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ABSTRACT

The T ra ve llin g  S a le sm a n  P ro b le m  (TSP) deals with a salesman who, having started 

from a particular {h o m e) city, wishes to visit each city on a given list exactly once 

before returning home at a minimum total cost. The TSP has served as a test bed for 

almost every new algorithmic idea in combinatorial optimization. We discuss the 

motivation for the continued interest in finding good solutions to the TSP before 

reviewing some of the existing exact and heuristic solution methods to solve it. We 

also describe some of the popular practical applications of the TSP.

Three different relaxations are considered and applied for the TSP - the Shortest 

Spanning Tree relaxation, the Assignment Problem relaxation, and the Minimal 

Spanning Arborescence relaxation. These relaxations provide lower bounds on the 

solution of the TSP. The lower bounds in each case are derived from solving the 

respective lagrangean dual problems. The size of the problem is constantly reduced 

by deleting unwanted arcs from, and forcing required arcs into, the solution. This is 

achieved by sensitivity analysis methods and through investigating the structural 

properties of the graph. We also achieve large reductions in the problem size by 

exploiting the complementary dual properties of the minimal spanning arborescence 

and the assignment problem relaxations. We suggest a transformation of the 

symmetric travelling problem into an asymmetric one. This tightens the lower bounds 

obtained. The lower bounds are imbedded into an exact tree search procedure that 

incorporates some novel branching strategies.
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We describe an upper bound heuristic procedure that is applied at the root node of the 

tree search. The heuristic, which makes use of the spanning trees produced during the 

subgradient ascent, provides tight upper bounds. In many of the problems that were 

tested, near optimal solutions are obtained.

The Peano-Cesaro plane-filling fractal curve maps the unit interval continuously and 

recursively into the plane. A fast and simple heuristic algorithm, based on this fractal 

curve, is described and used to solve very large-scale TSPs in the plane.

We present computational results and discuss the performance of all the algorithms 

that have been developed. Conclusions and pointers for further research are provided.
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PREFACE

A few months before I began writing up this dissertation, I was travelling on a train 

between Madras and New Delhi. As is very common on Indian train journeys, I 

struck up a conversation with my fellow traveller who happened to be a physicist. 

"What do you do ?", he asked. I told him that I researched the travelling salesman 

problem. "Hasn’t that problem been solved y e t  ?", he exclaimed.

My fellow travellers’ disbelief was quite understandable. The travelling salesman 

problem (TSP) is one of the most extensively researched problems in operational 

research (OR) literature - "Literally person-centuries have been devoted to developing 

a sophisticated solution theory for the TSP", according to Fisher & Jaikumar [1981]. 

Yet, it retains its position as one of the most intriguing (and technically) "unsolved" 

paradigms in OR literature. According to Hoffman & Wolfe [1985] - "If, as in the 

TSP, the problem is to develop an algorithm that satisfies formal or informal standards 

of efficiency, then the TSP has not yet been solved".

The TSP contains two basic elements that make it an interesting and challenging 

problem: It is very easy to understand, yet difficult to solve. The simplicity of the 

problem ensures that research into it is not restricted to a handful of researchers, but 

to those from all branches of science. The difficulty of the problem acts as a 

challenge and attracts continued research. It is unlikely that this interest will cease. 

In the first chapter of this dissertation we will provide insights into the theoretical 

motivations for the continued search for good algorithms for the TSP. This motivation
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is derived from the computational equivalence of hard problems1, of which the TSP 

is an archetype.

In Chapter 1, we introduce the problem - its classification in the literature, its 

complexity and some of its commercial applications. A review of the current 

literature on the TSP is also provided. For a comprehensive and thorough treatment 

of all facets of the TSP, refer to the book by Lawler, Lenstra, Rinnooy Kan, & 

Shmoys [1985].

Chapters 2 to 5 contain the main contributions of this research. In Chapter 2, we 

analyze the minimal spanning tree as a relaxation for the TSP. We introduce some 

efficient methods to induce graph sparsity. We also give an upper bound algorithm 

(that is conveniently imbedded into the relaxation procedure) that produces tight upper 

bounds on the optimal solution value. In Chapter 3, we investigate the relationship 

between two complementary relaxations for the TSP - the assignment problem and the 

minimal spanning arborescence problem. The duals obtained through these two 

relaxations are used to induce greater sparseness in the graph in an iterative fashion. 

This, in turn, augments the lower bound. In Chapter 4, we describe a depth-first 

branch and bound algorithm that combines all the ideas developed in the earlier 

chapters. A transformation of the symmetric TSP into an asymmetric one helps 

tighten the lower bounds from the assignment and arborescence problems. These 

lower bounds are imbedded into a branch and bound procedure that incorporates some

!Mainly due to the efforts of Cook [1971] and Karp [1972], it became evident that many 
of the problems thought to be inherently hard are all computationally equivalent, in the sense 
that a polynomial algorithm for one of these problems could be used to solve all other 
problems in its class, in polynomial time.
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new and interesting branching criteria. All these chapters include extensive empirical 

analysis. To achieve this, we use some well known road map and Euclidean problems 

from the literature, some new Euclidean problems that have been generated and some 

randomly generated problems. The geometry of fractals is used in the design of a new 

heuristic for the solution of large-sized Euclidean TSPs. We describe and analyze the 

performance of this algorithm in Chapter 5.

Finally, Chapter 6 provides conclusions from the study and gives some directions for 

further research.
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CHAPTER 1

Introduction

1.0 Outline

In this chapter we introduce the travelling salesman problem. We provide a brief 

overview of the problem with a view to its classification in the literature, its 

theoretical importance and its apparent intractability. This will provide some insights 

into the reasons for the continued search for good solution methods to solve the 

problem. We also review some of the successful commercial applications of the TSP. 

In this dissertation, we deal, in the main, with algorithms for the symmetric travelling 

salesman problem. Integer programming formulations for this variation of the TSP 

are provided. We offer a review and classification of some of the exact and 

approximate algorithms for the solution of the problem; past efforts are reviewed and 

indications of current trends are given. Finally, in this chapter, we make some 

preliminary remarks on the implementation of the algorithms that will be developed 

in this dissertation - we include in this, a discussion of the data that will be used to 

test our algorithms.
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1.1 Overview of the problem

The travelling salesman problem (TSP) can be stated as follows:

Consider a salesman who, having started from a particular city (his 

home city), wishes to visit each city on a given list exactly once before 

returning home. If the cost of travel between each of the pairs of cities 

on his list is known, the salesmans’ problem is to select the order in 

which he visits the cities (his tour) so that the total cost of his travels 

is minimized.

The term cost here can be taken to mean distance, time, monetary or any other similar 

unit. If the cost of travel from a city i to a city j is the same as the cost of travel 

from j to i, then the resulting problem is a special case of the TSP, called the 

symmetric travelling salesman problem (STSP). The general problem - one where the 

costs are not required to be symmetric - is referred to as the asymmetric travelling 

salesman problem (ATSP) or simply, the TSP. The central theme of this dissertation 

is the development of algorithms for the STSP. For an interesting review of the 

history of and the motivation behind the continued research into the TSP refer to 

Hoffman & Wolfe [1985]. A major survey of research on the TSP is the excellent 

book by Lawler et al. [1985].

The optimal solution to the TSP is a collection of arcs that constitute a proper tour 

with minimum total cost. Selection of an optimal tour is not over a continuum but 

over the set of feasible tours. Optimization problems of this type are classified as
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combinatorial. The TSP belongs to the class of problems known as combinatorial 

optimization, which can be defined (Lawler [1976]) as follows:

Combinatorial optimization is the mathematical study of finding an 

optimal arrangement, grouping, ordering, or selection of discrete 

objects.

Typical problems in combinatorial optimization are: an optimal selection among 

various investment possibilities, the best grouping of customers, optimal ordering of 

jobs on machines, optimal location of facilities, etc. Major references on aspects of 

combinatorial optimization are Lawler [1976], Christofides etal. [1979], Papadimitriou 

& Steiglitz [1982], Nemhauser & Wolsey [1988].

An instance of a combinatorial optimization problem (like the TSP) can be seen as an 

implicit description of a finite set of feasible solutions. A weight function assigns to 

each of these solutions a value. The optimal solution is then that feasible solution 

with minimum (or maximum, depending on the problem) value. These problems are 

mostly well-defined in the sense that an optimal solution always exists if the set of 

feasible solutions is non-empty. Thus, it is not so much the existence of the set of 

feasible solutions or, indeed the existence of an optimal solution, but rather the 

computational effort required to obtain the optima which is of central interest in the 

design of algorithms for combinatorial optimization problems. The computational 

effort required to solve a problem forms a sound basis for its classification. To this 

extent, the TSP, which has served as a testing ground for almost every new
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algorithmic idea in combinatorial optimization, has enabled the classification of 

problems as h a rd  or ea sy .

1.2 Easy and hard problems

The optimal solution to combinatorial problems can, in principle, be found by 

complete enumeration. The major objective of research in this area is to avoid 

complete enumeration due to the computationally explosive nature of problems of this 

genre.

A major advance in the understanding of these problems was their classification into 

easy and hard problems. The TSP was one of the first optimization problems thought 

of as being hard in a specific sense (Edmonds [1965a]); problems for which 

algorithms are essentially some form of enumeration. To understand these concepts 

more clearly, we introduce the following informal definition for the c o m p u ta tio n a l  

c o m p le x ity  of an algorithm:

The computational complexity of an algorithm may be defined as (a 

bound on) the number of elementary operations necessary to solve an 

instance of a problem, given its s iz e , n.

Thus, for a set of instances of a problem of given size, this forms a measure of the 

worst-case behaviour of an algorithm to solve it. The size of an instance of a problem 

is measured by the length - the number of bits - of the shortest coding necessary to 

completely specify the input data.

- 4 -



Given an instance of size n and a real function g(n) of n, we say that an algorithm 

is of complexity o(g(n)) if f(n), the maximum time required to execute the algorithm 

is such that: 1/Ml < c |s(n )|. Here, c is a constant (which depends on the type of

computer that is used) and | K  | denotes the absolute value of K .

Algorithms in O(n) are called linear, those in 0(nk) are called polynomial; those 

in 0(ln) are called exponential. An algorithm is considered good or efficient if its 

worst-case complexity is bounded by a polynomial function. Problems for which an 

efficient algorithm exists are called easy. They belong to the class P of problems. P 

is a subclass of the class of problems which can be solved in polynomial time by a 

nondeterministic1 algorithm. This class was introduced by Cook [1971] and Karp 

[1972]. The latter called the class NP, for A/on-deterministic Polynomial time 

problems. The TSP belongs to an important subclass of NP, the class of problems 

known as NP-complete (see Karp [1972]). Every A/P-complete problem "truly" 

belongs to the class NP, in the sense that if there exists a polynomial algorithm to 

solve it, then all problems in NP are polynomially solvable. However, the general 

conjecture is that such polynomial algorithms do not exist for A/P-complete problems, 

for the implication would then be that P=NP (ie., all problems in NP are easy, which 

is unlikely).

For a review of the complexity of the TSP refer to Johnson & Papadimitriou [1985]. 

For more general surveys in this area, see Aho, Hopcroft & Ullman [1974], Garey &

1A non-deterministic algorithm is one that contains statements of choice in addition to the 
normal deterministic statements. The functioning of such an algorithm is analogous to 
dividing a program into concurrently processed subprograms. If all choices are enumerated, 
then a non-deterministic algorithm becomes a deterministic one.
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Johnson [1979] and Papadimitriou & Steiglitz [1982]. The intractability of the TSP 

(and other hard problems like it) does not imply that it is unsolvable. The direct 

implication is that, in the worst-case, the time required to obtain an optimal solution 

grows at an exponential rate as the number of cities in the problem increases. 

Moreover, in such instances, there is no guarantee that an optimal solution will be 

found in a reasonable amount of computing time.

Hence, the classification of algorithms into two broad categories: (a) e x a c t so lu tio n  

a lg o rith m s  that produce the optimal solution, but which carry the risk of having to 

expend a lot of computing time and the disadvantage of being able to solve only 

small-sized instances; (b) h e u r is tic  or a p p ro x im a te  algorithms that produce a feasible 

solution in a reasonable amount of computing time with the risk that it may be sub- 

optimal.

1.3 Notational and methodological preliminaries

Throughout this dissertation, we will use the notation Px to define a problem X. We 

will denote the value of an optimal solution to problem X by z (px ). We will use 

G  — (n , a ) to denote both directed as well as undirected graphs. Here,N =  {1, . . . ,  n } 

is the set of n n o d es . In the undirected case (the STSP), A  =  { 1, . . . ,  m } is the set of
n (  n — 1)

m  undirected arcs, where m =  —-------- L; in the directed case (the ATSP),
2

A  =  { ( i j ) \ i , j = l , w i l l  represent the set of n 2 directed arcs.

Below, we provide a brief introduction of important aspects related to algorithms 

which will be developed in this dissertation.
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1.3.1 Lagrangean relaxation

Consider the following optimization problem: 

P r o b le m  Px :

min f ( x )
X

s.t g i ( x )  =  b { ( z = l , . . . , m )

X  E  S

Here, x  is a vector, f ( x )  and g ^ x ), ( i =  1, . . . ,  m ) are arbitrary functions and S  is the 

set of feasible solutions. A re la x a t io n  of problem Px is given by:

R e la x a t io n  Rx :

min f { x )
X

S.t. X  E  S

A relaxation is, therefore, a subproblem of the original problem in which some of the 

constraints have been ignored. A la g ra n g e a n  re laxa tion  of the problem is obtained 

by associating a la g ra n g e  m u lt ip l ier  Xi with each constraint g-(jc) =  b*. The problemPx 

with the lagrangean objective function is then:
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P r o b le m  Px ( X ):

min f ( x )  + x { g ( x ) - b )
x , X

S.t. X  G  S

Here, X =  [ X x X,m) and g ( x )  =  [ ^ ( x ) g m( *) ] 7 For any given X, z [p x ( \ ) )  

is a lo w e r  b o u n d  on the optimal solution o f the minimization problem Px . The 

problem is then one o f  determining X * , the "best" multipliers that maximizes 

Z (PX(M )  so that the best lower bound is rendered close to z (p x ).

For surveys of lagrangean relaxation for combinatorial optimization problems, refer 

to Geoffrion [1974], Shapiro [1979] and Fisher [1981].

1.3.2 Branch and bound

A branch and bound algorithm to solve the minimization problem Px is an implicit 

enumeration procedure. It solves a combinatorial optimization problem by breaking 

up the set of feasible solutions into successively smaller, manageable subsets. A 

lower bound on the value of the best solution is obtained by solving a relaxed problem 

in each of the subsets under consideration. The solution obtained through this 

relaxation is either: (a) feasible for the original subproblem - no further enumeration 

of the subset is required; (b) with an associated lower bound which is worse than the 

value of the best feasible solution obtained so far (an u p p e r  b o u n d )  - in which case 

the subset is considered implicitly enumerated { fa th o m ed ); (c) infeasible for the 

original subproblem but with a lower bound less than the upper bound - in which case 

the subset is partitioned further and the enumeration continues.



This process is also known as a tree search procedure. The main ingredients of a 

branch and bound algorithm are:

o branching rules: a rule for partitioning the feasible set St-, of the current 

subproblem Px . into subsets ,..., S • with the help of branching
R

constraints such that U S - = S t-.
y=i

o lower bounding method: the relaxed subproblem to be solved, 

o upper bounding method: a heuristic algorithm for finding feasible solutions 

to problem Px .

o search strategy: rules for choosing the next subproblem to be considered. 

Some rules commonly used are depth first (LIFO), breadth first (FIFO), best 

first, and mixed strategies.

The branch and bound procedure can be depicted by a rooted tree where the root node 

corresponds to the original problem. The nodes of the tree correspond to subproblems 

in the enumeration process. The branching rules determine the successor nodes of a 

particular node in the search tree. To avoid any confusion in terminology between the 

nodes of the tree search and nodes of the graph, we will sometimes refer to the nodes 

of the tree search as tree nodes.

For general surveys on branch and bound methods see Garfinkel & Nemhauser [1972, 

Chapter 4], Balas [1975], Balas & Guignard [1979], Beale [1979], Garfinkel [1979] 

or Spielberg [1979].
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1.4 Some applications of the TSP

The greatest value of the TSP is probably its theoretical importance. The TSP is an 

archetypal combinatorial optimization problem. This, combined with its intrinsic 

simplicity has encouraged a lot of research into the problem. The TSP is also of great 

practical importance even though "there are not many salesmen clamouring for an 

algorithm", Hoffman & Wolfe [1985]. Several real-world problems can be solved 

using a direct TSP formulation or a variant of it. Some examples are:

Job sequencing:

n jobs are to be processed on a machine, for example, a furnace. Each job has a start 

temperature t L and a completion temperature T r  If job j  follows job /, the changeover 

cost is the cost of the change in temperature (the time lost) from T i to t j .  The 

problem of determining an ordering of the jobs such that the total changeover cost is 

minimized is equivalent to solving a TSP with cost matrix C =  c-y . This example 

is attributable to Gilmore & Gomory [1964] who gave a polynomially solvable 

algorithm after identifying a special structure in a generalized version of the problem.

Vehicle routing:

Given n customers with known locations and demands for some commodity that is 

supplied from a single depot by m  vehicles, each with a known capacity 

Q j ( j =  1 - .  , m ), the problem is to design routes for each of the vehicles so that the 

total travel cost is minimized. Given an assignment of customers to vehicles, the best 

route for a vehicle in this basic formulation of the routing problem is a TSP.
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Computer wiring:

This type of problem is often encountered in the design of computer circuits (refer to 

Lenstra & Rinnooy Kan [1975]). One aspect of the problem consists of minimizing 

the total length of wiring used to inter-connect a given subset of p in s  with known 

position on m o d u le s  such that exactly two wires are attached to any pin.

Automation in manufacturing:

A more recent and interesting example is the one that occurs in the production of 

printed circuit boards. Some of the manufacturing operations (like drilling and 

component insertion) are performed by numerically controlled machines. The problem 

of optimizing the sequence of machine movements in order to reduce the overall 

processing time can be modelled as an instance of the TSP. For further details on this 

application refer to McCallum [1986], Crama e t  a l  [1989].

There are many other important applications of the TSP. For further details, refer to 

Lenstra [1974], Lenstra & Rinnoy Kan [1975] and Lenstra [1976] and Garfinkel

[1985].
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1.5 Formulations of the STSP

In this section we give the w ell known integer programming formulations o f the 

STSP. Consider a complete undirected graph G  =  ( n ,a ), where N  is the set o f n 

nodes and A  is the set o f m  arcs. Let c l be the cost o f arc / .  We som etim es use 

( i , j )  to denote an arc (whose terminal nodes are i and j )  and c-y to denote its cost.

Let x { = 1  if  arc / is in the solution 

= 0 otherwise.

The STSP can then be formulated as:

P r o b le m  PSTSP :

m

min c l x l
X /=  1

(1.1)

m

S.t. Xl =
/=  1

(1.2)

(NAl

w
5

'

V K, =  ( s t , S t ) , S t c N , (1.3)

x t e  { 0 , 1}, / =  1 (1.4)

Here, S t = N \ St and Kt = [ s t , S t } is the cutset o f arcs in G. If it and j l denote the 

terminal nodes o f  an arc / , then K t =  j/ e A  i t e  S t , j t G St j.

Constraints (1.2) and (1.3) are equivalent to the follow ing two sets o f constraints:
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(1.5)SI, V/r, = (s,,s,),s,c N,
l e  K t

Y ^ x i =  2 ' / = l , . . . , / i .  (1.6)
leAi

Here, A i is the set of arcs incident at node i. The inequalities (1.5) represent the 

s u b to u r  e lim in a t io n  constraints, while those in (1.6) are the d e g ree  co n s tra in ts  which 

constrain the degree of each node, i e N,  to be equal to 2.

The subtour elimination constraints prevent the formation of su b to u rs  through subsets 

of the nodes. Such subtours in which the degree of each node is equal to 2 would 

result if these constraints are ignored (see Figure 1.1).

Figure 1.1 An example with subtours

If we use the notation ( i j )  to denote an arc connecting nodes i and j ,  a compact 

formulation for the STSP is given by:
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Problem P^JTsp :

min
X

E E Ci jX:j
t e N  j > i

(1.7)

S.t. T , xj i + E x i] =
j > i

=  2 , V i s  N , (1.8)

E E *ij  *
i  e  S t ye S t

S ' - 1 , V S,cW , (1.9)

j > i

x i j e  { o , i } , i j s  N ,  j >  i. (1.10)

The subtour elimination constraints, (1.9) can also be expressed as follows:-

E E*,y+ E E xij - 2’ v s t czN. (lid
i e S t j  g S t i e S t j e S ,

j > i  j > 1

1.6 Algorithms for the TSP based on branch and bound

Most of the exact algorithms for solving the TSP are of a branch and bound, 

enumerative type. These algorithms are classified according to the relaxation that is 

used to derive the lower bounds. For a thorough treatment, refer to Balas & Toth 

[1985] or Christofides [1979].
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1.6.1 Bounds from the shortest spanning tree

Spanning tree based approaches for the STSP are derived by relaxing the degree 

constraints in problem PSTSP • We investigate this relaxation in great depth in Chapter 

2 of this dissertation. This relaxation was first used for the STSP by Held & Karp 

[1970, 1971] and, simultaneously, by Christofides [1970]. The ideas that resulted out 

of the implementation of this relaxation for the STSP were instrumental in initiating 

the extensive use of lagrangean relaxation for combinatorial optimization problems. 

Subsequently, this relaxation has been applied for the STSP in effective algorithms by 

Helbig, Hansen & Krarup [1974], Smith & Thompson [1977], Volgenant & Jonker

[1982] and Gavish & Srikanth [1983].

The branching rules in algorithms based on this relaxation generate subproblems in 

the tree search by fixing in (or out) of the TSP solution, arcs of the spanning tree 

incident at a node whose degree in the spanning tree is not equal to 2. Gavish & 

Srikanth [1983] select arcs of the spanning tree to be fixed in (or out) at a node of the 

tree search, such that the penalty for admitting the chosen arc into the TSP solution 

is maximal. Two subproblems are created that admit (alternatively, forbid) this arc. 

The computational results of Volgenant & Jonker [1982] indicate that a depth first 

branching strategy is more suitable for spanning tree based approaches.

Gavish & Srikanth [1983] exploit the spanning tree solutions generated during the tree 

search (that are infeasible for the STSP) to obtain upper bounds, using what they call 

an im b e d d e d  h eu r is t ic . In their approach, a series of chains is first obtained by 

removing from the spanning tree, arcs incident at nodes whose degree is greater than 

2. These chains are connected to form a tour which is then improved using the
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interchange heuristic of Lin & Kemighan [1973]. They report very tight upper bounds 

which enable many of the subproblems of the tree search to be discarded. Upper 

bounds are also obtained in the spanning tree based algorithm of Volgenant & Jonker

[1982] . They use simplified forms of the heuristics of Christofides [1976] and Lin 

[1965] to obtain tight upper bounds.

Both Gavish & Srikanth [1983] and Volgenant & Jonker [1982] use problem reduction 

procedures based on sensitivity analysis. This procedure - termed by the latter as 

branch chord exchanges - involves the forcing of variables into (or out of) the 

problem.

Computational experience (see Balas & Toth [1985]) indicates that the most efficient 

branch and bound algorithms for the STSP are the spanning tree based approaches 

of Smith & Thompson [1977], Volgenant & Jonker [1982] and Gavish & Srikanth

[1983] . Problems of up to 100 nodes can be solved using these algorithms in a 

reasonable amount of computing time. The main advantage of this approach is that 

spanning trees over each of the subproblems can be computed relatively easily using 

the efficient algorithms of Dijkstra [1959], Prim [1957], or Kruskal [1956]. The 

algorithms of Dijkstra and Prim have running time complexity of 0 (n 2) while the 

algorithm of Kruskal is of complexity 0 (  | A | log | A | ), where | A | is the number 

of arcs in the graph. In addition to the ease of computation, the lower bounds 

produced by the spanning tree based approaches are quite tight (normally to within

0.5% of the optimal STSP solution). Thus, this approach works very well for the 

STSP.
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1.6.2 Bounds from the shortest spanning arborescence

The shortest spanning arborescence is used for directed graphs (ATSP) in a similar 

manner as the spanning tree is used for the STSP. Spanning arborescences can be 

constructed using the efficient algorithms of Edmonds [1967], Fulkerson [1974] or the 

algorithm of Taijan [1977] which has a complexity of 0 (n 2). However, the quality 

of bounds produced by this relaxation for the ATSP is, on average, poor when 

compared to the quality of the spanning tree bounds for the STSP. This major 

shortcoming makes procedures for the ATSP based on this relaxation inferior (see 

Smith [1975] and Hong [1978]) in comparison to those that use the assignment 

problem relaxation.

1.6.3 Bounds from the assignment problem

The assignment problem (AP) is the most direct and frequently used relaxation for the 

TSP. The removal of the subtour elimination constraints in the TSP formulation 

yields an assignment problem with the same cost function as the TSP. The first AP 

based approaches of this kind were those of Eastman [1958], and Shapiro [1966]. The 

term branch and bound evolved due to the algorithm of Little, Murty, Sweeny & Karel 

[1963] in which an assignment type relaxation is used for the TSP. Subsequently, 

improved AP based algorithms have been developed by Bellmore & Malone [1971], 

Smith, Srinivasan & Thompson [1977] and Carpaneto & Toth [1980].

The AP with the TSP cost function is a strong relaxation for the ATSP. Lower 

bounds are, on average, within 1% of the TSP optimal solution (see Balas & Toth
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[1985]). However, this approach is weak for the STSP because of the prohibitively 

large number of subtours contained in the AP solution on graphs with symmetric 

costs. Jonker, De Leve, Van der Velde & Volgenant [1980] suggest a method to 

improve the AP lower bounds for the STSP which also attempts to reduce the number 

of subtours in the AP solution. They achieve this by transforming the distance matrix 

of the symmetric problem into an equivalent partially asymmetric one. However, even 

this transformation does not make the AP relaxation attractive for the STSP.

The branching rules used in conjunction with the AP relaxation are normally based 

on subtour breaking, or subtour patching inequalities. An efficient implementation of 

these rules is given by Smith, Srinivasan & Thompson [1977] who use a depth first 

branching scheme. Carpaneto & Toth [1980] also give a very efficient implementation 

of such branching rules along with a breadth first branching scheme.

The AP can be solved in at most 0 (n 3) steps by the Hungarian algorithm (see Kuhn 

[1955], Christofides [1975] or Lawler [1976]). Typically, during the branch and 

bound, the introduction of branch constraints based on the AP solution of the problem 

at the node i of the tree search (say AP ̂  necessitates the solution of an AP at a 

successor tree node j  (say APj) in which an arc in the optimal solution of APt has to 

be excluded from APj. The solution to APi can be used to solve APj with the help 

of a simplified Hungarian method requiring at most o (n 2) steps - see Bellmore & 

Malone [1971].

The violated subtour elimination constraints in the AP solution can be introduced into 

the objective function of the TSP in a lagrangean manner as in the case of the 

spanning tree. We can then solve the AP with a lagrangean objective function.
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However, due to the large number of subtour elimination constraints (which increase 

exponentially with n), the number of multipliers in the lagrangean objective function 

increases exponentially rather than linearly with n. Balas & Christofides [1981] 

introduced a polynomially bounded procedure for approximating the maximum of a 

restricted lagrangean dual problem. Bounds obtained through this procedure were 

found to be, on average, less than 0.5% from the optimal (see Christofides [1979]). 

This approach is explained in greater detail in Chapter 3 of this dissertation.

