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ABSTRACT

Stereology is concerned with the estimation of quantitative structural 

characteristics of physical objects (usually three dimensional) from data obtained in a 

lower dimension than that of the specimen under study. Classical methods have 

concentrated largely on design-based estimation, drawing heavily on the results of 

integral geometry and geometric probability to produce sampling schemes that give rise 

to unbiased estimators of structural features of a particular specimen, where the 

unbiasedness is with respect to the randomisation inherent in the sampling scheme. 

Although the results hold under very general conditions the theoretical sampling 

schemes often ignore the fact that independent repetitions are not feasible, because 

specimens cannot be "glued” back together after sectioning, and there has been very 

little success in assessing the efficiency of such estimators; the first part of this thesis 

looks at this area, paying particular attention to systematic sampling schemes, which 

would normally be employed in practice.

More recently model-based approaches to stereology have been developed and a 

brief review of random set models is presented together with a new estimator for the 

variance of the classical estimator of volume fraction derived from a systematic lineal 

analysis. We demonstrate the application of the result in a statistical framework.
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Chapter 1: Introduction

Chapter 1 Introduction

Although there are isolated instances of stereological techniques and solutions to 

problems which have been in existence for as much as two hundred years or more the 

science of stereology as a field of study in its own right is very young. The essential 

characteristics of stereological problems are that they involve the extraction and 

prediction of information (usually quantitative) of a geometric nature where the 

observable quantities are of a lower physical dimension than that of the feature of 

interest. Consequently, applications which require a stereological treatment arise in an 

enormous range of disciplines and yet the fundamental principles involved are common 

to all; thus stereology provides a common ground for a wide variety of fields of study 

as diverse as metallurgy and neuro-surgery. Underpinning the subject is a 

mathematical framework, based on the results of integral geometry and geometric 

probability, and implicit in the nature of the subject is a need for the application of 

statistical techniques of design and analysis of experiments. However, the geometric 

aspect of stereology presents many problems not normally encountered in more 

standard statistical contexts and thus the contribution of statistics to stereology has been 

severely limited with most results being based on first order properties of estimators 

and with unbiasedness being used almost exclusively as a criterion for judging the 

estimators. In this thesis we examine the second order properties of various 

stereological estimators, some well known and some new, looking all the time to 

exploit existing techniques and methodologies of standard statistical theory.
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Chapter 1: Introduction

1.1 Sampling Methods

Whilst the early history of stereology and geometric probability makes 

fascinating reading (see, for example Miles, 1987) we need go back no further than 

1976 to find the first rigorous mathematical treatment of the subject in a general 

framework. The work of Miles and Davy (Miles & Davy, 1976, Davy & Miles, 1977) 

is a thorough treatment of classical stereology for bounded, deterministic specimens 

from a design-based point of view. By design-based we mean that the probabilistic 

structure of the data obtained from sections through the specimen is taken to be 

determined completely by the sampling scheme (that is, the method of generating the 

sections).

1.1.1 Uniformly random sampling

The Isotropic Uniform Randomness described by Miles and Davy (see §2.3) 

has proved to be of fundamental importance, being the invariant measure (under rigid 

motions) on the co-ordinate space used to describe sections, and it is a reference 

criterion for other types of randomness used to generate sections. Their work is 

concerned principally with the unbiased estimation of various structural parameters for 

arbitrary specimens and in particular demonstrates a theoretically correct approach to 

ratio estimation under very general conditions. However, because of the complete 

arbitrariness of the specimen assumed in this work there can be no more than a 

qualitative discussion of the second order properties of the estimators and their relative 

efficiencies. Furthermore, the sampling methods described are not realisable in practice 

for sample sizes greater than one because of the destruction of the specimen necessary 

to obtain a section. This problem may soon be overcome in some contexts with the 

development of microscopic techniques that allow focussing within a specimen but 

there is a more fundamental question of whether the generation of independent sections 

is in fact optimal; we return to this point later.

In order to go further within the design-based framework of Miles and Davy 

(ignoring the practical problems) we need a fuller specification of the probabilistic
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Chapter 1: Introduction

structure of the data obtained from random sections. Since this structure depends on 

the geometry of the specimen as well as on the sampling scheme it follows that we need 

to make some assumptions, that is, to do some modelling. Basically, the modelling can 

be at two levels; either we can make assumptions about the geometry itself, which 

together with the sampling scheme implies the distribution of the data (even though this 

may not always be tractable) or we can model the distribution of the data directly; that 

is, we can assume a parametric form for the distribution of the obsevations that are 

available and then treat the problem as one of inference about the parameters of that 

distribution. The classic example of the former is the celebrated "corpuscle problem" of 

Wicksell (1925,1926) in which particles contained within a specimen are assumed to 

be spherical (or ellipsoidal) whereas a (rare) example of the latter is to be found in Cruz 

Orive (1980) where estimation of volume fraction is treated as a regression problem 

with non-constant variance. This second example fails to achieve the stated goal of 

finding a best (ie minimum variance) linear unbiased estimator because unbiasedness is 

unachievable under the conditions stated, but nevertheless it suggests a new approach 

to an old problem with considerable appeal from a statistical point of view and perhaps 

could be developed further using a minimum mean squared error criterion.

1.1.2 Systematic Sampling

The motivation for systematic sampling arises from two sources, namely the 

impracticality of generating independent IUR sections and the fact that in most cases 

systematic sampling schemes are more efficient (have smaller variance) than completely 

random ones. References to systematic sampling can be found very early in the 

literature (Weibel, 1970) but not until recently has there been work on the variance of 

such estimators (Mattfeldt, 1987, Gundersen and Jensen, 1987). As is always the case 

in stereology, assumptions have to be made about the geometry of the specimen, either 

explicitly or implicitly in terms of the form of the covariance structure, in order to make 

progress but even so, only in the most exceptional circumstances could systematic 

sampling be less efficient than independent IUR sampling. One of the main problems
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Chapter 1: Introduction

in analysing estimators based on systematic sampling is the high degree of correlation 

between observations but this can be overcome to an extent by adding some 

randomness to systematic schemes to produce schemes which will be referred to here 

as stratified. The motivation for the term is that such schemes essentially partition the 

specimen into strata and then sample randomly from within those strata. This type of 

sampling scheme does not appear in the stereological literature, although Mat6m (1960) 

discusses stratified random sampling applied to area estimation by point counts. The 

results he presents (Matfrn, 1985) for the variance of point count estimators of areas of 

circles, based on systematic grids, can certainly be improved on by using a stratified 

scheme, which stabilises and reduces the variance.

1.1.3 "Three Dimensional" Probes

Much interest has centred in the last five years on techniques based on the 

disector (Sterio, 1984), which in some sense can be regarded as a three dimensional 

probe and which allows the estimation of particle number under very general 

conditions. Previously this had only been possible under very strict shape assumptions 

(Wicksell's problem) which were felt to be unsupportable, particularly in biological 

contexts where structures tend to be highly irregular. In fact the disector still requires 

assumptions about the geometry of the specimen but of a nature that takes account of 

the experimenter's knowledge of the specific problem. The disector was originally 

presented within the framework of random sectioning but here we examine it from a 

different point of view, in which the randomisation is not induced by the sectioning but 

by the sampling of units from an arbitrary partition of the specimen. This makes more 

sense since the object of interest is in fact a finite population of particles and it also 

makes clear how one would realise the sampling scheme in practice. Furthermore, it 

allows us to construct different estimators and designs and assess their relative 

efficiencies.

9



Chapter 1: Introduction

1.2 Modelling

We have already pointed out the need for modelling in order to assess the 

performance of estimators but modelling can be an emotive issue in stereology, and 

indeed, in sampling theory generally (see Royall, 1976, for an interesting discussion). 

The appeal of classical, design-based methods is that unbiasedness, which is clearly a 

desirable property of an estimator, is easily proved and arbitrariness of the specimen 

does not have to be sacrificed. However, not only does this ignore the fact that a 

biased estimator with a small variance may be preferable to an unbiased one with large 

variance but also it does not allow for the inclusion of problem-specific knowledge in 

the design and analysis. Royall gives an excellent example of the way in which a 

suitable model can be used not only to improve the inference but also to optimise the 

design of an observational study. Of course the model is specific to the situation and 

the results are only valid as far as the model is valid but the point being made is that 

where knowledge exists that is relevant to a particular problem it makes sense to 

represent it in a model rather than throw it away and rely solely on a random sampling 

distribution for inference. In stereology the work of Cruz Orive (1980) mentioned 

earlier is an example of the type of approach described by Royall but it is an isolated 

case and there would appear to be scope for further work in that field. More common 

is the adoption of geometric models to describe the specimen; where the geometric 

model involves a probabilistic structure (as in Wicksell's problem) this can be used to 

form the basis of inference and design rather than a randomised sampling scheme. The 

idea of a random set is the basis for this approach and the application of random set 

theory to stereological problems is an active area of research. In Chapter 3 we look in 

detail at the application of a random set model to a typical stereological problem and 

derive new results for the estimation of the variance of the lineal fraction, the natural 

estimator of volume fraction when performing a lineal analysis on a two phase 

specimen. The technique is illustrated on some simulated examples and is compared 

with the known theoretical values for those cases, generally showing good agreement.
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Chapter 1: Introduction

Modelling will of course be involved at another level since in any study the 

interest will ultimately be in a wider population than the observed sample. The 

objectives of the study will be expressible in terms of inferences or hypotheses for 

which the data obtained from the specimens will provide the statistics and therefore the 

way in which a stereological study is carried out should reflect this wider model. 

Although this has been hinted at (see, for example, Gundersen & 0sterby, 1981) there 

is little reference to this issue in the literature. In §3.7 we conclude the thesis by 

looking at the way the results of the preceding sections can be fitted into such a wider 

framework, thus fulfilling the objective of putting stereology (or at least one problem in 

stereology) into a statistical framework.
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Chapter 2 Estimation of Absolute Volume

2.1 Introduction

There are many instances, particularly in biological and materials sciences, 

where the volume of a certain structure (or phase) is of interest, either in absolute value 

or as a proportion of the reference space containing it, and where such measurements 

cannot be made directly but must be estimated stereologically from lower dimensional 

information obtained by sectioning and sometimes further application of sampling 

frames and test sets. The data obtained from the sections and estimators derived from 

them will have a probabilistic structure determined not only by the geometry of the 

specimen under scrutiny and the sampling scheme employed but also by the nature of 

the population of which the specimen is a member. For, whatever the study’s aims 

might be, it is almost certain that the specific specimen being analysed is not of interest 

purely for its own sake but as part of a sample to make inferences about a wider 

population.

Ultimately the data are going to be used in a model of some kind in which we 

wish to fit parameters or test hypotheses, for example as a means of relating structure to 

function or investigating treatment effect on a diseased organ. Since an exact, complete 

distributional specification of the model will not be available in any realistic case we 

must consider which assumptions are necessary, whilst still remaining acceptable, in 

order to make useful and valid conclusions. This is of course dependent on context and 

hence we first examine the different situations giving rise to stereological estimation of 

volume.

2.2 The General Framework

We have noted that in general a specimen is itself not of primary interest but of 

interest as part of a sample from a population (in the statistical sense of the word). We 

shall make an important distinction between two types of population, referred to 

hereafter as Type 1 and Type 2.
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Chapter 2: Estimation o f Absolute Volume

Type 1 Each sampling unit is a distinct, isolated entity, being a member of a finite 

population of such units. For example the population could be all rats, all 

male rats, all diabetic humans, etc. The structure of interest could be a 

particular organ or part of an organ within the sampling unit, for instance.

Type 2 Each sampling unit is a small part of a much larger single entity, for 

example a small block of concrete taken from a batch or from a building. 

The structure of interest here could be the Ca(OH)2 phase of the material. 

There is quite clearly an important difference between these types of population since 

the former predetermines the sampling units and in general gives rise to variability in a 

wide range of characteristics whilst the latter allows the experimenter freedom to choose 

the sampling units himself and control some of the variability.

We see immediately from this distinction that estimation of absolute volume in a 

sample from a Type 2 population is meaningless, since the volume of the reference 

space is chosen arbitrarily by the experimenter. Thus any study must be in terms of 

estimated volume per unit volume of reference phase. However, the situation is not so 

clear cut for a population of Type 1 and will depend on the context.

Consider a study investigating a relationship between function and structure of, 

say, an organ of an animal. Here it is quite conceivable that absolute volume is the 

parameter of interest, although presumably other concomitant variables measured on the 

animal would need to be taken into account. However, it is equally possible that such a 

study could be concerned with the relative volume of a particular type of structure 

within the organ, for example as a measure of the efficiency of the organ, in the same 

sense that the surface area to volume ratio of an animal is the important factor as far as 

heat loss is concerned, not simply its absolute surface area.

In addition to questions of what exactly we want to estimate we need to 

consider the arrangement of the phase of interest within the specimen and the scale of 

magnification at which we need to measure it, thus determining whether we are able to 

measure throughout the whole phase of interest or just in a small subsampled portion of 

i t  Thus we need to identify the different possible situations that may be encountered in
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Chapter 2: Estimation of Absolute Volume

studies concerned with volume estimation and treat them accordingly.

In this chapter we are interested in the estimation of the absolute volume of a 

structure (or phase of interest) contained in a sampling unit from a population of Type

1. The phase of interest can be regarded as a compact (not necessarily connected) set 

in 1R3 which we will always denote by Y. It will normally be contained in a reference 

phase which we also regard as a compact (not necessarily connected) set in IR3; this 

reference phase may be the sampling unit itself or may simply be one level of a "nested" 

set of such phases. In a purely theoretical treatment we would not have to be concerned 

with intermediate phases and magnification but in the real world points have positive 

area and lines have positive thickness and therefore we are restricted in what we can 

measure at any given magnification by the resolution of the instruments that we use 

(including the human eye). This means that we cannot classify problems in terms of 

rigorous, mathematical criteria but rather in terms of somewhat arbitrary, subjective 

criteria. When we say that a particular phase cannot be measured with sufficient 

accuracy at a given magnification we mean that the methods available to us do not allow 

measurement to be made without an unacceptable experimental error; note that it is 

experimental error and not sampling error that is under consideration here. It is clear 

that as the magnification increases the experimental error decreases (although we should 

be aware of the additional problems that can occur with specimens exhibiting a fractal 

behaviour) but at the same time the size of the field over which we measure decreases. 

Thus increased accuracy results in a smaller fraction of the object of interest being 

measured (assuming that finite limits exist on the time and resources available) and so 

we have to settle for a compromise which will depend very much on specific conditions 

relating to the particular experiment and experience built up from previous experiments. 

In this broad classification of problems we are only interested in orders of magnitude of 

magnification and not in precise numbers; that is, the difference in experimental error 

between 95* and 100* magnification of an object is likely to be negligible. Our 

criterion for classifying problems will be whether, given Xj is contained in X t and 

Mi is the "optimal" magnification for measuring Xi (that is, the lowest level of
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Chapter 2: Estimation of Absolute Volume

magnification for which experimental error is acceptable) the optimal level of 

magnification, M for measuring Xj is significantly higher than M v By 

"significantly higher" we understand that under the prevailing experimental constraints 

the difference between and Mj is such that the total area of the fields in which Xj 

is measured is a small fraction of the total area of the fields in which X/ is measured, 

the implication being that small regions of Xi must be sampled from the total amount 

available for examination at magnification in order to make measurements on Xj. 

We note in passing that where such sampling is necessary the structure of Xt will have 

a crucial impact on the way it is performed; this point will recur throughout the 

discussion.

First we look at the simplest case, where Y can be isolated from the rest of the 

specimen, thus making certain information available that is useful, such as the caliper 

diameter; although this case is perhaps unrealistic, and indeed would allow measure

ment by other methods, we use it to establish some principles. Although we do not 

wish to restrict Y to be convex it is clear that in order that it can be isolated from the 

rest of the specimen it must at least be connected and, in some non-technical sense, 

dense; that is, we would be looking at, for example, an organ rather than a network of 

capilleries.

The next step is to suppose that the phase of interest, 7, is contained within an 

opaque reference phase, X, from which it cannot be separated. We take X to be of 

the type described above in the simplest case whereas Y need not now be so restricted. 

First we examine the situation where Y can be measured with sufficient accuracy at a 

low enough magnification that allows measurement over an entire planar section 

through X. There are many possibilities for the structural form of Y; for example it 

could be a single compact subset of X, the union of disjoint "particles" or a "tree-like" 

structure composed of a large number of connected branches. It is possible that there 

could be an intermediate phase contained in X and containing Y but it would have no 

relevance in this case since there is no sub-sampling required to measure Y.

Next we consider the case when the magnification required to measure Y
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accurately is such that sub-sampling is necessary. Now the possibility of an 

intermediate phase containing Y is highly significant since the existence of such a 

phase would enable us to restrict the sub-sampling to be within that phase. Where such 

a phase exists then its structure and the level of magnification needed to measure it are 

factors determining further cases of interest

2.3 Fundamental Principles

We examine first the case where the phase of interest, Yt can be isolated from 

the sampling unit and we establish some basic principles. We introduce the concept of 

Isotropic Uniform Randomness (IUR) as an unambiguous method of defining 

"random" sections, whose properties make them a natural starting point (analogous to 

simple random sampling) for the construction of sampling designs. We then consider 

the implications of practical constraints imposed on sampling schemes and examine the 

relative efficiency of different designs.

Isotropic Uniform Randomness is the invariant measure, under rigid motions, 

on the co-ordinate space used to define lines or planes. In the case of planes in R 3 the 

orientation of the normal corresponds to a point taken uniformly from the surface of a 

hemisphere and the plane passes through a point taken uniformly along an axis parallel 

to the normal. More specifically, in our present context we restrict attention to those 

planes which intersect the specimen and proceed as follows. Let co represent an 

orientation in an arbitrary frame of reference in E 3 and let /zy(co) denote the lineal 

projection of Y onto the direction co. That is, /iy{co) is the distance between the two 

tangent planes to Y which have normals with orientation co. If we take a plane with 

normal parallel to co and distance t from the origin of the frame of reference then 3  

fly(co), 6y(co) with fcy(co)=fly(co)+/iy(co) such that for re (czy(co),by(co)) the plane 

intersects Y and not otherwise. We let T(co,r) be the plane with normal in the 

direction of co and distance t from the origin, and denote by A(YC\T) the area of 

intersection of Y with the plane T. We note that

Chapter 2: Estimation o f Absolute Volume
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Chapter 2: Estimation o f Absolute Volume

M(ynr(co,r))* = v<r>
fl,<G))

where V(.) denotes volume and hence for arbitrary, but fixed, co if we let t be random 

with the uniform density for te (ay(©),&y(©)) and zero otherwise then the

random variable A(yOT(©,0) has expectation V(Y)/hY((d). If © is also random 

with probability density hY(m)/H(Y), where H {Y )-\h Y{m)dm and dm is the 

uniform density on the surface of a unit hemisphere then the random variable 

A (y n r(© ,0 ) has expectation V(Y)/H(Y). The joint density described above 

may at first appear not to be IUR since the marginal distribution of © is not uniform on 

the surface of a hemisphere but it is clear that it is exactly the invariant measure 

described previously restricted to the subset of ©-/ space for which the corresponding 

planes intersect Y and hence the planes so generated are IUR planes. The properties 

of IUR planar probes are well known (see, for example, Miles & Davy, 1976) and 

their generation is straightforward in principle. In practice their obvious drawback is 

that once cut a specimen cannot be "glued" back together for further independent 

repetitions. Furthermore H(Y) in general is unknown and would require estimation.

Since the uniform distribution for t described above gives unbiased estimation 

of V (Y )/hY(m) by A (y fir(© ,r)) for arbitrary, fixed © we might consider 

generating a sequence of independent, identically distributed random variables 

with that distribution and forming an estimate

In this simplest case there would be no problem in measuring /*y(©) and therefore it
a

can be assumed known. The variance of VUR is

n-1 [/iy(©)]2var(A(ynr(©,r)))

where var(A(yfl7X©,r))) is estimated unbiasedly by
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Chapter 2: Estimation of Absolute Volume

— [ ] > /Vnrcco.t.)) - -  [2 /(rn r(c o ,r.))]  ] .

« - i  j»i "  <=i

However, in the same sense that a systematic grid of points is a more efficient 

estimator of area than a Poisson point process of equal intensity, it seems, intuitively, 

that if all the sections are parallel it would be more efficient to space them out equally 

rather than randomly. Let us suppose that the number, n, of parallel sections through 

y, is fixed. We may locate the sections by defining

rpfly(co)+iA(co) (z=l,...,n)

where A(co)=/iy(co)/(n+l) or alternatively introduce some randomisation by defining

j<co)+(/-1)A*(co)+m (i=1

where A*((o)=hy{a))/n and u is uniformly random on (0,A*) (see fig. 2 .1).

The first scheme lends itself to the techniques of numerical integration, such as 

Simpson's rule, whose accuracy will depend on the behaviour of A(YC[T(co,t)) as 

a function of t. Since Simpson's rule is exact for cubic functions we might expect 

good results for a wide range of shapes. For example, it will be exact for the class of 

general prismatoids, which includes prismatoids, cylinders, cones, spheres, spheroids 

and ellipsoids, and therefore could be expected to be good for any shapes which are 

well approximated by a general prismatoid. Bounds for the error could perhaps be 

estimated from a measure of the deviation of A(YC\T((£),t)) from cubic form.

The second scheme yields n highly correlated random variables. The obvious 

estimator,

n
= A-^AOTmco.r.))

i=l

(which differs from VUR in the definition of f,) is clearly unbiased for V(Y) under 

the uniform distribution for u.
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Chapter 2: Estimation of Absolute Volume

Fig. 2.1 Two Schemes for Systematic Sectioning.

The diagrams illustrate two methods for placing n points systematically in an interval. The first is 
completely deterministic whereas the second represents a fixed set of points given a random location.
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Its variance can be expressed in terms of the covariogram, g, of the function 

A(Yr\T(att)) defined by

oo

g(y)= jA (ynr(to>OM(rnr(co,f+y))*

(defining A(ynr(co,r)) = 0 for r* (fly(co),by(o)))) giving

r w-1 .
var <ysYS) = A* { g(0)+2^g(*A *) j  -V2

k= 1

and

hy(CO)

V2= 2jg(y)dy , 
0

where V is the volume of Y. Gundersen & Jensen (1987) give an estimator of this 

variance based on a quadratic approximation to the covariogram near the origin. The 

coefficients in the approximation are derived from the sectional areas and have a very 

high correlation with the volume estimate in the case of a sphere. It is not clear whether 

this is the case more generally.

An alternative approach, in the spirit of stratified random sampling and which 

eliminates the correlations in the data, is to define

r1-=fly(co)+(/-l)A*(co)+u1- (i=l,...,n)

with A* as before and {u,:i= l,...,n) independent, identically distributed uniform 

random variables on (0,A*). We now have the unbiased estimator

n

v5T=A*̂ A(rn7-((o,t.))
i=l

A A
(again differing from V57 and in the definition of r,) with variance

n

(A*)2]£var(A(}'nr(co,ri))
1=1

where now the terms in the sum are not identical. The motivation for such an estimator
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is that each section is restricted to a slab of the specimen whose thickness diminishes as 

n increases. Thus each term in the sum will decrease as n increases as opposed to the 

case when each section is randomly located over the whole specimen, giving a variance 

which is the sum of n identical terms, independent of n. So we can expect the 

variance of V5 rto be at worst o(n‘J) whereas in general the variance of VURis 

0(n~l). In fact the result will often be much stronger.

To compare the estimators VSYs and Vst w rite/(jc) for A(YC\T((njc)), 

X;=aY(co)+(i-l)A * and / ,• ,/ /  and / / '  for / ( x) and its first two derivatives 

evaluated at . Then for both estimators

A* A*

\ar(f(t.)) = —  f Ifix+u)] du -  [ —  \f(x.+u)du ] 
A* o A* o

- [ [ ( / ; .  + + ...}dv ]

= 0 - +  a * / / /  + ^ p - W / ) 2 + / / / ’) )  - ( / ,  + + 0 ((  A*)3)

(a * )2
12 Oy) 2 + o((A*)3) .

This gives us

var(VSJ,) = (A*)2 ] £  {
i= 1

(A* )2
12 ( f; )2 + <?((a*)3)  }

whereas the correlations between the terms in
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n  n

vai(Vsys) = (A*)2 X X  + ° ( ( A*)3)  }
1=1 7=1

where the extra terms are calculated by a similar expansion to that above. Since
A

A*=0(nml) an assumption tha t/'(x ) is bounded guarantees var(Vsy)=0(rt‘3) and 

\dLT (V SYS) = 0 ( r r 2) . However for the particular case f(x)=X2-x2, corresponding to 

a triaxial ellipsoid, with *,-=(-l+ 2 (i-l)/n)A, (i=l,...,n) and f'(x)=  -2x we obtain

E T f i f j  = 4X2 giving var(V5y5)=0 («-4). In fact in this case it can be shown after
A

lengthy but straightforward calculations that the variance of V57 is exactly

[V(y)]2{ 1/n3 - 4/5n5}
A

whereas it has been shown that the variance of VSYs is exactly

[V(Y)]2/5n*

(see, for example, Mattfeldt,1987, where this is a special case of a more general result). 

