suitable sampling 
distribution and a proper importance sampling is performed. 
The interesting feature of the procedure is that the extra 
cost for stochastic optimisation constitutes only a fraction 
of the overall cost. The result of the stochastic optimisation 
phase can be used as input for FORM or SORM estimation of the 
probability. Care must be taken, when using them, as high 
curvatures at the p-points may give inaccurate results.

Reliability-based optimisation of structural systems has been 
critically reviewed. Numerous work has been carried out by 
many authors during the last two decades using different 
conventional convex optimisation algorithms. The performances 
of these algorithms are very dependent on the reliability 
analysis approach adopted. The two aspects of reliability 
analysis, i.e. dominant failure modes/regions identifications 
and probability estimation, are tackled in different ways by 
different authors. Because of this any comparative assessment 
has only limited validity.



21 0

9.2 RECOMMENDATIONS FOR FURTHER RESEARCH

The direct estimation of the multinormal integral for series 
systems ( chapter 4) comprises an interpolation formula. There 
is still room for improving the estimate by refining this 
formula, through more extensive numerical experiments on 
equicorrelated safety margins. Derivation of analytical 
expressions or numerical procedures for bounding the error on 
the estimate remains a challenging topic.

Concerning the system reliability bounds, the linear 
programming formulation of Kounias and Marin [1976] is worth 
further exploration aiming at generating more extreme points. 
A challenging topic is to prove whether extreme points, other 
than those with 0's and l's, can yield better bounds.

/

Despite the numerous efforts made by many authors in devising 
techniques for dominant failure modes/regions identification, 
existing methods are not very efficient and more research in 
this direction is necessary. The method developed in chapter 
6 and applied in chapter 7, can be significantly improved, if

• methods of optimising the choice of the critical angle 
on which the clustering procedures is based, can be 
developed.
• A 'good stopping rules' can be derived for the 
optimisation process.

Methods of constructing good sampling distributions, which
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imitate closely the radial integral function, would improve 
dramatically the accuracy of the estimates obtained by 
directional importance sampling. A great deal of progress is 
expected to be made in that respect in the very near future. 
The change of sampling distribution during the sampling 
process needs an optimal weighting for combining the different 
estimates resulting from each sampling distribution, such that 
the overall variance is minimised. Development of highly 
involved statistical techniques for such purpose is an open 
topic for future research.

Finally, in reliability-based optimisation, more attention 
should be given to minimising the probability of failure for 
a fixed cost, for the case of linear cost function. Its 
optimal solution may lead directly to optimal probabilities 
for different cost values. The reliability-based optimisation 
should be addressed as a proper multiextremal problem and 
special methods should be devised for such purpose.
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