Imperial College of Science, Technology and Medicine
(University of London)

The Management School

CONTRIBUTIONS TO THE SOLUTION OF

THE SYMMETRIC TRAVELLING SALESMAN PROBLEM

by

Mohan Krishnamoorthy

A thesis submitted for the degree of

Doctor of Philosophy of the University of London

November 1990

Intelligence designs

But the heart does the modelling

Rodin

to
thatha, pati
and

my parents

ACKNOWLEDGEMENTS

Firstly, I would like to express my thanks to Professor Nicos Christofides, my
supervisor, for his help, guidance and advice. Despite his busy schedules, he gave me
his time and encouraged me on many an occasion, all of which made working with
him a valuable learning experience.

I am grateful to Dr. W S Bardo of GEC-Marconi for having agreed to support this
research by providing me with a grant, without which this PhD would not have been
possible.

I would also like to acknowledge the help and encouragement of Dr J E Beasley who
gave me his time for several discussions during the course of this work. Thanks also
to Dr Anton Volgenant (of the Instituut voor Actuariaat en Econometrie, Universiteit
van Amsterdam, The Netherlands) for having provided me with his optimal code for
the TSP and most of the test data.

I would not have emerged out of this effort half as sane as I actually have if it had
not been for the excellent team spirit and work atmosphere of the OR & Systems
Research Unit of the Management School. The largely cosmopolitan nature of this
group made this PhD a very enjoyable cultural learning process too. Of course, the
numerous coffee breaks, heated debates and arguments meant that we solved more
problems that beset the world than we did problems in Operational Research ! I am
particularly thankful to George Megalokonomos for his encouragement, help and
constant advice; to Andreas Johannsen for his support and friendship (it also helped
that he lived a mere | five minutes away from where I lived !); to "can-I-say-

something” Yazid Sharaiha for his motivating influence and his entertaining

disruptions; to Niki Niktari for her generous help with the proof reading of certain
chapters of this dissertation; to Ibrahim Osman and Merza Hassan for egging me on
when the spirit was low; to Jacob Yadegar, with whom I collaborated fruitfully on
the production of Chapter 5 of this dissertation; to Katy Steward for her help with the
proof reading, her useful comments and suggestions. Any remaining errors should be
attributable only to me ! The help I have received from all of them, particuarly during
the last stages of my research, is greatly appreciated.

There have been many friends from outside the university who have earned my
gratitude by virtue of their encouragement and support. In particular, I would like to
acknowledge the support of Anna Garifalli and Helen Mundy.

Thanks also to Dr Norman Murray, the computer manager of the school, for patiently
answering many of my naive questions on computing; to Ms Edna Archer and Ms
Amanda Sage, the librarians, for their invaluable help; to Paul Belli and Mark Forster
of the Imperial College computer centre for helping me get to grips with the
mainframe computers I used during the course of this study.

The support, love and understanding I have received from my entire family is
incalculable. The knowledge that they were always there when I needed them to
assuage my worst fears and anxieties ensured the completion of this dissertation.
Particular thanks go to Rajesh for having put up with my erratic schedules
(particularly during the last few months of my PhD) and for being extremely
supportive.

Last, but not the least, thanks to Lata for her constant encouragement and her patience.

ii

ABSTRACT

The Travelling Salesman Problem (TSP) deals with a salesman who, having started
from a particular (home) city, wishes to visit each city on a given list exactly once
before returning home at a minimum total cost. The TSP has served as a test bed for
almost every new algorithmic idea in combinatorial optimization. We discuss the
motivation for the continued interest in finding good solutions to the TSP before
reviewing some of the existing exact and heuristic solution methods to solve it. We

also describe some of the popular practical applications of the TSP.

Three different relaxations are considered and applied for the TSP - the Shortest
Spanning Tree relaxation, the Assignment Problem relaxation, and the Minimal
Spanning Arborescence relaxation. These relaxatiéns provide lower bounds on the
solution of the TSP. The lower bounds in each case are derived from solving the
respective lagrangean dual problems. The size of the problem is constantly reduced
by deleting unwanted arcs from, and forcing required arcs into, the solution. This is
achieved by sensitivity analysis methods and through investigating the structural
properties of the graph. We also achieve large reductions in the problem size by
exploiting the complementary dual properties of the minimal spanning arborescence
and the assignment problem relaxations. We suggest a transformation of the
symmetric travelling problem into an asymmetric one. This tightens the lower bounds
obtained. The lower bounds are imbedded into an exact tree search procedure that

incorporates some novel branching strategies.

iii

We describe an upper bound heuristic procedure that is applied at the root node of the
tree search. The heuristic, which makes use of the spanning trees produced during the
subgradient ascent, provides tight upper bounds. In many of the problems that were

tested, near optimal solutions are obtained.

The Peano-Cesaro plane-filling fractal curve maps the unit interval continuously and
recursively into the plane. A fast and simple heuristic algorithm, based on this fractal

curve, is described and used to solve very large-scale TSPs in the plane.

We present computational results and discuss the performance of all the algorithms

that have been developed. Conclusions and pointers for further research are provided.

-1V -

PREFACE

A few months before I began writing up this dissertation, I was travelling on a train
between Madras and New Delhi. As is very common on Indian train journeys, I
struck up a conversation with my fellow traveller who happened to be a physicist.
"What do you do ?", he asked. I told him that I researched the travelling salesman

problem. "Hasn’t that problem been solved yer ?", he exclaimed.

My fellow travellers’ disbelief was quite understandable. The travelling salesman
problem (TSP) is one of the most extensively researched problems in operational
research (OR) literature - "Literally person-centuries have been devoted to developing
a sophisticated solution theory for the TSP", according to Fisher & Jaikumar [1981].
Yet, it retains its position as one of the most intriguing (and technically) "unsolved"
paradigms in OR literature. According to Hoffman & Wolfe [1985] - "If, as in the
TSP, the problem is to develop an algorithm that satisfies formal or informal standards

of efficiency, then the TSP has not yet been solved".

The TSP contains two basic elements that make it an interesting and challenging
problem: It is very easy to understand, yet difficult to solve. The simplicity of the
problem ensures that research into it is not restricted to a handful of researchers, but
to those from all branches of science. The difficulty of the problem acts as a
challenge and attracts continued research. It is unlikely that this interest will cease.
In the first chapter of this dissertation we will provide insights into the theoretical

motivations for the continued search for good algorithms for the TSP. This motivation

is derived from the computational equivalence of hard problems!, of which the TSP

is an archetype.

In Chapter 1, we introduce the problem - its classification in the literature, its
complexity and some of its commercial applications. A review of the current
literature on the TSP is also provided. For a comprehensive and thorough treatment
of all facets of the TSP, refer to the book by Lawler, Lenstra, Rinnooy Kan, &

Shmoys [1985].

Chapters 2 to S contain the main contributions of this research. In Chapter 2, we
analyze the minimal spanning tree as a relaxation for the TSP. We introduce some
efficient methods to induce graph sparsity. We also give an upper bound algorithm
(that is conveniently imbedded into the relaxation procedure) that produces tight upper
bounds on the optimal solution value. In Chapter 3, we investigate the relationship
between two complementary relaxations for the TSP - the assignment problem and the
minimal spanning arborescence problem. The duals obtained through these two
relaxations are used to induce greater sparseness in the graph in an iterative fashion.
This, in turn, augments the lower bound. In Chapter 4, we describe a depth-first
branch and bound algorithm that combines all the ideas developed in the earlier
chapters. A transformation of the symmetric TSP into an asymmetric one helps
tighten the lower bounds from the assignment and arborescence problems. These

lower bounds are imbedded into a branch and bound procedure that incorporates some

1Mainly due to the efforts of Cook [1971] and Karp [1972], it became evident that many
of the problems thought to be inherently hard are all computationally equivalent, in the sense
that a polynomial algorithm for one of these problems could be used to solve all other
problems in its class, in polynomial time.

-vi-

new and interesting branching criteria. All these chapters include extensive empirical
analysis. To achieve this, we use some well known road map and Euclidean problems
from the literature, some new Euclidean problems that have been generated and some
randomly generated problems. The geometry of fractals is used in the design of a new
heuristic for the solution of large-sized Euclidean TSPs. We describe and analyze the

performance of this algorithm in Chapter 5.

Finally, Chapter 6 provides conclusions from the study and gives some directions for

further research.