This appears to be a fortunate consequence of the particular form of f ix ) for the 

triaxial ellipsoid and should not be expected in general. For example, the case where 

f(x)= [ix  (jte [a,b]; a,b>0), also considered by Mattfeldt, would give 

var(V'57’)= 0 (/i'3) but var(V’sy5)=<9 ( j r 2). The important point is that the 

performance of systematic sampling depends essentially on the stratification of the 

specimen into strata within which the variance decreases as n increases. However, 

when sampling is fully systematic the correlations between observations may enhance 

or reduce the performance of the estimator. Thus systematic sectioning is not in 

general an application of the principle of antithetic variates, as suggested by Mattfeldt, 

but an application of the principle of stratified random sampling. In the case of the 

triaxial ellipsoid there is also an effect of antithetic variates, thus enhancing the
A

performance of Vsys-
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2.4 Restricted Case

We now turn our attention to a more realistic case where 7  is contained within 

an opaque reference phase, X , from which it cannot be separated; we assume that Y is 

still measurable accurately without magnification. This is essentially the restricted case 

of Miles (1978a) and we use his terminology to emphasise the relationship between our 

development and the treatment of this class of problems in the literature.

This case is essentially the same as the previous one but with additional 

variation in the number of sections intersecting 7. (We assume X  is "opaque"; if it is 

not then this case can be treated identically to the previous one). We consider the effect 

on estimation of V(7) when applying the techniques of §2.3 to X. We also discuss 

possible alternatives.

If we take IUR sections of X  and discard those not intersecting Y the 

remaining sections are 1UR sections of 7, irrespective of the arrangement of Y 

within X . This well known property of IUR sectioning is one of the strongest 

motivations for its prominence in the literature (see, for example, Miles & Davy, 1976, 

Coleman, 1979). Thus any results for the previous case based on IUR sections can be 

carried over to the present situation by applying them to those IUR sections of X
A

which intersect Y. Furthermore the estimator VUR has an analogue but with the 

additional problem that /iy(co) is now unknown.

Let be independent and identically distributed random variables with 

the uniform density (^(co) ) '1 for tjE (ax (co),£*(©)) and zero otherwise and let n be 

the number of sections 7 (0),*,) of X  that intersect 7. Also let be the

subset of such that

707(0)^) * 0
707(0),t) = 0  V re j j  sn]

(ie correspond to the sections that hit 7).
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Then £(A (ynr(co ,r{))) = V(Y)/hx (co) and the obvious unbiased estimator of 

V(Y) is

N
N

■ 2/(rnr(co,f.))

i= 1

hjfisi)
"IT" ^/(rnr(co,ji)).

i=l

By first conditioning on n and then noting that n has a Binomial(V,^y(co)//z^(co))
a

distribution it can be shown that the variance of VUR* is

^ [ w r ) ) 2( ^ — - l ) +  /iy(co)/iJ.(co)var(A(ynr(co,s.)))] .
N \((0) r *

To compare the efficiency of with we can look at the ratio of the reciprocals 

of the variances, giving

/zx(co) h jp )

h / a )  [/iy(co)]2 var(A (yn T(a,s)))

as the relative efficiency of ^UR to Vvr* where the s in the formula emphasizes that 

the variance term refers only to those sections which hit Y. The first term in this 

expression is simply \IE(nlN) and since the second term is always non-negative this 

expression indicates that the loss in efficiency when Y is contained in an opaque 

reference phase, X, is greater than the E(n/N), which we might have expected.

No explicit mention has been made of the arrangement and composition of Y; 

that is, whether Y is a union of disjoint "particles" or whether it is a single, connected 

domain, and if so whether or not it is convex. These factors are of course included 

implicitly in the term varG4(yf)7(©,s))) but it should be noted that the distribution 

of n is dependent only on /iy(co)//ẑ (co).

The estimators VSYs and V ^of §2.3 have their analogues in this case, which 

we denote by VSYS* and , but now with hY(co) unknown and the number of
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sections intersecting Y random their analysis becomes much more difficult. In the 

particular case when Y is a single domain we can show that the variation in the number
A

of sections contributing to VSYS+ is less than the variation in the number of terms
A

contributing to vst* • Following the notation of the previous section let

ri=j^(co)+0-l )A*(co)+w (i=l,...,A0

Si=ax( cd)+(i-1 )A *(g>)+k/ ( i=1,...,N)

with A* now equal to /**(©)/# and independent, identically distributed

uniform random variables on (0,A*) and define

N

w = A * 2 / (rnr(a)’,/))1=1
N

vsr. = A»2/(rn7\co,j.)) .
i = l

Denoting [<3^(co)+(i-l)A*,a^(co)+/A*] by c,- it is clear (see fig. 2.2) that 

3 l,me {1 such that

7(co,Ony*0 Vfec,- i€ {/+l,...,m}

T(co,r)ny=0 V teCi ie {l,...,/-l,m +2,...ttf}

and for te Ci and te cm+1 T(co,r) may or may not intersect Y. Denoting by a the 

Lebesgue measure of the set {r:re C/, T((o,t)C iY*0} and by b the Lebesgue 

measure of the set (r.te cm+1, T{(ti,t)V\Y±0} we can write that

N ^ k + Ix

Â 2=̂ +/2+ 3̂
A

where and N2 are the numbers of sections making contributions to VSYS* and
A

VST* respectively, k=m-l and

0 with probability l-(a+b)/A*

1 with probability (a+b)/A*

1 with probability 2-(a+b)/A*

2 with probability (a+b)/A* -1

J  a+b<A* 

^  a+b>A*
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f  0 with probability 1-aJA*

1 with probability a/A*

f  0 with probability 1-b fA*

1 with probability b /A *

Fig. 2.2 Systematic Sections for an Embedded Specimen.

When systematic sections are taken through X the numbers that hit Y will be random. From the 
diagram it is clear that the difference between the maximum and minimum number of sections hitting 
Y is two when Y is connected. If the sections in each stratum are located independently then the 
variance of the number of sections hitting Y will be greater than if the sections are completely 
systematic since in the latter case the contributions from the "critical" intervals will be negatively 
correlated.
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It is not difficult to show that

var(W2) = (a+b)/A* -  (fl*+fc2)/(A* )2

var(N.) =
[(0+WA*][l-(a+fc)/A*]

[(a+b)/A*-2][Ha+b)/A*] a+b>A*

a+b<A*

and hence for a+b<A* var(N{) is clearly less than var(V2) whereas for a+b>A* 

var(A^1)<var(Ar2) whenever A*-(a+b)<ab/A*; but this will always be true since 

A*-(a+b) is always negative and ab/A* is always positive.

It seems probable that this behaviour will carry over to the case where the 

projection of Y onto co is composed of several disjoint intervals. However, what is far 

more difficult to analyse in general is the variance of the areas of intersection. We 

conclude this section with an example of the use of systematic and stratified designs for 

estimating area in a number of synthetic specimens.

Example Let O be the origin of an arbitrary Cartesian frame in R 2 and let X  

be a disc of radius R with its centre at O. Let Y be a subset of X  composed of the 

disjoint union of several smaller discs (the different specimens are shown in fig. 2.3). 

We let r(0,r) be the line making an angle 0 with the horizontal axis and with distance 

t from the origin. The set {(0,f): O<0<rc; ~R<t<R] defines all lines hitting X  but 

because of the symmetry of the specimens we need only consider O<0<rc/2. For a 

given N  we let A*=2RfN and define

where are independent, identically distributed uniform random variables

on (0 ,A*).

ti= ~ R + (i-l)A *+ u  

S i=~R +(i-l) A *+Ui
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Then let

N

\ w = A * X z'(rnr(e’fp)i= 1
N

Asr* = A *2/'(ynr(0>5.))
1=1

A A

be two unbiased estimators of the area of Y (analogous to VSYS* and VST+) where 

L{.) denotes length. The standard deviations of these estimators for some different 

values of N  and 0 are shown in fig. 2.4.

The most striking point to notice from the graphs is that in all cases the 

systematic estimator is considerably better than the corresponding stratified estimator. 

The specimens were chosen to cover a wide range of situations, both in terms of 

heterogeneity and in terms of relative area occupied by the phase of interest, 7, but the 

relative performance of the estimators seems to be largely independent of these factors. 

Given also that the systematic estimator will generally be easier to construct in practice 

(we can use the same grid every time) it does seem that in this type of problem the 

systematic estimator is preferable to the stratified one. We have, of course, used very 

regularly shaped specimens in order to make the calculations feasible and we would like 

to be able to obtain more generally applicable results before drawing too many 

conclusions. A secondary point of interest is the difference in the performance of the 

estimators for different orientations of the line probes. One of the concerns when using 

systematic estimators is the possibility of the results being seriously affected by 

periodicities in the specimen, and taking all our line probes in a single direction does 

suggest the possibility of being vulnerable to that sort of error, albeit with a small 

probability. There are various modifications that we might consider, such as taking 

two sets of probes at right angles to each other, or two sets of probes with different 

spacings. Clearly there are many unanswered (and unasked) questions related to 

systematic sectioning and there is much work still to be done, particulary for arbitrarily 

shaped specimens.
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X

Y

C

B

D E

F G

Fig. 2.3 Synthetic specimens used to examine systematic and stratified estimators

In each case the reference phase, X, is a disc of radius 1 unit. The arrangements of Y were chosen to 
cover a wide range of situations as far as heterogeneity and area coverage were concerned.
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Fig. 2.4 Standard Deviation of Systematic and Stratified 

Estimators of Area for Synthetic Specimens
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Fig. 2.4 (cont.) Standard Deviation of Systematic and Stratified 

Estimators of Area for Synthetic Specimens

The graphs show the standard deviations of systematic and stratified estimators of area, based on sets of 
parallel line probes, for the specimens shown in fig. 2.3. The numbers of probes used are shown on 
the horizontal axis and their inclination to the horizontal is indicated in the legend. For specimens A, 
B and C only horizontal line probes were considered as those specimens have rotational symmetry of 
infinite order. For the other specimens the results shown are for the orientations that gave the most 
different results of those obtained.
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2.5 Unbiased Sampling Methods for Particles

An alternative approach when Y is composed of a large number of disjoint 

"particles" is to employ recently developed methods such as the disector of Sterio 

(1984) and Cruz-Orive's selector (1987), designed to eliminate biases inherent in 

classical stereological sampling procedures. The achievement of the disector is in being 

able to estimate number, a zero dimensional quantity, steneologically, without recourse 

to rigid assumptions such as those of Wicksell's problem. The significance of this is 

recognised by referring to Fig. 2.5; one of the fundamental relationships in stereology 

is that the expected value of a measurement of dimension m on a probe of dimension 

p  through a specimen of dimension s is proportional to a characteristic of the 

specimen of dimension s-ip-m). For example, areas of intersection on planar probes 

estimate the volume of a three dimensional specimen (5=3 , p= 2, m -2) and the 

number of intercepts of a line probe with the boundary of a two dimensional specimen 

estimates its boundary length (5=2, p= l, m -0). It is quickly seen that to estimate 

number, a zero dimensional quantity, requires either measurements of dimension -1 or 

probes of dimension 3; the disector is essentially a three dimensional probe, enabling 

particles to be sampled with equal probability and hence making unbiased estimation of 

particle number possible.

The use of the disector and related techniques in the present context amounts to 

regarding the problem of volume estimation as one of estimation of total number and 

mean volume in a finite population where the size of the population is unknown, the 

sample size is random and the measurements are made with errors with unknown 

distribution. The fundamental principles involved, apart from that of the disector, are 

the formulae of integral geometry, particularly that due to Crofton (1885), relating 

powers of lengths of random chords of bodies to global characteristics such as volume 

and surface area and the theory of finite sample surveys.
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I
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to 3

3

Fig. 2.5 Relationship Between Dimensions of Probes, Measurements 

and Estimated Characteristics

The figure shows the dimension of the characteristic of a three dimensional specimen which is 
estimated unbiasedly by measurements on probes of the dimensions stated.

We have a population, Yy of disjoint particles, Y i ,...9Yq9 contained in a 

reference phase, X, and we wish to make inference about population parameters from 

measurements made on a sample of particles. In the classical theory of sampling from a 

finite population (see Cochran, 1977) we would proceed by basing our inference on a 

simple random sample from the population; that is, if our sample were to contain n 

units then the sampling scheme would ensure that every subset of the population of size 

n had an equal probability of being chosen. This is a very strong condition in the 

present stereological context, where in general the population size is unknown and the 

sample size cannot be fixed a priori, and it seems likely that strict simple random 

sampling is not possible under the most general assumptions. We can, however, use 

the disector to satisfy the weaker condition that every particle is included in the sample 

with equal probability.
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First we examine the principles underlying the disector in some detail and 

provide a rigorous proof of its sampling properties. We take a different approach from 

that in Sterio's original discussion, starting with a finite partition of the reference phase 

and an association rule between the particles and the elements of the partition. We then 

regard the elements of the partition as a finite population of disectors from which we 

take a sample. The treatment is more general in that the disectors can be quite arbitrary 

in shape, and more useful in practice because the application of finite population 

sampling theory is immediate. In Sterio’s original paper it is not clear how repeated 

sampling should be achieved in practice; the essential difference here is to work with a 

finite partition and finite population theory. This then allows an examination of 

different sampling schemes and estimators and some assessment of their relative 

efficiencies.

Having examined the question of estimating particle number in some detail we 

then go on to look at the second aspect of the volume estimation problem, namely 

estimation of mean particle volume, paying particular attention to the selector of Cruz 

Orive (1987) based on the principle of vertical sections (Baddeley, Gundersen and 

Cruz (Drive, 1986), and we conclude with some comments on ratio estimators.

We start from the following principle;

Let A  be a partition of the reference phase by a collection of sets, 

51,...,5a/, satisfying

M
x c u  s

5= 1  5

s jn s r = 0  (s'*s).

Then if the probability that Ss is sampled is a constant, 7t, for all s and if 

for every y  there exists a unique s such that

PrCTy is sampled | Ss is sampled) = 1 

and Pr(yy is sampled | Ss is not sampled) = 0

we have that the probability of sampling particle Yy equals n for all y.
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The contribution of Sterio (1984) is to provide a rule which ensures that these 

requirements are met. In order to apply this rule we construct A  in the following 

manner

1 For an arbitrary orientation, 0), in 1R 3 choose

arbitrarily in the interval (ax (co)fbx(co)) subject to the constraint that 

maxlrj-fl^Cco), ^ (co)-ra ) is less than the minimum

caliper diameter of any particle. This enables us to define a set of parallel 

planes intersecting X.

Fig. 2.6 Construction of Partition - First Stage.

A set of a parallel planes is defined by choosing a points arbitrarily between the two tangent planes to 
X subject to the condition that the distance between adjacent planes is always less than the minimum 
caliper diameter of any particle. This ensures that every particle must be hit by at least one plane.
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2 For each ie {l,...,a} choose /ji</i2<...</ip.-2<fipi-i arbitrarily in the 

interval (aT.(Qi),bT.(Q,)), where TpTCoM ,), 0 . is an arbitrary 

orientation in R 2 and 0^.(0 ,), fcr.(0 /) are the distances of the tangents to 

Xf\Ti with normal 0,-from an arbitrary origin in Tr Thus on each plane, 

T h we can define a set of parallel lines, L (0 7^.(8 , ) ) ,

L (Q iJ i l ) ,...,L (Q iJ i$i_i), L W i .b j . (0 ,)), which we denote by 

L i0,...JL,-p respectively, and hence XO Ti is divided into p ; parallel 

strips. On each of these lines we take the direction Qi+n/2 to be positive 

and 0-71/2 to be negative.

Fig. 2.7 Construction of Partition - Second Stage.

The profile of intersection of X with a planar section is divided into strips in an analogous way to the 
construction of the planar sections themselves. This time there is no restriction on the distance 
between the lines because the space inbetween the lines is visible and no particle profiles can be "lost".
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3 Each strip on each plane is divided arbitrarily into y^ rectangles, 

, where and Ly form one pair of sides of and 

the other pair of sides are denoted and Btjk .

The final stage in the process is to divide each strip on each plane into rectangles. We still need to 
define a rule such that every particle can be unambiguously associated with a unique rectangle on a 
unique planar section, preferably without having to construct the whole partition.

We have now established a framework for the sampling of particles with equal 

probabilities. Rather than a partition by subsets, we have an index set

2={0*j,fc): t=l,...,ot; ys=l,...,p.; However the same principle still

applies; that is, we require that each S is  sampled with constant probability, 7t, and 

that for each y there exists a unique \  e S  satisfying

Pr(yy is sampled | £ is sampled) = 1 

and Pr(yy is sampled | £ is not sampled) = 0 .
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For a particle,Yy, contained in X  let Ay be the subset of {l,...,a} such that 

ie Ay <=> Yyr\Ti*  0  and let i*-i*(y) be the largest member of Ay. (We note that 

A y* 0  because of the constraints on Also, for i= /* (y ), let

j*=j*(y>i*) be the largest j  such that 3  a it for which D i*jkr\(Yyr\Ti* )*0  and 

let k*=k*(y,i*J*) be the largest k such that D,*j**0 (Fy flTp)*0  . Defining

we include Yy in the sample if /(y, £) = 1 and not otherwise. This satisfies the 

necessary conditions for unbiased sampling.

We could now proceed to construct a sampling design on the population of 

particles by considering specific partitions of the type described above together with a 

sampling distribution on the corresponding index set, S. However, first we state two 

results which enable us to evaluate 7(y,£) for a particular £ without having to realise 

the entire partition in practice.

We introduce the notation L+Iy<k and for the semi-infinite lines which

are co-incident with L^, have their end points at the intersection of L,y and B^k and 

extend infinitely in the positive and negative directions respectively. is the infinite 

line formed by the union of L^  and L+ij.l k (see Fig. 2.9).

0 otherwise
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The diagram illustrates the unbiased 2-D counting rule of Gundersen(1977). A convex planar 
subset of XC\Ti is associated with the rectangle for which it intersects but not E ^ . See 
the text for the proof that with this rule every such planar set is associated with exactly one 
rectangle.

Proposition Let Yy be a convex particle and, for is  Ay , let C=YyC\ 7,-. 

Then j=j* and k=k* <=> DijkT\C*0 and Eijkf\C=0 .

P ro o f  If £*=yi;-* then Bij*k*O X=0  and L +i;*.ltfc*D X =0 . If k**  

we must have B ij*k* r \C -0  and L ¥ij+_l k*r\C=0  otherwise there would exist a 

k'>k* such that D i;**«nc*0 . In both cases we have L’^*f* * n c = 0  by the 

definition of j* and hence E Jy*jt*flC =0 . Also D1y*i *flC ^0 by the definition of 

j* and k*.

Now we show that Dijkn c * 0  and Eykr\C= 0 only holds when j=j* and 

k=k*. By the definition of k*, Dij*k'C\C=0 for k'>k*. Suppose 3  k'<k* 

with Dij*k< nc*0  . Since C is connected and £>^***0(7*0 we must have that
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either Z?y**-nCV0 or L +ij* ,i^ n C ^ 0  and hence Eij*k>C\C^0 . It remains to 

show that D,7*nC = 0  or £ ^ 0 ( 7 * 0  V yV/*. By the definition of j*  we know 

that Dij>kf ) C - 0  V /> /* . Now consider any j \ k  with /< /* . Since D ̂ k and 

D ij*k* are separated by Epk and C is connected it follows that either D ^kf\C = 0  

or EifkClC*0.

Proposition Let Yy be a particle contained in X and let i*(y) be the largest 

member of Ay . Then $  M *  such that YyC iT ^  0  and YyCiTM  = 0 .

Proof Suppose 3  i'<i* with YyC\Tv *  0 .  Since Yy is connected we must 

have that YyC\Ti* 0  V le l,...,i*} and in particular we cannot have 

YyHTM  = 0 .

Note that the first proposition requires Yy to be convex, in order that YyC\Tx 

is connected. We can relax this condition on Yy provided that we find a mapping from 

YyDTi onto a connected set in T/. Miles (1978b) suggests a mapping onto a unique 

"associated point" and Gundersen (1977) suggests taking the union of the particle 

profiles together with connecting lines. A further possibility is to take the convex hull, 

(TyflT;)0. We need to be able to identify all the profiles coming from the same 

particle to be able to implement any of these methods and also to implement the second 

proposition in practice. This condition is Gundersen's "General Requirement" (1986). 

Given that it is satisfied we are able to determine from a pair of consecutive planes, Ti 

and r /+1, (a single plane in the case i=a) and a rectangle, on Tx the value of 

for a given y. In the case i= a  we have I(y,(iJ,k))=1 if and only if 

y^n  7 > 0 , D ijkn  (Yyn  T d c * 0  and £ (/Jkn ( y yn r |.)c = 0 .  F o r /* a  we also 

require y>f i r i+1= 0 . (Tl+1 is sometimes referred to as the "lookup" plane.) When 

these conditions hold we say that Yy is "counted" by Dtjk. We note that there is a 

corresponding result taking T/.j as the lookup plane with i* defined to be the smallest 

member of Ay.
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Let us now put our discussion into the context of Sterio’s disector by 

considering the following construction of /6 . Let d be a fixed real number less than 

the minimum caliper diameter of any particle, let 0<5<d, N=[(/i^(co)-8)/d] + l 

(where [.] denotes "the integer part o f )  and fpS+O '-l)*/ (z=l,...,N). Let x 

represent a tessellation of the plane by a rectangle with sides of length r and s and let 

x ( 0 , m , v )  be x after rotation through an angle 0 and translation parallel to the sides of 

the rotated rectangles by distances u and v respectively. For a plane r,-=T(co,r,) 

intersecting X  let x—x̂ . m̂ v,-) be the specific tessellation covering Tt and denote 

by x> the subset of rectangles of %. which intersect T f\X . Labelling the units of 

X-* by Dij (/=1,...,A/;) we let £y(±) denote the disector consisting of D xj together 

with lookup plane T,a- Although we have already remarked that a lookup plane is not 

required for D Nj(+) or D 1;(-) we define T0 and to be 7(o>,8-d) and 

T((d,&-Nd) for consistency, so that we may regard as a cuboid.

Given this framework how should we interpret the phrase "randomly located 

disector"? For fixed we have a finite population of

M  disectors where

(Strictly there are 2M disectors but we will restrict attention to {D^(+)} for 

simplicity.) We can construct a bijective mapping, / ,  from {1,...,M} to 

/=!,...,N) defined by

so that a sample {sj,...,sm} from (l,...JVf) corresponds to a sample of disectors 

{Dy^1)(+),...£>/(5m)(+)}. Adapting our earlier notation to let /(y,(/J))=1 if Yy is 

counted by D/;-(+) and zero otherwise, and letting I (y ,( ij) )  then if

{jlv..^m) is a simple random sample the estimator

1-1
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is certainly an unbiased estimator of Q. However, although we only have to observe 

and the corresponding lookup plane^ in order to evaluate q^s.) one drawback
A

of Q is that we need to know M, which means that we need to form all of the 

tessellations x v — >XN and enumerate N . Therefore it might be useful in

some cases to be able to replace M by an estimate and tessellate only those planes 

which contain the disectors in the sample^. The problem then is how to generate the 

sample, since we no longer have a finite population from which to select. We can 

regard the problem as one of subsampling with units of unequal size (the units being 

the section planes) where the sizes of the units are not known precisely.

Indeed in our case they are random variables; however, if we take 0-,W; and v,- to be 

independent, uniform random variables on (0,27t], (0,r] and (0 ,5] respectively then 

the following result enables us to find unbiased estimates of (A/,).

Proposition If a tessellation of congruent rectangles is superimposed uniform

ly at random on a bounded set B then the expectation of the number of rectangles that 

intersect B is

Mean area of dilation of B by rectangle 
Area of rectangle

where the mean is taken over all orientations of the rectangle.

01 In fact we need to observe more than Dxj  in order to identify all of the constituent parts of any particle 
which intersects D-Xj  and in order to check that the exclusion line is not intersected but the important 
point is that only two planes are required for each dissector in the sample and only one needs to be 
tessellated.

l2l Although two planes are required to form a dissector we naturally associate D,y(+) with Tx and hence 
say that Z),y{+) is "contained in" Tx.

42



Chapter 2: Estimation o f Absolute Volume

Proof Fix an arbitrary Cartesian frame of reference in the plane with origin O 

and let Rr s be the rectangle with co-ordinates (0,0),(0,$),(/*,$) and (r,0). Let 

£ ( 0 ,x,y) b e £ r>J rotated through an angle 0 and translated by the vector (;t,y)T 

(relative to the rotated axes) and let / ( £ ,£ ( 0 ,x,y)) equal one if £ ( 0 ,x,y) 

intersects B and zero otherwise. Then, for any fixed 0, the area of dilation of B by 

£ (0,0 ,0) is given by

oo oo

M B Q RW .O )) = J J dxdy
•40-00

5 r oo oo-JJSL I(B ,£(0, u+ir, v+js)) dudv
5 o t=-°o j = -a°

= rs * expected number of rectangles of uniformly randomly 

located tessellation with orientation 0 which hit B.

Integrating with respect to a uniform distribution on 0 gives the result

Notice that in the proof we have used the Minkowski sum, £©.£(0,0,0,), 

rather than the dilation, £©  "£(0 ,0,0 ,) (where "£ denotes the set {-r : r  € £ )  ) 

but since they differ only by a translation their areas will be equal and thus here and 

elsewhere we use the notation interchangeably when areas are being considered. If B 

is convex then the mean area of dilation of £by a rectangle of sides r  and s is given 

by the formula

A(B) + rs + (r + s)B(B)/n

(where £ ( . )  denotes boundary length), which can be found in Santald, 1976, p.94. 

