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ABSTRACT

The main aim of this thesis is to investigate the use of
optimisation methods in the assessment of structural system
reliability and to present improvements for the estimation of
probability of failure of framed structures. This thesis
gives a critical review of the methods available for the
enumeration and identification of all possible failure modes
or failure regions and discusses a multiple objective linear
programming method for framed structures.

The evaluation of the joint probability of failure presents
numerical difficulties and some progress has been made in this
direction. Existing techniques for evaluating system
reliability bounds are reviewed from a different angle and a
new ordering algorithm has been developed to get the best
second-order lower bound. For gaussian safety margins, a new
fast and accurate method for the evaluation of this Jjoint
probability is developed and results are presented.

The applicability of Monte Carlo techniques in failure
probé%ility estimation is critically appraised and the use of
stochastic multiextremal optimisation methods for dominant
failure modes identification is thoroughly investigated. A
rational combination of these two concepts is developed to
generate an efficient method for simultaneous probability
integration and dominant failure modes identification. The
method is designed for correlated and/or non-normal variables
without transformation to the standardised normal space. Used
in conjunction with first-order reliability methods (FORM)
and/or bounding techniques, this method offers a comprehensive
and reliable way of estimating the probability of failure of
structural systems. The evaluation of the sensitivity factors
used in reliability-based design, with respect to design
variables, has also been critically addressed within this

Monte-Carlo framework.
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NOTATION

In this thesis, the standard notations of probability theory
have been followed whenever possible. These notations concern
mainly the choice of upper or 1lower case letters for
distribution functions and probability density functions on
one hand and a random variable and its value on the other. In
general, variables and functions are defined in the
corresponding sections and the following list contains some of
the variables which have been used throughout the thesis.

M Vector of bending moments at critical sections.

P Vector of bi-action moments.

B matrix of influence coefficients due to unit bi-
actions.

B, matrix of influence coefficients due to unit loads.

A Vector of loading variables.

M, Vector of plastic moments.

0 Vector of rotations at critical sections.

o Vs Vector of nodal displacements.

Mo | Vector of mean plastic moments.

Ha Vector of mean external loads.

B Reliability index.

P(.) Probability of

Pr probability of failure.

p, probability of occurrence of the i*" event.

Py x probability of joint occurrence of the ith, 3, ..k

events (intersection).
correlation matrix.

number of basic variables.
sample size.

random unit vector.

Q

n

N

A

v critical angle for clustering.

¢ standard normal density function.
()

standard normal cumulative distribution function.



Q. area of the n-sphere surface.
R (o) distance from the origin to limit state surface in
the direction «.



CHAPTER I

INTRODUCTION

The design of a structural system involves many parameters
governing the kinematic and static behaviour of the structure
and a mathematical model of analysis. The parameters values,
concerning the material, the geometry or the external loads,
contain always some element of uncertainty and they are
referred to as basic variables. This variability makes the so-
called ’'allowable stresses’, used in the earlier codes of
practice, may be exceeded during the structure’s lifetime. The
risk of structural failure cannot, therefore, be eliminated
and could only be reduced by a good design practice. The term
"'safe structures’ 1is now being replaced by ‘'low risk
strugtures’ for the above reason. This can only be achieved by
a fational assessment of the reliability due to the
interaction between the various uncertainties in the basic

variables, resulting in a probabilistic design.

Consideration of the physical uncertainties in the basic
variables is itself a computationally expensive problem; the
uncertainty on the statistical parameters (due to 1lack of
sufficient data), makes the problem even costlier. Multiple
performance requirements (ultimate limit state ULS,
serviceability limit state SLS,...) add a great deal of

difficulty and the introduction of model uncertainty gives
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another dimension to the complexity of the problem. This
explains why much of the progress in structural reliability is
in the treatment of physical uncertainties in the basic

variables.

The impact of a probabilistic treatment of the basic variables
on the structural codes, which should be operational, reflects
the difficulties mentioned above. The old codes, solely based
on "good ©practice’, are gradually replaced by  new
scientifically based ones, where theoretical and experimental
research results are embodied; although no reliability
analysis is explicitly involved in the codes, some level of
reliability is sought through the use of partial safety
factors. This is a safety checking approach and referred to as

level 1 method.

The ;o—called level 2 methods are based on approximations of
the failure domain and/or the joint probability distribution.
The first approximations of the joint probability distribution

used are based on second moment theory.

Second moment concepts can be traced back in early works on
structural reliability [Mayer 1926, Freudenthal 1956,
Rzhanitzyn 1957, Basler 1961]. Cornell [196%a] introduced the
concept of reliability index, defined in terms of the mean and
standard deviation of a linearized 1limit-state, as a
reliability measure. Due to the lack of invariance in
Cornell’s formulation, Hasofer and Lind [1974] proposed an

invariant expression by nonhomogeneous linear mapping of the
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basic variables into a normalized and uncorrelated set of
variables. This becomes to be known as the Hasofer-Lind
Reliability Index. It was thought that the reliabilities of
different structural elements may be compared with this
reliability index, without actual evaluation of their failure
probabilities. In structural reliability theory, this 1is

referred to as the first order second moment method (FOSM).

The FOSM approach has been later extended to allow for
different probability distributions of the basic variables by
a transformation into standard normal ones. This gave rise to
the first-order reliability method (FORM). This has been also
referred to as ’'extended FOSM’ or ‘advanced FOSM’ in the
literature. In an attempt to improve the accuracy in
estimating the failure ©probability, a second order
approximation of the limit state surface was used in what is

referred to as the second order reliability method (SORM).

The so-called level 3 methods attempt the estimation-of the
failure probability at the element and/or system level, using
the joint probability distribution of the basic variables.
This implies the integration of the joint probability density
over the failure domain, which is a computationally expensive
operation. As a structure can fail in many interdependent
modes, the system failure can also be seen as the union of a
number of failure modes whose safety margins are correlated.
These two possible approaches for the estimation of system
reliability are critically studied and improved in this

thesis.
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1.1 Scope of the thesis

The overall objective of this thesis is to critically assess
existing methods of structural system reliability for framed
structures under time-invariant loads, to discuss the
applicability of some optimisation methods and to contribute
to the improvement of the failure probability estimation.
Various aspect of reliability analyses are examined. These
aspects cover the identification of stochastically dominant
failure modes or dominant regions of a failure domain, the
variables transformations and their approximations and the

probability integral in normal and original space.

A crucial problem, from the computational point of view, is to
find the parts of the failure domain which contribute most to
the gverall probability of failure. Efficient methods for such
purpose would improve dramatically the overall efficiency of
the failure probability estimation both in computing time and
accuracy. Various linear and nonlinear optimisation
techniques, wused or of potential wuse in failure modes
identification, are discussed. Special emphasis has been given

to stochastic methods.

With identified dominant failure modes/failure regions,
accurate probability estimation remains a very difficult task;
attempts to improve probability estimations in that respect
are made, using both deterministic and stochastic methods.

Deterministic methods are investigated through improvements of
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the multinormal integral over polyhedral domains on one hand
and system bounds on the other. Stochastic estimation by Monte
Carlo methods and the possibilities of improvement by variance
reduction techniques have been addressed. Both the so-called
hit-or-miss Monte Carlo and sample-mean methods are discussed.
The problem of reliability-based optimisation of structural
systems has also been addressed in a critical manner, with
assessment and the impact of reliability analysis efficiency

on optimum designs.
1.2 Layout of thesis
The thesis comprise three main parts

. The problem of failure modes identification for
plastic structures is reviewed in chapter 2. It contains a
crit%cal appraisal of different heuristic and conventional
optihisation techniques for identifying the stochastically
most dominant modes. In chapter 3, the transformations to
normal space and related approximations are assessed, and a
failure probability preserving transformation of the 1limit
state surface for highly reliable structural systems 1is
proposed. Chapter 3 reviews also the 1linear and nonlinear
failure surface approximations. The probability of failure
estimation for a given set of gaussian safety margins is
tackled in chapter 4, where a new fast and accurate method is
proposed, along with a critical assessment of the existing
methods. Structural system bounds on the probability

estimation are thoroughly treated in chapter 5, with emphasis
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on the optimisation of the events ordering.

* In the second part, chapter 6 comprise a review of
multiextremal optimisation methods with its potential
applicability to the identification of dominant regions of a
failure domain in non-normal space. Stochastic methods are
particularly scrutinised and a suitable algorithm for the
mentioned problem 1is proposed. Monte-carlo methods for
probability integration are analyzed in detail in chapter 7.
An integrated algorithm for integration and dominant regions
identification, based on the results of chapter 6, 1is

proposed.

. The third part consists of a bibliographical and
critical review of the reliability based optimisation
techniques for structural systems in chapter 8.

v
Finally, chapter 9 gives general conclusions and

recommendations for future researches.
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CHAPTER II

FAILURE MODES IDENTIFICATION FOR STRUCTURAL

SYSTEMS

2.0 INTRODUCTION

Different methods can be used for the estimation of the
probability of failure of structural systems. These methods
may involve first-order approximations, bounding techniques or
direct integration by some manageable approach such as
simulation. In all cases the outcome is a close approximation
of the integral of the joint probability density over the
failure domain. Because of the sharp decaying nature of the
taily® of the probability density functions, most of the
contribution to the overall integral is concentrated around
the locally high density points on the boundaries of the
failure domain. These 1local concentration areas are the
stochastically dominant regions with regard to the probability
of failure. For the multinormal standardised distribution, the
dominant regions are the neighbourhoods of the origin-
projection points on the failure surface, due to its
rotational symmetry. For structural systems with normal basic
variables, each local minimum corresponds to a different
failure mode of the structure such as plastic mechanism or
buckling mode. The global minimum corresponds to the

structure’s reliability index in the FORM sense. For non-
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normal basic variables, often more than one local minimum
might correspond to a single failure mode, once the variables
are transformed to normal space. In all cases, good estimate
of the probability of failure cannot be obtained without
identification of these local minima. In structural systems,
the number of failure modes is usually large for all of them
to be identified, and so is the number of 1local minima.
However, all of them are not required for a good estimation of
the probability of failure. In most practical situations, if
B.i» is the global minimum, only few other local minima would

have P values with probabilities exceeding 1% or so of that of

ﬁmin .

For rigid-plastic structural systems, safety margins (failure
modes) are linear in terms of the basic variables. Within the
FOSM theory, the local minima of P correspond'to different
hype;planes of the failure surface and therefore to different
failﬁre modes. With the distributional approach, this is also
the case if the basic variables are normally distributed. A
failure mode is entirely described by its reliability index P
and its correlation with the other (significant) failure
modes. The search for the dominant regions coincides with that
of the failure modes. The failure event is expressed as the
union of discrete events corresponding to those failure modes.
This explains why a considerable amount of research in
structural reliability, has been devoted to the identification

of dominant collapse mechanisms of rigid-plastic structures.

Several methods have been developed for generating all
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dominant failure mechanisms. These methods are based on

Heuristico-combinatorial techniques

Linear programming

- Non-linear programming

Random search or stochastic optimisation

In the following sections are critically reviewed some of the
known methods, with particular attention given to a new vector

maximisation approach.

2.1 BEURISTIC METHODS
2.1.1 The P-unzipping method

This method was proposed by Thoft-Christensen [1982] and was
further developed by Thoft-Christensen and Sorensen [1982a].
The failure of a structure with n elements is modeled as that
of a series system of selected parallel systems, each one
defined by the joint failure of k out of n elements. The k-
subsets are selected suéh that their joint reliability index
lies within the interval ([B.,, Pmn + 0], where ., is the
smallest value among all the k-subsets, and 0 is a parameter
that would dictate which subsets have to be discarded due to
negligible contribution. The selected k-subsets have been
referred to as the critical k-subsets, and the resulting
probability estimate as that of the systems reliability at
level k. It has been claimed by the above authors that in

general it is not necessary to go beyond level 3. But it is
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believed that the maximum level for a good estimate must
depend on the degree of redundancy of the structure, and

cannot be preset by the investigator.

The viability of the method depends very much on the size and
complexities of the structure, and the level at which the
failure is arbitrarily defined. If this level is defined to
correspond to the formation of a mechanism, the number of
structural analyses required may become extremely high. If the
level is set too low, 2 or 3 for instance, the estimate may be
too conservative, as one gets only an upper bound on the
probability of failure of some mechanism that includes the
given k-subset. The main advantage of the method is that it

can handle structures with brittle elements.

For fully ductile structures, the P-unzipping idea is extended
to plastic mechanisms, and referred to as systems reliability
analysis at mechanism level. Each elementary mechanism is
taken in turn and combined with others to form a new combined
mechanism. The combined mechanisms are ordered in increasing
values of their reliability indices. The ones with reliability
index exceeding some prefixed threshold level are discarded,
and the others are combined again with the elementary
mechanisms, to yield a new set of mechanisms. This new set is
treated in the same way, by discarding high reliability
mechanisms, and the procedure is repeated. Although it is
claimed that this method gives good results, the discarding
procedure of the mechanisms might prevent the identification

of significant ones. There is no reason to believe that a low
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reliability index mechanism cannot yield a significant one, if
combination is carried out further without discarding at an
early stage. This could be the case if the combination is
carried out further, with elementary mechanisms, which have
low correlation with the discarded one. It can therefore be
argued that the PB-unzipping approach is not very suitable at

the mechanism level.

2.1.2 Branch-and-bound method

The branch-and-bound method was first applied to structural
reliability problems by Murotsu et al. [1981,1983]. More or
less the same approach has been later proposed by Tang &
Melchers [1984], under the heading of truncated enumeration
approach.
/

The aim of the method is to generate sequences of potential
plastic hinges, 1leading to failure mechanisms with non
negligible contribution to the probability of failure. Each
sequence 1is referred to as a failure path, and if it
corresponds to a mechanism it is called a complete failure
path. In order to optimise the search, the build up of the
sequence is continued with a new hinge candidate, if the
resulting reliability of the sequence does not exceed some
current threshold level; otherwise the hinge is not added to
the sequence. The probability of failure associated with a
given sequence is defined as that of the joint occurrence of

failure of its members. The threshold probability level for
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discarding a new candidate from joining a sequence is set to
that of a fixed fraction of the highest sequence probability
found so far. The automatic updating of the threshold
constitutes the bounding operation and the branching consists
of selecting the path of maximum probability. The complete
failure paths are stored as dominant failure modes; the
sequence corresponding to the bounding threshold, at the end

of the search, is taken as the most dominant failure mode.

The method can generate a set of dominant failure modes with
a fair level of confidence, especially if there are only few
dominant ones. However, it is difficult to prove that this
method can always select all significant mechanisms, and there
is a high probability that it would miss some significant
failure modes. As presented by Murotsuet Al. [1981, 1983],
the bounding procedure is carried out right from the start at
the first hinge level. The critical threshold based on a
single member failure (or even two members) may be too high
and could cause the premature elimination of ©paths
corresponding to some significant failure modes. An initial
bounding threshold is better selected, in the author’s
opinion, as a fraction Y of the probability of union of the
failure events of significant elementary mechanisms, or its
optimal 1lower bound ( see Chapter 5). This would give a
threshold which is 1likely to yield a value close to the
overall probability of failure, and the fraction Yy would be
more related to it than to some single or pair of members
failure. The updating can be carried out by adding newly found

failure modes to the union and the new probability threshold
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can be obtained at a relatively low extra cost. This would
reduce the number of unnecessary branchings in a favourable
situation, when one of the elementary mechanisms is the most

dominant.

The branch-and-bound method has the flexibility for adaptation
to deal with structures with various material behaviours,
including ductile, brittle, strain-softening and strain-

hardening [Melchers & Tang 1984]. But its main weak points are

- Most of the discardable mechanisms are generated
several times, unnecessarily increasing the computing
cost.

- The number of branchings increases sharply with the
size of the structure; the effect is worse if the most
dominant modes are not found first.

- There is no guarantee that all dominant mechanisms are

/;enerated.

- If the variables are not normal, the evaluation of the
failure path probabilities can be very costly and the

overall cost may be prohibitive.

2.2 LINEAR PROGRAMMING BASED METHODS

2.2.1 Linear programming (LP) formulation of limit-state

analysis

Early attempts of such formulation are due to Charnes and
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Greenberg [1951], Dorn and Greenberg [1957], Charnes et al
[1959]. These formulations are mainly based on combination of
elementary mechanisms, which is optimised to yield the 1load
factor for a given proportioning of the external forces acting
on the structure. The primal-dual relationship between
kinematic (minimisation) and static (maximisation)
formulations was first suggested by Charnes et al [1959]. The
constraints of the primal LP are expressed as compatibility
equations, and the elementary mechanisms are presented as a
particular technique of getting these equations. This duality
is further developed with explicit interpretation of the
physical meaning of the variables for both programs by
Gavarini [1966]. The compatibility equations (or the
equilibrium equations for the dual program) are derived using
an independent set of mechanisms, referred to as ‘'basic
mechanisms’ by Munro [1965]. A basic mechanism is obtained by
firs' transforming an indeterminate structure into a
determinate one by inserting appropriate hinges and then

inserting a further hinge.

Based on Gavarini’s approéch of basic mechanisms and from the
results of Jenkins [1961], a comprehensive study of the
linear programming duality in plastic analysis was carried out
by Smith and Munro [1972]. This study includes both the
theoretical bases of the duality and the practical aspects of

the simplex formulation.

Both elementary mechanisms and basic mechanisms approaches

lead to the same results; however it is important to mention
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the following points:

- In the elementary mechanism formulation, m more
variables are needed (mechanisms combining variables), for the
primal approach, m being the number of elementary mechanisms.
This 1leads to m more constraints for the dual program
(static). This has an impact on both storing space and
computing time.

- Identification of elementary mechanisms can be
difficult for complex structures with complex pafterns of
loading. For basic mechanisms formulation, it is often
possible to select a suitable release system without much
difficulty [Munro 1965].

- It is possible to transform an elementary mechanism
formulation into a basic mechanism one, by the elimination of
the combining variables in the primal program, or by the
elimination of m dual variables in the dual program, thus
removing all equality constraints from the latter.

It follows therefore that the basic mechanism approach is much

more suitable for practical applications.

The ideal case of a hyperstatic structure, subject to
concentrated 1loads described by 1 random parameters, is
considered in the following. If n is the number of critical
sections, and c¢ the static indeterminacy, then the moments
vector M in the critical sections can be expressed in terms of
an indeterminate forces vector p (at appropriately selected
sections) and the loading parameters (equilibrium conditions)

as
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u-(5 ) (2.1)

where B and B, are the influence coefficients matrices due to
unit bi-actions at the critical sections and the loading
positions. The rotations are linked by the compatibility
conditions, and the nodal displacements can be expressed in

terms of the rotations as
0 I BT ]
(8) - [o B.T] ® (2.2)

Let M, be the vector of plastic moment capacities. Two
possibilities are to be considered. The first one assumes that
the loads are proportional to a single parameter and the
plastic moments are known (or proportional ). This yields the
known single objective formulation of the static and kinematic
ILP’s. The second one assumes several independent loading
paraé;ters together with proportional or independent plastic

moments, and yields a multiobjective static LP.

