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ABSTRACT

Firstly, the whirl flutter of a tilt-rotor aircraft of interest is studied. The tilt-rotor aircraft 
in aeroplane forward flight mode is modelled as a coupled tilt-rotor/nacelle system. The 
system's degrees of freedom consist of the rigid blade torsion about a pitch bearing, the 
universal joint or gimbal degrees of freedom at the hub, and the nacelle's rigid body 
motions. Aerodynamic loads are computed based on a two-dimensional quasisteady thin 
airfoil theory including both circulatory and noncirculatory aerodynamic forces. The 
nonlinear differential equations of motion are derived by Newton's method based on a 
ordering scheme and are linearised using the perturbation method. The system stability is 
analysed by solving the eigenvalue problem associated with the linearised differential 
equations. This model was validated against existing experimental and theoretical results 
for a propeller and a tilt-rotor, and then applied to study a universal joint tilt-rotor and an 
ideal gimbal tilt-rotor aircraft. The whirl flutter characteristics of these systems were 
evaluated and compared. The effects of significant parameters were identified.

More efforts were subsequently made to develop a general lumped mass finite element 
model for analysing the structural dynamic and aeroelastic problems of a general three 
dimensional elastic beam with arbitrary and large base movements. This was done by 
combining finite elements with the multibody dynamics method. The general models 
developed have great modelling flexibility and can model the complex geometry of beams 
and the arbitrary coupling of a beam with other substructures as well as any large and 
arbitrary base motions of a beam.

Firstly, a general finite element structural dynamic model was developed for a beam 
attached to an arbitrary moving base described by three angular velocities (accelerations) 
and three translational velocities (accelerations). The equations of motion were derived 
using the virtual work principal. Large deflections and small strains of the beam are 
assumed. The axial and torsional deformation of the beam element are represented by 
linear polynomials, while the bending deflections are represented by cubic polynomials. 
Numerical examples were performed for both an eigenvalue problem of a spinning beam 
and the dynamic response of a space-based robotic manipulator arm with complex base 
motions. The former was found to give almost identical results to a precise analytical 
solution. The second example was found to be basically identical to the numerical 
simulation results from a recently developed multibody dynamics model. Some 
inconsistencies in the previous model are addressed. The great modelling flexibility of 
the hybrid finite element and multibody dynamics model was demonstrated.
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The above lumped mass firiite element structural dynamic model was further developed 
as a finite element aeroelastic beam model for rotorcraft blades in an axial flow by 
including the aerodynamic loads. A two dimensional quasi-steady thin airfoil theory was 
used to compute the aerodynamic loads. The arbitrary blade base motions were included 
in the aerodynamic formulation. The aerodynamics model is valid for both high inflow 
and low inflow cases. Again, the resulting nonlinear differential equations of motion 
were linearised using the perturbation method in order to analyse the system aeroelastic 
stability. This general model can be used as a basic element to analyse the isolated blade 
aeroelastic stability and the coupled rotor/body system aeroelastic stability by making use 
of the arbitrary base motion variables of the blades. A number of numerical examples are 
analysed with a wide range of parametric variations. The adequacy and great modelling 
flexibility of the present model were verified.

¥
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Chapter 1 Introduction

CHAPTER 1 INTRODUCTION

1.1 PURPOSES
Rotorcraft make use of rotors to produce lift or thrust. Examples of such aircraft are 

helicopters and tilt-rotor aircraft. Inevitably, the aeroelastic stability problem is of 

particular significance since the blades are a flexible structure and they carry all of the 

aerodynamic loads. The aeroelastic stability associated with rotorcraft is a broad and 

complex subject. The complexity is caused by two basic sources: One is the unusual 

flexibility of rotor blades, and the other is the complexity introduced by the fact that they 

are rotating.

Although the analysis of rotorcraft aeroelasticity can be traced back to the nineteen fifties, 

early work in this field made use of simple physical models such as spring restrained, 

centrally hinged, rigid blades [Loewy 1969, Ormiston & Hodges 1972]. Later work 

treated configurations that were somewhat more complex, including some with elastic 

blades [Houbolt & Brooks 1958, Hodges & Dowell 1974, Friedmann 1975], fuselage 

body degrees of freedom and inflow dynamics [Johnson 1977, Ormiston 1985, Gaonkar 

& Peters 1986b]. These models provide us with a physical insight into the complicated 

dynamic phenomena of rotorcraft blades and coupled rotor/fuselage structures, and are 

very valuable for this reason. However, since they are based on only one physical model 

they are limited as a general analytical model when the aim is to accurately analyse 

various realistic rotorcraft configurations. With the advent of the promising bearingless 

rotor systems, a great deal of modelling flexibility is required as various configurations 

may be very different. It is desirable to develop a general dynamic model with a great 

modelling flexibility capable of dealing with realistic and relatively complicated 

geometries and structural coupling effects in rotorcraft dynamics. The Finite Element 

Method provides us with an ideal technique well suited to modelling the complicated 

structural configurations such as the nonuniform blades and blades with complex root
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Chanter J Introduction

geometries. Moreover, the Finite Element Method leads to a significant reduction in the 

algebraic manipulative labour in the rotorcraft aeroelasticity analysis. A considerable part 

of rotorcraft structural mechanics research efforts has begun to focus in this direction.

Recent implementations applying the finite element method to rotorcraft dynamic 

problems contain several significant efforts to explore the application of the Finite 

Element Method to rotorcraft aeroelasticity [Friedmann & Straub 1980, Sivaneri & 

Chopra 1982]. These models discretize a simply spinning beam, but they are still limited 

to one configuration. Furthermore, they lack the capability to model the general coupling 

of the beam with a fuselage or to model blade/root kinematics of an arbitrary 

configuration.

Meanwhile, investigations of rotating beam dynamics are also being actively conducted 

in a number of other relevant disciplines [Likins 1974, Luh et al 1980, Kamman & 

Huston 1984, Turcic & Midha 1984, Kane & Ryan 1987]. Especially important is the 

so-called "multi-body system" dynamics, where a number of rigid and flexible bodies are 

inter-connected and may be largely rotating and/or translating relative to each other. The 

central theme of multibody dynamics is to develop a general set of dynamic equations of 

motion for such a large system. This is realised by considering the motion of a typical 

body in an arbitrary moving reference frame. This moving reference frame consists of 

six rigid body degrees of freedom and hence can model the arbitrary connections of a 

body to other bodies. This consequently leads to a general dynamics model with a high 

degree of modelling flexibility. A rotorcraft has many similarities with such a system. 

Unfortunately although a number of multibody dynamics codes exist, most of them treat 

the structure as rigid body components. None possess the capability to model the 

aeroelastic phenomena and the nonlinear elastic equations of motion since they were 

developed primarily for spacecraft applications. A very recent work in multibody 

dynamics treats the structural dynamics of a beam attached to an arbitrary moving base
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using the global modal method [Kane & Ryan 1987]. That is quite close to the problem 

of a general rotating beam dynamics model, but the structural dynamics model is a linear 

one and can not model some important structural effects of a rotor blade such as the blade 

pretwist. It also excludes the aerodynamic terms.

It can naturally be expected from the above discussions that the combination of the finite 

element method with the "multibody" dynamics method will result in a quite general 

dynamic model for complex systems. One of the aims of this thesis is to develop a 

lumped mass finite element model for a general rotor blade, which can model the 

aeroelastic stability of both high-inflow rotorcraft such as tilt-rotor aircraft and low- 

inflow rotorcraft. The finite element and "multibody" dynamics modelling concepts are 

used to advantage to develop a general dynamics model capable of modelling the 

complex geometries of rotor blades, blade/root kinematics and the coupling between 

rotor blades and the fuselage degrees of freedom. Meanwhile, the other aim of this thesis 

is to provide a general hybrid finite element-multibody structural dynamics model 

relevant to other disciplines where rotating beams occur, such as robotics, spacecraft 

dynamics etc. This structural dynamics model can treat both the natural characteristics 

problems and the dynamic response of a beam with an arbitrary moving base.

On the other hand, the tilt-rotor aircraft is a special type of rotorcraft and is being 

developed as a new and promising type of air vehicle. The tilt-rotor aircraft can both fly 

like a normal helicopter (helicopter mode) and like a propeller aeroplane (aeroplane 

mode). Consequently, it may meet a special type of instability at high speed forward 

flight in the aeroplane mode. This is the so-called whirl flutter. It was initially found to 

occur with propeller aircraft. With the development of the tilt-rotor aircraft, increasing 

efforts are being made to improve the understanding and analysis capability of the tilt- 

rotor aeroelastic stability. As a part of the efforts of this thesis, the whirl flutter problems 

of the tilt-rotor aircraft configurations of interests are studied. This whirl flutter model is
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aimed at obtaining an understanding of the fundamental whirl characteristics of two 

different tilt-rotor configurations. One is a universal joint tilt-rotor. The other is an ideal 

gimbal tilt-rotor. An understanding of the whirl flutter characteristics of the gimbal tilt- 

rotor is lacking in the literature.

Therefore, this thesis consists of three dynamics models developed step-by-step. They 

are briefly reviewed in the following sections.

1.2 A WHIRL FLUTTER MODEL OF A TILT-ROTOR AIRCRAFT 

(CHAPTER 3, 4)

As the first step for the investigations of the rotorcraft aeroelasticity, a tilt-rotor aircraft 

whirl flutter problem is considered in Chapter 3. Since the emphasis is placed on 

obtaining physical insight into the dynamic behaviour of the system, a simple model is 

taken. The aircraft fuselage and wings are assumed as rigid and in a stable forward 

flight. The tilt-rotor is assumed to work in an axial flow mode. The rotor blades are 

assumed to be rigidly fixed to the hub in flap and lead-lag, but can twist about the pitch 

bearings with torque spring restraints which represent the control link stiffness. The 

rotor hub is joined to the nacelle through either a universal joint or a gimbal, and hence 

has two different construction configurations. Both have two degrees of freedom one 

each in pitch and yaw with viscous damping and spring restraints. The nacelle is 

modelled as a rigid body with six space degrees of freedom and has spring and viscous 

damping restraints with the wing. The total number of degrees of freedom is 12.

The equations of motion are derived by the Newton method. In the formulation, the 

nonlinear terms are retained using a normal ordering scheme. While the previous whirl 

flutter models usually used a linear model. The aerodynamic loads are computed based 

on a two-dimensional quasi-steady aerodynamics theory and include both circulatory 

forces and noncirculatory forces. The latter is usually neglected in the previous whirl
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flutter models. The rotor equations of motion are obtained by the equilibrium of the 

aerodynamic loads, inertial loads applied on the whole rotor, and the universal joint (or 

gimbal) restraint moments. The blade torsion equation of motion is determined by the 

equilibrium of the aerodynamic moment and the inertial moment about the blade pitch 

axis and the elastic restraint moment due to the stiffness of the control system. The 

nacelle equations of motion are established according to general rigid body dynamics 

with the aerodynamic loads and the inertial loads transmitted from the rotor and with the 

restraint loads. Finally we obtain 12 linearised perturbation differential equations and an 

equilibrium algebraic equation for the blade torsion deformation.

The system stability is evaluated by solving the eigenvalue problem of the linearised 

differential equations. For this system, an instability may be occur at high forward 

speed. This is the whirl flutter problem. Numerical results include two principal groups 

for this whirl flutter model. The first one investigates a classical propeller whirl flutter 

model with only two degrees of freedom of the nacelle’s pitch and yaw, and a four 

degrees of freedom flap-hinged tilt-rotor whirl including two cyclic flap modes, nacelle 

pitch and yaw modes. Both of these have been studied both theoretically and 

experimentally and results reported in the Literature. This part of the thesis is mainly 

aimed at confirming the validity of the present analytical model. The second group 

concentrates on a universal joint tilt-rotor and an ideal gimbal tilt-rotor and finding whirl 

characteristics for these.

1.3 A FINITE ELEMENT STRUCTURE DYNAMICS MODEL FOR A 

BEAM WITH AN ARBITRARY MOVING BASE (CHAPTER 5)

Subsequently, in Chapter 5, a general finite element structural dynamics model is 

developed for a general space elastic beam with an arbitrary moving base. This model 

can incorporate the coupling of a blade with fuselage or any large and arbitrary base 

motions. The physical model is idealised as:
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1) A general elastic beam is set on a rigid base.

2) The rigid base may have an arbitrary space motion which is described by the three 

translational velocities of the connecting point and three rigid body angular velocities 

of the base.

3) The beam can be pretwisted.

4) Sectional mass centre is offset from the elasticity centre.

5) The beam undergoes a three-dimensional deformation which is described by the three 

translational displacements of the elasticity centre and three successive rotations of the 

section.

6) The deflections may be large.

7) The Euler-Bemoulli assumptions are used.

8) The effect of the section warping on the torsion is taken into account.

The equations of motion are obtained by using the virtual work principle. The equations 

are discretized by the finite element method. The beam is divided into a number of 

elements. The beam inertia is lumped at the end nodes of each element. This lumped 

mass model simplifies the formulation of the generalised inertia forces. As usual, the 

lumped rotary inertia in flexure (flap and lag) are taken to be small values. The effect of 

cross section warping on the inertial forces are negligible and are not considered.

The generalised forces contributed from the internal forces are obtained by the derivation 

of the strain energy . Although the deflections may be large, the strain is assumed to be 

small. The nonlinear strain-displacement relations are presented. The centrifugal stiffness 

and gyroscopic terms caused by the base motion are specifically treated so that this 

dynamics model can be conveniently applied to both nonlinear and liner problems. The 

final mathematical models can be readily applied to solve not only the eigenvalue problem 

but also the dynamic response problem of a beam with arbitrary base motions as in a 

multibody dynamics algorithm.
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Two groups of numerical examples are solved to validate the model and show its 

application to a general dynamic simulation of a beam under complex base motions. The 

first case is for a simply spinning beam which has an analytical solution to compare with. 

The second case is simulating the behaviour of a space-based robotic manipulator which 

has a complex base motion. Results of this problem from a modal method specifically 

developed for a general multibody code are available to compare with.

1.4 A FINITE ELEMENT AEROELASTICITY BEAM MODEL 

(CHAPTER 6)

Based on the physical model given in the last section, Chapter 6 considers the beam as a 

rotorcraft blade which is subject to aerodynamic actions. The aeroelasticity problem of 

this blade can be modelled by adding the aerodynamic loads to the generalised active 

forces. The aerodynamics of the blade are developed for an axial flow state of a rotor. A 

two-dimensional quasisteady aerodynamic theory is used. Noncirculatory aerodynamic 

loads are also included. The induced velocity is assumed to be uniform over the rotor. 

The aerodynamic loads are calculated so as to be valid both for high inflow cases such as 

a tilt-rotor aircraft in a aeroplane-mode forward flight and for low inflow problems such 

as a normal helicopter in hover or vertical flight. The nonlinear differential equations of 

motion are obtained for the rotorcraft aeroelasticity problem by combining the 

aerodynamic loads with the previous structural dynamics model. This set of nonlinear 

differential equations of motion are linearised about a set of equilibrium positions using 

the perturbation method. This finally leads to a set of nonlinear algebraic equations for 

the equilibrium solution and a set of linearised differential perturbation equations that 

depend on the equilibrium values. This procedure is incorporated into the computer 

program.
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A number of numerical examples are presented to analyse the aeroelastic stability of 

hingeless rotor blades. The results from the present model are compared with an existing 

and reliable result from the Literature which includes both the equilibrium solutions and 

the stability characteristics. The modelling flexibility of the present model is 

demonstrated.

1.5 STRUCTURE OF THIS THESIS

This chapter, chapter 1 highlights the purposes of this work and the models developed in 

this thesis.

The next chapter presents a literature review in the rotorcraft dynamics and aeroelasticity 

together with several significant works regarding rotating beam dynamics conducted in 

other disciplines.

Chapter 3 is contributed to formulate the equations of motion for the tilt-rotor aircraft 

whirl flutter model briefly described in section 1.2.

Chapter 4 introduces the solution procedures for the tilt-rotor whirl flutter problem and 

presents the numerical results.

Chapter 5, 6 expand in detail the contents briefly discussed in section 1.3,1.4. They are 

for the finite element structural dynamics model and finite element aeroelasticity model of 

a beam with an arbitrary moving base respectively.

Finally, chapter 7 draws the conclusions of this thesis and gives some comments on 

possible further developments.
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CHAPTER 2 ROTORCRAFT DYNAMICS AND 

AEROELASTICITY STABILITY ANALYSIS

2.1 INTRODUCTION

Rotary beam-like structures are widely used in various fields, such as industrial robots, 

rotating machinery, satellites, and rotorcraft. Therefore, the dynamics of rotary beams 

have been a subject of interest in a number of diverse disciplines and have received an 

extensive investigation and development over the last four decades.

In the field of industrial robots, various approaches were developed to compute the 

forces and torques needed to drive all the joints accurately in order to control a 

manipulator which carries a variable or unknown load and moves along a planned path 

[Luh et al. 1980]. In the design of high speed machines and mechanisms, analyses have 

recently been conducted to study the vibration effects on the performance of the 

mechanism [Turcic and Midha, 1984]. In the field of satellites, the demand of precise 

orientation of a satellite relative to an inertial or an orbiting frame of reference has 

resulted in a number of research endeavours [Modi, 1974, Kulla,1972, Likins, 1974, 

Kamman and Huston,1984, Kane et al.,1987].

For rotorcraft, the rotating blade dynamics is closely linked to the rotorcraft aeroelasticity 

problems due to the special working environment. Virtually, every rotary-wing aircraft 

potentially has aeroelastic stability problems. These represent some of the most complex 

problems in the area of aeroelasticity. The complexity is caused by two basic sources: 

one is the unusual flexibility of rotor blades, and the other is the complexity introduced 

by the rotation. Blade flexibility not only adds more degrees of freedom, but also 

introduces complicated geometrically nonlinear problems by allowing large blade 

deflections. The rotation results in much more complicated inertia loads such as 

centrifugal and coriolis forces which bring additional stiffness and couplings. This is
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inherent for all rotating beams. It also gives rise to a complex unsteady aerodynamic 

environment. The investigations of the rotorcraft aeroelasticity has been extensively 

conducted during the last 40 years, especially since the 1970's, and substantial progress 

has been achieved.

This chapter is intended to present a brief review of the research of rotorcraft dynamics 

and aeroelasticity stability. The modelling of an aeroelasticity problem involves three 

basic aspects, namely:

1) structural modelling,

2) inertial modelling,

3) aerodynamic modelling.

The first two items form the basis for the structural dynamic modelling, which is also 

essential for rotary beam dynamics in other fields. In the next section, therefore, we shall 

firstly discuss the development of the rotorcraft structural dynamics. Subsequently, the 

aerodynamic modelling in rotorcraft aeroelasticity stability analysis is introduced. The 

last section is concerned with the application of the Finite Element technique to rotorcraft 

aeroelasticity problems.

2.2 STRUCTURAL DYNAMICS MODELLING

The development of rotorcraft structural dynamics modelling will be discussed in two 

parts. That is:

1) rotating blade structure dynamics, and

2) coupled rotor/body system dynamics.

2.2.1 Structural Dynamics of Rotating Blades

22.1.1 Rigid Blade Model

Early rotor blade and rotorcraft analyses usually treated both hinged and cantilever elastic 

blades as hinged, rigid blades for aeroelastic stability analysis. Early analysis of rotor
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aeroelastic problems was generally undertaken in terms of the classical fixed-wing flutter 

model. The flap-pitch flutter of blades, similar to the counterpart found in fixed-wing 

aircraft, is naturally derived [Loewy,1969], The pitch-lag and flap-lag instabilities were 

found by Pei [Loewy,1969], More complicated flap-lag-pitch flutter models were 

subsequently developed [Loewy,1969], These rigid blade models are appropriate for 

some rotorcraft configurations. The equations of motion are easier to derive and need 

much less computation time to solve them than for flexible blades. They are very 

valuable when a physical insight into the dynamic behaviour of a system is needed.

22.1.2 Elastic Blade Model

Although the rigid blade models can be used to approximate the dynamics of a rotorcraft 

blade, rotor blades are fundamentally rotating elastic beams. Houbolt and Brooks's work 

[1958] was used as the classic and standard equations of motion for elastic blades from 

the middle 1950's to 1970's. They developed a set of linear differential equations for 

nonuniform rotor blades. However these linear equations contain the geometrical 

stiffening owing to centrifugal force, normally considered a nonlinear effect. For 

articulated rotor blades, it is quite adequate.

However, it has been clear from the early work on rotorcraft dynamics that the 

governing equations are not of the linear type [Loewy,1969]. Attempts at further 

understanding of this nonlinearity was not made until the 1970's. During the late 1960's, 

interest in the hingeless rotor was intensified. Hingeless rotor blades are cantilevered to 

the hub. The lack of hinges leads to a simpler mechanism but large bending and torsional 

deformations of the blades arise. These large deformations give rise to geometrically 

nonlinear structural and inertial terms in the dynamic equations, even when the strains are 

small. Since the 1970's, extensive efforts have been devoted to the development of 

suitable structural dynamic models for cantilever rotating blades.
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In linear structural analysis, the deflection of the structure is assumed to be 

infinitesimally small, so that the difference between the deformed and undeformed 

configurations of the structure can be neglected. The equilibrium formulation of the 

structure can be referred to either the deformed or the undeformed configurations. 

However, in large displacement nonlinear analysis of structures, the deformed and the 

undeformed configurations can no longer be considered identical. The geometry of the 

beam must be defined both in its undeformed state and in its deformed state. This 

requires the development of the transformation relation between the undeformed blade 

coordinate unit vectors and the deformed blade coordinate unit vectors. Transformation 

matrices for various rotation sequence are hence derived [Peters and Ormiston, 1973, 

Hodges et al. 1980]. A survey of methods of treating finite rotation in relation to 

nonlinear beam kinematics was published by Hodges [19870.]. Based on this type of 

transformation relationships and combined with the Euler-Bemoulli assumption, a 

number of elastic blade dynamics equations have been developed.

Ormiston and Hodges [1972] considered elastic flap-lag blade models. The well-known 

kinematical foreshortening of the beam axis caused by bending is addressed. This leads 

to centrifugal and coriolis forces. These effects are essential to model the nonlinear 

features of hingeless rotor dynamics. (An illustration of foreshortening is given in 

fig.2.1).

Fig 2,1 Illustration of the beam foreshortening caused by bendings
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Nonlinear eauations for counled bending and torsion of elastic rotor blades were- . - i - - - ----IT--------- G? ------------  -

subsequently developed by a number of researchers [Friedmann, 1975, Hodges and 

Dowell, 1974]. In these investigations, an ordering scheme was utilised to systematically 

neglect the higher order nonlinear terms that arise from the geometrical nonlinearity. In 

such an ordering scheme, all of the important parameters of the problem are assigned 

orders of magnitude in terms of a typical nondimensional displacement quantity e which 

represents typical blade slopes. This ordering scheme is used with the assumption that 

terms of 0 ( e2) are usually negligible when compared to terms of order one. That is 

1+ 0 (  e2) =1. This approach is based on the so called moderate rotation assumption of 

rotor blades.

Meanwhile, the significant nonlinear coupling between torsion and combined flapwise 

and chordwise bending were properly modelled [Hodges and Dowell, 1974, Friedmann, 

1975,1977a]. This coupling is found to be significant in hingeless rotor blade 

aeroelasticity stability analysis. Fig.2.2 illustrates the origin of the nonlinear torsion 

caused by simultaneous flapwise and chordwise bending. To evaluate the accuracy of the 

theory, the Princeton beam experiments were conducted [Dowell et al,1977]. The 

Hodges-Dowell equations were further extended to include variable flap-lag structural 

coupling and to investigate their effects on rotor blade aeroelasticity stability in hover 

[Hodges and Ormiston,1976].

Fig 2.2 Nonlinear torsion of an elastic cantilever beam resulting, 

from simultaneous flapwise and chordwise bending
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The equations introduced above are developed based upon the assumption that the 

structural deformations of the rotor blades are limited to be only moderately large, where 

the formulation of the dynamic equations usually utilise an ordering scheme to neglect 

higher order nonlinear terms. This approach leads to equations which contain up to 

second order nonlinear terms. In an analysis by Crespo Da Silva and Hodges [1986b], 

the influence of retaining the next level of higher order terms in the equations of motion 

was considered. This yields equations including a third order nonlinearity. The influence 

of these third order terms on blade response and stability was investigated. The results 

indicated that the influence is limited for practical rotorcraft configurations [Friedmann, 

1990].

The moderate rotation assumptions can be adequately applied to many rotor blade 

dynamic and aeroelastic analyses, but this gives some limitation to the equations of 

motion derived based on the assumptions used. In more recent studies, Hodges [1985, 

1987i>] have developed a nonlinear structural dynamics model for rotor blades in which 

the assumption of moderate rotations were abandoned. The common ordering scheme is 

not used to model the beam kinematics. A less restrictive assumption is that the 

extensional strain is ignored compared to unity. Such a large displacement model for 

composite beams was also addressed in a recent publication [Bauchau and Hong,1987b].

22 .13  Bearingless and Composites Materials Rotor Blade Model 

The application of bearingless rotor systems poses a new class of problems to rotorcraft 

dynamists. The bearingless rotor systems eliminate blade root hinges and bearings by 

using a beam that is sufficiently flexible in torsion to accommodate all of the blade-pitch- 

control motion usually provided by the pitch change bearing of articulated and hingeless 

rotors. The flexible structure makes the dynamic modelling of the systems much more 

complicated and difficult to analyse. The first effort was made to derive the differential 

equations for a composite bearingless rotors using the global modal method by Bielawa
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[1976]. For complex structures, such as bearingless rotors, the Finite Element Method 

is an ideal solution technique. Further investigations on bearingless rotor blades usually 

applied the Finite Element Method and will be discussed in section 2.4 which deals with 

the application of the Finite Element Method to rotary wing dynamics.

Composites materials are more and more widely used within rotorcraft structures, 

especially for the rotor blades. However, most of the dynamic models developed to date 

have been restricted to isotropic material properties. The development of composite rotor 

blades has lead to substantial research efforts in recent years to develop dynamic models 

which are suitable for the structural dynamic and aeroelastic analysis of composite rotor 

blades. The work in this area can be divided into two categories: 1) Modelling 

approaches which lead to the determination of the stiffness properties of arbitrary 

composite blade cross sections. Anisotropic materials and the composite nature of the 

blades are taken into account in this category. 2) Structural models which use one­

dimensional beam kinematics suitable for composite rotor blade analysis 

[Friedmann, 1990].

The determination of the shear centre location and warping functions of composite blade 

sections is the centre of the research in the first category. Cross section properties can 

then be evaluated and further be applied to the research in the second category. A large 

number of studies have been conducted in the first area during recent years [Borri and 

Merlini,1986, Bauchau,1985, Lee and Kim,1987, Stemple and Lee,1988, 

Friedmann, 1990]. More recently, some work was aimed at the structural dynamic 

modelling of composite blades [Kosmatka and Friedmann, 1987, 1989, Bauchau and 

Hong,1987a,1987b, Minguet and Dugundji, 1989a,1989b, Rand,1990]. However, 

work in the aeroelastic analysis of composites blades is limited, so far only by Chopra 

and his associates [Hong and Chopra, 1985, 1986, Panda and Chopra, 1987]. The

3 4



Chapter 2 Rotorcraft Dynamics & Aeroelasticity Stability

results show that there is a great potential for aeroelastic tailoring of composites rotor 

blades.

2.2.2 Coupled Rotor/body Models

The previous sections mainly discussed the structural dynamic models of isolated rotor 

blades including rigid body blades, elastic blades and the modelling of bearingless rotors 

and composites blades. However, the coupling between a rotor and other components, 

such as fuselages, rotor shaft, tilt-rotor aircraft nacelle and wings, is an important factor 

in the system dynamic modelling.

The first significant analytical study is attributed to Coleman and Feingold [1957]. They 

considered a rotorcraft system of a rigid rotor/fuselage and described the well-known 

"ground resonance" phenomena. Possible rotorcraft airborne aeroelastic instability was 

mentioned by Loewy [1969] and later was widely known as "air resonance". The 

transformation relations between the rotating coordinates system fixed to blades and the 

non-rotating coordinates system fixed to the body was developed by Hohenemser and 

Yin [1972]. This is an important technique used to couple the rotor equations of motion 

written in the rotating system with the body equations of motion in the non-rotating 

system. The relationship between the rotating and non-rotating coordinates is called the 

multiblade coordinates transformation.

A further development based on the Coleman model was made by Hammond [1974]. 

These equations include periodic coefficients and were solved using the Floquet theory. 

A more complete analysis for rotorcraft rotor/body aeroelasticity stability was 

subsequently developed by Johnson [1977]. This model was further extended to a more 

comprehensive analysis which is capable of modelling coupled rotor/fuselage problems 

such as ground resonance in hover and forward flight, in addition to a number of other
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aerodynamic and dynamic problems. It has been quite successful for hingeless rotor 

ground resonance prediction [Johnson, 198la, 1981b],

An analytical model was also developed by Hodges [1979a] to analyse the aeroelastic 

stability of coupled bearingless rotor/fuselage. The analysis treated the blades as rigid 

bodies and was limited to hovering.

Warmbrodt and Friedmann [1979] derived the governing equations of motion of a 

helicopter rotor coupled to a rigid body fuselage. A consistent formulation was used to 

derive nonlinear periodic coefficient equations of motion which can be used for steady 

coupled rotor/fuselage dynamics in forward flight. A more recent work in coupled 

rotor/body analysis was developed to model multi-rotor hybrid heavy lift vehicles 

[Venkatesan and Friedmann, 1984, 1987], where the rotor blades are considered as 

hinged rigid blades. Two dimensional quasi-steady aerodynamics were included.

All of the models described above were developed based upon certain specific rotorcraft 

configurations. They lack the generality to model arbitrary rotorcraft configurations and 

the rotor/body coupling effect. To remedy this situation, a Finite Element model was 

developed by Hodges et al. [1986], which will be discussed in more detail in section 

2.4.

The formulation of the nonlinear equations of motion for a rotorcraft aeroelasticity 

problem is complex and toilsome work. When the rotor/body coupling or higher order 

terms are required the situation becomes even worse. Several efforts have, therefore, 

been made to use symbolic algebraic manipulation on a computer [Reddy and 

Warmbrodt, 1985, Crespo Da Silva and Hodges, 1986a]. These approaches are based 

on an ordering scheme but algebraic tasks are relegated to a computer. Another approach 

to generate rotary wing equations of motion is based on the implicit approach [Gibbons
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and Done, 1984, Patel and Done, 1985, Done et al, 1988, Hodges et al., 1986]. In this 

approach the equations of motion are never explicitly written out since they are generated 

numerically by the computer during the solution process [Friedmann, 1990].

Another class of rotorcraft dynamics problem is the aeroelastic stability of the tilt-rotor 

aircraft Tilt-rotor aircraft aeroelastic stability analysis is fundamentally similar to coupled 

rotor/body helicopter dynamics. However, there are some difference between them, such 

as the larger rotating speed and the high inflow aerodynamics in the tilt-rotors. A more 

detailed review in this area is given in the introduction of the next chapter which deals 

with the tilt-rotor whirl flutter problem.

2.3 AERODYNAMIC MODELLING IN ROTORCRAFT AEROELASTICITY

It was pointed out in the previous section that there are two major aspects in the rotorcraft 

aeroelastic modelling, namely, the structural dynamic modelling and the aerodynamic 

modelling. Aerodynamic modelling for rotor blades was developed against the 

background of fixed wing aerodynamics. However, the aerodynamic theory for rotary 

wing aeroelasticity is much more complex than that of fixed wings and hence much less 

well developed. The simplest type of unsteady aerodynamics used for rotor blade 

aeroelasticity analysis is Theodorsen’s theory [Theodorsen, 1934]. It is well known that 

Theodorsen's theory is not directly valid for rotary wings because the unsteady wake 

beneath a rotor is quite different from the wake postulated by Theodorsen's theory. 

Nevertheless, various quasi-steady and unsteady models for aerodynamic loads based on 

this theory have been developed in rotorcraft aeroelasticity [Friedmann, 1983].

Greenberg [1947] has derived expressions for unsteady lift and moment on a two 

dimensional airfoil executing harmonic motion in a pulsating stream of incompressible 

fluid. This theory was subsequently widely used in rotorcraft aeroelasticity analysis. 

Greenberg’s theory is essentially a fixed wing type unsteady aerodynamic theory because
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the effect of the unsteady wake beneath rotor is not included. When the effect of the 

unsteady wake beneath rotor is required, Loewy's extension of Theodorsen's theory 

provides a useful approximation to the unsteady wake beneath a hovering rotor [Loewy, 

1957]. Greenberg’s and Loewy's theories are discussed in detail by Johnson [1980b]. 

Some significant applications of the various theories mentioned above to rotorcraft 

aeroelasticity stability analysis were presented by a number of authors [Johnson, 1980a, 

Friedmann and Yuan, 1977, Kaza and Kvatemik, 1981].

A simple and most convenient representation of rotor unsteady aerodynamics useful in 

rotorcraft aeroelasticity analysis is the dynamic inflow model, which captures low 

frequency aerodynamic effects associated with the wake [Friedmann, 1983]. The inflow 

is defined as a combination of the steady inflow and a perturbation inflow,

X = X+8X, and 8A, = XQ + Xccosx¥ + A.ssin

where X is the steady inflow component while 8X is the perturbation inflow component 

The dynamic perturbation inflow components can be related to unsteady aerodynamic 

forces and moments on the rotor using a differential form:

N F t 1[i r  tyty
where CT, C ^ , Cmy are the rotor aerodynamic lift coefficient, the rotor aerodynamic 

moment coefficients in x and y directions respectively.

This model is based on the assumption that the dynamic inflow is related to the 

aerodynamic loads in a linear, first order fashion.

A simple static inflow model was first established by Ormiston and Peters [1972]. 

Subsequently, a dynamic inflow model including the first order time lag between the load 

perturbation and inflow perturbations was developed by Peters [1974]. The correlation 

with experiment was conducted by Hohenemser and Crews [1973]. An analytical
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method to obtain the L matrix for the dynamic inflow theory was formulated by Pitt and 

Peters [1981], and was extensively compared with experiment by Gaonkar and Peters 

[1986a]. The dynamic inflow theory was applied to rotor blade aeroelasticity stability 

analysis to evaluate the unsteady aerodynamics by a number of authors [Ormiston, 1976, 

Gaonkar et al., 1982, Johnson, 1982, Gaonkar and Peters, 1986a, 1986b].

