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ABSTRACT

Firstly, the whirl flutter of a tilt-rotor aircraft of interest is studied. The tilt-rotor aircraft
in aeroplane forward flight mode is modelled as a coupled tilt-rotor/nacelle system. The
system's degrees of freedom consist of the rigid blade torsion about a pitch bearing, the
universal joint or gimbal degrees of freedom at the hub, and the nacelle's rigid body
motions. Aerodynamic loads are computed based on a two-dimensional quasisteady thin
airfoil theory including both circulatory and noncirculatory aerodynamic forces. The
nonlinear differential equations of motion are derived by Newton's method based on a
ordering scheme and are linearised using the perturbation method. The system stability is
analysed by solving the eigenvalue problem associated with the linearised differential
equations. This model was validated against existing experimental and theoretical results
for a propeller and a tilt-rotor, and then applied to study a universal joint tilt-rotor and an
ideal gimbal tilt-rotor aircraft. The whirl flutter characteristics of these systems were
evaluated and compared. The effects of significant parameters were identified.

More efforts were subsequently made to develop a general lumped mass finite element
model for analysing the structural dynamic and aeroelastic problems of a general three
dimensional elastic beam with arbitrary and large base movements. This was done by
combining finite elements with the multibody dynamics method. The general models
developed have great modelling flexibility and can model the complex geometry of beams
and the arbitrary coupling of a beam with other substructures as well as any large and
arbitrary base motions of a beam.

Firstly, a general finite element structural dynamic model was developed for a beam
attached to an arbitrary moving base described by three angular velocities (accelerations)
and three translational velocities (accelerations). The equations of motion were derived
using the virtual work principal. Large deflections and small strains of the beam are
assumed. The axial and torsional deformation of the beam element are represented by
linear polynomials, while the bending deflections are represented by cubic polynomials.
Numerical examples were performed for both an eigenvalue problem of a spinning beam
and the dynamic response of a space-based robotic manipulator arm with complex base
motions. The former was found to give almost identical results to a precise analytical
solution. The second example was found to be basically identical to the numerical
simulation results from a recently developed multibody dynamics model. Some
inconsistencies in the previous model are addressed. The great modelling flexibility of
the hybrid finite element and multibody dynamics model was demonstrated.



The above lumped mass finite element structural dynamic model was further developed
as a finite element aeroelastic beam model for rotorcraft blades in an axial flow by
including the aerodynamic loads. A two dimensional quasi-steady thin airfoil theory was
used to compute the aerodynamic loads. The arbitrary blade base motions were included
in the aerodynamic formulation. The aerodynamics model is valid for both high inflow
and low inflow cases. Again, the resulting nonlinear differential equations of motion
were linearised using the perturbation method in order to analyse the system aeroelastic
stability. This general model can be used as a basic element to analyse the isolated blade
aeroelastic stability and the coupled rotor/body system aeroelastic stability by making use
of the arbitrary base motion variables of the blades. A number of numerical examples are
analysed with a wide range of parametric variations. The adequacy and great modelling
flexibility of the present model were verified.
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CHAPTER 1 INTRODUCTION

1.1 PURPOSES

Rotorcraft make use of rotors to produce lift or thrust. Examples of such aircraft are
helicopters and tilt-rotor aircraft. Inevitably, the aeroelastic stability problem is of
particular significance since the blades are a flexible structure and they carry all of the
aerodynamic loads. The aeroelastic stability associated with rotorcraft is a broad and
complex subject. The complexity is caused by two basic sources: One is the unusual
flexibility of rotor blades, and the other is the complexity introduced by the fact that they

are rotating.

Although the analysis of rotorcraft aeroelasticity can be traced back to the nineteen fifties,
early work in this field made use of simple physical models such as spring restrained,
centrally hinged, rigid blades [Loewy 1969, Ormiston & Hodges 1972). Later work
treated configurations that were somewhat more complex, including some with elastic
blades [Houbolt & Brooks 1958, Hodges & Dowell 1974, Friedmann 1975], fuselage
body degrees of freedom and inflow dynamics [Johnson 1977, Ormiston 1985, Gaonkar
& Peters 1986b]. These models provide us with a physical insight into the complicated
dynamic phenomena of rotorcraft blades and coupled rotor/fuselage structures, and are
very valuable for this reason. However, since they are based on only one physical model
they are limited as a general analytical model when the aim is to accurately analyse
various realistic rotorcraft configurations. With the advent of the promising bearingless
rotor systems, a great deal of modelling flexibility is required as various configurations
may be very different. It is desirable to develop a general dynamic model with a great
modelling flexibility capable of dealing with realistic and relatively complicated
geometries and structural coupling effects in rotorcraft dynamics. The Finite Element
Method provides us with an ideal technique well suited to modelling the complicated

structural configurations such as the nonuniform blades and blades with complex root
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geometries. Moreover, the Finite Element Method leads to a significant reduction in the
algebraic manipulative labour in the rotorcraft aeroelasticity analysis. A considerable part

of rotorcraft structural mechanics research efforts has begun to focus in this direction.

Recent implementations applying the finite element method to rotorcraft dynamic
problems contain several significant efforts to explore the application of the Finite
Element Method to rotorcraft aeroelasticity [Friedmann & Straub 1980, Sivaneri &
Chopra 1982]. These models discretize a simply spinning beam, but they are still limited
to one configuration. Furthermore, they lack the capability to model the general coupling
of the beam with a fuselage or to model blade/root kinematics of an arbitrary

configuration.