- vil -

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ittt eernnneasasanennns i
ABSTRACT .. ittt ittt iiisiteessasnssanaaasannas iii
PREFACE ... ittt iiiiiiieeeeaeeseeesocsssesssecasnnnns \4
CONTENTS ..ttt ittt i iiiinccrensacennnonnnsaaanas viii
CHAPTER 1: Introductioncciiiuinneeennnnnnneennnnnns 1
1.0 Outline e e 1

1.1 Overview of the problem 2

1.2 Easy and hard problems L 4

1.3 Notational and methodological preliminaries 6

1.3.1 Lagrangean relaxationc.v ... 7

1.32 Branchandbound 8

1.4 Some applications of the TSP 10

1.5 Formulations of the STSP 12

1.6 Algorithms for the TSP based on branch and bound 14

1.6.1 Bounds from the shortest spanning tree 15

1.6.2 Bounds from the shortest spanning arborescence 17

1.6.3 Bounds from the assignment problem 17

1.6.4 Otherapproaches, 19

1.7 Linear programming based approaches 21

1.8 Heuristic algorithms 22

1.9 A note on the implementation of algorithms 26

- viii -

CHAPTER 2:

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

CHAPTER 3:

3.0

A Minimal Spanning Tree Relaxation of the

Symmetric Travelling Salesman Problem 29
Outline i i i 29
Definitions i 30
The shortest spanning tree Relaxation A 32
2.2.1 Lagrangean bounds from Relaxation A 33
222 Computingthebounds 37
The shortest spanning tree Relaxation B 39
2.3.1 Lagrangean bounds from Relaxation B 40
232 Ascentmethods, 43
233 Choiceof therootnode 44
The upper bound heuristic 45
2.4.1 Phase 1: Heuristic matching 46
2.42 Phase 2: Tour improvements through insertions 51
Problemreduction 53
2.5.1 Branch-chord exchanges 53
2.5.2 Modifying the multipliers

for increased lower bounds 56
253 Structural testsciiiiin. .. 59
Computational resultsco it enneno.. 63
2.6.1 Results for the upper bound heuristic 63
2.6.2 Results for the s-tree ascent 66
2.6.3 Results for the problem reduction tests 67
2.6.4 Results for randomly generated problems 69
ConClusions it 74

The Assignment Problem, the Minimal Spanning Arborescence
and Complementary Duality 75

Outling ottt e 75

X

3.1

3.2

33

34

3.5

3.6

CHAPTER 4:

4.0
4.1

4.2

4.3

Formulations and substructures 76
3.1.1 The assignment problem substructure 78
3.1.2 The r-arborescence substructure 79
3.1.3 Complementary substructures 81
Bounds from the assignment problem 81

3.2.1 The restricted lagrangean method to improve

the AP lowerbound 84
3.22 Bounding procedures i 85
323 Anexample 90
A minimum spanning r-arborescence problem 96

3.3.1 Lagrangean bounds from

the r-arborescence substructure 98
3.3.2 LP duals of the minimal arborescence problem 102
Bounds from complementary duality 103
341 Problem reduction through

the APreducedcosts, 104
3.42 Problem reduction through the r-arborescence

reduced COStSt 105
3.43 The complementary dual algorithm 105
Computational results 108
Conclusions it e 114

A Branch and Bound Algorithm for

the Symmetric Travelling Salesman Problem 116
Outline it 116
Lower bounds from the s-tree relaxation 117
Transformation of the graph 118
4.2.1 Anexample i, 123
422 A simplified data structure 125
4.23 Computational results for the

graph transformation 127
Lower bounds from complementary duality 128

4.4

4.5

4.6
4.7

4.8

CHAPTER 5:

Computational results for theroot node
The branching schemes
45.1 Branching scheme BS1
4.5.2 Branching scheme BS2
453 Branchingscheme BS3
Structural tests and infeasible subproblems

Computational results for the tree search

ConCIUSIONS . & v v vttt et e e e e e et e et e e

A Heuristic Solution to the Travelling Salesman

Problem in the Plane using Fractal Geometry
5.0 Outline i i
5.1 Introduction
5.2 Some fractal definitions
53 The Peano-Cesaro sweep: A plane filling fractal
54 Description of the basic algorithm: TSPB
5.5 Generative improvements to algorithm TSPB
5.5.1 Procedure a: Intertile exchange of points
that are close tothecuts
5.52 Procedure B: Generative improvements to
thecurrentchain,
5.5.3 Procedure v: Eliminating link crossings
5.54 Algorithm TSPB(afy): The composite algorithm .
5.6 Performance Analysis i i
5.7 Computational Experience
5.8 Conclusionso ittt e
CHAPTER 6: Conclusionso vrieeceeeennnnnnnnnnnsnsns
APPENDIX 1.1 iiiiiiiiiiiiiiiiiitereeennnnnnnnns

CHAPTER 1

Introduction

1.0 Outline

In this chapter we introduce the travelling salesman problem. We provide a brief
overview of the problem with a view to its classification in the literature, its
theoretical importance and its apparent intractability. This will provide some insights
into the reasons for the continued search for good solution methods to solve the
problem. We also review some of the successful commercial applications of the TSP.
In this dissertation, we deal, in the main, with algorithms for the symmetric travelling
salesman problem. Integer programming formulations for this variation of the TSP
are provided. We offer a review and classification of some of the exact and
approximate algorithms for the solution of the problem; past efforts are reviewed and
indications of current trends are given. Finally, in this chapter, we make some
preliminary remarks on the implementation of the algorithms that will be developed
in this dissertation - we include in this, a discussion of the data that will be used to

test our algorithms.

1.1 Overview of the problem

The travelling salesman problem (TSP) can be stated as follows:

Consider a salesman who, having started from a particular city (his
home city), wishes to visit each city on a given list exactly once before
returning home. If the cost of travel between each of the pairs of cities
on his list is known, the salesmans’ problem is to select the order in
which he visits the cities (his rour) so that the total cost of his travels

is minimized.

The term cost here can be taken to mean distance, time, monetary or any other similar
unit. If the cost of travel from a city i‘ to a city j is the same as the cost of travel
from j to i, then the resulting problem is a special case of the TSP, called the
symmetric travelling salesman problem (STSP). The general problem - one where the
costs are not required to be symmetric - is referred to as the asymmetric travelling
salesman problem (ATSP) or simply, the TSP. The central theme of this dissertation
is the development of algorithms for the STSP. For an interesting review of the
history of and the motivation behind the continued research into the TSP refer to
Hoffman & Wolfe [1985]. A major survey of research on the TSP is the excellent

book by Lawler et al. [1985].

The optimal solution to the TSP is a collection of arcs that constitute a proper tour
with minimum total cost. Selection of an optimal tour is not over a continuum but

over the set of feasible tours. Optimization problems of this type are classified as

combinatorial. The TSP belongs to the class of problems known as combinatorial

optimization, which can be defined (Lawler [1976]) as follows:

Combinatorial optimization is the mathematical study of finding an
optimal arrangement, grouping, ordering, or selection of discrete

objects.

Typical problems in combinatorial optimization are: an optimal selection among
various investment possibilities, the best grouping of customers, optimal ordering of
jobs on machines, optimal location of facilities, etc. Major references on aspects of
combinatorial optimization are Lawler [1976], Christofides ez al. [1979], Papadimitriou

& Steiglitz [1982], Nemhauser & Wolsey [1988].

An instance of a combinatorial optimization problem (like the TSP) can be seen as an
implicit description of a finite set of feasible solutions. A weight function assigns to
each of these solutions a value. The optimal solution is then that feasible solution
with minimum (or maximum, depending on the problem) value. These problems are
mostly well-defined in the sense that an optimal solution always exists if the set of
feasible solutions is non-empty. Thus, it is not so much the existence of the set of
feasible solutions or, indeed the existence of an optimal solution, but rather the
computational effort required to obtain the optima which is of central interest in the
design of algorithms for combinatorial optimization problems. The computational
effort required to solve a problem forms a sound basis for its classification. To this

extent, the TSP, which has served as a testing ground for almost every new

algorithmic idea in combinatorial optimization, has enabled the classification of

problems as hard or easy.

1.2 Easy and hard problems

The optimal solution to combinatorial problems can, in principle, be found by
complete enumeration. The major objective of research in this area is to avoid
complete enumeration due to the computationally explosive nature of problems of this

genre.

A major advance in the understanding of these problems was their classification into
easy and hard problems. The TSP was one of the first optimization problems thought
of as being hard in a specific sense (Edmonds [1965a]); problems for which
algorithms are essentially some form of enumeration. To understand these concepts
more clearly, we introduce the following informal definition for the computational

complexity of an algorithm:

The computational complexity of an algorithm may be defined as (a
bound on) the number of elementary operations necessary to solve an

instance of a problem, given its size, n.

Thus, for a set of instances of a problem of given size, this forms a measure of the
worst-case behaviour of an algorithm to solve it. The size of an instance of a problem
is measured by the length - the number of bits - of the shortest coding necessary to

completely specify the input data.

Given an instance of size n and a real function g(n) of n, we say that an algorithm
is of complexity O(g(n)) if f(n), the maximum time required to execute the algorithm
is such that: l f(n)l < clg(n) I Here, c is a constant (which depends on the type of

computer that is used) and IK | denotes the absolute value of K.

Algorithms in O(n) are called linear; those in O(n ") are called polynomial; those
in 0(2") are called exponential. An algorithm is considered good or efficient if its
worst-case complexity is bounded by a polynomial function. Problems for which an
efficient algorithm exists are called easy. They belong to the class P of problems. P
is a subclass of the class of problems which can be solved in polynomial time by a
nondeterministic' algorithm. This class was introduced by Cook [1971] and Karp
[1972]. The latter called the class NP, for Non-deterministic Polynomial time
problems. The TSP belongs to an important subclass of NP, the class of problems
known as NP-complete (see Karp [1972]). Every NP-complete problem "truly"
belongs to the class NP, in the sense that if there exists a polynomial algorithm to
solve it, then all problems in NP are polynomially solvable. However, the general
conjecture is that such polynomial algorithms do not exist for NP-complete problems,
for the implication would then be that P=NP (ie., all problems in NP are easy, which

is unlikely).