1.6.4 Other approaches

The efforts of Fischetti & Toth [1988b] have led to a new solution approach called 

additive bounding approach for combinatorial optimization problems. This is a 

composite procedure that takes into consideration many different substructures that 

may be identified in a problem. Each of these substructures constitute a bounding 

procedure. The algorithm then delivers a sequence of increasing lower bounds (for 

a minimization problem) by considering the residual costs of a bounding procedure 

at one step as the input cost matrix for the bounding procedure used at the 

immediately subsequent step. This procedure is quite similar, in principle, to the 

procedure for obtaining bounds for the ATSP suggested by Christofides [1972] and 

also the restricted lagrangean approach of Balas & Christofides [1981]. The difference 

being that, while the earlier efforts use only the reduced costs from the assignment 

problem to obtain an increasing lower bound sequence, the additive bounding 

approach incorporates several bounding procedures sequentially. The additive 

approach has been applied to the ATSP (Fischetti & Toth [1988c]), the multiple depot
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vehicle scheduling problem (Carpaneto, Dell’Amico, Fischetti & Toth [1988]), to the 

Prize Collecting TSP (Fischetti & Toth [1988a]) and to the STSP (Carpaneto, Fischetti 

& Toth [1989]).

The 2-matching relaxation for the STSP is analogous to the AP relaxation for the 

ATSP. Bellmore & Malone [1971] use it for the STSP in a similar manner to their 

use of the AP in their algorithm for the ATSP. The violated subtour elimination 

constraints can be introduced into the objective function and the resulting lagrangean 

dual problem can be solved using the restricted lagrangean approach of Balas & 

Christofides [1981]. However, the major obstacle to the use of this relaxation for the 

STSP has been the lack of an efficient implementation of a 2-matching algorithm (see 

Balas & Toth [1985]) although the problem is polynomially solvable (see Edmonds 

[1965b]).

The w-path problem as a relaxation of the TSP has been used by Houck, Picard, 

Queyranne & Vemuganti [1980]. Computational experience (Christofides [1979]) has 

indicated that the bound obtained by this method for the STSP is considerably weaker 

than those obtained from the spanning tree. It is, however, comparable to the bounds 

from the spanning arborescence for the ATSP. Furthermore, the complexity of 

algorithms for the spanning tree and arborescence is less than that of the dynamic 

programming algorithm for solving the w-path problem, which takes 0 (n 3) steps. 

Thus, this relaxation for the TSP is only used when side constraints (like time 

windows and precedences) are added to the pure TSP as the extra constraints can be 

accommodated easily by the dynamic programming algorithm to solve the «-path 

problem.
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Recently, there have been attempts to design algorithms for the solution of large-sized 

problems which can exploit the increasingly large computational power made available 

through new technology. An example is the design of both exact as well as heuristic 

parallel algorithms for parallel computers (as opposed to sequential algorithms on 

sequential computers). The algorithms of Mohan [1983] and Pekny & Miller [1988] 

are reasonably good implementations of parallel algorithms. The latter are able to 

solve ATSPs of size 3000 nodes with using the parallel version of an AP algorithm.

1.7 Linear programming based approaches

The linear programming relaxation of the TSP is one in which the integrality 

constraints are removed. In addition, the subtour elimination constraints are relaxed. 

The optimal TSP tour is then obtained by a cutting plane approach combined with (if 

necessary) a branch and bound procedure. The seminal paper in this regard is that of 

Dantzig, Fulkerson & Johnson [1954]. Miliotis [1976, 1978], Land [1979] and 

Fleischmann [1982] also used the LP relaxation, combined with the use of cutting 

planes, to solve medium-sized TSPs. However, the main drawback to approaches 

which incorporate cutting planes is that the integrality of the solution is not guaranteed 

at each stage of the procedure.

A major advance in the use of LP based TSP algorithms was due to Grotschel [1977, 

1980] who developed linear characterizations of the TSP poly tope. More of these 

inequalities, known as facet-inducing linear inequalities were introduced by Grotschel 

& Padberg [1979a, 1979b]. These inequalities, known as valid inequalities, are the
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strongest possible cutting planes. They have been used by Grotschel [1980], Padberg 

& Hong [1980] and, most successfully, by Crowder & Padberg [1980], in conjunction 

with a branch and bound type of procedure to solve large-sized TSPs. All these 

procedures make use of sophisticated techniques to identify facet inducing inequalities. 

When no more facets can be identified, branching is performed. A recent advance in 

the development of LP based algorithms is the polyhedral approach of Padberg & 

Rinaldi [1987] who solve large instances of STSPs using a branch and cut algorithm. 

Their successes strongly indicate that polyhedral approaches could be the way forward 

to solving large instances of combinatorial optimization problems. A major reference 

in the use of LP based approaches for the TSP is Grotschel & Padberg [1985] and 

Padberg & Grotschel [1985], while Crowder, Johnson & Padberg [1983] review the 

use of these methods to solve general combinatorial optimization problems.

1.8 Heuristic algorithms

The TSP has been the focus of extensive research into the analysis and design of 

heuristics for combinatorial optimization problems. Many of the efficient heuristic 

approaches currently in use evolved from applications made for the TSP. The sheer 

number of heuristics for the TSP makes it impossible to review all such approaches 

in this section. We will, therefore restrict ourselves by summarizing the most efficient
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heuristics for the TSP. In particular, we concentrate on the algorithms for the STSP 

and the Euclidean TSP2.

Much of the research attention in heuristics for the TSP has been focused on 

algorithms for the STSP and the Euclidean TSP. The development of heuristics for 

the ATSP is still in a relative state of infancy when compared to the advanced levels 

of effectiveness that are possible by heuristics for the STSP. Akl [1980] proposed an 

algorithm for the ATSP based on the minimum spanning digraph. The savings 

method normally used in heuristics for vehicle routing instances has also been used 

for the ATSP (by Golden [1977], Frieze, Galbiati & Maffioli [1982], Golden, Bodin, 

Doyle & Stewart [1980]) has also been. Karp [1979] suggested a patching algorithm 

that uses assignment subtours to get upper bounds for the ATSP.

Major surveys on heuristics for the TSP are those of Rosenkrantz, Steams & Lewis 

[1977], Golden, Bodin, Doyle & Stewart [1980], Adrabinski & Syslo [1983] and 

Golden & Stewart [1985]. Heuristics for the TSP can be classified into three major 

groups: tour construction procedures, tour improvement procedures and composite 

procedures.

Tour construction procedures commence with some initial subtour or starting point. 

A feasible TSP solution is constructed by inserting unvisited points into the tour being 

constructed in a sequential manner. The main components of this approach are: (a) 

the choice of the initial subtour (or starting point); (b) selection criterion which

2The Euclidean TSP is the problem of finding a tour of minimal length through n given 
points distributed anywhere in d-dimensional Euclidean space. The distance between any two 
points is given by the Euclidean distance metric.
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decides on the point to be inserted next (eg. the nearest neighbour); (c) insertion 

criterion which decides on the position for the selected point in the growing tour (eg. 

the cheapest insertion rule). The savings algorithm of Clarke & Wright [1964] is an 

example of a tour construction procedure. Heuristics based on nearest addition, 

nearest insertion, cheapest insertion, or a farthest insertion principle belong to this 

class. Prominent heuristics belonging to this class are the arbitrary insertion algorithm 

of Rosenkrantz, Steams & Lewis [1977], the convex hull insertion algorithm of 

Stewart [1977], and the greatest angle insertion procedure of Norback & Love [1977, 

1979].

Tour improvement procedures improve some feasible initial tour through arc 

exchanges. This initial tour can even be a random tour in some cases. In a general 

step of the algorithm r arcs of the feasible tour are exchanged with r arcs not in the 

tour if: (a) the result is also a feasible tour, and (b) the length of the new tour is less 

than that of the previous tour. This is referred to as an r-opt procedure (Lin [1965]), 

where r refers to the number of arcs considered for exchange at each step. Although 

quite simple, 2-opt or 3-opt procedures produce good solutions in most cases. The 

most successful algorithm of this class is the variable r-opt algorithm of Lin & 

Kemighan [1973]. In their algorithm, the best value of r is decided dynamically at 

each iteration. Although it requires greater computational effort to code than either 

a 2-opt or a 3-opt procedure, this heuristic produces very good solutions that tend to 

be near-optimal. Or [1976] suggested a modified 3-opt procedure that also performs 

very well. For a description of this procedure, see Golden & Stewart [1985]. The 

ideas of this modified 3-opt approach are applied in an algorithm described in Chapter 

2  of this dissertation.
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Composite procedures begin with a tour construction approach and improve the 

resulting tour using a tour improvement approach.

There are, however, several specialized heuristic algorithms for the TSP that do not 

fall into any of the classes described above. Christofides [1976] developed a heuristic 

which combines a minimal spanning tree with a perfect matching on its odd degree 

nodes. A tour, known as an Eulerian tour, is obtained which may contain some nodes 

more than once. A feasible TSP tour is obtained from the Eulerian tour by deleting 

from it nodes that have already been encountered. This algorithm has a worst-case 

performance guarantee of _  times the optimal TSP solution. We describe this 

algorithm in greater detail in Chapter 2.

Karp [1977] gave a partitioning procedure for the Euclidean TSP which, for every 

e > 0, produces a tour of cost not greater than (1 + e ) times the optimal TSP solution 

with probability that tends to 1 as n —»<». Furthermore, the algorithm runs in time 

k(e) n + 0[n  log /i), where k(e) is a constant dependant on the choice of e.

Kirkpatrick, Gelatt & Vecchi [1982, 1983] developed a novel tour improvement 

approach called simulated annealing which exploits the analogy between combinatorial 

optimization problems (like the TSP) and the statistical mechanics of large physical 

systems. This approach has been the subject of extensive research recently. The 

method (named simulated annealing because of its analogy to the physical 

phenomenon of annealing) is based on probabilistically accepting intermediate 

increases in the solution value - produced by the tour improvement steps - through a 

set of user-controlled parameters. For further details, see Golden & Skiscim [1986],
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Bonomi & Lutton [1984]. For a general overview of simulated annealing, refer to 

Van Laarhoven & Aarts [1987] and Aarts & Korst [1988].

Bartholdi & Platzman [1983] apply the geometry of fractals to develop a scheme for 

solving combinatorial optimization problems. They apply it to design ano(n  log n) 

algorithm for the Euclidean TSP (see Bartholdi & Platzman [1982] and Platzman & 

Bartholdi [1989]). To date, however, no empirical analysis on the performance of 

fractal-based TSP algorithms is available in the literature. In Chapter 5, we develop 

an algorithm based on a fractal curve that incorporates improvement ideas to get 

reasonably good solutions to very large-sized problems.

1.9 A note on the implementation of algorithms

In this section, we lay the foundations for the analysis of the algorithms that will be 

developed in the remaining chapters of this dissertation. In many cases, there may be 

a wide gap between the statement of an algorithm and its (computer) implementation. 

Some of the constructs of implementation could be the "best" algorithms to solve 

subproblems encountered; the "best" values for parameters like step-size, the number 

of iterations, and so on. We will try and explicitly outline all implementational 

aspects in an attempt to narrow the gap between the statement and the implementation 

of our algorithms.

Often, what is "best" is declared equivalent to what is "fastest". This again is 

dependent on the "best" algorithms (and codes) for subproblems; the "best" data 

structures; programming competence and so on. Moreover, codes can be made to run
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faster by modifying them to suit a specific implementation on a specific computer and 

compiler. Wherever possible, the best codes, data structures and algorithms are used 

in our algorithms. However, we consider such implementational aspects to be beyond 

the scope of this research and therefore, question the sagacity of comparing algorithms 

merely on the basis of running time. However, we perform such comparisons and 

provide running times whenever we feel that a realistic and proper analysis is possible. 

In the absence of this, we use other methods of comparison (like number of iterations, 

number of trees, number of nodes of the tree search, and so on).

The test data used to evaluate the performance of our algorithms come from different 

sources. Table 1.1 provides a list of these problems along with their sources and 

optimal solution values. Other problems that are used will be referred to wherever 

appropriate. We have generated 15 Euclidean problems - 5 problems each with «=50, 

n=65, n=75, and /i=100. The ry-coordinates for these problems have been drawn 

randomly generated on the integers 1 ,.. . ,  1000. A listing of the coordinates for these 

problems, named KC500-KC504, KC650-KC654, KC750-KC754, and KC1000- 

KC1004 is provided in Appendix 1.1. The optimal solution for each of these 

problems is also given therein. The cost matrices for each of these problems were 

calculated using the Euclidean metric, rounded up to the nearest integer.
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Table 1 - Description of some well-known test problems from the literature

Problem

Name

Size

n

Problem

Type

Optimal

Solution

Source

DF42 42 Road map 699 Karg & Thompson [1964]

HK48 48 Road map 11461 Held & Karp [1962]

GR48 48 Road map 5046 GrOtschel [1977]

ST481 48 Euclidean 9729 Smith & Thompson [1977]

ST482 48 Euclidean 10680 Smith & Thompson [1977]

ST483 48 Euclidean 10180 Smith & Thompson [1977]

ST484 48 Euclidean 9984 Smith & Thompson [1977]

ST485 48 Euclidean 9844 Smith & Thompson [1977]

KT57 57 Road map 12955 Karg & Thompson [1964]

ST600 60 Euclidean 10374 Smith & Thompson [1977]

ST601 60 Euclidean 11703 Smith & Thompson [1977]

ST602 60 Euclidean 11777 Smith & Thompson [1977]

ST603 60 Euclidean 12699 Smith & Thompson [1977]

ST604 60 Euclidean 12497 Smith & Thompson [1977]

ST605 60 Euclidean 12262 Smith & Thompson [1977]

ST606 60 Euclidean 8073 Smith & Thompson [1977]

ST607 60 Euclidean 8553 Smith & Thompson [1977]

ST608 60 Euclidean 8903 Smith & Thompson [1977]

ST609 60 Euclidean 9156 Smith & Thompson [1977]

NCE50 50 Euclidean 427* Christofides &  Eilon [1969]

NCE75 75 Euclidean 536* Christofides & Eilon [1969]

NCE100 100 Euclidean 632* Christofides & Eilon [1969]

KF100A 100 Euclidean 21282 Krolak, Felts & Marble [1971]

KF100A 100 Euclidean 20749 Krolak, Felts & Marble [1971]

KF100A 100 Euclidean 22068 Krolak, Felts & Marble [1971]

GR120 120 Road map 6942 GrOtschel [1980]

LK318 318 Euclidean 41345 Lin & Kemighan [1973]
The best known values
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CHAPTER 2

A Minimal Spanning Tree Relaxation of the

Symmetric Travelling Salesman Problem

2.0 Outline

In this chapter we investigate the shortest spanning tree relaxation of the STSP. The 

relaxation approach was introduced by Held & Karp [1970] and, independently, by 

Christofides [1970]. We describe the basic ideas of the approach before reviewing the 

major improvements and modifications that have been suggested. We describe our 

relaxation procedure which incorporates some of the best ideas of the previous 

spanning tree based attempts. The original problem is considerably reduced by using 

sensitivity analysis techniques. These enable the identification of superfluous and 

indispensable arcs, those which respectively can be rejected from and forced into the 

optimal solution of the problem. Tests on the structure of the graph that defines the 

problem yield a greater number of superfluous and indispensable arcs. We also 

describe an upper bound algorithm that makes use of the spanning trees produced
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during the procedure. This yields tight bounds at a reasonably low computational

cost.

2.1 Definitions

In this section we introduce some notations and definitions; some of these have 

previously been defined and used by Smith & Thompson [1977].

Consider a complete directed graph G=(AL4) where N  is the set of n nodes and A is 

the set of m arcs. Let c/ denote the cost of arc / (/ =  1 ,..., m ). We also sometimes 

denote the arc between two nodes i and j  as ( i j )  and its cost as ci]. A cycle in G 

is a connected subgraph of G in which exactly two arcs are incident at every node. 

A hamiltonian cycle, H of G is a connected subgraph of G in which exactly two arcs 

are incident at each node. The TSP is therefore the problem of finding the minimum 

cost hamiltonian cycle, H in G.

A spanning tree in G is defined as a connected subgraph of G without any cycles. 

Of the many spanning trees of G that are possible, the shortest spanning tree (SST) 

or the minimal spanning tree (MST) is a subgraph, denoted by G7  =  (/V, /tr ), for 

which the sum of the costs of its arcs is minimum. We will denote an SST simply 

by T = | a , Aj Y where ATc A .  The number of arcs of an SST incident to a node i 

is called the degree dt of i or simply dt. Let V(T) denote the length of the SST.

An arc / of G is called a branch if / e T and it is called a chord if / £ T. The 

fundamental path of a chord / is the unique path of branches of T between the nodes il

- 30-



and jj , where it and j) denote the terminal nodes associated with chord / .  For two 

non-trivial and disjoint subsets S and S ( = N \ S ) of N, a cutset of arcs in G is defined 

by { /1 i[ g S, j { e S | . The fundamental cutset of a branch / is the cutset of the two 

connected subgraphs of G that remain when / is removed from T.

Using the above definitions, we can state the following necessary and sufficient 

conditions for a spanning tree to be minimal (see Ford & Fulkerson [1962], p. 175):

MSC1: Every branch of the tree is at least as short as any chord in its

fundamental cutset.

MSC2: Every chord of the tree is at least as long as any branch on its

fundamental path.

Define Gs as a subgraph of G with the node set Ns=N\{s).  A minimal spanning s- 

tree (MSsT), Ts — {Ns , AT J  of G consists of an SST on Gs combined with the two 

shortest arcs incident to node s. These are referred to simply as minimal s-trees or 

s-trees and the node s is called the root node.

An arc is said to be superfluous if it cannot be a member of any optimal solution to 

the STSP on G. An arc is said to be indispensable if it must be a member of every 

optimal solution. An arc is available if it is indispensable or if it has not been 

identified as superfluous. A superfluous arc / is rejected from G by increasing cl by 

a suitably large number. An indispensable arc / is forced into the set of arcs that 

defines the optimal tour by decreasing ct by a suitably large number.

Several algorithms for solving the SST are available. The more efficient ones are 

those of Kruskal [1956], Prim [1957], and Dijkstra [1959]. The algorithms of Prim
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and Dijkstra have O( n2) complexity while the algorithm of Kruskal is of complexity 

0 (  | A | log \A | ), where the term log | A | is due to a sorting that has to be 

performed on A available arcs. Thus, in a complete graph the algorithms of Prim and 

Dijkstra are more efficient (see Kreshenbaum & Van Slyke [1972]), whilst, when 

| A | is reasonably small, Kruskal’s algorithm is more efficient.

2.2 The shortest spanning tree Relaxation A

Consider an arc / = (i/,7 /), where leA, IgH.  Removal of this arc from the optimal 

tour leaves a single path of n-1 arcs through all the nodes in N  starting at iz and 

ending at j t . Since V(T), the cost of the SST is a lower bound on the cost of this 

path, v(t) + ct forms a lower bound on the cost of the optimal STSP solution.

Consider the formulation of the PSTSP given by (1.1), (1.4), (1.5) and (1.6).

Let yi = 1
if / is the longest arc in the STSP optimal solution,

= 0 otherwise.

Set x t = 0 if y,=  l .

Problem STSP can then be reformulated as:
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T
Problem  PSTSP :

m m

min Y ,  cixt + Y  W i  
x,y /= 1 /= l

(2 .1 )

s.t. Y [ xi +yi) =  2 '
I zA i

/ = 1 (2 .2 )

IV
 

►—
1 V K t = (s,, St) , S t<zN, (2.3)

m

Y  y, =  1 .
/ = 1

(2.4)

xn y te {0 ,1 }, /=  1 ,. . . ,  m. (2.5)

TWe observe that problem PSTSP is equivalent to problem PSTSP • We ^ so note that 

the solution to problem P ^ p  given by xt ( l = 1 ,..., m ) forms a spanning tree of 

graph G. We use this formulation of the STSP to obtain lower bounds from the 

spanning tree.

2.2.1 Lagrangean bounds from Relaxation A.

By relaxing the degree constraints (2.2) in the formulation PSTSP , we obtain the 

formulation of a relaxed problem which can be defined as follows:
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Problem  PT :

m m

min E  cixi + E  w i (2 .6 )
/= i ;= i

s.t. (2.3) - (2.5).

The solution to problem PT̂  given by x l ( l = 1,. .. , m ) defines the SST whose cost 

is V{T). Let L be the cost of the longest arc in the TSP solution. Then, 

Z ( p tl )=  + L is a lower bound on Z ( PSTSP). A better bound on the value of

PSTSP can be obtained by including the relaxed degree constraints in the objective 

function of PT  ̂ in a lagrangean manner with the help of multipliers, 7t =  17i-1 / g N J; 

that is, by solving the problem:

Problem Relaxation A:

m m

min E ctxi + E w i+ E * i ' E xi+yi ~ 2 ' (2.7)
/ =  1 / = 1  i e N j

s.t. (2.3) - (2.5).

We note that if an arc / is included in T, the degrees of the terminal nodes associated 

with arc / are increased by one. Thus, the contribution of arc / to the total cost is: 

| c/ + + tĉ  J. The objective function (2.7) is therefore re-written to obtain the

following formulation for the relaxed problem.

- 34-



Problem Pj Jtc):

min
m m  n

E {ci+ wi,+ \ ) xi + E (c;+ + nj,)yi - 2 E *i <2-8>
/ = 1 V '  1= 1 V '  i= 1

s.t. (2.3) - (2.5).

Problem PTj7i) can be decomposed into two independent problems:

P r o b le m  PT(n):

min
T

£ ( c' + V  *./,)*' (2.9)

s.t. V ? ,  =  ( 5 , , S , ) , i , c A I ,
/€  K t

X[ g {0,l}, and

P r o b le m  PL(rc):

min E  ( c/ + 7C// + 7C7i )>7/ (2-10)

s.t. E = 1.
/= i

y t e  {0,1}.

Problem PT(n) defines the SST on G  with modified costs c {  =  | cz + Ki{ + 7tyJ , V / e A 

and i , j  e N .
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Let L  be a lower bound on L  with respect to the modified costs c f .  ProblemPL(7t) 

is solved by simply setting yz =  1 for that arc / with the smallest modified cost 

c { > L .

Identify arc k  such that k  =  min j c '  | c j  > L 1.
j e  a  (

We then set j  y i =  1 for l =  k  l  (2.11)
1 =  0 otherwise!

P r o p o s i t io n  2 .1  The longest arc in a TSP solution must be at least as large as the 

second smallest arc from any node v e N .

This follows from the knowledge that the longest arc in the TSP solution is at least 

as long as the second shortest arc in any cut K t of G, where K t = (s,,  S t S t < z N.

We use Proposition 2.1 to define Li , a lower bound on L  as

L =  '^lv mm
l&Ain { ci } (2.12)

By removing a node v and the two arcs incident at v from the TSP solution, we obtain 

a hamiltonian chain through the nodes in N \ { v }. Consider S  c  N \ { v )  and define 

S =  N \ [ v } \ 5 . Every cut ( S , S )  must contain at least one arc of the TSP solution. 

We use this to define L2v, a lower bound on L  as:

L2v max “j min (2.13)

For a particular node v, if we set Lv =  max 

solution must be at least as long as:

Llv ’ L2v the longest arc in the TSP
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L =  max {lv} (2.14)
ve N

The computation of L  can be carried out as follows:

Let T  be the SST solution to problem Pj(7t) for a given n.

Let ^  =  {*1^= 1}, and

Consider ve  Vj. Since the least cost arc from Av must belong to T,

(2.12) can be re-written as:

Llv=  min [ c / | / g  T
le A,

Set 4 = 4 v

(2.15)

Consider v e  Vj. By removing v from 7, k distinct subtrees are formed, 

where k = d v . Let denote the set of points in the /th subtree and 

T v l = N \ { v ) \ T y .  (2.13) can be re-written as:

L2v =  max
i =  1 .... k

Set L v — L 2v.

min
.Mn'.rr)

(2.16)

L  is calculated using (2.14) and problem PL(rc) is solved using (2.11).

2.2.2 Computing the bounds

For a given 7t, Z (pt(7c)) and z (p l(tc)) represent the optimal values of problems Pt(tc) 

and PL(;t) respectively. We showed in Section 2.2.1 that the value Z |pTJjt)| forms 

a lower bound on Z (pJtsp ). From (2.8) it is clear that:

z (pTl(tc)) =  z (p T(7t))+z(p L(7c))-2£  it. < z (psttsp )
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The greatest lower bound of this kind is obtained by deriving the set of multipliers n  

such that:

Z (2.17)

Problem (2.17) is known as the la g ra n g e a n  d u a l  of STSP and the vector n*  defines 

the dual variables associated with the relaxed degree constraints. Iterative a sc e n t  

m e th o d s  are used to obtain the vector n  that maximizes (2.17). A general description 

of this method is provided in a later section.

In obtaining solutions to problem Pl(k) during the ascent, we observe that it takes 

considerably more computational effort to determine 2̂v than Llv. Hence, L  is set 

to Llv, which is easier to evaluate, for most of the iterations. The tighter bound 

described by (2.14) is not always used. We evaluate the bound by defining a 

parameter co. L v at iteration m  is as described by (2.14) if m  is a multiple of co. L v 

is set to Llv otherwise. Thus L 2v, the more expensive, but tighter lower bound on L, 

is only evaluated every co iterations. After considerable experimentation, we found 

that the best results were obtained by setting co =

We tested this approach to obtain lower bounds on a few test problems. We coded 

the ascent procedure of Smith & Thompson [1977] and compared the results obtained 

from the two approaches. For the problem DF42 our procedure obtains a lower bound 

of 696.994 after evaluating 105 trees in 45.912 Cpu Secs of computing time on a 

CDC-CYBER/930. The corresponding figures for the ascent of Smith & Thompson 

are (696.980, 105 and 21.678). For the problem HK48 the results for our procedure 

are (151, 11444.978, 64.714), while those for the Smith & Thompson approach is
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(150, 11444.183, 31.776). For the problem ST605 the results for the two approaches 

are (180, 122.114, 12188.324) and (185, 61.117, 12187.324) respectively.

After analysis of the results obtained on many such test problems, we concluded that 

the best lower bound at the end of the ascent, obtained by our formulation of the SST, 

is comparable and, in some cases, superior to that produced by existing formulations 

of the lagrangean problem. However, this increased lower bound is achieved at a 

much greater computational cost. We therefore did not pursue this method further.

2.3 The shortest spanning tree Relaxation B

We observe that every optimal solution to the STSP is an 5-tree. However, not all 5- 

trees are travelling salesman tours. An 5-tree Ts is an optimal TSP tour only if 

exactly two branches meet at each node in A. Hence, the STSP can be formulated as 

follows:

Determine the minimal spanning 5-tree of G with the additional 

restriction that di = 2, V i=  1 ,. . . ,« .

The problem of determining the 5-tree on G is therefore a relaxation of STSP. If we 

remove node s and the arcs incident at s from //, the remaining graph is a path, P, 

through the vertices in Ns. A minimal spanning tree on the graph Gs is a lower 

bound on the cost of P. The cost of the two arcs that are removed from H to produce 

P is at least as large as the cost of the two shortest arcs incident to node 5. Hence,
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the cost of the s-tree is a lower bound on the cost of the travelling salesman tour. The 

mathematical formulation of the problem whose solution is Ts is given below:

Problem PT :*s

min
/ E cixil = \

s.t.
m
E xi = n >
/= i

E
/ = !

> 1,

E xi =2’
l e A s

X[ G {0,l}.

(2.18)

(2.19)

V K t = (stJ t), S ' d N ,  (2 .2 0 )

(2.21)

(2.22)

Problem PTs is the same as problem PSTSP with constraints (1.3) replaced by 

constraints (1.5), and with the degree constraints (1.6) relaxed except for node i=s.

2.3.1 Lagrangean bounds from Relaxation B

To obtain the lagrangean problem, the relaxed degree constraints are included in the 

objective function of problem PTs by means of lagrange multipliers k = { ki \ i e N }.

The formulation of this problem, called Relaxation B is given below:
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Problem Relaxation B:

min
xeTs

S.t.

£ ci*i + £ * i( £ * / - 2
/=1 ieiV l e A

V * y

Constraints (2.19) to (2.22)

(2.23)

The objective function (2.23) is re-written to obtain the following formulation for the 

relaxed problem.

Problem Pj s(k):

m
min ^2 {ci+ ni +Kj \ x l -  2 V  tt- (2.24)

/= l '  ' Jlj ieN

s.t. Constraints (2.2) to (2.5)

Problem PT (rc) defines the MSsT on G where the arc lengths cl are transformed to 

cf  = C[ + Ki{ + 7ij . For any set of multipliers n,  the transformation of arc lengths may 

change the set of minimal trees. It does not, however, influence the set of optimal 

STSP solutions (see Held & Karp [1970]). The multipliers are also referred to as 

node weights or node penalties.