Forward flight of a rotorcraft in helicopter mode introduces some additional, substantial 

difficulties in the aerodynamic modelling process. The reversed flow region on the 

retreating blade can produce time-varying nonlinear stall effects. Due to the importance of 

the dynamic stall phenomenon, it has been the subject of a number of studies which have 

resulted in a relatively good physical understanding of this complex, unsteady 

aerodynamic effect [McCroskey et al.,1981, Carr et al., 1977]. The complexity of such 

models however, preclude their incorporation in conventional rotary wing aeroelastic 

analysis. Therefore numerous semi-empirical models have been developed for rotorcraft 

aeroelastic analysis [Friedmann, 1983].

A quasi steady stall analysis was used by Ormiston and Bousman [1975] in a flap-lag 

blade stability analysis. Beddoes's dynamic stall model [1976] consists of two distinct 

flow regimes: the attached flow regime and the separated flow regime. This model is a 

convenient one to use. A similar model was developed by Ganwani [1981]. The 

treatment of the attached flow regime is very similar to Beddoes's. However, the 

treatment of the separated flow regime is substantially different. Tran and Petot's model

[1981] developed a theory valid for an airfoil performing a completely arbitrary motion 

rather than just simple harmonic motion. Further work aimed at an improved physical 

understanding of this model was carried out by Peters [1985]. Tran and Petot's stall 

model is gaining acceptance in rotary wing aeroelasticity as other researchers introduce 

refinements into the model.

3 9
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Another significant portion of recent research in unsteady aerodynamics of rotor blades 

has been aimed at developing two dimensional unsteady airfoil theory in the time 

domain. Two dimensional aerodynamic theories, which provides analytical expressions 

for unsteady loads on a moving airfoil, are usually based on the assumption of simple 

harmonic motion. This assumption implies that they are strictly valid only at the stability 

boundary and thus they provide no information on system damping before or after the 

onset of flutter. Another important limitation of these theories is evident when one tries to 

apply them to the rotorcraft aeroelasticity problems in forward flight, which is governed 

by equations with periodic coefficients. In this case the complex lift deficiency factor 

associated with the frequency domain unsteady aerodynamic theory is not consistent with 

the numerical method employed in the treatment of periodic systems [Friedmann, 1983,

1987]. Thus many of the rotary wing analyses in forward flight arc based on quasisteady 

aerodynamics. Therefore, several recent studies were developed to transform the rotor 

unsteady aerodynamic theory from the frequency domain to the time domain [Dinyervari 

and Friedmann, 1985, Friedmann, 1986].

The aerodynamic theories mentioned above are all two dimensional unsteady 

aerodynamic theories. Their applications show that two dimensional quasi-steady 

aerodynamics is a valuable and powerful tool for predicting rotor blade aeroelasticity 

stability in axial flow states. But there are serious theoretical limitations for forward flight 

application. In this case, unsteady aerodynamics including a dynamic stall model and a 

dynamic inflow model must be considered. Obviously, a complete three dimensional 

unsteady aerodynamic theory is also very useful for application to rotor aeroelastic 

stability analysis in forward flight. However, only a few linear three dimensional 

unsteady aerodynamic applications have been developed by a few researchers for the 

rotor blade aeroelasticity analysis [Dat, 1984, Runyan and Tai, 1986]. There is, 

therefore, much to be done in this area.

4 0



Chapter 2 Rotorcraft Dynamics & Aeroelasticity Stability

2.4 APPLICATION OF THE FIN ITE ELEM ENT METHOD TO 

ROTORCRAFT AEROELASTICITY ANALYSIS

The previous two sections discussed the structural dynamic modelling and aerodynamic 

modelling of the rotorcraft aeroelasticity problem. These two aspects form the basis for 

the rotorcraft equations of motion. All of the studies mentioned above use traditional 

global modal methods to discretize the partial differential equations. There are a number 

of limitations in applying them to realistic complex configurations. It is difficult to apply 

modal methods to nonuniform blades and blades with complex root geometries. Also, 

the formulation has to be modified considerably when a different rotor configuration is 

considered. This gives a limitation on the generality of the models. Moreover, when 

complex structures, such as bearingless composite rotors and coupled rotor/body 

system, are considered, the global modal method leads to extremely cumbersome 

algebraic manipulations and the lack of the generality of the models is a significant 

barrier. The Finite Element method provides us with an ideal technique well suited to 

modelling the complicated structural geometries. This is especially true when the Finite 

Element method is combined with the multibody dynamics approach, the general 

dynamics model can be created relatively easily.

The Finite Element Method was originally developed in the field of structural mechanics 

in the 1950's, and has been extensively developed in this field since then. However, it 

was not until the 1980's that the Finite Element Method was applied to rotorcraft 

aeroelasticity analysis.

The first effort to utilise the Finite Element Method in rotorcraft dynamics was made by 

Hohenemser and Yin [1977]. They actually used the transfer matrix technique. A strict 

finite element discretisation was developed for the helicopter aeroelasticity stability 

analysis in 1980's [Friedmann and Straub, 1980, Sivaneri and Chopra, 1982]. 

Friedmann and Straub used a weighted residual Galerkin type finite element method to
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discretize a set of coupled blade flap-lag-torsion partial differential equations. Sivaneri 

and Chopra applied a conventional local Rayleigh-Ritz finite element method to study the 

flap-lag-torsion aeroelasticity stability of hingeless rotor blades in hover. Sivaneri and 

Chopra subsequently extended their work to analyse a bearingless rotor blade stability in 

hover [1984]. Celi and Friedmann [1987] also applied Friedmann and Straub's finite 

element model to the aeroelasticity analysis of a swept tip rotor blade. It is also 

worthwhile mentioning that Finite Element analyses have been frequently used to solve 

the free vibration problem of rotating beams by a number of researchers [Nagaraj and 

Shanthakumar, 1975, Hoa, 1979, Hodges, 1979b, Hodges and Rutkowski 1981]. 

These studies indicate conclusively the Finite Element Method is a practical tool for 

solving rotorcraft aeroelasticity problems and leads not only to the modelling flexibility 

but also to a significant reduction in the algebraic manipulation in the formulation. Later 

on, the Finite Element Method was widely applied to the aeroelasticity stability analysis 

of composites rotor blades due to its modelling advantages [Hong and Chopra, 1985, 

1986, Panda and Chopra, 1987].

All of the Finite Element models mentioned above only dealt with the aeroelasticity 

stability problems of simply spinning rotor blades and are limited to one configuration. 

Although these models gives us a capability to model the complex blade geometries, this 

is not sufficient to let us obtain a general dynamic element, especially when the 

rotor/body coupling is included where there may be large and arbitrary relative 

translational and rotational motion between the rotor and the body. Hodges et al. recently 

developed a program that goes toward providing such a general finite element model 

[1986]. The essential part of that work is the development of a general aeroelasticity 

beam element in a moving reference frame. This moving reference frame has an arbitrary 

space motion and thus can model the coupling with other substructures. Hodges et al 

[1986] used an implicit approach to generate the system equations of motion and 

developed a consistent mass aeroelastic beam element. This model was especially
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developed for the rotorcraft aeromechanical stability analysis. Results show that the 

model is a very practical and general tool for rotorcraft aeromechanical stability analysis. 

This is the first and so far , the sole effort to develop such a general rotorcraft 

aeroelasticity stability analysis model.
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CHAPTER 3 A TILT-ROTOR/NACELLE WHIRL FLUTTER 

M ODEL—FORMULATION OF THE EQUATIONS OF MOTION

3.1. INTRODUCTION

The tilt-rotor aircraft is being developed as a new type of air vehicle. One of its principal 

dynamic problems is the aeroelastic stability. Investigation of the aeroelasticity stability 

of the tilt-rotor aircraft is one of the aims of this thesis. The tilt-rotor aircraft contains not 

only helicopter rotor type instabilities, but also propeller type instabilities, because a tilt- 

rotor can works both in the helicopter mode and in the normal aeroplane mode. When a 

tilt-rotor aircraft flies forward like a normal aircraft, the well-known propeller type 

instability—whirl flutter is likely to appear. This is one of the problems to be studied in 

this thesis.

A great many investigations were made in relation to the propeller whirl flutter in the 

early 1960’s, where only the nacelle pitch and yaw degrees of freedom were considered. 

In these models, it was found that a propeller whirl flutter always developed from the 

backward whirl mode [Reed and Bland, 1961, Bland and Bennett, 1963, Reed, 1965].

With the development of the tilt-rotor aircraft, similar tilt-rotor whirl flutter problems 

were subsequently investigated and found to be much more complicated than the 

propeller whirl flutter characteristics. The forward whirl instability is found for the flap- 

hinged or gimbaled (universal joint) tilt-rotor models [Reed, 1965].

Further development and testing of the tilt-rotor aircraft in the 1970's lead to increasing 

efforts being made to improve the analysis capability and the understanding of the tilt- 

rotor aircraft aeroelastic stability. The wing, nacelle, aircraft and rotor blade degrees of 

freedom were subsequently modelled in the analysis. The effects of various couplings 

and parameters on the aeroelasticity stability were experimentally and analytically
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studied. Aero-mechanical instabilities similar to helicopter ones were involved [Kvatemik 

and Kohn, 1977, Kvatemik, 1973a, 1973b, Johnson, 1977, Johnson, 1974].

This and the next chapter are concerned with the whirl flutter problem of the tilt-rotor 

aircraft. A simple coupled rigid rotor/nacelle model is developed since the emphasis was 

placed on the understanding of the fundamental characteristics of this kind of instability. 

This newly developed model applies the ordering scheme widely used in helicopter 

aeroelasticity formulation to retain the nonlinear terms in the equations of motion for 

whirl flutter problems. The previous whirl flutter models do not consider the 

nonlinearity. The quasi-steady aerodynamics includes not only the circulatory part, but 

also the non-circulatory part which was neglected in the previous whirl flutter models. 

Two different types of connections between rotor and rotor shaft are considered. One is 

the ordinary universal joint connection. Another is a suggested possible gimbal 

configuration. Their whirl flutter features are compared. The whirl flutter characteristics 

of the tilt-rotor of an ideal gimbal configuration is not found in the literature.

3.2 PHYSICAL MODEL AND BASIC ASSUMPTIONS

3.2.1 Physical Model Description

Assume that the tilt-rotor aeroplane with a rigid fuselage and rigid wings is in stable 

forward flight. Hence no aeroplane fuselage perturbation motions are considered and 

also the couplings of the tilt-rotor/nacelle system with the wing and fuselage are not 

included.

The nacelle, considered as a rigid body, is attached to the wing with spring and damping 

restraints at a certain positions on the nacelle. The nacelle is linked to the tilt-rotor 

through a hinge (universal joint or gimbal) with pitch and yaw spring restraints at the hub 

end of the nacelle.
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The whole tilt-rotor ( including blades) is idealised as rigid, and installed on the gimbal 

hinge at the gimbal centre. However the blades can be feathered about the pitch 

bearings. The flexibility of the control system is modelled.

Therefore the degrees of freedom of the whole system are:

a) . Six degrees of freedom of the nacelle rigid body motions

b) . Two universal joint (or gimbal) degrees of freedom, pitch and yaw motion of the tilt-

rotor

c) . Individual blade pitch degree of freedom for each blade

Fig 3.1--3.4 are the graphical descriptions of the physical model.

Fig 3.1 The motion in yawing direction (top viewl
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nacelle

Fig 3.2 The motion in pitch direction (side view)

Fig 3.3 The roll motion of nacelle (forward view")
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a  ^

Fig 3.4 The feathering motion of blades about pitch bearings

3.2.2 Basic Assumptions and Ordering Scheme

32.2.1 Basic Assumptions

Certain assumptions are introduced before formulating the dynamic equations for this 

model. These are:

1. The fuselage of the aeroplane is assumed to be a rigid body and the wings also rigid. 

The rigid body perturbations of the fuselage are not included.

2. The aeroplane is in stable forward flight and the tilt-rotor works in an axial flow state.

3. The rotor speed is constant.

4. The blade feathering axis coincides with the blade elasticity axis.

5. The blade feathering axis is preconed by the angle Pp and swept by the angle psw.

6. The blades are attached to the hub with an offset ep from the rotation axis.

7. The rotor is underslung by a distance zh from the gimbal centre.
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8. The blade cross-section is symmetric, with distinct elastic centre, mass centre and 

aerodynamic centre.

9. The aerodynamic loads are calculated using a two dimensional quasisteady 

aerodynamic theory. No stall, no reverse flow and no compressibility effect are 

considered.

10. A constant induced velocity is assumed.

3.2.22 Ordering Scheme

In the derivation of the rotor aeroelastic equations of motion, a large number of higher 

order terms will appear. Previous researchers have shown that many of these can be 

neglected systematically by using an ordering scheme in the helicopter aeroelasticity 

formulations [Friedmann, 1983,1990].

The basis of an ordering scheme is a small dimensionless parameter e, which usually 

represents typical blade slopes due to blade deflection, e is about 0.1 to 0.2 for normal 

helicopter rotor blades.

The ordering scheme is based on the assumption that

1 + 0(e2) = 1 (2.2.1)

A similar principle is used in this research for simplification of the derivation of the 

equations of motion.

The orders of the various variables magnitude for this problem are given as below:

a = 0(l/e)

e0,e G = 0(eW)

x/R, siny, cosy, R3( )/3x, 3( )/3y, C,, pabR/m = 0(1)

P g > a G> P g s , P g c , Pp> Psw> « p /R >  Z j / R -  b /R ,  0G , 0G , C mac =  0( e )
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Cd, Rx/R, Ry/R, R^R, 6X, 0y, 0Z = 0 (e^ )  

xa/R, xGo/R =0(e2) 

Lj/mR2 = 0( e3) 

I2/mR2 = 0 (e7)

Where \j/=Qt is the azimuth angle of the blade.

(2.2.2)

3.2.3 Coordinate Systems and Transformations
In the formulation of the equations of motion, various reference coordinate systems are 

used. These are introduced in this following section.

A. The fixed inertial coordinate system Xq Y0 Zq " o " system.

This has an origin at the gravity centre of the nacelle. Z0 is parallel to the static 

equilibrium longitudinal axis of the nacelle. Y0 is parallel to the horizontal plane. It is 

fixed in space.

B. The nacelle-fixed non-inertia coordinate system X10 Y10 Z10 "10 " system.

This has it origin at the centre of gravity of the nacelle. It is fixed with the nacelle 

body and is initially parallel to XqYqZq system without perturbations.

C. The fixed inertia gimbal centre coordinate system XgYgZg " g " system.

It has its origin at the gimbal centre. It is parallel to XqYqZq system.

D. The nacelle-fixed gimbal centre coordinate system XlgYlgZlg " lg " system.

It is fixed with the nacelle, and parallel to X10Y10Z10 system.

E. The rotating nacelle-fixed system X2gY2gZ2g "2g" system.

It is obtained by rotating the "lg" system \}/=£2t about Zlg axis.

F. The hub-fixed coordinate system XhYhZh "h" system.

This has its origin at the gimbal centre. It is fixed with on tilt-rotor hub, and 

coincides with the "2g" system without gimbal perturbations.
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G. The Blade coordinate system XbYbZt, "b" system.

It has its origin at the pitch bearing of blades. It is obtained by including the blade 

precone angle and sweep angle in XhYhZh system.

H. The blade cross-section-fixed system XCSYCSZCS "cs" system.

It has its origin at the pitch axis centre of the blade cross-section. It is obtained by 

perturbing with blades and is initially parallel to XbYbZt, without the pitch motion of 

blades.

I. The blade cross-section major principal axis system XpaYpaZpa "pa” system.

It has its origin at the pitch centre of blade cross-section. It is obtained by rotating 

the XCSYCSZCS system about Xcs axis to include the geometry attack angle 0G.

The transformation relations between these coordinate systems are listed in Appendix 

3A.

3.3 FORMULATION OF THE EQUATIONS OF MOTION

The rotor equations of motion are obtained by the equilibrium of the gimbal spring 

restraint moments and the inertia loads, the aerodynamic loads, and the damping loads 

applied on the rotor. The pitch equation of motion of blades is derived by the equilibrium 

of the aerodynamic moment, the inertia moment about blade pitch axis and the elastic 

restoring moment due to the flexibility of the control system. The inertial loads and the 

aerodynamic loads on a unit-length of the blade are derived first. Secondly, the loads at 

the blade root caused by one whole blade are calculated. These loads lead to the blade 

torsion equation of motion for each blade. Subsequently, the aerodynamic and inertial 

loads transmitted from the whole rotor to the gimbal are obtained. These loads can be 

finally used to obtain the rotor equations of motion and the nacelle equations of motion. 

In total these consist of 12 coupled differential equations.
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3.3.1 Inertia Loads Applied on Blades and the Rotor

Taking an infinitely small mass at point "p" on the blade, then its mass is dm. The 

motion of this point "p" in a blade comprises the relative motion of the point relative to 

the moving frame "2g" and, simultaneously, the motion of the "2g" system relative to the 

fixed inertia frame "g" system.

Therefore the absolute acceleration of a point "p” is 

a = a 0 + cb x  (w x r ) + w x r + a r + 2d) x  v r (3 .1 .1 )

Where ao is the translational acceleration of the gimbal centre point, and is equal to 

a o = + ^g^ g + (3 .1 .2 )

co is the angular velocity of the moving frame "2g" system, and is equal to Qk lg+ cona 

where co^ is the angular velocity due to the nacelle motions, 

r  is the position vector of the general point "p" in the blade relative to gimbal centre, 

a r is the relative acceleration of the point "p” relative to the moving frame "2g" system. 

v r is the relative velocity of the point "p" relative to the moving frame "2g"

And hence v r= r af= r (3 .1 .3)

Where ( )  indicates derivative with respect to the thne t  *

The position vector r is ( See Fig 3.5, Fig 3.6 )

?=_zh^h+eprh+eptan M h + xIb+ yj*cs + zE cs (3 .1 .4 )

* ( ) is usually defined as derivative with respect to the time t ( ). For the

convenience o f nondimensionalisation, however, ( )  at the right hand of the 
subsequent expanded equations for the terms indicates derivative with respect to

the nondimensional parameter yr=Qt ( i .e .- ^ -  ) in chapter 3. And hence, ( ) in
dyr

chapter 4 also represents
dyf
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Fig 3.5 Motions of nacelle and gimbal centre

Fig 3.6 Motion of a general point "P" on blade
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Writing r in the "2g" system

r  =  [e p +  C p P p p o  - z hp G  +  x (  1+ pGpp) +y(Psw-p p<t> +  Pg<1>)

+  z (-< t> p sw- P p +  p G ) ,  - e p P p O c  + z ha G - x P sw+ y - z ( ( ) ,  - e p P G  +  e p p p

+x(Pp-Pc) + y((Pp-Pc)PSw+ PoPpM-)

+ z((pG-Pp)psw<lH- pGpp+l)] E2g

Neglecting the higher order terms by applying the ordering scheme:

r  »  [e p +  x  + y ( p sw- P p<!> +  P g ^ ) *  z M > P sw“ P p  +  P g X  

Z h « G - x P Sw + y -z < t> . - e p P G  +  e p p p - z h

+x(Pp-Po) + y((Pp-PG)Psw-H>) + z] E2g

It must be noted that a general point "p" in a blade is located in
—» —>

y j cs + z kcS

And also located in XpaY^Zp* system as
—> —>
jpa ^ ^pa

Where XpaYpaZpa is rotated from X ^ Y ^ ^  by the geometry angle 0G 

0G =0O + Gtw + ©lccosv + GisSiny -K PGpG 

Where:

0O— Collective pitch angle of blades

0 ^  — Pre-twist angle of the blades

0ls, 0lc— Cyclic pitch control angle of blades

KpcPc— Pitch angle change due to kinematic pitch/gimbal coupling

And hence:
-sin0G
cos0G

“ zh

(3.1.5)

(3.1.6)

system as

( 3.1.7 )
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These relations are important in the derivation of the relative velocity and accelleration of 

the general point "p" given below.

—)
Taking the derivative of r and applying the ordering scheme gives:

V=r2g=Q{epppPG ~zhPo + x PgPp + y[ (Pg-P p)4> +<t'pG+0G(-<t'Psw-Pp + Pg)]

+z(—<i>PsW+P0-P  sw®Ĝ » - e ppp<*G +zha G-z(^+0G)-y(j)0G,

-e pPG -XpG + y(-pGPsw+ 0a+$H« PgPsw<H* PcPp+PcPsw^PpPsw  ̂

- e G ( ( p p- P G ) P sw-H j> )]}  E 2g (  3. 1.9 )

ar= r2g* n 2{eppppG -z hpG + x pGpp +z[-ij>Psw+ PG-0 GPsw]+ y[-pp <(H- PG<()

+ 2  Pg^ -^ P g+^G (~  Pp +  Pg ^ P sw^+^Qg Pg ^ P sw^ G ^ P sw^G^

_epppa G +zha G- z((jH- 0G)-y(2<j>0 G-H()0G+0G),

-e ppG “ xPg+ yt-PcPsw +$ +0g1

+ z [2 P Gpsw^H-pGp sw()H- Pg Pp+ P GPsw^ *“PpPsw$ ~ ® g (<1)+ PpPsw“ Pg Psw) 

“ 20G(-pGpsw4 ) - 0 2]}E2g (3.1.10 )

The angular velocity due to the nacelle rigid body motion is:

cona=n[(0x- e y82)Tg +(ey+exe z)Tg+(ez- e xe y) kg] ( 3.1.1 1 )

The angular velocity of the moving frame "2g":
—) —̂ >
co= ak2g + com
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= Q[(0x- 0 y0z)cos\^+(0y+0x0z)sin\j/] i2g+ £2[(-0x+0y0z)sin\j/

+(0y+0x0z)cos\j/] j2g +Q[l+0z- 0 x0y] k2g 

—> —> —>
=n[cox i2g+coy j2g+(l+wz)k2g] (3.1.12)

The angular accelleration:

=Q2[(0x- 0 y0z- 0 y0z+0y+0x0z)cos\j/+(0y+0x0z+0x0z- 0 x+0y0z)sin\|/] i2g 

+ i22[(0y+0x0z—0x+0y0z+0x0z )cos\j/+(—0X—0x0z+0y0z—0y+0y02)sin\|/] j2g

+Q2['ez- e xey- e xey]k2g

=Q2[0)x i2g+C0y j2g+Wzk2g] ( 3.1.13 )

In case of no perturbations, the position of the gimball centre in "o" system is assumed as 

Ho = lx k) + ly-fo + y^o (3.1.14)

Fig 3.7 Displacement of gimbal centre
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Assuming that the gravity centre of the nacelle undergoes a displacement R0inthe 

perturbations, and the nacelle, considered as a rigid body, has Euler angle series rigid 

rotations 0X, 0y, 0Z around the gravity centre. (Fig 3.7)

Therefore,

R g = ” H q  +  R q  + H

—» —> —» —» —» —>
~ ^ x  *g *** jg ẑkg ) Rx *g Ry Jg +Rzkg *^x *lg Jig ẑklg

= [ R X+  ly( 0X 0 y -  0Z)+ lz(0y+0x Ry+^x ®z+  lz(0y0z“ (U>

Rz- l x0y + ly0x] Eg (3.1.15)

ao= Rg=a2[Rx+ ly( 0X 0y+ 20x 0y+ 0X 0y— 0Z)

+ lz(0y+0x 0Z+20X 0Z+0X 0Z),

Ry+ix ez+ Iz(0y0z+20y0z+0y0z- 0 x), Rz- l x0y + ly0x] Eg 

=Q2(xgig + yg jg + Zgkg)

=Q {xg[cos\}/-0zsin\}/3+ yg[sin\j/+0zcosY]+ zg[ 0xsin\y-0ycos\j/]} i2g

+Q. {xg[-simj/-0zcos\|r]+ yg [cos\|/-0zsimj/]+ zg[ 0xcosy+0ysm\j/]} j2g

+Q 2{iig(ey+ 6 x6 2)+ yg(eye z- e x)+ zg}k2g ( 3 .1 .16)

Applying (3 .1 .1 2 ) and (3 .1 .6 ) and the ordering scheme: 

cox( coxr)~ £22{-(ep+x)-2x<»z+ y[-(psw-pp<|>+pG<(>)-2wzPsw+G)x<J>]

+z[ - ( -P SwC1>-Pp+Pg)''20)z(-P p+Pg)+C0x]} i2g+ ^ 2{-(z h(XG-xPsw)

—>
+2cozpswx+coy[-zh+x(Pp-pG)]+y[-l-2co2]+z[({)(l+2coz)+cOy]} j2g

+ ^ 2{cox(ep+x)+coxcozx+coy(—xPsw)+y[coxpsw+o)y+coycoz]

+z[C0x( - p sw<j)-pp+PG)+C0xC0z(*-Pp+pG )-0)y( l+C0z)(}>-(C02+C0yC0y)] } k 2g ( 3 . 1 . 1 7 )
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Applying ( 3.1.13 ) and (3.1.6 ) and the ordering scheme,

cox r = n 2{coy[-eppG + eppp -z h +x(Pp-p 0) ]-w z(zhaG-xpsw)+y[-coz+coy<t>]

+z[coy+co2<t)]} i2g+Q2{coz(ep + x)-cox[-zh+x(pp-p 0)]+y[wz(Psw-p p<ti + PG<j)) 

-COx((pp-pG)psW-H)>)]+z[-COx+COz(-pp + PG)]} j2g+ii2{-C0xxPsw-C0y(ep + x)

+ y[a)x-coypsw]+z[-cox<})-coy(-{()psw-p p + pG)]} k2g (3.1.18)

Applying ( 3.1.12 ) and ( 3.1.9) and the ordering scheme :

2xcox vr=2Q2{-[-e pppaG +zhaG]-zhaGcoz+cOj,[-epPG -xpG]

+y[coy(-p GPsw+ 0q+4))+ (j)9G+coz<j)0G]+z[(l+ <oz)(0q+^>)],

epppPc “zhPo + x PgPp+®z( “zhPG + X PcPpH^x^pPc+xPo)

+y[-COx(-p GPsw+ “ Pp Pg(H (1)Pg+^gM )Psw“ Pp + Pg)

+COz(-pp Pg Ĥ-(})Pg )+^ẑ g ( “ Pp + PG ^+ z f~^Psw + pG“ Psw®G 

+C0zpG] , ^[-epppCtc +zhcxG]-coy(epppPG -z hpG + x pGpp)

+y[-cox<j)0G-cOy(-Pp <j>4- Pg -̂h P̂g+OqC-^Psw-P p + pG))]

4-z[-C0x( 0G+4))-COy(-<j)Psw+ Pg~Psw®g)J) E2g ( 3.1.19 )

Therfore,
—> —> - » - » - >  -4 —> —> —» —>
a=ao +cox( coxr)+coxr + ar4-2a>xvr

A • • • • • •
» ^  iXg cosij/ 4- yg sin\{/-(ep4-x)-2xcoz4-y[-psw4-2cOy((|)4-0G)

4-2({)0G-COz4-(l)COy-pp(̂ -pĜ f2<))pG44{)PG4-0G(pG-pp)4-20GPG-(j)(pG- p p)

“  2®zPsw"̂ ’̂ x<l)]"̂ z[~Psw(^t'Pg—Psŵ G"̂ ®y”̂*®ẑ

4-2(14- COz)(0G+4>)-(-pp 4- PG)+©x+(l)Psw“ 2®z(“ Pp + Pg^  *2g
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Chapter 3 Tilt-rotor Whirl Flutter Formulation

+Q2{-Xg sin\j/ + yg cos\j/+x(3sw+coz (ep + x)-cox[-zh+x(Pp- p G)]

+zha G-2zhpG+2x pGPp+2cozxpsw +2cox xPG-(Oyzh+coyx(pp- p G)+cozpG]

+y[-l— 2g)z]+z[<|> +coy-cox+coz(—pp + pG)—0G—<f»—2̂ ) ps w-f-2 PG—2 ps W0G 

+2c0zPG+2<t>coz]} j2g+ a  { zg+cox(x+ep)-coxxpsw-coy(ep + x)-epPG -xpG

—xPsw^d'yl-®y'*‘®x-”®yPsw—PGpsw Psw^—Pp~̂  Pg^

-coy (|>-(cox+coyo)y)-o)x(j)-o)y(-(j)psw- p p + pG)+2psŵ pG+psw<j)PG+psw(j)pG

“ PpPsw ^ P p P G ^ G ^ P s w P G + P s w P p W P s w P G ^ G ^ ^ G " "

—2coy(—psŵ H-pG-p sw0G)]} k2g

=H2 i2g(a^+ya^+za^)+Q2 j2g(ay+ya^+zaj)+ Q2k2g(aJ+yaJ +za|) ( 3.1.20 )

The inertial forces per unit length of the blade is obtained from the D'Alembert's principle, 

Pl= -j JP<1A- a=Pi i2g+Pl j2g+Plk2g ( 3-1-21 )

Applying the results from (3.1.20) and the relations in ( 3.1.8 ),

Pi= -  J | p(^+ya^+za^)n2dA

sin0G
cos0G

-j £
4

z
-dA -

•J 4

=f22{-max-a xcos0GmxGc-a xmxGcsin0G}

pJr=Q2{-ma^-a^cos0GmxGc-aJmxGcsin0G}

z
P r £T{—maj-a^cosOGmxG^a^mxGcSinGo}

( 3.1.22) 

( 3.1.23 ) 

( 3.1.24 )
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The inertial moments per unit length of blades can similarly be obtained as 

—» r r —» —» —» —» —» —*
Ql=J J “ PdA(y jcs+zkcs)x a=q,x i2g+qf j2g+qf k2g ( 3.1.25 )

qix= -Q 2JJ p{[yH)z](a^+ya^ +zaJ)-[y(«)i-PswPG+pswPp)+z](a^+ya^+zaJ)}dA 

= - n 2[a^-ayt>]mxGccos0G- n 2[-a^<j>-a ]̂mxGcsin6G 

■1*0 (I3sin 0G+I2cos 0G)(&y+az(|))+t2 (I3—I2lsin0Gcos0G(â <JH'â

—a§+-â <|))—Q2(l3Cos20Q+I2sin20Q)(a£—aj<p) ( 3.1.26 )

qiy= - ^ 2Up{[y(<f^PSwP0+PsWPp)+z](a?+ya2+zax)-[y(psw-<f>pp-Kt>PG)

+z(-4)pSw-pp+pG)Ka^+ya^ + z$}dA

2 0 2 0 2 0 =-£2 mxGcCOsOo^ax-ii mxGcsin0Gax+Q mxGcsin0G(-<J)psw-pp+PG)az

+Q2mxGccos0G(Psw-<J)Pp+<}>pG)a^+Q2(l3COS20G+l2sin20G)[-aJ

«>-PswPG+PswPp)+ (̂Psw-<l>Pp+<})pG)]+^ 2(I3-I2)sin0Gcos0Gt-aJ

-a^((J)-pSwpG+PswPp)+a^(“<l)Psw“ Pp+pG)+az(PswH)Pp'Ht)pG)]

+ a 2(I3sin20G+I2cos20G)[-ax+ax(-<{)pSw-pp+pG)] ( 3.1.27 )

q f= -n 2//p{[y(psw-(j)Pp+<l)pG)+z(-<|>Psw-Pp+pG)](aJ+yay+za^)

-ty-zcj)] (^+ya^+zax)}dA

= - n 2mxGccos0Ga^(psw-<()pp+(j)pG)-Q 2mxGcsin0Gâ (-({)Psw-pp+pG)

—n 2mxGccos0Gâ +£22mxGcsin0G<j)a5|+n2(l3Cos20G+l2sin20G)

[-^Psw-<l)Pp+<i>pG)+axl+^ 2(I3Sin20G+l2cos20G)t-ay(-<l)Psw-Pp+PG)-({>ax]

+ n 2(I3- I 2)sin0Gcos0G{-a^(-<l)psw-Pp+pG)-ay(psw-<{)Pp+(|)pG) -<{)â +ax} ( 3.1.28 )
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Chapter 3 Tilt-rotor Whirl Flutter Formulation

Where, I2= llp ^ d A I3= l W d A

m=/JpdA mxGc=J/pTldA

And assume, JJp£dA=0 J jp£r|dA=0.