When B is not convex, or if its perimeter and/or area are unknown the area of dilation 

can be estimated with an automatic image analyser.
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The relevant theory for subsampling with units of unequal size can be found in 

Cochran (1977, Ch.ll). In line with Cochran we use the following notation for the 

ith unit:

Population Sample

Number of elements Mi

Mean per element Qi Qi

Total Q rM Q i Q rmiQi

There are N  units in the population and we let n be the number of units in the 

sample. Then our previously defined notation is related to the quantities above by

N n N

II M e = X e ;
/= l i= l /=1

In addition we define Q to be Q/N, Q to be QIM and M  to be MIN; the sampling 

fraction in the first stage of sampling is f\=nlN and the sampling fraction in the ith 

unit at the second stage is /2,-=m/A/,-. We describe below four possible estimators 

of Q; the first does not require any knowledge of A/,- for sections not in the sample 

whilst the second requires an estimate of M. The third and fourth use estimates of the 

Mi to construct the sampling scheme.

Let £ be a simple random sample of size n from {1,...^V} and let [Ti'.ie £} 

be the corresponding simple random sample of planar sections. On each plane in the 

sample we superimpose a tessellation i-CĜ UpV,) where G^u^v,- have the uniform 

distribution described earlier, and from the M/ elements in x.* we draw a simple 

random sample of size m,- corresponding to a simple random sample rj of size mf- from
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{ 1 ,...^ } . Then

2 , = - X MA'

is an unbiased estimator of Q with variance

m .
d-4) + N  (l~ /i)

(W-l) /j £ ( e;-e)2 ,
i=l

where is the population variance in unit i.

With the same sampling scheme as above we can also form the "ratio-to-size" 

estimator

fee

This is a biased estimator because of its random denominator and its mean square error 

(MSE) is given by E[(Q2 - 0 2]. We have that

q 2 - q  = u
' L m . Q . - q i v )

ifj________
' L m .

and the usual procedure, in the case of the {Afx } being fixed and known, is to replace 

the 2 m , in the denominator by nM. However, since M  is a random variable itself 

in our context, it makes more sense to use n\i in the denominator, giving an 

approximate MSE for Q2 of
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Our third estimator is based on sampling of units with probability proportional 

to size. We let }i- be an estimate of and define

Now we generate n independent and identically distributed uniform random variables 

{w1,...,wn} on the interval (0 ,1) and define £ by

Then {T ^ ie t,}  represents a sample drawn from (Tx with probability

proportional to estimated size. The drawback with this method of selection is that the 

same unit can be included twice in the sample, but techniques for sampling proportional 

to size without replacement tend to be rather complicated to implement (except when 

only two units are being drawn) and probably would not justify the extra effort 

involved in this context (see Cochran, 1977, § 9A.6). We draw a simple random 

sample of size mi without replacement from each unit in the sample. Where a unit has 

been included times we have three possible courses of action. We can draw Xi 

independent simple random samples, each one being taken from the whole unit, 

allowing the same element to be included in more than one of the sub-samples. 

Alternatively we can draw a single simple random sample of size Xpii or take a simple 

random sample of size mt- and weight the final estimate proportional to Xt. Cochran 

points out that when the overall sampling fraction is small there is little difference in 

precision between these methods and therefore we assume that the first option is

N

V/-l<w*“Vi =* ,e C
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adopted. The unbiased estimate of Q in this case is

with variance

M .  MJ! > _ i 1 2l 

n w  H, m i

All of the methods described so far have restricted the sample to come from n 

units of the population. Another possibility, defining |i- and v- as before, is to take 

m independent and identically distributed uniform random variables {wlf...,wOT} on 

the interval (0,1) and define J(i,k)=1 if v- jO v ^ v  • and zero otherwise. Then for

each i such that £ */(/,& )> 0  we include Tt in the sample and select a simple random 

sample of elements from 7), where J{i,k). Then

is an unbiased estimate of Q. Since the numbers of elements of the sample from each 

unit have a multinomial distribution we have introduced dependencies between the 

contributions to the estimator from each unit. The expression for the variance of this - 

estimator is

( M r \) (m-

h  M-

47



Chapter 2: Estimation o f Absolute Volume

Thus we have, for the "within-units" variance

N  X ?  $2i
—  X - ^ a  -4 )
n —  m. 11i=i 1

-  X — a - 4
n —  m. 21. , m .i=i i

A  -  m 1 s i -

T  <‘ ‘ 4 >

" fcf H;

and for the "between-units" variance

m

i=l

S 0 - & ) X f e - * s >  * < & ) ( ■ • £ )  *

£ ( £ - £ )
" i=i H

* t < Z^ L ( ^ )
*  m ,=i p. p
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Clearly the within-units variance of (2i is equal to that of Q2 whereas the 

equivalent expression for Q3 is weighted inversely to the expected size of unit i. The 

effect of this will depend on the sampling fractions, {/2/}, used. If we suppose 

S2i2 to be a constant, a 2, for all i then, noting that m,- = / 2, Mi-, we can rewrite the 

within-units variances as:

T—<1

"o |« (Qi and Q2)

n i=i H; h i
m

n l=i \i. m m

Q4 does not involve any "second-stage" sampling but for Qlt Q2 and Q3 we would 

like to find the optimal values for {f2{\ to minimise these expressions. In fact, since 

we are considering the second stage of sampling, the choice of {/2t} should be

sample dependent, being a minimisation of the conditional expectation of the within- 

units variance given the particular set of units selected at the first stage. Thus for 

and Q2 we want to minimise

subject to the constraint

^ f 2 iM i = m • 
*5
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This reduces to the solution of the equations

-Af.
— i + AAf. = 0 t e £
J 2i

X 4 .W. = m

giving

E m .Vx-ss-1
m

that is

E m .
ie?

Thus the optimal choice is / 2i- = constant for all z. In theory this constant is sample 

dependent, being a function of the M/s in the sample, but in practice, since the {m, } 

must be integer anyway, we would take / 2i- = / 2 = m/M  as being close enough, 

since the mean of the A//s in the sample will be close to M  in most circumstances. In 

our particular context we would replace the unknown M by its expected value, |i, thus 

giving/2l- = m/\i for all i and for all first stage samples.

For £ 3  a similar argument leads to the value / 2{- = m/M 1 , again being 

independent of the first stage sampling. Using the fact that

N

m M

1=1

and substituting the values for [f^} derived above, the expressions for within-units 

variance are now
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c2m  ( i L . a ) (6 i and Q2)

5 ( w . .2 L )
m m  n

(83)

- f  A  A*2 - M. ,  1 . I

m t f  H,. m
(G4)-

Taking expectations over the distribution of (M{\ gives

o V ( j L - i l  } (Q\ and Q2)
v m n J

c 2p '[ jl  . »  + 1 f  Var(M.') }
 ̂ m n m ~  *i=i ^

m

a 2p •f u  ( N - l )  ! , 1 V  var(A/P ]
 ̂m m m *ri ,, Jx=i M-i

(Q4).

Clearly Q3 is always inferior to Q1 and Q2 in terms of within-units variance. We do 

not have an explicit expression for var(M{) but there are approximations available. We 

recall that Mi is the number of points of a regular grid falling within a region, which, 

up to a translation, is the dilation of the /th planar section through the specimen by a 

rectangle of the grid. For a uniformly randomly located grid an approximate formula 

for the variance of Af,* due to Matheron can be found in Mat6m (1985), namely

varCM;) = (0.0531b-1 + 0.0194ba*2)f i .

where the rectangles of the grid have sides a and b (a<b) and is the boundary of 

the dilated planar section; it only remains to find B For a convex planar set, K, with 

perimeter U(K), the perimeter of K®b{o, r), where b(o, r) is a disc of radius r, 

is given by U(K) + 2nr (see Stoyan, Mecke and Kendall, 1987, p.27). This allows 

us to find upper and lower bounds for Bt whenever the section through the specimen
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is convex. Furthermore, it is easily seen that the perimeter of the dilation of a convex 

polygon by a rectangular set is equal to the sum of the perimeters of the polygon and 

the rectangle. Thus for convex specimens we can find a reasonably good 

approximation to var(A/{-). Table 2.1 shows the ratios of the within-units variances of 

C3 to Qx and Q4 to for a variety of different situations, under the assumption of 

constant variance within sections, using the expressions derived above. The specimen 

is taken to be spherical, so that all sections are circular. In this case the length of the 

perimeter of the dilation of a section by a rectangle involves elliptic integrals so we take 

the mean of the lower and upper bounds (that is, the perimeters of dilations by discs of 

radius a and V(a2 + b2) respectively, where the rectangle has dimensions a, b with 

a<b). As the rectangular unit of the grid is in general much smaller than the specimen 

section the error is likely to be negligible.

The difference between Q3 and Q j is seen to be very slight in all the cases 

considered, whereas the performance of Q4 relative to Ql is considerably lower in 

some instances. It is particularly bad when a large number of elements is chosen from 

a small number of units, but when the first stage sampling fraction is high and the 

second stage sampling fraction is low there is not much to choose between Q4 and 

in terms of within-units variance, under the assumption of constant population variance 

within units.
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N n m a b W1 W3/W1 W4/W1 N/n M/m

10 2 25 0.20 0.40 392 4188 1.0025 1.3432 5 16
10 2 50 0.20 0.40 392 1114 1.0046 2.3491 5 8
10 5 50 0.20 0.40 392 2290 1.0022 1.1426 2 8
10 5 100 0.20 0.40 392 753 1.0034 1.4772 2 4

10 2 25 0.25 0.25 474 6606 1.0014 1.2624 5 19
10 2 50 0.25 0.25 474 2119 1.0021 1.8561 5 9
10 5 50 0.25 0.25 474 3540 1.0013 1.1110 2 9
10 5 100 0.25 0.25 474 1296 1.0017 1.3343 2 5

10 2 6 0.40 0.80 135 2373 1.0114 1.1539 5 23
10 2 12 0.40 0.80 135 848 1.0159 1.5341 5 11
10 5 12 0.40 0.80 135 1254 1.0107 1.0377 2 11
10 5 25 0.40 0.80 135 461 1.0140 1.2017 2 5

10 2 6 0.50 0.50 158 3353 1.0070 1.1245 5 26
10 2 12 0.50 0.50 158 1283 1.0091 1.4086 5 13
10 5 12 0.50 0.50 158 1755 1.0067 1.0291 2 13
10 5 25 0.50 0.50 158 679 1.0083 1.1569 2 6

40 8 100 0.20 0.40 1559 16519 1.0026 1.3434 5 16
40 8 200 0.20 0.40 1559 4361 1.0049 2.3654 5 8
40 20 200 0.20 0.40 1559 9039 1.0024 1.1412 2 8
40 20 400 0.20 0.40 1559 2960 1.0036 1.4790 2 4

40 8 100 0.25 0.25 1884 26078 1.0014 1.2623 5 19
40 8 200 0.25 0.25 1884 8329 1.0023 1.8630 5 9
40 20 200 0.25 0.25 1884 13981 1.0014 1.1098 2 9
40 20 400 0.25 0.25 1884 5106 1.0018 1.3348 2 5

40 8 25 0.40 0.80 538 8880 1.0120 1.1598 5 22
40 8 50 0.40 0.80 538 3095 1.0172 1.5766 5 11
40 20 50 0.40 0.80 538 4709 1.0113 1.0364 2 11
40 20 100 0.40 0.80 538 1817 1.0146 1.1952 2 5

40 8 25 0.50 0.50 627 12583 1.0074 1.1289 5 25
40 8 50 0.50 0.50 627 4724 1.0098 1.4370 5 13
40 20 50 0.50 0.50 627 6605 1.0070 1.0279 2 13
40 20 100 0.50 0.50 627 2676 1.0087 1.1516 2 6

Table 2.1 Within-units Components of Variance - S2?  Constant.

The sixth column, headed |X, is the expected number of rectangles of the grid intersecting all sections. 
The column W1 is 1/a2 times the within-units component of the variance oi Q\. The columns 

W3/W1 and W4/W1 are the ratios of the within-units components of the variances of and Q4 
relative to Q̂ .
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The assumption of constant variance from one section to another seems 

reasonable. For a sparse population of particles, where each sampling element contains 

either zero or one particle, the population variance within a unit, given the total is Q is 

given by QJMfX  - Q J M In such a situation, even if QJMi is not constant, 

S2?  is bounded between 0 and 0.25 and is likely to be dominated by the between- 

units variance, so the assumption of constant variance should not be disastrous. If, on 

the other hand, the number of particles is large relative to the number of sampling 

elements but is fairly homogeneous we might expect the numbers of particles in the 

elements of the ith unit to have a multinomial distribution with total Q-t and cell 

probabilities 1/M,- for each element. This would give S2?  = Q J ^ i » and, with Q 

being large relative to p and the distribution of particles being homogeneous, an 

assumption that <2 i is approximately proportional to Mi seems fair, giving S2i2' -  

constant. Let us now consider the effect of the assumption of constant variance being 

violated. We consider two cases, namely S2?  = o 2A/,- and S2i2 = o 2/M{-. When 

S2i2 = g2M i and we use the same values of {/2,} as before we obtain for the 

with in-units variance:

b-vpi (Qi and Q2)

m t i  n,- n
<£h)

(Q4)-

These expressions are not very helpful as we do not know anything about E(M?). 

As a very rough guide we can replace Mi by p,- and we find that the expression for 

Qs is always greater than that for Qi> although the expression for Q4 is not so 

revealing. Table 2.2 shows the same ratios as Table 2.1 for the same values of N, n, 

m, etc. but under the altered assumption about the within-units variance.
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N n m a b 11 W1 W3/W1 W4/W1 N/n Mfm

10 2 25 0.20 0.40 392 186481 1.0559 1.3452 5 16
10 2 50 0.20 0.40 392 49598 1.2103 2.3529 5 8
10 5 50 0.20 0.40 392 101969 1.0409 1.1445 2 8
10 5 100 0.20 0.40 392 33528 1.1244 1.4800 2 4

10 2 25 0.25 0.25 474 357278 1.0445 1.2646 5 19
10 2 50 0.25 0.25 474 114594 1.1389 1.8595 5 9
10 5 50 0.25 0.25 474 191448 1.0333 1.1131 2 9
10 5 100 0.25 0.25 474 70106 1.0908 1.3371 2 5

10 2 6 0.40 0.80 135 35439 1.0269 1.1515 5 23
10 2 12 0.40 0.80 135 12669 1.0753 1.5308 5 11
10 5 12 0.40 0.80 135 18729 1.0204 1.0355 2 11
10 5 25 0.40 0.80 135 6889 1.0554 1.1988 2 5

10 2 6 0.50 0.50 158 58765 1.0236 1.1254 5 26
10 2 12 0.50 0.50 158 22476 1.0618 1.4097 5 13
10 5 12 0.50 0.50 158 30764 1.0180 1.0300 2 13
10 5 25 0.50 0.50 158 11894 1.0467 1.1580 2 6

40 8 100 0.20 0.40 1559 738770 1.0606 1.3456 5 16
40 8 200 0.20 0.40 1559 195038 1.2294 2.3697 5 8
40 20 200 0.20 0.40 1559 404254 1.0443 1.1433 2 8
40 20 400 0.20 0.40 1559 132388 1.1352 1.4822 2 4

40 8 100 0.25 0.25 1884 1416754 1.0480 1.2647 5 19
40 8 200 0.25 0.25 1884 452479 1.1504 1.8668 5 9
40 20 200 0.25 0.25 1884 759557 1.0358 1.1121 2 9
40 20 400 0.25 0.25 1884 277419 1.0981 1.3379 2 5

40 8 25 0.40 0.80 538 133119 1.0312 1.1578 5 22
40 8 50 0.40 0.80 538 46404 1.0896 1.5738 5 11
40 20 50 0.40 0.80 538 70590 1.0236 1.0346 2 11
40 20 100 0.40 0.80 538 27233 1.0611 1.1928 2 5

40 8 25 0.50 0.50 627 221359 1.0272 1.1303 5 25
40 8 50 0.50 0.50 627 83111 1.0724 1.4388 5 13
40 20 50 0.50 0.50 627 116193 1.0207 1.0292 2 13
40 20 100 0.50 0.50 627 47069 1.0512 1.1531 2 6

Table 2.2 Within-units Components of Variance - Proportional to Mr
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The estimators follow a similar pattern to that of the previous case, although the 

difference between (2i and Q$ is slightly more marked. However, we would not feel 

worried about using Q3 hi preference to Qi if there were other grounds on which we 

suspected that Q3 could be better, such as between-units variance. It seems that in this 

particular case the violation of the assumption of constant population variance within- 

units will not invalidate conclusions made on the grounds of within-units variance 

about the relative merits of the various estimators, although the second stage sampling 

fractions will almost certainly not now be optimal.

Finally, when S2? = c 2/Af,- the within-units variances, with the same values 

offn  as before, and after taking expectations over the distribution of {A/,-}, are

(Q\ and Q2)

N &  -
m (63)

N - &  - 
m (64).

The ratios of the expressions for (2i and £ 3, and the expressions for Q\ and Q4 are 

shown in Table 2.3.

In this case, although the results are very similar for QA relative to Q\ we see a 

reversal with C3 and Q i » with 2 3 now exhibiting a smaller within-units variance 

than Qj in all instances, sometimes markedly so. In all cases we have to weigh the 

within-units variance against the between-units variance, and that is what we consider 

next.
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N n m a b V W1 W3/W1 W4/W1 Nfn M/m

10 2 25 0.20 0.40 392 107 0.8844 1.3315 5 16
10 2 50 0.20 0.40 392 28 0.5653 2.3271 5 8
10 5 50 0.20 0.40 392 58 0.9154 1.1319 2 8
10 5 100 0.20 0.40 392 19 0.7428 1.4610 2 4

10 2 25 0.25 0.25 474 139 0.9052 1.2534 5 19
10 2 50 0.25 0.25 474 45 0.7043 1.8422 5 9
10 5 50 0.25 0.25 474 75 0.9292 1.1026 2 9
10 5 100 0.25 0.25 474 27 0.8067 1.3229 2 5

10 2 6 0.40 0.80 135 175 0.9521 1.1265 5 23
10 2 12 0.40 0.80 135 63 0.8659 1.4959 5 11
10 5 12 0.40 0.80 135 93 0.9637 1.0119 2 11
10 5 25 0.40 0.80 135 34 0.9014 1.1680 2 5

10 2 6 0.50 0.50 158 213 0.9565 1.1030 5 26
10 2 12 0.50 0.50 158 81 0.8863 1.3805 5 13
10 5 12 0.50 0.50 158 111 0.9668 1.0086 2 13
10 5 25 0.50 0.50 158 43 0.9141 1.1315 2 6

40 8 100 0.20 0.40 1559 424 0.8129 1.3258 5 16
40 8 200 0.20 0.40 1559 112 0.2914 2.3322 5 8
40 20 200 0.20 0.40 1559 232 0.8632 1.1252 2 8
40 20 400 0.20 0.40 1559 76 0.5824 1.4545 2 4

40 8 100 0.25 0.25 1884 554 0.8439 1.2483 5 19
40 8 200 0.25 0.25 1884 177 0.5114 1.8412 5 9
40 20 200 0.25 0.25 1884 297 0.8836 1.0968 2 9
40 20 400 0.25 0.25 1884 108 0.6812 1.3171 2 5

40 8 25 0.40 0.80 538 660 0.9252 1.1238 5 22
40 8 50 0.40 0.80 538 230 0.7854 1.5251 5 11
40 20 50 0.40 0.80 538 350 0.9436 1.0026 2 11
40 20 100 0.40 0.80 538 135 0.8537 1.1513 2 5

40 8 25 0.50 0.50 627 803 0.9314 1.0996 5 25
40 8 50 0.50 0.50 627 301 0.8173 1.3980 5 13
40 20 50 0.50 0.50 627 421 0.9477 1.0000 2 13
40 20 100 0.50 0.50 627 171 0.8710 1.1171 2 6

Table 2.3 Within-units Components of Variance - Inversely Proportional to Mv
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Turning to the between-units variance we first consider the most extreme case,

that is

Q t =  Q

Qi = 0 i * k

for some k € {1,... yN}. The expected values of the corresponding components of 

the variance for Qlt Q2, Qs and Q4 are

n - 1 
N - 1

a
n p i=i

n - 1 
N -  1

NHI 2 2 +M-
i=i

n

2
n 0

N m  \Lt

The expression for Qx is less than or equal to that for Q2 whenever p* < p 

whereas the situation is not clear for the case p* > p. If we take \Lk = Xp then, 

approximating the expression for Q1 by

n v  v N  / v  N  J

we find that it is smaller than that for Q$ whenever X < 1/[(1 -f{)N], that is when

p* < p/(l - fi) . On the other hand the expression for Q4 is smaller than that for Q1 

whenever

iL

N Kn '
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which we would expect to be true most of the time. Table 2.4 shows the ratios of the 

expressions for Q2 and Q3 relative to that for Qx , for the same situations as were 

considered in the study of the within-units variance. We do not consider different 

values of m since it only appears in the expression for Q4 and this is easily derived 

from that for Q3 , simply dividing by m.

N n a b B1 B2/B1 B3/B1

10 2 0.38 0.20 0.40 392 4 1.1525 3.1422
10 2 0.81 0.20 0.40 392 4 1.0576 1.4190
10 2 1.40 0.20 0.40 392 4 0.9269 0.7693

10 5 0.38 0.20 0.40 392 1 1.1526 5.0276
10 5 0.81 0.20 0.40 392 1 1.0577 2.2705
10 5 1.40 0.20 0.40 392 1 0.9270 1.2308

10 2 0.37 0.25 0.25 474 4 1.1559 3.2535
10 2 0.80 0.25 0.25 474 4 1.0595 1.4306
10 2 1.41 0.25 0.25 474 4 0.9252 0.7629

10 5 0.37 0.25 0.25 474 1 1.1559 5.2056
10 5 0.80 0.25 0.25 474 1 1.0596 2.2889
10 5 1.41 0.25 0.25 474 1 0.9253 1.2206

10 2 0.45 0.40 0.80 135 4 1.1340 2.6310
10 2 0.84 0.40 0.80 135 4 1.0481 1.3629
10 2 1.34 0.40 0.80 135 4 0.9361 0.8049

10 5 0.45 0.40 0.80 135 1 1.1346 4.2096
10 5 0.84 0.40 0.80 135 1 1.0487 2.1806
10 5 1.34 0.40 0.80 135 1 0.9367 1.2878

10 2 0.44 0.50 0.50 158 4 1.1384 2.7412
10 2 0.83 0.50 0.50 158 4 1.0503 1.3766
10 2 1.36 0.50 0.50 158 4 0.9336 0.7957

10 5 0.44 0.50 0.50 158 1 1.1387 4.3859
10 5 0.83 0.50 0.50 158 1 1.0507 2.2026
10 5 1.36 0.50 0.50 158 1 0.9340 1.2732

Table 2.4 Bctween-units Variance - Extreme Case.
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N n a b V B1 B2/B1 B3/B1

40 8 0.16 0.20 0.40 1559 4 1.0469 7.7381
40 8 1.08 0.20 0.40 1559 4 0.9996 1.1231
40 8 1.42 0.20 0.40 1559 4 0.9824 0.8509

40 20 0.16 0.20 0.40 1559 1 1.0469 12.3809
40 20 1.08 0.20 0.40 1559 1 0.9996 1.7970
40 20 1.42 0.20 0.40 1559 1 0.9825 1.3614

40 8 0.15 0.25 0.25 1884 4 1.0476 8.3355
40 8 1.08 0.25 0.25 1884 4 0.9997 1.1226
40 8 1.43 0.25 0.25 1884 4 0.9820 0.8445

40 20 0.15 0.25 0.25 1884 1 1.0476 13.3368
40 20 1.08 0.25 0.25 1884 1 0.9997 1.7961
40 20 1.43 0.25 0.25 1884 1 0.9821 1.3513

40 8 0.23 0.40 0.80 538 4 1.0425 5.3018
40 8 1.08 0.40 0.80 538 4 0.9992 1.1282
40 8 1.36 0.40 0.80 538 4 0.9847 0.8867

40 20 0.23 0.40 0.80 538 1 1.0426 8.4829
40 20 1.08 0.40 0.80 538 1 0.9994 1.8051
40 20 1.36 0.40 0.80 538 1 0.9848 1.4186

40 8 0.22 0.50 0.50 627 4 1.0435 5.7334
40 8 1.08 0.50 0.50 627 4 0.9992 1.1271
40 8 1.38 0.50 0.50 627 4 0.9840 0.8775

40 20 0.22 0.50 0.50 627 1 1.0436 9.1734
40 20 1.08 0.50 0.50 627 1 0.9993 1.8033
40 20 1.38 0.50 0.50 627 1 0.9841 1.4040

Table 2.4 (cont.) Between-units Variance - Extreme Case.

Between-units variances for the case when all of the particles are in a single 
section. The column B1 is l/<22 times the between-units component of the 
variance of Q\. The columns B2/B1 and B3/B1 are the ratios of the between-

units components of the variances of Q2 and §3 relative to g j .  The 
column headed |i  is the expected number of rectangles of the grid intersecting 
all sections and the column headed is l/#i times the expected number of 
rectangles of the grid intersecting the section containing the particles. In each 
case the three values of used correspond to the smallest, the largest and the 
median section sizes.
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The values of \ik used are the smallest, the largest and the median. The general

particles are in the smallest section (considering the same values of m as were used 

before). In all other cases it performs considerably better in terms of between-units 

variance.

The case considered above is extreme and we now consider two alternative 

possibilities, namely when the number of particles per unit is approximately constant 

and when the number of particles per unit is approximately proportional to the size of 

the unit.

The first possibility amounts to

impression is that there is little to choose between Qx and Q2 whereas overall is 

inferior to Q i . The gain in using when \ik is large is far outweighed by the loss 

when \ik is small since, by the nature of the sampling scheme for <2 3 , the probability 

of selecting a small unit is small. Q4 , on the other hand, performs much better, only 

having a greater between-units variance than Qi for a few of the cases where all of the

Q i = Q + ei \ei\ <1 V i

X  e; = 0.
In this case the expected values of the between-units variances are

(f ii )
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The second possibility can be expressed as

ii.
n

and gives expected between-units variances of

>2 J L

V i, X e i = 0, |e j  < 1

. r . . . _ ^2 N __ N  N _

p i=l M- *=1 *=1

P  1=1 1=1
(&)

N 2 

" M U , (0j)

(The expressions for 04  have not been given since they are simply 1/m times those 

for Q3.)