The geometrical interpretation of the LP problem, and the
physical interpretation of the simplex tableau content, are
necessary for efficient identification of failure modes. In
the simplex tableau of the kinematic program, the decision
variables correspond to the rotations (or axial displacements
for trusses), while the reduced costs at the bottom correspond
to the moments at the critical sections. In the dual program,
the variables correspond to the moments and the reduced costs

to the rotations. The feasible domains of both primal and dual
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problems are polyhedra, i.e. subsets bounded by hyperplanes
(constraints) which intersect at vertices, or extreme points.
By duality, extreme points of the primal program correspond to
facets of the dual programm and vice-versa. At least one
vertex constitutes an optimal solution. For the primal
program, this corresponds to a specific failure mode (set of
rotations), which is represented in the dual (static) by a
facet. An extreme point is entirely defined by the
intersection of n hyperplanes( n being the dimension of the
problem). If the number of active constraints n, at this point
exceeds n, many basic feasible solutions correspond to this
extreme point, and is said to be degenerate. The problem of
identifying the failure modes becomes therefore a problem of

locating vertices and facets of polyhedra.

Single objective formulation

!/

With a single loading parameter A , the matrix B, is reduced

to a column vector b, , and the static LP program is

Maximise A
(2.3)
s.t.i [Bb]-(§) s,
The corresponding kinematic LP is
Minimise M, T -0
(2.4)
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where the 1last equality constraint scales the vector of

rotations.
Multiobjective formulation

The case of independent loading parameters can be formulated
as a multiple objectives linear programming problem (MOLP), if

the plastic moments are assumed fully correlated,

Maximise (Ayshp, o AT

S.t.: -M, < (; Bc: )(f) <M, (2-5)

In the above program, the optimality of a solution is replaced
by the concept of noninferior or nondominated or efficient
solution, or Pareto-optimal solution [Pareto 1896]. With
several objectives, a feasible solution is said to be
effié&ent, if no improvement on one objective can be obtained,
by changing the current decisions variables’ values, without
loosing in at least one other objective. This is known as
strong noninferiority. A much broader definition is the weak
noninferiority, where improvement on one objective implies

nonimprovement in at least another one (Fig. 2.1). In the MOLP

discussed above, the set of all weakly noninferior objective
values coincide with the failure surface. It corresponds to
the optimal solutions obtained by replacing the set of

objectives by their linear combinations.
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BCD : strongly efficient set
ABCDE : weokly efficient set

Fig 2.1 Strong and weak efficient sets

Solutions of MOLP problems have been developed by several
authors during the sixties and seventies. The extension of the
simplex algorithm to the multicriteria simplex algorithm
allows the generation of all efficient extreme points [Evans
and S%euer 1972; Yu and Zeleni 1975; Ecker and Kouada 1978].
Methods of generating the whole efficient set are also
available. [Yu and Zeleni 1976; Izermann 1977; Ecker and

Kouada 1980].

One should bear in mind that MOLP methods have been developed,
in the first place, to solve multidecision making problems
encountered mainly in Economics and Management. The size of
the problems addressed in these fields, in terms of number of
variables, objectives and constraints, is generally much
smaller than that one usually face in structural analysis. The

aim of the methods mentioned in the previous paragraph is to
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find the whole efficient set. In structural systems this leads
to finding all failure modes regardless of their stochastic
importance and for real structures, this is unrealistic and
unnecessary. From the structural point of view, it has been
already pointed out that the number of failure mechanisms may
be too high for an entire set to be identified. In linear
programming terms, this leads to a large number of decision
variables, objectives and constraints, resulting in a huge
number of efficient extreme points and as many-folds of
corresponding efficient basis. In single objective linear
programming the optimality criterion, for an extreme point, is
simply the negativity of the reduced cost coefficients within
the simplex tableau. The efficiency in MOLP is much more
involved; it must be evaluated for each non-basic variable
which necessitates each time the solution of a linear
programming sub-problem. The number of variables in the sub-
problem is at least equal to (2n+l-c+d), where d is the number
of degenerate basic variables at the current extreme point and
the number of constraints is (l1+d) [Evans and Steuer 1875].
Additional calculations and storage are needed for generating
the maximal facets corresponding to the failure modes. The
increase in the computing cost, with the increasing size of

the problem, will therefore be very high.

Investigations on the applicability of these methods have been
carried out using the Adbase code [Steuer 1986]. This Fortran
code generates only the efficient extreme points. The facets
generation corresponding to failure modes, has been carried

out by the author by parametric decomposition of the
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normalised weight space [Yu and Zeleni 1976], using the

reduced cost matrix of each extreme point generated.

The outcome of these investigations is that this method has
limited use in structural reliability at the present stage of
its development due to the restriction on the size of the
problem and cannot be used beyond simple single or double
storey frame. The number of efficient bases is very high, and
there is no way of predicting this number before hand. For the
case of Adbase package, an upper bound on the number of
efficient bases is part of the necessary input data. An
inputed value lower than the correct one would terminate

prematurely the program.

The use of the MOLP method in failure modes generation has
been also investigated by Nafday et al. [1988b]. Their
concyusions about the practical feasibility of the method are
not believed to be realistic, even with full correlation
between resistance parameters and very limited number of

loading parameters ( 3 or 4 say).

A different use of the MOLP concept, for a reliability index

minimisation, is discussed section 2.3

2.2.2 Dominant modes generation

2.2.2.1 Lower and upper bound safety margins concepts
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This concept was introduced by Ditlevsen and Bjerager [1984].
The constraints of the system (2.5) are written as a set of

2n linear safety margins 2z,

5 8 .
Z.i‘ -Mpii-sipi' 1'1,...,C

c n-c
s s .
Zyt - Mpi !t - sijzl: bi-c,jpj - Sijzl: boi—c,jli' i=c+l,...,n

(2.6)

where s; represents the + or - sign. This set is referred to
as lower bound safety margins. The structure is in a safe
state, if a choice of p is made such that all the above safety
margins are non-negative. For a fixed choice of p, the
reliability is a lower bound on the overall reliability
corresponding to all possible choices of p. This lower bound
is optimised by maximising the Hasofer-Lind reliability index
By, corresponding to the smallest reliability index of the 2n

safegy margins. This optimisation is formulated as follows

Maximise B
S.t. : B <P, (2.7)

where B,°' is the reliability index of the lower bound safety
margin Z,°!. The alternative optima of the above program are
referred as the dominant lower bounds safety margins.
Numerical experience [Ditlevsen and Bjerager 84] shows that
the resulting lower bound is dependent on the original choice
of the statically determinate system. No general strategy is
available for an optimal choice which would maximise the

reliability index.
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Upper bounds on the reliability index are shown to be obtained
from positive 1linear combinations of 1lower bound safety
margins (equations 2.6) which are independent of p. Those
particular combinations yield full plastic failure modes
expressed as a difference between internal and external work.
This obviously constitutes an upper bound to the Hasofer-Lind
reliability index. Generation of optimal combinations, which
would lead to the most dominant modes, seem to be very

difficult.
2.2.2.2 Linear program for dominant failure modes
A vertex enumeration technique based on kinematic theorem

The parametric 1linear programming approach for finding
collapse modes, has been attempted by different authors
[Casgiati 1978], [Nafday et al. 1987]. 1In the latter
reféfence, the primal program (2.4) is used and the extreme
points (i.e failure modes) are ranked according to their
collapse loads, using Murty’s ranking theorem {1968]. This
theorem states that if the extreme points x;,x,,..,x; of a
given polyhedron Ax=b, are the best with respect to a given
linear objective function z(x)=c’x, then the next best extreme
point is adjacent to one of these points. By pivoting from one
basic feasible solution to an adjacent one successively,
failure modes are generated. The method has been referred to
as the polytope extreme point method (PEP). This idea of
ranking the extremes points which happen to correspond to the

failure mechanisms 1is very appealing one, however the
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following points have to be raised
- The failure mechanisms generated correspond to a
prefixed proportioning of the loading parameters, and no
provisions where made for pivoting to other mechanisms which
would correspond to a different proportion of the loads. This
implies that the whole operation is to be repeated for other
proportions from scratch, as the failure domains are no longer
the same, unless there is full correlation between the loads.
- More important is the criterion for ranking the extreme
points, which seems to be based on the load factor. As the
problem is formulated in terms of the original variables, even
assumed normally distributed, the 1load factor (linear
objective function of the LP) appears to be confused with the
reliability index of the corresponding failure mode. It would
be more appropriate in reliability analysis to rank the
extreme points according to the distance to the origin in u-
spaci, obtained from the transformation of the 1load and
resiétance variables. But the ranking criterion function
becomes non-linear in the space of rotations, with the

expression for uncorrelated moments capacities as

h 1
Zeiﬂ‘pj - ) Ha 8y
J=1 F=1

h 1
2 2 2 2
\JE%; 0,5° + jzl"xj 8,

J=1

By~

(2.8)

where B and O refer to the mean value and standard deviation
of the plastic moments and the loading parameters. With this
modified nonlinear objective function Murty’s theorem cannot

be applied. This problem, which consists now of minimising a
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non-linear function over a polyhedron, is in fact an NP-hard
problem of nonconvex constrained optimisation. It can be
tackled using directly or adapting existing methods in the
mathematical programming literature relevant to the problem.
An outline of the different methods which have been used, or

are of potential use, is given in the next section.

2.3 DOMINANT MODES GENERATION BY QUADRATIC PROGRAMMING

2.3.1 Kinematic formulation

Using the kinematic formulation of the limit-state, it is
possible to derive a general expression for the reliability
index in terms of the rotations/displacements (Equation 2.8).
Dominant failure modes are generated by directly minimising
such expressions, in a constrained quadratic program, where
the é;nstraints are derived from equation 2.2. This approach
has been used by Ishikawa and Iizuka [1987], within the so-
called PNET method [Ang and Ma 1982]. In this method, the
failure modes are generated in a sequence such that the
correlation between two consecutive modes does not exceed some
prefixed limit. The resulting set of failure modes is then
assumed independent, thus simplifying the evaluation of the
overall probability of failure. The problem is expressed in
the space of the mechanisms combination coefficients as
decision variables, and the reliability index as the objective

function. A first representative mode is obtained by a

sequential linear programming algorithm, and the following
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modes are obtained by minimisation with an extra correlation
constraint. The problem of nonconvexity does not seem to have
been addressed; the failures modes generated are not
necessarily the most dominant ones, as the search path is
fixed only by the initial starting point and the demarcating

correlation value.

The direct minimisation of the reliability index as expressed
in (2.8), can present some difficulties due to the shape of

the obijective function. A better formulation is

h 1
Maximise Y (0,0)2+) (0,82
= =

s.t.:

2.9
P-pT'e"IJ»AT'b"l ( )

o ar)o-@)-o

with a quadratic objective function, and linear constraints.
As the failure modes in the feasible domain correspond to the
vertices, the global optimum is necessarily a vertex. A
possible method for solving this program is the one proposed
by Cabot and Francis [1970], based on Murty’s theorem on
ranking the extreme points using an auxiliary LP, whose
objective function is an overestimate of that of the original
program subject to the same constraints. The extreme points
are ranked according to the auxiliary objective which provides
an upper bound to the main objective function at the current
best solution, while the previous best solution constitutes

the current lower bound. A backward pivoting away from the
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optimal solution of the auxiliary LP leads to a sequence of
improved solutions. It is not explicitly proven in the latter
reference that the sequence converges to the global optimum .
The method proposed by Falk [1973], also seems to be suitable
for this problem. In this method a branch-and-bound approach
is adopted, and the simplex algorithm is used to generate the
vertices, which provides bounds for the objective. Another
branch-and-bound type approach, is due to Falk and Soland
[1969]. This approach minimises convex envelope functions,
which closely overestimate the objective, over partitions of
the feasible domain. The partitions are refined until the
global optimum is isolated in a small area. This is similar to
the domain-partitioning approach used in global optimisation
of Lipschitz functions [Meewella and Maine 1988]. The main
difference is that the convex envelope is less conservative
than the global Lipschitz constant, and much easier to find.
Very/recently, Simoes [1990], addressed the dominant failure
modes identification as a nonconvex quadratic programming
problem using this method, and c¢laimed some success. A
different approach to this problem can be the class of cutting
plane methods [Tui 1964, Ritter 1966, Konno 1976], where a
local optimum is found and its neighbourhood is eliminated

from the feasible region by a cutting plane.

2.3.2. Static theorem formulation

The above remarks suggest the extension of the vertex ranking

idea to the multiparametric formulation of the static theorem
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LP, into a 'facets ranking algorithm’.

Here the vertex ranking is replaced by a facets ranking in the
objective space, according to their reliability indices. The
pivoting from one vertex to an adjacent one is such that the
latter is incident to a better facet. A sequence of extreme
points is generated following a path of decreasing reliability
index. The last point of the sequence is incident to a locally
optimal facet with all its adjacent facets having higher

reliability indices.

The incident facets to a given extreme point are found by

convex parametric decomposition. Let W be the simplex
k
Ww={weR¥lw, 20 ,} w, =1} (2.10)
i1

It is shown in Yu and Zeleni [1975, 1976] that this simplex
can Me decomposed into subsets W, of polyhedral shape
corresponding to each feasible basis J;, (or extreme point x,
for the case of nondegeneracy), such that for each w from W,
x, maximises w'Cx; over the feasible domain. If Z, is the
reduced cost matrix corresponding to J;, the subset W, is
defined by the optimality condition, which implies the non-
positivity of the reduced cost coefficients obtained by convex

combination of the rows of Z;

WTZISO (2.11)



37

A solution of equation 2.11 above corresponding to an optimal
set equal to a maximal facet of dimension (n-1), must lie on
the boundaries of W, with another subset W;. As this solution
is shared by all extreme points incident to this facet, it
also lies on the intersection of the boundaries of their w-
set. As this solution must yield a gradient of the combined
objective normal to that of the facet, it is unique for the
whole facet. It follows that the solution can only be a vertex
of W,. Thus, finding the optimal convex parameters for an
incident facet to a given extreme point amounts to finding a
vertex of the polyhedron defined by equation 2.11 and the

simplex W. This can be obtained by solving an auxiliary linear

program
Maximise wT.1
S.t.:
wTZ <0 (2.12)
s/ wT. 1 =1

The above auxiliary LP is to be used within the main LP to
generate incident facets to the current extreme point.
Solutions are obtained by ’free’ pivoting over all vertices.
Other methods of identifying incident facets to a given
extreme point can also be used [Izermann 1977; Ecker et al.

1980].

The investigations carried out suggest that the method cannot
be of practical use. The main reason is that the method needs,

for each extreme point on the path, the solution a single
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objective LP for all alternative optima. The number of these
alternative optima increases dramatically with the number of
parameters w,;, due to the highly degenerate nature of the main

MOLP.

2.4 RANDOM SEARCH AND SIMULATION TECHNIQUES

Due to 1lack or limited success of the failure modes
identification deterministic methods discussed above, and
because most of them cannot deal with non-normal variables,
stochastic techniques are becoming the focus of interest in
system reliability research. Stochastic techniques and their
applications in structural reliability are discussed in detail

in Chapters 6 and 7.
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CHAPTER III

VARIABLE TRANSFORMATIONS AND LIMIT-STATE
APPROXIMATIONS

3.1 VARIABLE TRANSFORMATIONS

3.1.1 Basic principles

Given a set of random variables X=(X;,X,,...,X,), with known
joint and continuous probability distribution F, over a
subset S of R", a transformation T: X ----- > U , where U is
standardized uncorrelated normal n-dimensional vector, is said

to be probability preserving if

P(XesS) = P(UEe T(S))
E[X] € S = E[U € T(S)

(3.1)

and the image of any connected subset of S is a connected
subset in T(S). This last property 1is very important for
reliability analysis, as the safe set (or the failure set)
remains connected after transformation and the probability of

failure can be written in terms of the u-space variables as

P, - T(j;)i_lcp(ui)dulduz. ..du, (3.2)

and the limit-state function G(x)=0 becomes

G(T(u)) =0 (3.3)
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The jacobian matrix of the transformation is denoted J;

613‘1(u)}

3.4
S (3.4)

Jp = lagy = {

which allows the evaluation of the gradient and the hessian of

the limit-state function in the u-space
V., GITHw] = (571 TV, 6(x) (3.5)

H [G(T(u))] =0T H, [G(x)]1{u} + {V, G(x) H (1, 7))}

(3.6)

where H, represents the hessian matrix of the limit-state
function in the x-space, and H,(i,j) is the n-dimensional
vector

FT1 (u)

- c ey T 3.7
suou, k=1,2, n] ( )

HT(i'j) - [

For a given limit-state function, there are an infinite number
of transformations T from x-space to u-space. Each
transformation results in a different image of the failure
set, or a different transformed limit-state surface. A
transformation can have two aims
- The reliability assessment, through the evaluation of
the probability of failure, or the reliability index,
- The easy identification of the most contributing parts
to failure, or dominant failure modes.
An ideal transformation would be the one which has the two

following features:
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e The images of the locally dominant regions in x-space
are themselves locally dominant in u-space, in more or
less the ’same proportions’,
* The image of any connected subset is independent of the
subscripting of the original variables, so that the image
of the failure domain is independent of the
investigator’s numbering preference of the variables. In
the FORM theory, this would lead to the same set of the
so-called P-points, and the same reliability measure for

all investigators.

If the first of the two features described above is met, the
dominant regions in x-space can be qualitatively identified
through their images, but their quantitative contributions to
the overall failure probability would not be known with
acceptable accuracy without the second feature.
s

With these basic principles in mind, some existing
transfofmations used in structural reliability, are outlined
in the next section, for comparison purposes with a proposed
new type of proportion-preserving transformation.

As the aim is to facilitate the evaluation (or estimation) of
the probability of failure or the reliability index at low
cost, exact transformations are often replaced by approximate

ones, which coincide at the P-points.

3.1.2 The Rosenblatt transformation

Rosenblatt [1952] proposed a partial conditioning approach for
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generating uniformly distributed random vectors between 0 and
1, from non-uniform joint distributions. This uniform set can
be transformed into another set of standardised normal vectors
by inversion of the gaussian distribution function for each
component separately. This has been first used in structural
reliability by Hohenbichler and Rakwitz [1981]. The marginal
distribution density of the first i variables irrespective of

the others is

+co
FilXy X0 o o0 Xy) -ff Fu(Xy s Xys oo s Xg0 Eyags ooy Ep) dEy, . dE,

(3.8)
and the conditional distribution function of the i*! variable,

conditioned on the first (i-1) ones is

X1

ffi (X0 X500 o0 Xq_4.4 ti)dt_i

Folxlx,, %, 00 %) == fori x 2
p ffi(xl,xz,...,xi_l,t:i)dti
| ) (3.9)
Then the Rosenblatt transformation T; is
u, = ®1(F,(x,))
! . (3.10)
u1 - Q-l(Fi(Xi|X1,X2’|--,Xi_1) i-2,3,-.-,n
and its inverse transformation is straightforward
X, = F."1(®(y,))
oot . (3.11)

x; = F72(®(uy) I x, %, .0000%,,) i=2,3,...,n
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For the case of independent variables, the transformation and
its inverse simplify to
u; = o1 (in (Xi))

(3.12)
x; = Fhy (®(uy))

For correlated normal variables the transformation and its
inverse are linear, and amounts to a an L.LT factorisation of

the correlation matrix C

c=-L.LT
U=L.X
X=L1U

(3.13)

For log-normal variables, also the transformation is simple,
and it consists of applying the above linear transformation to
the logarithms of the variables.

s
Apart from the above particular cases, the Rosenblatt
transformation is often very costly process, as the evaluation
of conditional distributions needs to be done numerically if

the joint distribution function is not tractable analytically.