Noting the following relations 

aj=0(l) a£=0(e) a£=0(e)

a^=0(e) ay=0(l) a^=0(e)

a£=0(e) a£=0(e) aj=0(e2)

And after applying the ordering scheme, we have:

Pi =-mQ {Xg cos\j/ + yg sinxjr -(ep+x)-2x0z} 

p [= -m n2{xPsw+0z(ep+x)+zha G-2zhpG+2xPpPG+2x0zPsw-x Gccos0G 

+sin\jf[-xg- 0 y(~zh+x(Pp-'pG))+2x0yPG]+cosy[yg- 0 x(-zh+x(pp-p G)) 

+2x0xpG]}

Pl=-mf22{zg-e ppG-xpG+sin\|/[-xPsw (0y-2 0 x)-(ep+x)(-0x-2 0 y)] 

+cos\|/[-xpsw (0x+20y)-(ep+x) (0y-2 0 x)]} 

q!= -m a {xGccos0G[zg- e ppG-xpG-<))xpsw-(j)x0z+sin\|/[-xpsw (0y-2 0 x) 

-(ep4-x)(-0x-2 0 y)-H})xg] +cos\|/[-xpsw (0x+20y)-(ep+x) (0y-2 0 x)-<j>yg] 

+xGcsin0G[-xPsw (ep+x) zhocG+2zhpG 2x0zpsw 2xppPG—(j)zg 

+x<J)pG+sin\{/[xg+0y(—zh+x(Pp-P G))-2x0ypG]-Hj)x (-0x-2 0 y)] 

+cos\|/[-yg+0x(-zh+x(pp- p G))-2x0xpG-H{)x(0y-2 0 x)]} 

+f22(I3sin20G+l2Cos20G){()H-(-Pp+PG)0z—0G-(^-2pG-2P sw0G-2psŵ )

+20zpG+2^9z- 0 ysin\j/-0xcosy}+O2(I3-l2)sin0Gcos0G(- l -2 0 z)

( 3.1.29 )

(3.1.30)

(3.1.31 )

(3.1.32)

(3.1.33)
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Chapter.3 Tilt-rotor Whirl Flutter Formulation

— £22(I3cos 0G+I2sin 0G){—Psw*PG4<^0G4<{)(l+20z)4-sin\|/l0y*“20x 

“ Psw(“'®x“ 20y)]+cos\j/[0x+20y—psw(0y—20x)]} 

q [= -m a 2{xGccos0G[-(ep+x)<l)-2x0z<{>-Pswzg +xPswpG+sin\|/<({)yg

+(ep+x)psw( -0 x-20y)>+cos\|/<({)xg+(ep+x)psw(0y-20x)>]

+xGcsin0G[-(ep+x)-2x0z+xgcos\j/+ygsin\|/]}+n (I3 cos 0G+l2 sin 0G)

't<l)Psw” 2(j)20G+(j)0z-2(()0GpG-<j)2pG-2(}^)PG-<()2(pG- p p)+2(()psw0z

+Psw(pG“ Pp)(“ Psw” ®ẑ ~PswPG+Psw f̂ PswQG+sinxl/[“ 2<j)(̂ H-0G^~^x)

+02Qx+ Psw(0y“ 2®x)~Psw(~|9x“ 2 ®y)+<l)(PG~Pp)(®x',“2®y)^

+cos\j/[—2(})(̂ H-0G)0y-(|)20y+psw(0x+20y)—p2w(0y“ 20x)

+<KPG""Pp)(®x**'2^y^ ̂

+ ^ 2(l3_ l2)sin0Gcos0G'f Psŵ ^ ^ g+Qx—20gPg-<1)Pg~2 )̂Pg+2(1) P̂g'- Pp) 

+2psw0zH>pG-2^(^0G >+sin\|/[-2(^0G)( -0 x)-2(|)'0x+(pG- p p)(0y-20x) 

+cos\}/[-2(ff0G)0y-2(|)0y +(pG- p p) (■0x+20y)]}+Q2(I3sin20G+I2cos20G)

t Psw^” Pg+Psŵ gH ^ z- ^  1+0z)(̂ H- 0G)+(pG“ Pp)“Kl>Psw+2(pG- Pp^z 

+sin\|/ 0X +cos\|r ( -0 y)}

_ • • • • I
qj=-m Q {xGccos0G[Xg cos\\r +  yg siny - ( e p+ x )-2 x 0 z]+xGcsin0G[(pG-P p) 

(xpsw+(ep+x)0z)-Hj>(ep+x)+2<j)x0z+sin\j/(-?^(pG- p p)-(})yg)+cos\|/ 

^ (P c -P p M * 3̂  }+ ^ 2(l3 cos 0G+I2 sin 0G){2<{)0G—0z+<j)(|3G—(3p)

+20 gPg'H)Pg +2^Pg+ (pG“ Pp)9G+s^V [2( ^ 6 G)(—0x)-(j)0x] 

+cos\j/[2(4H-0G)0y+<j>0y]}+Q2(I3sin20G+I2cos20G){(j)(Psw^ -p G+psw0G

-<t.ez- 2 ( i+ e z)((}H-0G)-<t'Psw+2(pG-Pp)ez)+<t.2PSw-(PG-Pp)29z

+(pG-pp)eG+(PG-Pp)«-2(pG- p p)po+2Psw(po-(3p)(0G-Hi>)

(3 .1 .3 4 )

( 3.1.35 )
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Chapter 3 Tilt-rotor Whirl Flutter Formulation.

-2(pG-Pp)PG0Z-2(t>(pG-Pp)02-Hl)Psw(-0G-^-2(3G)

+sin\J/[<{>0x+ (Pc-Pp^y-^PswQyl+COSV [—<!>0y 

+ (pG-Pp^x^Psw^x^+^da-ysinGGCosBotPQ +2<j>’0z

+2(1+0z)(̂ h-0q)—2pswPG+sin\j/[—0x+Psw0y]*fcos\j/[0y+Psw0x]} ( 3.1.36 )

3.3.2. Aerodynamic Loads Applied on a Unit Length of Blade

The two dimensional quasisteady thin airfoil aerodynamic model is used for the calculation 
of the aerodynamic loads [Johnson, 1977]. Fig.3.8 gives a description of the sectional 
aerodynamic environment.

—) —)
Section lift L=Lc+Lnc ( 3.2.1 )

Section drag D=pbcdU2 ( 3.2.2)
—> —> —>

Section moment M=Mc+Mnc ( 3.2.3 )
—>
M positive nose up

Where, L^pbqU 2 ( 3.2.4)

That is the circulatory part of the lift and nonnfl! to the resultant velocity

Lnc~P^i^| 2 ^ n~ ► ( 3.2.5)

That is the noncirculatory part of the lift and Tiorhiaj to the chord line
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Chapter 3 Tilt-rotor Whirl Flutter Formulation

Mc=xALs+2PblCmacU2 ( 3.2.6)

Mnc-Pab{ 2(XA 2 ) u „ 4 URe +  2^Xa XAb+ g j6} ( 3.2.7 )

And from Fig.3.8, U2=u£+Up ( 3.2.8 )

Un=UTsin0-Upcos0 ( 3.2.9 )

UR=UTcos0+Upsin0 ( 3.2.10)

e=^(0—(3G+Pp) (3.2.11)

The resultant on-coming airflow velocity is
—> —> —>
V ~ vfree airflow- v blade motion (3.2.12)

->
f̂iree airflow-  CvRi'Vj)£2Rkg (3.2.13)

A
vblade modon=v0+®x re+ re (3.2.14)

Where,

—>
re is the position vector of a general point on blade elasticity axis

—> . —> r  —> . —>
V0= ( x g ig+yg jg+Zgkg)n ( 3.2.15 )

Xg=Rx+ly (0 x0y+0 X0y— ^ ^ ^ (3.2.16)

yg=Ry+lx®z+1z^y0z+®z0y“ ®x) (3.2.17 )

Zg=Rz“"lx0y+ly0x ( 3.2.18 )

—> —> —> —» —> 
re=-zhkh+ep ih+epPpkh+x ib

—>
={ep+x, zha G-x|3sw, -e p(p0-P p)—zh+x(Pp—pG)}E2g ( 3.2.19 )

( see Fig.3.5, 3.6 )

—) . . .  . . . . —> 
rc=Q{epppPG- z hpG+xpppG, -e pPpa G+zha G, - e pPG-xPG}E2g ( 3.2.20)

cox re=Q[cox i2g+coy j2g+(l+coz)k2g]x re
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Chapter 3 Tilt-rotor Whirl Flutter Formulation

=n{-(zha G-xPsw)+cozxPsw+coy[-zh+x(Pp-|3G)]} i2g+Q{{ep+x+cozx} j2g

—>
+n{-xPswcox-(ep+x)o)y}k2g ( 3.2.21 )

—> . —> . —) . —) —)
^blade motion- ^^xg jg"*"Zg ^ g ^ ^  ^ĝ -- (zh^G—xPsw^^zxPsw

+coy[-zh+x(pp- p G)]-zhPG+xpppG}+n{{ep+x+cozx}j2g+ n{-xpswcox

-(ep+x)a>y-e pPG-xpG}k2g ( 3.2.22 )

—> —> —> —> —̂
v —v free airflow- v blade motion- —̂ F^"v i ) ^ R ^g—v blade motion ( 3.2.23 )

Rewriting (3.2.23) in components in xbybzbsystem and using the ordering scheme

v «£2{ [-(vp+vi)R-zg](pp- p G)+zhcxG+zhPG+eppsw -x p GpG+sin\|/[-(vFfvi)R

(®x—Psw®y)—xgPsw—Yg—zh®x-l'̂ 'OS\l/[—(vp+Vi)R("-0y—-PSW0X)—Xg+ygPsw

zg0y+zh0y],(vF+vi)Rpsw(pG-P p)-(ep+x)-x02+sin\j/[-(vF+vi)R(0y+psw0x)

+xg- Pswyg+0zyg“ 0yzg]+COS\|/[ (vp+Vi)R(0x—Psw0y)—Xgpsw—yg-fXg0z—Zg0x] »

-(vp+v^R—zg+xpG+sin\j/[—(pG—Pp)yg+xpsw0y—(ep+x)0x]+cos\y[-(pG-P p)xg

+xpsw0x+(ep+x)0y]}Eb ( 3.2.24)

After applying the ordering scheme,

U^-Vyh^fK (ep+x)+x0z-sin\}/[-(vF+vi)R(0y+psw0x)+xg-P swyg ]

-cosxj/t-CvF+v^RCOx-p^Oy^Xgpsw-yg]} ( 3.2.25 )

Up=-v zb=^^vFfvi)R+zg- x pG - sinY[-(PG- Pp)yg+xPsw0y-(ep+x)0x]

-cos\}/[-(pG-p p)xg+xPsw0x+(ep+x)0y]} ( 3.2.26)

After applying the ordering scheme, 

U^=n2{x2+2epx+2x20z+sin\|/<-2(ep+x)[-(vF+vi)R0y+xg]>
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+cos\j/<-2(ep+x)[-(vF+vi)R0x-y g]>} ( 3.2.27 )

Up~Q2{(vF+vi)2R2+2(vFhvi)Rzg-2(vF+vi)RxPG+sin\|/<2(vF+vi)Rx0x>

+cos\j/<-2(vF+vi)Rx0y>} ( 3.2.28 )

From ( 3.2.9),

Un=£XUTcos0+Upsm0)0+UTsin0-UpCos0 ( 3.2.29)

Where,

U'p=£22{ -(v F+vi)RPswpG-x 0 z-sin\}/[-(vF+vi)R(0y+psw0x)

+v P swyg+ 0zyg+0zyg-  eyzg- 0 yzg]+cosy [-(vp+v^RC^-p^Oy)- 

^gPsw yg+xg0z+xg02 zg0x zg0x3 cosyt (vp+vj)R(0y+psw0x)

+xg—Pswyg+0zyg—0yZg]—sin\j/[—(vp+Vi)R(0x—Psw0y) xgpsw—yg+xg0z—zg0x]

( 3.2.30)

Up=a2{zg-x p G-sin\j/[-(pG-pp)yg- P Gyg+xPsw0y-(e p+x)0x+[-zh-x(PG-Pp)]0x

-x P G9x]-COSY[-(PG-Pp)xg-PGxg+xPsw0 x+ (ep+x)0y-[-Zh-x(PG-Pp)]Qy

+xpGM“ COŜ ^“ ^G~Pp)yg+xPsw0y-(ep+x)0x̂ +sin¥t-(PG-Pp)xg

+xpsw0x+(ep+x)0y]} ( 3.2.31 )

UTUp«£22{ (ep+x)(vF+vi)R+x(vp+vi)R0z+(ep+x)zg—x(ep+x)pG

+sin\}/[-(vp+vi)R0y+xg] [-(vF+vi)R]+cos\}/[—(vp+vi)R0x-y g] [-(vp+v^R]

+sin\|/[x(ep+x)0x]+cos\|/[-x(ep4-x)0y]} ( 3.2.32)

UR=Ucosa~U ( 3.2.33 )

From Fig.3.8, the aerodynamic components in the y,z diretions are, 

F^-Dcosai-LcSinai-LjjcSin© ( 3.2.34)

Fz=Lccosai-D sinai+Lnccos0 ( 3.2.35 )
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u p UT
( 3.2.36)sinaj =-jj- coso^ =-jj-

2UT 2UpFy=-pbcdU2- ^ —pbctU - ~ - L ncsin0

=-pbcdUUr -pbc1UUp-L ncsin0 ( 3.2.37 )

Fz= pbcj UUT-pbcdUUp+Lnccos0 (3.2.38 )

Applying equations (3.2.27 ) through ( 3.2.33 ), then, after using the ordering scheme: 

Fy=-pbcd[UxCos0+UTUpsin0]-pbc1[UxUpCos0+UpSin0]-Lncsin0 

=-pbcdQ2{x2+2epx+2x20z+sin\j/<-2(ep+x)[-(vF+vi)R0y+xg]> 

+cos\|/<-2(ep+x)[-(vp+vi)R0x-y g]>}cos0-(pbcdsin0+pbc1cos0) 

xf22{(ep+x)(vF+vi)R+x(vF+vi)R0z+(ep+x)zg-x(ep+x)pG 

+sin\}/[-(vp+vi)R0y+xg] [-(vp+v^Rl+cosxj/t-Cvp+v^RO^yg] [-(vp+v^R] 

+sin\|/[x(ep+x)0x]+cos\|/[-x(ep+x)0y] }-pbc1sin0f22{(vF+vi)2R2+2(vF+vi)Rzg 

-2(vF+vi)RxpG+sin\|/<2(vF+vi)Rx0x>+cos\|/<-2(vIrfvi)Rx0y>}-Lncsin0 ( 3.2.39)

Fz=pbc1[[u|cos0+UTUpsin0]- pbcd[UTUpcos0+U2sin0]+Lnccos0 

=pbc1cos0f22{x2+2epx+2x20z+sinY<-2(ep+x)[-(vF+vi)R0y+xg]> 

+cos\}/<-2(ep+x)[-(vF+vi)R0x-y g]>}-pbcdsin0n2{(vF+vi)2R2+2(vF+vi)Rzg 

-2(vF+vi)RxpG+sin\|/<2(vF+vi)Rx0x>+cos\|/<-2(vF+vi)Rx0y>} 

+(pbc1sin0-pbcdcos0)n2{(ep+x)(vF+vi)R+x(vF+vi)R0z+(ep+x)zg-x(ep+x)pG 

+sin\|/[-(vF+vi)R0y+xg] [-(vF+vi)R]+cos\|/[-(vF+vi)R0x-y g] [-(vp+v^R] 

+sin\|/[x(ep+x)0x]+cos\j/[-x(ep+x)0y]}+Lnccos0 ( 3.2.40)
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Applying equations ( 3.2.4), ( 3.2.8 ) and ( 3.2.27 ) ,  ( 3.2.28 ), and neglecting higher 

order terms, we obtain :

M=xALc+2pb2cmacU2+Mnc

=(2pb2cmac+xApbc1)n 2{x2+2epx+2x20z+(vF+vi)2R2+2(vp+vi)Rzg-2(vF+vi)RxpG

+sin\j/[<-2(ep+x)[-(vF+vi)R0y+xg]>+<2(vF+vi)Rx0x>]

+cos\j/[<-2(ep+x)[-(vp+vi)R0x-y g]>+<—2(vF+vi)Rx0y>]}+Mnc ( 3.2.41 )

Lnc and in the above equations can be obtained by using ( 3.2.29 ) through (3.2.31): 

Lnc=pab| y Uii- 2 ( xA""‘2 )^}

=pab| ^  [Q20cos0Gx+Q20sin0G(vp+vi)R+fi>2sin0Gx0z-Q 2cos0G(zg-x P G)]

L / k \  „ K
" 2 l XA_2 j (®“ PG)n2+sin¥<2 {" '^ 2sin0G[" (vFfVi)R(0y“ 0x)+xg+yg]

+Q2cos0Gx(-0x- 0 y)}>+cos\j/<~{-n2sin0G[-(vp+vi)R(0y+0x)+xg-y g] 

+ n 2cos0Gx(0y- 0 x)}>} ( 3.2.42)

Mnc=pab{ f  ( xA - | ) u „ - ^ U REH~(xA-x Ab- 3b2\

8 ;

= p a b { |(x A- |)u ® -^ -U ^ n (0 -p G+pp) + ^ x i - x Ab f ^ ) ( e - p G)Q;

+sinv [ | ( x A- | ) U n - ^ - u R£2(0-PG+Pp)j+cosv [  ) u '] }

« o s v [  | ( x A- | ) u S - ^ u |n ( 0 - p G+pp)]} ( 3.2.43 )

Where,

U 'p—UT+UTsin\j/+U^cos\}/ 

Up=Up+Upsin\i/+UpCos\|/ 

UT=UT+UTsin\|/+UTCos\j/ 

Up=Up+Upsin\j/+UpCos\(r ( 3.2.44)
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And therefore,

Un=^0(U Tcos0+Upsin0)+UTsin0-Upcos0

i*tO=Un+Unsin\jr+Uncos\j/ ( 3.2.45 )

The detailed expressions for UT , UP , Un and their derivatives are listed in appendix 3.D.

Combining ( 3.2.39 ) through ( 3.2.41) with ( 3.2.42 ) through ( 3.2.43 ), Fy , Fz , and M 

can be obtained, therefore, the aerodynamic force applied per unit length of blade is obtained:

F A=F y jb + F zkb

MA=Mib

Writing these components in x2gy2gZ2g system, we have :

F A=[PswF y+ (PG -P p )F J  *2g+ F y j2g+ F z k2g

Ma=M i2g-p swM j2g-(p G -P p)Mk2g

( 3.2.46) 

( 3.2.47 )

( 3.2.48 ) 

( 3.2.49)

3.3.3. The Resultant Loads Caused by One Blade

/. The Resultant Inertial Forces Applied at Blade Root

F ir^  Pidx=Fm i2g+Fm j2g+FiRk2g

f R-ep
f ir=  P f oJo

J»R -e

Pfdx
0

PlZdxo

( 3.3.1 ) 

( 3.3.2 ) 

( 3.3.3 ) 

( 3.3.4)
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2. The Resultant Inertial Moments about the Gimbal Centre

reXPldx - M IR“ M ni i2g+M fR j'2g+ M n ik2g

Where, re is given as in ( 3.2.19 )

re><Pi={ryp?-rzpIy, r j f i - r j i ,  rxp?-rypf} *
V
J2g ‘
k2gJ

f R-e
m ir=Jo (q i+ ry p i-r^ )^

/•R—e_

M}r=J (qi+rzPlX- rxPl)dx Jo

MfR=J^ (qf+rxp^-rypi)dx

( 3.3.6 )

( 3.3.7 ) 

( 3.3.8 ) 

( 3.3.9 )

( 3.3.5 )

3. The Resultant Aerodynamic Forces Applied at Blade Root

—» 
F

> = f

- r

FAd*

(F„ Jb+F2kb)d)

- P AR i2g+ p AR j2g+ p ARk 2g

Where,

J»R—e
n [PswFy+(Pc-Pp)Fz]dx
0

J»R—Cp
F dx 

o *

f R-e
Far=J f a

Jo

(3.3.10)

( 3.3.11 ) 

( 3.3.12)

( 3.3.13 )
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4. The Resultant Aerodynamic Moments about Gimbal Centre

fR-ep -* fR_ep
Ur-  I <lAdx+ 1 Jo JoM

—» —>
qA=M ib

V ^ aA -M aR i2g+M ^R j2g+M ARk2g

P A=F y jb + F zk b

={[PswFy+(pG- P p)F2],Fy,Fz}

/•R—ep

MaR=J0 (QA+ryPA_rzPA^x

|»R~Cp
M^R= (qA+rzPA-rxPA)dxJo

/.R.—Cp
M a r = |  ( q A + rx P A - ryPA.)d x

'2*
h g
k2gJ

( 3.3.14)

( 3.3.15 )

( 3.3.17 )

( 3.3.18 ) 

(3.3.19) 

( 3.3.20)

The expressions of Far^ aR’ FAR>MAR>^AR’MAR’Fm>Fm’FiR’MiR’MiR>Mm after applying 

the ordering scheme are listed in appendix 3B.

It should be noted in the ordering scheme application that the orders of these magnitudes 

for the above terms are:

far = 0(e2) II 0(e) Far = 0(e)

M£r = 0(e2) M£r = 0(e) m ^r = 0(e)

Fffi = 0(1) ►n II 0(e) F^ = 0(e)

Mjr = 0(e2) W r “ 0(e) Mir = 0(e) ( 3.3.21)

3.3.4 The B lade Torsion  E quation  of M otion

The torsion equation of motion for each blade is obtained by the moment 

equilibrium about the pitch axis, that is
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M jfch +MIpitch +Mgitch =0 ( 3.4.1 )

The inertial pitch moment about the feathering axis is

Mjpitch= | [q^+Cp-Po^i-PswOi^x 
Jo

( 3.4.2)

fR-e
M r h= j  Md, 

Jo
( 3.4.3 )

M f Ch=-K0(t> ( 3.4.4)

Kjj, is the stiffness of the blade pitch control link system 

M ?tchM%tch after using the ordering sheme are listed in Appendix 3E.

3.3.5 The Equations of Motion of the Nacelle and Rotor

We have obtained the resultant forces and resultant moments transmitted to the nacelle 

due to both aerodynamic loads and inertial loads of a blade in section (3.3.3 ).

Therfore, the total loads transmitted to nacelle from a blade are:

Force: Fp—Fro+FiR-^nr^AR

=G & *A r) *2g+(pm+FAR) j2g+(FIR+FAR)k2g

=F R i2g+ F R J2g+ F Rk 2g 

—> —) —>
Moment: Mr=Mir+Mar

=(Mir+M^r) i2g+(M^R+M ^) j2g+(MfR+ M ^)k2g 

=Mr i2g+MR j2g+MRk2g

( 3.5.1 )

( 3.5.2)

Rewriting these loads in xlgylgzlg system using the relations in Appendix 3A .
—> —> —> —>
f r =(FRcos\j/-FRsin\j/) ilg+(FRsin\|/+F^cos\j/) j lg+FRklg

—* —̂  v —* z —*Mr =(MRcos\j/-M^sin\|/) ilg +(MRsin\|/+MRcos\{/) j ig+MRk1 g

7 2
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The total loads transmitted from the whole rotor ( N blades) to the nacelle are 
N

P F R =Pr hg+PR Jlg+PRklg
k=l
N

Qr= ^ M r=Qr ilg+QR jlg+QRklg
k=l

These results are in detail listed in Appendix 3C.

Therefore the rotor equations of motion are :

Q^-KPcpGc-CpcpGc=o

^ - K PgpGs-C pspGs=0

( 3.5.5 ) 

( 3.5.6)

( 3.5.7 ) 

( 3.5.8 )

Kpg,Kpc ,Cps,Cpc are respectively the rotor gimbal hinge restraint stiffness and the damping 

coefficients in pitch and yawing directions.

Transmitting these loads to the centre of gravity of the nacelle again, we obtain the resultant 

forces applied on gravity centre and the resultant moments about the gravity centre:

PG=PR=P^ig+P&Tig+PRki g ( 3.5.9 )

Q g= Q r+ 0 x ilg + ly  jlg+*zlclg )><PR

=QR+(lyPR-lzPRHlg+(lzPR-lzPR)7lg+(lxPR-lyPR)klg ( 3.5.10 )
Where lx , ly , lz are the position coordinates of the gimbal centre relative to the centre of gravity.

—)
And rewriting P G in xgygzg system

PG=[PR+(0xey- e z)P ^ (0 y+exe2)p|]Tg +[p^0z+ p ^ ( e y02- 0 x)p|]Tg

+[-0yP£+0xP£+P|]kg (3.5.11)

Finally, we can obtain the nacelle equations of motion according to the force and moment, 

they are:

The translational equations of motion

^NaG^x ig+Ry jg+P-z^g^PG“̂ PE ( 3.5.12 )

7 3
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The rotational motion equations are:

QE+C&+OyPR-lzPD=AxIxx+AyAz(Izz- I yy)+Ixy(AzAx-A y)-Ixz(Az+AyAx)

<̂ +(^ +(1ZPR-1XPR)=AyIyy+AzAx(Ixx- I zz)+Iyi,(AyA ,-A z)-I XJt(Ax+AzAJr)

- I XZ(A^—Ax)

QEtC&+flxPR-lyPR)=AzIzz+AyAx(Iyy- I xx)+Ixz(AzAy-A x)-I yz(Ay+AzAx)

- Ixy(Ax- Ay)

x̂x x̂y W
Where, Iyy ŷz

—i —i —» —>

is inertia tensor of the nacelle

®na ^lg"^y jlg’̂ z^-lg

Ax= n(0x~0y0z) Ay=H(0y+0x0z) Az=Q(0z- 0 x0y)

Ax=Q2(ex-0yez-eyez) Ay= a 2(0y+0x0z+ex0z) Az= a 2(6z-0x0y-0x0y:

Replacing ( 3.5.17 ) into ( 3.5.13 ) through ( 3.5.15 ), then : 

QrH^+(lyP |- l2P^)=n2[lxx(0x- e y0 z-0y0z)+ (i^-IyyXOyVO^+O.O2) 

-Ixy(0y+0x0z) -IX2(0Z -O .O p-Iy,^2-©2)]

C^H^+(lzPR-lXI^)=Q2[lyy(0y- 0 xez-0X0Z)+ a XX- l J ( 0 X0z-ex0x0y-0y02: 

+Iyz(20x0y-0 z+0x0y) -Iyx(0x -0 y0z)

- izx(02-02-2ex0yez+20x0y0z)]

Q E K & + (,xPR_ lyP ^ = ^ 2^ ^ ® z - ®J‘®y“ ®*®y^+  ^yy- Ixx)(0x9y+ 0z0x0z- 9y0y

+Ixz(2®z®y“ ^x+0y®z) _Iyz^y + ®x^z+®x̂ z)

- I xy(02- 0 2-2 0 x0y0z-2 0 x0y0z)]

( 3.5.14) 

( 3.5.15 )

( 3.5.16) 

( 3.5.17 )

(3.5.18)

( 3.5.19 ) 

( 3.5.20)

( 3.5.13 )

Where, Pr, Qe, Qe, Q| are respectively the forces applied on the nacelle and moments acting 

about the nacelle centre of gravity due to nacelle’s spring restraints with the wing.
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Assume the position vector of spring restraint point relative to the nacelle gravity centre 

is ( Before perturbation) (Fig 3.9)
—>o —> —* *
RE=ex ig+ey jg+e2kg ( 3.5.21 )

The displacement vector of the gravity centre is (Fig 3.9)

Ro~Rx ig+Ry jg+Rzkg ( 3.5.22 )

Then the displacement vector of the restraint point is
-» —>o —» —»
r e= - Re+r o+H

—[Rx+ey(0x0y—0z)+ez(0y+0x0z),Ry+ex0z+ez(0y0z—9X),

Rz“ exQy+ey^x^ jg >

xe iĝ *ye Jg"̂ ze kg ( 3.5.23 )

Fig 3.9 Displacement of spring restraint point between nacelle and wing
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—> .• —> —> —> 
Therefore, PE=-Kxxe ig-K yye jg-K zzekg ( 3.5.24)

-> —>e
Q e= Qe+ (cx ilg+ e y jlg + e z ^ lg )x R E ( 3.5.25 )

-»e —» —»
Q p -K 9X(-e yez+ex) is-K ey(ey+9xe z) jg-K 0z(-e xey+ez)kg

-Key(ey+exez)-K92(-exey+e2)8x-K8x(-eye2+ex)(exey-0z)
-Kez(-e x0y+0z)-K ex(-0 ye z+ex)(ey+ex0z)

-KOy(0y+0x0z)(0y9z-9X)l Jig
^lg.

( 3.5.26)

Writing PE in equation (3.2.24) in the xlg ylg zlg system:

p E=[-Kxxe-K yye0z+Kzzc8y -K yye-K xxc(0x0y-0 z)-K zze0,
*

-K zze-K xxe(0y+0x0z) - K yye(0y0z-0 x)]̂
*ig

jig
i kigj

( 3.5.27 )

Finally combining the relations (3.5.26) and ( 3.5.27 ) to obtain QE.

Applying the ordering scheme to neglect the higher order terms, then we determine the 

moments about the nacelle gravity centre due to the restraint springs,

QE=QE?ig+QgTig+Q lkis ( 3.5.28 )

Where,

QE=-Kex0x-eyKz(Rz-ex0y+ey0x)+e2Ky(Ry+ex0z-ez0x)

(^ = -K ey0y- e zKx(Rx- e y0z+ez0y)+exKz(Rz-e x0y+ey0x)

C^= “Kqz0z-e xKy(Ry+ex0z-e z0x)+eyKx(Rx-e y0z+ez0y) ( 3.5.29 )
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The nacelle equations of motion are obtained by applying (3.5.5—6), (3.5.27), and 

(3.5.29) to ( 3.5.12 ) and ( 3.5.18-20 ).

Note that the relations between displacements of nacelle's gravity centre and displacements

of gimbal centre are:

fR,

x g '1  0 0 0 12 -ly'
►  = 0 1 0 - l z 0 lx

. z g. o 0
 

»—» 1
►—

*
X o

y
Rz
Gx

0y
GzJ

( 3.5.30)

Therefore, the variables xg, yg, zg in the previous expressions for forces and moments can 

be expressed in terms of the variables Rx, Ry, Rz, 0X, 0y, 0Z. These are adopted as the six 

degrees of freedom associated with the nacelle's rigid body motion in the final equations of 

motion of the system.

These equations of motion are for a universal joint rotor configuration. The formulation 

of the equations for an ideal gimbal configuration are introduced in section 4.4.4.
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CHAPTER 4 A TILT-ROTOR/NACELLE WHIRL FLUTTER 

MODEL—SOLUTION AND NUMERICAL RESULTS

4.1 INTRODUCTION

In the previous chapter the equations of motion for the coupled tilt-rotor/nacelle system 

have been derived. They consist of six rigid body equations of motion of the nacelle, two 

equilibrium equations for the two degrees of freedom of the universal joint, and N blade 

torsion equations of motion for the N blades. These coupled equations of motion can be 

used to obtain the stability solution of the system. That is, the whirl flutter characteristics 

of the system. We shall firstly introduce the solution procedure of the problem in section

2. Then, two groups of numerical results are presented in section 4 . In the last section, 

some conclusions are drawn from the whirl flutter model.

4.2 SOLUTION PROCEDURE

We have obtained 12 dynamic equations for the coupled tilt-rotor/nacelle system in 

chapter 3. These equations are nonlinear ordinary differential equations. To obtain the 

system stability, the solution procedure consists of the following steps:

1) linearising the nonlinear equations,

2) transforming the linearised equations with periodic coefficients to linearised equations 

with constant coefficients by applying multiblade coordinate transformation relation,

3) evaluating the eigenvalues of the linearised equations with constant coefficients to 

analyse the system stability. These steps are discussed below.

The linearisation of the nonlinear differential equations is undertaken by assuming that 

the motion of the system degrees of freedom consists of two parts, the first part is the 

steady state equilibrium value and the second is the small perturbational motion of the 

system about the equilibrium position. It should be pointed out that the degrees of 

freedom associated with the nacelle and gimbal motions are essentially perturbational
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quantities. Therefore, only the blade torsion degrees of freedom have both the steady 

state value and the perturbational value. These can be expressed as :

Substituting equation (2 .1) into the blade torsion equation of motion and the equations 

of motion for the nacelle and universal joint degrees of freedom which were obtained in 

the previous chapter gives us an algebraic equation for the equilibrium value of the blade 

torsion:

and a set of linearised perturbation differential equation which can be written in matrix 

form:

where {q} represents all the degrees of freedom of the coupled tilt-rotor/nacelle system. 

We note that [M], [C], [K] matrices are functions of <J)0 which is the equilibrium value 

solved from ( 2.2 ). They also contain some periodic coefficients siny, cosy, where 

y=Qt is the blade azimuth angle. One usually applies a transformation relation, known as 

a multiblade coordinate transformation, to eliminate the time dependent coefficients for 

the coupled rotor/body aeroelasticity stability analysis in an axial flow state.

The multiblade coordinate transformation is implemented by applying the following 

operators to the blade torsion equations (3.4.1) in the previous chapter:

<}> = <t>0 + A<t> (2.1)

f»o> = 0 (2.2)

[M(<t>0)]{q} + [C(4>0)]{q} + [K(<|> „)] (q) = 0 (2.3)

collective operator

alternative operator

7 9
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N
^y^cosn\|/u(...) n-cosine operator

k=l

N
^ ^ s in n \ |/k(....) n-sine operator (2.4)

k=l

where N is the number of blades and n = l , .... m, m=(N-l)/2 ( for odd N), or m=(N-

2)/2 ( for even N). These are similar to cyclic symmetry coordinates applied to cyclically 

symmetric structures.

Then utilising the multiblade coordinate transformation relation listed in appendix 4A to 

the blade torsion equation, and to the forces and moments transmitted from the rotor to 

the universal joint and nacelle, we can obtain the blade torsion equations and the 

equations for the nacelle and universal joint degrees of freedom expressed in the 

multiblade coordinates. The application of the operator in (2.4) to the blade torsion 

equation is straightforward and results in N equations of motion expressed in the 

multiblade coordinates. Appendix 3C lists the forces and moments transmitted from the 

rotor to the nacelle written in the multiblade coordinates. Finally, we have 12 coupled 

equations of motion for the tilt-rotor/nacelle system written in the multiblade coordinates:

[M]{x} + [C]{x} + [K]{x} = 0 (2.5)

where {x} ^Rx, Ry^R^G^ 0y ,0s (3 qs»Pqc» *t*p î^*t* ^al]

Therefore, to obtain the stability solution of the system, the algebraic equation ( 2.2 ) is 

firstly solved for the equilibrium value <J)0, and then <j)0 is substituteed into the matrices

[M], [C], [K] in equation (2.5 ), subsequently, the eigenvalue problem associated with 

equation (2.5 ) is solved. This gives either real eigenvalues or complex conjugate pairs 

of eigenvalues a s :

X=Oi + icOj (2.6)
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Gj reflects the system mode damping and hence the stability, cOj represents the mode 

frequencies. The system is stable when Gj is negative, otherwise an instability occurs

4 .3  P R O G R A M M IN G  S T R U C T U R E

The above algorithm is coded into a FORTRAN program to numerically assess the whirl 

flutter problems of tilt-rotor aircraft. Two different rotor hub configurations are 

considered. One of them has a conventional universal joint connection between the rotor 

and nacelle. The other has an ideal gimbal connection. The whirl flutter characteristics of 

the ideal gimbal rotor configuration has not been found in any previous publications. The 

configuration data of both of the tilt-rotors include the gimbal undersling, blade pitch 

bearing offset, blade precone angle, blade pitch bearing sweep angle, blade sectional 

mass centre offset and aerodynamic centre offset. The induced velocity is assumed 

uniform over the rotor and calculated based on the formulae:

where G is the solidity of the rotor, a is the lift curve slope, 0O is the blade collective 

pitch angle a t 3 /4  rati 1 as oj- ike bl(K<{e.

The integrals of blade properties along with the blade length is numerically evaluated 

based on a four-point finite difference formulae [NAG Library]. The algebraic equation

value is subsequently replaced into the nonlinear differential equations of motion to 

obtain the mass, damping and stiffness matrices. The second order differential equations 

are transformed to equivalent first order state equations. The eigenvalue problem 

[A]{x)=A,[B]{x] associated with this set of state equations are solved using the QZ 

algorithm [NAG Library]. The flutter characteristics can be analysed from the system 

eigenvalues. The flow chart of this program is presented below.

for the torsion equilibrium value is explicitly written out and computed. The equilibrium
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4.4 NUMERICAL RESULTS

Numerical results include two principal groups. The first one investigates a classical 

propeller whirl flutter model with two degrees of freedom of nacelle pitch and yaw, and a 

four degrees of freedom flap-hinged tilt-rotor whirl including two cyclic flap modes, 

nacelle pitch and yaw modes. Both of these have been studied both theoretically and 

experimentally in the literature [Reed and Bland, 1961, Bland and Bennett, 1963, 

Kvaternik and Kohn, 1977]. This part of the thesis is mainly aimed at confirming the 

validity of the present analytical model. The second group concentrates on a universal 

joint tilt-rotor and an ideal gimbal tilt-rotor whirl flutter characteristics.