For a review of the complexity of the TSP refer to Johnson & Papadimitriou [1985].

For more general surveys in this area, see Aho, Hopcroft & Ullman [1974], Garey &

YA non-deterministic algorithm is one that contains statements of choice in addition to the
normal deterministic statements. The functioning of such an algorithm is analogous to
dividing a program into concurrently processed subprograms. If all choices are enumerated,
then a non-deterministic algorithm becomes a deterministic one.

-5.

Johnson [1979] and Papadimitriou & Steiglitz [1982]. The intractability of the TSP
(and other hard problems like it) does not imply that it is unsolvable. The direct
implication is that, in the worst-case, the time required to obtain an optimal solution
grows at an exponential rate as the number of cities in the problem increases.
Moreover, in such instances, there is no guarantee that an optimal solution will be

found in a reasonable amount of computing time.

Hence, the classification of algorithms into two broad categories: (a) exact solution
algorithms that produce the optimal solution, but which carry the risk of having to
expend a lot of computing time and the disadvantage of being able to solve only
small-sized instances; (b) heuristic or approximate algorithms that produce a feasible
solution in a reasonable amount of computing time with the risk that it may be sub-

optimal.

1.3 Notational and methodological preliminaries

Throughout this dissertation, we will use the notation Py to define a problem X. We

will denote the value of an optimal solution to problem X by Z(Px). We will use

G=(N,A) to denote both directed as well as undirected graphs. Here, N={1,...,n}

is the set of n nodes. In the undirected case (the STSP), A ={ 1,..., m} is the set of
n(n-1),

m undirected arcs, where m=___2__...., in the directed case (the ATSP),

A={(i,j)|i,j= 1 ,...,n} will represent the set of n? directed arcs.

Below, we provide a brief introduction of important aspects related to algorithms
which will be developed in this dissertation.

-6-

1.3.1 Lagrangean relaxation

Consider the following optimization problem:

Problem Py:
min f(x)
P
s.t gl(x)=bi (z=1, ,m)
xe S
Here, x is a vector, f(x) and g,-(x), (i= l,..., m) are arbitrary functions and S is the

set of feasible solutions. A relaxation of problem Py is given by:

Relaxation Ry:

min f(x)

s.t. xe S

A relaxation is, therefore, a subproblem of the original problem in which some of the
constraints have been ignored. A lagrangean relaxation of the problem is obtained
by associating a lagrange multiplier \; with each constraint g l-(x) =b;. The problemPy

with the lagrangean objective function is then:

Problem Py(\):

min fx) + A{glx)-5)

x,A

st. xe€S§
Here, 7L=()\,1 ,...,km) and g(x) = [gl(x),...,gm(x)]T. For any given A, Z(Px(k))
is a lower bound on the optimal solution of the minimization problem Py. The
problem is then one of determining A*, the "best" multipliers that maximizes

Z(Px(K)) so that the best lower bound is rendered close to Z(PX).

For surveys of lagrangean relaxation for combinatorial optimization problems, refer

to Geoffrion [1974], Shapiro [1979] and Fisher [1981].

1.3.2 Branch and bound

A branch and bound algorithm to solve the minimization problem Py is an implicit
enumeration procedure. It solves a combinatorial optimization problem by breaking
up the set of feasible solutions into successively smaller, manageable subsets. A
lower bound on the value of the best solution is obtained by solving a relaxed problem
in each of the subsets under consideration. The solution obtained through this
relaxation is either: (a) feasible for the original subproblem - no further enumeration
of the subset is required; (b) with an associated lower bound which is worse than the
value of the best feasible solution obtained so far (an upper bound) - in which case
the subset is considered implicitly enumerated (fathomed); (c) infeasible for the
original subproblem but with a lower bound less than the upper bound - in which case

the subset is partitioned further and the enumeration continues.

This process is also known as a tree search procedure. The main ingredients of a

branch and bound algorithm are:

0 branching rules: a rule for partitioning the feasible set S;, of the current
subproblem PX,— into subsets S;;,...,S;, with the help of branching

constraints such that '61 S;i=S;

o lower bounding meth(;: the relaxed subproblem to be solved.

0 upper bounding method: a heuristic algorithm for finding feasible solutions
to problem Py.

o search strategy: rules for choosing the next subproblem to be considered.

Some rules commonly used are depth first (LIFO), breadth first (FIFO), best

first, and mixed strategies.

The branch and bound procedure can be depicted by a rooted tree where the root node
corresponds to the original problem. The nodes of the tree correspond to subproblems
in the enumeration process. The branching rules determine the successor nodes of a
particular node in the search tree. To avoid any confusion in terminology between the
nodes of the tree search and nodes of the graph, we will sometimes refer to the nodes

of the tree search as tree nodes.

For general surveys on branch and bound methods see Garfinkel & Nemhauser [1972,
Chapter 4], Balas [1975], Balas & Guignard [1979], Beale [1979], Garfinkel [1979]

or Spielberg [1979].

1.4 Some applications of the TSP

The greatest value of the TSP is probably its theoretical importance. The TSP is an
archetypal combinatorial optimization problem. This, combined with its intrinsic
simplicity has encouraged a lot of research into the problem. The TSP is also of great
practical importance even though "there are not many salesmen clamouring for an
algorithm", Hoffman & Wolfe [1985]. Several real-world problems can be solved

using a direct TSP formulation or a variant of it. Some examples are:

Job sequencing:

n jobs are to be processed on a machine, for example, a furnace. Each job has a start
temperature ¢; and a completion temperature T;. If job j follows job i, the changeover
cost ¢;; is the cost of the change in temperature (the time lost) from T; to #;. The
problem of determining an ordering of the jobs such that the total changeover cost is
minimized is equivalent to solving a TSP with cost matrix C =[ci j]- This example
is attributable to Gilmore & Gomory [1964] who gave a polynomially solvable

algorithm after identifying a special structure in a generalized version of the problem.

Vehicle routing:

Given n customers with known locations and demands for some commodity that is
supplied from a single depot by m vehicles, each with a known capacity
Q; (j=1,....m), the problem is to design routes for each of the vehicles so that the
total travel cost is minimized. Given an assignment of customers to vehicles, the best

route for a vehicle in this basic formulation of the routing problem is a TSP.

- 10 -

Computer wiring:

This type of problem is often encountered in the design of computer circuits (refer to
Lenstra & Rinnooy Kan [1975]). One aspect of the problem consists of minimizing
the total length of wiring used to inter-connect a given subset of pins with known

position on modules such that exactly two wires are attached to any pin.

Automation in manufacturing:

A more recent and interesting example is the one that occurs in the production of
printed circuit boards. Some of the manufacturing operations (like drilling and
component insertion) are performed by numerically controlled machines. The problem
of optimizing the sequence of machine movements in order to reduce the overall
processing time can be modelled as an instance of the TSP. For further details on this

application refer to McCallum [1986], Crama er al [1989].

There are many other important applications of the TSP. For further details, refer to
Lenstra [1974], Lenstra & Rinnoy Kan [1975] and Lenstra [1976] and Garfinkel

[1985].

-11 -

1.5 Formulations of the STSP

In this section we give the well known integer programming formulations of the
STSP. Consider a complete undirected graph G=(N,A), where N is the set of n
nodes and A is the set of m arcs. Let c¢; be the cost of arc /. We sometimes use

(i, j) to denote an arc (whose terminal nodes are i and j) and c;j to denote its cost.

Let x;, =1 ifarc! isin the solution
=0 otherwise.

The STSP can then be formulated as:

Problem PSTSP :

m
min Y ¢x (1.1)
x =1
m
st. Y x,=n, (1.2)
=1
Y x22 v K,=(5,.5,). S,cN, (1.3)
le K,
x € {0,1}, I=1,...,m. (1.4)

Here, §,=N\S, and K,E(S,,gt)is the cutset of arcs in G. If i; and j; denote the

terminal nodes of an arc /, then K, = {leAli,e S, Ji€ §,}.

Constraints (1.2) and (1.3) are equivalent to the following two sets of constraints:

-12 -

IETERE v K,=(5,.5,).5,cN, (1.5)

Y x5 =2, i=1,.,n. (1.6)

Here, A; is the set of arcs incident at node i. The inequalities (1.5) represent the
subtour elimination constraints, while those in (1.6) are the degree constraints which

constrain the degree of each node, i€ N, to be equal to 2.

The subtour elimination constraints prevent the formation of subtours through subsets
of the nodes. Such subtours in which the degree of each node is equal to 2 would

result if these constraints are ignored (see Figure 1.1).