Let T* be the minimal 5-tree associated with the set of node weights n. Let di be the 

degree of node i (i e N) in T*. Since di =  2 , V ie  N in any optimal solution, the 

length of the minimal TSP tour in terms of the transformed weights is:
n n

z (p STsp) + 2 j^  7Et-. The length of the minimal 5-tree is: v |Ts \ + Since
; = l t '=l

the length of the 5-tree is a lower bound on the length of the minimal tour, we have: 

v(r J + £  Ki d i - z (p s t s p ) + 2 £
1=1 t = 1
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For the optimal tour on the original arc lengths, we have:

v { Ts ) + 5 1  Ki\p i  2 )  < Z (p s ts p )
t=i

Since the LHS of (2.25) is the solution to problem PT [n) , Z 

bound on Z (p stsp ).

(2.25) 

is still a lower

Let f (n)  denote the gap that exists between the cost of the optimal tour and the MSsT 

with respect to c( .

/ M z(pSTSP (2.26)

The problem of minimizing the gap in (2.26) is equivalent to finding the set of 

multipliers 71* such that:

Z (2.27)

Problem (2.27) is referred to as the lagrangean dual of the STSP and the gap/(7C*) 

is referred to as the duality gap. For surveys of lagrangean relaxation see Geoffrion 

[1974], Fisher [1981] and Shapiro [1979].

Held and Karp [1970] proposed ascent methods to identify k* that rendersZ |PTs(7t*)J 

to be close to the optimal solution. A similar procedure was simultaneously suggested 

by Christofides [1970]. Subsequently, improved methods have been developed by 

Helbig, Hansen & Krarup [1974], Smith & Thompson [1977], Volgenant & Jonker 

[1982] and Gavish & Srikanth [1983]. Successful heuristic iterative procedures to 

maximize (2.27) have also been implemented by Camerini, Fratta & Maffioli [1975] 

and Held, Wolfe & Crowder [1974].
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2.3.2 Ascent methods

The objective function of (2.27) is piecewise linear and concave in n. An ascent 

procedure, known in literature as subgradient optimization, is used to obtain its 

maxima. For surveys of the subgradient ascent method see Held, Wolfe & Crowder 

[1974], and Sandi [1979].

The ascent is an iterative procedure that commences with an initial lagrange multiplier 

vector 7T =  7i°, normally taken to be the zero vector. Gavish & Srikanth [1983] use 

a data reduction procedure which is similar to the first stage of any standard algorithm 

to solve the assignment problem. We found that this choice generally ensures a 

modest improvement in the lower bound at the end of the ascent at minimal additional 

computational cost.

At any iteration m of the ascent, solve PTj7i) for 71 =  7^. If the 5-tree 7*, is a tour 

or if z |p Ts(7t)J > £/, the ascent is terminated. Here, U is an upper bound on the 

optimal tour length. Otherwise, let d™ be the degree of node / in 7* and let p be 

a positive scalar not greater than 2. The multipliers for iteration m+1 of the ascent 

are updated using:

i t f * 1 =  jr? + f '" (d im - 2 ) ,  V i e W (2.28)

where t m is the step length defined by:

(2.29)

i e N
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oo

This method converges if t m — <» and lim t m = 0.
m= 1 w—» 00

These conditions are satisfied if we start the ascent procedure with p=2 and reduce it 

systematically to 0. Since a polynomial-time convergence cannot be guaranteed, 

stopping rules enable the identification of i f  at the end of the ascent, i f  is normally 

a good approximation of 7 1*. Smith & Thompson [1977] developed an efficient 

implementation of such an ascent that results in tight lower bounds. Volgenant & 

Jonker [1982] report good results by using an updating formula and a formula for the 

step length that are different from (2.28) and (2.29) respectively. The implementation 

of our ascent is similar to that of Smith & Thompson [1977].

2.3.3 Choice of the root node

In almost all SST based approaches to the STSP the choice of the root node s in s- 

trees is taken, arbitrarily, to be node 1. Held & Karp [1970] suggested (without actual 

implementation) that better bounds might be achieved through a more accurate 

selection of the root node.

Jonker [1986] suggests several choices for the root node, including the selection of a 

central node or a node on the convex hull of nodes in G. Their conclusion is that 

although the lower bound for 7t=0 varies substantially, the differences in the lower 

bounds obtained at the end of the ascent are so small that the extra computational 

effort in selecting the special root node is unnecessary. Bazaraa & Goode [1977] 

choose node s after evaluating n distinct 5-trees, each with a different node as the root. 

They choose s such that:

- 4 4 -



s = k e  N, Z|PT  ̂J =  max jz|PT jj

We observed that the results at the end of the ascent do not justify the considerably 

higher computational effort involved in such a selection.

Gavish & Srikanth [1983] obtain a minimal tree T initially for k = k° and choose s 

such that: s = max dr  By forcing the degree of this node to be 2 in all 5-trees, they
i s  N

report a consistent 0.05 to 0.15% improvement in the best lower bound obtained. Our 

ascent produces very tight initial lower bounds when we adopt this choice of 5 , 

coupled with: (i) a choice of n° different from 0, and, (ii) implementation of the 

ascent of Smith & Thompson [1977].

2.4 The upper bound heuristic

In Section 2.3.2 we defined U as an upper bound on the optimal solution value. Any 

good heuristic can be used to generate this bound. We use the variable r-opt 

procedure of Lin & Kemighan [1973] to get an initial value for U. These bounds are, 

on average, within 1.5% of the optimal solution.

We use the 5-trees obtained during the ascent in an attempt to tighten this initial upper 

bound through the use of an imbedded heuristic. This heuristic, which is similar to 

that of Volgenant & Jonker [1982], improves the initial value of U in all the problems 

we tested it on. We found that for a large proportion of the well known road map and 

euclidean problems, the optimal solution is obtained. The algorithm we describe here
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is a two-phase algorithm which is a combination of (simplified forms of) two well 

known heuristics:

(a) the Christofides heuristic, (b) Lin’s 3-optimal algorithm.

2.4.1 Phase 1: Heuristic matching

Christofides [1976] developed a heuristic which has a worst-case performance bound 

of times the optimal tour length. We give a brief description of Christofides ’ 

algorithm after introducing the following definitions:-

o Given a set iV^ciV, where NM is even, a {perfect) matching, M is

a collection of arcs AMc A , such that each node in NM is the end

point of exactly one arc in AM. A minimum weight matching M*, is 

one in which the total cost of arcs is a minimum, 

o An Eulerian graph is a connected graph in which every node has an 

even degree. An Eulerian tour is defined as a cycle in an Eulerian 

graph in which each arc is traversed only once.

Christofides’ algorithm is then described as follow s:-

Step 1: 

Step 2:

Step 3:

Construct a minimal spanning 5-tree on G.

Construct the set Nw =  | /  i s N ,  dt oddj, the set of odd 

degree vertices in the tree. Find M* for the set NM.

The Eulerian graph is given by UAw. J. Construct the 

Eulerian tour.
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Step 4: A feasible TSP solution is obtained by finding short cuts in the

Eulerian tour. This is achieved by forbidding re-visits in the 

original Eulerian tour to nodes that have already been visited.

Figure 2.1 shows the above stages of the algorithm applied to a 9-nodes example.

Figure 2.1(a) shows the 5-tree with the odd degree vertices encircled. In the Eulerian 

graph of Figure 2.1(b), the thickened lines indicate arcs in the minimum weight 

matching. Since there is no unique traversal of the Eulerian graph, the Eulerian tour 

of Figure 2.1(c) is just one of many that are possible. The TSP tour of Figure 2.1(d) 

constructed from the Eulerian tour is also not unique because the sequence of nodes 

in the tour depends on the short cut rules that are used.

The following observations on Christofides’ algorithm are immediate: (i) It can, 

conveniently, be imbedded into the subgradient ascent and applied to every 5-tree 

obtained; (ii) The running time complexity of the algorithm is dominated by the 

minimum matching in Step 2 which can be found in time 0 (n 3) - see Lawler [1976] 

or Papadimitriou & Steiglitz [1982].

For the imbedded heuristic we reduce the 0 (n 3) complexity of the matching by 

merging Steps 2, 3, and 4 of the algorithm - we solve the minimum matching and find 

short cuts in the resulting Eulerian tours heuristically.

Let c — [p ,..., q } define a path in the 5-tree whose terminal nodes are p and q. c is 

called a side branch of the 5-tree if dp =  1 and dq> 2. Define the set of nodes,

There must be at least two such nodes.

Choose a node r* such that: r* = min 
r e  /?

i n { C r p ~ C rq }
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Figure 2.1 Stages of Christofides’ Algorithm on a 9-nodes example

(a) Minimum Spanning 1-Tree (MS1T)

5

(b) Eulerian Graph: MS1T plus 
A Minimum Weight perfect 
Matching on odd-degree nodes

5

(c) Eulerian Tour: (d& TSP Tour: 1 2 3 4 5 6 7 8 9
1 2 4 5 3 2 6 7 8 7 9 1

Transformation of the side branch c (or, the transformation of p from a node of degree 

1 to one of degree 2), into a part of a tour is possible through the deletion of arc
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(r*,q)  from Ts, and the insertion of arc (r*,p).  The cost of this transformation of 

p from a node of degree 1 to one of degree 2 is: Cp = cr*p -  cr*q. Let UM be the 

upper bound obtained by this heuristic. UM is first set to the value of the s-tree. 

After every transformation, the bound is updated using: UM <— UM + Cp. The

procedure terminates when there are no nodes of degree 1 to transform; a feasible 

tour with upper bound UM is obtained.

Figure 2.2 illustrates how the procedure is applied to convert a side branch, 

c = [p to a part tour, i and j  are the two nodes (not in c) connected to q in

the tree, ie., R = { i j ) .  Since, (cjp - c jq) < (cip-  ciq), arc ( j ,p ) is inserted in place 

of (y,<7 ) which is deleted.

Figure 2.2 A Heuristic Matching

P

(a) A side-branch

P

(b) Converting a side-branch 
to a part tour

An inexpensive conversion of a node with degree 1 into one of degree 2 depends on 

the length of the side branch of which it is a part. This, we observed, is in turn 

dependent on the order in which the nodes of degree 1 are chosen for conversion.

Hence, two passes of this procedure are performed: a forward pass (least node index 

first), and a backward pass (greatest node index first).
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Figure 2.3 shows the different tours obtained through the two passes for the 9-nodes 

example of Figure 2.1(a).

Figure 2.3 Heuristic Matching on the 9-nodes example

(a) Tour from Pass-1: (b) Tour from Pass-2:
1 5 4 2 3 6 8 7 9  1 3 2 4 5 6 8 7 9

This procedure can be employed to convert each 5-tree in the ascent to a feasible tour. 

However, we only convert 5 -trees where the number of nodes with degree 1 is less

at the start of the ascent. Asthan or equal to a parameter p.. p. is initialized to 

the number of ascent iterations increases, the 5-trees are generally tour-like and 

approach TSP feasibility. Hence, to avoid excessive computation, p. is reduced by 1 

after every 5 5-tree conversions until p. is 1.

The application of this procedure to identical trees would lead to the same feasible 

tour. In order to avoid potential repetitions of the procedure on identical trees that
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could recur during the ascent, each 5 -tree that is already converted into a feasible tour 

is mapped into a single integer y using the hashing function:

V = E ‘l4 -2 )2
i  € N

For each 5-tree that has nodes of degree 1 less than p., the value y is computed. If this 

value is present in the list of previously computed y values, phase 1 of this heuristic 

procedure is not implemented. If the procedure is implemented, the values y and UM 

are recorded along with the feasible tour. It is probable that several 5-trees could map 

onto the same value of y. The only consequence, in this case, is that the heuristic will 

not be applied to some different 5-trees.

If the value of the upper bound at the end of phase 1 (ie., UM) is less than a tolerance 

8, we subject the associated feasible tour to phase 2 of our heuristic which we 

describe below. After considerable experimentation, we selected the value of 8 as: 

8 =  1.06 * U^f, where is the value of the best upper bound obtained so far in the 

procedure.

2.4.2 Phase 2: Tour improvement through insertions

This is essentially an adaptation of the 3-Opt procedure of Lin [1965] and is based on 

the modification suggested by Or [1976] - see Golden & Stewart [1985]. We consider 

the exchanges that would accrue from inserting a chain of three, two, one or no arcs 

between an arc in a feasible tour obtained from phase 1. We thereby limit the number 

of 3-Opt exchanges and hence reduce the complexity of the procedure. This is 

because long chains of arcs in the 5-tree are likely to appear unchanged in the optimal
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solution and it is sufficient if we locally improve the transformations effected in phase 

1 of our heuristic.

Figure 2.4 Example of tour improvement through insertions

(b) Improved tour

Figure 2.4 illustrates how this procedure works for inserting a chainc = [p q) 

of three arcs. Let Q denote the tour obtained from phase 1. We test to find the best 

insertion of this chain between all pairs of connected nodes i and j  such that(i j )  e Q 

and ( i j )  £ c. If p_ is the point that precedes the chain c in the tour and, q+ the 

point that succeeds it, then the insertion cost for inserting the chain of arcs from p to 

q between arc ( i j )  is:

For a given chain, we find the best insertion: 8C =  max 15 j . If 8C > 0, we apply
(i-y)€Q 
0\y)e c

the exchanges to the feasible tour and reduce the upper bound using UM <— UM -  8^ 

If the updated value for UM is less than the best upper bound U ^, then U*M <r-UM.
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After considering all chains of 3 arcs, we consider chains of 2 arcs, and 1 arc and 

finally, chains of no arcs (insertion of nodes between an arc). The algorithm 

terminates when no further upper-bound-reducing insertions can be found. The tour 

improvement procedure involves far fewer exchanges than a regular 3-Opt procedure. 

Furthermore, the algorithm can be seen as equivalent to a 2-Opt procedure combined 

with insertions. Phase 1, the 5-tree conversion is of linear time complexity, while 

phase 2 has complexity of 0 ( n 2).

2.5 Problem reduction

In this section we describe the two kinds of tests we carry out to induce graph 

sparsity. The first, called Branch-Chord Exchanges, is based on a sensitivity analysis 

of the tree at the end of the ascent. Tests on the structural properties of the graph 

result in further reductions in the size of the problem.

2.5.1 Branch-chord exchanges

At the end of the ascent we have, for n = i f ,  the associated 5-tree T*. The procedure 

we describe here is for a general 5-tree ( s e  N ). It can be used for a 1-tree by 

substituting 1 for 5. Also, in order to simplify the notation, we use Ts to denote the 

final 5-tree T f  ; n to denote ne, the multipliers at the end of the ascent; ^ { j s ) to 

denote Z | PTJ  7te) J, the lower bound at the end of the ascent. We will also denote 

the cost of an arc / as ct although this analysis will, at the end of the ascent, be used 

in conjunction with c /, the modified costs.
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Define: Ts + ij as the 5-tree constructed from Ts by forcing chord ( i j )  into it.

Ts_kl as the 5-tree constructed from Ts by forcing branch (&,/) out of it.

We differentiate between two types of arcs: As, the set of arcs incident to node 5 ; 

Av ( v * s ) ,  the set of arcs not incident to node 5 . The results from the minimal 

spanning tree conditions MSC1 and MSC2 (Section 2.1) can, therefore, be defined as 

follows:-

(i) For a branch ( k j ) e  Av, Ts_kl is obtained from Ts by exchanging 

( k j )  with a chord ( i j )  - the shortest chord in its fundamental cutset.

(ii) For a chord ( i j )  e Av, Ts + ij is obtained from Ts by exchanging ( i j )  

with a branch (k j ) - the longest branch in its fundamental path.

(iii) Let (5 , a ) and (5 , p) represent the two branches of Ts that are linked

to node 5  such that c50t<c5p. Identify the arc (5 ,7 ) such that

csy =  r n i n { | ( s j ) e  As , y * a , p } .  Ts_sa (respectively, Ts, s^) is 
j

obtained from Ts by exchanging branch (5 ,a ) (respectively, (5 ,p)) 

with chord (5 , 7 ).

(iv) For a chord {s,y)e As, Ts + sy is obtained from Ts by exchanging 

chord (5,7) with branch (5,p).

In general, a branch (k j ) is replaced in Ts by exchanging it with a chord ( i j )  of 

cost ctj to produce Ts_kl; a chord ( i j )  is introduced into Ts by exchanging it with 

a branch ( k j )  of cost ckl to produce Ts + ij.
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A branch .(&,/) is indispensable if:

z (T,-u) -  Z(T,) -  cki + cij > u (2.30)

A chord ( i j )  is superfluous if:

z ( r ~ v ) - z ( r , ) - ck, + Cij > U (2.31)

From (2.30) and (2.31), it is evident that the number of arcs marked superfluous or 

indispensable will increase if: (a) an upper bound of good quality is used, and (b) a 

tight lower bound is obtained at the end of the ascent.

The imbedded heuristic described in the previous section provides a very tight upper 

bound in most problems tested. Moreover, the value U in the right hand sides of

(2.30) and (2.31) can be reduced to U-1 provided: (i) a feasible solution associated 

with U is available, (ii) the identification of one optimal solution is sufficient, (iii) 

all the entries in the cost matrix are integers. This enables us to identify a greater 

number of indispensable and superfluous arcs.

We use the efficient implementation of branch-chord exchanges suggested by 

Volgenant & Jonker [1983]. This enables the computations and analyses of all the 

values z ( ts_u )9 V ( k j )  e AT , and z ( r j + iy-), V ( i j ) e  AT , to be carried out in 

O(n2) operations. An 0(n2) method for implementing this procedure has also been 

suggested by Carpaneto, Fischetti & Toth [1989].

Apart from the use of this approach in the 1-tree algorithm of Volgenant & Jonker 

[1982], branch-chord exchanges have been used in the past for other combinatorial 

optimization problems. Gabow [1977] and Katoh, Ibaraki & Mine [1981] generate

- 55 -



spanning trees in order using this approach in a branch and bound type of an 

algorithm. Savelsbergh & Volgenant [1985] use this approach in degree constrained 

minimum spanning tree problem. Beasley [1984] uses a similar approach for the 

Steiner tree problem.

The lower bounds on the left hand sides of the inequalities (2.30) and (2.31) can be 

increased by modifying some of the multipliers. We describe the procedure to affect 

these changes in the following section.

2.5.2 Modifying the multipliers for increased lower bounds

This method of increasing the lower bound is based on the sequential multiplier 

updating method of Held & Karp [1970]. In their ascent method, the lower bound is 

increased by changing the multipliers associated with only one node at each ascent 

step. Volgenant & Jonker [1983] also use these ideas to obtain increased bounds. 

However, in their case it is only implemented when some strict conditions are satisfied 

by the tree.

The lower bounds are increased only marginally through this method, perhaps because 

most of the multipliers are nearly optimal at the end of the ascent. However, this can 

be used on every 5-tree in the branch-chord exchange analysis to increase the values 

of Z^TS+ ) and Z^TS_ ). Although computationally expensive, we modify the 

multipliers to increase the bounds associated with every 5-tree in the branch-chord 

analysis. This is because of our hypothesis that in order to identify the optimal 

solution, any computational effort expended in reducing the size of the graph at the
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root node, would greatly reduce the computational cost of a tree search that would be 

necessary.

We know that by changing the value of one multiplier at a time, alternative 5-trees 

arise. It is however possible to change the values of some of the multipliers without 

changing the structure of the related tree. From (2.25) it is clear that by changing the 

values of 7t- for i such that di = 1  or dt = 3 (in such a way that the 5-tree remains 

unaltered), the 5-tree lower bound can be increased.

Consider a node j  with dj— 1. For each chord ( i j )  incident at j, (i * 5 ), let(/,y) 

denote the longest branch in the fundamental path of chord ( i j )  which is not incident 

at j. As in the previous section, (5 , a ) and (5 , p) denote the branches that meet node 

5 . Determine 5y such that:

min<max
16 Ns

(2.32)

According to the minimal spanning tree condition MSC2, 5y- > 0 (V j  e Ns ). In 

addition, the 5-tree is still minimal with respect to the transformed arc costs resulting 

from the change: Kj <—7^ -  8y. If 8y > 0 strictly, it follows from (2.25) that the TSP 

lower bound has increased by 8y-.

Consider a node / with dt > 2. For each branch (&,/) incident at / ,  ( k * s ) ,  let ( k j )  

denote the shortest chord (not incident at / )  in its fundamental cutset. Determine El 

such that:

e/ =  min min

keN.

■kl ) / ’ (2.33)
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It follows from the minimal spanning tree condition MSC1 that e( >0 (V l e N s ). 

The 5-tree is still minimal with respect to the transformed arc costs due to the change: 

K; <-71, + £/. If E[ > 0, the TSP lower bound has been increased by e, * (dt -  2).

The multipliers of the two nodes linked to node s can be increased using a slightly 

different analysis. If dt = 2 , (/ =  a , p), then:

iti + min { csj -  cs  ̂}, (i = 1,2) (2.34)

The 5-tree still remains minimal after the changed set of multipliers. Although this 

does not increase the TSP lower bound, this would enable better bounds for the 

Z(TS+ ) values associated with chords incident at either a  or [3.

At the end of the ascent, the lower bound z( Ts ) is increased using the relations (2.32) 

and (2.33). This results in a reduction of approximately 91% of the available arcs. 

These arcs are declared superfluous using (2.31) without the need for altering the 

multipliers on the nodes associated with Ts + . The multipliers are adjusted and an 

attempt is made to increase the Z^TS+ j values only in such cases. Similarly, 

approximately 30% of the required arcs1 are declared indispensable using (2.30) 

without the need for altering the multipliers on the nodes associated with Ts_ . The 

multipliers are adjusted and an attempt to increase z \ ts_ ) is made only in such 

cases.

ln arcs are required in an n node STSP instance.
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2.5.3 Structural Tests

Apart from the use of branch-chord exchanges to induce graph-sparsity, we also 

perform some simple tests that result in further reductions in the size of the problem. 

Three immediate tests are:

T2.1: If a node i has only two available arcs incident to it, then both

arcs must be forced into the solution.

T2.2: If two indispensable arcs are incident to a node /, then all other

arcs incident to it must be rejected.

T2.3: An arc that connects the end nodes of a chain of (at most n-2)

indispensable arcs, must be rejected.

Tests T2.1 and T2.2 are analogous to restricting each node to be of degree 2. Test 2.3 

is equivalent to a subtour elimination constraint.

We also implement a few simple and effective tests based on the existence of 

Hamiltonian cycles in a graph. A graph is called Hamiltonian if it contains at least 

one Hamiltonian cycle. The tests we develop now are also based on the separability 

conditions in a graph. We first introduce a few basic definitions:

Definitions: A cut point or an articulation point of a graph is a node whose

exclusion increases the number of connected components of the graph. 

An isthmus is an arc whose removal increases the number of connected 

components of the graph.
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We can then state the following definition (see Berge [1973], Gondran & Minoux

[1984]): A graph G = (n , a ) is said to be h-connected if: (i) there exists a

node set N' c  N of cardinality h such that the removal of these nodes 

(and all arcs incident to them) disconnects the graph; (ii) there exists 

no such node set of cardinality less than h.

Thus a 1-connected graph is one that contains one or more articulation points (such 

graphs are called separable). It is obvious that if G is 1-connected, then no 

hamiltonian cycles exist (although 5-trees can). We use this to design tests to identify 

more arcs to force in and reject:

T2.4: Consider an available arc / (that is not indispensable) such that 

either or both of the terminal nodes of this arc are the end nodes 

of chains of indispensable arcs. If by forcing arc / into the 

solution, (and after applying the resultant changes due to T2.1, 

T2.2 and T2.3), the resulting graph is either disconnected or 1- 

connected, then arc / must be superfluous.

In a similar manner, we consider the effects on the graph of forcing an available (but 

not indispensable) arc out of the solution:

T2.5: Consider an available arc / (that is not indispensable) such that 

either or both of the terminal nodes of this arc are the end nodes 

of chains of indispensable arcs. If by rejecting arc / out of the 

solution (and after applying the resultant changes due to T2.1, 

T2.2 and T2.3), the resulting graph is either disconnected or 1-
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connected, then arc / must be indispensable. For example, an 

isthmus in the graph must be indispensable.

We illustrate Test 2.4 through an example.

Figure 2.5 A 15-nodes example to illustrate Test T2.4

Graph of a 15-oodes example after Teats T2.1, T2.2 and T2.3

15

Indicates an arc Chat has been forced into the TSP optimal aolntion 

Indicates an available arc

Consider the 15-node graph of Figure 2.5. The thickened lines indicate arcs that have 

been forced in.

o Consider the effect of forcing arc (8,9) into the solution: Arcs (8,13), (9,13) and

(9,12) are rejected due to T2.2; Arc (5,11) is rejected due to T2.3; the 

remaining graph is 1-connected. Hence (8,9) is rejected. It follows from T2.1 

that arc (8,13) can be forced in.
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o Consider the effects of forcing arc (4,5) out of the solution: Arcs (5,11) is 

forced in due to T2.1; arcs (11,1), (11,2), (11,3), (11,4) and (11,12) are rejected 

due to T2.2; the remaining graph is 1-connected. Hence, arc (5,4) must be 

indispensable; It follows from T2.2 that arc (5,11) is rejected.

Figure 2.6 The 15-nodes example after application of T2.4

No farther reductions are possible 
15

_ _ _  Indicates an arc that has been forced into the TSP optimal solution 

------------- Indicates an available arc

These tests are repeated till no further reduction in the size of the problem is possible. 

Figure 2.6 shows the graph of 15-node example after these tests are applied.

Both the tests are computationally inexpensive as they can be carried out in 

0(n  | A | ) time. This is because the tests are applied to a maximum of n-2 terminal 

nodes of fixed chains. At each application, the 1-connected components of the graph 

can be identified in o( \ A |) time using the algorithm of Taijan [1972] (see also
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Gondran & Minoux [1984]). However, both tests together result in reasonable 

reductions in the size of the problem.

2.6 Computational results

In this section we report and analyze the computational results arising from the 

discussion in this chapter. This analysis will be split into the results for the upper 

bound heuristic, the ascent and results for the problem reduction tests. All our 

algorithms have been coded in FORTRAN 77 and run on a CYBER/930.

The test problems we use come from different sources. We use 23 well-known 

problems from the literature2 and also 20 new Euclidean problems3. We also test 

our algorithms on 50 randomly generated symmetric problems.

2.6.1 Results for the upper bound heuristic

We denote the heuristic which we described in Section 2.4 by TSPH. Table 2.1 and 

Table 2.2 illustrate the results for TSPH on the well-known test problems and the 

newly generated Euclidean problems respectively.

The complete heuristic does not use much computing time. On average, the time 

spent on it is about 15% to 20% of the total time spent on the ascent. The quality of

2The optimal solution values, the sources, the size and the nomenclature of these 
problems are provided in Table 1.1.

3The newly generated Euclidean problems have been previously introduced in Section 1.9.
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the bounds is however very tight. This is evident from Table 2.1 and Table 2.2. We 

use the respective upper gaps produced by other heuristics as an indication of the 

quality of the bounds obtained and as a basis of comparing TSPH with the other 

algorithms. The upper gap is defined as the difference between the upper bound and 

the optimal value as a percentage of the optimal value. We use K-Th-R, V-J and L-K 

to respectively denote the heuristics of Karg, Raymond & Thompson [1977]4, 

Volgenant & Jonker [1982], and Lin & Kemighan [1973] respectively.

Solutions produced by K-Th-R are on the average 0.59% above the optimal value for 

the 18 test problems used by Smith & Thompson [1977]. The upper gaps produced 

by J-V are on average 0.33% and 0.34% for the 23 well-known and 20 newly 

generated problem sets respectively. Upper gaps from L-K are on average 0.23% and 

0.20% away from optimal for the same sets of problems. TSPH completely dominates 

all these algorithms and produces the best upper bounds for all problems tested 

(except ST603, for which, K-Th-R produces a better bound). The upper gaps from 

TSPH are on average only 0.076% and 0.023% away from optimal for the well-known 

and new problems respectively.