Clearly Qx in the first case and 04  in the second case are going to be optimal, 

except in very extreme cases, as they have no term in Q. Tables 2.5 and 2.6 show 

performances of the estimators in terms of between-units variance for the same 

situations as before but with specific values of Q introduced, since now there is no 

common factor of Q2 in all of the expressions. The values of Q used are intended to 

represent contrasting degrees of sparseness in the population of particles; for AMO the 

values of Q are 15 and 95, giving values of 1.5 and 9.5 for Q and approximate 

expected values of Q for the different sizes of disector of 0.04, 0.03, 0.11, 0.09 

(Q=15) and 0.24, 0.20, 0.70, 0.60 (Q=95), whereas for N=40 the values of Q are 

60 and 380, giving the same values of Q and Q. Although no mention is made of 

particle size there is an implicit assumption, at least about the minimum size, since the 

unbiasedness of the disector is dependent upon the distance between sections being at 

least as small as the minimum caliper diameter of any particle.
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N n Q a b B1 B2/B1

10 2 15 0.20 0.40 392 11.11 1.2274
10 2 95 0.20 0.40 392 11.11 44.2076
10 5 15 0.20 0.40 392 2.78 1.2365
10 5 95 0.20 0.40 392 2.78 44.5711

10 2 15 0.25 0.25 474 11.11 1.2534
10 2 95 0.25 0.25 474 11.11 46.0368
10 5 15 0.25 0.25 474 2.78 1.2588
10 5 95 0.25 0.25 474 2.78 46.2534

10 2 15 0.40 0.80 135 11.11 1.1392
10 2 95 0.40 0.80 135 11.11 36.3713
10 5 15 0.40 0.80 135 2.78 1.1883
10 5 95 0.40 0.80 135 2.78 38.3406

10 2 15 0.50 0.50 158 11.11 1.1439
10 2 95 0.50 0.50 158 11.11 37.6272
10 5 15 0.50 0.50 158 2.78 1.1751
10 5 95 0.50 0.50 158 2.78 38.8749

40 8 60 0.20 0.40 1559 41.03 1.1260
40 8 380 0.20 0.40 1559 41.03 47.1137
40 20 60 0.20 0.40 1559 10.26 1.1359
40 20 380 0.20 0.40 1559 10.26 47.5095

40 8 60 0.25 0.25 1884 41.03 1.1483
40 8 380 0.25 0.25 1884 41.03 48.9031
40 20 60 0.25 0.25 1884 10.26 1.1542
40 20 380 0.25 0.25 1884 10.26 49.1390

40 8 60 0.40 0.80 538 41.03 1.0561
40 8 380 0.40 0.80 538 41.03 39.3416
40 20 60 0.40 0.80 538 10.26 1.1096
40 20 380 0.40 0.80 538 10.26 41.4907

40 8 60 0.50 0.50 627 41.03 1.0549
40 8 380 0.50 0.50 627 41.03 40.5196
40 20 60 0.50 0.50 627 10.26 1.0888
40 20 380 0.50 0.50 627 10.26 41.8807

Table 2.5 Between Units Variance - Qi * (2-

B3/B1

1.9849
89.5598

3.1758
143.2957

2.0917
96.1350

3.3467
153.8160

1.5223
60.1372
2.4357

96.2195

1.6180
66.3927
2.5887

106.2283

2.5613
153.9964

4.0981
246.3942

2.7588
168.2218

4.4141
269.1549

1.7569
94.5674

2.8110
151.3078

1.9052
105.7977

3.0482
169.2764
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N n Q a b B3 B1/B3 B2/B3

10 2 15 0.20 0.40 392 20.59 1.9787 0.7866
10 2 95 0.20 0.40 392 21.52 31.2208 1.0214
10 5 15 0.20 0.40 392 8.24 1.2367 0.4947
10 5 95 0.20 0.40 392 8.61 19.5130 0.7557

10 2 15 0.25 0.25 474 20.35 2.0019 0.7803
10 2 95 0.25 0.25 474 17.78 37.7959 0.9505
10 5 15 0.25 0.25 474 8.14 1.2512 0.4895
10 5 95 0.25 0.25 474 7.11 23.6224 0.6787

10 2 15 0.40 0.80 135 22.23 1.8325 0.8337
10 2 95 0.40 0.80 135 19.77 25.2883 2.6811
10 5 15 0.40 0.80 135 8.89 1.1453 0.5364
10 5 95 0.40 0.80 135 7.91 15.8052 2.3674

10 2 15 0.50 0.50 158 21.78 1.8707 0.8158
10 2 95 0.50 0.50 158 17.50 28.5684 2.1518
10 5 15 0.50 0.50 158 8.71 1.1692 0.5198
10 5 95 0.50 0.50 158 7.00 17.8553 1.8400

40 8 60 0.20 0.40 1559 83.76 1.9294 0.7440
40 8 380 0.20 0.40 1559 71.59 6.2225 0.7045
40 20 60 0.20 0.40 1559 33.50 1.2059 0.4680
40 20 380 0.20 0.40 1559 28.64 3.8890 0.4534

40 8 60 0.25 0.25 1884 93.27 1.9852 0.7293
40 8 380 0.25 0.25 1884 84.44 6.0670 0.5987
40 20 60 0.25 0.25 1884 37.31 1.2407 0.4574
40 20 380 0.25 0.25 1884 33.78 3.7919 0.3808

40 8 60 0.40 0.80 538 83.14 1.7608 0.7614
40 8 380 0.40 0.80 538 79.60 6.5178 0.7952
40 20 60 0.40 0.80 538 33.26 1.1005 0.4924
40 20 380 0.40 0.80 538 31.84 4.0736 0.5609

40 8 60 0.50 0.50 627 87.12 1.7985 0.7643
40 8 380 0.50 0.50 627 79.11 6.4760 0.8424
40 20 60 0.50 0.50 627 34.85 1.1241 0.4877
40 20 380 0.50 0.50 627 31.64 4.0475 0.5672

Table 2.6 Between Units Variance - Qx a  Mr
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The results in the previous two tables were obtained by averaging over several 

different sets of values of the {e,} to avoid the possibility of misleading results from 

"cancelling out" effects. Clearly no estimator is optimal for all situations on the basis of 

between-units variance so we now look at several plausible situations where we can 

calculate the within-units and between-units variances and compare the overall 

performance of the estimators. As has already been pointed out, the first case 

considered above, that is that all the particles are contained in a single section, is an 

extreme case and we do not consider it further (presumably if conditions were such that 

its occurrence were possible the experimenter would have some idea and be able to act 

accordingly). The three models we consider are described below and will be referred to 

hereafter as Models 1,2 and 3.

Model 1 We assume that the particles are distributed homogeneously throughout the 

specimen. This implies that the number in each section is approximately 

proportional to the section size (Table 2.6 applies for between-units 

variance) and that within each section the joint distribution of the numbers 

of particles in the individual rectangles of the grid will be multinomial. 

Model 2 Models 2 and 3 both assume that the number of particles in each section is 

approximately constant (Table 2.5 applies for between-units variance). One 

plausible way in which this might occur is if there is an "inhibition zone" in 

which there are no particles, for example the "core" of the specimen, thus 

leaving all the particles distributed around the edge. Then, although 

sections through the centre will generally contain many more disectors many 

of them will not be able to contain particles whereas sections near to the 

edge of the specimen will contain fewer disectors but all will be close to the 

edge and therefore all may contain particles. Model 2 attempts to describe 

this situation by assuming that the particles within each section are 

homogeneously distributed amongst a fixed number, k , of disectors, 

irrespective of the size of the section.
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Model 3 Model 3 is similar to Model 2 in that the number of particles in each section

is assumed to be approximately constant but now the particles within each 

section are assumed to be homogeneously distributed amongst all of the 

disectors. It is more difficult to imagine a situation where this could occur 

for all orientations of the section planes but nevertheless in a particular 

direction it might occur, for example in a spherical specimen where the 

included particles are attracted to two opposite "poles" as happens with the 

chromosomes in a cell undergoing division.

With these three models the within-units and between-units variances can be 

calculated for a selection of the situations considered above (again averaging over 

different sets of values of the (e,)). The between-units variances have already been 

calculated in Tables 2.5 and 2.6. For the within-units variances we first note that 

is given by

and we substitute these expressions into the original expressions for the within-units 

variance (before taking expectations over the {M,}) and then take expectations where 

possible (substituting p.. for where not). The values obtained are shown in Table

2.7 below.

Models 1 & 3

Model 2
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N Q a b n m
Within units variance 

Q\y 0.2 O3 Oa

Between units variance

Q\ 0.2 Q$

Total standard deviation 

Qi 0.2 O3 O4

10 15 0.25 0.25 2 50 67.10 74.62 124.70 40.74 15.88 20.35 0.81 10.38 9.11 9.75 11.20
5 100 41.05 44.06 54.85 10.19 3.99 8.14 0.41 7.16 6.71 7.23 7.43

0.5 0.5 2 12 122.04 129.62 172.06 40.74 17.77 21.78 3.63 12.76 11.82 12.30 13.26
5 25 64.58 67.61 74.79 10.18 4.53 8.71 1.74 8.65 8.31 8.74 8.75

40 60 0.25 0.25 8 200 265.23 308.24 495.25 185.16 68.02 93.27 3.73 21.22 18.26 20.04 22.34
20 400 162.62 179.82 217.63 46.29 17.07 37.31 1.87 14.45 13.41 14.74 14.82

0.5 0.5 8 50 452.21 486.11 650.84 156.69 66.59 87.12 13.94 24.68 22.78 23.94 25.78
20 100 256.11 269.67 295.42 39.18 17.00 34.85 6.97 17.18 16.53 17.45 17.39

10 95 0.25 0.25 2 50 424.95 433.45 788.19 672.01 16.90 17.78 0.71 33.12 21.02 21.24 28.09
5 100 259.98 263.37 346.60 167.96 4.83 7.11 0.36 20.69 16.27 16.45 18.63

0.5 0.5 2 12 772.94 774.89 1082.01 499.95 37.66 17.50 2.92 35.68 28.47 28.15 32.94
5 25 409.01 409.79 469.97 124.99 12.88 7.00 1.40 .23.11 20.54 20.42 21.71

40:380 0.25 0.25 8 :200 1679.79 1724.83 3127.49 512.30 50.55 84.44 3.38 46.82 41.60 42.54 55.95
20 400 1029.90 1047.91 1373.75 128.09 12.86 33.78 1.69 34.03 32.29 32.89 37.09

0.5 0.5 8 50 2864.00 2891.04 4091.93 512.32 66.64 79.11 12.66 58.11 54.14 54.50 64.07
20 100 1622.00 1632.82 1855.96 128.06 17.95 31.64 6.33 41.83 40.50 40.80 43.15

Table 2.7a Variance Under Model 1
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Within units variance Between units variance Total standard deviation

N Q a b n m Q\* Q2 e 3 Qa Qi <22 e 3 Qa Q\ Q2 Qi Qa

10 15 0.25 0.25 2 50 67.52 77.37 128.19 11.11 13.93 23.24 0.93 8.87 9.02 10.03 11.36
5 100 41.30 47.33 56.55 2.78 3.50 9.30 0.47 6.64 6.69 7.53 7.55

0.5 0.5 2 12 124.85 133.38 187.50 11.11 12.71 17.98 3.00 11.66 11.73 12.30 13.80
5 25 66.06 70.58 82.02 2.78 3.27 7.20 1.44 8.30 8.33 8.82 9.14

40 60 0.25 0.25 8 200 284.13 340.83 541.55 41.03 47.12 113.19 4.53 18.03 18.20 21.31 23.37
20 400 174.20 208.97 238.64 10.26 11.84 45.29 2.26 13.58 13.64 15.95 15.52

0.5 0.5 8 50 501.90 537.72 769.60 41.03 43.28 78.17 12.51 23.30 23.35 24.82 27.97
20 100 284.25 304.54 351.50 10.26 11.17 31.28 6.26 17.16 17.19 18.33 18.92

10 95 0.25 0.25 2 50 561.10 653.06 1065.35 11.11 511.47 1069.17 42.77 23.92 32.75 41.50 33.29
5 100 343.27 399.53 469.96 2.78 128.58 427.61 21.38 18.60 21.72 28.76 22.17

0.5 0.5 2 12 1549.03 1655.83 2326.45 11.11 418.04 737.62 122.94 39.50 44.35 48.92 49.49
5 25 819.69 876.21 1017.69 2.78 108.07 295.32 59.06 28.68 30.46 34.23 32.81

40 380 0.25 0.25 8 200 3598.53 4413.06 6858.82 41.03 2006.49 6902.14 276.09 60.33 74.87 106.37 84.47
20 400 2206.29 2705.69 3022.38 10.26 504.17 2761.53 138.08 47.08 52.06 73.94 56.22

0.5 0.5 8 50 8850.11 9646.47 13570.57 41.03 1662.52 4340.88 694.54 94.29 102.53 118.27 119.44
20 100 5012.18 5463.19 6198.16 10.26 429.70 1736.78 347.36 70.87 73.77 84.85 80.90

Table 2.7b Variance Under Model 2
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N Q a b n m fit* Qi f t Qa Qi f t f t Qa Qi Qi Qz Qa

10 15 0.25 0.25 2 50 67.10 54.70 123.90 11.11 13.93 23.24 0.93 8.84 9.00 8.83 11.17
5 100 41.05 36.09 54.45 2.78 3.50 9.30 0.47 6.62 6.67 6.74 7.41

0.5 0.5 2 12 122.04 114.05 169.46 11.11 12.71 17.98 3.00 11.54 11.61 11.49 13.13
5 25 64.58 61.38 73.54 2.78 3.27 7.20 1.44 8.21 8.24 8.28 8.66

40 60 0.25 0.25 8 200 265.23 186.57 490.38 41.03 47.12 113.19 4.53 17.50 17.67 17.31 22.25
20 400 162.62 131.15 215.19 10.26 11.84 45.29 2.26 13.15 13.21 13.28 14.75

0.5 0.5 8 50 452.21 406.11 638.03 41.03 43.28 78.17 12.51 22.21 22.26 22.01 25.51
20 100 256.11 237.66 289.02 10.26 11.17 31.28 6.26 16.32 16.35 16.40 17.18

10 95 0.25 0.25 2 50 424.95 306.73 783.12 11.11 511.47 1069.17 42.77 20.88 30.60 37.09 28.74
5 100 259.98 212.69 344.06 2.78 128.58 427.61 21.38 16.21 19.71 25.30 19.12

0.5 0.5 2 12 772.94 690.97 1068.03 11.11 418.04 737.62 122.94 28.00 34.51 37.80 34.51
5 25 409.01 376.22 463.25 2.78 108.07 295.32 59.06 20.29 22.74 25.91 22.85

40 380 0.25 0.25 8 200 1679.79 909.92 3094.90 41.03 2006.49 6902.14 276.09 41.48 60.72 88.39 58.06
20 400 1029.90 721.95 1357.45 10.26 504.17 2761.53 138.08 32.25 39.17 59.02 38.67

0.5 0.5 8 50 2864.00 2377.32 4009.73 41.03 1662.52 4340.88 694.54 53.90 67.28 81.97 68.59
20 100 1622.00 1427.33 1814.87 10.26 429.70 1736.78 347.36 40.40 45.30 56.25 46.50

Table 2.7c Variance Under Model 3
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The results of the simulations give support to using the simplest estimator, Qx. 

In only a few cases is it bettered by any of the others in terms of overall variance and 

then not by very much. Although has a very small between-units variance in many 

cases, the within-units variance tends to dominate and there would be little justification 

for using QA on the basis of this evidence, especially as it is a more complicated 

estimator to realise in practice. The ratio estimator, Q2 , performs well overall and is 

based on the same sampling design as g lf thus making it simple to implement. 

However, it is in general biased and, although the comparison has been made using 

MSE, the desirability of unbiasedness expressed in the stereological literature suggests 

that few practicioners would advocate its use over Qv

Many questions still need to be asked. First, approximations have been used for 

the variance of the number, A/,-, of disectors hitting a given section and although they 

are probably quite good they only apply to convex sections (and hence convex 

specimens). There appears to be no simple extension to non-convex specimens and 

even for convex specimens we have no expressions for the moments of the {A/,} other 

than the first two. Secondly, the calculations presented are for a spherical specimen 

and only for certain specific values of the various parameters involved, such as the 

number of particles, number of sections, etc., although these values were chosen to 

represent a wide range of circumstances. How well these results reflect the general 

case of an arbitrary specimen is difficult to judge, although the specific shape of the 

sections only enters through the variance of the {M,}. Thirdly, the assessment of the 

estimators has been from a ’’design-based" point of view, that is, how well they 

perform under the probabilistic structure induced by a randomised sampling scheme. 

In practice there may be extra knowledge available or restrictions imposed which render 

this assessment inappropriate, for example in the presence of strong heterogeneity, 

anisotropy or periodicity of which the experimenter has some knowledge he may be 

able to construct a sampling scheme and/or estimator which performs better in those 

particular circumstances.
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What has been achieved is a proper theoretical framework for sampling schemes 

involving the disector which are realisable in practice whilst still upholding the essential 

properties of the disector and which allow the application of standard theory to examine 

their second order properties. Some of the standard deviations in Table 2.7 are 

alarmingly high and highlight the fact that unbiasedness alone is not sufficient to ensure 

accurate estimation; indeed the indications are that fairly large sampling fractions are 

needed to obtain reasonable accuracy when estimating particle number using the 

disector.

Having obtained an estimate of the number of particles in the population the 

next stage is to estimate the mean volume of the particles. The most economical way to 

do this would be to use the same particles that are counted by the disectors to estimate 

the mean volume, as with Cruz-Orive's selector (1987), since they are sampled from 

the population with uniform probability. Continuing with the same partition as 

described above we now let w€ 2  be the smallest integer such that wd is greater than 

the maximum caliper diameter of any particle and whenever Z),y(±) is included in the

sample we also observe 7*1.....TJ -  Thus for any particle counted by a disector

we observe a "complete” set of parallel planar profiles with separation d. We know 

that the total area of the profiles multiplied by d is an unbiased estimator of the volume 

of the particle and there are many ways of estimating the profile areas. For example, 

we could incorporate into the rectangular grid with which we tessellate the planes 

r„ ...,rw a lattice of points; the number of those points falling inside a particle 

profile, suitably normalized, would provide an estimate of its area.

Cruz-Orive (1987) is concerned with the case when d is not known and the 

separation between planes is not constant This means that we need a direct estimator 

of volume, which he derives from the results of geometric probability relating 

expectations of powers of lengths of random chords to global characteristics such as

M  We need to modify this definition slightly when i-w c l or i+w>N but the principle remains the 
same.
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surface area and volume. There are some non-trivial problems here in defining a 

precise probabilistic structure for the sampling mechanism which can be realised in 

practice; Cruz-Orive leaves several questions unanswered in his account and we 

examine briefly below some points for consideration.

The foundation on which the approach is based is the three dimensional version 

of Crofton’s Theorem, namely that for an 1UR line probe T  through a convex domain 

Y the length of intersection, L(Yf)T) satisfies

£ ([L (y n r)]4) = i2[V(y)]2/^ (y )

E(L(yr\T)) = 4 vcnisor),

where V and S denote volume and surface area respectively, giving

g([z,(rnr)]4) _ 3V(r>
E(L(Yr\T)) ~ n

The first result can be found in Santal6 (1976, p.237) although Cruz-Orive gives an 

alternative proof and generalises to the non-convex case. The second result is 

Cauchy’s formula, which can be proved very simply under mild regularity conditions 

on the surface of Y (basically that it is piecewise smooth). The next important step is 

to notice that if T* is a length-weighted line probe, that is the density of T* is 

proportional to its length, then the densities of L(YC\T) and L(YC\T*) are related 

by

M D  =  lM D /E j< L )

and hence

£j*(L3) = £ j<L4)/£t<L)

= 3V(Y)/n.

Thus if we can generate length-weighted probes through a particle T then we can form 

a direct estimate of V(Y).
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We note the following:

1 A length-weighted probe through Y can either be generated as a length- 

weighted probe in the profile of intersection of an area-weighted planar 

probe through Y or as a line with uniformly random orientation (in IR3 ) 

through a point chosen uniformly at random within Y (for details see Davy 

& Miles, 1977, Proposition 2 and Coleman, 1979, Theorem 3.3).

2 Describing an orientation in IR3 relative to a fixed frame Oxyz by standard 

spherical polar co-ordinates (<p,0) we have that a line making an angle © 

with Oz contained in a plane whose normal has orientation (<J>,7t/2) where 

© has the density sin0 (O<0<7t/2) and <I> is uniformly random on (0,2rc] has 

uniformly random orientation in IR3 (see Fig. 2.10). This observation of 

Baddeley (Baddeley, Gundersen & Cruz Orive, 1986) is the basis of the so- 

called vertical sections.

3 Given a plane whose normal has a fixed, arbitrary orientation CDg and whose 

distance from a fixed point is uniformly random and given a uniformly 

random point P on that plane then P is conditionally uniformly random in 

Y given that it lies inside Y.
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’Vertical"

Fig. 2.10 Construction of Lines with Uniformly Random Orientation 

in IR3 Using "Vertical" Sections.

The underlying principle for this method of generating lines with uniformly random orientation is the 
fact that every line in R 3 is contained in a vertical plane. Therefore if vertical planes are generated first 
and lines are generated within them with the correct density the lines will have the desired properties. 
In practice the drawback is that if more than one plane is to be generated then they must be parallel and 
the line probes will not be independent.

We can now see how to proceed in the context of the selector.

1 Take an arbitrary plane through an arbitrary origin of co-ordinates, O, as 

the "horizontal" and fix an arbitrary direction in the horizontal plane as 9 =0 .

2 Generate a uniformly random <I> from (0,27t] and take a planar section of X  

uniformly at random from all of those with normal parallel to (C>,7i/2) which 

intersect X.

3 Generate points uniformly at random within the planar profile of X  formed 

by this section.

4 For each point falling inside the profile of the particle Y generate a 0  from 

the density sin© (O£0 <7t/2) and form the line making an angle 0  to the 

vertical (see fig. 2 .11).
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Fig. 2.11 Construction of Length-Weighted Lines Through a Particle.

If a set of uniformly random points is generated within X then those that hit Y are uniformly random 
in Y. Thus if we take a line with uniformly random orientation through each of the points that hit Y 
then the lines will be length-weighted probes through Y.

There are obvious drawbacks to this procedure. First we notice that although 

an individual point falling inside Y is marginally uniform within Y the set of points 

that fall inside Y are clearly not independent since they all lie in the same plane; this 

event occurs with probability zero for a set of independent, uniformly random points in

Y and clearly a set of coplanar points is unsatisfactory. We can improve on this by 

ensuring that any particle to be analysed is intersected by several planes but 

unfortunately, as specimens cannot be reconstructed after sectioning, we have to restrict 

the planes to be parallel. Although a set of points generated on a set of parallel planes 

still represents an event of probability zero for independent, uniformly random points in

Y it is intuitively far more acceptable than the original suggestion. Our problem now is 

that the line probes, although marginally length-weighted, are again highly correlated as 

they all lie perpendicular to a single orientation, again representing an event of 

probability zero for independent, length-weighted probes. The potentially enormous 

variance that could result for markedly anisotropic particles is worrying, particularly if 

all the particles are grouped around a common preferred direction. Cruz-Orive's
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answer to this problem is to regard each selector as a small block sampled from the 

specimen with one pair of faces parallel to the horizontal plane and another pair of faces 

having normal with orientation (Of,0) where each is an independent uniform 

random variable on (0,27t]. The set of parallel planes making up the selector is then 

taken parallel to this second pair of sides and over a set of selectors the potentially 

disastrous effects of aligned, anisotropic particles are greatly reduced. However, in 

practice it is difficult to see how each block should be located with the correct 

probabilistic structure without destroying the specimen to the extent that subsequent 

blocks cannot be obtained. A second possibility is to divide the specimen into several 

blocks first and then obtain selectors from each block after they have been given 

independent, random orientations. This raises "edge-effect” problems; how do we 

identify disjoint parts of particles that are divided between two blocks and estimate the 

volume of those particles? Also we gready increase the probability of having a selector 

which does not lie wholly within the specimen since we are increasing the surface area 

to volume ratio of the specimen and therefore we are losing information, since selectors 

which lie partly outide the specimen are necessarily sampling less of it. Apart from 

these reservations it is also evident that the procedure outlined so far would be 

extremely time consuming to put into operation with so many independent points and 

lines to be generated and located on the specimen. Cruz-Orive’s answer here is to use a 

grid of equally spaced, parallel lines, each containing a set of equally spaced points. 

On each plane of a selector the grid is dropped at random but with the lines having 

orientation 0 , where 0  has the same distribution as before and is independent from one 

plane to the next. Whilst the points of the grid which lie inside Y  are still marginally 

uniformly random in Y they are now highly correlated; furthermore the line probes on 

a given plane all have exactly the same orientation, although they too still have the 

correct marginal distribution. However, the most serious flaw is that we are no longer 

generating length-weighted probes. The set of lines that we end up with are marginally 

IUR lines (although still correlated) to which we apply random weights whose 

expected values are the lengths of the lines. Since we must then divide by the sum of
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the weights it is clear that what Cruz-Orive has suggested is in fact no more than a 

(biased) ratio estimator derived under IUR sampling.