4.4.1 A Two Degrees of Freedom Classical Whirl Flutter

(Basic Configuration Data Is Listed in Table 4.1)

Table 4.1

A Classical Propeller Whirl Flutter Model

Propeller inertia moment about rotation axis Ix=0.0116 kgm 

Nacelle inertia moment about pitch or yaw axis Iy=0.086 kgm2

Propeller radius R=0.257 m, Blade semi-chord b=0.0278 m 

Air density pa= 1.132 kg/m3, Blade pretwist 0tw=-4O° root to tip

Nacelle pitch and yaw frequency co0x=co0y=57.525 rad/sec 

Blade mass per unit length m=0.513 kg/m___________________

Fig 4.1,4.2 show typical graphs o f the whirl mode frequencies and damping against 

propeller forward speed at a constant advance ratio J=VF/2nR=7tVp/L>R=1.8. Two

families of curves are given in Fig 4.1,4.2 for two aerodynamic models. The quasisteady 

aerodynamic model was used as described in the previous chapter. The so-called 

unsteady aerodynamic model approximates unsteady aerodynamic effect according to the

8 3



Chapter 4 Tilt-rotor Whirl Flutter Solution & Results

idea of Reed and Bland [1961] (p27). The phase lag angle of the aerodynamic force is 

approximately given a 10° value in the present calculation.

Also given in Fig 4.2 are the experimental result and analytical result based on the 

measured static derivatives published by Bland & Bennett [1963]. A good agreement is 

observed between the present model and those results from Bland & Bennett. The 

approximate unsteady aerodynamic model gives a better agreement than the quasisteady 

aerodynamic model.

Fig 4.3,4.4 indicate the effect of the propeller pitch axis location on the whirl flutter. Fig

4.5 is taken from [Bland & Bennett, 1963] to show the effect of the propeller pitch axis 
location QJR)- The result was obtained based on the measured static derivatives. Fig 4.3

and 4.4 show an identical trend of the 1 J R  effect to Fig 4.5. The approximate unsteady

aerodynamics model (Fig 4.4) gives a better result than the quasi-steady aerodynamics 

model (Fig 4.3).

Fig 4.1 Typical variation of frequency with forward speed
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4.4.2 Four Degrees of Freedom FIap>hinged Tilt-rotor W hirl

(Basic Configuration Data Is Listed in Table 42)

Table 4.2

A Four Degrees of Freedom Tilt-rotor/pylon W hirl Flutter Model

Rotor: Rotor radius R=0.744 m, Semi-chord b=0.0451 m 
Blade mass=0.533 kg, Flap hinge offset e^ = 0 .0 5

Blade pretwist=-23° root to tip, pa=1.23 kg/m3

Blade static moment about flapping hinge=0.111 kgm 

Blade inertia moment about flapping hinge=0.0493 kgm2 

Distance from pylon pitch axis to rotor hub=0.32 m 

Distance from pylon yaw axis to rotor hub=0.277 m 

Pylon: Mass effective in pitch and yaw: 3.37 kg and 3.01 kg 

Pitch and yaw inertia about gravity centre=0.0496,0.0343 kgm2 

Distance from pylon pitch axis to gravity centre=0.212 m 

Distance from yaw pitch axis to gravity centre=0.193 m_______

Kvaternik and Kohn [1977] published a group of experimental and analytical 

investigations of a flap-hinged proprotor. In the present analysis, the flap rotor is 

equivalent to a universal joint rotor using the relation in Kvatemik and Kohn's work 

(p30-32). The blade collective angle variation with rotor advance ratio is approximated 

by the inflow angle at 3/4 rotor radius plus 1 degree,

0 = tg -i— Xf— + i°
075 g 0.75 OR

The computed whirl flutter speeds are listed in Table 4.3 and compared with the 

experimental and analytical results in Kvatemik and Kohn's work. Good agreements are
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obtained. In Table 4.3, the results for theory 1 and theory 2 are two groups of analytical 

results taken from Kvatemik and Kohn's work [1977]. They correspond to Theory 

(ref. 15) and Theory (ref.l) listed in Table HI of that report, respectively.

Table 4.3

Comparison of a Four Degree of Freedom Flap-hinged Tilt-rotor Whirl

Group 1 Group 2

............... 53 30 20

fp(Hz) 5.64 3.72

fy(Hz) 5.54 3.82

2£p 0.019 0.008

2Cy 0.041 0.031

Q (rad/sec) 50.27 68.49 86.71 99.27 50.27 63.46 89.22 95.5

Experiment 0.78 0.55 0.41 0.38 0.68 0.44 0.34+ 0.34'

Flutter V/ OR Present 0.88 0.56 0.36 0.32 0.58 0.43 0.31 0.30

Theory 1 0.86 0.54 0.37 0.31 0.74 0.50 0.38 0.36

Theory 2 0.84 0.53 0.37 0.31 0.72 0.48 0.38 0.36

Experiment 0.77 0.56 0.46 0.40 0.50 0.37 0.30 0.27

Flutter co/ Q Present 0.78 0.59 0.49 0.43 0.53 0.43 0.32 0.30

Theory 1 0.79 0.58 0.47 0.41 0.50 0.37 0.30 0.28

Theory 2 0.79 0.59 0.48 0.42 0.51 0.38 0.30 0.28
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4.4.3 A Universal Joint Tilt-rotor Whirl Flutter

(Basic Configuration Data for the Universal Joint Tilt-rotor!nacelle 

and Gimbal Tilt-rotor!nacelle Models Is Listed in Table 4.4)

Table 4.4

A Universal Joint (or a Gimbal) Tilt-rotor/nacelle Configuration

R=5.6 m, b=0.27 m, Blade pitch bearing offset ep=0.5 m 

Blade torsional inertia=1.0 kgm2, Nacelle G.C. to gimbal centre lz=1.8 m 

1^=1860 kgm2, 1^=144 kgm2 K(»)=7.3xl04 Nm/rad 

Kr=2x105, K =4.1x108 N/m, K =1.8xl09 N/m, K =2xl06 N/mp x y z
K0x=4.54xlO6 Nm/rad, K6y=7.32xl06 Nm/rad, K02=9xlO6 Nm/rad

Blade unit-length mass m=23,7 kg/m, Nacelle mass M=1800 kg 

xA=xGc=0, Pp=0.1 rad, Psw=0> Rotor operating speed £2=43.25

Blade pretwist=-40° root to tip, pa=1.225 kg/m3

The dynamic characteristics of this universal joint tilt-rotor/nacelle system are shown in 

Fig 4.6, 4.7, which demonstrate the variation of the system eigenvalues with rotor 

rotation speed £2 at forward speed VF=0. A structural damping of about 1.5% critical 

damping is added to nacelle pitch mode and nacelle x-translational mode in the 

computation. With the increase of £2, the progressive flap mode frequency approaches to 

nacelle axial (z) translational mode, nacelle pitch mode, nacelle roll mode and nacelle 

vertical (x) translational mode frequencies (the nacelle z-translational mode and roll mode 

are not plotted). Frequency resonances are produced between the progressive flap mode 

and nacelle pitch mode, and between the progressive flap mode and nacelle x- 

translational mode. At resonance there are corresponding decreases in the progressive 

flap mode damping and increases in nacelle pitch mode and nacelle x-translational mode

8 9
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dampings. This kind of resonance does not appear for the other two nacelle modes, 

because they are not coupled with the rotor flapping.

The analysis was initially done for the whole 12 degrees of freedom model. The results 

obtained were subsequently compared with those of the 6 degrees of freedom model 

which ignores the 4 blade torsion degrees of freedom, the nacelle axial (z) translational 

degree of freedom and nacelle roll degree of freedom (0^. z and 0Z degrees of freedom 

have no effect due to no coupling with the retained six degrees of freedom. The torsion 

degree of freedom is coupled with them and has some effect on the system damping, but 

its frequency is found to have a very high value in this analysis and blade section gravity 

centre is assumed to coincide with the elastic centre. Therefore, in subsequent 

investigation their effects are not considered, and the analyses are carried out for the 6 

degrees of freedom model to get a more basic and clear understanding of the whirl flutter 

characteristics.

Fig 4.8, 4.9 show the variation of the system frequencies and damping with rotor 

forward speed at an operating rotation speed Q =43.25 rad/sec. The nacelle side 

translational (y) mode and vertical translational (x) mode frequencies are not shown 

graphically because of their high values. Their total damping is very low because no 

structural damping was added in the computation and all of the damping was 

aerodynamic. The nacelle yaw mode damping increases with forward speed until a high 

inflow effect appears at about 280 m/sec, then the damping drops off very quickly and 

the mode goes unstable. Meanwhile, the regressive flap mode frequency approaches the 

nacelle yaw mode frequency at high inflow, this causes a damping increase in the 

former, and a decrease in the latter.

Fig 4.10, 4.11 show the effect of reducing the yaw stiffness to half the previous value. It 

is observed that the flutter speed is much lower than that in Fig 4.8, 4.9. The computed

9 0
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results also indicate that the symmetric nacelle restraint stiffnesses are worse than non- 

symmetric ones. Obviously, the nacelle restraint stiffness has a significant effect on whirl 

flutter.

Rotor rotation speed rad/sec

Fig 4.6 Mode frequencies vary with rotor rotation speed 
at VF=0 for a universal joint rotor

Rotor rotation speed rad/sec 

Fig 4.7 Mode dampings vary with rotor rotation speed 

at VF=0 for a universal joint rotor
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4.4.4 An Ideal Gimbal Tilt-rotor Whirl Flutter

Another possible type of rotor has been proposed for use in the tilt-rotor aircraft. This 

type of rotor allows the rotation speed vector to tilt following the rotor gimbal motion.lt 

is called a gimbal rotor in this thesis. An ideal gimbal rotor differs from a universal joint 

rotor in that the rotation speed vector of a gimbal rotor is fixed with the rotor and hence 

can tilt with the rotor gimbal degrees of freedom. For a universal joint rotor, the rotation 

speed vector is fixed with the nacelle and therefore can not tilt with the rotor (Fig 4.12).

A universal joint rotor A gimbal rotor

Fig 4.12 Difference between a universal joint rotor and a gimbal rotor

The equations of motion for the gimbal tilt-rotor/nacelle system can be developed 

following the procedure in chapter 3. It is important to recognise the main difference in 

the development of the equations of motion for these two systems is the coordinate 

transformation relation between xlgylgzlg and xhyhzh systems due to the configuration 

difference. For the universal joint rotor, Xhyhzh is obtained by firstly rotating \j/=Qt about 

zlg axis to x2gy2gZ2g and then rotating ocq about x2g and pG about y2g to xhyhzh. While, 

for the ideal gimbal rotor, xhyhzh is obtained by firstly rotating pGs about ylg and pGc 

about xlg to X2gy2gZ2g and then rotating \r=Qt about Z2g to xhyhzh. Therefore, we can 

easily obtain the equations of motion for the gimbal tilt-rotor/nacelle system by making 

use of the equations of motion for the universal joint tilt-rotor/nacelle system obtained in
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chapter 3. Replacing pG= a G=0, 0X= 0X+ PGCf 0y= 0y+ pGs, and the blade torsion 

<j)=<tH-<j)A into the equations of motion obtained in the last chapter, the equations of motion 

for the gimbal tilt-rotor/nacelle system can be obtained, where (j)A is caused by the 

kinematic pitch/gimbal coupling and <j>A =-( pGssin \jr+ pGc cos \\r). The final equations of 

motion are of the same form as for the universal joint tilt-rotor/nacelle system. The 

solution procedure introduced in 4.2 can be applied to solve the stability problem.

The whirl flutter problem of a gimbal tilt-rotor/nacelle system is investigated in the 

following results. The basic configuration data is the same as for the universal joint listed 

in Table 4.3.

As in Fig 4.6, 4.7, the dynamic characteristics of the ideal gimbal tilt-rotor are shown in 

Fig 4.13,4.14, where the same amount of structural damping as in Fig 4.6, 4.7 is given 

to the nacelle x-translational and pitch mode. Similarly, the frequency resonances occur 

when the forward flap mode frequency coincides with the nacelle pitch mode and x- 

translational mode frequencies. This implies the existence of couplings between these 

modes in the gimbal rotor.

Fig 4.15, 4.16 show the variation of the frequencies and damping with rotor forward 

speed at the operating rotation speed Q=43.25 rad/sec. Again, a similar phenomena to 

the universal joint one (Fig 4.8,4.9) occurs. The nacelle pitch and yaw mode dampings 

are increased with forward speed until the high inflow effect appears, then the lower 

stiffness nacelle mode (yaw) swiftly goes unstable. But the critical forward velocity is a 

bit higher than that in Fig 4.8, 4.9.

Fig 4.17, 4.18 present the results after reducing half the nacelle yaw stiffness in Fig 

4.15, 4.16. The flutter velocity is highly reduced comparing to Fig 4.15, 4.16 because 

of the stiffness reduction. However, this flutter velocity is still a bit higher than that of
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the universal joint rotor under the same case (Fig 4.10, 4.11). Again, this means the 

nacelle restraint stiffnesses have significant effect on the whirl flutter of an ideal gimbal 

tilt-rotor.

Fig 4.13 Mode frequencies vary with rotor rotation speed 

at VF=0 for a gimbal rotor

Rotor rotation speed rad/sec
Fig 4.14 Mode dampings vary with rotor rotation speed 

at VF=0 for a gimbal rotor
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4.5 CONCLUSIONS

A 12 degrees of freedom analytical model has been developed to investigate the coupled 

tilt-rotor/nacelle whirl flutter problem. The ordering scheme was used to retain the 

nonlinear terms in formulating the equations of motion for whirl flutter problems. The 

quasi-steady aerodynamics includes not only the circulatory part, but also the 

noncirculatory part which was neglected in the previous whirl flutter models. Two 

different types of connections between rotor and rotor shaft are considered. One is the 

ordinary universal joint connection. The other is a suggested possible gimbal 

configuration. Their whirl flutter characteristics are compared. The whirl flutter 

characteristics of the tilt-rotor of an ideal gimbal configuration is not found in the 

literature.

This analytical model is applied to the study of a classical propeller whirl flutter, a flap- 

hinged tilt-rotor/nacelle system whirl flutter. The present analytical results show good 

agreement with both experimental and analytical results.

Comparative studies were done for a universal joint tilt-rotor /nacelle system and an ideal 

gimbal tilt-rotor/nacelle system. Their whirl flutter characteristics were evaluated and 

compared. It is found that the whirl flutter mode in the two tilt-rotor configurations are 

very similar. In both configurations, the unstable mode appears as the nacelle mode of 

lowest frequency, and reducing the nacelle support stiffness is highly destabilising. The 

rotor behaves like a flap-hinged rotor which gives the rotor modes very high damping. 

The forward rotor mode damping decreases with the forward speed, but the high 

flapping damping is generally sufficient to maintain its stability until quite high forward 

velocity is achieved. The gimbal rotor is a bit more stable than the universal joint rotor.

9 9
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CHAPTER 5 A FINITE ELEMENT STRUCTURAL DYNAMIC 

MODEL OF A BEAM WITH AN ARBITRARY MOVING BASE

5.1 INTRODUCTION

The previous two chapters develop a rigid body dynamic model to study the whirl flutter 

problem of a tilt-rotor aircraft This rigid blade model, like the other rigid blade models in 

rotorcraft dynamics, can gives us a more direct physical insight into the dynamic 

behaviour of the system. Such models may be appropriate for some problems of some 

rotorcraft configurations such as articulated rotor blades. However, It is a fundamental 

reality that rotor blade flexibility leads to elastic deformations in actual operation. These 

elastic deformations become important in the dynamic model of many rotorcraft 

configurations such as those with hingeless and bearingless rotor blades. The lack of 

hinges results in large bending and torsional deformations of the rotor blades during 

rotorcraft operation. For these configurations, the rotor blades have to be treated as an 

elastic beam. Consequently, the fundamental basis for rotor blade dynamics is the 

structural dynamic behaviour of rotating elastic beams.

A number of suitable dynamic equations have been developed to describe the elastic 

bending and torsion of rotating beams in the rotorcraft dynamics area over the last 20 

years. These models successfully solved the dynamic and aeroelastic problems of a 

number of rotorcraft configurations and have proven to be very valuable. However, 

since most of them were developed using the modal method and based on only one 

specific physical model, they lack the capability as a general analytical model to treat 

various different configurations. It is desirable to develop a general beam structural 

dynamics model which can be used as a basic element to couple with the body degrees of 

freedom or to model the complex blade root geometries instead of developing one 

dynamic model for each single different configuration. The Finite Element Method 

provides us an ideal technique suited to modelling the complex geometries in the modem
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rotor structures. In recent implementations applying the finite element method to 

rotorcraft dynamic problems there are several significant efforts to explore the application 

of the Finite Element Method to this problem [Straub and Friedmann, 1981, Sivaneri and 

Chopra, 1982]. These models discretize a simple rotating beam, and they are still limited 

to one configuration. The need to model the general coupling of the beam with the 

fuselage or blade/root kinematics of an arbitrary configuration is not met by such 

approaches.

Rotating beam dynamics also have a wide application in a number of other relevant 

disciplines such as spacecraft dynamics, robotics and machine design. Its investigation is 

also actively pursued in these fields. A number of publications have dealt with simple 

spinning beams. Some attempts have been undertaken to construct more comprehensive 

theories by considering an arbitrary complex base motion of a beam in connection with 

the multibody dynamics problems. Unfortunately, none of them possess the capability to 

model the nonlinear elastic equations of motion. Furthermore, as pointed out by Kane et 

al [1987], the previous models for rotating beams in multibody dynamics have some 

significant deficiencies. To assess those deficiencies and develop a general dynamic 

model, Kane et al [1987] recently completed work on multibody dynamics treating the 

structural dynamics of a beam attached to an arbitrary moving base using a modal 

method. This is a quite general and comprehensive theory. However, the structural 

dynamics model is a linear one, and the use of the modal method restricts its application 

to some beams with complex geometries but with a linear response. Besides, this model 

does not include some important structural effects of a rotor blade such as the blade 

pretwist.

Obviously, it is a useful method to consider the motion of a structure in an attached 

arbitrary moving frame. This can result in a very general dynamic model and is the 

essence of the multibody dynamics formulation. When this method is combined with the
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finite element technique, a very comprehensive and general dynamic model can easily be 

created. Such a model is not only capable of modelling its coupling effect with other 

structures, but is also capable of dealing with complex geometries. This chapter is 

devoted to developing such a new general dynamic model for beam-like structures. This 

newly developed model is expected to provide a general and fundamental element for 

solving the dynamic problems of rotating beam-like structures. In the next section a brief 

introduction to the physical model is given. Subsequendy, the equations of motion are 

derived based on the principle of virtual work. Finally, numerical examples of both the 

eigenvalue problem and the dynamic response problem are presented to validate the 

mathematical model that has been developed.

5.2 PHYSICAL MODEL DESCRIPTION

An elastic beam is attached to a rigid body base as shown in Fig 5.1. This base has an 

arbitrary and large space motion which is defined by the velocity VA of the connecting 

point A and the rigid body angular velocity coh in an inertial reference xyz. A frame

XjyjZj is fixed to the moving base and centred at A. The beam undergoes a three 

dimensional deformation (Fig 5.2). A frame x2y2Z2 is fixed with the beam cross section 

and parallel to X jy ^  before deformation and centred at the cross sectional elasticity 

centre. The cross sectional mass centre is offset xgc along y2 and ygc along (Fig 5.3).

Fig 5.1 A beam attached to a moving base
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Vl

Fig 5.2 Elastic displacements of a beam

®tw+(l>

Fig 5.3 Cross-section geometry before the deformation and after the deformation

5.3 FORMULATION OF EQUATIONS OF MOTION

The equations of motion are obtained by using the principle of virtual work. The 

equations are discretized by the finite element method. Hence, the beam is divided into a 

number of elements. The beam inertia is lumped at the nodes of each element. This 

lumped model simplifies the formulation of the generalised inertia forces. As usual, the

1 0 3
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The system's equations of motion can be obtained from the principle of virtual work as:

lumped rotary inertia of the beam in flexure (flap and lag) are taken as small values. The

effect of the cross section warping on the inertial forces are negligible and are not

considered.

5U -  5W = 0

where 8U is the variation of the strain energy of the beam, 8W the virtual work done by 

nonconservative forces.

These equations are discretized using the Finite Element Method. The contributions of an 

element to the variation of the strain energy and the virtual work are derived in the 

following sections.

5.3.1 Virtual W ork Done by Inertial Loads

Assume the base motion to be described by the following translational velocity and 

rotational velocity:

= v xi'1 +Vyj-1 + v zE 1 ( 3 .1 .1)

(3 .1 .2  )

Considering a differential cross section S of the beam at a distance r from point A 

(Fig.5.1). After deformation, S is brought to a generic position (Fig 5.2). The sectional 

Euler rotation sequence is taken as lag-flap-torsion (t-(-P)-<[>). The sectional elasticity 

centre is displaced u, v, w in x1? yv z x directions respectively.

Then, the position vector of the sectional mass centre relative to point A is:

Rgc= (r + u)!*^ vfj + wEj + x gcj 2 + ygc£ 2 ( 3.1.3)
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The transformation relationship between XjyjZj and x2y2Z2 *s:

1 2 rc  c
S sc SP •

r >
h

/

j*2 ► = - c *s ; - s t s pc ? c <l>c c “  scs ps<> C PS* h = [T 2l]‘

B2. _-C,SpCc + S$Sc - s* V V pc* CPC* A

Where S=sin(), C=cos()

The angular velocity of section S in frame XjyjZj is:

<v = (4> + CSp)r2 + (- pc „ + ccps#)r2 + dte* + Ccpc0)E2

= te iJTET 2i3Ti "  K  + &  „s 4  = (B i>T[Mpi]| S

<t> + CS

^ ♦  + <c „c * j l<t>

where [M pl]=  [T 2J

0 sp r

CpC0 0

*1 
—*
Ji

ik u

The absolute angular velocity of S in the inertial frame xyz is: 

cb = cb, + cb .h p i

— G) x 11 4- CO zk  ^

=  COx2**2 +  2 +  C0z2*C2

= { E J T[ M J [ cox, CO^CO^ft C (j)]T

i t  (3 .1 .4 )

(3.1.5 )

( 3.1.6)

( 3.1.7 )

(3 .1 .8 )
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The velocity of the mass centre of S in the inertial frame is obtained from the following 

equation:

^gc = + x ^ g c + ^gc

= {vx + coy£w + XgcCpS^ + ygcC^C — coz[v + Xg^C^C^ — S^S^S^)

+ y gc(-C (i,S pS^-c^s< j))] + u + x gc [(-C (j,spc^  + s cs^) <j>

-  s *c pc cP -<  - V p s ? '+ CC<V& + y gJ(s os pc c + SC<V ♦

" CoC pC CP + (C (J>S pS ? + C^S I\

+ {Vy + co2[r + u + xgC( — S^SpC^ — S ^ )  + y gc( ~~ C^SpC^ + S^S^)]

-  cox[w + x gcS^Cp + ygcC^Cp] + V + XgJ( -  SpS^ -  C ^ )  <j>

- s ĉ psc P- (- V pcc - s5cpd + ygc[ -  ( -  s*SpSc + ccc 0) <i>

-  C^CpS^P + ( -  C^SpC^ + S ^ S ^ Q T ,

+ {vz +  coxtv + x gc( - S <>SpS^ + C ^C <>)+  y gc( -  C ^ S p S ^ - C ^ ) ]

-  C0y[r + u + XgC( — S*SpC c — + y gc( — C^SpC^ + S^S^)] + w

+ XgcfC^Cp^ —S^Sppl —yg(JS(j,Cp (jj + C^SppJJkj

=  [ V X V y  V J f l B j }  ( 3 . 1 . 9 )

The acceleration of the mass centre of S is obtained by differentiating v gc:

a PC=  a .  +  e,  x  R e c + a ) ,  x  S. + w .  x  ( w ,  x S EC) + J  + c b , x 5 . ( 3 . 1. 1 0 )gc A h gc h gc h v h Sc/ gc h gc v '

Where:
aA = a xr i + ayfi + a z^!

=v xr, + Vyj*!+vẑ ,+ah x v A 
= v„r1 +vyrj + vzic1 + (coyvz-w2.vy)r1

+  ( “ 2v x - c o xv z)j*1 +  (coxv y - c o yv x) ic1 ( 3.1.11 )
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e h ~ ^ x1 i

z^ i (3 .1 .12)

R gc = f xr i + f yj'i+ f ^ i (3 .1 .13)

^gc = ^ x ii+ ^yJ i + r"zki ( 3.1.14 )

And,

T x = u +  x gj ( -  c ^ s pc c + S?S„) *  -  S0C pCcP-  ( -  S#SpS? + c ?c * )a

+ y gcKS ts pc c + s cc  j <j> - Cf  pc cp + (C ? + c ?s / ]  (3.1.1 s )

r y = v + x gj ( - C 0SpS? -  C ^ )  *  -  S0CpSc| i -  ( -

+ y gc[ -  ( -  S*SpSc + c ?c p  <}> -  C^CpS;p + ( -  CtSpCc + S^^C ] ( 3 .U 6  )

r z= w  + x gc[C4,C p4 .-S 4>S p |3 ]-ygc[S<)Cp(t. + C<,Spp] (3.1.17)

r x = u + x gc{( -  C^SpC^ + S^S(j,) + -  St CpC?& -  ( -  S ^ S , .  + C ?C ^

+ <j> [(S^SpC  ̂+ SfJ  ♦ + ( -  c tc „ c 5)$ + (C„SpS? + c cs0)O

-  f tC t CpC? <j> -  s p C S ^ C p S ^ ]  -  f t ( -  C ^ S p S j- C jS p  <i)

+ ( -  S^CpSc)P+ ( -  S*SpC? -  ScC0)C] + y gc{(S$SpC? + S ^ )  *

-  s c pc ?p + (C »s ps ? + c ?s ^ + ♦ [ ( c *s pc r  w  ♦ + s i.c pc cP 

+ ( -  S$SpSc + C ?C$)C] -  ft -  S,CpC? 4 -  C $SpCcp - c 0c ps ea

+ a (  -  S^SpSc + C^C*) (j) + C^CpS^P + (C$SpC?-  s^spci) ( 3.1.18 )

; y = V + x gc{( - C$SpS; -  c cs,p * - S^CpS^p + ( - S^SpC^- s cc*)C 

+ <j> [(S^SpC^ + s 5c #) 4 + ( -  C0CpCc)P + (C*SpS;  + C?S*)&

-  ftC^CpCc <j> -  S^SpC^p- StCpS^] -  & ( -  S S p S r  c ?sp<j>
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+ ( -  S ,C pC?)p + (S^SpS^ -  C ^ t ]  + y gc( -  ( -  S ^ S , .  + O f f  <f>

-  c «c  ps  CP + ( -  c »s  pc  C + s  ?s  "  <(• [ ( -  c „s  pc c + CCS ^

+ (-  s4>c psc)p+(- + s^c^g - H - s$cps ^  -  ĉ SpŜ p

+ c t c „ c cCi + f t(S t SpC ; - S t C t ) ♦ + ( -  c 0c pc^)p

+ (C<j,S pS^ + C^S^Q} (3 .1 .19)

•rz= w + xgc{C„Cp *  -  S„Spp + <j> [ -  S0Cp *  -  C$Sppl -  p[C0Sp <j> + S<,Cpp]

-VgctS^Cp + + C0Spp+ * [C$C P <j> -  S^Spp] + ft -  S0s p <(> + C ,C pPJ) ( 3.1.20 )

The acceleration of the lumped mass centre can be written as the following form from 

(3.1.10)

a gc= {Ej}T { [Al] • [axa y a z e x ey e 2 r x iry irz ]T

+  [A 2] • [cox coy coz r  x r y r z ]T +  [A3] [ r x r y r J T) (3 .1 .2 1 )

Replacing rx, ry, rz, rx, ry, rz, and rx, r , rz in ( 3.1.15 ) through ( 3.1.20 ) into 

(3.1.21) :

a gc= {Ej}7 { [Aa] [ax ay a z e x e y e z u v w P £ (j)]T 

+ [Av] [cox coy coz u v w P £ <j> ]T

+ [Ad] [u v w]T+ {Ao} } ( 3.1.22 )

— >

The resultant angular acceleration of section S is obtained by differentiating co: 

a = g h + a h x a h + s Pi+ < s h + a Pi>x a Pi

pi=  8 , +  8 +  CO , X Q)h pi h ( 3.1.23 )
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Where :

e h =  ^ x 1 i ^ yJ 1

e , = a  = {6,)'Pi pi 1

P £

[MeJ e ■ + [Mev]< ► >

A A.

( 3.1.24 )

( 3.1.25 )

0 -  CDZ COy p
-» -* fr̂  1T
0)h X<Bp l= (E 2l X30x3

[T2 ll[Mpl] c

-c o y -  cox 0 A

Applying (3.1.24 through 3.1.26) to (3.1.23), The resultant angular acceleration can be 

written as:

( 3.1.27)

The inertial loads due to the lumped mass are:

Force: f j = - m a gc (3.1.28)

Moment about the mass centre : Mj = -  [2 T + cb x I • 65] ( 3.1.29 )

Where, the inertia dyadic of the lumped mass is written as:

i = i xxr 2r 2 -  2i xyr 2r 2 -  2 i X2r2k2 + i yyr 2j 2 -  2i yj 2E2 + i a E2E2 ( 3 . 1.3 0 )

1 0 9
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The virtual displacement of the mass centre is:

8 rgc = fjSu +J-8V + kjSw + i*18R x + j^SRy + kjSRj,

+  {x get- S p C 1̂ j — S^C  -  S ^ S p k j]  +  y gc[ —C ^ C p C ^ i j

- c ^ c ^ f j  - c ^ S p E j U S j  +  { x gc[ - ( - s 0s pc c +  c ?c 0)r j  

+  ( - S * S pC c - S CC ^ J - ]  +  y g C[ ( C , S pS ;  +  C CS ^

+  ( - C  pc  5 +  s  5s  ? +  {x  g J - C - C  t s  pc  ? +  s  cs  $) r ,

+ (“ S V s  -  + c » S 5 i] + M ( s 4,s ec s + s cc *) r i

_  -̂S |i>s ps ? + c ?c ^ j* i-  s <t>c p^ + (- (w + x gcs  <>c p + y gcc

+  [ v  +  x  gc( —S pS j, +  +  y  gc( —C ^ S p S ^  —

+  { (w  +  x gcs „ , c p +  y  gc C 0C p) r ,  -  [r  +  u +  x gc( - S ^ S pC 5 -  S^Cq)

+  y  gc(— pCj-  +  S ^ S ^ J k jJ S g ^  +  {—( v  +  XgcCC^Cj. — S^S pS |.)

+ y gc( -  s <,c  ? “  C (j,s ps  + [f + u + x gc(- s  <(,s  pC? -  s  ?C0)

+  y  gc(“ ^--(|,SpC^ +  s  >̂11 i )5 02

The virtual rotation of the section S is:

5y = r ^ e x+ r ,8 0 y + k 160z + ( -  C^-2+ S ^ 2)8p + (S p?2 + CpS,jj-2 

+ c pc / 2)8C + r2s«t>

The virtual work done by inertial loads is:

S r^  + S l^ S Y

This can finally be written as:

8W j=  [8u 8v Sw 8)3 8C 8t() 8R X 8Ry 8R Z 80 x 80 y S 0 J{ F *  } 
*

{Fj} is the generalised inertial forces

(3.1.31)

( 3.1.32)

( 3.1.33)

( 3.1.34 )
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The generalised inertia forces corresponding to the relevant generalised coordinates are as 

follows:

u = - m i j  • a gc

F * —» —*v = - m j j  • a gc

F*w= -m lc, •a*gc 

F*vx= -  mfj • agc

F yy mj j • a gC

F vz nikj • a gc

F* = - m ( b n r i + b 12f 1 + b 13ic1) • a gc -  ( a ^  + a 12fj + a^ E j) • [ 2 • I + cb x I • cb] 

F* = -m C b ^ rj + b 22j*j + b 235 1) a gc-  ( a ^  + a ^  + a 23Ej) • [t  - I + cb x I • &] 

F ^=  - m ( b 3ir i + b 32r i + b 33S1) -a gc-  (a31fj + a ^  + a 33£ x) • [e -I + t b x l  -cb] 

F*<DX= “ m(c i ir i + c i j ,i+ C i3t i )  ' agc -T j [g  • I + cb x I • cb]

F ^ y  =  - 1 1 1 ( 0 ^  +  C 2 2 ^  + 0  2 3 ^ )  -a*gc — J*! • [e  I + d )  x l  • cb]

F*<at = - m ( c 31i 1 + c 32y1 + c 33i l) • a gc- k 1 • [£ I + cb x I • cb]

.......... ( 3.1.35 )

Combining the equations (3.1.30), (3.1.27) and (3.1.8), the following relations can be 

derived,

6 * * = £ x2*xxl 2+ ( ~~ ^ £x2^y +e y2̂  yy^2 + ^ z ^ 22 ~~ ^£x2**z “  ^  y2* y ^ 2   ̂ *^6 )

COX I-  CO =  ( -  Wy2C0z2^yy +  C0y20 )z2*zz ” ^ <0z2 * y ^ 12

+  X 2 ®  z 2 *  x x  “  2 ©  y2©  z2 I  x y  “  C0X 2C0 z 2 *  22 ~  ^ 0 ) z 2 * x z ) j  2

+ ( -  ©x2© y2I xx+ ©x2COy2̂ yy + ^C0y2^y - ^ C0x2C0z2^yy + ^C0y2C0z2*xy)^2

............ (3.1.37 )

Replacing e-I, coxFco, a gc to the generalised inertial forces in (3.1.35) and using the
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expressions for a , e , co* in equations (3.1.22), (3.1.27) and (3.1.8). Thesegc

generalised inertial forces in (3.1.35) can finally be expressed in the following matrix 

form:

{F,*} = [la] [ax ay az e xe y ez u v w jj £$] + [Iv] [cox coy a>z ii v w |3 £ ij>]T

+ [Id][u v w]T+{If} (3.1.38)

Another method to obtain the generalised forces is widely used in the multibody 

dynamics formulation [Kane and Levinson, 1985, Kane et al, 1987]. It is called Kane's 

method. It is more convenient in some cases. Appendix 5A gives the derivation of the 

above generalised inertial forces using Kane's method to demonstrate its application in 

rotorcraft dynamics.