As a first-order approximation, the Rosenblatt transformation
is applied only at the origin-projection points of the limit-
state function in wu-space. Both the density and the
distribution are equated between the pB-points and their
reciprocal images. This means a first-order expansion of the

Jacobian matrix about the P-points. However, those points are
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not known in advance. An algorithm for their evaluation,
referred to as the ’ P-algorithm ’, has been proposed by
Fisseler and Rakwitz [1979], for independent variables and
generalised to dependents ones [Hohenbichler & Rakwitz, 1981],
using the Rosenblatt transformation. This algorithm consists
of sequential linearizations of the transformation, leading to
a sequence of x-points converging to a reciprocal image of a

local minimum of B in u-space.

Ditlevsen [1981], reported more or less the same ideas under
the heading of ’‘normal tail approximation’ (NTA). Cheng and
Lind [1983], suggested a slightly improved version of the
"normal tail approximation’ by equating also the slopes of the
densities at the approximation points. An 'equivalent’ set of
independent normal variables N(J,,0,) is derived by introducing

a third parameter as follows

! Fy(x) =a® (Z2Ex)
O x
Fi(x) = a" 4>(x;""‘) (3.14)
X X
£ (%) =~ o (:;'P'x) Y X;I:x)
X

Both the full-blown Rosenblatt transformation, and its
approximated forms, have two undesirable characteristics
-The dependence on the original variables ordering which
can be easily checked in simple two dimension problems by
reversing of the ordering of the variables, which results in
two different transformed structural functions, with different

sets of P-points. If the lowest B value is to be used as
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reliability measure all n! possibilities should be
investigated. This can be onerous and even unfeasible for high
values of n. A polyhedral or quadratic approximations of the
transformed limit-state, using the obtained set of P-points,
are necessary if the outcome of the transformation is to be
credible.

-The coordinates of the pB-point in wu-space have no
physical meaning, as the i'® variable depends the first i
variables in x-space, unless the x-variables are independent.
And the wording ’sensitivity factors’ used by some authors
when referring to the cosine directors of the B-point can be

misleading.

The fact that the P-point obtained from the above algorithm
does not correspond to the local maximum joint density, has
been recognised [Horne & Price 1977], but this should not be
the }im of any transformation as will be discussed in the
next’ section, where a new approach towards 'proportions
preserving’ is developed, ensuring the two features described

in the previous section.

3.1.3 The Radial limit-state surface transformation

If the probability of failure is evaluated through some
variable transformation, it can make the evaluation easier.
However, in practice one is not interested only in the value
of the probability no matter how accurate is the estimate, but

also in the influence of each of the original variables on
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this value. If those influences are not faithfully reflected
in the transformed variables, one cannot identify the critical
parts of the x-space with most contribution to the probability
of failure. This 1is very important for the sensitivity
analysis, as one can manipulate the parameters of some of the
original variables in order to meet some target probability.
It can be argued that those critical parts can be identified
through the reciprocal images of the PB-points, as this
reciprocal set 1is independent of the subscripting of the
original variables. But the use of the P values for first-
order approximations may yield different estimates from
different investigators, and this would always shed some doubt

over the final results.

It has been more or less implicitly believed that the local
maxima of the joint density on the failure surface are the
mostl/’critical points ’, and thus the heading of ’‘design
poinﬁs’ seemed to be legitimate, especially within the first-
order second moment framework. Any transformation can then be
approximated by linearization at those points. But, beyond the
second-moment theory, and with the exact joint densities
assumed available, this idea can be misleading as a local
maximum of the density is not always good indicator of the
contribution of its neighbourhood to the probability of
failure, except in normal space. The extension of this analogy

to non-normal variables is not believed to be valid.

More informative on the critical parts in x-space, are the

contributions to the failure ©probability for fixed
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proportioning of the variables. For both normal and non-normal

variables, its expression is

P(rzRla) = [ £(ta)t™dt (3.15)
R(a)

where a is a unit vector, characterising the proportioning of
the variables. For standardised normal variables, the above
radial integral can be expressed in a closed form

o, (te) £7-idt = 11_’&’%‘& (3.16)

R{a) n

where Q, is the area of the unit hyperesphere. This suggests
that the analogy with the normal distribution should be
equating these radial contributions in each direction o, at
each point of the 1limit-state surface. The result is a
traniformed limit-state where only the distance to the origin
is changed, but the cosine directors vectors o, are unchanged.
The limit-state transformation consists only in ’‘correcting’
the radial distances B, to the origin, and assumes that the
variables are standardised independent normal ones. The
transformation consists mainly in shrinking or expanding the
radial distances of the failure set boundaries, in order to

maintain the probability content of the failure set.

The value of the new distance P to the origin is such that

x2(p2) =1 -Q, f £ (ta) tm1dt (3.17)
R(a)
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The above equation can be solved for P only if its right hand
side 1is positive. This is the case for highly reliable

systems, such as structures. The solution for B, is therefore

B - \l (x2) 1 -Q, f f,(ta) t?1dt] (3.18)

R(a)

and the i*" components of the transformed vector u is

PP (3.19

From the above formulas, it can be seen that if the original
density is such that the radial integral can be performed
analytically, the computing cost is expected to be very low.
However, in some situations the analytical integral can be a
lengthy expression more expensive than a numerical
integration. Globally speaking, the computing cost is much
lowe{‘than that of the Rosenblatt transformation where many
multidimensional integrals for the marginal and the
conditional distributions of the variables are to be carried
out, against one integral for what can be termed as the radial

"shrinking-expansion’ approach.
The search for the P-points can be carried out by maximising
the radial probability over the unit sphere, using any

optimisation package available on the site.

The advantages of this approach can be listed as follows:
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* The image of the failure set of R" is uniquely defined
by the transformation regardless of the ordering of the
variables. This means that the set of P-points of the
transformed failure domain is unique for all orderings of
the variables.
* The neighbourhood of the f-points are the worst
proportioning of the original variables. The cosine
directors at those points can be termed legitimately
sensitivity factors.
. Beyond the first-order approximation, this
transformation is much more suitable for the probability
integration by Monte Carlo methods than the Rosenblatt

transformation, as developed in Chapter 7.

Illustrative examples

The following parabolic limit-state function

2 2 2
Sxy + 102y + 3x°y _ 575y‘+ x2 - Z%SX'_ 34

2 5 2 2

G(le) -

is studied for two different non-normal distributions

Fry(X,y) = exv-emor

(2 + 4x2 + 2y2) e X"y’
571

gx,y(xl Y) -

The graphical representation of the limit-state function in x-

space and in wu-space using respectively the radial

Rosenblatt transformation is given in Fig (3.1) and Fig (3.2).

The two spaces are more conveniently represented with the same
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set of coordinates axes. In Table (3.1) are given the results
for exact integration and first-order estimates (using a

single PB-point) based on both transformations.

Radial Rosenblatt Exact
Transform. Transform. Probability
B P B P B P
£y 1.256 .1045 1.624 .0521 1.295 .0977
|
gy 3.549 1.928 3.504 2.288 3.551 1.920
E-4 E-4 E-4

Table 3.1 First-order estimate of the probability and
reliability index using the radial and Rosenblatt

transformation.

Ve

3.2 FAILURE SURFACE APPROXIMATIONS

Most of the limit-state approximations reviewed in this
section has been used in the so-called level 2 methods as FOSM
or FORM. In many cases, the probability corresponding to the
approximated limit-state is close enough to that of the exact
one to yield an acceptable estimate. In general, the
corresponding estimate cannot be a poor one; however this
approximate limit-state is very useful in Monte Carlo methods

for constructing good sampling distributions ( See chapter 7).



51

3.2.1 Linear approximation

The most common is the tangent hyperplane approximation, at
the most likely failure point. The probability of failure is

simply approximated by that of the tangent hyperplane

Dfg = ¢_1(-B) (3.20)

where B is the reliability index of this hyperplane.

In systems reliability, the representative hyperplane
approximation is more convenient ( see Chapter IV). It assumes
that the probability of failure corresponding to a given
safety margin is known or can be approximated, and the

representative hyperplane is defined by the equation
B-ngpfu=0 (3.21)

S/
where B is defined by

®(-B) - p, (3.22)

and My is the unit normal vector. Various choices for the
direction of this normal vector have been proposed. The
direction of the most 1likely failure point (tangent
hyperplane) has been adopted by Lind [1980]. For the case of
more than one such point, the average direction may be
adopted. A parallel translation based approach has been
proposed by Hohenbichler [1982]. It is shown that, if & is an

arbitrary translation vector, and B(d) is defined by
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O(-B(d)) = P[(U-8)eF ] (3.23)

then an appropriate choice of My is
- _VB(0) 3.24
g T'Evp(o)l (3.24)

The wviability of such <choice depend very much on the

evaluation cost of the gradient of P(Jd).

A third possibility for a choice of My is such that the error

AP = PlUe (HU¥)] - PlUE (HNF)] (3.25)

is minimised, where H is the half-space delimited by the
representative hyperplane. A great difficulty with this choice
is that the expression above is not easy to evaluate, and its

miniy}sation may lead to several optima.

3.2.2 Polyhedral approximation

The failure surface is approximated by a discrete set of
hyperplanes to form a polyhedral failure set. As for the
single hyperplane approximation, the choice of the location
and the number of hyperplanes can be carried using different
methods.

A natural choice is the hyperplanes tangent to the failure
surface at the points of locally maximum likelihood. The

crucial problem is the identification of those ‘checking
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points’. This problem is discussed in other chapters ( 2, 6

and 7).

If the failure surface is compound of discrete set of
continuously differentiable failure surfaces ( i.e finite set
of failure modes), it can be approximated by a set of
representative gaussian safety margins. The corresponding
reliability indices are defined as in equation (3.21), and the
correlation between any couple of safety margins is determined

by the equation

¢2(—Bi,ﬂj;pu) 'P[UG (.71 n.9_’1)] (3.26)

In this approach, there are two levels of approximations :
* Approximation of the reliability indices of the
different failure modes and that of the probabilities of
the mutual intersection, if they are not gaussian;

/. A systematic approximation, inherent to the method,
which uses only first and second moment information of
the original safety margins;

The two types of approximations have a cumulative effect on
the resulting overall error. The representative gaussian
safety margins method 1is wused in Chapter 4, for the

multinormal integral evaluation, and an approach for reversing

the cumulative effect of the two types of errors is proposed.

If the original safety margins or their gaussian
representatives are numerous, the computing cost can be

substantially reduced by reducing their number, without much
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increase in the error. This can be done by a clustering
technique of the safety margins according to their
correlations. Several clustering techniques has been proposed
by different authors [Lind, 1980], [ Chou et al., 1983], [ Ang
et al., 1975]. However, the use of such clustering techniques
may lead to unacceptably high errors, and their use should be
restricted to the cases where the number is very high, say
more than 200 or so. With the fast methods of multinormal
integration developed in Chapter 4, the cost of probability
integration becomes marginal compared to that of the
identification of the safety margins. The cost saving with a
number reduction by clustering will not be worth the risk of

undermining the overall accuracy.

3.2.3 Quadratic approximations

Vs
The failure surface 1is approximated by a quadratic
hypersurface at the most likely failure point. This assumes
that the probability content of the domain bounded by this
quadratic hypersurface can be evaluated exactly or at least
can be approximated more easily and cheaply than that

corresponding to the original failure surface.

There are at least three known possibilities for generating
this quadratic hypersurface :
* the straightforward choice of a quadratic surface
defined by the second order Taylor expansion of the

failure function about the most likely failure point,
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e a curvature fitted parabolic approximation,
* a point fitted parabolic approximation,
In the first case, the resulting approximating function is a
general quadratic form with non-zero cross terms coefficients.
The corresponding probability cannot be approximated directly.
More tractable is the curvature fitted parabola such that its
principal curvatures are the same as those of the original
failure surface. The probability estimation can be obtained

from the asymptotic result [ Breitung 1982, 1984]

n-1

]bim pr= @ (-P)[] (1-Bx,) /2 (3.27)

i=-1

where B is the minimal distance to the origin and ¥, X,, .., K,
are the principal curvatures of the limit-state surface at the
checking point. More involved approximating expressions have
been proposed by Tvedt [1983,1988].
v

A different approach has been adopted by Der Kiureghian et
al.[1987]. It is based on a paraboloid approximation obtained
by fitting to the failure surface at discrete points in the
neighbourhood of the most likely failure point, in orthogonal
directions. The method is claimed to have several advantages
over the curvature fitting approach. Among those advantages
are the insensitivity to noise in the failure surface, and a
better account for higher order terms. However, it does not

have the asymptotic behaviour of curvature fitting [Tvedt, 88].
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Fig 3.1 . Limit-state transformations for f£,.
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Fig 3.2 . Limit-state transformations for gy
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CHAPTER IV

PROBABILITY APPROXIMATION WITH GAUSSIAN SAFETY MARGINS

4.1 METHOD DESCRIPTION

The probability of failure of systems described by linear
gaussian safety margins { Z,=X,+B,,i=1,n}, with reliability
index vector B and correlation matrix @, can be expressed for

parallel systems as

P(n X, 5 -Bp;) = ®,(-B;e) (4.1)
Q 1 1 B
and
P(JUXxy2-By) =1-0.(B,e) (4.2)
=1

for'ﬁéries systems. The problem is therefore the numerical
evaluation of the expression in the right hand side of
equation 4.1, where P is taken positive for parallel systems
and negative for series systems. This integral was first
solved for the particular case where pyy=V,vy (with | vl and
|\q <1) by Dunett & Sobel [1955], where the expression is

reduced to a single dimension integral

T - -B 4-v,t
®,(-Bie) - | @(t) ¢ (———=—)dt (4.3)
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which can be easily evaluated numerically. For equicorrelated
sets of margins, V; equals the square root of the common

correlation p, and the above expression becomes

f - ByVpt
®,(-B:;e) - (t) ®(———)dt (4.4)
Bio '[ ®(0)]] —

Thoft-Christensen and Sorensen [1982] suggested the use of
this expression to approximate the general case, by replacing
the original correlation matrix by an equicorrelated one, with
a weighted average of the correlation coefficients. Their
numerical studies seem to suggest that this approximation
yields an upper bound on the exact value. Moreover, for
equireliable margins, the Taylor expansion of the probability
as function of the correlation coefficients, about the
equicorrelated point corresponding to the uniform average of
all off-diagonal coefficients, presents some attractive
featgres [Ditlevsen 1984a]. Its first degree term is zero, and
if the common reliability index exceeds a certain value, the
second degree term is negative. In the 1latter reference,
Ditlevsen suggested the use of a modified Taylor expansion
about an equicorrelation point, and derived its first and
second degree terms, as functions of the margins reliability
indices, and the deviations of the original correlation
coefficients from the common coefficient of the expansion
point. The method gives results of good accuracy for
equireliable margins (first degree term vanishes). But for

general cases, it is difficult to assess its accuracy. As the
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method is exact for equicorrelated cases, there is no exact
method left for checking its accuracy. Moreover, for large
values of n, the result are unlikely to be satisfactory, as

pointed out to by Ditlevsen.

The general case can be better handled by successive
conditioning and equivalent gaussian margins representation.
The variables X, are first transformed into an independent set
of a standard normal variables U,, by an LLT decomposition of

the correlation matrix

1
Xi - gaijuj (4'5)

The first reduction in dimension is carried out by introducing

the (n-1)-dimensional conditional margins, given that o,;;=1

n 1
@ AB:e) = PI) @ U +B;s0}lu <-B,1.P(U, 2 - B,))
d-2 J=1

(4.6)

Because the conditioning on U, does not affect the remaining
variables, the first factor in the product in the latter
equation can be replaced by another expression involving a

new variable U,

n i
P(({ey, 0, + Y ay,u, + By < 0D (4.7)
i=2 J=2
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where the density of 0, is

- - ¢ (1;) _—
£04d,) I M) for 4, <-PB, (4.8
-0 for d, » -B,
it follows that
g, = F{*[® (U, lu, 2-B,)] = &2[®(-B,) ®(U,)] (4.9)

and by substitution in equation 4.6

n 1
®,(-B.@) = PI) {a @1 (®(-B)® (1)) + ¥ ay, Uy + By <0110 (-B,)
J=2

1=2

- P[ n (Xi(l) + Di s o)]q,(—ﬁl)
i=2

- P[ p (M, 20)10(-B,)
-2

(4.10)

The first factor in the right-hand side of Equation 4.10
correﬁponds to the intersection of n-1 margins defined by a
setybf non-linear functions. The ideal solution would be to
find a set of probability-wise equivalent gaussian variables
to this new set of non-gaussian margins, so that the dimension
can be reduced to n-2 margins, and so on. Unfortunately there
is no known method for that, and it is necessary to resort to
approximate methods. The non-gaussian margins are linear
functions of random variables of known distributions (normal
and truncated-normal), and therefore their moments (up to some
order i) can be easily evaluated. This suggests the idea of
deriving a new set of gaussian variables with the same moments
as an approximation. The most realistic one is the second-

moment approximation.
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In the following, U, will refer to the P,-truncated-normal
variable. The i*™™ non-linear safety margin expression at the

1*" stage of dimension reduction is

1
Z;" - ay,U + kE“ikUk + B U (4.11)
=2

Its expectation is

E[Z,P] = a,E[U,] + B 1D (4.12)

and its covariance with the j*' safety margin can be easily

found to be
Covar(zi,zj) - ailale[Ulzl + (ailﬁj + ajlﬂi)E’[Ul] + piﬁj +

1
Eaikajk - (a,EU] + B)) (ay,E[U,] + Bj)
k=2

1
- a0, EIU2] - E[G)?) + Y agay,
k2

/
(4.13)

Using the fact that

1
kz;aikajk- pij(l_l) (4.14)

it follows

Covar(z,,Z;] = p;;"*Vp,, Y E[U2] - E[U}]2 -1} + pyytY

(4.15)

The expectations of U, and U/’ can be derived by the

integration of the truncated density
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__ 9(B,)
E[U;] ——ﬁ’(-ﬁl) 16
@ (B,) '

B = bty

The expressions of the correlation coefficients for the

equivalent gaussian margins at the 1% stage are

Py = P4, Py, V[ (B,) + pyytV ] (4.17)
JUPE T n(By) + 110 p;T0n(By) + 11
where
¢ (B,) o (B,) (4.18)

BRI I M 1C A

The corresponding reliability indices can be approximated at
least by two different methods
-by assuming that the margins are gaussian and taking

!

their reliability indices as

E[Zi(l)]

B (1) m
! Jvar(z; )

(4.19)

-or by "exact" evaluation of their probabilities as an

intersection of two gaussian margins

P(z,V x0N2zWY <0)

(1) -
Pz 20 P(z,90 5 0)

(4.20)
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(using their correlation p,; and their R.I.’s B,V and B,“")

and the corresponding reliability index

B, =@ [P(z,¥ 20) ] (4.21)

The first method will be referred to in the sequel as "method

1/, and the second one as ’'method 2’.