We can write his estimator as

where /i; is the number of points on the zth line probe intersecting Y and Li is the 

length of intersection of that line with Y. The {n,} are conditionally independent, 

given {Lt), with

where et = LJdp-lLJdp], dp is the distance between points on the same line and 

[.] denotes "the integer part of*.

The sole reason for Cruz-Orive's elaborate sampling scheme and estimator is 

the supposition that distances between sections are unknown and not necessarily 

constant The price we have to pay is a complicated sampling mechanism, which is not 

clearly defined in theory and poses several problems in terms of practical realisation, 

and a biased estimator based on highly dependent variables. Furthermore, the 

denominator is itself the basis for a far simpler, more robust (in terms of anisotropy) 

estimator for which we lack only the knowledge of distances between sections. An 

alternative approach therefore would be to form an estimate of volume based on point 

counts taken on parallel planes and to incorporate an estimate of the mean distance 

between sections. Unless there is a very large variation in between-section distances 

this would surely be a preferable and less sensitive method since methods based on 

areas of intersection with parallel planes are conditionally unbiased given a fixed 

orientation for the planes whereas methods based on Crofton's Theorem (or its higher 

dimensional analogues) applied to a set of parallel line probes are only unbiased when

m

and

E(k,| {£,}) = L; 
var(n; | {£,)) = e;( l -e ;)
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integrated over the distribution of the orientation of the lines. In terms of variance if we 

consider the general formula

then the first term on the right hand side will be zero in the former case but not in the 

latter.

We conclude this section with some remarks concerning the use of ratio 

estimators. Ratio estimators are commonly advocated in the stereological literature as a 

means of variance reduction; that is, even when we know V(X)  it may be 

advantageous to estimate the ratio V(Y)/V(X) by A (YD T)/A(XC\ T) and then 

multiply by the known V(X) to estimate V(Y). This will be particularly beneficial 

when A(YC\T) varies greatly between sections and A(YClT) and A(XC\T) are 

highly positively correlated but in practice it may not be possible. Miles (1978a) gives 

an excellent account of the underlying theory; here we state the main results. If we take 

a number of planar sections r 1,...,7'„ then

is only unbiased for V(Y)/V(X) with area-weighted sections, which are difficult, if 

not impossible to generate. On the other hand

is biased for IUR sections but the bias may be negligible when the denominator is 

almost constant (for example when n is large); in that case the estimation will be 

practically the same as direct estimation of V(Y) so we will have gained very little. If

var(X) = varr [£(X|y)] + £y[var(X|y)]

X A (}T I7 \)

E^cxfir.)
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one section is area-weighted and the rest are IUR then the second estimator described 

above is unbiased for V(7)/V(X) but again we have the problem of generating an 

area-weighted section. In all of the above cases any implementation in practice would 

necessitate restricting the sections to be parallel; the estimators are still valid but it seems 

unlikely that in general they will perform better than those based on systematic sections.
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2.6 Extended Case

Again we adopt the terminology of Miles (1978a) and use ’’extended case" to 

mean any situation where it is necessary to sub-sample from planar sections through a 

deterministic specimen. However, his theoretical treatment allows independent IUR 

planar probes to be generated within an opaque reference phase whereas here we take a 

more practical stance and assume a two stage sampling scheme where the first stage 

involves the generation of planar sections through the reference phase and the second 

requires the sub-sampling by quadrats of the profiles of intersection. Thus in many 

ways this case is similar to the previous one, the main difference being in the way that 

we measure A (TOT). To a large extent the estimation of A(YClT) in this context 

is similar to the estimation of V(Y) itself but with the considerable bonus that we can 

see the interior of the profile of intersection of the reference phase with a planar probe 

without having to destroy it, thus enabling us to generate genuinely independent 

repetitions of sampling procedures and achieve sampling with probability proportional 

to included area. Therefore techniques that would theoretically be superior but which 

are not feasible practically in the case of volume estimation now become a reality.

First we define some terms to describe this situation. We assume that our 

starting point is a specimen X0 which can be isolated from the rest of the sampling unit 

and which is of a similar structure to the Y of §2.3. We may then have a number of 

"nested" phases, Xj,...,X,„ satisfying X0^ X 13 . . .3 X n^ T  where the structure 

of the intermediate phases may be quite general and the levels of magnification required 

to measure them may vary, although naturally the magnification required for any given 

phase must be at least as great as that for all the phases which contain i t

Our method is to take planar sections through X0 and then to sub-sample small 

regions from the profiles of intersection for magnification and measurement of Y. 

Clearly, the most efficient scheme will sub-sample only from Xn since we know that 

there is no phase of interest outside that phase and therefore we will regard X„ as a 

"local" reference phase and for brevity and consistency with previous sections refer to it 

simply as X.
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We start our discussion with the case when X  is measurable accurately without 

magnification. Here we need to consider the structure o f X  and the implications in 

terms of the probability of a random quadrat hitting the boundary of X given that it hits 

X . For convex sets there are a few results in integral geometry that can be applied. 

The measure of the set o f positions o f a convex set ATj (integrating over all rotations 

and translations) such that it is contained within a fixed convex set Kq is given by

2k(Aq + A j) - BqB j

when the boundaries of both sets have continuous radii o f curvature and when the 

greatest radius of curvature of the boundary of ATj is less than the least radius of 

curvature of the boundary of Kq. (Aq is the area of Kq and Bq is the length of the 

boundary o f Kq , etc.) Also the measure of the set of positions of K j such that it 

intersects Kq is given by

2k(A0 + i4 2) + BqB2.

(Both results can be found in Santald, 1976, pp.94-95). Thus the probability of the 

boundary o f Kx intersecting the boundary of Kq given that the two sets intersect is

1 27l(Ao + /4i)~^ofii 
2 % {AQ + A l ) ^ B ^ l

2V i
2tcC40 + Aj) + 5 ^

This result is not applicable to rectangular quadrats as their boundaries have infinite 

radii of curvature but it could be applied to circular ’’quadrats”. However, an alternative 

formula of some use is Poincare’s formula (Santald, 1976, p .l 11) which states that the 

measure of the set of locations of a set Ki such that its boundary intersects the 

boundary o f a second set K q , when weighted with respect to the number o f  

intersections in each such location, is equal to 4 times the product of the boundary 

lengths. If both sets are convex it is clear that the number o f intersections in every 

location is two and therefore the measure of the set of locations in which the boundaries
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of the two sets intersect is twice the product of the boundary lengths. As a specific 

example of the implication of these formulae a circular quadrat of radius r  dropped at 

random on a circular planar set of radius R has a probability 4rR/(r+R)2 of 

intersecting the boundary given that it intersects the set. Even when R = lOr the 

probabUity of intersecting the boundary is only just under 1/3, even though the ratio of 

the areas is 1/100. Since the circle is the shape with the shortest boundary length for a 

given area this suggests that in general not only must the area of the quadrat be very 

small relative to the area of the specimen but also that the area-to-perimeter ratio of the 

specimen must be high in order that we can regard the probability of the quadrat hitting 

the boundary as being negligible.

With this warning in mind we identify two cases of interest; case A, where the 

probability of the quadrat intersecting the boundary of the specimen is "small", that is, 

with high probability A((XClT)dQ)  = A(Q)  (where X O T  is a planar section 

through X  and Q is the quadrat) and case B, where there is a significant probability 

that the quadrat intersects the boundary of the specimen and hence that 

A{{XC[T)C\Q) *A(Q). These two cases correspond largely to Models I and II of 

Cruz-Orive (1980).

Finally we briefly discuss the generalisation to the situation where X  is not 

measurable accurately without magnification but is measuable accurately at a 

significantly lower magnification than T.

The problem of area estimation using quadrats has been dealt with extensively 

in the literature; see particularly Miles & Davy (1977) and Cruz-Orive & Weibel (1981). 

Miles & Davy define an FUR quadrat, Q, to be one whose orientation is fixed and 

whose location is uniformly random over all positions such that (XflT)C\Q*0. (A 

more rigorous definition is available in their paper). With this probabilistic structure we 

find that

£[A((rnr)ne)] = A(Yf)T)A(Q)
A((Xf\T)BQ)
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and hence that

wmvaOwrwffl)
is an unbiased estimator of A(Yf\T)  (where © denotes dilation of X f iT  by the 

structuring element Q). However, if there is a significant probability of Q having a 

location such that A((XnT)ClQ)*A(Q) then, as with volume estimation, it is well 

known that a superior approach is to estimate A (Y n T ) via the ratio 

AttYr\T)r\Q)/A«Xr\T)nQ)  since denominator and numerator will tend to be 

positively correlated, thus reducing the variance. The quadrats must now be located 

with probability proportional to A(£XC\T)ClQ) to achieve unbiasedness (further 

improving the estimator as quadrats containing little of X  wiU be less likely) which is a 

realistic proposition in two dimensions. To estimate A(YDT) we must then have an 

independent estimate of A(XC\T), which we can obtain, for example by point 

counting, from the whole section, since XOT can be measured without magnification. 

We note that there is little difference between these two approaches in case A when Q 

is small compared to X O T  since A((XC\T)(B Q) will be close to A (X fir) and 

A((XOT)C\Q) will equal A(Q)  with high probability. In contrast the second 

approach should generally be superior in case B. With both methods we may generate 

independent repetitions, simply taking the arithmetic mean of the estimates obtained 

from each position of the quadrat

As with volume estimation an alternative to independent repetitions is to take a 

systematic set of quadrats. If the set is fixed and bounded then we must regard it as a 

single quadrat of complex shape and giving it a location taken uniformly at random 

from those for which it "hits” XC\T will result in a loss of efficiency since the

expected value of £ A ((X n r) f l j2 ) will be less than for the same number of 

independently, uniformly located quadrats. (This follows from the fact that the dilation 

o fX fir by the set of quadrats will be greater than the dilation by a single quadrat, a 

fact that is obvious when one considers that there are positions possible where all but 

one of the quadrats making up the set lie outside X.) However, the set of quadrats can
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be located with probability proportional to total included area (of X) giving

Z4((rnr)nj2)
X4((xnr>n(2)

as an unbiased estimator of

A(?ClT) .
A (xn r>

(See Miles & Davy, 1977 for details of the construction.)

This estimator (or its analogue) also arises for both volume estimation and area 

estimation as a weighted version of

that is with weight A((Xf\T)C[Q)/^A({XC[T)C\Q) attatched to the contribution 

i4((ynr)n<2)M((Xn7T)ri(2) under the intuitive hypothesis that more information 

about Y is contained in quadrats containing more of X. Unfortunately, to be unbiased 

this estimator can no longer be based on independent area-weighted quadrats (the only 

practical method for independent quadrats is to take one area-weighted and the rest 

FUR; see Miles, 1978b for the details of this, based on a result of Midzuno) and 

therefore it is not clear whether there is any overall gain over the unweighted

based on area-weighted quadrats. One further possibility is to take an "unbounded” 

systematic set of quadrats. Two approaches, which will not differ much in practice 

when the individual quadrat areas are small relative to ^4(XD7), are either to define a 

regular grid of quadrats which is located uniformly at random on XHT or to define a 

complete partition of the plane consisting of k sets of quadrats (where 1/k is the 

fraction to be sampled) and use the set in which a uniformly random point of XflT 

lies (see Cruz-Orive & Weibel, 1981 or Miles, 1978b); we consider only the former 

case as there will be so little difference in our context. We summarise the estimators 

described above in Table 2.8.
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Sampling scheme Estimator

n independent FUR quadrats A,
r 1 " ,  A(X<&Q) 111

Unbiased

n independent FUR quadrats a 2
' £ a (Y1Tiq i)
—------- A(Xt )
f , A ( X Tf\Q.)i-\

Biased

1 area-weighted quadrat and n-1 independent FUR ^3

H a (YJ\Q.)

--------- M X t ) Unbiased

Yj A{XJ\Q )
1=1

n independent area-weighted quadrats a 4 l ± M W , U < * r>
t i A { X Tr\Q) T

Unbiased

Table 2.8 Area Estimators for Two-Phase Specimens Based on Quadrat Sampling.

HI Ay and Y jare shorthand for X f)Tand Yf)Trespectively.
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Sampling scheme Estimator

bounded, systematic set of n quadrats (FUR) Unbiased

bounded, systematic set of n quadrats (FUR) a 6

5 > ( r r n e .)

T ------------- A(Xt)
£ A(xTr\Q.)
i'=l

Biased

bounded, systematic set of n quadrats (area-weighted)

2 > ( x r n e .)
i=l

Unbiased

unbounded, systematic lattice of quadrats A ,
r 1 » ,  AiXJ&Q)

Unbiased

unbounded, systematic lattice of quadrats A ,
l A ( Y Tr\Q.)

T ------------- *<*r> Biased„ "'"r-
^ A ( X Tf\Q .)
i= 1

Table 2.8 (cont.) Area Estimators for Two-Phase Specimens Based on Quadrat Sampling.

M  Qj q t *s the union of the quadrats regarded as a single non-connected planar seL
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There are no general quantitative results in the literature concerning the second 

order properties of these estimators; as is so often the case in stereology these 

properties depend on the geometric structure of the specimen. However, various 

qualitative observations can be made, some of which have been noted already. In the 

framework we have developed we are supposing that subsampled quadrats are being 

used to estimate A(Yf)T)  on a given plane T because Y cannot be measured 

accurately without magnification. This implies that the quadrats are necessarily small 

compared with the sectional area and therefore that remarks pertaining to the case of 

A{Q) being small relative to A(XC\T) apply. Thus we expect little difference
A A A A A

between A lt A2, A3 and A4 in case A although in case B we should expect A2 to be
A A A  A

preferable to Ax and both A3 and A4 to be preferable to A2.
A A

On the other hand A5 and A6 should still be avoided whereas the behaviour of
A A A

A7, Ag and A9 may be highly dependent on the arrangement of Y within XC\ T.
A

For instance, if Y is very "clustered" then A7 may exhibit a large variance, resulting 

from the possibility of hitting a cluster or missing Y entirely, whereas, unless the 

clusters are periodic with the same period as the lattice of the unbounded set of quadrats
A A

we should expect A8 and A9 to be more efficient. Whatever the arrangement of Y we
A A

would expect little difference between Ag and A9 in case A when A(Q) is small 

relative to A(XDT) but this would not necessarily still be true in case B.

To conclude this discussion of area estimation by quadrats we examine a 

simulation performed on three synthetic planar specimens. In order to make 

calculations feasible without requiring unrealistic amounts of computer time the 

specimens were constructed with circles. The reference phase, X ^ , was taken to be a 

circle of radius 20 in all cases and the phase of interest, Y, was taken to be the 

realisation of a stationary, hard core process of circles whose radii were uniform on 

(0,1). The hard core process was produced by generating a Poisson point process in 

the plane (representing the centres of the circles) and attaching a "mark" to each point

^  We drop the notation Xf\T since here we are interested only in the estimation of area in the 
plane.
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(representing the radius), where the mark was an independent observation from a 

uniform distribution on (0,1). Each point was also given an independent, uniformly 

random "birth-time" and where circles overlapped the younger one was deleted; the 

only difference between the three specimens was in the intensity of the Poisson point 

process. (Detailed information relating to the specimens is shown in Table 2.9.) Table

2.10 shows the performance of and A9 in 100 independent

repetitions with n=25^ using a square quadrat of side 2 . The lattices for A7 and A9 

are shown in Fig. 2.12.

As expected, A7 performed significantly worse than the rest of the estimators, 

even though the set of quadrats was area weighted. A simple geometrical argument 

shows that the probability that the set of quadrats lies wholly inside X  is 0.08, and 

therefore nearly all of the time at least some part of the set of quadrats lies outside the 

specimen, often with whole quadrats having no intersection with the specimen at all 

(when the set of quadrats is not area weighted the corresponding probability drops to 

approximately 0 .02). The performances of Aj and A2 are interesting in that they 

highlight the fact that unbiasedness alone is not a good criterion for judging an
A

estimator. In this case the bias of A2 is undetectable in comparison with the variance
A A

and in terms of mean squared error A2 comes out slightly better than A±. The best 

estimators in this simulation appear to be A4 and A 9 although for the second
A ____

specimen A9 breaks the pattern established by the rest of the results. This simulation 

was repeated to check that the result was not erroneous and the most likely conclusion
A

must be that the specimen exhibits some form of periodicity. Certainly overall A4

A

performs best of all the estimators but since A 9 is far easier to realise in practice it 

might be preferred, provided that the experimenter is confident that there is no 

periodicity or regularity in the specimen that might inflate the variance.

For A9 n is a random variable but the lattice was constructed so that the expected value of 
n was close to 25.
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I
iii
2iii

(a) Bounded lattice of 25 quadrats.

• • • •

(b) Part of unbounded, systematic lattice of quadrats.

Fig. 2.12 Systematic Sets of Quadradts for Area Estimation.

The two patterns of systematic quadrats shown hoe differ in that the top one is a bounded lattice whose 
location must be taken from all those positions for which it has a non-void intersection with the 
reference phase whereas for the unbounded lattice only translations up to the distance between adjacent 
quadrats need be considered.
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Specimen Intensity of Poisson 
process

No. of circles Area of Y

1 0.1 98 85

2 0.2 180 173

3 0.5 319 268

Table 2.9 Details of Specimens Used in Simulation.

Specimen 1 Specimen 2 Specimen 3

Estimator Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

A

Ai 82 31 171 44 268 52
A

a 2 83 30 173 40 266 48
A

^3 83 27 168 38 267 41
A

A 1 86 47 175 58 268 68
A

a 9 86 25 173 51 276 43

Table 2.10 Variance of Quadrat Estimators.
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The generalisation of the proceeding discussion to the situation where there is an 

intermediate phase between X Q and Y which cannot be measured without magnifica

tion but which requires a lower magnification than Y itself is fairly straightforward, at 

least in theory. We started this section with a general model of nested phases, 

Xi,...yXn, satisfying ...3 X nI5y, where X0 is the specimen itself and

is assumed to be measurable accurately without magnification and Y is the phase of 

interest. We will be interested in the subset of phases X o^X 1* 3 ...3 .X m* 3 y  

with the property that the optimal levels of magnification, for

measuring the phases in the subset are all significantly different (and different from 

those for X0 and Y). Where several phases in the original set have the same optimal 

level of magnification we retain the "innermost" phase in the reduced set to avoid 

unnecessary measurement of material that we know not to contain any of the phase of 

interest. Now if we consider a multi-stage sampling scheme where at each stage we 

estimate the ratio of the volumes of two "adjacent" phases we can form an estimator of 

the volume of Y as

V<*0>*10*21 R , .. Rm (m -l)

A A

where R y  is an estimate of the ratio V(Xi)/V(Xj) and R is an estimate of 

V(Y)/V(Xm). The first term in the product requires the methods of §2.3 whereas 

the remaining terms are each examples of the type of estimation problem discussed in 

this section, with the difference that at each stage the local reference phase, X, will be 

the phase of interest of the previous stage and therefore only the material sampled in the 

previous stage will be available for analysis. The obvious advantage of this type of 

design over a single stage procedure which ignores the intermediate phases is that at 

each stage we hope to maximise, in some sense, the proportion of phase of interest and 

consequently the amount of useful information. The disadvantage might be that we 

introduce multiplicative errors but at least with ratio estimators we can expect to reduce 

the variance at each stage; indeed this is a situation in which ratio estimators can be used 

to great effect.
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Chapter 3 Relative Volume Estimation

3.1 Introduction

We have already made some remarks in the preceding chapter concerning the 

use of ratio estimators as a means of reducing variance when estimating absolute 

volume. These remarks are clearly very pertinent in the context of estimation of relative 

volume in a sampling unit from a population of Type 1 and indeed much of the 

discussion of the previous chapter can be seen to be applicable in this context. 

However, we will be concerned in this chapter with the estimation of relative volume 

(or volume fraction) in a sampling unit from a population of Type 2, where we can 

construct stochastic models for the geometric structure of the specimen and we will 

look in some detail at approaches based on lineal analysis.

3.2 Model Based Inference

The methods of the previous chapter were founded on the assumption that the 

specimen under examination was a finite, deterministic structure and the randomisation 

underpinning the discussion was that derived from the sampling scheme. Whereas 

such an approach is entirely appropriate in the context of a population of Type 1 it is 

much less so for a population of Type 2, where the sampling unit is somewhat 

arbitrary. An alternative is to regard the specimen as a realisation of a stochastic 

process about which we wish to make inference. The sampling scheme then becomes 

less central to the discussion and instead the probability structure is determined by the 

stochastic model that is assumed. The introduction of modelling assumptions always 

begs justification and results must be judged not only on the basis of their value given 

the model but also on the suitability of the model itself.

We are presented with at least two levels at which we can form models. First, 

and perhaps most obviously, is the geometric level, that is, the modelling of the 

physical structure of the specimen, and in this context we can call on random set 

theory. Secondly, there is the statistical modelling of the data available for analysis and
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here there are some interesting problems arising from the nature of the study. For 

example, there are often unusual dependencies in the data resulting from the spatial 

relationship of the objects represented by the data. Clearly a geometric model together 

with a sampling scheme implies a model for the data but this may not be tractable and 

hence the possibility exists of a need for further modelling. Furthermore the geometric 

model may be only a partial description, perhaps assuming certain conditions such as 

convexity of particles, which is then complemented by distributional assumptions 

regarding the data. Certainly there is no obvious way to approach the issue of 

modelling and the various viewpoints are all inter-related. Indeed, fundamental to any 

theory of random sets is the notion of characterisation of the random set in terms of the 

probability of it intersecting a "test set". Thus it is quite natural to define a model in 

terms of the intercepts it makes with lower dimensional probes in a stereological study.

Where possible we will attempt to assess the scope and appropriateness of 

particular modelling assumptions and highlight their deficiencies; in section 3.4 we give 

a simple example where model based and design based approaches give different 

estimators. One area which has not received much attention in the stereological 

literature is goodness-of-fit tests although Ripley (1988, Ch.6) discusses the use of 

summary plots, based on the morphological transformations of erosion, dilation, 

opening and closure developed by Serra and Matheron (Serra, 1982), for assessing the 

suitablity of a model fitted to a given image.

3.3 General Framework

Our aim is to describe a random partition of the reference space (usually a 

subset of E  2 or E  3) into two phases. That is, if the reference phase is X  and the 

phase of interest is T, with TCX, we want to assign each point xeX  to either Y or 

X \  Y by some probabilistic law, thus defining a binary-valued stochastic process, 

(Z(x); xeX}. We can then base our inference on a sample taken from a realisation 

of the process. The sample will consist of the values that Z takes on the intersection of 

X  with a test set (usually a set of points, lines or regions) and the natural estimator of
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volume fraction will be a linear combination of the (Z(x)}; we can write this estimator 

formally as

for a general test set T> where p is Lebesgue measure in the case of T being a set of 

lines or regions and p(A)=number of points in A, for all A C  T, when T is a set of 

points. (The existence of the integral relies on the assumption that all realisations of Z 

are measurable functions but this does not worry us in our context since it is unlikely 

that we should be interested in a model that could generate an unmeasurable set!) Of 

course we may wish to consider a weighted sum (integral) in some circumstances but 

here we restrict our attention to the usual unweighted version. Since the estimator is 

linear its variance will be expressible in terms of the quantities var[Z(x)] and 

cov[Z(x), Z(y)] and thus a knowledge of the second order properties of the process 

(Z(x)} will be sufficient to estimate the variance of the estimator of volume fraction. 

There are essentially three approaches that we can take, corresponding to increasingly 

strong assumptions about the process (Z(x)}: use the sample estimate of the 

covariance (the covariogram) directly, use a model for the covariance (fitted using the 

covariogram) or model the process (Z(x)) and deduce the corresponding covariance 

structure from that model.

In general the covariance is represented by a function c(x, y) = £[(Z(x) -  

m(x))(Z(y) -  m(y))], where m(x)=£[Z(x)], but usually some form of stationarity 

is assumed, most often that m{\) is constant for all x and that c(x, y)=c(h) for all x, 

y, where h=x-y. The reason for assuming stationarity is that since only one realisation 

of the process is normally available we have to use measurements made at different 

locations as if they were repeated realisations from the same distribution.

The ease of implementing the first approach mentioned above will depend on 

the type of sampling scheme employed. Certainly if the specimen is sampled by a 

regular grid of points then we will only require the value of c( .)  for a relatively small
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number of values of h and there will be many pairs of points with x-y = h for each of 

those values, thus making estimation of the required values of c ( . )  straightforward. 

On the other hand, if the sampling scheme is a set of irregularly spaced points then we 

will find that there are far more values of h for which we require the value of c ( .)  and 

only a few pairs of points available for the estimation each time. In this situation it 

makes more sense to fit a model to the covariogram and much attention has been given 

to this topic in the geostatistical literature, including the design of optimum sampling 

schemes for the estimation of the covariogram (see, for example, Christakos, 1984, 

Cressie, 1985, Russo, 1984, Warrick & Myers, 1987. In fact the variogram, 

y(h)=var[(Z(h)-Z(0)], is used rather than the covariogram because of the weaker 

conditions required for its existence but when both exist, as they will do in the context 

we are interested in, there is a simple linear relationship between them and so a 

knowledge of one implies a knowledge of the other.) An interesting feature of 

covariogram estimation is the paucity of models available as valid covariance functions, 

due to the requirement that a covariance function be positive definite. Interestingly, 

some of the covariance models commonly employed are derived from the random set 

models considered here in later sections; thus we could end up with the same form for 

the covariance function either by estimating it directly from the sample covariogram or 

by fitting a random set model and then deducing the corresponding covariance function, 

although it is not clear that we would necessarily obtain the same parameter values. 