Meanwhile, investigations of rotating beam dynamics are also being actively conducted
in a number of other relevant disciplines [Likins 1974, Luh et al 1980, Kamman &
Huston 1984, Turcic & Midha 1984, Kane & Ryan 1987]. Especially important is the
so-called "multi-body system" dynamics, where a number of rigid and flexible bodies are
inter-connected and may be largely rotating and/or translating relative to each other. The
central theme of multibody dynamics is to develop a general set of dynamic equations of
motion for such a large system. This is realised by considering the motion of a typical
body in an arbitrary moving reference frame. This moving reference frame consists of
six rigid body degrees of freedom and hence can model the arbitrary connections of a
body to other bodies. This consequently leads to a general dynamics model with a high
degree of modelling flexibility. A rotorcraft has many similarities with such a system.
Unfortunately although a number of multibody dynamics codes exist, most of them treat
the structure as rigid body components. None possess the capability to model the
aeroelastic phenomena and the nonlinear elastic equations of motion since they were
developed primarily for spacecraft applications. A very recent work in multibody

dynamics treats the structural dynamics of a beam attached to an arbitrary moving base
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using the global modal method [Kane & Ryan 1987]. That is quite close to the problem
of a general rotating beam dynamics model, but the structural dynamics model is a linear
one and can not model some important structural effects of a rotor blade such as the blade

pretwist. It also excludes the aerodynamic terms.

It can naturally be expected from the above discussions that the combination of the finite
element method with the "multibody” dynamics method will result in a quite general
dynamic model for complex systems. One of the aims of this thesis is to develop a
lumped mass finite element model for a general rotor blade, which can model the
aeroelastic stability of both high-inflow rotorcraft such as tilt-rotor aircraft and low-
inflow rotorcraft. The finite element and "multibody" dynamics modelling concepts are
used to advantage to develop a general dynamics model capable of modelling the
complex geometries of rotor blades, blade/root kinematics and the coupling between
rotor blades and the fuselage degrees of freedom. Meanwhile, the other aim of this thesis
is to provide a general hybrid finite element-multibody structural dynamics model
relevant to other disciplines where rotating beams occur, such as robotics, spacecraft
dynamics etc. This structural dynamics model can treat both the natural characteristics

problems and the dynamic response of a beam with an arbitrary moving base.

On the other hand, the tilt-rotor aircraft is a special type of rotorcraft and is being
developed as a new and promising type of air vehicle. The tilt-rotor aircraft can both fly
like a normal helicopter (helicopter mode) and like a propeller aeroplane (aeroplane
mode). Consequently, it may meet a special type of instability at high speed forward
flight in the aeroplane mode. This is the so-called whirl flutter. It was initially found to
occur with propeller aircraft. With the development of the tilt-rotor aircraft, increasing
efforts are being made to improve the understanding and analysis capability of the tilt-
rotor aeroelastic stability. As a part of the efforts of this thesis, the whirl flutter problems

of the tilt-rotor aircraft configurations of interests are studied. This whirl flutter model is
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aimed at obtaining an understanding of the fundamental whirl characteristics of two
different tilt-rotor configurations. One is a universal joint tilt-rotor. The other is an ideal
gimbal tilt-rotor. An understanding of the whirl flutter characteristics of the gimbal tilt-

rotor is lacking in the literature.

Therefore, this thesis consists of three dynamics models developed step-by-step. They

are briefly reviewed in the following sections.

1.2 A WHIRL FLUTTER MODEL OF A TILT-ROTOR AIRCRAFT
(CHAPTER 3, 4)

As the first step for the investigations of the rotorcraft aeroelasticity, a tilt-rotor aircraft
whirl flutter problem is considered in Chapter 3. Since the emphasis is placed on
obtaining physical insight into the dynamic behaviour of the system, a simple model is
taken. The aircraft fuselage and wings are assumed as rigid and in a stable forward
flight. The tilt-rotor is assumed to work in an axial flow mode. The rotor blades are
assumed to be rigidly fixed to the hub in flap and lead-lag, but can twist about the pitch
bearings with torque spring restraints which represent the control link stiffness. The
rotor hub is joined to the nacelle through either a universal joint or a gimbal, and hence
has two different construction configurations. Both have two degrees of freedom one
each in pitch and yaw with viscous damping and spring restraints. The nacelle is
modelled as a rigid body with six space degrees of freedom and has spring and viscous

damping restraints with the wing. The total number of degrees of freedom is 12.

The equations of motion are derived by the Newton method. In the formulation, the
nonlinear terms are retained using a normal ordering scheme. While the previous whirl
flutter models usually used a linear model. The aerodynamic loads are computed based
on a two-dimensional quasi-steady aerodynamics theory and include both circulatory

forces and noncirculatory forces. The latter is usually neglected in the previous whirl
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flutter m&dels. The rotor equations of motion are obtained by the equilibrium of the
aerodynamic loads, inertial loads applied on the whole rotor, and the universal joint (or
gimbal) restraint moments. The blade torsion equation of motion is determined by the
equilibrium of the aerodynamic moment and the inertial moment about the blade pitch
axis and the elastic restraint moment due to the stiffness of the control system. The
nacelle equations of motion are established according to general rigid body dynamics
with the aerodynamic loads and the inertial loads transmitted from the rotor and with the
restraint loads. Finally we obtain 12 linearised perturbation differential equations and an

equilibrium algebraic equation for the blade torsion deformation.