The heuristics K-Th-R, V-J, L-K and TSPH respectively solve 33%, 30%, 52% and 

74% of the well-known problems to optimality. Of the 20 Euclidean problems, V-J, 

L-K, and TSPH respectively solve 7, 13 and 15 problems to optimality. This clearly 

indicates that TSPH completely dominates all the other heuristics it is compared with.

4Smith & Thompson [1977], in their 1-tree based STSP algorithm, use the heuristic 
algorithm of Karg & Thompson [1964] that incorporates improvements suggested by 
Raymond [1969].
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Table 2.1 Computational results for the upper bound heuristic on some well known problems

Problem K-Th-R 

Upper Gap

V-J

Upper Gap

L-K

Upper Gap Upper Gap

TSPH

# calls to 
Phase 2

Cpu Secs

DF42 0.000 0.00 0.00 0.00 4 15.18
HK48 0.440 0.08 0.41 0.00 5 23.38
GR48 - 0.65 0.00 0.00 4 21.53
KT57 0.440 0.90 0.60 0.44 5 37.56
GR120 - 0.36 0.03 0.03 11 435.93
ST481 0.610 1.04 0.72 0.01 5 22.33
ST482 0.000 0.00 0.00 0.00 5 22.21
ST483 0.000 0.00 0.00 0.00 4 21.78
ST484 0.000 0.29 0.30 0.00 5 21.28
ST485 0.000 0.00 0.00 0.00 5 21.95
ST600 0.960 0.00 0.97 0.00 6 43.58
ST601 0.420 0.05 0.00 0.00 6 45.53
ST602 1.990 0.00 0.00 0.00 6 44.22
ST603 0.000 0.49 0.38 0.11 6 53.41
ST604 0.430 0.24 0.00 0.00 5 42.98
ST605 0.130 0.11 0.00 0.00 5 42.43
ST606 1.440 0.09 0.00 0.00 6 39.31
ST607 1.220 0.21 0.06 0.00 6 45.12
ST608 0.020 0.38 0.00 0.00 6 48.64
ST609 2.560 0.00 0.00 0.00 6 47.03
NCE50 - 0.94 0.24 0.24 4 22.03
NCE75 - 1.31 1.50 0.93 5 64.48
NCE100 - 0.48 0.16 0.00 5 110.66

Indicates that results for these problems are not available.

K-Th-R: the heuristic algorithm of Karg & Thompson [1964] with the modifications suggested by
Raymond [1969].

V-J: the heuristic used by Volgenant & Jonker [1982] in their STSP algorithm.

L-K: the upper bound algorithm of Lin & Kemighan [1973].

TSPH: the heuristic described in Section 2.4.
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Table 2.2 Computational results for the upper bound heuristic on newly generated
Euclidean problems

Problem V-J

Upper Gap

L-K

Upper Gap Upper Gap

TSPH

# Calls to 
Phase 2

Cpu Secs

KC500 0.000 0.039 0.030 4 22.86
KC501 0.000 0.000 0.000 5 23.36
KC502 0.000 0.000 0.000 5 23.87
KC503 0.000 0.000 0.000 5 23.11
KC504 0.000 0.000 0.000 5 23.00
KC650 0.000 0.000 0.000 6 61.24
KC651 0.310 0.000 0.000 6 56.40
KC652 0.090 0.000 0.000 6 58.94
KC653 0.110 0.000 0.000 5 48.55
KC654 0.000 0.000 0.000 6 54.23
KC750 0.620 0.199 0.180 7 88.86
KC751 0.250 0.811 0.000 7 95.47
KC752 0.370 0.000 0.000 6 81.40
KC753 1.370 0.785 0.044 7 97.59
KC754 0.380 0.000 0.000 7 95.32
KC1000 0.170 1.274 0.013 9 188.29
KC1001 0.160 0.619 0.000 10 239.77
KC1002 1.390 0.000 0.000 9 219.11
KC1003 0.380 0.000 0.000 9 224.37
KC1004 1.190 0.346 0.198 9 245.40

2.6.2 Results for the s-tree ascent

Tables 2.3 and 2.4 compare the performance of the 5-tree ascent described in this 

chapter - denoted as K-C - with results at the root node of the 1-tree algorithm of 

Volgenant & Jonker [1982] - denoted as V-J.

In our ascent we use the stopping rules and the parameter updating rules used by 

Smith & Thompson [1977]. Volgenant & Jonker [1982] use a fixed number of ascent 

iterations, a different multiplier updating formula, and a different formula for
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calculating the scalar step size in their subgradient ascent. The end result of these two 

strategies is not that different either in terms of the number of trees calculated in the 

ascent or in terms of the lower gaps at the end of the ascent. The lower gap is 

defined as the difference between the optimal value and the lower bound as a 

percentage of the optimal value. On the average, 170 trees are calculated by K-C for 

the 23 well-known problems; 212 trees for the 20 newly generated Euclidean 

problems. Algorithm V-J evaluates 167 and 218 trees respectively for the two sets of 

test problems. The lower gaps derived from K-C are on average within 0.56% and 

0.50% of the optimal value of problems in the two sets of problems, while the lower 

gaps due to V-J for the two sets are on average within 0.63% and 0.65% of the 

optimal value respectively. We can therefore conclude that K-C produces marginally 

better bounds than V-J. The reduction in the lower gaps is, on average, 17.09% at 

roughly the same computational cost. Both K-C and V-J solve one out of the 23 well- 

known test problems during the ascent. K-C solves 2 of the 20 Euclidean problems 

while V-J solves one. In the solved problems, we see that K-C converges to the 

optimal solution more rapidly than V-J - in — th the number of tree nodes required by4

V-J.

2.6.3 Results for the problem reduction tests

Tables 2.3 and 2.4 also present the number of arcs available and fixed by algorithms 

K-C and V-J after the ascent. The application of the branch-chord exchange analysis 

in K-C results in more arcs being declared superfluous and indispensable when 

compared to the values obtained by V-J. This is probably due to the tightness of both
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our upper bounds as well as our lower bounds. The average total gap - which is the 

sum the upper and lower gaps - produced by TSPH and K-C over all the test problems 

is only 0.631%, while the total gap over all problems produced by V-J is 0.98%. The 

branch-chord analysis in K-C declares 91.6% and 29.6% of the available arcs on 

average to be superfluous and indispensable respectively. The branch-chord analysis 

in V-J declares only 89.3% of the arcs as superfluous and only 16.69% of the arcs are 

found to be indispensable. For the second stage of the problem reduction techniques, 

we use the simple structural tests T2.1 through to T2.5 till no further reductions are 

possible. Jonker & Volgenant use a series of tests including: (i) a non-optimality 

check that runs in 0( n 2) time; (ii) the structural tests T2.1, T2.2 and T2.3, and (iii) 

recalculation of 1-trees when a tree arc has been declared superfluous. Yet, we found 

that there was no major divergence in the average number of arcs declared superfluous 

and indispensable by K-C and V-J at the end of the second stage (represented in the 

Tables 2.3 and 2.4 under the columns titled: Structural properties). On the average 

K-C identifies 92.62% superfluous of the arcs to be superfluous. Hence, on average 

only 7.38% of the original graph remains5. On the average 41.1% of the required 

arcs are declared indispensable. At the end of this stage, V-J declares 91.93% 

superfluous and 44.2% indispensable arcs on average. If the required arcs are ignored 

the two methods can be compared on the basis of the arcs that remain amongst which 

decisions need to be made. In other words, if we define K as the number of arcs over 

which decisions have to be made expressed as a percentage of the problem size, ie., 

K = \H^ —I\ - n - n s 1 /  n, where ns is the number of superfluous arcs, then the

5Note: This figure includes the n required arcs.
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value K for the algorithms K-C and V-J are, on average, 1.65% and 1.835% 

respectively.

This gives an indication of the efficiency of the structural tests we use. Of the 23 

well-known problems, 4 are solved during this stage of K-C. V-J solves 3 problems 

in this stage including DF42, the 42-node road map problem. Of the 20 new 

problems, K-C solves 3 in this stage. The one problem solved by V-J in this stage 

is solved by K-C during the ascent itself.

2.6.4 Results for randomly generated problems

We tested algorithm K-C on randomly generated problems and compared its 

performance with that of algorithm V-J which was run on the same problem instances. 

The problems were all generated in the standard manner: the cost matrix entries were 

drawn from a discrete uniform distribution on [ 1,1000 ]. We generated a total of 50 

problems in all; ten of each of the following sizes n = 50, n = 60, n = 70,n = 80 

and n=  100.

Table 2.5 shows the results for the random table problems. We observe that less trees 

are computed by K-C than by V-J although there is a small difference in the lower 

gaps obtained at the end of the ascent.

For the random table problems, the upper gaps produced by the heuristic TSPH within 

K-C are of a much better quality than those produced by V-J. As there are no initial 

upper bounds for these problems, we convert the first 5-tree obtained in the ascent into 

a feasible tour using TSPH.
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Table 2.3 Computational results for the s-tree ascent on some well-known problems

Problem # of 
trees

Lower
gap

Cpu
Secs1

Branch-Chord Ex. Structural properties

Available Fixed Available Fixed

DF42 K-C 105 0.287 49.93 61 17 57 28
V-J 126 0.300 - 66 19 Solved -

HK48 K-C 145 0.149 77.65 66 22 63 35
V-J 144 0.166 - 78 15 66 33

GR48 K-C 158 1.754 72.80 202 5 197 5
V-J 144 1.775 - 274 0 196 7

KT57 K-C 184 0.368 125.68 180 10 173 16
V-J 171 0.376 - 252 3 206 11

GR120 K-C 347 0.453 1419.21 410 12 406 12
V-J 300 0.455 - 592 0 480 12

ST481 K-C 163 1.881 75.19 175 6 175 6
V-J 144 1.890 - 230 0 180 3

ST482 K-C 140 0.185 73.95 70 19 61 31
V-J 144 0.194 - 74 15 56 39

ST483 K-C 133 0.059 72.18 59 30 Solved -
V-J 144 0.064 - 61 33 Solved -

ST484 K-C 157 0.664 71.89 101 8 99 13
V-J 144 0.665 - 131 0 104 14

ST485 K-C 143 0.153 73.22 70 29 Solved -
V-J 144 0.153 - 69 25 Solved -

ST600 K-C 176 0.225 144.97 107 25 76 43
V-J 144 0.063 - 85 32 72 49

ST601 K-C 197 0.956 151.98 171 7 171 8
V-J 144 0.965 - 179 3 132 21

ST602 K-C 32 Solved 136.40 - - - -
V-J 163 Solved - - - - -

ST603 K-C 190 0.992 175.59 233 11 233 11
V-J 180 0.995 - 216 0 165 18

ST604 K-C 174 0.148 142.70 103 26 Solved -
V-J 180 0.138 - 99 18 69 51

ST605 K-C 184 0.846 141.98 170 12 169 14
V-J 180 0.878 - 186 0 138 22

ST606 K-C 155 0.025 130.23 68 46 Solved -
V-J 180 0.032 - 69 48 63 57

ST607 K-C 183 0.433 150.03 132 17 118 31
V-J 180 0.440 - 167 4 114 30

ST608 K-C 191 1.119 161.30 211 7 211 7
V-J 180 1.472 - 267 0 197 8

Table 2.3 Continued on following page...
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Table 2.3 Continued...
Problem # of 

trees
Lower

gap
Cpu
Secs

Branch-Chord Ex. Structural properties

Available Fixed Available Fixed

ST609 K-C 190 0.791 155.93 179 12 175 12
V-J 180 0.795 - 184 0 118 27

NCE50 K-C 131 0.859 73.61 117 3 117 4
V-J 150 0.873 - 185 0 146 3

NCE75 K-C 196 0.289 217.43 299 2 299 2
V-J 225 0.311 - 420 0 326 5

NCE100 K-C 237 0.326 383.42 202 12 199 24
V-J 300 0.343 - 380 0 334 5

K-C: indicates results for our s-tree ascent.

V-J: indicates results obtained using the algorithm of Volgenant & Jonker [1982].

l: these times do not include the time for the upper bound heuristic. These are available from
Table 2.1.

Thereafter, the algorithm follows the same steps as in the algorithm for road map

and Euclidean problems except that the parameter \i which controls the number of

calls that are made to TSPH is reduced from — to — . The average upper gaps
8 6

for random problems are within 0.684% of the optimum. Although this figure is 

worse than that obtained for the road map and Euclidean problems, it almost compares 

with the gaps obtained by the heuristic K-Th-R for the well-known problems.

K-C also results in an appreciably lesser number of available arcs and a greater 

number of fixed arcs in all the sets when compared to V-J. Also, more problems are 

solved at the root node - either during the ascent itself or during the problem reduction 

stage - by algorithm K-C than by V-J. K-C solves 7 out of 10 problems for n = 50, 

5 problems for n =  60, 3 problems for n =  70, 4 problems for n =  80 and 3 problems 

for n=  100 respectively. The initial ascent in the algorithm V-J solves 6 , 3, 4, 4 and 

3 problems respectively in the same sets.
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Table 2.4 Computational results for the s-tree ascent on newly generated problems

Problem # of 

trees

Lower
gap

Cpu Branch-Chord Ex. Structural properties
Secs1 Available Fixed Available Fixed

KC500 K-C 142 0.262 76.589 94 22 87 28
V-J 150 0.276 - 93 18 77 32

KC501 K-C 148 0.256 78.439 83 21 Solved Solved
V-J 150 0.242 - 87 12 66 37

KC502 K-C 142 1.158 79.321 154 8 154 10
V-J 150 1.167 - 173 0 105 24

KC503 K-C 40 Solved 21.906 - - - -

V-J 146 Solved - - - - -

KC504 K-C 136 Solved 76.789 - - - -

V-J 150 0.109 - 62 37 Solved Solved
KC650 K-C 202 0.779 202.296 201 12 188 15

V-J 195 0.778 - 203 0 88 47
KC651 K-C 186 0.153 186.415 111 31 Solved Solved

V-J 195 0.179 - 161 6 122 31
KC652 K-C 194 0.704 194.646 177 13 173 14

V-J 195 0.705 - 185 0 118 37
KC653 K-C 202 0.790 164.503 191 11 188 15

V-J 195 0.805 - 198 4 149 21
KC654 K-C 197 0.830 180.925 193 5 191 8

V-J 195 0.823 - 197 0 157 14
KC750 K-C 239 1.319 295.629 415 3 415 3

V-J 225 1.323 - 497 0 377 4
KC751 K-C 224 0.659 313.639 234 9 234 9

V-J 225 0.664 - 298 0 242 7
KC752 K-C 223 0.687 272.187 215 18 209 19

V-J 225 0.697 - 273 0 200 20
KC753 K-C 230 0.650 321.670 257 20 253 21

V-J 225 0.654 - 585 0 445 4
KC754 K-C 222 0.860 313.507 268 9 268 9

V-J 225 0.861 - 349 0 236 15
KC1000 K-C 296 0.342 629.760 251 18 251 18

V-J 300 0.347 - 328 0 255 17
KC1001 K-C 308 0.450 785.408 286 19 282 22

V-J 300 0.445 - 845 0 691 0
KC1002 K-C 265 0.081 714.390 156 42 119 79

V-J 300 0.081 - 225 12 155 64
KC1003 K-C 320 1.254 742.034 559 4 559 4

V-J 300 1.267 - 700 0 548 3
KC1004 K-C 332 1.565 807.760 759 0 759 0

V-J 300 1.575 - 1213 0 958 0
these times do not include the time for the upper bound heuristic.
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Table 2.5 Computational Results for the s-tree ascent on randomly generated problems

# of trees Lower gap Upper gap # Available # Fixed
n K-C V-J K-C V-J K-C V-J K-C V-J K-C V-J

Average 50 109 129 0.08 0.08 0.49 1.19 72 95 38 33
Std. Dev. 31 21 0.11 0.13 0.83 1.82 36 66 19 21
Maximum 150 150 0.36 0.40 2.48 5.32 153 252 4* 0*

Average 60 145 168 0.25 0.21 0.37 1.72 97 136 38 30
Std. Dev. 33 24 0.27 0.27 0.63 2.43 43 78 23 23
Maximum 177 180 0.72 0.70 1.96 6.74 172 288 3* 0*

Average 70 183 206 0.12 0.34 0.83 1.85 131 178 34 37
Std. Dev. 25 9 0.11 0.75 0.88 2.45 57 129 30 30
Maximum 211 210 0.35 2.57 2.48 6.58 221 407 2* 0*

Average 80 210 229 0.10 0.09 0.79 2.00 163 251 41 40
Std. Dev. 31 15 0.12 0.13 0.85 2.86 86 223 34 34
Maximum 242 240 0.34 0.34 2.30 8.75 313 756 2* 0*

Average 100 265 286 0.19 0.15 0.94 3.01 253 468 38 38
Std. Dev. 37 22 0.17 0.16 1.02 4.40 138 502 42 45
Maximum 300 300 0.55 0.55 3.23 15.11 549 1841 1* 0*

these entries are the minimum (and not maximum) values.
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2.7 Conclusions

In this chapter, we presented a relaxation procedure for the STSP based on the 

minimal spanning tree relaxation. This procedure can be applied at the root node of 

a branch and bound algorithm. We also described a subgradient ascent procedure 

which is used to maximize the lower bounds. The lower gaps and the number of trees 

required to achieve this is comparable to (and in most cases better than) those of the 

best 1-tree based algorithm for the STSP. Tight upper bounds on the optimal solution 

value are obtained by a heuristic algorithm which is conveniently imbedded into the 

ascent procedure. We also described some strong problem reduction tests. These 

result in a very sparse graph in which around 92% of the arcs, on average, are 

declared superfluous and a third of the (required n) arcs are declared indispensable. 

We feel that this number can be further increased by recalculating 5 -trees when an arc 

in the tree has been declared superfluous at the problem reduction stage. The resulting 

new lower bound has to be greater than the previous one. If this new lower bound 

is greater than the upper bound minus one, then the best upper bound solution must 

be optimal. Since the total gaps at the end of the ascent are small, this procedure 

results in more problems being solved at the root node of the tree search.
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CHAPTER 3

The Assignment Problem, The Minimal Spanning

Arborescence and Complementary Duality

3.0 Outline

In this chapter we investigate the assignment problem and the minimal spanning 

arborescence problem as relaxations of the TSP. Lower bounds from the assignment 

problem are obtained through the restricted lagrangean approach of Balas & 

Christofides [1981]. A new bounding procedure is suggested for this approach. 

Bounds are also derived from the minimal spanning arborescence relaxation. The 

respective bounds and reduced costs are used to identify superfluous and indispensable 

arcs. In addition, we also exploit the complementary nature of the dual problems to 

reduce the size of the problem and also to increase to the lower bound.
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3.1 Formulations and substructures

Consider a complete directed or undirected graph G = {N,A),  where N is the set of 

n nodes and A is the set of m arcs. In the directed case,

Let be the cost of the arc ( i j ) .  The TSP is then the problem of finding a 

minimum cost Hamiltonian circuit, H in the graph G with cost matrix given by y J

In Chapter 1 we introduced a formulation for the STSP. In Chapter 2 we described 

how that formulation was used to get lower bounds from the SST. The SST is a 

special substructure identified in the formulation of problem PSTSP • In this section 

we identify two substructures in the general formulation of the TSP. Although this 

formulation is more suitable for defining the ATSP and although the STSP can be 

formulated more compactly (see Section 1.5), we use it to define the STSP and almost 

symmetric ATSPs. In Chapter 4, we will give a transformation for the STSP which, 

when applied at the end of the 5 -tree procedure (discussed in Chapter 2) results in a 

partially asymmetric graph. We now introduce a formulation for the general TSP (or, 

the ATSP) where c - * Cji for some or all ( i j ) .

Let x -  =1 if arc ( i j )  is in the optimal TSP tour 

= 0  otherwise

We then formulate the TSP as follows:
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Problem PTSP:

n  n

min E E cu xij
x t = 1 7=1

(3.1)

n
s-1- E xij =  1 •

i= 1
V j  s  N, (3.2)

E Xij =  1 ’ 
;= i

V i e  N, (3.3)

E E*;,^1’
ieSt jeS,

V S , c N  : S , * 0 , (3.4)

E E Xij ~  n '
ie N je N

(3.5)

Xij s  { o .l} , V (i j ) 6  A. (3.6)

Constraints (3.2) and (3.3) impose the value of one on the in-degree and the out- 

degree of each node. The constraint (3.5) is the result of surrogating the constraints

(3.2) and (3.3). Although redundant in the formulation of problem PTSP , we have 

retained it. The reason for including it will become clearer later in this chapter. The 

constraints (3.4) are the subtour elimination inequalities that impose solution-graph 

connectivity. There are many ways to express constraint (3.4). It can also be 

expressed as:

E E xu *
i e S t j z S t

St - 1, V St czN (3.7)

We can halve the number of constraints in (3.4) by replacing them with:
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V StcN:  r e  St (3.8)E
i g St j eS t

xa > i ,

or, with:

E E x ij — ^ > V S , c i V : 5 ^ 0 , r e 5 ,  (3.9)
j'eS,

where r is an arbitrarily chosen fixed node.

Substructures of this formulation can be identified, each defining a well-structured 

relaxation whose solution gives a valid lower bound on the value of the optimal 

solution to problem PTsp . In each of these substructures, one of the constraint sets 

of PTSP is relaxed. We now identify two such substructures.

3.1.1 The assignment problem substructure

The problem defined by the objective function (3.1) with constraints (3.2), (3.3) and

(3.6) is the well known min-sum assignment problem (AP). The AP can be defined 

as the following graph problem: identify a minimum cost collection of disjoint

subtours visiting all nodes of G. It is a special case of the transportation problem 

without capacity restrictions. It can also be viewed as a perfect matching problem on 

a bipartite graph.

The AP is a relaxation of PTSP in which the subtour elimination constraints have been 

relaxed. If the optimal solution to the AP consists of only one subtour, then the 

relaxed constraint is also satisfied. Then, the AP solution is optimal for problem
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PTSP as well. If the AP solution is not a tour, each subset St of nodes in G that are 

visited by the same subtour determines a violated subtour elimination constraint.

The AP can be solved in 0 (n 3) time using the Hungarian algorithm (see Kuhn 

[1955], Christofides [1975], or Lawler [1976]).

3.1.2 The r-arborescence substructure

Another substructure that can be identified within the formulation of the TSP is the 

shortest spanning r-arborescence problem SSAr, or the minimal r-arborescence of 

G. Just as shortest spanning 5 -trees are referred to, simply, as 5 -trees, we refer to the 

shortest spanning r-arborescences as r-arborescences. Before discussing this 

substructure in problem PTSp we introduce the following notations and definitions:

A spanning arborescence rooted at node r (SAr) is a subgraph of G with 

no subtours and exactly one arc directed into every node j e  N, j * r .  Of 

all the spanning arborescences that exist the shortest spanning arborescence 

rooted at r (SSAr) is a subgraph, denoted by G/? =  ( N , AR), for which the 

sum of the costs of its arcs is a minimum. We will denote an SSAr simply 

by R = ̂ N ,A r ), where ARczA . The r-arborescence of G, denoted by 

Rr = ̂ N , Ar J consists of an SSAr as well as a least cost arc directed into 

the root node r. The r-arborescence of G is defined as a subgraph of G in 

which the in-degree of each node (including the root node r) is 1 and each 

node can be reached from the root node r.

-  7 9  -



The SSAr problem is a relaxation of problem PTSP in which the out-degree 

constraints (3.3) have been relaxed. If the optimal solution of the SSAr with the 

objective function of problem PTSP is such that each node has out-degree equal to 

one, then the relaxed constraints (3.3) are satisfied; each node which has out-degree 

different from 1 constitutes a violation of a constraint from (3.3).

The SSAr can be solved by the efficient polynomial time algorithms of Edmonds 

[1967], Bock [1971], or Fulkerson [1974]. The algorithm of Edmonds was discovered 

independently by Chu & Liu [1965]. Edmonds [1967] provides a correctness proof 

for his algorithm based on concepts of linear programming. Karp [1971] gives a 

purely combinatorial correctness proof. Tarjan [1977] gave an efficient 

implementation of Edmond’s algorithm requiring 0 (n 2) steps for complete graphs. 

The same algorithm has an o ( | A | log n) complexity for sparse graphs. Camerinini, 

Fratta & Maffioli [1979] corrected an error in Taijan’s implementation. Specialized 

and specific implementations that find r-arborescences in sparse graphs are also 

available. Gabow, Galil & Spencer [1984], and Gabow, Galil, Spencer & Tarjan

[1986] make use of sophisticated data structures in algorithms of complexity 

O ( n log n + | A | log log log( \A \ jn + 2) n ) anc* C)(n log + | A | ) respectively. 

Fischetti & Toth [1988b] give an efficient 0 (n 2) implementation of Edmonds’ 

algorithm. They also propose an efficient 0 ( n 2) algorithm for the computation of the 

linear programming reduced costs associated with the solution of the SSAr .
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3.1.3 Complementary substructures

The graph that defines the optimal solution to problem PTSP is a subgraph of G 

possessing two main properties:

(i) it is strongly connected, in the sense that a path exists in it between 

every pair of nodes,

(ii) the degree of each node is two.

The subgraph of G that defines the optimal solution to the AP possesses property (ii). 

It does not necessarily satisfy property (i). The subgraph of G that defines the 

solution to the r-arborescence possesses property (i) while the property (ii) is not 

necessarily satisfied. Thus, the solutions to the AP and the r-arborescence possess 

properties that are complementary with respect to the properties of the optimal TSP 

solution.

In this chapter, we will show how these two substructures and their respective 

solutions can be used in a procedure to obtain lower bounds for the TSP. We will 

also exploit the complementary nature of the two substructures to tighten the lower 

bounds obtained through an iterative procedure.

3.2 Bounds from the assignment problem

The assignment problem (AP) can be formulated as:
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Problem P ^ :

n  n

min E E cij xijX j=l j = 1

s.t. (3.2), (3.3) and (3.6)

This is a relaxation of the TSP, where the subtour elimination constraints (3.4) or

(3.7), or any other constraint similar to these have been dropped. Balas & 

Christofides [1981] include both (3.4) and (3.6) as well as some positive linear 

combinations of other similar constraints and express the resulting family of subtour 

elimination inequalities in their generic form as:

E Y ,aijxij*ao'- leT- (310)
i e  N  j e  N

The integer programming formulation of the TSP then consists of the objective 

function (3.1) with the constraints (3.2), (3.3), (3.6) and (3.10). LetX denote the set 

of feasible solutions to problem p a p  • The relaxed constraints can be introduced into 

the objective function of problem P ^  by associating a lagrangean multiplier 

cof, te  T , with the rth constraint from (3.10) which is violated. The lagrangean 

problem is then written as:

min
x e X

n  n

E E cij xu
1 J= 1

CO,

t e T
E E aijxi r aQ
i= 1 7=1

(3.11)

s.t. (3.2), (3.3) and (3.6)
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The lagrangean objective function (3.11) can be simplified and the resulting 

formulation can be expressed as:

Problem P ^co ):

min
x e X

E E
i g N  j e  N

- E  a!,
/e  T

\
XU + 52

t e  T

s.t. (3.2), (3.3) and (3.6)

(3.12)

The value z ( p ap(co)J forms a lower bound on the value of the optimal TSP. The 

maximum such bound is found by identifying a multiplier vector co =  co* such that:

z (p Ap(co*)) =  max z ( p Ap(co)) (3.13)
<o>0

Problem (3.13) is the lagrangean dual of the TSP. The solution to this problem could 

be solved by a subgradient optimization procedure similar to the approach used in the 

case of the 5 -tree relaxation (Chapter 2). However, since the number of subtour 

elimination constraints increases exponentially with problem size, the number of 

multipliers co, in (3.12) has an exponential rate of increase with n. Hence, the ascent, 

as described in Chapter 2, becomes computationally infeasible. Balas & Christofides 

[1981] developed a successful method to solve (3.13) known as the restricted 

lagrangean approach. The lagrangean dual, (3.13) is replaced by a restricted 

lagrangean dual given by:
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max z(PAP(o)))
co e W  '

(3.14)

where, W =  i

co co>0 and 3 (u*,v*) such that

ci j~ui  -  vj -  E  =  0  if 1
t e  T

> 0  if xu = 0

(3.15)

Here, x e X  is the optimal solution to the AP and u* and v *, {i , j  = 1 ,..., ) are the 

optimal AP duals. (3.14) thus restricts the multipliers co, to values that, together with 

u* and v* form a feasible solution to the dual of the LP given by (3.1), (3.2), (3.3), 

and (3.10) along with jc{y>0, V i , j e  N. (3.14) is then solved by a polynomially 

bounded, sequential, non-iterative and approximate procedure which determines a set 

of multipliers coe such that z ( p ap(g/ ) )  is a good approximation of z (pap(co*)). A 

brief description of this procedure to find coe is provided in the following section.