The above correlation matrix and reliability indices are used
to generate a problem identical to the original one with 1-1

dimensions and the approximation

n-1 1
O, (-B:)~PI( { Y e, PU; + B, 20N B(-B,P) ... ®(-P,)
i-2  J=1

(4.22)

is adopted. This overall approximation comes out as

S/
| @, (-B;)~®(-pO (- ... @ (-p!™) (4.23)

The accuracy of this approximation depends very much on how
close 1is the distribution of the non-linear margins, at
different stages, to the gaussian distribution. This closeness
can be assessed by a parametric analysis of the skewness of
their density distribution functions. The sign and the
absolute value of such skewness govern how underestimated or
overestimated are the partial reliability indices B“,. Its
expression for the i*" safety margin is (the superscript is

dropped for convenience)



65

_ El(zy - E[Z,])°]
T2 var[z,]3/? (4.24)

Its evaluation can be made easier if the expression of the i*!

margin Z, is modified, as follows

Zy = Pyl + 1Py 7 W+ By (4.25)
where W is p
e jz; ®13Y5 (4.26)
Ji-a;2
and using the fact that a,; = p;; (from the Choleski
factorisation). Substitution of the new expression of the

margin 2, in (4.25) and simplifications yield the skewness

coefficient
3 -2 - 2 ¢(B1) ¢(Bl) 2_ ¢(B1) 3
, P Ly " C P ey PPy 2 ey
1 g 3/2
S/ 2 ¢(By) (B |, —
: 2+ Bogrpy ~ (grpy ) ) VAP
(4.27)

as a function of the reliability index P, of 2, and its
correlation with 2Z;,. The parametric study of the above
function (Fig 4.1) leads to the following observations

- The skewness has the opposite sign of the correlation.
This means that if all correlations are positive, a build-up
effect of the error is inevitable, by successive
underestimation ( or overestimation) of B, if evaluated as

a mean-standard deviation ratio.
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- For small values of P,, the magnitude of the skewness

is small, and one can expect the normal approximation to yield
good estimates. This also suggests that the estimate is best
if the margins are numbered in increasing order of their
reliability indices. The influence of the correlation could
also be taken into account for the ordering, but the coupling
of the two ordering criteria may become a combinatorial
problem of out of proportion complexity. Except in particular
situations where some of the margins can be singled out as
ralmost’ independent of the rest, ordering based on the

correlation is better avoided.

- For series systems, the influence of P on the skewness
is significant only for small values of P and becomes
negligible for P exceeding 3. The effect of the correlation is
much more important, as it increases significantly the
absoapte value of the skewness coefficient and the increase
becoﬁes very sharp in the upper range of the correlation

spectrum, say above 0.6.

- For parallel systems, the effect of B, on the skewness
coefficient is much stronger than that of the correlation , as
the increase in magnitude is very sharp. This is hardly
surprising from a distribution which is the sum of a
symmetrical distribution and a normal distribution truncated
at the negative tail. The effect becomes worse if the
weighting (i.e. p and (1-p?)-® ) are in favour of the truncated

one (p).
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4.2 NUMERICAL EXPERIENCE

From the above results, one would expect the best estimations
to be obtained for small values of P, roughly between -1.5
and 1.5. Extensive numerical experiments tend to support the
trend suggested by the study of the skewness of the
conditional margins distributions. Samples of such numerical
experiments are shown in Tables (4.1) through (4.5). The
availability of an exact solution for equicorrelated systems,
gives a way of ’severe’ testing of the accuracy of the method
described above. If its accuracy can be considered acceptable
for highly equicorrelated systems, then it would be expected,
for a practical case spanning the whole range of correlation,
to be also acceptable. Different values of the correlation
coefficient have been tested, and the results are compared to
the exact ones evaluated numerically. The choice of the
reliability indices for testing the method is dictated by two
cons{éerations

~ On one hand the test must be severe enough to ensure

better estimates for practical problems. The most severe

is the equireliable case;

- On the other hand, a method that can deliver acceptable

estimates should not be dismissed because it fails in

unrealistic problems.
A compromise must be found, based on the fact that the
accuracy increases with the dispersion of the relative
importance of the probabilities corresponding to the
reliability indices, with respect to each other, and the

probability gap between the highest and the lowest values.
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Such a compromise is believed to be a certain partial
equireliability, i.e. to choose a fraction among the lowest
RI’s with the same value, and the others are such that the
probability of the highest is not less than, say, 1% of that
of the highest. An equireliable fraction of 20% is believed to

be a reasonable choice.

Non-equicorrelated cases have been also studied, and
comparison is made with the bounds evaluated by the methods of
chapter 5, on one hand, and an estimation based on directional
importance sampling simulation ( see chapter 7), on the other
hand. In the examples studied, the gradients of the safety
margins and their reliability indices are randomly generated.
In all cases, the computing time is recorded, and corresponds
to runs on a 20Mhz-386/387 microcomputer. More details on
different cases are given in the following sections.

4

Series Systems

Method 1 and method 2 of evaluation of the partial reliability
indices PY, are used separately, for P less than 1.5 and B
higher than 1.5. For equicorrelated series systems, Tables
(4.1 ) and (4.2) show typical results. For B < 1.5 , both
methods yield good estimates although slightly underestimated.
For B > 1.5 , method one shows an overestimation which
increases sharply with the correlation. This supports the fact
that the partial reliability indices are underestimated, due
to negative skewness. Method 2 shows a moderate under-

estimation, which also increases with the correlation. This
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can only be explained by an underestimation of the correlation
coefficients, which seem to be inherent to the equivalent
hyperplane representation in which only first and second
moment information are used. The expression (4.17) of the
current stage correlation, in terms of the previous one,
suggests that a build-up process of a negative error leading
to an overall underestimation. This process is reversed in
method 1 by an overestimation of the P values right from the

second stage.

The results of the above equicorrelated cases are confirmed by
those of the non-equicorrelated ones of Table (4.3). For
method 1, the estimates are very close to or higher than the
upper bound, while for method 2, and the estimates can be seen

to be mostly close to the lower bound.

The gagnitude of the error with method 2 is not very high, but
becaﬁse it is unconservative, any improvement on its estimate
is welcome. The above results on series systems suggest that
some interpolation of the value of the partial reliability
indices between equations (4.19) and (4.21) can yield more
accurate estimations. This interpolation takes the following

form

O(PP) = (1-1)PCEPD) + T & (pWD) (4.28)

where the left superscripts refer to methods 1 and 2, and T a
positive interpolation coefficient less than 1. The value of

T depends on the correlation coefficient p,;; and to a lesser
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extent on P, and P,. Its evaluation as a function needs
extensive parametric study in terms of the above variables.
However numerical experiments show that good results can
obtained by assuming T constant throughout the algorithm. Its
global value depends on the number of margins n. Good results
are obtained using the following expression for T for which
Table (4.3) shows typical results

-0.5
t = -0.0056n+ P2 22 , 0,78  for p,,20.5
25 (4.29)

T=1 for py;<.5

The above expression for the interpolation coefficient is
valid for values of a reliability indices range for which
method 1 and 2 bracket the exact result. This seems to be the
case for moderate and high values of the B’s. It should be
emphasized that the method is developed for highly reliable
syst$ms for which the individual margins themselves have at
leas£ moderate reliability with P not less than 1.5 to 2. For
low reliability systems, the estimate of both method 1 and 2
are good and the use the interpolation is not relevant. The
choice should therefore go to the faster one, i.e method 1

which requires no bisections integrations (Table 4.1).
Parallel systems

The results for parallel systems are presented for
equicorrelated parallel systems, in Tables (4.4) and (4.5).
Methods 1 and 2 show the same performance. For B < 1.5 , the

relative error on the probability is slightly higher than its
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series systems counterpart, but is still reasonable. For B >
1.5, the error is higher as expected (high skewness), but the
case corresponds to very highly reliable systems for which the
absolute error is more relevant. The importance of the error
is better assessed on the reliability index for which the
relative error is much smaller, and is exact up to two or
three digits. As both method 1 and 2, show the same sign for
the error, the interpolation do not appear to be feasible, but
on the other hand one might expect the error to be smaller for
general cases where the correlation coefficients span evenly
the correlation spectrum, and the cumulative effect 1is
partially cancelled out. A thorough parametric study is

necessary if one is to be affirmative on this issue.

4.3 COMPARISON WITH EXISTING METHODS

The idea of conditioning and equivalent hyperplane
representation has been used by different authors.
Hohenbichler and Rakwitz [1981] proposed the use of this idea
within the first-order reliability framework. The nonlinear
margins are approximated by their tangent hyperplanes at their
origin projection points. The partial reliability indices and
the correlation matrix at different stages correspond to those
tangent hyperplanes. The accuracy reported concerns the
reliability index and not the probability of failure, and
seemed satisfactory for a first-order approximation. A slight
improvement is obtained, by replacing the nonlinear curve by

a polygon formed by the tangent hyperplane and the two



72
asymptotes obtained by letting U, tend to minus and plus
infinity respectively, and using the same correlation matrix

(i.e. that of the tangent hyperplanes).

Using the correlation matrix of the tangent hyperplanes, Tang
and Melchers [1987], improved the method one step further by
proposing the ’'exact’ integration of the conditional
probabilities ( equations 4.19 and 4.21). The corresponding
results are given in the right of each table under the M-T
method heading. The accuracy seems to be between those of
Method 2 and the Interpolation method for series systems, but
its performance is less than both methods 1 and 2 for parallel
systems. As presented in reference [Tang & Melchers, 1987],
the method shows some instability : if the system includes
safety margins of correlation exceeding 0.7 or so, sometimes
the algorithm either fails to converge, or cohverges to a
completely wrong estimate. This is illustrated in Tables (4.2)
and (4.5). The asterisks in the tables correspond to the cases
where Tang—Melchers algorithm failed to converge. The method
is about 50% slower than method 2 or the interpolation method,

and about 2 to 3 times slower than method 1.

A different approach, based on the use of bivariate and
trivariate normal integrals of the conditional nonlinear
margins, has been proposed by Ramachandran [1987]. The method
evaluates the conditional probabilities as in Equation 4.20.
However the correlation between two conditional margins is
evaluated such that the trisections are also exact, given that

the margins of the previous stage are gaussian or assumed to
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be so. Hereafter is an outline of the method.

The probability of the intersection of n events is expanded as

pfAry - P(:ﬁiFi | F,) P(F,)

1-1 1-1 (4.30)
- P(iﬂ1 [F,F,1) P(F,)
which becomes, after denoting [F, | F, ] as F,"
-1
p( A F,) = PCN PP P(F,) (4.31)
i-1 i-1

The conditional probabilities P (F,") and their intersections

P(F," N Fy") are

ny _ PFNF,) 4
P(Fy) —IDTI:_',H—)— (4.32)
7 P(F{NF{) = P(FQ??F“) (4.33)

The correlations between the conditional events F," and F,” are
evaluated in such way that Equation 4.33 is satisfied. This

amounts to solving the following equation for p,;; [Owen,1956]:

Piy - nye2 n y2_@n @n
prry + ——Lt [ 1 _pxpr BT (BN RERISE g,
2nP(F“j) s /1___3—2 2(1-¢t2)
P(FNFNF,) _ 0
P(F,)

(4.34)
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where

Bi,= ®L(P(F?,)) (4.33)

The probability of intersection of the n-1 conditional events
F,, is reduced to n-2 in the same way using the estimated
probabilities, bisections and correlations in the previous
iteration. The process is repeated until the dimension is
reduced to three events. The final expression of the prob-
ability becomes

P(iﬁlFi) = P(F4, [NF4, .NF, ) P(F5, J) P(FS;¢) ...

...P(F7_, ) P(F,)

(4.36)

Table (4.6) shows typical results for equicorrelated systems.
The accuracy is comparable to that of method 1 . The method do
/,

not ’‘need any linearization or a search for the origin
projection points. However, the evaluation of the intersection
probabilities between the events and all the trisections
involving the event candidate for removal, at each iteration,
and the extra bisection evaluations to find the correlations
between the conditional events, makes the computational effort
very high compared to the methods described above, especially

for high dimensional problems. Its extensive use in some

iterative process cannot be recommended.
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4.4 CONCLUSIONS

The method discussed in section . 4.1 above, is believed to be
the most efficient with regard to both accuracy and computing
time. The study of skewness .of the conditional margins
distributions indicates where the method can be expected to be
accurate. Moreover, the method is virtually free from
numerical instability and convergence problems, as no
optimisation algorithm is needed. Its relatively small
computing time and its stability make it suitable for

incorporation into reliability-based optimisation packages.

However, the above analysis is based on a qualitative study of
the skewness and the correlations expressions in equations
4.17 and 4.27 and numerical experiments. An analytical study
of the overall behaviour with the aim of bounding the error in

sign pand magnitude remains a challenge for future research.
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201 .97) .4480E+00 |  .1306 |.4836E+00 |  .0410 | 7.9}  .55).4308E+00 |  .1744 | 3.9} 1.59.1000E+01 |  .0000 |123.2} 2.36!
R 1= - - i i - .~ - i -y -
30] .30) J9466E+00 | 1.6130 |.9464E400 | 1.6111 ) .0} 1.87).9462E+00 | 1.6090 |  .0) 4.18].9442E+00 | -1.5909 | ~-.3} 5.82|
307 .50) .8¢12E+00 | 1.0858 |.8557E+00 | 1.0613 | -.6) 1.86).8532E+00 | 1.0504 | -.9! 4.23).8566E+00 | -1.0653 | -.5| 6.09|
30} .70) .7429E400 | 6524 |.7265E400 |  .6022 | -2.2] 1.87).7144E+00 |  .5663 | <-3.8) 4.23).7374E+00 | -.6352 | ~-.8} 6.15
300 .90} .5790E¢00 |  .1992 }.5721E400 |  .1818 | -1.2} 1.87).5322E+00 | .0809 | ~-8.1} 4.29.5732E+00 | -.1846 | -1.0{ 6.09)
30} .97} .4910E400 |  .0225 }.5195E400 !  .0488 | 5.8] 1.87].4562£+00 | .1100 | -7.1; 4.285.1000E+01 1 .0000 5103.7: 6.21i
It Rt i jommmmmm s oo eees jmmmmme————- jmmmeeeemeemaooaas R S jTemmms e ssosn s ittt ddd .
40' ,30) .9B40E+00 | 2.1455 }.9847E+00 | 2.1626 | .1 4.67).9847E+00 | 2.1624 | .1} 8.84].9831E+00 | -2.1236 | -.1} 12.25
40} .50 .9321E+00 | 1.4918 |.9302E400 | 1.4776 | -.2) 4.67).9295E+00 | 1.4719 | -.3] 8.90].9294E+00 | -1.4714 | -.3| 12.75|
40! .70) .8349E+00 |  .9736 |.8183E+00 |  .9088 | -2.0) 4.67).8101E+00 | .8781 | -3.0) 8.90).8299E+00 | -.9539 , ~-.6, 12.85;
40} .90% LEE79E400 | L4341 1.6460E400 ) .3745 ) -3.3) 4.67).6011E+00 |  .2563 | -10.0) 8.95).6609E+00 | ~-.4150 | -1.0} 12.85,
407 .97} .5644E+00 |  .1622 |.5818E+00 |  .2066 | 3.1} 4.67).5143E+00 | .0359 | -8.9 8.955.1ooos+oz 1 .0000 E 77.2 12.855
S Rt R Rt |mmmemmm s e ee e jmmmem———- R it jm==mmmeem- i jommemmemoes .
500,300 L9823E400 | 2.1027 1.9831E+00 | 2.1225 .1} 9.77).9830E+00 | 2.1209 | .1} 16.48].9810E+00 | -2.0746 | ~-.1; 22.90;
500 LS00 L9238E+00 | 1.4311 1.9213E400 | 1.4139 ) -.3) 9.83).9197E+00 | 1.4029 | -.4) 16.48].9199E+00 | -1.4047 | ~-.4; 23.67,
500 .70) .B159E400 |  .8999 !.7961E+00 |  .8277 | -2.4} 9.78).7835€+00 | .7841 | ~-4.0) 16.48).8093E+00 | -.8752 ; ~-.8; 23.94;
500 .90 L63¢2E+00 | .3482 ).6125E+00 ! .2858 | <-3.7' 9.83!.5597E+00 !  .1501 | -12.0) 16.59).6276E+00 | -,3254 |} -1.4} 23.83
500 .97! .5285E400 | .0714 L.5470E400 | L1181 | . 3.5} 9.77).4706E+00 . .0737 | -10.9} 16.59].1000E+01 |  .0000 ;
it ) 1
i