The system stability is evaluated by solving the eigenvalue problem of the linearised
differential equations. For this system, an instability may be occur at high forward
speed. This is the whirl flutter problem. Numerical results include two principal groups
for this whirl flutter mbdel. The first one investigates a classical propeller whirl flutter
model with only two degrees of freedom of the nacelle's pitch and yaw, and a four
degrees of freedom flap-hinged tilt-rotor whirl including two cyclic flap modes, nacelle
pitch and yaw modes. Both of these have been studied both theoretically and
experimentally and results reported in the Literature. This part of the thesis is mainly
aimed at confirming the validity of the present analytical model. The second group
concentrates on a universal joint tilt-rotor and an ideal gimbal tilt-rotor and finding whirl

characteristics for these.

1.3 A FINITE ELEMENT STRUCTURE DYNAMICS MODEL FOR A
BEAM WITH AN ARBITRARY MOVING BASE (CHAPTER 5)
Subsequently, in Chapter 5, a general finite element structural dynamics model is
developed for a general space elastic beam with an arbitrary moving base. This model
can incorporate the coupling of a blade with fuselage or any large and arbitrary base

motions. The physical model is idealised as:
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1) A general elastic beam is set on a rigid base.

2) The rigid base may have an arbitrary space motion which is described by the three
translational velocities of the connecting point and three rigid body angular velocities
of the base.

3) The beam can be pretwisted.

4) Sectional mass centre is offset from the elasticity centre.

5) The beam undergoes a three-dimensional deformation which is described by the three
translational displacements of the elasticity centre and three successive rotations of the
section.

6) The deflections may be large.

7) The Euler-Bernoulli assumptions are used.

8)The effect of the section warping on the torsion is taken into account.

The equations of motion are obtained by using the virtual work principle. The equations
are discretized by the finite element method. The beam is divided into a number of
elements. The beam inertia is lumped at the end nodes of each element. This lumped
mass model simplifies the formulation of the generalised inertia forces. As usual, the
lumped rotary inertia in flexure (flap and lag) are taken to be small values. The effect of

cross section warping on the inertial forces are negligible and are not considered.

The generalised forces contributed from the internal forces are obtained by the derivation
of the strain energy . Although the deflections may be large, the strain is assumed to be
small. The nonlinear strain-displacement relations are presented. The centrifugal stiffness
ahd gyroscopic terms caused by the base motion are specifically treated so that this
dynamics model can be conveniently applied to both nonlinear and liner problems. The
final mathematical models can be readily applied to solve not only the eigenvalue problem
but also the dynamic response problem of a beam with arbitrary base motions as in a

multibody dynamics algorithm.
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Two groups of numerical examples are solved to validate the model and show its
application to a general dynamic simulation of a beam under complex base motions. The
first case is for a simply spinning beam which has an analytical solution to compare with.
The second case is simulating the behaviour of a space-based robotic manipulator which
has a complex base motion. Results of this problem from a modal method specifically

developed for a general multibody code are available to compare with.

1.4 A FINITE ELEMENT AEROELASTICITY BEAM MODEL
(CHAPTER 6)

Based on the physical model given in the last section, Chapter 6 considers the beam as a
rotorcraft blade which is subject to aerodynamic actions. The aeroelasticity problem of
this blade can be modelled by adding the aerodynamic loads to the generalised active
forces. The aerodynamics of the blade are developed for an axial flow state of a rotor. A
two-dimensional quasisteady aerodynamic theory is used. Noncirculatory aerodynamic
loads are also included. The induced velocity is assumed to be uniform over the rotor.
The aerodynamic loads are calculated so as to be valid both for high inflow cases such as
a tilt-rotor aircraft in a aeroplane-mode forward flight and for low inflow problems such
as a normal helicopter in hover or vertical flight. The nonlinear differential equations of
motion are obtained for the rotorcraft aeroelasticity problem by combining the
aerodynamic loads with the previous structural dynamics model. This set of nonlinear
differential equations of motion are linearised about a set of equilibrium positions using
the perturbation method. This finally leads to a set of nonlinear algebraic equations for
the equilibrium solution and a set of linearised differential perturbation equations that
depend on the equilibrium values. This procedure is incorporated into the computer

program.
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A number of numerical exémples are presented to analyse the aeroelastic stability of
hingeless rotor blades. The results from the present model are compared with an existing
and reliable result from the Literature which includes both the equilibrium solutions and
the stability characteristics. The modelling flexibility of the present model is

demonstrated.

1.5 STRUCTURE OF THIS THESIS
This chapter, chapter 1 highlights the purposes of this work and the models developed in
this thesis.

The next chapter presents a literature review in the rotorcraft dynamics and aeroelasticity
together with several significant works regarding rotating beam dynamics conducted in

other disciplines.

Chapter 3 is contributed to formulate the equations of motion for the tilt-rotor aircraft

whirl flutter model briefly described in section 1.2.

Chapter 4 introduces the solution procedures for the tilt-rotor whirl flutter problem and

presents the numerical results.
Chapter 5, 6 expand in detail the contents briefly discussed in section 1.3, 1.4. They are
for the finite element structural dynamics model and finite element aeroelasticity model of

a beam with an arbitrary moving base respectively.