Figure 1.1 An example with subtours

1 4

If we use the notation (i, J) to denote an arc connecting nodes i and j, a compact

formulation for the STSP is given by:

- 13 -

Problem Py :

min Y Yex, (1.7)

x ieN j>i
s.t. iji + inj =2, VieN, (1.8)
j<i j>i
Y Yx<ls|-1. vsenw, (1.9)
ieS, jes§,
j>i
x;e{0.1}, i,jeN,j>i. (1.10)

The subtour elimination constraints, (1.9) can also be expressed as follows:-

, 3, Xij > ¥ X 22, V S,cN. (1.11)
ie$, jes§, ieS, JeS,
Jj>i j>i

1.6 Algorithms for the TSP based on branch and bound

Most of the exact algorithms for solving the TSP are of a branch and bound,
enumerative type. These algorithms are classified according to the relaxation that is
used to derive the lower bounds. For a thorough treatment, refer to Balas & Toth

[1985] or Christofides [1979].

-14 -

1.6.1 Bounds from the shortest spanning tree

Spanning tree based approaches for the STSP are derived by relaxing the degree
constraints in problem Pgrsp . We investigate this relaxation in great depth in Chapter
2 of this dissertation. This relaxation was first used for the STSP by Held & Karp
[1970, 1971] and, simultaneously, by Christofides [1970]. The ideas that resulted out
of the implementation of this relaxation for the STSP were instrumental in initiating
the extensive use of lagrangean relaxation for combinatorial optimization problems.
Subsequently, this relaxation has been applied for the STSP in effective algorithms by
Helbig, Hansen & Krarup [1974], Smith & Thompson [1977], Volgenant & Jonker

[1982] and Gavish & Srikanth [1983].

The branching rules in algorithms based on this relaxation generate subproblems in
the tree search by fixing in (or out) of the TSP solution, arcs of the spanning tree
incident at a node whose degree in the spanning tree is not equal to 2. Gavish &
Srikanth [1983] select arcs of the spanning tree to be fixed in (or out) at a node of the
tree search, such that the penalty for admitting the chosen arc into the TSP solution
is maximal. Two subproblems are created that admit (alternatively, forbid) this arc.
The computational results of Volgenant & Jonker [1982] indicate that a depth first

branching strategy is more suitable for spanning tree based approaches.

Gavish & Srikanth [1983] exploit the spanning tree solutions generated during the tree
search (that are infeasible for the STSP) to obtain upper bounds, using what they call
an imbedded heuristic. In their approach, a series of chains is first obtained by
removing from the spanning tree, arcs incident at nodes whose degree is greater than
2. These chains are connected to form a tour which is then improved using the

- 15 -

interchange heuristic of Lin & Kemighan [1973]. They report very tight upper bounds
which enable many of the subproblems of the tree search to be discarded. Upper
bounds are also obtained in the spanning tree based algorithm of Volgenant & Jonker
[1982]. They use simplified forms of the heuristics of Christofides [1976] and Lin

[1965] to obtain tight upper bounds.

Both Gavish & Srikanth [1983] and Volgenant & Jonker [1982] use problem reduction
procedures based on sensitivity analysis. This procedure - termed by the latter as
branch chord exchanges - involves the forcing of variables into (or out of) the

problem.

Computational experience (see Balas & Toth [1985]) indicates that the most efficient
branch and bound algorithms for the STSP are the spanning tree based approaches
of Smith & Thompson [1977], Volgenant & Jonker [1982] and Gavish & Srikanth
[1983]. Problems of up to 100 nodes can be solved using these algorithms in a
reasonable amount of computing time. The main advantage of this approach is that
spanning trees over each of the subproblems can be computed relatively easily using
the efficient algorithms of Dijkstra [1959], Prim [1957], or Kruskal [1956]. The
algorithms of Dijkstra and Prim have running time complexity of O(nz) while the
algorithm of Kruskal is of complexity O(| A |log |A |), where |A | is the number
of arcs in the graph. In addition to the ease of computation, the lower bounds
produced by the spanning tree based approaches are quite tight (normally to within
0.5% of the optimal STSP solution). Thus, this approach works very well for the

STSP.

- 16 -

1.6.2 Bounds from the shortest spanning arborescence

The shortest spanning arborescence is used for directed graphs (ATSP) in a similar
manner as the spanning tree is used for the STSP. Spanning arborescences can be
constructed using the efficient algorithms of Edmonds [1967], Fulkerson [1974] or the
algorithm of Tarjan [1977] which has a complexity of O(nz). However, the quality
of bounds produced by this relaxation for the ATSP is, on average, poor when
compared to the quality of the spanning tree bounds for the STSP. This major
shortcoming makes procedures for the ATSP based on this relaxation inferior (see
Smith [1975] and Hong [1978]) in comparison to those that use the assignment

problem relaxation.

1.6.3 Bounds from the assignment problem

The assignment problem (AP) is the most direct and frequently used relaxation for the
TSP. The removal of the subtour elimination constraints in the TSP formulation
yields an assignment problem with the same cost function as the TSP. The first AP
based approaches of this kind were those of Eastman [1958], and Shapiro [1966]. The
term branch and bound evolved due to the algorithm of Little, Murty, Sweeny & Karel
[1963] in which an assignment type relaxation is used for the TSP. Subsequently,
improved AP based algorithms have been developed by Bellmore & Malone [1971],

Smith, Srinivasan & Thompson [1977] and Carpaneto & Toth [1980].

The AP with the TSP cost function is a strong relaxation for the ATSP. Lower

bounds are, on average, within 1% of the TSP optimal solution (see Balas & Toth

-17 -

[1985]). However, this approach is weak for the STSP because of the prohibitively
large number of subtours contained in the AP solution on graphs with symmetric
costs. Jonker, De Leve, Van der Velde & Volgenant [1980] suggest a method to
improve the AP lower bounds for the STSP which also attempts to reduce the number
of subtours in the AP solution. They achieve this by transforming the distance matrix
of the symmetric problem into an equivalent partially asymmetric one. However, even

this transformation does not make the AP relaxation attractive for the STSP.

The branching rules used in conjunction with the AP relaxation are normally based
on subtour breaking, or subtour patching inequalities. An efficient implementation of
these rules is given by Smith, Srinivasan & Thompson [1977] who use a depth first
branching scheme. Carpaneto & Toth [1980] also give a very efficient implementation

of such branching rules along with a breadth first branching scheme.

The AP can be solved in at most 0(n3) steps by the Hungarian algorithm (see Kuhn
[1955], Christofides [1975] or Lawler [1976]). Typically, during the branch and
bound, the introduction of branch constraints based on the AP solution of the problem
at the node i of the tree search (say AP;) necessitates the solution of an AP at a
successor tree node j (say AP;) in which an arc in the optimal solution of AP; has to
be excluded from AP - The solution to AP; can be used to solve AP]- with the help
of a simplified Hungarian method requiring at most O(nz) steps - see Bellmore &

Malone [1971].

The violated subtour elimination constraints in the AP solution can be introduced into
the objective function of the TSP in a lagrangean manner as in the case of the

spanning tree. We can then solve the AP with a lagrangean objective function.

- 18 -

However, due to the large number of subtour elimination constraints (which increase
exponentially with n), the number of multipliers in the lagrangean objective function
increases exponentially rather than linearly with n. Balas & Christofides [1981]
introduced a polynomially bounded procedure for approximating the maximum of a
restricted lagrangean dual problem. Bounds obtained through this procedure were
found to be, on average, less than 0.5% from the optimal (see Christofides [1979]).

This approach is explained in greater detail in Chapter 3 of this dissertation.

1.6.4 Other approaches

The efforts of Fischetti & Toth [1988b] have led to a new solution approach called
additive bounding approach for combinatorial optimization problems. This is a
composite procedure that takes into consideration many different substructures that
may be identified in a problem. Each of these substructures constitute a bounding
procedure. The algorithm then delivers a sequence of increasing lower bounds (for
a minimization problem) by considering the residual costs of a bounding procedure
at one step as the input cost matrix for the bounding procedure used at the
immediately subsequent step. This procedure is quite similar, in principle, to the
procedure for obtaining bounds for the ATSP suggested by Christofides [1972] and
also the restricted lagrangean approach of Balas & Christofides [1981]. The difference
being that, while the earlier efforts use only the reduced costs from the assignment
problem to obtain an increasing lower bound sequence, the additive bounding
approach incorporates several bounding procedures sequentially. The additive

approach has been applied to the ATSP (Fischetti & Toth [1988c]), the multiple depot

-19 -

vehicle scheduling problem (Carpaneto, Dell’ Amico, Fischetti & Toth [1988]), to the
Prize Collecting TSP (Fischetti & Toth [1988a]) and to the STSP (Carpaneto, Fischetti

& Toth [1989]).

The 2-matching relaxation for the STSP is analogous to the AP relaxation for the
ATSP. Bellmore & Malone [1971] use it for the STSP in a similar manner to their
use of the AP in their algorithm for the ATSP. The violated subtour elimination
constraints can be introduced into the objective function and the resulting lagrangean
dual problem can be solved using the restricted lagrangean approach of Balas &
Christofides [1981]. However, the major obstacle to the use of this relaxation for the
STSP has been the lack of an efficient implementation of a 2-matching algorithm (see
Balas & Toth [1985]) although the problem is polynomially solvable (see Edmonds

[1965b]).