3.2.1 The restricted lagrangean method to improve the AP lower bounds

This procedure starts by solving problem PAp with the TSP cost matrix C = c-y and 

obtains the solution x  and the corresponding duals u* and v*. Values to the 

multipliers co, are assigned in a sequential manner without changing the values 

assigned earlier. Bounding procedures identify inequalities from (3.10) which are 

violated by x. Each violated inequality admits a positive multiplier if there exists a 

co,>0 , which together with the multipliers already chosen, satisfies the constraints in 

W given by (3.15). The introduction of each violated inequality into (3.14) 

strengthens the lower bound. Let TM denote the set of violated inequalities from T
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that are identified by the bounding procedure M. The value of the strengthened lower 

bound after the application of bounding procedure M is given by:

v(BCM) =  V{BCM -  l )  + £  (0, a ° ,

f e T,
(3.16)

M

where, v (B C M - l )  is the value of the lower bound obtained after the (M-l)th
n  n

bounding procedure. The initial lower bound is: u *i + vj ‘
i = 1

At any stage of the procedure, C — j denotes the reduced cost matrix, where

Cij = ci j - Ui ~ vj - Y ,  tot0!]- The graph G0  =  {/V,A0 1, whereA0  =  { ( i j) |c ,7  =  o}
te T

is known as the admissible graph - a spanning subgraph of G containing arcs with 

zero reduced costs. The inclusion of each violated inequality into the restricted 

lagrangean objective function adds at least one new arc to the admissible graph. As 

long as G0 is not strongly connected, new valid inequalities that are violated by the 

solution to problem PAP can be found, each of which admit positive multipliers. 

When no more such inequalities can be found by the bounding procedures, G0  is 

regarded as a strongly connected graph. If the admissible graph becomes Hamiltonian 

and if a tour can be found in G0, whose arcs satisfy the constraints (3.10) with strict 

equality for all t e T, then the tour is optimal for the problem PTSP .

3.2.2 Bounding procedures

Balas & Christofides [1981] identify three main bounding procedures, 1,2 and 3. Each 

of these procedures are polynomially bounded. We use the bounding procedures 1 

and 3 and also extend the results of bounding procedure 3 to form an additional
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procedure. These three procedures we use are termed BC1, BC3 and BC31 

respectively. Each of these procedures identifies a particular type of valid inequality 

from (3.10) which is violated. The three types of inequalities identified by these three 

procedures are denoted by Tx, T3 and ^31 respectively. The components of co 

corresponding to these inequalities will be denoted by X = ( Xi ). ̂  ^ , y=  (yt- )-eT and

o =
ie T.31

Bounding procedure BC1

This procedure admits multipliers by identifying inequalities (3.4) which are violated 

by x. Let Tx represent this set of violated inequalities. Then, BC1 admits a positive 

multiplier Xt for every t e Tx. This set of inequalities can be represented as:

E  xij - 1  > t s T v  (3.17)
M *  Kt

where Kt is a directed cutset defined as Kt = ^St ,5 / ) =  | ( / j ) e  A ie  St , j e  St 

A positive multiplier Xt will be admitted by that cutset Kt which satisfies:

Kt C\Ao= 0  (3.18)

Choose any node i e  N. A node j e  N  is said to belong to the reachable set R(i) of 

i if there is a directed path from i to j  in G0. If /?(/)= N,  then there is no cutset^ 

with i e St that satisfies (3.18). We then choose another node from N and repeat the 

process. If R{i) = N  V i e  N,  this procedure is stopped; G0  is strongly connected 

and Kt HAo* 0  for all cutsets Kt in G.
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If R( i )#N  for some i e  N, then Kt = \R(i), N - R ( i )) satisfies (3.18). The largest 

initial value of A., corresponding to this violated inequality is:

X°= min {c, } (3.19)

and f C[j 1 is updated using:

Cij =  C i j -X<! v ('V)e K,
— unchanged otherwise

This adds to A0  all arcs for which c-  has just become 0. The search then commences 

for a new violated cutset.

The final values of Xt increase the lower bound by: ^  Xr  If v(BCl) represents
teTi

the value of the lower bound at the end of BC1, then:

v(flC7) = z(pAP) + £  Xt (3.20)

The maximum number of cutsets that have to be examined are ( h - l ) ( h  + 2 ) / 2 t 

where h is the number of subtours in x. The worst-case complexity of this procedure 

can be shown to be 0 (n 4).

Bounding procedure BC3

This procedure admits multipliers by identifying articulation points in the admissible 

graph. An articulation point of G0  is a node k whose removal leaves G0  with more 

than one component. Denote the set of nodes in the two components as S* and Stb. 

Every tour must contain an arc that belongs to at least one of the cutsets 

=  { (i j )  e A |ie  S? J e  S,*} and K b = {{i , j)e A i e  Stb J e  S,a | .  Any tour 

must thus satisfy:
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(3.21)E xu * 1
, (w)e*,*UJT*

This procedure searches the set of nodes N for articulation points. If an articulation 

point k e  N  is found, then the cutsets K* and K^  are formed and a positive 

multiplier yt can be admitted since:

K?r\Ao =  K>()Ao= 0  (3.22)

The largest value that can be assigned to yt is:

Y,= min {ci;} (3.23)
(i.y)e C M ,1

Note that if G0  has no articulation point, then for any node k, the maximum of (3.21) 

is 0 and no inequality (3.21) admits a positive multiplier. The reduced cost matrix is 

updated using:

cil = ci r yl V ( i j ) e K , aUK'b 
=  unchanged otherwise

The admissible graph is updated accordingly. If T3  denotes the set of violated 

inequalities in (3.21), then the lower bound at the end of BC3 is given by:

V { B C 3 ) = Z ( Pap) + £  X , *  £  Y, (3.24)
t e 7\ t e T 2

The procedure is applied to all n nodes. Testing for connectivity requiresO(| A |) 

steps. Hence this procedure can be performed in o(n  | A |) steps.
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Bounding procedure BC31

This is an extension of the procedure BC3. This procedure identifies pairs of nodes 

in the admissible graph whose removal leaves G0  with more than two components. 

In general, if the removal of p  nodes from G0  leaves it with more than p components, 

a positive multiplier can be identified. We implement this procedure for p = 2.

Consider a pair of nodes {k , /} e N whose removal from G0  leaves it with three 

disconnected components. Denote the set of nodes in the three disconnected 

components as S,c, s f  and S f . Every tour must contain at least one arc that belongs 

to the cutsets K f  =  { , s f  j , or Ktd = { s f , S,c}, or K* =  j , S* J , or

K { - [ s f , S f } >  01 =  or * *  =  { Define:

A'f1 ={(/.y )|(i,7 )e  UK ? UK ‘ Uk { UK f  UK,h } (3.25)

In other words, every tour must satisfy:

E *ij * 1 (3.26)

31where Kt is defined using (3.25). Procedure BC31 investigates whether every pair 

of nodes in N  satisfies (3.26). If a pair { k j }  is found that violates (3.26), a positive 

multiplier c t can be admitted since:

k ' rM0=K,dr u 0= K / r u 0= k [ n a0= K f  r\Ao= K fr \A o= 0  (3.ii)

The largest value that can be assigned to Gt due to the violated inequality (3.26) is:

min
(«V)e ^ 31

(3.28)
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= v  (‘J ')e  AT?1 
=  unchanged otherwise

The admissible graph is updated accordingly as some more zero reduced cost arcs will 

be introduced by this procedure. If h  1 denotes the set of violated inequalities in 

(3.26), then the lower bound at the end of procedure BC31 is given by:

v(BC31) = z (p ap) + E V E  Y,+ £  o, 0-29)
t e T x te T3 t e T31

Procedure BC31 is applied to all pairs of nodes. Since testing for the connected 

components requires 0 ( \ A \ )  steps (Tarjan [1972]), the procedure can be 

implemented in 0 ( n \ A \ )  steps. We illustrate the three bounding procedures with an 

example in the following section.

3.2.3 An example

Consider the 10-node TSP whose input cost matrix is shown in Table 3.1. Table 3.2 

shows the optimal solution x  to the AP (x^ — 1 for those cells ( i j )  which have a 

bold zero in them; x ^ —0 otherwise). The solution consists of two subtours: {2,10} 

and {1,8,9,3,7,5,6 ,4}. The numbers in the matrix represent the reduced costs 

associated with the AP optimal solution and the numbers in the boxes along the rim 

represent the optimal AP dual vectors u and v.

The reduced cost matrix is updated using:
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Table 3.1 Input cost matrix of a 10-nodes example.

1 2 3 4 5 6 7 8 9 10
1 - 6 19 22 16 20 5 3 9 11
2 11 - 23 20 14 15 7 1 18 2
3 18 9 - 17 6 15 1 15 14 15
4 5 3 12 - 25 6 19 14 9 21
5 16 4 12 13 - 4 17 8 10 18
6 8 25 23 3 6 - 11 15 16 10
7 14 15 5 15 1 17 - 12 6 6
8 18 6 18 3 15 4 23 - 3 16
9 8 15 3 19 6 24 8 19 - 23

10 25 2 8 4 4 24 14 16 14 -

Table 3.2 Optimal solution to the AP.

1 2 3  4 5 6  7 8 9  10
1

2
3
4
5
6
7
8 
9

10

5 2 3 3 1 4 1 1 3 2

- 2 14 17 13 14 2 0 4 7
6 - 20 17 13 11 6 0 15 0

13 7 - 14 5 11 0 14 11 13
0 1 9 - 24 2 18 13 6 19

11 2 9 10 - 0 16 7 7 16
3 23 20 0 5 - 10 14 13 8
9 13 2 12 0 13 - 11 3 4

13 4 15 0 14 0 22 - 0 14
3 13 0 16 5 20 7 18 - 21

20 0 5 1 3 20 13 15 11 -

2
0

0

0

0

0

0

0

0

0

The initial lower bound is Z^PapJ =  27. The admissible graph corresponding to this 

solution is shown in Figure 3.1.

Boundins procedure BC1

Cutset Kx = ({ l,3 ,4 ,5 ,6 ,7 ,8 ,9 } ,{ 2 ,1 0 } ) violates the inequality (3.17). Since 

^ 0 ^ 0  =  0 ,  we use (3.19) to admit a positive multiplier =  c4  2=  1 •
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Figure 3.1 The admissible graph G0 defined by the optimal assignment

The procedure is then terminated as there are no more inequalities (3.17) that are 

violated. The new lower bound is V(BC1) =  27 + 1 =  28. The updated reduced cost 

matrix is shown in Table 3.3 and the corresponding admissible graph is shown in 

Figure 3.2.

Table 3.3 Reduced cost matrix after procedure BC1.

1 2 3 4 5 6 7 8 9 10
1 - 1 14 17 13 14 2 0 4 6
2 6 - 20 17 13 11 6 0 15 0
3 13 6 - 14 5 11 0 14 11 12
4 0 0 9 - 24 2 18 13 6 18
5 11 1 9 10 - 0 16 7 7 15
6 3 22 20 0 5 - 10 14 13 7
7 9 12 2 12 0 13 - 11 3 3
8 13 3 15 0 14 0 22 - 0 13
9 3 12 0 16 5 20 7 18 - 20

10 20 0 5 1 3 20 13 15 11 -
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Figure 3.2 The admissible graph G0 after procedure BC1

Bounding procedure BC3

Node 2 is an articulation point of G0  (in Figure 3.2). Removal of node 2 fromG0  

leaves it with 2 disconnected components S “ =  { l,3 ,4 ,5 ,6 ,7 ,8 ,9}  and 5 />={l0}. 

Define the cutsets:

ArIa = ( { l ,3 I4 ,5 ,6 ,7 ,8 ,9 } , {lO}) and ^  =  ({10},{ l ,3 ,4 ,5 ,6 ,7 , 8 ,9}).

The arc cutset violates the inequality (3.21). Since K* CiA0 = Ki flAo =  0 ,

we use (3.23) to admit a positive multiplier y-̂  = c4<10=  1. The procedure stops as 

there is no other articulation point in G0. The new lower bound is 

v(BC3) = 27 + 1 + 1=29. The updated reduced cost matrix is shown in Table 3.4 and 

the corresponding admissible graph is shown in Figure 3.3.
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Table 3.4 Reduced cost matrix after procedure BC3.

1 2 3 4 5 6 7 8 9 10
1 - 1 14 17 13 14 2 0 4 5
2 6 - 20 17 13 11 6 0 15 0
3 13 6 - 14 5 11 0 14 11 11
4 0 0 9 - 24 2 18 13 6 17
5 11 1 9 10 - 0 16 7 7 14
6 3 22 20 0 5 - 10 14 13 6
7 9 12 2 12 0 13 - 11 3 2
8 13 3 15 0 14 0 22 - 0 12
9 3 12 0 16 5 20 7 18 - 19

10 19 0 4 0 2 19 12 14 10 -

Figure 3.3 The admissible graph G0 after procedure BC3

Boundins procedure BC31

Consider the removal of the nodes 4 and 8  and all the arcs connected to them from 

the admissible graph represented in Figure 3.3. The remaining contains three 

disconnected components 5'1c =  {l}, 5 1rf={2,10} and S* =  {3,5,6 ,7,9}.
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We define the directed cutsets: ff,c =  ({ l} ,{2,10}), K f  =  ({2 , 10},{l}),

*r' =  ({ l} ,{3,5,6 ,7,9}), #T^=({3,5,6,7,9}.{1}-), =  ({2,10},{3,5,6,7,9}),

and ^ *  =  ({3,5 ,6 ,7,9},{2,10}).

31The relation (3.25) is used to define the cutset Kx which violates (3.26).

Since DA0  =  K ? DA0 = K ‘ (1A0 = k { ClA0 =  AT,® DA0  =  AT* DA0=  0 ,  we use (3.27)

to admit a positive multiplier Gl = c l 2  =  ̂ 2  5  =   ̂ procedure terminates as there

are no other pairs of points in G0 whose removal causes a violation of (3.26). The 

new lower bound is v [b C3) = 21 + 1 + 1 + 1=30. The updated reduced cost matrix 

is shown in Table 3.5 and the corresponding admissible graph is shown in Figure 3.4.

Table 3.5 Reduced cost matrix after procedure BC31.

1 2 3 4 5 6 7 8 9 10
1 - 1 13 17 12 13 1 0 3 4
2 5 - 19 17 12 10 5 0 14 0
3 12 5 - 14 5 11 0 14 11 10
4 0 0 9 - 24 2 18 13 6 17
5 10 0 9 10 - 0 16 7 7 13
6 2 21 20 0 5 - 10 14 13 5
7 8 11 2 12 0 13 - 11 3 1
8 13 3 15 0 14 0 22 - 0 12
9 2 11 0 16 5 20 7 18 - 18

10 18 0 3 0 1 18 11 14 9 -
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Figure 3.4 The admissible graph G 0 after procedure BC31

3.3 The minimal spanning r-arborescence problem

The procedure to obtain bounds from the r-arborescence relaxation in an undirected 

graph, is analogous to the application of the 5 -tree relaxation approach for an 

undirected graph. This relaxation was first used by Held & Karp [1970] for the 

ATSP. Computational studies carried out by Smith [1975], and Hong [1978] suggest 

that this is a weak relaxation for the ATSP when compared to the AP relaxation.

The r-arborescence problem can be formulated as:
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Problem  PR :

n  n

“ i" E E cijxa
X  i = l j — \

V S , c z N :  r e  S (3.31)

E E xa = (3.32)
i g N j e  N

(3.33)
i e N

{0 , 1 } v  ( i j )  e  A . (3.34)

The solution to the above problem is a spanning subgraph denoted by Rr in which the 

in-degree of every node (except the root node r) is 1. As in the case of the s-tree 

relaxation, a careful choice of the root node could yield good results. However, we 

take the root node arbitrarily to be node 1. We, nevertheless, retain the denotation of 

the problem as the r-arborescence (as opposed to the 1 -arborescence).

The problem of finding the r-arborescence can be decomposed into two problems:

(P3.1) find an SSAr in G, and

(P3.2) find a minimum cost arc (i,r) in G.

Problem (P3.1) the SSAr can be formulated as follows:
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Problem PR:

n n

min E E cu xijX i= l i=l

Y1

_£m Ci
; IV

 ►—* V S t c  N : r e  S r (3.35)

n n

E E*iy = n~1’
i=\j=\

(3.36)

Xij* (0 , 1 ), V ( i j )  e A. (3.37)

Efficient algorithms are available to solve problem PR (see Section 3.1.2). We use 

the 0 (n 2) implementation of the algorithm of Edmonds [1967] given by Fischetti & 

Toth [1988b].

3.3.1 Lagrangean bounds from the r-arborescence substructure

Problem PR is a relaxation of problem PTSP in which the out-degree constraints (3.3) 

have been relaxed. A tighter relaxation can be obtained by including the relaxed 

degree constraints in the objective function of problem PR with the use of lagrange 

multipliers 5 =  | 8 - | / e N }. The formulation of this problem is given below:

n  n n (  n

min E E c i j  x i j +E5; E
x e  R r i =  1 i =  1 i = 1 I r 1

s.t (3.31) - (3.34)

(3.38)

The objective function (3.38) is re-written to obtain the following formulation for the 

relaxed problem with the lagrangean objective function:
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Problem PR(S):

min
x e  R r

E E {cu + si)xij
n

E

s.t. (3.31) to (3.34)

(3.39)

Problem PR (5) defines an r-arborescence on G where the cost of an arc has been 

transformed using: ct - = ctj + 8 -, V ( i j )  e N. The optimal solution, z | p r (S)J to the 

above problem forms a lower bound on the value of z (ptsp ). The maximum lower 

bound is obtained by obtaining a multiplier vector 8  =  8 * such that:

z (p r (8 *)) =  max z (pR (5)) (3.40)

The iterative subgradient ascent method described in Chapter 2 can be used to solve 

the problem of maximizing the lagrangean dual, (3.40). At any stage m of the ascent, 

we solve problem PR(S) for a given set of multipliers S =  8 m. If the r-arborescence

lcU , is a tour, the ascent is terminatedcorresponding to the transformed arc costs, C =  

and the corresponding lower bound, z | p r (8 )J is the optimal solution value to 

problem PTSP . Otherwise, let d-m be the out-degree of node i. Let p be a positive 

scalar not greater than 2. The multipliers for the iteration m+1 of the ascent are 

updated using:

8 f  + 1 = 8 ”  + r'n(dim- l ) >  V / s N (3.41)

where r m, the scalar step length, is computed using:

^ -z (p R ,(sm))
t m = p * (3.42)

1 =  1
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If the optimal solution is not identified by the ascent, a set of multipliers be is 

obtained which is a good approximation of 5 *.

For the 1-tree relaxation of the STSP, Held & Karp [1971] suggest that the optimal 

dual variables obtained by solving an AP with the STSP cost matrix can be used as 

the basis for obtaining a good set of starting lagrange multipliers. For the r- 

arborescence relaxation of problem PTSP , we have a similar result.

Consider the dual of problem PAP. It can be formulated as follows:

Problem DAp:

n n

max E + E vi
U  , V ;=i j - 1

S.t. CU-‘ “ i -  vy -  0

Let the variables u* and v*, i J e  N define the optimal variables to problem DAP. 

If we take the initial lagrange multipliers as 8 ? =  - u* , ie  N  and evaluate the r- 

arborescence with respect to the transformed arc costs, the value of the lower bound 

obtained is:

E
n

i= 1

y

- E E K - ‘K
(i j)eRr < = 1

From the constraints of the AP dual problem, and from initializing the lagrangean 

vector to the optimal row duals of the AP it follows that:
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Z P r (8 ° * E K+v;) + e M ?K
('•»€ Rr i =  1 

n n

=  E 4 ° « ; + E ' ' ; + E ( i - 4 ° k
i= l  7 =  1 ‘ = 1
n n

=  E “,*+ E v ;
i= 1 7=1

=  z (Pap)

Thus by taking 8 ? =  - u * , V IeiV,  the initial lower bound is at least as great as 

z [ Pap )• After this initialization, the multipliers are updated using (3.41). However, 

since the algorithm to identify the r-arborescence requires the cost of every arc to be 

nonnegative, we impose the following strong condition on the values of the 

multipliers:

5 f +1= m ax{o , 5" ♦ 1) V / e N (3.43)

Moreover, we found that the use of (3.43) slows down the rate of the ascent. So, we 

initialized the multipliers using:

8  ̂=  — u * + p * J max { c-•} 1 ,  V i e  N
J

Note that the use of this as the initial multiplier vector does not affect the lower 

bounds obtained. We observed that quick convergence was achieved in the ascent by 

initializing the constant p to be 1.25.

Smith [1975] developed an implementation of the ascent for this problem and obtained 

bounds for the ATSP. We use the parameter updating rules and the ascent terminating 

rules given in Smith [1975] for our ascent.
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Consider the formulation of SSAr, ie., problem PR. The constraints (3.35) ensure the 

strong connectivity of the subgraph R which defines the solution to the problem. 

Since cf->0 V (i , j )e  A,  and if we assume ct - =  °o V i e  N,  then constraint (3.36) 

becomes redundant in the formulation. Also, constraint (3.37) can be relaxed to:

Xij>0, V ( i j ) e  A. (3.44)

This produces an LP formulation of the SSAr (see Edmonds [1967] and Fulkerson 

[1974]) defined by the objective function (3.1) and the constraints (3.35) and (3.44). 

Let K t = [ s t ,Sf ) =  {(/j)|ie S t , j e S t : r e  S,} denote an r-cutset or an r-cut in

(3.35). If we denote the family of such r-cuts in G  by K , then the dual of the SSAr 

is represented as:

Problem DR:

3.3.2 LP duals of the minimal spanning arborescence problem

max Y, yi
l e K

(3.45)

s-t. ci}-  Y  y i * ° ’
l e K

V ( i , j )e  <4, (3.46)

y{ * o, V l e  K. (3.47)

The LHS of (3.46) represents the LP reduced costs on the arcs obtained through this 

formulation. Let y* denote the optimal solution to problem DR and let c *• denote the 

optimal reduced costs. Then,

cij= ci j -  Y .  y*'  (3.48)
/ G K
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The following four necessary and sufficient conditions satisfy the optimality of x*j and 

y* for the problems PR and DR.

RSC1: the primal solution x*j satisfies (3.35) and (3.44),

RSC2: y ,>0  V l e  K and,

the reduced costs are nonnegative for each ( i j )  e A ,

RSC3: c*j = 0 if x * > 0 ,

RSC4: x *j=  ̂> for each / e K such that y* >0.
( i , j ) e /

The algorithm of Edmonds [1967] is dual feasible in the sense that at each step of the 

algorithm, the dual feasibility conditions RSC2 are satisfied. The primal feasibility 

conditions are attained only at the last step.

3.4 Bounds from complementary duality

Consider the formulation of problem PTSP given by (3.1), the constraints (3.2), (3.3),

(3.8), (3.5) and (3.6). The AP substructure is defined by (3.1) and the constraints

(3.2), (3.3) and (3.6). The r-arborescence substructure is defined by (3.1) and the 

constraints (3.8), (3.5) and (3.6) with only one constraint from (3.2) for j  = r, which 

is included in the r-arborescence formulation. The formulations are, therefore, 

complementary with respect to the formulation of problem PTSP.

The AP procedure identifies the optimal LP dual variables associated with the degree 

constraints (3.2) and (3.3), given by u* and v* respectively, V i , j e N . The best 

set of lagrangean dual variables associated with the relaxed connectivity constraints
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are estimated by the restricted lagrangean bounding procedures. This set of duals is 

given by co*, V te T. The r-arborescence procedure identifies the optimal LP dual 

variables, y* V l e  K, associated with the connectivity constraints. The best set of 

lagrangean dual variables associated with the relaxed degree constraints is estimated 

by the r-arborescence ascent. This set of duals is given by 8* V i e N. In this sense, 

the two relaxation approaches are complementary dual procedures for problem PTSP. 

We use this complementary dual property of the two substructures to design a 

sequential algorithm (Algorithm CD-TSP) to tighten the lower bounds produced by 

either of the substructures.

3.4.1 Problem reduction through the AP reduced costs

Let C* =  [c*- ] represent the AP reduced cost matrix at the end of the application of 

bounding procedure BC31. The lower bound on problem PTSP is v(BC3l). Given 

an upper bound, U, on the value of the optimal solution, if an arc ( i j )  satisfies:

v(BC3l) + c*j > U, (3.49)

then arc ( i j )  is declared superfluous to the problem and can be removed from the 

problem graph. An arc is removed by simply setting its cost to a large positive 

integer.

If all the input costs are integers and if the feasible tour associated with the upper 

bound is available, then U can be reduced to U -  1.
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3.4.2 Problem reduction through the r-arborescence reduced costs

Given the optimal dual variables y* associated with every / e K , the reduced costs 

are calculated using (3.48). The reduced cost of an arc ( i j )  in the problem PR is 

also given by c *•. In addition, the reduced costs of all the arcs entering node r are 

changed because of the additional arc in the solution to problem PR defined by the 

constraint (3.33). The additional arc is identified by the subproblem (P3.2). The 

reduced costs of arcs entering node r are then given by:

c*r =  cir -  min {cir} , V i e N  (3.50)

i * r

If an arc ( i j )  satisfies:

z (p r (5£)) + c*j > U, (3.51)

then arc ( i j )  is declared superfluous to the problem and can be removed from the 

problem graph. In (3.51), C* refers to the reduced costs obtained using (3.48) and 

(3.50) on the cost matrix transformed using: c-■ = c- + 8^, V ( i j )  e A .

3.4.3 The complementary dual algorithm

A step by step description of algorithm CD-TSP is given below:

Input: Graph G = (N,A ); cost matrix C; upper bound U.

Step 1: Solve the AP on the cost matrix C. x represents the optimal AP

solution; the lower bound is z ( p a p )*

If x is a tour, output x and z (pap). STOP.
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Step 2:

Step 3:

The restricted lagrangean bounding procedures BC1, BC3 and BC31 

are applied to augment the lower bound, z (pAPj.

At the end of BC31, v(BC3l) denotes the best lower bound attained. 

C* is the corresponding reduced cost matrix and Gq denotes the 

admissible graph.

The reduced costs are used in conjunction with an upper bound U to 

identify superfluous arcs using (3.49). If an arc ( i j )  is identified as 

superfluous, the cost matrix is updated using cf • + M , where M 

is a large positive number. The original graph is thus reduced.

Solve the r-arborescence on this reduced graph and perform the ascent. 

z(pR (5e)J is the best lower bound at the end of the ascent and GR is 

the subgraph consisting of arcs in the r-arborescence. C is the 

corresponding reduced cost matrix.

If Gr defines a tour, output G R and z |p R (Se)J. STOP.

The reduced costs are used along with U to identify superfluous arcs 

using (3.51); the cost matrix is updated accordingly.

If any of the arcs in x  have been declared superfluous in Step 2, then 

the AP solution is no longer optimal. By definition, an increase in the 

lower bound from the AP relaxation is possible.

If no such arcs can be found, Go to Step 4.

The AP is again solved on the updated cost matrix.

If Gr defines a tour, output GR and z | p r (5e)J. STOP. 

x, V(BC3J), C* and G0* are recalculated.

(3.49) is used to identify more superfluous arcs.
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Go to Step 6.

Step 4: If any of the arcs in Gq were declared superfluous in Step 2, then the

admissible graph could become weakly connected.

If no such arcs can be found Go to step 5.