———-

-----------

Table 4.1. Equicorrelated series systems, B < 1.5
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e et S N S T S — e |omcecmemees A T '
N E ¢ E Exact value E Hethod } ' E Hethod ? . : Interpolation E T-H Hethoé E
l |TTTTTE ST [ i it @ TTTTETTTTTTE oo 1T et §mommmomomesoeooooes 1T (= R ettt 1= §moe '

i E Prob. | R.I E Prob 1 R.I EErr 31 CT. i Prob i R.IL EErr 1 Ca E'Prob. iR EErr 1 CT E Prob i RI lEErr 3 E .1 i
| 1 1 - ' ' [ttt g TTTTTTTT ST [ g TSI T l
100 .30} AGOFE-08 | 39106 § 4612E-04 | 39101} .2} .11} 460308 | 3.9106 1 .00 .33} .A603E-04 | 39106 % .00 .33 460304 ! 391061 0! 44!
10 .50] .4512€-04 | 3.9154 | 4609E-04 | 3.9103 ) 2.1) .11} 4SOAE-04 | 3.9159 | -2} .33} 4SO4E-04 | 3.9159 | -.2) .32 MSO4E-04 | 3.9159 | -2} .49)
10} .70} .4095E-04 | 3.9388 | .4603E-04 | 3.9106 | 12.4] .11} .3987E-04 | 3.9452 ) -2.6) .33} .4135E-04 | 3.9364 i 1.0, .33, .3997E-04 { 39446 -2.4; .55
10] .90} .2670E-04 | 4.0233 | .4583E-04 ) 3.9117 | 59.70 .11l .2656E-04 | 4.0415 | -7.5] .33} -2957E-04 ; 4.0062; 3.0; .33; .27S4E-04 | 4.0329 ; -4.0; .55
10 970 2112604 | 4.099 | ASG3E-0K | 39127 | 116,00 .11} 200604 | 4.a018 | 3.0 o) ZSOEO4 T A9 A6 33 2090045 40972 1055
T ' i ' : : ' 1 I | i
200 .30 .A13E-06 § 5.1758 | .A135E-06 | 5.1756 | .0 .55} .A13E-06 § 5.756 |  .0f 1.5} -113E-06 1 S.0758 1 .00 1591 135E-06 | S.4758 1 .01 2.14)
200 .50} .1130E-06 } 5.1766 | .1356-06 | 5.1758 | .4} .55} .1130E-06 | 5.1766 { .0} 1.59j-1130E-06 & 5.1766 % 00 1.54; .LI30E-06 § 5.1766 {  .0p 2.14]
200 70! .1068E-06 | 5.1872 ) .I13SE-06 | 5.1758 | 6.30 .49} .1049E-06 | 5.1905 | -1.8} 1.s9f-1075E-06 1 5.1859 1 70 1.60 .1045€-06 { 5.1905 { -1.8; 2.31;
200 .90} .J1206-07 | 5.2621 | .134E-06 | 5.1759 | 59.3} 55! .6059E-07 ! 5.2917 | -14.9! 1591 70S1E707 v 5.2639 1.0, 1.59, .63%0E-07 | 5.2620 i -10.2i 2.42;
200 .97} AQE-07 | 53563 § MTE-06 | 51760 | 163.9 .85} .3606E-07 | 5.3858 | ~16.0] .59} 4608E°07 1 S.3415 ¢ 7.3: 1.5%, 39%E-07 ¢ 536735 7.0 2.47,
T 1 1 | e " i ' ' e X
300300 LIZE-04 | 42038 | INMSE-04 ! 4203 1 2 L8] LA0E-04 | 42038 | L0f api-RI2E04 L 42036100 423 I3E00L 420381 01 877
0] .50] 276E-04 | 4.2099 | I3ME-04 | 4.2034 | 2.9} 1.81) A27ME-04 | 42110 § -.5! a7 17IETO6 420G oS 423 AZIE-O4 G 42100 -5y 562
30} .70} .1096E-04 | 4.2445 | 34E-04 | 4.2035 ) 19.9} 1.87) .1005E-04 | 4.2638 | -8.30 4.23f 110204 42031 6 4290 MOWE-04 0 426225 7.6 6.1,
30) .90} S992E-05 | A.3779 | LABMIE-04 | 4.2037 | 119.11° 187} AMTE-0S § 44473 | -27.5) 4.28)-STOE0S i 4354 -S4y 4220 ASTGEOS | 4161 -16.9: 6,373
30) 970 3279605 | 4.5076 | A3M2E-04 | 4.2038 | 300.2} 1.67) .2377E-05 | 4.5754 | -27.50 4.29)-FE0S i 4401 760 4250 269050 45340 ¢ -1L8 6.4
S : : ! : ! ] ' ‘ |
00} 300 SITSE-0L | 13300 | 94206-01 | L3153 2707467 BGSIE-01 | 1.3500 ] -3.5 g.90f -GBSIE-O1 1 13500 1 3.5 6950 602601 | 13530 | -4.1i 12,75,
40} .50} .6883E-01 1. 1.4846 | J6L1E-01 | 1.4317 | 10.61- 4.66!3.5866E-01 | 15661 | -14,8! g.95) SO6CE-OL § 15661 { -14.81 8.950 100E-01 | 15464 § -10.4; 12,973
40} -.700 4S63E-01 L.v1.6887 | 6O7E-01 | 1.5533 ! 31.9% 4.670%.3176E-01) 1,855 | -30.4} 8.95) 40SSE-OL {17443 {-11.4} 8.967 IBTE-0L G L7724 4 -16.4: 13243
40} .90} 225301 | 2.0041 | ATIGE-0L | 1.6731 ) 109.3} 4.67) .1431E-01 | 2.1888 | -36.5! 9.01) -206E-01 | 2.0406 i -8.41 8.951 .193BE-01 } 2.0667 | -14.0; 13.23,
0] 97} AISEOL L 22000 | ARIEOL L LTIO7 20970 4670 SBOSE-02 | 23007 | 2700 g.ge) MOEOLE 24729 ¢ 1001 8951 000kl § 0000 sk 13,00
et ! : 1 | . : . T ,
50{ .30f .2845€-03 | 3.4460 | .2880E-03 | 3.4427 | 1.2} 9.84] .2842€-03 | 3.4463 Do gl 16.49) -2042E-03 | 3.4463 | -.1) 16.591 .28426-03 | 3.4463 [ -.1{ 22.68]
500 .50) .2596E-03 | 3.4706 | .2866E-03 | 3.4440 | 10.4] 9.78l..2495€-03 | 3.4813 | -3.9) 16.48! -2495E-03 | 3.4813 | -3.9) 16.53) .2496E-03 | 3.4810 { -3.8; 23.5,
500 70! .1925E-03 | 3.5501 | .2847E-03 | 3.4458 | 47.9) 9.83 .M6SE-03 | 3.6214 | -23.9! 16.47) (1924E-03 1 3.5502 1  .0; 16.53; AS29E-03 | 3.6103 § -20.61 24.33,
S0 .90} .B4SGE-04 } 3.7611 } .26226-03 | 3.4481 ! 233.7) 9.841 4S34E-04 | 3.9143 | -46.4} 16.59! JI2BE-04 1 37773 1 -6.3; 16.53; .604BE-04 | 3.8442 { -26.5; 24.38,
500 97! .40B1E-04 | 3.9396 | .28126-03 | 3.4491 ! 589.10 9.77! .24026-04 | 4.0650 | -41.1! 16,59} 4SIE-04 | 3.9143 | 1111 16.53; ssnsrrsss | wsmrns | asmn s,
! : ! | | i i 1 i

' Table 4.2. Equicorrelated series systems, B > 1.5
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---------------------------------------------------------------------------------------------------------------------------

i Dir. Simulation |  Bounds E Hethod 1 i Method 2 } Interpolation |  H-T estimate |
|TTTT T T s L Shbbb bbbttt it adadebeintedetiinieiedodebded foememeosernenoaas | Attt el Dl D perevecccrrencnn. +
E i Pr/R.I.i c.1. i L.B i u.8. i C.1 i Pr/R.I.E c.1. E Pr/R.I.E c.1. E Pr/R.I.E .1 E Pr/R.I.E c.1. 5
| 1 Rt et | T pTTTTET i I aiaiel [ It Al | TTTTETEET [ it g )T |
1 10 1.4428E-04}  31.5).3507E-04).3799E-04) .22 .4200E-04)  .06) .3604E-04! .33! .3741E€-04! .33} .3571E-04! .50
bt 3.9200!) : ! : L 3.9327) b3.9693) L 3.9604! L 3.9715! !
{10 (1101041 28.81.1093E-04).1190E-04 .22} .1477E-04) .06} .1126E-04) .33 .1203E-04}  .33! .1114E-04!  .49!
bl 4,2434) | i i L 4.1769] 1 4.2384) P 4,2234) b 4.2407) |
' 10 }.23136-02)  28.2).2396E-02).2684E-02) .22} .3067E-02!  .05) .2512E-02!  .33) .2637E-02} .33) .2482E-02) .54}
Voo 2.8319] | | ' 12,7405} | 2.8054! | 2.7898) ! 2.8093) '
jmem e m———- jmm----- [mmmm—=-- jemmm-——- g==-=- R j=mm= jmmmem——-- j==-- j==mmme—-- jm-=-- R {====== |
} 20 |.772¢E-02) 131.8).5265E-02}.9856E-02! 1.70} .1093E-01)  .54! .6680E-02! 1.60) .7637E-02! 1.59! .6475E-02! 2.42!
Voo 2.4216) ! ' ! I 2,2929) L 2.4740) | 2.4258) I 2.4852) !
1 20 [.6094E-02] 128.6).4630E-02}.8217E-02) 1.75} .9539E-02}  .50) .5651E-02) 1.60) .6701E-02! 1.59! .5691E-02! 2.47!
b 2.5066! { : { L 2.3440 Lo2.5210! L 2.4729! b 2.5307) !
1 20 1.2670E-02) 124.01.2261E-02}.3150E-02} 1.76) .3723E-02) .56 .2608E-02' 1.60! .2882E-02! 1.59' .2540E-02! 2.3¢!
Lo 2.7857) ! ] : L 2.6762) E2.7934) Loo2.7610! 12,8020} !
jmem e m—— jm----- jmmmme—— jmmmm—--- j=m-- jmmmmm——— j=---- jmmmmm-m——- jomom-- jmmmee—-- j==-- R AR '
1 30 1.8846E-067 324.4).9361E-06].1035€-05) 6.92) .1038E-05) 1.86) .9492E-06! 4.23! .9796E-06' 4.29! .9444E-06' 5.82!
Voo 4,778t ! ' : b 4.7460) b 4.7639) L 4.7576) L 4.7450) !
1 30 1.8471E-02] 349.8).5806E-02}.1404E-01] 6,87 .1203E-01) 1.82) .7664E-02} 4.28) .8802E-02 4.28) .7212E-02) 6.31]
oo 2.3879) i : i Po2.2561) L 2.4246) | 2.3738) I 2.4465) !
130 }.7124E-02) 327.2).5368E-02).1182E-01} 6.86) .1036E-01) 1.81) .6624E-02) 4.28} .7636E-02) 4.23) .6217€-02} 6.32
Lo 2,450 ! ! ! b2.3132) b2.4770) b 2.4259) b 2.4996) :
R j===---- jmmomm- |mm=m--- j=--=- jme-mmm-s At jmmmmmee- jmm-- jmmmm—m—- ym===-- jmmmmm——--- {====" :
' 40 1.1178E-01) 727.3).6143E-02).1616E-01) 19,67} .1374E-01) 4.67% .8502E-02) 9.01) .1015E-01} 9.01} .7971E-02} 13.07|
Lot 2,2643! i : : b 2.2048) L 2.3866! L 2.3207, b 2.4103! !
' 40 |.6701E-05) 564.5!.7018E-05!.8674E-05! 19.77) .8777E-05} 4.71) .7315E-05) 8.95} .7879E-05) 9.06| .7227E-05) 12.31)
oo 4,3534) ' ! ' L 4.2939) I 4.3342) b 4.3178) b 4.3369) '
' 40 }.8445E-02) 677.4).5186E-02!.1551E-01) 19.61) .1312E-01! 4.73) .71226-02) 9.00) .8881E-02) 9.00} .6625E-02} 13.23)
b 2.3891) ] ! d V2.2 L 2.4510) L 2.3705! Lo2.4770) !
R j=mom- jm=-mm---- g - Rt e jmmm- Rttty 1o R 1o jomemomm-- j=e-=- |
' 50 !|.26526-03! 1052.3!.1829E-03!.3565E-03) 45.76) .3632E-03) 9.83) .2195E-03) 16.64) .2697E-03] 16.70) .2041E-03) 23.72]
b 3.4649) ! ! : b 3.3794) b 3.5158! b 3,4604! L 3.5348) :
' 50 |.1240E-04) 968.3).1081E-04) .1574E-04! 45.87) .1677E-04} 9.94NN1209E-04} 16.59) .1397E-04) 16.70] .1174E-04} 23.12
Lo 42166) ! ! ! L 4.1480) L 4.2203) L 4.1896) b 4.2289) !
' 50 |.1010E-011 1095.3!.5610E-02!.2041E-011 45.70) .1695E-01} 9.83] .8287E-02) 16.65} .1104E-01} 16.64} .7480E-02} 24.55,
bl 2.3960)

1 1

|

------------------------------------------------------------------------------------------------------------
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Table 4.3. General series systems. f>1.5
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CHAPTER V

SYSTEM RELIABILITY BOUNDS

5.0 INTRODUCTION

An alternative to direct integration of the joint probability
density over the failure region, is the bounding techniques.
Instead of formulating the probability of failure as a
multiple integral, it may be viewed as the probability of
occurrence of a union of a discrete set of events . Each event
F, corresponds to a failure mode, expressed in terms of a

limit-state function (or a safety margin)

g, (%) 20 (5.1)

and Spe probability of its occurrence is defined as

P(F_i) = P{ gi(X) £ 0) (5.2)

The overall probability of failure is formulated as a series
system probability

pf-P(fiJFi) (5.3)

The evaluation of p; is replaced by the search for an upper
and lower bound of its exact value, which are close enough to

each other for practical purposes.
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The exact expression of the probability of union of events, by
inclusion-exclusion theorem, 1is
n n
P(J ) =Y PF) - Y BP(FNF) + Y P(FNFNF)
1=1 -1 J=<4 k<J<1 (5 4)

- Y P(ENFNAFNF) ... + (-1)*P(FNFN. . .NF)
I<k<F<1

The bounds can be formulated from this expression by
truncation at some m'" order. It can be shown that truncation
after an even order sum (i.e. a sum of intersections of even
number of events) would result in a lower bound. Conversely,
a truncation after an odd order sum would yield an upper
bound. This assumes that the probability of intersection of
the events, up to the m*" order are known, or can be evaluated
at an acceptable <cost, which 1is rarely the case. A
computationally viable truncation can be made only up to the
second or third order at most. Because partial truncations up
to tﬁe second order can produce better bounds than full
truncations of third order, much of the effort on Dbounds
improvements has been devoted to second order bounds, and the

th  order full

techniques of partial truncations. By m
truncation, it is understood here that any intersection up to
the m*® order is included and none is discarded. The converse

is true for partial truncations.

In the following are reviewed different formulations of the
first, second and third order bounds, and their possible

improvements by suitable ordering of the events.
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5.1 FIRST-ORDER BOUNDS

The earliest known bounds, and the simplest, are due to
Boole [1854], and are referred to as Boolean bounds. The
probability of individual events only are involved in these
bounds

Maxp(F,) <B(| ) Fy) <3 P(F,)
faxP () <P Fy) <3 P(F, (5.5)

The lower bound coincides with the exact result if the events
are fully correlated. If the events are fully independent ( or
mutually exclusive), then the upper bound provides the exact
result. As the failure modes in structural systems are highly
correlated, the gap between the bounds is often too wide to

provide an acceptable estimate of the probability.

V4

5.2 SECOND-ORDER BOUNDS

The first 1lower bound to include bisections (pairwise
intersection between events) is due to Bonferroni [1936]. It
consists of the straightforward truncation of the right hand
side expression of equation 5.4 after the second-order term
over all subscripts i<j, in an unselective way. The upper
bound is the same as the first-order Boolean bound. This

gives

P(F,) +12_“£ [P(F;) —;I_IIP(FiﬂF,H 2 P(il:’lFi) 2 Y P(F) (5.6)

i=-1
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5.2.1 Improvements on the lower bound

The lower bound can be ’'too low’ if some of the terms in

the 1left hand side of Equation 5.6 become negative. To
overcome such problem and to improve the bounds, several
attempts have been made during the fifties and the sixties
[Chung & Erdos 1952; Whittle 1959; Gallot 1966; Dawson &
Sankoff 1967]. But in all these attempts the effect of the
events labelling seems to be overlooked. Kounias [1968] put
forward a formulation, with a truncation across the first and

second-order terms

P, » MAX. [X P, - Y P
£ J[ieJ 1 1.1, jer 17) (5.7)
where
Jgcf{1,2,...,n!} (5.8)

This’is the first formulation to take account of the numberi-
ng, despite the fact that this does not appear explicitly in
the formula, as will be shown later. At first sight, this
formulation looks too combinatorial to be of any practical
use, as the identification of the optimal subset(s) J, among
all subsets J seemed to be a formidable task. In a later
work, Kounias et al. [1976] formulated the second-order lower
bound as an objective function of a linear programming problem
as follows

Maximise b°+ X bi‘p.i = X bijpij (5.9a)

12izn 1sisj=<n
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Subject to :
b,+ X b, - X b, =1 b, 0
() 160, 17 Gu e 7 15 0 (5.9Db)
where J, < {1,2,...,n} and r the number of elements in J,.

The number of constraints is equal to 2" ( number of all
subsets of a set of size n), n being the number of events.
This approach becomes rapidly too expensive with increase in
n, for the identification of all possible solutions. Nevert-
heless, improved lower bounds can be obtained from the above
formulation. The aim, although less ambitious, is to find
points of high objective function value, inside or on the
boundaries of the feasible domain defined by the inequalities
5.9b. Each feasible point, which will be referred to as a
lower bound point (LBP) in the sequel, yields a class of lower
boun9s, which can be optimised over all permutations of J,.
Thisvsuboptimisation is merely a relabelling of the events for

the given LBP. For the particular case where

b, - a if i€eJ, , b;=0 otherwise
(5.10)
by;=b if i,jedJ, , by;=0 otherwise

this renumbering is limited to selecting the r events contrib-
uting to the lower bound, which is independent of the ordering
within J,. In [Kounias, 1976)], some vertices of the feasible
domain are given, and correspond more or less to the case
described by equation 5.7.

It is important to mention here that almost all second-order
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lower bound formulations published by different authors before
or after the publication of [Kounias, 1976], are particular
solutions to the Kounias linear programming problem. The so
called Ditlevsen lower bound (DLB) [1979b] in structural

reliability

n i-1
P, 5 P, + Yy MAX[ (P, - ¥ Py;),0] (5.11)

i=2 i

assumes some ordering. Its wide use in structural reliability
is believed to be due to its simplicity. Ditlevsen used
indicator functions to derive this bound. The search for a
better feasible points within the linear programming framework
has been inhibited, because of the lack on one hand of a
general computationally viable method of feasibility check,
and on the other hand of an optimal ordering algorithm to make
the best use of any LBP. The latter problem is tackled for
the LBP corresponding to DLB, in the following subsection
where an optimal ordering method is proposed. But the feasi-
bility check is still a challenging topic. It is believed that
the identification of lower bound points of straightforward
feasibility check, as did Kounias, is the most computationally
viable way of lower bound improvement. In the following
example with four events and with three LBP are given for
illustrative purpose. The probability matrix is

.424 .360 .272 .360

.360 .408 .,208 .296

.272 .208 .416 .272 (5.12)
.360 .296 .272 .544
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The following are three LBP and their corresponding lower

bound values

4/5 6/7 1

3/5 4/5 s/7 6/7 11

1/5 1/5 2/5 1/7 1/7 2/7 111 (5.13)
2/5 2/5 1/5 3/5 0 0 0 o 0000

[ 0.5304 0.5063 0.4080 ]

It can be easily seen that any single permutation in the order
of the events would give different lower bound value, as none
of the above LBP ’s is found by solving the system 5.9, but
are arbitrarily selected feasible points. This confirms that
among all identified LBP’s an optimal ordering is to be found

for each one of them and to select the highest bound.

Theoretically, any LBP is a potential optimal lower bound with
the right ordering. However, the family of Bonferroni-type
1BP'y , 1i.e feasible points with only 1’s and 0's, are
vertices of the feasible domain and are therefore potential
global optimal solutions to the linear programming system 5.9.