The n-path problem as a relaxation of the TSP has been used by Houck, Picard,
Queyranne & Vemuganti [1980]. Computational experience (Christofides [1979]) has
indicated that the bound obtained by this method for the STSP is considerably weaker
than those obtained from the spanning tree. It is, however, comparable to the bounds
from the spanning arborescence for the ATSP. Furthermore, the complexity of
algorithms for the spanning tree and arborescence is less than that of the dynamic
programming algorithm for solving the n-path problem, which takes 0(n3) steps.
Thus, this relaxation for the TSP is only used when side constraints (like time
windows and precedences) are added to the pure TSP as the extra constraints can be
accommodated easily by the dynamic programming algorithm to solve the n-path

problem.

-20 -

Recently, there have been attempts to design algorithms for the solution of large-sized
problems which can exploit the increasingly large computational power made available
through new technology. An example is the design of both exact as well as heuristic
parallel algorithms for parallel computers (as opposed to sequential algorithms on
sequential computers). The algorithms of Mohan [1983] and Pekny & Miller [1988]
are reasonably good implementations of parallel algorithms. The latter are able to

solve ATSPs of size 3000 nodes with using the parallel version of an AP algorithm.

1.7 Linear programming based approaches

The linear programming relaxation of the TSP is one in which the integrality
constraints are removed. In addition, the subtour elimination constraints are relaxed.
The optimal TSP tour is then obtained by a cutting plane approach combined with (if
necessary) a branch and bound procedure. The seminal paper in this regard is that of
Dantzig, Fulkerson & Johnson [1954]. Miliotis [1976, 1978], Land [1979] and
Fleischmann [1982] also used the LP relaxation, combined with the use of cutting
planes, to solve medium-sized TSPs. However, the main drawback to approaches
which incorporate cutting planes is that the integrality of the solution is not guaranteed

at each stage of the procedure.

A major advance in the use of LP based TSP algorithms was due to Grotschel [1977,
1980] who developed linear characterizations of the TSP polytope. More of these
inequalities, known as facet-inducing linear inequalities were introduced by Grotschel

& Padberg [1979a, 1979b). These inequalities, known as valid inequalities, are the

221 -

strongest possible cutting planes. They have been used by Grotschel [1980}], Padberg
& Hong [1980] and, most successfully, by Crowder & Padberg [1980], in conjunction
with a branch and bound type of procedure to solve large-sized TSPs. All these
procedures make use of sophisticated techniques to identify facet inducing inequalities.
When no more facets can be identified, branching is performed. A recent advance in
the development of LP based algorithms is the polyhedral approach of Padberg &
Rinaldi [1987] who solve large instances of STSPs using a branch and cut algorithm.
Their successes strongly indicate that polyhedral approaches could be the way forward
to solving large instances of combinatorial optimization problems. A major reference
in the use of LP based approaches for the TSP is Grotschel & Padberg [1985] and
Padberg & Grotschel [1985], while Crowder, Johnson & Padberg [1983] review the

use of these methods to solve general combinatorial optimization problems.

1.8 Heuristic algorithms

The TSP has been the focus of extensive research into the analysis and design of
heuristics for combinatorial optimization problems. Many of the efficient heuristic
approaches currently in use evolved from applications made for the TSP. The sheer
number of heuristics for the TSP makes it impossible to review all such approaches

in this section. We will, therefore restrict ourselves by summarizing the most efficient

-22 -

heuristics for the TSP. In particular, we concentrate on the algorithms for the STSP

and the Euclidean TSP

Much of the research attention in heuristics for the TSP has been focused on
algorithms for the STSP and the Euclidean TSP. The development of heuristics for
the ATSP is still in a relative state of infancy when compared to the advanced levels
of effectiveness that are possible by heuristics for the STSP. Akl [1980] proposed an
algorithm for the ATSP based on the minimum spanning digraph. The savings
method normally used in heuristics for vehicle routing instances has also been used
for the ATSP (by Golden [1977], Frieze, Galbiati & Maffioli [1982], Golden, Bodin,
Doyle & Stewart [1980]) has also been. Karp [1979] suggested a patching algorithm

that uses assignment subtours to get upper bounds for the ATSP.

Major surveys on heuristics for the TSP are those of Rosenkrantz, Stearns & Lewis
[1977], Golden, Bodin, Doyle & Stewart [1980], Adrabinski & Syslo [1983] and
Golden & Stewart [1985]. Heuristics for the TSP can be classified into three major
groups: tour construction procedures, tour improvement procedures and composite

procedures.

Tour construction procedures commence with some initial subtour or starting point.
A feasible TSP solution is constructed by inserting unvisited points into the tour being
constructed in a sequential manner. The main components of this approach are: (a)

the choice of the initial subtour (or starting point); (b) selection criterion which

2The Euclidean TSP is the problem of finding a tour of minimal length through n given
points distributed anywhere in d-dimensional Euclidean space. The distance between any two
points is given by the Euclidean distance metric.

- 23 .-

decides on the point to be inserted next (eg. the nearest neighbour); (c) insertion
criterion which decides on the position for the selected point in the growing tour (eg.
the cheapest insertion rule). The savings algorithm of Clarke & Wright [1964] is an
example of a tour construction procedure. Heuristics based on nearest addition,
nearest insertion, cheapest insertion, or a farthest insertion principle belong to this
class. Prominent heuristics belonging to this class are the arbitrary insertion algorithm
of Rosenkrantz, Stearns & Lewis [1977], the convex hull insertion algorithm of
Stewart [1977], and the greatest angle insertion procedure of Norback & Love [1977,

1979].

Tour improvement procedures improve some feasible initial tour through arc
exchanges. This initial tour can even be a random tour in some cases. In a general
step of the algorithm r arcs of the feasible tour are exchanged with r arcs not in the
tour if: (a) the result is also a feasible tour, and (b) the length of the new tour is less
than that of the previous tour. This is referred to as an r-opt procedure (Lin [1965]),
where r refers to the number of arcs considered for exchange at each step. Although
quite simple, 2-opt or 3-opt procedures produce good solutions in most cases. The
most successful algorithm of this class is the variable r-opt algorithm of Lin &
Kemighan [1973]. In their algorithm, the best value of r is decided dynamically at
each iteration. Although it requires greater computational effort to code than either
a 2-opt or a 3-opt procedure, this heuristic produces very good solutions that tend to
be near-optimal. Or [1976] suggested a modified 3-opt procedure that also performs
very well. For a description of this procedure, see Golden & Stewart [1985]. The
ideas of this modified 3-opt approach are applied in an algorithm described in Chapter
2 of this dissertation.

- 24 -

Composite procedures begin with a tour construction approach and improve the

resulting tour using a tour improvement approach.

There are, however, several specialized heuristic algorithms for the TSP that do not
fall into any of the classes described above. Christofides [1976] developed a heuristic
which combines a minimal spanning tree with a perfect matching on its odd degree
nodes. A tour, known as an Eulerian tour, is obtained which may contain some nodes
more than once. A feasible TSP tour is obtained from the Eulerian tour by deleting
from it nodes that have already been encountered. This algorithm has a worst-case
performance guarantee of % times the optimal TSP solution. We describe this

algorithm in greater detail in Chapter 2.

Karp [1977] gave a partitioning procedure for the Euclidean TSP which, for every
€ >0, produces a tour of cost not greater than (1+ e) times the optimal TSP solution
with probability that tends to 1 as #n — eo. Furthermore, the algorithm runs in time

k(e) n+ O(n log n), where k(e) is a constant dependant on the choice of €.

Kirkpatrick, Gelatt & Vecchi [1982, 1983] developed a novel tour improvement
approach called simulated annealing which exploits the analogy between combinatorial
optimization problems (like the TSP) and the statistical mechanics of large physical
systems. This approach has been the subject of extensive research recently. The
method (named simulated annealing because of its analogy to the physical
phenomenon of annealing) is based on probabilistically accepting intermediate
increases in the solution value - produced by the tour improvement steps - through a

set of user-controlled parameters. For further details, see Golden & Skiscim [1986],

-25.

Bonomi & Lutton [1984]. For a general overview of simulated annealing, refer to

Van Laarhoven & Aarts [1987] and Aarts & Korst [1988].

Bartholdi & Platzman [1983] apply the geometry of fractals to develop a scheme for
solving combinatorial optimization problems. They apply it to design an O(n log n)
algorithm for the Euclidean TSP (see Bartholdi & Platzman [1982] and Platzman &
Bartholdi [1989]). To date, however, no empirical analysis on the performance of
fractal-based TSP algorithms is available in the literature. In Chapter 5, we develop
an algorithm based on a fractal curve that incorporates improvement ideas to get

reasonably good solutions to very large-sized problems.

1.9 A note on the implementation of algorithms

In this section, we lay the foundations for the analysis of the algorithms that will be
developed in the remaining chapters of this dissertation. In many cases, there may be
a wide gap between the statement of an algorithm and its (computer) implementation.
Some of the constructs of implementation could be the "best" algorithms to solve
| subproblems encountered; the "best" values for parameters like step-size, the number
of iterations, and so on. We will try and explicitly outline all implementational
aspects in an attempt to narrow the gap between the statement and the implementation

of our algorithms.