The bounding procedures BC1, BC3 and BC31 are applied to the 

updated reduced cost matrix. The new lower bound and reduced costs 

are evaluated.

(3.49) is used to identify more superfluous arcs.

Go to Step 6.

Step 5: Output the best lower bound given by: max jv(z?Ci/) , z |p R (5e)jJ.

STOP.

Step 6: If any of the arcs in GR have been declared superfluous, the r-

arborescence is no longer optimal. By definition, an increase in the 

lower bound from the r-arborescence relaxation is possible.

If Gr defines a tour, output GR and z |p R ($e)j. STOP.

The best set of multipliers 8e are used to evaluate a new solution GR 

using the updated cost matrix. The augmented lower bound, 

z (PrJ 8c) J is evaluated.

(3.51) is used to identify superfluous arcs.

Go to Step 3.

The optimal solution to the AP obtained in Step 1 can be used, along with a modified 

version of the Hungarian algorithm, to reduce the complexity of re-solving an AP in 

Step 3 of algorithm CD-TSP from 0 (« 3) to 0 ( n 2). Bellmore & Malone [1971] use 

this in their AP based branch and bound algorithm. An efficient implementation of
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the modified Hungarian algorithm for re-solving APs over subsets in a branch and 

bound procedure is given by Carpaneto & Toth [1980]. This requires, on average, less 

than 0 (n 2) steps. However, in Step 3, we use the 0 (n 3) Hungarian algorithm 

because of the complexities introduced when more than one arc from the optimal 

solution to the AP (obtained in Step 1) is declared superfluous in Step 2.

We can tighten the bound further by incorporating branch-chord exchanges in the 

optimal r-arborescences (in Step 2 and Step 6) to identify indispensable arcs. 

Consider an arc (/,/) that is declared indispensable in Step 2. If {ij)<£ x , the AP 

solution is no longer optimal: the lower bound can be increased. However, we did 

not implement this idea and leave it as one possible avenue for further research.

3.5 Computational results

We use the same problems to test the effectiveness of algorithm CD-TSP as we used 

for the 5-tree ascent procedure. All the sub-procedures within CD-TSP were coded 

in FORTRAN 77 and run on a CYBER/930.

The AP relaxation subprocedure is the first step of algorithm CD-TSP. Table 3.6 and 

Table 3.7 represent the results for the AP bounding procedures on 22 well-known 

symmetric (road map and Euclidean) problems and the 20 newly generated problems 

respectively. Computational studies in the past have indicated that lower gaps 

obtained from the AP with the STSP cost function are poor when compared to bounds 

that can be obtained from the AP with the ATSP cost function. The second column 

in each of Table 3.6 and Table 3.7 verify this claim. The initial AP lower gaps for
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the well-known problems and the new problems are, on average, 23% and 25.5% from 

the optimal solution respectively. The reason for the poor performance can be 

explained by the tendency for the AP solution to retain the symmetry of the input 

costs. In other words, if x - =  1, then, since ci - = c-i, the likelihood of x- = 1 is also 

very high.

In the literature, computational studies on the performance of the restricted lagrangean 

approach to increase the AP lower bounds have been confined to ATSPs. Little has 

been reported for STSPs. Tables 3.6 and 3.7 report the performance of the restricted 

lagrangean approach for the STSP test problems.

The second column in each of the tables shows the percentage improvement over the 

initial AP lower bound obtained by procedure BC1. An average improvement of 

nearly 15.5% is possible by the application of this procedure. This substantial 

improvement can be attributed to the many subtours in the solution to the AP. 

Therefore, many violated connectivity constraints are identified by BC1. The 

procedure BC3 improves the lower bound at the end of BC1 by on average, 3.5% over 

all tested problems. The improvement obtained by the new procedure (BC31) on the 

lower bounds at the end of BC3 is an average of 0.7% over all the problems. The 

improvement is not as substantial as those obtained by BC1 and BC3 but is not 

unimportant when one is referring to the lower gap. One possible explanation for the 

modest increase in the lower gaps is that the admissible graph at the end of the 

application of BC3 is already quite strongly connected. Our studies have indicated 

that the small improvement obtained by BC31 is also instrumental in increasing the 

number of superfluous arcs by nearly 3.5%.

-  1 0 9  -



Table 3.6 Results for the AP bounding procedures on well-known problems

Problem Initial AP 
Lower gap

BC1 (%Imp) BC3 (%Imp) BC31 (%Imp) Final AP 
Lower gap

DF42 31.39 17.11 4.33 1.54 5.91
HK48 16.12 10.00 1.19 0.42 3.89
GR48 22.00 11.70 3.81 0.00 5.21
KT57 22.76 15.11 3.02 0.06 3.45
ST481 31.10 16.19 5.86 0.00 6.59
ST482 20.16 13.70 3.13 0.02 2.45
ST483 26.80 19.94 3.21 0.00 2.43
ST484 18.75 11.36 2.31 2.40 1.79
ST485 16.86 9.12 3.06 0.00 3.91
ST600 20.06 10.54 3.10 0.29 5.03
ST601 22.98 13.68 3.94 0.20 3.87
ST602 25.23 14.92 6.72 0.29 1.82
ST603 38.09 19.03 8.79 0.32 6.31
ST604 33.34 25.06 1.40 0.17 4.97
ST605 28.46 15.05 3.19 1.40 6.71
ST606 26.31 16.03 2.82 0.52 5.32
ST607 29.35 18.96 3.03 0.16 5.37
ST608 30.83 19.69 3.12 0.00 6.01
ST609 23.65 12.77 4.40 0.45 4.57
NCE50 11.55 5.77 0.99 0.49 3.91
NCE75 12.16 5.03 2.00 0.39 4.29
NCE100 9.81 5.08 0.50 0.17 3.81

The last columns in Tables 3.6 and 3.7 indicate the final lower gaps at the end of the 

application of the AP subprocedure in algorithm CD-TSP. These are, on average, 

4.5% away from the optimal solution values for the well-known problems and 5.3% 

away from the optimal for the new problems. These lower gaps do not compare 

favourably with the very tight gaps attained by an 5-tree ascent (Chapter 2). However, 

these bounds are useful since they are used to reduce the size of the problem. The 

reduction tests that are applied at the end of the AP subprocedure, result in an average 

of 59% of the available arcs being declared as superfluous. This reduction in the size 

of the problem is of importance in getting good lower bounds from the r-arborescence
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ascent in Step 2 of CD-TSP. Without this reduction it is possible that many arcs may 

appear in r-arborescences that are redundant to the problem.

Table 3.7 Results for the AP bounding procedures on newly generated problems

Problem Initial AP 
Lower gap

BC1 (% Imp) BC3 (% Imp) BC31 (%  Imp) Final AP 
Lower gap

KC500 36.08 26.08 2.43 0.41 4.94
KC501 21.65 13.91 1.54 0.48 4.67
KC502 22.55 12.18 3.38 1.44 4.17
KC503 32.06 22.13 4.82 0.39 2.76
KC504 19.72 11.24 3.45 0.13 3.89
KC650 26.61 16.64 4.28 0.00 4.10
KC651 19.52 9.98 4.59 0.00 3.91
KC652 21.22 12.90 3.48 0.24 3.51
KC653 27.53 17.83 2.07 1.21 4.76
KC654 15.72 7.21 3.28 0.30 4.19
KC750 23.75 14.07 2.38 0.65 5.29
KC751 20.06 13.18 2.62 0.19 3.17
KC752 34.22 17.59 4.24 1.93 7.43
KC753 36.35 19.31 3.49 0.58 9.80
KC754 32.10 20.54 1.16 0.42 7.89
KC1000 29.16 19.05 2.67 0.22 5.44
KC1001 28.53 15.75 3.32 1.70 5.67
KC1002 22.80 13.73 1.05 0.23 6.60
KC1003 26.72 15.61 1.29 0.46 7.71
KC1004 19.56 11.17 1.05 0.12 6.30

Table 3.8 and 3.9 show the results of the rest of the algorithm CD-TSP. The number 

of ascent iterations performed is given in the second column in each of the tables. An 

average of about 137 directed trees are evaluated by the ascent procedure. This figure 

is lesser than the number of iterations performed in the 5-tree ascent (see Section

2.6.2). This is probably due to the manner in which we initialized the multiplier 

vector in the r-arborescence ascent to ensure quicker convergence. Although the
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calculation of 5-trees and r-arborescences have the same order of complexity, 5-trees, 

on average, take less time to compute. Comparisons of the running times for the r- 

arborescence procedure (in Table 3.8 and Table 3.9) with that of the 5-tree ascent (in 

Table 2.3 and Table 2.4) show that the former takes roughly the same time as the 

latter. The lower gaps obtained by the algorithm CD-TSP are however comparable 

to those obtained by the 5-tree procedure. The average lower gap from algorithm CD- 

TSP for well-known problems is 0.57% while the average gap from the 5-tree 

algorithm for the same set of problems is 0.56%. For the newly generated problems 

the average lower gaps produced by the two algorithms is 0.50% and 0.55% 

respectively.

Computational studies in the past have discouraged the use of the r-arborescence as 

a relaxation for the STSP. However, by using the complementary dual property of the 

AP and the r-arborescence relaxations, we are able to improve the lower bounds in a 

sequential manner. The result is that the final lower bounds are comparable to the 

tightest bounds possible for the STSP, ie., those from the 5-tree relaxation. We 

attribute this result to the reduction tests which enable an increase in the lower 

bounds.

Table 3.8 and Table 3.9 also give the number of cycles of CD-TSP that are performed 

for each of the problems. A cycle is defined as the number of times either an AP (in 

Step 3) or an r-arborescence (in Step 6) are re-solved.
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Table 3.8 Results for algorithm CD-TSP on well-known problems

Problem # of r- 
arborescences

Number of CD-TSP 
cycles Lower gap

% arcs 
superfluous

Cpu Secs for 
arborescence 

ascent

Cpu Secs for 
the AP 

subprocedure
DF42 88 1 0.34 93.75 43.49 0.62
HK48 116 1 0.16 96.15 62.94 0.86
GR48 120 0 1.76 83.30 70.61 0.85
KT57 149 1 0.41 89.92 99.14 1.34
ST481 128 0 1.88 86.19 71.18 0.87
ST482 112 1 0.18 95.52 60.89 0.87
ST483 108 1 0.06 96.33 66.95 0.83
ST484 124 1 0.66 91.99 77.20 0.82
ST485 112 1 0.16 95.70 62.52 0.82
ST600 144 1 0.22 94.97 127.96 1.56
ST601 164 0 0.96 91.41 149.05 1.54
ST602 125 0 Solved 139.06
ST603 162 0 1.04 88.02 130.75 1.55
ST604 144 1 0.16 95.66 101.22 1.56
ST605 156 1 0.85 91.58 103.61 1.52
ST606 132 1 0.03 97.79 104.46 1.45
ST607 150 1 0.43 93.42 139.68 1.53
ST608 160 0 1.12 89.74 137.28 1.52
ST609 156 1 0.79 91.58 129.96 1.54
NCE50 109 1 0.86 91.80 63.55 0.92
NCE75 162 0 0.32 89.85 188.54 2.82
NCE100 194 1 0.35 96.72 337.49 6.44

Finally, the tables also give the total number of available arcs declared superfluous by 

CD-TSP expressed as a percentage of the available arcs. The average number of arcs 

declared superfluous is 92.79% and 92.71% in the two problem sets respectively, 

thereby resulting in an average reduction of 92.75% over all the problems solved. 

This figure is marginally higher than the corresponding figure at the end of the 

branch-chord exchange procedure in the 5 -tree algorithm. This is a significant result 

that demonstrates the usefulness of the algorithm CD-TSP.
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Table 3.9 Results for algorithm CD-TSP on newly generated problems

Problem # of r-
arborescences

Number of 
cycles

CD-I'S P 
Lower gap

% arcs Cpu secs tor 
superfluous arborescence 

ascent

Cpu secs for 
the AP 

subprocedure
RU500 m ~ 1 ---------H27 93.38 65.35 W ? T
KC501 120 1 0.26 94.29 72.19 0.97
KC502 135 1 1.16 87.88 61.79 0.97
KC503 121 0 Solved - 33.44 0.98
KC504 120 1 0.11 96.38 80.11 0.96
KC650 165 1 0.78 91.94 167.89 1.95
KC651 149 1 0.16 95.80 205.78 1.92
KC652 171 1 0.70 92.43 128.43 1.98
KC653 160 1 0.79 92.09 147.79 1.96
KC654 159 1 0.80 91.99 200.84 1.94
KC750 197 0 1.32 86.74 161.69 2.95
KC751 187 0 0.66 92.55 184.10 2.91
KC752 183 1 0.69 93.57 218.29 2.92
KC753 188 1 0.66 91.60 257.98 2.84
KC754 190 1 0.92 90.58 234.98 2.92
KC1000 239 1 0.34 95.68 597.97 6.39
KC1001 249 1 0.44 95.07 522.78 6.37
KC1002 219 1 0.13 97.13 891.62 6.56
KC1003 269 0 1.25 89.73 375.12 6.49
KC1004 279 0 1.56 85.38 516.63 6.29

3.6 Conclusions

In this chapter we have shown how the complementary nature of two substructures of 

the STSP - the AP and the r-arborescence - can be used in a sequential (lower-bound- 

augmenting) algorithm. Although both substructures are known to be weak for the 

STSP, we obtain lower bounds that are comparable to those produced by the best 

existing algorithm for solving STSPs. This encourages imbedding the bounds 

produced by this procedure in a branch and bound algorithm to solve STSPs.

In Section 3.4.3 we suggested, but did not implement, one possible avenue for further 

improvements. A procedure similar to the branch-chord exchange idea for the 5-trees 

(explained in Section 2.5.1) can be used to identify indispensable arcs. Apart from 

reducing the size of the problem, this could also lead to an increase in the overall
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lower bounds produced by CD-TSP. With a few modifications (due to asymmetric 

rather than symmetric graphs), the structural tests we used in the 5-tree algorithm can 

be used to further decrease the size of the problem.

The algorithm is a general one in the sense that it is not confined for use on TSPs 

alone. Whenever complementary substructures are identified in a problem, the use of 

the complementary dual properties of these substructures can lead to an efficient 

bounding strategy within a branch and bound algorithm.
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CHAPTER 4

A Branch and Bound Algorithm for the Symmetric

Travelling Salesman Problem

4.0 Outline

In this chapter we describe a branch and bound algorithm for the STSP. At the root 

node of the search tree, we obtain lower bounds from the 5-tree relaxation. Problem 

reduction tests identify superfluous and indispensable arcs. The graph G is then 

transformed to a graph G T which is partially asymmetric. We give a formulation of 

the TSP defined on G . The complementary duality property of the AP and the r- 

arborescence is used to obtain lower bounds for the TSP defined on G r . The depth- 

first branch and bound algorithm incorporates some new branching schemes. 

Throughout the algorithm, we perform simple tests on the structure of G T to identify 

whether arcs in it could be declared superfluous or indispensable. Computational 

results are presented and the performance of the algorithm is discussed.

116



4.1 Lower bounds from the 5-tree relaxation

Consider the complete symmetric graph G =  (N ,A ), where N  is the set of n nodes and 

A is the set of m undirected arcs. The cost of an arc l is denoted by

c/5 { /= l , . . . ,m } .  An arc and its cost can also be represented as ( i j )  andcf; 

respectively. The STSP on the graph G is a tour consisting of n arcs from A such that 

the degree of every node is two. A formulation for this problem, denoted as PSTSP, 

is given by (1.1) and the constraints (1.2), (1.3), and (1.4).

In this chapter, we describe the stages of a branch and bound algorithm to solve 

problem PSTSp. Definitions and new notations will be introduced where necessary.

At the root node of the tree search, we perform an 5-tree procedure. The various 

components of this procedure have been discussed in detail in Chapter 2. Below, we 

provide an outline of these components:

First, we use the 5-tree substructure to obtain tight lower bounds on the value of the 

optimal solution of PSTSP. These lower bounds are obtained through a subgradient 

ascent. The bounds obtained at the end of the ascent are augmented by adjusting the 

values of the best multipliers obtained. An imbedded upper bound heuristic uses the 

5-trees generated in the ascent to produce tight upper bounds. The 5-tree reduced costs 

obtained through branch-chord exchanges, the maximum 5-tree lower bound and the 

upper bound enable a reduction in the size of the graph G. Further reductions in G 

are achieved using structural tests. As a result, on average, 90% of the available arcs 

are rendered superfluous, and 25% indispensable to the problem.
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For problems that are not yet solved by the 5-tree procedure, the graph that remains 

is sparse. We make use of this property in the reduced graph to apply a 

transformation which results in a partially asymmetric graph.

4.2 Transformation of the graph

Let Gsst=^N  , denote the subgraph of G which remains after the s-tree ascent 

procedure, where ASST c  A , is the set of available arcs. A few of the arcs in ASST are 

indispensable to PSTSP. We transform the sparse (but still symmetric) graph GSST into 

a partially asymmetric one. The transformed graph is denoted by G T = (n t , A T).

In the past, transformations have been applied to convert the STSP into ATSPs, which 

are easier to solve. The most effective of these is the transformation of Jonker, De 

Leve, Van der Velde & Volgenant [1980]. They suggest a method for obtaining lower 

bounds for the STSP by converting the symmetric graph into a partially asymmetric 

one. In their transformation, the STSP on G = (n ,a ) is defined as the problem of 

determining the pair of paths of minimal total length from one to the other of two 

predetermined nodes i , j  e N> that contains all the other nodes k e  N , k * i  ,j .  They 

call this problem the two-routes problem. Computational results show that an 

improvement of about 10% can be achieved using this transformation. However, since 

the AP lower bounds are known to be weak for the STSP, the lower gaps, even after 

the application of the two-routes transformation, are still approximately 10% away 

from optimal solution.
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We apply a transformation which is based on the following proposition whose validity 

is obvious:

Proposition 4.1 The minimum cost Hamiltonian cycle in G, remains unchanged 

if the direction of one and only one arc in the graph G is fixed 

a priori.

In order to affect our transformation, we assume that the graph GSST contains at least 

one chain of indispensable arcs. Let Cf =  with (arc) cardinality qt,

(/ =  1,. . . ,  p ), denote the ith chain of indispensable arcs in GSST. This chain can also 

be represented as a sequence of nodes Pi = ^bi ei J, where bt is an entry node 

and g. is the exit node in the chain C,.

The chain, whose cardinality qx is a maximum over all such chains of indispensable

arcs, is denoted by Cj =  | ____ ___, | . From Proposition 4.1, we can fix the

direction of at most one arc in GSST. If we choose this arc to be x] e Cx, the 

direction of all the arcs in Cx can be fixed to the direction chosen for this arc, since 

all arcs in Cx are indispensable. The longest chain of fixed arcs in GSST is now a 

directed path.

The first stage of the transformation is the shrinking of this path to one super node 

representing both an entry (beginning) node, bx and an exit node, ex. The inner 

indispensable arcs in the super node and the inner nodes that these arcs are incident 

at are ignored. As a consequence, the number of nodes in the graph GSST is reduced 

to: | N  | - q x. All arcs in GSST that leave the entry node bx and all arcs in GSST

that enter the exit node ex can be deleted.
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For all the other chains of fixed arcs C • (/ =  2,. . . , /?)  that have not been declared as 

super nodes we ignore the inner indispensable arcs and the inner nodes. The entire 

chain can be shrunk into two special nodes, bt and e-. An arc is introduced between 

these two special nodes. For a particular chain C- ( i =  2 ,..., p ), the choice of one 

of the terminal nodes to be designated as bt is made arbitrarily. The other terminal 

node is denoted as et.

The remaining nodes of GSST which are not a part of chains of fixed arcs are called 

ordinary nodes.

The graph that remains after the above changes are implemented to GSST is the

T’transformed graph, G . Due to the creation of a super node and special nodes, the 

size of G is less than that of GSST. Moreover, it is also partially asymmetric. 

Initially, at the root node of the branch and bound search tree, only one super node 

is created. Subsequently, graphs that define subsets in the tree search consist of more 

such nodes. The degree of asymmetry in these graphs is reflected by the number of 

super nodes present in them. The method to increase the number of super nodes in 

subsets of the tree search will be presented in a later section.

We denote a super node l :e iVT, l : = l , . . . , v  as V)c( b k ,e k^ , where bk andek 

represent its entry and exit nodes. Over any subset of the tree search, the transformed 

graph, G t = ( n t , A t ), consists of subsets of nodes that are designated as:

the set of v super nodes;

- N sl =  |  bx ,..., bs } and N s2 = j el ,. . . , es j , two sets, each consisting of s 

special nodes. Given a chain of fixed arcs that is not represented by a
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super node, one of the terminal nodes of this chain belongs to the set N sl. 

The other terminal node is in N s2;

- N ° , the set of ordinary nodes.

The number of nodes in the graph GSST is defined by:

*=1 i=2

The arcs (/,/) e A T and their costs, cj- are defined as follows:

The cost of an arc (i , j ) e A T such that node i is a super node, 

i = Vk(̂ bk ,e k^ e  N v, and j  is not a super node, is given by the cost of an arc in GSST 

from the exit node of i to j.

For i = Vk( b k ,ek) s N \

cjj = cej  V i e i V '  and j<= N T\ N V (4.2)

The cost of an arc ( i j )  e A T such that node i is not a super node and j  is a super 

node, j  = ^k{^k’ek) e N vt is given by the cost of an arc in GSST from i to the 

entry node of j.

For j  = Vk(ibk ,e k) s N v,

c n = c ih V  i G N t\ N v and j e  N v (4.3)i j  i o k

The cost of an arc (i j ) e A T such that both i and j  are super nodes, 

i = Vk( b k ,e k^ e  N v and j ^ V ^ b ^ e ^ e  N v, is given by the cost of an arc in 

Gsst from the exit node of i to the entry node of j.
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(4.4)

For i = v j^ b k , e k ^ e  N v and j  = Vl(^bl , el )  e  N v,

C;: =  c. V i j e  N

The cost of an arc cf • e G r  is zero if the nodes i and j  are special nodes and if 

i and j  are terminal nodes of the same chain of indispensable arcs.

For i =  bk e N sl, the &th element from the set N S1,s i

let j = eke N s2 be the corresponding £th element from the set N s2

T T A 
c i j  = C j i  = 0 V i e  N sl (4.5)

The cost of all the other arcs c - e  G T is the same as their cost in GSST.

For i = bk e N s] and ;  =  et g N sz , j * ek,s 2

T T
c i j  ~ c j i  ~ c i j

Sl ; ̂  \j S2V i e N s l , j  e N (4.6)

For i = bk e N sl or i = ek e N s2 and j e  N° ,

T T
C i j  ~  c j i  ~  c i j V i e  {iV^,N"2},ye N°  (4.7)

For i e  N °  and j e  N ° ,

T T
c i j  ~  c j i  ~  c i j V i e  N° (4.8)

The transformation suggested above results from removing all the indispensable arcs 

from the graph GSST. The cost of the indispensable arcs that have been removed from 

the graph G is given by:
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(4.9)
m

CF= c 
1= 1

V / € — 1

The cost CF is subtracted from the upper bound U to produce an upper bound value 

on the TSP defined on G T. Alternatively, any lower bound obtained for the TSP

T*defined on G is augmented by the amount CF.

4.2.1 An example

Consider the 15-node example of Figure 2.6. The figure, represents the graph, GSST, 

that remains after the s-tree ascent and the reduction tests. GSST consists of 19 arcs, 

11 of which are indispensable. There are three chains of indispensable arcs: 

=  {^1 3 , 8  »-*8,7 ’ *7 , 6  ’ *6 , 5  »*5 4 »*4 , 3  ’-*3,2}’ of cardinality <7 j =  7,

^ 2  =  {*io, 9  ’* 1 1 ,1 0 }’ cardinality q2 = 2, and 

^3 =  {*1 ,1 5 ’* 1 5 , 1 4 }’ of cardinality <7 3 =  2.

The chains can also be represented as the sequences of nodes: ^  =  {13,..., 2}, 

P2 =  { 9 , . . . , l l }  and P3 =  { 1 ,. . . ,  14}.

The transformed graph G 7 is constructed as follows: The longest chain of fixed arcs 

is C j. We shrink this chain into a super node 13 ,2 ) ,  representing both an entry 

node, 13 and an exit node, 2. The inner indispensable arcs and the inner nodes of this 

chain are ignored. We delete all arcs that leave node 13, namely (13,14) and (13,9), 

and all arcs that enter node 2, namely (1,2) and (11,2). Two special nodes are created 

for each of the two remaining chains of fixed arcs. The nodes 9, 11, 14, and 1 are 

special nodes. The arcs (9,11), (11,9), (1,14) and (14,1), all of zero cost, are 

introduced between the special nodes (that are formed from the same chain). The
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inner indispensable arcs and the inner nodes of these chains are ignored. Node 12 is 

an ordinary node.

The number of nodes in G T is given by (4.1): |iVr |=  1 5 - 7 - ( 1  + 1 ) =  6. The sets 

of nodes that define the graph is given by: N v =  | l /1( 13,2 ) | ,  N 5/ =  { 9 , l } ,

N *2 =  {11,14 } and N° =  { 12}.

Figure 4.1 Transformed graph GT of the 15-nodes example

The transformed graph G T is shown in Figure 4.1. The encircled numbers represent 

the new node numbers of G T.
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4.2.2 A simplified data structure

There are many conceivable advantages of the transformation described in Section

4.2.1. It results in a smaller graph. This in turn could lead to the generation of a 

fewer number of subproblems in a tree search algorithm. Moreover, the symmetric 

graph is transformed into a partially asymmetric one because of the direction of the 

fixed arcs in C1. The transformation of the graph also paves the way for a simpler 

data structure to store the graph.

The sparse nature of transformed graphs enables the use of a forward star structure 

to store them. Dial, Glover, Kamey & Klingman [1979] give a description of this 

method of storing sparse graphs (see also Gondran & Minoux [1984]). We illustrate 

this data structure through an example. Consider the transformed graph of Figure 4.1. 

The forward star structure of this graph is given in Figure 4.2.

The forward star of a node i is defined as the set of successors of i. The information 

corresponding to a node is stored by recording its forward star and the cost of the arcs 

it defines in two arrays (depicted in Figure 4.2 as the arrays Ending_Node and Cost). 

Associated with each node i is a pointer (contained in the array Pointer in Figure 4.2) 

which indicates the number of successive blocks of computer memory locations 

required for storing all the arcs in its forward star. The arcs in the forward star of 

node i appear immediately after the arcs in the forward star of node i-l. It follows 

that all the information relating to the node i is stored between the entries Pointer(i) 

and Pointer(/+l)-l of the arrays Ending_Node(.) and Cost(.). Pointer(«+l) is 

initialized to be \a t \.
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Figure 4.2 Forward star data structure for the 15-nodes example

Orginal
Node

Number Node Pointer

0

11

14
12

1
2
3
4
5
6

Nord = 1

Ending
Node Cost IBEG LEND

2̂41

Qu
C9.13

0
C$42

0
C1U2

0
C142

C 1443

0
C1442

Ci2£

Cl2.ll
C12,l

C 1244]

13

Three integers, NSuper, NSpecial and NOrd record the number of super, special and 

ordinary nodes in G T. The original node indices (contained in the array 

Original_Node) are useful in the calculation of the cost of arcs in G T. The cost of 

an arc is evaluated using an appropriate relation from (4.2) to (4.8).

If a node has index less than or equal to Nsuper, it is a super node in G T. The entry 

and exit nodes associated with this super node are stored in two arrays IBEG and 

IEND whose lengths are equal to Nsuper. Initially, IBEG and IEND consist of only 

one element each. As more super nodes are created, the number of nodes, and the
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size of the arrays Original_Node, Pointer, Ending_Node and Cost will decrease (as 

arcs and nodes will be deleted from G T). The addition of each new super node will 

increase the dimension of IBEG and IEND by one.

The data structure is efficient and compact. Arc deletions and insertions, which will 

be necessary during the tree search, are easily achieved. Because of the large 

reductions achieved by the 5-tree ascent, the amount of memory required to store the 

transformed graph is moderate.