Finally, chapter 7 draws the conclusions of this thesis and gives some comments on

possible further developments.
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CHAPTER 2 ROTORCRAFT DYNAMICS AND
AEROELASTICITY STABILITY ANALYSIS

2.1 INTRODUCTION

Rotary beam-like structures are widely used in various fields, such as industrial robots,
rotating machinery, satellites, and rotorcraft. Therefore, the dynamics of rotary beams
have been a subject of interest in a number of diverse disciplines and have received an

extensive investigation and development over the last four decades.

In the field of industrial robots, various approaches were developed to compute the
forces and torques needed to drive all the joints accurately in order to control a
manipulator which carries a variable or unknown load and moves along a planned path
[Luh et al. 1980]. In the design of high speed machines and mechanisms, analyses have
recently been conducted to study the vibration effects on the performance of the
mechanism [Turcic and Midha, 1984]. In the field of satellites, the demand of precise
orientation of a satellite relative to an inertial or an orbiting frame of reference has
resulted in a number of research endeavours [Modi, 1974, Kulla, 1972, Likins,1974,
Kamman and Huston,1984, Kane et al.,1987].

For rotorcraft, the rotating blade dynamics is closely linked to the rotorcraft aeroelasticity
problems due to the special working environment. Virtually, every rotary-wing aircraft
potentially has aeroelastic stability problems. These represent some of the most complex
problems in the area of aeroelasticity. The complexity is caused by two basic sources:
one is the unusual flexibility of rotor blades, and the other is the complexity introduced
by the rotation. Blade flexibility not only adds more degrees of freedom, but also
introduces complicated geometrically nonlinear problems by allowing large blade
deflections. The rotation results in much more complicated inertia loads such as

centrifugal and coriolis forces which bring additional stiffness and couplings. This is
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inherent for all rotating beams. It also gives rise to a complex unsteady aerodynamic
environment. The investigations of the rotorcraft aeroelasticity has been extensively
conducted during the last 40 years, especially since the 1970's. and substantial progress

has been achieved.

This chapter is intended to present a brief review of the research of rotorcraft dynamics
and aeroelasticity stability. The modelling of an aeroelasticity problem involves three
basic aspects, namely :

1) structural modelling,

2) inertial modelling,

3) aerodynamic modelling.
The first two items form the basis for the structural dynamic modelling, which is also
essential for rotary beam dynamics in other fields. In the next section, therefore, we shall
firstly discuss the development of the rotorcraft structural dynamics. Subsequently, the
aerodynamic modelling in rotorcraft aeroelasticity stability analysis is introduced. The
last section is concerned with the application of the Finite Element technique to rotorcraft

aeroelasticity problems.

2.2 STRUCTURAL DYNAMICS MODELLING
The development of rotorcraft structural dynamics modelling will be discussed in two
parts. That is:

1) rotating blade structure dynamics, and

2) coupled rotor/body system dynamics.

2.2.1 Structural Dynamics of Rotating Blades
2.2.1.1 Rigid Blade Model
Early rotor blade and rotorcraft analyses usually treated both hinged and cantilever elastic

blades as hinged, rigid blades for aeroelastic stability analysis. Early analysis of rotor
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aeroelastic problems was generally undertaken in terms of the classical fixed-wing flutter
model. The flap-pitch flutter of blades, similar to the counterpart found in fixed-wing
aircraft, is naturally derived [Loewy,1969]. The pitch-lag and flap-lag instabilities were
found by Pei [Loewy,1969]. More complicated flap-lag-pitch flutter models were
subsequently developed [Loewy,1969]. These rigid blade models are appropriate for
some rotorcraft configurations. The equations of motion are easier to derive and need
much less computation time to solve them than for flexible blades. They are very

valuable when a physical insight into the dynamic behaviour of a system is needed.

2.2.1.2 Elastic Blade Model

Although the rigid blade models can be used to approximate the dynamics of a rotorcraft
blade, rotor blades are fundamentally rotating elastic beams. Houbolt and Brooks's work
[1958] was used as the classic and standard equations of motion for elastic blades from
the middle 1950's to 1970's. They developed a set of linear differential equations for
nonuniform rotor blades. However these linear equations contain the geometrical
stiffening owing to centrifugal force, normally considered a nonlinear effect. For

articulated rotor blades, it is quite adequate.

However, it has been clear from the early work on rotorcraft dynamics that the
governing equations are not of the linear type [Loewy,1969]. Attempts at further
understanding of this nonlinearity was not made until the 1970's. During the late 1960's,
interest in the hingeless rotor was intensified. Hingeless rotor blades are cantilevered to
the hub. The lack of hinges leads to a simpler mechanism but large bending and torsional
deformations of the blades arise. These large deformations give rise to geometrically
nonlinear structural and inertial terms in the dynamic equations, even when the strains are
small. Since the 1970's, extensive efforts have been devoted to the development of

suitable structural dynamic models for cantilever rotating blades.