Often, what is "best" is declared equivalent to what is "fastest”. This again is
dependent on the "best" algorithms (and codes) for subproblems; the "best" data
structures; programming competence and so on. Moreover, codes can be made to run

- 26 -

faster by modifying them to suit a specific implementation on a specific computer and
compiler. Wherever possible, the best codes, data structures and algorithms are used
in our ‘algorithms. However, we consider such implementational aspects to be beyond
the scope of this research and therefore, question the sagacity of comparing algorithms
merely on the basis of running time. However, we perform such comparisons and
provide running times whenever we feel that a realistic and proper analysis is possible.
In the absence of this, we use other methods of comparison (like number of iterations,

number of trees, number of nodes of the tree search, and so on).

The test data used to evaluate the performance of our algorithms come from different
sources. Table 1.1 provides a list of these problems along with their sources and
optimal solution values. Other problems that are used will be referred to wherever
appropriate. We have generated 15 Euclidean problems - 5 problems each with n=50,
n=65, n=75, and n=100. The xy-coordinates for these problems have been drawn
randomly generated on the integers 1,..., 1000. A listing of the coordinates for these
problems, named KC500-KC504, KC650-KC654, KC750-KC754, and KC1000-
KC1004 is provided in Appendix 1.1. The optimal solution for each of these
problems is also given therein. The cost matrices for each of these problems were

calculated using the Euclidean metric, rounded up to the nearest integer.

-27 -

Table 1 - Description of some well-known test problems from the literature

Problem Size Problem Optimal Source

Name n Type Solution

DF42 42 Road map 699 Karg & Thompson [1964]
HK48 48 Road map 11461 Held & Karp [1962]

GR48 48 Road map 5046 GrOtschel [1977]

ST481 48 Euclidean 9729 Smith & Thompson [1977]
ST482 48 Euclidean 10680 Smith & Thompson [1977]
ST483 48 Euclidean 10180 Smith & Thompson {1977]
ST484 48 Euclidean 9984 Smith & Thompson [1977]
ST485 48 Euclidean 9844 Smith & Thompson [1977]
KTS57 57 Road map 12955 Karg & Thompson [1964]
ST600 60 Euclidean 10374 Smith & Thompson [1977]
ST601 60 Euclidean 11703 Smith & Thompson [1977]
ST602 60 Euclidean 11777 Smith & Thompson [1977]
ST603 60 Euclidean 12699 Smith & Thompson [1977]
ST604 60 Euclidean 12497 Smith & Thompson [1977]
ST605 60 Euclidean 12262 Smith & Thompson [1977]
ST606 60 Euclidean 8073 Smith & Thompson [1977]
ST607 60 Euclidean 8553 Smith & Thompson [1977]
ST608 60 Euclidean 8903 Smith & Thompson [1977]
ST609 60 Euclidean 9156 Smith & Thompson [1977]
NCE5s0 50 Euclidean 427" Christofides & Eilon [1969]
NCE75 75 Euclidean 536" Christofides & Eilon [1969]
NCE100 100 Euclidean 632" Christofides & Eilon [1969]
KF100A 100 Euclidean 21282 Krolak, Felts & Marble [1971]
KF100A 100 Euclidean 20749 Krolak, Felts & Marble {1971]
KF100A 100 Euclidean 22068 Krolak, Felts & Marble [1971]
GR120 120 Road map 6942 GrOtschel [1980]

LK318 318 Euclidean 41345 Lin & Kemighan [1973]

* The best known values

-28 -

CHAPTER 2

A Minimal Spanning Tree Relaxation of the

Symmetric Travelling Salesman Problem

2.0 Outline

In this chapter we investigate the shortest spanning tree relaxation of the STSP. The
relaxation approach was introduced by Held & Karp [1970] and, independently, by
Christofides [1970]. We describe the basic ideas of the approach before reviewing the
major improvements and modifications that have been suggested. We describe our
relaxation procedure which incorporates some of the best ideas of the previous
spanning tree based attempts. The original problem is considerably reduced by using
sensitivity analysis techniques. These enable the identification of superfluous and
indispensable arcs, those which respectively can be rejected from and forced into the
optimal solution of the problem. Tests on the structure of the graph that defines the
problem yield a greater number of superfluous and indispensable arcs. We also

describe an upper bound algorithm that makes use of the spanning trees produced

29

during the procedure. This yields tight bounds at a reasonably low computational

cost.

2.1 Definitions

In this section we introduce some notations and definitions; some of these have

previously been defined and used by Smith & Thompson [1977].

Consider a complete directed graph G=(N,A) where N is the set of # nodes and A is

the set of m arcs. Let ¢, denote the cost of arc ! (/=1,...,m). We also sometimes

denote the arc between two nodes i and j as (i,j) and its cost as ¢;;. A cyclein G

ij*
is a connected subgraph of G in which exactly two arcs are incident at every node.
A hamiltonian cycle, H of G is a connected subgraph of G in which exactly two arcs

are incident at each node. The TSP is therefore the problem of finding the minimum

cost hamiltonian cycle, H in G.

A spanning tree in G is defined as a connected subgraph of G without any cycles.
Of the many spanning trees of G that are possible, the shortest spanning tree (SST)
or the minimal spanning tree (MST) is a subgraph, denoted by GT=(N,AT), for
which the sum of the costs of its arcs is minimum. We will denote an SST simply
by T=(N,AT), where Ay cA. The number of arcs of an SST incident to a node i

is called the degree d‘-T of i or simply d;. Let V(T) denote the length of the SST.

An arc | of G is called a branch if le T and it is called a chord if [¢ T. The

fundamental path of a chord [is the unique path of branches of T between the nodes i,

- 30 -

and j; , where i; and j; denote the terminal nodes associated with chord /. For two
non-trivial and disjoint subsets S and S (=N\S) of N, a cutset of arcs in G is defined
by {I li 1€S, j€ S } The fundamental cutset of a branch [is the cutset of the two

connected subgraphs of G that remain when [is removed from T.

Using the above definitions, we can state the following necessary and sufficient

conditions for a spanning tree to be minimal (see Ford & Fulkerson [1962], p. 175):

MSC1: Every branch of the tree is at least as short as any chord in its
fundamental cutset.
MSC2: Every chord of the tree is at least as long as any branch on its

fundamental path.

Define G, as a subgraph of G with the node set N,=N\{s}. A minimal spanning s-
tree (MSsT), Ts=(NS . Ap) of G consists of an SST on G, combined with the two
shortest arcs incident to node s. These are referred to simply as minimal s-trees or

s-trees and the node s is called the root node.

An arc is said to be superfluous if it cannot be a member of any optimal solution to
the STSP on G. An arc is said to be indispensable if it must be a member of every
optimal solution. An arc is available if it is indispensable or if it has not been
identified as superfluous. A superfluous arc [is rejected from G by increasing ¢, by
a suitably large number. An indispensable arc ! is forced into the set of arcs that

defines the optimal tour by decreasing c; by a suitably large number.

Several algorithms for solving the SST are available. The more efficient ones are
those of Kruskal [1956], Prim [1957], and Dijkstra [1959]. The algorithms of Prim

-31-

and Dijkstra have O(n2) complexity while the algorithm of Kruskal is of complexity
O(|A| log |A]), where the term log |A | is due to a sorting that has to be
performed on A available arcs. Thus, in a complete graph the algorithms of Prim and
Dijkstra are more efficient (see Kreshenbaum & Van Slyke [1972]), whilst, when

| A | is reasonably small, Kruskal’s algorithm is more efficient.

2.2 The shortest spanning tree Relaxation A

Consider an arc / s(i,, j,), where le A, le H. Removal of this arc from the optimal
tour leaves a single path of n-1 arcs through all the nodes in N starting at i; and
ending at j,. Since V(T), the cost of the SST is a lower bound on the cost of this

path, V(T) +¢; forms a lower bound on the cost of the optimal STSP solution.

Consider the formulation of the Pyrsp given by (1.1), (1.4), (1.5) and (1.6).

Let y, =1 if [is the longest arc in the STSP optimal solution,
=0 otherwise.

Problem STSP can then be reformulated as:

-32 -

Problem PgTSP :

min
x,y

S.t.

We observe that problem Psl:rsp is equivalent to problem Pgrgp .

xl,yle {0:1} ’

<
~
1l

I=1,...,m.

=(5,.5,).5,¢cN,

@.1)

(2.2)

2.3)

24

(2.5)

We also note that

the solution to problem PSTTSP given by x,; (1=1,...,m) forms a spanning tree of

graph G. We use this formulation of the STSP to obtain lower bounds from the

spanning tree.

2.2.1 Lagrangean bounds from Relaxation A.

By relaxing the degree constraints (2.2) in the formulation Pgrgp, we obtain the

formulation of a relaxed problem which can be defined as follows:

-33.

Problem PTL:

m m
min Y cx + Y ¢y (2.6)
X,y =1 =1

st. (2.3) - (2.5).