The LBP of the form

[E
R
=

(5.14)




90
can be made (sub)optimal by putting the events of most
contribution at the top of the events list, leading to an
optimal form of DLB, or to the selection of the optimal subset
J, in the first Kounias LB of Equation 5.7. This means that
the order in which the elements of J, appear in the events
list is immaterial for the value of the bound. For all other
numberings, DLB yields a smaller value than Kounias’s. This
can be made clear in a different way as follows:

Let J, be the subset of events with positive contribution
(i.e. with positive outer sum terms in Equation 5.6), for some
arbitrary numbering. Then for every event of J, , it can be

easily seen that

i-1 i-1
Py - ) Pyy3sPi- Y Py (5.15)
j-l j'l,jEJo
and that
/ JD < J0

i.e. any event, with positive contribution in Bonferroni LB,
1s a necessarily part of Kounias’s LB optimal subset J, and
its contribution for the latter is at least equal to that of
the former if not higher. On the other hand any member of J,
does not necessarily make a positive contribution to Bonferr-
oni LB or Ditlevsen LB, as more bisections are substracted
(involving events not in J, ).

The optimal subset J,

Jy = iy, 4y, 0v.., i) ksn (5.16)
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can be found using the following method. Its suboptimality is
shown in the light of Kounias linear programming formulation.
The events are represented by a graph where the vertices
represent the events probabilities and the arcs represent the
intersection probabilities. A subgraph is built up from the
whole graph of events, such that at each iteration, the new
vertex i1 added and corresponds to the maximal value of the

guantity

i-1
Pz'jz:Pij (5.17)
-1

where the j’s correspond to the events already selected. The
process is repeated until the quantity above is negative.
This algorithm has the following features:

« the events are ordered according to their contribution in
the new numbering,

e the optimal contribution is selected at each stage. At the
1**" stage, 1 events have been so far renumbered such that any
single substitution by another non renumbered event would
reduce the current wvalue of the bound. The only way of
improving the bound is by adding new events with positive
contribution. The algorithms is stopped if there is no more
events with positive contribution to be added. In linear
programming terms, the LBP represented in Equation 5.14, which
corresponds to the numbering which put the 1 selected events
first on the list, is built up by increasing the value of 1
new coordinates from 0 to 1. If the feasible domain 1is

restricted to its intersection with the unit cube [0,1]", at
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each stage 1, the current LBP is a vertex of this reduced
domain. This amounts to moving from one vertex to another by
adding one event at a time, ensuring the best improvement of
the bound, which corresponds to shifting the objective
hyperplane parallel to itself in the direction to its gradie-
nt. At the last stage the optimal vertex remains the only
intersection of the objective hyperplane passing through the
current vertex with the feasible domain. The analogy and
similarity with the simplex algorithm is a striking feature of
the algorithm as the vertex-to-vertex path would be identical
if the feasible domain is reduced as above. It follows that
with this algorithm, the best possible subset J, of Kounias LB

is identified.

Illustrative examples

a. ExAmple 1

The example quoted above (Equation 5.12), is optimally
reordered, by selecting the events with positive contribution
as follows

- First selected event : max; P; — P,

- Second event : max; (P;-P,;;) — P,

- Third event : max; (P; - Py; - Py) < 0

After the second selected event, the remaining others have no

contribution to the lower bound, which yields

Jy =13, 4}



93

and the suboptimal lower bound is

P, =P, + P, - P, = .688

which is a significant improvement on the lower bound (.472)
that would be obtained by direct application of DLB expression
to the initial ordering.

b. Example 2 Ten events with the following probability matrix

(the figures correspond to 10% times the probabilities):

1.55
.29 4.02
.12 .46 .65
.14 .05 .04 .47
.15 .13 .12 .04 1.07
.31 .49 .35 .14 .80 4.28
.21 1.33 .47 .03 .87 2.53 17.52
.02 .16 .08 .02 .11 .46 .44 .67
.03 .10 .11 .01 .04 .31 .27 .07 1.27
.04 .34 .12 .00 .12 .21 .49 .09 .05 .72

Y4
With the above ordering, it can easily be checked that the

lower bound is 2.082¢103 . With the reordering only six events
have positive contribution, yielding the following probability

submatrix:

[ ]
17.52
1.33 4.02
2.53 .49 4.28
.21 .29 .31 1.55
.27 .10 .31 .03 1.27
.03 .05 .14 .14 .01 .47

and a lower bound of 2.2871073.

The remaining question on the second-order lower bound is that

which one of the two families of LBP’'s discussed above, can
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produce the best lower bound ? Numerical experience, although
limited, tends to suggest that the Bonferroni-type LBP’s (0’s
and 1's) are the overall optimal solutions. This could be the
case for some class of practical problems, but it is not easy
to prove. 1In theory at least, no LBP can be ruled out as a
potential global optimum. From the practical point of view,
the optimal numbering is much costly with LBP with non-zero
coefficients less than one. The above algorithm could be used
to improve the bound, but the overall optimal ordering needs
more involved method, as after the first event with negative
contribution is found, the possibility of positive contribu-
tion in the next rows of the LBP cannot be ruled out. The
number of possible combinations for the remaining events may

be too high for an exhaustive search.

5.2.2 Improvements on the upper bound
v
The first known improvement on the upper bound (UB) is due to

Kounias [1968]

n

n n
P(|Y F;) & P, - max P |
.iL-Jl 1 12-; 1 1skzn i-'l,E.iutk ki (5.18)

Using Moses and Kinser [1967] expression of the probability,
as a linear combination of the conditional probabilities of
the survival for the first i-1 events given that the i‘*! fails,

Vanmarcke [1971] derived the following UB

nooi-1 c
P,z P(F)) + Y min P(FENFy) (5.19)
iz k1 :
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where F,° is the k*® survival event. This UB can be easily

written as

1 R i1
Prx Y, Py - ) max Py (5.20)
il <1 k1

although it has not been presented in this form by Vanmarcke.
This UB has been also derived by Ditlevsen using indicator
functions [Ditlevsen, 1979Db].

Hunter[1976] derived the simpler formulation

n n
P 2y P;-Y Py (5.21)

i=1 1=1

for some arbitrary k < 1. This UB is not only dependent on
the events ordering, but also on the choice of k. Obviously,
for a/given ordering, the choice of k would lead to the use of
Vanmércke formulation (Equation 5.19). The best ordering is

the one which maximises the quantity

n
Z:Eﬁk (5.22)

i=-1

Hunter used graph theory to derive the best ordering. A graph
is constructed in the same way as in section (5.2.1). A

connected subgraph is called spanning tree if it has (n-1)

branches of which at lest one is incident to each of the n
nodes. Hunter showed that the bisections to be included in the

upper bound should form a spanning tree of all nodes. The
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selection of the best ordering becomes a selection of the best
spanning tree. Hunter made use of Kruskal algorithm [Kruskal
1956] to obtain the best spanning tree as follows
The bisections P;; are allocated to the tree in decreasing
order, such that the node i is part of a previously selected
branch, and j not yet selected, or vice-versa. The process is
repeated until all n nodes are used up. This algorithm,
despite its simplicity, is very powerful; it selects the
ordering that spreads the highest bisections among the rows in
the subdiagonal part of the probability matrix.

Hunter contribution can be summarised as an implicit ordering

optimisation for Vanmarcke upper bound.

In [Kounias, 1976], the linear programming approach for the
lower bound is also adopted for the upper bound. The upper
bound linear programming system is |

Vs

minimise : ¢, + $ c;P; - X cyyPy
I=1 1zi<j=sn
(5.23a)

subject to

0xc,

1<c,+X ¢c; — X ¢, for all J.eJ
0 ger, 1 i<ii.ges, P o

(5.23b)

Here again the previous UB’s are feasible solutions (UBP) of
the above system. A catalogue of a few UBP’s 1is given in
[Kounias, 1976]. The identification of vertices ‘by

inspection’ is much more difficult than for the lower bound
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case, which reduces the chances of improving the value of the

bound.

5.3 THIRD-ORDER BOUNDS

Using indicator functions, Ramachandran [1984,1985] derived

third-order bounds. The lower bound is

n i-1
P; > RL> = P, + P, - P, + Yy, max{[P; - } P;; + max) P;; 1,0}
i-3 J=1

(5.24)

where 1 and k are arbitrary choices in {1,2,...,1-1}, such
that the corresponding branches form a spanning tree of all

vertices 1,2,...,1-1. The upper bound is

n
/P, < RU* =P, + P, - P, + Y {p; - max[ P;; + Py - Pyyl}
= k. 1<1

(5.25)

As the trisections evaluation is very costly and makes the use
of third-order bounds less attractive, Ramachandran proposed
a nonlinear lower bound to the trisections for the special
case of events defined by linear functions. This bound is

P(F; N Fy) .P(F; N F)

(5.26)
P(F,)

P(F; NF,NF) =
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if pjx > PijPix. where p;; is the correlation between linear
functions corresponding to the events i and j. This normal
trivariate bound is used for the third-order bound by replac-
ing the third-order terms by the expression

PiyPuc  PiyPyx  Pulyk ) (5.27)

max{ , /
P, P, P,

which satisfies the correlation condition above.

5.4 HIGHER ORDER BOUNDS

Hohenbichler and Rackwitz [1983], assumed that intersections
are known up to some order l<n, and derived a general formula-
tion of the bound in terms of those intersections. Let J, be

Ve
the subset { j;,J,,...,3, } , with r<l, it has been shown that

an upper bound is

n

P(J Fy) 201=01(F,F,, ..., Fp)
i=1
=P(F) +Y (P(Fy-max [P(|J (F,NF))])
i=2 JI,I".I je',_]’r

(5.27)

By considering for each i successively, the i-1 G, events

te, = FNF/5=1,2,...,i-1) (5.29)
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and applying the above upper bound to each one, a lower bound

is easily derived

P(n F)z L1 = P(F,) ; {P(F,) -
1L.J1 1 1 +§max 1 (5.30)

o*(G,,6G,,...,Gy) ,0}

It is not difficult now to see that application of the above
bounds to the case 1=1 and 1=2 vyields respectively the bounds
derived earlier. The third-order bounds, after a change of

notation, come as follows

n i-1
L3 - Pl + PZ - PlZ + izmax{Pi - Pil - E [Pji - IT}(?';(Pjik ] ,0 }
-3 J=2

(5.31)

and

/!
' O® =P + P, - P, + ?_;{ Py - 5 l’(‘:%fjd[Pij*Pik‘Pijk]} (5.32)

where P;;; is the intersection of the events 1i,7,k.

5.5 BOUNDING BY CONDITIONING

Another type of strategy for bounding has been adopted by
Rackwitz [1978] and Ditlevsen [1982] and is outlined below.
Rackwitz approach is based on the following theorem given by
Sidak[1968]:

" if {p;;} and {Y;;} are two correlation matrices such that

Pi; = Vij
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then
o (B.1) = 0.(B.p)
and the reverse (i.e. z) is true."”
If the events can be represented in terms of linear

safety margins of the form

zi-viUﬂ/l—vini , i=1,2,...,n (5.33)

where U and U; are independent standard normal variates, and
| vi] 21, it follows that the correlation between events is
Pij = ViV;
Then the probability of failure can be expressed as [Dunnett
and Sobel, 1955]
Bi-wv

Pg = f [1"II ¢(——————i5)]¢(u)du (5.34)
i i-1 1-v 12

The probability would be exact if one can find the values of

V;’s yielding the exact correlation matrix. Unfortunately,
such values are the solutions of an overdetermined nonlinear
system of n(n-1)/2 equations and n unknowns, for which
solutions do not always exist. However, one can always find
values such that the conditions of Sidak’s theorem are
satisfied, thus yielding a lower bound for the case (V;v; 2 p;;)
and an upper bound for (v;v; ¥ p;;), provided that the condition
of non-negative definiteness is met. The attractiveness of the
method comes from the fact that it brings down a multiple
integral to a single dimensional one. But the hard bone of

this approach is to find values of v;’s that reduces the gap
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between the bounds, bearing in mind that different sets may be
needed for the two bounds. There is no known viable technique
for such a purpose. Moreover, numerical experience showed that
the bounds obtained are normally wide, and a search for a
better v;’s is 1likely to outweigh the single dimensional

integral feature in term of efficiency.

In a slightly different approach, Ditlevsen assumes the
variates U; correlated and seeks the V;’s such that their
correlation is minimised [Ditlevsen 1979b, 1982]. This amounts
to replacing the original set of linear margins by another of
less correlated ones, in order to reduce the gap between the
bounds. This method has many drawbacks, which has been indi-
cated by Ramachandran and Baker [1984]. The most important is
the computing time which is about five times higher than the
methods discussed above. Using bounds on the bivariate
integéals may have negative effect on the gap between the
bounds. Moreover, the single dimensional integral over the
variable u may be very sensitive to the integration step. A
further point which has not been raised is the evaluation of
the constants v;’s which ensures low correlations between the
equivalent safety margins; this may be a difficult and costly

optimisation problem.
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CHAPTER VI

OPTIMISATION OF MULTIEXTREMAL FUNCTIONS

6.0 INTRODUCTION

This chapter presents a concise review of the best known
techniques used in solving unconstrained nonconvex
optimisation problems, and examines the relevance of these
techniques to the generation of critical load-resistance
directions in structural reliability. As the aim of these
methods is to find the global optimum, any other local optimum
found on the way comes only as a by-product, they cannot be
directly used to solve a problem in which a selection of the
‘best’ local optima is to be found. Therefore any method used
has to be modified to suit this objective in the most
efficient way. Existing methods are examined first and an
algorithm adapted to the selective optimisation problem in

structural reliability is presented in the last section.

Finding the global optimum to multiextremal functions has been
and 1is still a big challenge in optimisation research. So far
there is no method which can claim to solve the problem
efficiently despite the restrictive assumptions often made on
the objective function. The most restrictive methods are of
the deterministic type with finite convergence, but with
exponential increase in computational cost with the dimension

of the problem. Less restrictive are the probabilistic
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are the two major classes of global optimisation methods, but
some methods include certain random elements within a
deterministic framework to enhance their performance or to

widen their range of applicability.

The problem is formalised, for a maximisation, as follows.

Given the objective function £

£i1 X ——mmmmmmmme e - f(x) €8 (6.1)

where S is a compact subset of R”, find x",y" such that

y* = f(x*) = f(x),Vx €S (6.2)

Unconstrained optimisation would mean that S is the maximal
subset of R” for which real function values for f exist. In
most practical situations the so called unconstrained
problems have the domain S as a box with simple bounds on the
variables. The methods described below make the same
assumption but the problem is still referred to as

unconstrained one.

6.1 DETERMINISTIC METHODS

6.1.1 Space covering techniques

These methods attempt to cover the whole domain S by an

exhaustive search. They are limited to Lipschitzian functions,

for which there is a constant K such that
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for which there is a constant K such that

| £(x,) - £f(x,) s Kl x, -x,1 Vx.x,€8 (6.3)

i.e. there is a bound K on the rate of change of the objective
function. Moreover this bound is assumed to be known. In
practice, the existence of such a constant is not always
evident, and its value can be hard if not impossible to find.

This is the first drawback of these methods.

The first known method of this type was the grid method of
Fisher [1935] which covers S simply by identical hypercubes.
A better approach is suggested by Evtushenko [1971] in which
a sequence of points is generated until the domain S 1is
covered by a set of hyperspheres centred at these points, or
hypercubes inscribed in them. Under the same assumption,
Shubert [1972] developed an algorithm which ,although
impractical for multidimensional functions [Dixon 1975,
Archetti 1984], turns out to be very efficient for single
dimensional problems. It could also be used in a sequential

scheme within the multidimensional case [Schoen, 1982].

Other domain-partitioning algorithms developed recently
[Mayne & Polak 1984, Meewella & Mayne 1989] for Lipschitz
continuous functions are claimed to perform well. Using
interval arithmetic, Hansen [1980] proposed an algorithm
for functions that are rational and their first and second
derivative are also rational, but not necessarily

Lipschitzian.
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Another type of method referred to as the '"regions of
attraction” [Treccani et al. 1975, Corles 1975] assumes a
twice continuous differentiability for the objective
function. The region of attraction for a local optimum is
defined as the connected subset of S from each point of which
a steepest search leads to this local optimum. The domain 1is
scanned for the hills (or the basins) corresponding to each
local optimum via the search for saddle points. The
neighbourhoods of the saddle points found are explored for

starting points leading to new local optima.

6.1.2 Trajectory techniques

Less sensitive to the dimensionality of the problem are the
trajectory methods. Trajectories of constant gradient
direcgion are built up through the solution of a differential
equation; local optima, or good starting point for 1local
search are generated in the process. The original algorithm
due to Branin [1971], laid down the path to the development
and the critical study of this approach [Treccani 1975,

Gomulka 1975, Hardy 1975, Griewank 1981 1.

6.1.3 Tunnelling method

The basic idea of this method is to generate a point with
objective function value better than the local optimum last

found, by solving an equation involving all the previously
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found local optima. But the solution of this equation, and
specially deciding if there are other roots or not, could be
more difficult than the original global optimisation. The

method was first published by Levy & Montalvo [1977].

6.2 STOCHASTIC METHODS

One major problem in global optimisation is the possibility of
bounding the error on the optimal solution. With deterministic
algorithms, this bounding can only be achieved for a
restricted type of functions, of a very moderate
dimensionality. To avoid this difficulty, the stochastic
approach seeks an asymptotic guarantee of getting the true
global optimum rather than an absolute one. This is not a
serious drawback if there is no other efficient way of
handlﬁng the problem. The basic idea behind the stochastic
methods 1is that, by sampling points from some continuous
distribution over the domain S, the probability of hitting any
given point or its neighbourhood tends to 1 as the sample size
tends to infinity [Brooks 1958; Rubinstein & Weissman 1977].
The choice of a sampling distribution, the inclusion of a
local search, and the termination rules are the basic criteria
behind the classification of the various stochastic methods.

A few methods are outlined in the following sections.

6.2.1 Pure random search

The pure random search (or nonadaptive random search) is the
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simplest method. A random sample of N points is generated from
some distribution in S, and the function is evaluated at
these points. The best function value is then selected as the
solution of the problem. Brooks [1958] and Anderssen [1972]
studied such a method and showed its asymptotic convergence
for the uniform distribution. Rubinstein and Weissman [1977]
studied the general case of a continuous distribution. It is
obvious that the choice of non uniform distribution assumes
some prior knowledge of the location of the optimal solution

within S.

Let A be a neighbourhood of the optimal solution x" and a such
that

m(A) (6.4)
m(S)

a-
whereysm is the Lebesgue measure on S ( or simply volume). If
a uniform sample {x;} of size N is drawn from S, the

probability that at least one point from the sample falls

within A is

P=1-(1-g)¥ (6.5)

it follows that the minimum sample size to ensure the

probability level P, for a given o 1is

N* = 109(1-P) (6.6)
log(l-a)



108
Without prior assumptions on the objective function £, this
minimum sample size does not guarantee that the optimum value
of the sample falls inside A. This is a very weak point of
this method as the objective value might be ’‘close’ to the
optimum value, with completely wrong location. Moreover, the
probability, that the error on the optimal objective value is
lower than some prefixed value, 1is not known. Another
problem, linked to the prior knowledge about the objective
function, 1is the acceptability of the global optimum
estimate. This problem has been discussed by Anderssen [1972]
who introduced the idea of hypothesis testing, by which a
minimum confidence level for the value and location of the
optimum should be ensured, using all available information

about the physical problem.