4.2.3 Computational results for the graph transformation

In this section we highlight some of the characteristics of the transformed graphs of 

some of the test problems we used in the previous chapters. Table 2.3 and Table 2.4 

show some of the characteristics of the reduced graphs GSST of our test problems, in 

terms of the number of arcs declared indispensable. However, it is the number of arcs 

that form part of fixed chains which is of greater importance to the transformation.

Table 4.1 shows the number of undirected arcs in the complete graph G. The columns 

5 to 8 of Table 4.1 indicate the main characteristics of the transformed graphs, 

namely, the cardinality of the longest chain of indispensable arcs, the number of 

chains of indispensable arcs, the number of nodes and the number of arcs in the 

transformed graph G T.
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Table 4.1 Results for the graph transformation

Problem Original
Size,
| A  j

Indispensable 
arc in G

Available 
arcs in

&SST

*1 P \n t \ M r l

DF42 861 28 57 13 6 20 65

HK48 1128 35 63 17 6 19 64

GR48 1128 5 197 2 3 46 380

KT57 1596 16 173 9 7 49 324

ST482 1128 31 61 19 4 21 64

. ST484 1128 13 99 4 7 42 181

ST600 1770 43 76 13 11 28 84

ST601 1770 8 171 3 5 57 331

ST603 1770 11 233 1 10 59 454

ST605 1770 14 169 2 12 58 328

ST608 1770 12 175 3 9 57 339

NCE50 1225 4 117 2 2 48 224

NCE100 4950 24 199 6 13 89 372
: the cardinality of the longest chain of indispensable arcs in G SST 

: number of chains of indispensable arcs 

: number of nodes in the transformed graph 

: number of arcs in the trasformed graph

4.3 Lower bounds from complementary duality

In Chapter 3 we gave a formulation for the TSP, defined on the graph G = (n ,a ). 

Problem PTSP is given by (3.1) and the constraints (3.2), (3.3), (3.4), (3.5) and (3.6). 

Constraints (3.7), (3.8) and (3.9) are alternate ways of formulating (3.4), the
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connectivity constraints. With a few modifications, we can use the same formulation 

to define a TSP on the graph G t =(n  t ,A 7) . N , the set of nodes in that formulation, 

is replaced by N 7; A, the set of arcs, is substituted with A 7; , the cost of an arc

( / j ) ,  is replaced by c-J, whose values are defined by one of the relations (4.2) to

(4.8); n, the number of nodes, is replaced by n T= \ N T\, whose value is given by 

(4.1). The node r in constraint (3.8) is taken to be the super node bx, e1  ̂e N v.

Consider an arc ( i j ) s  A 7 such that i = bk e N sl and j  = ek e N s2. The nodes / and 

j  are special nodes which are terminal nodes of Ck, the kth chain of indispensable 

arcs. The arc between the special nodes i and j  in G represents a traversal along the 

Ck from bk to ek. Since, Ck represents a chain of indispensable arcs, at least one 

of the traversals, from bk to ek, or, from ek to bk should be present in an optimal 

solution to problem PTSP defined on G 7. We ensure this by defining c ? = c 7= 0. 

Thus, at least one of the arcs ( i j )  or ( j j )  is in the solution of problem PTSP on G 7.

At the root node, after the application of the 5-tree ascent and the graph 

transformation, lower bounds on the reduced problem are obtained from the procedure 

CD-TSP described in Chapter 3. If a feasible solution to the reduced problem is 

obtained by either the assignment subprocedure or the r-arborescence ascent, it is 

optimal for problem PTsp on G. In this event, the set of arcs in the optimal solution

is given by
p

x  U Ci
i=i

, if the feasible solution is obtained by the AP subprocedure,

or, by Afl U Ci
r i = \

, if the feasible solution is produced by the r-arborescence ascent.
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The value of the optimal solution is given by Z( PAP) + CF in the former case and by

If the problem is not solved at the root node, branching takes place. At any stage of 

the tree search, an appropriate branching scheme partitions the feasible set of the 

current subproblem into subsets. Lower bounds for each of the new subproblems that 

are generated are obtained from algorithm CD-TSP. Except for the starting set of 

multipliers associated with the nodes of the graph for the r-arborescence ascent, the 

procedure for obtaining lower bounds on the solution value of each of the subproblems 

in the tree search is exactly the same as that used at the root node. We do not 

distinguish, in any respect, between the initial ascent (at the root node) and the 

general ascent over any of the subproblems at a node of the tree search. The 1-tree 

based branch and bound algorithms of Smith & Thompson [1977] and Volgenant & 

Jonker [1982] use parameters to reduce the number of general ascent iterations. The 

reason for this is that if the initial ascent finds a good set of starting multipliers, a 

general ascent would require fewer number of ascent iterations to maximize the lower 

bounds on the subproblems. However, our branching schemes successively reduce the 

size of subproblems to be solved at nodes in the tree search (see the following 

section). Since the number of iterations of our ascent implementation is a function 

of problem size, we found that this causes the evaluation of a fewer number of r- 

arborescences in our general ascents.

At any node k of the tree search, the solution obtained from algorithm CD-TSP is 

either:
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(a) feasible for the subproblem. In this case, the solution and its value are 

reported are reported. Again, the solution is represented either by

chains of fixed arcs in the subproblem k . The value of this feasible solution

the fixed arcs in the subproblem k. If this value is less than the current best 

upper bound, U is updated accordingly.

(b) with an associated lower bound which is worse than U-1. In this case the 

subset is fathomed.

(c) with an associated lower bound less than U-1. In this case the current subset 

has to be further partitioned using an appropriate branching scheme.

Since all our test problems are integer valued, we use U-1 in the cases (b) and (c) 

above. The lower bounds, an upper bound, and the optimal reduced costs from the 

AP and r-arborescence substructures are used to reduce the size of all subproblems 

encountered during the tree search using (3.49) or (3.51). Again, the right hand sides 

of these relations are reduced to U-1. This may cause the remaining graph to be 

infeasible for the subproblem. As a result, the next computed bound could be greater 

than U-l. We then consider the subset fathomed. In our computational experiments, 

we observed that this occurs very frequently in all the problems that were solved.

The upper bounds we use throughout the tree search are those that are obtained at the 

root node using the heuristic described in Section 2.4. This is unless a better upper

•< R . k * k / k\or by Ar + U CL , where Cf ( /=  1 ) represents the
r i =  i

is either z (P ^ )  + CF or z |p R(Se)J fc Jc+ CF, where CF denotes the total cost of
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bound is obtained during the tree search through the identification of a feasible 

solution whose value is less than U.

4.4 Computational results for the root node

In this section, we present the computational results for the application of the 

procedure CD-TSP to obtain lower bounds at the root node of the tree search. The 

procedure CD-TSP is applied to the transformed graph G T. We apply the tree search 

to only some of the well-known problems from the literature. Table 4.2 shows the 

results obtained.

The number of ascent iterations performed is lesser than that performed on the 

complete graph, results for which are provided in Table 3.8. The lower gaps are very 

nearly the same. Some of the problems are infeasible because the branch-chord 

exchange tests within the 5-tree ascent procedure or the problem reduction tests of 

CD-TSP removed arcs required to be in the optimal solution by taking U <r-U -  1. 

In such cases the upper bound is the optimal solution. The table also gives the 

percentage of the available arcs in A T declared superfluous. The time for the r- 

arborescence ascent is also given in this table.
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Table 4.2 Computational results for CD-TSP at the root node of the tree search

Problem # r-
arborescences

AP Lower 
gap

Best r- 
arborescence 
Lower gap

% of 
available 

arcs
removed

Cpu Secs for 
the r-

arborescence
subprocedure

DF42 49 6.39 0.63 9.23 1.38

HK48 43 7.13 0.33 3.125 1.12

GR48 119 4.86 1.76 1.05 69.89

KT57 16 4.70 0.00* 1.85 20.97

ST482 54 4.16 0.13 17.19 3.08

ST484 116 7.41 0.66 1.11 30.07

ST600 6 3.11 0.00* 11.90 3.8

ST601 158 7.10 0.95 10.88 128.97

ST603 146 8.46 0.99 1.32 124.29

ST605 147 9.42 0.85 7.62 89.27

ST608 _ 0.00* - - 15.94

ST609 148 10.90 0.79 8.25 79.84

NCE50 104 3.91 0.87 1.78 99.35

NCE100 170 6.09 0.35 2.15 300.77
: indicates that the problem is infeasible: Upper bound is the optimal solution in these cases

4.5 The branching schemes

The effectiveness of a branch and bound algorithm is assessed by the total number of 

subproblems that are solved. To this end, the use of effective branching schemes is 

essential. A "good" branching scheme is one that: (a) generates few successors from 

a node of the tree search, and (b) generates strongly constrained subproblems, ie., 

subproblems from which many solutions are excluded (see Balas & Toth [1985]).
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Our branching schemes are used in conjunction with the solution of the AP obtained 

in Step 1 (or Step 3) of algorithm CD-TSP. Depending on the nature of the AP 

solution to the current subproblem, an appropriate scheme is selected from a hierarchy. 

Whenever a particular scheme fails, the next available scheme from the hierarchy is 

tried.

Traditionally, branching schemes for the TSP generate subproblems in the tree search 

that require or forbid certain arcs from the current subset of feasible solutions. For 

each node, k, of the tree search, two sets of arcs Ik and Ek denote the arcs that are 

respectively required in, and forbidden from, the solution of subproblem k. The 

symbol k which is used to represent a node of the tree search is, in general, a 

character string which represents the ancestry of the subproblem k. For example, if 

k = (pqr),  then k is the rth successor of (p q ), which in turn is the qth. successor to 

p. In terms of the variables x the subproblem at node k of the tree search is defined 

by (3.1), the constraints (3.2), (3.3), (3.4), (3.5), (3.6) and the following conditions:

xij =
0 ,

1,

V ( i j )  e Ek,
v  e I k ,

(4.10)

At a node k, the AP and r-arborescence relaxations of the subproblem includes the 

constraints in (4.10) in addition to the constraints that define each of the substructures.

k kThe subproblem at node k is denoted as PTSP. Let P ^  denote the AP relaxation of 

this subproblem and let x k denote its optimal solution. If x k is not a tour, Sk, the 

feasible subset of the current subproblem is partitioned into s subsets, 5-j ,..., Sis,
s

with the help of branching schemes such that U St-• =  £,-.
j = i
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Most of the branching schemes used in AP based tree search algorithms for the 

solution of the TSP are based on the introduction of subtour patching or subtour 

breaking inequalities. Subproblems are generated by constraining the feasible space 

of the current subproblem in such a way that one of the subtours that appears in the 

solution to the current subproblem does not recur in any of its successors.

We now briefly describe the branching scheme of Bellmore & Malone [1971], which 

is one of the most effective schemes used in AP based tree search algorithms for 

solving the TSP.

Let Bs =  |  ( /‘i , i2 )>••*>( h »*1 )} be the arc set of a minimum cardinality subtour of 

x k. The set Bs can also be expressed as the node set S — ,..., it }. Define the set

Bs\ Jk= | ( ij , i2) ,. . . ,  ( is , is +1 ) | , where s<t .  The branching scheme of Bellmore 

& Malone [1971] is based on the following disjunction:

K  ‘2 0  ) V (*‘1*2 1 ’ * '2*3 “  0  ) V ’

where s + 1 is taken to be modulo t.

Generate s successors of the tree node k, defined by the sets:

r=  1 ,...,5 (4.11)£ t r = £ t U { ( ‘ r . ‘r . l ) }

^kr =  ^  {  ( * 1  ’ *2 ) > • • • ’ ( ‘r -  1 ’ *'r ) }

The first successor from the tree node k forbids the first arc from Bs\ I k. The second 

successor requires the first arc but forbids the second arc, and so on until the last 

successor requires all but one arc but forbids the last arc in the subtour Bs\ I k.
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Carpaneto & Toth [1980] suggest a variation of this branching scheme by replacing 

the arc set Bs of a minimum cardinality subtour with that of a subtour containing the 

least number of free arcs (a free arc is one that does not belong to either / k or Ek).

The branching schemes we use are also of the subtour breaking variety. However, we 

do not accomplish the subtour breaking strategy by merely requiring and forbidding 

arcs (by setting their values in the solution to the successor subproblems to 1 or 0 

respectively). Our branching schemes can be seen as a system to increase the number 

of super nodes in graphs that define subproblems of the tree search. Denote the graph 

that define the subproblem at node k by Gk =( Nk ,Ak 1. Nk consists of the sets of 

super nodes, special nodes and ordinary nodes denoted as Nk , Nk , Nk and N .

At node k of the tree search, one of three schemes, BS1, BS2 or BS2 is selected. If 

x k, the optimal solution to problem P^p satisfies certain properties, the first 

branching scheme is applied. If not, we identify whether x k follows certain properties 

that facilitate the application of the second branching scheme. If not, the third 

branching scheme is applied. Arcs that are required to be in the solution to a 

subproblem are either converted to super nodes, with an entry and an exit point or, 

they are added to an existing super node. Thus, we only maintain the set Ek of arcs 

that are forbidden from the solution.

This hierarchy of schemes is described in the following sections.
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4.5.1 Branching scheme BS1

This branching scheme identifies whether x k contains any subtours of cardinality 2 

between two special nodes. If such a subtour cannot be identified, this scheme cannot 

be applied.

Denote by B = (*1 ’ h ) ’ ( * 2  ’ *1)} » a subtour of arc cardinality 

subtour exists in x k, this branching scheme cannot be applied, 

branching scheme BS3.

2 in x k. If no such 

We implement the

Of all the subtours of cardinality 2 that are present in x k, choose the one with/j =bi 

and i2 = er  In other words, choose a subtour of cardinality 2 between the end 

(special) nodes, bx N sI and £ N s2, of the same chain of fixed arcs, C-.

If no such subtour exists in x k, we implement the branching scheme BS2.

If x k consists of more than one such subtour, choose the one for which qt , the inner 

arc cardinality of the fixed chain of arcs is a maximum. Ties are broken arbitrarily.

2
Bs represents a traversal along a fixed chain of arcs, first along one direction and then 

back along the other. Only one such traversal can exist in the optimal solution to the 

TSP. Thus two successor subproblems can be generated from the node k. The first 

fixes the direction of traversal along C- from bi to e-, while the second fixes the 

direction of traversal along Ci from ei to bi . The direction of traversal can be fixed 

through the creation of a super node.

Two successor subproblems are generated from node k. The sets of nodes that are 

altered in the graph that defines the respective subproblems are given by:
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N u 1 = ^ Uu ( v v + 1( 6 ; , e i)}

Nu  =  < ' \ { * i }

N u  = < \ M

" o '  =  W *u{vv*,( « ,.,* ,)}

<  =  < \ { * i }

Na  ~ N f \ [ e , }

For the successor node kl, a super node is created with an entry in bi and an exit in 

e Thus, all arcs leading out of bi and all arcs leading into et are removed from
T  f

Akl. Similar changes are made to A ^ .  Since the two special nodes are shrunk into 

one super node, the number of nodes in the graph that defines the successor 

subproblems is reduced by one.

4.5.2 Branching scheme BS2

If x k contains any subtours of cardinality 2 between ordinary nodes, this scheme is

applied to convert the arc between the two nodes into a super node. A subtour,

B 2S =  {( i’i » h )»(h »zi )} is identified such that j i j , i2 } e N%. \ i x k consists of more

than one such subtour we choose the one which has the transformed arc costc, ;l\h

maximum over all (/j ,/2).

Two successor subproblems are generated from node k. The first creates a super node 

with internal direction from (j'j ,/2) while the second creates a super node with internal 

direction from (i2,ii). The sets of nodes that are altered in the graph that defines the 

respective subproblems are given by:
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Nu '  = ^ vu { v v t l ( i , , / 2)}

K  = ^ { i j , / 2}

= ^ u { v v t l ( i 2 , i 1>}

This branching scheme is equivalent to fixing the variable x- • — 1 in the first

successor subproblem from node k and the variable x; ; =  1 in the second successor
‘2*1

subproblem from node k. For the successor node kl, all arcs leading out of q and 

all arcs leading into i2 are removed from Akl. Similar changes are made to 

The number of nodes that defines the graph at each of these successor nodes is 

reduced by one.

4.5.3 Branching scheme BS3

Let B; = ( j’i , /2 )»•••’( h »*i)} denote the arc set of minimum cardinality subtour of 

x k such that the node ix = V -, j  e {1, . . . ,  p k }. Here Vj e Nk is one of the P k super 

nodes in the subproblem at node k. We represent the set as

B* =  { (Vj , i2 )>•••>( > Vj )}» where the node ix has been replaced by V ■. B* can 

also be represented as the set of nodes, 5 /  =  j Vj ,..., it }. B* represents a subtour of 

minimum cardinality which also contains at least one super node in it. At least one 

such subtour must exist in x k. Let B ss denote the s free 

arcs in the subtour, where s < t. The set of free arcs is obtained by removing fromZ^ 

arcs between special nodes that may be present in B* . The branching scheme BS3 

is based on the following disjunction:
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lV iV  2
,Xi i = \ , x iV

ls - l l s l s Vj

Generate s successors of the node k.

The first successor is generated by removing arc ( Vj , i2) from the graph that defines 

the current subproblem.

The second successor is obtained by increasing the cardinality of the super node

by one. The super node is altered to vf^ b j , i2 ) ,  as the node i2 is the new exit node

of the super node. The node sets in are appropriately augmented. The next arc 

from Bss is removed from the subproblem.

The process of generating any of the remaining successors is exactly the same. The 

5th successor consists of one super node which is denoted by b j , is ̂ . The arc 

[is,Vj) is removed from the graph defining the 5th subproblem.

Consider the construction of the rth successor. The super node, vj^bj,ir_^j, 

constructed for the (r-l)th successor has to be augmented due to the requirement that 

xi j • =  1. Two particular cases occur depending on the nature of the node ir :

Node ir=Vl e N v: The node ir is a super node defined by an entry node

bx and an exit et. It is easy to verify that the super 

node for the rth successor is given by V b - , e ^ .

Node ir = b[ e N s l: The node ir is the entry node of a fixed chain of arcs 

which is not yet designated as a super node. It is easy 

to verify that the super node for the rth successor is 

given by v j ^ b ^ e ^ .  A similar result is true if the node
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ir is an exit node of a fixed chain of arcs which is not

yet designated as a super node.

This branching scheme is similar to the branching scheme of Bellmore & Malone 

[1971]. The difference is that the super nodes successively reduce the size of the 

subproblem to be solved. Moreover, when the branch constraint for the creation of 

a subproblem involves forcing an arc between a super node to a terminal node of a 

chain of indispensable arcs (which is not yet designated as a super node) the entire 

chain is forced into the solution of the subproblem.

4.6 Structural tests and infeasible subproblems

Throughout the computations we perform simple structural tests to reduce the size of 

the subproblems:

T4.1: If a node i is connected to only one other node 7 , the two nodes can be

If node 7  (for example) is already a super node, the appropriate terminal nodes of the 

super node are altered to reflect a new terminal node and node i is removed from the

Apart from T4.1, we perform another test, similar to the test T2.4 of Chapter 2, to 

reduce the size of subproblems.

shrunk into a super node V * + j( / , 7  ).

graph. If node j  (for example) is an end node (say bt) of a chain of indispensable

arcs, a new super node Vpk + l is created.
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T4.2: Consider two super nodes j  = vj^ b -, ej ̂  and / = bl , ^ . If the arc

( i j )  is available, we test the effects of forcing it into the solution of 

the subproblem. A new super node is created. All arcs leaving node 

j  and all arcs entering node / are deleted. If the remaining graph is 

rendered disconnected, the arc (/,/) must be in the optimal solution to 

the subproblem. The two super nodes are shrunk into one with the 

appropriate terminal nodes.

If these reductions result in a disconnected graph the subproblem is infeasible and the 

branch is considered fathomed.

4.7 Computational results for the tree search

In this section we report some initial results for the tests we carried out on the 

effectiveness of the tree search algorithm. Not all problems were tested. We only use 

the well-known problems from the literature to test our tree search algorithm. Table

4.3 reports the results. The tree search algorithm was coded in FORTRAN 77 and run 

on a CYBER/930.

A few of the problems were solved at the root node itself by either the 5 -tree 

procedure or the procedure CD-TSP applied to the transformed graph. Branching was 

unnecessary for these problems. For a few of the problems the procedure CD-TSP 

aplication at the root node lead to a lower bound that is greater than the upper bound 

minus one. This is because, we use U-1 as the value of the upper bound in the 

problem reduction tests that are carried out in the 5-tree ascent procedure and in the
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procedure CD-TSP. As a result, some of the arcs required in the solution may have 

been declared superfluous. In such cases the optimal solution. This vindicates our 

conclusion to Chapter 2 that, by re-calculating an 5 -tree at the end of the ascent 

procedure, more problems could be declared as solved if the newly calculated lower 

bound is greater than U-1.

Included in the table are the number of subproblems of the tree search that were 

needed to find the optimal solution. It is quite clear that the results are encouraging. 

Only 3 nodes were required to solve the 42-node road map problem, DF42. HK48, 

the easier of the two 48-node road map problem required only 5 tree nodes to find the 

optimal solution. GR48, the more difficult of the 48-node road map problem required 

the generation of only 55 subproblems in the tree search.

The table also provides figures for the number of subproblems that did not require the 

application of the procedure CD-TSP to identify lower bounds, because the structural 

tests identified them as being infeasible. The table also provides the total number of 

r-arborescences evaluated and the total Cpu secs required for the optimal solution to 

be found.
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Table 4.3 Computational results for the tree search

Problem # nodes in the 
tree search

# nodes # of r- Cpu Secs 
infeasible arborescences 
through the evaluated 
structural tests

DF42 3 0 64 2.71

HK48 5 2 85 2.79

GR48 55 11 980 590.76

KT57 Infeasible graph G<^r . Upper bound optimal.

ST482 5 2 128 5.34

ST484 11 2 571 218.69

ST485 Solved at the root node

ST600 Solved at the root node

ST601 53 9 525 636.59

ST602 Solved by the 5-tree ascent

ST603 39 7 313 385.91

ST604 Solved by the 5-tree ascent at the root node

ST606 Solved by the 5-tree ascent at the root node

ST608 Infeasible graph G SST. Upper bound optimal.

NCE50 17 2 103 239.79

NCE100 11* 3 395 700.00*

: Cpu Time Limit exceeded. Best lower bound 0.09% away from optimal solution
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4.8 Conclusions

In this chapter we gave a simple transformation for a symmetric TSP into a partially 

asymmetric TSP. Bounds on this transformed problem are obtained from the 

complementary dual procedure described in Chapter 3. A new branching scheme 

which is a departure from established and often used ones was introduced. This, 

together with modifications of one other existing branching scheme, forms a 

hierarchical system of branching schemes which seems to work well in creating well 

constrained subproblems in the tree search procedure. Limited computational 

experience suggests that this scheme for branching, together with the tight bounds 

obtained from the procedure CD-TSP, provides promise for a good algorithm to solve 

STSPs.

- 145 -



CHAPTER - 5

A Heuristic Solution to the TVavelling Salesman

Problem in the plane using Fractal Geometry

5.0 Outline

Plane-filling fractal curves are mappings that take the unit interval into the plane. In 

this chapter we present fast and simple heuristic algorithms based on the Peano-Cesaro 

plane-filling fractal curve for solving large scale TSPs in the plane. The basic 

algorithm is enhanced by "generative" improvement techniques. Computational results 

are presented and the performance of the algorithms is discussed.
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5.1 Introduction

The Euclidean travelling salesman problem (TSP) is the problem of constructing a 

minimal length tour through a given set of n points distributed anywhere in d- 

dimensional Euclidean space. In this chapter, we deal with the TSP in the plane 

where the n points are distributed in the 2-dimensional domain. The Euclidean TSP 

has been shown to be A/P-complete (see Papadimitriou [1977]). Although recent 

approaches to solving the TSP have increased the size of problems that can be solved 

optimally, many problems of large size rely on heuristic techniques that provide 

near-optimal solutions. Karp and Steele [1985] give a probabilistic analysis of 

heuristics for the Euclidean TSP.

For the TSP in the plane Karp [1977] gave an effective patching heuristic. In this 

algorithm the unit square is partitioned into rectangular regions, each containing a few 

points. Optimal tours over the points in each region form subtours which are then 

patched to give a tour through all the points. Christofides [1976] gave a heuristic (that 

also applies to TSPs with the more general metric satisfying the triangle-inequality) 

which has a worst-case error of less than 50% from the optimal solution.

Consider the set of points U, defined over the unit square,

Define d^  as the Euclidean distance and (k,t) as the

link between the points k and f. Let Qbe = [b , . . . , e]  denote a permutation of a chain 

commencing at point b and ending at point e.
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In this chapter we present fast and simple heuristic algorithms based on a spacefilling 

fractal curve for solving large scale TSPs in the plane. The basic algorithm is 

enhanced by "generative" improvement techniques. Computational results are 

presented and the performance of the algorithms is discussed. The results show that 

the algorithms developed here can be quite useful in obtaining reasonably good upper 

bounds on the optimal solution value of very large-scale TSPs in a very short time.

Spacefilling curves have been used in the past for the design of heuristics for 

combinatorial problems in the plane. Bartholdi and Platzman [1982] provide an 

0(n  log n) heuristic for the planar TSP using the Sierpinski spacefilling curve, a curve 

that maps the unit interval continuously and recursively into the plane (see Abelson 

et al. [1982] for a description of this curve). Mandelbrot [1983] describes a whole 

family of such curves. Spacefilling curves have also been used in algorithms for 

weighted perfect matching, simple location problems, Steiner tree problems, etc. (see 

Iri et al. [1983], Imai [1986], Avis [1983], Bartholdi and Platzman [1983]). More 

recently, Platzman and Bartholdi [1989] produced worst-case bounds on the heuristic 

tour lengths produced by spacefilling curves. They also prove that the worst-case ratio 

of the heuristic tour length to the optimal tour length is 0(\ogn).  Bertsimas and 

Grigni [1989] show that this is a tight upper bound.

5.2 Some fractal definitions

The central idea behind a fractal is to find a recursive mapping that takes the unit 

interval into the plane. The key concepts in such constructions are Initiator,
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Generator, and Sweep. An example of a fractal (the Koch Triadic Teragon) is 

illustrated in Figure 5.1.

Figure 5.1 The Koch-Triadic Fractal Pattern

Generator (Second stage of construction)

Third stage of construction

If production of a fractal proceeds indefinitely, a trace that is everywhere continuous 

but nowhere differentiable would be obtained. The generator of a fractal consists of 

components, each of which are treated as scaled-down initiators for the next stage of 

construction. Patterns that replicate the generator as recursion deepens are called 

self-similar (Mandelbrot [1983]). For such fractals, similarity Ratio is defined as the 

ratio of the length of a component of the generator to that of the initiator. Self-similar

fractals satisfy Mandelbrot’s notion of dimensionality defined as D =  ^  where
log ( 1 /r)

C is the number of components of the generator and r is the similarity ratio. Thus, 

the Koch curve, in which the generator consists of 4 components (C=4), each of which 

is a third in length of the initiator (r= 1/3), has dimensionality D=log4/log3= 1.26186.

Fractals over the plane with D close to 1 are more smooth and well behaved than 

those with D close to 2 which are more plane-filling in nature.
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Fractals with D < 2 do not cross themselves, a property that is also shared by the 

optimal TSP solution. Since the TSP in the plane involves n points distributed 

anywhere in £/, an entirely plane filling fractal, ie., one with £>=2 is required to 

"reach" all the points. We can now consider the Peano-Cesaro plane filling fractal 

pattern which we employ in this chapter for the TSP.

5.3 The Peano-Cesaro sweep: A plane filling fractal

A sweep is a walk from the start to the end of the initiator along a definite path and 

this sweep defines the fractal. Taking the sides of the unit square as initiators (and 

the first stage of construction) the Peano-Cesaro sweep can be developed using the 

generator as shown in Figure 5.2 and the following rule of placement :

At every even [odd] stage k> 1, walk along the (M)th sweep and place the 

generator to the right [left] of each and every component.

Figure 5.3 shows four stages of development of the Peano-Cesaro fractal pattern. Sweeps in 

Figure 5.3 are indicated by directed paths all beginning and ending at a comer of the unit 

square. Since C- 2 and r= l /y/ l , using the above definition, we have D-2. Hence the plane 

filling property of the Peano-Cesaro fractal.