The solution to problem PTL given by x, (I=1,...,m) defines the SST whose cost
is V(T). Let L be the cost of the longest arc in the TSP solution. Then,
zZ (PTL)= V(T) + L is a lower bound on Z (PSTSP). A better bound on the value of
Psrgp can be obtained by including the relaxed degree constraints in the objective
function of PTL in a lagrangean manner with the help of multipliers, ©= { T; I ie N };

that is, by solving the problem:

Problem Relaxation A:

m

m
min Ec,x,+lz:lc,y,+ Zni(2x1+yl—2] (2.7)

xy =1 ieN |le4

s.t. (2.3) - (2.5).
We note that if an arc ! is included in T, the degrees of the terminal nodes associated
with arc / are increased by one. Thus, the contribution of arc / to the total cost is:

(c, tm +1rjl). The objective function (2.7) is therefore re-written to obtain the

following formulation for the relaxed problem.

- 34 -

Problem PTL(TE) :

m m n
min E(c,+ni+nj)x,+2(c,+n +n)y,-221ri (2.8)
xy I=1 P =1 i=1

S.t. (2.3) - (2.9).

Problem PTL(n) can be decomposed into two independent problems:

Problem PT(n):

m
;I;erl l; (c, +m o+ njl)x, (2.9)
st Yoxn21, Vv K, =(5,.5,). 5,cN,
le K,
X € {0,1}, and
Problem PL(n):
m
myin 1; (c, +T T)y, (2.10)
m
s.t. E =1,
=1
y,€ {0,1}.

Problem PT(n defines the SST on G with modified costs ¢, (c AR) VieA

and i,je N.

-35-

Let L be a lower bound on L with respect to the modified costs ¢; . ProblemPL(n)

is solved by simply setting y,=1 for that arc / with the smallest modified cost

¢/>L.
Identify arc & such that k=min { ¢/ cj' ZE}.
JEA
We then set yp=1for I=k 2.11)
= (0 otherwise

Proposition 2.1 The longest arc in a TSP solution must be at least as large as the

second smallest arc from any node ve N.

This follows from the knowledge that the longest arc in the TSP solution is at least

as long as the second shortest arc in any cut K, of G, where K, = (S o S ;), S,CN.

We use Proposition 2.1 to define I:lv, a lower bound on L as:

L, = fmin {e/} (2.12)

By removing a node v and the two arcs incident at v from the TSP solution, we obtain
a hamiltonian chain through the nodes in M\{¥}. Consider S cN\{v} and define
S =N\{v}\S. Every cut (S, S) must contain at least one arc of the TSP solution.

We use this to define L,,, a lower bound on L as:

l:2v= max min {c,’} (2.13)
ScM\i Ie(S,.-S'_)

For a particular node v, if we set Ev=max[E1v,I:2v], the longest arc in the TSP

solution must be at least as long as:

- 36 -

L=?,ea;{,;v} (2.14)

The computation of L can be carried out as follows:

Let T be the SST solution to problem P{r) for a given .

Let vl={i|d,.=1}, and V;=NM\{}.

Consider ve V,. Since the least cost arc from A, must belong to 7,

(2.12) can be re-written as:

Ly,=min [c/|le T} (2.15)
le A,

Set l:v=Elv’
Consider ve 1_/1. By removing v from T, k distinct subtrees are formed,
where k=d,. Let T‘f denote the set of points in the ith subtree and

T ;izN\{v}\Tvi. (2.13) can be re-written as:

L, = max min {c,’} (2.16)
l=1 k IG(T‘:.T;')
Set L,=L,,

L is calculated using (2.14) and problem PL(n) is solved using (2.11).

2.2.2 Computing the bounds

For a given &, Z (PT(R)) and Z (PL(n)) represent the optimal values of problemsPT(n)
and PL(n) respectively. We showed in Section 2.2.1 that the value Z(PTL(TC)) forms
a lower bound on Z (P:TSP). From (2.8) it is clear that:

z (PTL(n)) = Z(PT(R)) + Z(PL(K)) - 22”: m<Z (P gTSP)

i=1

-37 -

The greatest lower bound of this kind is obtained by deriving the set of multipliers*

such that:

Z(PTL(n*)) — max Z(PTL(R)) 2.17)

T

Problem (2.17) is known as the lagrangean dual of STSP and the vector n* defines
the dual variables associated with the relaxed degree constraints. Iterative ascent
methods are used to obtain the vector 1 that maximizes (2.17). A general description

of this method is provided in a later section.

In obtaining solutions to problem PL(TC) during the ascent, we observe that it takes
considerably more computational effort to determine ['zv than L,,. Hence, L is set
to L,,, which is easier to evaluate, for most of the iterations. The tighter bound
described by (2.14) is not always used. We evaluate the bound by defining a
parameter . ﬁv at iteration m is as described by (2.14) if m is a multiple of ®. Ev
is set to ﬁlv otherwise. Thus E2v’ the more expensive, but tighter lower bound on L,
is only evaluated every w iterations. After considerable experimentation, we found

that the best results were obtained by setting m=[%:|.

We tested this approach to obtain lower bounds on a few test problems. We coded
the ascent procedure of Smith & Thompson [1977] and compared the results obtained
from the two approaches. For the problem DF42 our procedure obtains a lower bound
of 696.994 after evaluating 105 trees in 45.912 Cpu Secs of computing time on a
CDC-CYBER/930. The corresponding figures for the ascent of Smith & Thompson
are (696.980, 105 and 21.678). For the problem HK48 the results for our procedure

are (151, 11444978, 64.714), while those for the Smith & Thompson approach is

- 138 -

(150, 11444.183, 31.776). For the problem ST605 the results for the two approaches

are (180, 122.114, 12188.324) and (185, 61.117, 12187.324) respectively.

After analysis of the results obtained on many such test problems, we concluded that
the best lower bound at the end of the ascent, obtained by our formulation of the SST,
is comparable and, in some cases, superior to that produced by existing formulations
of the lagrangean problem. However, this increased lower bound is achieved at a

much greater computational cost. We therefore did not pursue this method further.

2.3 The shortest spanning tree Relaxation B

We observe that every optimal solution to the STSP is an s-tree. However, not all s-
trees are travelling salesman tours. An s-tree T is an optimal TSP tour only if
exactly two branches meet at each node in N. Hence, the STSP can be formulated as

follows:

Determine the minimal spanning s-tree of G with the additional

restriction that d;=2, V i=1,...,n.

The problem of determining the s-tree on G is therefore a relaxation of STSP. If we
remove node s and the arcs incident at s from H, the remaining graph is a path, P,
through the vertices in N,. A minimal spanning tree on the graph G is a lower
bound on the cost of P. The cost of the two arcs that are removed from H to produce

P is at least as large as the cost of the two shortest arcs incident to node s. Hence,

-39.-

the cost of the s-tree is a lower bound on the cost of the travelling salesman tour. The

mathematical formulation of the problem whose solution is T, is given below:

Problem Pr:

s.t.

(2.18)
(2.19)
v K, =(5,.5,). 5,cN, 2.20)

(2.21)

(2.22)

Problem Pr_ is the same as problem Pgrgp with constraints (1.3) replaced by

constraints (1.5), and with thé degree constraints (1.6) relaxed except for node i=s.

2.3.1 Lagrangean bounds from Relaxation B

To obtain the lagrangean problem, the relaxed degree constraints are included in the

objective function of problem PTs by means of lagrange multipliers ©t = { T lie N }

The formulation of this problem, called Relaxation B is given below:

- 40 -

Problem Relaxation B:

min Z ax; + YW (z X -) (2.23)

xeT, |I= ieN le A

S.t. Constraints (2.19) to (2.22)

The objective function (2.23) is re-written to obtain the following formulation for the

relaxed problem.

Problem PTS(E) :

m
min Z(c[+1r +7t) —ZZR (2.24)
xeT, =1 ieN

s.t. Constraints (2.2) to (2.5)

Problem PTs(n) defines the MSsT on G where the arc lengths ¢; are transformed to
c/=c;+ m;, +T; . For any set of multipliers =, the transformation of arc lengths may
change the set of minimal trees. It does not, however, influence the set of optimal
STSP solutions (see Held & Karp [1970]). The multipliers are also referred to as

node weights or node penalties.

Let Tf be the minimal s-tree associated with the set of node weights . Let d; be the

degree of node i (i€ N) in Tf. Since d;=2, Vie N in any optimal solution, the

length of the minimal TSP tour in terms of the transformed weights is:

zZ (PSTSP) + 22'!:1 7;. The length of the minimal s-tree is: V(TS) + Xn: m; d;. Since
i=

i=1
the length of the s-tree is a lower bound on the length of the minimal tour, we have:

(EATS EFERILIMES) 3

i=1
- 41 -

For the optimal tour on the original arc lengths, we have:

T,)+ zjjl m{d;-2) < Z(Persp) (2.25)

Since the LHS of (2.25) is the solution to problem PTS(n:) , Z (PTS(R)) is still a lower

bound on Z (PSTSP)

Let f(n) denote the gap that exists between the cost of the optimal tour and the MSsT

with respect to ¢;’.