One reason for fitting a model to the covariogram (or variogram) in geostatistical 

applications is that values of the covariance function are required for values of h that do 

not correspond to any pairs of points in the sample. In the same way, if our test set is a 

set of lines or regions then we will need to evaluate integrals involving the covariance 

function which will require knowledge of the its value over whole intervals in E  1 or

R 2. Thus we would like to have a functional form for the covariance, although of 

course there exists the possibility of evaluating the integrals numerically, in which case 

a knowledge of the covariance for a finite set of values of h will suffice. Furthermore, 

since sample estimates of the covariance require us to sum over sets of point pairs, we

95



Chapter 3: Relative Volume Estimation

will need to use a separate test set to estimate the covariance from that used to estimate 

the volume fraction when T is a set of lines or regions. In §3.6 we will see how the 

covariance function can be estimated directly from the data obtained from a lineal 

analysis by assuming a specific Boolean model, thus avoiding the need for a second 

test set.

In the work that follows we will use random set models, such as the Boolean 

model, built up from geometric ’’building blocks” to model the process (Z(x)} but 

here we mention briefly some models that might be applicable when the data are 

available on a regular grid, as will be the case with a digitised image represented by an 

array of pixels. In this case the data will be a finite collection of binary random 

variables and therefore it is theoretically possible to assign a discrete probability 

distribution to the set of all possible images. One model that does this is the Gibbs 

distribution (see, for example, Isham, 1981, Geman & Geman, 1984 and Ripley, 

1988, Ch. 5), which assigns an energy to each configuration of 0's and l ’s given by a 

potential function (the terminology comes from Physics, where these models were 

originally developed). It turns out that a particularly useful form of the Gibbs 

distribution is that which has a nearest neighbour potential. By neighbours we usually 

refer to sites which are adjoining vertically or horizontally; thus the sets of sites such 

that every member of a set is a neighbour of every other member of the same set 

(known as cliques) are simply pairs of adjoining horizontal or vertical sites. Of course 

it is possible to define any neighbourhood structure (see Besag, 1974 for a fuller 

discussion) and the particular type of neighbourhood structure employed in a model 

will reflect the nature of the spatial dependencies. The nearest neighbour potential, 

then, is one that is a sum of terms, each one of which is made up of contributions from 

sites which are all in the same clique. The importance of this structure is that it can be 

shown (see, for example, Isham, 1981, Geman & Geman, 1984, Besag, 1974) that the 

class of Gibbs distributions with nearest neighbour potentials is equivalent to the class 

of Markov random fields (MRF's) (essentially the Hammersley-Clifford theorem) and 

thus there is an equivalent formulation in terms of conditional probabilities, which
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allows a description of the model in terms of local characteristics. This is particularly 

useful in image processing applications where images are restored using iterative 

methods which "update" pixel values by an algorithm depending on the values at 

neighbouring sites (see Geman & Geman, 1984 and Besag, 1986 for two examples 

from the extensive literature; see Ripley, 1988, Ch. 5 for a general overview of the 

methodology seen from a Bayesian point of view).

Although the Gibbs/MRF formulation described above is a purely spatial model 

it is easy to see how to extend the idea to incorporate a time dimension. Specifically, 

instead of a model of the form

E ( Z i . j \ ( Z u,v : (“ . V) *  (/,/)}) =/,,y(Z,-i.;. Z i + l , p  Z i , j - l ’ Z i , j + l )

we would have something like

E(Z;j ' , \{Zu v s : (u, v, s) *  (i , j , r)}) =

f i , j ,  /-!» ^ j-1, M» ^ i+ 1 , j, f-l> ^ i , j - 1, t-1* ^ i , j + 1, f - l )

where f itj t is some suitable function which could be defined so as to allow the 

existence of an equilibrium distribution at t = perhaps depending on the initial state 

of the process. The initial state could be defined for example by

f  0 with probability 1 -p

i with probability p

with ) being mutually independent. A simulation of such a model is shown

in fig. 3.1 for

■ exp(-Xt)) +

(Zm . j, M+Zj+i, j, t-i+zi,j. i, j+u t- l)exp(-Xf)

with X = 0.4 and p  = 0.05. (The edge effects have been dealt with by retaining a 

border around the edge which is not shown in the picture).

97



C hapter 3: R elative V o lu m e E stim ation

s • IV. •

I
I

• • I

(a)» = 0 (b)r = 4

(c) r = 7 (d )r= 16

Fig. 3.1 Simulation of lim e Ordered Spatial Process

The figure shows the evolution through time of a spatial process on a 100* 100 lattice in which the 
probabilities at each site are dependent on the values at that site and the four adjacent sites at the 
previous time px>inL The last picture shows the equilibrium state for the realisation, whose existence 
is guaranteed by the choice of dependence function. The initial state is given by generating indep>endent 
Bernoulli random variables at each site and the whole model is specified by two parameters (see text).
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For a discussion of spatial-temporal models of this type and their equilibrium 

distributions see Isham (1981). Besag (1974) points out that with observations at a 

single time point analysis is not usually possible for this type of spatial-temporal model 

without very restrictive assumptions of independence and stationarity. However, it 

might be fruitful simply to look at the class of equilibrium models as a class of spatial 

models in its own right. Furthermore, we may in fact be able to have several 

observations on a process at different time points. In the study of the microstructure of 

concrete and cement there is interest in the evolution of the various constituent phases 

over time as the material dries out and hardens. Although each observation in time is 

from a different spatial location it would still be possible to design an experiment to 

analyse the full spatial-temporal model, particularly if the spatial component is 

stationary.

Despite the appealing nature of the models discussed above and their success in 

image processing applications it is not clear how we should use them in the context of 

volume fraction estimation. Clearly the neighbourhood structure and the form of the 

potential function describe the spatial dependence of the model but it is not immediately 

obvious how this relates to the covariance function that we require in order to estimate 

the variance of the volume fraction estimator. We turn now to random set models, and 

in particular the Boolean model, as a means of describing the process (Z(x)) in 

geometric terms.

3.4 Boolean Models

In order to construct stochastic models for geometric structures we need to 

develop a theory of random sets. Two very general theories, developed in the last 

twenty years, are those of Kendall (1974) and Matheron (1975), both founded on 

earlier work of Choquet. Kendall's theory, drawing inspiration from the work of 

Davidson (reproduced in Kendall, 1974) is based on the idea of observing only 

whether or not a random set is intersected by a "test set" rather than observing the size 

of the intersection. This enables the treatment of a very large class of problems, indeed
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much larger than we require in the present context. Matheron’s approach is linked 

closely to the French school of mathematical morphology and image analysis and is 

inspired by practical experience. His treatment is perhaps more easily recognisable to 

stereologists than that of Kendall, with reference to familiar topics such as size 

distribution, random intercepts, Minkowski functionals, Steiner’s formula, Crofton's 

formula, covariance measures and so on. We will not be concerned with such an 

abstract approach as those of Kendall and Matheron but rather with concrete examples 

of random sets relating to specific stereological situations. Principally we shall be 

interested in Boolean models and possible extensions and generalisations of them.

In the previous section we have suggested a form of growth model developing 

in time from a set of isolated sites scattered throughout the specimen; the Boolean 

model is in many ways an analogous model in a continuous reference space, viewed at 

t = ©o. Because points occupy zero volume in the continuous spaces R 2 and R 3 we 

have to move from countable collections of points to countable unions of compact sets. 

The locations, orientations, shapes and sizes of the compact sets can be regarded as 

random and given a probability distribution; the part of the specimen observed in the 

sampling frame is then viewed as a realisation of the random set, from which the 

parameters of the model can be estimated.

One justification for this approach is the following. Because we are concerned 

with a sampling unit from a population of Type 2 we can regard it as being arbitrary 

and the population as being very large relative to the sampling unit. Therefore, 

provided that the sampling unit is chosen independently of its contents the observations 

contained in it form a simple random sample from the population distribution of the 

corresponding quantities. Replacing the population distribution by a continuous 

distribution is justified on the grounds of the large size of the population. Indeed in 

some contexts we may be interested in a genuine "process", for example an industrial 

process, rather than in any existing, physical entity and then the justification of such an 

approach is almost automatic.
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The problems that arise are in describing a sufficiently realistic model which still 

allows the development of theoretical results and in modelling highly irregular 

geometric structures. In these respects the Boolean model is appealing, since it allows 

the derivation of some useful and important characteristics whilst being quite flexible. 

The fundamental building blocks of the Boolean model are compact sets, such as discs, 

lines, spheres, ellipsoids, etc. whose locations are determined by a point process. 

Although the formulation could be very general, the Boolean model represents a 

somewhat restricted class (with certain independence conditions imposed) which allows 

the derivation of some useful results; the Boolean model with convex grains, in 

particular, gives some elegant results.

Formal definitions of the Boolean model can be found in many places, for 

example Stoyan, Kendall & Mecke (1987); loosely, it is constructed from a stationary 

Poisson point process, giving a set of ’'germs” at each of which is located a "primary 

grain", being a realisation of a compact random set, which is independent of the 

location of the germ. When we say that a primary grain "is located at" a germ we mean 

that the realisation of the random set is translated by the vector x, where x is the 

position of the germ. The compact random set forming the primary grain is usually 

taken to be of a relatively simple form, although we shall see later that assuming only 

that it is convex is sufficient to obtain useful results. We look briefly at two very 

simple examples of Boolean models to illustrate the basic ideas.

Example I Let f R(r) be a probability density function corresponding to a 

random variable R which takes only positive values and let Y = U£(x;, R;) where 

£(x, r) is a sphere of radius r  and centre x, {x^ x2, ...) is the realisation of a 

stationary Poisson point process in E 3 and /?1,/? 2» ••• are independent and 

identically distributed observations from the density .) . Then Y is a Boolean 

model with spherical primary grains. We note that Y is stationary (by the stationarity 

of the point process and the independence of germs and grains) and in this case the 

model is isotropic, although this second property does not always hold for Boolean 

models; it will only hold in general when the primary grains have a uniformly random
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orientation. This model could be represented as a marked point process with the radii 

regarded as marks attatched to the points but it is not clear that anything valuable can be 

gained from this approach. Generally, although such a treatment provides a very 

elegant theory, it is only possible to derive second order properties when factorisations 

of the second moment measure exist, these corresponding to the independence of the 

Boolean model, for which results can be derived more straightforwardly (although 

perhaps less rigorously). It is tempting to regard the grains of the model as physical 

particles, but we should be aware that there is nothing in the model to preclude 

"overlapping” and the probability of overlapping becomes quite large quite quickly as 

the intensity of the point process increases.

Example 2 Suppose that / e L(0, /) is a joint density on [0, n) x (0, ©°) and 

that (Gj, /j), (02, y ,  — are independent and identically distributed observations from 

/©,l( •»• )• Then if we construct a process of line segments (in IR2) such that the 

ith line has length lt and orientation 0/5 and where the midpoints of the lines are the 

realisation of a stationary Poisson point process with intensity X, this process will be a 

Boolean model. An interesting estimation problem associated with this model is to 

estimate the mean length of lines per unit area of the plane from information collected 

on a linear probe. This problem is in fact a two dimensional analogy of a problem in 

minerology in which the areal density per unit volume of planar "cracks" in a geological 

region is to be estimated from measurements obtained from a cylindrical core (thin 

enough to be regarded as a line probe). Returning to the two dimensional problem, it is 

assumed that the angle of intersection between the line probe and a line of the process 

hit by it can be measured. First we note that the intensity of the point process on the 

line probe formed by intersections with lines whose length is in the interval [/, M l )  

and whose orientation is in the interval [0 , 0+d0) is given by

XI sin 0/©t£,(0, /) d0 d/

(see fig. 3.2).
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line probe

Fig. 3.2 Intersection of Line Process with Linear Test Probe

Lines with orientation 0 and length l whose midpoints fall in the 
shaded area will intersect the unit length of line probe within the 
shaded area.

Therefore the intensity of the point process on the line probe formed by intersections 

with all lines of the process is

It follows from these formulae that

E [  —  ] = £ ( £ ) / [ [ /sinG/ , (e,/)ded/
sin© 0,L

where the left hand side expectation is over lines intersecting the line probe and E(L) 

is the mean length of the lines of the original process. Hence for a line probe of length 

T intersected by N  lines with orientations ®i»..., Qn we have that

which we will denote X . Also, the joint density of © and L for lines intersecting the 

line probe must be proportional to / sin0/e L(0, /) and hence is given by

/sin0/e  ^(0, /)

J J /s in 6 /e  l(6, /)d0d/
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is an unbiased estimator of \E(L) since E(N) = TK . Analagous arguments can be 

applied to the three dimensional version of the problem. However, the classical design 

based approach to this problem yields a different estimator. Briefly the formulation of 

the problem would be that a fixed number, n9 of lines are contained in a bounded 

region and that the ith line has midpoint x,-, length /,• and orientation 0,-. An IUR 

line probe of length T is generated in such a way that all positions for which it hits at 

least one of the lines are possible. Then for any given orientation, y , of the probe the 

probability of it hitting the ith line is proportional to lt | sin(\y-0-) | but because the 

probe is isotropic the expected probability of it hitting the ith line is simply 

proportional to /,-. Hence the usual estimator in this framework would simply be 

proportional to the number of "hits” and would therefore not be robust in the presence 

of anisotropy. By contrast the estimator derived in the model based framework takes 

account of anisotropy automatically. Of course this estimator is still perfectly valid in 

the design based framework but the irony is that the design is of no value in this 

situation and, indeed, it may lead us to consider sub-optimal estimators.

There is clearly scope for quite complex models within the class of Boolean 

models. The only restrictions are:

1) The germs form a stationary Poisson point process.

2) The primary grains are independent and identically distributed realisations of a 

compact random set.

In practice the most convenient way to describe a compact random set is to define a 

particular geometric structure (such as a circle or ellipse) which can be specified by a set 

of parameters and then to specify a joint distribution for those parameters. This, of 

course, is not as general as the definitions to be found in the work of Kendall, 

Matheron and others but it is more intuitively accessible and quite flexible. For 

example, it is perfectly admissible to define a mixture of several distributions, each one 

associated with a different geometric shape; this is still a Boolean model. Even with 

circles quite irregular specimens can be modelled, although sparsely distributed, 

irregular structures cannot be so readily represented since the irregularity stems from
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overlapping circles. This situation might well be modelled by having a cluster of circles 

at each germ but we have to take care not to violate the conditions associated with the 

Boolean model. Indeed, extensions to the Boolean model may often arise naturally, but 

usually the price we pay is in the loss of analytic results. One alternative approach is to 

examine not the Boolean model itself but the intercepts it makes with a stereological test 

probe. We do this next but first we introduce the covariance function for random set 

models.

3.5 The Covariance

We define first some notation. Let K0 be a compact random set in the 

(unbounded) reference space X  (usually X  will be E 3) and let Y 1, Y 2, ... be 

independent and identically distributed (i.i.d.) replicates of F0. Let x1? x2, ... be a 

stationary Poisson point process in X  and denote by

T = U  (Y. +x.) 
j=i ‘ 1

the Boolean model with primary grains Yif T2, ... and germs x 2, x2, ... .

The covariance function is defined as

C(r) = Pr (x € Y fl x+r e Y) x, x+r e X

which is equal to Pr (0 € T f l r e  Y) (where 0 is an arbitrary origin in X) by the 

stationarity of the Boolean model. We will also use the notation K(r) for the 

conditional form of the covariance, namely Pr (r € y  | 0 € 50 = C(r)/rc0 , where 

7t0 = Pr (0 € 10 is the volume fraction occupied by Y. Notice that this covariance 

function is simply an uncentred version of the standard covariance function c(h) 

discussed in §3.3, since for a binary-valued process (Z(x)} we have that 

£[Z(x)Z(y)] = Pr(Z(x)=l fl Z(y)=l) and hence C(h) = c(h) + 7t02.
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For a Boolean model we have

C(r) =27C0-  1 + (l-7t0)2 exp{XDy0(r)} 

where X is the intensity of the Poisson point process,

DYq(t) = E [p(F0 fl (Y0-r))] 

and \i is Lebesgue measure on X.

For a compact set, A0, DAq(t) is the “global covariance" of Serra (1982), 

which is equal to the erosion of A0 by the two point set {0, r). This quantity has also 

been termed the “geometric reduction factor" (Kellerer, 1986) and is closely related to 

the "point-pair-distance" distribution, that is the distribution of the distance between 

pairs of points taken independently and uniformly from A0, and hence it occurs in the 

study of area and volume estimators based on point counting methods (see, for 

example, Matfrn, 1985).

Both Kellerer and Serra use the same terminology whether A0 is random or 

deterministic, simply adding the expectation in the definition when it is random; the 

expectation is of course with respect to the randomness of A Q. When A 0 is an 

isotropic random set DA(j j )  (which is a function of distance only) is referred to by 

physicists as the "distance probability function" (Stoyan, Kendall & Mecke, 1987) and 

has applications in X-ray analysis. (Alternatively this could refer to the mean function, 

DA£r), averaged over all orientations, for an anisotropic random set.) The function 

D has some interesting properties, such as that the mean (over all orientations) of the 

derivative at the origin is proportional to the surface area (or boundary in 1R2) of the 

compact set to which it is applied. That is (Serra, 1982)

- — J V  ’((0, to)) do  =4 k J Ao 4

- — J D m , a)) da  = ~.(Bf~o))
2k  j 0 jt

in R 3

in R 2.
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Here expectations on the right hand side are with respect to the randomness of A0, 

S(A0) is the surface area of A 0 and B(A0) is the boundary of A 0. DAq'((0, a)) is 

the limit as h -> 0 of [DA ((h, a)) -  DA ((0, oc))]/l/il where (/z, a ) is a vector of 

length h and orientation a  (in R 3 the definitions are equivalent but with a  replaced by 

the solid angle co) and integration is over the surface of a unit ball in the appropriate 

number of dimensions. (We note that (0, a) is a vector of zero length but nevertheless 

Dt4q((0, a)) is unambiguous, given the definition of D, and is simply the Lebesgue 

measure of ;40.)

Clearly D is a fundamental quantity in many areas of geometric probability and 

related fields. The relationship between this global covariance and the "local 

covariance", which is given by C(r), is an interesting one. We can see it better, 

perhaps, if we think not of D A^(r) but DAQ(r)/\L(A0), which is precisely the 

conditional probability that x+r e A0 given that x e A0. We then note that for some 

B<pAQ we have

V r)=
fV[>U(Ao)
H(A0) h (Bo)

H(Bo)

= Pr (x+r e A0 | x e  A0) Pr (x e A0 \ x € S 0) n(fi0) 

= Pr (x e A0 D x+r e  A0 \ x  s  B0) |x(B0)

and this now closely resembles the local covariance, C(r) = Pr (x e Y fl x+r e Y). 

The difference, of course, is that Y is a stationary random set defined on the whole 

space (IR2 or R 3 usually) such that £ [p (yn2?0)/|i(2?0)] is constant for all B0 

whereas /40 is a compact set (and therefore bounded) for which the probability 

Pr (x€E A q | x €  ^ 0) (and hence Pr ( x € A 0 D x + r e A 0 | x e B 0))  tends to zero as 

p(£0)

In the Boolean model the local covariance C(r) depends on the global 

covariance of the primary grains, which are compact sets, with the stationarity
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introduced through the Poisson point process of germ centres. In practice it will 

usually not be possible to obtain an exact expression for C(r) because DyQ(r) is only 

tractable for a small number of special cases (see Kellerer, 1986). In the case where the 

grains are spheres in 1R3 with random radii, having density f R{ . ), we note that 

because of the isotropy of the primary grains both the local covariance of the Boolean 

model and the global covariance of the grains are functions of distance only. Writing 

£(0, r) for a sphere with centre 0 and radius r  we note that

y 'Z lr

y < 2r

(see fig. 3.3).

Fig. 3.3 Global Covariance for a Sphere.

Our primary grain Fq is a sphere whose radius has density /^ .)  and therefore

Dy0(y) =  Er[Db(0, R)(y)]

y_
2
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3.6 Lineal Analysis

Stereological analyses in practice generally require the measurement of various 

quantities on planar sections. There are essentially three choices in the context of 

volume estimation; we can measure areas of intersection with planar sampling frames, 

lengths of intersection with linear probes or numbers of included points from a test set. 

Whereas measurements of area will usually be the most efficient means of estimating 

volume they are probably the least easy measurements to obtain; conversely point 

counts are quick and easy to obtain but are likely to be the least efficient. Lineal 

analysis, in which intersection of a line probe with the phase of interest is the 

measurement on which estimates are based, falls inbetween the extremes with respect to 

efficiency and ease of measurement. However, it has one distinct advantage, and that 

is that we can obtain a simplified form for the covariance function, albeit with an extra 

assumption about the model.

Let us first define the situation more precisely and introduce some notation. As 

before we use X  to denote the reference phase and TCX to denote the phase of 

interest, assumed to be a Boolean model with convex grains. The sampling unit will be 

a block of material sampled from the specimen, and within this block we will take 

planar sections on which we will perform the analysis. We need not be concerned 

greatly with the sampling scheme since it plays no role in a model based approach such 

as we are considering. However, in cases where strong anisotropy is suspected we 

may wish to be more specific about the sampling scheme. On each planar section we 

place a set of n equally spaced, parallel linear test probes of length / and separation d, 

which we will denote T±,..., Tn . On each linear probe there will be an alternating 

sequence of intercepts with Y and X \Y .  The lengths of the intercepts made by Tx 

with Y will be denoted by {y^ : j  = 1 ,. . . ,  m,} and similarly the intercepts made 

with X \ Y  will be {*/,• : j  = 1 ,.. . ,  n,-} as shown in fig. 3.4. To start with we will 

consider just a single planar section but later we shall put the results into a wider 

context.
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Fig. 3.4 Lineal Analysis of a Boolean Model.

Note that in general the Boolean model does not necessarily have convex grains. However the 
development in the text is for a model with convex grains.

Our data, then, consists of the [x^] and {y^} together with the random 

quantities {/i,} and {m{\. The structure of the data is quite complex with many 

dependencies but the fundamental result on which we build is that the {;ty} have an 

exponential distribution. This result can be found in the literature (Serra, 1982, 

Stoyan, Kendall & Mecke, 1987) but here we provide an alternative derivation.

We suppose that the primary grain, y0, of the Boolean model is convex and 

can be parameterised by the vector of parameters 0 which has distribution function 

F©(0) in the parameter space /6e ; that is, the germs of the grains with parameters in 

the subset S of are a stationary Poisson point process with intensity XpF(S), 

where X is the intensity of the process of germs for the whole model and is the 

probability measure induced on by F. Now we restrict attention to an arbitrary 

line in X  containing an arbitrary origin and denote by s=su (where u is a unit vector 

parallel to the line) the point on the line at a distance s from the origin. We then define
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0 s e X \ Y

1 s e  Y

and

7C0i — Pr (Zg+̂ g — 1 | Zs — 0) 

*10 = ̂  (̂ s+ds = ® I = 1)
and let y0(©2), ... represent realisations of the compact random set y 0.

Representing the primary grain Y0(Q) with germ x more concisely by the pair (x, 0) 

we note first that se (x, 0) if and only if xe (s, 0” ) = "yo(0)+s = {s-r: r  € ToWl* 

Then it is clear (see fig. 3.5) that there will be a transition from XSY to Y at s if and 

only if there exists a 0O for which at least one germ of the process with primary grain 

yo(0o) falls inside (s + ds, 0O“ ) given that for every 0 no germ with primary grain 

yo(0) falls inside (s, 0“  ).

The probability that s+ds is in Y given that s is in X>Y is equal to the probability that for some 0O
at least one germ of the Boolean model with primary grain Yq(Qq) lies in the darker region. For small
ds this region has an area approximately equal to ds times the projection of Y0(Q0) onto a plane whose
normal is the line probe. Thus in the limit the transition probability is proportional to ds and hence 
the intervals of intersection with XSY have exponential length distribution.

y0(e0)

-yo(0o)+s ~y<)(0o)+(s+ds)

Fig. 3.5 Probability of Transition from XSY to Y.
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Therefore, if © is a discrete random variable taking the values 0j, 02>... we have

*01 = 1 “  n Pr (No germs with primaiy grains To(®») ^

(s + ds, 0 r ) fl (s, 0 "  )c )

= 1 -  exp (  -X  £ v { ( s  + ds, 6 f ) D (s, e r  )c }Pr (6=6,)).

Rewriting the sum as a Lebesgue-Stieltjes integral with respect to the measure \iF 

introduced above we see that the result is easily generalised to the case when © is 

continuous by expressing the distribution function, F, as the limit of a monotone 

increasing sequence of step functions, which correspond to discrete distributions. 

(This will always be possible by the continuity of F.)

Now for small ds we have that V{(s + ds, 0” ) fl (s, 0“  )c } is approximately equal 

to ds times the projection of (s, 0 " )  onto a plane to which u is the normal; therefore 

provided that u has a uniformly random orientation^ relative to (s, 0“ ) the expected 

value of V{(s + ds, 0” ) fl (s, 0“  )c ) is equal to

5{(s, 0“  )}ds/4 + 0(ids)2)

by Cauchy’s Formula (where S ( . )  denotes surface area). Therefore, expanding the 

exponential and reversing the order of expectation with respect to the orientaion of the 

line probe and integration over the distribution of © we have

*01 = *[js{(s, e~ )}dF(0)] ds/4 + 0((ds)2)

=x[Js(r0(e))dF(6)] ds/4 + o((dsp).