30



In linear structural analysis, the deflection of the structure is a'ésumed to be
infinitesimally small, so that the difference between the deformed and undeformed
configurations of the structure can be neglected. The equilibrium formulation of the
structure can be referred to either the deformed or the undeformed configurations.
However, in large displacement nonlinear analysis of structures, the deformed and the
undeformed configurations can no longer be considered identical. The geometry of the
beam must be defined both in its undeformed state and in its deformed state. This
requires the development of the transformation relation between the undeformed blade
coordinate unit vectors and the deformed blade coordinate unit vectors. Transformation
matrices for various rotation sequence are hence derived [Peters and Ormiston, 1973,
Hodges et al. 1980]. A survey of methods of treating finite rotation in relation to
nonlinear beam kinematics was published by Hodges [1987a]. Based on this type of
transformation relationships and combined with the Euler-Bernoulli assumption, a

number of elastic blade dynamics equations have been developed.

Ormiston and Hodges [1972] considered elastic flap-lag blade models. The well-known
kinematical foreshortening of the beam axis caused by bending is addressed. This leads
to centrifugal and coriolis forces. These effects are essential to model the nonlinear

features of hingeless rotor dynamics. (An illustration of foreshortening is given in

fig.2.1).

Az

R

Fig 2.1 Illustration of the beam foreshortening caused by bendings
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Nonlinear equations for coupled bending and torsi(;n of elastic rotor blades were
subsequently developed by a number of researchers [Friedmann, 1975, Hodges and
Dowell,1974]. In these investigations, an ordering scheme was utilised to systematically
neglect the higher order nonlinear terms that arise from the geometrical nonlinearity. In
such an ordering scheme, all of the important parameters of the problem are assigned
orders of magnitude in terms of a typical nondimensional displacement quantity € which
represents typical blade slopes. This ordering scheme is used with the assumption that
terms of O( €2) are usually negligible when compared to terms of order one. That is
1+ O( €2) =1. This approach is based on the so called moderate rotation assumption of

rotor blades.

Meanwhile, the significant nonlinear coupling between torsion and combined flapwise
and chordwise bending were properly modelled [Hodges and Dowell, 1974, Friedmann,
1975,1977a]. This coupling is found to be significant in hingeless rotor blade
aeroelasticity stability analysis. Fig.2.2 illustrates the origin of the nonlinear torsion
caused by simultaneous flapwise and chordwise bending. To evaluate the accuracy of the
theory, the Princeton beam experiments were conducted [Dowell et al,1977]. The
Hodges-Dowell equations were further extended to include variable flap-lag structural
coupling and to investigate their effects on rotor blade aeroelasticity stability in hover

[Hodges and 0rmistc_>n,1976].

Fig 2.2 Nonlinear torsion of an elastic cantilever beam resulting

1se an T
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The equations introduced above are developed based upon the assumption that the
structural deformations of the rotor blades are limited to be only moderately large, where
the formulation of the dynamic equations usually utilise an ordering scheme to neglect
higher order nonlinear terms. This approach leads to equations which contain up to
second order nonlinear terms. In an analysis by Crespo Da Silva and Hodges [1986b],
the influence of retaining the next level of higher order terms in the equations of motion
was considered. This yields equations including a third order nonlinearity. The influence
of these third order terms on blade response and stability was investigated. The results
indicated that the influence is limited for practical rotorcraft configurations [Friedmann,

1990].

The moderate rotation assumptions can be adequately applied to many rotor blade
dynamic and aeroelastic analyses, but this gives some limitation to the equations of
motion derived based on the assumptions used. In more recent studies, Hodges [1985,
1987b] have developed a nonlinear structural dynamics model for rotor blades in which
the assumption of moderate rotations were abandoned. The common ordering scheme is
not used to model the beam kinematics. A less restrictive assumption is that the
extensional strain is ignored compared to unity. Such a large displacement model for

composite beams was also addressed in a recent publication [Bauchau and Hong,1987b].

2.2.1.3 Bearingless and Composites Materials Rotor Blade Model

The application of bearingless rotor systems poses a new class of problems to rotorcraft
dynamists. The bearingless rotor systems eliminate blade root hinges and bearings by
using a beam that is sufficiently flexible in torsion to accommodate all of the blade-pitch-
control motion usually provided by the pitch change bearing of articulated and hingeless
rotors. The flexible structure makes the dynamic modelling of the systems much more
complicated and difficult to analyse. The first effort was made to derive the differential

equations for a composite bearingless rotors using the global modal method by Bielawa
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[1976]. For complex structures, such as bearingless rotors, the Finite Element Method
is an ideal solution technique. Further investigations on bearingless rotor blades usually
applied the Finite Element Method and will be discussed in section 2.4 which deals with

the application of the Finite Element Method to rotary wing dynamics.

Composites materials are more and more widely used within rotorcraft structures,
especially for the rotor blades. However, most of the dynamic models developed to date
have been restricted to isotropic material properties. The development of composite rotor
blades has lead to substantial research efforts in recent years to develop dynamic models
which are suitable for the structural dynamic and aeroelastic analysis of composite rotor
blades. The work in this area can be divided into two categories: 1) Modelling
approaches which lead to the determination of the stiffness properties of arbitrary
composite blade cross sections. Anisotropic materials and the composite nature of the
blades are taken into account in this category. 2) Structural models which use one-
dimensional beam kinematics suitable for composite rotor blade analysis

[Friedmann,1990].