A straightforward improvement on the crude uniform random
search is the ’'multistart’ algorithm, where a 1local
optimisation is carried out at every sample point. The best
local optimum is selected as the estimate of the global
optimum . Due to the computing cost of the local search,
severe limitation on the sample size is often unavoidable. To
overcome this problem, a more sophisticated algorithm,
combining random sampling and a cluster analysis, has been

developed (see section II.3 for more details).

6.2.2 Adaptive random search

While in the previous method the points are sampled
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independently from each other, the adaptive random search
generates a sequence of points with improving objective
function values, and an update of the sampling distribution at
each iteration. This approach has been investigated by many
authors, and a bibliographic coverage can be found in

[Rubinstein 1986].

Matyas [1965] appears to be the first to have developed an
adaptive random search for unimodal functions and to prove its
convergence in probability. Matyas’s algorithm generates a
sequence {x,} of improving objective function value, taking

account of the previous observations at each stage.

Baba et al. [1977] re-examined Matyas'’s convergence theorem
and generalised it to multiextremal functions. A comprehensive
study of the adaptive random search techniques is due to Solis
& We;£ [1981]. They generalised the concept of adaptive search
to fit most of the previously known algorithms. The sequence

{x,} is such that

Xy ™ T(Xk,)’k) (6.7)

where y, is generated from some distribution h, updated at each
stage k. Two basic conditions are shown to ensure the

convergence in probability

- The mapping T and the sampling distribution h, must ensure
the improvability of the objective function. It can be a

random or deterministic search for the local optimum.
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- The distribution h, should not ignore systematically any

subset A of S.

The above convergence is shown under the condition of

measurability of both S and the objective function.

It can be seen from this general formulation that the two main
ingredients of any recipe for global optimisation, using an
adaptive random search, are the sampling distribution h, and
the mapping T. The behaviour of any derived algorithm depends

very much on the combined effect of these two ingredients.

6.2.3 Multistart methods

The simplest method is the crude multistart referred to at the
end of section II.1l. But without prior knowledge on the number
of local optima, or the ‘topography’ of the function, two

difficult questions arise :

- Is the estimated optimum ’‘close enough’ to the true
global one ?

- How can we ovoid converging to the same local optimum
several times, as many points can be sampled from the

same region of attraction ?

In stochastic methods, with asymptotic guarantee of
convergence, the first question can only have a probabilistic

answer formulated in stopping rules of the sequential
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sampling. More details on stopping rules are given in section
II.5 in the general framework of termination criteria of

random search techniques.

The second question can be tackled if one can identify the
regions of attraction of all local optima. This means to find
contours of ‘basins’ and ’'hills’ of the objective function,
which is more difficult. An alternative to exact
identification, which can serve the same purpose, is to group
the sample points into subsets of points belonging to the
same basin (or hill). By doing so, we can virtually ensure
that only one local search is carried out in each basin
(hill) from which at 1least one point is sampled. This
technique is well known in statistics, and referred to as
cluster analysis [Everitt 1974; Hartigan 1975; Anderberg
1973].

Application of cluster techniques in conjunction with random
sampling and good stopping rules, has produced relatively

efficient algorithms for global optimisation.

6.2.3.1 Clustering techniques and global optimisation

Cluster Analysis is the term used to refer to techniques which
seek to divide a set of N objects or elements into subsets
according to contiguity or some similarity criterion. It is
widely used 1in statistics for data analysis. Clustering

techniques are as various as their users, but the ones
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considered in the following are those which have been used as
a part of some global optimisation algorithms. Becker & Lago
[1970] are reported to have put forward the idea of
clustering the points around the local optima in order to
avoid unnecessary function evaluations and local searches,
resulting in a substantial savings in the computational cost.
From a uniformly drawn sample, regions of high density are
created around the 1local optima by removing a prefixed
proportion of the sample points with lowest (highest)
function wvalues. This 1is known as the sample reduction
technique. In the ideal case, reduction would create a
clearly distinct sub-agglomerations of sample points leading
to the same local optima. But in practice, very often these
sub-agglomerations correspond to the connected components of

some level set L(y) defined as
L(y) ={xeslg(x) < y! (6.8)

4

Torn [1976] devised and implemented a clustering-based
algorithm which increases the density of sample points in the
hills (basins) by undergoing one or a few steepest ascent
(descent) steps from every point of the sample. This
operation is known as sample concentration. This is further
improved by sample reduction [Torn, 1978]. This sample
concentration would theoretically help to overcome the
problem left by simple reduction, by creating low density
'corridors’ between contiguous hills (basins), making their
identification easier. However, this comes in a conflict with

the clustering procedure which assumes and exploits the
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uniformity of the sample distribution.

To identify the clusters, Torn used a simple version of the
density clustering technique, a natural way of grouping points
in a metric space, which identifies areas of high density. He
considered the clusters as hyperspheres of stepwise increasing
volume from a starting seed point. Assuming that the local
optima are the best seed points, he approximated them by the
sample points with the best function wvalues. The seed points
are selected among the best points not yet clustered. The main
advantage of this method is the fact that it does not need
the computation of the whole similarity matrix for growing
the cluster (i.e. for allocating a point to a given cluster
only this point and the seed point are considered). The
cluster is grown by increasing the radius of the hyperspheres
until the density within the cluster becomes higher than the
orig;Pal uniform density over the whole sample. But the
apprbximation of the clusters’ shape, which represents the
regions.of attraction, by hyperspheres is rather crude and
can only fit a very limited class of functions. Nevertheless,
Torn reported some success in handling a series of test
functions. Gomulka [1978] reported her experience with Torn’s
algorithm and found it ‘consistently reliable’. But one
drawback which has not been pointed out before, is the effect
of the boundaries of S on the peripheral clusters’ densities.
A spherical cluster not entirely contained in S would have its
density underestimated. However, the negative effect decreases
as the overall average density increases. This problem can be

completely eliminated for the particular case where S is a
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subset of the boundaries of a convex subset of R”. This idea

is further developed in section 3.

Boender et al [1982] suggested an improvement on the shape of

the clusters ; hyperellipsoids are used instead of
hyperspheres through second order approximation of the
objective function at the local optima (seed points). The

range of applicability although slightly wider, is still very
narrow. In the same reference, further improvement on the
clusters’ shape, is sought, based on the distance between any
sample point and its closest neighbour. This is called single
linkage clustering which can produce clusters of virtually
any shape. In this approach, a cluster consists originally of
a single point, other points are added if their distance to
any point already in that cluster is below some critical
threshold. Two clusters are fused, if the distance of any
point from the first to any point from the second is below the

threé%old, which is updated as the overall sample size grows.

The single linkage approach is used for global optimisation by
defining -the distance between two points x; and Xx,, 1in the

neighbourhood of a local optimum x" chosen as a seed point, as

dix,, x;) = (%, -%,) H(x*) (x;,-x,) (6.9

where H is the hessian of the function. Points are allocated
to a cluster until the smallest distance from any point
inside this cluster to any other point outside it exceeds some

threshold level. This threshold criterion is dictated by the
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distribution of the sample ; it should be uniform within each
cluster. With the metric defined above, the average volume v
of the neighbourhood of each sample point containing no other

sample point is approximated by

v - drnr/? (6.10)
T(n/2 + 1)IH(x*)P/2

where d is the average distance to the nearest sample point.
The probability of having only one point out of N sample

points within this wvolume is

- - Y _ym2 6.11
a (1 m(S)) ( )

If d is taken as the threshold level, it can be estimated by

d - [P(1+n/2)V[H(X')‘m(S) (1-ql/ W-1y ]1/n (6.12)

nn/ 2
VA

The experience reported on the density and the single linkage
methods shows that both perform equally well, except for the
case where the shape of the clusters is far from ellipsoidal
where the density clustering tends to terminate the clustering
prematurely. Both methods seem to be better than Torn’s
algorithm and many other existing methods, in terms of number

of function evaluations.

Rinnoy Kan and Timmer [1984] suggest the following critical

distance for the single linkage approach
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d_ﬂ-1/2[p(1+n/2)m(3)o.}2;v(LN)]1/n (6.13)

using the normal euclidian norm, and setting the probability

o to

@ = (1- %)N (6.14)

They also show that by single linkage,

« if 6 > 2, the probability that a local search is
applied at the k% cycle tends to 0 with increasing k.

e if the parameter 0 exceeds 4, the total number of local
searches is finite with probability 1, for infinite
sample size.

e In every connected component of a given level set L(y)
’;n which a point is sampled, a local optimum will be

found within a finite number of iterations.

Rinnoy Kan and Timmer [1984, 1987] also suggested another
approach referred to as The Mode Analysis. This is in fact a
simplified adaptation of the <clustering method of Wishart
[1969], known under the same name. The domain S is first
partitioned into small cells (hypercubes). After sample
reduction, the cells are classified into full cells and empty
ones. The cells with more than half the expected number of
sample points are considered full, otherwise they are empty.
Then a single linkage clustering is carried out on the cells

as elements, the clusters being the subsets of S corresponding
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to a connected subsets of full cells.

One common drawback, in both the single linkage and the mode
analysis, is that each cluster correspond to the connected
components of the level set defined by the sample reduction,
which can cover more than one region of attraction, and yet
only one is identified. The problem may be even more serious
due to an inherent weakness of the single linkage method,
known as chaining. Here some disjoint contiguous components of
the level set are put in the same cluster, suggesting a
spurious connection. This increases substantially the number
of overlooked regions of attraction hit by the reduced sample.
This comes on top of the effect of the sample reduction where
the discarded points of ’‘bad’ function values might belong to

the region of attraction of the global optimum.

Thisfded Rinnoy Kan and Timmer [1984, 1987] to introduce the
so-called Multi-level methods. The procedure is the same as
for the two previous techniques, except that the 1local
optimisation is started from every sample point without a
neighbour of better function value within some critical
distance. This results in a sequence of monotonically
increasing (decreasing) sample points of the objective
function value, from which a local search is applied. If the
critical distance of equation 6.13 1is wused, then the
asymptotic results concerning the local searches remain valid.
Moreover, if 0 is positive and x is an arbitrary sample point,
then the probability that a local search is initiated from x,

would tend to 0 with increasing number of sampling/clustering
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cycles k.

The mode analysis method is further extended to the
multi-level mode analysis (MLMA), in the same way as the
multi-level single linkage. The value of each full cell is the
best function value among its sample points. A local search is
started from the best point of each cell which has no

neighbour of a higher value.

Numerical experiments [Rinnoy Kan and Timmer 1984, 1987] show
that multi-level single linkage method gives promising
results compared to other clustering-based methods
(SL,MA,MLMA) . Compared to other methods described in previous
sections, its performance seems to be the best both in terms
of the number of function evaluations and unit standard time.
But it has been recognised that any fair comparison should
take/éccount of the fact that, on one hand some parameters
proper to each method have to be optimised (critical distance
parameter ©, reduction percentage, sample size per
iteration...), and on the other hand the stopping rules must

be the same.

6.2.3.2 Termination criteria

All global optimisation algorithms using random sampling
comprise a global probabilistic part and/or a local
deterministic part. The latter part performs the numerical

approximation of the global optimum candidate and the former
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controls the sampling and the decisions for making a local
search and most importantly whether its outcome is the global
solution or not, in order to terminate or to carry on
searching. Deciding when to stop sampling and accept the best
solution found so far as the solution, is the <critical part
of this class of algorithms. Much of the recent work done on
global optimisation has been devoted to devising "good
stopping rules". Two different ways of handling the problem
have been considered ; in the first one, the function values
of the sampled points are seen as realisations of a random
variable for which the distribution is approximated; in the
second one, the number of regions of attraction is estimated

as that of the cells of a multinomial distribution.

6.2.3.2.1 Function level set probability termination

Thisfélass of termination techniques aims at estimating the

probability of finding a better local optimum, than the ones

found so far. The search is terminated if this probability is
less than some prefixed value. This gives no information on
the error on the true global optimum, and just indicates the
chance of any improvement of the function value. Consider the

following function

Ey) = —————’"ZJ((‘;;)) (6.15)

where L(y) is the level set as defined previously. The global

minimum can be defined as
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y*={ylE&(y) =0} (6.16)

and a €-approximation of y~ is

vt =max { y | E(y) ze) (6.17)

It can be easily seen that the function defined by equation
6.15 can be interpreted as a probability distribution of
f(X), 1if X 1is uniformly distributed over S, and the

€-approximation is simply its quantile of order €.

6.2.3.2.2 Regions of attraction numbering termination

This approach was put forward first by Zielinski [1981] in
order to find the number of regions of attraction and their

rela;&ve sizes, and later extended by Boender & Rinnoy Kan

[1983].

The domain S of multimodal functions can be partitioned
according to the regions of attraction R, of the local maxima
(minima) x,". Let ®, be the relative share of the k* region

- m(R,)

6.18
o, ) ( )

The number of local optima is 1. If a uniform sample of size
N is taken from S, and n;,n,, ...,n, are the shares of the

regions from the sample, then
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n, +n, + . n; =N
The { n;,n,,...,n;} set is a realisation of the random set
{N;,N,,...,N;} from a multinomial distribution. Because the

number of cells is not known, the maximum likelihood estimate
of 1 is shown to be infinite for all possible outcomes of n;

[Boender & Rinnoy Kan, 1983].

If the parameters 1 and { ®,,®;,...,®;} are assumed also to be
random variables, with a specified prior distributions ,
posterior distributions can be found using the sample outcome,
through Bayes theorem. The prior distributions are such that
L 1is uniform over the set of positive integers, and
{0, 0,,...,0,} jointly uniform over the (I1-1)-dimensional unit
simplex. Under such conditions, it can be shown that [Boender
& Rinnoy Kan, 1983]

:4) the marginal probability that (L=1 [/ I2w) is

(1-1) LI1(N-1) 1 (N=-2) 1 (6.19)
(N+I1-1) U (1-w) Iwl (w-1) ! (N-w-2) I

ii) the posterior expected value of L is

w(N-1)

LA Y 6.20
N-w-2) for N = w+3 ( )

and its variance is

w{w+1l) (N-1) (N-2)
(N-w-2)2(N-w-3)

for Nzw+d (6.21)
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iii) the transition probability that a new trial will

result in a new local optimum is

w(w+1)
—_ F N = 2 (6.22)
N(N—l) or w+

iv) given a pair (w,N), and ¢ = c¢;/c, , where c; is the
cost of premature termination assumed to be proportional
to the relative error of the posterior expectation, and
c, the cost of each trial assumed constant, then the

optimal decision is to terminate sampling if

NtN’(c)-f6+—Bc-+ 8_:-131 (6.23)

6 .3 MULTIEXTREMAL OPTIMISATION OVER A HYPERSPHERE

Ve

6.3.1 Method selection

In order to have a useful comparison between different global
optimisation methods, each approach will be appraised for its
suitability for identifying the stochastically dominant

directions in the load-resistance space.

The function to be optimised in this study corresponds to the
limit-state surface of a framed structure with random
resistances and subject to random loads. The integration of

the probability of failure is carried out by the simulation
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using a directional importance sampling approach. The
directions of most importance are in the neighbourhood of
local maxima of the function. But the number of local maxima
is too high to allow them to be set as a target in their
totality; moreover only a few of them, with the highest
function values, are of practical relevance to importance
sampling. Therefore, the objective would be to find a subset
of local maxima of function value higher than some threshold.
In this respect, the goal is different from that of the
conventional global optimisation which seeks only the global
maximum as the end result and ignores the other optima. It is
also different from the multiextremal function analysis which
tries to find all local optima. Therefore any method used in
this particular case should be some appropriate blend of the

methods used for solving the two situations referred to above.

Among the deterministic methods, most of the space covering
techniéﬁes are developed for a particular class of functions
such as rationals, lipshitzians, and twice differentiable. As
limit state functions are not given in a closed form, these
methods are not suitable. Moreover, nearly all these methods
are time-exponential and can be unacceptably expensive for

large dimensionality.
The trajectory techniques seem to be unaffected by the
dimensionality, however the convergence for all cases is

still questionable.

The tunnelling method generates a sequence of improving local
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optima intended to converge to the global one, in such a way
that many relevant ‘peaks’ may be overlooked. More
importantly, it generates a sub-problem more difficult to

handle than the original one.

Generally speaking, the range of applicability of the
deterministic methods in their present state of development,
is too narrow to be of direct use in the present study.
Therefore it is believed that only the stochastic methods can
ensure some useful solution at an acceptable cost in

structural reliability analysis.

The pure random search technigues (PRS) cannot be directly
used in this case for obvious reasons. Adaptive random search
(ARS) as described by Solis and Wets, using local search for
the mapping T (see section II.2), can be modified to keep
recog? of any relevant local optimum found on the way,
instéad. of generating an improving sequence only. It may
appear that our problem can be solved by this method, but the
number of 1local searches would be unacceptably high.

Therefore, even modified ARS cannot be used.

The Multistart (MS) approach remains the most promising
alternative; by its structure, it generates local optima and
can be modified to meet closely our purpose. Of course, the
crude MS is not suitable for 1lack of efficiency. The
Multistart/clustering technique is most suitable; it keeps
record of all (relevant) optima found on the way in a

systematic manner, and the sample is arranged in order to give
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out the maximum information about the function and its shape;
it is flexible and can lend itself easily to adaptive
modifications; a selective scheme of the local optima can be
efficiently included avoiding wasted local searches for non

relevant optima.

Within the multistart/clustering scheme, the choice is still
wide. Many decisions, concerning the different phases of any
potential algorithm, are yet to be made. In the following are
discussed the different alternatives for each phase. These
phases are Sample modifications, Clustering, and Stopping

rules.

6.3.2 Sample modifications

The qfucial point in this phase is to decide whether reduction
and/or concentration should be made, and by how much the
sample should be reduced or how many steepest steps are to be

done for concentration.

After sampling and function evaluations, the points are
theoretically evenly distributed and no sub-groups of
important size can be singled out. Agglomerations of points
of ’‘good’ function values can be distinguishable only if they
are surrounded by areas of density significantly below
average. This can be achieved either by removing low

function value sample points or by moving the points a few

steps toward the corresponding local maxima in the steepest
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ascent.

As we are not interested in all local optima, concentration of
the sample would create clusters corresponding to unwanted
optima (i.e. with function values lower than a prefixed
threshold) and therefore concentration of the sample cannot
be selective. Furthermore, concentration leads to at least n
function evaluations per sample point, which would increase
substantially the overhead cost of the clustering.
Consequently, concentration of the sample is not suitable and

very expensive.