It follows that the lengths of the intervals of intersection of the line probe with X \  Y

have an exponential distribution with parameter equal to a quarter of the mean grain

surface area per unit volume (not discounting the hidden surfaces of overlapping

particles). The critical requirement is the convexity of the grains; if s + ds e (x, 0)

For a fixed direction the distribution is still exponential but if the grains are not isotropic the 
parameter of the exponential distribution will vary with the direction of the line probe.
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and s e (x, 0) then s -  eu g (x, 0) for all e > 0 and hence the "history" of the process 

Z prior to the point s has no effect on 7t01. When considering 7t10 however we can no 

longer use the same technique because the roles of the grains and the voids have 

effectively reversed and the voids are not convex. The distribution of the lengths of 

intersection of the line probe with Y is in fact equivalent to the distribution of the 

length of the busy period in a queue with random arrivals and an infinite number of 

servers (since overlapping is possible), where the service time distribution is given by 

the chord length distribution of the primary grain. However, this observation is not 

generally helpful since the chord length distribution will not be known unless we make 

specific shape assumptions about the primary grains, and even then it is often not 

tractable.

At first sight it might appear unimportant that we do not know the distribution 

of the lengths of the intercepts with Y since we could base our inference on the data 

which we know to be exponentially distributed; the sum of the observations is the 

sufficient statistic for the exponential distribution and estimators of volume fraction can 

be expressed in terms of the total length of the linear probes (which is fixed) and the 

exponentially distributed variables. However, the situation is considerably more 

complex since the unknown length distribution enters the data in that the numbers of 

intercepts (that is the {n,} and {m,}) are random and their distribution depends on the 

distributions of the lengths of both sets of intercepts. Further complications that arise 

in the data are the various dependencies; for example we know that | nt -  mi \ < 1 for 

all i and also that the numbers of intercepts (and the lengths of intercepts) on different 

probes are correlated, because if a grain is "hit" by a probe then we can say something 

about the probabilty of it being hit by a parallel probe and about the distribution of the 

length of its intersection given the length of intersection with the first one. Indeed even 

the exponentially distributed intervals on different probes are correlated. We will return 

to these issues later but first we derive expressions for the covariance function of the 

Boolean model expressed in terms of intercept lengths and for the variance of an 

estimator of relative volume.
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3.6.1 Covariance Function for the Exponential Model 

Stoyan (1979) defines an exponential model to be a two phase spatial process in 

which the intercepts of a linear probe with one of the phases have an exponential length 

distribution. With the extra assumption that the grains are uniformly randomly 

orientated (that is, that the model is isotropic) the Boolean model with convex grains is 

an example of an exponential model; the intercepts of a line probe with the reference 

phase, X  \  Y, have an exponential distribution (whose mean we shall denote by l/p) 

and we will denote by Fy(y) the distribution function of the intercept lengths with the 

phase of interest, Y (with corresponding density fy(y) and mean 1/x).

On any line probe we have alternating intervals of the two different phases and 

thus we can regard the process induced on the line probe as an alternating renewal 

process. Since for any two points we can always find a line probe that contains them 

we can deduce the covariance function from standard results in renewal theory. The 

fundamental result (see Cox, 1962) is that for an equilibrium alternating renewal 

process the probability of being in state 1 at time t given that the process is in state 1 at 

time 0 is given by

------ + p.G>(0
h  + M2

where

1 (1 -/!*»}{!©*CS) ------------- i-------±— ---
(p1 + p2)s {1 - f* {s)f* {s))s2

f i ( . )  and/2( . )  are the failure time densities for states 1 and 2 respectively, with 

means 1/p.j and l/|i2, and the notation g*(s) is used for the Laplace transform of the 

function g(t). In our context P j = t ,  P 2 = = • ) anci • ) *s

exponential with parameter p, so that/2*(s) = p/(p + s). Thus the K ( . )  of § 3.5 

can be expressed in terms of its Laplace transform, given by
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K*(s)=— U—  + — I------ x
(p + x)r 0* + x)s

1 x ( l -/»& )}  

s i{s + p-nf(s))

(i-/i*wm-/2*w) 
{1 - f * W 2*(f))s2

Iff {.)  is also exponential then

K * ( s ) = r ----1—
5 s(s + p + x)

giving

K(t) = 1—I—(l-e‘<,1+t)<) .
}I + t

Multiplying by 7Cq and noting that Kq = |i/(|i + x) we see that

as stated in Stoyan (1979). Of course for the Boolean model / ( . )  is not exponential 

and we return in §3.6.3 to the problem of finding C ( .)  in this case.

3.6.2 Variance of Lineal Fraction

The aim of our lineal analysis is to estimate the volume fraction, tc0, of a 

specimen, X, occupied by the phase of interest, Y. The natural estimator is the lineal 

fraction, that is

and in this section we derive the formula for var(7to) in terms of the covariance function
A

of the model. Rewriting tiq as L, where
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L t = 7  % ya

we have

a 1 2 n
var(7to) = -  var(L.) + —  X  2  cov(^; >E.). 

"  n i=V=«+i

Because of the stationarity and isotropy of the model i and j  can only enter the 

expression for cov(L,-, L;) in terms of | i- j  | . Therefore we can write the variance of
A

7Cq as

where a 2 = var(L,) and a 2c* = cov(L ^L j)  for | /—y| = fc. It remains to find 

expressions for a 2 and ck.

Without loss of generality we choose a Cartesian frame of reference such that 

the line T,- has end points (0, id) and (/, id). Then we can write

i

= j j z ( * ,  id )6x  
o

where Z(x, y) = 1 if the point (x, y) is in Y and zero otherwise. Hence we have

/ /
EILL] = 1 e [ J Z ( u, id) d« JZ(v, jd) dv ]  

‘ 0
l l

= ̂ [ J J  Z(u, id)Z(y,jd) dudv ]
oo

/ /
= IJJ E[Z(u, id)Z(yJd)} dudv 
* 00 

/ /
=  J  j j  c([(u - V)2 +  m 2}112) dudv 

* 00
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where k=  |i — y |. A straightforward transformation of variables allows the 

reduction to a single integral and subtracting E(Lt)E(Lj) gives

i

o 2ct  = - | J ( / - x ) C ( { x 2 + ( ^ 2}1/2)dx  - jc02 k = 1, . . . ,  n-1
* 0

/
o2 = 2-[(l-x)C (.x)dx - no2 .

* 0

3.6.3 Modelling Intercept Lengths

We now have an expression for the variance of the volume fraction estimator,
A

tcq, in terms of the covariance function of the model, C( . ); we also have an 

expression for the covariance function but which requires the length distribution of the 

intercepts of a line probe with Y and subsequent inversion of a Laplace transform. We 

have mentioned already that the required length distribution is equivalent to the busy 

period of an M/G/«> queue whose service time distribution is the distribution of the 

lengths of random (IUR) chords of the primary grain of the Boolean model, but this 

would appear not to be very helpful since there are few results in the literature 

pertaining to this situation (not surprisingly, since most queueing problems are 

concerned with a finite service capacity) and those which exist certainly do not look like 

being useful in our context (see, for example, Ramalhoto, 1984, Shanbhag, 1966). 

Indeed, even for the simpler M/G/l queue, which has received far more attention (see 

Cox & Smith, 1961, Ch. 5), the required distribution is given by the functional 

equation

/*(s) = g*Oi + J-ltf*(s))

where g ( . )  is the chord length distribution. Clearly equations of this kind rarely yield 

tractable solutions and even if an approximation could be obtained we would then have
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to put it into the expression for K*(s) given in §3.6.1 and invert the resulting 

expression. Moreover, since we would almost certainly have to model the distribution 

of chord lengths in order obtain a solution it seems that a more fruitful line of approach 

would be to model directly the distribution of lengths of intersection with Y. 

However, before we consider possible models we look at one other approach, based on 

a sample estimate of j*(s). Since the Laplace transform of the probability density 

function of a random variable, Z, is simply £[e*sZ] we can use the data collected on 

the line probes to form an unbiased estimator of f*(s) given by

1 "O
/(*)=  —  exp(-jy.) 

y *=i

where the {y,} are simply a relabelling of the {y^} introduced in §3.6, after removal 

of any intercepts that include an end point of a line probe, since these lengths will be 

censored and will not have the correct distribution. Using this estimator gives

K *(S) _ 1 j  s + • “ON - EexpC-syp/flyl |

s + H[1 - £exp(-y>\)/^]

which can be inverted only if we can find all of the singularities of the denominator. 

That is, we need to solve the transcendental equation

s  = |i(Zexp(-.s}’.)/ny - l )  .

For real s the only solution is at 5=0 because as s increases the left hand side is 

monotone increasing and the right hand side is monotone decreasing. For complex s 

with Re(5)£0 there are no solutions because the real part of the right hand side is 

negative. However, for complex s with Re(s)<0 there are in general an infinite 

number of solutions with no obvious simple method available for evaluating them and 

so it appears that this method will not be helpful to us.

The approach we adopt, then, is to model direcdy the distribution of intercept 

lengths with Y by a standard parametric distribution. The most obvious candidates 

which are defined on the correct interval and which have relatively straightforward
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density functions are the gamma, the Weibull, the lognormal and the inverse Gaussian 

distributions, although of course the list is not exhaustive. One point to notice is that 

conditional on being greater than the maximum caliper diameter o f any primary grain 

the length of intersection of a line probe with Y is exponentially distributed. This 

follows from the same argument as was used for the intercepts with X\Y since now 

the history of the process on the line probe cannot affect the transtion probability, 7t10 

(see fig. 3.6).

^o(6o)+ t -Io(8o)+s -Y0(90)+(s + ds)

Fig. 3.6 Distribution of Long Intercepts with Boolean Model

The probability that s+ds is in X\Y given that s is in Y is equal to the probability that there exists 
a 0q such that at least one germ of the process with primary grain Tq(®o) hes in -yo(0o)+s given 
that no such germs lie in -7o(0o)+(s+ds) or in -Yq(Qq)+U where t is the point at which the last 
transition from XSY to Y occurred. However, conditional on Is-tl being greater than the maximum 
caliper diameter of a primary grain it is clear from the diagram that the required probability is 
independent of the history of the process prior to s. Therefore, by a similar argument to that used for 
the intercepts with X\Y we can see that the lengths of the intercepts with Y are exponential 
conditional on being greater than the maximum caliper diameter.

Thus we would like the distribution of these intercept lengths to have the same 

behaviour as an exponential distribution in its upper tail. In the lower tail the 

distribution will be very similar to the distribution of the length of a random chord of an 

individual grain, since intercepts through overlapping grains will generally be long; the 

particular characteristics of the chord length distribution will depend very much on the 

nature of the grains. Figure 3.7 shows simulations of the distribution of the length of 

intersection of a linear probe with various Boolean models with spherical primary 

grains.
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(a) b = 8 (b) b = 10

Length

Fig. 3.7 Intercept Length Distributions for Boolean Models of Spheres

The graphs show empirical length distributions for intercepts made with a simulated Boolean model of 
spheres by independent 1UR line probes. The sphere centres had intensity 0.001 and the radii were 
uniform on the interval (0, b), where b is given for each graph. The sample sizes are necessarily 
random but are of the order of 104. Notice that the distribution tends towards an exponential as b 
increases reflecting the relatively high proportion of overlapping intervals and the fact that intervals 
have exponential lengths conditional on being longer than 2b.
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The four distributions mentioned above were fitted to each of the simulated data

sets shown in fig. 3.7, the lognormal and gamma distributions being fitted by a quasi- 

Newton algorithm with the package MIX (Macdonald & Green, 1986) whilst the 

inverse Gaussian and Weibull distributions were fitted by maximum likelihood using a 

grid search. The parameter values obtained together with the likelihood ratio and 

(Pearson) y} goodness-of-fit statistics for the grouped data are given in table 3.1. (For 

details of these standard goodness-of-fit tests see, for example, Cox & Hinkley, 1974,

Ch.9.) The parameterisations used were

& \ 5tr r-l -Xx fix) = -A— x  e
T (r)

ryX> 0

fix)  = -  yl_, ■ exp[- - L  (ln(x) - n)2] 
X yJ  2k O 2 o

peIR ,o  >0

fix) = abxb lexj)[-axb] af b>  0

fix)  = / - ! - r  exp[— r—  ix - r)2] 
V  2xx  2t x

r, r > 0

for the gamma, lognormal, Weibull and inverse Gaussian distributions respectively, all 

of course being defined on (0, ©°) since we are concerned with a positive-valued 

random variable.

Not only does the gamma distribution provide a very good fit in all of the cases, 

but also it is far superior to the other distributions, and, although this simulation alone 

cannot justify the use of the gamma distribution as a valid model in general, the 

evidence is very encouraging, since the gamma distribution is by far the most 

straightforward to handle of the four distributions considered, when it comes to 

working with Laplace transforms. Thus we continue the development using the gamma 

distribution as a model for the distribution of intercept lengths made with Y and 

discuss its limitations afterwards.
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Distribution Parameters Likelihood ratio X2 statistic d.f.
statistic (Pearson)

Gamma r=2.49, X=0.23 15.60 17.57 11
Lognormal |i=2.16, o=0.67 31.08 33.74 11
Weibull 0=0.02, b=1.6 31.61 46.85 11
Inverse Gaussian f=10.6, r=15.2 56.52 59.35 11

(0) b = 8

Distribution Parameters Likelihood ratio X2 statistic d.f.
statistic (Pearson)

Gamma r=1.94, X=0.11 7.85 8.68 10
Lognormal p=2.59, o=0.74 15.27 15.17 10
Weibull 0=0.02, Z?= 1.4 35.41 65.61 10
Inverse Gaussian r=17.2, r=19.2 48.11 46.40 10

Cb) b = 10

Distribution Parameters Likelihood ratio X2 statistic d.f.
statistic (Pearson)

Gamma r=1.51, X=0.05 2.56 2.57 13
Lognormal fi=3.14, 0=0.87 22.62 21.48 13
Weibull 0=0.03, b=1.0 40.62 36.79 13
Inverse Gaussian *=32.2, r=25.8 67.82 73.84 13

(c) b = 12

Table. 3.1 Goodness of Fit of Standard Distributions to Simulated Intercept Data

The table gives fitted parameter values and goodness-of-fit statistics for four parametric distributions 
fitted to data generated as lengths of intersection of an IUR line probe with a Boolean model of spheres 
with spherical primary grains. The radii of the grains have a uniform distribution on (0, b) where b 
is given in the table. (The data are shown in fig. 3.7.) The intervals in the tails of the distributions 
were aggregated to avoid cells with very low observed frequencies although this had no effect on the 
relative performances of the different distributions and little effect on the statistics obtained when 
compared with the corresponding results calculated with the unaggregated data.
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The gamma distribution has density

f Y(y) = -k — y r’V x> y ^  o, r, X > o
m

where r will be referred to as the index, and has Laplace transform Xr/(X+s)r, 

giving

i x J l-[X/(X+j)]r AT*(̂ ) = A  \ ----- L-l-------
5 r  L s(s + \L-\l[X/(k+S)]r)

In general there is not a closed form for the inversion of K* ( . )  but for integer r the 

second term is the ratio of two polynomials and therefore there is a simple inversion. 

Writing R r(s; X) = {(X+s)r - Xr}/s and Qr(s; X, p) = {(X+s)r(p-hy) - Xrp.}/s 

then

^ R r(.s; X) 

r  sQ r(s; X, n)

and

K(t) = 1 - r
^  RJiapX) 

>=i Q r'(a^ X, n)
-1J

where a l7 ... , ar are the roots of Qr(s; X, p,). (We note that this expression is 

always real-valued even when the roots of Q are not because the coefficients are real 

and therefore the roots occur in complex conjugate pairs, which ensures that the 

imaginary part of the sum is zero). The suggestion is to estimate the parameters of the 

model and then to calculate the covariance function, and hence the variance, for [r] and 

[r+1] (where [ . ] denotes "the integer part o f ), re-estimating X each time conditional 

on the value of r  being used. In the following sections we look at the estimation of the 

parameters and the performance of the procedure in practice.
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3.6.4 Estimating Parameters

The direct application of standard techniques from statistical theory has to be 

treated with caution in the present context because of the unusual nature of the data. 

We have established that the marginal distribution of the lengths of intersection, 

of a line probe with X\T is exponential and we are assuming that the corresponding 

distribution for the intercepts, {y^}, made with Y is gamma. However, the joint 

distributions of both sets of intercept lengths derived from a set of parallel probes 

involves correlations between the intervals on different lines. This is intuitively 

obvious but to make the point more rigourously we recall once again the method of 

proof used to show that the marginal distribution of the {x^} is exponential. In that 

proof we found the probability that the point s+ds lies in Y given that s lies in X\Y 

by considering the region in which a germ of the process could lie to satisfy that 

condition. If we now consider a set of parallel probes then for any given probe the 

above transition probability calculated conditional on the data contained in the other 

probes will be dependent on that data because the region in which a germ of the process 

can lie to satisfy the necessary conditions will depend on the data contained in the other 

probes (see fig. 3.8).

~̂ o(0o)+s ‘To(0o)+(s+ds)

Fig. 3.8 Dependence of Lengths of Intervals on Parallel Probes.

We see that the region in which a germ of the Boolean model must lie in order to cause a transition on 
one line probe is dependent on the information carried on other probes.
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Thus clearly the observations on different lines are not independent although those on 

the same line are. This is in contrast to the more usual situation encountered where 

observations on an individual experimental unit are correlated but the units themselves 

can be treated as independent. The effect in both cases is overdispersion in the 

population when the correlations are positive, as they would be in this case, and thus 

the variance in a given sample would tend to underestimate the population variance. 

This phenomenon is not the only unusual aspect of the data; the sample size is itself a 

random variable and certainly we would expect positive correlation between the 

numbers of intercepts on line probes near each other. A further complication is that the 

intercepts at the ends of the line probes represent incomplete observations and, if 

included, must be treated as censored data. Despite the complex dependencies in the 

data the overall picture may not be too bad, depending on the distance between line 

probes compared with the maximum caliper diameter of the primary grains. The 

important point is that the spatial extent of correlations will only be as great as the 

maximum caliper diameter of a primary grain and, because the primary grains are finite 

in size, regions of the sampling frame separated by a distance greater than the maximum 

caliper diameter will contribute independently, in some sense, to the whole data set. 

Recall that in §3.6.2 we had the expression

for the variance of the lineal fraction. Now if we increase n whilst keeping d, the 

distance between adjacent lines, constant then for each i in the second term on the right

the data on probes i and j  contribute independently to the whole data set. It is in this 

sense that we can feel justified in using the sample populations of intercept lengths as if 

they were simple random samples to estimate the marginal population distributions, 

provided that both d and n are reasonably large. Notice however that having done 

this to estimate the covariance function we are not ignoring the covariance terms in the

1 2

hand side there are only 0(1) nonzero terms; that is for | i - j  | > c, for some fixed c,
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above expression when it comes to calculating the final expression for the variance. If 

we were simply to use 1 In times the sample variance of the L/ to estimate the variance 

of 71q we would be underestimating that variance with a relative error of 0(1).

We now consider some possible estimators of the parameters |i, X and r in our 

model. The exponential parameter, p, presents no great problems, even when we 

include the censored data in the estimation. If jcj, ... jcn are i.i.d. exponential 

observations with mean 1/p then the loglikelihood is simply

nlogp. -

which is maximised by

ji =

We note that this is also the moment estimator of p. When we include the censored 

observations the standard practice is to add to the loglikelihood the log of the survivor 

function for each censored observation. The survivor function is given by Pr(X > x) 

which for the exponential distribution is simply exp(-px). Thus the loglikelihood 

becomes

nlogn - H(Lx,-+X*;*)

where the x*  are the censored observations, and this is maximised by

For the gamma distribution there is more scope because the moment estimators do not 

coincide with the maximum likelihood estimators. The maximum likelihood estimators 

do not have a simple closed form because the estimating equations involve the digamma 

function but they are not difficult to find numerically. The moment estimators based on 

the complete data only are very straightforward to obtain. With the parameterisation of 

the gamma distribution that we are using the mean and variance are given by rfk and
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rjX2 respectively; hence if m and s2 are the sample mean and variance respectively 

then (m2/s2y m/s2) are the moment estimators of (r, X). When we include the 

censored data the situation is a little less straightforward. Let Y have a gamma 

distribution with parameters r and X as above and let the conditional distribution of Z 

given Y be the uniform distribution on the interval (0, Y). Then the density of Z is 

given by

r-2e-Vydy

and we have that

E(Z) = E(Y)/2.

Similarly we can show that £(Z2) = £(T2)/3 and hence we look for weights an, bn 

and cn such that

0»£Ey,+25j'/*]=rA

and

i’«£[E)’i2+3X(),i*)2] - cn£[(Z>,-+2£>>>)2] = r/X2,

where y it ... ,ynu are the uncensored observations and y ^ ,  ... ,ync* are the 

censored observations. Clearly an must be 1 /(nu+nc) whilst a suitable choice for bn 

and cn is

bn =  (1 +ncl3 (nu+rtc)2)/(nu+nc-1) cn =  \/(nu+nc)(nu+nc-l).

Thus we can find moment estimators of r  and X based on the whole data set which 

only involve sums of observations and sums of squares of observations and are 

therefore very easily calculated. This is not necessarily a great advantage in these days 

of easy access to powerful computers but it may be useful in some circumstances and,
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if nothing else, provides initial values for the numerical maximisation of the likelihood, 

which we turn to now.

Considering first just the complete observations, y \ , ... y m, the loglikelihood 

is given by

nu(r\og\ - logr(r)) - + (r-l)£logy{-.

Thus the derivative of the loglikelihood involves the digamma function and, although 

there are approximations to it in the literature which might allow us to obtain closed 

form expressions for the maximum likelihood estimators, the loglikelihood is suffi

ciently well behaved to allow numerical maximisation by simple techniques, such as an 

iterative grid search, only requiring the calculation of the log-gamma function, which is 

a standard library call on most computers. To incorporate the censored observations 

we need to add in to the loglikelihood the log of the survivor function evaluated for 

each censored observation. The loglikelihood now becomes

(nu+nc)(r\o%K - logr(r)) - + (r-l)Xlog)’i + Zlog/^Cy,-*),

where

r-1 -"ku.e du

The computational burden is now somewhat heavier with the necessity to perform a 

potentially large number of numerical integrations but even so, even with unsophis

ticated techniques such as Simpson’s Rule for evaluating the integrals, a high degree of 

accuracy can be obtained very quickly and easily provided fast computers are available.

In §3.6.3 we noted that the Laplace transform of K { . )  can only be inverted 

easily for integer values of r  and therefore we have to calculate the variance of 7C0 with 

r rounded to the integer nearest to the estimated value, or interpolate between the two 

values calculated with the integers below and above the estimated value. This means
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that in practice we should not bother to calculate the joint maximum likelihood 

estimators of r  and X since we are going to round r to an integer value anyway. 

However, once we have fixed r, based on the moment estimators, we can then re- 

estimate X conditional on the new value of r. Here we can again use either maximum 

likelihood or moment estimation and use just the uncensored data or the whole data set. 

The estimators are similar to those derived above and do not need to be given here but 

all have been calculated in the examples that follow, for illustrative purposes.
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3.6.5 Simulated Examples

In this section we look at the application of the methods outlined in earlier 

sections to some simulated data sets. We compare the results obtained by the 

techniques of the preceeding sections with the theoretical values when the underlying 

model is a Boolean model of spheres with uniform radius distribution and look at the 

validity of some of the assumptions that have been made.
A

First we calculate the variance of 7C0 using the form of the covariance function 

derived under the gamma assumption, for a range of values of r, X and p, and for a 

lineal analysis consisting of 20 line probes of length 200 and separation 10. The values 

of r are integer to allow the inversion of the Laplace transform and for each value of r 

the values of X used are such that the mean of the gamma distribution lies between 10 

and 50. This choice of values is completely arbitrary (in fact being for convenience in 

producing images of the simulated models) but the scale of the observations is 

unimportant; of more importance are quantities such as the expected volume fraction 

occupied by Y. For each pair of values of r  and X a range of values of p is 

considered corresponding to values of 7t0 between 0.2 and 0.8. Some of the results are 

shown in table 3.2 and fig. 3.9. We notice that for fixed r and 7t0 the variance 

increases as the mean of the gamma distribution increases (except in the extreme case of 

n 0 = 0.8 and r = 5). This corresponds to a reduction in the sample size (ie total 

number of intercept lengths) and also to an increase in the variance of both the 

exponential and gamma distributions. On the other hand if we fix 7^ and the mean of 

the gamma distribution and increase r then the variance decreases, corresponding to a 

decrease in the variance of the gamma distribution. Finally, for fixed values of r  and X 

the variance decreases, in general, as tCq (and hence p) increases although the value of 

7t0 for which the variance is maximum value is greater than zero, approaching zero as r 

and X increase.
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1 0.00148 0.00488 0.02296

3 0.00058 0.00195 0.01119

5 0.00044 0.00147 0.00841

(a) 7c0 = 0.2

Index Mean

r 10 20 50

1 0.00099 0.00325 0.01751

3 0.00038 0.00111 0.00689

5 0.00028 0.00076 0.00495

(b) 7t0 = 0.5
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1 0.00016 0.00041 0.00224

3 0.00009 0.00009 0.00037

5 0.00009 0.00005 0.00008

(c) *0 = 0.8

Table 3.2 Variance of Lineal Fraction

The table shows the variance of the lineal fraction when the intercept lengths with the phase of interest 
have a gamma distribution with index and mean given in the table. The intercept lengths with the 
reference phase have an exponential distribution and the volume fraction is * q. The results are for a 
lineal analysis based on 20 line probes with separation 10 and length 200.
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Mean Intercept Length

I

Mean Intercept Length

(a) *0 = 0.2 (b) k0 =0.5

Mean Intercept Length

(c) *0 = 0.8

Fig. 3.9 Variance of Lineal Fraction

The graphs show the variance of the lineal fraction when the intercept lengths with the phase of interest 
have a gamma distribution. The five lines on each graph correspond to r  = 1,2, 3 ,4 ,5  with r = 1 
being the lowest and r - 5 being the highest. The intercept lengths with the reference phase have an 
exponential distribution and the volume fraction is tcq. The results are for a lineal analysis based on 20
line probes with separation 10 and length 200.
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The increase in tc0 represents an increase in the expected sample size and therefore the 

general trend is not surprising. The results for small 7t0 are not so easy to explain but 

anyway, we would have to be careful if we were to use the gamma model for small 

values of 7t0 because this implies little overlapping of the grains of the Boolean model 

and less justification for the use of the gamma distribution.