The determination of the shear centre location and warping functions of composite blade
sections is the centre of the research in the first category. Cross section properties can
then be evaluated and further be applied to the research in the second category. A large
number of studies have been conducted in the first area during recent years [Borri and
Merlini, 1986, Bauchau,1985, Lee and Kim,1987, Stemple and Lee,1988,
Friedmann,1990]. More recently, some work was aimed at the structural dynamic
modelling of composite blades [Kosmatka and Friedmann, 1987, 1989, Bauchau and
Hong,1987a,1987b, Minguet and Dugundji, 1989a,1989b, Rand,1990]. However,
work in the aeroelastic analysis of composites blades is limited, so far only by Chopra

and his associates [Hong and Chopra, 1985, 1986, Panda and Chopra, 1987]. The
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results show that there is a great potential for aeroelastic tailoring of composites rotor

blades.

2.2.2 Coupled Rotor/body Models

The previous sections mainly discussed the structural dynamic models of isolated rotor
blades including rigid body blades, elastic blades and the modelling of bearingless rotors
and composites blades. However, the coupling between a rotor and other components,
such as fuselages, rotor shaft, tilt-rotor aircraft nacelle and wings, is an important factor

in the system dynamic modelling.

The first significant analytical study is attributed to Coleman and Feingold [1957]. They
considered a rotorcraft system of a rigid rotor/fuselage and described the well-known
"ground resonance" phenomena. Possible rotorcraft airborne aeroelastic instability was
mentioned by Loewy [1969] and later was widely known as "air resonance". The
transformation relations between the rotating coordinates system fixed to blades and the
non-rotating coordinates system fixed to the body was developed by Hohenemser and
Yin [1972]. This is an important technique used to couple the rotor equations of motion
written in the rotating system with the body equations of motion in the non-rotating
system. The relationship between the rotating and non-rotating coordinates is called the

multiblade coordinates transformation.

A further development based on the Coleman model was made by Hammond [1974].
These equations include periodic coefficients and were solved using the Floquet theory.
A more complete analysis for rotorcraft rotor/body aeroelasticity stability was
subsequently developed by Johnson [1977]. This model was further extended to a more
comprehensive analysis which is capable of modelling coupled rotor/fuselage problems

such as ground resonance in hover and forward flight, in addition to a number of other
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aerodynamic and dynamic problems. It has been quite successful for hingeless rotor

ground resonance prediction [Johnson,1981a, 1981b]).

An analytical model was also developed by Hodges [1979a] to analyse the aeroelastic
stability of coupled bearingless rotor/fuselage. The analysis treated the blades as rigid

bodies and was limited to hovering.

Warmbrodt and Friedmann [1979] derived the governing equations of motion of a
helicopter rotor coupled toa rigid body fuselage. A consistent formulation was used to
derive nonlinear periodic coefficient equations of motion which can be used for steady
coupled rotor/fuselage dynamics in forward flight. A more recent work in coupled
rotor/body analysis was developed to model multi-rotor hybrid heavy lift vehicles
[Venkatesan and Friedmann, 1984, 1987], where the rotor blades are considered as

hinged rigid blades. Two dimensional quasi-steady aerodynamics were included.

All of the models described above were developed based upon certain specific rotorcraft
configurations. They lack the generality to model arbitrary rotorcraft configurations and
the rotor/body coupling effect. To remedy this situation, a Finite Element model was
developed by Hodges et al. [1986], which will be discussed in more detail in section
2.4.

The formulation of the nonlinear equations of motion for a rotorcraft aeroelasticity
problem is complex and toilsome work. When the rotor/body coupling or higher order
terms are required the situation becomes even worse. Several efforts have, therefore,
been made to use symbolic algebraic manipulation on a computer [Reddy and
Warmbrodt, 1985, Crespo Da Silva and Hodges, 1986a]. These approaches are based
on an ordering scheme but algebraic tasks are relegated to a computer. Another approach

to generate rotary wing equations of motion is based on the implicit approach [Gibbons
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and Done, 1984, Patel and Done, 1985, Done et al, 1988, Hodges et al., 1986]. In this
approach the equations of motion are never explicitly written out since they are generated

numerically by the computer during the solution process [Friedmann, 1990].

Another class of rotorcraft dynamics problem is the aeroelastic stability of the tilt-rotor
aircraft. Tilt-rotor aircraft acroelastic stability analysis is fundamentally similar to coupled
rotor/body helicopter dynamics. However, there are some difference between them, such
as the larger rotating speed and the high inflow aerodynamics in the tilt-rotors. A more
detailed review in this area is given in the introduction of the next chapter which deals

with the tilt-rotor whirl flutter problem.

2.3 AERODYNAMIC MODELLING IN ROTORCRAFT AEROELASTICITY
It was pointed out in the previous section that there are two major aspects in the rotorcraft
aeroelastic modelling, namely, the structural dynamic modelling and the aerodynamic
modelling. Aerodynamic modelling for rotor blades was developed against the
background of fixed wing aerodynamics. However, the aerodynamic theory for rotary
wing aeroelasticity is much more complex than that of fixed wings and hence much less
well developed. The simplest type of unsteady aerodynamics used for rotor blade
aeroelasticity analysis is Theodorsen's theory [Theodorsen, 1934]. It is well known that
- Theodorsen's theory is not directly valid for rotary wings because the unsteady wake
beneath a rotor is quite different from the wake postulated by Theodorsen's theory.
Nevertheless, various quasi-steady and unsteady models for aerodynamic loads based on

this theory have been developed in rotorcraft aeroelasticity [Friedmann, 1983].