Reduction of the sample is much more attractive in the present
situation. Firstly, its cost is very marginal. Secondly, the
choice of the threshold of the function wvalue for the
relevancy of local optima, would automatically éieve off the
unwaqxed ones and highlight well-separated clusters. 1In
exisﬁing methods, reduction is done by taking off from the
sample some percent %Y. The value of Y seems to be chosen
arbitrarily without reference to the type of objective
function, and so would be the threshold level of the unwanted
local optima. It is thought that the choice should be done
the other way around, by fixing the function 1level 1limit
first according to the dispersion of the function values in
the sample. Information on this dispersion can be obtained
from the statistical analysis of the function values ( mean

H;, standard deviation o0,). An appropriate form would be

Bg+ PO,
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where p is a chosen positive coefficient. This coefficient may
be updated at later stages of sampling in order to meet some

clustering conditions, such as the number of clusters.

6.3.3 Clustering procedure

The clustering methods currently used in global optimisation
are as follows

-Density clustering (DC)

-Single linkage clustering (SLC)

-Mode Analysis (MA)

-Multi-level single linkage (MLSL)

-Multi-level mode analysis (MLMA)

The E& techniques are of limited use as the shape of the
‘hills’ cannot always be approximated by hyperspheres or even
by hyperellipsoids. The MA and MLMA techniques suffer the same
drawback as the deterministic domain-partitioning methods in
which the number of cells increases exponentially with the
dimension. Moreover, the values given to the cells (the best
sample point of the cell) can be misleading unless their size
is made very small. The SL approach has a good performance,
but does not make full use of the information the sample can
provide which result in unnecessary local searches; this can
be significantly improved by the MLSL method. This is in
agreement with the experience reported by several authors

which seems to show that the best choice is the MLSL.
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One crucial point in single linkage clustering is the value of
the critical distance which determines allocation of points
to the clusters. The euclidian norm is not suitable as a
clustering criterion. As our domain is the surface of the unit
hypersphere, it is more convenient to use polar coordinates.
The distance between any two points is better represented by

the angle between them

¥ (x,y) =larccos(x,y) | (6.24)

This choice is very convenient for deriving the critical
distance from the distribution of the distance from a given
point to its closest neighbour in a uniformly drawn sample of
a given size N. This distribution can be obtained using order
statistics. Let {X;,X,,...,Xy} be a set of uniform random
vectors from S and x a given point in S. The angle between x

and any realisation x; of X; is
Ya

¥, (x;,x) =larccos(x;,x) | (6.25)

Assume that the above angles are labelled such that

Y, LY, % ... S Y, (6.26)

Let H, be the distribution of the r*® order statistic

H,(§) = Pry s )

- Pr( at least r of the y, xV) (6.27)

N
- 2(2’) Py (§) [1-Pg () ]¥-4

1l=r
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where Py is the distribution of W. For the particular case of

r=1, we have the distribution of the closest neighbour

H (§y) = Prob(Y, < ¢) =1 - [ 1 - Pe(P)]¥ (6.28)

The density distribution can be easily derived from the
cumulative distribution H,

dH, (§)

h(§) = — N.Dpg (¥)[1-Pg (y) ] ¥ (6.29)

where py is the density distribution of ¥, which can be easily
seen as the ratio

m(s|!)

Py (¥) = m(S)

(6.30)

where s, is the set of points of S such that the angle between
them /and x is ¥; it is the surface of an n-1 hypersphere of

radius sin(¥). The density is therefore given by

T'(n/2) (sin(y) )22
Dy (Y) = (6.31)
(¥ T'((n-1)/2)y%

and the cumulative distribution

I'(n/2)
T'((n-1)/2)ym

¥ v
Py () = [py(t)dt - [(sin(e))m2de (g 32
[} 0

If

L
I, - fsin"(t)dt: (6.33)
o]
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then it can be easily shown that

I, - rll-;l I, - sin“(tl)qcos(t) (6.34)

which allows the evaluation of the distribution numerically.

The expected value of W, can then be formulated as

E(y,) = [Uh (§)dy = N [¥pg (W) [1-Py (W) 1%2d¥ (5,35
0 0

which on integration by parts gives

Ely;] = [[1-Py(y)] *dy (6.36)
0

and this can be evaluated numerically.

For %/given dimension n and sample size N, the shape of the
density h; is slightly skew to the left, with both tails
having very small probability content, particularly the upper
one. The density h; and the corresponding cumulative
distribution H, are represented in Fig 6.1 through Fig 6.4
for different values of n and N. A ’pseudo-upper bound’ on
the unsampled spherical portion can be evaluated, with some
confidence level, and wused as a critical distance for
clustering. This critical distance and its corresponding
probability distribution are a probabilistic measure of the
space covered by the sample. It can be easily seen that the
probability of non exceedance M becomes very close to 1,

shortly after the modal value of the density. Let Yy, be the
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corresponding angle value.

For different values of n and N, the range of variation of V,
is relatively wide. Fig 6.5, represents the curve of n versus
Y, for different dimensions, and sample sizes, with M =
.9999. It shows that VW, varies almost linearly with the
dimension n, specially for high values of n. For a given 7,
the angle Y, can be easily shown to approach 0 as the sample
size tends to infinity. It follows that if x" is a local
optimum, its closest sample point will be within an angle less

than y, with probability 1.

The value of M can be either constant throughout the iteration
process, or a function & of the current sample size. A

possible choice of this function is

€=1 -
V. _ (6.37)

where o is given by equation 6.14. The critical angle becomes
therefore a function of 6. The choice of a value for 6 is not
necessarily the same as for the case of objective functions
defined over a convex domain, with an euclidian critical
distance. Numerical experience seems to suggest that for
values exceeding 1 and a reasonable sample size, dominant
regions are overlooked and only a fraction of the local optima
is identified. A value of 6=0.5 seems to be a sensible choice.
However, a thorough parametric study for the class of function

under investigation is necessary for an optimal choice of o.
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The clustering procedure may be summarized as follows

i) The points of the reduced sample are relabelled in
decreasing objective function values.

ii) The best of the remaining unclustered points 1is
selected as a seed point of a new cluster. All
unclustered points within a critical distance of a point
already in the cluster are allocated to it, and a record
is kept of the points which have been already used as a
starting search point, or fall within a critical distance

of a previously found local optimum.

Virtually any new portion of €, of radius less or equal to
sin(yy,) is identified and recorded so that one local search

at most is made from it.

The léiustering' procedure generates a sequence of sets of
locally improving seed points converging (with an increasing
probability m) towards the local optima. It follows that the
repeated sampling/reduction/clustering scheme without a
deterministic local search <constitutes an approximate

multiextremal optimisation algorithm on its own.

The method can be made efficient if one tries to make the most
of the particularities of this original problem, in order to
reduce the sample size. This is possible if the function is
confined to some connected and regular portion of the unit
sphere (orthant, circular portion,...), from which direct

uniform sampling 1is possible. Its area 1is also easy to
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evaluate. This reduces the sampling space to a fraction of the
n-sphere. A typical case is the one, where some of the
variables are either positive or negative. If k is the number
of sign restriction-free variables, this fraction can be

easily shown to be

£ (6.38)

where , is the measure of the n-sphere surface. This 2" *-fold
reduction allows a dramatic reduction in the sample size. But
with this reduced sample space, the reformulation of the
density h; and distribution H; is highly complicated, because
the nice feature of rotational symmetry is now lost.
Therefore, some way of using h; and H; as formulated for the
unit sphere, and sampling only from the reduced space, is
necessary. This can be achieved by considering the sampled
set, from the reduced space, as a part of a fictitious and
mudﬁ bigger sample that would be sampled from the whole
sphere. The fictitious sample size can be estimated from the
real one by extrapolation using equation 6.38, and used to

evaluate the critical angle V.

6.3.4 Local search

The efficiency of the clustering procedure in identifying the
sample points <closest to the 1local optima, reduces
considerably the local search cost. If the objective function

is smooth enough and does not present very sharp peaks,
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efficient conventional local optimisation routines can be
used. However, in practical problems, the objective function
can often present local ill-conditioning, or can be piece-wise
differentiable. The deterministic 1local search cannot be
carried out at an acceptable cost. In this case, one has to
accept the seed points as approximations to the local optima,
and try to improve them by increasing the number of

sampling/clustering cycles.

Because the objective function might present the ill-
conditioning behaviour in some parts of the feasible domain
and be smooth in others, a sensible method is to incorporate
a local search routine with a test for smoothness (by checking
the gradient for example), so that the local optimum is
approximated by the cluster seed point whenever the test is

negative.

VA

6.3.5 Stopping rules

This 1is the Achilles’ heel for stochastic multiextremal
optimisation problems. It would be too optimistic to expect to
find good stopping rules.

The criterion for termination based on the probability of
finding a better local optimum described in subsection II.5.1
is clearly not suitable here. Many relevant local optima can
be systematically overlooked, simply because the global

optimum has been incidently found at an early iteration.
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The alternative, based on the bayesian estimation of the
regions of attraction corresponding to the local optima, is
much more suitable. For well behaved functions with a very
moderate number of optima, this latter approach could be used
in a straightforward way. But in our case, we cannot adopt
these assumptions, and at the same time our scheme is a
selective optima seeking one. Two possibilities can be

considered if this method is to be used

- to derive analytical results equivalent to those in
section II.5.2 corresponding to the selective case. For
example, one may want to evaluate the posterior expected
number of local optima with function value above some
threshold level.
- to modify the function in such a way that makes the
results of II.5.2 directly usable.
The region of attraction in II.5.2 is defined as a cell of
relative size 0; independent of its optimal function value.
Hence the theoretical framework does not seem to favour the
first possibility. The second one is much more manageable. As
a matter of fact, in the sample reduction and the clustering
procedure described in section III.2 above, is embedded the
solution of the ’'function modification’. If we consider the
set D of points of S with function value 1less than the
threshold for the local optima, this set contains all regions
of attraction of the unwanted optima. Moreover, the points of
this set which belong to the regions of useful optima are not

used either for clustering or for 1local search, and are
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treated in the same way as any other point of D. This suggests
the idea of considering the set D as another cell of the
multinomial distribution, i.e. a particular cluster with
special clustering rule; allocation of a point to D is done
if its function value is less than the threshold level. Here
the whole sample is used and the reduction is simply dumping
the ‘bad’ points in D. This is merely replacing the original
function by a fictitious one in which the number of regions of

attraction exceeds the number of useful local optima by one.

All regions of attraction or cells, of the fictitious function
described above are taken into consideration in a nonselective
way; therefore all analytical results of II.5.2 are valid and
can be used directly, bearing in mind that the number of local

optima is the number of cells less one.

The Qﬁfimal decision formulated in paragraph (iv) of II.5.2 is
expressed in terms of the ratio ¢ of the sampling cost to the
premature termination cost. Its value depends very much on
the physical nature of the problem, the subsequent use of the
local optima and the subjective judgement of the user. In the
case of structural reliability the local optima are
subsequently used either as modal sampling points for
directional simulation, or as linearization points for a first
order approximation, or both. The impact of missing some
relevant local optima concerns the accuracy of the probability
of failure. There is no general method for assessing this
impact, which is case dependent. Even if this impact can be

estimated or bounded, it has to be converted into ’‘cost’. This
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conversion can be very subjective and may depend on the
investigator. The uncertainty of the value of the loss ratio

c would be therefore too high to decide on a termination rule.

This suggests the search for an approach independent of the
loss ratio ¢, which can couple the use of a mixed criterion
based on pure bayesian rules, and some special feature of the

particular problem under investigation, as follows:

- The use of the transition probability given by the
expression 6.22. This expression quantifies the chance of
finding a new local maximum for the next sample. Or more
conveniently, the probability of not finding a new local

maximum

_ w(w+1)
NN-1) (6.39)

S/

could be used. For k consecutive samples, the expression

_ _ w(w+1)
-0 - ey (6.40)

gives the probability of finding at least one new local
maximum above the current threshold function level, after k
new samples. It may be used as a termination test by
comparison to some prefixed maximum confidence level. As the
expression 6.40 is dependent on k , its choice should be
carefully made by the investigator depending on the size of

the problem.
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- The current average value of the function f is an
unbiased estimate of the integral of f over the domain S. The
fluctuations of such an average are assessed through the
current estimate of the variance (or more conveniently the
coefficient of variation), which decreases as the sampling
proceeds. With uniform sampling and objective functions with
no sharp peaks, a small wvalue of the variance can be
interpreted as that the sample has scanned almost all
important regions. A stabilisation in the average value of the
objective function <can therefore be a good indicator for
termination. This of course assumes that the shape of the
objective function does not present sharp peaks which can be

easily missed out by the sample.

If the function is such that the value of its integral can be
evaluated by some approximation from the knowledge of the
local/optima, a possible criterion is to compare the average
of £ to such an approximation. The ratio of the two estimates
of the integral should lie within some prefixed bracket
linked to the accuracy required by the investigator. This is
precisely the case for the problem of identifying dominant
failure modes in structural reliability. More details are

given in chapter 7.

The coupling of the two criteria described above is believed
to be more relevant than an expected posterior loss based on
a hypothetical value of the loss ratio. The threshold levels
for both criteria have a direct physical meaning for the

investigator and are much easier to fix values for.
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6.3.6 Algorithm summary

In the following is a summary of an algorithm proposed for the
use in structural reliability

Step 1. Evaluate the critical angle. Set N=N"

Step 2. Sample N' points and evaluate their function
values, and the threshold for reduction.

Step 3. Relabel the points in decreasing order of
their function values.

Step 4. Reduce the sample according to the current
threshold.

Step 5. Clustering procedure of the reduced sample.

Step 6. Local search from the best point of each
sub-cluster, if not already used for such purpose,
or if it does not fall within a critical distance
of some local optimum.

Stép 7. Termination test : for Dbayesian rule of
equation 6.40, and integral approximation. If
positive, go to step 9.

Step 8. Draw new sample of size k and evaluate their
function values, and add them to the current set.
Set N=N+k, and update the critical angle. Go to
step 3.

Step 9. End
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Fig 6.2. Closeat point from uniform
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Fig 8.5. Closest point with probabllity
9989 for various sample sizos
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CHAPTER VII

STRUCTURAL RELIABILITY BY SIMULATION

The wide use of Monte Carlo (MC) methods in structural
reliability is relatively recent. However, the idea of MC
integration is not new in structural reliability; Warner and
Kabaila [1968], have applied it to reinforced concrete
columns, with some ’‘selective sampling’; this is in fact a
stratified sampling. But the lack of interest in the method in
the seventies has delayed its development, while the FORM and
SORM methods received much attention. It has been now widely
accepted that MC techniques, are not merely a fantasy approach
with uncertain outcome, but a serious alternative for
estimating the reliability of large structures which otherwise
cannot be handled with conventional methods. This began in the
early eighties with the paper published by Shinozuka [1983]
and Harbitz [1983] where the latter has applied importance

sampling technique to an 8-dimensional fatigue problem
7.1 HIT-OR-MISS MONTE CARLO

7.1.1 Crude hit-or-miss

The probability integral is formulated as follows

Ds = ffx(x)dx - fI[G(x)] £y (x)dx (7.1)
7 RP
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where I[.] is an indicator function which takes the value of
one if x is in F and 0 otherwise, and G(x) represents the
limit-state function. The probability p; is formulated now as
an expected value of I[G(x)] which is distributed according to

fy. An unbiased estimator of ﬁf is

N
Br= = Y IlG(x)] (7.2)
N o

where the x,’s are sampled from f,.

As the reliability of structures is very high, p, is very
small and for a method with inherent poor efficiency, a very
large sample is needed to achieve an acceptable confidence
level. The variance can be estimated as

ﬁf(l—ﬁf) (7.3)

// var(f,) = T

7.1.2 Improved Hit-or-miss
7.1.2.1 Reduced sample space

An improvement to the MC integration of the probability of
failure is by the partition of the region suggested by
Shreider [1966] in a paper by Harbitz [1986]. It has been
applied to the case of standardised uncorrelated normal

variables. Let x" be the point on the limit-state surface with
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smallest distance to the origin (i.e. the so-called design
point in the FORM analysis), and refer to this distance as B.
Every point within the hypersphere with radius P centred at
the origin is obviously a safe point. To make good use of such
information , a P-sphere truncated distribution ¢., is defined
as follows I

P o () i Uxl
a2y Gf 'xi=P (7.4)

-0 if lIxlzpB

¢ﬂ. tr (x) =

where %, is the chi-square distribution of degree n. Thus
sampling from ¢g,. instead of ¢, would exclude the P-sphere
from the sampling space allowing more points to be sampled
outside the safe domain for a given total sample size,
resulting in estimating a conditional probability of an order
of magnitude higher than the original one. In other words, the
so—cilled crossing rate becomes significant even for a small
sambie. The resulting variance reduction of the new estimator

ﬁﬁ can be shown to be

var (Bg, ) 2 (1 - x.2(B)) var (5, (7.5)

Csenki [1988] attempts to extend this idea, by excluding from
the sampling domain a much larger hypersphere. He suggested
the use of a hypersphere of radius R with largest probability
content, that can be inscribed in the safe domain, for a given
centre point a, using classical optimisation techniques. Its
probability content is equal to the distribution function of

the non-central chi-square distribution with n degrees of
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freedom and non-centrality parameter l al? , evaluated at r=R.

7.1.2.2 Importance sampling

If some distribution'hy entirely different from the original

distribution is used for sampling, equation 7.1 becomes

£y (x)
D = ,‘!;I[G(X) ] mhy(x) dx (7.6)

and p; is now the expected value of I[G(x)].f,(x)/h,(x). Two
major unknowns are to be found for a good sampling

distribution: its density function and its modal point(s).

A natural choice of h, is a function with the mode at the
point of maximum likelihood of the failure domain, this point
lies/%n the boundaries of F. Structures fail in many different
modes, leading to many local ’‘checking’ points; however the
case of a single failure mode is first considered so that any
ideas developed for this case can form the basis for handling

the multifailure case.

If the maximum likelihood point (MLP) is assumed to be unique,
it can in principle be found by wusing conventional
optimisation algorithms, but one should bear in mind that this
involves implicit limit-state function evaluations at points
which are not part of the sample. Those function values cannot

be accumulated with the sampled ones as they are
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deterministic, and therefore constitute an overhead cost to be
taken into account when comparing with uniform sampling or any
other method. Any possibility of wusing those points by
estimating their densities would have beneficial effect on the

method’s efficiency.

The choice of an importance density function is mainly a
user’s decision based on his prior knowledge of the integrand
function and the limit-state surface in the vicinity of the
assumed ’checking point’. But without such prior knowledge,
a common choice of the importance sampling density function is
the multinormal density with diagonal covariance matrix. The
covariance matrix may be adjusted to take advantage of any
appropriate information available. For the case of concave
limit-state function with Jjointly gaussian distributed
variables, a better choice is a half-space-truncated standard
gaus&ian density, defined on the half-space bounded by the
tanjent—hyperplane to the MLP. For other specific cases,
appropriate sampling distributions may be worked out to

minimise the variance.

In an attempt to develop a general method, with minimum prior
information specially concerning the ‘checking’ point,
Melchers[1988c] proposed a search based importance sampling
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