Next we simulate Boolean models of spheres whose radii have a uniform 

distribution on the interval (0, b ), for b = 6, 8, 10 and 12, and whose centres have 

intensity 0.001 and we estimate the volume fraction by a lineal analysis with 20 parallel 

line probes of length 200 and separation 10. (In fact we simulate the induced process 

of circles in the plane with intensity 0.001 & and radius density given by the well 

known formula of Wicksell's problem). For each of these simulations we estimate the 

parameters of the exponential and gamma distributions of intercept lengths and calculate 

the corresponding variance of the lineal fraction. We then compare the results with the 

known theoretical values. Table 3.3 gives the theoretical values of 7t0 together with the 

theoretical variance of the lineal fraction; it also gives the actual value of the lineal 

fraction in the simulation together with the estimated variance under the gamma model. 

Table 3.4 gives the various estimates of the parameters of the model for the particular 

simulations and figure 3.10 demonstrates a graphical method for approximating the 

estimated variance. The values of the estimated variance in table 3.3 were calculated by 

linear interpolation from results computed for a large set of values of r, X and |i.

Although the simulations cover only a limited range of examples of a particular 

form of the Boolean model it is heartening to see that in the four cases studied the 

gamma based model comes reasonably close to the theoretical value. Of course a 

Boolean model of spheres is a very special case but on the other hand it is one of the 

few for which an alternative estimator exists and the four simulations cover a wide 

range of conditions from a fairly sparse model (b = 6) to one with a high degree of 

overlapping {b = 12).

133



Chapter 3: Relative Volume Estimation

b

6 8 10 12

"o 0.202 0.415 0.649 0.836

var(7C0) 0.00028 0.00059 0.00071 0.00046
A

observed n0 0.181 0.405 0.660 0.839

estimated var^^) 0.00026,
0.00023

0.00056,
0.00046

0.00066,
0.00044

0.00074,
0.00023

Table 3.3 Theoretical and Estimated Values for Simulated Boolean Model

The table gives the theoretical values of the volume fraction, teq, and the variance of the lineal fraction, 
var(TCo)' for a lineal analysis of a Boolean model with spherical primary grains. The spheres have
uniform radius distribution on the interval (0, b) and their centres form a Poisson point process of 
intensity 0.001. The lineal analysis is by 20 lines of length 200 and separation 10. The third and 
fourth rows of the table give the values of the lineal fraction and its estimated variance for realisations 
of the Boolean model and lineal analysis. The estimated variance is calculated under the assumption 
that the intercepts of the line probes with the Boolean model have a gamma length distribution; the 
two values given are calculated with the index of the gamma distribution equal to the integer below and 
above the estimated value, respectively. The parameter estimates are given in table 3.4; those used for 
calculating the variance are the MLE of )i incorporating the censored data and the conditional MLE of \  
calculated with the censored data included.

There is considerable variation in the estimates of the parameters and clearly 

where there is considerable dependence in the data we should be wary of treating the 

likelihood as if the observations were independent. To get an idea of how bad the 

maximum likelihood estimates might be a further study was carried out. For each of 

the cases in the simulation described above 50 independent realisations were generated 

and just the exponential parameter was calculated. Also the sample size was recorded 

for each realisation so that the effect of the variation in the sample size could be 

assessed. The reason for calculating only the exponential parameter, apart from 

computational cost, is that we know that the exponential distribution is marginally exact 

and, furthermore, we can calculate the true value of the parameter.
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b

6 8 10 12

Theoretical value 0.038 0.067 0.105 0.151
MLE - complete data only 0.041 0.071 0.114 0.177
MLE - censored data included 0.031 0.061 0.104 0.164

(a) Estimators of p

b

6 8 10 12

Moment based - complete data only 3.614 3.413 1.991 1.419
0.604 0.339 0.115 0.054

- censored data included 4.028 3.668 1.997 1.656
0.665 0.342 0.108 0.048

MLE - complete data only 3.614 3.120 2.489 1.596
0.604 0.317 0.114 0.061

- censored data included 3.021 3.109 2.246 1.553
0.492 0.294 0.119 0.048

(b) Joint Estimators of r and X

6 8

b

10 12
r  = 3 r - 4 r  = 3 r  = 4 -'1 ii to r = 3 r =1 r = 2

Moment based 0.448 0.651 0.280 0.373 0.108 0.162 0.029 0.058
MUE 0.491 0.661 0.284 0.382 0.106 0.161 0.031 0.065

(c) Conditional Estimators of X given r.

Table 3.4 Estimated Parameter Values for Simulated Boolean Models

The estimates in the table are for the simulations of the lineal analysis of a Boolean model of spheres 
described in table 3.3 and in the text p  is the parameter of the exponential distribution of the intercept 
lengths made with the reference phase and X and r  are the parameters of the assumed gamma 
distribution for the intercept lengths with the phase of interest For the parameters of the gamma 
distribution the maximum likelihood estimators were found numerically using the appropriate moment 
estimators as starting values. The estimation was based on the marginal distribution of the data and 
ignored the dependencies and the randomness of the sample size.
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(a) r  = 1

(b )r = 2

Fig. 3.10 Graphical Interpolation for Approximating Variance

The estimated variance is calculated for a large range of values of r, X and ji. For a specific case we 
then plot the variance for the closest values of the parameters and interpolate between the plotted 
values. Illustrated is the simulation with b=12; for r= l we have X=0.031 and for r=2 we have 
X=0.065, whilst p=0.164 in both cases (see table 3.4).
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The results of the simulations are shown in table 3.5. The observed variances 

are simply sample variances of the observed parameter estimates. The expected 

variances are the theoretical variances for the equivalent estimators given a fixed sample 

size of i.i.d. observations with the true parameter, where the sample size used is the 

mean of the observed sample sizes. These values can be obtained easily via the 

distribution of the maximum likelihood estimator of the mean parameter, which is 1/p.

b

6 8 10 12

Values of p

True value 0.038 0.067 0.105 0.151
Observed - complete data only 0.045 0.074 0 . 1 1 1 0.162

- censored data included 0.033 0.063 0.100 0.152
A

Standard deviation of p

Complete data only - observed 0.0042 0.0070 0.0088 0.0202
-expected 0.0037 0.0056 0.0089 0.0153

Censored data included -observed 0.0033 0.0060 0.0076 0.0181
-expected 0.0028 0.0048 0.0081 0.0143

Sample size

Complete data only -mean 104 146 140 97
-variance 73 85 48 71

Total sample size -mean 136 169 154 104
-variance 79 85 46 77

Table 3.5 Performance of Estimators of p

The table gives the sample mean and standard deviation of estimates of the exponential parameter of the 
length distribution of intercepts of a line probe with the reference phase of a Boolean model of spheres, 
based on lineal analyses of 50 realisations of the Boolean model. The details of the model and the 
analyses are given in table 3.3 and in the text The estimates are the standard MLEs for i.i.d. 
observations, both with and without censored data. The true values are calculated from known results 
about Boolean models.
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The first striking thing is that, apart from the case 6=12, the estimators appear 

to be biased. The differences between the true values and the means of the observed 

values are greater than 8 times the estimated standard error of the mean for 6=6, 8 and 

10, even when the censored data is included, whereas for 6=12 the difference is less 

than one standard error. Further investigation shows that significant correlation exists 

between the sample size and the sum of the observations in several cases, the ratio of 

these quantities being the estimator in question. When the censored observations are 

included the correlation is significantly negative for 6=6 and 6=8 and significantly 

positive for 6=12. This is explained by the fact that for sparse models (ie 6=6 and 

6=8) an increase in the sample size is due to more grains hitting the line probes, with a 

resulting decrease in the total length of intersection with the reference phase. 

Conversely, when the volume fraction is high (6=12), and there is a high degree of 

overlapping of particles, an increase in sample size results from less overlaps being hit, 

which would be more likely to happen when particles are hit near their edges, giving a 

decrease in the total length of intersection with the phase of interest However, this 

does not explain the bias in the estimators since we would normally expect the ratio of 

two negatively correlated random variables to be positively biased and vice versa; 

clearly there is scope for further investigation on this point

Despite the mysterious bias we notice from the table that the estimators which 

incorporate the censored data are more efficient and have smaller bias than those that do 

not, as we would hope, but that both are less than efficient than would be the case for

i.i.d. variables.
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3.6.6 Limitations of the Method

The method we have developed for estimating the variance of the lineal fraction 

and applied in the preceeding section has some obvious limitations. First, it assumes 

that the specimen can be regarded as the realisation of a Boolean model with convex 

primary grains. Secondly, it assumes a gamma distribution for the lengths of the 

intercepts of an IUR line probe with the phase of interest. Furthermore, the estimation 

of the parameters of the distributions of intercept lengths with the two phases ignores 

the dependencies in the data and having estimated the parameters it is necessary to 

interpolate between results calculated for integer values of the index of the gamma 

distribution in order to make inversion of the Laplace transform possible.

As far as the assumption of a Boolean model is concerned this is an issue which 

arises in almost all branches of statistics. It is clear that there exist situations for which 

the Boolean model is appropriate (see Stoyan, Kendall & Mecke, 1987, Ch.3, for a list 

of situations in which the Boolean model has been applied and also a critical assessment 

of Boolean models) and we have mentioned earlier that Ripley (1988) has suggested 

some ideas for goodness-of-fit tests for random set models. However, this is not the 

subject of this thesis and since the validity of the assumption will depend on the context 

of the investigation being undertaken the responsibility for deciding whether the model 

is appropriate must lie with the experimenter. There are, of course, other models 

available and the development of a similar methodology for those models would be 

interesting. The most obvious classes of models are inhibiton (hard core) models, for 

densely packed, non-overlapping particles and cluster models, for sparsely distributed, 

highly irregular specimens, where the clusters of overlapping grains model the 

irregularly shaped patches of the phase of interest However, it is clear that results for 

these models will be considerably less easy to obtain and the approach we have used 

may well not be justifiable if the model itself introduces a whole new set of 

computational problems. Indeed, even with the Boolean model of convex grains we 

have introduced some computational problems which detract from the appeal of the 

general scheme.
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The gamma distribution assumption is certainly open to criticism. However, 

although we have no theoretical arguments to justify it, we have some encouraging 

empirical evidence, albeit for a particular sub-class of models. Further work in this 

area should include testing the assumption on a wider class of models and on real data 

sets for which a Boolean model of convex grains is appropriate. Of course we could 

start our modelling at the level of the intercept length distributions. The only point at 

which the Boolean model enters the calculations in the proceeding work is in the 

derivation of the exponential distribution for the lengths of intersection with the 

reference phase. This "exact" distributional property of the data is only as good as the 

Boolean model and an alternative is to model the two length distributions directly 

without relating them to any underlying random set model in the whole specimen. This 

would relieve us of the need to justify the Boolean model assumption and avoid the 

question of whether whatever distribution we use for the intercepts with the phase of 

interest is an accurate description of the "true" distribution (that is, the distribution for 

intercepts with a Boolean model). On the other hand we would lose the possibility of 

using the Boolean model for inteipretion.

The parameter estimation problem is also worrying. The use of maximum 

likelihood estimation with a simplified form for the likelihood, which does not take 

account of the dependencies in the data, leads us to ask what the effect on the parameter 

estimates might be, and the answer to that question is not obvious, although the results 

of the simulations carried out to examine the behaviour of the estimator of the parameter 

of the exponential length distribution suggest the existence of some undesirable 

properties. It may be possible to develop techniques which diminish the effect of the 

dependencies. For example, suppose that we number the line probes 1,... , n and 

split them into two groups, one with the odd numbered probes and the other with even 

numbered probes. We then perform the estimation procedure twice, once for each 

group, and combine the estimates. Since within each group every pair of probes must 

be at least twice as far apart as the separation distance in the original set we would hope 

that the dependencies would be considerably reduced.
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The need to interpolate between results for integer values of the index of the 

gamma distribution may or may not have a significant effect. When the index is small 

the shape of the distribution may change markedly between the two different values and 

we should be cautious in interpreting the results, but for larger values of the index the 

two values for the variance between which the interpolation is done may be fairly close 

anyway (see table 3.3) and then we would not be too concerned with this limitation.

In conclusion, whilst noting that there are several limitations on the method we 

have also seen that it can produce good agreement with theoretical values in some 

cases. The advantage of using a simple model such as the one we have used is that we 

can obtain results on the basis of a small number of parameters, which we estimate 

from the data, and which may serve a role in a wider context. Moreover, the method is 

particular to a specific form of stereological study, namely lineal analysis, and avoids 

the need for a second test set to be applied to the specimen in studies for which it has 

been decided, perhaps on the basis of other considerations, to use that form of study.
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3.6.7 Alternative Approaches

One of the main drawbacks of the approach taken above is that even for a 

simple physical model we have great difficulty in finding the corresponding statistical 

model, and indeed we ignored some of the dependencies that were known to exist in 

the data when estimating the parameters of the statistical model. Recent work by Diggle 

& Gratton (1984) suggests that in situations such as this an alternative to formal 

likelihood theory is to generate data from the physical model for different values of the 

parameters which describe it and to form an "empirical" likelihood in order to estimate 

values of the model which fit the sample best This is particularly appealing in our 

case, provided that we are prepared to make fairly rigid assumptions about the nature of 

the primary grains of the Boolean model, since the simulation of a Boolean model is 

very easy and relatively quick. For example, supposing that we assume the Boolean 

model to have spherical primary grains whose centres have intensity X and whose radii 

have density f R(r; 0), then a knowledge of X and 0 clearly tells us all we need to 

know about the model. Given that we have some idea about the values of X and 0 we 

simulate Boolean models for a range of values of the parameters and collect 

observations of the type in our original sample (eg intercept lengths on linear probes). 

For each value of the parameter vector this process is repeated many times and an 

empirical density is built up for the observations in the sample, either by kernel density 

estimation or simply by forming a histogram. Thus a likelihood is evaluated for the 

sample at the different parameter values and after some form of smoothing it is 

maximised.

The technique is certainly appealing in its simplicity and can be seen to be quite 

effective in some examples. However, it is not clear how badly it is affected by 

dependencies of the type encountered in our context and how well it performs on a 

multi-dimensional parameter space. It also requires quite severe restrictions to be 

placed on the Boolean model to be realisable in practice. To illustrate how it works in a 

one-dimensional case the technique was performed on simulated data similar to that 

used in the previous section.
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A realisation of a Boolean model of spheres was generated with the sphere 

centres having intensity 0.001 and uniform radius distribution on the interval (0,10). 

A lineal analysis was performed using 20 lines of length 200 and separation 10 and the 

lengths of the complete intercepts with the phase of interest were grouped into 10 

classes of equal width. Then for each of a range of values of X, including 0.001,100 

further realisations were generated with intensity X, and the observations for each set of 

realisations were grouped using the same intervals as for the sample. The resulting 

multinomial densities were used to evaluate the likelihood for the sample at each value 

of X. The results of two independent repetitions of this procedure (out of a large 

number carried out) are shown in figure 3.11.

Fig. 3.11 Empirical Loglikelihood for the Intensity of a Boolean Model

The loglikelihoods in the figure are constructed from large numbers of simulations of the model for 
each of a set of parameter values, the simulated data for each value being grouped to form an estimated 
multinomial density of intercept lengths. The two graphs represent two repetitions of the procedure 
using independent simulated samples but the same estimated density. The true value of the intensity is 
0.001 and the estimates from the quadratic approximation (fitted by least squares) are 0.0011 and 
0.0010 respectively.
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There are several drawbacks to this procedure, some of which we have noted 

already. Obviously the restrictions on the Boolean model necessary to make 

realisations practical may be unacceptable in some circumstances. Also there is no 

obvious way of incoiporating the censored data into the analysis; this may result in 

throwing away a large amount of information. Thirdly, as with the previous approach, 

it is not clear what is the effect of the dependencies in the data and how to allow for 

them in the analysis. Results from simulations with different distances between the line 

probes show that the procedure breaks down as the lines become very close together, 

more seriously, the estimated density does not seem to improve as the size of the 

simulations is increased.

In the cases we have been looking at, where the primary grains are spherical, it 

is often possible to estimate the parameters of the Boolean model directly. For 

example, for the case used in the simulations in §3.6.5 where the radii of the spheres 

are uniformly distributed on (0, b) and their centres are a realisation of a Poisson 

process of intensity X, the expected value of the lineal fraction is 1-exp {-71^/3} and 

the parameter of the exponential distribution of intercept lengths with the reference 

phase is nXb2/3; therefore we can estimate X and b from the observed lineal fraction 

and the estimated exponential parameter. Furthermore, the covariance function has a 

simple form allowing easy calculation of the estimated variance of the lineal fraction. If 

such strong assumptions about the form of the physical model are felt to be justified 

then clearly the estimation problem is a much simpler one than those outlined above; all 

that is required is the total length and the number of complete intercepts with the 

reference phase.
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3.7 Stereology in a Wider Context

In the introduction to Chapter 2 we noted that our ultimate interest in any 

stereological study is almost certain to be centred on a wider population than the 

specimens under study, probably through a model of some kind in which we wish to fit 

parameters and/or test hypotheses. In this section we look at the way the ideas of the 

previous sections might fit into such a wider context

The analysis of the microstructure of concrete and cement is an active area of 

research of obvious importance in which stereology plays an important role. There are 

many questions of interest to materials scientists relating to various characteristics of 

these materials but here we just consider two questions of possible interest:

1) What is the proportion of Calcium Hydroxide (Ca(OH>2) in the cement?

2) How heterogeneous is the Ca(OH)2 in the cement?

The first question is concerned with the mean amount of a particular phase 

whereas the second is related to the variability of that phase throughout the population. 

Here the word population can be interpreted in a very general way; it might well refer to 

a certain production method rather than a deterministic, physical batch of cement and in 

this sense the ideas of model based stereology are particularly relevant. However, to 

find answers to the questions by statistical methods we have to be more specific in 

order to define a model. With the model we can translate the questions into problems 

of esimation, inference and hypothesis testing. The model and the questions to be 

answered will give some idea of how to design the sampling scheme but the model will 

itself be dependent on the nature of the observations that are possible to obtain.

If the population is a finite, physical batch of cement, for example a building or 

a road, we might be interested in forming a model which includes the spatial component 

of the situation. For example the second question might reduce to estimating the 

parameters in a function which describes the proportion of Ca(OH)2 as a function of 

location.

This approach would not be appropriate in the more abstract setting where the 

"population” refers to a production process, and we consider that situation now. The
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starting point will be a series of samples from the process each of which has a certain 

proportion of Ca(OH)2, which we must estimate by stereological means. The 

quantities we are interested in ultimately are the mean proportion of Ca(OH)2 and a 

measure of the variability of this proportion between samples. Apart from the usual 

sampling error an extra component of variability is introduced via the stereological 

estimation. It is to cope with this that the methods of the previous section are used.

We take n blocks of cement from the process and we let v i be the proportion 

of Ca(OH)2 in block i (/= 1,...,«). We analyse m parallel planar sections from each 

block with a lineal analysis consisting of / parallel linear probes on each section. The 

sampling mechanism is summarised in figure 3.12. It can be assumed that the blocks 

are sufficiently small and well spaced that the material within a block can be considered 

to be homogeneous whilst different blocks are independent.

Fig. 3.12 Sampling Scheme for Cement Production Problem

The quantities of interest are the proportion, p, of Ca(OH)2 in cement made by a certain process and 
the heterogeneity of the Ca(OH)2 phase, represented by a (i.e. some measure of dispersion). Each 
sample has a proportion v, of the phase of interest and the data consist of lengths of intercepts made 
with linear probes on planar sections through the sample. The total intercept length for a sample is 
represented by Z/.
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The data consists of observed intercept lengths on the linear probes; we let x-l}k 

be the total length of intersection of Ca(OH)2 with line k on plane j  in block i. 

Writing

m /*,-XXv/=!*=!

we have

£(Zi|vi) = vi 

B(v,) = (J-

var(Zj|vj) = o? 

var(v() = a 2.

This is the familiar random effects model, within this model we are interested in p and 

a 2 whilst {v4-} and {o 2) are nuisance parameters. In a standard application we 

would have b blocks and k independent observations in each block and the covariance 

matrix for the observations would be block diagonal, with the submatrix corresponding 

to block i having o2+o 2 on the leading diagonal and a 2 everywhere else. Interest in 

p would normally involve estimation by weighted least squares or quasi-likelihood and 

interest in a 2 would indicate using components of variance. The unknown {a,-2} 

would be estimated by the sample variances within blocks.

In our context we know that each is marginally unbiased for v f but 

observations from the same block are correlated, with a correlation structure reflecting 

their spatial arrangement, and so the usual estimator of within blocks variance cannot be 

used here. However, we have developed an estimator of o  2 in §3.6 and therefore we 

can work in terms of the {Z,} directly.

An approach that is often used for this type of situation is an empirical Bayes 

approach. This implies making distributional assumptions about the data in the form of 

a hierarchical model in which the parameters of each stage are assumed to have a 

distribution parameterised by "super parameters" of the next stage. The empirical part 

comes from introducing empirical estimates of some of the parameters, rather than 

estimating the full parameter set from the likelihood.
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Suppose that Z, |v; has a Normal distribution with mean \ i and variance a,-2 

and that v- has a Normal distribution with mean p and variance o2. Then, assuming 

the {Z/} to be independent, given {v4}, and the {v,} to be independent, the joint 

distribution of Z j , ... JZn is multivariate Normal with mean (p ,... ,p)T and diagonal 

covariance matrix with a 2+a4-2 as the /th element on the diagonal. We replace { a 2} 

by estimates obtained by the techniques of the previous section and then estimate p and 

a 2 by standard maximum likelihood.

Chapter 3: Relative Volume Estimation

(
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Chapter 4 Conclusions

We have demonstrated in this thesis that there is an important role to be played 

by statistical theory in stereology, both in the analysis and design of experiments. The 

difficulty is in finding a compromise between realism and tractability; whereas results 

concerning mean values of estimators can be obtained under very general conditions we 

find that the geometric aspect of stereology makes the derivation of second order results 

very difficult without the imposition of strict assumptions. Furthermore, sampling 

designs are restricted by the physical destruction of specimens necessary to make 

measurements. Against this background we have assessed the relative efficiencies of 

various estimators of volume, both absolute and relative, in a wide variety of contexts.

In Chapter 2 we looked at the estimation of volume from a design-based point 

of view, in which the randomisation results solely from the sampling design. The main 

emphasis was on systematic sampling schemes and the use of unbiased counting rules 

in situations where the phase of interest is the union of disjoint particles. We found that 

systematic and stratified sampling schemes can be shown to be more efficient than 

completely random ones, under very mild conditions, and that therefore the restrictions 

that need to be placed on sampling schemes to make them realisable in practice are, in 

fact, desirable anyway. This improved efficiency is a result of the principle of 

stratification and not the principle of antithetic variates, as has been suggested 

(Mattfeldt, 1987) (see pp. 20-22). The problem still remains as to how to deal 

satisfactorily with the estimation of the variance of such estimators. The key is in the 

covariogram and more work is needed in this area.

When the phase of interest is embedded in an opaque reference phase we find 

that the same techniques are applicable but that the loss of efficiency is more than we 

might expect The behaviour of systematic and stratified schemes is more erratic and 

we should be aware of the possibility of periodicities inflating the variance when the 

phase of interest is composed of several disjoint parts; also the effect of the variation in 

the number of sections hitting the phase of interest may be significant when assessing
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the relative efficiency of estimators.

For specimens containing a phase of interest composed of many disjoint 

particles the recently developed disector of Sterio (1984), based on unbiased sampling 

of particles, is appropriate. We examined the disector in some detail, taking a different 

approach from that of Sterio, which enabled us to examine its use in the context of 

finite population sampling theory (see pp. 32-69). Not only were we able to achieve 

realisable sampling schemes but we were able to assess the relative efficiencies of 

different schemes and estimators, giving some indications as to how we can use the 

disector effectively. By contrast, we found that the selector has many drawbacks, 

being a victim of blind faith in a single principle, namely unbiasedness, to the exclusion 

of all others (see pp. 70-79).

Chapter 3 is concerned with volume estimation from a model based point of 

view. We looked principally at Boolean models and derived an estimator for the 

variance of the lineal fraction when analysing a Boolean model of convex grains by a 

grid of parallel lines. The main drawbacks of the work are the assumptions that need to 

be made and we would like to be able to generalise the results to incorporate non- 

convex primary grains and non-Poisson point processes for the germs, but nevertheless 

the Boolean model is capable of representing many diverse spatial patterns and has been 

used in many situations. The key to the calculation of the variance is the covariance 

function and we have discussed alternative methods of estimating the covariance 

function, both within the framework of the Boolean model and more generally.

This thesis has shown some ways in which statistical theory and techniques can 

be applied to stereology. In all cases modelling assumptions need to be made but this is 

always the case in statistics. It is up to the stereologist to decide which assumptions are 

appropriate and acceptable in any particular situation.
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