The Peano-Cesaro fractal tiles the unit square, U, with right angled isosceles triangles. At 

stage k a triangular tile is composed of the current initiator (forming the hypotenuse) and the 

components of the corresponding generator (as the other two sides).
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Figure 5.2 The Peano-Cesaro Fractal Sweep

The number of tiles is multiplied by a factor of 2 each time the sweep is advanced by one 

recursive stage, creating 2k triangular tiles at the kth stage (&>1 ).

At an even [odd] stage of recursion the sweep cuts tiles U (initially) and the triangular tiles 

(subsequently) in one of the four possible directions shown in Figure 5.4a [Figure 5.4b]. The 

domain U is segmentable to any desired degree. The tiling is everywhere regular and 

isotropic and at every level of fragmentation each tile is visited by the sweep only once (in 

the sense that the sweep traverses the two sides of the tile defined by the components of the 

generator). These are properties that make the Peano-Cesaro sweep suitable (as a divide and 

rule strategy) for solving Euclidean TSPs.
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Figure 5.3 A few stages of the Peano-Cesaro sweep

Stage 3 : Eight triangular tiles.

Stage 2 : Four triangular tiles

The faint lines indicate the previous sweeps 
The arrows indicate the direction of the sweep 
The thickened lines are the -fractal cuts
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Figure 5.4 Cuts at odd and even stages 
Figure 5.4a Figure 5.4b

Directions along which cuts may be performed.

5.4 Description of the basic algorithm: TSPB

In this chapter we develop a basic algorithm called TSPB and three generative improvement 

procedures that have been added to enhance its performance.

The algorithm sets out to identify the sequence of points "collected" by the fractal sweep. It 

proceeds by considering one tile at a time. The tile under consideration at any stage is 

referred to as the current tile. The main step in the algorithm involves identification of points 

that belong to the current tile. Three possibilities occur: The current tile either contains no 

points, exactly one point, or more than one point. If it contains exactly one point, the sweep 

collects and adds it to the sequence of points that have already been collected. If it contains 

more than one point, further tiling results in 2  sibling tiles.

Initially, the unit square is cut along the diagonal (using the cut 2 in Figure 5.4b). 

Subsequently, at any step of the algorithm, if further tiling is required, cuts in one of eight 

possible directions shown in Figure 5.4a or Figure 5.4b are performed along the median (to
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the hypotenuse) of triangular tiles. In these tiles the sweep has an entry and an exit point and 

its traversal of the sweep is along the two sides that subtend the right angle. Figure 5.5 shows 

the results of (i) the cut performed on the unit square and, (ii) a cut performed on a triangular 

tile at an intermediate step in the algorithm.

Let a2q be a parameter that serves as a threshold on the minimum number of points contained 

in a tile before the sweep proceeds to the next tile. The algorithm can then be thought of as 

the sequencing of tiles having at most nQ points in them. For laige-scale TSPs, an 

open-ended TSP can then be solved for the points in a tile along with the entry and exit points 

of the sweep in the tile. The final tour is then constructed by patching together chains of at 

most nQ points according to the order in which the chains were reached by the sweep.

The algorithms described in this chapter are for n0 = 1. They can be generalized for 

n0 > 1. Algorithm TSPB can be formally stated as follows:-

Step 0 The LIST of points to be collected by the sweep is empty 

Step 1 If the fractal sweep has collected all n points

STOP

Step 2 If the current tile contains more than 1 point 

Cut the tile into two new sibling tiles 

Else If the current tile contains exactly 1 point 

Record the point in LIST 

Advance sweep to the next tile

Else /* No points in the tile */

Advance sweep to the next tile 

Step 3 Return to Step 2
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Figure 5.5 Rules for Tiling

The algorithm can be seen as the processing of a stack that initially contains the unit 

square with n points. Each step of the computation involves checking for the number 

of points contained in the tile at the top of the stack. If there is exactly 1 point in the 

tile, record it in an array (which describes the TSP solution sequence) and remove the 

tile from the stack. If there are no points in the tile, remove the tile from the stack. 

If the tile contains more than one point, segment it into two and replace it in the stack 

with the two newly created tiles in such a way that the tile at the top is the one first 

reached by the sweep. Computation is halted when the stack is empty. Alternatively, 

the algorithm can be seen as a depth-first binary-tree. A parent tile at the level (k-1) 

gives rise to two siblings which are considered at level k. The leaf nodes of the tree 

consist of either empty tiles or tiles with exactly 1 point.

When a point (say t) is collected by the fractal the resulting chain of points already 

collected is represented as Qbt = ( b ,.. . ,  t ), where b is the first point collected. Qbt
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is referred to as the current chain. When the number of points in the chain is n, 

computation is halted. The TSP tour is then given by Qbb = (b y. . . , s  ,b) .

5.5 Generative improvements to algorithm TSPB

We tested the algorithm TSP on many randomly generated problems in the unit 

square. We observed that tours generated by TSPB contained, in the main, two 

undesirable features: (a) Link crossings and (b) Expensive sub-chains.

Although it is true that the fractal does not cross itself, tours that it produces could. 

Moreover, analysis of the tours produced by the sweep indicate that the detracting 

features stem from the predetermined nature of the cuts which have fixed orientations. 

We also noted that, at any stage in the algorithm, TSPB can produce a chain that 

visits the centre of the quadrant of 4 vertex-adjacent triangles as many as 4 times, 

thereby giving rise to expensive star-shaped tour patterns. Figure 5.6 illustrates these 

shortcomings. To remove them, we augment TSPB with a few generative 

improvement procedures which we now describe.

5.5.1 Procedure a: Infertile exchange of points that are close to the cuts

This procedure sets out to remove the "blindness" of the fractal cuts that could 

separate points close to each other, thereby leading to the formation of expensive 

sub-chains. Such close points can be grouped together so that they are swept 

collectively and not at different stages of the fractal sweep.

- 156-



Figure 5.6 Shortcomings of Algorithm TSPB

We employ ideas from clustering to achieve this. At any level of recursion say k - \

(k > 1), let Kk_̂  denote the set of points contained in the current tile. If Kk-1 >"o>

the tile has to be segmented into two sibling tiles at the next stage of recursion with 

a cut applied in the appropriate direction. (In TSPB, we took n0 to be equal to 1).

Let k \ and k \  represent the sets of points contained in the two sibling tiles. Lay a
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strip D(xp of width xk around the cut. Construct the sets 

Mk [ i \ i e  Klk , i e  D(xk) } and Mk = { j \ j e K lk, j e D(xk)}. Mk and Mk represent 

the sets of points on either sides of the cut that fall within the strip in the two sibling

tiles respectively. If either Mk* 0  or Mk* 0 ,  we evaluate either of the four 

possibilities:

1 Leave points within the strip intact. Compute the spread, (see

below for a definition of spread).

“ 1 2 12 Transfer points i e Mk to Kk to produce the sets Kk =  Kk\M k and
—2 — i
Kk = K k U A/ .̂ Compute the spread, o^.

— 1 3 1 ™
3 Transfer points j e  Mk to Kk to produce the sets Kk = Kk \JMk and 

Kk = K k\ M k. Compute the spread, 0 )3 .

4 Exchange points i e Mk and j  e Mk to produce the sets 

KAk = K lk \ J M ^M k and KAk = K Xk UM^\Mk. Compute the spread, co4.

Find the minimum of 0 )2 ,0 3 2 ,0 )3 , and 0 ) 4  and choose the corresponding 

configuration as the one to be processed.

The Spread referred to in the four possibilities above is defined by:

n +{Y‘-ys?}m + n {(̂ )MF'̂ )2}'«-i>
seKt teK1.

where / =  {1,2,3,41 represents the four possibilities set out above. For each of these 

possibilities (x j, tJ) and (x j, FJ) are the coordinates of the centres of gravity of 

points in K lk and Kk respectively. The spread in (5.1) is described as the sum of the
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products of distances of the points that belong to a tile from their respective centres 

of gravity.

Transfer of a point, say t, from one tile to the other sibling tile involves the creation 

of a virtual point, t , which is merely a mirror image of the point t about the cut. The 

introduction of t produces a chain that excludes t (by ignoring it) till the time when f 

is collected by the sweep.

Two criteria are used to estimate xk, the strip-width:

(i) The greater the recursion level k (ie., the smaller the tile size) the 

smaller the strip-width,

(ii) The lesser the number of points in the tile, the greater the strip-width.

After some experimentation, the following definition was found to be suitable:

2 JAk%k = —*l -----, where mk and Ak respectively denote the number of points in and the
k nillk-1

1area of the tile at the &th level respectively. Since Ak= — , the above expression can

. 1 2  1 be re-wntten as: xt = -----*-------*—
2*« mk. x k

The basic algorithm with this procedure added to it is called TSPB(a).
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5.5.2 Procedure P: Generative improvements to the current chain

The objective of this recursive procedure, composed of two parts, is to investigate 

points in U that are spatially close to each other yet separated by the chain that is 

constructed by TSPB. The procedure is invoked each time a point is added to the 

current chain.

The first part investigates whether points that have not yet been collected by the 

fractal can be added to the current chain. When a point that is not in the chain is 

inserted between the two points that form the last link, an additional distance (an extra 

mileage) is incurred. Points that produce an extra mileage within a specific tolerance 

are examined as candidates for insertion. The point that produces the least 

extra-mileage within the allowed tolerance is inserted in the chain. This process is 

carried out for each of the new links created till no more insertions are possible.

The second part looks at points already belonging to the chain that fall within a 

neighbourhood around a new link in the current chain. A small family of links are 

exchanged to see if improvements (ie., shorter chain lengths) are possible. A greedy 

approach leads to accepting the configuration that corresponds to the maximal 

improvement.

The basic algorithm with this procedure added to it is called TSPB ((3). Below, we 

present an algorithmic description of procedure p.

Step A: Let e be a point obtained in Step 2 of TSPB (Section 5.4). Denote the

preceding point in the current chain Qbe by e_. Insert the last link 

(e_,e) into a stack consisting of links that need to be examined.
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Step B: 

Step C:

Step D: 

Step E:

Step F: 

Step G:

Step H:

If the stack is empty, STOP.

Let (i j ) represent the first link in the stack. Qbi is the current chain. 

We now examine the points in U that are close to (ij) but not in Qbi.

A point re  U is defined to be close to (ij) if: dit + dtj < dd-, where 

5 is an extra mileage tolerance.

After some statistical analysis of a sufficient number of problems we 

found that the best results were obtained for 5=1.185.

Form Ij = ' t re  P , re  Qbi, dit + dt} < j; the set of points that 

do not belong to the current chain but satisfy the extra mileage 

inequality.

If /y =  0 ,  Go To Step G.

Identify the point c e /  such that, (dic + dcj) =  min I dit + dtj }. c is 

the point that produces the least extra mileage.

Two new links, (/,c) and (cj) are created and inserted into the stack so 

that (/,c) is now at the top.

Go To Step C.

There exists no points re  P, r £ Qbi close to the link (ij). The current 

chain Qbi = (b is updated to Qbj= ( b ,..., / , j ).

Let be the euclidean distance between point r and the link (ij) 

defined as dt̂  = min where q e  ( i j ) ,  q £ P represents all

points in U that form the link (ij).

Let N' =  { f | t€  P, 4 (,»- eiy}> for some > 0.
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We can simplify this by using the chess-board distance metric

to define theexpressed as: min {m ax { |^ -x ,|, | ^ - y t |}

distance between a point t and link (ij).

Define the set N =  P, dt(ij)<Eu Y N is the set of points in a

rectangular neighbourhood around the last link (ij) whose major and

Step I: 

Step J:

minor axes are of lengths 3ey and 2ef- respectively. Clearly, N' c/V.

Let 1* denote the length of the optimal tour through n points 

distributed in the unit square. Beardwood et al. [1959] have proved
l*

(see also Eilon et al. [1971]) that lim ---- = 0.749 with probability
" yfn

one. Hence, if ln is the expected distance between two points in the

* 1* 0 749optimal tour, then for large n, ln = — » —!----- We use this to define
, * G

d- 1, thereby ensuring that all points in P at a distance of / 

or dtj away from (ij) are included in the set N.

Form £y =  j r | f e  Qb-, t e  n | ;  the set of points that belong to the 

current chain and the neighbourhood N.

If Ej = 0 ,  Go To Step B.

For any point ce  E-y define c_ and c+ as its preceding and succeeding 

points in the chain. Also define i_ as the point that precedes i. The 

chain can then be expressed as a sequence 

Qbj = (^ ’ • • • ’ c- » c > c+ »• • •»L »i J ) which is permuted to obtain: 

Q Xbj= { b , ..., c_, c,  c+j ) ,

Qlj = ( b , . . . , c _ , c J , c + , j ),

Qfy=(&, . . . ,c_,c+ , . . . , L , / , c  j ) ,

*
n
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=  i ,  c+ ,c j ) ,  and

Q5bj = ( b , . . . , c _ J , c , c + ,y )-

If c=/_, a sixth permutation, Qlj =  (Z?,..., c_ , / helps identify 

link crossings between (c_,/_) and (/*/).

In all these permutations the only points that undergo a change of 

position in the chain are /, and c+.

Identify the permutation Qbj € { Qbj , (2^, / =  1,. . . ,  6 j with minimum 

total chain distance.

Step K: If Qbj = Q bj , Go To Step B.

Step L: Replace Qb] by Qbj. Go To Step B.

5.5.3 Procedure y: Eliminating link crossings

Each time a point is added to the current chain, a check can be carried out to identify 

if the last link results in crossings. If the number of crossings caused by the last link 

is greater than one, a greedy approach leads to the exchange of that pair of crossed 

links which produces maximum improvement. If the last link (e,e_) crosses (i,i+) in 

the chain Qbe= ( b ,.. . ,  i , i+ ,..., e_ , e ), the positions of points i+ and e_ are 

exchanged to produce Qle= ( b ,..., i , e_ ,..., i + , e ). The length of Qle is then 

smaller than that of Q}be.

This process of investigating the last link for crossings is continued till no further 

improvements are obtained thereby serving to remove the crossings.

The basic algorithm with this procedure added to it is called TSPB(y).
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5.5.4 Algorithm TSPB(apy): The composite algorithm.

A composite algorithm includes all three procedures mentioned in this section and is 

called TSPB(apy). The basic algorithm TSPB produces the same solution irrespective 

of the vertex of U used as the starting point of computation. This is not the case with 

the generative improvement algorithms. For these algorithms, the minimal length tour 

obtained by four runs (each starting at one vertex of U) is declared as the best 

heuristic solution obtained.

5.6 Performance Analysis

In this section we analyze the complexity of the algorithms described. We also 

discuss the worst-case and probabilistic behaviour of the algorithms. We denote L and 

A as the worst-case and average-case tour lengths respectively and obtain upper 

bounds on their values.

These results have also been proved by Bartholdi and Platzman [1982], although in 

a different manner.

Theorem: The complexity of TSPB is o{n log2w).

Proof. If the n points are uniformly distributed in the plane, the maximum level of 

recursion required to get tiles with exactly one point in them is log2rc | . At the kih 

level, 1 < k < |" log2/i j, there are 2k tiles on average, each containing n/2k points. Thus,
[log2n] 2 k

the order of complexity of TSPB is * ]•
k*— 1 j —  1 2i
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Theorem: The complexity of TSPB(a) is O^n log2/i).

1 2  1Proof. If we consider strips of width x ,= -----*-------*— along each of the fractal
2^2 mk_x k

cuts at the foh level of recursion, the area of the strip is then given by \fl/nk and the

expected number of points therein is \[llk. The order of complexity of the exchange
f

algorithm at level k can then be expressed by: * 2k 1. The first term is8ai + \fl
~2F + ~

the maximal order of complexity for the four possible exchange rules, each involving

the calculation of the spread (defined earlier), applied to both tiles sharing the cut. 

The second expression is the maximal order of complexity for the transfer of points 

across the cut. Hence, the complexity of algorithm TSPB(a) is
[log2n]

E
Jfc=l

An +
itJT

~ Cxn log2fl, where Cx is of order of magnitude 10.

Theorem: It can be shown that the complexity of the generative improvement

algorithms TSPB(p) and TSPB(y) are o(/ilog2fl).

Corollary: The complexity of the composite algorithm TSPB(apy) is o[n log2rtJ.

Theorem: In the worst-case, L — 2<Jn .

Proof. The largest tour that visits every fractal tile at the £th level is precisely the 

Peano-Cesaro sweep, where the points in each of the tiles visited by the sweep are 

assumed to be infinitesimally close to the vertices of the tiles. For such a distribution 

of points it can be shown that the worst-case tour length is:
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L = 2 * \ 2 'lo82n * / = 2\fn . Note that here we assume that the length of the square 

enclosing all the points is 1.

Theorem: For large values of n, the average tour length, A—» ayfn , where 0<a<1.

Proof. If we assume that the n points are uniformly distributed over the unit square, 

the average tour connects the centres of each of the tiles produced. At the £th level

either of these results, the average tour length is the sum of a series and can be

5.7 Computational Experience

The algorithms described in Sections 5.4 and 5.5 were coded in FORTRAN 77 and 

run on a CYBER/960. The algorithms were tested on random problems in the plane 

and on a few well known problems for which the optimal solutions are known.

Table 5.1 summarizes the results for the randomly generated problems ranging from 

50 to 5000 points. The entries in this table represent averages of 5 problems for each 

size. The results shown are for the basic algorithm, the three generative algorithms and 

the composite algorithm. The last column shows the performance of a three-opt 

algorithm with insertions. This is an algorithm with complexity less than the 

complexity of the three-opt heuristic (Lin [1965]). We call this heuristic TOWI. The

In the average case, since &max=log2n' we ^ave
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k

two values under each of the algorithms show the average value of the normalized 

tour lengths U\fn , and CPU times respectively for each problem. Since the optimal 

solutions are not available for these problems, we use the normalized lengths as a 

measure of comparison, where / is the tour length.

We note that TSPB(a) performs worse than TSPB(p), TSPB(y) and even TSPB. A 

variety of compositions of the improvement procedures were considered including 

some that excluded procedure a. The overriding result is that the presence of 

procedure a  enhances the performance of the composite algorithm.

TSPB(p) consistently outperforms the other improvement algorithms. The composite 

algorithm, however, dominates TSPB(P) - for the problems tested here an average 

improvement of at least 1.02% is obtained. This is obtained at an additional 

computational effort of 1-1 to twice as much. We therefore conclude that TSPB(P) 

is a reasonably efficient algorithm although a small improvement can be obtained at 

an extra computational effort.

We observe from the results that the normalized tour lengths produced by algorithm 

TOWI are better than those produced by TSPB(apy). However, the computational 

effort is considerably higher. Moreover, this algorithm does not lend itself to large

sized problems as the computational time becomes prohibitive.

The algorithms were also tested on some classical problems for which optimal 

solutions are known. The problems ST48 and ST60 represent the five 48-city 

examples and the ten 60-city examples respectively of Smith & Thompson [1977]. 

NCE50, NCE75, and NCE100 are the 50-city, 75-city, and 100-city examples
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respectively of Christofides & Eilon [1969]. KFM100 represents three 100-city 

examples of Krolak, Felts, & Nelson [1972], known in previous literature (Lawler et 

al [1985] for example) as problems 24, 26, and 28 respectively. VJ100 stands for the 

ten 100-city examples of Volgenant & Jonker [1983]. LK318 is the 318-city example 

of Lin & Kemighan [1973] and LK105 is the 105-city problem extracted from it. 

GJ249 is the 249-city example of Gillett & Johnson [1976]. The optimal solutions for 

each of these problems are from the literature. For comparison purposes the 

algorithms developed here are tested against the performance of a three-opt algorithm 

with insertions. Table 5.2 presents these results.

Again we observe that TSPB(a) does not perform well in comparison to the other 

algorithms. However, as before, the composite algorithm, with procedure a  included, 

produces best results. We also observe that procedure (3 is the best of the 

improvement ideas that we have suggested. The composite algorithm produces an 

average 1.03% improvement over TSPB(p) at an extra computational effort of about 1.1 

times as much. The ratios that are produced by TOWI are superior to those produced 

by TSPB(apy) by about 1.05%. The running times, however, are quite large in 

comparison to TSPB(apy) and only medium-sized problems can be handled by 

algorithm TOWI.
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Table 5.1 Results for randomly generated problems of 50 to 5000 points in the unit square

Problem

n

TSPB

l/yfn Cpu
secsa

TSPB(a)

l/yfn Cpu
secs8

TSPB(P)

l/yfn Cpu secs8

TSPB(y)

l/yfn Cpu secs8

TSPB(apy) 

H\fn Cpu secs8 ih f i t

TOWI 

Cpu secs8

50 0.970 0.073 0.944 0.094 0.875 0.228 0.907 0.169 0.841 0.327 0.824 7.561

75 0.943 0.085 0.974 0.121 0.841 0.411 0.854 0.313 0.837 0.637 0.795 23.652

100 0.917 0.103 0.929 0.153 0.830 0.639 0.843 0.510 0.820 1.027 0.787 73.728

250 0.941 0.216 0.949 0.458 0.830 4.680 0.852 4.354 0.822 8.309 0.776 1814.096

500 0.960 0.337 0.970 0.814 0.837 11.278 0.854 11.306 0.831 20.301 - -

750 0.961 0.490 0.977 1.410 0.840 26.372 0.870 24.814 0.833 46.353 - -

1000 0.955 0.648 0.965 2.088 0.829 45.400 0.865 44.419 0.823 80.959 - -

2000 0.958 1.279 0.972 5.779 0.827 173.026 0.861 177.409 0.823 314.694 - -

3000 0.962 1.955 0.974 11.029 0.827 384.524 0.863 399.418 0.824 702.501 - -

4000 0.959 2.623 0.971 17.824 0.825 680.829 0.860 712.021 0.821 1580.637 - -

5000 0.966 3.277 0.981 26.467 0.827 1887.858 0.868 1659.009 0.820 3445.789 - -

a Seconds of CPU time on a CYBER/960.

These problems could not be solved in reasonable computing time.
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Table 5.2 Results for some well-known problems.

Problem TSPB TSPB(a) TSPB(p) TSPB(y) TSPB(apy) TOWI

Name n Ratio5 Cpu
sees3

Ratio5 Cpu
sees3

Ratio5 Cpu
secs3

Ratio5 Cpu
secs3

Ratio5 Cpu
secs3

Ratio5 Cpu secs3

ST48* 48 1.195 0.070 1.217 0.093 1.059 0.258 1.078 0.158 1.045 0.359 1.007 5.972

NCE50 50 1.121 0.068 1.132 0.917 1.047 0.265 1.0/3 0.149 1.039 0.368 1.019 6.659

ST60* 60 1.225 0.078 1.215 0.106 1.075 0.360 1.127 0.217 1.066 0.508 1.018 27.025

NCE75 75 1.190 0.079 1.190 0.121 1.094 0.511 1.136 0.277 1.084 0.768 1.042 28.666

NCE100 100 1.181 0.091 1.184 0.149 1.073 0.848 1.132 0.489 1.073 1.224 1.040 68.973

KFM100* 100 1.399 0.099 1.350 0.157 1.194 0.792 1.253 0.502 1.108 1.169 1.005 58.853

VJ100* 100 1.250 0.099 1.239 0.157 1.102 0.793 1.432 0.514 1.084 1.184 1.022 66.541

LK105 105 1.474 0.114 1.426 0.183 1.159 0.973 1.314 0.619 1.086 1.369 1.001 84.318

GJ249 249 1.272 0.180 1.276 0.379 1.114 3.630 1.157 2.927 1.097 5.977 1.001 1562.059

LK318 318 1.479 0.267 1.484 0.547 1.217 6.555 1.255 5.187 1.165 10.298 - -

a Seconds of CPU time on a CYBER/960. 

b Ratio of the value obtained by the heuristic to optimal value 

Figures in these rows represent averages for several problems 

This problem could not be solved in reasonable computing time



5.8 Conclusions.

In this chapter we described how fractal curves can be used in an algorithm for the 

TSP. The improvement techniques deliver better solutions than those produced by the 

basic fractal algorithm. The results presented show that this method can be used for 

obtaining reasonable (but not excellent) solutions for very large problems in a very 

fast time.

We feel that the quality of the solutions produced by this algorithm can be greatly 

enhanced by improving procedure a. Currently, all points close to the fractal cuts are 

treated by a crude exchange mechanism. A more robust intertile exchange procedure 

ought to handle points that are close to the cuts on an individual basis. We feel that 

such a modified procedure will improve the quality of solutions produced by TSPB(a) 

and hence, TSPB(apy). The fractal algorithm is extremely fast. We can exploit this 

feature and use it as the basis for designing an algorithm that enables many runs, each 

yielding a different solution, to be performed in reasonable computational time.
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CHAPTER 6

Conclusions

In this dissertation we developed exact and heuristic algorithms for the symmetric 

travelling salesman problem (STSP). We used three different substructures of this 

problem to obtain lower bounds on its solution. Two heuristic algorithms are 

developed. The first is based on fractal spacefilling curves. The second is based on 

extensions of two well-known heuristics for the STSP.

In Chapter 2 we considered the shortest spanning tree substructure within the STSP 

formulation. This relaxation produces very tight lower bounds for the problem and 

is, hence, widely used in exact algorithms for the solution of STSPs. Lower bounds 

on the solution are derived by maximizing the solution of the corresponding 

lagrangean dual problem using a subgradient ascent procedure. In our ascent, we 

implement the best features of existing approaches. These result in lower bounds that 

are better than those that are obtained through other existing approaches. Efficient 

problem reduction tests are used to yield considerable reductions in problem size. 

These tests are simple to apply and significant reductions are achieved.

We also used the assignment problem and the r-arborescence substructures to obtain 

lower bounds on the optimal solution to the STSP. We exploited the complementary 

nature of the two substructures to obtain very good lower bounds, obtained through
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a sequential, lower-bound-augmenting procedure. Apart from the lower bounds, the 

procedure also yields significant reductions in problem size. Although both the 

complementary substructures used in this procedure (the assignment problem and the 

r-arborescence problem) are known to be weak relaxations for the STSP, the lower 

bounds obtained by the complementary dual procedure are comparable to those 

produced by even the 5-tree relaxation. This, therefore points to a promising future 

for the use of this method to solve STSPs.

The complementary dual algorithm is a general one, in the sense that its use need not 

necessarily be confined to the TSP. Whenever complementary substructures are 

identified in a problem, we can exploit the complementary dual properties of these 

substructures to produce an efficient bounding strategy within a branch and bound 

algorithm.

In Chapter 4 we used the complementary dual algorithm in a branch and bound 

algorithm for the STSP. We suggested a transformation of the symmetric graph into 

an asymmetric one. We also used some new branching schemes to partition the set 

of feasible solutions of the subproblems. Initial results are encouraging.

Two heuristic ideas were investigated. One of the heuristics was described in Chapter 

2. This algorithm is easily imbedded into the 5-tree ascent procedure and produces 

very good upper bounds on almost all tested problems. A heuristic algorithm that uses 

the geometry of fractal spacefilling curves is also described (Chapter 5). The main 

advantages of this algorithm is that reasonable (although, not excellent) solutions are 

produced quickly for very large problems. The area offers wide scope for further 

research.
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APPENDIX 1.1

This appendix includes dat for the Euclidean problems problems we generated. The

360k, low density, IBM formatted floppy disk that is provided contains the data for

the number of nodes, the problem name, the optimal solution value and the x-y

coordinates of for each of the problems. The first record of the file consists of three

fields: n, Problem Name, Optimal solution value. The rest of the n records have

two elements, corresponding to the x and y coordinates of the ith point.

Twenty new problems are generated:

n Number of Problems Problem_name
(File_name)

50 5 KC0500
KC0501
KC0502
KC0503
KC0504

65 5 KC0650
KC0651
KC0652
KC0653
KC0654

75 5 KC0750
KC0751
KC0752
KC0753
KC0754

100 5 KC1000
KC1001
KC1002
KC1030
KC1005

The cost data for each of the problems is calculated using the Euclidean distance 

metric, rounded up to the nearest integer.
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