5.3.2 Variation of the Strain Energy

The virtual work caused by the internal forces is obtained by the variation of the strain 

energy. Although the deflections may be large, the strain is assumed to be small. A 

general nonlinear strain-displacement relation is adopted. The centrifugal stiffness and 

gyroscopic terms caused by the base motion are specifically treated so that this dynamic 

model can be conveniently applied to both nonlinear problems and liner problems. The 

final mathematical models can be readily applied to solve not only an eigenvalue problem 

but also the dynamic response problem of a beam attached to an arbitrary moving base as 

in a multibody dynamics algorithm.

The shape functions for the beam element are taken as Hermite polynomials for the 

bending deformation and linear polynomials for the torsion and axial deformation. They 

are defined as:

112
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H, = 2(x</ l e)3 - 3 ( x e/ l e)2 + 1

H 2 = l e[(xe/ l e)3 - 2 ( x e/ l e)2 + ( x c/ l e)]

H 3 = - 2 ( x e/ l e)3 + 3(xe/ l e)2

H 4 = l e[(Xe/le)3 -(X e/*e)2]
L , = l —(xe/lg)
L 2 = x e/ i e

Where xe is the local axial coordinate for the i'th element and 1 is the length of the i’th 

element

Therefore, the distribution of the deflections u, v, w, $ over an element is represented in 

terms of the nodal displacements using these shape functions as:

( 3.2.1 )

w = [ H. H9 H , H J ( 3.2.2)
w

v = [ H. H L H -H J ( 3.2.3 )
v2

(3.2.4)

(3.2.5)

1 13
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To obtain the strain energy of the beam, the strain-displacement relation of the elastic

beam must be developed. A general nonlinear strain-displacement relation has been 

developed based on the Euler-Bemoulli beam assumption (Hodges and Dowell, 1974). 

This nonlinear relation is widely accepted for rotor blades with moderately large rotation 

(Ormiston et al, 1987). Therefore, this relation is adopted in the present model. They 

were expressed as:

where X is the warping function for the cross section. 0 ^  is the blade pretwist angle 

(Fig 5.1-5.3).

The stresses are respectively:

-  v "[ ticos (0  M + <)>)- £ sin (6  w + $)]

-  w 'Tnsince^, +(}>) + £ co s(e tw +<(>)] ( 3.2.6 )

( 3.2.8 )

( 3.2.7 )

g  = EeXX ^ x x ( 3.2.9 )

( 3.2.10 )

(32.11 )

The strain energy of a beam element is:

( 3.2.12)

1 1 4
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Replacing ( 3.2.2-3.2.5 ) into ( 3.2.6-3.2.8 )

p linear , p nonlinear 
fcxx + f c xx

= [L ,', L 2' , -(T!sin 6 w +Ccos0tw) [H 1",H 2",H 3',,H 4"],

- ( ri cos 6 [w -  C sin 0 w) [ H j", H2" ,H 3", H4"],

(n2 + ? 2) 0 tw’[L 1’, L 2'] ] [ u 1 u 2 w 1 P ! w 2 P 2 v , C jV 2 ? 2 ()>, <(.2]T 

+ [0 ,0 , w 'fH j'.H j' ,H3',H 4’] -(T)cos 0 lw -Csin 0 W)<|> [H l" ,H 2’,,H 3",H 4"],

^ v '[ H 1,,H 2’ ,H3,,H 4'] - ( - r i s i n  0 tw- ^ c o s 0 tw)(|)[H1")H2",H 3,',H 4'']> 

i()) '[L 1' , L 2']]{ ae} (3 .2.13)

M  f M

l Y2J

a,  f* i
e xC= ( n - f ) [ L i ' ,L 2’] ] (j)

2

(3 .2 .14) 

( 3.2.15 )

From equation (3.2.12), we can obtain:

[tfAEexxLi'diidc]d ’‘ ( 3-2-16 )

^ 7  = f^ AE e xxL2'diid c]dx ( 3 -2-17 )

r)TT le
^ 7  =  Jo { t f  AE e x x [ Z l H l  -  [n*to  ( 6 tw + < »  +  Ceos ( 0 W +  M H j "  ] d , d c } d x

............ (3 .2 .18)
T le

^ 7  = Jo { tf  AE e x x [Z 2 V  -  ^ sin (0 W + W + Ceos (0 w + *)] H2" ]d ,d c}  d x

............ ( 3.2.19 )

^  = Jnle{ J J rE eyy [w 'H 3'- [ n s i n ( 0 lw-f») + Ccos(0tw+4))]H3" ] d 1,d ,] .d x

.......( 3.2.20)

1 1 5
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| j r -  = AE e 5« [ w' H4 -  [ nsin (0 w + (» + C cos (6 tw + <»] H 4" ] d nd cj. d x

............ ( 3.2.21)

= f*{W AE e x x t l 2 i l "  [llcos<e«w + «  "  ? sin (6.w + M H ,"  ]d„dc} d x

............ ( 3.2.22 )

#  = | 1le{ n / e xx[ v l l 1 ' - [ilco s(e tw + <|.)-Csin ( e m + « ] H 2" l ^ d ; } d I

............ (3 .2 .23)

J ^ -  = C { J/AE ex x - [ncosce^  + ♦) -  Csin (0 ro + W H 3" ] d ,d c } d x

............ ( 3.2.24 )

J r - =  C p  aE 8«  + « "  Csin (0 tw + + p ;  ]d „d c } d x

............ ( 3.2.25 )

= J0le{JJA[E e xx((ti2 + C2)(ew,L 1,+  f L ^ )  -  v"[ -  T|sin (B w +  * ) L j

-  C cos (0 w + <)>)L j] -  w"[I)cos (0 w + <|>)L j  -  C sin (0 lw + <|>)L,])

+ ° e XT1(-C  -  § ^ )L ,'+  G e ^ f l l -  ^ L ^ d ^ J d ,  ( 3.2.26 )

^7 = 4*e{ // AE exx((ri2 + C2)(e tw’L 2'+ £ L ^ ) -  v"[ -  nsin (0 w + « L 2
-  C cos (0 ^  + <»L2] -  w" [Tjcos (0 w  + <|>)L 2 -  £ sin (0 w + <j>)L2])

+ G e ^ < ~  ^ > L 2,+ G 1̂  (n -  f - ) L 2' ] d „ d c) d x (3.2.27 )

Note the following relations are applicable to (3.2.16) through (3.2.27): 

JJAE exxd T)d^=[EAL j ' , EAL 2\  -EAx Tsin 0 lw[ h" t h" 2 H"3 h" 4] ,

-E A xTcos0 tw[H"1 h " 2 H"3 h" 4] , EAk2A0 lw[L ,, L 2] (ae)

1 1 6
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/ / ^E£xxTl(irjd.

JJAEEj(xCdnd

JJ E exx(ri2 +
A

JJAG [e x „ (-

+  [ f t  0, E A -jw 'tH 'j H 2 h ' 3 H 4] -EAx t c o s0 tw4>[h" , h" 2 h" 3 h" 4], 

EA j v '[ H '1 H^] +EAx Tsin © ^ [ H f ,  h" 2 h" 3 H"4],

E A k ^ - I L ' j ,  L'2] ]{a«)  (3 .2 .28)

5 = [EAx tL 11, EAx .pLj , -E I ^  sin 9 J H " , H"2 h"3 H"4], 

-E Izzc o se tw[HT] H"2H"3H"4], EB’ o' ^ l' , ,  L.'2] {ae }

+ [ft 0, EAx Ty v / [ H  j H 2 h ' 3 h '4] — El ^  cos 0 tw«t>[H"1 h " 2 h " 3 H

EAx t -j v 'IH 'j H '2 h ' 3 H 4] + E I22 sin O ^ h" ,  h" 2 h " 3 h" 4], 

EAx t -|<>'[L'1, L '2] ] [ a e J ( 3.2.29 )

^= [0 , 0, -E Iyjrco s0 w [H "1H/,2 H"3 H''4], 

-E Iyysin 0 tw[H "1 H"2 H"3 H"4], 0, 0]{ae)

+ [0, 0, -E Iyys in 0 tw<l)[H"1H"2 H"3 H"4], 

- E Iyycos0tw(|.[H"1 H', 2 H"3 H"4], ft 0 ][ae) (3 .2 .30)

C2) d „ d c =  [ E A k ^ L j’.EAk 2L 2' ,-EB*2sin 0 tw[H"j h " 2 h" 3 h" 4],

-EB 2cos 0 tw[H/,j H"2 H"3 H"4], E B jO ^fL 'j l' 2 ] (a e)

+ [0, 0, EAk2 iw T H '1 H '2 H'3 H'4)

-EB 2cos 0 ^ [ H ^ j  H"2 H"3 H"4] ,

EAk 2 - I v'[H '1 H 'j H 'j  Hf4] + EB*2sin f l .J IH " ,  h " 2 h" 3 h ".

E A k ^ - i f tL 'j  L ' 2 ] ] ( a e) 

- § ) + e x ^ - f )]d’id ;  = G J[ L' r

( 3.2.31 ) 

( 3.2.32 )

1 1 7
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The symbols related to the section integrals in the above equations are defined as follows:

a  = JJ dndC
A

E Iyy=JJ K 2dTjdC
A

EAk2A= jf  E(£2 + n 2)dndi; 

EB* = JJ E(C2 + n 2)2dTldC
*■ A

x T= ATidTidC 

EIffl = JJ Eri2dridC
A

GJ = n AG[(C + f ^ ) 2 +  (t i -  | ^ ) 2]di1dC 

EB*,= tf Eri(C2 + n 2)dridC ........... (3 .2 .33)
* • A

The beam section is assumed to have an axis of symmetry T|, so the following integrals 

are zero:

II CdTldC = 0  II TlCdildC = 0
A A

j r c ( C 2 + n 2)* id i;= o
A

..........(3 .2 .34)

The variation of the strain energy of a element can be written as:

Sv,, 8w ,, Sp ,, 8£,, 8v2, 8w2, 8P2, 8£2, 8<1)2>

8RX, 8Ry, 8R„ S0X, 8By  80 j{ F t}  ( 3.2.35 )

*
where : {Fs} is the generalised forces caused by the internal loads. They can be obtained 

from the following relations.

« } = [
au au a u au a u a u au a u
0 U 1 * 3 v ,’ 3 w ,’ a p i ’ a<t>,’ 3 u 2 ’ 3 v 2 ’

a u
dw2’

a u
9P2’

au

* 2 '

9U
* 2

0 ,  0 , o, a
T

0 ,  0 ] 1 (  3.2.36 )

They are the generalised forces caused by the internal loads.

Applying Relations ( 3.2.28-3.2.33 ) to ( 3.2.16-3.2.27 ), then the above generalised 

force expressions gives the element stiffness matrix. It must be pointed out that the

1 1 8
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nonlinear terms in the expressions of the strain energy derivatives are specifically treated 

here so that the relations can be conveniently applied to a general linear dynamics 

problem. These terms are related with the centrifugal effect of a rotating beam. They are 

underlined through equations (3.2.16) to (3.2.27). An approximation is made using the 

fact that the resultant force of the axial stress on a beam section is roughly equal to the 

centrifugal force applied on that cross section. That is

J J AEexxdndC=T

Where T is the centrifugal force on a section of the beam.

Applying this approximation to the underlined terms in equations (3.2.16) to (3.2.27), 

we can obtain the generalised forces caused by the internal loads and hence its 

contribution to the element stiffness matrix. This model can be readily applied to both 

linear and nonlinear structural dynamics problems.

5.3.3 Equations of Motion of the System

According to the principle of virtual work:

S U - S W ^ O  ( 3 . 3 1 )

We use the Finite Element Method to discretize the equations. The beam is divided into a 

number of beam elements. Therefore, the equations (3.3.1) are discretized as

Nc No
I A . =  I  ( 8 U . - 8 W e) = 0  (3.3.2)
j=i 3 j=i J J

Aĵ S U . - S W j . ( j = l . . . N e) (3.3.3)

where Neis the number of elements. Aj gives the contribution of the j'th element.

1 1 9
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Fig 5.4 Illustration of a general finite element of the beam

Fig 5.4 gives a description of a typical element. The element inertia is lumped to the two 

nodes of the element The virtual work done by the inertial loads is:

( 3.3.4 )

^^Imassr SW im ^ can be obtained from equation (3.1.34), and utilising the expression 

(3.1.38), 8Wj. can be expressed as :

8Wjj= [8ur  8v r  8wr 8(3r 8£r  80p 8 u 2, 8v2, 8w2, Sp2, 8£2, 802,

8R X, SRy, 8 0 y , 8 0 J {  f ( { a e}, { a e} ,{ae},{ab} ,{ a b} ) }

Where {ae} = [u p u 2, w p Pp w2, P 2, v p v 2, C2, 0 el. 9 e2]T 

{a b} = [ v x, v y, v ̂  co x, (0 y co J  T

The variation of the strain energy of the element has been obtained in equation (3.2.35 ), 

therefore Aj=8Uj-8W]j can be written in matrix form as :

A. =  [8 u p S v p 8 w p 8 p p 8 £ r  80 v S u 2, 8 v 2, 8 w 2, 5 p 2, 8 £ 2, 80 2, 8 R X, 8 R y, 5 R Z, 

80 x, 8 0 y, 80 J  { [ M . ] { a c}  + [ C . ] { d c}  +  [ K . ] { a e} -  { Q j }  } ( 3.4.5 )
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where, [Mj], [Cj], and [Kj] are the element inertia, gyroscopic, and stiffness matrices, 

respectively and {Qj} is the element load vector for the j'th element. The system global 

matrices can be obtained by the assembly of the element matrices. The total system 

degrees of freedom vector is denoted by {P} which includes the six base degrees of 

freedom and all of the nodal degrees of freedom of the beam. The final equations of the 

beam can be expressed as:

{SP}T {m  { P e} + [c]{ P J  + [K] {Pe} -  {Q}} = 0 ( 3.4.6 )

Where {Pe} = [Uj v , Wj P j ^  ^ ........u n v„ w„ |3n £„<)>„]

{6P}T = [SRX, 8R y, SR * 86 x, 8 6 r  8 6 *  8u,, 8 v ,, 8 w r  8p r  8 £ r 6<t> r

8 u 2, 5v 2, 8 w 2, 8 p 2, 8 £ 2, 8<(>2, . . . . ,  8 u n, 8 v n, 8 w n, 8p n, 8£n, 8<pn]

n = number of the nodes of the beam

In equation (3.4.6), [M] is the assembled inertia matrix of the system, [C] is the 

assembled gyroscopic matrix, [K] is the assembled system stiffness matrix including the 

centrifugal stiffness effect. {Q} is the load vector.

Equation (3.4.6) is a set of (6n+6) nonlinear differential equations. [C], [K] and (Q) 

contain the kinematical variables of the beam’s moving base, such as the base 

translational velocities and accelerations, and angular velocities and accelerations. If the 

coupling problem of a beam with other substructures is considered, a set of kinematical 

constraint conditions must be used to relate these variables to the relevant degrees of 

freedom of the other substructures. If we consider a problem with a prescribed base 

motion, the prescribed motion can be directly included through these kinematical 

variables.
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5.4 COMPUTER SIMULATION

A FORTRAN computer program is developed based on the above model to solve not 

only eigenvalue problems, but also the dynamic response problem of a beam with 

arbitraiy base motions. To meet the requirement to simulate possible structural coupling 

or possible complex beam root motions, nine kinematic variables of the beam base are 

incorporated into the program. They consist of three translational accelerations, three 

angular velocities and three angular accelerations of the base. In the present code, they 

are computed by a user supplied subroutine. The elasticity centre, mass centre and 

tension centre of the beam section may be different. The centrifugal force on a beam 

section is computed in a single subroutine. For some problems which require the 

nonlinear integral expressions of the beam deflection to define the centrifugal effects, this 

subroutine can be replaced by the original nonlinear relations. Again, the numerical 

integration over an element utilises the four point finite difference formulae [NAG 

Library].

The problem considered here has a prescribed base movement. Consequently, equation 

(3.4.6) is reduced to the last 6n equations.

|M 1]{Pe}+[C1]{PJ+[K 1]{Pe}-{Q1}M) (4.1)

Note that [Mj] is symmetric, but [Cj] is skew symmetric, [Kx] is asymmetric. This

means that, although [C] multiplies the velocities like a damping matrix it never

dissipates any energy. It serves to transfer energy from one mode to another. The
—>

asymmetry of the stiffness matrix [Kj] is caused by the angular acceleration e h of the
—) —> —>

base. The angular acceleration e h of the base contributes the term e hxR gc to the
—>

acceleration a gc in equation (3.1.10). This leads to an additional skew symmetric matrix 

to the stiffness matrix, and hence leads to an asymmetric global stiffness matrix [KJ.

Most commercial Finite Element programs can not handle a skew-symmetric matrix or an 

asymmetric matrix. Hence, their use is limited for this type of problem.
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The eigenvalue problem associated with a rotating beam, hence, is written as:

[M1]{Pe}+[C1]{Pc}+[K1]{Pe}=0 (4.2)

This is first reduced to the first-order state equation:

"0 M j " A
> +

1 1 3!

_
_

3 A >—
ii-H

s
. A 0 K j P e

(4.3)

The eigenvalue problem associated with (4.3) is then solved using the QZ algorithm 

[NAG Library].

We derived the equations of equilibrium (4.1) governing the nonlinear dynamic response 

of a finite element beam with an arbitrary base movement. The solution of this system of 

differential equations can be obtained by either the direct time integration or the mode 

superposition method [Bathe, 1982]. In direct integration the equations in (4.1) are 

integrated using a numerical step-by-step procedure. In mode superposition, before the 

temporal solution is performed, the equations of motion (4.1) has to be transformed into 

the modal coordinate system. Then the equations of motion in modal coordinates can be 

solved using the direct numerical integration procedure. The mode superposition method 

is usually much more economic than the direct integration method especially when a 

linear solution is required, because only a small portion of the total modes of the finite 

element system usually need be considered. This implies a great reduction of the system 

degree of freedom and hence, a great saving of the computing cost.

The mode superposition method is incorporated into the present computer program to 

solve the dynamic equations (4.1). The nonrotating natural modes are found first and 

used to reduce the size of the differential equations. Therefore, setting all of the base
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kinematical variables in (4.1) to zero, the equations of motion for the natural vibration of 

the nonrotating beam become:

[MJ {Pe}+[K2] {PeJ =0 (4.4)

Solving the eigenvalue problem associated with (4.4) and taking the first M modes {Xj}, 

(x2) .... (xM), we can approximately express the nodal coordinates {Pe} in terms of the

linear combination of these M modes. That is:

{Pe}=T|1{x1}+Ti2{x2)+  +nM{xM}=[A]{Tl} (4.5)

Replacing (4.5) into (4.1) and premultiplying (4.1) by [A]T, we can obtain M differential 

equations of motion expressed by the modal coordinates {rj }:

[M*] {ti}+[C*] {t |} +[K*] {T\ }- {Q*}:=0 (4.6)

Writing (4.6) in the form of first-order state equation:

M* o T T n l f Q* '

0 iJ jjlJ  [o  .

K*

0 T|J
(4.7)

The time history solution of (4.7) at a given initial conditions is subsequently obtained 

using the Runge Kutta step-by-step integration. The fourth order Runge Kutta formula is 

selected for its simplicity and good accuracy. The truncation error of the fourth order 

Runge Kutta method is of (At)5. The modal solution is then transformed back to the 

physical coordinates according to the equation (4.5). The time step At for the integration 

can be decided approximately by observing the natural frequencies of the system. The 

outputs include the axial deflection, flap-wise deflection, lead-lag wise deflection, 

torsion deformation and the flapwise, lag-wise rotations of the beam section. The flow 

chart of the program is illustrated at the end of this section.
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The modal reduction mentioned above can also be conducted using the rotating natural 

modes. Writing (4.1) in the first-order state form:

'0  M j ■ TO

► +

1 1 s O
__

__
i

Pc >
M i C L I P J 0 K j Pe.v 6/

0

Qi
(4.8)

or [A]{x)+ [B ](x)={F) (4.9)

To solve (4.9), we consider first the eigenvalue problem

[A]{x}+[B]{x}=0 (4.10)

Taking the first N modes of the eigensolution of (4.10), again, we approximate the state 

variable {x} in terms of the linear combination of the N modes

{x}='n1{x1}+rt2{x2}+...... +tin {xn )=[A]{ti} (4.11)

Substituting (4.11) into (4.10) and premultiplying (4.10) by [A]T, we can obtain N first- 

order state equations:

[A*]{ti)+[B*]{t|)={F*} (4.12)

The time response solution of (4.12) can also obtained using the step-by-step integration.

The solution for the state variable {x} can be obtained from relation (4.11). The time 
history of the displacements (Pe) can be extracted from the solution {x}. However, a

significant fact must be pointed out that the component {P } of {x} is not equal to the
. d{P )

derivative of (Pe) relative to the time t. That is : {P J^  ^  . This condition is only

satisfied if all of the modes of equation (4.10) are used in solving (4.12). Care must be 

taken to avoid possible misunderstandying when this method is used.
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As stated above, we could also obtain the dynamic response solution by directly 

integrating the finite element equations of motion (4.1). The modal reduction stated 

above is unnecessary in this case. It should be pointed out, however, that this will lead to 

many more degrees of freedom in the equations, and inevitably, much more computing 

time. Furthermore, more degrees of freedom will bring about much higher characteristic 

frequencies of the system. This usually implies that a smaller integration time step is 

required for numerical stability. Consequently, more computing time is needed to obtain 

the response at the required time. Nevertheless, when the nonlinear solution is required it 

is particularly desirable to directly apply the step-by-step integration technique to the 

finite element equations of motion (4.1). This task can be accomplished in the present 

code by simply abandoning the modal reduction procedure.

1 2 6
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5.5 NUMERICAL EXAMPLES
Two groups of numerical examples are studied to validate the model and to show its 

application to the general dynamic simulation of a complex rotating beam. The first group 

is for a simple spinning beam and has an analytical solution to compare with. The 

second group is simulating the behaviour of a robotic manipulator which has a complex 

base motion. Results of this problem from a modal method specifically developed for a 

general multibody code are available for comparison.

5.5.1 An Example of a Simple Spinning Beam
A simple centrifugally stiffened beam is illustrated in Fig 5.5. The beam spins about a 

fixed axis at a constant angular velocity Q. The beam is free to vibrate in the vertical 

direction. Wright et al [1982] developed an exact analytical model for this system.

n e b

Fig 5.5.A simple centrifugally stiffened beam

The convergence of the modal frequencies, using different numbers of finite elements is 

presented first. Table 5.1 shows the values o f the first five modal frequencies as the total

number of elements is varied from 2 to 8 . The value of r| (="\/ pAL 4 £22 /E I ) is 6.0. The 

results show, for the case considered, that eight elements are sufficient for reasonably 

good convergence.
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Table 5.1 Convergence of Finite Element

Number of 

Elements
®i CO,2 co,3 “4 “ 5

2 7.1958 20.846

3 7.2773 23.415 51.620

4 7.3113 24.692 57.711 97.468

5 7.3282 25.387 60.587 109.08 157.82

6 7.3377 25.795 62.280 114.30 176.75

7 7.3436 26.053 63.368 117.30 185.52

8 7.3475 26.224 64.105 119.27 190.38

Subsequently, two groups of analytical results from Wright et al [1982] are tabled in 

Table 5.2 and Table 5.3 for a cantilever beam and a hinged beam respectively. The 

results from the present finite element model are also given in the two Tables, where 8  

elements are used. A good agreement between these two models is observed for all the 

first five mode frequencies and especially the first four modes. The symbols in the tables

are introduced as: T}='\/ pAL 4 Q 2 / E I , pA: mass per unit length of beam, El: flexural 

rigidity of beam, L: length o f beam, Q: rotating speed o f beam. C0 j to co5  represent the

•  first five modal frequencies of the spinning beam.
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Table 5.2 Frequency Ratios of a Uniform Cantilever

T ] COj C02 C03 C04

0 . 0 Exact
Present

3.5160
3.4910

22.0345
21.501

61.6972

59.276

120.902

114.28

1 . 0 Exact
Present

3.6817
3.6577

22.1810
21.646

61.8418
59.416

121.051
114.43

2 . 0 Exact
Present

4.1373
4.1159

22.6149
22.076

62.2732

59.835
121.497
114.85

3.0 Exact
Present

4.7973
4.7787

23.3203
22.775

62.9850
60.524

122.236
115.55

4.0 Exact
Present

5.5850
5.5688

24.2734
23.718

63.9668
61.476

123.261
116.53

5.0 Exact
Present

6.4495
6.4352

25.4461
24.877

65.2050
62.674

124.566
117.77

6 . 0 Exact
Present

7.3604
7.3475

26.8091
26.224

66.6840
64.105

126.140
119.27

7.0 Exact
Present

8.2996
8.2878

28.3341
27.730

68.3860
65.750

127.972
1 2 1 . 0 0

8 . 0 Exact
Present

9.2568
9.2459

29.9954
29.369

70.2930
67.591

130.049
122.98

9.0 Exact
Present

10.2257
10.216

31.7705
31.119

72.3867
69.611

132.358
125.16

1 0 . 0 Exact
Present

11.2023
11.193

33.6404
32.962

74.6493
71.791

134.884

127.56

1 1 . 0 Exact
Present

12.1843
12.175

35.5890
34.881

77.0638
74.114

137.614
130.14

1 2 . 0 Exact
Present

13.1702
13.162

37.6031
36.863

79.6145
76.566

140.534

132.90

Beam

199.860

185.37

200.012

185.51

200.467
185.93

201.223
186.64

202.277
187.62

203.622

188.86

205.253
190.38

207.161
192.15

209.338
194.17

211.775
196.43

214.461
198.92

217.385
201.62

220.536
204.54
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Table 5.3 Frequency Ratios of a Uniform Hinged Beam

T\

0.0 Exact
Present

© 1

0.0000
0.0000

CD*2

15.4182

15.1100

CD*3

49.9649
48.1971

C04

104.248
98.9931

© 5

178.270
166.483

1.0 Exact
Present

1.0000
1.0000

15.6242

15.3148
50.1537
48.3717

104.420
99.1587

178.440
166.643

2 . 0 Exact
Present

2 . 0 0 0 0

2 . 0 0 0 0

16.2261
15.9127

50.6760
48.8914

104.936
99.6535

178.949
167.122

3.0 Exact
Present

3.0000
3.0000

17.1807
16.8604

51.5498
49.7441

105.789
100.472

179.794
167.916

4.0 Exact
Present

4.0000
4.0000

18.4313
18.1004

52.7463
50.9108

106.971
101.606

180.970
169.022

5.0 Exact
Present

5.0000
5.0000

19.9197
19.5746

54.2419
52.3678

108.469
103.042

182.469
170.431

6 . 0 Exact
Present

6 . 0 0 0 0

6 . 0 0 0 0

21.5944
21.2314

56.0099
54.0880

110.270
104.766

184.283
172.134

7.0 Exact
Present

7.0000
7.0000

23.4133
23.0290

58.0223
56.0436

112.356
106.762

186.401
174.123

8 . 0 Exact
Present

8 . 0 0 0 0

8 . 0 0 0 0

25.3436
24.9347

60.2513
58.2067

114.709
109.012

188.812

176.385

9.0 Exact
Present

9.0000
9.0000

27.3601
26.9239

62.6705
60.5511

117.313
111.497

191.504

178.908

1 0 . 0 Exact
Present

1 0 . 0 0 0 0

1 0 . 0 0 0 0

29.4439

28.9780
65.2554

63.0525
120.146
114.200

194.462

181.678

1 1 . 0 Exact
Present

11.0000
11.0000

31.5809
31.0830

67.9842
65.6890

123.193
117.101

197.673
184.683

1 2 . 0 Exact
Present

1 2 . 0 0 0 0

1 2 . 0 0 0 0

33.7603
33.2285

70.8373
68.4416

126.431
120.182

2 0 1 . 1 2 2

187.909
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5.5.2 An Example for a Robotic Manipulator

Fig 5.6 shows the structure of this problem. The manipulator consists of three links LI, 

L2, L3 connected by revolute joints. The outboard link L3 consists of a base A and two 

distinct segments B1 and B2. Segment B1 is 2.6667 meters long and has a symmetric 

box cross section, while B2 is a 5.3333 meter-long channel. Both segments are made of 

a material for which E=6.895X1010 N/m2, G=2.6519X1010 N/m 2  and p/A=2766.67 

kg/m3. The section properties for B1 are: A=3.84xl0*4 m2, Iyy=Izz= 1.5x1 O' 7  m4, the 

torsion constant J= 2 .2 x l0 - 7  m 4, sectional mass centre offset xar=0, while the 

corresponding properties o f B2 are: A = 7 .3 x l0 _ 5  m2, Iyy= 8 .2 1 8 1 x l0 * 9 m 4, 

1^=4.8746x10-9 m4, the torsion constant J=2.433xl0*n  m4, sectional mass centre offset 

xgc=0.01875 m.
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The behaviour of L3 during two different base movement cases are simulated by Kane et 

al [1987]. These two cases are investigated using the present structural dynamics model 

and are compared with the simulation results from Kane et al [1987]. In order to save the 

computing time and be consistent when comparing with the reference, the nonlinear 

terms are set to zero in the computation for this problem. The nonlinear terms are 

thoroughly verified in the aeroelasticity model in the next chapter.

If  the two inboard links L I and L2, each of length 1=8 m, are treated as rigid, the motion 

of the base A of the outboard link is characterised by the following kinematical functions:

VX = 1(1+C2)S3*1# vy = - i a + c 2)c3'F1,

®  x ~  ^ 1 ^ 2 ^  3 ^  2^3 ’ ® y = ^ 1 ^  2^3 ^ 2 ^  3 *

where: c.=cos'F., s.=sinxPi (i= l,2 ,3 )

The first base movement case is the deployment process of the manipulator from a 

stowed configuration to a fully operational configuration. This process is presumed to 

last for 15 seconds (T=15 secs). The changes of the angles 'P j, ^ 2 » ^ 3  are given as 

following.

f
2 TV

\  T 2m  ^ 
2n  T ) rad 0 < t  < T

I f rad t > T

\x
3k  l 
4TV 1 2 k  T J rad 0 < t  < T

K
. 4 rad t > T

K T  r f n  2 ^^!
2n  T J rad 0 < t  < T

. 0 rad t >  T

In the dynamic response analysis for the manipulator, 9 elements were used to obtain 
the eigen modes of the non-rotating and non-translating cantilever manipulator arm. 
Then, the first 10 modes are used in the computation of the dynamic responses.

1 3 3
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Fig 5.7, 9, 11 present the simulation results from the present algorithm. Fig 5.7, 5.9 and

5.11 give the displacement of the manipulator's tip during the deployment process in the 

flapping (z), lead-lag (y) and torsion respectively. Fig 5.8, 5.10, 5.12 show the 

corresponding results published by Kane et al [1987]. Comparing Fig 5.7 and 5.9 to Fig

5.8 and 5.10, it is found that the present simulation results are identical to the results from 

Kane et al [1987] but with a slightly larger amplitude. This difference is caused by the 

exclusion of the effect of the warping on the beam torsion stiffness (GJ) in the present 

computation. This simplification implies a smaller effective torsional constant (J) than in 

Kane's calculation and hence a larger response amplitude of the torsion deflection. 

Consequently, the flapping deflection is also increased by the strong flap-torsion coupling.

Comparing Fig 5.11 to Fig 5.12, a  relatively large discrepancy is observed in the two 

curves. Especially interesting is that this discrepancy is obvious from time 0 second to 

about 12 seconds, while the discrepancy becomes much smaller from then on. This 

difference is due to the approximation of the beam's axial extension deflection introduced 

by the linear Kane's model. That is analysed in detail as follows.

In Kane's model, the stretch s(x) in the beam along the elastic axis is taken as axial degree 

o f freedom (Fig 5.13). Therefore, the following relation exists:

direction is taken as axial degree of freedom (Fig 5.13). From the nonlinear strain- 

displacement relation (3.2.6), we can obtain:

X

(5.1)

where is the axial strain at the elastic axis.

In the present model, the displacement u(x) of beam sectional elasticity centre in the x

eXX (5.2)
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Fig 5.7 Simulation of the deployment of the robotic manipulator (in flap)

Fig 5.8 Simulation of the deployment of the robotic manipulator
(in flap) from Kane et al, 1987
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Fig 5.9 Simulation of the deployment of the robotic manipulator (in torsion)

Fig 5.10 Simulation of the deployment of the robotic manipulator
(in torsion) from Kane et al, 1987
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Fig 5.11 Simulation of the deployment of the robotic manipulator (in lead-lag)

0.2

Fig 5.12 Simulation of the deployment of the robotic manipulator
(in lead-lag) from Kane et al, 1987
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Fig 5.13 Illustration of displacement u and stretch s o f the beam

Combining (5.1) and (5.2), we have:

v  . • v'2 w 2 
s (x )-u  + “ 2 "  +  2  ~ (5.3)

X

f  v 2 w 2
Then, u-s(x)- J ( 2 + 2 (5.4)

0

Differentiating (5.4) with respect to time gives:

u=s-J* (v V + w w ')d x (5.5)

X

u=s- J  (v'2+ v V +  w,2+w'w')dx (5.6)

In Kane's model, s(x) is taken as degree of freedom. Consequently, the displacement 

u(x) must be expressed in terms of s(x) and v, w. Therefore, (5.6) should be used for 

u(x) to be more accurately considered. However, Kane's model used the approximate 

relation u= s since that model is a linear one. By contrast, such an approximation was not 

made in the present model. This approximation gives Kane's results an approximate axial 

inertial load (mu) inconsistent with that of the present model. This inconsistency could 

cause the solution difference for the axial deflection between these two models and
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Chapter 5 Finite Element Structural Dynamic Model

therefore, cause the solution difference for the lead-lag deflection due to the strong 

extension—lead-lag coupling. Obviously, such a difference depends on the values of v'2, 

v V ,  w '2 , w w ' from (5.6). That is the reason why the discrepancy between the present 

model and Kane's model is larger in some time ranges and is smaller in others. It is 

believed that the values of v', v', w*, w' are relatively large from time 0  second to about 

12 seconds, while they are relatively small from the last peak of Fig 5.11 to 15 seconds. 

Fig 5.14 shows the time history of the axial extensional deflection u of the manipulator's 

tip. Fig 5.15, 5.16 illustrate the variations of v' and w' of the manipulator's tip with the 

time.

Fig 5.14 Simulation of the deployment of the robotic manipulator (in extension)
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Fig 5.15 Simulation of the deployment of the robotic manipulator (lead-lag rotatioi

Fig 5.16 Simulation of the deployment of the robotic manipulator (flap rotation)
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The second base movement case is for the so-called spin-up manoeuvre. The link LI 

remains at rest, L2 and A remain at rest relative to each other, and the angular speed of A 

increases from zero to 6  rad/sec in a time interval of 15 seconds. This, therefore, is a 

simple case of centrifugal stiffening. The base motion description is:

¥ 3 = 0  rad t> 0

Fig 5.17, 19, 21 present the dynamic responses of the manipulator's tip in this process. 