Greenberg [1947] has derived expressions for unsteady lift and moment on a two
dimensional airfoil executing harmonic motion in a pulsating stream of incompressible
fluid. This theory was subsequently widely used in rotorcraft aeroelasticity analysis.

Greenberg's theory is essentially a fixed wing type unsteady aerodynamic theory because
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the effect of the unsicady wake beneath rotor is not included. When the effect of the
unsteady wake beneath rotor is required, Loewy's extension of Theodorsen's theory
provides a useful approximation to the unsteady wake beneath a hovering rotor [Loewy,
1957]. Greenberg's and Loewy's theories are discussed in detail by Johnson [1980b].
Some significant applications of the various theories mentioned above to rotorcraft
aeroelasticity stability analysis were presented by a number of authors [Johnson, 1980a,

Friedmann and Yuan, 1977, Kaza and Kvaternik, 1981].

A simple and most convenient representation of rotor unsteady aerodynamics useful in
rotorcraft aeroelasticity analysis is the dynamic inflow model, which captures low
frequency aerodynamic effects associated with the wake [Friedmann, 1983]. The inflow
is defined as a combination of the steady inflow and a perturbation inflow,

A=L+8k  and A=A +A.cos¥+ Agsin ¥
where A is the steady inflow component while S is the perturbation inflow component.
The dynamic perturbation inflow components can be related to unsteady aerodynamic

forces and moments on the rotor using a differential form:

(%] (M) [Cr )
[mK A  t +[L] istk = 1_ mej
ic A c - Cmy
where CT , me, Cmy are the rotor aerodynamic lift coefficient, the rotor aerodynamic
moment coefficients in x and y directions respectively.

This model is based on the assumption that the dynamic inflow is related to the

aerodynamic loads in a linear, first order fashion.

A simple static inflow model was first established by Ormiston and Peters [1972].
Subsequently, a dynamic inflow model including the first order time lag between the load
perturbation and inflow perturbations was developed by Peters [1974]. The correlation

with experiment was conducted by Hohenemser and Crews [1973]. An analytical
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method to obtain the L matrix for the dynamic inflow theoryAwas formulated by Pitt and
Peters [1981], and was extensively compared with experiment by Gaonkar and Peters
[1986a]. The dynamic inflow theory was applied to rotor blade aeroelasticity stability
analysis to evaluate the unsteady aerodynamics by a number of authors [Ormiston, 1976,

Gaonkar et al., 1982, Johnson, 1982, Gaonkar and Peters, 1986a, 1986b).

Forward flight of a rotorcraft in helicopter mode introduces some additional, substantial
difficulties in the aerodynamic modelling process. The reversed flow region on the
retreating blade can produce time-varying nonlinear stall effects. Due to the importance of
the dynamic stall phenomenon, it has been the subject of a number of studies which have
resulted in a relatively good physical understanding of this complex, unsteady
aerodynamic effect [McCroskey et al., 1981, Carr et al., 1977]. The complexity of such
models however, preclude their incorporation in conventional rotary wing aeroelastic
analysis. Therefore numerous semi-empirical models have been developed for rotorcraft

aeroelastic analysis [Friedmann, 1983].

A quasi steady stall analysis was used by Ormiston and Bousman [1975] in a flap-lag
blade stability analysis. Beddoes's dynamic stall model [1976] consists of two distinct
flow regimes: the attached flow regime and the separated flow regime. This model is a
convenient one to use. A similar model was developed by Ganwani [1981). The
treatment of the attached flow regime is very similar to Beddoes's. However, the
treatment of the separated flow regime is substantially different. Tran and Petot's model
[1981] developed a theory valid for an airfoil performing a completely arbitrary motion
rather than just simple harmonic motion. Further work aimed at an improved physical
understanding of this model was carried out by Peters [1985]. Tran and Petot's stall
model is gaining acceptance in rotary wing aeroelasticity as other researchers introduce

refinements into the model.
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Another significant portion of recent research‘in unsteady aerodynamics of rotor blades
has been aimed at developing two dimensional unsteady airfoil theory in the time
domain. Two dimensional aerodynamic theories, which provides analytical expressions
for unsteady loads on a moving airfoil, are usually based on the assumption of simple
harmonic motion. This assumption implies that they are strictly valid only at the stability
boundary and thus they provide no information on system damping before or after the
onset of flutter. Another important limitation of these theories is evident when one tries to
apply them to the rotorcraft aeroelasticity problems in forward flight, which is governed
by equations with periodic coefficients. In this case the complex lift deficiency factor
associated with the frequency domain unsteady aerodynamic theory is not consistent with
the numerical method employed in the treatment of periodic systems [Friedmann, 1983,
1987]. Thus many of the rotary wing analyses in forward flight arc based on quasisteady
aerodynamics. Therefore, several recent studies were developed to transform the rotor
unsteady aerodynamic theory from the frequency domain to the time domain [Dinyervari

and Friedmann, 1985, Friedmann, 1986].