An) = Z(PSTSP)—Z(PTS(n)) (2.26)

The problem of minimizing the gap in (2.26) is equivalent to finding the set of
multipliers n* such that:

Z(PTS(n*)) = max Z(PTS(n)) | (2.27)

T

Problem (2.27) is referred to as the lagrangean dual of the STSP and the gapj(n*)
is referred to as the duality gap. For surveys of lagrangean relaxation see Geoffrion

[1974], Fisher [1981] and Shapiro [1979].

Held and Karp [1970] proposed ascent methods to identify ©t* that rendersZ (PTS(R*))
to be close to the optimal solution. A similar procedure was simultaneously suggested
by Christofides [1970]. Subsequently, improved methods have been developed by
Helbig, Hansen & Krarup [1974], Smith & Thompson [1977], Volgenant & Jonker
[1982] and Gavish & Srikanth [1983]. Successful heuristic iterative procedures to
maximize (2.27) have also been implemented by Camerini, Fratta & Maffioli [1975]

and Held, Wolfe & Crowder [1974].

- 42 -

2.3.2 Ascent methods

The objective function of (2.27) is piecewise linear and concave in @. An ascent
procedure, known in literature as subgradient optimization, is used to obtain its
maxima. For surveys of the subgradient ascent method see Held, Wolfe & Crowder

[1974], and Sandi [1979].

The ascent is an iterative procedure that commences with an initial lagrange multiplier
vectbr 1t=n0, normally taken to be the zero vector. Gavish & Srikanth [1983] use
a data reduction procedure which is similar to the first stage of any standard algorithm
to solve the assignment problem. We found that this choice generally ensures a

modest improvement in the lower bound at the end of the ascent at minimal additional

computational cost.

At any iteration m of the ascent, solve PTS(n) for t=n". If the s-tree T, is a tour
or if Z(PTs(n)) 2 U, the ascent is terminated. Here, U is an upper bound on the
optimal tour length. Otherwise, let d‘-m be the degree of node i in Tf and let p be
a positive scalar not greater than 2. The multipliers for iteration m+1 of the ascent

are updated using:

nt =l s (a1 -2), VieN (2.28)

i

where ¢™ is the step length defined by:

U - Z(PTS(n”'))

Y (47-2f

ieN

tm

(2.29)

=p*

- 43 -

This method converges if) ™ = oo and lim t™ = 0.

m=1 m—> oo

These conditions are satisfied if we start the ascent procedure with p=2 and reduce it
systematically to 0. Since a polynomial-time convergence cannot be guaranteed,
stopping rules enable the identification of ®° at the end of the ascent. ©° is normally
a good approximation of m*. Smith & Thompson [1977] developed an efficient
implementation of such an ascent that results in tight lower bounds. Volgenant &
Jonker [1982] report good results by using an updating formula and a formula for the
step length that are different from (2.28) and (2.29) respectively. The implementation

of our ascent is similar to that of Smith & Thompson [1977].

2.3.3 Choice of the root node

In almost all SST based approaches to the STSP the choice of the root node s in s-
trees is taken, arbitrarily, to be node 1. Held & Karp [1970] suggested (without actual
implementation) that better bounds might be achieved through a more accurate

selection of the root node.

Jonker [1986] suggests several choices for the root node, including the selection of a
central node or a node on the convex hull of nodes in G. Their conclusion is that
although the lower bound for n=0 varies substantially, the differences in the lower
bounds obtained at the end of the ascent are so small that the extra computational
effort in selecting the special root node is unnecessary. Bazaraa & Goode [1977]
choose node s after evaluating n distinct s-trees, each with a different node as the root.

They choose s such that:

s=|k|keN, Z(PT,‘)=528}); {Z(PTi)}

We observed that the results at the end of the ascent do not justify the considerably

higher computational effort involved in such a selection.

Gavish & Srikanth [1983] obtain a minimal tree T initially for n="" and choose s

such that: s=rpa; d;. By forcing the degree of this node to be 2 in all s-trees, they
ie

report a consistent 0.05 to 0.15% improvement in the best lower bound obtained. Our

ascent produces very tight initial lower bounds when we adopt this choice of s,

coupled with: (i) a choice of 0 different from 0, and, (ii) implementation of the

ascent of Smith & Thompson [1977].

2.4 The upper bound heuristic

In Section 2.3.2 we defined U as an upper bound on the optimal solution value. Any
good heuristic can be used to generate this bound. We use the variable r-opt
procedure of Lin & Kernighan [1973] to get an initial value for U. These bounds are,

on average, within 1.5% of the optimal solution.

We use the s-trees obtained during the ascent in an attempt to tighten this initial upper
bound through the use of an imbedded heuristic. This heuristic, which is similar to
that of Volgenant & Jonker [1982], improves the initial value of U in all the problems
we tested it on. We found that for a large proportion of the well known road map and

euclidean problems, the optimal solution is obtained. The algorithm we describe here

- 45 -

is a two-phase algorithm which is a combination of (simplified forms of) two well

known heuristics:

(a) the Christofides heuristic, (b) Lin’s 3-optimal algorithm.

2.4.1 Phase 1: Heuristic matching

Christofides [1976] developed a heuristic which has a worst-case performance bound
of % times the optimal tour length. We give a brief description of Christofides’

algorithm after introducing the following definitions:-

o Givenaset N u &N, where |N M| is even, a (perfect) matching, M is
a collection of arcs Ay, C A, such that each node in N, is the end-
point of exactly one arc in A,,. A minimum weight matching M~, is
one in which the total cost of arcs is a minimum.

o An Eulerian graph is a connected graph in which every node has an
even degree. An Eulerian tour is defined as a cycle in an Eulerian

graph in which each arc is traversed only once.
Christofides’ algorithm is then described as follows:-

Step 1: Construct a minimal spanning s-tree on G.

Step2: Construct the set NM={i|ie N, d, odd}, the set of odd
degree vertices in the tree. Find M* for the set Ny,.

Step 3: The Eulerian graph is given by (ATIUAM‘)° Construct the

Eulerian tour.

- 46 -

Step 4: A feasible TSP solution is obtained by finding short cuts in the
Eulerian tour. This is achieved by forbidding re-visits in the

original Eulerian tour to nodes that have already been visited.

Figure 2.1 shows the above stages of the algorithm applied to a 9-nodes example.
Figure 2.1(a) shows the s-tree with the odd degree vertices encircled. In the Eulerian
graph of Figure 2.1(b), the thickened lines indicate arcs in the minimum weight
matching. Since there is no unique traversal of the Eulerian graph, the Eulerian tour
of Figure 2.1(c) is just one of many that are possible. The TSP tour of Figure 2.1(d)
constructed from the Eulerian tour is also not unique because the sequence of nodes

in the tour depends on the short cut rules that are used.

The following observations on Christofides’ algorithm are immediate: (i) It can,
conveniently, be imbedded into the subgradient ascent and applied to every s-tree
obtained; (ii) The running time complexity of the algorithm is dominated by the
minimum matching in Step 2 which can be found in time O{n3) - see Lawler [1976]

or Papadimitriou & Steiglitz [1982].

For the imbedded heuristic we reduce the O(n®) complexity of the matching by
merging Steps 2, 3, and 4 of the algorithm - we solve the minimum matching and find

short cuts in the resulting Eulerian tours heuristically.

Let c= { Diseues q} define a path in the s-tree whose terminal nodes are p and q. c is
called a side branch of the s-tree if dp=1 and d q>2. Define the set of nodes,

R={rlre N,(r.q)eT, re c}. There must be at least two such nodes.

Choose a node r* such that: r*=min {crp = Crq }
reR

- 47 -

Figure 2.1 Stages of Christofides’ Algorithm on a 9-nodes example

(a) Minimum Spanning 1-Tree (MSIT) (b) Eulerisn Graph: MSIT plus
A Minimom Weight perfect
Matching on odd-degree nodes

(c) Eulerian Tour: (d TSPTour: 123456789
124532678791

Transformation of the side branch ¢ (or, the transformation of p from a node of degree

1 to one of degree 2), into a part of a tour is possible through the deletion of arc

- 48 -

(r", q) from T, and the insertion of arc (r*, D) The cost of this transformation of

=Crt —C, s . Let UM bethe

p from a node of degree 1 to one of degree 2 is: C » = Creg

P
upper bound obtained by this heuristic. U, is first set to the value of the s-tree.
After every transformation, the bound is updated using: Uy ¢ U+ C,. The

procedure terminates when there are no nodes of degree 1 to transform; a feasible

tour with upper bound U, is obtained.

Figure 2.2 illustrates how the procedure is applied to convert a side branch,
c=(Dsenes q) to a part tour. i and j are the two nodes (not in c) connected to g in
the tree, ie., R={i,j}. Since, (ij - ch) < (cip - c,.q), arc (j,p) is inserted in place

of (Js q) which is deleted.

Figure 2.2 A Heuristic Matching

4 p
1 qaJ i q J
(a) A side-branch (b) Converting a side-branch
to a part tour

An inexpensive conversion of a node with degree 1 into one of degree 2 depends on
the length of the side branch of which it is a part. This, we observed, is in turn

dependent on the order in which the nodes of degree 1 are chosen for conversion.

Hence, two passes of this<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>