They are obtained from the present algorithm. Fig 5 .18 ,20 ,22  are taken from Kane et al 

[1987]. In Fig 5.18, 20, 22, the solid lines are obtained using the theory of Kane et al 

[1987], while the dashed lines are from a conventional multibody dynamics program. As 

pointed out by Kane et al [1987], the previous conventional approach lacks some 

significant terms in modelling and hence leads to some significant deficiencies in the 

dynamic simulation. Comparing Fig 5.17 and 5.19 to Fig 5.18 and 5.20, the present 

simulation is found to be identical to those from Kane's model but, again, with a slightly 

larger amplitude. As explained before, that is due to ignoring of the effect of warping on 

the effective torsional constant (J) in the present computation.

Comparing Fig 5.21 to Fig 5.22, this time, it is found that the discrepancy in the lead-lag 

deflection between the present model and Kane's model is small. Such a result is 

expected since the current lead-lag deflection is very small and has a very small variation 

with the time. This results in very small values of v , v', v . Meanwhile, the variation 

of the flap deflection with the time is also relatively small. Consequently, the values of 

w ', w' are also relatively small. Therefore, as pointed out in the last example, the

'F 1 =  f  n d t > 0

rad 0 < t < T

( 6 t - 4 5 )  rad t > T
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approximation u= s made in Kane's model leads to much smaller difference in the 

extension and lead-lag deflection. Consequently, the result agree better with the present 

model. The response of the manipulator's tip in extension (u) is also presented in 

Fig 5.23.

5 .6  C O N C L U S I O N S

A new general Finite Element structural dynamics model is developed for a three 

dimensional elastic beam with an arbitrary and large moving base with six degrees of 

freedom. The six degrees of freedom of the beam base can incorporate either a prescribed 

arbitrary motion of the base or the coupling o f the beam with other substructures. The 

beam can be pretwisted and has a mass centre offset from the elasticity centre. The 

equation of motion are derived using the virtual work principle. Large deflections and 

small strains of the beam are assumed so that the geometrical nonlinearities are included. 

The equations are discretised using the finite element method. The beam inertia is lumped 

at the end nodes o f each element and this simplifies the analysis. The axial and torsional 

deflections of the beam element are represented by linear polynomials, while the bending 

deflections are represented by cubic polynomials. The centrifugal stiffness and 

gyroscopic terms caused by the large base motion are specifically considered so that this 

dynamic model is applicable for both nonlinear and linear problems.

This dynamic model was coded into a computer program and applied to both solve the 

eigenvalue problem of a spinning beam and to simulate a dynamic response of a robotic 

manipulator with a complex time-varying base motion. The former has a precise 

analytical solution to compare with, and the latter has an numerical solution based on a 

modal method to compare with. The results show:

1) Six to eight elements are sufficient for determining natural frequencies of a rotating 

beam.
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2) The present Finite Element model can successfully solve the eigenvalue problems of a 

rotating beam.

3) The present model has been shown to be an appropriate and general tool for treating 

the dynamic response problem of a beam with complex and large base motion. This 

model is of a great modelling generality due to the combination of the Finite Element 

method and the arbitrary base motion variables which is widely used in Multibody 

Dynamics.

4) An approximation introduced by a linear dynamics model is found to have relatively 

large effect on the dynamic response in some cases. That approximation and effect 

are discussed in detail. Some significant deficiencies existing in previous multibody 

dynamics models are confirmed.

Results show that the newly developed model can appropriately model a complex

rotating beam system and is of great modelling flexibility.
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Fig 5.17 Simulation of the spin-up manoeuvre of the robotic manipulator (in flap)

Fig 5.18 Simulation of the spin-up manoeuvre of the robotic
manipulator (in flap) from Kane et al, 1987
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^ig 5.19 Simulation of the spin-up manoeuvre of the robotic manipulator (in torsic

Fig 5.20 Simulation of the spin-up manoeuvre of the robotic
manipulator (in torsion) from Kane et al, 1987
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Fig 5.21 Simulation of the spin-up manoeuvre o f the robotic manipulator (in lead-lag)

Fig 5.22 Simulation of the spin-up manoeuvre of the robotic
manipulator (in lead-lag) from Kane et al, 1987
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Fig 5.23 Simulation of the spin-up manoeuvre of the robotic manipulator (in extension)

1 4 7



Chapter 6 Finite Element Aeroelasticity Model

CHAPTER 6 A FINITE ELEMENT AEROELASTICITY

BEAM MODEL

6.1 INTRODUCTION

Rotorcraft blade dynamics represents the most actively investigated example o f rotating 

beam dynamics. One of the principal dynamic problems associated with rotorcraft is their 

aeroelasticity stability. Extensive studies have been conducted on this during the last four 

decades, and especially in the last twenty years. As one of the aims of this thesis, a new 

general finite element model is developed in this chapter based on the structural dynamics 

model in the last chapter. It is then used to analyse aeroelasticity stability problems of 

rotorcraft.

The structural dynamics model for an arbitrary rotating beam has been developed in the 

previous chapter. As pointed out there, the structural dynamics model is aimed at 

developing a general dynamics model for a beam with an arbitrary base motion and hence 

having sufficient modelling flexibility to represent complex geometries and the structural 

coupling effects of a complex structure such as a rotorcraft. Obviously, this structural 

dynam ics model can be directly applied to obtain the present rotorcraft blade 

aeroelasticity model by adding the aerodynamic loads to the system. We only consider 

the axial flow case of a rotorcraft, such as the tilt-rotor aircraft in forward flight in an 

aeroplane mode, helicopter hovering, and vertical flight

In section 2, the distributed aerodynamic loads on a blade are derived using a two 

dimensional quasi steady thin airfoil aerodynamic theory. The virtual work done by these 

loads is derived and discretized using the same shape functions as in the last chapter. 

Section 3 combines the structural dynamic model from the previous chapter with the 

aerodynamics operator to obtain the equations of motion for the aeroelastic system. 

Subsequently, section 4 presents the solution procedures for the aeroelasticity stability

148



Chapter 6 Finite Element Aeroelasticitv Model

problem. Section 5 gives a brief introduction to the computer coding. Following that, 

extensive numerical examples are given in section 6 . Both equilibrium solutions and 

eigenvalue solutions are compared with an existing reliable results. Finally, some 

conclusions are drawn in section 7.

6.2 AERODYNAMIC LOADS ON A BLADE

The aerodynamic loads are calculated using a two dimensional quasi steady thin airfoil 

theory. The aerodynamic loads consist of circulatory forces and noncirculatory forces. 

The rotor is assumed to work in an axial flow state. The induced velocity is assumed to 

be uniform over the rotor. The formulation is specially treated so that the aerodynamics 

model can be applied to both low inflow case (helicopter hovering and vertical flight) and 

high inflow case (tilt-rotor aircraft forward flight in aeroplane mode).

Considering a blade section, the aerodynamic flow and aerodynamics loads acted on the 

blade section is shown in Fig 6.1

Fig 6.1 Blade section aerodynamics
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The resultant air velocity is U, where UT, Up are its components in y and z directions, 

and UR and Un are its components parallel to the chord line and perpendicular to the 

chord line respectively. The angle o f attack of the blade section is a . The pitch angle of 

the blade section is 0. Fy, Fz are the components of resultant aerodynamic forces on the 

section in the y and z directions. M is the resultant aerodynamic moment on the section, 

M = M c+M nc. Lc and Lnc are the circulatory part and noncirculatory part of the 

aerodynamic forces, respectively. D is the blade section aerodynamic drag.

The circulatory forces are:

L i f t :  L c = pbC jU 2  ( 2 . 1 )

This is perpendicular to the resultant velocity U .

D rag: D = pbC dU 2  ( 2 . 2 )

This is parallel to the resultant velocity U .

The pitch moment about the elasticity centre is:

M c = 2 p b 2 C macU 2  + x AL c ( 2 . 3 )

and is positive nosing up .

Where, Cj, Cd, Cmac are section lift, drag and moment coefficient 

The noncirculatory forces a re :

L i f t :  L nc = itpb 2 [ U n + ( - i - b - x A)e] ( 2 . 4 )

2
Pitch monent M nc = Ttpb^t — ( - | b -  x A) U n -  - |-U Re + (-2 |_  -  x Ab + x ^ )e ]  ( 2.5 ) 

Where, Un is the velocity component vertical to the chord line of the blade cross-section,
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UR is the velocity component parallel to chord line of the blade cross-section, 

8  is the change of the angle of attack.

They can be expressed as :

U n =  U Tsin 8  -  UpCos 0 

U r = U Tcos 8 + Up sin 0 

8 =  0 +  CDX +  0 ) ^ +  CDyV'

And hence , U n = (U Tcos 0 + U psin 0)0 + U Tsin 0 -  U pcos 0

(2.6)
( 2 .7 )  

(2.8) 
(2.9)

The aerodynamic force components in the y and z directions are obtained as:

F . =  - D r cos a .  -  L „sin  a .  - L ^ s in  0

F z =  L ccos a . -  D csin a .  + L nccos 0

(2.10)
(2.11)

where cq is the inflow angle, as shown in Fig 6.1,

U P U Tsin a .  = - r r ,  cos a . = - 7 7 -  
1 U 1 U (2.12)

Replacing (2.1), (2.2) and (2.12) into ( 2.10 ) and (2.11), we have: 

F y =  - p b C dU TU -  p b C j U p U - L ncsin 0 

F z =  pbC jU ^U  -  p b C dU pU + L nccos 0

( 2 . 1 3 )  

( 2.14 )

The resultant aerodynamic pitch moment is:

M =  2pb2 C macU 2  + x a L c + 7t pb2[ - ( | b  -  x A) U n -  | - U  Re

/3b2 . 2 0+ ( - 5 -  - x Ab + x 2.)e] ( 2.15 )
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The expressions for UT , UP and U are obtained by considering the relative velocity of 

the blade section elasticity centre to the air.

^EC ^EC + ^A + ^ h X ^EC ( 2.16 )

Rpc = (T  +  u ) T x + \ } x +  w Hl 1 ( 2 . 1 7 )

VA = Vxr i + Vyr i + v zkj ( 2 .18 )

C0 h — ( 2 . 1 9 )

Applying relations (2.17 ) through ( 2.19), We have:

Vgc = [v x + coyw -  cozv + u]rx+ [v y + coz(r + u) -  coxw + v ]fj

+ [vz + coxv — C0y(r + u) + w ]S 1 ( 2 . 2 0 )

Let vF be the axial free air flow velocity and vj be the induced velocity, then the relative 

on-coming airflow velocity can be written a s :

v  =  - ( v F +  v i) J 0 - v EC ( 2 . 2 1 )

Giving ^ 0  — ( 2 . 2 2  )

(2 .2 1 ) is written as after replacing (2 .2 0 ) and (2 .2 2 ) into (2 .2 1 ): 

v =  {“ (v F + v .)t x “■ [ v x + coyw -  cozv + ulJfj

+ { - ( v F + V . ) t 2 -  [ V y  + coz(r + u) -  co xw + v ]} ^

+ { - ( v F +  v . ) t 3  -  [vz -  coy(r  + u) + coxv +w]) lc 1 

= v axri + v ayri + ( 2.23 )

UT, Up are the y and z components of v in xyz frame. The coordinate system xyz is 

obtained from X j y ^  by including the blade lead-lag and flap deflections (v, w) but 

without the torsion deformation (<j>). The transformation relation is:
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v/2 V v/2 2 p t l
- V 2 0 h  ■

W'2
. k t.

-  w' 0 2 J

We write v in xyz coordinates:

2 2
V =[(1 - J^ - ) v ax+ v ayv' + v azw ')r + ( v ay- v axv')j + ( v az- v axw/)K (2.24)

From (2.23 ) and (2.24), we obtain :

U T = "(■v ay - v axV') ( 2-24 )
Up = - ( v  az -  v axw0 ( 2.25 )

From Fig. 6.1, we can derive :

U R = U c o s a  ( 2 . 2 6 )

Where, a  is instant angle of attack o f the blade section and is generally a small quantity, 

therefore,

U R U Tcos 0 + Up sin 0
U = ^ T =  -T c o s a P------- = U Tc o s e  +  U p s i n e  ( 2 . 2 7 )

W here ,  0 = 0 Q + $  $ = <|>-jrVv/dx ( 2 . 2 8 )

0 q is the pretwist angle o f the blade, $ is the geometric twist angle, and <(> is the elastic 

twist.

Replacing ( 2.27 ) into (2.13 ) and ( 2.14 ), we have

F y = — pbC d[U ^cos 0 + U TU p sin 0] -  p b C ^ U p S in  0 + U TU p cos 0] -  L ncsin 0

...... ( 2.29 )
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F z = -  p b C d[UpSin 0 + U TU p cos0] + p b C j tU 2  cos 0 + U TU p sin 0] + L nccos0

...... ( 2.30 )

2 2
F r o m  (2 .2 4 ) ,  ( 2 .2 5 ) ,  w e  can  obta in  the e x p r e ss io n s  fo r  U T , U p etc. T h ey  are:

U T = v^  + 2[v\t2v y + vXt2M *(r+u)-V 2 t0*W  + V )lV]
+  V y +  coz (r  +  u ) 2 +  c o xw 2 +  v 2 +  2 v y coz(r  +  u) — 2 v y cox w  

+  2 v y v  -  2coz cox(r  +  u ) w  +  2coz (r  +  u ) v  -  2 c o x w v

- 2 { v ^ t 1t 2 + v x t 1[ v y +  co2(r +  u) — co xw ]  +  v x t 2 [ v x +  co y w - c o zv ]

+  [ v x + c o y w  - c o zv ] [ v y +  coz (r  +  u )  -  cox w ]  +  v ^ v  + v ^ t 2 u  

+  [ v y +  coz (r  +  u )  -  cox w ] u  +  [ v x +  coy w  -  cozv ] v  +  uv}V

+  { v ^ t 2 +  [ v x +  coy w -  cozv ] 2 +  2 v ?lt 1[ v x +  c o y w - cozv ]  +  2 v ?lt 1u

. 2 2
+  2 [ v x +  coy w  -  cozv ] u  +  u  }V  ( 2 . 3 1 )

U p =  v ^ t 2 +  2 v Jlt 3v z -  2 v jLt 3co y (r  +  u) +  2 v ^ t 3cox v  +  2 v ^ t 3w

+  v  2 +  co y (r  +  u ) 2 +  cox v 2 +  w 2 -  2 v  zco y (r  +  u) +  2 v  zco xv  

+  2 v zw -  2 c o xco y(r  +  u ) v  -  2 c o y(r  +  u ) w  +  2co xv w

-2 [v 2x t j t 3 +  v ^ t ^  -  coy (r  +  u) +  c o xv ]  +  v x t 3 [ v x +  c o y w  -  cozv ]

+ [ v x + coy w  -  cozv ] [ v z -  coy (r  + u) + cox v ]  + v^tjW + v^ t3u 

+  [ v 2 -  coy (r  +  u )  +  cox v ] i i  +  [ v x +  coy w  -  coz v ] w  +  u v )  W

+  [V*t  + [ v x +  coy w -  cozv ]  + 2 v Jlt 1[ v x +  c o y w - c o zv ]  + 2 v ?lt 1u

. 2 2
+  2 [ v x +  coy w  -  cozv ] u  +  u  }w ' ( 2 . 3 2 )

U TU P =  v l t 2t 3 +  v Jl12Vz +  V Plt 2C0x V "  V Jlt 2C0y ( r  +  u )  +  V ^ t 2W

+  v jl t 3 v y +  v ^ t 3 coz (r  +  u ) - v x t 3co x w  +  v ^ t 3v  +  v y v z 

+  v y coxv  -  v y C0y(r +  u )  +  v y w  +  v z coz (r  +  u )  +  cox cozv ( r  +  u )
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2 • o
-  coy coz (r  +  u )  +  coz (r +  u ) w  — cox v z w  — coxv w  

+  coxcoy w ( r  +  u )  -  coxw w  +  v z v  +  coxv v  -  coy (r +  u ) v  +  v w

_ ^Vl t l t 3 + V Xt l t V z “  C0y ( r  +  U) +  a Xv ]  +  V 3[ v x +COy W - G V  

+ [ v x + COyW -  CQzv][v z -  COy(r  + u) + COxv] + V^tjW + V^tgU 

+ [v z -  CDy(r + u) + coxv]ii +  [ v x + coyw — cozv]w  + uv}V

- ( v ^ t i t 2 +  v ^ t J V y  +  G)z( r  +  u )  -  c o xw ]  +  v x t 2[ v x +  (O y W -  (0 Z 

+  [ v x +  coy w  -  cozv ] [ v y +  coz (r  +  u )  — cox w ]  +  v ^ t j V  +  v ^ t 2 u  

+  [ v y +  coz (r  +  u )  -  cox w ] u  +  [ v x +  coy w  -  cozv ] v  +  u v }  W

+  { v ^ t j  +  [ v x +  coy w -  coz v ]  +  2 v Jlt 1[ v x +  coy w - cozv ]  +  2 v Jl

. 2
+ 2 [v x + coyw -  cozv]u +  u } W

2 2 2 U = U T+Up

where : v ̂  = v c + v .A. F l

From equation ( 2.28 ), sin0 and cos0 are:

A A

sin0=sin( 0G+<j) )=sin0G+<j>cos0G
A  A

cos0=cos( 0G+<() )=cos0G-(j)sin0G

Writing (2 .31 )  through (2.33 ) in matrix form

f" i ( “ )U t = UTQ + [UTJ-{ v K [ U tJ^vTv Td-

W

f u l
U p = U po+ [ U J v [ + [ U j v

Pv M J
W

( 2 . 3 3 )

( 2 . 3 4 )  

( 2  35 )

( 3 .3 6 )

(3.37 )

( 2.38 )

( 2.39 )
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[ - ]
uTup = uTDn+[uTBj M  + [u,

n
TPO

wj WJ
( 2.40 )

The expressions of UT0, [UTv], [UTd], UpQ, [Upv], [Upd], UTpQ, [UTpv] and [UTpd] are 

listed in Appendix 6 A.

From (2 .24 )  and (2.25 ), the derivatives of UT and Upare found:

U T =  v ^ t 2  + v y + 6 )z(r + u) + coz • u -  coxw -  coxw + v

+ ( _  y x l i ~  v x - 6 ) yw - c o yw + 6)zv + cozv -  u} v' + { - v Jlt 1- v x - c o yw 

+ cozv — u}i/ ( 2 . 4 1 )

Up = v^t 3 + v z -  o)y(r + u ) -  0)y • ii + 6 xv + coxv + w

+ { — v ^ t j - V x  — d)yw -  CDyW + 6 )zv + cozv - u ) w ' + { - v ^ t 1 - v x - c o yw 

+ cozv -  u )V  ( 2.42 )

Replacing ( 2.41 ), (2 .42) ,  ( 2.24 ) and ( 2.25 ) into (2 .9  ), we can obtain Un. Then, 

replacing Un and (2.8) into (2.4) and (2.5), we can write Lnc and Mnc in the following 

fo rm s:

k nc [Lnca]{q) + [L ncv ]{q) + [Lncd]{q)
M nc= [ M nca]{q} + [M ncv ] ( q } + [M ncd](q)

Where fq} =•{
v
►

w

U>J

( 2.43 ) 

( 2.44 )

( 2.45 )

Applying ( 2.38 ) through ( 2.40 ), ( 2.43 ) and ( 2.44 ) to ( 2.29 ) and ( 2.30 ), and 

noting the relationships in (2 .36 )  and (2 .37) ,  then finally, Fy, Fz can be expressed as :
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F y =  F y 0 +  t F ydl t q } +  [ F yv]{q} +  [ F ya]{q}

F* = Fz0 + [F* ] ( ' +  [p zv] ©  + [F„ ] {q}

( 2.46 )

( 2.47 )

From (2.15), The aerodynamic pitch moment M is:

M =  2pb 2 C mac(U T 2  + U 2p) + x Ap b C 1( U T 2  +  U 2p) +  M nc ( 2.48 )

Again, applying (2.38), (2.39) and (2.44), M  can also be expressed as:

M  = M 0  + [M d] {q} + [M v] {q} +  [M J{q} ( 2.49 )

This implementation is undertaken in the computer code. These loads are the distributed 

aerodynamic loads acting on a unit-length of blade.

6.3 EQ U A TIO NS OF M O T IO N  FO R  T H E  A ER O ELA STICITY  SYSTEM

Now, we can obtain the equations of motion for a rotor blade which is subject to the 

above aerodynamic loads. We apply the virtual work principal to the rotor blade and 

discretize the blade into a number of elements. This can be expressed as:

Where U is the strain energy of the blade, W j is the virtual work done by the inertial 

loads, WA is the work done by the aerodynamic loads. is the contribution of the j'th 

element to 8 U -8 Wj-8 Wa . The first two terms of (3.1) give the structural operator which

has been obtained in the previous chapter. We shall derive the aerodynamic operator 

through the principle of virtual work.

Considering a general element, the kinematical variables u , v, w, $, are represented by 

the same shape functions as in the last chapter. They are:

Ne Ne
8 U - 8 W t - 8 W . =  I A . =  I ( S U . - 8 W t. - 8 W a .) = 0 

1 A • 1 j • 1 j aj ajj=i J j=i
(3.1)

u = [L (3.2)
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v [H1 H2 H3 H4]-j  ̂ ►

rwp

w = [H1 H2 H3 H4> Pi
w ,

PLK2

(|)=[L1 ♦ll

4>z

(3.3)

(3.4)

(3.5)

The aerodynamic loads F , F , M act on the elastic axis so that the virtual work done byy z
the aerodynamic loads of the j'th element is:

8 W Aj =  C [ (F yj*i+  F ^ l >  • S r EC +  M I2 • M  (3 .  6 )

Where : the virtual rotation 5y = fjSO x + ĵ S 0 y + k j50 z + I*25i|r

and 8V = 5̂  + w'5v' [Hodges etal. 1980] (3.7)

&-EC = [8RX + w 80y -  v80z + Su]!^* [8Ry + (r + u )8 0 z -  w 8 0 x + 8v]fj 

+ [8RZ + v 8 0 x — (r + u )8 0 y + 8w]Ej ( 3.8 )

Applying ( 3 .2 ) through ( 3.5 ), we have ,

( a e) ( 3 .9  )

Where {ae} = [u1u2 vl ^  v2C2 Wj Px w 2 p 2 <t>1(()2]T ( 3 . 1 0 )

that is, the node variables of an element.

L 1L 2

{q) =
H 1 H 2 H 3 H 4

H, H 2 H 3 H 4

L 1 L 2.
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Similarly, the virtual displacement can be discretized as : 

8u = [L 1 L 2]«
8uj

5u 2J

'8v

5 v = [ H 1H 2 H 3 H4]-
8?,

5v„

K 2)

8 w = [ H 1H 2 H 3 H4]

8wj '

«Pi

8w 2

5 p ,

& j)= [L 1 L 2]-
&|>2

(3.11)

( 3.12 )

( 3.13)

( 3.14 )

Replacing (3.11) through (3.14) into (3.7 ) and (3.8),  we obtain:

5rBC = [ i , j i  kJ[A l][ 8Uj 8v, Swj Spx 8?, 5<|) x 8u2 8 v 2 8w2 

8P2 8C2 8<|)2 8Rx 8Ry SRZ 88x 88y 88Z]T

Sy = [ ii  j i  k J [A 2 ][8 u 1 8vj Swj Sp2 8£j S^j 8u2 8 v 2 8w2

8p2 SC2 6<J> 2 SRX 8R y 8RZ 88 x 88y 88Z]T (3 .15)

Replacing ( 3.9 ) into (2.46), (2.47) and (2.49 ), then applying ( 3.6 ),We can obtain,

5W Aj = {8a j)T[MA] {ae} + {fia.}T [CA]{a J  + {8a.}T[KA] { a j  -  {8a.}T[Q A] ( 3.16 )

where {8ai)T= [ 8 R x 8Ry 8RZ 80 x 80y 80 z 8uj 8vj  8wj

8Pj 8^j 8<() j 8 u 2 8 v 2 8 w 2 8 p 2 8£2 8<|)2 ]T ( 3 . 1 7 )
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Replacing ( 3.16 ) into ( 3.1) and utilising the structural dynamics results from the last 

chapter [Eq(3.3.3),ch5], we can obtain the mass, damping and stiffness matrices of the 

blade element. Therefore, [MA], [CA], [KA] are the aerodynamic contributions to the 

element mass, damping and stiffness matrices respectively. {QA} is the aerodynamic 

contribution to the element load vector. Adding these element matrices and load vector to

the respective element matrices and load vector in the last chapter, we obtain the total 

element mass matrix [MJ, damping matrix [CJ , stiffness matrix [K.] and load vector

[QJ. Finally, the global system matrices and load vector are obtained by appropriate 

assembly of these total element matrices and load vector. Consequently, the assembly of 

the element matrix [MJ leads to the global mass matrix [M], the assembly of the element 

damping matrix [CJ results in the global damping matrix [C]. Similarly, the global 

stiffness matrix [K] and load vector [Q] are obtained. We can write the final equations of 

motion a s :

{5P}T{[M] (P J  + [C]{PeJ + [K] {P J -  {Q}} = 0 ( 3.18 )

Where {8P} are the variation of all the generalised coordinates, which consists of the six 

independent base degrees of freedom and all the node degrees of freedom of the blade 

elements.

{8P)T= [8RX 8Ry 8R Z 8 0 x 8 0 y 8 0 z 8u t 8 v ,  8w , S p x 8 ^  8 ^

8 u 2 8 v 2  8 w 2  8p 2 8£2 8<j>2  ... 8u„ S v n 8w n 8Pn 8£n 8<J>n] ( 3 . 1 9 )

While {Pe} only consists of the nodal degrees of freedom of the blade elements and 

hence does not include the six base coordinates.

Therefore, ( 3.18 ) represents 6n+6 equations. These equations are nonlinear. [C], [K], 

and [Q] contain the kinematical variables of the moving blade base, such as the base 

translational velocities and accelerations, and angular velocities and accelerations. 

However, they are not explicitly written out in the vector {Pc). If the coupling problem
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of a blade with other substructures, such as a rotorcraft fuselage, is considered, a set of 

kinematical constraint conditions must be used to relate these variables to the relevant 

degrees of freedom of the other substructures. In principal, an arbitrary coupling can be 

modelled with the help of this dynamics model. If we consider a problem with a 

prescribed base motion, we only need the last 6n differential equations. The prescribed 

motion can be directly included in the kinematical variables related with the base motion

6.4 SO L U T IO N  PRO CED U RES O F A E R O E L A ST IC IT Y  STA BILITY

We shall apply the equation ( 3.18 ) to solve the aeroelasticity stability problem of a 

rotorcraft blade. As pointed out in the previous section, the differential equations are 

nonlinear. To obtain the stability solution, one normally uses the small perturbation 

method to linearise the nonlinear equations. For simplicity, we assume that the problem 

to be solved has prescribed base motions. Therefore, ( 3.18 ) reduces to a set of 6n 

nonlinear differential equations and can be expressed as:

[M] {Pe} + [C] {Pe} + [K] {Pc} = {Q} ( 4 .1 )

The global mass matrix [M] is still symmetric. The global damping matrix [C] and 

stiffness matrix [K] are asymmetric. The damping matrix [C] includes both the 

aerodynamic component and the structural gyroscopic forces. It could also include any 

structural damping description if this is required.

The linearising procedure is conducted by assuming the motion of the system is a small 

perturbation around a equilibrium values of the system.

That is {Pe}= (P} + {P0) ( 4 . 2 )

Where (P) are the perturbational variables, (P0) are the steady state values.

Replacing ( 4.2 ) into (4.1 ), then this leads to two groups of equations. One group 

contains only the steady state quantities and constants. This group represents the trim or
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equilibrium equations. The second group contains the time dependent perturbational 

quantities and represent the linearised equations of motion about the equilibrium position.

The steady state equations are obtained by dropping all time dependent terms in (4.1) and 

can be written a s :

[K0]{P0) = {Q0} ( 4 . 3 )

This is a set of nonlinear algebraic equations. This set of equations can be iteratively 

solved using an existing algorithm [NAG Library].

After obtaining the steady state solution, we can apply (4.2) to (4.1), then subtract (4.3) 

from (4.1) and neglect higher order perturbation terms, the linearised dynamics equations 

are obtained as:

|M (P0)]{ip } + [C(P0)]{ P } + [K(P0)]{P}= 0 ( 4.4 )

The stability of the system can be obtained by solving the eigenvalue problem 

represented by (4.4). For convenience, (4.4 ) can be written in state equation form:

[A]{x} = [B] {x} ( 4 . 5 )

Where ( 4 . 6 )

The eigenvalues obtained from (4.5 ) can be either real or complex conjugate pairs:

X. = a . ± ico. ( 4.7 )i i i  x '

The complex parts of the eigenvalues 0^ represents the modal frequency and the real part 

Gi reflects the modal damping. When Gj<0, the system is stable.
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6.5 PROGRAM CODING

The program for the structural dynamics model is subsequently further developed to 

analyse the aeroelastic stability of rotor blades based on the above theory. The structural 

dynamics component is the same as in the structural dynamics code discussed in the 

previous chapter but the step-by-step time integration is not required. The aerodynamic 

centre may be different from the elasticity centre. The nine kinematical quantities of the 

beam base are also assigned to the aerodynamics part and are implemented as prescribed 

variables in the current code. When the aeroelastic analysis of a coupled rotor/support 

system is required, then kinematical constraint relations must be used through these base 

variables to obtain the coupled dynamics model.

The first step of the aeroelasticity program consists of computing the nonlinear steady 

equilibrium values of the elastic blades under the action of aerodynamic loads. The 

nonlinear solution is obtained using the Powell method [NAG Library]. The initial 

values are taken as the solution of the linear equations. The linear algebraic equations are 

solved using the LU decomposition method. The equilibrium values that are so obtained 

are used in the linearised ordinary differential equations and subsequently in the 

associated eigenvalue problem. This is solved by the QZ algorithm [NAG Library]. 

Finally, the aeroelasticity stability of the system can be analysed from the computed 

eigenvalues. The flow chart of the computer code is presented below.
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6.6 NUMERICAL EXAMPLES AND DISCUSSIONS
Having established the aeroelasticity model, extensive numerical examples have been 

solved to validate the developed model and to illustrate the solution of the aeroelastic 

stability problem of rotorcraft blades. These numerical examples are divided into two 

groups. Some of the significant parameters are varied in each group, and their effects on 

the system stability are identified. The first group is concerned with investigating the 

aeroelasticity stability of hingeless rotor blades without a precone angle. Complete 

analytical results are available to compare with in the literature [Hodges and Ormiston,

1976]. The second group is for rotor blades with a precone angle. The purpose of these 

examples is to demonstrate the modelling flexibility of the present model by modelling 

the blade precone angle through the degrees of freedom of the blade base. The past 

traditional treatment includes the structural configurations at the root of rotor blades in the 

formulation from the start and hence the modelling generality is restricted [Hodges and 

Ormiston,1976, Friedmann and Straub,1980, Sivaneri and Chopra, 1982]. The present 

model introduces six arbitrary base degrees of freedom which, theoretically, can model 

arbitrary blade root geometries or motions or coupling with other substructures. 

Therefore, this gives a greater modelling flexibility to the present model when compared 

to existing ones.

6.6.1 Results for Rotor Blades without Precone Angle
A classical study of the aeroelasticity stability of hingeless rotor blades was conducted by 

Hodges and Ormiston [1976]. The global modal method was used there. A wide range 

of parametric investigations was performed. Both equilibrium values and stability 

solutions are available to compare with. The basic blade properties are given in Table 

6.1. All blades properties are assumed to be uniform along the span of the blade. The 

rotor blade is rotating about the shaft with a constant rotating speed O. Fig 6.2 is a 

simple illustration of the configuration.
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Fig 6,2 A hingeless rotor blade without precone angle

Table 6.1 Values of Configuration Parameters of a Hingeless 
Rotor Blades for Numerical Results

cov 0.7, or 1.5 (corresponding to EIz/mQ^R^ =0.0291359, 

0.166908 respectively)

®w 1.15 (corresponding to EIy/mQ^R^= 0.014486)

m<t) 2.5, or 5.0 (corresponding to GJ/mQ^R^=0.000925, 
0.005661 respectively)

kA/km 1.5

- Pp . 0.0 or 0.05 rad
km/R 0.025

^ml ^ m2 0.0

y=3pacR/m 5
a 0.1

c/R 7t/40
c d 0.0095

c mac 0
a 6

Where: is the blade cross-section mass radius of gyration, k ^ a n d  are the blade

cross-section principal mass radii of gyration (flapwise and chordwise respectively), a  is
kcthe solidity and equal to —  (k=number of blades).
nR
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The convergence of the finite element method is considered first. The steady-state 

deflections of the blade and the eigenvalues for the blade aeroelasticity system are 

calculated using different numbers of finite elements. Table 6.2 presents the steady-state 

blade tip deflections in flap (wO), lead-lag (vO) and torsion (<j)0) as the number of 

elements is varied from 2 to 9. The blade properties are cov=1.5, ^ = 5 .0  and Pp=0. The

collective pitch angle of the blade is 0o=O.2 rad. It can be observed from Table 6.2 that 

eight to nine elements gives a reasonably good convergence for the equilibrium 

solutions. Table 6.3 presents the eigenvalues for the first flap, the first lead-lag and the 

first torsion modes associated with the blade aeroelasticity equations under the same case 

as in Table 6.2. Each eigenvalue consists of a real part and a imaginary part, which 

represents the damping and the frequency of the mode, respectively. The results show, 

for the case considered, that 8 or 9 elements can give a reasonably good convergence. 

Therefore, 9 elements are adopted in the subsequent computations.