The aerodynamic theories mentioned above are all two dimensional unsteady
aerodynamic theories. Their applications show that two dimensional quasi-steady
aerodynamics is a valuable and powerful tool for predicting rotor blade aeroelasticity
stability in axial flow states. But there are serious theoretical limitations for forward flight
application. In this case, unsteady aerodynamics including a dynamic stall model and a
dynamic inflow model must be considered. Obviously, a complete three dimensional
unsteady aerodynamic theory is also very useful for application to rotor aeroelastic
stability analysis in forward flight. However, only a few linear three dimensional
unsteady aerodynamic applications have been developed by a few researchers for the
rotor blade aeroelasticity analysis [Dat, 1984, Runyan and Tai, 1986]. There is,

therefore, much to be done in this area.
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2.4 APPLICATION OF THE FINITE ELEMENT METHOD TO
ROTORCRAFT AEROELASTICITY ANALYSIS
The previous two sections discussed the structural dynamic modelling and aerodynamic
modelling of the rotorcraft aeroelasticity problem. These two aspects form the basis for
the rotorcraft equations of motion. All of the studies mentioned above use traditional
globél modal methods to discretize the partial differential equations. There are a number
of limitations in applying them to realistic complex configurations. It is difficult to apply
modal methods to nonuniform blades and blades with complex root geometries. Also,
the formulation has to be modified considerably when a different rotor configuration is
considered. This gives a limitation on the generality of the models. Moreover, when
complex structures, such as bearingless composite rotors and coupled rotor/body
system, are considered, the global modal method leads to extremely cumbersome
algebraic manipulations and the lack of the generality of the models is a significant
barrier. The Finite Element method provides us with an ideal téchnique well suited to
modelling the complicated structural geometries. This is especially true when the Finite
Element method is combined with the multibody dynamics approach, the general

dynamics model can be created relatively easily.

The Finite Element Method was originally developed in the field of structural mechanics
in the 1950's, and has been extensively developed in this field since then. However, it
was not until the 1980's that the Finite Element Method was applied to rotorcraft

aeroelasticity analysis.

The first effort to utilise the Finite Element Method in rotorcraft dynamics was made by
Hohenemser and Yin [1977]. They actually used the transfer matrix technique. A strict
finite element discretisation was developed for the helicopter aeroelasticity stability
analysis in 1980's [Friedmann and Straub, 1980, Sivaneri and Chopra, 1982].

Friedmann and Straub used a weighted residual Galerkin type finite element method to

41



discretize a set of- coupled blade flap-lag-torsion partial differential equations. Sivaneri
and Chopra applied a conventional local Rayleigh-Ritz finite element method to study the
flap-lag-torsion aeroelasticity stability of hingeless rotor blades in hover. Sivaneri and
Chopra subsequently extended their work to analyse a bearingless rotor blade stability in
hover [1984]. Celi and Friedmann [1987] also applied Friedmann and Straub's finite
element model to the aeroelasticity analysis of a swept tip rotor blade. It is also
worthwhile mentioning that Finite Element analyses have been frequently used to solve
the free vibration problem of rotating beams by a number of researchers [Nagaraj and
Shanthakumar, 1975, Hoa, 1979, Hodges, 1979b, Hodges and Rutkowski 1981].
These studies indicate conclusively the Finite Element Method is a practical tool for
solving rotorcraft aeroelasticity problems and leads not only to the modelling flexibility
but also to a significant reduction in the algebraic manipulation in the formulation. Later
on, the Finite Element Method was widely applied to the aeroelasticity stability analysis
of composites rotor blades due to its modelling advantages [Hong and Chopra, 1985,

1986, Panda and Chopra, 1987].

All of the Finite Element models mentioned above only dealt with the aeroelasticity
stability problems of simply spinning rotor blades and are limited to one configuration.
Although these models gives us a capability to model the complex blade geometries, this
is not sufficient to let us obtain a general dynamic element, especially when the
rotor/body coupling is included where there may be large and arbitrary relative
translational and rotational motion between the rotor and the body. Hodges et al. recently
developed a program that goes toward providing such a general finite element model
[1986]. The essential part of that work is the development of a general aeroelasticity
beam element in a moving reference frame. This moving reference frame has an arbitrary
space motion and thus can model the coupling with other substructures. Hodges et al
[1986] used an implicit approach to generate the system equations of motion and

developed a consistent mass aeroelastic beam element. This model was especially
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devéloped for the rotorcraft acromechanical stability analysis. Results show that the
model is a very practical and general tool for rotorcraft aeromechanical stability analysis.
This is the first and so far , the sole effort to develop such a general rotorcraft

aeroelasticity stability analysis model.
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CHAPTER 3 A TILT-ROTOR/NACELLE WHIRL FLUTTER
MODEL---FORMULATION OF THE EQUATIONS OF MOTION

3.1. INTRODUCTION

The tilt-rotor aircraft is being developed as a new type of air vehicle. One of its principal
dynamic problems is the aeroelastic stability. Investigation of the aeroelasticity stability
of the tilt-rotor aircraft is one of the aims of this thesis. The tilt-rotor aircraft contains not
only helicopter rotor type instabilities, but also propeller type instabilities, because a tilt-
rotor can works both in the helicopter mode and in the normal aeroplane mode. When a
tilt-rotor aircraft flies forward like a normal aircraft, the well-known propeller type
instability--whirl flutter is likely to appear. This is one of the problems to be studied in

this thesis.

A great many investigations were made in relation to the propeller whirl flutter in the
early 1960’s, where only the nacelle pitch and yaw degrees of freedom were considered.
In these models, it was found that a propeller whirl flutter always developed from the

backward whirl mode [Reed and Bland, 1961, Bland and Bennett, 1963, Reed, 1965].

With the development of the tilt-rotor aircraft, similar til