Table 6.2 Equilibrium Blade Tip Deflections using Various Number of 
Elements (coy=1.5, ©^=5.0, Pp=0.0 rad, 0o=O.2 rad)

Number of 

element

Equilibrium blade tip 

deflection in lead-lag

Equilibrium blade tip 

deflection in flap

Equilibrium blade tip 

deflection in torsion

2 -0.023574 0.11482 -0.0073984

3 -0.017576 0.081974 -0.0075046

4 -0.015287 0.069460 -0.0079041

5 -0.014118 0.063072 -0.0082414

6 -0.013719 0.060933 -0.0085116

7 -0.013241 0.058320 -0.0087017

8 -0.012890 0.056401 -0.0088500

9 -0.012622 0.054936 -0.0089686
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Table 6.3 Eigenvalues using Various Number of Elements 
coy=1.5, 0)^=5.0, Pp=0.0 rad, 0o=O.2 rad

First lead-lag mode First flap mode First torsion mode

Number of Real part Imaginary Real part Imaginary Real part Imaginary

elements part part part

2 -0.11976 2.23958 -0.78228 0.88850 -0.46652 5.99133

3 -0.05774 1.88164 -0.49782 0.99292 -0.41367 5.50313

4 -0.04555 1.73690 -0.41505 1.00743 -0.38878 5.30436

5 -0.04062 1.66017 -0.37543 1.01266 -0.37365 5.19057

6 -0.03844 1.61457 -0.35215 1.01391 -0.36354 5.11635

7 -0.03692 1.58234 -0.33674 1.01539 -0.35664 5.06468

8 -0.03594 1.55900 -0.32580 1.01636 -0.35155 5.02649

9 -0.03528 1.54131 -0.31762 1.01703 -0.34764 4.99711

Subsequently, the following cases are investigated using the code developed based on 

the present algorithm. Some significant parameters such as lead-lag and torsion stiffness 

are varied and their effects on stability are assessed.

Case I ( a\=l 5, cô -5.0 )

The first case is for the blade configuration of cov=1.5, co^=5.0 (lead-lag and torsion

dimensionless natural frequency respectively). The blade is the so-called stiff in-plane 

blade configuration ( cov>l). The nonlinear equilibrium deflections of the blade tip are 

shown in Fig 6.3 to 6.5 at various pitch angles 0. vO, wO, (})0 represent the lead-lag, flap 

and torsion equilibrium deflections of the blade tip respectively. vO and wO are 

nondimensionlized by the rotor blade radius R. The results of Hodges and Ormiston 

[1976] are also presented in the figures. The agreement between the two results is good.
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A slight deviation appears at high collective pitch angle 0 in vO and wO. The biggest

relative error is less than 6%. This difference is due to the approximation by Hodges and

Ormiston that sin0= 0, cos0=l in the aerodynamics and sin(0+<j>)=sin0, cos(0+<())=cos0

in the structural analysis. These assumptions are not very accurate at high values of 0.

This approximation is not assumed in the present model. In the equilibrium torsion

deflection, the torsion deflection is caused by the inertial moment (or the so-called tennis

racket effect [Hodges and Ormiston, 1976, Hodges and Dowell, 1974] ) rather than

aerodynamics. Consequently, the agreement is still good at high pitch angles. This 
inertial moment term is equal to 2m^Iyz=2co^(I1-If)sin(0+<t>)cos(0+<{)) in this case, where

Ij, If are the principal moments of inertia of the lumped mass, respectively.

Fig 6.6 presents the locus of roots of the first flap, lead-lag and torsion modes. As the 

pitch angle increases, the flap mode damping does not change much, the lead-lag mode 

damping rises, and the torsion mode damping decreases slightly. This is identical to the 

trend presented by Hodges and Ormiston (Fig 6.19). Obviously, the system is stable 

over the practical range of collective angle. This leads to the same conclusion as drawn 

by Hodges and Ormiston.

Fig 6.3 Equilibrium flap deflection of a blade tip at various pitch angles 

co =1.5, G) =5.0, (3 =0.0 radV <D 7 ‘ PC
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Fig 6.4 Equilibrium lag deflection of a rotor blade tip at various pitch angles 

co =1.5, co. =5.0, B =0.0 rad
V ’ 0 “ pc

Fig 6.5 Equilibrium torsion deflection of a rotor blade tip at various pitch angles 

co =1.5, co =5.0, P =0.0 rad
V <J> “ pc
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Fig 6.6 Locus of roots of blade modes 
co =1.5, co =5.0, B =0.0 radV <P “ pc
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The second case is for the configuration of cov=1.5, ay=2.5. Comparing with case I, the 

torsional rigidity is reduced. The equilibrium values of the blade tip are shown in Fig 6.7 

to 6.9 at various pitch angles. The equilibrium solution for this case is not given by 

Hodges and Ormiston. Comparing Fig 6.9 with fig 6.5, the decreased torsional rigidity 

increases the torsional deflection. As a result of the increase of the torsional deflection, 

the real blade collective angle (0*k |)) decreases and hence this reduces the aerodynamic 

loads. Consequently, as expected, the flap and lag deflections in Fig 6.7 and 6.8 are 

smaller than those in Fig 6.3, 6.4.

Fig 6.10 gives the locus of roots of the first flap, lag and torsion modes with the 

variation of blade pitch angle. As shown, there is a lead-lag mode instability when the 

pitch angle reaches a certain value. This instability is a feature of the coupling between 

the lead-lag mode and the torsion mode. The same conclusion was drawn by Hodges and 

Ormiston (Fig 6.19). Therefore, for the stiff inplane blade configuration, a low torsion 

stiffness can leads to a lead-lag instability.

C ase II ( cov-1 .5 ,  co^-2.5)

Fig 6.7 Equilibrium flan deflection of a rotor blade tip at various pitch angles

co =1.5, co =2.5, B =0.0 rad____I__&____' us_______
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Fig 6.8 Equilibrium lag deflection of a rotor blade tip at various pitch angles

“ v=l-5> %=2-5. Ppc=0-0 rad

Fig 6.9 Equilibrium torsion deflection of a rotor blade tip at various pitch angles

co =1.5, ov=2.5, P =0.0 radV ’ 1 pc
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Fig 6.10 Locus of roots of blade modes

0) =1.5, co =2.5, P =0.0 radv 9 r pc
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Case III is for the configuration of cov=0.7, co(})=5.0. That is the so-called soft inplane 

blade configuration ( cOyd). The lead-lag stiffness is reduced relative to case I. Fig 6.11 

to 6.13 present the equilibrium values of the blade tip for lag, flap and torsion 

deformation respectively. The solid line is obtained from the present model, while the 

square points are taken from Hodges and Ormiston's work. Again, the results show a 

good agreement between the two models. A slight discrepancy appears at very high pitch 

angle 0 in vO and wO. However, the biggest relative error is about 7%. As pointed out 

before, the slight difference is due to the approximation of sin0, cos0 and sin(0+<j>), 

cos(0-H}>) made in the reference.

Fig 6.14 demonstrates the locus of roots of the first flap, lead-lag and torsion mode with 

the variation of the pitch angle 0. The lead-lag mode damping increases wiih 0. The flap 

mode damping reduces, while the torsion mode damping is little changed. Fig 6.20 

presents the stability results for the soft inplane rotor blades from Hodges and Ormiston. 

Identical trend is observed between Fig 6.14 and 6.20. Over the practical range of the 

pitch angle 0, the system is stable. This gives the same conclusion as obtained by 

Hodges and Ormiston.

C ase III ( cov= 0 .7 , 0)^=5.0)

Fig 6.11 Equilibrium flap deflection of a rotor blade tip at various pitch angles
co =0.7, co =5.0, p =0.0 radv_____ * (b ’ * p c __________
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Fig 6.12 Equilibrium lag deflection of a rotor blade tip at various pitch angles

co =0.7, 00. =5.0, P =0.0 rad
V * «J> ’ “ pc

Fig 6.13 Equilibrium torsion deflection of a rotor blade tip at various pitch angles

co =0.7, co =5.0, B =0.0 radv 9 “pc
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Fig 6.14 Locus of roots of blade modes 
co =0.7, co =5.0, p =0.0 radv 9 'pc
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This case is for the configuration of cov=0.7, 0)^=2.5. Compared with case III, the 

torsion frequency is reduced. Fig 6.15 to 6.17 present the equilibrium values of the blade 

tip deflections at various pitch angles. Only the results from the present model are shown 

because the equilibrium solution of this configuration is not given by Hodges and 

Ormiston. Comparing Fig 6.15-6.17 with Fig 6.11-6.13, the torsion deflection is largely 

increased due to the reduction of the torsional stiffness. Again, this increase leads to 

smaller real pitch angle (9+<}>), and hence smaller flap and lead-lag deflections are 

produced in Fig 6.15-6.16 than in Fig 6.11 to 12.

The locus of roots of the first flap mode, first lag mode and first torsion mode are plotted 

in Fig 6.18. The flap mode damping is decreased with the increase of pitch angle 0. The 

lead-lag mode damping is increased with 0. The torsion mode damping is little changed. 

The result from Hodges and Ormiston is also shown in Fig 6.20. The system is stable 

over the practical range of pitch angles 0. Comparing this case to case II, it should be 

noted that for a stiff inplane blade, a low torsion stiffness can result in a lag-torsion type 

instability as in Fig 6.10, but for a soft inplane blade, the stability is maintained for a low 

torsion stiffness. There is a significant difference between a stiff inplane configuration 

and a soft inplane configuration.

C ase IV  ( a ^ -0 .7 , 0)^=2.5)

0.0 0.1 0.2 0.3 0.4 0.5
Blade pitch angle 0 rad

Fig 6.15 Equilibrium flap deflection of a rotor blade tip at various pitch angles
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Fig 6.16 Equilibrium lag deflection of a rotor blade tip at various pitch angles
co =0.7, CD =2.5, p =0.0 radv <P pc

Fig 6.17 Equilibrium torsion deflection of a rotor blade tip at various pitch angles
co =0.7, co =2.5, P =0.0 radV Y *pc

1 7 9



2.54
2.52 - 
2.50 - 
2.48 - 
2.46 - 
2.44 - 
2.42 -
-0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

co =0.7, co .=2.5, B =0.0 radv 9 r  pc

1 8 0



181

Fig 6.19 Locus of roots for stiff inplane rotor blade 
from Hodges and Ormiston, 1976 (cov=1.5, |3pc=0.0 rad)

Fig 6.20 Locus of roots for soft inplane rotor blade 
from Hodges and Ormiston, 1976 (cov=0.7, ppc=0.0 rad)
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6.6.2 Results for Rotor Blades with Precone Angle

The present model is subsequently used to analyse the aeroelasticity stability of hingeless 

rotor blades with a precone angle Pp. This group of numerical examples is used to 

demonstrate the generality and flexibility of the present model. The blade root geometries 

can be easily modelled by making use of the blade base motion variables. According to 

the developed model, the translational velocity of the blade base can be obtained as 

vx=vy=vz=0, the angular velocity of the base is cox=£2sinpp, coy=0, coz=£2cospp from 

Fig 6.19. The other properties of the blade are the same as in the previous section. 

Applying these kinematical variables of the base to the program, we can analyse the 

aeroelastic stability of the rotor blades. The following four cases correspond to the case I 

to case IV respectively, but also has an 0.05 rad precone angle.

Fig 6.21 A hingeless rotor blade with precone angle Pp

Case V ( (0V=L5, (0^5.0, Pp=0.05 rad)

This case is for the configuration of cov=1.5, co^=5.0, pp=0.05 rad. Again, the 

configuration is the so-called stiff inplane blade. Fig 6.22 to 6.24 give the equilibrium 

values of the blade tip deflections in flap, lag and torsion together with the results from 

Hodges and Ormiston. These two groups of results have a good agreement. The slight 

discrepancies at high pitch angle 0 are less than 6%. Again that is attributed to the
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approximation of sin0, cos0 and sin(0+<{>), cos(0-H)>) in the reference. As expected, the 

blade tip flap deflection at zero pitch angle is negative due to the positive precone angle 

rather than zero as for zero precone angle. This is caused by the centrifugal force. 

Comparing Fig 6.23 to 6.4, the positive precone angle generates a positive lead-lag 

deflection increment. This is caused by the negative increment of the flap deflection 

through the flap-lag structural coupling.

Fig 6.25 gives the locus of the roots of the first flap, lead-lag and torsion modes with the 

variation of the pitch angle 0. The lead-lag mode damping is increased with the increase 

of the pitch angle, while the flap and torsion mode dampings are slightly decreased. The 

system is stable over the practical range of pitch angle.

Fig 6.22 Equilibrium flap deflection of a rotor blade tip at various pitch angles

co =1.5, co. =5.0, B =0.05 rad__i!____I__Q----------------
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Fig 6.23 Equilibrium lag deflection of a rotor blade tip at various pitch angles
co =1.5, co.=5.0, p =0.05 radv 9 r pc

%

Fig 6.24 Equilibrium torsion deflection of a rotor blade tip at various pitch angles

CD =1.5, co. =5.0, B =0.05 radV 9 “pc
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The torsion frequency of the blade in case V is subsequently reduced to a low value 2.5 

(cov=1.5, co(})=2.5, pp=0.05 rad). The equilibrium values obtained for the blade tip are 

given in Fig 6.26 to 6.28. Compared with Fig 6.7 to 6.9, the positive precone angle 

produces a negative increment in flap deflection and a positive increment in the lead-lag 

deflection. The reason is the same as that stated in case V.

The locus of the roots of the flap, lag and torsion modes are plotted in Fig 6.29. As 

observed in Fig 6.10, the stiff inplane configuration at low torsion stiffness leads to the 

lag-torsion type instability at higher pitch angle. Furthermore, in this case, an instability 

occurs at quite low pitch angles due to the effect of the precone angle. This is another 

significant feature of a stiff inplane blade configuration. That is: for a low torsion 

stiffness, a stiff inplane configuration with a precone angle can result the lead-lag 

instability both at very low pitch angle and at a certain high pitch angle.

C ase VI (cov= L 5 , 0)^=2.5, pp=0.05  rad)

Fig 6.26 Equilibrium flap deflection of a rotor balde tip at various pitch angles 
co =1.5, co =2.5, p =0.05 rad— u-------!-----9___ Cpc_______________
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Fig 6.2 7 Equilibrium lag deflection of a rotor blade tip at various pitch angles

wv=1.5, «y=2.5, Pp^O.05 rad

Fig 6.2 8 Equilibrium torsion deflection of a rotor blade tip at various pitch angles

co =1.5, co =2.5, P =0.05 radv 9 r  P°
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Fig 6.29 Locus of roots of blade modes 

co =1.5, co.=2.5, P =0.05 radV 0 *^pc
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Case VII analyses the stability of a soft inplane blade configuration of cov=0.7, co^=5.0, 

Pp=0.05 rad. Fig 6.30 to 6.32 present the equilibrium values of the blade tip deflections 

in flap, lag and torsion respectively. In Fig 6.30, the results from the current analysis 

and those from Hodges and Ormiston are plotted together. They agree with each other 

very well. The equilibrium solution for the lag and torsion is unavailable for this precone 

angle from the reference. However, the results for pp=0.1 and 0.0 rad are given by 

Hodges and Ormiston. They give a good indication as to the accuracy of the present 

results.

Fig 6.33 plots the locus of roots of the flap, lag and torsion modes with the variation of 

pitch angle. The lead-lag mode damping increases with the pitch angle. The flap mode 

damping slightly decreases with the pitch angle. The torsion mode damping has a very 

small change. The system is stable over the practical range of pitch angles.

C ase VII ( 0̂ ,-O J , co0=5.0, pp=0.05  )

Fig 6.30Equilibrium flap deflection of a rotor blade at various pitch angles 
co =0.7, co =5.0, P =0.05 radV_____  (0_____  ~  PC____________

1 8 9



Fig 6.31 Equilibrium lag deflection of a rotor blade tip at various pitch angles

co =0.7, co =5.0, p =0.05 radv <p 1 pc

Fig 6.32 Equilibrium torsion deflection of a rotor blade tip at various pitch angles

co =0.7, co =5.0, P =0.05 rad
V  0 “ pc
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This case is for the configuration of cov=0.7, co(j)=2.5, Pp=0.05 rad. That is a soft inplane 

blade with a low torsion stiffness. The equilibrium solutions are given in Fig 6.34 to 

6.36. They represent the blade tip deflections in flap, lag and torsion respectively. 

Comparing Fig 6.36 to 6.32, the present torsion deflection is largely increased due to the 

reduced torsional stiffness. In this case, the flap and lag deflections are also reduced by a 

small amount. This, again, is indirectly influenced by the effective blade pitch angle 

(0-H}>). As expected, the flap deflection at zero pitch angle is negative rather than zero due 

to the precone angle effect

The locus of roots of the first flap, lead-lag and torsion modes are plotted in Fig 6.37. 

The lead-lag mode damping is increased with the increase of the pitch angle. The flap 

mode damping is decreased with the increase of pitch angle. The change of the torsion 

mode damping is quite small. The system is stable over the practical pitch angle values.

C ase VIII ( cov=0.7, 0)^=2.5, pp = 0 .05  )

Fig 6.34 Equilibrium flap deflection of a rotor blade tip at various pitch angles 

cov=0.7, oy=2.5, P ^Q .05  rad
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6.35 Equilibrium lag deflection of a rotor blade tip at various pitch angles 
cov=0.7, ©^=2.5, P^O .05  rad

Fig 6.36 Equilibrium torsion deflection of a rotor blade tip at various pitch angles

co =0.7, co =2.5, B =0.05 radV ’ <j) “pc
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6.7 SOME CONCLUSIONS

Some significant conclusions can be drawn from the above analyses. It is shown that the 

newly developed model presented here and the code based upon this is an appropriate 

and powerful tool to analyse the rotorcraft aeroelasticity stability. The Finite Element 

Method combined with the multibody dynamics approach creates a quite general model to 

model a complex structure with complex geometries and complicated couplings between 

substructures. It is a promising method. The combination produces great modelling 

flexibility and generality. The extensive parametric investigations of the aeroelasticity 

stability of hingeless rotor blades show:

1) Usually in the coupled blade flap-lag-torsion aeroelasticity system, the flap mode 

damping and torsion mode dampings are quite high, while the lead-lad mode damping 

is low.

2) Soft inplane blade configurations are stable over the practical range of pitch angles.

3) Stiff inplane blade configurations may be destabilised depending upon the torsion 

stiffness. Low torsion stiffness can lead to lag-torsion type instability.

4) Positive precone angle is destabilising for the stiff inplane configurations and can lead 

to lead-lag mode instability at quite low pitch angles.
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CHAPTER 7 CONCLUSIONS AND FURTHER WORK

7.1 CONCLUSIONS

In the first part of this work, the whirl flutter of the tilt-rotor aircraft was studied. A 

particular endeavour was made in the second part to develop a general model of great 

modelling flexibility for rotorcraft aeroelasticity analysis and the dynamic analysis of 

rotating beam-like structures.

Whirl Flutter Model of a Tilt-rotor Aircraft

Firstly, an aeroelastic model is developed to study the whirl flutter problem of a tilt-rotor 

aircraft In order to obtain a clear physical insight into the whirl flutter characteristics of a 

tilt-rotor aircraft, it is simplified as a coupled rotor/nacelle system. The aircraft is 

assumed to be in stable forward flight. The flexibility of the fuselage and wing are 

excluded. The nacelle is considered to be a rigid body supported on springs and 

dampers. The rotor of N blades are assumed to be rigid in flap and lead-lag. Each blade 

is set to a pitch bearing with a torque spring and hence has a rigid torsion degree of 

freedom. The rotor is connected to the nacelle through either a universal joint or a 

gimbal. Both have two degrees of freedom one each in pitch and yaw with spring and 

damping restraints. Rotor configurations include the gimbal undersling, blade pitch 

bearing offset, blade precone angle, blade pitch bearing sweep angle, blade sectional 

mass centre offset and aerodynamic centre offset from the pitch axis. The total degrees of 

freedom is 12 for each configuration.

The equations of motion for these two systems are derived using the Newton method. 

The nonlinear terms that are retained are based upon an ordering scheme. The 

aerodynamic loads are included based upon a two dimensional quasi-steady thin airfoil 

theory and are valid for both high inflow and low inflow cases. The multi-blade
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coordinate transformation is used for blade torsion degrees of freedom to eliminate the 

periodic coefficients in the equations of motion. The nonlinear differential equations of 

motion are linearised using the perturbation method. The eigenvalue problem associated 

with the linearised differential equations are then solved to analyse the system stability.

A computer program was developed for this model. It was first applied to the 

investigation of the classical propeller whirl flutter problem and a coupled flap-hinged 

tilt-rotor/nacelle whirl flutter problem. The present numerical results show good 

agreement with available experimental and analytical results. Subsequently, the present 

model was applied to analyse the whirl flutter characteristics of a universal joint tilt-rotor 

aircraft and an ideal gimbal tilt-rotor aircraft. Their whirl flutter characteristics are 

evaluated and compared. The following conclusions are drawn:

1) The developed model can adequately model the whirl flutter of propeller and tilt-rotor 

aeroplanes.

2) The whirl flutter modes of of the universal joint rotor configuration and the ideal 

gimbal rotor configuration are very similar. The gimbal rotor whirls at a slightly 

higher velocity than the universal joint rotor.

3) In both configurations, the unstable mode appears as the nacelle mode of lower 

frequency.

4) The stiffness of the nacelle support springs in pitch and yaw are significant for the 

whirl flutter of both configurations. A reduction of the stiffness is highly 

destablising.

5) The rotor modes are highly damped because the rotor behaves like a flap blade. The 

forward rotor mode damping decreases with the forward speed, but its high 

damping is generally sufficient to maintain the stability until quite a high forward 

speed.
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A General Finite Element Model for Beams Attached to an Arbitrary Moving Base 

In the second part, an endeavour was made to develop a general Finite Element model for 

rotating beam-like structures and especially for modelling the rotorcraft aeroelasticity 

problems. This model has a great modelling flexibility and can deal with complex beam 

geometries, arbitrary blade root kinematics and the coupling between the beam and other 

substructures, such as the fuselage. The model was developed in two stages.

The structural dynamics model

As the first step, a general Finite Element structural dynamics model was developed for a 

three dimensional elastic beam with an arbitrary and large moving base of six degrees of 

freedom. The six degrees of freedom of the beam base can incorporate either a prescribed 

arbitrary motion of the base or the coupling of the beam with other substructures. The 

beam can be pretwisted and have a mass centre offset from the elasticity centre. The 

equations of motion were derived using the virtual work principle. Large deflections and 

small strains of the beam were assumed so that the geometrical nonlinearities are 

included. The equations are discretised using the finite element method. The beam inertia 

is lumped at the end nodes of each element and this simplifies the analysis. The axial and 

torsional deflections of the beam element are represented by linear polynomials, while the 

bending deflections are represented by cubic polynomials. The centrifugal stiffness and 

gyroscopic terms caused by the large base motion were specifically considered so that 

this dynamics model is applicable for both nonlinear and linear problems.

This dynamics model was coded into a computer program and applied to solve both an 

eigenvalue problem of a spinning beam and to simulate the dynamic response of a space- 

based robotic manipulator arm with a complex time-varying base motions. The former 

has a precise analytical solution to compare with, and the latter has a numerical solution 

based on a modal method to compare with. The results show:
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1) Six to eight elements are sufficient for determining natural frequencies of a rotating 

beam.

2) The present Finite Element model can successfully solve the eigenvalue problems of a 

rotating beam.

3) The present model was shown to be an appropriate and general tool to treat the 

dynamic response problem of a beam with complex and large base motion. This 

model has a great modelling generality due to the combination of the Finite Element 

method and the arbitrary base motion variables which is widely used in Multibody 

Dynamics.

4) The significant deficiencies of the previous multibody dynamics models, which were 

pointed out by Kane et al [1987], were confirmed by the present model.

5) A minor deficiency is believed to exist in the simulation of the extension and lead-lag 

deflections in the multibody dynamics model recently developed [Kane et al, 1987]. 

It is believed to be caused by the linearisation of that model and was eliminated in the 

current model.

The aeroelasticity model

The structural dynamics model that was developed was further extended to a finite 

element aeroelastic beam model for rotorcraft blades in an axial flow. The virtual work 

done by the aerodynamic loads was formulated. The aerodynamic loads are computed 

using a two dimensional quasi-steady thin airfoil theory, and is discretised by the Finite 

Element Method. The aerodynamic model was specifically considered such that it is valid 

for both high inflow rotors and low inflow rotors. The arbitrary base motion and the 

aerodynamic centre offset from the elasticity centre were included in the aerodynamic 

formulation. The nonlinear differential equations of motion were obtained by combining 

the structural dynamics model with the virtual work done by the aerodynamic loads. 

Again the nonlinear differential equations were linearised using the perturbation method 

to analyse the aeroelastic stability of rotorcraft This results in a set of nonlinear algebraic
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equations for the steady equilibrium values and a set of linear differential equations for 

the dynamic component. The nonlinear algebraic equations are solved iteratively to obtain 

the equilibrium values. The equilibrium values are then used to obtain the coefficient 

matrices for the linearised differential dynamic equations. The associated eigenvalue 

problem is finally solved to analyse the aeroelastic stability of rotorcraft. The algorithm is 

incorporated into a computer program to evaluate the aeroelasticity stability of rotor 

blades. This general model can be used as a basic element to analyse the isolated blade 

aeroelastic stability and the coupled rotor/body system aeroelastic stability by making use 

of the six rigid body degrees of freedom of the blade base.

This developed model was applied to solve a number of numerical examples to validate it 

and to illustrate the solution of the aeroelastic stability of rotor blades. The first example 

was an isolated hingeless rotor blade without precone angle. The second example 

demonstrates the modelling flexibility of the present model by modelling the blade 

precone angle through the degrees of freedom of the base which are essential for the 

modelling generality and flexibility of the present model. A wide range of parametric 

variations were made in both examples. Comparison of the present results with the 

existing results allows the following conclusions to be reached:

1) The present model is an appropriate and powerful tool for analysing rotor blade 

aeroelastic stability.

2) This model has a great modelling flexibility and generality. The Finite Element 

Method combined with the Multibody Dynamics approach creates a quite general 

model to model a complex structure with complex geometries and complicated 

couplings between substructures. It is a promising method. The method developed is 

of great potential as a general model for rotating beams dynamics and rotorcraft 

aeroelasticity.
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3) Usually, the flap mode damping and torsion mode damping are quite high in the 

coupled hingeless blade flap-lag-torsion aeroelasticity system, while the lead-lag 

mode damping is low.

4) Stiff inplane blade configurations with low torsional stiffness may give rise to lead- 

lag instability due to the pitch-lag coupling.

5) A positive blade precone angle is destablising and may give rise to a lead-lag 

instability at quite low pitch angles.

7.2 FU R T H E R  W O R K

Further work is needed to develop a comprehensive and general model for rotorcraft 

aeroelasticity problems. Some of the items for this are suggested in follows.

Application to Coupled Rotorlbody Aeroelasticity

The analysis of coupled rotor/body aeroelastic stability is a complex and important part of 

rotorcraft aeroelasticity problems. One of the aims in developing the present general 

model was to provide a significant basic element for the analysis of such coupled 

systems. Some further work is required to combine the present model with a supporting 

body dynamics model in the nonrotating frame. The coupling can be realised by the 

kinematical restraint relation on the interface. The six degrees of freedom of the blade 

base can be used to advantage for this. Since the blade generalised coordinates are 

defined in the rotating frame,while the body coordinates are in the non-rotating frame, 

the so-called multi-blade coordinate transformation needs to be used.

Inclusion of Dynamic Inflow Model in the Aerodynamics

The present model utilises the two dimensional quasi-steady thin airfoil theory. A logical 

improvement is to add the dynamic inflow model to the quasi-steady aerodynamics. The 

dynamic inflow model is an efficient approximation for low frequency unsteady 

aerodynamics.
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Composites Blades

The present structural dynamics model is based on the Euler-Bemoulli assumption. This 

is invalid for anisotropic composites blades. Modifications have to be made to consider 

the transverse shear deformations and cross-sectional warping effects in the structural 

model.

Forward Flight in Helicopter Mode

The present aerodynamics model is only developed for axial flow rotors. When a 

rotorcraft flies forward in a helicopter mode the air flow through the airfoil is periodic in 

nature. Further developments are needed to include the effect of the forward flight in the 

aerodynamics model. This leads to much more complex unsteady aerodynamics and to 

time-varying periodic coefficients in the equations of motion.
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APPENDIX 3A

COORDINATE TRANSFORMATION MATRICES

1. "x0yoZo" system <=> MXgygZg" system 

Parallel systems and hence

h "1 0 O' *0 *0
h *= 0 1 0 1 Jo ■=[E]- jo

A „0 0 1. A A
[E] is a unit matrix

2. MxgygZg" system «=> "x^yigZ^" system

Euler angle (0x,0y,0z,) rigid body rotations, undergoing the series roll, pitch, yawing 

motion of nacelle.

*lg - 1 ez -ey • h
jig ► ~ exey-e2 1 ex h

M g . 0y + 9x9Z 1_ k g

3. "xjgyjgZjg" system <=> "x2gy2gz2g" system 

Rotating \j/=Qt about zlg axis

A " COS\|/ sirnj/ 0" *ig
J2g ► = -simjr cos\|f 0 < jig •

. k2g. 0 0 1 _ , kig.

4. ,,X2gy2gZ2g,, system <=> "xhyhzh" system
— > — >

The gimball degrees of freedom (Xq about i2g and pG about j2g

V "1 0 *~Pg V
jh 0 1 <*g * J2g •
kh. . Pg -O q 1 M g .

5-,,x2gy2gz2g" system <=> "xbybzb" system

The blade pitch angle 0 is defined with respect to the hub plane, so the blade outboard of the
—>

pitch bearing doesn’t undergo the (Xq rotation about i2g due to the gimball motion. Therfore
—)

remove rotation about i2g from ”H" system and include the blade precone angle Pp and
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sweep angle psw to obtain system.
/  « > 

lb 1 “ Psw Pp“ pG V

jb Psw 1 Psw(P p“ Pg ) h i  -

A Pg - P p 0  1

6. ''xbybzb" system <=> "xcsycszcs" system

Including blade pitch degree of freedom <|> about ib
* * * ' 

Ics '  1 0 0"
f % \

lb

Jcs ► ~ 0 1 ♦ « jb
JrKcsJ . 0 H> 1. k b

?• "x csycsz cs" system <=> "XpAypAZpA” system

—)
Including geometry torsion angle 0G rotation about ics
 ̂ " 
IpA 1 0 0 '

* • " 
Ics

jpA ► = 0 COS0G sin0G - jcs

.^pA . 0 -sin0G cos0G . ^cs.

0G is blade geometry torsion angle

®G~®collective pitch *** ®pretwist 0ic^OS\j/ + 0jssin\j/—KpGPG

* The transformation matrices in this appendix are for the universal joint rotor
configuration. The difference between the ideal gimbal rotor configuration and the
universal joint configuration is introduced in section 4.4.4.
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APPENDIX 3B 

RESULTANT LOADS

RESULTANT AERODYNAM IC LOADS

It should be pointed out that ct, cd, cmac in Fy and Fz etc. have a trim value c10, cd0, cmac0 and 

a perturbation Aq, Acd, Acmac about the trim value due to the system perturbation motions, 

and hence

ci= c10 + Act etc.

Assuming cd, cmac is constant without perturbation effect to simplify the analysis.

dci
Ac1=-^-Aa=a-Aa

Where, Aoc= A0-
Ut trim^Up-Up trimAUT

utrim

=♦-
ep+x

■AU„+*
(Vp+Vi)

■AUn
D[(ep+x) +(vF+vi) R ]

—(J) (XupAUp'l'(Xyrj,AU,p

2 / . \2__2i ---P‘ . \ 2 ,  . \2_2iD[(ep+x) +(vp+Vj) R ]

The expressions of AUp and AUT are 

AUp= a { z g-x p G-sinY[-pGyg+Ppyg+xPsw0y-(ep+x)0x] 

-COSY[-PGxg+Ppxg+xPsw0x+(ep+x)0yU

=M1 zg+M2pG+M3 pGygsinY+M4ygsinY+M5 0y sin Y+M60xsin Y 

+M7pGxgcosY+M8xgcosY+M90xcosY+Mlo0ycosY

AUT= ^{-(vF+vi)RPswpG+x0z-sinY[-(vF+vi)R(0y+Psw0x)+xg- p swyg]

-cosYWvp+vPRCOx-p^Op-p^Xg-yg]}

=NlpG+N20z+N30ysinY+N40xsinY+N5xgsinY+N6ygsinY
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+N70xcos\|H-Ng0ycos\|/+N9xgcos\}H-Nloygcos\i/

After neglecting higher order terms,
pR-ep

f ar=Jo { PsW[-pbclosin0Ĝ 2(vFfvi) R 2-pab(<l)-aUpAUp+aUTAUT)

sin0GQ2(vp+vi)2R2-pbc1oCos0GQ2x(vF+vi)R

-pab(<}>-aUpAUp+aUTAUT)cos0Gn 2x(vFHvi)R]+(pG- p p)

[pbclocos0Gn 2x2+pab((|)-aUpAUp+aUTAUT)cos0GQ2x2
a

+pbclosin0GQ (vp+v^Rx+pabC^aupAUp+auTAU-r) 

sin0Gn 2(vF+vi)Rx] }dx

=A1+A2<j>+A3AUp+A4AUT+A8pG+A5<J)pG+A6pGAUp+A7PGAUT

F^r = [ P-pbcdQ2x2cos0G-pbclocos0GQ2{(vF+vi)2R2<()
Jo

-pbclosin0GQ2{(vFf-vi)2R2+2(vF+vi)Rzg

-2(vp+vi)RxpG+sin\|/<2(vF+vi)Rx0x>fcos\|/<-2(vF+vi)Rx0y>}

—pabsin0GQ2((j)—0CupAUp+aurAUj){(vp4-Vi)2R2+2(vp+v^)Rzg

-2(vp+vi)RxpG+sin\j/<2(vF+vi)Rx0x>+cos\|r<-2(vp+vi)Rx0y>} 

pabcos0GQ aupAUp+ayjAU^Cvp+vj)2R2

-p b c locos0Gn 2{(ep+x)(vF+vi)R+x(vp+vi)R0z+xzg- x 2pG

+sin\y[-(vF+vi)R0y+xg] [-(vp+v^Rl+cosxj/Hvp+v^ROx-yg] [-(vp+v^R]

+sin\jr[x(ep+x)0x]+cosY[-x(ep+x)0y]}+ pbclosin0GQ x (v F+vi)R(j)

—pabcos0G£2 (<})—otupAUp+ccuT’AU'j’) {(ep+x)(vp+vj)R

+x(vp+vi)R0z+xzg—x2pG+sin\j/[-(vp+yi)R0y+xg][—(vp+vi)R]

+cos\j/[-(vp+vi)R0x-y  g] [-(vF+vi)R]+sin\{/[x20x]+cos\j/[-x20y]} 

+pabsin0G£2 ((j^ocupAUp+cxujAU^^xCvp+v^R+pabsinOQX
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L M
{ Y [^20cos0GX+n20sin0G(vp+vi)R+Q2sin0Gx0z- ^ 2cos0G 

(zg-x p G)]

+sin\j/<-j{-Q2sin0G[-(vF+vi)R(0y- 0 x)+xg+yg]+ n2cos0Gx
. . .  b o  . . . .

(-0 x- 0 y)}>+cos\j/<-2{-n sin0G[-(vFfvi)R(0y+0x)+xg-y g]

+£22cos0Gx(0y- 0 x)}>} dx 

f  R" ep . . .
=J (BO+B1 zg+B2pG+B30xsinY+B40ycos\j/+(<()—aupAUp+auTAUf)

(Ol+O2zg+O3pG-fO40xsim|/+O50ycos\j/+O60z+O70ysin\j/ 

+O8xgsin\|/+O90xcos\|/+010ygcos\|/)+B 6(|)2+B7(l)AUp 

+B8(j)AU-r+B90z+B lO0ysin\j/+B 1 lxgsin\|/+B 120xcos\|/+B 13ygcos\}/

+B 14<}h- B15zg+B 16pG+B 170+B180Z+B 190ysin\}H-B2O0xsin\|/ 

+B21xgsin\|/+B22ygsin\j/+B230xsin\j/+B240ycos\|/+B250xcos\{/

+B 26xgcos\|/+B 27 ygcos+B280yco s\j/)dx

f R_eP 0 0. O’Far=J pbclocos0GQ {x +2epx+2x 0z+sin\j/<-2(ep+x) 

[-(vF+vi)R0y+xg]>+cos\j/<-2(ep+x) [~(vF+vi)R0x-y g]> } 

+pabcos0GQ2((j)-aupAUp+aljTAUT){x2+2epX+2x20z+sin\j/

<-2(ep+x)[-(vF+vi)R0y+xg]>+cos\j/<-2(ep+x)

[-(vp+vi)R0x-y g]>}-pbclosin0GQ2x2(})—pabsin0GQ2(j)

(<j)—(XupAUp+otujAU^x2—pbC(isin0GQ2{(vp+Vi)^R2 

+pbclosin0GQ2{(ep+x)(vF+vi)R+x(vF+vi)R0z+(ep+x)zg-x(ep+x)pG 

+sin\}/[-(vF+vi)R0y+xg] [-(vF+vi)R]+cos\i/[-(vF+vi)R0x-y g] [-(vF+vi)R] 

+sin\}/[x(ep+x)0x]+cos\}/[-x(ep+x)0y]}+pabsin0GQ x 

(<}>“ a UpAUp+aUTAUT){ (ep+x)(vF+vi)R+x(vF+vi)R0z+(ep+x)zg-x(ep+x) pG
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+sin\|/[-(vF+vi)R0y+Xg]t—(vp+vi)R]+cos\|/[-(vp+vi)R0x- y g][-(v F+vi)R] 

+simj/ix(ep+x)0x]+cos\|/[-x(ep+x)0y]}+pbclocos0GQ
ry

xCvp+v^RcjH-pabcosOQQ <j)((jh-aUpAUp+auTAUT)x(vp+vi)R

-pbcdcos0GQ x(vp+Vi)R+pabcos0G 

|  [Q20cos0Gx+Q20sin0G(vF+Vi)R+Q2sin0Gx0z-Q 2cos0G

(zg-x p G)]
2 * *• • ^

+sin\|/<-^{-fll sin0G[-(vF-t-vi)R(0y- 0 x)+xg+yg]+Q cos0Gx

(-0 x- 0 y)}>+cos\j/<^{-Q2sin0G[—(vF+vi)R(0y+0x)+xg—yg]

+Q2cos0Gx(0y- 0 x)}>}dx
fR-ep

= (CO+C10z+C20ysin\|/+C3xgsin\|/+C40xcos\|/+C5ygcos\|/
Jo

+((j)-aUpAUp+aUTAUT)(Pl+P20z4-P30ysin\jf+P4xgsin\j/+P50xcos\|/ 

+P6ygcos\j/+P7 zg+P8 pG+P90xsin\j/+Pl O0ycos\j/)+C7(()+C8(()2 

+C9 AUp+C 1 OAUt+C 11 zg+C 12 pG+C 13 0xsin\|H-C 140ycos\|/

+C15 0+C160Z+C17 zg+C 18 pG+C 190ysin\|/+C2O0xsiny+C21 xgsin\|/

+C22ygsin\|/+C230xsin\j/+C240ycos\|/+C250xcos\|/+C26xgcos\|/

+C27ygcos\|/+C280ycos\|/)dx

fR_ep
Mar=Jo ^-xpswFAR-t-Zh+xCpp-pcj^F^R 

+zha G[pbclocos0GQ2x2+pabcos0GQ2

(<J>-aupAUp+aUTAUT)x2+pbc1osin0Gfi2x(vF+vi)R+pabsin0GQ2

(<j>-cxupAUp+(XujAUT)x(vp+Vj)R]

"̂ ®p P̂g“ Pp)[_pbciosin0Ĝ  {(vp+Vj)2R —pabsin0GQ (((>—ocupAUp+oCu'jAU'p) 

(vp+Vi)2R2-  pbclocos0GQ2{(ep+x)(vFfvi)R 

—pabcos0GQ2((j>—(XupAUp+ccuTAU-p) {(ep+x)(vp+vj)R]

+ (2 p b 2Cmac+pbClOx A )^ 2[x2 + (v F+ v i)2R^ + Pab|  f ( XA“ | ’)  

[Q20cos0Gx+fll20sin0G(vp+vi)R +n2sin0Gx02- ^ 2cos0G
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+£22cos0Gx(0y- 0 x)}>} dx

rR-ep
{-xPswFAR-t-Zh+Xpp-xPolFAR'0

+D0+D1 aG+D2(j)aG+D3cxGAUp+D4otGAUT 

+D5(t>+D6AUp+D7AUr fpG(D9+D10<(H-DllAUp+D12AUT)

+D 8 0+D17 0Z+D18Zg+D 19(3G+D20pG+D210ySin\|/+D220xsin\|/’ 

4-D23xgsin\j/+D24ygsin\|/+D250xsin\|/+D260ycosY+D270xcos\j/ 

+D28xgcos\|/+D29ygcosY+D3O0ycos\|/}dx

= -  P(ep+x) (CO+C10Z+C20ysin\j/+C3xgsin\j/+C40xcos\j/+C5ygcos\j/

+(({>-aljpAUp+ aUTAUT)(Pl+P20z+P30ySin\]/+P4xgsin\|/+P50xcos\|/

+P6ygcos\|/+P7zg+P8 PG+P90xsin\}/+P 1O0ycos\|/)+C7(}H-C8(j)2 

+C9AUp+C lOAUj+C 11 zg+C 12pG+C 130xsin\j/+C 140ycos\j/

+C15 0+C160Z+C17 zg+C 18 pG+C 190y sin\}/+C2O0xsin\j/+C21 xgsin\|J 

+C22ygsin\pfC230xsin\j/+C249yCOs\|/+C250xcos\}/+C26XgCOs\|/ 

+C27 ygcos\|/+C280ycos\j/)dx

(ep+x)(BO+BlZg+B2pG+B30xsin\j/4-B40ycos\|/+(({>-aUpAlJp+ a ljT^UT)

(Ol+O2Zg+O3PG+O40xsin\j/+O50ycos\}/4-O60z+O70ySin\|/ 

+O8xgsim|/4-O90xcos\|H-O1 Oygcos\|/)+B 6<})2+B7<{) AUp
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+B8<t>AUr fB90z+B 109ysin\|/+B 1 lxgsin\{/+B120xcos\|/+B 13ygcosy

+B 14({H-B 15zg+B 16(3G+B 17 0+B180Z+B 190ysin\i/+B2O0xsin\ir

+B21xgsinY+B22ygsinY+B230xsin\i/+B240ycosY+B250xcos

+B26xgCos\j/+B27ygcos\j/+B280ycos\j/)dx

Noting where,

((j>-aljpAUp+airrAUT)(0 l+02zg+03 pG+O40xsin\|/+O50ycos\|/ 

+O60z+O70ysin\|/+O8xgsin\{/+O90xcos\|/+OlOygcos\}/)

=<)>(0 l+02zg+03 PG+O40xsin\j/+O50ycos\|/+O60z+O7 0y sin\|/

+08xgsin\|/+090xcos\|/+01 Oygcos\|/)+Q 1 zg+Q2PG+Q3 PGygsin\|/ 

+Q4ygsinY+Q50ysin\|r+Q60xsinY+Q7pGxgcos\j;+Q8XgCOSY 

+Q90xcos\}/+Q 100ycos\j/+Ql 1PG+Q120Z+Q130ysin\jr+Ql 40xsin\}r 

+Q15xgsin\|/+Q160xcos\|/+Q170ycos\|/+Q18ygcos\|/

And

(({)-aUpAUp+aUTAUT)(Pl+P20z+P30ysin\|/+P4xgsin\|/+P50xcos\|/ 

+P6ygcos\}/+P7 zg+P8 pG+P90xsin\|/+P 100ycos\|/) 

=(j)(Pl+P20z+P30ysin\|/+P4xgsin\|/+P50xcos\|/+P6ygcosY+P7zg 

+P8PG+P90xsin\j/+PlO0ycos\|/)+Qplzg+Qp2PG+Qp3pGygsiny 

+Qp4ygsin\|/+Qp50ysin\|/+Qp60xsinY+Qp7PGXgCOS\i/+Qp8xgcos\|r 

+Qp90xcos\j/+Qp 100ycos\j/+Qp 11 PG+Qp 120Z+Qp 13 0y sin\|H-Qp 140xsin\}/ 

+Qp 15xgsin\j/+Qp 160xcos\|/+Qp 170ycos\j/+Qp 18ygcos\}/
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RESULTANT INERTIAL LOADS

f rR_ep ••FjR= - 0 2j  J m[xg cos\|/ + yg siny -(ep+x)-2x0z]d,

(•R -e p
=J (hl+h2xg cos\j/+h3 yg sin\|/+h40z)dx 

F̂ R= - n 2|  Pm[xpsw +9zx-sinvxg+cosyyg] d x|

f R_ep
= 1 (il+i20z+i3sin\|/^+i4cos\|/yg)dx 

*0

f /»R-ep
FiR= -Q 2|  m[zg-e ppG-xpG+sin\}/x(0x+20y)

+cos\|/ [-  x (0y-2 0 x)]dx

•R—e_

l
i»R-e„

f ^ p  . . . .
=J (j lzg+j2pG+j30y sin\]/+j40xsin\|/+j50xcosY+j60ycos\j/)dJ

r fR- eP
Mgl=Q2|  Jo m[xpswzg - x 2pswpG+x2psw0ysin\|/

+x2psw(0x+ 0y)sin\(/+x2psw0xcos\j/-x2Psw (0y- 0 x)cos\j/ 

+[-zh+x(Pp- p G)] [xpsw +0zx-sin\|/Xg+cos\j/yg] }-(I3- I 2)sin0Gcos0G jd,

fR-eP . . . .
= I (EOl-Elzg+E2PG+E30ysin\}/+E40xsin\|/+E50ysiny 
Jo

+E60xcos\j/+E70ycos\|/+E80xcos\j/+E90z+E 1 Osin\|fxg

+E1 lcos\|/yg+E 12pG+E 13 pG0z+E14pGsin\|fXg+El 5 pGcos\j/yg)dx 

rR-ep
MJr=Q2J m{ [-zh+x(pp-p G)]x+(ep+x)zg-x(ep+x)pG

+sin\j/x(ep+x)(0x+20y)+cos\j/ [— x(ep+x) (0y-2 0 x)]}dx

2 1 1
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(FO+F1 pG+F2zg+F3 pG+F40ysinY+F50xsin\j/+F60xcos\|/

+F70vcos\j/)d,

M f J»R-ep
m{-x(ep+x)psw-x(ep+x)0z+(ep+x)sin\|;xg

0

** 2-(ep+x)cos\j/yg +x Psw}dx

fR_eP
I (GO+G10z+G2xgsm\j/+G3ygcos\}r)dx

2 1 2
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Appendix SC

RESULTANT LOADS TRANSMITTED TO NACELLE 

FROM THE W HOLE ROTOR

A P P E N D IX  3 C

4

= X (FRC0SVtfk-FRsinVk)
k=l
4

=y,[(F|XR+FlR)^0SVk-(F^R+FiR)sinVk]
k=l
fR-ep .. . . .

=J [xg(2h2-2i3-2B21)+0x(-2B23)+xg(2A3xM8+2A4xN9-2B8xN5<t>o

-2Bll-2O8(j)o-2Q15)+0x(2A3xM9-2B3-2B7xM6<()o-2O4x<))o-2Q6)

+9y(2A3xM10-2B7xM5(j)o-2B19-2Q5)+yg(2A4xN10-2B7xM4(j)0

-2B8xN6<])0-2B22-2Q4)+4)js(-2B 17)+<))lc(2A2+2B 17)+pOs(2A8+2A5ct>0

+2B17KpG+2A3xM2+2A4xNl+2B2+2B7xM2<j>0+2O3<j>(y+-2Q2)

+PGc(-2A3xM2+2B16+2(B14+B6<t)0)KpG+2B8xNl(t)0+2Q ll)

+0x(2A4xN7-2B8xN4(j)o-2B2O-2Q14)+0y(2A4xN8-2B8xN3(|)o

-2B10-2O7(|)0-2Q13)-H|)ls(-2B14-2B6(|)0)+pOs(2A3xM2)

+pGc(2B2+2B17KpG+2B7xM2<|>o+203<|)o+2Q2)]dx

4

= X (FRSin'tfk+FRcosVk)
k=l
4

= X [(FiR+F^R)sinVk+(I?R+FL )c osV)c]
k=l
fR-cP ..

= [yg(2h3+2i4+2B27)+0y(2B28)+yg(2A3xM4+2A4xN6+2B8xNlO<|>o
Jo

+2B13+2010(j)o+2Q18)+xg(2A4xN5+2B7xM8<j)o+2B8xN9(t>0+2B26+2Q8)

+0y(2A3xM5+2B4+2B7xMlO<])o+2O5(t)o+2QlO)+0x(2A3xM6+2B7xM9(|)o

2 1 3



+2B25+2Q9)+<j>lc(2B17)-Hi>ls(2A2+2B17)-H|>lc(2B6<|>o+201+2B14)

+PGc(-2A8-2A5<j>0-2A4xNl-2B7xM2<t>0-2B2-2O3<t>0-2Q2)+PGs(-2A3xM2

+2B16f2B8xNl<t>o+2Qll)+0y(2A4xN3+2B8xN8<)>o+2B24+2Q17)+8x(2A4xN4

+2B8xN7(|>o+2B 12+2O9(()0+2Ql 6)+PGs(2B2-B 17KpG+2B7xM2<j>0+2O3<(>0

+2Q2)+PGc(-2A3xM2)]dx
4

p | = X f r
k=l
4

k=l

f R -e P ..
= [zg(4j2+4C17)+Oz(4C16)+ez(4Cl+4C10xN2+4P2c|)o+4Qpl2)

J q

+zg(4C9xMl+4Cl l+4P7<j>o+4Qpl)+<j>c(4Cl 5>W|>c(4C7+4C8<|>o+4Pl)

+4C0]dx

4
Q R =^(M Rcos\|rk-M^sin\|fk)

k=l

4
= A j ( MK+MAR)C0SW-(M^+M%R)sinyk] 

k=l

rR“cP ..=J {0x[-2F5+(ep+x)x2C23]+xg[(ep+x)x2C21]+0y[-2F4+(ep+x)x

(2C9xM5+2C19+2Qp5)]+xg[(ep+x)x(2C3+2C10xN5+2P4<|i0+2Qpl5)]

+yg[(ep+x)x(2C9xM4+2ClOxN6+2C22+2Qp4)]+0x[(ep+x)x(2C9xM6

+2E6+2E8+2C13+2P9<j)0+2Q6)]+((ils[(ep+x)x2C15)]+pGs[2xB0

-2E2+2E12+(ep+x)x(-2C9xM2-2C 12+2C15Kp0 -2Q2-2P8(()o)]

+PGc[2Fl-2F3+(ep+x)x(-2ClOxNl-2C18-2Qll)]+0y[(ep+x)x(2C2

+2ClOxN3+2P3<t>o+2Q13)]+0x[(ep+x)x(2ClOxN4+2C2O+2Q14)]

Appendix 3C
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Appendix 3C

-Ht>ls[(ep+x)x(2C7+2C8<))0+2P l)]-H>ic[(ep+x)x(-2C 15)]+pGs(2E2)+pGc(2F3)

+PGs(4F3)+PGc[-4E2+(ep+x)(-2C9xM2-2C12-2P8()>o-2Qp2)]

+6y(2E7)+yg(2Ell)]dx

4
Q R = ^ (MRsinVk+MRCOS\|/k)

k=l
4

sin\}/k+(M^+MJj^)cos\|/k] 
k=l

fR-eP ..
= {0y[2F7-(ep+x)x2C28]+yg[-(ep+x)x2C27]+0x[2F6-(ep+x)x(2C9xM9
Jo

+2C25+2Qp9)]+yg[-(ep+x)x(2C5+2C 10xN10+2P6()>0+2Qp 18)]+xg[-(ep+x)

x(2C9xM8+2C10xN9+2C26+2Qp8)]+9y[2E3+2E5-(ep+x)x(2C9xM10 

+2C14+2P10(|)0+2Qpl0)]+<i>lc[-(ep+x)x2C15]+pGc[2E2-2E12-2B0x 

-(e p+x)x(-2C9xM2-2C 12-2P8<t>0-2Qp2)] +pCs[2Fl-2F3-(ep+x) 

x(2C lOxN 1+2C18+2Qp 11 )]+9x[-(ep+x)x(2C4+2C 1 OxN7+2P5<t>0+2Qp 16)]

+9y[-(ep+x)x(2C 10xN8+2C24+2Qp 17 )]+<t>lc[-(ep+x)x(2C8()>o+2C7+2P 1)]

-KS>is[-(ep+x)x2C15]+pGs(2F3)+POc(-2E2)+ex(2E4)+xg(2E10)+pGs[-4E2

-(ep+x)x(2C9xM2+2C12-2C15KpG+2P8<()o+2Qp2)]+PGc(-4F3)]}dx

4
Q r=  S ^ M I r)

k=l

fR_ep ..
= {0z[4G2+(ep+x)x4B 18]+zg4B 15(ep+x)+zg[(ep+x)x(4B l+4B7xMl(j)0+4O2(j)0+4Ql)]

Jo

+02[(ep+x)x(4B8xN2(tio+4B9+4O6(t)o+4Q12)]+<j)c[(ep+x)x4B17]

•H)c[(ep+x)x(4B6<l)0+4B14+4Ol)]+4Gl+4G5+(ep+x)x4B0}dx

2 1 5



Appendix 3D

U j = Q(ep+x+x62)

U x= -nKvp+v^Rey+Xg]

Ux = -£l[-(vp+Vj)R9x- y g]

U® = n[(vp+Vi)R+zg-x P G]

Up = Ox6x

U ' = -n x 6 y

Ux = 0 2[— (vf+Vj)RPswPq+x02]=T1 pG+T20z

U t  =  - n 2[ - ( v F+ v i)R (e y+ p sw0 x- 0 x+ P swe }.)+ x g+ P swx g- P swy s + y g]

= Tsl0y+Ts20x+Ts30x+Ts40y 

+Ts5xg+Ts6xg+Ts7yg+Ts8yg

Ux =-£22[-(vF+vi)R( 0y+psw0x+0x- p sw0y )+Xg-pSwXg-Pswyg-yg] 

= Tc 10y+Tc20x+Tc30x+Tc40y+Tc5Xg+Tc6Xg+Tc7yg+Tc8yg

Up = n 2[zg-x (e p+x)pG+x(3swpG]

= Plzg+P2pG+p3pG

U p  =  - n 2[ - ( P G- P p ) ( - y g- x g) + x p sw9 y- x P sw0 x- ( e p+ x ) 0 x 

- ( e p+ x ) 0 y- P Gy g]

= Pslyg+Ps2xg+Ps3pGyg+Ps4PGxg+Ps50y+Ps60x+Ps70x 

+Ps80y+Ps9pGyg

Up = - n 2[-(pG- p p)(xg+yg)+xpsw0x++xPsw0y+(ep+x)0y 

—(ep+x)0x-  PGxg]

= Pclxg+Pc2yg+Pc3pGxg+Pc4pGyg+Pc50x+Pc60y+Pc70y 

+Pc80x+Pc9PGxg

A P P E N D I X  3 D
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UR=U?cos0+UpSine 

U R=UyCos0-fUpSin0 

UR=U^cose+UpSin0

uJJ=O0(U^cos0+UpSin0)+Ujsin0-UpCos0

U^=O0(UjCos0+UpSin0)+UT-sin0-UpCos0

U'=Q0(U^cos0+UpSin0)+U^sin0-UpCos0

Appendix 3D
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Appendix 3E

PITCH MOMENTS ABOUT PITCH BEARING

T H E  IN ERTIA  PITC H  M O M EN T ABOUT PITC H  BEARING

rR-e_
MIPltCh=Jo [qi+(pp-pG)qi-pswcli]dx 

/•R-e_| P  f\ • ■ • • • •  • • • • •
=Jo {<-mf2 {xGccos0G[zg-e ppG-xPG--<{)xpsw-<})x0z+sin\j/[-xpsw (0y-2 0 x)

—(ep+x)(—0X—20y)+<(ŵ ] +cos\|/[-xPsw (0x+20y)-(ep+x) (0y—20x)—<|>yg] 

+xGcsin0G[-xpsw -0 z(ep+x)—zha G+2zhpG-2x0zpsw-2xPppG—(})zg 

+x(j)pG+sin\j/[xg+0y(-zh+x(Pp- p G))-2x0ypG]-H()x (-0x-2 0 y)]

+cos\|/[-yg+ 0x(-zh+x(Pp-p G))-2x0xPG-K()x(0y-2 0 x)]} 

+Q2(I3sin0G+l2Cos0G){({H-(—pp+pG)0z—0q—ĉ -2Pg—2PSW0G—2psŵ ) 

+20z0G+2<j)0z- 0 ysin\j/-0xcos\j/}+Q2(I3-l2)sin0Gcos0G(- l-2 0 z) 

-Q 2(I3cos0G+l2sin0G){-pswpG+<̂ f 0G*H()( l+20z)+sin\|/[0y~20x 

~Psw(~®x“ 20y)]4^OS\|/[0x+20y— Psw(®y” 20x)] }>+(pp--pG)

<-mQ {xGccos0G[Xg cos\|/ + yg sin\}; -(e p+x)-2x0z] 

+xGcsin0G(}>x}>-Psw<-mO {xGccos0G[-x(j)]

+xGcsin0G[-(ep+x)-2x0z+XgCOS\}/+ygsin\|/]}>}dx

A P P E N D I X  3 E
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Appendix 3E

4 Jo
M f ch- 1 P

THE AERODYNAMIC MOMENT ABOUT PITCH BEARING

R-e_
Md,

= f P(2pb2cmac+xApbc1)n 2{x2+(vF+vi)2R2+2epx+2x20z+2(vF+vi)Rzg 
J o
-2x(vF+vi)Rpg+sin\|/<-2(ep+x)[-(vF+vi)R0y+xg]+2(vF+vi)Rx0x>

+cos\j/<-2(ep+x)[-(vF+vi)R0x-y g]-2(vF+vi)Rx0y>}

+pabQ2{ ̂ -(̂ Xa—j  J[0 (cos0 (ep+x+x0z)+sin0 [(vp+Vi)R+zg-x p G]) 

+sin0[-(vF+vi)RpswpG+x0z]-cos0[zg-x(ep+x)pG-fxPswpG]]

+ ^ ( xA“ XÂ ^ ) ^ - P G)+^ - P G+Pp)(--7-)tcos0(ep+x+x^ )

+sin0[(vp+Vj)R+zg-x p G]]+sin\j/ ^ ( XA—jj[0(cos0[-(vp+V i)R 0y+xg]

+sin0x0x]+sin0(-[-(vF+vi)R(0y+Psw0x- 0 x+psw0y)+xg+pswxg- p swyg

+yg])-cos0(-[-(pG-p p)(-yg-x g)+xpsw0y-x p sw0x-(ep+x)0x

-(ep+x)0y- p Gyg])]+(0-pG+pp)^ -^ -j(co s0 [-(v F+vi)R0y+xg]

+sin0x0x] ji-cos\|^ ̂ xa- —J^0 (cosOC-E-Cvp+v^ROx-yg])

+sin0(-x0y))+sin0(-Q2[-(vF+vi)R( 0y+Psw0x+0x” Psw®y )+xg 

-PswXg-Pswyg*-yg])-cos0(-O2[-(pG~Pp)(xg+yg)+xpsw0x

+xPsw0y+(ep+x)0y-(ep+x)0x~PGxg])+(0-pG+pp) ^ - ~

(cos 0 ( - [ - (vF+vi)R0x-y g] )+sin 0 (-x  0 )) } d,

2 1 9



Appendix 4 A

APPENDIX 4A

MULTI-BLADE COORDINATE TRANSFORMATION

k=l

2 N
‘f'nc = ^ X <f,(k)cosnVk 

k=l

2 N 

k=l

% 2 4 ^ (k)(-Dk
k=l

N

« # - £ > >
k=l

N

V + ^ n s  =
k=l

N

)̂ns"n<l)nc = R ^ <i)(k)sinnVk
k=l

N

^N/2 =
k=l

N

k=l

N

'<t,nc+2n<t’ns-r,2‘t,nc = H ^ ^ (k)cosnVk
k=l

2 2 0



Appendix 4A

N

i s - ^ n c - ^ n s  = ifX'«>(k)sinnVk
k=l

N

% 2 = ^ ' <t'(k)<-1)kk=l

where <j)^ is the k’th blade coordinate in the rotating frame, \ | i s  the azimuth angle of 

the k’th blade, N is the number of blades, and the following relations exist:

N

sinm ^ sinnxjr
0

k=l
if  n=pN 

o therw ise

2 2 1



Appendix 5 A

APPENDIX 5A

KANE’S METHOD TO OBTAIN THE GENERALISED FORCES

In the formulation of equations of motion in chapter 5, the essence is to obtain the 

generalised forces. Kane's method is widely used in multibody dynamics formulation to 

compute the generalised forces [Kane and Levinson, 1985]. It is quite convenient in 

some cases. According to Kane's method, the generalised forces can be obtained by 

summing the dot product of the force and respective partial velocity. We shall derive the 

generalised inertial forces using Kane's method in follows.

The partial velocities of the lumped mass centre and partial angular velocities of the
—>

lumped mass can be obtained using the expression of v gc in (3.1.9) in chapter 5.

The partial velocities:

“4 "*♦ *4 ■»# -4 «*
V gc/u — 1 1 ’ V gc/v “  J 1 ’ V gc/w ~  1

^gc/p = x gcE“  “  s <l>s p^iJ

= [b 1 1 b 12 bjg] (E l}

Vgc/£ “  x gd- ~~ ( ~~ + + ( “

= ^21  ^22 ^23  ̂ 1̂

^gc/<t>“  x g c t - ( “ C ^ S pC c +  +  ( ~  C ^ S p S ^  -  c ^ } l  +  C ^ C p k j ]

=  ^ 3 1  ^ 3 2  ^ 3 3 ]  ( E

■4 ^  **♦ *4 4̂ —4
V g c /v x ~  1 1* ^ g c /v y " - *^!* V g c /v z— 1

v g c /w x-  “  (w + x gcS ,C p)j j + [v + x gc( — S ,S PS; + C^C^Jkj = [Cj j C 12C 13] {E}} 

v gc/wy -  ( w  +  x gcS<j,Cp)i1 -  [r +  u +  x gc( -  -  S^C ^jk j =  [ C 2 i ^ 2 2  C 23] {E j}

2 2 2



Appendix 5A

v gc/wz fv + S ,S pS c)] i1 + [r + u + x gc( S ,S pC^

= fC 31 C 32 C 33] (Bx}
...( 1 )

The partial angular velocities:

cbu =  0 ) v =  0 ) w =  0

cop = — C £j 2 + S^ka = [a n a i2 a i3] {E21

+  +  =  -̂a 21 a 22 a  23  ̂ ^ 2 ^

CÔ  = i 2 = [a3i a32 a33l (S2)

( b y x ^  C0v y =  Cbv z =  0  

& w x = h  

®  wy — J 1

3>wz =  Kl

..(2 )

The generalised inertia forces due to a lumped mass are according to Kane's method: 

p‘ = - m v gc/i-a-gc- a . - [ g - I + S x I - a ]  (i = 1,2,...... 12) ( 3 )

where Fj means the i'th generalised inertial forces corresponding to the i'th generalised

coordinate, one of u, v, w, |3, <J), v x, v , vz, cox, coy, coz

Where, the inertia dyadic of the lumped mass is written as:

I ~ I x x 1 21 2 ~ ~ ^ ^ xy 1 2^2~" ^^xz12 ^ 2  **" ^yy-^2^2 _  ^ y z ^ 2 ^ 2  *** ^ zz ^ 2 ^ 2

Replacing (1) and(2) into (3), the generalised inertia forces corresponding to the relevant 

generalised velocities are, therefore, obtained from Kane's method as:

2 2 3



Appendix 5 A

*
F u ini j a gC

*
F v =  - m f j  • a gc

F w = - mk j -a gc 

a gc

F  vy — — i *a  gc

Fvz m k j • a gc

F* = -  
P

m ( b j X1 ! +  b  123*1 + b 13£ l> ’ a gc “ <a n 1 1 +  a i2^ 1 +  a i 3 ^ P  ’ [ 2 - I +  CO X I • cb]

iT
l 

*
II 1 m ( b 21i-j +  ^22^ 1 +  ^ 2 3 ^ P a g c “ ( a 21* 1 +  a  22^ 1 +  a 23^ 1̂ • [2 • I  +  cb X l • m

p ; = - m ( b 3ir , +  ^32^ 1 +  ^ 3 3 ^ P  *a gC“ • ( a 3l! 1 +  a  32J 1 +  a 3 3^  j) • [B • i  + c o  x  i • cb]

-  m ( c l l 11 +  C 12-J1 +  C 13^ P  ' a gc "- * r [ S  • I + S x l - S ]

*
-  m ( c 211 ! +  C22J 1 +  C 2 3 ^ - j * i • [ g - I  + 3 > x l -  3>]

p *  =A coz -  m ( c 31**1 + C  32̂ *1 + C 3 3 ^ a gc - K i • [ g  - i  + a >  x i  • a>]

As we see, they are exactly same as those obtained in equation (3.1.35 ) of chapter 5. 

Similarly, other generalised forces also can be obtained from this method. As pointed out 

by Kane et al [1987], the generalised forces caused by conservative loads, such as 

internal strain energy, can similarly be obtained from the derivatives of the potential 

function.
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APPENDIX 6A

The expressions o f UT0, [UTv], [UTd], Up0> [Upv], [Upd], UTp0, [UTpy] and [UTpd] in 

Equations (2.38-2.40) of Chapter 6 are listed below.

U T0 = v l t 2 + 2 v A,t 2v y + 2 v ^ t 2cozr + v j  + cozr 2 + 2 v ycozr

U Tv = [ -  2 { v ^ t2 + v y + coz(r + u) — © xwjv '  + 2{vJtl + v x + coyw -  c o ^ Jv '2, 

v ^ t2 + 2 v y + 2coz(r + u ) -  2coxw — 2 {v ^ t1 + v x + coyw -  G&xvjv',

0 ]

U Td = [ v xt 2(Dz + coz(2 r + u )+  2 v ycoz - 2 c o xcozw,

- 2 { v 2t 1t 2 + v ^ t j v y  +coz(r + u) -  coxw] + v xt 2[ v x + coyw -  cozv]

+ [v x + coyw -  cozv][vy + coz(r + u) -  coxw]}Dr + {v* t*

+ [v x +coyw - c o zv] + 2 v Jlt 1[ v x +  coyw — 0)zv])vT>r ,

-  v xt 2c» x +  coxw - 2 v ycox - 2 c o xcozr]

U Po = v l t 3 + 2 v xt 3v z ”  2 v Jlt 3coyr + v^ +  o)yr - 2 v zcoyr

U pv = [ - 2 { v xt 3 + v z + coxv - 0) y( r  + u)]W + 2 { v ^ t 1 + v x + coyw -cOxVjw'2,

0,

2 v xt 3 + 2 v z + 2coxv -  2coy(r + u) -  2{vJlt 1 + v x + c o yw - c o zv}wl

U pd = [ - 2 v Jlt 3coy + coy(2r + u ) -  2 v zcoy -  2coxco yv,

2 v ^ t 3cox + coxv + 2coxvz — 2coxco yr ,

2( “ yX lil3~ vzv l̂i + 0)yrv3iti + v t̂3COzv + vzwzv - COyrcozv)D r

2 2 5
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-2 { v ^ t1t 3 + v ;it 1[v z + coxv --coy(r + u)] + +coyw - c o zv]

+ [vx + coyw -  cozv][vz + coxv -  coy(r + u)]}Dr

+ lvt f  + [vx + coyw -  cozv]2 + 2 v Jlt 1[vx + coyw - cozv]}w'Dr]

U TF0 = Vlt2t3+ V lt2V I- V lt2®yI + V 3 V y + V lt3 V  

+  v y v z “  VyCOyr +  V2COzr -  C0yC0zr2

U TPv =  {v^t2 + v y - C D xw +  coz(r+  u ) } ^ -  {vxt 3 + v z + coxv - c o y(r + u)}V

+ 2{v?lt 1 + v x + C0yW -  cozv}vV,

v^ t3 + vz + coxv -  coy(r + u ) -  {v^tj + v x + coyw -  cc^vjw',

V Xt 2 +  Vy ~  W XW +  © z ( r  + u ) ~  { V j ^ i  +  V X +  C O y W -  coz v}vO

^ T P d  =  [ “  -  v y COy + V zC0z +  0 ) xC0zV +  C0xC 0 y W ~  0)y0)z(2r+ u),

vXt20)x + vyC0x+ ®xw “ {vltit3 + vxtltvz + COxv “ ©y(r + u)]
+ Vxt p x+ 0)yW - cozv] + [vx + CDyW - cozv][vz+ coxv - coy(r + u)]}Dr

+ {v2 tj + [vx + cOyW -  cozv]2 + 2 v ?lt 1[vx + C0yW -  cozv]wODr ,

“VJtt3<Dx- V z  + ̂ x^y1" ̂Vitlt2 +VXll̂Vy ~®XW+ ©z(r+ U)1
+ v ^ t2[v x + C0yW -  co2v] + [vx + CDyW -  cozv][vy -  coxw + coz(r + u)JDr ]

Where, D r = •£ •()
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